staging/rdma/hfi1: Increase SDMA descriptor queue size
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / init.c
CommitLineData
77241056
MM
1/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51#include <linux/pci.h>
52#include <linux/netdevice.h>
53#include <linux/vmalloc.h>
54#include <linux/delay.h>
55#include <linux/idr.h>
56#include <linux/module.h>
57#include <linux/printk.h>
58#include <linux/hrtimer.h>
59
60#include "hfi.h"
61#include "device.h"
62#include "common.h"
63#include "mad.h"
64#include "sdma.h"
65#include "debugfs.h"
66#include "verbs.h"
67
68#undef pr_fmt
69#define pr_fmt(fmt) DRIVER_NAME ": " fmt
70
71/*
72 * min buffers we want to have per context, after driver
73 */
74#define HFI1_MIN_USER_CTXT_BUFCNT 7
75
76#define HFI1_MIN_HDRQ_EGRBUF_CNT 2
77#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
78#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
79
80/*
81 * Number of user receive contexts we are configured to use (to allow for more
82 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
83 */
84uint num_rcv_contexts;
85module_param_named(num_rcv_contexts, num_rcv_contexts, uint, S_IRUGO);
86MODULE_PARM_DESC(
87 num_rcv_contexts, "Set max number of user receive contexts to use");
88
89u8 krcvqs[RXE_NUM_DATA_VL];
90int krcvqsset;
91module_param_array(krcvqs, byte, &krcvqsset, S_IRUGO);
92MODULE_PARM_DESC(krcvqs, "Array of the number of kernel receive queues by VL");
93
94/* computed based on above array */
95unsigned n_krcvqs;
96
97static unsigned hfi1_rcvarr_split = 25;
98module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
99MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
100
101static uint eager_buffer_size = (2 << 20); /* 2MB */
102module_param(eager_buffer_size, uint, S_IRUGO);
103MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
104
105static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
106module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
107MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
108
109static uint hfi1_hdrq_entsize = 32;
110module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
111MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
112
113unsigned int user_credit_return_threshold = 33; /* default is 33% */
114module_param(user_credit_return_threshold, uint, S_IRUGO);
115MODULE_PARM_DESC(user_credit_return_theshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
116
117static inline u64 encode_rcv_header_entry_size(u16);
118
119static struct idr hfi1_unit_table;
120u32 hfi1_cpulist_count;
121unsigned long *hfi1_cpulist;
122
123/*
124 * Common code for creating the receive context array.
125 */
126int hfi1_create_ctxts(struct hfi1_devdata *dd)
127{
128 unsigned i;
129 int ret;
130 int local_node_id = pcibus_to_node(dd->pcidev->bus);
131
132 if (local_node_id < 0)
133 local_node_id = numa_node_id();
134 dd->assigned_node_id = local_node_id;
135
136 dd->rcd = kcalloc(dd->num_rcv_contexts, sizeof(*dd->rcd), GFP_KERNEL);
806e6e1b 137 if (!dd->rcd)
77241056 138 goto nomem;
77241056
MM
139
140 /* create one or more kernel contexts */
141 for (i = 0; i < dd->first_user_ctxt; ++i) {
142 struct hfi1_pportdata *ppd;
143 struct hfi1_ctxtdata *rcd;
144
145 ppd = dd->pport + (i % dd->num_pports);
146 rcd = hfi1_create_ctxtdata(ppd, i);
147 if (!rcd) {
148 dd_dev_err(dd,
149 "Unable to allocate kernel receive context, failing\n");
150 goto nomem;
151 }
152 /*
153 * Set up the kernel context flags here and now because they
154 * use default values for all receive side memories. User
155 * contexts will be handled as they are created.
156 */
157 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
158 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
159 HFI1_CAP_KGET(NODROP_EGR_FULL) |
160 HFI1_CAP_KGET(DMA_RTAIL);
161 rcd->seq_cnt = 1;
162
163 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
164 if (!rcd->sc) {
165 dd_dev_err(dd,
166 "Unable to allocate kernel send context, failing\n");
167 dd->rcd[rcd->ctxt] = NULL;
168 hfi1_free_ctxtdata(dd, rcd);
169 goto nomem;
170 }
171
172 ret = hfi1_init_ctxt(rcd->sc);
173 if (ret < 0) {
174 dd_dev_err(dd,
175 "Failed to setup kernel receive context, failing\n");
176 sc_free(rcd->sc);
177 dd->rcd[rcd->ctxt] = NULL;
178 hfi1_free_ctxtdata(dd, rcd);
179 ret = -EFAULT;
180 goto bail;
181 }
182 }
183
184 return 0;
185nomem:
186 ret = -ENOMEM;
187bail:
188 kfree(dd->rcd);
189 dd->rcd = NULL;
190 return ret;
191}
192
193/*
194 * Common code for user and kernel context setup.
195 */
196struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt)
197{
198 struct hfi1_devdata *dd = ppd->dd;
199 struct hfi1_ctxtdata *rcd;
200 unsigned kctxt_ngroups = 0;
201 u32 base;
202
203 if (dd->rcv_entries.nctxt_extra >
204 dd->num_rcv_contexts - dd->first_user_ctxt)
205 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
206 (dd->num_rcv_contexts - dd->first_user_ctxt));
207 rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
208 if (rcd) {
209 u32 rcvtids, max_entries;
210
211 dd_dev_info(dd, "%s: setting up context %u\n", __func__, ctxt);
212
213 INIT_LIST_HEAD(&rcd->qp_wait_list);
214 rcd->ppd = ppd;
215 rcd->dd = dd;
216 rcd->cnt = 1;
217 rcd->ctxt = ctxt;
218 dd->rcd[ctxt] = rcd;
219 rcd->numa_id = numa_node_id();
220 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
221
222 spin_lock_init(&rcd->exp_lock);
223
224 /*
225 * Calculate the context's RcvArray entry starting point.
226 * We do this here because we have to take into account all
227 * the RcvArray entries that previous context would have
228 * taken and we have to account for any extra groups
229 * assigned to the kernel or user contexts.
230 */
231 if (ctxt < dd->first_user_ctxt) {
232 if (ctxt < kctxt_ngroups) {
233 base = ctxt * (dd->rcv_entries.ngroups + 1);
234 rcd->rcv_array_groups++;
235 } else
236 base = kctxt_ngroups +
237 (ctxt * dd->rcv_entries.ngroups);
238 } else {
239 u16 ct = ctxt - dd->first_user_ctxt;
240
241 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
242 kctxt_ngroups);
243 if (ct < dd->rcv_entries.nctxt_extra) {
244 base += ct * (dd->rcv_entries.ngroups + 1);
245 rcd->rcv_array_groups++;
246 } else
247 base += dd->rcv_entries.nctxt_extra +
248 (ct * dd->rcv_entries.ngroups);
249 }
250 rcd->eager_base = base * dd->rcv_entries.group_size;
251
252 /* Validate and initialize Rcv Hdr Q variables */
253 if (rcvhdrcnt % HDRQ_INCREMENT) {
254 dd_dev_err(dd,
255 "ctxt%u: header queue count %d must be divisible by %d\n",
256 rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
257 goto bail;
258 }
259 rcd->rcvhdrq_cnt = rcvhdrcnt;
260 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
261 /*
262 * Simple Eager buffer allocation: we have already pre-allocated
263 * the number of RcvArray entry groups. Each ctxtdata structure
264 * holds the number of groups for that context.
265 *
266 * To follow CSR requirements and maintain cacheline alignment,
267 * make sure all sizes and bases are multiples of group_size.
268 *
269 * The expected entry count is what is left after assigning
270 * eager.
271 */
272 max_entries = rcd->rcv_array_groups *
273 dd->rcv_entries.group_size;
274 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
275 rcd->egrbufs.count = round_down(rcvtids,
276 dd->rcv_entries.group_size);
277 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
278 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
279 rcd->ctxt);
280 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
281 }
282 dd_dev_info(dd, "ctxt%u: max Eager buffer RcvArray entries: %u\n",
283 rcd->ctxt, rcd->egrbufs.count);
284
285 /*
286 * Allocate array that will hold the eager buffer accounting
287 * data.
288 * This will allocate the maximum possible buffer count based
289 * on the value of the RcvArray split parameter.
290 * The resulting value will be rounded down to the closest
291 * multiple of dd->rcv_entries.group_size.
292 */
314fcc0d
SB
293 rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
294 sizeof(*rcd->egrbufs.buffers),
295 GFP_KERNEL);
77241056
MM
296 if (!rcd->egrbufs.buffers)
297 goto bail;
314fcc0d
SB
298 rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
299 sizeof(*rcd->egrbufs.rcvtids),
300 GFP_KERNEL);
77241056
MM
301 if (!rcd->egrbufs.rcvtids)
302 goto bail;
303 rcd->egrbufs.size = eager_buffer_size;
304 /*
305 * The size of the buffers programmed into the RcvArray
306 * entries needs to be big enough to handle the highest
307 * MTU supported.
308 */
309 if (rcd->egrbufs.size < hfi1_max_mtu) {
310 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
311 dd_dev_info(dd,
312 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
313 rcd->ctxt, rcd->egrbufs.size);
314 }
315 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
316
317 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
318 rcd->opstats = kzalloc(sizeof(*rcd->opstats),
319 GFP_KERNEL);
806e6e1b 320 if (!rcd->opstats)
77241056 321 goto bail;
77241056
MM
322 }
323 }
324 return rcd;
325bail:
326 kfree(rcd->opstats);
327 kfree(rcd->egrbufs.rcvtids);
328 kfree(rcd->egrbufs.buffers);
329 kfree(rcd);
330 return NULL;
331}
332
333/*
334 * Convert a receive header entry size that to the encoding used in the CSR.
335 *
336 * Return a zero if the given size is invalid.
337 */
338static inline u64 encode_rcv_header_entry_size(u16 size)
339{
340 /* there are only 3 valid receive header entry sizes */
341 if (size == 2)
342 return 1;
343 if (size == 16)
344 return 2;
345 else if (size == 32)
346 return 4;
347 return 0; /* invalid */
348}
349
350/*
351 * Select the largest ccti value over all SLs to determine the intra-
352 * packet gap for the link.
353 *
354 * called with cca_timer_lock held (to protect access to cca_timer
355 * array), and rcu_read_lock() (to protect access to cc_state).
356 */
357void set_link_ipg(struct hfi1_pportdata *ppd)
358{
359 struct hfi1_devdata *dd = ppd->dd;
360 struct cc_state *cc_state;
361 int i;
362 u16 cce, ccti_limit, max_ccti = 0;
363 u16 shift, mult;
364 u64 src;
365 u32 current_egress_rate; /* Mbits /sec */
366 u32 max_pkt_time;
367 /*
368 * max_pkt_time is the maximum packet egress time in units
369 * of the fabric clock period 1/(805 MHz).
370 */
371
372 cc_state = get_cc_state(ppd);
373
374 if (cc_state == NULL)
375 /*
376 * This should _never_ happen - rcu_read_lock() is held,
377 * and set_link_ipg() should not be called if cc_state
378 * is NULL.
379 */
380 return;
381
382 for (i = 0; i < OPA_MAX_SLS; i++) {
383 u16 ccti = ppd->cca_timer[i].ccti;
384
385 if (ccti > max_ccti)
386 max_ccti = ccti;
387 }
388
389 ccti_limit = cc_state->cct.ccti_limit;
390 if (max_ccti > ccti_limit)
391 max_ccti = ccti_limit;
392
393 cce = cc_state->cct.entries[max_ccti].entry;
394 shift = (cce & 0xc000) >> 14;
395 mult = (cce & 0x3fff);
396
397 current_egress_rate = active_egress_rate(ppd);
398
399 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
400
401 src = (max_pkt_time >> shift) * mult;
402
403 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
404 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
405
406 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
407}
408
409static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
410{
411 struct cca_timer *cca_timer;
412 struct hfi1_pportdata *ppd;
413 int sl;
414 u16 ccti, ccti_timer, ccti_min;
415 struct cc_state *cc_state;
416
417 cca_timer = container_of(t, struct cca_timer, hrtimer);
418 ppd = cca_timer->ppd;
419 sl = cca_timer->sl;
420
421 rcu_read_lock();
422
423 cc_state = get_cc_state(ppd);
424
425 if (cc_state == NULL) {
426 rcu_read_unlock();
427 return HRTIMER_NORESTART;
428 }
429
430 /*
431 * 1) decrement ccti for SL
432 * 2) calculate IPG for link (set_link_ipg())
433 * 3) restart timer, unless ccti is at min value
434 */
435
436 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
437 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
438
439 spin_lock(&ppd->cca_timer_lock);
440
441 ccti = cca_timer->ccti;
442
443 if (ccti > ccti_min) {
444 cca_timer->ccti--;
445 set_link_ipg(ppd);
446 }
447
448 spin_unlock(&ppd->cca_timer_lock);
449
450 rcu_read_unlock();
451
452 if (ccti > ccti_min) {
453 unsigned long nsec = 1024 * ccti_timer;
454 /* ccti_timer is in units of 1.024 usec */
455 hrtimer_forward_now(t, ns_to_ktime(nsec));
456 return HRTIMER_RESTART;
457 }
458 return HRTIMER_NORESTART;
459}
460
461/*
462 * Common code for initializing the physical port structure.
463 */
464void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
465 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
466{
467 int i, size;
468 uint default_pkey_idx;
469
470 ppd->dd = dd;
471 ppd->hw_pidx = hw_pidx;
472 ppd->port = port; /* IB port number, not index */
473
474 default_pkey_idx = 1;
475
476 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
477 if (loopback) {
478 hfi1_early_err(&pdev->dev,
479 "Faking data partition 0x8001 in idx %u\n",
480 !default_pkey_idx);
481 ppd->pkeys[!default_pkey_idx] = 0x8001;
482 }
483
484 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
485 INIT_WORK(&ppd->link_up_work, handle_link_up);
486 INIT_WORK(&ppd->link_down_work, handle_link_down);
487 INIT_WORK(&ppd->freeze_work, handle_freeze);
488 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
489 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
490 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
491 mutex_init(&ppd->hls_lock);
492 spin_lock_init(&ppd->sdma_alllock);
493 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
494
495 ppd->sm_trap_qp = 0x0;
496 ppd->sa_qp = 0x1;
497
498 ppd->hfi1_wq = NULL;
499
500 spin_lock_init(&ppd->cca_timer_lock);
501
502 for (i = 0; i < OPA_MAX_SLS; i++) {
503 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
504 HRTIMER_MODE_REL);
505 ppd->cca_timer[i].ppd = ppd;
506 ppd->cca_timer[i].sl = i;
507 ppd->cca_timer[i].ccti = 0;
508 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
509 }
510
511 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
512
513 spin_lock_init(&ppd->cc_state_lock);
514 spin_lock_init(&ppd->cc_log_lock);
515 size = sizeof(struct cc_state);
516 RCU_INIT_POINTER(ppd->cc_state, kzalloc(size, GFP_KERNEL));
517 if (!rcu_dereference(ppd->cc_state))
518 goto bail;
519 return;
520
521bail:
522
523 hfi1_early_err(&pdev->dev,
524 "Congestion Control Agent disabled for port %d\n", port);
525}
526
527/*
528 * Do initialization for device that is only needed on
529 * first detect, not on resets.
530 */
531static int loadtime_init(struct hfi1_devdata *dd)
532{
533 return 0;
534}
535
536/**
537 * init_after_reset - re-initialize after a reset
538 * @dd: the hfi1_ib device
539 *
540 * sanity check at least some of the values after reset, and
541 * ensure no receive or transmit (explicitly, in case reset
542 * failed
543 */
544static int init_after_reset(struct hfi1_devdata *dd)
545{
546 int i;
547
548 /*
549 * Ensure chip does no sends or receives, tail updates, or
550 * pioavail updates while we re-initialize. This is mostly
551 * for the driver data structures, not chip registers.
552 */
553 for (i = 0; i < dd->num_rcv_contexts; i++)
554 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
555 HFI1_RCVCTRL_INTRAVAIL_DIS |
556 HFI1_RCVCTRL_TAILUPD_DIS, i);
557 pio_send_control(dd, PSC_GLOBAL_DISABLE);
558 for (i = 0; i < dd->num_send_contexts; i++)
559 sc_disable(dd->send_contexts[i].sc);
560
561 return 0;
562}
563
564static void enable_chip(struct hfi1_devdata *dd)
565{
566 u32 rcvmask;
567 u32 i;
568
569 /* enable PIO send */
570 pio_send_control(dd, PSC_GLOBAL_ENABLE);
571
572 /*
573 * Enable kernel ctxts' receive and receive interrupt.
574 * Other ctxts done as user opens and initializes them.
575 */
576 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
577 for (i = 0; i < dd->first_user_ctxt; ++i) {
578 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
579 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
580 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
581 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
582 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
583 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
584 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
585 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
586 hfi1_rcvctrl(dd, rcvmask, i);
587 sc_enable(dd->rcd[i]->sc);
588 }
589}
590
591/**
592 * create_workqueues - create per port workqueues
593 * @dd: the hfi1_ib device
594 */
595static int create_workqueues(struct hfi1_devdata *dd)
596{
597 int pidx;
598 struct hfi1_pportdata *ppd;
599
600 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
601 ppd = dd->pport + pidx;
602 if (!ppd->hfi1_wq) {
603 char wq_name[8]; /* 3 + 2 + 1 + 1 + 1 */
604
605 snprintf(wq_name, sizeof(wq_name), "hfi%d_%d",
606 dd->unit, pidx);
607 ppd->hfi1_wq =
608 create_singlethread_workqueue(wq_name);
609 if (!ppd->hfi1_wq)
610 goto wq_error;
611 }
612 }
613 return 0;
614wq_error:
615 pr_err("create_singlethread_workqueue failed for port %d\n",
616 pidx + 1);
617 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
618 ppd = dd->pport + pidx;
619 if (ppd->hfi1_wq) {
620 destroy_workqueue(ppd->hfi1_wq);
621 ppd->hfi1_wq = NULL;
622 }
623 }
624 return -ENOMEM;
625}
626
627/**
628 * hfi1_init - do the actual initialization sequence on the chip
629 * @dd: the hfi1_ib device
630 * @reinit: re-initializing, so don't allocate new memory
631 *
632 * Do the actual initialization sequence on the chip. This is done
633 * both from the init routine called from the PCI infrastructure, and
634 * when we reset the chip, or detect that it was reset internally,
635 * or it's administratively re-enabled.
636 *
637 * Memory allocation here and in called routines is only done in
638 * the first case (reinit == 0). We have to be careful, because even
639 * without memory allocation, we need to re-write all the chip registers
640 * TIDs, etc. after the reset or enable has completed.
641 */
642int hfi1_init(struct hfi1_devdata *dd, int reinit)
643{
644 int ret = 0, pidx, lastfail = 0;
645 unsigned i, len;
646 struct hfi1_ctxtdata *rcd;
647 struct hfi1_pportdata *ppd;
648
649 /* Set up recv low level handlers */
650 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
651 kdeth_process_expected;
652 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
653 kdeth_process_eager;
654 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
655 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
656 process_receive_error;
657 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
658 process_receive_bypass;
659 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
660 process_receive_invalid;
661 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
662 process_receive_invalid;
663 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
664 process_receive_invalid;
665 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
666
667 /* Set up send low level handlers */
668 dd->process_pio_send = hfi1_verbs_send_pio;
669 dd->process_dma_send = hfi1_verbs_send_dma;
670 dd->pio_inline_send = pio_copy;
671
672 if (is_a0(dd)) {
673 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
674 dd->do_drop = 1;
675 } else {
676 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
677 dd->do_drop = 0;
678 }
679
680 /* make sure the link is not "up" */
681 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
682 ppd = dd->pport + pidx;
683 ppd->linkup = 0;
684 }
685
686 if (reinit)
687 ret = init_after_reset(dd);
688 else
689 ret = loadtime_init(dd);
690 if (ret)
691 goto done;
692
693 /* dd->rcd can be NULL if early initialization failed */
694 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
695 /*
696 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
697 * re-init, the simplest way to handle this is to free
698 * existing, and re-allocate.
699 * Need to re-create rest of ctxt 0 ctxtdata as well.
700 */
701 rcd = dd->rcd[i];
702 if (!rcd)
703 continue;
704
705 rcd->do_interrupt = &handle_receive_interrupt;
706
707 lastfail = hfi1_create_rcvhdrq(dd, rcd);
708 if (!lastfail)
709 lastfail = hfi1_setup_eagerbufs(rcd);
710 if (lastfail)
711 dd_dev_err(dd,
712 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
713 }
714 if (lastfail)
715 ret = lastfail;
716
717 /* Allocate enough memory for user event notification. */
718 len = ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
719 sizeof(*dd->events), PAGE_SIZE);
720 dd->events = vmalloc_user(len);
721 if (!dd->events)
722 dd_dev_err(dd, "Failed to allocate user events page\n");
723 /*
724 * Allocate a page for device and port status.
725 * Page will be shared amongst all user processes.
726 */
727 dd->status = vmalloc_user(PAGE_SIZE);
728 if (!dd->status)
729 dd_dev_err(dd, "Failed to allocate dev status page\n");
730 else
731 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
732 sizeof(dd->status->freezemsg));
733 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
734 ppd = dd->pport + pidx;
735 if (dd->status)
736 /* Currently, we only have one port */
737 ppd->statusp = &dd->status->port;
738
739 set_mtu(ppd);
740 }
741
742 /* enable chip even if we have an error, so we can debug cause */
743 enable_chip(dd);
744
745 ret = hfi1_cq_init(dd);
746done:
747 /*
748 * Set status even if port serdes is not initialized
749 * so that diags will work.
750 */
751 if (dd->status)
752 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
753 HFI1_STATUS_INITTED;
754 if (!ret) {
755 /* enable all interrupts from the chip */
756 set_intr_state(dd, 1);
757
758 /* chip is OK for user apps; mark it as initialized */
759 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
760 ppd = dd->pport + pidx;
761
762 /* initialize the qsfp if it exists
763 * Requires interrupts to be enabled so we are notified
764 * when the QSFP completes reset, and has
765 * to be done before bringing up the SERDES
766 */
767 init_qsfp(ppd);
768
769 /* start the serdes - must be after interrupts are
770 enabled so we are notified when the link goes up */
771 lastfail = bringup_serdes(ppd);
772 if (lastfail)
773 dd_dev_info(dd,
774 "Failed to bring up port %u\n",
775 ppd->port);
776
777 /*
778 * Set status even if port serdes is not initialized
779 * so that diags will work.
780 */
781 if (ppd->statusp)
782 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
783 HFI1_STATUS_INITTED;
784 if (!ppd->link_speed_enabled)
785 continue;
786 }
787 }
788
789 /* if ret is non-zero, we probably should do some cleanup here... */
790 return ret;
791}
792
793static inline struct hfi1_devdata *__hfi1_lookup(int unit)
794{
795 return idr_find(&hfi1_unit_table, unit);
796}
797
798struct hfi1_devdata *hfi1_lookup(int unit)
799{
800 struct hfi1_devdata *dd;
801 unsigned long flags;
802
803 spin_lock_irqsave(&hfi1_devs_lock, flags);
804 dd = __hfi1_lookup(unit);
805 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
806
807 return dd;
808}
809
810/*
811 * Stop the timers during unit shutdown, or after an error late
812 * in initialization.
813 */
814static void stop_timers(struct hfi1_devdata *dd)
815{
816 struct hfi1_pportdata *ppd;
817 int pidx;
818
819 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
820 ppd = dd->pport + pidx;
821 if (ppd->led_override_timer.data) {
822 del_timer_sync(&ppd->led_override_timer);
823 atomic_set(&ppd->led_override_timer_active, 0);
824 }
825 }
826}
827
828/**
829 * shutdown_device - shut down a device
830 * @dd: the hfi1_ib device
831 *
832 * This is called to make the device quiet when we are about to
833 * unload the driver, and also when the device is administratively
834 * disabled. It does not free any data structures.
835 * Everything it does has to be setup again by hfi1_init(dd, 1)
836 */
837static void shutdown_device(struct hfi1_devdata *dd)
838{
839 struct hfi1_pportdata *ppd;
840 unsigned pidx;
841 int i;
842
843 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
844 ppd = dd->pport + pidx;
845
846 ppd->linkup = 0;
847 if (ppd->statusp)
848 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
849 HFI1_STATUS_IB_READY);
850 }
851 dd->flags &= ~HFI1_INITTED;
852
853 /* mask interrupts, but not errors */
854 set_intr_state(dd, 0);
855
856 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
857 ppd = dd->pport + pidx;
858 for (i = 0; i < dd->num_rcv_contexts; i++)
859 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
860 HFI1_RCVCTRL_CTXT_DIS |
861 HFI1_RCVCTRL_INTRAVAIL_DIS |
862 HFI1_RCVCTRL_PKEY_DIS |
863 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
864 /*
865 * Gracefully stop all sends allowing any in progress to
866 * trickle out first.
867 */
868 for (i = 0; i < dd->num_send_contexts; i++)
869 sc_flush(dd->send_contexts[i].sc);
870 }
871
872 /*
873 * Enough for anything that's going to trickle out to have actually
874 * done so.
875 */
876 udelay(20);
877
878 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
879 ppd = dd->pport + pidx;
880
881 /* disable all contexts */
882 for (i = 0; i < dd->num_send_contexts; i++)
883 sc_disable(dd->send_contexts[i].sc);
884 /* disable the send device */
885 pio_send_control(dd, PSC_GLOBAL_DISABLE);
886
887 /*
888 * Clear SerdesEnable.
889 * We can't count on interrupts since we are stopping.
890 */
891 hfi1_quiet_serdes(ppd);
892
893 if (ppd->hfi1_wq) {
894 destroy_workqueue(ppd->hfi1_wq);
895 ppd->hfi1_wq = NULL;
896 }
897 }
898 sdma_exit(dd);
899}
900
901/**
902 * hfi1_free_ctxtdata - free a context's allocated data
903 * @dd: the hfi1_ib device
904 * @rcd: the ctxtdata structure
905 *
906 * free up any allocated data for a context
907 * This should not touch anything that would affect a simultaneous
908 * re-allocation of context data, because it is called after hfi1_mutex
909 * is released (and can be called from reinit as well).
910 * It should never change any chip state, or global driver state.
911 */
912void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
913{
914 unsigned e;
915
916 if (!rcd)
917 return;
918
919 if (rcd->rcvhdrq) {
920 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
921 rcd->rcvhdrq, rcd->rcvhdrq_phys);
922 rcd->rcvhdrq = NULL;
923 if (rcd->rcvhdrtail_kvaddr) {
924 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
925 (void *)rcd->rcvhdrtail_kvaddr,
926 rcd->rcvhdrqtailaddr_phys);
927 rcd->rcvhdrtail_kvaddr = NULL;
928 }
929 }
930
931 /* all the RcvArray entries should have been cleared by now */
932 kfree(rcd->egrbufs.rcvtids);
933
934 for (e = 0; e < rcd->egrbufs.alloced; e++) {
935 if (rcd->egrbufs.buffers[e].phys)
936 dma_free_coherent(&dd->pcidev->dev,
937 rcd->egrbufs.buffers[e].len,
938 rcd->egrbufs.buffers[e].addr,
939 rcd->egrbufs.buffers[e].phys);
940 }
941 kfree(rcd->egrbufs.buffers);
942
943 sc_free(rcd->sc);
944 vfree(rcd->physshadow);
945 vfree(rcd->tid_pg_list);
946 vfree(rcd->user_event_mask);
947 vfree(rcd->subctxt_uregbase);
948 vfree(rcd->subctxt_rcvegrbuf);
949 vfree(rcd->subctxt_rcvhdr_base);
950 kfree(rcd->tidusemap);
951 kfree(rcd->opstats);
952 kfree(rcd);
953}
954
955void hfi1_free_devdata(struct hfi1_devdata *dd)
956{
957 unsigned long flags;
958
959 spin_lock_irqsave(&hfi1_devs_lock, flags);
960 idr_remove(&hfi1_unit_table, dd->unit);
961 list_del(&dd->list);
962 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
963 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
964 rcu_barrier(); /* wait for rcu callbacks to complete */
965 free_percpu(dd->int_counter);
966 free_percpu(dd->rcv_limit);
967 ib_dealloc_device(&dd->verbs_dev.ibdev);
968}
969
970/*
971 * Allocate our primary per-unit data structure. Must be done via verbs
972 * allocator, because the verbs cleanup process both does cleanup and
973 * free of the data structure.
974 * "extra" is for chip-specific data.
975 *
976 * Use the idr mechanism to get a unit number for this unit.
977 */
978struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
979{
980 unsigned long flags;
981 struct hfi1_devdata *dd;
982 int ret;
983
984 dd = (struct hfi1_devdata *)ib_alloc_device(sizeof(*dd) + extra);
985 if (!dd)
986 return ERR_PTR(-ENOMEM);
987 /* extra is * number of ports */
988 dd->num_pports = extra / sizeof(struct hfi1_pportdata);
989 dd->pport = (struct hfi1_pportdata *)(dd + 1);
990
991 INIT_LIST_HEAD(&dd->list);
992 dd->node = dev_to_node(&pdev->dev);
993 if (dd->node < 0)
994 dd->node = 0;
995 idr_preload(GFP_KERNEL);
996 spin_lock_irqsave(&hfi1_devs_lock, flags);
997
998 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
999 if (ret >= 0) {
1000 dd->unit = ret;
1001 list_add(&dd->list, &hfi1_dev_list);
1002 }
1003
1004 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1005 idr_preload_end();
1006
1007 if (ret < 0) {
1008 hfi1_early_err(&pdev->dev,
1009 "Could not allocate unit ID: error %d\n", -ret);
1010 goto bail;
1011 }
1012 /*
1013 * Initialize all locks for the device. This needs to be as early as
1014 * possible so locks are usable.
1015 */
1016 spin_lock_init(&dd->sc_lock);
1017 spin_lock_init(&dd->sendctrl_lock);
1018 spin_lock_init(&dd->rcvctrl_lock);
1019 spin_lock_init(&dd->uctxt_lock);
1020 spin_lock_init(&dd->hfi1_diag_trans_lock);
1021 spin_lock_init(&dd->sc_init_lock);
1022 spin_lock_init(&dd->dc8051_lock);
1023 spin_lock_init(&dd->dc8051_memlock);
1024 mutex_init(&dd->qsfp_i2c_mutex);
1025 seqlock_init(&dd->sc2vl_lock);
1026 spin_lock_init(&dd->sde_map_lock);
1027 init_waitqueue_head(&dd->event_queue);
1028
1029 dd->int_counter = alloc_percpu(u64);
1030 if (!dd->int_counter) {
1031 ret = -ENOMEM;
1032 hfi1_early_err(&pdev->dev,
1033 "Could not allocate per-cpu int_counter\n");
1034 goto bail;
1035 }
1036
1037 dd->rcv_limit = alloc_percpu(u64);
1038 if (!dd->rcv_limit) {
1039 ret = -ENOMEM;
1040 hfi1_early_err(&pdev->dev,
1041 "Could not allocate per-cpu rcv_limit\n");
1042 goto bail;
1043 }
1044
1045 if (!hfi1_cpulist_count) {
1046 u32 count = num_online_cpus();
1047
314fcc0d
SB
1048 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1049 GFP_KERNEL);
77241056
MM
1050 if (hfi1_cpulist)
1051 hfi1_cpulist_count = count;
1052 else
1053 hfi1_early_err(
1054 &pdev->dev,
1055 "Could not alloc cpulist info, cpu affinity might be wrong\n");
1056 }
1057 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1058 return dd;
1059
1060bail:
1061 if (!list_empty(&dd->list))
1062 list_del_init(&dd->list);
1063 ib_dealloc_device(&dd->verbs_dev.ibdev);
1064 return ERR_PTR(ret);
1065}
1066
1067/*
1068 * Called from freeze mode handlers, and from PCI error
1069 * reporting code. Should be paranoid about state of
1070 * system and data structures.
1071 */
1072void hfi1_disable_after_error(struct hfi1_devdata *dd)
1073{
1074 if (dd->flags & HFI1_INITTED) {
1075 u32 pidx;
1076
1077 dd->flags &= ~HFI1_INITTED;
1078 if (dd->pport)
1079 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1080 struct hfi1_pportdata *ppd;
1081
1082 ppd = dd->pport + pidx;
1083 if (dd->flags & HFI1_PRESENT)
1084 set_link_state(ppd, HLS_DN_DISABLE);
1085
1086 if (ppd->statusp)
1087 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1088 }
1089 }
1090
1091 /*
1092 * Mark as having had an error for driver, and also
1093 * for /sys and status word mapped to user programs.
1094 * This marks unit as not usable, until reset.
1095 */
1096 if (dd->status)
1097 dd->status->dev |= HFI1_STATUS_HWERROR;
1098}
1099
1100static void remove_one(struct pci_dev *);
1101static int init_one(struct pci_dev *, const struct pci_device_id *);
1102
1103#define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1104#define PFX DRIVER_NAME ": "
1105
1106static const struct pci_device_id hfi1_pci_tbl[] = {
1107 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1108 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1109 { 0, }
1110};
1111
1112MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1113
1114static struct pci_driver hfi1_pci_driver = {
1115 .name = DRIVER_NAME,
1116 .probe = init_one,
1117 .remove = remove_one,
1118 .id_table = hfi1_pci_tbl,
1119 .err_handler = &hfi1_pci_err_handler,
1120};
1121
1122static void __init compute_krcvqs(void)
1123{
1124 int i;
1125
1126 for (i = 0; i < krcvqsset; i++)
1127 n_krcvqs += krcvqs[i];
1128}
1129
1130/*
1131 * Do all the generic driver unit- and chip-independent memory
1132 * allocation and initialization.
1133 */
1134static int __init hfi1_mod_init(void)
1135{
1136 int ret;
1137
1138 ret = dev_init();
1139 if (ret)
1140 goto bail;
1141
1142 /* validate max MTU before any devices start */
1143 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1144 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1145 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1146 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1147 }
1148 /* valid CUs run from 1-128 in powers of 2 */
1149 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1150 hfi1_cu = 1;
1151 /* valid credit return threshold is 0-100, variable is unsigned */
1152 if (user_credit_return_threshold > 100)
1153 user_credit_return_threshold = 100;
1154
1155 compute_krcvqs();
1156 /* sanitize receive interrupt count, time must wait until after
1157 the hardware type is known */
1158 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1159 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1160 /* reject invalid combinations */
1161 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1162 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1163 rcv_intr_count = 1;
1164 }
1165 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1166 /*
1167 * Avoid indefinite packet delivery by requiring a timeout
1168 * if count is > 1.
1169 */
1170 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1171 rcv_intr_timeout = 1;
1172 }
1173 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1174 /*
1175 * The dynamic algorithm expects a non-zero timeout
1176 * and a count > 1.
1177 */
1178 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1179 rcv_intr_dynamic = 0;
1180 }
1181
1182 /* sanitize link CRC options */
1183 link_crc_mask &= SUPPORTED_CRCS;
1184
1185 /*
1186 * These must be called before the driver is registered with
1187 * the PCI subsystem.
1188 */
1189 idr_init(&hfi1_unit_table);
1190
1191 hfi1_dbg_init();
1192 ret = pci_register_driver(&hfi1_pci_driver);
1193 if (ret < 0) {
1194 pr_err("Unable to register driver: error %d\n", -ret);
1195 goto bail_dev;
1196 }
1197 goto bail; /* all OK */
1198
1199bail_dev:
1200 hfi1_dbg_exit();
1201 idr_destroy(&hfi1_unit_table);
1202 dev_cleanup();
1203bail:
1204 return ret;
1205}
1206
1207module_init(hfi1_mod_init);
1208
1209/*
1210 * Do the non-unit driver cleanup, memory free, etc. at unload.
1211 */
1212static void __exit hfi1_mod_cleanup(void)
1213{
1214 pci_unregister_driver(&hfi1_pci_driver);
1215 hfi1_dbg_exit();
1216 hfi1_cpulist_count = 0;
1217 kfree(hfi1_cpulist);
1218
1219 idr_destroy(&hfi1_unit_table);
1220 dispose_firmware(); /* asymmetric with obtain_firmware() */
1221 dev_cleanup();
1222}
1223
1224module_exit(hfi1_mod_cleanup);
1225
1226/* this can only be called after a successful initialization */
1227static void cleanup_device_data(struct hfi1_devdata *dd)
1228{
1229 int ctxt;
1230 int pidx;
1231 struct hfi1_ctxtdata **tmp;
1232 unsigned long flags;
1233
1234 /* users can't do anything more with chip */
1235 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1236 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1237 struct cc_state *cc_state;
1238 int i;
1239
1240 if (ppd->statusp)
1241 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1242
1243 for (i = 0; i < OPA_MAX_SLS; i++)
1244 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1245
1246 spin_lock(&ppd->cc_state_lock);
1247 cc_state = get_cc_state(ppd);
1248 rcu_assign_pointer(ppd->cc_state, NULL);
1249 spin_unlock(&ppd->cc_state_lock);
1250
1251 if (cc_state)
1252 call_rcu(&cc_state->rcu, cc_state_reclaim);
1253 }
1254
1255 free_credit_return(dd);
1256
1257 /*
1258 * Free any resources still in use (usually just kernel contexts)
1259 * at unload; we do for ctxtcnt, because that's what we allocate.
1260 * We acquire lock to be really paranoid that rcd isn't being
1261 * accessed from some interrupt-related code (that should not happen,
1262 * but best to be sure).
1263 */
1264 spin_lock_irqsave(&dd->uctxt_lock, flags);
1265 tmp = dd->rcd;
1266 dd->rcd = NULL;
1267 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1268 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1269 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1270
1271 tmp[ctxt] = NULL; /* debugging paranoia */
1272 if (rcd) {
1273 hfi1_clear_tids(rcd);
1274 hfi1_free_ctxtdata(dd, rcd);
1275 }
1276 }
1277 kfree(tmp);
1278 /* must follow rcv context free - need to remove rcv's hooks */
1279 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1280 sc_free(dd->send_contexts[ctxt].sc);
1281 dd->num_send_contexts = 0;
1282 kfree(dd->send_contexts);
1283 dd->send_contexts = NULL;
1284 kfree(dd->boardname);
1285 vfree(dd->events);
1286 vfree(dd->status);
1287 hfi1_cq_exit(dd);
1288}
1289
1290/*
1291 * Clean up on unit shutdown, or error during unit load after
1292 * successful initialization.
1293 */
1294static void postinit_cleanup(struct hfi1_devdata *dd)
1295{
1296 hfi1_start_cleanup(dd);
1297
1298 hfi1_pcie_ddcleanup(dd);
1299 hfi1_pcie_cleanup(dd->pcidev);
1300
1301 cleanup_device_data(dd);
1302
1303 hfi1_free_devdata(dd);
1304}
1305
1306static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1307{
1308 int ret = 0, j, pidx, initfail;
1309 struct hfi1_devdata *dd = NULL;
1310
1311 /* First, lock the non-writable module parameters */
1312 HFI1_CAP_LOCK();
1313
1314 /* Validate some global module parameters */
1315 if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1316 hfi1_early_err(&pdev->dev, "Header queue count too small\n");
1317 ret = -EINVAL;
1318 goto bail;
1319 }
1320 /* use the encoding function as a sanitization check */
1321 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1322 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1323 hfi1_hdrq_entsize);
1324 goto bail;
1325 }
1326
1327 /* The receive eager buffer size must be set before the receive
1328 * contexts are created.
1329 *
1330 * Set the eager buffer size. Validate that it falls in a range
1331 * allowed by the hardware - all powers of 2 between the min and
1332 * max. The maximum valid MTU is within the eager buffer range
1333 * so we do not need to cap the max_mtu by an eager buffer size
1334 * setting.
1335 */
1336 if (eager_buffer_size) {
1337 if (!is_power_of_2(eager_buffer_size))
1338 eager_buffer_size =
1339 roundup_pow_of_two(eager_buffer_size);
1340 eager_buffer_size =
1341 clamp_val(eager_buffer_size,
1342 MIN_EAGER_BUFFER * 8,
1343 MAX_EAGER_BUFFER_TOTAL);
1344 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1345 eager_buffer_size);
1346 } else {
1347 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1348 ret = -EINVAL;
1349 goto bail;
1350 }
1351
1352 /* restrict value of hfi1_rcvarr_split */
1353 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1354
1355 ret = hfi1_pcie_init(pdev, ent);
1356 if (ret)
1357 goto bail;
1358
1359 /*
1360 * Do device-specific initialization, function table setup, dd
1361 * allocation, etc.
1362 */
1363 switch (ent->device) {
1364 case PCI_DEVICE_ID_INTEL0:
1365 case PCI_DEVICE_ID_INTEL1:
1366 dd = hfi1_init_dd(pdev, ent);
1367 break;
1368 default:
1369 hfi1_early_err(&pdev->dev,
1370 "Failing on unknown Intel deviceid 0x%x\n",
1371 ent->device);
1372 ret = -ENODEV;
1373 }
1374
1375 if (IS_ERR(dd))
1376 ret = PTR_ERR(dd);
1377 if (ret)
1378 goto clean_bail; /* error already printed */
1379
1380 ret = create_workqueues(dd);
1381 if (ret)
1382 goto clean_bail;
1383
1384 /* do the generic initialization */
1385 initfail = hfi1_init(dd, 0);
1386
1387 ret = hfi1_register_ib_device(dd);
1388
1389 /*
1390 * Now ready for use. this should be cleared whenever we
1391 * detect a reset, or initiate one. If earlier failure,
1392 * we still create devices, so diags, etc. can be used
1393 * to determine cause of problem.
1394 */
1395 if (!initfail && !ret)
1396 dd->flags |= HFI1_INITTED;
1397
1398 j = hfi1_device_create(dd);
1399 if (j)
1400 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1401
1402 if (initfail || ret) {
1403 stop_timers(dd);
1404 flush_workqueue(ib_wq);
1405 for (pidx = 0; pidx < dd->num_pports; ++pidx)
1406 hfi1_quiet_serdes(dd->pport + pidx);
1407 if (!j)
1408 hfi1_device_remove(dd);
1409 if (!ret)
1410 hfi1_unregister_ib_device(dd);
1411 postinit_cleanup(dd);
1412 if (initfail)
1413 ret = initfail;
1414 goto bail; /* everything already cleaned */
1415 }
1416
1417 sdma_start(dd);
1418
1419 return 0;
1420
1421clean_bail:
1422 hfi1_pcie_cleanup(pdev);
1423bail:
1424 return ret;
1425}
1426
1427static void remove_one(struct pci_dev *pdev)
1428{
1429 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1430
1431 /* unregister from IB core */
1432 hfi1_unregister_ib_device(dd);
1433
1434 /*
1435 * Disable the IB link, disable interrupts on the device,
1436 * clear dma engines, etc.
1437 */
1438 shutdown_device(dd);
1439
1440 stop_timers(dd);
1441
1442 /* wait until all of our (qsfp) queue_work() calls complete */
1443 flush_workqueue(ib_wq);
1444
1445 hfi1_device_remove(dd);
1446
1447 postinit_cleanup(dd);
1448}
1449
1450/**
1451 * hfi1_create_rcvhdrq - create a receive header queue
1452 * @dd: the hfi1_ib device
1453 * @rcd: the context data
1454 *
1455 * This must be contiguous memory (from an i/o perspective), and must be
1456 * DMA'able (which means for some systems, it will go through an IOMMU,
1457 * or be forced into a low address range).
1458 */
1459int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1460{
1461 unsigned amt;
1462 u64 reg;
1463
1464 if (!rcd->rcvhdrq) {
1465 dma_addr_t phys_hdrqtail;
1466 gfp_t gfp_flags;
1467
1468 /*
1469 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1470 * (* sizeof(u32)).
1471 */
1472 amt = ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1473 sizeof(u32), PAGE_SIZE);
1474
1475 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1476 GFP_USER : GFP_KERNEL;
1477 rcd->rcvhdrq = dma_zalloc_coherent(
1478 &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1479 gfp_flags | __GFP_COMP);
1480
1481 if (!rcd->rcvhdrq) {
1482 dd_dev_err(dd,
1483 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1484 amt, rcd->ctxt);
1485 goto bail;
1486 }
1487
1488 /* Event mask is per device now and is in hfi1_devdata */
1489 /*if (rcd->ctxt >= dd->first_user_ctxt) {
1490 rcd->user_event_mask = vmalloc_user(PAGE_SIZE);
1491 if (!rcd->user_event_mask)
1492 goto bail_free_hdrq;
1493 }*/
1494
1495 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1496 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1497 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1498 gfp_flags);
1499 if (!rcd->rcvhdrtail_kvaddr)
1500 goto bail_free;
1501 rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1502 }
1503
1504 rcd->rcvhdrq_size = amt;
1505 }
1506 /*
1507 * These values are per-context:
1508 * RcvHdrCnt
1509 * RcvHdrEntSize
1510 * RcvHdrSize
1511 */
1512 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1513 & RCV_HDR_CNT_CNT_MASK)
1514 << RCV_HDR_CNT_CNT_SHIFT;
1515 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1516 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1517 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1518 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1519 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1520 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1521 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1522 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1523 return 0;
1524
1525bail_free:
1526 dd_dev_err(dd,
1527 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1528 rcd->ctxt);
1529 vfree(rcd->user_event_mask);
1530 rcd->user_event_mask = NULL;
1531 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1532 rcd->rcvhdrq_phys);
1533 rcd->rcvhdrq = NULL;
1534bail:
1535 return -ENOMEM;
1536}
1537
1538/**
1539 * allocate eager buffers, both kernel and user contexts.
1540 * @rcd: the context we are setting up.
1541 *
1542 * Allocate the eager TID buffers and program them into hip.
1543 * They are no longer completely contiguous, we do multiple allocation
1544 * calls. Otherwise we get the OOM code involved, by asking for too
1545 * much per call, with disastrous results on some kernels.
1546 */
1547int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1548{
1549 struct hfi1_devdata *dd = rcd->dd;
1550 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1551 gfp_t gfp_flags;
1552 u16 order;
1553 int ret = 0;
1554 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1555
1556 /*
1557 * GFP_USER, but without GFP_FS, so buffer cache can be
1558 * coalesced (we hope); otherwise, even at order 4,
1559 * heavy filesystem activity makes these fail, and we can
1560 * use compound pages.
1561 */
1562 gfp_flags = __GFP_WAIT | __GFP_IO | __GFP_COMP;
1563
1564 /*
1565 * The minimum size of the eager buffers is a groups of MTU-sized
1566 * buffers.
1567 * The global eager_buffer_size parameter is checked against the
1568 * theoretical lower limit of the value. Here, we check against the
1569 * MTU.
1570 */
1571 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1572 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1573 /*
1574 * If using one-pkt-per-egr-buffer, lower the eager buffer
1575 * size to the max MTU (page-aligned).
1576 */
1577 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1578 rcd->egrbufs.rcvtid_size = round_mtu;
1579
1580 /*
1581 * Eager buffers sizes of 1MB or less require smaller TID sizes
1582 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1583 */
1584 if (rcd->egrbufs.size <= (1 << 20))
1585 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1586 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1587
1588 while (alloced_bytes < rcd->egrbufs.size &&
1589 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1590 rcd->egrbufs.buffers[idx].addr =
1591 dma_zalloc_coherent(&dd->pcidev->dev,
1592 rcd->egrbufs.rcvtid_size,
1593 &rcd->egrbufs.buffers[idx].phys,
1594 gfp_flags);
1595 if (rcd->egrbufs.buffers[idx].addr) {
1596 rcd->egrbufs.buffers[idx].len =
1597 rcd->egrbufs.rcvtid_size;
1598 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1599 rcd->egrbufs.buffers[idx].addr;
1600 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1601 rcd->egrbufs.buffers[idx].phys;
1602 rcd->egrbufs.alloced++;
1603 alloced_bytes += rcd->egrbufs.rcvtid_size;
1604 idx++;
1605 } else {
1606 u32 new_size, i, j;
1607 u64 offset = 0;
1608
1609 /*
1610 * Fail the eager buffer allocation if:
1611 * - we are already using the lowest acceptable size
1612 * - we are using one-pkt-per-egr-buffer (this implies
1613 * that we are accepting only one size)
1614 */
1615 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1616 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1617 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1618 rcd->ctxt);
1619 goto bail_rcvegrbuf_phys;
1620 }
1621
1622 new_size = rcd->egrbufs.rcvtid_size / 2;
1623
1624 /*
1625 * If the first attempt to allocate memory failed, don't
1626 * fail everything but continue with the next lower
1627 * size.
1628 */
1629 if (idx == 0) {
1630 rcd->egrbufs.rcvtid_size = new_size;
1631 continue;
1632 }
1633
1634 /*
1635 * Re-partition already allocated buffers to a smaller
1636 * size.
1637 */
1638 rcd->egrbufs.alloced = 0;
1639 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1640 if (i >= rcd->egrbufs.count)
1641 break;
1642 rcd->egrbufs.rcvtids[i].phys =
1643 rcd->egrbufs.buffers[j].phys + offset;
1644 rcd->egrbufs.rcvtids[i].addr =
1645 rcd->egrbufs.buffers[j].addr + offset;
1646 rcd->egrbufs.alloced++;
1647 if ((rcd->egrbufs.buffers[j].phys + offset +
1648 new_size) ==
1649 (rcd->egrbufs.buffers[j].phys +
1650 rcd->egrbufs.buffers[j].len)) {
1651 j++;
1652 offset = 0;
1653 } else
1654 offset += new_size;
1655 }
1656 rcd->egrbufs.rcvtid_size = new_size;
1657 }
1658 }
1659 rcd->egrbufs.numbufs = idx;
1660 rcd->egrbufs.size = alloced_bytes;
1661
1662 dd_dev_info(dd, "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1663 rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size,
1664 rcd->egrbufs.size);
1665
1666 /*
1667 * Set the contexts rcv array head update threshold to the closest
1668 * power of 2 (so we can use a mask instead of modulo) below half
1669 * the allocated entries.
1670 */
1671 rcd->egrbufs.threshold =
1672 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1673 /*
1674 * Compute the expected RcvArray entry base. This is done after
1675 * allocating the eager buffers in order to maximize the
1676 * expected RcvArray entries for the context.
1677 */
1678 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1679 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1680 rcd->expected_count = max_entries - egrtop;
1681 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1682 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1683
1684 rcd->expected_base = rcd->eager_base + egrtop;
1685 dd_dev_info(dd, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1686 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1687 rcd->eager_base, rcd->expected_base);
1688
1689 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1690 dd_dev_err(dd, "ctxt%u: current Eager buffer size is invalid %u\n",
1691 rcd->ctxt, rcd->egrbufs.rcvtid_size);
1692 ret = -EINVAL;
1693 goto bail;
1694 }
1695
1696 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1697 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1698 rcd->egrbufs.rcvtids[idx].phys, order);
1699 cond_resched();
1700 }
1701 goto bail;
1702
1703bail_rcvegrbuf_phys:
1704 for (idx = 0; idx < rcd->egrbufs.alloced &&
1705 rcd->egrbufs.buffers[idx].addr;
1706 idx++) {
1707 dma_free_coherent(&dd->pcidev->dev,
1708 rcd->egrbufs.buffers[idx].len,
1709 rcd->egrbufs.buffers[idx].addr,
1710 rcd->egrbufs.buffers[idx].phys);
1711 rcd->egrbufs.buffers[idx].addr = NULL;
1712 rcd->egrbufs.buffers[idx].phys = 0;
1713 rcd->egrbufs.buffers[idx].len = 0;
1714 }
1715bail:
1716 return ret;
1717}
This page took 0.132449 seconds and 5 git commands to generate.