IB/rdmavt,hfi1,qib: Fix memory leak
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / init.c
CommitLineData
77241056 1/*
05d6ac1d 2 * Copyright(c) 2015, 2016 Intel Corporation.
77241056
MM
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
77241056
MM
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
77241056
MM
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/pci.h>
49#include <linux/netdevice.h>
50#include <linux/vmalloc.h>
51#include <linux/delay.h>
52#include <linux/idr.h>
53#include <linux/module.h>
54#include <linux/printk.h>
55#include <linux/hrtimer.h>
ec3f2c12 56#include <rdma/rdma_vt.h>
77241056
MM
57
58#include "hfi.h"
59#include "device.h"
60#include "common.h"
6c63e423 61#include "trace.h"
77241056
MM
62#include "mad.h"
63#include "sdma.h"
64#include "debugfs.h"
65#include "verbs.h"
affa48de 66#include "aspm.h"
77241056
MM
67
68#undef pr_fmt
69#define pr_fmt(fmt) DRIVER_NAME ": " fmt
70
71/*
72 * min buffers we want to have per context, after driver
73 */
74#define HFI1_MIN_USER_CTXT_BUFCNT 7
75
76#define HFI1_MIN_HDRQ_EGRBUF_CNT 2
e002dcc0 77#define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
77241056
MM
78#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
79#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
80
81/*
82 * Number of user receive contexts we are configured to use (to allow for more
83 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
84 */
2ce6bf22
SS
85int num_user_contexts = -1;
86module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
77241056 87MODULE_PARM_DESC(
2ce6bf22 88 num_user_contexts, "Set max number of user contexts to use");
77241056 89
5b55ea3b 90uint krcvqs[RXE_NUM_DATA_VL];
77241056 91int krcvqsset;
5b55ea3b 92module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
82c2611d 93MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
77241056
MM
94
95/* computed based on above array */
96unsigned n_krcvqs;
97
98static unsigned hfi1_rcvarr_split = 25;
99module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
100MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
101
102static uint eager_buffer_size = (2 << 20); /* 2MB */
103module_param(eager_buffer_size, uint, S_IRUGO);
104MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
105
106static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
107module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
108MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
109
110static uint hfi1_hdrq_entsize = 32;
111module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
112MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
113
114unsigned int user_credit_return_threshold = 33; /* default is 33% */
115module_param(user_credit_return_threshold, uint, S_IRUGO);
ecb95a02 116MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
77241056
MM
117
118static inline u64 encode_rcv_header_entry_size(u16);
119
120static struct idr hfi1_unit_table;
121u32 hfi1_cpulist_count;
122unsigned long *hfi1_cpulist;
123
124/*
125 * Common code for creating the receive context array.
126 */
127int hfi1_create_ctxts(struct hfi1_devdata *dd)
128{
129 unsigned i;
130 int ret;
77241056 131
82c2611d
NV
132 /* Control context has to be always 0 */
133 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
134
377f111e
MH
135 dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
136 GFP_KERNEL, dd->node);
806e6e1b 137 if (!dd->rcd)
77241056 138 goto nomem;
77241056
MM
139
140 /* create one or more kernel contexts */
141 for (i = 0; i < dd->first_user_ctxt; ++i) {
142 struct hfi1_pportdata *ppd;
143 struct hfi1_ctxtdata *rcd;
144
145 ppd = dd->pport + (i % dd->num_pports);
957558c9 146 rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
77241056
MM
147 if (!rcd) {
148 dd_dev_err(dd,
17fb4f29 149 "Unable to allocate kernel receive context, failing\n");
77241056
MM
150 goto nomem;
151 }
152 /*
153 * Set up the kernel context flags here and now because they
154 * use default values for all receive side memories. User
155 * contexts will be handled as they are created.
156 */
157 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
158 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
159 HFI1_CAP_KGET(NODROP_EGR_FULL) |
160 HFI1_CAP_KGET(DMA_RTAIL);
82c2611d
NV
161
162 /* Control context must use DMA_RTAIL */
163 if (rcd->ctxt == HFI1_CTRL_CTXT)
164 rcd->flags |= HFI1_CAP_DMA_RTAIL;
77241056
MM
165 rcd->seq_cnt = 1;
166
167 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
168 if (!rcd->sc) {
169 dd_dev_err(dd,
17fb4f29 170 "Unable to allocate kernel send context, failing\n");
77241056
MM
171 dd->rcd[rcd->ctxt] = NULL;
172 hfi1_free_ctxtdata(dd, rcd);
173 goto nomem;
174 }
175
176 ret = hfi1_init_ctxt(rcd->sc);
177 if (ret < 0) {
178 dd_dev_err(dd,
179 "Failed to setup kernel receive context, failing\n");
180 sc_free(rcd->sc);
181 dd->rcd[rcd->ctxt] = NULL;
182 hfi1_free_ctxtdata(dd, rcd);
183 ret = -EFAULT;
184 goto bail;
185 }
186 }
187
affa48de
AD
188 /*
189 * Initialize aspm, to be done after gen3 transition and setting up
190 * contexts and before enabling interrupts
191 */
192 aspm_init(dd);
193
77241056
MM
194 return 0;
195nomem:
196 ret = -ENOMEM;
197bail:
198 kfree(dd->rcd);
199 dd->rcd = NULL;
200 return ret;
201}
202
203/*
204 * Common code for user and kernel context setup.
205 */
957558c9
MH
206struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
207 int numa)
77241056
MM
208{
209 struct hfi1_devdata *dd = ppd->dd;
210 struct hfi1_ctxtdata *rcd;
211 unsigned kctxt_ngroups = 0;
212 u32 base;
213
214 if (dd->rcv_entries.nctxt_extra >
215 dd->num_rcv_contexts - dd->first_user_ctxt)
216 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
217 (dd->num_rcv_contexts - dd->first_user_ctxt));
218 rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
219 if (rcd) {
220 u32 rcvtids, max_entries;
221
6c63e423 222 hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
77241056
MM
223
224 INIT_LIST_HEAD(&rcd->qp_wait_list);
225 rcd->ppd = ppd;
226 rcd->dd = dd;
227 rcd->cnt = 1;
228 rcd->ctxt = ctxt;
229 dd->rcd[ctxt] = rcd;
957558c9 230 rcd->numa_id = numa;
77241056
MM
231 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
232
463e6ebc 233 mutex_init(&rcd->exp_lock);
77241056
MM
234
235 /*
236 * Calculate the context's RcvArray entry starting point.
237 * We do this here because we have to take into account all
238 * the RcvArray entries that previous context would have
239 * taken and we have to account for any extra groups
240 * assigned to the kernel or user contexts.
241 */
242 if (ctxt < dd->first_user_ctxt) {
243 if (ctxt < kctxt_ngroups) {
244 base = ctxt * (dd->rcv_entries.ngroups + 1);
245 rcd->rcv_array_groups++;
246 } else
247 base = kctxt_ngroups +
248 (ctxt * dd->rcv_entries.ngroups);
249 } else {
250 u16 ct = ctxt - dd->first_user_ctxt;
251
252 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
253 kctxt_ngroups);
254 if (ct < dd->rcv_entries.nctxt_extra) {
255 base += ct * (dd->rcv_entries.ngroups + 1);
256 rcd->rcv_array_groups++;
257 } else
258 base += dd->rcv_entries.nctxt_extra +
259 (ct * dd->rcv_entries.ngroups);
260 }
261 rcd->eager_base = base * dd->rcv_entries.group_size;
262
263 /* Validate and initialize Rcv Hdr Q variables */
264 if (rcvhdrcnt % HDRQ_INCREMENT) {
265 dd_dev_err(dd,
349ac71f 266 "ctxt%u: header queue count %d must be divisible by %lu\n",
77241056
MM
267 rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
268 goto bail;
269 }
270 rcd->rcvhdrq_cnt = rcvhdrcnt;
271 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
272 /*
273 * Simple Eager buffer allocation: we have already pre-allocated
274 * the number of RcvArray entry groups. Each ctxtdata structure
275 * holds the number of groups for that context.
276 *
277 * To follow CSR requirements and maintain cacheline alignment,
278 * make sure all sizes and bases are multiples of group_size.
279 *
280 * The expected entry count is what is left after assigning
281 * eager.
282 */
283 max_entries = rcd->rcv_array_groups *
284 dd->rcv_entries.group_size;
285 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
286 rcd->egrbufs.count = round_down(rcvtids,
287 dd->rcv_entries.group_size);
288 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
289 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
290 rcd->ctxt);
291 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
292 }
6c63e423
SS
293 hfi1_cdbg(PROC,
294 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
295 rcd->ctxt, rcd->egrbufs.count);
77241056
MM
296
297 /*
298 * Allocate array that will hold the eager buffer accounting
299 * data.
300 * This will allocate the maximum possible buffer count based
301 * on the value of the RcvArray split parameter.
302 * The resulting value will be rounded down to the closest
303 * multiple of dd->rcv_entries.group_size.
304 */
314fcc0d
SB
305 rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
306 sizeof(*rcd->egrbufs.buffers),
307 GFP_KERNEL);
77241056
MM
308 if (!rcd->egrbufs.buffers)
309 goto bail;
314fcc0d
SB
310 rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
311 sizeof(*rcd->egrbufs.rcvtids),
312 GFP_KERNEL);
77241056
MM
313 if (!rcd->egrbufs.rcvtids)
314 goto bail;
315 rcd->egrbufs.size = eager_buffer_size;
316 /*
317 * The size of the buffers programmed into the RcvArray
318 * entries needs to be big enough to handle the highest
319 * MTU supported.
320 */
321 if (rcd->egrbufs.size < hfi1_max_mtu) {
322 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
6c63e423
SS
323 hfi1_cdbg(PROC,
324 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
77241056
MM
325 rcd->ctxt, rcd->egrbufs.size);
326 }
327 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
328
329 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
330 rcd->opstats = kzalloc(sizeof(*rcd->opstats),
331 GFP_KERNEL);
806e6e1b 332 if (!rcd->opstats)
77241056 333 goto bail;
77241056
MM
334 }
335 }
336 return rcd;
337bail:
77241056
MM
338 kfree(rcd->egrbufs.rcvtids);
339 kfree(rcd->egrbufs.buffers);
340 kfree(rcd);
341 return NULL;
342}
343
344/*
345 * Convert a receive header entry size that to the encoding used in the CSR.
346 *
347 * Return a zero if the given size is invalid.
348 */
349static inline u64 encode_rcv_header_entry_size(u16 size)
350{
351 /* there are only 3 valid receive header entry sizes */
352 if (size == 2)
353 return 1;
354 if (size == 16)
355 return 2;
356 else if (size == 32)
357 return 4;
358 return 0; /* invalid */
359}
360
361/*
362 * Select the largest ccti value over all SLs to determine the intra-
363 * packet gap for the link.
364 *
365 * called with cca_timer_lock held (to protect access to cca_timer
366 * array), and rcu_read_lock() (to protect access to cc_state).
367 */
368void set_link_ipg(struct hfi1_pportdata *ppd)
369{
370 struct hfi1_devdata *dd = ppd->dd;
371 struct cc_state *cc_state;
372 int i;
373 u16 cce, ccti_limit, max_ccti = 0;
374 u16 shift, mult;
375 u64 src;
376 u32 current_egress_rate; /* Mbits /sec */
377 u32 max_pkt_time;
378 /*
379 * max_pkt_time is the maximum packet egress time in units
380 * of the fabric clock period 1/(805 MHz).
381 */
382
383 cc_state = get_cc_state(ppd);
384
d125a6c6 385 if (!cc_state)
77241056
MM
386 /*
387 * This should _never_ happen - rcu_read_lock() is held,
388 * and set_link_ipg() should not be called if cc_state
389 * is NULL.
390 */
391 return;
392
393 for (i = 0; i < OPA_MAX_SLS; i++) {
394 u16 ccti = ppd->cca_timer[i].ccti;
395
396 if (ccti > max_ccti)
397 max_ccti = ccti;
398 }
399
400 ccti_limit = cc_state->cct.ccti_limit;
401 if (max_ccti > ccti_limit)
402 max_ccti = ccti_limit;
403
404 cce = cc_state->cct.entries[max_ccti].entry;
405 shift = (cce & 0xc000) >> 14;
406 mult = (cce & 0x3fff);
407
408 current_egress_rate = active_egress_rate(ppd);
409
410 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
411
412 src = (max_pkt_time >> shift) * mult;
413
414 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
415 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
416
417 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
418}
419
420static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
421{
422 struct cca_timer *cca_timer;
423 struct hfi1_pportdata *ppd;
424 int sl;
425 u16 ccti, ccti_timer, ccti_min;
426 struct cc_state *cc_state;
b77d713a 427 unsigned long flags;
77241056
MM
428
429 cca_timer = container_of(t, struct cca_timer, hrtimer);
430 ppd = cca_timer->ppd;
431 sl = cca_timer->sl;
432
433 rcu_read_lock();
434
435 cc_state = get_cc_state(ppd);
436
d125a6c6 437 if (!cc_state) {
77241056
MM
438 rcu_read_unlock();
439 return HRTIMER_NORESTART;
440 }
441
442 /*
443 * 1) decrement ccti for SL
444 * 2) calculate IPG for link (set_link_ipg())
445 * 3) restart timer, unless ccti is at min value
446 */
447
448 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
449 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
450
b77d713a 451 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
77241056
MM
452
453 ccti = cca_timer->ccti;
454
455 if (ccti > ccti_min) {
456 cca_timer->ccti--;
457 set_link_ipg(ppd);
458 }
459
b77d713a 460 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
77241056
MM
461
462 rcu_read_unlock();
463
464 if (ccti > ccti_min) {
465 unsigned long nsec = 1024 * ccti_timer;
466 /* ccti_timer is in units of 1.024 usec */
467 hrtimer_forward_now(t, ns_to_ktime(nsec));
468 return HRTIMER_RESTART;
469 }
470 return HRTIMER_NORESTART;
471}
472
473/*
474 * Common code for initializing the physical port structure.
475 */
476void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
477 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
478{
479 int i, size;
480 uint default_pkey_idx;
481
482 ppd->dd = dd;
483 ppd->hw_pidx = hw_pidx;
484 ppd->port = port; /* IB port number, not index */
485
486 default_pkey_idx = 1;
487
488 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
489 if (loopback) {
490 hfi1_early_err(&pdev->dev,
491 "Faking data partition 0x8001 in idx %u\n",
492 !default_pkey_idx);
493 ppd->pkeys[!default_pkey_idx] = 0x8001;
494 }
495
496 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
497 INIT_WORK(&ppd->link_up_work, handle_link_up);
498 INIT_WORK(&ppd->link_down_work, handle_link_down);
cbac386a 499 INIT_WORK(&ppd->dc_host_req_work, handle_8051_request);
77241056
MM
500 INIT_WORK(&ppd->freeze_work, handle_freeze);
501 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
502 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
503 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
fb9036dd 504 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
8ebd4cf1
EH
505 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
506
77241056
MM
507 mutex_init(&ppd->hls_lock);
508 spin_lock_init(&ppd->sdma_alllock);
509 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
510
8ebd4cf1 511 ppd->qsfp_info.ppd = ppd;
77241056
MM
512 ppd->sm_trap_qp = 0x0;
513 ppd->sa_qp = 0x1;
514
515 ppd->hfi1_wq = NULL;
516
517 spin_lock_init(&ppd->cca_timer_lock);
518
519 for (i = 0; i < OPA_MAX_SLS; i++) {
520 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
521 HRTIMER_MODE_REL);
522 ppd->cca_timer[i].ppd = ppd;
523 ppd->cca_timer[i].sl = i;
524 ppd->cca_timer[i].ccti = 0;
525 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
526 }
527
528 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
529
530 spin_lock_init(&ppd->cc_state_lock);
531 spin_lock_init(&ppd->cc_log_lock);
532 size = sizeof(struct cc_state);
533 RCU_INIT_POINTER(ppd->cc_state, kzalloc(size, GFP_KERNEL));
534 if (!rcu_dereference(ppd->cc_state))
535 goto bail;
536 return;
537
538bail:
539
540 hfi1_early_err(&pdev->dev,
541 "Congestion Control Agent disabled for port %d\n", port);
542}
543
544/*
545 * Do initialization for device that is only needed on
546 * first detect, not on resets.
547 */
548static int loadtime_init(struct hfi1_devdata *dd)
549{
550 return 0;
551}
552
553/**
554 * init_after_reset - re-initialize after a reset
555 * @dd: the hfi1_ib device
556 *
557 * sanity check at least some of the values after reset, and
558 * ensure no receive or transmit (explicitly, in case reset
559 * failed
560 */
561static int init_after_reset(struct hfi1_devdata *dd)
562{
563 int i;
564
565 /*
566 * Ensure chip does no sends or receives, tail updates, or
567 * pioavail updates while we re-initialize. This is mostly
568 * for the driver data structures, not chip registers.
569 */
570 for (i = 0; i < dd->num_rcv_contexts; i++)
571 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
572 HFI1_RCVCTRL_INTRAVAIL_DIS |
573 HFI1_RCVCTRL_TAILUPD_DIS, i);
574 pio_send_control(dd, PSC_GLOBAL_DISABLE);
575 for (i = 0; i < dd->num_send_contexts; i++)
576 sc_disable(dd->send_contexts[i].sc);
577
578 return 0;
579}
580
581static void enable_chip(struct hfi1_devdata *dd)
582{
583 u32 rcvmask;
584 u32 i;
585
586 /* enable PIO send */
587 pio_send_control(dd, PSC_GLOBAL_ENABLE);
588
589 /*
590 * Enable kernel ctxts' receive and receive interrupt.
591 * Other ctxts done as user opens and initializes them.
592 */
77241056 593 for (i = 0; i < dd->first_user_ctxt; ++i) {
566c157c 594 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
77241056
MM
595 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
596 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
597 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
598 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
599 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
600 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
601 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
602 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
603 hfi1_rcvctrl(dd, rcvmask, i);
604 sc_enable(dd->rcd[i]->sc);
605 }
606}
607
608/**
609 * create_workqueues - create per port workqueues
610 * @dd: the hfi1_ib device
611 */
612static int create_workqueues(struct hfi1_devdata *dd)
613{
614 int pidx;
615 struct hfi1_pportdata *ppd;
616
617 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
618 ppd = dd->pport + pidx;
619 if (!ppd->hfi1_wq) {
77241056 620 ppd->hfi1_wq =
0a226edd
MM
621 alloc_workqueue(
622 "hfi%d_%d",
623 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
624 dd->num_sdma,
625 dd->unit, pidx);
77241056
MM
626 if (!ppd->hfi1_wq)
627 goto wq_error;
628 }
629 }
630 return 0;
631wq_error:
0a226edd 632 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
77241056
MM
633 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
634 ppd = dd->pport + pidx;
635 if (ppd->hfi1_wq) {
636 destroy_workqueue(ppd->hfi1_wq);
637 ppd->hfi1_wq = NULL;
638 }
639 }
640 return -ENOMEM;
641}
642
643/**
644 * hfi1_init - do the actual initialization sequence on the chip
645 * @dd: the hfi1_ib device
646 * @reinit: re-initializing, so don't allocate new memory
647 *
648 * Do the actual initialization sequence on the chip. This is done
649 * both from the init routine called from the PCI infrastructure, and
650 * when we reset the chip, or detect that it was reset internally,
651 * or it's administratively re-enabled.
652 *
653 * Memory allocation here and in called routines is only done in
654 * the first case (reinit == 0). We have to be careful, because even
655 * without memory allocation, we need to re-write all the chip registers
656 * TIDs, etc. after the reset or enable has completed.
657 */
658int hfi1_init(struct hfi1_devdata *dd, int reinit)
659{
660 int ret = 0, pidx, lastfail = 0;
661 unsigned i, len;
662 struct hfi1_ctxtdata *rcd;
663 struct hfi1_pportdata *ppd;
664
665 /* Set up recv low level handlers */
666 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
667 kdeth_process_expected;
668 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
669 kdeth_process_eager;
670 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
671 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
672 process_receive_error;
673 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
674 process_receive_bypass;
675 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
676 process_receive_invalid;
677 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
678 process_receive_invalid;
679 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
680 process_receive_invalid;
681 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
682
683 /* Set up send low level handlers */
684 dd->process_pio_send = hfi1_verbs_send_pio;
685 dd->process_dma_send = hfi1_verbs_send_dma;
686 dd->pio_inline_send = pio_copy;
687
995deafa 688 if (is_ax(dd)) {
77241056
MM
689 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
690 dd->do_drop = 1;
691 } else {
692 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
693 dd->do_drop = 0;
694 }
695
696 /* make sure the link is not "up" */
697 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
698 ppd = dd->pport + pidx;
699 ppd->linkup = 0;
700 }
701
702 if (reinit)
703 ret = init_after_reset(dd);
704 else
705 ret = loadtime_init(dd);
706 if (ret)
707 goto done;
708
46b010d3
MB
709 /* allocate dummy tail memory for all receive contexts */
710 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
711 &dd->pcidev->dev, sizeof(u64),
712 &dd->rcvhdrtail_dummy_physaddr,
713 GFP_KERNEL);
714
715 if (!dd->rcvhdrtail_dummy_kvaddr) {
716 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
717 ret = -ENOMEM;
718 goto done;
719 }
720
77241056
MM
721 /* dd->rcd can be NULL if early initialization failed */
722 for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
723 /*
724 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
725 * re-init, the simplest way to handle this is to free
726 * existing, and re-allocate.
727 * Need to re-create rest of ctxt 0 ctxtdata as well.
728 */
729 rcd = dd->rcd[i];
730 if (!rcd)
731 continue;
732
733 rcd->do_interrupt = &handle_receive_interrupt;
734
735 lastfail = hfi1_create_rcvhdrq(dd, rcd);
736 if (!lastfail)
737 lastfail = hfi1_setup_eagerbufs(rcd);
738 if (lastfail)
739 dd_dev_err(dd,
17fb4f29 740 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
77241056
MM
741 }
742 if (lastfail)
743 ret = lastfail;
744
745 /* Allocate enough memory for user event notification. */
84449917
AKC
746 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
747 sizeof(*dd->events));
77241056
MM
748 dd->events = vmalloc_user(len);
749 if (!dd->events)
750 dd_dev_err(dd, "Failed to allocate user events page\n");
751 /*
752 * Allocate a page for device and port status.
753 * Page will be shared amongst all user processes.
754 */
755 dd->status = vmalloc_user(PAGE_SIZE);
756 if (!dd->status)
757 dd_dev_err(dd, "Failed to allocate dev status page\n");
758 else
759 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
760 sizeof(dd->status->freezemsg));
761 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
762 ppd = dd->pport + pidx;
763 if (dd->status)
764 /* Currently, we only have one port */
765 ppd->statusp = &dd->status->port;
766
767 set_mtu(ppd);
768 }
769
770 /* enable chip even if we have an error, so we can debug cause */
771 enable_chip(dd);
772
77241056
MM
773done:
774 /*
775 * Set status even if port serdes is not initialized
776 * so that diags will work.
777 */
778 if (dd->status)
779 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
780 HFI1_STATUS_INITTED;
781 if (!ret) {
782 /* enable all interrupts from the chip */
783 set_intr_state(dd, 1);
784
785 /* chip is OK for user apps; mark it as initialized */
786 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
787 ppd = dd->pport + pidx;
788
4d114fdd
JJ
789 /*
790 * start the serdes - must be after interrupts are
791 * enabled so we are notified when the link goes up
77241056 792 */
77241056
MM
793 lastfail = bringup_serdes(ppd);
794 if (lastfail)
795 dd_dev_info(dd,
17fb4f29
JJ
796 "Failed to bring up port %u\n",
797 ppd->port);
77241056
MM
798
799 /*
800 * Set status even if port serdes is not initialized
801 * so that diags will work.
802 */
803 if (ppd->statusp)
804 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
805 HFI1_STATUS_INITTED;
806 if (!ppd->link_speed_enabled)
807 continue;
808 }
809 }
810
811 /* if ret is non-zero, we probably should do some cleanup here... */
812 return ret;
813}
814
815static inline struct hfi1_devdata *__hfi1_lookup(int unit)
816{
817 return idr_find(&hfi1_unit_table, unit);
818}
819
820struct hfi1_devdata *hfi1_lookup(int unit)
821{
822 struct hfi1_devdata *dd;
823 unsigned long flags;
824
825 spin_lock_irqsave(&hfi1_devs_lock, flags);
826 dd = __hfi1_lookup(unit);
827 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
828
829 return dd;
830}
831
832/*
833 * Stop the timers during unit shutdown, or after an error late
834 * in initialization.
835 */
836static void stop_timers(struct hfi1_devdata *dd)
837{
838 struct hfi1_pportdata *ppd;
839 int pidx;
840
841 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
842 ppd = dd->pport + pidx;
843 if (ppd->led_override_timer.data) {
844 del_timer_sync(&ppd->led_override_timer);
845 atomic_set(&ppd->led_override_timer_active, 0);
846 }
847 }
848}
849
850/**
851 * shutdown_device - shut down a device
852 * @dd: the hfi1_ib device
853 *
854 * This is called to make the device quiet when we are about to
855 * unload the driver, and also when the device is administratively
856 * disabled. It does not free any data structures.
857 * Everything it does has to be setup again by hfi1_init(dd, 1)
858 */
859static void shutdown_device(struct hfi1_devdata *dd)
860{
861 struct hfi1_pportdata *ppd;
862 unsigned pidx;
863 int i;
864
865 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
866 ppd = dd->pport + pidx;
867
868 ppd->linkup = 0;
869 if (ppd->statusp)
870 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
871 HFI1_STATUS_IB_READY);
872 }
873 dd->flags &= ~HFI1_INITTED;
874
875 /* mask interrupts, but not errors */
876 set_intr_state(dd, 0);
877
878 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
879 ppd = dd->pport + pidx;
880 for (i = 0; i < dd->num_rcv_contexts; i++)
881 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
882 HFI1_RCVCTRL_CTXT_DIS |
883 HFI1_RCVCTRL_INTRAVAIL_DIS |
884 HFI1_RCVCTRL_PKEY_DIS |
885 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
886 /*
887 * Gracefully stop all sends allowing any in progress to
888 * trickle out first.
889 */
890 for (i = 0; i < dd->num_send_contexts; i++)
891 sc_flush(dd->send_contexts[i].sc);
892 }
893
894 /*
895 * Enough for anything that's going to trickle out to have actually
896 * done so.
897 */
898 udelay(20);
899
900 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
901 ppd = dd->pport + pidx;
902
903 /* disable all contexts */
904 for (i = 0; i < dd->num_send_contexts; i++)
905 sc_disable(dd->send_contexts[i].sc);
906 /* disable the send device */
907 pio_send_control(dd, PSC_GLOBAL_DISABLE);
908
91ab4ed3
EH
909 shutdown_led_override(ppd);
910
77241056
MM
911 /*
912 * Clear SerdesEnable.
913 * We can't count on interrupts since we are stopping.
914 */
915 hfi1_quiet_serdes(ppd);
916
917 if (ppd->hfi1_wq) {
918 destroy_workqueue(ppd->hfi1_wq);
919 ppd->hfi1_wq = NULL;
920 }
921 }
922 sdma_exit(dd);
923}
924
925/**
926 * hfi1_free_ctxtdata - free a context's allocated data
927 * @dd: the hfi1_ib device
928 * @rcd: the ctxtdata structure
929 *
930 * free up any allocated data for a context
931 * This should not touch anything that would affect a simultaneous
932 * re-allocation of context data, because it is called after hfi1_mutex
933 * is released (and can be called from reinit as well).
934 * It should never change any chip state, or global driver state.
935 */
936void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
937{
938 unsigned e;
939
940 if (!rcd)
941 return;
942
943 if (rcd->rcvhdrq) {
944 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
945 rcd->rcvhdrq, rcd->rcvhdrq_phys);
946 rcd->rcvhdrq = NULL;
947 if (rcd->rcvhdrtail_kvaddr) {
948 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
949 (void *)rcd->rcvhdrtail_kvaddr,
950 rcd->rcvhdrqtailaddr_phys);
951 rcd->rcvhdrtail_kvaddr = NULL;
952 }
953 }
954
955 /* all the RcvArray entries should have been cleared by now */
956 kfree(rcd->egrbufs.rcvtids);
957
958 for (e = 0; e < rcd->egrbufs.alloced; e++) {
959 if (rcd->egrbufs.buffers[e].phys)
960 dma_free_coherent(&dd->pcidev->dev,
961 rcd->egrbufs.buffers[e].len,
962 rcd->egrbufs.buffers[e].addr,
963 rcd->egrbufs.buffers[e].phys);
964 }
965 kfree(rcd->egrbufs.buffers);
966
967 sc_free(rcd->sc);
77241056
MM
968 vfree(rcd->user_event_mask);
969 vfree(rcd->subctxt_uregbase);
970 vfree(rcd->subctxt_rcvegrbuf);
971 vfree(rcd->subctxt_rcvhdr_base);
77241056
MM
972 kfree(rcd->opstats);
973 kfree(rcd);
974}
975
78eb129d
DL
976/*
977 * Release our hold on the shared asic data. If we are the last one,
978 * free the structure. Must be holding hfi1_devs_lock.
979 */
980static void release_asic_data(struct hfi1_devdata *dd)
981{
982 int other;
983
984 if (!dd->asic_data)
985 return;
986 dd->asic_data->dds[dd->hfi1_id] = NULL;
987 other = dd->hfi1_id ? 0 : 1;
988 if (!dd->asic_data->dds[other]) {
989 /* we are the last holder, free it */
990 kfree(dd->asic_data);
991 }
992 dd->asic_data = NULL;
993}
994
77241056
MM
995void hfi1_free_devdata(struct hfi1_devdata *dd)
996{
997 unsigned long flags;
998
999 spin_lock_irqsave(&hfi1_devs_lock, flags);
1000 idr_remove(&hfi1_unit_table, dd->unit);
1001 list_del(&dd->list);
78eb129d 1002 release_asic_data(dd);
77241056 1003 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
c3838b39 1004 free_platform_config(dd);
77241056
MM
1005 rcu_barrier(); /* wait for rcu callbacks to complete */
1006 free_percpu(dd->int_counter);
1007 free_percpu(dd->rcv_limit);
957558c9 1008 hfi1_dev_affinity_free(dd);
89abfc8d 1009 free_percpu(dd->send_schedule);
ea0e4ce3 1010 rvt_dealloc_device(&dd->verbs_dev.rdi);
77241056
MM
1011}
1012
1013/*
1014 * Allocate our primary per-unit data structure. Must be done via verbs
1015 * allocator, because the verbs cleanup process both does cleanup and
1016 * free of the data structure.
1017 * "extra" is for chip-specific data.
1018 *
1019 * Use the idr mechanism to get a unit number for this unit.
1020 */
1021struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1022{
1023 unsigned long flags;
1024 struct hfi1_devdata *dd;
7af6d006 1025 int ret, nports;
77241056 1026
7af6d006
DD
1027 /* extra is * number of ports */
1028 nports = extra / sizeof(struct hfi1_pportdata);
77241056 1029
7af6d006
DD
1030 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1031 nports);
77241056
MM
1032 if (!dd)
1033 return ERR_PTR(-ENOMEM);
7af6d006 1034 dd->num_pports = nports;
77241056
MM
1035 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1036
1037 INIT_LIST_HEAD(&dd->list);
77241056
MM
1038 idr_preload(GFP_KERNEL);
1039 spin_lock_irqsave(&hfi1_devs_lock, flags);
1040
1041 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1042 if (ret >= 0) {
1043 dd->unit = ret;
1044 list_add(&dd->list, &hfi1_dev_list);
1045 }
1046
1047 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1048 idr_preload_end();
1049
1050 if (ret < 0) {
1051 hfi1_early_err(&pdev->dev,
1052 "Could not allocate unit ID: error %d\n", -ret);
1053 goto bail;
1054 }
1055 /*
1056 * Initialize all locks for the device. This needs to be as early as
1057 * possible so locks are usable.
1058 */
1059 spin_lock_init(&dd->sc_lock);
1060 spin_lock_init(&dd->sendctrl_lock);
1061 spin_lock_init(&dd->rcvctrl_lock);
1062 spin_lock_init(&dd->uctxt_lock);
1063 spin_lock_init(&dd->hfi1_diag_trans_lock);
1064 spin_lock_init(&dd->sc_init_lock);
1065 spin_lock_init(&dd->dc8051_lock);
1066 spin_lock_init(&dd->dc8051_memlock);
77241056
MM
1067 seqlock_init(&dd->sc2vl_lock);
1068 spin_lock_init(&dd->sde_map_lock);
35f6befc 1069 spin_lock_init(&dd->pio_map_lock);
77241056
MM
1070 init_waitqueue_head(&dd->event_queue);
1071
1072 dd->int_counter = alloc_percpu(u64);
1073 if (!dd->int_counter) {
1074 ret = -ENOMEM;
1075 hfi1_early_err(&pdev->dev,
1076 "Could not allocate per-cpu int_counter\n");
1077 goto bail;
1078 }
1079
1080 dd->rcv_limit = alloc_percpu(u64);
1081 if (!dd->rcv_limit) {
1082 ret = -ENOMEM;
1083 hfi1_early_err(&pdev->dev,
1084 "Could not allocate per-cpu rcv_limit\n");
1085 goto bail;
1086 }
1087
89abfc8d
VM
1088 dd->send_schedule = alloc_percpu(u64);
1089 if (!dd->send_schedule) {
1090 ret = -ENOMEM;
1091 hfi1_early_err(&pdev->dev,
1092 "Could not allocate per-cpu int_counter\n");
1093 goto bail;
1094 }
1095
77241056
MM
1096 if (!hfi1_cpulist_count) {
1097 u32 count = num_online_cpus();
1098
314fcc0d
SB
1099 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1100 GFP_KERNEL);
77241056
MM
1101 if (hfi1_cpulist)
1102 hfi1_cpulist_count = count;
1103 else
1104 hfi1_early_err(
1105 &pdev->dev,
1106 "Could not alloc cpulist info, cpu affinity might be wrong\n");
1107 }
77241056
MM
1108 return dd;
1109
1110bail:
1111 if (!list_empty(&dd->list))
1112 list_del_init(&dd->list);
ea0e4ce3 1113 rvt_dealloc_device(&dd->verbs_dev.rdi);
77241056
MM
1114 return ERR_PTR(ret);
1115}
1116
1117/*
1118 * Called from freeze mode handlers, and from PCI error
1119 * reporting code. Should be paranoid about state of
1120 * system and data structures.
1121 */
1122void hfi1_disable_after_error(struct hfi1_devdata *dd)
1123{
1124 if (dd->flags & HFI1_INITTED) {
1125 u32 pidx;
1126
1127 dd->flags &= ~HFI1_INITTED;
1128 if (dd->pport)
1129 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1130 struct hfi1_pportdata *ppd;
1131
1132 ppd = dd->pport + pidx;
1133 if (dd->flags & HFI1_PRESENT)
1134 set_link_state(ppd, HLS_DN_DISABLE);
1135
1136 if (ppd->statusp)
1137 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1138 }
1139 }
1140
1141 /*
1142 * Mark as having had an error for driver, and also
1143 * for /sys and status word mapped to user programs.
1144 * This marks unit as not usable, until reset.
1145 */
1146 if (dd->status)
1147 dd->status->dev |= HFI1_STATUS_HWERROR;
1148}
1149
1150static void remove_one(struct pci_dev *);
1151static int init_one(struct pci_dev *, const struct pci_device_id *);
1152
1153#define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1154#define PFX DRIVER_NAME ": "
1155
1156static const struct pci_device_id hfi1_pci_tbl[] = {
1157 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1158 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1159 { 0, }
1160};
1161
1162MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1163
1164static struct pci_driver hfi1_pci_driver = {
1165 .name = DRIVER_NAME,
1166 .probe = init_one,
1167 .remove = remove_one,
1168 .id_table = hfi1_pci_tbl,
1169 .err_handler = &hfi1_pci_err_handler,
1170};
1171
1172static void __init compute_krcvqs(void)
1173{
1174 int i;
1175
1176 for (i = 0; i < krcvqsset; i++)
1177 n_krcvqs += krcvqs[i];
1178}
1179
1180/*
1181 * Do all the generic driver unit- and chip-independent memory
1182 * allocation and initialization.
1183 */
1184static int __init hfi1_mod_init(void)
1185{
1186 int ret;
1187
1188 ret = dev_init();
1189 if (ret)
1190 goto bail;
1191
1192 /* validate max MTU before any devices start */
1193 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1194 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1195 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1196 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1197 }
1198 /* valid CUs run from 1-128 in powers of 2 */
1199 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1200 hfi1_cu = 1;
1201 /* valid credit return threshold is 0-100, variable is unsigned */
1202 if (user_credit_return_threshold > 100)
1203 user_credit_return_threshold = 100;
1204
1205 compute_krcvqs();
4d114fdd
JJ
1206 /*
1207 * sanitize receive interrupt count, time must wait until after
1208 * the hardware type is known
1209 */
77241056
MM
1210 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1211 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1212 /* reject invalid combinations */
1213 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1214 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1215 rcv_intr_count = 1;
1216 }
1217 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1218 /*
1219 * Avoid indefinite packet delivery by requiring a timeout
1220 * if count is > 1.
1221 */
1222 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1223 rcv_intr_timeout = 1;
1224 }
1225 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1226 /*
1227 * The dynamic algorithm expects a non-zero timeout
1228 * and a count > 1.
1229 */
1230 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1231 rcv_intr_dynamic = 0;
1232 }
1233
1234 /* sanitize link CRC options */
1235 link_crc_mask &= SUPPORTED_CRCS;
1236
1237 /*
1238 * These must be called before the driver is registered with
1239 * the PCI subsystem.
1240 */
1241 idr_init(&hfi1_unit_table);
1242
1243 hfi1_dbg_init();
528ee9fb
DL
1244 ret = hfi1_wss_init();
1245 if (ret < 0)
1246 goto bail_wss;
77241056
MM
1247 ret = pci_register_driver(&hfi1_pci_driver);
1248 if (ret < 0) {
1249 pr_err("Unable to register driver: error %d\n", -ret);
1250 goto bail_dev;
1251 }
1252 goto bail; /* all OK */
1253
1254bail_dev:
528ee9fb
DL
1255 hfi1_wss_exit();
1256bail_wss:
77241056
MM
1257 hfi1_dbg_exit();
1258 idr_destroy(&hfi1_unit_table);
1259 dev_cleanup();
1260bail:
1261 return ret;
1262}
1263
1264module_init(hfi1_mod_init);
1265
1266/*
1267 * Do the non-unit driver cleanup, memory free, etc. at unload.
1268 */
1269static void __exit hfi1_mod_cleanup(void)
1270{
1271 pci_unregister_driver(&hfi1_pci_driver);
528ee9fb 1272 hfi1_wss_exit();
77241056
MM
1273 hfi1_dbg_exit();
1274 hfi1_cpulist_count = 0;
1275 kfree(hfi1_cpulist);
1276
1277 idr_destroy(&hfi1_unit_table);
1278 dispose_firmware(); /* asymmetric with obtain_firmware() */
1279 dev_cleanup();
1280}
1281
1282module_exit(hfi1_mod_cleanup);
1283
1284/* this can only be called after a successful initialization */
1285static void cleanup_device_data(struct hfi1_devdata *dd)
1286{
1287 int ctxt;
1288 int pidx;
1289 struct hfi1_ctxtdata **tmp;
1290 unsigned long flags;
1291
1292 /* users can't do anything more with chip */
1293 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1294 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1295 struct cc_state *cc_state;
1296 int i;
1297
1298 if (ppd->statusp)
1299 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1300
1301 for (i = 0; i < OPA_MAX_SLS; i++)
1302 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1303
1304 spin_lock(&ppd->cc_state_lock);
1305 cc_state = get_cc_state(ppd);
1306 rcu_assign_pointer(ppd->cc_state, NULL);
1307 spin_unlock(&ppd->cc_state_lock);
1308
1309 if (cc_state)
1310 call_rcu(&cc_state->rcu, cc_state_reclaim);
1311 }
1312
1313 free_credit_return(dd);
1314
1315 /*
1316 * Free any resources still in use (usually just kernel contexts)
1317 * at unload; we do for ctxtcnt, because that's what we allocate.
1318 * We acquire lock to be really paranoid that rcd isn't being
1319 * accessed from some interrupt-related code (that should not happen,
1320 * but best to be sure).
1321 */
1322 spin_lock_irqsave(&dd->uctxt_lock, flags);
1323 tmp = dd->rcd;
1324 dd->rcd = NULL;
1325 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
46b010d3
MB
1326
1327 if (dd->rcvhdrtail_dummy_kvaddr) {
1328 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1329 (void *)dd->rcvhdrtail_dummy_kvaddr,
1330 dd->rcvhdrtail_dummy_physaddr);
1331 dd->rcvhdrtail_dummy_kvaddr = NULL;
1332 }
1333
77241056
MM
1334 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1335 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1336
1337 tmp[ctxt] = NULL; /* debugging paranoia */
1338 if (rcd) {
1339 hfi1_clear_tids(rcd);
1340 hfi1_free_ctxtdata(dd, rcd);
1341 }
1342 }
1343 kfree(tmp);
35f6befc 1344 free_pio_map(dd);
77241056
MM
1345 /* must follow rcv context free - need to remove rcv's hooks */
1346 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1347 sc_free(dd->send_contexts[ctxt].sc);
1348 dd->num_send_contexts = 0;
1349 kfree(dd->send_contexts);
1350 dd->send_contexts = NULL;
79d0c088
JJ
1351 kfree(dd->hw_to_sw);
1352 dd->hw_to_sw = NULL;
77241056
MM
1353 kfree(dd->boardname);
1354 vfree(dd->events);
1355 vfree(dd->status);
77241056
MM
1356}
1357
1358/*
1359 * Clean up on unit shutdown, or error during unit load after
1360 * successful initialization.
1361 */
1362static void postinit_cleanup(struct hfi1_devdata *dd)
1363{
1364 hfi1_start_cleanup(dd);
1365
1366 hfi1_pcie_ddcleanup(dd);
1367 hfi1_pcie_cleanup(dd->pcidev);
1368
1369 cleanup_device_data(dd);
1370
1371 hfi1_free_devdata(dd);
1372}
1373
1374static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1375{
1376 int ret = 0, j, pidx, initfail;
1377 struct hfi1_devdata *dd = NULL;
e8597eb0 1378 struct hfi1_pportdata *ppd;
77241056
MM
1379
1380 /* First, lock the non-writable module parameters */
1381 HFI1_CAP_LOCK();
1382
1383 /* Validate some global module parameters */
1384 if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1385 hfi1_early_err(&pdev->dev, "Header queue count too small\n");
1386 ret = -EINVAL;
1387 goto bail;
1388 }
e002dcc0
SS
1389 if (rcvhdrcnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1390 hfi1_early_err(&pdev->dev,
1391 "Receive header queue count cannot be greater than %u\n",
1392 HFI1_MAX_HDRQ_EGRBUF_CNT);
1393 ret = -EINVAL;
1394 goto bail;
1395 }
77241056
MM
1396 /* use the encoding function as a sanitization check */
1397 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1398 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1399 hfi1_hdrq_entsize);
07859def 1400 ret = -EINVAL;
77241056
MM
1401 goto bail;
1402 }
1403
1404 /* The receive eager buffer size must be set before the receive
1405 * contexts are created.
1406 *
1407 * Set the eager buffer size. Validate that it falls in a range
1408 * allowed by the hardware - all powers of 2 between the min and
1409 * max. The maximum valid MTU is within the eager buffer range
1410 * so we do not need to cap the max_mtu by an eager buffer size
1411 * setting.
1412 */
1413 if (eager_buffer_size) {
1414 if (!is_power_of_2(eager_buffer_size))
1415 eager_buffer_size =
1416 roundup_pow_of_two(eager_buffer_size);
1417 eager_buffer_size =
1418 clamp_val(eager_buffer_size,
1419 MIN_EAGER_BUFFER * 8,
1420 MAX_EAGER_BUFFER_TOTAL);
1421 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1422 eager_buffer_size);
1423 } else {
1424 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1425 ret = -EINVAL;
1426 goto bail;
1427 }
1428
1429 /* restrict value of hfi1_rcvarr_split */
1430 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1431
1432 ret = hfi1_pcie_init(pdev, ent);
1433 if (ret)
1434 goto bail;
1435
1436 /*
1437 * Do device-specific initialization, function table setup, dd
1438 * allocation, etc.
1439 */
1440 switch (ent->device) {
1441 case PCI_DEVICE_ID_INTEL0:
1442 case PCI_DEVICE_ID_INTEL1:
1443 dd = hfi1_init_dd(pdev, ent);
1444 break;
1445 default:
1446 hfi1_early_err(&pdev->dev,
1447 "Failing on unknown Intel deviceid 0x%x\n",
1448 ent->device);
1449 ret = -ENODEV;
1450 }
1451
1452 if (IS_ERR(dd))
1453 ret = PTR_ERR(dd);
1454 if (ret)
1455 goto clean_bail; /* error already printed */
1456
1457 ret = create_workqueues(dd);
1458 if (ret)
1459 goto clean_bail;
1460
1461 /* do the generic initialization */
1462 initfail = hfi1_init(dd, 0);
1463
1464 ret = hfi1_register_ib_device(dd);
1465
1466 /*
1467 * Now ready for use. this should be cleared whenever we
1468 * detect a reset, or initiate one. If earlier failure,
1469 * we still create devices, so diags, etc. can be used
1470 * to determine cause of problem.
1471 */
ed6f653f 1472 if (!initfail && !ret) {
77241056 1473 dd->flags |= HFI1_INITTED;
ed6f653f
DL
1474 /* create debufs files after init and ib register */
1475 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1476 }
77241056
MM
1477
1478 j = hfi1_device_create(dd);
1479 if (j)
1480 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1481
1482 if (initfail || ret) {
1483 stop_timers(dd);
1484 flush_workqueue(ib_wq);
e8597eb0 1485 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
77241056 1486 hfi1_quiet_serdes(dd->pport + pidx);
e8597eb0
HC
1487 ppd = dd->pport + pidx;
1488 if (ppd->hfi1_wq) {
1489 destroy_workqueue(ppd->hfi1_wq);
1490 ppd->hfi1_wq = NULL;
1491 }
1492 }
77241056
MM
1493 if (!j)
1494 hfi1_device_remove(dd);
1495 if (!ret)
1496 hfi1_unregister_ib_device(dd);
1497 postinit_cleanup(dd);
1498 if (initfail)
1499 ret = initfail;
1500 goto bail; /* everything already cleaned */
1501 }
1502
1503 sdma_start(dd);
1504
1505 return 0;
1506
1507clean_bail:
1508 hfi1_pcie_cleanup(pdev);
1509bail:
1510 return ret;
1511}
1512
1513static void remove_one(struct pci_dev *pdev)
1514{
1515 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1516
ed6f653f
DL
1517 /* close debugfs files before ib unregister */
1518 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
77241056
MM
1519 /* unregister from IB core */
1520 hfi1_unregister_ib_device(dd);
1521
1522 /*
1523 * Disable the IB link, disable interrupts on the device,
1524 * clear dma engines, etc.
1525 */
1526 shutdown_device(dd);
1527
1528 stop_timers(dd);
1529
1530 /* wait until all of our (qsfp) queue_work() calls complete */
1531 flush_workqueue(ib_wq);
1532
1533 hfi1_device_remove(dd);
1534
1535 postinit_cleanup(dd);
1536}
1537
1538/**
1539 * hfi1_create_rcvhdrq - create a receive header queue
1540 * @dd: the hfi1_ib device
1541 * @rcd: the context data
1542 *
1543 * This must be contiguous memory (from an i/o perspective), and must be
1544 * DMA'able (which means for some systems, it will go through an IOMMU,
1545 * or be forced into a low address range).
1546 */
1547int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1548{
1549 unsigned amt;
1550 u64 reg;
1551
1552 if (!rcd->rcvhdrq) {
1553 dma_addr_t phys_hdrqtail;
1554 gfp_t gfp_flags;
1555
1556 /*
1557 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1558 * (* sizeof(u32)).
1559 */
84449917
AKC
1560 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1561 sizeof(u32));
77241056
MM
1562
1563 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1564 GFP_USER : GFP_KERNEL;
1565 rcd->rcvhdrq = dma_zalloc_coherent(
1566 &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1567 gfp_flags | __GFP_COMP);
1568
1569 if (!rcd->rcvhdrq) {
1570 dd_dev_err(dd,
17fb4f29
JJ
1571 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1572 amt, rcd->ctxt);
77241056
MM
1573 goto bail;
1574 }
1575
77241056
MM
1576 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1577 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1578 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1579 gfp_flags);
1580 if (!rcd->rcvhdrtail_kvaddr)
1581 goto bail_free;
1582 rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1583 }
1584
1585 rcd->rcvhdrq_size = amt;
1586 }
1587 /*
1588 * These values are per-context:
1589 * RcvHdrCnt
1590 * RcvHdrEntSize
1591 * RcvHdrSize
1592 */
1593 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1594 & RCV_HDR_CNT_CNT_MASK)
1595 << RCV_HDR_CNT_CNT_SHIFT;
1596 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1597 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1598 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1599 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1600 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1601 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1602 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1603 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
46b010d3
MB
1604
1605 /*
1606 * Program dummy tail address for every receive context
1607 * before enabling any receive context
1608 */
1609 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1610 dd->rcvhdrtail_dummy_physaddr);
1611
77241056
MM
1612 return 0;
1613
1614bail_free:
1615 dd_dev_err(dd,
17fb4f29
JJ
1616 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1617 rcd->ctxt);
77241056
MM
1618 vfree(rcd->user_event_mask);
1619 rcd->user_event_mask = NULL;
1620 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1621 rcd->rcvhdrq_phys);
1622 rcd->rcvhdrq = NULL;
1623bail:
1624 return -ENOMEM;
1625}
1626
1627/**
1628 * allocate eager buffers, both kernel and user contexts.
1629 * @rcd: the context we are setting up.
1630 *
1631 * Allocate the eager TID buffers and program them into hip.
1632 * They are no longer completely contiguous, we do multiple allocation
1633 * calls. Otherwise we get the OOM code involved, by asking for too
1634 * much per call, with disastrous results on some kernels.
1635 */
1636int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1637{
1638 struct hfi1_devdata *dd = rcd->dd;
1639 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1640 gfp_t gfp_flags;
1641 u16 order;
1642 int ret = 0;
1643 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1644
1645 /*
1646 * GFP_USER, but without GFP_FS, so buffer cache can be
1647 * coalesced (we hope); otherwise, even at order 4,
1648 * heavy filesystem activity makes these fail, and we can
1649 * use compound pages.
1650 */
71baba4b 1651 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
77241056
MM
1652
1653 /*
1654 * The minimum size of the eager buffers is a groups of MTU-sized
1655 * buffers.
1656 * The global eager_buffer_size parameter is checked against the
1657 * theoretical lower limit of the value. Here, we check against the
1658 * MTU.
1659 */
1660 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1661 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1662 /*
1663 * If using one-pkt-per-egr-buffer, lower the eager buffer
1664 * size to the max MTU (page-aligned).
1665 */
1666 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1667 rcd->egrbufs.rcvtid_size = round_mtu;
1668
1669 /*
1670 * Eager buffers sizes of 1MB or less require smaller TID sizes
1671 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1672 */
1673 if (rcd->egrbufs.size <= (1 << 20))
1674 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1675 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1676
1677 while (alloced_bytes < rcd->egrbufs.size &&
1678 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1679 rcd->egrbufs.buffers[idx].addr =
1680 dma_zalloc_coherent(&dd->pcidev->dev,
1681 rcd->egrbufs.rcvtid_size,
1682 &rcd->egrbufs.buffers[idx].phys,
1683 gfp_flags);
1684 if (rcd->egrbufs.buffers[idx].addr) {
1685 rcd->egrbufs.buffers[idx].len =
1686 rcd->egrbufs.rcvtid_size;
1687 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1688 rcd->egrbufs.buffers[idx].addr;
1689 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1690 rcd->egrbufs.buffers[idx].phys;
1691 rcd->egrbufs.alloced++;
1692 alloced_bytes += rcd->egrbufs.rcvtid_size;
1693 idx++;
1694 } else {
1695 u32 new_size, i, j;
1696 u64 offset = 0;
1697
1698 /*
1699 * Fail the eager buffer allocation if:
1700 * - we are already using the lowest acceptable size
1701 * - we are using one-pkt-per-egr-buffer (this implies
1702 * that we are accepting only one size)
1703 */
1704 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1705 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1706 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
17fb4f29 1707 rcd->ctxt);
77241056
MM
1708 goto bail_rcvegrbuf_phys;
1709 }
1710
1711 new_size = rcd->egrbufs.rcvtid_size / 2;
1712
1713 /*
1714 * If the first attempt to allocate memory failed, don't
1715 * fail everything but continue with the next lower
1716 * size.
1717 */
1718 if (idx == 0) {
1719 rcd->egrbufs.rcvtid_size = new_size;
1720 continue;
1721 }
1722
1723 /*
1724 * Re-partition already allocated buffers to a smaller
1725 * size.
1726 */
1727 rcd->egrbufs.alloced = 0;
1728 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1729 if (i >= rcd->egrbufs.count)
1730 break;
1731 rcd->egrbufs.rcvtids[i].phys =
1732 rcd->egrbufs.buffers[j].phys + offset;
1733 rcd->egrbufs.rcvtids[i].addr =
1734 rcd->egrbufs.buffers[j].addr + offset;
1735 rcd->egrbufs.alloced++;
1736 if ((rcd->egrbufs.buffers[j].phys + offset +
1737 new_size) ==
1738 (rcd->egrbufs.buffers[j].phys +
1739 rcd->egrbufs.buffers[j].len)) {
1740 j++;
1741 offset = 0;
e490974e 1742 } else {
77241056 1743 offset += new_size;
e490974e 1744 }
77241056
MM
1745 }
1746 rcd->egrbufs.rcvtid_size = new_size;
1747 }
1748 }
1749 rcd->egrbufs.numbufs = idx;
1750 rcd->egrbufs.size = alloced_bytes;
1751
6c63e423
SS
1752 hfi1_cdbg(PROC,
1753 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1754 rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size,
1755 rcd->egrbufs.size);
1756
77241056
MM
1757 /*
1758 * Set the contexts rcv array head update threshold to the closest
1759 * power of 2 (so we can use a mask instead of modulo) below half
1760 * the allocated entries.
1761 */
1762 rcd->egrbufs.threshold =
1763 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1764 /*
1765 * Compute the expected RcvArray entry base. This is done after
1766 * allocating the eager buffers in order to maximize the
1767 * expected RcvArray entries for the context.
1768 */
1769 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1770 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1771 rcd->expected_count = max_entries - egrtop;
1772 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1773 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1774
1775 rcd->expected_base = rcd->eager_base + egrtop;
6c63e423
SS
1776 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1777 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1778 rcd->eager_base, rcd->expected_base);
77241056
MM
1779
1780 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
6c63e423
SS
1781 hfi1_cdbg(PROC,
1782 "ctxt%u: current Eager buffer size is invalid %u\n",
1783 rcd->ctxt, rcd->egrbufs.rcvtid_size);
77241056
MM
1784 ret = -EINVAL;
1785 goto bail;
1786 }
1787
1788 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1789 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
17fb4f29 1790 rcd->egrbufs.rcvtids[idx].phys, order);
77241056
MM
1791 cond_resched();
1792 }
1793 goto bail;
1794
1795bail_rcvegrbuf_phys:
1796 for (idx = 0; idx < rcd->egrbufs.alloced &&
17fb4f29 1797 rcd->egrbufs.buffers[idx].addr;
77241056
MM
1798 idx++) {
1799 dma_free_coherent(&dd->pcidev->dev,
1800 rcd->egrbufs.buffers[idx].len,
1801 rcd->egrbufs.buffers[idx].addr,
1802 rcd->egrbufs.buffers[idx].phys);
1803 rcd->egrbufs.buffers[idx].addr = NULL;
1804 rcd->egrbufs.buffers[idx].phys = 0;
1805 rcd->egrbufs.buffers[idx].len = 0;
1806 }
1807bail:
1808 return ret;
1809}
This page took 0.219718 seconds and 5 git commands to generate.