vmscan: change shrinker API by passing shrink_control struct
[deliverable/linux.git] / drivers / staging / zcache / zcache.c
CommitLineData
9cc06bf8
DM
1/*
2 * zcache.c
3 *
4 * Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp.
5 * Copyright (c) 2010,2011, Nitin Gupta
6 *
7 * Zcache provides an in-kernel "host implementation" for transcendent memory
8 * and, thus indirectly, for cleancache and frontswap. Zcache includes two
9 * page-accessible memory [1] interfaces, both utilizing lzo1x compression:
10 * 1) "compression buddies" ("zbud") is used for ephemeral pages
11 * 2) xvmalloc is used for persistent pages.
12 * Xvmalloc (based on the TLSF allocator) has very low fragmentation
13 * so maximizes space efficiency, while zbud allows pairs (and potentially,
14 * in the future, more than a pair of) compressed pages to be closely linked
15 * so that reclaiming can be done via the kernel's physical-page-oriented
16 * "shrinker" interface.
17 *
18 * [1] For a definition of page-accessible memory (aka PAM), see:
19 * http://marc.info/?l=linux-mm&m=127811271605009
20 */
21
22#include <linux/cpu.h>
23#include <linux/highmem.h>
24#include <linux/list.h>
25#include <linux/lzo.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28#include <linux/types.h>
29#include <linux/atomic.h>
30#include "tmem.h"
31
32#include "../zram/xvmalloc.h" /* if built in drivers/staging */
33
34#if (!defined(CONFIG_CLEANCACHE) && !defined(CONFIG_FRONTSWAP))
35#error "zcache is useless without CONFIG_CLEANCACHE or CONFIG_FRONTSWAP"
36#endif
37#ifdef CONFIG_CLEANCACHE
38#include <linux/cleancache.h>
39#endif
40#ifdef CONFIG_FRONTSWAP
41#include <linux/frontswap.h>
42#endif
43
44#if 0
45/* this is more aggressive but may cause other problems? */
46#define ZCACHE_GFP_MASK (GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN)
47#else
48#define ZCACHE_GFP_MASK \
49 (__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC)
50#endif
51
52/**********
53 * Compression buddies ("zbud") provides for packing two (or, possibly
54 * in the future, more) compressed ephemeral pages into a single "raw"
55 * (physical) page and tracking them with data structures so that
56 * the raw pages can be easily reclaimed.
57 *
58 * A zbud page ("zbpg") is an aligned page containing a list_head,
59 * a lock, and two "zbud headers". The remainder of the physical
60 * page is divided up into aligned 64-byte "chunks" which contain
61 * the compressed data for zero, one, or two zbuds. Each zbpg
62 * resides on: (1) an "unused list" if it has no zbuds; (2) a
63 * "buddied" list if it is fully populated with two zbuds; or
64 * (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks
65 * the one unbuddied zbud uses. The data inside a zbpg cannot be
66 * read or written unless the zbpg's lock is held.
67 */
68
69#define ZBH_SENTINEL 0x43214321
70#define ZBPG_SENTINEL 0xdeadbeef
71
72#define ZBUD_MAX_BUDS 2
73
74struct zbud_hdr {
75 uint32_t pool_id;
76 struct tmem_oid oid;
77 uint32_t index;
78 uint16_t size; /* compressed size in bytes, zero means unused */
79 DECL_SENTINEL
80};
81
82struct zbud_page {
83 struct list_head bud_list;
84 spinlock_t lock;
85 struct zbud_hdr buddy[ZBUD_MAX_BUDS];
86 DECL_SENTINEL
87 /* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */
88};
89
90#define CHUNK_SHIFT 6
91#define CHUNK_SIZE (1 << CHUNK_SHIFT)
92#define CHUNK_MASK (~(CHUNK_SIZE-1))
93#define NCHUNKS (((PAGE_SIZE - sizeof(struct zbud_page)) & \
94 CHUNK_MASK) >> CHUNK_SHIFT)
95#define MAX_CHUNK (NCHUNKS-1)
96
97static struct {
98 struct list_head list;
99 unsigned count;
100} zbud_unbuddied[NCHUNKS];
101/* list N contains pages with N chunks USED and NCHUNKS-N unused */
102/* element 0 is never used but optimizing that isn't worth it */
103static unsigned long zbud_cumul_chunk_counts[NCHUNKS];
104
105struct list_head zbud_buddied_list;
106static unsigned long zcache_zbud_buddied_count;
107
108/* protects the buddied list and all unbuddied lists */
109static DEFINE_SPINLOCK(zbud_budlists_spinlock);
110
111static LIST_HEAD(zbpg_unused_list);
112static unsigned long zcache_zbpg_unused_list_count;
113
114/* protects the unused page list */
115static DEFINE_SPINLOCK(zbpg_unused_list_spinlock);
116
117static atomic_t zcache_zbud_curr_raw_pages;
118static atomic_t zcache_zbud_curr_zpages;
119static unsigned long zcache_zbud_curr_zbytes;
120static unsigned long zcache_zbud_cumul_zpages;
121static unsigned long zcache_zbud_cumul_zbytes;
122static unsigned long zcache_compress_poor;
123
124/* forward references */
125static void *zcache_get_free_page(void);
126static void zcache_free_page(void *p);
127
128/*
129 * zbud helper functions
130 */
131
132static inline unsigned zbud_max_buddy_size(void)
133{
134 return MAX_CHUNK << CHUNK_SHIFT;
135}
136
137static inline unsigned zbud_size_to_chunks(unsigned size)
138{
139 BUG_ON(size == 0 || size > zbud_max_buddy_size());
140 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
141}
142
143static inline int zbud_budnum(struct zbud_hdr *zh)
144{
145 unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1);
146 struct zbud_page *zbpg = NULL;
147 unsigned budnum = -1U;
148 int i;
149
150 for (i = 0; i < ZBUD_MAX_BUDS; i++)
151 if (offset == offsetof(typeof(*zbpg), buddy[i])) {
152 budnum = i;
153 break;
154 }
155 BUG_ON(budnum == -1U);
156 return budnum;
157}
158
159static char *zbud_data(struct zbud_hdr *zh, unsigned size)
160{
161 struct zbud_page *zbpg;
162 char *p;
163 unsigned budnum;
164
165 ASSERT_SENTINEL(zh, ZBH);
166 budnum = zbud_budnum(zh);
167 BUG_ON(size == 0 || size > zbud_max_buddy_size());
168 zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
169 ASSERT_SPINLOCK(&zbpg->lock);
170 p = (char *)zbpg;
171 if (budnum == 0)
172 p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) &
173 CHUNK_MASK);
174 else if (budnum == 1)
175 p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK);
176 return p;
177}
178
179/*
180 * zbud raw page management
181 */
182
183static struct zbud_page *zbud_alloc_raw_page(void)
184{
185 struct zbud_page *zbpg = NULL;
186 struct zbud_hdr *zh0, *zh1;
187 bool recycled = 0;
188
189 /* if any pages on the zbpg list, use one */
190 spin_lock(&zbpg_unused_list_spinlock);
191 if (!list_empty(&zbpg_unused_list)) {
192 zbpg = list_first_entry(&zbpg_unused_list,
193 struct zbud_page, bud_list);
194 list_del_init(&zbpg->bud_list);
195 zcache_zbpg_unused_list_count--;
196 recycled = 1;
197 }
198 spin_unlock(&zbpg_unused_list_spinlock);
199 if (zbpg == NULL)
200 /* none on zbpg list, try to get a kernel page */
201 zbpg = zcache_get_free_page();
202 if (likely(zbpg != NULL)) {
203 INIT_LIST_HEAD(&zbpg->bud_list);
204 zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
205 spin_lock_init(&zbpg->lock);
206 if (recycled) {
207 ASSERT_INVERTED_SENTINEL(zbpg, ZBPG);
208 SET_SENTINEL(zbpg, ZBPG);
209 BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
210 BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
211 } else {
212 atomic_inc(&zcache_zbud_curr_raw_pages);
213 INIT_LIST_HEAD(&zbpg->bud_list);
214 SET_SENTINEL(zbpg, ZBPG);
215 zh0->size = 0; zh1->size = 0;
216 tmem_oid_set_invalid(&zh0->oid);
217 tmem_oid_set_invalid(&zh1->oid);
218 }
219 }
220 return zbpg;
221}
222
223static void zbud_free_raw_page(struct zbud_page *zbpg)
224{
225 struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1];
226
227 ASSERT_SENTINEL(zbpg, ZBPG);
228 BUG_ON(!list_empty(&zbpg->bud_list));
229 ASSERT_SPINLOCK(&zbpg->lock);
230 BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
231 BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
232 INVERT_SENTINEL(zbpg, ZBPG);
233 spin_unlock(&zbpg->lock);
234 spin_lock(&zbpg_unused_list_spinlock);
235 list_add(&zbpg->bud_list, &zbpg_unused_list);
236 zcache_zbpg_unused_list_count++;
237 spin_unlock(&zbpg_unused_list_spinlock);
238}
239
240/*
241 * core zbud handling routines
242 */
243
244static unsigned zbud_free(struct zbud_hdr *zh)
245{
246 unsigned size;
247
248 ASSERT_SENTINEL(zh, ZBH);
249 BUG_ON(!tmem_oid_valid(&zh->oid));
250 size = zh->size;
251 BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
252 zh->size = 0;
253 tmem_oid_set_invalid(&zh->oid);
254 INVERT_SENTINEL(zh, ZBH);
255 zcache_zbud_curr_zbytes -= size;
256 atomic_dec(&zcache_zbud_curr_zpages);
257 return size;
258}
259
260static void zbud_free_and_delist(struct zbud_hdr *zh)
261{
262 unsigned chunks;
263 struct zbud_hdr *zh_other;
264 unsigned budnum = zbud_budnum(zh), size;
265 struct zbud_page *zbpg =
266 container_of(zh, struct zbud_page, buddy[budnum]);
267
268 spin_lock(&zbpg->lock);
269 if (list_empty(&zbpg->bud_list)) {
270 /* ignore zombie page... see zbud_evict_pages() */
271 spin_unlock(&zbpg->lock);
272 return;
273 }
274 size = zbud_free(zh);
275 ASSERT_SPINLOCK(&zbpg->lock);
276 zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0];
277 if (zh_other->size == 0) { /* was unbuddied: unlist and free */
278 chunks = zbud_size_to_chunks(size) ;
279 spin_lock(&zbud_budlists_spinlock);
280 BUG_ON(list_empty(&zbud_unbuddied[chunks].list));
281 list_del_init(&zbpg->bud_list);
282 zbud_unbuddied[chunks].count--;
283 spin_unlock(&zbud_budlists_spinlock);
284 zbud_free_raw_page(zbpg);
285 } else { /* was buddied: move remaining buddy to unbuddied list */
286 chunks = zbud_size_to_chunks(zh_other->size) ;
287 spin_lock(&zbud_budlists_spinlock);
288 list_del_init(&zbpg->bud_list);
289 zcache_zbud_buddied_count--;
290 list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list);
291 zbud_unbuddied[chunks].count++;
292 spin_unlock(&zbud_budlists_spinlock);
293 spin_unlock(&zbpg->lock);
294 }
295}
296
297static struct zbud_hdr *zbud_create(uint32_t pool_id, struct tmem_oid *oid,
298 uint32_t index, struct page *page,
299 void *cdata, unsigned size)
300{
301 struct zbud_hdr *zh0, *zh1, *zh = NULL;
302 struct zbud_page *zbpg = NULL, *ztmp;
303 unsigned nchunks;
304 char *to;
305 int i, found_good_buddy = 0;
306
307 nchunks = zbud_size_to_chunks(size) ;
308 for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) {
309 spin_lock(&zbud_budlists_spinlock);
310 if (!list_empty(&zbud_unbuddied[i].list)) {
311 list_for_each_entry_safe(zbpg, ztmp,
312 &zbud_unbuddied[i].list, bud_list) {
313 if (spin_trylock(&zbpg->lock)) {
314 found_good_buddy = i;
315 goto found_unbuddied;
316 }
317 }
318 }
319 spin_unlock(&zbud_budlists_spinlock);
320 }
321 /* didn't find a good buddy, try allocating a new page */
322 zbpg = zbud_alloc_raw_page();
323 if (unlikely(zbpg == NULL))
324 goto out;
325 /* ok, have a page, now compress the data before taking locks */
326 spin_lock(&zbpg->lock);
327 spin_lock(&zbud_budlists_spinlock);
328 list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list);
329 zbud_unbuddied[nchunks].count++;
330 zh = &zbpg->buddy[0];
331 goto init_zh;
332
333found_unbuddied:
334 ASSERT_SPINLOCK(&zbpg->lock);
335 zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
336 BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0)));
337 if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */
338 ASSERT_SENTINEL(zh0, ZBH);
339 zh = zh1;
340 } else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */
341 ASSERT_SENTINEL(zh1, ZBH);
342 zh = zh0;
343 } else
344 BUG();
345 list_del_init(&zbpg->bud_list);
346 zbud_unbuddied[found_good_buddy].count--;
347 list_add_tail(&zbpg->bud_list, &zbud_buddied_list);
348 zcache_zbud_buddied_count++;
349
350init_zh:
351 SET_SENTINEL(zh, ZBH);
352 zh->size = size;
353 zh->index = index;
354 zh->oid = *oid;
355 zh->pool_id = pool_id;
356 /* can wait to copy the data until the list locks are dropped */
357 spin_unlock(&zbud_budlists_spinlock);
358
359 to = zbud_data(zh, size);
360 memcpy(to, cdata, size);
361 spin_unlock(&zbpg->lock);
362 zbud_cumul_chunk_counts[nchunks]++;
363 atomic_inc(&zcache_zbud_curr_zpages);
364 zcache_zbud_cumul_zpages++;
365 zcache_zbud_curr_zbytes += size;
366 zcache_zbud_cumul_zbytes += size;
367out:
368 return zh;
369}
370
371static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
372{
373 struct zbud_page *zbpg;
374 unsigned budnum = zbud_budnum(zh);
375 size_t out_len = PAGE_SIZE;
376 char *to_va, *from_va;
377 unsigned size;
378 int ret = 0;
379
380 zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
381 spin_lock(&zbpg->lock);
382 if (list_empty(&zbpg->bud_list)) {
383 /* ignore zombie page... see zbud_evict_pages() */
384 ret = -EINVAL;
385 goto out;
386 }
387 ASSERT_SENTINEL(zh, ZBH);
388 BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
389 to_va = kmap_atomic(page, KM_USER0);
390 size = zh->size;
391 from_va = zbud_data(zh, size);
392 ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len);
393 BUG_ON(ret != LZO_E_OK);
394 BUG_ON(out_len != PAGE_SIZE);
395 kunmap_atomic(to_va, KM_USER0);
396out:
397 spin_unlock(&zbpg->lock);
398 return ret;
399}
400
401/*
402 * The following routines handle shrinking of ephemeral pages by evicting
403 * pages "least valuable" first.
404 */
405
406static unsigned long zcache_evicted_raw_pages;
407static unsigned long zcache_evicted_buddied_pages;
408static unsigned long zcache_evicted_unbuddied_pages;
409
410static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid);
411static void zcache_put_pool(struct tmem_pool *pool);
412
413/*
414 * Flush and free all zbuds in a zbpg, then free the pageframe
415 */
416static void zbud_evict_zbpg(struct zbud_page *zbpg)
417{
418 struct zbud_hdr *zh;
419 int i, j;
420 uint32_t pool_id[ZBUD_MAX_BUDS], index[ZBUD_MAX_BUDS];
421 struct tmem_oid oid[ZBUD_MAX_BUDS];
422 struct tmem_pool *pool;
423
424 ASSERT_SPINLOCK(&zbpg->lock);
425 BUG_ON(!list_empty(&zbpg->bud_list));
426 for (i = 0, j = 0; i < ZBUD_MAX_BUDS; i++) {
427 zh = &zbpg->buddy[i];
428 if (zh->size) {
429 pool_id[j] = zh->pool_id;
430 oid[j] = zh->oid;
431 index[j] = zh->index;
432 j++;
433 zbud_free(zh);
434 }
435 }
436 spin_unlock(&zbpg->lock);
437 for (i = 0; i < j; i++) {
438 pool = zcache_get_pool_by_id(pool_id[i]);
439 if (pool != NULL) {
440 tmem_flush_page(pool, &oid[i], index[i]);
441 zcache_put_pool(pool);
442 }
443 }
444 ASSERT_SENTINEL(zbpg, ZBPG);
445 spin_lock(&zbpg->lock);
446 zbud_free_raw_page(zbpg);
447}
448
449/*
450 * Free nr pages. This code is funky because we want to hold the locks
451 * protecting various lists for as short a time as possible, and in some
452 * circumstances the list may change asynchronously when the list lock is
453 * not held. In some cases we also trylock not only to avoid waiting on a
454 * page in use by another cpu, but also to avoid potential deadlock due to
455 * lock inversion.
456 */
457static void zbud_evict_pages(int nr)
458{
459 struct zbud_page *zbpg;
460 int i;
461
462 /* first try freeing any pages on unused list */
463retry_unused_list:
464 spin_lock_bh(&zbpg_unused_list_spinlock);
465 if (!list_empty(&zbpg_unused_list)) {
466 /* can't walk list here, since it may change when unlocked */
467 zbpg = list_first_entry(&zbpg_unused_list,
468 struct zbud_page, bud_list);
469 list_del_init(&zbpg->bud_list);
470 zcache_zbpg_unused_list_count--;
471 atomic_dec(&zcache_zbud_curr_raw_pages);
472 spin_unlock_bh(&zbpg_unused_list_spinlock);
473 zcache_free_page(zbpg);
474 zcache_evicted_raw_pages++;
475 if (--nr <= 0)
476 goto out;
477 goto retry_unused_list;
478 }
479 spin_unlock_bh(&zbpg_unused_list_spinlock);
480
481 /* now try freeing unbuddied pages, starting with least space avail */
482 for (i = 0; i < MAX_CHUNK; i++) {
483retry_unbud_list_i:
484 spin_lock_bh(&zbud_budlists_spinlock);
485 if (list_empty(&zbud_unbuddied[i].list)) {
486 spin_unlock_bh(&zbud_budlists_spinlock);
487 continue;
488 }
489 list_for_each_entry(zbpg, &zbud_unbuddied[i].list, bud_list) {
490 if (unlikely(!spin_trylock(&zbpg->lock)))
491 continue;
492 list_del_init(&zbpg->bud_list);
493 zbud_unbuddied[i].count--;
494 spin_unlock(&zbud_budlists_spinlock);
495 zcache_evicted_unbuddied_pages++;
496 /* want budlists unlocked when doing zbpg eviction */
497 zbud_evict_zbpg(zbpg);
498 local_bh_enable();
499 if (--nr <= 0)
500 goto out;
501 goto retry_unbud_list_i;
502 }
503 spin_unlock_bh(&zbud_budlists_spinlock);
504 }
505
506 /* as a last resort, free buddied pages */
507retry_bud_list:
508 spin_lock_bh(&zbud_budlists_spinlock);
509 if (list_empty(&zbud_buddied_list)) {
510 spin_unlock_bh(&zbud_budlists_spinlock);
511 goto out;
512 }
513 list_for_each_entry(zbpg, &zbud_buddied_list, bud_list) {
514 if (unlikely(!spin_trylock(&zbpg->lock)))
515 continue;
516 list_del_init(&zbpg->bud_list);
517 zcache_zbud_buddied_count--;
518 spin_unlock(&zbud_budlists_spinlock);
519 zcache_evicted_buddied_pages++;
520 /* want budlists unlocked when doing zbpg eviction */
521 zbud_evict_zbpg(zbpg);
522 local_bh_enable();
523 if (--nr <= 0)
524 goto out;
525 goto retry_bud_list;
526 }
527 spin_unlock_bh(&zbud_budlists_spinlock);
528out:
529 return;
530}
531
532static void zbud_init(void)
533{
534 int i;
535
536 INIT_LIST_HEAD(&zbud_buddied_list);
537 zcache_zbud_buddied_count = 0;
538 for (i = 0; i < NCHUNKS; i++) {
539 INIT_LIST_HEAD(&zbud_unbuddied[i].list);
540 zbud_unbuddied[i].count = 0;
541 }
542}
543
544#ifdef CONFIG_SYSFS
545/*
546 * These sysfs routines show a nice distribution of how many zbpg's are
547 * currently (and have ever been placed) in each unbuddied list. It's fun
548 * to watch but can probably go away before final merge.
549 */
550static int zbud_show_unbuddied_list_counts(char *buf)
551{
552 int i;
553 char *p = buf;
554
555 for (i = 0; i < NCHUNKS - 1; i++)
556 p += sprintf(p, "%u ", zbud_unbuddied[i].count);
557 p += sprintf(p, "%d\n", zbud_unbuddied[i].count);
558 return p - buf;
559}
560
561static int zbud_show_cumul_chunk_counts(char *buf)
562{
563 unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0;
564 unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0;
565 unsigned long total_chunks_lte_42 = 0;
566 char *p = buf;
567
568 for (i = 0; i < NCHUNKS; i++) {
569 p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]);
570 chunks += zbud_cumul_chunk_counts[i];
571 total_chunks += zbud_cumul_chunk_counts[i];
572 sum_total_chunks += i * zbud_cumul_chunk_counts[i];
573 if (i == 21)
574 total_chunks_lte_21 = total_chunks;
575 if (i == 32)
576 total_chunks_lte_32 = total_chunks;
577 if (i == 42)
578 total_chunks_lte_42 = total_chunks;
579 }
580 p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n",
581 total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42,
582 chunks == 0 ? 0 : sum_total_chunks / chunks);
583 return p - buf;
584}
585#endif
586
587/**********
588 * This "zv" PAM implementation combines the TLSF-based xvMalloc
589 * with lzo1x compression to maximize the amount of data that can
590 * be packed into a physical page.
591 *
592 * Zv represents a PAM page with the index and object (plus a "size" value
593 * necessary for decompression) immediately preceding the compressed data.
594 */
595
596#define ZVH_SENTINEL 0x43214321
597
598struct zv_hdr {
599 uint32_t pool_id;
600 struct tmem_oid oid;
601 uint32_t index;
602 DECL_SENTINEL
603};
604
605static const int zv_max_page_size = (PAGE_SIZE / 8) * 7;
606
607static struct zv_hdr *zv_create(struct xv_pool *xvpool, uint32_t pool_id,
608 struct tmem_oid *oid, uint32_t index,
609 void *cdata, unsigned clen)
610{
611 struct page *page;
612 struct zv_hdr *zv = NULL;
613 uint32_t offset;
614 int ret;
615
616 BUG_ON(!irqs_disabled());
617 ret = xv_malloc(xvpool, clen + sizeof(struct zv_hdr),
618 &page, &offset, ZCACHE_GFP_MASK);
619 if (unlikely(ret))
620 goto out;
621 zv = kmap_atomic(page, KM_USER0) + offset;
622 zv->index = index;
623 zv->oid = *oid;
624 zv->pool_id = pool_id;
625 SET_SENTINEL(zv, ZVH);
626 memcpy((char *)zv + sizeof(struct zv_hdr), cdata, clen);
627 kunmap_atomic(zv, KM_USER0);
628out:
629 return zv;
630}
631
632static void zv_free(struct xv_pool *xvpool, struct zv_hdr *zv)
633{
634 unsigned long flags;
635 struct page *page;
636 uint32_t offset;
637 uint16_t size;
638
639 ASSERT_SENTINEL(zv, ZVH);
640 size = xv_get_object_size(zv) - sizeof(*zv);
641 BUG_ON(size == 0 || size > zv_max_page_size);
642 INVERT_SENTINEL(zv, ZVH);
643 page = virt_to_page(zv);
644 offset = (unsigned long)zv & ~PAGE_MASK;
645 local_irq_save(flags);
646 xv_free(xvpool, page, offset);
647 local_irq_restore(flags);
648}
649
650static void zv_decompress(struct page *page, struct zv_hdr *zv)
651{
652 size_t clen = PAGE_SIZE;
653 char *to_va;
654 unsigned size;
655 int ret;
656
657 ASSERT_SENTINEL(zv, ZVH);
658 size = xv_get_object_size(zv) - sizeof(*zv);
659 BUG_ON(size == 0 || size > zv_max_page_size);
660 to_va = kmap_atomic(page, KM_USER0);
661 ret = lzo1x_decompress_safe((char *)zv + sizeof(*zv),
662 size, to_va, &clen);
663 kunmap_atomic(to_va, KM_USER0);
664 BUG_ON(ret != LZO_E_OK);
665 BUG_ON(clen != PAGE_SIZE);
666}
667
668/*
669 * zcache core code starts here
670 */
671
672/* useful stats not collected by cleancache or frontswap */
673static unsigned long zcache_flush_total;
674static unsigned long zcache_flush_found;
675static unsigned long zcache_flobj_total;
676static unsigned long zcache_flobj_found;
677static unsigned long zcache_failed_eph_puts;
678static unsigned long zcache_failed_pers_puts;
679
680#define MAX_POOLS_PER_CLIENT 16
681
682static struct {
683 struct tmem_pool *tmem_pools[MAX_POOLS_PER_CLIENT];
684 struct xv_pool *xvpool;
685} zcache_client;
686
687/*
688 * Tmem operations assume the poolid implies the invoking client.
689 * Zcache only has one client (the kernel itself), so translate
690 * the poolid into the tmem_pool allocated for it. A KVM version
691 * of zcache would have one client per guest and each client might
692 * have a poolid==N.
693 */
694static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid)
695{
696 struct tmem_pool *pool = NULL;
697
698 if (poolid >= 0) {
699 pool = zcache_client.tmem_pools[poolid];
700 if (pool != NULL)
701 atomic_inc(&pool->refcount);
702 }
703 return pool;
704}
705
706static void zcache_put_pool(struct tmem_pool *pool)
707{
708 if (pool != NULL)
709 atomic_dec(&pool->refcount);
710}
711
712/* counters for debugging */
713static unsigned long zcache_failed_get_free_pages;
714static unsigned long zcache_failed_alloc;
715static unsigned long zcache_put_to_flush;
716static unsigned long zcache_aborted_preload;
717static unsigned long zcache_aborted_shrink;
718
719/*
720 * Ensure that memory allocation requests in zcache don't result
721 * in direct reclaim requests via the shrinker, which would cause
722 * an infinite loop. Maybe a GFP flag would be better?
723 */
724static DEFINE_SPINLOCK(zcache_direct_reclaim_lock);
725
726/*
727 * for now, used named slabs so can easily track usage; later can
728 * either just use kmalloc, or perhaps add a slab-like allocator
729 * to more carefully manage total memory utilization
730 */
731static struct kmem_cache *zcache_objnode_cache;
732static struct kmem_cache *zcache_obj_cache;
733static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0);
734static unsigned long zcache_curr_obj_count_max;
735static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0);
736static unsigned long zcache_curr_objnode_count_max;
737
738/*
739 * to avoid memory allocation recursion (e.g. due to direct reclaim), we
740 * preload all necessary data structures so the hostops callbacks never
741 * actually do a malloc
742 */
743struct zcache_preload {
744 void *page;
745 struct tmem_obj *obj;
746 int nr;
747 struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH];
748};
749static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, };
750
751static int zcache_do_preload(struct tmem_pool *pool)
752{
753 struct zcache_preload *kp;
754 struct tmem_objnode *objnode;
755 struct tmem_obj *obj;
756 void *page;
757 int ret = -ENOMEM;
758
759 if (unlikely(zcache_objnode_cache == NULL))
760 goto out;
761 if (unlikely(zcache_obj_cache == NULL))
762 goto out;
763 if (!spin_trylock(&zcache_direct_reclaim_lock)) {
764 zcache_aborted_preload++;
765 goto out;
766 }
767 preempt_disable();
768 kp = &__get_cpu_var(zcache_preloads);
769 while (kp->nr < ARRAY_SIZE(kp->objnodes)) {
770 preempt_enable_no_resched();
771 objnode = kmem_cache_alloc(zcache_objnode_cache,
772 ZCACHE_GFP_MASK);
773 if (unlikely(objnode == NULL)) {
774 zcache_failed_alloc++;
775 goto unlock_out;
776 }
777 preempt_disable();
778 kp = &__get_cpu_var(zcache_preloads);
779 if (kp->nr < ARRAY_SIZE(kp->objnodes))
780 kp->objnodes[kp->nr++] = objnode;
781 else
782 kmem_cache_free(zcache_objnode_cache, objnode);
783 }
784 preempt_enable_no_resched();
785 obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK);
786 if (unlikely(obj == NULL)) {
787 zcache_failed_alloc++;
788 goto unlock_out;
789 }
790 page = (void *)__get_free_page(ZCACHE_GFP_MASK);
791 if (unlikely(page == NULL)) {
792 zcache_failed_get_free_pages++;
69648bed 793 kmem_cache_free(zcache_obj_cache, obj);
9cc06bf8
DM
794 goto unlock_out;
795 }
796 preempt_disable();
797 kp = &__get_cpu_var(zcache_preloads);
798 if (kp->obj == NULL)
799 kp->obj = obj;
800 else
801 kmem_cache_free(zcache_obj_cache, obj);
802 if (kp->page == NULL)
803 kp->page = page;
804 else
805 free_page((unsigned long)page);
806 ret = 0;
807unlock_out:
808 spin_unlock(&zcache_direct_reclaim_lock);
809out:
810 return ret;
811}
812
813static void *zcache_get_free_page(void)
814{
815 struct zcache_preload *kp;
816 void *page;
817
818 kp = &__get_cpu_var(zcache_preloads);
819 page = kp->page;
820 BUG_ON(page == NULL);
821 kp->page = NULL;
822 return page;
823}
824
825static void zcache_free_page(void *p)
826{
827 free_page((unsigned long)p);
828}
829
830/*
831 * zcache implementation for tmem host ops
832 */
833
834static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool)
835{
836 struct tmem_objnode *objnode = NULL;
837 unsigned long count;
838 struct zcache_preload *kp;
839
840 kp = &__get_cpu_var(zcache_preloads);
841 if (kp->nr <= 0)
842 goto out;
843 objnode = kp->objnodes[kp->nr - 1];
844 BUG_ON(objnode == NULL);
845 kp->objnodes[kp->nr - 1] = NULL;
846 kp->nr--;
847 count = atomic_inc_return(&zcache_curr_objnode_count);
848 if (count > zcache_curr_objnode_count_max)
849 zcache_curr_objnode_count_max = count;
850out:
851 return objnode;
852}
853
854static void zcache_objnode_free(struct tmem_objnode *objnode,
855 struct tmem_pool *pool)
856{
857 atomic_dec(&zcache_curr_objnode_count);
858 BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0);
859 kmem_cache_free(zcache_objnode_cache, objnode);
860}
861
862static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool)
863{
864 struct tmem_obj *obj = NULL;
865 unsigned long count;
866 struct zcache_preload *kp;
867
868 kp = &__get_cpu_var(zcache_preloads);
869 obj = kp->obj;
870 BUG_ON(obj == NULL);
871 kp->obj = NULL;
872 count = atomic_inc_return(&zcache_curr_obj_count);
873 if (count > zcache_curr_obj_count_max)
874 zcache_curr_obj_count_max = count;
875 return obj;
876}
877
878static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool)
879{
880 atomic_dec(&zcache_curr_obj_count);
881 BUG_ON(atomic_read(&zcache_curr_obj_count) < 0);
882 kmem_cache_free(zcache_obj_cache, obj);
883}
884
885static struct tmem_hostops zcache_hostops = {
886 .obj_alloc = zcache_obj_alloc,
887 .obj_free = zcache_obj_free,
888 .objnode_alloc = zcache_objnode_alloc,
889 .objnode_free = zcache_objnode_free,
890};
891
892/*
893 * zcache implementations for PAM page descriptor ops
894 */
895
896static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0);
897static unsigned long zcache_curr_eph_pampd_count_max;
898static atomic_t zcache_curr_pers_pampd_count = ATOMIC_INIT(0);
899static unsigned long zcache_curr_pers_pampd_count_max;
900
901/* forward reference */
902static int zcache_compress(struct page *from, void **out_va, size_t *out_len);
903
904static void *zcache_pampd_create(struct tmem_pool *pool, struct tmem_oid *oid,
905 uint32_t index, struct page *page)
906{
907 void *pampd = NULL, *cdata;
908 size_t clen;
909 int ret;
910 bool ephemeral = is_ephemeral(pool);
911 unsigned long count;
912
913 if (ephemeral) {
914 ret = zcache_compress(page, &cdata, &clen);
915 if (ret == 0)
916
917 goto out;
918 if (clen == 0 || clen > zbud_max_buddy_size()) {
919 zcache_compress_poor++;
920 goto out;
921 }
922 pampd = (void *)zbud_create(pool->pool_id, oid, index,
923 page, cdata, clen);
924 if (pampd != NULL) {
925 count = atomic_inc_return(&zcache_curr_eph_pampd_count);
926 if (count > zcache_curr_eph_pampd_count_max)
927 zcache_curr_eph_pampd_count_max = count;
928 }
929 } else {
930 /*
931 * FIXME: This is all the "policy" there is for now.
932 * 3/4 totpages should allow ~37% of RAM to be filled with
933 * compressed frontswap pages
934 */
935 if (atomic_read(&zcache_curr_pers_pampd_count) >
936 3 * totalram_pages / 4)
937 goto out;
938 ret = zcache_compress(page, &cdata, &clen);
939 if (ret == 0)
940 goto out;
941 if (clen > zv_max_page_size) {
942 zcache_compress_poor++;
943 goto out;
944 }
945 pampd = (void *)zv_create(zcache_client.xvpool, pool->pool_id,
946 oid, index, cdata, clen);
947 if (pampd == NULL)
948 goto out;
949 count = atomic_inc_return(&zcache_curr_pers_pampd_count);
950 if (count > zcache_curr_pers_pampd_count_max)
951 zcache_curr_pers_pampd_count_max = count;
952 }
953out:
954 return pampd;
955}
956
957/*
958 * fill the pageframe corresponding to the struct page with the data
959 * from the passed pampd
960 */
961static int zcache_pampd_get_data(struct page *page, void *pampd,
962 struct tmem_pool *pool)
963{
964 int ret = 0;
965
966 if (is_ephemeral(pool))
967 ret = zbud_decompress(page, pampd);
968 else
969 zv_decompress(page, pampd);
970 return ret;
971}
972
973/*
974 * free the pampd and remove it from any zcache lists
975 * pampd must no longer be pointed to from any tmem data structures!
976 */
977static void zcache_pampd_free(void *pampd, struct tmem_pool *pool)
978{
979 if (is_ephemeral(pool)) {
980 zbud_free_and_delist((struct zbud_hdr *)pampd);
981 atomic_dec(&zcache_curr_eph_pampd_count);
982 BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0);
983 } else {
984 zv_free(zcache_client.xvpool, (struct zv_hdr *)pampd);
985 atomic_dec(&zcache_curr_pers_pampd_count);
986 BUG_ON(atomic_read(&zcache_curr_pers_pampd_count) < 0);
987 }
988}
989
990static struct tmem_pamops zcache_pamops = {
991 .create = zcache_pampd_create,
992 .get_data = zcache_pampd_get_data,
993 .free = zcache_pampd_free,
994};
995
996/*
997 * zcache compression/decompression and related per-cpu stuff
998 */
999
1000#define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS
1001#define LZO_DSTMEM_PAGE_ORDER 1
1002static DEFINE_PER_CPU(unsigned char *, zcache_workmem);
1003static DEFINE_PER_CPU(unsigned char *, zcache_dstmem);
1004
1005static int zcache_compress(struct page *from, void **out_va, size_t *out_len)
1006{
1007 int ret = 0;
1008 unsigned char *dmem = __get_cpu_var(zcache_dstmem);
1009 unsigned char *wmem = __get_cpu_var(zcache_workmem);
1010 char *from_va;
1011
1012 BUG_ON(!irqs_disabled());
1013 if (unlikely(dmem == NULL || wmem == NULL))
1014 goto out; /* no buffer, so can't compress */
1015 from_va = kmap_atomic(from, KM_USER0);
1016 mb();
1017 ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem);
1018 BUG_ON(ret != LZO_E_OK);
1019 *out_va = dmem;
1020 kunmap_atomic(from_va, KM_USER0);
1021 ret = 1;
1022out:
1023 return ret;
1024}
1025
1026
1027static int zcache_cpu_notifier(struct notifier_block *nb,
1028 unsigned long action, void *pcpu)
1029{
1030 int cpu = (long)pcpu;
1031 struct zcache_preload *kp;
1032
1033 switch (action) {
1034 case CPU_UP_PREPARE:
1035 per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages(
1036 GFP_KERNEL | __GFP_REPEAT,
1037 LZO_DSTMEM_PAGE_ORDER),
1038 per_cpu(zcache_workmem, cpu) =
1039 kzalloc(LZO1X_MEM_COMPRESS,
1040 GFP_KERNEL | __GFP_REPEAT);
1041 break;
1042 case CPU_DEAD:
1043 case CPU_UP_CANCELED:
1044 free_pages((unsigned long)per_cpu(zcache_dstmem, cpu),
1045 LZO_DSTMEM_PAGE_ORDER);
1046 per_cpu(zcache_dstmem, cpu) = NULL;
1047 kfree(per_cpu(zcache_workmem, cpu));
1048 per_cpu(zcache_workmem, cpu) = NULL;
1049 kp = &per_cpu(zcache_preloads, cpu);
1050 while (kp->nr) {
1051 kmem_cache_free(zcache_objnode_cache,
1052 kp->objnodes[kp->nr - 1]);
1053 kp->objnodes[kp->nr - 1] = NULL;
1054 kp->nr--;
1055 }
1056 kmem_cache_free(zcache_obj_cache, kp->obj);
1057 free_page((unsigned long)kp->page);
1058 break;
1059 default:
1060 break;
1061 }
1062 return NOTIFY_OK;
1063}
1064
1065static struct notifier_block zcache_cpu_notifier_block = {
1066 .notifier_call = zcache_cpu_notifier
1067};
1068
1069#ifdef CONFIG_SYSFS
1070#define ZCACHE_SYSFS_RO(_name) \
1071 static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1072 struct kobj_attribute *attr, char *buf) \
1073 { \
1074 return sprintf(buf, "%lu\n", zcache_##_name); \
1075 } \
1076 static struct kobj_attribute zcache_##_name##_attr = { \
1077 .attr = { .name = __stringify(_name), .mode = 0444 }, \
1078 .show = zcache_##_name##_show, \
1079 }
1080
1081#define ZCACHE_SYSFS_RO_ATOMIC(_name) \
1082 static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1083 struct kobj_attribute *attr, char *buf) \
1084 { \
1085 return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \
1086 } \
1087 static struct kobj_attribute zcache_##_name##_attr = { \
1088 .attr = { .name = __stringify(_name), .mode = 0444 }, \
1089 .show = zcache_##_name##_show, \
1090 }
1091
1092#define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \
1093 static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1094 struct kobj_attribute *attr, char *buf) \
1095 { \
1096 return _func(buf); \
1097 } \
1098 static struct kobj_attribute zcache_##_name##_attr = { \
1099 .attr = { .name = __stringify(_name), .mode = 0444 }, \
1100 .show = zcache_##_name##_show, \
1101 }
1102
1103ZCACHE_SYSFS_RO(curr_obj_count_max);
1104ZCACHE_SYSFS_RO(curr_objnode_count_max);
1105ZCACHE_SYSFS_RO(flush_total);
1106ZCACHE_SYSFS_RO(flush_found);
1107ZCACHE_SYSFS_RO(flobj_total);
1108ZCACHE_SYSFS_RO(flobj_found);
1109ZCACHE_SYSFS_RO(failed_eph_puts);
1110ZCACHE_SYSFS_RO(failed_pers_puts);
1111ZCACHE_SYSFS_RO(zbud_curr_zbytes);
1112ZCACHE_SYSFS_RO(zbud_cumul_zpages);
1113ZCACHE_SYSFS_RO(zbud_cumul_zbytes);
1114ZCACHE_SYSFS_RO(zbud_buddied_count);
1115ZCACHE_SYSFS_RO(zbpg_unused_list_count);
1116ZCACHE_SYSFS_RO(evicted_raw_pages);
1117ZCACHE_SYSFS_RO(evicted_unbuddied_pages);
1118ZCACHE_SYSFS_RO(evicted_buddied_pages);
1119ZCACHE_SYSFS_RO(failed_get_free_pages);
1120ZCACHE_SYSFS_RO(failed_alloc);
1121ZCACHE_SYSFS_RO(put_to_flush);
1122ZCACHE_SYSFS_RO(aborted_preload);
1123ZCACHE_SYSFS_RO(aborted_shrink);
1124ZCACHE_SYSFS_RO(compress_poor);
1125ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages);
1126ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages);
1127ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count);
1128ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count);
1129ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts,
1130 zbud_show_unbuddied_list_counts);
1131ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts,
1132 zbud_show_cumul_chunk_counts);
1133
1134static struct attribute *zcache_attrs[] = {
1135 &zcache_curr_obj_count_attr.attr,
1136 &zcache_curr_obj_count_max_attr.attr,
1137 &zcache_curr_objnode_count_attr.attr,
1138 &zcache_curr_objnode_count_max_attr.attr,
1139 &zcache_flush_total_attr.attr,
1140 &zcache_flobj_total_attr.attr,
1141 &zcache_flush_found_attr.attr,
1142 &zcache_flobj_found_attr.attr,
1143 &zcache_failed_eph_puts_attr.attr,
1144 &zcache_failed_pers_puts_attr.attr,
1145 &zcache_compress_poor_attr.attr,
1146 &zcache_zbud_curr_raw_pages_attr.attr,
1147 &zcache_zbud_curr_zpages_attr.attr,
1148 &zcache_zbud_curr_zbytes_attr.attr,
1149 &zcache_zbud_cumul_zpages_attr.attr,
1150 &zcache_zbud_cumul_zbytes_attr.attr,
1151 &zcache_zbud_buddied_count_attr.attr,
1152 &zcache_zbpg_unused_list_count_attr.attr,
1153 &zcache_evicted_raw_pages_attr.attr,
1154 &zcache_evicted_unbuddied_pages_attr.attr,
1155 &zcache_evicted_buddied_pages_attr.attr,
1156 &zcache_failed_get_free_pages_attr.attr,
1157 &zcache_failed_alloc_attr.attr,
1158 &zcache_put_to_flush_attr.attr,
1159 &zcache_aborted_preload_attr.attr,
1160 &zcache_aborted_shrink_attr.attr,
1161 &zcache_zbud_unbuddied_list_counts_attr.attr,
1162 &zcache_zbud_cumul_chunk_counts_attr.attr,
1163 NULL,
1164};
1165
1166static struct attribute_group zcache_attr_group = {
1167 .attrs = zcache_attrs,
1168 .name = "zcache",
1169};
1170
1171#endif /* CONFIG_SYSFS */
1172/*
1173 * When zcache is disabled ("frozen"), pools can be created and destroyed,
1174 * but all puts (and thus all other operations that require memory allocation)
1175 * must fail. If zcache is unfrozen, accepts puts, then frozen again,
1176 * data consistency requires all puts while frozen to be converted into
1177 * flushes.
1178 */
1179static bool zcache_freeze;
1180
1181/*
1182 * zcache shrinker interface (only useful for ephemeral pages, so zbud only)
1183 */
1495f230
YH
1184static int shrink_zcache_memory(struct shrinker *shrink,
1185 struct shrink_control *sc)
9cc06bf8
DM
1186{
1187 int ret = -1;
1495f230
YH
1188 int nr = sc->nr_to_scan;
1189 gfp_t gfp_mask = sc->gfp_mask;
9cc06bf8
DM
1190
1191 if (nr >= 0) {
1192 if (!(gfp_mask & __GFP_FS))
1193 /* does this case really need to be skipped? */
1194 goto out;
1195 if (spin_trylock(&zcache_direct_reclaim_lock)) {
1196 zbud_evict_pages(nr);
1197 spin_unlock(&zcache_direct_reclaim_lock);
1198 } else
1199 zcache_aborted_shrink++;
1200 }
1201 ret = (int)atomic_read(&zcache_zbud_curr_raw_pages);
1202out:
1203 return ret;
1204}
1205
1206static struct shrinker zcache_shrinker = {
1207 .shrink = shrink_zcache_memory,
1208 .seeks = DEFAULT_SEEKS,
1209};
1210
1211/*
1212 * zcache shims between cleancache/frontswap ops and tmem
1213 */
1214
1215static int zcache_put_page(int pool_id, struct tmem_oid *oidp,
1216 uint32_t index, struct page *page)
1217{
1218 struct tmem_pool *pool;
1219 int ret = -1;
1220
1221 BUG_ON(!irqs_disabled());
1222 pool = zcache_get_pool_by_id(pool_id);
1223 if (unlikely(pool == NULL))
1224 goto out;
1225 if (!zcache_freeze && zcache_do_preload(pool) == 0) {
1226 /* preload does preempt_disable on success */
1227 ret = tmem_put(pool, oidp, index, page);
1228 if (ret < 0) {
1229 if (is_ephemeral(pool))
1230 zcache_failed_eph_puts++;
1231 else
1232 zcache_failed_pers_puts++;
1233 }
1234 zcache_put_pool(pool);
1235 preempt_enable_no_resched();
1236 } else {
1237 zcache_put_to_flush++;
1238 if (atomic_read(&pool->obj_count) > 0)
1239 /* the put fails whether the flush succeeds or not */
1240 (void)tmem_flush_page(pool, oidp, index);
1241 zcache_put_pool(pool);
1242 }
1243out:
1244 return ret;
1245}
1246
1247static int zcache_get_page(int pool_id, struct tmem_oid *oidp,
1248 uint32_t index, struct page *page)
1249{
1250 struct tmem_pool *pool;
1251 int ret = -1;
1252 unsigned long flags;
1253
1254 local_irq_save(flags);
1255 pool = zcache_get_pool_by_id(pool_id);
1256 if (likely(pool != NULL)) {
1257 if (atomic_read(&pool->obj_count) > 0)
1258 ret = tmem_get(pool, oidp, index, page);
1259 zcache_put_pool(pool);
1260 }
1261 local_irq_restore(flags);
1262 return ret;
1263}
1264
1265static int zcache_flush_page(int pool_id, struct tmem_oid *oidp, uint32_t index)
1266{
1267 struct tmem_pool *pool;
1268 int ret = -1;
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 zcache_flush_total++;
1273 pool = zcache_get_pool_by_id(pool_id);
1274 if (likely(pool != NULL)) {
1275 if (atomic_read(&pool->obj_count) > 0)
1276 ret = tmem_flush_page(pool, oidp, index);
1277 zcache_put_pool(pool);
1278 }
1279 if (ret >= 0)
1280 zcache_flush_found++;
1281 local_irq_restore(flags);
1282 return ret;
1283}
1284
1285static int zcache_flush_object(int pool_id, struct tmem_oid *oidp)
1286{
1287 struct tmem_pool *pool;
1288 int ret = -1;
1289 unsigned long flags;
1290
1291 local_irq_save(flags);
1292 zcache_flobj_total++;
1293 pool = zcache_get_pool_by_id(pool_id);
1294 if (likely(pool != NULL)) {
1295 if (atomic_read(&pool->obj_count) > 0)
1296 ret = tmem_flush_object(pool, oidp);
1297 zcache_put_pool(pool);
1298 }
1299 if (ret >= 0)
1300 zcache_flobj_found++;
1301 local_irq_restore(flags);
1302 return ret;
1303}
1304
1305static int zcache_destroy_pool(int pool_id)
1306{
1307 struct tmem_pool *pool = NULL;
1308 int ret = -1;
1309
1310 if (pool_id < 0)
1311 goto out;
1312 pool = zcache_client.tmem_pools[pool_id];
1313 if (pool == NULL)
1314 goto out;
1315 zcache_client.tmem_pools[pool_id] = NULL;
1316 /* wait for pool activity on other cpus to quiesce */
1317 while (atomic_read(&pool->refcount) != 0)
1318 ;
1319 local_bh_disable();
1320 ret = tmem_destroy_pool(pool);
1321 local_bh_enable();
1322 kfree(pool);
1323 pr_info("zcache: destroyed pool id=%d\n", pool_id);
1324out:
1325 return ret;
1326}
1327
1328static int zcache_new_pool(uint32_t flags)
1329{
1330 int poolid = -1;
1331 struct tmem_pool *pool;
1332
1333 pool = kmalloc(sizeof(struct tmem_pool), GFP_KERNEL);
1334 if (pool == NULL) {
1335 pr_info("zcache: pool creation failed: out of memory\n");
1336 goto out;
1337 }
1338
1339 for (poolid = 0; poolid < MAX_POOLS_PER_CLIENT; poolid++)
1340 if (zcache_client.tmem_pools[poolid] == NULL)
1341 break;
1342 if (poolid >= MAX_POOLS_PER_CLIENT) {
1343 pr_info("zcache: pool creation failed: max exceeded\n");
1344 kfree(pool);
1345 poolid = -1;
1346 goto out;
1347 }
1348 atomic_set(&pool->refcount, 0);
1349 pool->client = &zcache_client;
1350 pool->pool_id = poolid;
1351 tmem_new_pool(pool, flags);
1352 zcache_client.tmem_pools[poolid] = pool;
1353 pr_info("zcache: created %s tmem pool, id=%d\n",
1354 flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral",
1355 poolid);
1356out:
1357 return poolid;
1358}
1359
1360/**********
1361 * Two kernel functionalities currently can be layered on top of tmem.
1362 * These are "cleancache" which is used as a second-chance cache for clean
1363 * page cache pages; and "frontswap" which is used for swap pages
1364 * to avoid writes to disk. A generic "shim" is provided here for each
1365 * to translate in-kernel semantics to zcache semantics.
1366 */
1367
1368#ifdef CONFIG_CLEANCACHE
1369static void zcache_cleancache_put_page(int pool_id,
1370 struct cleancache_filekey key,
1371 pgoff_t index, struct page *page)
1372{
1373 u32 ind = (u32) index;
1374 struct tmem_oid oid = *(struct tmem_oid *)&key;
1375
1376 if (likely(ind == index))
1377 (void)zcache_put_page(pool_id, &oid, index, page);
1378}
1379
1380static int zcache_cleancache_get_page(int pool_id,
1381 struct cleancache_filekey key,
1382 pgoff_t index, struct page *page)
1383{
1384 u32 ind = (u32) index;
1385 struct tmem_oid oid = *(struct tmem_oid *)&key;
1386 int ret = -1;
1387
1388 if (likely(ind == index))
1389 ret = zcache_get_page(pool_id, &oid, index, page);
1390 return ret;
1391}
1392
1393static void zcache_cleancache_flush_page(int pool_id,
1394 struct cleancache_filekey key,
1395 pgoff_t index)
1396{
1397 u32 ind = (u32) index;
1398 struct tmem_oid oid = *(struct tmem_oid *)&key;
1399
1400 if (likely(ind == index))
1401 (void)zcache_flush_page(pool_id, &oid, ind);
1402}
1403
1404static void zcache_cleancache_flush_inode(int pool_id,
1405 struct cleancache_filekey key)
1406{
1407 struct tmem_oid oid = *(struct tmem_oid *)&key;
1408
1409 (void)zcache_flush_object(pool_id, &oid);
1410}
1411
1412static void zcache_cleancache_flush_fs(int pool_id)
1413{
1414 if (pool_id >= 0)
1415 (void)zcache_destroy_pool(pool_id);
1416}
1417
1418static int zcache_cleancache_init_fs(size_t pagesize)
1419{
1420 BUG_ON(sizeof(struct cleancache_filekey) !=
1421 sizeof(struct tmem_oid));
1422 BUG_ON(pagesize != PAGE_SIZE);
1423 return zcache_new_pool(0);
1424}
1425
1426static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize)
1427{
1428 /* shared pools are unsupported and map to private */
1429 BUG_ON(sizeof(struct cleancache_filekey) !=
1430 sizeof(struct tmem_oid));
1431 BUG_ON(pagesize != PAGE_SIZE);
1432 return zcache_new_pool(0);
1433}
1434
1435static struct cleancache_ops zcache_cleancache_ops = {
1436 .put_page = zcache_cleancache_put_page,
1437 .get_page = zcache_cleancache_get_page,
1438 .flush_page = zcache_cleancache_flush_page,
1439 .flush_inode = zcache_cleancache_flush_inode,
1440 .flush_fs = zcache_cleancache_flush_fs,
1441 .init_shared_fs = zcache_cleancache_init_shared_fs,
1442 .init_fs = zcache_cleancache_init_fs
1443};
1444
1445struct cleancache_ops zcache_cleancache_register_ops(void)
1446{
1447 struct cleancache_ops old_ops =
1448 cleancache_register_ops(&zcache_cleancache_ops);
1449
1450 return old_ops;
1451}
1452#endif
1453
1454#ifdef CONFIG_FRONTSWAP
1455/* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1456static int zcache_frontswap_poolid = -1;
1457
1458/*
1459 * Swizzling increases objects per swaptype, increasing tmem concurrency
1460 * for heavy swaploads. Later, larger nr_cpus -> larger SWIZ_BITS
1461 */
1462#define SWIZ_BITS 4
1463#define SWIZ_MASK ((1 << SWIZ_BITS) - 1)
1464#define _oswiz(_type, _ind) ((_type << SWIZ_BITS) | (_ind & SWIZ_MASK))
1465#define iswiz(_ind) (_ind >> SWIZ_BITS)
1466
1467static inline struct tmem_oid oswiz(unsigned type, u32 ind)
1468{
1469 struct tmem_oid oid = { .oid = { 0 } };
1470 oid.oid[0] = _oswiz(type, ind);
1471 return oid;
1472}
1473
1474static int zcache_frontswap_put_page(unsigned type, pgoff_t offset,
1475 struct page *page)
1476{
1477 u64 ind64 = (u64)offset;
1478 u32 ind = (u32)offset;
1479 struct tmem_oid oid = oswiz(type, ind);
1480 int ret = -1;
1481 unsigned long flags;
1482
1483 BUG_ON(!PageLocked(page));
1484 if (likely(ind64 == ind)) {
1485 local_irq_save(flags);
1486 ret = zcache_put_page(zcache_frontswap_poolid, &oid,
1487 iswiz(ind), page);
1488 local_irq_restore(flags);
1489 }
1490 return ret;
1491}
1492
1493/* returns 0 if the page was successfully gotten from frontswap, -1 if
1494 * was not present (should never happen!) */
1495static int zcache_frontswap_get_page(unsigned type, pgoff_t offset,
1496 struct page *page)
1497{
1498 u64 ind64 = (u64)offset;
1499 u32 ind = (u32)offset;
1500 struct tmem_oid oid = oswiz(type, ind);
1501 int ret = -1;
1502
1503 BUG_ON(!PageLocked(page));
1504 if (likely(ind64 == ind))
1505 ret = zcache_get_page(zcache_frontswap_poolid, &oid,
1506 iswiz(ind), page);
1507 return ret;
1508}
1509
1510/* flush a single page from frontswap */
1511static void zcache_frontswap_flush_page(unsigned type, pgoff_t offset)
1512{
1513 u64 ind64 = (u64)offset;
1514 u32 ind = (u32)offset;
1515 struct tmem_oid oid = oswiz(type, ind);
1516
1517 if (likely(ind64 == ind))
1518 (void)zcache_flush_page(zcache_frontswap_poolid, &oid,
1519 iswiz(ind));
1520}
1521
1522/* flush all pages from the passed swaptype */
1523static void zcache_frontswap_flush_area(unsigned type)
1524{
1525 struct tmem_oid oid;
1526 int ind;
1527
1528 for (ind = SWIZ_MASK; ind >= 0; ind--) {
1529 oid = oswiz(type, ind);
1530 (void)zcache_flush_object(zcache_frontswap_poolid, &oid);
1531 }
1532}
1533
1534static void zcache_frontswap_init(unsigned ignored)
1535{
1536 /* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1537 if (zcache_frontswap_poolid < 0)
1538 zcache_frontswap_poolid = zcache_new_pool(TMEM_POOL_PERSIST);
1539}
1540
1541static struct frontswap_ops zcache_frontswap_ops = {
1542 .put_page = zcache_frontswap_put_page,
1543 .get_page = zcache_frontswap_get_page,
1544 .flush_page = zcache_frontswap_flush_page,
1545 .flush_area = zcache_frontswap_flush_area,
1546 .init = zcache_frontswap_init
1547};
1548
1549struct frontswap_ops zcache_frontswap_register_ops(void)
1550{
1551 struct frontswap_ops old_ops =
1552 frontswap_register_ops(&zcache_frontswap_ops);
1553
1554 return old_ops;
1555}
1556#endif
1557
1558/*
1559 * zcache initialization
1560 * NOTE FOR NOW zcache MUST BE PROVIDED AS A KERNEL BOOT PARAMETER OR
1561 * NOTHING HAPPENS!
1562 */
1563
1564static int zcache_enabled;
1565
1566static int __init enable_zcache(char *s)
1567{
1568 zcache_enabled = 1;
1569 return 1;
1570}
1571__setup("zcache", enable_zcache);
1572
1573/* allow independent dynamic disabling of cleancache and frontswap */
1574
1575static int use_cleancache = 1;
1576
1577static int __init no_cleancache(char *s)
1578{
1579 use_cleancache = 0;
1580 return 1;
1581}
1582
1583__setup("nocleancache", no_cleancache);
1584
1585static int use_frontswap = 1;
1586
1587static int __init no_frontswap(char *s)
1588{
1589 use_frontswap = 0;
1590 return 1;
1591}
1592
1593__setup("nofrontswap", no_frontswap);
1594
1595static int __init zcache_init(void)
1596{
1597#ifdef CONFIG_SYSFS
1598 int ret = 0;
1599
1600 ret = sysfs_create_group(mm_kobj, &zcache_attr_group);
1601 if (ret) {
1602 pr_err("zcache: can't create sysfs\n");
1603 goto out;
1604 }
1605#endif /* CONFIG_SYSFS */
1606#if defined(CONFIG_CLEANCACHE) || defined(CONFIG_FRONTSWAP)
1607 if (zcache_enabled) {
1608 unsigned int cpu;
1609
1610 tmem_register_hostops(&zcache_hostops);
1611 tmem_register_pamops(&zcache_pamops);
1612 ret = register_cpu_notifier(&zcache_cpu_notifier_block);
1613 if (ret) {
1614 pr_err("zcache: can't register cpu notifier\n");
1615 goto out;
1616 }
1617 for_each_online_cpu(cpu) {
1618 void *pcpu = (void *)(long)cpu;
1619 zcache_cpu_notifier(&zcache_cpu_notifier_block,
1620 CPU_UP_PREPARE, pcpu);
1621 }
1622 }
1623 zcache_objnode_cache = kmem_cache_create("zcache_objnode",
1624 sizeof(struct tmem_objnode), 0, 0, NULL);
1625 zcache_obj_cache = kmem_cache_create("zcache_obj",
1626 sizeof(struct tmem_obj), 0, 0, NULL);
1627#endif
1628#ifdef CONFIG_CLEANCACHE
1629 if (zcache_enabled && use_cleancache) {
1630 struct cleancache_ops old_ops;
1631
1632 zbud_init();
1633 register_shrinker(&zcache_shrinker);
1634 old_ops = zcache_cleancache_register_ops();
1635 pr_info("zcache: cleancache enabled using kernel "
1636 "transcendent memory and compression buddies\n");
1637 if (old_ops.init_fs != NULL)
1638 pr_warning("zcache: cleancache_ops overridden");
1639 }
1640#endif
1641#ifdef CONFIG_FRONTSWAP
1642 if (zcache_enabled && use_frontswap) {
1643 struct frontswap_ops old_ops;
1644
1645 zcache_client.xvpool = xv_create_pool();
1646 if (zcache_client.xvpool == NULL) {
1647 pr_err("zcache: can't create xvpool\n");
1648 goto out;
1649 }
1650 old_ops = zcache_frontswap_register_ops();
1651 pr_info("zcache: frontswap enabled using kernel "
1652 "transcendent memory and xvmalloc\n");
1653 if (old_ops.init != NULL)
1654 pr_warning("ktmem: frontswap_ops overridden");
1655 }
1656#endif
1657out:
1658 return ret;
1659}
1660
1661module_init(zcache_init)
This page took 0.119464 seconds and 5 git commands to generate.