tty: remove use of __devinit
[deliverable/linux.git] / drivers / tty / serial / ifx6x60.c
CommitLineData
af3b8881
RG
1/****************************************************************************
2 *
3 * Driver for the IFX 6x60 spi modem.
4 *
5 * Copyright (C) 2008 Option International
6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7 * Denis Joseph Barrow <d.barow@option.com>
8 * Jan Dumon <j.dumon@option.com>
9 *
10 * Copyright (C) 2009, 2010 Intel Corp
2f1522ec 11 * Russ Gorby <russ.gorby@intel.com>
af3b8881
RG
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 * USA
26 *
27 * Driver modified by Intel from Option gtm501l_spi.c
28 *
29 * Notes
30 * o The driver currently assumes a single device only. If you need to
31 * change this then look for saved_ifx_dev and add a device lookup
32 * o The driver is intended to be big-endian safe but has never been
33 * tested that way (no suitable hardware). There are a couple of FIXME
34 * notes by areas that may need addressing
35 * o Some of the GPIO naming/setup assumptions may need revisiting if
36 * you need to use this driver for another platform.
37 *
38 *****************************************************************************/
b7f080cf 39#include <linux/dma-mapping.h>
af3b8881
RG
40#include <linux/module.h>
41#include <linux/termios.h>
42#include <linux/tty.h>
43#include <linux/device.h>
44#include <linux/spi/spi.h>
af3b8881
RG
45#include <linux/kfifo.h>
46#include <linux/tty_flip.h>
47#include <linux/timer.h>
48#include <linux/serial.h>
49#include <linux/interrupt.h>
50#include <linux/irq.h>
51#include <linux/rfkill.h>
52#include <linux/fs.h>
53#include <linux/ip.h>
54#include <linux/dmapool.h>
55#include <linux/gpio.h>
56#include <linux/sched.h>
57#include <linux/time.h>
58#include <linux/wait.h>
af3b8881
RG
59#include <linux/pm.h>
60#include <linux/pm_runtime.h>
61#include <linux/spi/ifx_modem.h>
83abd0d8 62#include <linux/delay.h>
af3b8881
RG
63
64#include "ifx6x60.h"
65
66#define IFX_SPI_MORE_MASK 0x10
1b2f8a95 67#define IFX_SPI_MORE_BIT 4 /* bit position in u8 */
68#define IFX_SPI_CTS_BIT 6 /* bit position in u8 */
2aff8d90 69#define IFX_SPI_MODE SPI_MODE_1
af3b8881
RG
70#define IFX_SPI_TTY_ID 0
71#define IFX_SPI_TIMEOUT_SEC 2
72#define IFX_SPI_HEADER_0 (-1)
73#define IFX_SPI_HEADER_F (-2)
74
75/* forward reference */
76static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
77
78/* local variables */
f089140e 79static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
af3b8881
RG
80static struct tty_driver *tty_drv;
81static struct ifx_spi_device *saved_ifx_dev;
82static struct lock_class_key ifx_spi_key;
83
84/* GPIO/GPE settings */
85
86/**
87 * mrdy_set_high - set MRDY GPIO
88 * @ifx: device we are controlling
89 *
90 */
91static inline void mrdy_set_high(struct ifx_spi_device *ifx)
92{
93 gpio_set_value(ifx->gpio.mrdy, 1);
94}
95
96/**
97 * mrdy_set_low - clear MRDY GPIO
98 * @ifx: device we are controlling
99 *
100 */
101static inline void mrdy_set_low(struct ifx_spi_device *ifx)
102{
103 gpio_set_value(ifx->gpio.mrdy, 0);
104}
105
106/**
107 * ifx_spi_power_state_set
108 * @ifx_dev: our SPI device
109 * @val: bits to set
110 *
111 * Set bit in power status and signal power system if status becomes non-0
112 */
113static void
114ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
115{
116 unsigned long flags;
117
118 spin_lock_irqsave(&ifx_dev->power_lock, flags);
119
120 /*
121 * if power status is already non-0, just update, else
122 * tell power system
123 */
124 if (!ifx_dev->power_status)
125 pm_runtime_get(&ifx_dev->spi_dev->dev);
126 ifx_dev->power_status |= val;
127
128 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
129}
130
131/**
132 * ifx_spi_power_state_clear - clear power bit
133 * @ifx_dev: our SPI device
134 * @val: bits to clear
135 *
136 * clear bit in power status and signal power system if status becomes 0
137 */
138static void
139ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
140{
141 unsigned long flags;
142
143 spin_lock_irqsave(&ifx_dev->power_lock, flags);
144
145 if (ifx_dev->power_status) {
146 ifx_dev->power_status &= ~val;
147 if (!ifx_dev->power_status)
148 pm_runtime_put(&ifx_dev->spi_dev->dev);
149 }
150
151 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
152}
153
154/**
319fb0d2 155 * swap_buf_8
af3b8881
RG
156 * @buf: our buffer
157 * @len : number of bytes (not words) in the buffer
158 * @end: end of buffer
159 *
160 * Swap the contents of a buffer into big endian format
161 */
319fb0d2 162static inline void swap_buf_8(unsigned char *buf, int len, void *end)
163{
164 /* don't swap buffer if SPI word width is 8 bits */
165 return;
166}
167
168/**
169 * swap_buf_16
170 * @buf: our buffer
171 * @len : number of bytes (not words) in the buffer
172 * @end: end of buffer
173 *
174 * Swap the contents of a buffer into big endian format
175 */
176static inline void swap_buf_16(unsigned char *buf, int len, void *end)
af3b8881
RG
177{
178 int n;
179
319fb0d2 180 u16 *buf_16 = (u16 *)buf;
af3b8881 181 len = ((len + 1) >> 1);
319fb0d2 182 if ((void *)&buf_16[len] > end) {
183 pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
184 &buf_16[len], end);
af3b8881
RG
185 return;
186 }
187 for (n = 0; n < len; n++) {
319fb0d2 188 *buf_16 = cpu_to_be16(*buf_16);
189 buf_16++;
190 }
191}
192
193/**
194 * swap_buf_32
195 * @buf: our buffer
196 * @len : number of bytes (not words) in the buffer
197 * @end: end of buffer
198 *
199 * Swap the contents of a buffer into big endian format
200 */
201static inline void swap_buf_32(unsigned char *buf, int len, void *end)
202{
203 int n;
204
205 u32 *buf_32 = (u32 *)buf;
206 len = (len + 3) >> 2;
207
208 if ((void *)&buf_32[len] > end) {
209 pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
210 &buf_32[len], end);
211 return;
212 }
213 for (n = 0; n < len; n++) {
214 *buf_32 = cpu_to_be32(*buf_32);
215 buf_32++;
af3b8881
RG
216 }
217}
218
219/**
220 * mrdy_assert - assert MRDY line
221 * @ifx_dev: our SPI device
222 *
223 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
224 * now.
225 *
226 * FIXME: Can SRDY even go high as we are running this code ?
227 */
228static void mrdy_assert(struct ifx_spi_device *ifx_dev)
229{
230 int val = gpio_get_value(ifx_dev->gpio.srdy);
231 if (!val) {
232 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
233 &ifx_dev->flags)) {
c73ba2ae 234 mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
af3b8881
RG
235
236 }
237 }
238 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
239 mrdy_set_high(ifx_dev);
240}
241
242/**
243 * ifx_spi_hangup - hang up an IFX device
244 * @ifx_dev: our SPI device
245 *
246 * Hang up the tty attached to the IFX device if one is currently
247 * open. If not take no action
248 */
249static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
250{
251 struct tty_port *pport = &ifx_dev->tty_port;
252 struct tty_struct *tty = tty_port_tty_get(pport);
253 if (tty) {
254 tty_hangup(tty);
255 tty_kref_put(tty);
256 }
257}
258
259/**
260 * ifx_spi_timeout - SPI timeout
261 * @arg: our SPI device
262 *
263 * The SPI has timed out: hang up the tty. Users will then see a hangup
264 * and error events.
265 */
266static void ifx_spi_timeout(unsigned long arg)
267{
268 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
269
270 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
271 ifx_spi_ttyhangup(ifx_dev);
272 mrdy_set_low(ifx_dev);
273 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
274}
275
276/* char/tty operations */
277
278/**
279 * ifx_spi_tiocmget - get modem lines
280 * @tty: our tty device
281 * @filp: file handle issuing the request
282 *
283 * Map the signal state into Linux modem flags and report the value
284 * in Linux terms
285 */
60b33c13 286static int ifx_spi_tiocmget(struct tty_struct *tty)
af3b8881
RG
287{
288 unsigned int value;
289 struct ifx_spi_device *ifx_dev = tty->driver_data;
290
291 value =
292 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
293 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
294 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
295 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
296 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
297 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
298 return value;
299}
300
301/**
302 * ifx_spi_tiocmset - set modem bits
303 * @tty: the tty structure
af3b8881
RG
304 * @set: bits to set
305 * @clear: bits to clear
306 *
307 * The IFX6x60 only supports DTR and RTS. Set them accordingly
308 * and flag that an update to the modem is needed.
309 *
310 * FIXME: do we need to kick the tranfers when we do this ?
311 */
20b9d177 312static int ifx_spi_tiocmset(struct tty_struct *tty,
af3b8881
RG
313 unsigned int set, unsigned int clear)
314{
315 struct ifx_spi_device *ifx_dev = tty->driver_data;
316
317 if (set & TIOCM_RTS)
318 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
319 if (set & TIOCM_DTR)
320 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
321 if (clear & TIOCM_RTS)
322 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
323 if (clear & TIOCM_DTR)
324 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
325
326 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
327 return 0;
328}
329
330/**
331 * ifx_spi_open - called on tty open
332 * @tty: our tty device
333 * @filp: file handle being associated with the tty
334 *
335 * Open the tty interface. We let the tty_port layer do all the work
336 * for us.
337 *
338 * FIXME: Remove single device assumption and saved_ifx_dev
339 */
340static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
341{
342 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
343}
344
345/**
346 * ifx_spi_close - called when our tty closes
347 * @tty: the tty being closed
348 * @filp: the file handle being closed
349 *
350 * Perform the close of the tty. We use the tty_port layer to do all
351 * our hard work.
352 */
353static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
354{
355 struct ifx_spi_device *ifx_dev = tty->driver_data;
356 tty_port_close(&ifx_dev->tty_port, tty, filp);
357 /* FIXME: should we do an ifx_spi_reset here ? */
358}
359
360/**
361 * ifx_decode_spi_header - decode received header
362 * @buffer: the received data
363 * @length: decoded length
364 * @more: decoded more flag
365 * @received_cts: status of cts we received
366 *
367 * Note how received_cts is handled -- if header is all F it is left
368 * the same as it was, if header is all 0 it is set to 0 otherwise it is
369 * taken from the incoming header.
370 *
371 * FIXME: endianness
372 */
373static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
374 unsigned char *more, unsigned char *received_cts)
375{
376 u16 h1;
377 u16 h2;
378 u16 *in_buffer = (u16 *)buffer;
379
380 h1 = *in_buffer;
381 h2 = *(in_buffer+1);
382
383 if (h1 == 0 && h2 == 0) {
384 *received_cts = 0;
385 return IFX_SPI_HEADER_0;
386 } else if (h1 == 0xffff && h2 == 0xffff) {
387 /* spi_slave_cts remains as it was */
388 return IFX_SPI_HEADER_F;
389 }
390
391 *length = h1 & 0xfff; /* upper bits of byte are flags */
392 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
393 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
394 return 0;
395}
396
397/**
398 * ifx_setup_spi_header - set header fields
399 * @txbuffer: pointer to start of SPI buffer
400 * @tx_count: bytes
401 * @more: indicate if more to follow
402 *
403 * Format up an SPI header for a transfer
404 *
405 * FIXME: endianness?
406 */
407static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
408 unsigned char more)
409{
410 *(u16 *)(txbuffer) = tx_count;
411 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
412 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
413}
414
415/**
416 * ifx_spi_wakeup_serial - SPI space made
417 * @port_data: our SPI device
418 *
419 * We have emptied the FIFO enough that we want to get more data
420 * queued into it. Poke the line discipline via tty_wakeup so that
421 * it will feed us more bits
422 */
423static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
424{
425 struct tty_struct *tty;
426
427 tty = tty_port_tty_get(&ifx_dev->tty_port);
428 if (!tty)
429 return;
430 tty_wakeup(tty);
431 tty_kref_put(tty);
432}
433
434/**
435 * ifx_spi_prepare_tx_buffer - prepare transmit frame
436 * @ifx_dev: our SPI device
437 *
438 * The transmit buffr needs a header and various other bits of
439 * information followed by as much data as we can pull from the FIFO
440 * and transfer. This function formats up a suitable buffer in the
441 * ifx_dev->tx_buffer
442 *
443 * FIXME: performance - should we wake the tty when the queue is half
444 * empty ?
445 */
446static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
447{
448 int temp_count;
449 int queue_length;
450 int tx_count;
451 unsigned char *tx_buffer;
452
453 tx_buffer = ifx_dev->tx_buffer;
454 memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
455
456 /* make room for required SPI header */
457 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
458 tx_count = IFX_SPI_HEADER_OVERHEAD;
459
460 /* clear to signal no more data if this turns out to be the
461 * last buffer sent in a sequence */
462 ifx_dev->spi_more = 0;
463
464 /* if modem cts is set, just send empty buffer */
465 if (!ifx_dev->spi_slave_cts) {
466 /* see if there's tx data */
467 queue_length = kfifo_len(&ifx_dev->tx_fifo);
468 if (queue_length != 0) {
469 /* data to mux -- see if there's room for it */
470 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
471 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
472 tx_buffer, temp_count,
473 &ifx_dev->fifo_lock);
474
475 /* update buffer pointer and data count in message */
476 tx_buffer += temp_count;
477 tx_count += temp_count;
478 if (temp_count == queue_length)
479 /* poke port to get more data */
480 ifx_spi_wakeup_serial(ifx_dev);
481 else /* more data in port, use next SPI message */
482 ifx_dev->spi_more = 1;
483 }
484 }
485 /* have data and info for header -- set up SPI header in buffer */
486 /* spi header needs payload size, not entire buffer size */
487 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
488 tx_count-IFX_SPI_HEADER_OVERHEAD,
489 ifx_dev->spi_more);
490 /* swap actual data in the buffer */
319fb0d2 491 ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
af3b8881
RG
492 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
493 return tx_count;
494}
495
496/**
497 * ifx_spi_write - line discipline write
498 * @tty: our tty device
499 * @buf: pointer to buffer to write (kernel space)
500 * @count: size of buffer
501 *
502 * Write the characters we have been given into the FIFO. If the device
503 * is not active then activate it, when the SRDY line is asserted back
504 * this will commence I/O
505 */
506static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
507 int count)
508{
509 struct ifx_spi_device *ifx_dev = tty->driver_data;
510 unsigned char *tmp_buf = (unsigned char *)buf;
e8823f1c
JC
511 unsigned long flags;
512 bool is_fifo_empty;
513
514 spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
515 is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
516 int tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
517 spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
518 if (is_fifo_empty)
519 mrdy_assert(ifx_dev);
520
af3b8881
RG
521 return tx_count;
522}
523
524/**
525 * ifx_spi_chars_in_buffer - line discipline helper
526 * @tty: our tty device
527 *
528 * Report how much data we can accept before we drop bytes. As we use
529 * a simple FIFO this is nice and easy.
530 */
531static int ifx_spi_write_room(struct tty_struct *tty)
532{
533 struct ifx_spi_device *ifx_dev = tty->driver_data;
534 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
535}
536
537/**
538 * ifx_spi_chars_in_buffer - line discipline helper
539 * @tty: our tty device
540 *
541 * Report how many characters we have buffered. In our case this is the
542 * number of bytes sitting in our transmit FIFO.
543 */
544static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
545{
546 struct ifx_spi_device *ifx_dev = tty->driver_data;
547 return kfifo_len(&ifx_dev->tx_fifo);
548}
549
550/**
551 * ifx_port_hangup
552 * @port: our tty port
553 *
554 * tty port hang up. Called when tty_hangup processing is invoked either
555 * by loss of carrier, or by software (eg vhangup). Serialized against
556 * activate/shutdown by the tty layer.
557 */
558static void ifx_spi_hangup(struct tty_struct *tty)
559{
560 struct ifx_spi_device *ifx_dev = tty->driver_data;
561 tty_port_hangup(&ifx_dev->tty_port);
562}
563
564/**
565 * ifx_port_activate
566 * @port: our tty port
567 *
568 * tty port activate method - called for first open. Serialized
569 * with hangup and shutdown by the tty layer.
570 */
571static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
572{
573 struct ifx_spi_device *ifx_dev =
574 container_of(port, struct ifx_spi_device, tty_port);
575
576 /* clear any old data; can't do this in 'close' */
577 kfifo_reset(&ifx_dev->tx_fifo);
578
31fe9904 579 /* clear any flag which may be set in port shutdown procedure */
580 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
581 clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
582
af3b8881
RG
583 /* put port data into this tty */
584 tty->driver_data = ifx_dev;
585
586 /* allows flip string push from int context */
587 tty->low_latency = 1;
588
31fe9904 589 /* set flag to allows data transfer */
590 set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
591
af3b8881
RG
592 return 0;
593}
594
595/**
596 * ifx_port_shutdown
597 * @port: our tty port
598 *
599 * tty port shutdown method - called for last port close. Serialized
600 * with hangup and activate by the tty layer.
601 */
602static void ifx_port_shutdown(struct tty_port *port)
603{
604 struct ifx_spi_device *ifx_dev =
605 container_of(port, struct ifx_spi_device, tty_port);
606
31fe9904 607 clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
af3b8881
RG
608 mrdy_set_low(ifx_dev);
609 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
610 tasklet_kill(&ifx_dev->io_work_tasklet);
611}
612
613static const struct tty_port_operations ifx_tty_port_ops = {
614 .activate = ifx_port_activate,
615 .shutdown = ifx_port_shutdown,
616};
617
618static const struct tty_operations ifx_spi_serial_ops = {
619 .open = ifx_spi_open,
620 .close = ifx_spi_close,
621 .write = ifx_spi_write,
622 .hangup = ifx_spi_hangup,
623 .write_room = ifx_spi_write_room,
624 .chars_in_buffer = ifx_spi_chars_in_buffer,
625 .tiocmget = ifx_spi_tiocmget,
626 .tiocmset = ifx_spi_tiocmset,
627};
628
629/**
630 * ifx_spi_insert_fip_string - queue received data
631 * @ifx_ser: our SPI device
632 * @chars: buffer we have received
633 * @size: number of chars reeived
634 *
635 * Queue bytes to the tty assuming the tty side is currently open. If
636 * not the discard the data.
637 */
638static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
639 unsigned char *chars, size_t size)
640{
641 struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
642 if (!tty)
643 return;
644 tty_insert_flip_string(tty, chars, size);
645 tty_flip_buffer_push(tty);
646 tty_kref_put(tty);
647}
648
649/**
650 * ifx_spi_complete - SPI transfer completed
651 * @ctx: our SPI device
652 *
653 * An SPI transfer has completed. Process any received data and kick off
654 * any further transmits we can commence.
655 */
656static void ifx_spi_complete(void *ctx)
657{
658 struct ifx_spi_device *ifx_dev = ctx;
659 struct tty_struct *tty;
660 struct tty_ldisc *ldisc = NULL;
661 int length;
662 int actual_length;
663 unsigned char more;
664 unsigned char cts;
665 int local_write_pending = 0;
666 int queue_length;
667 int srdy;
668 int decode_result;
669
670 mrdy_set_low(ifx_dev);
671
672 if (!ifx_dev->spi_msg.status) {
673 /* check header validity, get comm flags */
319fb0d2 674 ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
af3b8881
RG
675 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
676 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
677 &length, &more, &cts);
678 if (decode_result == IFX_SPI_HEADER_0) {
679 dev_dbg(&ifx_dev->spi_dev->dev,
680 "ignore input: invalid header 0");
681 ifx_dev->spi_slave_cts = 0;
682 goto complete_exit;
683 } else if (decode_result == IFX_SPI_HEADER_F) {
684 dev_dbg(&ifx_dev->spi_dev->dev,
685 "ignore input: invalid header F");
686 goto complete_exit;
687 }
688
689 ifx_dev->spi_slave_cts = cts;
690
691 actual_length = min((unsigned int)length,
692 ifx_dev->spi_msg.actual_length);
319fb0d2 693 ifx_dev->swap_buf(
694 (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
af3b8881
RG
695 actual_length,
696 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
697 ifx_spi_insert_flip_string(
698 ifx_dev,
699 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
700 (size_t)actual_length);
701 } else {
702 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
703 ifx_dev->spi_msg.status);
704 }
705
706complete_exit:
707 if (ifx_dev->write_pending) {
708 ifx_dev->write_pending = 0;
709 local_write_pending = 1;
710 }
711
712 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
713
714 queue_length = kfifo_len(&ifx_dev->tx_fifo);
715 srdy = gpio_get_value(ifx_dev->gpio.srdy);
716 if (!srdy)
717 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
718
719 /* schedule output if there is more to do */
720 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
721 tasklet_schedule(&ifx_dev->io_work_tasklet);
722 else {
723 if (more || ifx_dev->spi_more || queue_length > 0 ||
724 local_write_pending) {
725 if (ifx_dev->spi_slave_cts) {
726 if (more)
727 mrdy_assert(ifx_dev);
728 } else
729 mrdy_assert(ifx_dev);
730 } else {
731 /*
732 * poke line discipline driver if any for more data
733 * may or may not get more data to write
734 * for now, say not busy
735 */
736 ifx_spi_power_state_clear(ifx_dev,
737 IFX_SPI_POWER_DATA_PENDING);
738 tty = tty_port_tty_get(&ifx_dev->tty_port);
739 if (tty) {
740 ldisc = tty_ldisc_ref(tty);
741 if (ldisc) {
742 ldisc->ops->write_wakeup(tty);
743 tty_ldisc_deref(ldisc);
744 }
745 tty_kref_put(tty);
746 }
747 }
748 }
749}
750
751/**
752 * ifx_spio_io - I/O tasklet
753 * @data: our SPI device
754 *
755 * Queue data for transmission if possible and then kick off the
756 * transfer.
757 */
758static void ifx_spi_io(unsigned long data)
759{
760 int retval;
761 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
762
31fe9904 763 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
764 test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
af3b8881
RG
765 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
766 ifx_dev->gpio.unack_srdy_int_nb--;
767
768 ifx_spi_prepare_tx_buffer(ifx_dev);
769
770 spi_message_init(&ifx_dev->spi_msg);
771 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
772
773 ifx_dev->spi_msg.context = ifx_dev;
774 ifx_dev->spi_msg.complete = ifx_spi_complete;
775
776 /* set up our spi transfer */
777 /* note len is BYTES, not transfers */
778 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
779 ifx_dev->spi_xfer.cs_change = 0;
1b79b440 780 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
af3b8881 781 /* ifx_dev->spi_xfer.speed_hz = 390625; */
f089140e 782 ifx_dev->spi_xfer.bits_per_word = spi_bpw;
af3b8881
RG
783
784 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
785 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
786
787 /*
788 * setup dma pointers
789 */
2f1522ec 790 if (ifx_dev->use_dma) {
af3b8881
RG
791 ifx_dev->spi_msg.is_dma_mapped = 1;
792 ifx_dev->tx_dma = ifx_dev->tx_bus;
793 ifx_dev->rx_dma = ifx_dev->rx_bus;
794 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
795 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
796 } else {
797 ifx_dev->spi_msg.is_dma_mapped = 0;
798 ifx_dev->tx_dma = (dma_addr_t)0;
799 ifx_dev->rx_dma = (dma_addr_t)0;
800 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
801 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
802 }
803
804 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
805
806 /* Assert MRDY. This may have already been done by the write
807 * routine.
808 */
809 mrdy_assert(ifx_dev);
810
811 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
812 if (retval) {
813 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
814 &ifx_dev->flags);
815 tasklet_schedule(&ifx_dev->io_work_tasklet);
816 return;
817 }
818 } else
819 ifx_dev->write_pending = 1;
820}
821
822/**
823 * ifx_spi_free_port - free up the tty side
824 * @ifx_dev: IFX device going away
825 *
826 * Unregister and free up a port when the device goes away
827 */
828static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
829{
830 if (ifx_dev->tty_dev)
831 tty_unregister_device(tty_drv, ifx_dev->minor);
191c5f10 832 tty_port_destroy(&ifx_dev->tty_port);
af3b8881
RG
833 kfifo_free(&ifx_dev->tx_fifo);
834}
835
836/**
837 * ifx_spi_create_port - create a new port
838 * @ifx_dev: our spi device
839 *
840 * Allocate and initialise the tty port that goes with this interface
841 * and add it to the tty layer so that it can be opened.
842 */
843static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
844{
845 int ret = 0;
846 struct tty_port *pport = &ifx_dev->tty_port;
847
848 spin_lock_init(&ifx_dev->fifo_lock);
849 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
850 &ifx_spi_key, 0);
851
852 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
853 ret = -ENOMEM;
854 goto error_ret;
855 }
856
af3b8881 857 tty_port_init(pport);
b68f23b2 858 pport->ops = &ifx_tty_port_ops;
af3b8881 859 ifx_dev->minor = IFX_SPI_TTY_ID;
734cc178
JS
860 ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
861 ifx_dev->minor, &ifx_dev->spi_dev->dev);
af3b8881
RG
862 if (IS_ERR(ifx_dev->tty_dev)) {
863 dev_dbg(&ifx_dev->spi_dev->dev,
864 "%s: registering tty device failed", __func__);
865 ret = PTR_ERR(ifx_dev->tty_dev);
191c5f10 866 goto error_port;
af3b8881
RG
867 }
868 return 0;
869
191c5f10
JS
870error_port:
871 tty_port_destroy(pport);
af3b8881
RG
872error_ret:
873 ifx_spi_free_port(ifx_dev);
874 return ret;
875}
876
877/**
878 * ifx_spi_handle_srdy - handle SRDY
879 * @ifx_dev: device asserting SRDY
880 *
881 * Check our device state and see what we need to kick off when SRDY
882 * is asserted. This usually means killing the timer and firing off the
883 * I/O processing.
884 */
885static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
886{
887 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
2e308026 888 del_timer(&ifx_dev->spi_timer);
af3b8881
RG
889 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
890 }
891
892 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
893
894 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
895 tasklet_schedule(&ifx_dev->io_work_tasklet);
896 else
897 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
898}
899
900/**
901 * ifx_spi_srdy_interrupt - SRDY asserted
902 * @irq: our IRQ number
903 * @dev: our ifx device
904 *
905 * The modem asserted SRDY. Handle the srdy event
906 */
907static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
908{
909 struct ifx_spi_device *ifx_dev = dev;
910 ifx_dev->gpio.unack_srdy_int_nb++;
911 ifx_spi_handle_srdy(ifx_dev);
912 return IRQ_HANDLED;
913}
914
915/**
916 * ifx_spi_reset_interrupt - Modem has changed reset state
917 * @irq: interrupt number
918 * @dev: our device pointer
919 *
920 * The modem has either entered or left reset state. Check the GPIO
921 * line to see which.
922 *
923 * FIXME: review locking on MR_INPROGRESS versus
924 * parallel unsolicited reset/solicited reset
925 */
926static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
927{
928 struct ifx_spi_device *ifx_dev = dev;
929 int val = gpio_get_value(ifx_dev->gpio.reset_out);
930 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
931
932 if (val == 0) {
933 /* entered reset */
934 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
935 if (!solreset) {
936 /* unsolicited reset */
937 ifx_spi_ttyhangup(ifx_dev);
938 }
939 } else {
940 /* exited reset */
941 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
942 if (solreset) {
943 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
944 wake_up(&ifx_dev->mdm_reset_wait);
945 }
946 }
947 return IRQ_HANDLED;
948}
949
950/**
951 * ifx_spi_free_device - free device
952 * @ifx_dev: device to free
953 *
954 * Free the IFX device
955 */
956static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
957{
958 ifx_spi_free_port(ifx_dev);
959 dma_free_coherent(&ifx_dev->spi_dev->dev,
960 IFX_SPI_TRANSFER_SIZE,
961 ifx_dev->tx_buffer,
962 ifx_dev->tx_bus);
963 dma_free_coherent(&ifx_dev->spi_dev->dev,
964 IFX_SPI_TRANSFER_SIZE,
965 ifx_dev->rx_buffer,
966 ifx_dev->rx_bus);
967}
968
969/**
970 * ifx_spi_reset - reset modem
971 * @ifx_dev: modem to reset
972 *
973 * Perform a reset on the modem
974 */
975static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
976{
977 int ret;
978 /*
979 * set up modem power, reset
980 *
981 * delays are required on some platforms for the modem
982 * to reset properly
983 */
984 set_bit(MR_START, &ifx_dev->mdm_reset_state);
985 gpio_set_value(ifx_dev->gpio.po, 0);
986 gpio_set_value(ifx_dev->gpio.reset, 0);
987 msleep(25);
988 gpio_set_value(ifx_dev->gpio.reset, 1);
989 msleep(1);
990 gpio_set_value(ifx_dev->gpio.po, 1);
991 msleep(1);
992 gpio_set_value(ifx_dev->gpio.po, 0);
993 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
994 test_bit(MR_COMPLETE,
995 &ifx_dev->mdm_reset_state),
996 IFX_RESET_TIMEOUT);
997 if (!ret)
998 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
999 ifx_dev->mdm_reset_state);
1000
1001 ifx_dev->mdm_reset_state = 0;
1002 return ret;
1003}
1004
1005/**
1006 * ifx_spi_spi_probe - probe callback
1007 * @spi: our possible matching SPI device
1008 *
1009 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
1010 * GPIO setup.
1011 *
1012 * FIXME:
1013 * - Support for multiple devices
1014 * - Split out MID specific GPIO handling eventually
1015 */
1016
1017static int ifx_spi_spi_probe(struct spi_device *spi)
1018{
1019 int ret;
1020 int srdy;
2f1522ec 1021 struct ifx_modem_platform_data *pl_data;
af3b8881
RG
1022 struct ifx_spi_device *ifx_dev;
1023
1024 if (saved_ifx_dev) {
1025 dev_dbg(&spi->dev, "ignoring subsequent detection");
1026 return -ENODEV;
1027 }
1028
2f1522ec
RG
1029 pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
1030 if (!pl_data) {
1031 dev_err(&spi->dev, "missing platform data!");
1032 return -ENODEV;
1033 }
1034
af3b8881
RG
1035 /* initialize structure to hold our device variables */
1036 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1037 if (!ifx_dev) {
1038 dev_err(&spi->dev, "spi device allocation failed");
1039 return -ENOMEM;
1040 }
1041 saved_ifx_dev = ifx_dev;
1042 ifx_dev->spi_dev = spi;
1043 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1044 spin_lock_init(&ifx_dev->write_lock);
1045 spin_lock_init(&ifx_dev->power_lock);
1046 ifx_dev->power_status = 0;
1047 init_timer(&ifx_dev->spi_timer);
1048 ifx_dev->spi_timer.function = ifx_spi_timeout;
1049 ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
2f1522ec
RG
1050 ifx_dev->modem = pl_data->modem_type;
1051 ifx_dev->use_dma = pl_data->use_dma;
1052 ifx_dev->max_hz = pl_data->max_hz;
2aff8d90 1053 /* initialize spi mode, etc */
1b79b440 1054 spi->max_speed_hz = ifx_dev->max_hz;
2aff8d90
RG
1055 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1056 spi->bits_per_word = spi_bpw;
1057 ret = spi_setup(spi);
1058 if (ret) {
1059 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1060 return -ENODEV;
1061 }
af3b8881 1062
319fb0d2 1063 /* init swap_buf function according to word width configuration */
1064 if (spi->bits_per_word == 32)
1065 ifx_dev->swap_buf = swap_buf_32;
1066 else if (spi->bits_per_word == 16)
1067 ifx_dev->swap_buf = swap_buf_16;
1068 else
1069 ifx_dev->swap_buf = swap_buf_8;
1070
af3b8881
RG
1071 /* ensure SPI protocol flags are initialized to enable transfer */
1072 ifx_dev->spi_more = 0;
1073 ifx_dev->spi_slave_cts = 0;
1074
1075 /*initialize transfer and dma buffers */
5fc32495 1076 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
af3b8881
RG
1077 IFX_SPI_TRANSFER_SIZE,
1078 &ifx_dev->tx_bus,
1079 GFP_KERNEL);
1080 if (!ifx_dev->tx_buffer) {
1081 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1082 ret = -ENOMEM;
1083 goto error_ret;
1084 }
5fc32495 1085 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
af3b8881
RG
1086 IFX_SPI_TRANSFER_SIZE,
1087 &ifx_dev->rx_bus,
1088 GFP_KERNEL);
1089 if (!ifx_dev->rx_buffer) {
1090 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1091 ret = -ENOMEM;
1092 goto error_ret;
1093 }
1094
1095 /* initialize waitq for modem reset */
1096 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1097
1098 spi_set_drvdata(spi, ifx_dev);
1099 tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1100 (unsigned long)ifx_dev);
1101
1102 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1103
1104 /* create our tty port */
1105 ret = ifx_spi_create_port(ifx_dev);
1106 if (ret != 0) {
1107 dev_err(&spi->dev, "create default tty port failed");
1108 goto error_ret;
1109 }
1110
2f1522ec
RG
1111 ifx_dev->gpio.reset = pl_data->rst_pmu;
1112 ifx_dev->gpio.po = pl_data->pwr_on;
1113 ifx_dev->gpio.mrdy = pl_data->mrdy;
1114 ifx_dev->gpio.srdy = pl_data->srdy;
1115 ifx_dev->gpio.reset_out = pl_data->rst_out;
af3b8881
RG
1116
1117 dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1118 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1119 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1120
1121 /* Configure gpios */
1122 ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1123 if (ret < 0) {
1124 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1125 ifx_dev->gpio.reset);
1126 goto error_ret;
1127 }
1128 ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1129 ret += gpio_export(ifx_dev->gpio.reset, 1);
1130 if (ret) {
1131 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1132 ifx_dev->gpio.reset);
1133 ret = -EBUSY;
1134 goto error_ret2;
1135 }
1136
1137 ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1138 ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1139 ret += gpio_export(ifx_dev->gpio.po, 1);
1140 if (ret) {
1141 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1142 ifx_dev->gpio.po);
1143 ret = -EBUSY;
1144 goto error_ret3;
1145 }
1146
1147 ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1148 if (ret < 0) {
1149 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1150 ifx_dev->gpio.mrdy);
1151 goto error_ret3;
1152 }
1153 ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1154 ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1155 if (ret) {
1156 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1157 ifx_dev->gpio.mrdy);
1158 ret = -EBUSY;
1159 goto error_ret4;
1160 }
1161
1162 ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1163 if (ret < 0) {
1164 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1165 ifx_dev->gpio.srdy);
1166 ret = -EBUSY;
1167 goto error_ret4;
1168 }
1169 ret += gpio_export(ifx_dev->gpio.srdy, 1);
1170 ret += gpio_direction_input(ifx_dev->gpio.srdy);
1171 if (ret) {
1172 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1173 ifx_dev->gpio.srdy);
1174 ret = -EBUSY;
1175 goto error_ret5;
1176 }
1177
1178 ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1179 if (ret < 0) {
1180 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1181 ifx_dev->gpio.reset_out);
1182 goto error_ret5;
1183 }
1184 ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1185 ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1186 if (ret) {
1187 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1188 ifx_dev->gpio.reset_out);
1189 ret = -EBUSY;
1190 goto error_ret6;
1191 }
1192
1193 ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1194 ifx_spi_reset_interrupt,
1195 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1196 (void *)ifx_dev);
1197 if (ret) {
1198 dev_err(&spi->dev, "Unable to get irq %x\n",
1199 gpio_to_irq(ifx_dev->gpio.reset_out));
1200 goto error_ret6;
1201 }
1202
1203 ret = ifx_spi_reset(ifx_dev);
1204
1205 ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1206 ifx_spi_srdy_interrupt,
1207 IRQF_TRIGGER_RISING, DRVNAME,
1208 (void *)ifx_dev);
1209 if (ret) {
1210 dev_err(&spi->dev, "Unable to get irq %x",
1211 gpio_to_irq(ifx_dev->gpio.srdy));
badb9533 1212 goto error_ret7;
af3b8881
RG
1213 }
1214
1215 /* set pm runtime power state and register with power system */
1216 pm_runtime_set_active(&spi->dev);
1217 pm_runtime_enable(&spi->dev);
1218
1219 /* handle case that modem is already signaling SRDY */
1220 /* no outgoing tty open at this point, this just satisfies the
1221 * modem's read and should reset communication properly
1222 */
1223 srdy = gpio_get_value(ifx_dev->gpio.srdy);
1224
1225 if (srdy) {
1226 mrdy_assert(ifx_dev);
1227 ifx_spi_handle_srdy(ifx_dev);
1228 } else
1229 mrdy_set_low(ifx_dev);
1230 return 0;
1231
badb9533
VK
1232error_ret7:
1233 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
af3b8881
RG
1234error_ret6:
1235 gpio_free(ifx_dev->gpio.srdy);
1236error_ret5:
1237 gpio_free(ifx_dev->gpio.mrdy);
1238error_ret4:
1239 gpio_free(ifx_dev->gpio.reset);
1240error_ret3:
1241 gpio_free(ifx_dev->gpio.po);
1242error_ret2:
1243 gpio_free(ifx_dev->gpio.reset_out);
1244error_ret:
1245 ifx_spi_free_device(ifx_dev);
1246 saved_ifx_dev = NULL;
1247 return ret;
1248}
1249
1250/**
1251 * ifx_spi_spi_remove - SPI device was removed
1252 * @spi: SPI device
1253 *
1254 * FIXME: We should be shutting the device down here not in
1255 * the module unload path.
1256 */
1257
1258static int ifx_spi_spi_remove(struct spi_device *spi)
1259{
1260 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1261 /* stop activity */
1262 tasklet_kill(&ifx_dev->io_work_tasklet);
1263 /* free irq */
1264 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1265 free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1266
1267 gpio_free(ifx_dev->gpio.srdy);
1268 gpio_free(ifx_dev->gpio.mrdy);
1269 gpio_free(ifx_dev->gpio.reset);
1270 gpio_free(ifx_dev->gpio.po);
1271 gpio_free(ifx_dev->gpio.reset_out);
1272
1273 /* free allocations */
1274 ifx_spi_free_device(ifx_dev);
1275
1276 saved_ifx_dev = NULL;
1277 return 0;
1278}
1279
1280/**
1281 * ifx_spi_spi_shutdown - called on SPI shutdown
1282 * @spi: SPI device
1283 *
1284 * No action needs to be taken here
1285 */
1286
1287static void ifx_spi_spi_shutdown(struct spi_device *spi)
1288{
1289}
1290
1291/*
1292 * various suspends and resumes have nothing to do
1293 * no hardware to save state for
1294 */
1295
1296/**
1297 * ifx_spi_spi_suspend - suspend SPI on system suspend
1298 * @dev: device being suspended
1299 *
1300 * Suspend the SPI side. No action needed on Intel MID platforms, may
1301 * need extending for other systems.
1302 */
1303static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1304{
1305 return 0;
1306}
1307
1308/**
1309 * ifx_spi_spi_resume - resume SPI side on system resume
1310 * @dev: device being suspended
1311 *
1312 * Suspend the SPI side. No action needed on Intel MID platforms, may
1313 * need extending for other systems.
1314 */
1315static int ifx_spi_spi_resume(struct spi_device *spi)
1316{
1317 return 0;
1318}
1319
1320/**
1321 * ifx_spi_pm_suspend - suspend modem on system suspend
1322 * @dev: device being suspended
1323 *
1324 * Suspend the modem. No action needed on Intel MID platforms, may
1325 * need extending for other systems.
1326 */
1327static int ifx_spi_pm_suspend(struct device *dev)
1328{
1329 return 0;
1330}
1331
1332/**
1333 * ifx_spi_pm_resume - resume modem on system resume
1334 * @dev: device being suspended
1335 *
1336 * Allow the modem to resume. No action needed.
1337 *
1338 * FIXME: do we need to reset anything here ?
1339 */
1340static int ifx_spi_pm_resume(struct device *dev)
1341{
1342 return 0;
1343}
1344
1345/**
1346 * ifx_spi_pm_runtime_resume - suspend modem
1347 * @dev: device being suspended
1348 *
1349 * Allow the modem to resume. No action needed.
1350 */
1351static int ifx_spi_pm_runtime_resume(struct device *dev)
1352{
1353 return 0;
1354}
1355
1356/**
1357 * ifx_spi_pm_runtime_suspend - suspend modem
1358 * @dev: device being suspended
1359 *
1360 * Allow the modem to suspend and thus suspend to continue up the
1361 * device tree.
1362 */
1363static int ifx_spi_pm_runtime_suspend(struct device *dev)
1364{
1365 return 0;
1366}
1367
1368/**
1369 * ifx_spi_pm_runtime_idle - check if modem idle
1370 * @dev: our device
1371 *
1372 * Check conditions and queue runtime suspend if idle.
1373 */
1374static int ifx_spi_pm_runtime_idle(struct device *dev)
1375{
1376 struct spi_device *spi = to_spi_device(dev);
1377 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1378
1379 if (!ifx_dev->power_status)
1380 pm_runtime_suspend(dev);
1381
1382 return 0;
1383}
1384
1385static const struct dev_pm_ops ifx_spi_pm = {
1386 .resume = ifx_spi_pm_resume,
1387 .suspend = ifx_spi_pm_suspend,
1388 .runtime_resume = ifx_spi_pm_runtime_resume,
1389 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1390 .runtime_idle = ifx_spi_pm_runtime_idle
1391};
1392
1393static const struct spi_device_id ifx_id_table[] = {
1394 {"ifx6160", 0},
1395 {"ifx6260", 0},
1396 { }
1397};
1398MODULE_DEVICE_TABLE(spi, ifx_id_table);
1399
1400/* spi operations */
7d9739cd 1401static struct spi_driver ifx_spi_driver = {
af3b8881 1402 .driver = {
8115be01 1403 .name = DRVNAME,
af3b8881
RG
1404 .pm = &ifx_spi_pm,
1405 .owner = THIS_MODULE},
1406 .probe = ifx_spi_spi_probe,
1407 .shutdown = ifx_spi_spi_shutdown,
2d47b716 1408 .remove = ifx_spi_spi_remove,
af3b8881
RG
1409 .suspend = ifx_spi_spi_suspend,
1410 .resume = ifx_spi_spi_resume,
1411 .id_table = ifx_id_table
1412};
1413
1414/**
1415 * ifx_spi_exit - module exit
1416 *
1417 * Unload the module.
1418 */
1419
1420static void __exit ifx_spi_exit(void)
1421{
1422 /* unregister */
1423 tty_unregister_driver(tty_drv);
8115be01 1424 spi_unregister_driver((void *)&ifx_spi_driver);
af3b8881
RG
1425}
1426
1427/**
1428 * ifx_spi_init - module entry point
1429 *
1430 * Initialise the SPI and tty interfaces for the IFX SPI driver
1431 * We need to initialize upper-edge spi driver after the tty
1432 * driver because otherwise the spi probe will race
1433 */
1434
1435static int __init ifx_spi_init(void)
1436{
1437 int result;
1438
1439 tty_drv = alloc_tty_driver(1);
1440 if (!tty_drv) {
1441 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1442 return -ENOMEM;
1443 }
1444
af3b8881
RG
1445 tty_drv->driver_name = DRVNAME;
1446 tty_drv->name = TTYNAME;
1447 tty_drv->minor_start = IFX_SPI_TTY_ID;
af3b8881
RG
1448 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1449 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1450 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1451 tty_drv->init_termios = tty_std_termios;
1452
1453 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1454
1455 result = tty_register_driver(tty_drv);
1456 if (result) {
1457 pr_err("%s: tty_register_driver failed(%d)",
1458 DRVNAME, result);
a4fb0b22 1459 put_tty_driver(tty_drv);
af3b8881
RG
1460 return result;
1461 }
1462
8115be01 1463 result = spi_register_driver((void *)&ifx_spi_driver);
af3b8881
RG
1464 if (result) {
1465 pr_err("%s: spi_register_driver failed(%d)",
1466 DRVNAME, result);
1467 tty_unregister_driver(tty_drv);
1468 }
1469 return result;
1470}
1471
1472module_init(ifx_spi_init);
1473module_exit(ifx_spi_exit);
1474
1475MODULE_AUTHOR("Intel");
1476MODULE_DESCRIPTION("IFX6x60 spi driver");
1477MODULE_LICENSE("GPL");
1478MODULE_INFO(Version, "0.1-IFX6x60");
This page took 0.38054 seconds and 5 git commands to generate.