Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / sdma.h
CommitLineData
77241056
MM
1#ifndef _HFI1_SDMA_H
2#define _HFI1_SDMA_H
3/*
4 *
5 * This file is provided under a dual BSD/GPLv2 license. When using or
6 * redistributing this file, you may do so under either license.
7 *
8 * GPL LICENSE SUMMARY
9 *
10 * Copyright(c) 2015 Intel Corporation.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of version 2 of the GNU General Public License as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * BSD LICENSE
22 *
23 * Copyright(c) 2015 Intel Corporation.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 *
29 * - Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * - Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in
33 * the documentation and/or other materials provided with the
34 * distribution.
35 * - Neither the name of Intel Corporation nor the names of its
36 * contributors may be used to endorse or promote products derived
37 * from this software without specific prior written permission.
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
40 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
41 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
42 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
43 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
45 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
46 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
47 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
48 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
49 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
50 *
51 */
52
53#include <linux/types.h>
54#include <linux/list.h>
55#include <asm/byteorder.h>
56#include <linux/workqueue.h>
57#include <linux/rculist.h>
58
59#include "hfi.h"
60#include "verbs.h"
61
62/* increased for AHG */
63#define NUM_DESC 6
64/* Hardware limit */
65#define MAX_DESC 64
66/* Hardware limit for SDMA packet size */
67#define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
68
69
70#define SDMA_TXREQ_S_OK 0
71#define SDMA_TXREQ_S_SENDERROR 1
72#define SDMA_TXREQ_S_ABORTED 2
73#define SDMA_TXREQ_S_SHUTDOWN 3
74
75/* flags bits */
76#define SDMA_TXREQ_F_URGENT 0x0001
77#define SDMA_TXREQ_F_AHG_COPY 0x0002
78#define SDMA_TXREQ_F_USE_AHG 0x0004
79
80#define SDMA_MAP_NONE 0
81#define SDMA_MAP_SINGLE 1
82#define SDMA_MAP_PAGE 2
83
84#define SDMA_AHG_VALUE_MASK 0xffff
85#define SDMA_AHG_VALUE_SHIFT 0
86#define SDMA_AHG_INDEX_MASK 0xf
87#define SDMA_AHG_INDEX_SHIFT 16
88#define SDMA_AHG_FIELD_LEN_MASK 0xf
89#define SDMA_AHG_FIELD_LEN_SHIFT 20
90#define SDMA_AHG_FIELD_START_MASK 0x1f
91#define SDMA_AHG_FIELD_START_SHIFT 24
92#define SDMA_AHG_UPDATE_ENABLE_MASK 0x1
93#define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
94
95/* AHG modes */
96
97/*
98 * Be aware the ordering and values
99 * for SDMA_AHG_APPLY_UPDATE[123]
100 * are assumed in generating a skip
101 * count in submit_tx() in sdma.c
102 */
103#define SDMA_AHG_NO_AHG 0
104#define SDMA_AHG_COPY 1
105#define SDMA_AHG_APPLY_UPDATE1 2
106#define SDMA_AHG_APPLY_UPDATE2 3
107#define SDMA_AHG_APPLY_UPDATE3 4
108
109/*
110 * Bits defined in the send DMA descriptor.
111 */
3f2686a2
DC
112#define SDMA_DESC0_FIRST_DESC_FLAG (1ULL << 63)
113#define SDMA_DESC0_LAST_DESC_FLAG (1ULL << 62)
77241056
MM
114#define SDMA_DESC0_BYTE_COUNT_SHIFT 48
115#define SDMA_DESC0_BYTE_COUNT_WIDTH 14
116#define SDMA_DESC0_BYTE_COUNT_MASK \
3f2686a2 117 ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
77241056 118#define SDMA_DESC0_BYTE_COUNT_SMASK \
3f2686a2 119 (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
77241056
MM
120#define SDMA_DESC0_PHY_ADDR_SHIFT 0
121#define SDMA_DESC0_PHY_ADDR_WIDTH 48
122#define SDMA_DESC0_PHY_ADDR_MASK \
3f2686a2 123 ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
77241056 124#define SDMA_DESC0_PHY_ADDR_SMASK \
3f2686a2 125 (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
77241056
MM
126
127#define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
128#define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
129#define SDMA_DESC1_HEADER_UPDATE1_MASK \
3f2686a2 130 ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
77241056 131#define SDMA_DESC1_HEADER_UPDATE1_SMASK \
3f2686a2 132 (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
77241056
MM
133#define SDMA_DESC1_HEADER_MODE_SHIFT 13
134#define SDMA_DESC1_HEADER_MODE_WIDTH 3
135#define SDMA_DESC1_HEADER_MODE_MASK \
3f2686a2 136 ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
77241056 137#define SDMA_DESC1_HEADER_MODE_SMASK \
3f2686a2 138 (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
77241056
MM
139#define SDMA_DESC1_HEADER_INDEX_SHIFT 8
140#define SDMA_DESC1_HEADER_INDEX_WIDTH 5
141#define SDMA_DESC1_HEADER_INDEX_MASK \
3f2686a2 142 ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
77241056 143#define SDMA_DESC1_HEADER_INDEX_SMASK \
3f2686a2 144 (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
77241056
MM
145#define SDMA_DESC1_HEADER_DWS_SHIFT 4
146#define SDMA_DESC1_HEADER_DWS_WIDTH 4
147#define SDMA_DESC1_HEADER_DWS_MASK \
3f2686a2 148 ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
77241056 149#define SDMA_DESC1_HEADER_DWS_SMASK \
3f2686a2 150 (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
77241056
MM
151#define SDMA_DESC1_GENERATION_SHIFT 2
152#define SDMA_DESC1_GENERATION_WIDTH 2
153#define SDMA_DESC1_GENERATION_MASK \
3f2686a2 154 ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
77241056 155#define SDMA_DESC1_GENERATION_SMASK \
3f2686a2
DC
156 (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
157#define SDMA_DESC1_INT_REQ_FLAG (1ULL << 1)
158#define SDMA_DESC1_HEAD_TO_HOST_FLAG (1ULL << 0)
77241056
MM
159
160enum sdma_states {
161 sdma_state_s00_hw_down,
162 sdma_state_s10_hw_start_up_halt_wait,
163 sdma_state_s15_hw_start_up_clean_wait,
164 sdma_state_s20_idle,
165 sdma_state_s30_sw_clean_up_wait,
166 sdma_state_s40_hw_clean_up_wait,
167 sdma_state_s50_hw_halt_wait,
168 sdma_state_s60_idle_halt_wait,
169 sdma_state_s80_hw_freeze,
170 sdma_state_s82_freeze_sw_clean,
171 sdma_state_s99_running,
172};
173
174enum sdma_events {
175 sdma_event_e00_go_hw_down,
176 sdma_event_e10_go_hw_start,
177 sdma_event_e15_hw_halt_done,
178 sdma_event_e25_hw_clean_up_done,
179 sdma_event_e30_go_running,
180 sdma_event_e40_sw_cleaned,
181 sdma_event_e50_hw_cleaned,
182 sdma_event_e60_hw_halted,
183 sdma_event_e70_go_idle,
184 sdma_event_e80_hw_freeze,
185 sdma_event_e81_hw_frozen,
186 sdma_event_e82_hw_unfreeze,
187 sdma_event_e85_link_down,
188 sdma_event_e90_sw_halted,
189};
190
191struct sdma_set_state_action {
192 unsigned op_enable:1;
193 unsigned op_intenable:1;
194 unsigned op_halt:1;
195 unsigned op_cleanup:1;
196 unsigned go_s99_running_tofalse:1;
197 unsigned go_s99_running_totrue:1;
198};
199
200struct sdma_state {
201 struct kref kref;
202 struct completion comp;
203 enum sdma_states current_state;
204 unsigned current_op;
205 unsigned go_s99_running;
206 /* debugging/development */
207 enum sdma_states previous_state;
208 unsigned previous_op;
209 enum sdma_events last_event;
210};
211
212/**
213 * DOC: sdma exported routines
214 *
215 * These sdma routines fit into three categories:
216 * - The SDMA API for building and submitting packets
217 * to the ring
218 *
219 * - Initialization and tear down routines to buildup
220 * and tear down SDMA
221 *
222 * - ISR entrances to handle interrupts, state changes
223 * and errors
224 */
225
226/**
227 * DOC: sdma PSM/verbs API
228 *
229 * The sdma API is designed to be used by both PSM
230 * and verbs to supply packets to the SDMA ring.
231 *
232 * The usage of the API is as follows:
233 *
234 * Embed a struct iowait in the QP or
235 * PQ. The iowait should be initialized with a
236 * call to iowait_init().
237 *
238 * The user of the API should create an allocation method
239 * for their version of the txreq. slabs, pre-allocated lists,
240 * and dma pools can be used. Once the user's overload of
241 * the sdma_txreq has been allocated, the sdma_txreq member
242 * must be initialized with sdma_txinit() or sdma_txinit_ahg().
243 *
244 * The txreq must be declared with the sdma_txreq first.
245 *
246 * The tx request, once initialized, is manipulated with calls to
247 * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
248 * for each disjoint memory location. It is the user's responsibility
249 * to understand the packet boundaries and page boundaries to do the
250 * appropriate number of sdma_txadd_* calls.. The user
251 * must be prepared to deal with failures from these routines due to
252 * either memory allocation or dma_mapping failures.
253 *
254 * The mapping specifics for each memory location are recorded
255 * in the tx. Memory locations added with sdma_txadd_page()
256 * and sdma_txadd_kvaddr() are automatically mapped when added
257 * to the tx and nmapped as part of the progress processing in the
258 * SDMA interrupt handling.
259 *
260 * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
261 * tx. An example of a use case would be a pre-allocated
262 * set of headers allocated via dma_pool_alloc() or
263 * dma_alloc_coherent(). For these memory locations, it
264 * is the responsibility of the user to handle that unmapping.
265 * (This would usually be at an unload or job termination.)
266 *
267 * The routine sdma_send_txreq() is used to submit
268 * a tx to the ring after the appropriate number of
269 * sdma_txadd_* have been done.
270 *
271 * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
272 * can be used to submit a list of packets.
273 *
274 * The user is free to use the link overhead in the struct sdma_txreq as
275 * long as the tx isn't in flight.
276 *
277 * The extreme degenerate case of the number of descriptors
278 * exceeding the ring size is automatically handled as
279 * memory locations are added. An overflow of the descriptor
280 * array that is part of the sdma_txreq is also automatically
281 * handled.
282 *
283 */
284
285/**
286 * DOC: Infrastructure calls
287 *
288 * sdma_init() is used to initialize data structures and
289 * CSRs for the desired number of SDMA engines.
290 *
291 * sdma_start() is used to kick the SDMA engines initialized
292 * with sdma_init(). Interrupts must be enabled at this
293 * point since aspects of the state machine are interrupt
294 * driven.
295 *
296 * sdma_engine_error() and sdma_engine_interrupt() are
297 * entrances for interrupts.
298 *
299 * sdma_map_init() is for the management of the mapping
300 * table when the number of vls is changed.
301 *
302 */
303
304/*
305 * struct hw_sdma_desc - raw 128 bit SDMA descriptor
306 *
307 * This is the raw descriptor in the SDMA ring
308 */
309struct hw_sdma_desc {
310 /* private: don't use directly */
311 __le64 qw[2];
312};
313
314/*
315 * struct sdma_desc - canonical fragment descriptor
316 *
317 * This is the descriptor carried in the tx request
318 * corresponding to each fragment.
319 *
320 */
321struct sdma_desc {
322 /* private: don't use directly */
323 u64 qw[2];
324};
325
326struct sdma_txreq;
327typedef void (*callback_t)(struct sdma_txreq *, int, int);
328
329/**
330 * struct sdma_txreq - the sdma_txreq structure (one per packet)
331 * @list: for use by user and by queuing for wait
332 *
333 * This is the representation of a packet which consists of some
334 * number of fragments. Storage is provided to within the structure.
335 * for all fragments.
336 *
337 * The storage for the descriptors are automatically extended as needed
338 * when the currently allocation is exceeded.
339 *
340 * The user (Verbs or PSM) may overload this structure with fields
341 * specific to their use by putting this struct first in their struct.
342 * The method of allocation of the overloaded structure is user dependent
343 *
344 * The list is the only public field in the structure.
345 *
346 */
347
348struct sdma_txreq {
349 struct list_head list;
350 /* private: */
351 struct sdma_desc *descp;
352 /* private: */
353 void *coalesce_buf;
354 /* private: */
355 struct iowait *wait;
356 /* private: */
357 callback_t complete;
358#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
359 u64 sn;
360#endif
361 /* private: - used in coalesce/pad processing */
362 u16 packet_len;
363 /* private: - down-counted to trigger last */
364 u16 tlen;
365 /* private: flags */
366 u16 flags;
367 /* private: */
368 u16 num_desc;
369 /* private: */
370 u16 desc_limit;
371 /* private: */
372 u16 next_descq_idx;
373 /* private: */
374 struct sdma_desc descs[NUM_DESC];
375};
376
377struct verbs_txreq {
378 struct hfi1_pio_header phdr;
379 struct sdma_txreq txreq;
380 struct hfi1_qp *qp;
381 struct hfi1_swqe *wqe;
382 struct hfi1_mregion *mr;
383 struct hfi1_sge_state *ss;
384 struct sdma_engine *sde;
385 u16 hdr_dwords;
386 u16 hdr_inx;
387};
388
389/**
390 * struct sdma_engine - Data pertaining to each SDMA engine.
391 * @dd: a back-pointer to the device data
392 * @ppd: per port back-pointer
393 * @imask: mask for irq manipulation
394 * @idle_mask: mask for determining if an interrupt is due to sdma_idle
395 *
396 * This structure has the state for each sdma_engine.
397 *
398 * Accessing to non public fields are not supported
399 * since the private members are subject to change.
400 */
401struct sdma_engine {
402 /* read mostly */
403 struct hfi1_devdata *dd;
404 struct hfi1_pportdata *ppd;
405 /* private: */
406 void __iomem *tail_csr;
407 u64 imask; /* clear interrupt mask */
408 u64 idle_mask;
409 u64 progress_mask;
410 /* private: */
411 struct workqueue_struct *wq;
412 /* private: */
413 volatile __le64 *head_dma; /* DMA'ed by chip */
414 /* private: */
415 dma_addr_t head_phys;
416 /* private: */
417 struct hw_sdma_desc *descq;
418 /* private: */
419 unsigned descq_full_count;
420 struct sdma_txreq **tx_ring;
421 /* private: */
422 dma_addr_t descq_phys;
423 /* private */
424 u32 sdma_mask;
425 /* private */
426 struct sdma_state state;
427 /* private: */
428 u8 sdma_shift;
429 /* private: */
430 u8 this_idx; /* zero relative engine */
431 /* protect changes to senddmactrl shadow */
432 spinlock_t senddmactrl_lock;
433 /* private: */
434 u64 p_senddmactrl; /* shadow per-engine SendDmaCtrl */
435
436 /* read/write using tail_lock */
437 spinlock_t tail_lock ____cacheline_aligned_in_smp;
438#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
439 /* private: */
440 u64 tail_sn;
441#endif
442 /* private: */
443 u32 descq_tail;
444 /* private: */
445 unsigned long ahg_bits;
446 /* private: */
447 u16 desc_avail;
448 /* private: */
449 u16 tx_tail;
450 /* private: */
451 u16 descq_cnt;
452
453 /* read/write using head_lock */
454 /* private: */
455 seqlock_t head_lock ____cacheline_aligned_in_smp;
456#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
457 /* private: */
458 u64 head_sn;
459#endif
460 /* private: */
461 u32 descq_head;
462 /* private: */
463 u16 tx_head;
464 /* private: */
465 u64 last_status;
466
467 /* private: */
468 struct list_head dmawait;
469
470 /* CONFIG SDMA for now, just blindly duplicate */
471 /* private: */
472 struct tasklet_struct sdma_hw_clean_up_task
473 ____cacheline_aligned_in_smp;
474
475 /* private: */
476 struct tasklet_struct sdma_sw_clean_up_task
477 ____cacheline_aligned_in_smp;
478 /* private: */
479 struct work_struct err_halt_worker;
480 /* private */
481 struct timer_list err_progress_check_timer;
482 u32 progress_check_head;
483 /* private: */
484 struct work_struct flush_worker;
485 spinlock_t flushlist_lock;
486 /* private: */
487 struct list_head flushlist;
488};
489
490
491int sdma_init(struct hfi1_devdata *dd, u8 port);
492void sdma_start(struct hfi1_devdata *dd);
493void sdma_exit(struct hfi1_devdata *dd);
494void sdma_all_running(struct hfi1_devdata *dd);
495void sdma_all_idle(struct hfi1_devdata *dd);
496void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
497void sdma_freeze(struct hfi1_devdata *dd);
498void sdma_unfreeze(struct hfi1_devdata *dd);
499void sdma_wait(struct hfi1_devdata *dd);
500
501/**
502 * sdma_empty() - idle engine test
503 * @engine: sdma engine
504 *
505 * Currently used by verbs as a latency optimization.
506 *
507 * Return:
508 * 1 - empty, 0 - non-empty
509 */
510static inline int sdma_empty(struct sdma_engine *sde)
511{
512 return sde->descq_tail == sde->descq_head;
513}
514
515static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
516{
517 return sde->descq_cnt -
518 (sde->descq_tail -
519 ACCESS_ONCE(sde->descq_head)) - 1;
520}
521
522static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
523{
524 return sde->descq_cnt - sdma_descq_freecnt(sde);
525}
526
527/*
528 * Either head_lock or tail lock required to see
529 * a steady state.
530 */
531static inline int __sdma_running(struct sdma_engine *engine)
532{
533 return engine->state.current_state == sdma_state_s99_running;
534}
535
536
537/**
538 * sdma_running() - state suitability test
539 * @engine: sdma engine
540 *
541 * sdma_running probes the internal state to determine if it is suitable
542 * for submitting packets.
543 *
544 * Return:
545 * 1 - ok to submit, 0 - not ok to submit
546 *
547 */
548static inline int sdma_running(struct sdma_engine *engine)
549{
550 unsigned long flags;
551 int ret;
552
553 spin_lock_irqsave(&engine->tail_lock, flags);
554 ret = __sdma_running(engine);
555 spin_unlock_irqrestore(&engine->tail_lock, flags);
556 return ret;
557}
558
559void _sdma_txreq_ahgadd(
560 struct sdma_txreq *tx,
561 u8 num_ahg,
562 u8 ahg_entry,
563 u32 *ahg,
564 u8 ahg_hlen);
565
566
567/**
568 * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
569 * @tx: tx request to initialize
570 * @flags: flags to key last descriptor additions
571 * @tlen: total packet length (pbc + headers + data)
572 * @ahg_entry: ahg entry to use (0 - 31)
573 * @num_ahg: ahg descriptor for first descriptor (0 - 9)
574 * @ahg: array of AHG descriptors (up to 9 entries)
575 * @ahg_hlen: number of bytes from ASIC entry to use
576 * @cb: callback
577 *
578 * The allocation of the sdma_txreq and it enclosing structure is user
579 * dependent. This routine must be called to initialize the user independent
580 * fields.
581 *
582 * The currently supported flags are SDMA_TXREQ_F_URGENT,
583 * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
584 *
585 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
586 * completion is desired as soon as possible.
587 *
588 * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
589 * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
590 * the AHG descriptors into the first 1 to 3 descriptors.
591 *
592 * Completions of submitted requests can be gotten on selected
593 * txreqs by giving a completion routine callback to sdma_txinit() or
594 * sdma_txinit_ahg(). The environment in which the callback runs
595 * can be from an ISR, a tasklet, or a thread, so no sleeping
596 * kernel routines can be used. Aspects of the sdma ring may
597 * be locked so care should be taken with locking.
598 *
599 * The callback pointer can be NULL to avoid any callback for the packet
600 * being submitted. The callback will be provided this tx, a status, and a flag.
601 *
602 * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
603 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
604 *
605 * The flag, if the is the iowait had been used, indicates the iowait
606 * sdma_busy count has reached zero.
607 *
608 * user data portion of tlen should be precise. The sdma_txadd_* entrances
609 * will pad with a descriptor references 1 - 3 bytes when the number of bytes
610 * specified in tlen have been supplied to the sdma_txreq.
611 *
612 * ahg_hlen is used to determine the number of on-chip entry bytes to
613 * use as the header. This is for cases where the stored header is
614 * larger than the header to be used in a packet. This is typical
615 * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
616 * and RDMA_WRITE_MIDDLE.
617 *
618 */
619static inline int sdma_txinit_ahg(
620 struct sdma_txreq *tx,
621 u16 flags,
622 u16 tlen,
623 u8 ahg_entry,
624 u8 num_ahg,
625 u32 *ahg,
626 u8 ahg_hlen,
627 void (*cb)(struct sdma_txreq *, int, int))
628{
629 if (tlen == 0)
630 return -ENODATA;
631 if (tlen > MAX_SDMA_PKT_SIZE)
632 return -EMSGSIZE;
633 tx->desc_limit = ARRAY_SIZE(tx->descs);
634 tx->descp = &tx->descs[0];
635 INIT_LIST_HEAD(&tx->list);
636 tx->num_desc = 0;
637 tx->flags = flags;
638 tx->complete = cb;
639 tx->coalesce_buf = NULL;
640 tx->wait = NULL;
641 tx->tlen = tx->packet_len = tlen;
642 tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
643 tx->descs[0].qw[1] = 0;
644 if (flags & SDMA_TXREQ_F_AHG_COPY)
645 tx->descs[0].qw[1] |=
646 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
647 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
648 (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
649 << SDMA_DESC1_HEADER_MODE_SHIFT);
650 else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
651 _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
652 return 0;
653}
654
655/**
656 * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
657 * @tx: tx request to initialize
658 * @flags: flags to key last descriptor additions
659 * @tlen: total packet length (pbc + headers + data)
660 * @cb: callback pointer
661 *
662 * The allocation of the sdma_txreq and it enclosing structure is user
663 * dependent. This routine must be called to initialize the user
664 * independent fields.
665 *
666 * The currently supported flags is SDMA_TXREQ_F_URGENT.
667 *
668 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
669 * completion is desired as soon as possible.
670 *
671 * Completions of submitted requests can be gotten on selected
672 * txreqs by giving a completion routine callback to sdma_txinit() or
673 * sdma_txinit_ahg(). The environment in which the callback runs
674 * can be from an ISR, a tasklet, or a thread, so no sleeping
675 * kernel routines can be used. The head size of the sdma ring may
676 * be locked so care should be taken with locking.
677 *
678 * The callback pointer can be NULL to avoid any callback for the packet
679 * being submitted.
680 *
681 * The callback, if non-NULL, will be provided this tx and a status. The
682 * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
683 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
684 *
685 */
686static inline int sdma_txinit(
687 struct sdma_txreq *tx,
688 u16 flags,
689 u16 tlen,
690 void (*cb)(struct sdma_txreq *, int, int))
691{
692 return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
693}
694
695/* helpers - don't use */
696static inline int sdma_mapping_type(struct sdma_desc *d)
697{
698 return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
699 >> SDMA_DESC1_GENERATION_SHIFT;
700}
701
702static inline size_t sdma_mapping_len(struct sdma_desc *d)
703{
704 return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
705 >> SDMA_DESC0_BYTE_COUNT_SHIFT;
706}
707
708static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
709{
710 return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
711 >> SDMA_DESC0_PHY_ADDR_SHIFT;
712}
713
714static inline void make_tx_sdma_desc(
715 struct sdma_txreq *tx,
716 int type,
717 dma_addr_t addr,
718 size_t len)
719{
720 struct sdma_desc *desc = &tx->descp[tx->num_desc];
721
722 if (!tx->num_desc) {
723 /* qw[0] zero; qw[1] first, ahg mode already in from init */
724 desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
725 << SDMA_DESC1_GENERATION_SHIFT;
726 } else {
727 desc->qw[0] = 0;
728 desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
729 << SDMA_DESC1_GENERATION_SHIFT;
730 }
731 desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
732 << SDMA_DESC0_PHY_ADDR_SHIFT) |
733 (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
734 << SDMA_DESC0_BYTE_COUNT_SHIFT);
735}
736
737/* helper to extend txreq */
738int _extend_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
739int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
740void sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
741
742/* helpers used by public routines */
743static inline void _sdma_close_tx(struct hfi1_devdata *dd,
744 struct sdma_txreq *tx)
745{
746 tx->descp[tx->num_desc].qw[0] |=
747 SDMA_DESC0_LAST_DESC_FLAG;
748 tx->descp[tx->num_desc].qw[1] |=
749 dd->default_desc1;
750 if (tx->flags & SDMA_TXREQ_F_URGENT)
751 tx->descp[tx->num_desc].qw[1] |=
752 (SDMA_DESC1_HEAD_TO_HOST_FLAG|
753 SDMA_DESC1_INT_REQ_FLAG);
754}
755
756static inline int _sdma_txadd_daddr(
757 struct hfi1_devdata *dd,
758 int type,
759 struct sdma_txreq *tx,
760 dma_addr_t addr,
761 u16 len)
762{
763 int rval = 0;
764
765 if ((unlikely(tx->num_desc == tx->desc_limit))) {
766 rval = _extend_sdma_tx_descs(dd, tx);
767 if (rval)
768 return rval;
769 }
770 make_tx_sdma_desc(
771 tx,
772 type,
773 addr, len);
774 WARN_ON(len > tx->tlen);
775 tx->tlen -= len;
776 /* special cases for last */
777 if (!tx->tlen) {
778 if (tx->packet_len & (sizeof(u32) - 1))
779 rval = _pad_sdma_tx_descs(dd, tx);
780 else
781 _sdma_close_tx(dd, tx);
782 }
783 tx->num_desc++;
784 return rval;
785}
786
787/**
788 * sdma_txadd_page() - add a page to the sdma_txreq
789 * @dd: the device to use for mapping
790 * @tx: tx request to which the page is added
791 * @page: page to map
792 * @offset: offset within the page
793 * @len: length in bytes
794 *
795 * This is used to add a page/offset/length descriptor.
796 *
797 * The mapping/unmapping of the page/offset/len is automatically handled.
798 *
799 * Return:
800 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
801 * extend descriptor array or couldn't allocate coalesce
802 * buffer.
803 *
804 */
805static inline int sdma_txadd_page(
806 struct hfi1_devdata *dd,
807 struct sdma_txreq *tx,
808 struct page *page,
809 unsigned long offset,
810 u16 len)
811{
812 dma_addr_t addr =
813 dma_map_page(
814 &dd->pcidev->dev,
815 page,
816 offset,
817 len,
818 DMA_TO_DEVICE);
819 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
820 sdma_txclean(dd, tx);
821 return -ENOSPC;
822 }
823 return _sdma_txadd_daddr(
824 dd, SDMA_MAP_PAGE, tx, addr, len);
825}
826
827/**
828 * sdma_txadd_daddr() - add a dma address to the sdma_txreq
829 * @dd: the device to use for mapping
830 * @tx: sdma_txreq to which the page is added
831 * @addr: dma address mapped by caller
832 * @len: length in bytes
833 *
834 * This is used to add a descriptor for memory that is already dma mapped.
835 *
836 * In this case, there is no unmapping as part of the progress processing for
837 * this memory location.
838 *
839 * Return:
840 * 0 - success, -ENOMEM - couldn't extend descriptor array
841 */
842
843static inline int sdma_txadd_daddr(
844 struct hfi1_devdata *dd,
845 struct sdma_txreq *tx,
846 dma_addr_t addr,
847 u16 len)
848{
849 return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len);
850}
851
852/**
853 * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
854 * @dd: the device to use for mapping
855 * @tx: sdma_txreq to which the page is added
856 * @kvaddr: the kernel virtual address
857 * @len: length in bytes
858 *
859 * This is used to add a descriptor referenced by the indicated kvaddr and
860 * len.
861 *
862 * The mapping/unmapping of the kvaddr and len is automatically handled.
863 *
864 * Return:
865 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend
866 * descriptor array
867 */
868static inline int sdma_txadd_kvaddr(
869 struct hfi1_devdata *dd,
870 struct sdma_txreq *tx,
871 void *kvaddr,
872 u16 len)
873{
874 dma_addr_t addr =
875 dma_map_single(
876 &dd->pcidev->dev,
877 kvaddr,
878 len,
879 DMA_TO_DEVICE);
880 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
881 sdma_txclean(dd, tx);
882 return -ENOSPC;
883 }
884 return _sdma_txadd_daddr(
885 dd, SDMA_MAP_SINGLE, tx, addr, len);
886}
887
888struct iowait;
889
890int sdma_send_txreq(struct sdma_engine *sde,
891 struct iowait *wait,
892 struct sdma_txreq *tx);
893int sdma_send_txlist(struct sdma_engine *sde,
894 struct iowait *wait,
895 struct list_head *tx_list);
896
897int sdma_ahg_alloc(struct sdma_engine *sde);
898void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
899
900/**
901 * sdma_build_ahg - build ahg descriptor
902 * @data
903 * @dwindex
904 * @startbit
905 * @bits
906 *
907 * Build and return a 32 bit descriptor.
908 */
909static inline u32 sdma_build_ahg_descriptor(
910 u16 data,
911 u8 dwindex,
912 u8 startbit,
913 u8 bits)
914{
915 return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
916 ((startbit & SDMA_AHG_FIELD_START_MASK) <<
917 SDMA_AHG_FIELD_START_SHIFT) |
918 ((bits & SDMA_AHG_FIELD_LEN_MASK) <<
919 SDMA_AHG_FIELD_LEN_SHIFT) |
920 ((dwindex & SDMA_AHG_INDEX_MASK) <<
921 SDMA_AHG_INDEX_SHIFT) |
922 ((data & SDMA_AHG_VALUE_MASK) <<
923 SDMA_AHG_VALUE_SHIFT));
924}
925
926/**
927 * sdma_progress - use seq number of detect head progress
928 * @sde: sdma_engine to check
929 * @seq: base seq count
930 * @tx: txreq for which we need to check descriptor availability
931 *
932 * This is used in the appropriate spot in the sleep routine
933 * to check for potential ring progress. This routine gets the
934 * seqcount before queuing the iowait structure for progress.
935 *
936 * If the seqcount indicates that progress needs to be checked,
937 * re-submission is detected by checking whether the descriptor
938 * queue has enough descriptor for the txreq.
939 */
940static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
941 struct sdma_txreq *tx)
942{
943 if (read_seqretry(&sde->head_lock, seq)) {
944 sde->desc_avail = sdma_descq_freecnt(sde);
945 if (tx->num_desc > sde->desc_avail)
946 return 0;
947 return 1;
948 }
949 return 0;
950}
951
952/**
953 * sdma_iowait_schedule() - initialize wait structure
954 * @sde: sdma_engine to schedule
955 * @wait: wait struct to schedule
956 *
957 * This function initializes the iowait
958 * structure embedded in the QP or PQ.
959 *
960 */
961static inline void sdma_iowait_schedule(
962 struct sdma_engine *sde,
963 struct iowait *wait)
964{
965 iowait_schedule(wait, sde->wq);
966}
967
968/* for use by interrupt handling */
969void sdma_engine_error(struct sdma_engine *sde, u64 status);
970void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
971
972/*
973 *
974 * The diagram below details the relationship of the mapping structures
975 *
976 * Since the mapping now allows for non-uniform engines per vl, the
977 * number of engines for a vl is either the vl_engines[vl] or
978 * a computation based on num_sdma/num_vls:
979 *
980 * For example:
981 * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
982 *
983 * n = roundup to next highest power of 2 using nactual
984 *
985 * In the case where there are num_sdma/num_vls doesn't divide
986 * evenly, the extras are added from the last vl downward.
987 *
988 * For the case where n > nactual, the engines are assigned
989 * in a round robin fashion wrapping back to the first engine
990 * for a particular vl.
991 *
992 * dd->sdma_map
993 * | sdma_map_elem[0]
994 * | +--------------------+
995 * v | mask |
996 * sdma_vl_map |--------------------|
997 * +--------------------------+ | sde[0] -> eng 1 |
998 * | list (RCU) | |--------------------|
999 * |--------------------------| ->| sde[1] -> eng 2 |
1000 * | mask | --/ |--------------------|
1001 * |--------------------------| -/ | * |
1002 * | actual_vls (max 8) | -/ |--------------------|
1003 * |--------------------------| --/ | sde[n] -> eng n |
1004 * | vls (max 8) | -/ +--------------------+
1005 * |--------------------------| --/
1006 * | map[0] |-/
1007 * |--------------------------| +--------------------+
1008 * | map[1] |--- | mask |
1009 * |--------------------------| \---- |--------------------|
1010 * | * | \-- | sde[0] -> eng 1+n |
1011 * | * | \---- |--------------------|
1012 * | * | \->| sde[1] -> eng 2+n |
1013 * |--------------------------| |--------------------|
1014 * | map[vls - 1] |- | * |
1015 * +--------------------------+ \- |--------------------|
1016 * \- | sde[m] -> eng m+n |
1017 * \ +--------------------+
1018 * \-
1019 * \
1020 * \- +--------------------+
1021 * \- | mask |
1022 * \ |--------------------|
1023 * \- | sde[0] -> eng 1+m+n|
1024 * \- |--------------------|
1025 * >| sde[1] -> eng 2+m+n|
1026 * |--------------------|
1027 * | * |
1028 * |--------------------|
1029 * | sde[o] -> eng o+m+n|
1030 * +--------------------+
1031 *
1032 */
1033
1034/**
1035 * struct sdma_map_elem - mapping for a vl
1036 * @mask - selector mask
1037 * @sde - array of engines for this vl
1038 *
1039 * The mask is used to "mod" the selector
1040 * to produce index into the trailing
1041 * array of sdes.
1042 */
1043struct sdma_map_elem {
1044 u32 mask;
1045 struct sdma_engine *sde[0];
1046};
1047
1048/**
1049 * struct sdma_map_el - mapping for a vl
1050 * @list - rcu head for free callback
1051 * @mask - vl mask to "mod" the vl to produce an index to map array
1052 * @actual_vls - number of vls
1053 * @vls - number of vls rounded to next power of 2
1054 * @map - array of sdma_map_elem entries
1055 *
1056 * This is the parent mapping structure. The trailing
1057 * members of the struct point to sdma_map_elem entries, which
1058 * in turn point to an array of sde's for that vl.
1059 */
1060struct sdma_vl_map {
1061 struct rcu_head list;
1062 u32 mask;
1063 u8 actual_vls;
1064 u8 vls;
1065 struct sdma_map_elem *map[0];
1066};
1067
1068int sdma_map_init(
1069 struct hfi1_devdata *dd,
1070 u8 port,
1071 u8 num_vls,
1072 u8 *vl_engines);
1073
1074/* slow path */
1075void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1076
1077/**
1078 * sdma_engine_progress_schedule() - schedule progress on engine
1079 * @sde: sdma_engine to schedule progress
1080 *
1081 * This is the fast path.
1082 *
1083 */
1084static inline void sdma_engine_progress_schedule(
1085 struct sdma_engine *sde)
1086{
1087 if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1088 return;
1089 _sdma_engine_progress_schedule(sde);
1090}
1091
1092struct sdma_engine *sdma_select_engine_sc(
1093 struct hfi1_devdata *dd,
1094 u32 selector,
1095 u8 sc5);
1096
1097struct sdma_engine *sdma_select_engine_vl(
1098 struct hfi1_devdata *dd,
1099 u32 selector,
1100 u8 vl);
1101
1102void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1103
1104#ifdef CONFIG_SDMA_VERBOSITY
1105void sdma_dumpstate(struct sdma_engine *);
1106#endif
1107static inline char *slashstrip(char *s)
1108{
1109 char *r = s;
1110
1111 while (*s)
1112 if (*s++ == '/')
1113 r = s;
1114 return r;
1115}
1116
1117u16 sdma_get_descq_cnt(void);
1118
1119extern uint mod_num_sdma;
1120
1121void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1122
1123#endif
This page took 0.094897 seconds and 5 git commands to generate.