usb: gadget: dummy_hcd: fix null-deref free req
[deliverable/linux.git] / drivers / usb / gadget / pch_udc.c
CommitLineData
f646cf94 1/*
09b658dc 2 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
f646cf94
TO
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
f646cf94
TO
7 */
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/pci.h>
12#include <linux/delay.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/interrupt.h>
16#include <linux/usb/ch9.h>
17#include <linux/usb/gadget.h>
18
19/* Address offset of Registers */
20#define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
21
22#define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
23#define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
24#define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
25#define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
26#define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
27#define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
28#define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
29
30#define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
31#define UDC_DEVCTL_ADDR 0x404 /* Device control */
32#define UDC_DEVSTS_ADDR 0x408 /* Device status */
33#define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
34#define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
35#define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
36#define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
37#define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
38#define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
39#define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
40#define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
41
42/* Endpoint control register */
43/* Bit position */
44#define UDC_EPCTL_MRXFLUSH (1 << 12)
45#define UDC_EPCTL_RRDY (1 << 9)
46#define UDC_EPCTL_CNAK (1 << 8)
47#define UDC_EPCTL_SNAK (1 << 7)
48#define UDC_EPCTL_NAK (1 << 6)
49#define UDC_EPCTL_P (1 << 3)
50#define UDC_EPCTL_F (1 << 1)
51#define UDC_EPCTL_S (1 << 0)
52#define UDC_EPCTL_ET_SHIFT 4
53/* Mask patern */
54#define UDC_EPCTL_ET_MASK 0x00000030
55/* Value for ET field */
56#define UDC_EPCTL_ET_CONTROL 0
57#define UDC_EPCTL_ET_ISO 1
58#define UDC_EPCTL_ET_BULK 2
59#define UDC_EPCTL_ET_INTERRUPT 3
60
61/* Endpoint status register */
62/* Bit position */
63#define UDC_EPSTS_XFERDONE (1 << 27)
64#define UDC_EPSTS_RSS (1 << 26)
65#define UDC_EPSTS_RCS (1 << 25)
66#define UDC_EPSTS_TXEMPTY (1 << 24)
67#define UDC_EPSTS_TDC (1 << 10)
68#define UDC_EPSTS_HE (1 << 9)
69#define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
70#define UDC_EPSTS_BNA (1 << 7)
71#define UDC_EPSTS_IN (1 << 6)
72#define UDC_EPSTS_OUT_SHIFT 4
73/* Mask patern */
74#define UDC_EPSTS_OUT_MASK 0x00000030
75#define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
76/* Value for OUT field */
77#define UDC_EPSTS_OUT_SETUP 2
78#define UDC_EPSTS_OUT_DATA 1
79
80/* Device configuration register */
81/* Bit position */
82#define UDC_DEVCFG_CSR_PRG (1 << 17)
83#define UDC_DEVCFG_SP (1 << 3)
84/* SPD Valee */
85#define UDC_DEVCFG_SPD_HS 0x0
86#define UDC_DEVCFG_SPD_FS 0x1
87#define UDC_DEVCFG_SPD_LS 0x2
88
89/* Device control register */
90/* Bit position */
91#define UDC_DEVCTL_THLEN_SHIFT 24
92#define UDC_DEVCTL_BRLEN_SHIFT 16
93#define UDC_DEVCTL_CSR_DONE (1 << 13)
94#define UDC_DEVCTL_SD (1 << 10)
95#define UDC_DEVCTL_MODE (1 << 9)
96#define UDC_DEVCTL_BREN (1 << 8)
97#define UDC_DEVCTL_THE (1 << 7)
98#define UDC_DEVCTL_DU (1 << 4)
99#define UDC_DEVCTL_TDE (1 << 3)
100#define UDC_DEVCTL_RDE (1 << 2)
101#define UDC_DEVCTL_RES (1 << 0)
102
103/* Device status register */
104/* Bit position */
105#define UDC_DEVSTS_TS_SHIFT 18
106#define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
107#define UDC_DEVSTS_ALT_SHIFT 8
108#define UDC_DEVSTS_INTF_SHIFT 4
109#define UDC_DEVSTS_CFG_SHIFT 0
110/* Mask patern */
111#define UDC_DEVSTS_TS_MASK 0xfffc0000
112#define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
113#define UDC_DEVSTS_ALT_MASK 0x00000f00
114#define UDC_DEVSTS_INTF_MASK 0x000000f0
115#define UDC_DEVSTS_CFG_MASK 0x0000000f
116/* value for maximum speed for SPEED field */
117#define UDC_DEVSTS_ENUM_SPEED_FULL 1
118#define UDC_DEVSTS_ENUM_SPEED_HIGH 0
119#define UDC_DEVSTS_ENUM_SPEED_LOW 2
120#define UDC_DEVSTS_ENUM_SPEED_FULLX 3
121
122/* Device irq register */
123/* Bit position */
124#define UDC_DEVINT_RWKP (1 << 7)
125#define UDC_DEVINT_ENUM (1 << 6)
126#define UDC_DEVINT_SOF (1 << 5)
127#define UDC_DEVINT_US (1 << 4)
128#define UDC_DEVINT_UR (1 << 3)
129#define UDC_DEVINT_ES (1 << 2)
130#define UDC_DEVINT_SI (1 << 1)
131#define UDC_DEVINT_SC (1 << 0)
132/* Mask patern */
133#define UDC_DEVINT_MSK 0x7f
134
135/* Endpoint irq register */
136/* Bit position */
137#define UDC_EPINT_IN_SHIFT 0
138#define UDC_EPINT_OUT_SHIFT 16
139#define UDC_EPINT_IN_EP0 (1 << 0)
140#define UDC_EPINT_OUT_EP0 (1 << 16)
141/* Mask patern */
142#define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
143
144/* UDC_CSR_BUSY Status register */
145/* Bit position */
146#define UDC_CSR_BUSY (1 << 0)
147
148/* SOFT RESET register */
149/* Bit position */
150#define UDC_PSRST (1 << 1)
151#define UDC_SRST (1 << 0)
152
153/* USB_DEVICE endpoint register */
154/* Bit position */
155#define UDC_CSR_NE_NUM_SHIFT 0
156#define UDC_CSR_NE_DIR_SHIFT 4
157#define UDC_CSR_NE_TYPE_SHIFT 5
158#define UDC_CSR_NE_CFG_SHIFT 7
159#define UDC_CSR_NE_INTF_SHIFT 11
160#define UDC_CSR_NE_ALT_SHIFT 15
161#define UDC_CSR_NE_MAX_PKT_SHIFT 19
162/* Mask patern */
163#define UDC_CSR_NE_NUM_MASK 0x0000000f
164#define UDC_CSR_NE_DIR_MASK 0x00000010
165#define UDC_CSR_NE_TYPE_MASK 0x00000060
166#define UDC_CSR_NE_CFG_MASK 0x00000780
167#define UDC_CSR_NE_INTF_MASK 0x00007800
168#define UDC_CSR_NE_ALT_MASK 0x00078000
169#define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
170
171#define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
172#define PCH_UDC_EPINT(in, num)\
173 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
174
175/* Index of endpoint */
176#define UDC_EP0IN_IDX 0
177#define UDC_EP0OUT_IDX 1
178#define UDC_EPIN_IDX(ep) (ep * 2)
179#define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
180#define PCH_UDC_EP0 0
181#define PCH_UDC_EP1 1
182#define PCH_UDC_EP2 2
183#define PCH_UDC_EP3 3
184
185/* Number of endpoint */
186#define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
187#define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
188/* Length Value */
189#define PCH_UDC_BRLEN 0x0F /* Burst length */
190#define PCH_UDC_THLEN 0x1F /* Threshold length */
191/* Value of EP Buffer Size */
abab0c67
TO
192#define UDC_EP0IN_BUFF_SIZE 16
193#define UDC_EPIN_BUFF_SIZE 256
194#define UDC_EP0OUT_BUFF_SIZE 16
195#define UDC_EPOUT_BUFF_SIZE 256
f646cf94
TO
196/* Value of EP maximum packet size */
197#define UDC_EP0IN_MAX_PKT_SIZE 64
198#define UDC_EP0OUT_MAX_PKT_SIZE 64
199#define UDC_BULK_MAX_PKT_SIZE 512
200
201/* DMA */
202#define DMA_DIR_RX 1 /* DMA for data receive */
203#define DMA_DIR_TX 2 /* DMA for data transmit */
204#define DMA_ADDR_INVALID (~(dma_addr_t)0)
205#define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
206
207/**
208 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
209 * for data
210 * @status: Status quadlet
211 * @reserved: Reserved
212 * @dataptr: Buffer descriptor
213 * @next: Next descriptor
214 */
215struct pch_udc_data_dma_desc {
216 u32 status;
217 u32 reserved;
218 u32 dataptr;
219 u32 next;
220};
221
222/**
223 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
224 * for control data
225 * @status: Status
226 * @reserved: Reserved
227 * @data12: First setup word
228 * @data34: Second setup word
229 */
230struct pch_udc_stp_dma_desc {
231 u32 status;
232 u32 reserved;
233 struct usb_ctrlrequest request;
234} __attribute((packed));
235
236/* DMA status definitions */
237/* Buffer status */
238#define PCH_UDC_BUFF_STS 0xC0000000
239#define PCH_UDC_BS_HST_RDY 0x00000000
240#define PCH_UDC_BS_DMA_BSY 0x40000000
241#define PCH_UDC_BS_DMA_DONE 0x80000000
242#define PCH_UDC_BS_HST_BSY 0xC0000000
243/* Rx/Tx Status */
244#define PCH_UDC_RXTX_STS 0x30000000
245#define PCH_UDC_RTS_SUCC 0x00000000
246#define PCH_UDC_RTS_DESERR 0x10000000
247#define PCH_UDC_RTS_BUFERR 0x30000000
248/* Last Descriptor Indication */
249#define PCH_UDC_DMA_LAST 0x08000000
250/* Number of Rx/Tx Bytes Mask */
251#define PCH_UDC_RXTX_BYTES 0x0000ffff
252
253/**
254 * struct pch_udc_cfg_data - Structure to hold current configuration
255 * and interface information
256 * @cur_cfg: current configuration in use
257 * @cur_intf: current interface in use
258 * @cur_alt: current alt interface in use
259 */
260struct pch_udc_cfg_data {
261 u16 cur_cfg;
262 u16 cur_intf;
263 u16 cur_alt;
264};
265
266/**
267 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
268 * @ep: embedded ep request
269 * @td_stp_phys: for setup request
270 * @td_data_phys: for data request
271 * @td_stp: for setup request
272 * @td_data: for data request
273 * @dev: reference to device struct
274 * @offset_addr: offset address of ep register
275 * @desc: for this ep
276 * @queue: queue for requests
277 * @num: endpoint number
278 * @in: endpoint is IN
279 * @halted: endpoint halted?
280 * @epsts: Endpoint status
281 */
282struct pch_udc_ep {
283 struct usb_ep ep;
284 dma_addr_t td_stp_phys;
285 dma_addr_t td_data_phys;
286 struct pch_udc_stp_dma_desc *td_stp;
287 struct pch_udc_data_dma_desc *td_data;
288 struct pch_udc_dev *dev;
289 unsigned long offset_addr;
290 const struct usb_endpoint_descriptor *desc;
291 struct list_head queue;
292 unsigned num:5,
293 in:1,
294 halted:1;
295 unsigned long epsts;
296};
297
298/**
299 * struct pch_udc_dev - Structure holding complete information
300 * of the PCH USB device
301 * @gadget: gadget driver data
302 * @driver: reference to gadget driver bound
303 * @pdev: reference to the PCI device
304 * @ep: array of endpoints
305 * @lock: protects all state
306 * @active: enabled the PCI device
307 * @stall: stall requested
308 * @prot_stall: protcol stall requested
309 * @irq_registered: irq registered with system
310 * @mem_region: device memory mapped
311 * @registered: driver regsitered with system
312 * @suspended: driver in suspended state
313 * @connected: gadget driver associated
1c575d2d 314 * @vbus_session: required vbus_session state
f646cf94
TO
315 * @set_cfg_not_acked: pending acknowledgement 4 setup
316 * @waiting_zlp_ack: pending acknowledgement 4 ZLP
317 * @data_requests: DMA pool for data requests
318 * @stp_requests: DMA pool for setup requests
319 * @dma_addr: DMA pool for received
320 * @ep0out_buf: Buffer for DMA
321 * @setup_data: Received setup data
322 * @phys_addr: of device memory
323 * @base_addr: for mapped device memory
324 * @irq: IRQ line for the device
325 * @cfg_data: current cfg, intf, and alt in use
326 */
327struct pch_udc_dev {
328 struct usb_gadget gadget;
329 struct usb_gadget_driver *driver;
330 struct pci_dev *pdev;
331 struct pch_udc_ep ep[PCH_UDC_EP_NUM];
49e20834 332 spinlock_t lock; /* protects all state */
f646cf94
TO
333 unsigned active:1,
334 stall:1,
335 prot_stall:1,
336 irq_registered:1,
337 mem_region:1,
338 registered:1,
339 suspended:1,
340 connected:1,
1c575d2d 341 vbus_session:1,
f646cf94
TO
342 set_cfg_not_acked:1,
343 waiting_zlp_ack:1;
344 struct pci_pool *data_requests;
345 struct pci_pool *stp_requests;
346 dma_addr_t dma_addr;
abab0c67 347 void *ep0out_buf;
f646cf94
TO
348 struct usb_ctrlrequest setup_data;
349 unsigned long phys_addr;
350 void __iomem *base_addr;
351 unsigned irq;
352 struct pch_udc_cfg_data cfg_data;
353};
354
355#define PCH_UDC_PCI_BAR 1
356#define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
06f1b971
TM
357#define PCI_VENDOR_ID_ROHM 0x10DB
358#define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
731ad81e 359#define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
f646cf94
TO
360
361static const char ep0_string[] = "ep0in";
362static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
363struct pch_udc_dev *pch_udc; /* pointer to device object */
90ab5ee9 364static bool speed_fs;
f646cf94
TO
365module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
366MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
367
368/**
369 * struct pch_udc_request - Structure holding a PCH USB device request packet
370 * @req: embedded ep request
371 * @td_data_phys: phys. address
372 * @td_data: first dma desc. of chain
373 * @td_data_last: last dma desc. of chain
374 * @queue: associated queue
375 * @dma_going: DMA in progress for request
376 * @dma_mapped: DMA memory mapped for request
377 * @dma_done: DMA completed for request
378 * @chain_len: chain length
c17f459c
TO
379 * @buf: Buffer memory for align adjustment
380 * @dma: DMA memory for align adjustment
f646cf94
TO
381 */
382struct pch_udc_request {
383 struct usb_request req;
384 dma_addr_t td_data_phys;
385 struct pch_udc_data_dma_desc *td_data;
386 struct pch_udc_data_dma_desc *td_data_last;
387 struct list_head queue;
388 unsigned dma_going:1,
389 dma_mapped:1,
390 dma_done:1;
391 unsigned chain_len;
c17f459c
TO
392 void *buf;
393 dma_addr_t dma;
f646cf94
TO
394};
395
396static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
397{
398 return ioread32(dev->base_addr + reg);
399}
400
401static inline void pch_udc_writel(struct pch_udc_dev *dev,
402 unsigned long val, unsigned long reg)
403{
404 iowrite32(val, dev->base_addr + reg);
405}
406
407static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
408 unsigned long reg,
409 unsigned long bitmask)
410{
411 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
412}
413
414static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
415 unsigned long reg,
416 unsigned long bitmask)
417{
418 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
419}
420
421static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
422{
423 return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
424}
425
426static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
427 unsigned long val, unsigned long reg)
428{
429 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
430}
431
432static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
433 unsigned long reg,
434 unsigned long bitmask)
435{
436 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
437}
438
439static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
440 unsigned long reg,
441 unsigned long bitmask)
442{
443 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
444}
445
446/**
447 * pch_udc_csr_busy() - Wait till idle.
448 * @dev: Reference to pch_udc_dev structure
449 */
450static void pch_udc_csr_busy(struct pch_udc_dev *dev)
451{
452 unsigned int count = 200;
453
454 /* Wait till idle */
455 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
456 && --count)
457 cpu_relax();
458 if (!count)
459 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
460}
461
462/**
463 * pch_udc_write_csr() - Write the command and status registers.
464 * @dev: Reference to pch_udc_dev structure
465 * @val: value to be written to CSR register
466 * @addr: address of CSR register
467 */
468static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
469 unsigned int ep)
470{
471 unsigned long reg = PCH_UDC_CSR(ep);
472
473 pch_udc_csr_busy(dev); /* Wait till idle */
474 pch_udc_writel(dev, val, reg);
475 pch_udc_csr_busy(dev); /* Wait till idle */
476}
477
478/**
479 * pch_udc_read_csr() - Read the command and status registers.
480 * @dev: Reference to pch_udc_dev structure
481 * @addr: address of CSR register
482 *
483 * Return codes: content of CSR register
484 */
485static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
486{
487 unsigned long reg = PCH_UDC_CSR(ep);
488
489 pch_udc_csr_busy(dev); /* Wait till idle */
490 pch_udc_readl(dev, reg); /* Dummy read */
491 pch_udc_csr_busy(dev); /* Wait till idle */
492 return pch_udc_readl(dev, reg);
493}
494
495/**
496 * pch_udc_rmt_wakeup() - Initiate for remote wakeup
497 * @dev: Reference to pch_udc_dev structure
498 */
499static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
500{
501 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
502 mdelay(1);
503 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
504}
505
506/**
507 * pch_udc_get_frame() - Get the current frame from device status register
508 * @dev: Reference to pch_udc_dev structure
509 * Retern current frame
510 */
511static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
512{
513 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
514 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
515}
516
517/**
518 * pch_udc_clear_selfpowered() - Clear the self power control
519 * @dev: Reference to pch_udc_regs structure
520 */
521static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
522{
523 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
524}
525
526/**
527 * pch_udc_set_selfpowered() - Set the self power control
528 * @dev: Reference to pch_udc_regs structure
529 */
530static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
531{
532 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
533}
534
535/**
536 * pch_udc_set_disconnect() - Set the disconnect status.
537 * @dev: Reference to pch_udc_regs structure
538 */
539static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
540{
541 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
542}
543
544/**
545 * pch_udc_clear_disconnect() - Clear the disconnect status.
546 * @dev: Reference to pch_udc_regs structure
547 */
548static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
549{
550 /* Clear the disconnect */
551 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
552 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
553 mdelay(1);
554 /* Resume USB signalling */
555 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
556}
557
1c575d2d
TM
558/**
559 * pch_udc_reconnect() - This API initializes usb device controller,
560 * and clear the disconnect status.
561 * @dev: Reference to pch_udc_regs structure
562 */
563static void pch_udc_init(struct pch_udc_dev *dev);
564static void pch_udc_reconnect(struct pch_udc_dev *dev)
565{
566 pch_udc_init(dev);
567
568 /* enable device interrupts */
569 /* pch_udc_enable_interrupts() */
570 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
83331040 571 UDC_DEVINT_UR | UDC_DEVINT_ENUM);
1c575d2d
TM
572
573 /* Clear the disconnect */
574 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
575 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
576 mdelay(1);
577 /* Resume USB signalling */
578 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
579}
580
f646cf94
TO
581/**
582 * pch_udc_vbus_session() - set or clearr the disconnect status.
583 * @dev: Reference to pch_udc_regs structure
584 * @is_active: Parameter specifying the action
585 * 0: indicating VBUS power is ending
586 * !0: indicating VBUS power is starting
587 */
588static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
589 int is_active)
590{
1c575d2d
TM
591 if (is_active) {
592 pch_udc_reconnect(dev);
593 dev->vbus_session = 1;
594 } else {
595 if (dev->driver && dev->driver->disconnect) {
596 spin_unlock(&dev->lock);
597 dev->driver->disconnect(&dev->gadget);
598 spin_lock(&dev->lock);
599 }
f646cf94 600 pch_udc_set_disconnect(dev);
1c575d2d
TM
601 dev->vbus_session = 0;
602 }
f646cf94
TO
603}
604
605/**
606 * pch_udc_ep_set_stall() - Set the stall of endpoint
607 * @ep: Reference to structure of type pch_udc_ep_regs
608 */
609static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
610{
611 if (ep->in) {
612 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
613 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
614 } else {
615 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
616 }
617}
618
619/**
620 * pch_udc_ep_clear_stall() - Clear the stall of endpoint
621 * @ep: Reference to structure of type pch_udc_ep_regs
622 */
623static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
624{
625 /* Clear the stall */
626 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
627 /* Clear NAK by writing CNAK */
628 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
629}
630
631/**
632 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
633 * @ep: Reference to structure of type pch_udc_ep_regs
634 * @type: Type of endpoint
635 */
636static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
637 u8 type)
638{
639 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
640 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
641}
642
643/**
644 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
645 * @ep: Reference to structure of type pch_udc_ep_regs
c17f459c 646 * @buf_size: The buffer word size
f646cf94
TO
647 */
648static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
649 u32 buf_size, u32 ep_in)
650{
651 u32 data;
652 if (ep_in) {
653 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
654 data = (data & 0xffff0000) | (buf_size & 0xffff);
655 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
656 } else {
657 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
658 data = (buf_size << 16) | (data & 0xffff);
659 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
660 }
661}
662
663/**
664 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
665 * @ep: Reference to structure of type pch_udc_ep_regs
c17f459c 666 * @pkt_size: The packet byte size
f646cf94
TO
667 */
668static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
669{
670 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
671 data = (data & 0xffff0000) | (pkt_size & 0xffff);
672 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
673}
674
675/**
676 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
677 * @ep: Reference to structure of type pch_udc_ep_regs
678 * @addr: Address of the register
679 */
680static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
681{
682 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
683}
684
685/**
686 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
687 * @ep: Reference to structure of type pch_udc_ep_regs
688 * @addr: Address of the register
689 */
690static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
691{
692 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
693}
694
695/**
696 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
697 * @ep: Reference to structure of type pch_udc_ep_regs
698 */
699static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
700{
701 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
702}
703
704/**
705 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
706 * @ep: Reference to structure of type pch_udc_ep_regs
707 */
708static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
709{
710 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
711}
712
713/**
714 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
715 * @ep: Reference to structure of type pch_udc_ep_regs
716 */
717static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
718{
719 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
720}
721
722/**
723 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
724 * register depending on the direction specified
725 * @dev: Reference to structure of type pch_udc_regs
726 * @dir: whether Tx or Rx
727 * DMA_DIR_RX: Receive
728 * DMA_DIR_TX: Transmit
729 */
730static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
731{
732 if (dir == DMA_DIR_RX)
733 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
734 else if (dir == DMA_DIR_TX)
735 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
736}
737
738/**
739 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
740 * register depending on the direction specified
741 * @dev: Reference to structure of type pch_udc_regs
742 * @dir: Whether Tx or Rx
743 * DMA_DIR_RX: Receive
744 * DMA_DIR_TX: Transmit
745 */
746static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
747{
748 if (dir == DMA_DIR_RX)
749 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
750 else if (dir == DMA_DIR_TX)
751 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
752}
753
754/**
755 * pch_udc_set_csr_done() - Set the device control register
756 * CSR done field (bit 13)
757 * @dev: reference to structure of type pch_udc_regs
758 */
759static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
760{
761 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
762}
763
764/**
765 * pch_udc_disable_interrupts() - Disables the specified interrupts
766 * @dev: Reference to structure of type pch_udc_regs
767 * @mask: Mask to disable interrupts
768 */
769static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
770 u32 mask)
771{
772 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
773}
774
775/**
776 * pch_udc_enable_interrupts() - Enable the specified interrupts
777 * @dev: Reference to structure of type pch_udc_regs
778 * @mask: Mask to enable interrupts
779 */
780static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
781 u32 mask)
782{
783 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
784}
785
786/**
787 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
788 * @dev: Reference to structure of type pch_udc_regs
789 * @mask: Mask to disable interrupts
790 */
791static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
792 u32 mask)
793{
794 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
795}
796
797/**
798 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
799 * @dev: Reference to structure of type pch_udc_regs
800 * @mask: Mask to enable interrupts
801 */
802static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
803 u32 mask)
804{
805 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
806}
807
808/**
809 * pch_udc_read_device_interrupts() - Read the device interrupts
810 * @dev: Reference to structure of type pch_udc_regs
811 * Retern The device interrupts
812 */
813static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
814{
815 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
816}
817
818/**
819 * pch_udc_write_device_interrupts() - Write device interrupts
820 * @dev: Reference to structure of type pch_udc_regs
821 * @val: The value to be written to interrupt register
822 */
823static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
824 u32 val)
825{
826 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
827}
828
829/**
830 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
831 * @dev: Reference to structure of type pch_udc_regs
832 * Retern The endpoint interrupt
833 */
834static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
835{
836 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
837}
838
839/**
840 * pch_udc_write_ep_interrupts() - Clear endpoint interupts
841 * @dev: Reference to structure of type pch_udc_regs
842 * @val: The value to be written to interrupt register
843 */
844static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
845 u32 val)
846{
847 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
848}
849
850/**
851 * pch_udc_read_device_status() - Read the device status
852 * @dev: Reference to structure of type pch_udc_regs
853 * Retern The device status
854 */
855static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
856{
857 return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
858}
859
860/**
861 * pch_udc_read_ep_control() - Read the endpoint control
862 * @ep: Reference to structure of type pch_udc_ep_regs
863 * Retern The endpoint control register value
864 */
865static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
866{
867 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
868}
869
870/**
871 * pch_udc_clear_ep_control() - Clear the endpoint control register
872 * @ep: Reference to structure of type pch_udc_ep_regs
873 * Retern The endpoint control register value
874 */
875static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
876{
877 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
878}
879
880/**
881 * pch_udc_read_ep_status() - Read the endpoint status
882 * @ep: Reference to structure of type pch_udc_ep_regs
883 * Retern The endpoint status
884 */
885static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
886{
887 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
888}
889
890/**
891 * pch_udc_clear_ep_status() - Clear the endpoint status
892 * @ep: Reference to structure of type pch_udc_ep_regs
893 * @stat: Endpoint status
894 */
895static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
896 u32 stat)
897{
898 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
899}
900
901/**
902 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
903 * of the endpoint control register
904 * @ep: Reference to structure of type pch_udc_ep_regs
905 */
906static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
907{
908 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
909}
910
911/**
912 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
913 * of the endpoint control register
914 * @ep: reference to structure of type pch_udc_ep_regs
915 */
916static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
917{
918 unsigned int loopcnt = 0;
919 struct pch_udc_dev *dev = ep->dev;
920
921 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
922 return;
923 if (!ep->in) {
924 loopcnt = 10000;
925 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
926 --loopcnt)
927 udelay(5);
928 if (!loopcnt)
929 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
930 __func__);
931 }
932 loopcnt = 10000;
933 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
934 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
935 udelay(5);
936 }
937 if (!loopcnt)
938 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
939 __func__, ep->num, (ep->in ? "in" : "out"));
940}
941
942/**
943 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
944 * @ep: reference to structure of type pch_udc_ep_regs
945 * @dir: direction of endpoint
946 * 0: endpoint is OUT
947 * !0: endpoint is IN
948 */
949static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
950{
f646cf94
TO
951 if (dir) { /* IN ep */
952 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
953 return;
954 }
f646cf94
TO
955}
956
957/**
958 * pch_udc_ep_enable() - This api enables endpoint
959 * @regs: Reference to structure pch_udc_ep_regs
960 * @desc: endpoint descriptor
961 */
962static void pch_udc_ep_enable(struct pch_udc_ep *ep,
963 struct pch_udc_cfg_data *cfg,
964 const struct usb_endpoint_descriptor *desc)
965{
966 u32 val = 0;
967 u32 buff_size = 0;
968
969 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
970 if (ep->in)
971 buff_size = UDC_EPIN_BUFF_SIZE;
972 else
973 buff_size = UDC_EPOUT_BUFF_SIZE;
974 pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
29cc8897 975 pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
f646cf94
TO
976 pch_udc_ep_set_nak(ep);
977 pch_udc_ep_fifo_flush(ep, ep->in);
978 /* Configure the endpoint */
979 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
980 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
981 UDC_CSR_NE_TYPE_SHIFT) |
982 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
983 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
984 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
29cc8897 985 usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
f646cf94
TO
986
987 if (ep->in)
988 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
989 else
990 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
991}
992
993/**
994 * pch_udc_ep_disable() - This api disables endpoint
995 * @regs: Reference to structure pch_udc_ep_regs
996 */
997static void pch_udc_ep_disable(struct pch_udc_ep *ep)
998{
999 if (ep->in) {
1000 /* flush the fifo */
1001 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
1002 /* set NAK */
1003 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1004 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
1005 } else {
1006 /* set NAK */
1007 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1008 }
1009 /* reset desc pointer */
1010 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
1011}
1012
1013/**
1014 * pch_udc_wait_ep_stall() - Wait EP stall.
1015 * @dev: Reference to pch_udc_dev structure
1016 */
1017static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
1018{
1019 unsigned int count = 10000;
1020
1021 /* Wait till idle */
1022 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
1023 udelay(5);
1024 if (!count)
1025 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1026}
1027
1028/**
1029 * pch_udc_init() - This API initializes usb device controller
1030 * @dev: Rreference to pch_udc_regs structure
1031 */
1032static void pch_udc_init(struct pch_udc_dev *dev)
1033{
1034 if (NULL == dev) {
1035 pr_err("%s: Invalid address\n", __func__);
1036 return;
1037 }
1038 /* Soft Reset and Reset PHY */
1039 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1040 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1041 mdelay(1);
1042 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1043 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1044 mdelay(1);
1045 /* mask and clear all device interrupts */
1046 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1047 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1048
1049 /* mask and clear all ep interrupts */
1050 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1051 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1052
1053 /* enable dynamic CSR programmingi, self powered and device speed */
1054 if (speed_fs)
1055 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1056 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1057 else /* defaul high speed */
1058 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1059 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1060 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1061 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1062 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1063 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1064 UDC_DEVCTL_THE);
1065}
1066
1067/**
1068 * pch_udc_exit() - This API exit usb device controller
1069 * @dev: Reference to pch_udc_regs structure
1070 */
1071static void pch_udc_exit(struct pch_udc_dev *dev)
1072{
1073 /* mask all device interrupts */
1074 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1075 /* mask all ep interrupts */
1076 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1077 /* put device in disconnected state */
1078 pch_udc_set_disconnect(dev);
1079}
1080
1081/**
1082 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1083 * @gadget: Reference to the gadget driver
1084 *
1085 * Return codes:
1086 * 0: Success
1087 * -EINVAL: If the gadget passed is NULL
1088 */
1089static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1090{
1091 struct pch_udc_dev *dev;
1092
1093 if (!gadget)
1094 return -EINVAL;
1095 dev = container_of(gadget, struct pch_udc_dev, gadget);
1096 return pch_udc_get_frame(dev);
1097}
1098
1099/**
1100 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1101 * @gadget: Reference to the gadget driver
1102 *
1103 * Return codes:
1104 * 0: Success
1105 * -EINVAL: If the gadget passed is NULL
1106 */
1107static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1108{
1109 struct pch_udc_dev *dev;
1110 unsigned long flags;
1111
1112 if (!gadget)
1113 return -EINVAL;
1114 dev = container_of(gadget, struct pch_udc_dev, gadget);
1115 spin_lock_irqsave(&dev->lock, flags);
1116 pch_udc_rmt_wakeup(dev);
1117 spin_unlock_irqrestore(&dev->lock, flags);
1118 return 0;
1119}
1120
1121/**
1122 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1123 * is self powered or not
1124 * @gadget: Reference to the gadget driver
1125 * @value: Specifies self powered or not
1126 *
1127 * Return codes:
1128 * 0: Success
1129 * -EINVAL: If the gadget passed is NULL
1130 */
1131static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1132{
1133 struct pch_udc_dev *dev;
1134
1135 if (!gadget)
1136 return -EINVAL;
1137 dev = container_of(gadget, struct pch_udc_dev, gadget);
1138 if (value)
1139 pch_udc_set_selfpowered(dev);
1140 else
1141 pch_udc_clear_selfpowered(dev);
1142 return 0;
1143}
1144
1145/**
1146 * pch_udc_pcd_pullup() - This API is invoked to make the device
1147 * visible/invisible to the host
1148 * @gadget: Reference to the gadget driver
1149 * @is_on: Specifies whether the pull up is made active or inactive
1150 *
1151 * Return codes:
1152 * 0: Success
1153 * -EINVAL: If the gadget passed is NULL
1154 */
1155static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1156{
1157 struct pch_udc_dev *dev;
1158
1159 if (!gadget)
1160 return -EINVAL;
1161 dev = container_of(gadget, struct pch_udc_dev, gadget);
1c575d2d
TM
1162 if (is_on) {
1163 pch_udc_reconnect(dev);
1164 } else {
1165 if (dev->driver && dev->driver->disconnect) {
1166 spin_unlock(&dev->lock);
1167 dev->driver->disconnect(&dev->gadget);
1168 spin_lock(&dev->lock);
1169 }
1170 pch_udc_set_disconnect(dev);
1171 }
1172
f646cf94
TO
1173 return 0;
1174}
1175
1176/**
1177 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1178 * transceiver (or GPIO) that
1179 * detects a VBUS power session starting/ending
1180 * @gadget: Reference to the gadget driver
1181 * @is_active: specifies whether the session is starting or ending
1182 *
1183 * Return codes:
1184 * 0: Success
1185 * -EINVAL: If the gadget passed is NULL
1186 */
1187static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1188{
1189 struct pch_udc_dev *dev;
1190
1191 if (!gadget)
1192 return -EINVAL;
1193 dev = container_of(gadget, struct pch_udc_dev, gadget);
1194 pch_udc_vbus_session(dev, is_active);
1195 return 0;
1196}
1197
1198/**
1199 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1200 * SET_CONFIGURATION calls to
1201 * specify how much power the device can consume
1202 * @gadget: Reference to the gadget driver
1203 * @mA: specifies the current limit in 2mA unit
1204 *
1205 * Return codes:
1206 * -EINVAL: If the gadget passed is NULL
1207 * -EOPNOTSUPP:
1208 */
1209static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1210{
1211 return -EOPNOTSUPP;
1212}
1213
0f91349b
SAS
1214static int pch_udc_start(struct usb_gadget_driver *driver,
1215 int (*bind)(struct usb_gadget *));
1216static int pch_udc_stop(struct usb_gadget_driver *driver);
f646cf94
TO
1217static const struct usb_gadget_ops pch_udc_ops = {
1218 .get_frame = pch_udc_pcd_get_frame,
1219 .wakeup = pch_udc_pcd_wakeup,
1220 .set_selfpowered = pch_udc_pcd_selfpowered,
1221 .pullup = pch_udc_pcd_pullup,
1222 .vbus_session = pch_udc_pcd_vbus_session,
1223 .vbus_draw = pch_udc_pcd_vbus_draw,
0f91349b
SAS
1224 .start = pch_udc_start,
1225 .stop = pch_udc_stop,
f646cf94
TO
1226};
1227
1228/**
1229 * complete_req() - This API is invoked from the driver when processing
1230 * of a request is complete
1231 * @ep: Reference to the endpoint structure
1232 * @req: Reference to the request structure
1233 * @status: Indicates the success/failure of completion
1234 */
1235static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1236 int status)
1237{
1238 struct pch_udc_dev *dev;
1239 unsigned halted = ep->halted;
1240
1241 list_del_init(&req->queue);
1242
1243 /* set new status if pending */
1244 if (req->req.status == -EINPROGRESS)
1245 req->req.status = status;
1246 else
1247 status = req->req.status;
1248
1249 dev = ep->dev;
1250 if (req->dma_mapped) {
c17f459c
TO
1251 if (req->dma == DMA_ADDR_INVALID) {
1252 if (ep->in)
1253 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1254 req->req.length,
1255 DMA_TO_DEVICE);
1256 else
1257 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1258 req->req.length,
1259 DMA_FROM_DEVICE);
1260 req->req.dma = DMA_ADDR_INVALID;
1261 } else {
1262 if (ep->in)
1263 dma_unmap_single(&dev->pdev->dev, req->dma,
1264 req->req.length,
1265 DMA_TO_DEVICE);
1266 else {
1267 dma_unmap_single(&dev->pdev->dev, req->dma,
1268 req->req.length,
1269 DMA_FROM_DEVICE);
1270 memcpy(req->req.buf, req->buf, req->req.length);
1271 }
1272 kfree(req->buf);
1273 req->dma = DMA_ADDR_INVALID;
1274 }
f646cf94 1275 req->dma_mapped = 0;
f646cf94
TO
1276 }
1277 ep->halted = 1;
1278 spin_unlock(&dev->lock);
1279 if (!ep->in)
1280 pch_udc_ep_clear_rrdy(ep);
1281 req->req.complete(&ep->ep, &req->req);
1282 spin_lock(&dev->lock);
1283 ep->halted = halted;
1284}
1285
1286/**
1287 * empty_req_queue() - This API empties the request queue of an endpoint
1288 * @ep: Reference to the endpoint structure
1289 */
1290static void empty_req_queue(struct pch_udc_ep *ep)
1291{
1292 struct pch_udc_request *req;
1293
1294 ep->halted = 1;
1295 while (!list_empty(&ep->queue)) {
1296 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1297 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
1298 }
1299}
1300
1301/**
1302 * pch_udc_free_dma_chain() - This function frees the DMA chain created
1303 * for the request
1304 * @dev Reference to the driver structure
1305 * @req Reference to the request to be freed
1306 *
1307 * Return codes:
1308 * 0: Success
1309 */
1310static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1311 struct pch_udc_request *req)
1312{
1313 struct pch_udc_data_dma_desc *td = req->td_data;
1314 unsigned i = req->chain_len;
1315
c17f459c
TO
1316 dma_addr_t addr2;
1317 dma_addr_t addr = (dma_addr_t)td->next;
1318 td->next = 0x00;
f646cf94 1319 for (; i > 1; --i) {
f646cf94
TO
1320 /* do not free first desc., will be done by free for request */
1321 td = phys_to_virt(addr);
c17f459c 1322 addr2 = (dma_addr_t)td->next;
f646cf94 1323 pci_pool_free(dev->data_requests, td, addr);
c17f459c
TO
1324 td->next = 0x00;
1325 addr = addr2;
f646cf94 1326 }
c17f459c 1327 req->chain_len = 1;
f646cf94
TO
1328}
1329
1330/**
1331 * pch_udc_create_dma_chain() - This function creates or reinitializes
1332 * a DMA chain
1333 * @ep: Reference to the endpoint structure
1334 * @req: Reference to the request
1335 * @buf_len: The buffer length
1336 * @gfp_flags: Flags to be used while mapping the data buffer
1337 *
1338 * Return codes:
1339 * 0: success,
1340 * -ENOMEM: pci_pool_alloc invocation fails
1341 */
1342static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1343 struct pch_udc_request *req,
1344 unsigned long buf_len,
1345 gfp_t gfp_flags)
1346{
1347 struct pch_udc_data_dma_desc *td = req->td_data, *last;
1348 unsigned long bytes = req->req.length, i = 0;
1349 dma_addr_t dma_addr;
1350 unsigned len = 1;
1351
1352 if (req->chain_len > 1)
1353 pch_udc_free_dma_chain(ep->dev, req);
1354
c17f459c
TO
1355 if (req->dma == DMA_ADDR_INVALID)
1356 td->dataptr = req->req.dma;
1357 else
1358 td->dataptr = req->dma;
f646cf94 1359
c17f459c
TO
1360 td->status = PCH_UDC_BS_HST_BSY;
1361 for (; ; bytes -= buf_len, ++len) {
1362 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
f646cf94
TO
1363 if (bytes <= buf_len)
1364 break;
f646cf94
TO
1365 last = td;
1366 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1367 &dma_addr);
1368 if (!td)
1369 goto nomem;
f646cf94 1370 i += buf_len;
c17f459c 1371 td->dataptr = req->td_data->dataptr + i;
f646cf94
TO
1372 last->next = dma_addr;
1373 }
1374
1375 req->td_data_last = td;
1376 td->status |= PCH_UDC_DMA_LAST;
1377 td->next = req->td_data_phys;
1378 req->chain_len = len;
1379 return 0;
1380
1381nomem:
1382 if (len > 1) {
1383 req->chain_len = len;
1384 pch_udc_free_dma_chain(ep->dev, req);
1385 }
1386 req->chain_len = 1;
1387 return -ENOMEM;
1388}
1389
1390/**
1391 * prepare_dma() - This function creates and initializes the DMA chain
1392 * for the request
1393 * @ep: Reference to the endpoint structure
1394 * @req: Reference to the request
1395 * @gfp: Flag to be used while mapping the data buffer
1396 *
1397 * Return codes:
1398 * 0: Success
1399 * Other 0: linux error number on failure
1400 */
1401static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1402 gfp_t gfp)
1403{
1404 int retval;
1405
f646cf94
TO
1406 /* Allocate and create a DMA chain */
1407 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1408 if (retval) {
c17f459c 1409 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
f646cf94
TO
1410 return retval;
1411 }
c17f459c 1412 if (ep->in)
f646cf94 1413 req->td_data->status = (req->td_data->status &
c17f459c 1414 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
f646cf94
TO
1415 return 0;
1416}
1417
1418/**
1419 * process_zlp() - This function process zero length packets
1420 * from the gadget driver
1421 * @ep: Reference to the endpoint structure
1422 * @req: Reference to the request
1423 */
1424static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1425{
1426 struct pch_udc_dev *dev = ep->dev;
1427
1428 /* IN zlp's are handled by hardware */
1429 complete_req(ep, req, 0);
1430
1431 /* if set_config or set_intf is waiting for ack by zlp
1432 * then set CSR_DONE
1433 */
1434 if (dev->set_cfg_not_acked) {
1435 pch_udc_set_csr_done(dev);
1436 dev->set_cfg_not_acked = 0;
1437 }
1438 /* setup command is ACK'ed now by zlp */
1439 if (!dev->stall && dev->waiting_zlp_ack) {
1440 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1441 dev->waiting_zlp_ack = 0;
1442 }
1443}
1444
1445/**
1446 * pch_udc_start_rxrequest() - This function starts the receive requirement.
1447 * @ep: Reference to the endpoint structure
1448 * @req: Reference to the request structure
1449 */
1450static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1451 struct pch_udc_request *req)
1452{
1453 struct pch_udc_data_dma_desc *td_data;
1454
1455 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1456 td_data = req->td_data;
f646cf94
TO
1457 /* Set the status bits for all descriptors */
1458 while (1) {
1459 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1460 PCH_UDC_BS_HST_RDY;
1461 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1462 break;
1463 td_data = phys_to_virt(td_data->next);
1464 }
1465 /* Write the descriptor pointer */
1466 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1467 req->dma_going = 1;
1468 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1469 pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1470 pch_udc_ep_clear_nak(ep);
1471 pch_udc_ep_set_rrdy(ep);
1472}
1473
1474/**
1475 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1476 * from gadget driver
1477 * @usbep: Reference to the USB endpoint structure
1478 * @desc: Reference to the USB endpoint descriptor structure
1479 *
1480 * Return codes:
1481 * 0: Success
1482 * -EINVAL:
1483 * -ESHUTDOWN:
1484 */
1485static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1486 const struct usb_endpoint_descriptor *desc)
1487{
1488 struct pch_udc_ep *ep;
1489 struct pch_udc_dev *dev;
1490 unsigned long iflags;
1491
1492 if (!usbep || (usbep->name == ep0_string) || !desc ||
1493 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1494 return -EINVAL;
1495
1496 ep = container_of(usbep, struct pch_udc_ep, ep);
1497 dev = ep->dev;
1498 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1499 return -ESHUTDOWN;
1500 spin_lock_irqsave(&dev->lock, iflags);
1501 ep->desc = desc;
1502 ep->halted = 0;
1503 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
29cc8897 1504 ep->ep.maxpacket = usb_endpoint_maxp(desc);
f646cf94
TO
1505 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1506 spin_unlock_irqrestore(&dev->lock, iflags);
1507 return 0;
1508}
1509
1510/**
1511 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1512 * from gadget driver
1513 * @usbep Reference to the USB endpoint structure
1514 *
1515 * Return codes:
1516 * 0: Success
1517 * -EINVAL:
1518 */
1519static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1520{
1521 struct pch_udc_ep *ep;
1522 struct pch_udc_dev *dev;
1523 unsigned long iflags;
1524
1525 if (!usbep)
1526 return -EINVAL;
1527
1528 ep = container_of(usbep, struct pch_udc_ep, ep);
1529 dev = ep->dev;
1530 if ((usbep->name == ep0_string) || !ep->desc)
1531 return -EINVAL;
1532
1533 spin_lock_irqsave(&ep->dev->lock, iflags);
1534 empty_req_queue(ep);
1535 ep->halted = 1;
1536 pch_udc_ep_disable(ep);
1537 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1538 ep->desc = NULL;
1539 INIT_LIST_HEAD(&ep->queue);
1540 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1541 return 0;
1542}
1543
1544/**
1545 * pch_udc_alloc_request() - This function allocates request structure.
1546 * It is called by gadget driver
1547 * @usbep: Reference to the USB endpoint structure
1548 * @gfp: Flag to be used while allocating memory
1549 *
1550 * Return codes:
1551 * NULL: Failure
1552 * Allocated address: Success
1553 */
1554static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1555 gfp_t gfp)
1556{
1557 struct pch_udc_request *req;
1558 struct pch_udc_ep *ep;
1559 struct pch_udc_data_dma_desc *dma_desc;
1560 struct pch_udc_dev *dev;
1561
1562 if (!usbep)
1563 return NULL;
1564 ep = container_of(usbep, struct pch_udc_ep, ep);
1565 dev = ep->dev;
1566 req = kzalloc(sizeof *req, gfp);
1567 if (!req)
1568 return NULL;
1569 req->req.dma = DMA_ADDR_INVALID;
c17f459c 1570 req->dma = DMA_ADDR_INVALID;
f646cf94
TO
1571 INIT_LIST_HEAD(&req->queue);
1572 if (!ep->dev->dma_addr)
1573 return &req->req;
1574 /* ep0 in requests are allocated from data pool here */
1575 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1576 &req->td_data_phys);
1577 if (NULL == dma_desc) {
1578 kfree(req);
1579 return NULL;
1580 }
1581 /* prevent from using desc. - set HOST BUSY */
1582 dma_desc->status |= PCH_UDC_BS_HST_BSY;
1583 dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
1584 req->td_data = dma_desc;
1585 req->td_data_last = dma_desc;
1586 req->chain_len = 1;
1587 return &req->req;
1588}
1589
1590/**
1591 * pch_udc_free_request() - This function frees request structure.
1592 * It is called by gadget driver
1593 * @usbep: Reference to the USB endpoint structure
1594 * @usbreq: Reference to the USB request
1595 */
1596static void pch_udc_free_request(struct usb_ep *usbep,
1597 struct usb_request *usbreq)
1598{
1599 struct pch_udc_ep *ep;
1600 struct pch_udc_request *req;
1601 struct pch_udc_dev *dev;
1602
1603 if (!usbep || !usbreq)
1604 return;
1605 ep = container_of(usbep, struct pch_udc_ep, ep);
1606 req = container_of(usbreq, struct pch_udc_request, req);
1607 dev = ep->dev;
1608 if (!list_empty(&req->queue))
1609 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1610 __func__, usbep->name, req);
1611 if (req->td_data != NULL) {
1612 if (req->chain_len > 1)
1613 pch_udc_free_dma_chain(ep->dev, req);
1614 pci_pool_free(ep->dev->data_requests, req->td_data,
1615 req->td_data_phys);
1616 }
1617 kfree(req);
1618}
1619
1620/**
1621 * pch_udc_pcd_queue() - This function queues a request packet. It is called
1622 * by gadget driver
1623 * @usbep: Reference to the USB endpoint structure
1624 * @usbreq: Reference to the USB request
1625 * @gfp: Flag to be used while mapping the data buffer
1626 *
1627 * Return codes:
1628 * 0: Success
1629 * linux error number: Failure
1630 */
1631static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1632 gfp_t gfp)
1633{
1634 int retval = 0;
1635 struct pch_udc_ep *ep;
1636 struct pch_udc_dev *dev;
1637 struct pch_udc_request *req;
1638 unsigned long iflags;
1639
1640 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1641 return -EINVAL;
1642 ep = container_of(usbep, struct pch_udc_ep, ep);
1643 dev = ep->dev;
1644 if (!ep->desc && ep->num)
1645 return -EINVAL;
1646 req = container_of(usbreq, struct pch_udc_request, req);
1647 if (!list_empty(&req->queue))
1648 return -EINVAL;
1649 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1650 return -ESHUTDOWN;
48570711 1651 spin_lock_irqsave(&dev->lock, iflags);
f646cf94
TO
1652 /* map the buffer for dma */
1653 if (usbreq->length &&
1654 ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
c17f459c
TO
1655 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1656 if (ep->in)
1657 usbreq->dma = dma_map_single(&dev->pdev->dev,
1658 usbreq->buf,
1659 usbreq->length,
1660 DMA_TO_DEVICE);
1661 else
1662 usbreq->dma = dma_map_single(&dev->pdev->dev,
1663 usbreq->buf,
1664 usbreq->length,
1665 DMA_FROM_DEVICE);
1666 } else {
1667 req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
48570711
DC
1668 if (!req->buf) {
1669 retval = -ENOMEM;
1670 goto probe_end;
1671 }
c17f459c
TO
1672 if (ep->in) {
1673 memcpy(req->buf, usbreq->buf, usbreq->length);
1674 req->dma = dma_map_single(&dev->pdev->dev,
1675 req->buf,
1676 usbreq->length,
1677 DMA_TO_DEVICE);
1678 } else
1679 req->dma = dma_map_single(&dev->pdev->dev,
1680 req->buf,
1681 usbreq->length,
1682 DMA_FROM_DEVICE);
1683 }
f646cf94
TO
1684 req->dma_mapped = 1;
1685 }
1686 if (usbreq->length > 0) {
abab0c67 1687 retval = prepare_dma(ep, req, GFP_ATOMIC);
f646cf94
TO
1688 if (retval)
1689 goto probe_end;
1690 }
1691 usbreq->actual = 0;
1692 usbreq->status = -EINPROGRESS;
1693 req->dma_done = 0;
1694 if (list_empty(&ep->queue) && !ep->halted) {
1695 /* no pending transfer, so start this req */
1696 if (!usbreq->length) {
1697 process_zlp(ep, req);
1698 retval = 0;
1699 goto probe_end;
1700 }
1701 if (!ep->in) {
1702 pch_udc_start_rxrequest(ep, req);
1703 } else {
1704 /*
1705 * For IN trfr the descriptors will be programmed and
1706 * P bit will be set when
1707 * we get an IN token
1708 */
1709 pch_udc_wait_ep_stall(ep);
1710 pch_udc_ep_clear_nak(ep);
1711 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
f646cf94
TO
1712 }
1713 }
1714 /* Now add this request to the ep's pending requests */
1715 if (req != NULL)
1716 list_add_tail(&req->queue, &ep->queue);
1717
1718probe_end:
1719 spin_unlock_irqrestore(&dev->lock, iflags);
1720 return retval;
1721}
1722
1723/**
1724 * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1725 * It is called by gadget driver
1726 * @usbep: Reference to the USB endpoint structure
1727 * @usbreq: Reference to the USB request
1728 *
1729 * Return codes:
1730 * 0: Success
1731 * linux error number: Failure
1732 */
1733static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1734 struct usb_request *usbreq)
1735{
1736 struct pch_udc_ep *ep;
1737 struct pch_udc_request *req;
1738 struct pch_udc_dev *dev;
1739 unsigned long flags;
1740 int ret = -EINVAL;
1741
1742 ep = container_of(usbep, struct pch_udc_ep, ep);
1743 dev = ep->dev;
1744 if (!usbep || !usbreq || (!ep->desc && ep->num))
1745 return ret;
1746 req = container_of(usbreq, struct pch_udc_request, req);
1747 spin_lock_irqsave(&ep->dev->lock, flags);
1748 /* make sure it's still queued on this endpoint */
1749 list_for_each_entry(req, &ep->queue, queue) {
1750 if (&req->req == usbreq) {
1751 pch_udc_ep_set_nak(ep);
1752 if (!list_empty(&req->queue))
1753 complete_req(ep, req, -ECONNRESET);
1754 ret = 0;
1755 break;
1756 }
1757 }
1758 spin_unlock_irqrestore(&ep->dev->lock, flags);
1759 return ret;
1760}
1761
1762/**
1763 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1764 * feature
1765 * @usbep: Reference to the USB endpoint structure
1766 * @halt: Specifies whether to set or clear the feature
1767 *
1768 * Return codes:
1769 * 0: Success
1770 * linux error number: Failure
1771 */
1772static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1773{
1774 struct pch_udc_ep *ep;
1775 struct pch_udc_dev *dev;
1776 unsigned long iflags;
1777 int ret;
1778
1779 if (!usbep)
1780 return -EINVAL;
1781 ep = container_of(usbep, struct pch_udc_ep, ep);
1782 dev = ep->dev;
1783 if (!ep->desc && !ep->num)
1784 return -EINVAL;
1785 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1786 return -ESHUTDOWN;
1787 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1788 if (list_empty(&ep->queue)) {
1789 if (halt) {
1790 if (ep->num == PCH_UDC_EP0)
1791 ep->dev->stall = 1;
1792 pch_udc_ep_set_stall(ep);
1793 pch_udc_enable_ep_interrupts(ep->dev,
1794 PCH_UDC_EPINT(ep->in,
1795 ep->num));
1796 } else {
1797 pch_udc_ep_clear_stall(ep);
1798 }
1799 ret = 0;
1800 } else {
1801 ret = -EAGAIN;
1802 }
1803 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1804 return ret;
1805}
1806
1807/**
1808 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
1809 * halt feature
1810 * @usbep: Reference to the USB endpoint structure
1811 * @halt: Specifies whether to set or clear the feature
1812 *
1813 * Return codes:
1814 * 0: Success
1815 * linux error number: Failure
1816 */
1817static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
1818{
1819 struct pch_udc_ep *ep;
1820 struct pch_udc_dev *dev;
1821 unsigned long iflags;
1822 int ret;
1823
1824 if (!usbep)
1825 return -EINVAL;
1826 ep = container_of(usbep, struct pch_udc_ep, ep);
1827 dev = ep->dev;
1828 if (!ep->desc && !ep->num)
1829 return -EINVAL;
1830 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1831 return -ESHUTDOWN;
1832 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1833 if (!list_empty(&ep->queue)) {
1834 ret = -EAGAIN;
1835 } else {
1836 if (ep->num == PCH_UDC_EP0)
1837 ep->dev->stall = 1;
1838 pch_udc_ep_set_stall(ep);
1839 pch_udc_enable_ep_interrupts(ep->dev,
1840 PCH_UDC_EPINT(ep->in, ep->num));
1841 ep->dev->prot_stall = 1;
1842 ret = 0;
1843 }
1844 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1845 return ret;
1846}
1847
1848/**
1849 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
1850 * @usbep: Reference to the USB endpoint structure
1851 */
1852static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
1853{
1854 struct pch_udc_ep *ep;
1855
1856 if (!usbep)
1857 return;
1858
1859 ep = container_of(usbep, struct pch_udc_ep, ep);
1860 if (ep->desc || !ep->num)
1861 pch_udc_ep_fifo_flush(ep, ep->in);
1862}
1863
1864static const struct usb_ep_ops pch_udc_ep_ops = {
1865 .enable = pch_udc_pcd_ep_enable,
1866 .disable = pch_udc_pcd_ep_disable,
1867 .alloc_request = pch_udc_alloc_request,
1868 .free_request = pch_udc_free_request,
1869 .queue = pch_udc_pcd_queue,
1870 .dequeue = pch_udc_pcd_dequeue,
1871 .set_halt = pch_udc_pcd_set_halt,
1872 .set_wedge = pch_udc_pcd_set_wedge,
1873 .fifo_status = NULL,
1874 .fifo_flush = pch_udc_pcd_fifo_flush,
1875};
1876
1877/**
1878 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
1879 * @td_stp: Reference to the SETP buffer structure
1880 */
1881static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
1882{
1883 static u32 pky_marker;
1884
1885 if (!td_stp)
1886 return;
1887 td_stp->reserved = ++pky_marker;
1888 memset(&td_stp->request, 0xFF, sizeof td_stp->request);
1889 td_stp->status = PCH_UDC_BS_HST_RDY;
1890}
1891
1892/**
1893 * pch_udc_start_next_txrequest() - This function starts
1894 * the next transmission requirement
1895 * @ep: Reference to the endpoint structure
1896 */
1897static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
1898{
1899 struct pch_udc_request *req;
1900 struct pch_udc_data_dma_desc *td_data;
1901
1902 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
1903 return;
1904
1905 if (list_empty(&ep->queue))
1906 return;
1907
1908 /* next request */
1909 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1910 if (req->dma_going)
1911 return;
1912 if (!req->td_data)
1913 return;
1914 pch_udc_wait_ep_stall(ep);
1915 req->dma_going = 1;
1916 pch_udc_ep_set_ddptr(ep, 0);
1917 td_data = req->td_data;
1918 while (1) {
1919 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1920 PCH_UDC_BS_HST_RDY;
1921 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1922 break;
1923 td_data = phys_to_virt(td_data->next);
1924 }
1925 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1926 pch_udc_set_dma(ep->dev, DMA_DIR_TX);
1927 pch_udc_ep_set_pd(ep);
1928 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1929 pch_udc_ep_clear_nak(ep);
1930}
1931
1932/**
1933 * pch_udc_complete_transfer() - This function completes a transfer
1934 * @ep: Reference to the endpoint structure
1935 */
1936static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
1937{
1938 struct pch_udc_request *req;
1939 struct pch_udc_dev *dev = ep->dev;
1940
1941 if (list_empty(&ep->queue))
1942 return;
1943 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1944 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
1945 PCH_UDC_BS_DMA_DONE)
1946 return;
1947 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
1948 PCH_UDC_RTS_SUCC) {
1949 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
1950 "epstatus=0x%08x\n",
1951 (req->td_data_last->status & PCH_UDC_RXTX_STS),
1952 (int)(ep->epsts));
1953 return;
1954 }
1955
1956 req->req.actual = req->req.length;
1957 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1958 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1959 complete_req(ep, req, 0);
1960 req->dma_going = 0;
1961 if (!list_empty(&ep->queue)) {
1962 pch_udc_wait_ep_stall(ep);
1963 pch_udc_ep_clear_nak(ep);
1964 pch_udc_enable_ep_interrupts(ep->dev,
1965 PCH_UDC_EPINT(ep->in, ep->num));
1966 } else {
1967 pch_udc_disable_ep_interrupts(ep->dev,
1968 PCH_UDC_EPINT(ep->in, ep->num));
1969 }
1970}
1971
1972/**
1973 * pch_udc_complete_receiver() - This function completes a receiver
1974 * @ep: Reference to the endpoint structure
1975 */
1976static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
1977{
1978 struct pch_udc_request *req;
1979 struct pch_udc_dev *dev = ep->dev;
1980 unsigned int count;
c17f459c
TO
1981 struct pch_udc_data_dma_desc *td;
1982 dma_addr_t addr;
f646cf94
TO
1983
1984 if (list_empty(&ep->queue))
1985 return;
f646cf94
TO
1986 /* next request */
1987 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
f646cf94 1988 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
abab0c67 1989 pch_udc_ep_set_ddptr(ep, 0);
c17f459c
TO
1990 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
1991 PCH_UDC_BS_DMA_DONE)
1992 td = req->td_data_last;
1993 else
1994 td = req->td_data;
f646cf94 1995
c17f459c
TO
1996 while (1) {
1997 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
1998 dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
1999 "epstatus=0x%08x\n",
2000 (req->td_data->status & PCH_UDC_RXTX_STS),
2001 (int)(ep->epsts));
2002 return;
2003 }
2004 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
2005 if (td->status | PCH_UDC_DMA_LAST) {
2006 count = td->status & PCH_UDC_RXTX_BYTES;
2007 break;
2008 }
2009 if (td == req->td_data_last) {
2010 dev_err(&dev->pdev->dev, "Not complete RX descriptor");
2011 return;
2012 }
2013 addr = (dma_addr_t)td->next;
2014 td = phys_to_virt(addr);
2015 }
f646cf94
TO
2016 /* on 64k packets the RXBYTES field is zero */
2017 if (!count && (req->req.length == UDC_DMA_MAXPACKET))
2018 count = UDC_DMA_MAXPACKET;
2019 req->td_data->status |= PCH_UDC_DMA_LAST;
c17f459c 2020 td->status |= PCH_UDC_BS_HST_BSY;
f646cf94
TO
2021
2022 req->dma_going = 0;
2023 req->req.actual = count;
2024 complete_req(ep, req, 0);
2025 /* If there is a new/failed requests try that now */
2026 if (!list_empty(&ep->queue)) {
2027 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2028 pch_udc_start_rxrequest(ep, req);
2029 }
2030}
2031
2032/**
2033 * pch_udc_svc_data_in() - This function process endpoint interrupts
2034 * for IN endpoints
2035 * @dev: Reference to the device structure
2036 * @ep_num: Endpoint that generated the interrupt
2037 */
2038static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2039{
2040 u32 epsts;
2041 struct pch_udc_ep *ep;
2042
abab0c67 2043 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
f646cf94
TO
2044 epsts = ep->epsts;
2045 ep->epsts = 0;
2046
2047 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2048 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2049 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2050 return;
2051 if ((epsts & UDC_EPSTS_BNA))
2052 return;
2053 if (epsts & UDC_EPSTS_HE)
2054 return;
2055 if (epsts & UDC_EPSTS_RSS) {
2056 pch_udc_ep_set_stall(ep);
2057 pch_udc_enable_ep_interrupts(ep->dev,
2058 PCH_UDC_EPINT(ep->in, ep->num));
2059 }
49e20834 2060 if (epsts & UDC_EPSTS_RCS) {
f646cf94
TO
2061 if (!dev->prot_stall) {
2062 pch_udc_ep_clear_stall(ep);
2063 } else {
2064 pch_udc_ep_set_stall(ep);
2065 pch_udc_enable_ep_interrupts(ep->dev,
2066 PCH_UDC_EPINT(ep->in, ep->num));
2067 }
49e20834 2068 }
f646cf94
TO
2069 if (epsts & UDC_EPSTS_TDC)
2070 pch_udc_complete_transfer(ep);
2071 /* On IN interrupt, provide data if we have any */
2072 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2073 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2074 pch_udc_start_next_txrequest(ep);
2075}
2076
2077/**
2078 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2079 * @dev: Reference to the device structure
2080 * @ep_num: Endpoint that generated the interrupt
2081 */
2082static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2083{
2084 u32 epsts;
2085 struct pch_udc_ep *ep;
2086 struct pch_udc_request *req = NULL;
2087
abab0c67 2088 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
f646cf94
TO
2089 epsts = ep->epsts;
2090 ep->epsts = 0;
2091
2092 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2093 /* next request */
2094 req = list_entry(ep->queue.next, struct pch_udc_request,
2095 queue);
2096 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2097 PCH_UDC_BS_DMA_DONE) {
2098 if (!req->dma_going)
2099 pch_udc_start_rxrequest(ep, req);
2100 return;
2101 }
2102 }
2103 if (epsts & UDC_EPSTS_HE)
2104 return;
abab0c67 2105 if (epsts & UDC_EPSTS_RSS) {
f646cf94
TO
2106 pch_udc_ep_set_stall(ep);
2107 pch_udc_enable_ep_interrupts(ep->dev,
2108 PCH_UDC_EPINT(ep->in, ep->num));
abab0c67 2109 }
49e20834 2110 if (epsts & UDC_EPSTS_RCS) {
f646cf94
TO
2111 if (!dev->prot_stall) {
2112 pch_udc_ep_clear_stall(ep);
2113 } else {
2114 pch_udc_ep_set_stall(ep);
2115 pch_udc_enable_ep_interrupts(ep->dev,
2116 PCH_UDC_EPINT(ep->in, ep->num));
2117 }
49e20834 2118 }
f646cf94
TO
2119 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2120 UDC_EPSTS_OUT_DATA) {
2121 if (ep->dev->prot_stall == 1) {
2122 pch_udc_ep_set_stall(ep);
2123 pch_udc_enable_ep_interrupts(ep->dev,
2124 PCH_UDC_EPINT(ep->in, ep->num));
2125 } else {
2126 pch_udc_complete_receiver(ep);
2127 }
2128 }
2129 if (list_empty(&ep->queue))
2130 pch_udc_set_dma(dev, DMA_DIR_RX);
2131}
2132
2133/**
2134 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2135 * @dev: Reference to the device structure
2136 */
2137static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2138{
2139 u32 epsts;
2140 struct pch_udc_ep *ep;
abab0c67 2141 struct pch_udc_ep *ep_out;
f646cf94
TO
2142
2143 ep = &dev->ep[UDC_EP0IN_IDX];
abab0c67 2144 ep_out = &dev->ep[UDC_EP0OUT_IDX];
f646cf94
TO
2145 epsts = ep->epsts;
2146 ep->epsts = 0;
2147
2148 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2149 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2150 UDC_EPSTS_XFERDONE)))
2151 return;
2152 if ((epsts & UDC_EPSTS_BNA))
2153 return;
2154 if (epsts & UDC_EPSTS_HE)
2155 return;
abab0c67 2156 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
f646cf94 2157 pch_udc_complete_transfer(ep);
abab0c67
TO
2158 pch_udc_clear_dma(dev, DMA_DIR_RX);
2159 ep_out->td_data->status = (ep_out->td_data->status &
2160 ~PCH_UDC_BUFF_STS) |
2161 PCH_UDC_BS_HST_RDY;
2162 pch_udc_ep_clear_nak(ep_out);
2163 pch_udc_set_dma(dev, DMA_DIR_RX);
2164 pch_udc_ep_set_rrdy(ep_out);
2165 }
f646cf94
TO
2166 /* On IN interrupt, provide data if we have any */
2167 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2168 !(epsts & UDC_EPSTS_TXEMPTY))
2169 pch_udc_start_next_txrequest(ep);
2170}
2171
2172/**
2173 * pch_udc_svc_control_out() - Routine that handle Control
2174 * OUT endpoint interrupts
2175 * @dev: Reference to the device structure
2176 */
2177static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2178{
2179 u32 stat;
2180 int setup_supported;
2181 struct pch_udc_ep *ep;
2182
2183 ep = &dev->ep[UDC_EP0OUT_IDX];
2184 stat = ep->epsts;
2185 ep->epsts = 0;
2186
2187 /* If setup data */
2188 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2189 UDC_EPSTS_OUT_SETUP) {
2190 dev->stall = 0;
2191 dev->ep[UDC_EP0IN_IDX].halted = 0;
2192 dev->ep[UDC_EP0OUT_IDX].halted = 0;
f646cf94
TO
2193 dev->setup_data = ep->td_stp->request;
2194 pch_udc_init_setup_buff(ep->td_stp);
abab0c67 2195 pch_udc_clear_dma(dev, DMA_DIR_RX);
f646cf94
TO
2196 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2197 dev->ep[UDC_EP0IN_IDX].in);
2198 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2199 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2200 else /* OUT */
2201 dev->gadget.ep0 = &ep->ep;
2202 spin_unlock(&dev->lock);
2203 /* If Mass storage Reset */
2204 if ((dev->setup_data.bRequestType == 0x21) &&
2205 (dev->setup_data.bRequest == 0xFF))
2206 dev->prot_stall = 0;
2207 /* call gadget with setup data received */
2208 setup_supported = dev->driver->setup(&dev->gadget,
2209 &dev->setup_data);
2210 spin_lock(&dev->lock);
abab0c67
TO
2211
2212 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2213 ep->td_data->status = (ep->td_data->status &
2214 ~PCH_UDC_BUFF_STS) |
2215 PCH_UDC_BS_HST_RDY;
2216 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2217 }
f646cf94
TO
2218 /* ep0 in returns data on IN phase */
2219 if (setup_supported >= 0 && setup_supported <
2220 UDC_EP0IN_MAX_PKT_SIZE) {
2221 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2222 /* Gadget would have queued a request when
2223 * we called the setup */
abab0c67
TO
2224 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2225 pch_udc_set_dma(dev, DMA_DIR_RX);
2226 pch_udc_ep_clear_nak(ep);
2227 }
f646cf94
TO
2228 } else if (setup_supported < 0) {
2229 /* if unsupported request, then stall */
2230 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2231 pch_udc_enable_ep_interrupts(ep->dev,
2232 PCH_UDC_EPINT(ep->in, ep->num));
2233 dev->stall = 0;
2234 pch_udc_set_dma(dev, DMA_DIR_RX);
2235 } else {
2236 dev->waiting_zlp_ack = 1;
2237 }
2238 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2239 UDC_EPSTS_OUT_DATA) && !dev->stall) {
abab0c67
TO
2240 pch_udc_clear_dma(dev, DMA_DIR_RX);
2241 pch_udc_ep_set_ddptr(ep, 0);
2242 if (!list_empty(&ep->queue)) {
ff176a4e 2243 ep->epsts = stat;
abab0c67 2244 pch_udc_svc_data_out(dev, PCH_UDC_EP0);
f646cf94 2245 }
abab0c67 2246 pch_udc_set_dma(dev, DMA_DIR_RX);
f646cf94
TO
2247 }
2248 pch_udc_ep_set_rrdy(ep);
2249}
2250
2251
2252/**
2253 * pch_udc_postsvc_epinters() - This function enables end point interrupts
2254 * and clears NAK status
2255 * @dev: Reference to the device structure
2256 * @ep_num: End point number
2257 */
2258static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2259{
2260 struct pch_udc_ep *ep;
2261 struct pch_udc_request *req;
2262
abab0c67 2263 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
f646cf94
TO
2264 if (!list_empty(&ep->queue)) {
2265 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2266 pch_udc_enable_ep_interrupts(ep->dev,
2267 PCH_UDC_EPINT(ep->in, ep->num));
2268 pch_udc_ep_clear_nak(ep);
2269 }
2270}
2271
2272/**
2273 * pch_udc_read_all_epstatus() - This function read all endpoint status
2274 * @dev: Reference to the device structure
2275 * @ep_intr: Status of endpoint interrupt
2276 */
2277static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2278{
2279 int i;
2280 struct pch_udc_ep *ep;
2281
2282 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2283 /* IN */
2284 if (ep_intr & (0x1 << i)) {
abab0c67 2285 ep = &dev->ep[UDC_EPIN_IDX(i)];
f646cf94
TO
2286 ep->epsts = pch_udc_read_ep_status(ep);
2287 pch_udc_clear_ep_status(ep, ep->epsts);
2288 }
2289 /* OUT */
2290 if (ep_intr & (0x10000 << i)) {
abab0c67 2291 ep = &dev->ep[UDC_EPOUT_IDX(i)];
f646cf94
TO
2292 ep->epsts = pch_udc_read_ep_status(ep);
2293 pch_udc_clear_ep_status(ep, ep->epsts);
2294 }
2295 }
2296}
2297
2298/**
2299 * pch_udc_activate_control_ep() - This function enables the control endpoints
2300 * for traffic after a reset
2301 * @dev: Reference to the device structure
2302 */
2303static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2304{
2305 struct pch_udc_ep *ep;
2306 u32 val;
2307
2308 /* Setup the IN endpoint */
2309 ep = &dev->ep[UDC_EP0IN_IDX];
2310 pch_udc_clear_ep_control(ep);
2311 pch_udc_ep_fifo_flush(ep, ep->in);
2312 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2313 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2314 /* Initialize the IN EP Descriptor */
2315 ep->td_data = NULL;
2316 ep->td_stp = NULL;
2317 ep->td_data_phys = 0;
2318 ep->td_stp_phys = 0;
2319
2320 /* Setup the OUT endpoint */
2321 ep = &dev->ep[UDC_EP0OUT_IDX];
2322 pch_udc_clear_ep_control(ep);
2323 pch_udc_ep_fifo_flush(ep, ep->in);
2324 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2325 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2326 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2327 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2328
2329 /* Initialize the SETUP buffer */
2330 pch_udc_init_setup_buff(ep->td_stp);
2331 /* Write the pointer address of dma descriptor */
2332 pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2333 /* Write the pointer address of Setup descriptor */
2334 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2335
2336 /* Initialize the dma descriptor */
2337 ep->td_data->status = PCH_UDC_DMA_LAST;
2338 ep->td_data->dataptr = dev->dma_addr;
2339 ep->td_data->next = ep->td_data_phys;
2340
2341 pch_udc_ep_clear_nak(ep);
2342}
2343
2344
2345/**
2346 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2347 * @dev: Reference to driver structure
2348 */
2349static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2350{
2351 struct pch_udc_ep *ep;
2352 int i;
2353
2354 pch_udc_clear_dma(dev, DMA_DIR_TX);
2355 pch_udc_clear_dma(dev, DMA_DIR_RX);
2356 /* Mask all endpoint interrupts */
2357 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2358 /* clear all endpoint interrupts */
2359 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2360
2361 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2362 ep = &dev->ep[i];
2363 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2364 pch_udc_clear_ep_control(ep);
2365 pch_udc_ep_set_ddptr(ep, 0);
2366 pch_udc_write_csr(ep->dev, 0x00, i);
2367 }
2368 dev->stall = 0;
2369 dev->prot_stall = 0;
2370 dev->waiting_zlp_ack = 0;
2371 dev->set_cfg_not_acked = 0;
2372
2373 /* disable ep to empty req queue. Skip the control EP's */
2374 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2375 ep = &dev->ep[i];
2376 pch_udc_ep_set_nak(ep);
2377 pch_udc_ep_fifo_flush(ep, ep->in);
2378 /* Complete request queue */
2379 empty_req_queue(ep);
2380 }
c50a3bff
TM
2381 if (dev->driver && dev->driver->disconnect) {
2382 spin_unlock(&dev->lock);
f646cf94 2383 dev->driver->disconnect(&dev->gadget);
c50a3bff
TM
2384 spin_lock(&dev->lock);
2385 }
f646cf94
TO
2386}
2387
2388/**
2389 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2390 * done interrupt
2391 * @dev: Reference to driver structure
2392 */
2393static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2394{
2395 u32 dev_stat, dev_speed;
2396 u32 speed = USB_SPEED_FULL;
2397
2398 dev_stat = pch_udc_read_device_status(dev);
2399 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2400 UDC_DEVSTS_ENUM_SPEED_SHIFT;
2401 switch (dev_speed) {
2402 case UDC_DEVSTS_ENUM_SPEED_HIGH:
2403 speed = USB_SPEED_HIGH;
2404 break;
2405 case UDC_DEVSTS_ENUM_SPEED_FULL:
2406 speed = USB_SPEED_FULL;
2407 break;
2408 case UDC_DEVSTS_ENUM_SPEED_LOW:
2409 speed = USB_SPEED_LOW;
2410 break;
2411 default:
2412 BUG();
2413 }
2414 dev->gadget.speed = speed;
2415 pch_udc_activate_control_ep(dev);
2416 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2417 pch_udc_set_dma(dev, DMA_DIR_TX);
2418 pch_udc_set_dma(dev, DMA_DIR_RX);
2419 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
83331040
TM
2420
2421 /* enable device interrupts */
2422 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2423 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2424 UDC_DEVINT_SI | UDC_DEVINT_SC);
f646cf94
TO
2425}
2426
2427/**
2428 * pch_udc_svc_intf_interrupt() - This function handles a set interface
2429 * interrupt
2430 * @dev: Reference to driver structure
2431 */
2432static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2433{
2434 u32 reg, dev_stat = 0;
2435 int i, ret;
2436
2437 dev_stat = pch_udc_read_device_status(dev);
2438 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2439 UDC_DEVSTS_INTF_SHIFT;
2440 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2441 UDC_DEVSTS_ALT_SHIFT;
2442 dev->set_cfg_not_acked = 1;
2443 /* Construct the usb request for gadget driver and inform it */
2444 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2445 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2446 dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2447 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2448 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2449 /* programm the Endpoint Cfg registers */
2450 /* Only one end point cfg register */
2451 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2452 reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2453 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2454 reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2455 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2456 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2457 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2458 /* clear stall bits */
2459 pch_udc_ep_clear_stall(&(dev->ep[i]));
2460 dev->ep[i].halted = 0;
2461 }
2462 dev->stall = 0;
2463 spin_unlock(&dev->lock);
2464 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2465 spin_lock(&dev->lock);
2466}
2467
2468/**
2469 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2470 * interrupt
2471 * @dev: Reference to driver structure
2472 */
2473static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2474{
2475 int i, ret;
2476 u32 reg, dev_stat = 0;
2477
2478 dev_stat = pch_udc_read_device_status(dev);
2479 dev->set_cfg_not_acked = 1;
2480 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2481 UDC_DEVSTS_CFG_SHIFT;
2482 /* make usb request for gadget driver */
2483 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2484 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2485 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2486 /* program the NE registers */
2487 /* Only one end point cfg register */
2488 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2489 reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2490 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2491 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2492 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2493 /* clear stall bits */
2494 pch_udc_ep_clear_stall(&(dev->ep[i]));
2495 dev->ep[i].halted = 0;
2496 }
2497 dev->stall = 0;
2498
2499 /* call gadget zero with setup data received */
2500 spin_unlock(&dev->lock);
2501 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2502 spin_lock(&dev->lock);
2503}
2504
2505/**
2506 * pch_udc_dev_isr() - This function services device interrupts
2507 * by invoking appropriate routines.
2508 * @dev: Reference to the device structure
2509 * @dev_intr: The Device interrupt status.
2510 */
2511static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2512{
2513 /* USB Reset Interrupt */
9645f7d3 2514 if (dev_intr & UDC_DEVINT_UR) {
f646cf94 2515 pch_udc_svc_ur_interrupt(dev);
9645f7d3
TM
2516 dev_dbg(&dev->pdev->dev, "USB_RESET\n");
2517 }
f646cf94 2518 /* Enumeration Done Interrupt */
9645f7d3 2519 if (dev_intr & UDC_DEVINT_ENUM) {
f646cf94 2520 pch_udc_svc_enum_interrupt(dev);
9645f7d3
TM
2521 dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
2522 }
f646cf94
TO
2523 /* Set Interface Interrupt */
2524 if (dev_intr & UDC_DEVINT_SI)
2525 pch_udc_svc_intf_interrupt(dev);
2526 /* Set Config Interrupt */
2527 if (dev_intr & UDC_DEVINT_SC)
2528 pch_udc_svc_cfg_interrupt(dev);
2529 /* USB Suspend interrupt */
84566abb
TM
2530 if (dev_intr & UDC_DEVINT_US) {
2531 if (dev->driver
2532 && dev->driver->suspend) {
2533 spin_unlock(&dev->lock);
2534 dev->driver->suspend(&dev->gadget);
2535 spin_lock(&dev->lock);
2536 }
1c575d2d
TM
2537
2538 if (dev->vbus_session == 0) {
2539 if (dev->driver && dev->driver->disconnect) {
2540 spin_unlock(&dev->lock);
2541 dev->driver->disconnect(&dev->gadget);
2542 spin_lock(&dev->lock);
2543 }
2544 pch_udc_reconnect(dev);
2545 }
f646cf94 2546 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
84566abb 2547 }
f646cf94
TO
2548 /* Clear the SOF interrupt, if enabled */
2549 if (dev_intr & UDC_DEVINT_SOF)
2550 dev_dbg(&dev->pdev->dev, "SOF\n");
2551 /* ES interrupt, IDLE > 3ms on the USB */
2552 if (dev_intr & UDC_DEVINT_ES)
2553 dev_dbg(&dev->pdev->dev, "ES\n");
2554 /* RWKP interrupt */
2555 if (dev_intr & UDC_DEVINT_RWKP)
2556 dev_dbg(&dev->pdev->dev, "RWKP\n");
2557}
2558
2559/**
2560 * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2561 * @irq: Interrupt request number
2562 * @dev: Reference to the device structure
2563 */
2564static irqreturn_t pch_udc_isr(int irq, void *pdev)
2565{
2566 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2567 u32 dev_intr, ep_intr;
2568 int i;
2569
2570 dev_intr = pch_udc_read_device_interrupts(dev);
2571 ep_intr = pch_udc_read_ep_interrupts(dev);
2572
1c575d2d
TM
2573 /* For a hot plug, this find that the controller is hung up. */
2574 if (dev_intr == ep_intr)
2575 if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
2576 dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
2577 /* The controller is reset */
2578 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
2579 return IRQ_HANDLED;
2580 }
f646cf94
TO
2581 if (dev_intr)
2582 /* Clear device interrupts */
2583 pch_udc_write_device_interrupts(dev, dev_intr);
2584 if (ep_intr)
2585 /* Clear ep interrupts */
2586 pch_udc_write_ep_interrupts(dev, ep_intr);
2587 if (!dev_intr && !ep_intr)
2588 return IRQ_NONE;
2589 spin_lock(&dev->lock);
2590 if (dev_intr)
2591 pch_udc_dev_isr(dev, dev_intr);
2592 if (ep_intr) {
2593 pch_udc_read_all_epstatus(dev, ep_intr);
2594 /* Process Control In interrupts, if present */
2595 if (ep_intr & UDC_EPINT_IN_EP0) {
2596 pch_udc_svc_control_in(dev);
2597 pch_udc_postsvc_epinters(dev, 0);
2598 }
2599 /* Process Control Out interrupts, if present */
2600 if (ep_intr & UDC_EPINT_OUT_EP0)
2601 pch_udc_svc_control_out(dev);
2602 /* Process data in end point interrupts */
2603 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2604 if (ep_intr & (1 << i)) {
2605 pch_udc_svc_data_in(dev, i);
2606 pch_udc_postsvc_epinters(dev, i);
2607 }
2608 }
2609 /* Process data out end point interrupts */
2610 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2611 PCH_UDC_USED_EP_NUM); i++)
2612 if (ep_intr & (1 << i))
2613 pch_udc_svc_data_out(dev, i -
2614 UDC_EPINT_OUT_SHIFT);
2615 }
2616 spin_unlock(&dev->lock);
2617 return IRQ_HANDLED;
2618}
2619
2620/**
2621 * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2622 * @dev: Reference to the device structure
2623 */
2624static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2625{
2626 /* enable ep0 interrupts */
2627 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2628 UDC_EPINT_OUT_EP0);
2629 /* enable device interrupts */
2630 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2631 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2632 UDC_DEVINT_SI | UDC_DEVINT_SC);
2633}
2634
2635/**
2636 * gadget_release() - Free the gadget driver private data
2637 * @pdev reference to struct pci_dev
2638 */
2639static void gadget_release(struct device *pdev)
2640{
2641 struct pch_udc_dev *dev = dev_get_drvdata(pdev);
2642
2643 kfree(dev);
2644}
2645
2646/**
2647 * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2648 * @dev: Reference to the driver structure
2649 */
2650static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2651{
2652 const char *const ep_string[] = {
2653 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2654 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2655 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2656 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2657 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2658 "ep15in", "ep15out",
2659 };
2660 int i;
2661
2662 dev->gadget.speed = USB_SPEED_UNKNOWN;
2663 INIT_LIST_HEAD(&dev->gadget.ep_list);
2664
2665 /* Initialize the endpoints structures */
2666 memset(dev->ep, 0, sizeof dev->ep);
2667 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2668 struct pch_udc_ep *ep = &dev->ep[i];
2669 ep->dev = dev;
2670 ep->halted = 1;
2671 ep->num = i / 2;
2672 ep->in = ~i & 1;
2673 ep->ep.name = ep_string[i];
2674 ep->ep.ops = &pch_udc_ep_ops;
2675 if (ep->in)
2676 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2677 else
2678 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2679 UDC_EP_REG_SHIFT;
2680 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2681 ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
2682 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2683 INIT_LIST_HEAD(&ep->queue);
2684 }
2685 dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
2686 dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
2687
f646cf94
TO
2688 /* remove ep0 in and out from the list. They have own pointer */
2689 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2690 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2691
2692 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2693 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2694}
2695
2696/**
2697 * pch_udc_pcd_init() - This API initializes the driver structure
2698 * @dev: Reference to the driver structure
2699 *
2700 * Return codes:
2701 * 0: Success
2702 */
2703static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2704{
2705 pch_udc_init(dev);
2706 pch_udc_pcd_reinit(dev);
2707 return 0;
2708}
2709
2710/**
2711 * init_dma_pools() - create dma pools during initialization
2712 * @pdev: reference to struct pci_dev
2713 */
2714static int init_dma_pools(struct pch_udc_dev *dev)
2715{
2716 struct pch_udc_stp_dma_desc *td_stp;
2717 struct pch_udc_data_dma_desc *td_data;
2718
2719 /* DMA setup */
2720 dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2721 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2722 if (!dev->data_requests) {
2723 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2724 __func__);
2725 return -ENOMEM;
2726 }
2727
2728 /* dma desc for setup data */
2729 dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2730 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2731 if (!dev->stp_requests) {
2732 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2733 __func__);
2734 return -ENOMEM;
2735 }
2736 /* setup */
2737 td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2738 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2739 if (!td_stp) {
2740 dev_err(&dev->pdev->dev,
2741 "%s: can't allocate setup dma descriptor\n", __func__);
2742 return -ENOMEM;
2743 }
2744 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2745
2746 /* data: 0 packets !? */
2747 td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2748 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2749 if (!td_data) {
2750 dev_err(&dev->pdev->dev,
2751 "%s: can't allocate data dma descriptor\n", __func__);
2752 return -ENOMEM;
2753 }
2754 dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2755 dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2756 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2757 dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2758 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
abab0c67
TO
2759
2760 dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
2761 if (!dev->ep0out_buf)
2762 return -ENOMEM;
2763 dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
2764 UDC_EP0OUT_BUFF_SIZE * 4,
2765 DMA_FROM_DEVICE);
f646cf94
TO
2766 return 0;
2767}
2768
0f91349b 2769static int pch_udc_start(struct usb_gadget_driver *driver,
49e20834 2770 int (*bind)(struct usb_gadget *))
f646cf94
TO
2771{
2772 struct pch_udc_dev *dev = pch_udc;
2773 int retval;
2774
7177aed4 2775 if (!driver || (driver->max_speed == USB_SPEED_UNKNOWN) || !bind ||
f646cf94
TO
2776 !driver->setup || !driver->unbind || !driver->disconnect) {
2777 dev_err(&dev->pdev->dev,
2778 "%s: invalid driver parameter\n", __func__);
2779 return -EINVAL;
2780 }
2781
2782 if (!dev)
2783 return -ENODEV;
2784
2785 if (dev->driver) {
2786 dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
2787 return -EBUSY;
2788 }
2789 driver->driver.bus = NULL;
2790 dev->driver = driver;
2791 dev->gadget.dev.driver = &driver->driver;
2792
2793 /* Invoke the bind routine of the gadget driver */
49e20834 2794 retval = bind(&dev->gadget);
f646cf94
TO
2795
2796 if (retval) {
2797 dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
2798 __func__, driver->driver.name, retval);
2799 dev->driver = NULL;
2800 dev->gadget.dev.driver = NULL;
2801 return retval;
2802 }
2803 /* get ready for ep0 traffic */
2804 pch_udc_setup_ep0(dev);
2805
2806 /* clear SD */
2807 pch_udc_clear_disconnect(dev);
2808
2809 dev->connected = 1;
2810 return 0;
2811}
f646cf94 2812
0f91349b 2813static int pch_udc_stop(struct usb_gadget_driver *driver)
f646cf94
TO
2814{
2815 struct pch_udc_dev *dev = pch_udc;
2816
2817 if (!dev)
2818 return -ENODEV;
2819
2820 if (!driver || (driver != dev->driver)) {
2821 dev_err(&dev->pdev->dev,
2822 "%s: invalid driver parameter\n", __func__);
2823 return -EINVAL;
2824 }
2825
2826 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2827
15680cdf
TO
2828 /* Assures that there are no pending requests with this driver */
2829 driver->disconnect(&dev->gadget);
f646cf94
TO
2830 driver->unbind(&dev->gadget);
2831 dev->gadget.dev.driver = NULL;
2832 dev->driver = NULL;
2833 dev->connected = 0;
2834
2835 /* set SD */
2836 pch_udc_set_disconnect(dev);
2837 return 0;
2838}
f646cf94
TO
2839
2840static void pch_udc_shutdown(struct pci_dev *pdev)
2841{
2842 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2843
2844 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2845 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2846
2847 /* disable the pullup so the host will think we're gone */
2848 pch_udc_set_disconnect(dev);
2849}
2850
2851static void pch_udc_remove(struct pci_dev *pdev)
2852{
2853 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2854
0f91349b
SAS
2855 usb_del_gadget_udc(&dev->gadget);
2856
f646cf94
TO
2857 /* gadget driver must not be registered */
2858 if (dev->driver)
2859 dev_err(&pdev->dev,
2860 "%s: gadget driver still bound!!!\n", __func__);
2861 /* dma pool cleanup */
2862 if (dev->data_requests)
2863 pci_pool_destroy(dev->data_requests);
2864
2865 if (dev->stp_requests) {
2866 /* cleanup DMA desc's for ep0in */
2867 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
2868 pci_pool_free(dev->stp_requests,
2869 dev->ep[UDC_EP0OUT_IDX].td_stp,
2870 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2871 }
2872 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
2873 pci_pool_free(dev->stp_requests,
2874 dev->ep[UDC_EP0OUT_IDX].td_data,
2875 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2876 }
2877 pci_pool_destroy(dev->stp_requests);
2878 }
2879
abab0c67
TO
2880 if (dev->dma_addr)
2881 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
2882 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
2883 kfree(dev->ep0out_buf);
2884
f646cf94
TO
2885 pch_udc_exit(dev);
2886
2887 if (dev->irq_registered)
2888 free_irq(pdev->irq, dev);
2889 if (dev->base_addr)
2890 iounmap(dev->base_addr);
2891 if (dev->mem_region)
2892 release_mem_region(dev->phys_addr,
2893 pci_resource_len(pdev, PCH_UDC_PCI_BAR));
2894 if (dev->active)
2895 pci_disable_device(pdev);
2896 if (dev->registered)
2897 device_unregister(&dev->gadget.dev);
2898 kfree(dev);
2899 pci_set_drvdata(pdev, NULL);
2900}
2901
2902#ifdef CONFIG_PM
2903static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
2904{
2905 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2906
2907 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2908 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2909
2910 pci_disable_device(pdev);
2911 pci_enable_wake(pdev, PCI_D3hot, 0);
2912
2913 if (pci_save_state(pdev)) {
2914 dev_err(&pdev->dev,
2915 "%s: could not save PCI config state\n", __func__);
2916 return -ENOMEM;
2917 }
2918 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2919 return 0;
2920}
2921
2922static int pch_udc_resume(struct pci_dev *pdev)
2923{
2924 int ret;
2925
2926 pci_set_power_state(pdev, PCI_D0);
abab0c67 2927 pci_restore_state(pdev);
f646cf94
TO
2928 ret = pci_enable_device(pdev);
2929 if (ret) {
2930 dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
2931 return ret;
2932 }
2933 pci_enable_wake(pdev, PCI_D3hot, 0);
2934 return 0;
2935}
2936#else
2937#define pch_udc_suspend NULL
2938#define pch_udc_resume NULL
2939#endif /* CONFIG_PM */
2940
2941static int pch_udc_probe(struct pci_dev *pdev,
2942 const struct pci_device_id *id)
2943{
2944 unsigned long resource;
2945 unsigned long len;
2946 int retval;
2947 struct pch_udc_dev *dev;
2948
2949 /* one udc only */
2950 if (pch_udc) {
2951 pr_err("%s: already probed\n", __func__);
2952 return -EBUSY;
2953 }
2954 /* init */
2955 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2956 if (!dev) {
2957 pr_err("%s: no memory for device structure\n", __func__);
2958 return -ENOMEM;
2959 }
2960 /* pci setup */
2961 if (pci_enable_device(pdev) < 0) {
2962 kfree(dev);
2963 pr_err("%s: pci_enable_device failed\n", __func__);
2964 return -ENODEV;
2965 }
2966 dev->active = 1;
2967 pci_set_drvdata(pdev, dev);
2968
2969 /* PCI resource allocation */
2970 resource = pci_resource_start(pdev, 1);
2971 len = pci_resource_len(pdev, 1);
2972
2973 if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
2974 dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
2975 retval = -EBUSY;
2976 goto finished;
2977 }
2978 dev->phys_addr = resource;
2979 dev->mem_region = 1;
2980
2981 dev->base_addr = ioremap_nocache(resource, len);
2982 if (!dev->base_addr) {
2983 pr_err("%s: device memory cannot be mapped\n", __func__);
2984 retval = -ENOMEM;
2985 goto finished;
2986 }
2987 if (!pdev->irq) {
2988 dev_err(&pdev->dev, "%s: irq not set\n", __func__);
2989 retval = -ENODEV;
2990 goto finished;
2991 }
2992 pch_udc = dev;
2993 /* initialize the hardware */
c802672c
TM
2994 if (pch_udc_pcd_init(dev)) {
2995 retval = -ENODEV;
f646cf94 2996 goto finished;
c802672c 2997 }
f646cf94
TO
2998 if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
2999 dev)) {
3000 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
3001 pdev->irq);
3002 retval = -ENODEV;
3003 goto finished;
3004 }
3005 dev->irq = pdev->irq;
3006 dev->irq_registered = 1;
3007
3008 pci_set_master(pdev);
3009 pci_try_set_mwi(pdev);
3010
3011 /* device struct setup */
3012 spin_lock_init(&dev->lock);
3013 dev->pdev = pdev;
3014 dev->gadget.ops = &pch_udc_ops;
3015
3016 retval = init_dma_pools(dev);
3017 if (retval)
3018 goto finished;
3019
3020 dev_set_name(&dev->gadget.dev, "gadget");
3021 dev->gadget.dev.parent = &pdev->dev;
3022 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3023 dev->gadget.dev.release = gadget_release;
3024 dev->gadget.name = KBUILD_MODNAME;
d327ab5b 3025 dev->gadget.max_speed = USB_SPEED_HIGH;
f646cf94
TO
3026
3027 retval = device_register(&dev->gadget.dev);
3028 if (retval)
3029 goto finished;
3030 dev->registered = 1;
3031
3032 /* Put the device in disconnected state till a driver is bound */
3033 pch_udc_set_disconnect(dev);
0f91349b
SAS
3034 retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
3035 if (retval)
3036 goto finished;
f646cf94
TO
3037 return 0;
3038
3039finished:
3040 pch_udc_remove(pdev);
3041 return retval;
3042}
3043
49e20834 3044static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
f646cf94
TO
3045 {
3046 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
3047 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3048 .class_mask = 0xffffffff,
3049 },
06f1b971
TM
3050 {
3051 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
3052 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3053 .class_mask = 0xffffffff,
3054 },
731ad81e
TM
3055 {
3056 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
3057 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3058 .class_mask = 0xffffffff,
3059 },
f646cf94
TO
3060 { 0 },
3061};
3062
3063MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
3064
3065
3066static struct pci_driver pch_udc_driver = {
3067 .name = KBUILD_MODNAME,
3068 .id_table = pch_udc_pcidev_id,
3069 .probe = pch_udc_probe,
3070 .remove = pch_udc_remove,
3071 .suspend = pch_udc_suspend,
3072 .resume = pch_udc_resume,
3073 .shutdown = pch_udc_shutdown,
3074};
3075
3076static int __init pch_udc_pci_init(void)
3077{
3078 return pci_register_driver(&pch_udc_driver);
3079}
3080module_init(pch_udc_pci_init);
3081
3082static void __exit pch_udc_pci_exit(void)
3083{
3084 pci_unregister_driver(&pch_udc_driver);
3085}
3086module_exit(pch_udc_pci_exit);
3087
3088MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
09b658dc 3089MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
f646cf94 3090MODULE_LICENSE("GPL");
This page took 0.212489 seconds and 5 git commands to generate.