USB: fix usb_serial_suspend(): buggy code
[deliverable/linux.git] / drivers / usb / core / message.c
CommitLineData
1da177e4
LT
1/*
2 * message.c - synchronous message handling
3 */
4
1da177e4
LT
5#include <linux/pci.h> /* for scatterlist macros */
6#include <linux/usb.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/init.h>
10#include <linux/mm.h>
11#include <linux/timer.h>
12#include <linux/ctype.h>
13#include <linux/device.h>
7ceec1f1 14#include <linux/usb/quirks.h>
1da177e4 15#include <asm/byteorder.h>
5d68dfcf 16#include <asm/scatterlist.h>
1da177e4
LT
17
18#include "hcd.h" /* for usbcore internals */
19#include "usb.h"
20
7d12e780 21static void usb_api_blocking_completion(struct urb *urb)
1da177e4
LT
22{
23 complete((struct completion *)urb->context);
24}
25
26
ecdc0a59
FBH
27/*
28 * Starts urb and waits for completion or timeout. Note that this call
29 * is NOT interruptible. Many device driver i/o requests should be
30 * interruptible and therefore these drivers should implement their
31 * own interruptible routines.
32 */
33static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
1da177e4 34{
ecdc0a59
FBH
35 struct completion done;
36 unsigned long expire;
3fc3e826
GKH
37 int retval;
38 int status = urb->status;
1da177e4
LT
39
40 init_completion(&done);
41 urb->context = &done;
1da177e4 42 urb->actual_length = 0;
3fc3e826
GKH
43 retval = usb_submit_urb(urb, GFP_NOIO);
44 if (unlikely(retval))
ecdc0a59 45 goto out;
1da177e4 46
ecdc0a59
FBH
47 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
48 if (!wait_for_completion_timeout(&done, expire)) {
49
50 dev_dbg(&urb->dev->dev,
51 "%s timed out on ep%d%s len=%d/%d\n",
52 current->comm,
53 usb_pipeendpoint(urb->pipe),
54 usb_pipein(urb->pipe) ? "in" : "out",
55 urb->actual_length,
56 urb->transfer_buffer_length);
1da177e4 57
ecdc0a59 58 usb_kill_urb(urb);
3fc3e826 59 retval = status == -ENOENT ? -ETIMEDOUT : status;
ecdc0a59 60 } else
3fc3e826 61 retval = status;
ecdc0a59 62out:
1da177e4
LT
63 if (actual_length)
64 *actual_length = urb->actual_length;
ecdc0a59 65
1da177e4 66 usb_free_urb(urb);
3fc3e826 67 return retval;
1da177e4
LT
68}
69
70/*-------------------------------------------------------------------*/
71// returns status (negative) or length (positive)
72static int usb_internal_control_msg(struct usb_device *usb_dev,
73 unsigned int pipe,
74 struct usb_ctrlrequest *cmd,
75 void *data, int len, int timeout)
76{
77 struct urb *urb;
78 int retv;
79 int length;
80
81 urb = usb_alloc_urb(0, GFP_NOIO);
82 if (!urb)
83 return -ENOMEM;
84
85 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
86 len, usb_api_blocking_completion, NULL);
87
88 retv = usb_start_wait_urb(urb, timeout, &length);
89 if (retv < 0)
90 return retv;
91 else
92 return length;
93}
94
95/**
96 * usb_control_msg - Builds a control urb, sends it off and waits for completion
97 * @dev: pointer to the usb device to send the message to
98 * @pipe: endpoint "pipe" to send the message to
99 * @request: USB message request value
100 * @requesttype: USB message request type value
101 * @value: USB message value
102 * @index: USB message index value
103 * @data: pointer to the data to send
104 * @size: length in bytes of the data to send
105 * @timeout: time in msecs to wait for the message to complete before
106 * timing out (if 0 the wait is forever)
107 * Context: !in_interrupt ()
108 *
109 * This function sends a simple control message to a specified endpoint
110 * and waits for the message to complete, or timeout.
111 *
112 * If successful, it returns the number of bytes transferred, otherwise a negative error number.
113 *
114 * Don't use this function from within an interrupt context, like a
115 * bottom half handler. If you need an asynchronous message, or need to send
116 * a message from within interrupt context, use usb_submit_urb()
117 * If a thread in your driver uses this call, make sure your disconnect()
118 * method can wait for it to complete. Since you don't have a handle on
119 * the URB used, you can't cancel the request.
120 */
121int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
122 __u16 value, __u16 index, void *data, __u16 size, int timeout)
123{
124 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
125 int ret;
126
127 if (!dr)
128 return -ENOMEM;
129
130 dr->bRequestType= requesttype;
131 dr->bRequest = request;
132 dr->wValue = cpu_to_le16p(&value);
133 dr->wIndex = cpu_to_le16p(&index);
134 dr->wLength = cpu_to_le16p(&size);
135
136 //dbg("usb_control_msg");
137
138 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
139
140 kfree(dr);
141
142 return ret;
143}
144
145
782a7a63
GKH
146/**
147 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
148 * @usb_dev: pointer to the usb device to send the message to
149 * @pipe: endpoint "pipe" to send the message to
150 * @data: pointer to the data to send
151 * @len: length in bytes of the data to send
152 * @actual_length: pointer to a location to put the actual length transferred in bytes
153 * @timeout: time in msecs to wait for the message to complete before
154 * timing out (if 0 the wait is forever)
155 * Context: !in_interrupt ()
156 *
157 * This function sends a simple interrupt message to a specified endpoint and
158 * waits for the message to complete, or timeout.
159 *
160 * If successful, it returns 0, otherwise a negative error number. The number
161 * of actual bytes transferred will be stored in the actual_length paramater.
162 *
163 * Don't use this function from within an interrupt context, like a bottom half
164 * handler. If you need an asynchronous message, or need to send a message
165 * from within interrupt context, use usb_submit_urb() If a thread in your
166 * driver uses this call, make sure your disconnect() method can wait for it to
167 * complete. Since you don't have a handle on the URB used, you can't cancel
168 * the request.
169 */
170int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
171 void *data, int len, int *actual_length, int timeout)
172{
173 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
174}
175EXPORT_SYMBOL_GPL(usb_interrupt_msg);
176
1da177e4
LT
177/**
178 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
179 * @usb_dev: pointer to the usb device to send the message to
180 * @pipe: endpoint "pipe" to send the message to
181 * @data: pointer to the data to send
182 * @len: length in bytes of the data to send
183 * @actual_length: pointer to a location to put the actual length transferred in bytes
184 * @timeout: time in msecs to wait for the message to complete before
185 * timing out (if 0 the wait is forever)
186 * Context: !in_interrupt ()
187 *
188 * This function sends a simple bulk message to a specified endpoint
189 * and waits for the message to complete, or timeout.
190 *
191 * If successful, it returns 0, otherwise a negative error number.
192 * The number of actual bytes transferred will be stored in the
193 * actual_length paramater.
194 *
195 * Don't use this function from within an interrupt context, like a
196 * bottom half handler. If you need an asynchronous message, or need to
197 * send a message from within interrupt context, use usb_submit_urb()
198 * If a thread in your driver uses this call, make sure your disconnect()
199 * method can wait for it to complete. Since you don't have a handle on
200 * the URB used, you can't cancel the request.
d09d36a9
AS
201 *
202 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
203 * ioctl, users are forced to abuse this routine by using it to submit
204 * URBs for interrupt endpoints. We will take the liberty of creating
205 * an interrupt URB (with the default interval) if the target is an
206 * interrupt endpoint.
1da177e4
LT
207 */
208int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
209 void *data, int len, int *actual_length, int timeout)
210{
211 struct urb *urb;
d09d36a9 212 struct usb_host_endpoint *ep;
1da177e4 213
d09d36a9
AS
214 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
215 [usb_pipeendpoint(pipe)];
216 if (!ep || len < 0)
1da177e4
LT
217 return -EINVAL;
218
d09d36a9 219 urb = usb_alloc_urb(0, GFP_KERNEL);
1da177e4
LT
220 if (!urb)
221 return -ENOMEM;
222
d09d36a9
AS
223 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
224 USB_ENDPOINT_XFER_INT) {
225 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
226 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
8d062b9a
AS
227 usb_api_blocking_completion, NULL,
228 ep->desc.bInterval);
d09d36a9
AS
229 } else
230 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
231 usb_api_blocking_completion, NULL);
1da177e4
LT
232
233 return usb_start_wait_urb(urb, timeout, actual_length);
234}
235
236/*-------------------------------------------------------------------*/
237
238static void sg_clean (struct usb_sg_request *io)
239{
240 if (io->urbs) {
241 while (io->entries--)
242 usb_free_urb (io->urbs [io->entries]);
243 kfree (io->urbs);
244 io->urbs = NULL;
245 }
246 if (io->dev->dev.dma_mask != NULL)
247 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
248 io->dev = NULL;
249}
250
7d12e780 251static void sg_complete (struct urb *urb)
1da177e4 252{
ec17cf1c 253 struct usb_sg_request *io = urb->context;
3fc3e826 254 int status = urb->status;
1da177e4
LT
255
256 spin_lock (&io->lock);
257
258 /* In 2.5 we require hcds' endpoint queues not to progress after fault
259 * reports, until the completion callback (this!) returns. That lets
260 * device driver code (like this routine) unlink queued urbs first,
261 * if it needs to, since the HC won't work on them at all. So it's
262 * not possible for page N+1 to overwrite page N, and so on.
263 *
264 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
265 * complete before the HCD can get requests away from hardware,
266 * though never during cleanup after a hard fault.
267 */
268 if (io->status
269 && (io->status != -ECONNRESET
3fc3e826 270 || status != -ECONNRESET)
1da177e4
LT
271 && urb->actual_length) {
272 dev_err (io->dev->bus->controller,
273 "dev %s ep%d%s scatterlist error %d/%d\n",
274 io->dev->devpath,
275 usb_pipeendpoint (urb->pipe),
276 usb_pipein (urb->pipe) ? "in" : "out",
3fc3e826 277 status, io->status);
1da177e4
LT
278 // BUG ();
279 }
280
3fc3e826
GKH
281 if (io->status == 0 && status && status != -ECONNRESET) {
282 int i, found, retval;
1da177e4 283
3fc3e826 284 io->status = status;
1da177e4
LT
285
286 /* the previous urbs, and this one, completed already.
287 * unlink pending urbs so they won't rx/tx bad data.
288 * careful: unlink can sometimes be synchronous...
289 */
290 spin_unlock (&io->lock);
291 for (i = 0, found = 0; i < io->entries; i++) {
292 if (!io->urbs [i] || !io->urbs [i]->dev)
293 continue;
294 if (found) {
3fc3e826
GKH
295 retval = usb_unlink_urb (io->urbs [i]);
296 if (retval != -EINPROGRESS &&
297 retval != -ENODEV &&
298 retval != -EBUSY)
1da177e4
LT
299 dev_err (&io->dev->dev,
300 "%s, unlink --> %d\n",
3fc3e826 301 __FUNCTION__, retval);
1da177e4
LT
302 } else if (urb == io->urbs [i])
303 found = 1;
304 }
305 spin_lock (&io->lock);
306 }
307 urb->dev = NULL;
308
309 /* on the last completion, signal usb_sg_wait() */
310 io->bytes += urb->actual_length;
311 io->count--;
312 if (!io->count)
313 complete (&io->complete);
314
315 spin_unlock (&io->lock);
316}
317
318
319/**
320 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
321 * @io: request block being initialized. until usb_sg_wait() returns,
322 * treat this as a pointer to an opaque block of memory,
323 * @dev: the usb device that will send or receive the data
324 * @pipe: endpoint "pipe" used to transfer the data
325 * @period: polling rate for interrupt endpoints, in frames or
326 * (for high speed endpoints) microframes; ignored for bulk
327 * @sg: scatterlist entries
328 * @nents: how many entries in the scatterlist
329 * @length: how many bytes to send from the scatterlist, or zero to
330 * send every byte identified in the list.
331 * @mem_flags: SLAB_* flags affecting memory allocations in this call
332 *
333 * Returns zero for success, else a negative errno value. This initializes a
334 * scatter/gather request, allocating resources such as I/O mappings and urb
335 * memory (except maybe memory used by USB controller drivers).
336 *
337 * The request must be issued using usb_sg_wait(), which waits for the I/O to
338 * complete (or to be canceled) and then cleans up all resources allocated by
339 * usb_sg_init().
340 *
341 * The request may be canceled with usb_sg_cancel(), either before or after
342 * usb_sg_wait() is called.
343 */
344int usb_sg_init (
345 struct usb_sg_request *io,
346 struct usb_device *dev,
347 unsigned pipe,
348 unsigned period,
349 struct scatterlist *sg,
350 int nents,
351 size_t length,
55016f10 352 gfp_t mem_flags
1da177e4
LT
353)
354{
355 int i;
356 int urb_flags;
357 int dma;
358
359 if (!io || !dev || !sg
360 || usb_pipecontrol (pipe)
361 || usb_pipeisoc (pipe)
362 || nents <= 0)
363 return -EINVAL;
364
365 spin_lock_init (&io->lock);
366 io->dev = dev;
367 io->pipe = pipe;
368 io->sg = sg;
369 io->nents = nents;
370
371 /* not all host controllers use DMA (like the mainstream pci ones);
372 * they can use PIO (sl811) or be software over another transport.
373 */
374 dma = (dev->dev.dma_mask != NULL);
375 if (dma)
376 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
377 else
378 io->entries = nents;
379
380 /* initialize all the urbs we'll use */
381 if (io->entries <= 0)
382 return io->entries;
383
384 io->count = io->entries;
385 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
386 if (!io->urbs)
387 goto nomem;
388
b375a049 389 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
1da177e4
LT
390 if (usb_pipein (pipe))
391 urb_flags |= URB_SHORT_NOT_OK;
392
393 for (i = 0; i < io->entries; i++) {
394 unsigned len;
395
396 io->urbs [i] = usb_alloc_urb (0, mem_flags);
397 if (!io->urbs [i]) {
398 io->entries = i;
399 goto nomem;
400 }
401
402 io->urbs [i]->dev = NULL;
403 io->urbs [i]->pipe = pipe;
404 io->urbs [i]->interval = period;
405 io->urbs [i]->transfer_flags = urb_flags;
406
407 io->urbs [i]->complete = sg_complete;
408 io->urbs [i]->context = io;
1da177e4 409
35d07fd5
TL
410 /*
411 * Some systems need to revert to PIO when DMA is temporarily
412 * unavailable. For their sakes, both transfer_buffer and
413 * transfer_dma are set when possible. However this can only
414 * work on systems without HIGHMEM, since DMA buffers located
415 * in high memory are not directly addressable by the CPU for
416 * PIO ... so when HIGHMEM is in use, transfer_buffer is NULL
417 * to prevent stale pointers and to help spot bugs.
418 */
1da177e4 419 if (dma) {
1da177e4
LT
420 io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
421 len = sg_dma_len (sg + i);
35d07fd5
TL
422#ifdef CONFIG_HIGHMEM
423 io->urbs[i]->transfer_buffer = NULL;
424#else
425 io->urbs[i]->transfer_buffer =
426 page_address(sg[i].page) + sg[i].offset;
427#endif
1da177e4
LT
428 } else {
429 /* hc may use _only_ transfer_buffer */
430 io->urbs [i]->transfer_buffer =
431 page_address (sg [i].page) + sg [i].offset;
432 len = sg [i].length;
433 }
434
435 if (length) {
436 len = min_t (unsigned, len, length);
437 length -= len;
438 if (length == 0)
439 io->entries = i + 1;
440 }
441 io->urbs [i]->transfer_buffer_length = len;
442 }
443 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
444
445 /* transaction state */
446 io->status = 0;
447 io->bytes = 0;
448 init_completion (&io->complete);
449 return 0;
450
451nomem:
452 sg_clean (io);
453 return -ENOMEM;
454}
455
456
457/**
458 * usb_sg_wait - synchronously execute scatter/gather request
459 * @io: request block handle, as initialized with usb_sg_init().
460 * some fields become accessible when this call returns.
461 * Context: !in_interrupt ()
462 *
463 * This function blocks until the specified I/O operation completes. It
464 * leverages the grouping of the related I/O requests to get good transfer
465 * rates, by queueing the requests. At higher speeds, such queuing can
466 * significantly improve USB throughput.
467 *
468 * There are three kinds of completion for this function.
469 * (1) success, where io->status is zero. The number of io->bytes
470 * transferred is as requested.
471 * (2) error, where io->status is a negative errno value. The number
472 * of io->bytes transferred before the error is usually less
473 * than requested, and can be nonzero.
093cf723 474 * (3) cancellation, a type of error with status -ECONNRESET that
1da177e4
LT
475 * is initiated by usb_sg_cancel().
476 *
477 * When this function returns, all memory allocated through usb_sg_init() or
478 * this call will have been freed. The request block parameter may still be
479 * passed to usb_sg_cancel(), or it may be freed. It could also be
480 * reinitialized and then reused.
481 *
482 * Data Transfer Rates:
483 *
484 * Bulk transfers are valid for full or high speed endpoints.
485 * The best full speed data rate is 19 packets of 64 bytes each
486 * per frame, or 1216 bytes per millisecond.
487 * The best high speed data rate is 13 packets of 512 bytes each
488 * per microframe, or 52 KBytes per millisecond.
489 *
490 * The reason to use interrupt transfers through this API would most likely
491 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
492 * could be transferred. That capability is less useful for low or full
493 * speed interrupt endpoints, which allow at most one packet per millisecond,
494 * of at most 8 or 64 bytes (respectively).
495 */
496void usb_sg_wait (struct usb_sg_request *io)
497{
498 int i, entries = io->entries;
499
500 /* queue the urbs. */
501 spin_lock_irq (&io->lock);
8ccef0df
AS
502 i = 0;
503 while (i < entries && !io->status) {
1da177e4
LT
504 int retval;
505
506 io->urbs [i]->dev = io->dev;
54e6ecb2 507 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC);
1da177e4
LT
508
509 /* after we submit, let completions or cancelations fire;
510 * we handshake using io->status.
511 */
512 spin_unlock_irq (&io->lock);
513 switch (retval) {
514 /* maybe we retrying will recover */
515 case -ENXIO: // hc didn't queue this one
516 case -EAGAIN:
517 case -ENOMEM:
518 io->urbs[i]->dev = NULL;
519 retval = 0;
1da177e4
LT
520 yield ();
521 break;
522
523 /* no error? continue immediately.
524 *
525 * NOTE: to work better with UHCI (4K I/O buffer may
526 * need 3K of TDs) it may be good to limit how many
527 * URBs are queued at once; N milliseconds?
528 */
529 case 0:
8ccef0df 530 ++i;
1da177e4
LT
531 cpu_relax ();
532 break;
533
534 /* fail any uncompleted urbs */
535 default:
536 io->urbs [i]->dev = NULL;
537 io->urbs [i]->status = retval;
538 dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
539 __FUNCTION__, retval);
540 usb_sg_cancel (io);
541 }
542 spin_lock_irq (&io->lock);
543 if (retval && (io->status == 0 || io->status == -ECONNRESET))
544 io->status = retval;
545 }
546 io->count -= entries - i;
547 if (io->count == 0)
548 complete (&io->complete);
549 spin_unlock_irq (&io->lock);
550
551 /* OK, yes, this could be packaged as non-blocking.
552 * So could the submit loop above ... but it's easier to
553 * solve neither problem than to solve both!
554 */
555 wait_for_completion (&io->complete);
556
557 sg_clean (io);
558}
559
560/**
561 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
562 * @io: request block, initialized with usb_sg_init()
563 *
564 * This stops a request after it has been started by usb_sg_wait().
565 * It can also prevents one initialized by usb_sg_init() from starting,
566 * so that call just frees resources allocated to the request.
567 */
568void usb_sg_cancel (struct usb_sg_request *io)
569{
570 unsigned long flags;
571
572 spin_lock_irqsave (&io->lock, flags);
573
574 /* shut everything down, if it didn't already */
575 if (!io->status) {
576 int i;
577
578 io->status = -ECONNRESET;
579 spin_unlock (&io->lock);
580 for (i = 0; i < io->entries; i++) {
581 int retval;
582
583 if (!io->urbs [i]->dev)
584 continue;
585 retval = usb_unlink_urb (io->urbs [i]);
586 if (retval != -EINPROGRESS && retval != -EBUSY)
587 dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
588 __FUNCTION__, retval);
589 }
590 spin_lock (&io->lock);
591 }
592 spin_unlock_irqrestore (&io->lock, flags);
593}
594
595/*-------------------------------------------------------------------*/
596
597/**
598 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
599 * @dev: the device whose descriptor is being retrieved
600 * @type: the descriptor type (USB_DT_*)
601 * @index: the number of the descriptor
602 * @buf: where to put the descriptor
603 * @size: how big is "buf"?
604 * Context: !in_interrupt ()
605 *
606 * Gets a USB descriptor. Convenience functions exist to simplify
607 * getting some types of descriptors. Use
608 * usb_get_string() or usb_string() for USB_DT_STRING.
609 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
610 * are part of the device structure.
611 * In addition to a number of USB-standard descriptors, some
612 * devices also use class-specific or vendor-specific descriptors.
613 *
614 * This call is synchronous, and may not be used in an interrupt context.
615 *
616 * Returns the number of bytes received on success, or else the status code
617 * returned by the underlying usb_control_msg() call.
618 */
619int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
620{
621 int i;
622 int result;
623
624 memset(buf,0,size); // Make sure we parse really received data
625
626 for (i = 0; i < 3; ++i) {
627 /* retry on length 0 or stall; some devices are flakey */
628 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
629 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
630 (type << 8) + index, 0, buf, size,
631 USB_CTRL_GET_TIMEOUT);
632 if (result == 0 || result == -EPIPE)
633 continue;
634 if (result > 1 && ((u8 *)buf)[1] != type) {
635 result = -EPROTO;
636 continue;
637 }
638 break;
639 }
640 return result;
641}
642
643/**
644 * usb_get_string - gets a string descriptor
645 * @dev: the device whose string descriptor is being retrieved
646 * @langid: code for language chosen (from string descriptor zero)
647 * @index: the number of the descriptor
648 * @buf: where to put the string
649 * @size: how big is "buf"?
650 * Context: !in_interrupt ()
651 *
652 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
653 * in little-endian byte order).
654 * The usb_string() function will often be a convenient way to turn
655 * these strings into kernel-printable form.
656 *
657 * Strings may be referenced in device, configuration, interface, or other
658 * descriptors, and could also be used in vendor-specific ways.
659 *
660 * This call is synchronous, and may not be used in an interrupt context.
661 *
662 * Returns the number of bytes received on success, or else the status code
663 * returned by the underlying usb_control_msg() call.
664 */
e266a124
AB
665static int usb_get_string(struct usb_device *dev, unsigned short langid,
666 unsigned char index, void *buf, int size)
1da177e4
LT
667{
668 int i;
669 int result;
670
671 for (i = 0; i < 3; ++i) {
672 /* retry on length 0 or stall; some devices are flakey */
673 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
674 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
675 (USB_DT_STRING << 8) + index, langid, buf, size,
676 USB_CTRL_GET_TIMEOUT);
677 if (!(result == 0 || result == -EPIPE))
678 break;
679 }
680 return result;
681}
682
683static void usb_try_string_workarounds(unsigned char *buf, int *length)
684{
685 int newlength, oldlength = *length;
686
687 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
688 if (!isprint(buf[newlength]) || buf[newlength + 1])
689 break;
690
691 if (newlength > 2) {
692 buf[0] = newlength;
693 *length = newlength;
694 }
695}
696
697static int usb_string_sub(struct usb_device *dev, unsigned int langid,
698 unsigned int index, unsigned char *buf)
699{
700 int rc;
701
702 /* Try to read the string descriptor by asking for the maximum
703 * possible number of bytes */
7ceec1f1
ON
704 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
705 rc = -EIO;
706 else
707 rc = usb_get_string(dev, langid, index, buf, 255);
1da177e4
LT
708
709 /* If that failed try to read the descriptor length, then
710 * ask for just that many bytes */
711 if (rc < 2) {
712 rc = usb_get_string(dev, langid, index, buf, 2);
713 if (rc == 2)
714 rc = usb_get_string(dev, langid, index, buf, buf[0]);
715 }
716
717 if (rc >= 2) {
718 if (!buf[0] && !buf[1])
719 usb_try_string_workarounds(buf, &rc);
720
721 /* There might be extra junk at the end of the descriptor */
722 if (buf[0] < rc)
723 rc = buf[0];
724
725 rc = rc - (rc & 1); /* force a multiple of two */
726 }
727
728 if (rc < 2)
729 rc = (rc < 0 ? rc : -EINVAL);
730
731 return rc;
732}
733
734/**
735 * usb_string - returns ISO 8859-1 version of a string descriptor
736 * @dev: the device whose string descriptor is being retrieved
737 * @index: the number of the descriptor
738 * @buf: where to put the string
739 * @size: how big is "buf"?
740 * Context: !in_interrupt ()
741 *
742 * This converts the UTF-16LE encoded strings returned by devices, from
743 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
744 * that are more usable in most kernel contexts. Note that all characters
745 * in the chosen descriptor that can't be encoded using ISO-8859-1
746 * are converted to the question mark ("?") character, and this function
747 * chooses strings in the first language supported by the device.
748 *
749 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
750 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
751 * and is appropriate for use many uses of English and several other
752 * Western European languages. (But it doesn't include the "Euro" symbol.)
753 *
754 * This call is synchronous, and may not be used in an interrupt context.
755 *
756 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
757 */
758int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
759{
760 unsigned char *tbuf;
761 int err;
762 unsigned int u, idx;
763
764 if (dev->state == USB_STATE_SUSPENDED)
765 return -EHOSTUNREACH;
766 if (size <= 0 || !buf || !index)
767 return -EINVAL;
768 buf[0] = 0;
769 tbuf = kmalloc(256, GFP_KERNEL);
770 if (!tbuf)
771 return -ENOMEM;
772
773 /* get langid for strings if it's not yet known */
774 if (!dev->have_langid) {
775 err = usb_string_sub(dev, 0, 0, tbuf);
776 if (err < 0) {
777 dev_err (&dev->dev,
778 "string descriptor 0 read error: %d\n",
779 err);
780 goto errout;
781 } else if (err < 4) {
782 dev_err (&dev->dev, "string descriptor 0 too short\n");
783 err = -EINVAL;
784 goto errout;
785 } else {
ce361587 786 dev->have_langid = 1;
1da177e4
LT
787 dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
788 /* always use the first langid listed */
789 dev_dbg (&dev->dev, "default language 0x%04x\n",
790 dev->string_langid);
791 }
792 }
793
794 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
795 if (err < 0)
796 goto errout;
797
798 size--; /* leave room for trailing NULL char in output buffer */
799 for (idx = 0, u = 2; u < err; u += 2) {
800 if (idx >= size)
801 break;
802 if (tbuf[u+1]) /* high byte */
803 buf[idx++] = '?'; /* non ISO-8859-1 character */
804 else
805 buf[idx++] = tbuf[u];
806 }
807 buf[idx] = 0;
808 err = idx;
809
810 if (tbuf[1] != USB_DT_STRING)
811 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
812
813 errout:
814 kfree(tbuf);
815 return err;
816}
817
4f62efe6
AS
818/**
819 * usb_cache_string - read a string descriptor and cache it for later use
820 * @udev: the device whose string descriptor is being read
821 * @index: the descriptor index
822 *
823 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
824 * or NULL if the index is 0 or the string could not be read.
825 */
826char *usb_cache_string(struct usb_device *udev, int index)
827{
828 char *buf;
829 char *smallbuf = NULL;
830 int len;
831
832 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
833 if ((len = usb_string(udev, index, buf, 256)) > 0) {
834 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
835 return buf;
836 memcpy(smallbuf, buf, len);
837 }
838 kfree(buf);
839 }
840 return smallbuf;
841}
842
1da177e4
LT
843/*
844 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
845 * @dev: the device whose device descriptor is being updated
846 * @size: how much of the descriptor to read
847 * Context: !in_interrupt ()
848 *
849 * Updates the copy of the device descriptor stored in the device structure,
6ab16a90 850 * which dedicates space for this purpose.
1da177e4
LT
851 *
852 * Not exported, only for use by the core. If drivers really want to read
853 * the device descriptor directly, they can call usb_get_descriptor() with
854 * type = USB_DT_DEVICE and index = 0.
855 *
856 * This call is synchronous, and may not be used in an interrupt context.
857 *
858 * Returns the number of bytes received on success, or else the status code
859 * returned by the underlying usb_control_msg() call.
860 */
861int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
862{
863 struct usb_device_descriptor *desc;
864 int ret;
865
866 if (size > sizeof(*desc))
867 return -EINVAL;
868 desc = kmalloc(sizeof(*desc), GFP_NOIO);
869 if (!desc)
870 return -ENOMEM;
871
872 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
873 if (ret >= 0)
874 memcpy(&dev->descriptor, desc, size);
875 kfree(desc);
876 return ret;
877}
878
879/**
880 * usb_get_status - issues a GET_STATUS call
881 * @dev: the device whose status is being checked
882 * @type: USB_RECIP_*; for device, interface, or endpoint
883 * @target: zero (for device), else interface or endpoint number
884 * @data: pointer to two bytes of bitmap data
885 * Context: !in_interrupt ()
886 *
887 * Returns device, interface, or endpoint status. Normally only of
888 * interest to see if the device is self powered, or has enabled the
889 * remote wakeup facility; or whether a bulk or interrupt endpoint
890 * is halted ("stalled").
891 *
892 * Bits in these status bitmaps are set using the SET_FEATURE request,
893 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
894 * function should be used to clear halt ("stall") status.
895 *
896 * This call is synchronous, and may not be used in an interrupt context.
897 *
898 * Returns the number of bytes received on success, or else the status code
899 * returned by the underlying usb_control_msg() call.
900 */
901int usb_get_status(struct usb_device *dev, int type, int target, void *data)
902{
903 int ret;
904 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
905
906 if (!status)
907 return -ENOMEM;
908
909 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
910 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
911 sizeof(*status), USB_CTRL_GET_TIMEOUT);
912
913 *(u16 *)data = *status;
914 kfree(status);
915 return ret;
916}
917
918/**
919 * usb_clear_halt - tells device to clear endpoint halt/stall condition
920 * @dev: device whose endpoint is halted
921 * @pipe: endpoint "pipe" being cleared
922 * Context: !in_interrupt ()
923 *
924 * This is used to clear halt conditions for bulk and interrupt endpoints,
925 * as reported by URB completion status. Endpoints that are halted are
926 * sometimes referred to as being "stalled". Such endpoints are unable
927 * to transmit or receive data until the halt status is cleared. Any URBs
928 * queued for such an endpoint should normally be unlinked by the driver
929 * before clearing the halt condition, as described in sections 5.7.5
930 * and 5.8.5 of the USB 2.0 spec.
931 *
932 * Note that control and isochronous endpoints don't halt, although control
933 * endpoints report "protocol stall" (for unsupported requests) using the
934 * same status code used to report a true stall.
935 *
936 * This call is synchronous, and may not be used in an interrupt context.
937 *
938 * Returns zero on success, or else the status code returned by the
939 * underlying usb_control_msg() call.
940 */
941int usb_clear_halt(struct usb_device *dev, int pipe)
942{
943 int result;
944 int endp = usb_pipeendpoint(pipe);
945
946 if (usb_pipein (pipe))
947 endp |= USB_DIR_IN;
948
949 /* we don't care if it wasn't halted first. in fact some devices
950 * (like some ibmcam model 1 units) seem to expect hosts to make
951 * this request for iso endpoints, which can't halt!
952 */
953 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
954 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
955 USB_ENDPOINT_HALT, endp, NULL, 0,
956 USB_CTRL_SET_TIMEOUT);
957
958 /* don't un-halt or force to DATA0 except on success */
959 if (result < 0)
960 return result;
961
962 /* NOTE: seems like Microsoft and Apple don't bother verifying
963 * the clear "took", so some devices could lock up if you check...
964 * such as the Hagiwara FlashGate DUAL. So we won't bother.
965 *
966 * NOTE: make sure the logic here doesn't diverge much from
967 * the copy in usb-storage, for as long as we need two copies.
968 */
969
970 /* toggle was reset by the clear */
971 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
972
973 return 0;
974}
975
976/**
977 * usb_disable_endpoint -- Disable an endpoint by address
978 * @dev: the device whose endpoint is being disabled
979 * @epaddr: the endpoint's address. Endpoint number for output,
980 * endpoint number + USB_DIR_IN for input
981 *
982 * Deallocates hcd/hardware state for this endpoint ... and nukes all
983 * pending urbs.
984 *
985 * If the HCD hasn't registered a disable() function, this sets the
986 * endpoint's maxpacket size to 0 to prevent further submissions.
987 */
988void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
989{
990 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
991 struct usb_host_endpoint *ep;
992
993 if (!dev)
994 return;
995
996 if (usb_endpoint_out(epaddr)) {
997 ep = dev->ep_out[epnum];
998 dev->ep_out[epnum] = NULL;
999 } else {
1000 ep = dev->ep_in[epnum];
1001 dev->ep_in[epnum] = NULL;
1002 }
a6d2bb9f
AS
1003 if (ep && dev->bus)
1004 usb_hcd_endpoint_disable(dev, ep);
1da177e4
LT
1005}
1006
1007/**
1008 * usb_disable_interface -- Disable all endpoints for an interface
1009 * @dev: the device whose interface is being disabled
1010 * @intf: pointer to the interface descriptor
1011 *
1012 * Disables all the endpoints for the interface's current altsetting.
1013 */
1014void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1015{
1016 struct usb_host_interface *alt = intf->cur_altsetting;
1017 int i;
1018
1019 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1020 usb_disable_endpoint(dev,
1021 alt->endpoint[i].desc.bEndpointAddress);
1022 }
1023}
1024
1025/*
1026 * usb_disable_device - Disable all the endpoints for a USB device
1027 * @dev: the device whose endpoints are being disabled
1028 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1029 *
1030 * Disables all the device's endpoints, potentially including endpoint 0.
1031 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1032 * pending urbs) and usbcore state for the interfaces, so that usbcore
1033 * must usb_set_configuration() before any interfaces could be used.
1034 */
1035void usb_disable_device(struct usb_device *dev, int skip_ep0)
1036{
1037 int i;
1038
1039 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1040 skip_ep0 ? "non-ep0" : "all");
1041 for (i = skip_ep0; i < 16; ++i) {
1042 usb_disable_endpoint(dev, i);
1043 usb_disable_endpoint(dev, i + USB_DIR_IN);
1044 }
1045 dev->toggle[0] = dev->toggle[1] = 0;
1046
1047 /* getting rid of interfaces will disconnect
1048 * any drivers bound to them (a key side effect)
1049 */
1050 if (dev->actconfig) {
1051 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1052 struct usb_interface *interface;
1053
86d30741 1054 /* remove this interface if it has been registered */
1da177e4 1055 interface = dev->actconfig->interface[i];
d305ef5d 1056 if (!device_is_registered(&interface->dev))
86d30741 1057 continue;
1da177e4
LT
1058 dev_dbg (&dev->dev, "unregistering interface %s\n",
1059 interface->dev.bus_id);
1060 usb_remove_sysfs_intf_files(interface);
1da177e4
LT
1061 device_del (&interface->dev);
1062 }
1063
1064 /* Now that the interfaces are unbound, nobody should
1065 * try to access them.
1066 */
1067 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1068 put_device (&dev->actconfig->interface[i]->dev);
1069 dev->actconfig->interface[i] = NULL;
1070 }
1071 dev->actconfig = NULL;
1072 if (dev->state == USB_STATE_CONFIGURED)
1073 usb_set_device_state(dev, USB_STATE_ADDRESS);
1074 }
1075}
1076
1077
1078/*
1079 * usb_enable_endpoint - Enable an endpoint for USB communications
1080 * @dev: the device whose interface is being enabled
1081 * @ep: the endpoint
1082 *
1083 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1084 * For control endpoints, both the input and output sides are handled.
1085 */
1086static void
1087usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1088{
1089 unsigned int epaddr = ep->desc.bEndpointAddress;
1090 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1091 int is_control;
1092
1093 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1094 == USB_ENDPOINT_XFER_CONTROL);
1095 if (usb_endpoint_out(epaddr) || is_control) {
1096 usb_settoggle(dev, epnum, 1, 0);
1097 dev->ep_out[epnum] = ep;
1098 }
1099 if (!usb_endpoint_out(epaddr) || is_control) {
1100 usb_settoggle(dev, epnum, 0, 0);
1101 dev->ep_in[epnum] = ep;
1102 }
1103}
1104
1105/*
1106 * usb_enable_interface - Enable all the endpoints for an interface
1107 * @dev: the device whose interface is being enabled
1108 * @intf: pointer to the interface descriptor
1109 *
1110 * Enables all the endpoints for the interface's current altsetting.
1111 */
1112static void usb_enable_interface(struct usb_device *dev,
1113 struct usb_interface *intf)
1114{
1115 struct usb_host_interface *alt = intf->cur_altsetting;
1116 int i;
1117
1118 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1119 usb_enable_endpoint(dev, &alt->endpoint[i]);
1120}
1121
1122/**
1123 * usb_set_interface - Makes a particular alternate setting be current
1124 * @dev: the device whose interface is being updated
1125 * @interface: the interface being updated
1126 * @alternate: the setting being chosen.
1127 * Context: !in_interrupt ()
1128 *
1129 * This is used to enable data transfers on interfaces that may not
1130 * be enabled by default. Not all devices support such configurability.
1131 * Only the driver bound to an interface may change its setting.
1132 *
1133 * Within any given configuration, each interface may have several
1134 * alternative settings. These are often used to control levels of
1135 * bandwidth consumption. For example, the default setting for a high
1136 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1137 * while interrupt transfers of up to 3KBytes per microframe are legal.
1138 * Also, isochronous endpoints may never be part of an
1139 * interface's default setting. To access such bandwidth, alternate
1140 * interface settings must be made current.
1141 *
1142 * Note that in the Linux USB subsystem, bandwidth associated with
1143 * an endpoint in a given alternate setting is not reserved until an URB
1144 * is submitted that needs that bandwidth. Some other operating systems
1145 * allocate bandwidth early, when a configuration is chosen.
1146 *
1147 * This call is synchronous, and may not be used in an interrupt context.
1148 * Also, drivers must not change altsettings while urbs are scheduled for
1149 * endpoints in that interface; all such urbs must first be completed
1150 * (perhaps forced by unlinking).
1151 *
1152 * Returns zero on success, or else the status code returned by the
1153 * underlying usb_control_msg() call.
1154 */
1155int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1156{
1157 struct usb_interface *iface;
1158 struct usb_host_interface *alt;
1159 int ret;
1160 int manual = 0;
1161
1162 if (dev->state == USB_STATE_SUSPENDED)
1163 return -EHOSTUNREACH;
1164
1165 iface = usb_ifnum_to_if(dev, interface);
1166 if (!iface) {
1167 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1168 interface);
1169 return -EINVAL;
1170 }
1171
1172 alt = usb_altnum_to_altsetting(iface, alternate);
1173 if (!alt) {
1174 warn("selecting invalid altsetting %d", alternate);
1175 return -EINVAL;
1176 }
1177
1178 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1179 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1180 alternate, interface, NULL, 0, 5000);
1181
1182 /* 9.4.10 says devices don't need this and are free to STALL the
1183 * request if the interface only has one alternate setting.
1184 */
1185 if (ret == -EPIPE && iface->num_altsetting == 1) {
1186 dev_dbg(&dev->dev,
1187 "manual set_interface for iface %d, alt %d\n",
1188 interface, alternate);
1189 manual = 1;
1190 } else if (ret < 0)
1191 return ret;
1192
1193 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1194 * when they implement async or easily-killable versions of this or
1195 * other "should-be-internal" functions (like clear_halt).
1196 * should hcd+usbcore postprocess control requests?
1197 */
1198
1199 /* prevent submissions using previous endpoint settings */
0e6c8e8d
AS
1200 if (device_is_registered(&iface->dev))
1201 usb_remove_sysfs_intf_files(iface);
1da177e4
LT
1202 usb_disable_interface(dev, iface);
1203
1da177e4
LT
1204 iface->cur_altsetting = alt;
1205
1206 /* If the interface only has one altsetting and the device didn't
a81e7ecc 1207 * accept the request, we attempt to carry out the equivalent action
1da177e4
LT
1208 * by manually clearing the HALT feature for each endpoint in the
1209 * new altsetting.
1210 */
1211 if (manual) {
1212 int i;
1213
1214 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1215 unsigned int epaddr =
1216 alt->endpoint[i].desc.bEndpointAddress;
1217 unsigned int pipe =
1218 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1219 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1220
1221 usb_clear_halt(dev, pipe);
1222 }
1223 }
1224
1225 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1226 *
1227 * Note:
1228 * Despite EP0 is always present in all interfaces/AS, the list of
1229 * endpoints from the descriptor does not contain EP0. Due to its
1230 * omnipresence one might expect EP0 being considered "affected" by
1231 * any SetInterface request and hence assume toggles need to be reset.
1232 * However, EP0 toggles are re-synced for every individual transfer
1233 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1234 * (Likewise, EP0 never "halts" on well designed devices.)
1235 */
1236 usb_enable_interface(dev, iface);
0e6c8e8d
AS
1237 if (device_is_registered(&iface->dev))
1238 usb_create_sysfs_intf_files(iface);
1da177e4
LT
1239
1240 return 0;
1241}
1242
1243/**
1244 * usb_reset_configuration - lightweight device reset
1245 * @dev: the device whose configuration is being reset
1246 *
1247 * This issues a standard SET_CONFIGURATION request to the device using
1248 * the current configuration. The effect is to reset most USB-related
1249 * state in the device, including interface altsettings (reset to zero),
1250 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1251 * endpoints). Other usbcore state is unchanged, including bindings of
1252 * usb device drivers to interfaces.
1253 *
1254 * Because this affects multiple interfaces, avoid using this with composite
1255 * (multi-interface) devices. Instead, the driver for each interface may
a81e7ecc
DB
1256 * use usb_set_interface() on the interfaces it claims. Be careful though;
1257 * some devices don't support the SET_INTERFACE request, and others won't
1258 * reset all the interface state (notably data toggles). Resetting the whole
1da177e4
LT
1259 * configuration would affect other drivers' interfaces.
1260 *
1261 * The caller must own the device lock.
1262 *
1263 * Returns zero on success, else a negative error code.
1264 */
1265int usb_reset_configuration(struct usb_device *dev)
1266{
1267 int i, retval;
1268 struct usb_host_config *config;
1269
1270 if (dev->state == USB_STATE_SUSPENDED)
1271 return -EHOSTUNREACH;
1272
1273 /* caller must have locked the device and must own
1274 * the usb bus readlock (so driver bindings are stable);
1275 * calls during probe() are fine
1276 */
1277
1278 for (i = 1; i < 16; ++i) {
1279 usb_disable_endpoint(dev, i);
1280 usb_disable_endpoint(dev, i + USB_DIR_IN);
1281 }
1282
1283 config = dev->actconfig;
1284 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1285 USB_REQ_SET_CONFIGURATION, 0,
1286 config->desc.bConfigurationValue, 0,
1287 NULL, 0, USB_CTRL_SET_TIMEOUT);
0e6c8e8d 1288 if (retval < 0)
1da177e4 1289 return retval;
1da177e4
LT
1290
1291 dev->toggle[0] = dev->toggle[1] = 0;
1292
1293 /* re-init hc/hcd interface/endpoint state */
1294 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1295 struct usb_interface *intf = config->interface[i];
1296 struct usb_host_interface *alt;
1297
0e6c8e8d
AS
1298 if (device_is_registered(&intf->dev))
1299 usb_remove_sysfs_intf_files(intf);
1da177e4
LT
1300 alt = usb_altnum_to_altsetting(intf, 0);
1301
1302 /* No altsetting 0? We'll assume the first altsetting.
1303 * We could use a GetInterface call, but if a device is
1304 * so non-compliant that it doesn't have altsetting 0
1305 * then I wouldn't trust its reply anyway.
1306 */
1307 if (!alt)
1308 alt = &intf->altsetting[0];
1309
1310 intf->cur_altsetting = alt;
1311 usb_enable_interface(dev, intf);
0e6c8e8d
AS
1312 if (device_is_registered(&intf->dev))
1313 usb_create_sysfs_intf_files(intf);
1da177e4
LT
1314 }
1315 return 0;
1316}
1317
9f8b17e6 1318void usb_release_interface(struct device *dev)
1da177e4
LT
1319{
1320 struct usb_interface *intf = to_usb_interface(dev);
1321 struct usb_interface_cache *intfc =
1322 altsetting_to_usb_interface_cache(intf->altsetting);
1323
1324 kref_put(&intfc->ref, usb_release_interface_cache);
1325 kfree(intf);
1326}
1327
9f8b17e6
KS
1328#ifdef CONFIG_HOTPLUG
1329static int usb_if_uevent(struct device *dev, char **envp, int num_envp,
1330 char *buffer, int buffer_size)
1331{
1332 struct usb_device *usb_dev;
1333 struct usb_interface *intf;
1334 struct usb_host_interface *alt;
1335 int i = 0;
1336 int length = 0;
1337
1338 if (!dev)
1339 return -ENODEV;
1340
1341 /* driver is often null here; dev_dbg() would oops */
1342 pr_debug ("usb %s: uevent\n", dev->bus_id);
1343
1344 intf = to_usb_interface(dev);
1345 usb_dev = interface_to_usbdev(intf);
1346 alt = intf->cur_altsetting;
1347
1348 if (add_uevent_var(envp, num_envp, &i,
1349 buffer, buffer_size, &length,
1350 "INTERFACE=%d/%d/%d",
1351 alt->desc.bInterfaceClass,
1352 alt->desc.bInterfaceSubClass,
1353 alt->desc.bInterfaceProtocol))
1354 return -ENOMEM;
1355
1356 if (add_uevent_var(envp, num_envp, &i,
1357 buffer, buffer_size, &length,
1358 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1359 le16_to_cpu(usb_dev->descriptor.idVendor),
1360 le16_to_cpu(usb_dev->descriptor.idProduct),
1361 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1362 usb_dev->descriptor.bDeviceClass,
1363 usb_dev->descriptor.bDeviceSubClass,
1364 usb_dev->descriptor.bDeviceProtocol,
1365 alt->desc.bInterfaceClass,
1366 alt->desc.bInterfaceSubClass,
1367 alt->desc.bInterfaceProtocol))
1368 return -ENOMEM;
1369
1370 envp[i] = NULL;
1371 return 0;
1372}
1373
1374#else
1375
1376static int usb_if_uevent(struct device *dev, char **envp,
1377 int num_envp, char *buffer, int buffer_size)
1378{
1379 return -ENODEV;
1380}
1381#endif /* CONFIG_HOTPLUG */
1382
1383struct device_type usb_if_device_type = {
1384 .name = "usb_interface",
1385 .release = usb_release_interface,
1386 .uevent = usb_if_uevent,
1387};
1388
165fe97e
CN
1389static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1390 struct usb_host_config *config,
1391 u8 inum)
1392{
1393 struct usb_interface_assoc_descriptor *retval = NULL;
1394 struct usb_interface_assoc_descriptor *intf_assoc;
1395 int first_intf;
1396 int last_intf;
1397 int i;
1398
1399 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1400 intf_assoc = config->intf_assoc[i];
1401 if (intf_assoc->bInterfaceCount == 0)
1402 continue;
1403
1404 first_intf = intf_assoc->bFirstInterface;
1405 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1406 if (inum >= first_intf && inum <= last_intf) {
1407 if (!retval)
1408 retval = intf_assoc;
1409 else
1410 dev_err(&dev->dev, "Interface #%d referenced"
1411 " by multiple IADs\n", inum);
1412 }
1413 }
1414
1415 return retval;
1416}
1417
1418
1da177e4
LT
1419/*
1420 * usb_set_configuration - Makes a particular device setting be current
1421 * @dev: the device whose configuration is being updated
1422 * @configuration: the configuration being chosen.
1423 * Context: !in_interrupt(), caller owns the device lock
1424 *
1425 * This is used to enable non-default device modes. Not all devices
1426 * use this kind of configurability; many devices only have one
1427 * configuration.
1428 *
3f141e2a
AS
1429 * @configuration is the value of the configuration to be installed.
1430 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1431 * must be non-zero; a value of zero indicates that the device in
1432 * unconfigured. However some devices erroneously use 0 as one of their
1433 * configuration values. To help manage such devices, this routine will
1434 * accept @configuration = -1 as indicating the device should be put in
1435 * an unconfigured state.
1436 *
1da177e4
LT
1437 * USB device configurations may affect Linux interoperability,
1438 * power consumption and the functionality available. For example,
1439 * the default configuration is limited to using 100mA of bus power,
1440 * so that when certain device functionality requires more power,
1441 * and the device is bus powered, that functionality should be in some
1442 * non-default device configuration. Other device modes may also be
1443 * reflected as configuration options, such as whether two ISDN
1444 * channels are available independently; and choosing between open
1445 * standard device protocols (like CDC) or proprietary ones.
1446 *
1447 * Note that USB has an additional level of device configurability,
1448 * associated with interfaces. That configurability is accessed using
1449 * usb_set_interface().
1450 *
1451 * This call is synchronous. The calling context must be able to sleep,
1452 * must own the device lock, and must not hold the driver model's USB
341487a8 1453 * bus mutex; usb device driver probe() methods cannot use this routine.
1da177e4
LT
1454 *
1455 * Returns zero on success, or else the status code returned by the
093cf723 1456 * underlying call that failed. On successful completion, each interface
1da177e4
LT
1457 * in the original device configuration has been destroyed, and each one
1458 * in the new configuration has been probed by all relevant usb device
1459 * drivers currently known to the kernel.
1460 */
1461int usb_set_configuration(struct usb_device *dev, int configuration)
1462{
1463 int i, ret;
1464 struct usb_host_config *cp = NULL;
1465 struct usb_interface **new_interfaces = NULL;
1466 int n, nintf;
1467
3f141e2a
AS
1468 if (configuration == -1)
1469 configuration = 0;
1470 else {
1471 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1472 if (dev->config[i].desc.bConfigurationValue ==
1473 configuration) {
1474 cp = &dev->config[i];
1475 break;
1476 }
1da177e4
LT
1477 }
1478 }
1479 if ((!cp && configuration != 0))
1480 return -EINVAL;
1481
1482 /* The USB spec says configuration 0 means unconfigured.
1483 * But if a device includes a configuration numbered 0,
1484 * we will accept it as a correctly configured state.
3f141e2a 1485 * Use -1 if you really want to unconfigure the device.
1da177e4
LT
1486 */
1487 if (cp && configuration == 0)
1488 dev_warn(&dev->dev, "config 0 descriptor??\n");
1489
1da177e4
LT
1490 /* Allocate memory for new interfaces before doing anything else,
1491 * so that if we run out then nothing will have changed. */
1492 n = nintf = 0;
1493 if (cp) {
1494 nintf = cp->desc.bNumInterfaces;
1495 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1496 GFP_KERNEL);
1497 if (!new_interfaces) {
1498 dev_err(&dev->dev, "Out of memory");
1499 return -ENOMEM;
1500 }
1501
1502 for (; n < nintf; ++n) {
0a1ef3b5 1503 new_interfaces[n] = kzalloc(
1da177e4
LT
1504 sizeof(struct usb_interface),
1505 GFP_KERNEL);
1506 if (!new_interfaces[n]) {
1507 dev_err(&dev->dev, "Out of memory");
1508 ret = -ENOMEM;
1509free_interfaces:
1510 while (--n >= 0)
1511 kfree(new_interfaces[n]);
1512 kfree(new_interfaces);
1513 return ret;
1514 }
1515 }
1da177e4 1516
f48219db
HS
1517 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1518 if (i < 0)
1519 dev_warn(&dev->dev, "new config #%d exceeds power "
1520 "limit by %dmA\n",
1521 configuration, -i);
1522 }
55c52718 1523
01d883d4 1524 /* Wake up the device so we can send it the Set-Config request */
94fcda1f 1525 ret = usb_autoresume_device(dev);
01d883d4
AS
1526 if (ret)
1527 goto free_interfaces;
1528
6ad07129
AS
1529 /* if it's already configured, clear out old state first.
1530 * getting rid of old interfaces means unbinding their drivers.
1531 */
1532 if (dev->state != USB_STATE_ADDRESS)
1533 usb_disable_device (dev, 1); // Skip ep0
1534
1da177e4
LT
1535 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1536 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
6ad07129
AS
1537 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1538
1539 /* All the old state is gone, so what else can we do?
1540 * The device is probably useless now anyway.
1541 */
1542 cp = NULL;
1543 }
1da177e4
LT
1544
1545 dev->actconfig = cp;
6ad07129 1546 if (!cp) {
1da177e4 1547 usb_set_device_state(dev, USB_STATE_ADDRESS);
94fcda1f 1548 usb_autosuspend_device(dev);
6ad07129
AS
1549 goto free_interfaces;
1550 }
1551 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1da177e4 1552
6ad07129
AS
1553 /* Initialize the new interface structures and the
1554 * hc/hcd/usbcore interface/endpoint state.
1555 */
1556 for (i = 0; i < nintf; ++i) {
1557 struct usb_interface_cache *intfc;
1558 struct usb_interface *intf;
1559 struct usb_host_interface *alt;
1da177e4 1560
6ad07129
AS
1561 cp->interface[i] = intf = new_interfaces[i];
1562 intfc = cp->intf_cache[i];
1563 intf->altsetting = intfc->altsetting;
1564 intf->num_altsetting = intfc->num_altsetting;
165fe97e 1565 intf->intf_assoc = find_iad(dev, cp, i);
6ad07129 1566 kref_get(&intfc->ref);
1da177e4 1567
6ad07129
AS
1568 alt = usb_altnum_to_altsetting(intf, 0);
1569
1570 /* No altsetting 0? We'll assume the first altsetting.
1571 * We could use a GetInterface call, but if a device is
1572 * so non-compliant that it doesn't have altsetting 0
1573 * then I wouldn't trust its reply anyway.
1da177e4 1574 */
6ad07129
AS
1575 if (!alt)
1576 alt = &intf->altsetting[0];
1577
1578 intf->cur_altsetting = alt;
1579 usb_enable_interface(dev, intf);
1580 intf->dev.parent = &dev->dev;
1581 intf->dev.driver = NULL;
1582 intf->dev.bus = &usb_bus_type;
9f8b17e6 1583 intf->dev.type = &usb_if_device_type;
6ad07129 1584 intf->dev.dma_mask = dev->dev.dma_mask;
6ad07129
AS
1585 device_initialize (&intf->dev);
1586 mark_quiesced(intf);
1587 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1588 dev->bus->busnum, dev->devpath,
1589 configuration, alt->desc.bInterfaceNumber);
1590 }
1591 kfree(new_interfaces);
1592
1593 if (cp->string == NULL)
1594 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1595
1596 /* Now that all the interfaces are set up, register them
1597 * to trigger binding of drivers to interfaces. probe()
1598 * routines may install different altsettings and may
1599 * claim() any interfaces not yet bound. Many class drivers
1600 * need that: CDC, audio, video, etc.
1601 */
1602 for (i = 0; i < nintf; ++i) {
1603 struct usb_interface *intf = cp->interface[i];
1604
1605 dev_dbg (&dev->dev,
1606 "adding %s (config #%d, interface %d)\n",
1607 intf->dev.bus_id, configuration,
1608 intf->cur_altsetting->desc.bInterfaceNumber);
1609 ret = device_add (&intf->dev);
1610 if (ret != 0) {
1611 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1612 intf->dev.bus_id, ret);
1613 continue;
1da177e4 1614 }
6ad07129 1615 usb_create_sysfs_intf_files (intf);
1da177e4
LT
1616 }
1617
94fcda1f 1618 usb_autosuspend_device(dev);
86d30741 1619 return 0;
1da177e4
LT
1620}
1621
088dc270
AS
1622struct set_config_request {
1623 struct usb_device *udev;
1624 int config;
1625 struct work_struct work;
1626};
1627
1628/* Worker routine for usb_driver_set_configuration() */
c4028958 1629static void driver_set_config_work(struct work_struct *work)
088dc270 1630{
c4028958
DH
1631 struct set_config_request *req =
1632 container_of(work, struct set_config_request, work);
088dc270
AS
1633
1634 usb_lock_device(req->udev);
1635 usb_set_configuration(req->udev, req->config);
1636 usb_unlock_device(req->udev);
1637 usb_put_dev(req->udev);
1638 kfree(req);
1639}
1640
1641/**
1642 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1643 * @udev: the device whose configuration is being updated
1644 * @config: the configuration being chosen.
1645 * Context: In process context, must be able to sleep
1646 *
1647 * Device interface drivers are not allowed to change device configurations.
1648 * This is because changing configurations will destroy the interface the
1649 * driver is bound to and create new ones; it would be like a floppy-disk
1650 * driver telling the computer to replace the floppy-disk drive with a
1651 * tape drive!
1652 *
1653 * Still, in certain specialized circumstances the need may arise. This
1654 * routine gets around the normal restrictions by using a work thread to
1655 * submit the change-config request.
1656 *
1657 * Returns 0 if the request was succesfully queued, error code otherwise.
1658 * The caller has no way to know whether the queued request will eventually
1659 * succeed.
1660 */
1661int usb_driver_set_configuration(struct usb_device *udev, int config)
1662{
1663 struct set_config_request *req;
1664
1665 req = kmalloc(sizeof(*req), GFP_KERNEL);
1666 if (!req)
1667 return -ENOMEM;
1668 req->udev = udev;
1669 req->config = config;
c4028958 1670 INIT_WORK(&req->work, driver_set_config_work);
088dc270
AS
1671
1672 usb_get_dev(udev);
1737bf2c 1673 schedule_work(&req->work);
088dc270
AS
1674 return 0;
1675}
1676EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1677
1da177e4
LT
1678// synchronous request completion model
1679EXPORT_SYMBOL(usb_control_msg);
1680EXPORT_SYMBOL(usb_bulk_msg);
1681
1682EXPORT_SYMBOL(usb_sg_init);
1683EXPORT_SYMBOL(usb_sg_cancel);
1684EXPORT_SYMBOL(usb_sg_wait);
1685
1686// synchronous control message convenience routines
1687EXPORT_SYMBOL(usb_get_descriptor);
1688EXPORT_SYMBOL(usb_get_status);
1da177e4
LT
1689EXPORT_SYMBOL(usb_string);
1690
1691// synchronous calls that also maintain usbcore state
1692EXPORT_SYMBOL(usb_clear_halt);
1693EXPORT_SYMBOL(usb_reset_configuration);
1694EXPORT_SYMBOL(usb_set_interface);
1695
This page took 0.496118 seconds and 5 git commands to generate.