Merge remote-tracking branch 'asoc/topic/mc13783' into asoc-next
[deliverable/linux.git] / drivers / usb / gadget / s3c-hsotg.c
CommitLineData
8b9bc460
LM
1/**
2 * linux/drivers/usb/gadget/s3c-hsotg.c
dfbc6fa3
AT
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
5b7d70c6
BD
6 *
7 * Copyright 2008 Openmoko, Inc.
8 * Copyright 2008 Simtec Electronics
9 * Ben Dooks <ben@simtec.co.uk>
10 * http://armlinux.simtec.co.uk/
11 *
12 * S3C USB2.0 High-speed / OtG driver
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
8b9bc460 17 */
5b7d70c6
BD
18
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/spinlock.h>
22#include <linux/interrupt.h>
23#include <linux/platform_device.h>
24#include <linux/dma-mapping.h>
25#include <linux/debugfs.h>
26#include <linux/seq_file.h>
27#include <linux/delay.h>
28#include <linux/io.h>
5a0e3ad6 29#include <linux/slab.h>
e50bf385 30#include <linux/clk.h>
fc9a731e 31#include <linux/regulator/consumer.h>
c50f056c 32#include <linux/of_platform.h>
5b7d70c6
BD
33
34#include <linux/usb/ch9.h>
35#include <linux/usb/gadget.h>
b2e587db 36#include <linux/usb/phy.h>
126625e1 37#include <linux/platform_data/s3c-hsotg.h>
5b7d70c6
BD
38
39#include <mach/map.h>
40
127d42ae 41#include "s3c-hsotg.h"
5b7d70c6 42
fc9a731e
LM
43static const char * const s3c_hsotg_supply_names[] = {
44 "vusb_d", /* digital USB supply, 1.2V */
45 "vusb_a", /* analog USB supply, 1.1V */
46};
47
8b9bc460
LM
48/*
49 * EP0_MPS_LIMIT
5b7d70c6
BD
50 *
51 * Unfortunately there seems to be a limit of the amount of data that can
25985edc
LDM
52 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
53 * packets (which practically means 1 packet and 63 bytes of data) when the
5b7d70c6
BD
54 * MPS is set to 64.
55 *
56 * This means if we are wanting to move >127 bytes of data, we need to
57 * split the transactions up, but just doing one packet at a time does
58 * not work (this may be an implicit DATA0 PID on first packet of the
59 * transaction) and doing 2 packets is outside the controller's limits.
60 *
61 * If we try to lower the MPS size for EP0, then no transfers work properly
62 * for EP0, and the system will fail basic enumeration. As no cause for this
63 * has currently been found, we cannot support any large IN transfers for
64 * EP0.
65 */
66#define EP0_MPS_LIMIT 64
67
68struct s3c_hsotg;
69struct s3c_hsotg_req;
70
71/**
72 * struct s3c_hsotg_ep - driver endpoint definition.
73 * @ep: The gadget layer representation of the endpoint.
74 * @name: The driver generated name for the endpoint.
75 * @queue: Queue of requests for this endpoint.
76 * @parent: Reference back to the parent device structure.
77 * @req: The current request that the endpoint is processing. This is
78 * used to indicate an request has been loaded onto the endpoint
79 * and has yet to be completed (maybe due to data move, or simply
80 * awaiting an ack from the core all the data has been completed).
81 * @debugfs: File entry for debugfs file for this endpoint.
82 * @lock: State lock to protect contents of endpoint.
83 * @dir_in: Set to true if this endpoint is of the IN direction, which
84 * means that it is sending data to the Host.
85 * @index: The index for the endpoint registers.
86 * @name: The name array passed to the USB core.
87 * @halted: Set if the endpoint has been halted.
88 * @periodic: Set if this is a periodic ep, such as Interrupt
89 * @sent_zlp: Set if we've sent a zero-length packet.
90 * @total_data: The total number of data bytes done.
91 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
92 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
93 * @last_load: The offset of data for the last start of request.
94 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
95 *
96 * This is the driver's state for each registered enpoint, allowing it
97 * to keep track of transactions that need doing. Each endpoint has a
98 * lock to protect the state, to try and avoid using an overall lock
99 * for the host controller as much as possible.
100 *
101 * For periodic IN endpoints, we have fifo_size and fifo_load to try
102 * and keep track of the amount of data in the periodic FIFO for each
103 * of these as we don't have a status register that tells us how much
e7a9ff54
BD
104 * is in each of them. (note, this may actually be useless information
105 * as in shared-fifo mode periodic in acts like a single-frame packet
106 * buffer than a fifo)
5b7d70c6
BD
107 */
108struct s3c_hsotg_ep {
109 struct usb_ep ep;
110 struct list_head queue;
111 struct s3c_hsotg *parent;
112 struct s3c_hsotg_req *req;
113 struct dentry *debugfs;
114
5b7d70c6
BD
115
116 unsigned long total_data;
117 unsigned int size_loaded;
118 unsigned int last_load;
119 unsigned int fifo_load;
120 unsigned short fifo_size;
121
122 unsigned char dir_in;
123 unsigned char index;
124
125 unsigned int halted:1;
126 unsigned int periodic:1;
127 unsigned int sent_zlp:1;
128
129 char name[10];
130};
131
5b7d70c6
BD
132/**
133 * struct s3c_hsotg - driver state.
134 * @dev: The parent device supplied to the probe function
135 * @driver: USB gadget driver
b2e587db
PP
136 * @phy: The otg phy transceiver structure for phy control.
137 * @plat: The platform specific configuration data. This can be removed once
138 * all SoCs support usb transceiver.
5b7d70c6 139 * @regs: The memory area mapped for accessing registers.
5b7d70c6 140 * @irq: The IRQ number we are using
fc9a731e 141 * @supplies: Definition of USB power supplies
10aebc77 142 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
b3f489b2 143 * @num_of_eps: Number of available EPs (excluding EP0)
5b7d70c6
BD
144 * @debug_root: root directrory for debugfs.
145 * @debug_file: main status file for debugfs.
146 * @debug_fifo: FIFO status file for debugfs.
147 * @ep0_reply: Request used for ep0 reply.
148 * @ep0_buff: Buffer for EP0 reply data, if needed.
149 * @ctrl_buff: Buffer for EP0 control requests.
150 * @ctrl_req: Request for EP0 control packets.
71225bee 151 * @setup: NAK management for EP0 SETUP
12a1f4dc 152 * @last_rst: Time of last reset
5b7d70c6
BD
153 * @eps: The endpoints being supplied to the gadget framework
154 */
155struct s3c_hsotg {
156 struct device *dev;
157 struct usb_gadget_driver *driver;
b2e587db 158 struct usb_phy *phy;
5b7d70c6
BD
159 struct s3c_hsotg_plat *plat;
160
22258f49
LM
161 spinlock_t lock;
162
5b7d70c6 163 void __iomem *regs;
5b7d70c6 164 int irq;
31ee04de 165 struct clk *clk;
5b7d70c6 166
fc9a731e
LM
167 struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
168
10aebc77 169 unsigned int dedicated_fifos:1;
b3f489b2 170 unsigned char num_of_eps;
10aebc77 171
5b7d70c6
BD
172 struct dentry *debug_root;
173 struct dentry *debug_file;
174 struct dentry *debug_fifo;
175
176 struct usb_request *ep0_reply;
177 struct usb_request *ctrl_req;
178 u8 ep0_buff[8];
179 u8 ctrl_buff[8];
180
181 struct usb_gadget gadget;
71225bee 182 unsigned int setup;
12a1f4dc 183 unsigned long last_rst;
b3f489b2 184 struct s3c_hsotg_ep *eps;
5b7d70c6
BD
185};
186
187/**
188 * struct s3c_hsotg_req - data transfer request
189 * @req: The USB gadget request
190 * @queue: The list of requests for the endpoint this is queued for.
191 * @in_progress: Has already had size/packets written to core
192 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
193 */
194struct s3c_hsotg_req {
195 struct usb_request req;
196 struct list_head queue;
197 unsigned char in_progress;
198 unsigned char mapped;
199};
200
201/* conversion functions */
202static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
203{
204 return container_of(req, struct s3c_hsotg_req, req);
205}
206
207static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
208{
209 return container_of(ep, struct s3c_hsotg_ep, ep);
210}
211
212static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
213{
214 return container_of(gadget, struct s3c_hsotg, gadget);
215}
216
217static inline void __orr32(void __iomem *ptr, u32 val)
218{
219 writel(readl(ptr) | val, ptr);
220}
221
222static inline void __bic32(void __iomem *ptr, u32 val)
223{
224 writel(readl(ptr) & ~val, ptr);
225}
226
227/* forward decleration of functions */
228static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
229
230/**
231 * using_dma - return the DMA status of the driver.
232 * @hsotg: The driver state.
233 *
234 * Return true if we're using DMA.
235 *
236 * Currently, we have the DMA support code worked into everywhere
237 * that needs it, but the AMBA DMA implementation in the hardware can
238 * only DMA from 32bit aligned addresses. This means that gadgets such
239 * as the CDC Ethernet cannot work as they often pass packets which are
240 * not 32bit aligned.
241 *
242 * Unfortunately the choice to use DMA or not is global to the controller
243 * and seems to be only settable when the controller is being put through
244 * a core reset. This means we either need to fix the gadgets to take
245 * account of DMA alignment, or add bounce buffers (yuerk).
246 *
247 * Until this issue is sorted out, we always return 'false'.
248 */
249static inline bool using_dma(struct s3c_hsotg *hsotg)
250{
251 return false; /* support is not complete */
252}
253
254/**
255 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
256 * @hsotg: The device state
257 * @ints: A bitmask of the interrupts to enable
258 */
259static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
260{
94cb8fd6 261 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
5b7d70c6
BD
262 u32 new_gsintmsk;
263
264 new_gsintmsk = gsintmsk | ints;
265
266 if (new_gsintmsk != gsintmsk) {
267 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
94cb8fd6 268 writel(new_gsintmsk, hsotg->regs + GINTMSK);
5b7d70c6
BD
269 }
270}
271
272/**
273 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
274 * @hsotg: The device state
275 * @ints: A bitmask of the interrupts to enable
276 */
277static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
278{
94cb8fd6 279 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
5b7d70c6
BD
280 u32 new_gsintmsk;
281
282 new_gsintmsk = gsintmsk & ~ints;
283
284 if (new_gsintmsk != gsintmsk)
94cb8fd6 285 writel(new_gsintmsk, hsotg->regs + GINTMSK);
5b7d70c6
BD
286}
287
288/**
289 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
290 * @hsotg: The device state
291 * @ep: The endpoint index
292 * @dir_in: True if direction is in.
293 * @en: The enable value, true to enable
294 *
295 * Set or clear the mask for an individual endpoint's interrupt
296 * request.
297 */
298static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
299 unsigned int ep, unsigned int dir_in,
300 unsigned int en)
301{
302 unsigned long flags;
303 u32 bit = 1 << ep;
304 u32 daint;
305
306 if (!dir_in)
307 bit <<= 16;
308
309 local_irq_save(flags);
94cb8fd6 310 daint = readl(hsotg->regs + DAINTMSK);
5b7d70c6
BD
311 if (en)
312 daint |= bit;
313 else
314 daint &= ~bit;
94cb8fd6 315 writel(daint, hsotg->regs + DAINTMSK);
5b7d70c6
BD
316 local_irq_restore(flags);
317}
318
319/**
320 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
321 * @hsotg: The device instance.
322 */
323static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
324{
0f002d20
BD
325 unsigned int ep;
326 unsigned int addr;
327 unsigned int size;
1703a6d3 328 int timeout;
0f002d20
BD
329 u32 val;
330
6d091ee7 331 /* set FIFO sizes to 2048/1024 */
5b7d70c6 332
94cb8fd6
LM
333 writel(2048, hsotg->regs + GRXFSIZ);
334 writel(GNPTXFSIZ_NPTxFStAddr(2048) |
335 GNPTXFSIZ_NPTxFDep(1024),
336 hsotg->regs + GNPTXFSIZ);
0f002d20 337
8b9bc460
LM
338 /*
339 * arange all the rest of the TX FIFOs, as some versions of this
0f002d20
BD
340 * block have overlapping default addresses. This also ensures
341 * that if the settings have been changed, then they are set to
8b9bc460
LM
342 * known values.
343 */
0f002d20
BD
344
345 /* start at the end of the GNPTXFSIZ, rounded up */
346 addr = 2048 + 1024;
347 size = 768;
348
8b9bc460
LM
349 /*
350 * currently we allocate TX FIFOs for all possible endpoints,
351 * and assume that they are all the same size.
352 */
0f002d20 353
f7a83fe1 354 for (ep = 1; ep <= 15; ep++) {
0f002d20 355 val = addr;
94cb8fd6 356 val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
0f002d20
BD
357 addr += size;
358
94cb8fd6 359 writel(val, hsotg->regs + DPTXFSIZn(ep));
0f002d20 360 }
1703a6d3 361
8b9bc460
LM
362 /*
363 * according to p428 of the design guide, we need to ensure that
364 * all fifos are flushed before continuing
365 */
1703a6d3 366
94cb8fd6
LM
367 writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
368 GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
1703a6d3
BD
369
370 /* wait until the fifos are both flushed */
371 timeout = 100;
372 while (1) {
94cb8fd6 373 val = readl(hsotg->regs + GRSTCTL);
1703a6d3 374
94cb8fd6 375 if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
1703a6d3
BD
376 break;
377
378 if (--timeout == 0) {
379 dev_err(hsotg->dev,
380 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
381 __func__, val);
382 }
383
384 udelay(1);
385 }
386
387 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
5b7d70c6
BD
388}
389
390/**
391 * @ep: USB endpoint to allocate request for.
392 * @flags: Allocation flags
393 *
394 * Allocate a new USB request structure appropriate for the specified endpoint
395 */
0978f8c5
MB
396static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
397 gfp_t flags)
5b7d70c6
BD
398{
399 struct s3c_hsotg_req *req;
400
401 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
402 if (!req)
403 return NULL;
404
405 INIT_LIST_HEAD(&req->queue);
406
5b7d70c6
BD
407 return &req->req;
408}
409
410/**
411 * is_ep_periodic - return true if the endpoint is in periodic mode.
412 * @hs_ep: The endpoint to query.
413 *
414 * Returns true if the endpoint is in periodic mode, meaning it is being
415 * used for an Interrupt or ISO transfer.
416 */
417static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
418{
419 return hs_ep->periodic;
420}
421
422/**
423 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
424 * @hsotg: The device state.
425 * @hs_ep: The endpoint for the request
426 * @hs_req: The request being processed.
427 *
428 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
429 * of a request to ensure the buffer is ready for access by the caller.
8b9bc460 430 */
5b7d70c6
BD
431static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
432 struct s3c_hsotg_ep *hs_ep,
433 struct s3c_hsotg_req *hs_req)
434{
435 struct usb_request *req = &hs_req->req;
5b7d70c6
BD
436
437 /* ignore this if we're not moving any data */
438 if (hs_req->req.length == 0)
439 return;
440
17d966a3 441 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
5b7d70c6
BD
442}
443
444/**
445 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
446 * @hsotg: The controller state.
447 * @hs_ep: The endpoint we're going to write for.
448 * @hs_req: The request to write data for.
449 *
450 * This is called when the TxFIFO has some space in it to hold a new
451 * transmission and we have something to give it. The actual setup of
452 * the data size is done elsewhere, so all we have to do is to actually
453 * write the data.
454 *
455 * The return value is zero if there is more space (or nothing was done)
456 * otherwise -ENOSPC is returned if the FIFO space was used up.
457 *
458 * This routine is only needed for PIO
8b9bc460 459 */
5b7d70c6
BD
460static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
461 struct s3c_hsotg_ep *hs_ep,
462 struct s3c_hsotg_req *hs_req)
463{
464 bool periodic = is_ep_periodic(hs_ep);
94cb8fd6 465 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
5b7d70c6
BD
466 int buf_pos = hs_req->req.actual;
467 int to_write = hs_ep->size_loaded;
468 void *data;
469 int can_write;
470 int pkt_round;
471
472 to_write -= (buf_pos - hs_ep->last_load);
473
474 /* if there's nothing to write, get out early */
475 if (to_write == 0)
476 return 0;
477
10aebc77 478 if (periodic && !hsotg->dedicated_fifos) {
94cb8fd6 479 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
5b7d70c6
BD
480 int size_left;
481 int size_done;
482
8b9bc460
LM
483 /*
484 * work out how much data was loaded so we can calculate
485 * how much data is left in the fifo.
486 */
5b7d70c6 487
94cb8fd6 488 size_left = DxEPTSIZ_XferSize_GET(epsize);
5b7d70c6 489
8b9bc460
LM
490 /*
491 * if shared fifo, we cannot write anything until the
e7a9ff54
BD
492 * previous data has been completely sent.
493 */
494 if (hs_ep->fifo_load != 0) {
94cb8fd6 495 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
e7a9ff54
BD
496 return -ENOSPC;
497 }
498
5b7d70c6
BD
499 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
500 __func__, size_left,
501 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
502
503 /* how much of the data has moved */
504 size_done = hs_ep->size_loaded - size_left;
505
506 /* how much data is left in the fifo */
507 can_write = hs_ep->fifo_load - size_done;
508 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
509 __func__, can_write);
510
511 can_write = hs_ep->fifo_size - can_write;
512 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
513 __func__, can_write);
514
515 if (can_write <= 0) {
94cb8fd6 516 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
5b7d70c6
BD
517 return -ENOSPC;
518 }
10aebc77 519 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
94cb8fd6 520 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
10aebc77
BD
521
522 can_write &= 0xffff;
523 can_write *= 4;
5b7d70c6 524 } else {
94cb8fd6 525 if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
5b7d70c6
BD
526 dev_dbg(hsotg->dev,
527 "%s: no queue slots available (0x%08x)\n",
528 __func__, gnptxsts);
529
94cb8fd6 530 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
5b7d70c6
BD
531 return -ENOSPC;
532 }
533
94cb8fd6 534 can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
679f9b7c 535 can_write *= 4; /* fifo size is in 32bit quantities. */
5b7d70c6
BD
536 }
537
538 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
539 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
540
8b9bc460
LM
541 /*
542 * limit to 512 bytes of data, it seems at least on the non-periodic
5b7d70c6
BD
543 * FIFO, requests of >512 cause the endpoint to get stuck with a
544 * fragment of the end of the transfer in it.
545 */
b377216b 546 if (can_write > 512 && !periodic)
5b7d70c6
BD
547 can_write = 512;
548
8b9bc460
LM
549 /*
550 * limit the write to one max-packet size worth of data, but allow
03e10e5a 551 * the transfer to return that it did not run out of fifo space
8b9bc460
LM
552 * doing it.
553 */
03e10e5a
BD
554 if (to_write > hs_ep->ep.maxpacket) {
555 to_write = hs_ep->ep.maxpacket;
556
557 s3c_hsotg_en_gsint(hsotg,
94cb8fd6
LM
558 periodic ? GINTSTS_PTxFEmp :
559 GINTSTS_NPTxFEmp);
03e10e5a
BD
560 }
561
5b7d70c6
BD
562 /* see if we can write data */
563
564 if (to_write > can_write) {
565 to_write = can_write;
566 pkt_round = to_write % hs_ep->ep.maxpacket;
567
8b9bc460
LM
568 /*
569 * Round the write down to an
5b7d70c6
BD
570 * exact number of packets.
571 *
572 * Note, we do not currently check to see if we can ever
573 * write a full packet or not to the FIFO.
574 */
575
576 if (pkt_round)
577 to_write -= pkt_round;
578
8b9bc460
LM
579 /*
580 * enable correct FIFO interrupt to alert us when there
581 * is more room left.
582 */
5b7d70c6
BD
583
584 s3c_hsotg_en_gsint(hsotg,
94cb8fd6
LM
585 periodic ? GINTSTS_PTxFEmp :
586 GINTSTS_NPTxFEmp);
5b7d70c6
BD
587 }
588
589 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
590 to_write, hs_req->req.length, can_write, buf_pos);
591
592 if (to_write <= 0)
593 return -ENOSPC;
594
595 hs_req->req.actual = buf_pos + to_write;
596 hs_ep->total_data += to_write;
597
598 if (periodic)
599 hs_ep->fifo_load += to_write;
600
601 to_write = DIV_ROUND_UP(to_write, 4);
602 data = hs_req->req.buf + buf_pos;
603
94cb8fd6 604 writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
5b7d70c6
BD
605
606 return (to_write >= can_write) ? -ENOSPC : 0;
607}
608
609/**
610 * get_ep_limit - get the maximum data legnth for this endpoint
611 * @hs_ep: The endpoint
612 *
613 * Return the maximum data that can be queued in one go on a given endpoint
614 * so that transfers that are too long can be split.
615 */
616static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
617{
618 int index = hs_ep->index;
619 unsigned maxsize;
620 unsigned maxpkt;
621
622 if (index != 0) {
94cb8fd6
LM
623 maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
624 maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
5b7d70c6 625 } else {
b05ca580 626 maxsize = 64+64;
66e5c643 627 if (hs_ep->dir_in)
94cb8fd6 628 maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
66e5c643 629 else
5b7d70c6 630 maxpkt = 2;
5b7d70c6
BD
631 }
632
633 /* we made the constant loading easier above by using +1 */
634 maxpkt--;
635 maxsize--;
636
8b9bc460
LM
637 /*
638 * constrain by packet count if maxpkts*pktsize is greater
639 * than the length register size.
640 */
5b7d70c6
BD
641
642 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
643 maxsize = maxpkt * hs_ep->ep.maxpacket;
644
645 return maxsize;
646}
647
648/**
649 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
650 * @hsotg: The controller state.
651 * @hs_ep: The endpoint to process a request for
652 * @hs_req: The request to start.
653 * @continuing: True if we are doing more for the current request.
654 *
655 * Start the given request running by setting the endpoint registers
656 * appropriately, and writing any data to the FIFOs.
657 */
658static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
659 struct s3c_hsotg_ep *hs_ep,
660 struct s3c_hsotg_req *hs_req,
661 bool continuing)
662{
663 struct usb_request *ureq = &hs_req->req;
664 int index = hs_ep->index;
665 int dir_in = hs_ep->dir_in;
666 u32 epctrl_reg;
667 u32 epsize_reg;
668 u32 epsize;
669 u32 ctrl;
670 unsigned length;
671 unsigned packets;
672 unsigned maxreq;
673
674 if (index != 0) {
675 if (hs_ep->req && !continuing) {
676 dev_err(hsotg->dev, "%s: active request\n", __func__);
677 WARN_ON(1);
678 return;
679 } else if (hs_ep->req != hs_req && continuing) {
680 dev_err(hsotg->dev,
681 "%s: continue different req\n", __func__);
682 WARN_ON(1);
683 return;
684 }
685 }
686
94cb8fd6
LM
687 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
688 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
5b7d70c6
BD
689
690 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
691 __func__, readl(hsotg->regs + epctrl_reg), index,
692 hs_ep->dir_in ? "in" : "out");
693
9c39ddc6
AT
694 /* If endpoint is stalled, we will restart request later */
695 ctrl = readl(hsotg->regs + epctrl_reg);
696
94cb8fd6 697 if (ctrl & DxEPCTL_Stall) {
9c39ddc6
AT
698 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
699 return;
700 }
701
5b7d70c6 702 length = ureq->length - ureq->actual;
71225bee
LM
703 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
704 ureq->length, ureq->actual);
5b7d70c6
BD
705 if (0)
706 dev_dbg(hsotg->dev,
707 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
708 ureq->buf, length, ureq->dma,
709 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
710
711 maxreq = get_ep_limit(hs_ep);
712 if (length > maxreq) {
713 int round = maxreq % hs_ep->ep.maxpacket;
714
715 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
716 __func__, length, maxreq, round);
717
718 /* round down to multiple of packets */
719 if (round)
720 maxreq -= round;
721
722 length = maxreq;
723 }
724
725 if (length)
726 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
727 else
728 packets = 1; /* send one packet if length is zero. */
729
730 if (dir_in && index != 0)
94cb8fd6 731 epsize = DxEPTSIZ_MC(1);
5b7d70c6
BD
732 else
733 epsize = 0;
734
735 if (index != 0 && ureq->zero) {
8b9bc460
LM
736 /*
737 * test for the packets being exactly right for the
738 * transfer
739 */
5b7d70c6
BD
740
741 if (length == (packets * hs_ep->ep.maxpacket))
742 packets++;
743 }
744
94cb8fd6
LM
745 epsize |= DxEPTSIZ_PktCnt(packets);
746 epsize |= DxEPTSIZ_XferSize(length);
5b7d70c6
BD
747
748 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
749 __func__, packets, length, ureq->length, epsize, epsize_reg);
750
751 /* store the request as the current one we're doing */
752 hs_ep->req = hs_req;
753
754 /* write size / packets */
755 writel(epsize, hsotg->regs + epsize_reg);
756
db1d8ba3 757 if (using_dma(hsotg) && !continuing) {
5b7d70c6
BD
758 unsigned int dma_reg;
759
8b9bc460
LM
760 /*
761 * write DMA address to control register, buffer already
762 * synced by s3c_hsotg_ep_queue().
763 */
5b7d70c6 764
94cb8fd6 765 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
5b7d70c6
BD
766 writel(ureq->dma, hsotg->regs + dma_reg);
767
768 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
769 __func__, ureq->dma, dma_reg);
770 }
771
94cb8fd6
LM
772 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
773 ctrl |= DxEPCTL_USBActEp;
71225bee
LM
774
775 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
776
777 /* For Setup request do not clear NAK */
778 if (hsotg->setup && index == 0)
779 hsotg->setup = 0;
780 else
94cb8fd6 781 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
71225bee 782
5b7d70c6
BD
783
784 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
785 writel(ctrl, hsotg->regs + epctrl_reg);
786
8b9bc460
LM
787 /*
788 * set these, it seems that DMA support increments past the end
5b7d70c6 789 * of the packet buffer so we need to calculate the length from
8b9bc460
LM
790 * this information.
791 */
5b7d70c6
BD
792 hs_ep->size_loaded = length;
793 hs_ep->last_load = ureq->actual;
794
795 if (dir_in && !using_dma(hsotg)) {
796 /* set these anyway, we may need them for non-periodic in */
797 hs_ep->fifo_load = 0;
798
799 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
800 }
801
8b9bc460
LM
802 /*
803 * clear the INTknTXFEmpMsk when we start request, more as a aide
804 * to debugging to see what is going on.
805 */
5b7d70c6 806 if (dir_in)
94cb8fd6
LM
807 writel(DIEPMSK_INTknTXFEmpMsk,
808 hsotg->regs + DIEPINT(index));
5b7d70c6 809
8b9bc460
LM
810 /*
811 * Note, trying to clear the NAK here causes problems with transmit
812 * on the S3C6400 ending up with the TXFIFO becoming full.
813 */
5b7d70c6
BD
814
815 /* check ep is enabled */
94cb8fd6 816 if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
5b7d70c6
BD
817 dev_warn(hsotg->dev,
818 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
819 index, readl(hsotg->regs + epctrl_reg));
820
821 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
822 __func__, readl(hsotg->regs + epctrl_reg));
823}
824
825/**
826 * s3c_hsotg_map_dma - map the DMA memory being used for the request
827 * @hsotg: The device state.
828 * @hs_ep: The endpoint the request is on.
829 * @req: The request being processed.
830 *
831 * We've been asked to queue a request, so ensure that the memory buffer
832 * is correctly setup for DMA. If we've been passed an extant DMA address
833 * then ensure the buffer has been synced to memory. If our buffer has no
834 * DMA memory, then we map the memory and mark our request to allow us to
835 * cleanup on completion.
8b9bc460 836 */
5b7d70c6
BD
837static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
838 struct s3c_hsotg_ep *hs_ep,
839 struct usb_request *req)
840{
5b7d70c6 841 struct s3c_hsotg_req *hs_req = our_req(req);
e58ebcd1 842 int ret;
5b7d70c6
BD
843
844 /* if the length is zero, ignore the DMA data */
845 if (hs_req->req.length == 0)
846 return 0;
847
e58ebcd1
FB
848 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
849 if (ret)
850 goto dma_error;
5b7d70c6
BD
851
852 return 0;
853
854dma_error:
855 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
856 __func__, req->buf, req->length);
857
858 return -EIO;
859}
860
861static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
862 gfp_t gfp_flags)
863{
864 struct s3c_hsotg_req *hs_req = our_req(req);
865 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
866 struct s3c_hsotg *hs = hs_ep->parent;
5b7d70c6
BD
867 bool first;
868
869 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
870 ep->name, req, req->length, req->buf, req->no_interrupt,
871 req->zero, req->short_not_ok);
872
873 /* initialise status of the request */
874 INIT_LIST_HEAD(&hs_req->queue);
875 req->actual = 0;
876 req->status = -EINPROGRESS;
877
878 /* if we're using DMA, sync the buffers as necessary */
879 if (using_dma(hs)) {
880 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
881 if (ret)
882 return ret;
883 }
884
5b7d70c6
BD
885 first = list_empty(&hs_ep->queue);
886 list_add_tail(&hs_req->queue, &hs_ep->queue);
887
888 if (first)
889 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
890
5b7d70c6
BD
891 return 0;
892}
893
5ad1d316
LM
894static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
895 gfp_t gfp_flags)
896{
897 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
898 struct s3c_hsotg *hs = hs_ep->parent;
899 unsigned long flags = 0;
900 int ret = 0;
901
902 spin_lock_irqsave(&hs->lock, flags);
903 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
904 spin_unlock_irqrestore(&hs->lock, flags);
905
906 return ret;
907}
908
5b7d70c6
BD
909static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
910 struct usb_request *req)
911{
912 struct s3c_hsotg_req *hs_req = our_req(req);
913
914 kfree(hs_req);
915}
916
917/**
918 * s3c_hsotg_complete_oursetup - setup completion callback
919 * @ep: The endpoint the request was on.
920 * @req: The request completed.
921 *
922 * Called on completion of any requests the driver itself
923 * submitted that need cleaning up.
924 */
925static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
926 struct usb_request *req)
927{
928 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
929 struct s3c_hsotg *hsotg = hs_ep->parent;
930
931 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
932
933 s3c_hsotg_ep_free_request(ep, req);
934}
935
936/**
937 * ep_from_windex - convert control wIndex value to endpoint
938 * @hsotg: The driver state.
939 * @windex: The control request wIndex field (in host order).
940 *
941 * Convert the given wIndex into a pointer to an driver endpoint
942 * structure, or return NULL if it is not a valid endpoint.
8b9bc460 943 */
5b7d70c6
BD
944static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
945 u32 windex)
946{
947 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
948 int dir = (windex & USB_DIR_IN) ? 1 : 0;
949 int idx = windex & 0x7F;
950
951 if (windex >= 0x100)
952 return NULL;
953
b3f489b2 954 if (idx > hsotg->num_of_eps)
5b7d70c6
BD
955 return NULL;
956
957 if (idx && ep->dir_in != dir)
958 return NULL;
959
960 return ep;
961}
962
963/**
964 * s3c_hsotg_send_reply - send reply to control request
965 * @hsotg: The device state
966 * @ep: Endpoint 0
967 * @buff: Buffer for request
968 * @length: Length of reply.
969 *
970 * Create a request and queue it on the given endpoint. This is useful as
971 * an internal method of sending replies to certain control requests, etc.
972 */
973static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
974 struct s3c_hsotg_ep *ep,
975 void *buff,
976 int length)
977{
978 struct usb_request *req;
979 int ret;
980
981 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
982
983 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
984 hsotg->ep0_reply = req;
985 if (!req) {
986 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
987 return -ENOMEM;
988 }
989
990 req->buf = hsotg->ep0_buff;
991 req->length = length;
992 req->zero = 1; /* always do zero-length final transfer */
993 req->complete = s3c_hsotg_complete_oursetup;
994
995 if (length)
996 memcpy(req->buf, buff, length);
997 else
998 ep->sent_zlp = 1;
999
1000 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1001 if (ret) {
1002 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1003 return ret;
1004 }
1005
1006 return 0;
1007}
1008
1009/**
1010 * s3c_hsotg_process_req_status - process request GET_STATUS
1011 * @hsotg: The device state
1012 * @ctrl: USB control request
1013 */
1014static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1015 struct usb_ctrlrequest *ctrl)
1016{
1017 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1018 struct s3c_hsotg_ep *ep;
1019 __le16 reply;
1020 int ret;
1021
1022 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1023
1024 if (!ep0->dir_in) {
1025 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1026 return -EINVAL;
1027 }
1028
1029 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1030 case USB_RECIP_DEVICE:
1031 reply = cpu_to_le16(0); /* bit 0 => self powered,
1032 * bit 1 => remote wakeup */
1033 break;
1034
1035 case USB_RECIP_INTERFACE:
1036 /* currently, the data result should be zero */
1037 reply = cpu_to_le16(0);
1038 break;
1039
1040 case USB_RECIP_ENDPOINT:
1041 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1042 if (!ep)
1043 return -ENOENT;
1044
1045 reply = cpu_to_le16(ep->halted ? 1 : 0);
1046 break;
1047
1048 default:
1049 return 0;
1050 }
1051
1052 if (le16_to_cpu(ctrl->wLength) != 2)
1053 return -EINVAL;
1054
1055 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1056 if (ret) {
1057 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1058 return ret;
1059 }
1060
1061 return 1;
1062}
1063
1064static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1065
9c39ddc6
AT
1066/**
1067 * get_ep_head - return the first request on the endpoint
1068 * @hs_ep: The controller endpoint to get
1069 *
1070 * Get the first request on the endpoint.
1071 */
1072static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1073{
1074 if (list_empty(&hs_ep->queue))
1075 return NULL;
1076
1077 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1078}
1079
5b7d70c6
BD
1080/**
1081 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1082 * @hsotg: The device state
1083 * @ctrl: USB control request
1084 */
1085static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1086 struct usb_ctrlrequest *ctrl)
1087{
26ab3d0c 1088 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
9c39ddc6
AT
1089 struct s3c_hsotg_req *hs_req;
1090 bool restart;
5b7d70c6
BD
1091 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1092 struct s3c_hsotg_ep *ep;
26ab3d0c 1093 int ret;
5b7d70c6
BD
1094
1095 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1096 __func__, set ? "SET" : "CLEAR");
1097
1098 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1099 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1100 if (!ep) {
1101 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1102 __func__, le16_to_cpu(ctrl->wIndex));
1103 return -ENOENT;
1104 }
1105
1106 switch (le16_to_cpu(ctrl->wValue)) {
1107 case USB_ENDPOINT_HALT:
1108 s3c_hsotg_ep_sethalt(&ep->ep, set);
26ab3d0c
AT
1109
1110 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1111 if (ret) {
1112 dev_err(hsotg->dev,
1113 "%s: failed to send reply\n", __func__);
1114 return ret;
1115 }
9c39ddc6
AT
1116
1117 if (!set) {
1118 /*
1119 * If we have request in progress,
1120 * then complete it
1121 */
1122 if (ep->req) {
1123 hs_req = ep->req;
1124 ep->req = NULL;
1125 list_del_init(&hs_req->queue);
1126 hs_req->req.complete(&ep->ep,
1127 &hs_req->req);
1128 }
1129
1130 /* If we have pending request, then start it */
1131 restart = !list_empty(&ep->queue);
1132 if (restart) {
1133 hs_req = get_ep_head(ep);
1134 s3c_hsotg_start_req(hsotg, ep,
1135 hs_req, false);
1136 }
1137 }
1138
5b7d70c6
BD
1139 break;
1140
1141 default:
1142 return -ENOENT;
1143 }
1144 } else
1145 return -ENOENT; /* currently only deal with endpoint */
1146
1147 return 1;
1148}
1149
1150/**
1151 * s3c_hsotg_process_control - process a control request
1152 * @hsotg: The device state
1153 * @ctrl: The control request received
1154 *
1155 * The controller has received the SETUP phase of a control request, and
1156 * needs to work out what to do next (and whether to pass it on to the
1157 * gadget driver).
1158 */
1159static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1160 struct usb_ctrlrequest *ctrl)
1161{
1162 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1163 int ret = 0;
1164 u32 dcfg;
1165
1166 ep0->sent_zlp = 0;
1167
1168 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1169 ctrl->bRequest, ctrl->bRequestType,
1170 ctrl->wValue, ctrl->wLength);
1171
8b9bc460
LM
1172 /*
1173 * record the direction of the request, for later use when enquing
1174 * packets onto EP0.
1175 */
5b7d70c6
BD
1176
1177 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1178 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1179
8b9bc460
LM
1180 /*
1181 * if we've no data with this request, then the last part of the
1182 * transaction is going to implicitly be IN.
1183 */
5b7d70c6
BD
1184 if (ctrl->wLength == 0)
1185 ep0->dir_in = 1;
1186
1187 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1188 switch (ctrl->bRequest) {
1189 case USB_REQ_SET_ADDRESS:
94cb8fd6
LM
1190 dcfg = readl(hsotg->regs + DCFG);
1191 dcfg &= ~DCFG_DevAddr_MASK;
1192 dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
1193 writel(dcfg, hsotg->regs + DCFG);
5b7d70c6
BD
1194
1195 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1196
1197 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1198 return;
1199
1200 case USB_REQ_GET_STATUS:
1201 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1202 break;
1203
1204 case USB_REQ_CLEAR_FEATURE:
1205 case USB_REQ_SET_FEATURE:
1206 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1207 break;
1208 }
1209 }
1210
1211 /* as a fallback, try delivering it to the driver to deal with */
1212
1213 if (ret == 0 && hsotg->driver) {
1214 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1215 if (ret < 0)
1216 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1217 }
1218
8b9bc460
LM
1219 /*
1220 * the request is either unhandlable, or is not formatted correctly
5b7d70c6
BD
1221 * so respond with a STALL for the status stage to indicate failure.
1222 */
1223
1224 if (ret < 0) {
1225 u32 reg;
1226 u32 ctrl;
1227
1228 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
94cb8fd6 1229 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
5b7d70c6 1230
8b9bc460 1231 /*
94cb8fd6 1232 * DxEPCTL_Stall will be cleared by EP once it has
8b9bc460
LM
1233 * taken effect, so no need to clear later.
1234 */
5b7d70c6
BD
1235
1236 ctrl = readl(hsotg->regs + reg);
94cb8fd6
LM
1237 ctrl |= DxEPCTL_Stall;
1238 ctrl |= DxEPCTL_CNAK;
5b7d70c6
BD
1239 writel(ctrl, hsotg->regs + reg);
1240
1241 dev_dbg(hsotg->dev,
25985edc 1242 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
5b7d70c6
BD
1243 ctrl, reg, readl(hsotg->regs + reg));
1244
8b9bc460
LM
1245 /*
1246 * don't believe we need to anything more to get the EP
1247 * to reply with a STALL packet
1248 */
5b7d70c6
BD
1249 }
1250}
1251
1252static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1253
1254/**
1255 * s3c_hsotg_complete_setup - completion of a setup transfer
1256 * @ep: The endpoint the request was on.
1257 * @req: The request completed.
1258 *
1259 * Called on completion of any requests the driver itself submitted for
1260 * EP0 setup packets
1261 */
1262static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1263 struct usb_request *req)
1264{
1265 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1266 struct s3c_hsotg *hsotg = hs_ep->parent;
1267
1268 if (req->status < 0) {
1269 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1270 return;
1271 }
1272
1273 if (req->actual == 0)
1274 s3c_hsotg_enqueue_setup(hsotg);
1275 else
1276 s3c_hsotg_process_control(hsotg, req->buf);
1277}
1278
1279/**
1280 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1281 * @hsotg: The device state.
1282 *
1283 * Enqueue a request on EP0 if necessary to received any SETUP packets
1284 * received from the host.
1285 */
1286static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1287{
1288 struct usb_request *req = hsotg->ctrl_req;
1289 struct s3c_hsotg_req *hs_req = our_req(req);
1290 int ret;
1291
1292 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1293
1294 req->zero = 0;
1295 req->length = 8;
1296 req->buf = hsotg->ctrl_buff;
1297 req->complete = s3c_hsotg_complete_setup;
1298
1299 if (!list_empty(&hs_req->queue)) {
1300 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1301 return;
1302 }
1303
1304 hsotg->eps[0].dir_in = 0;
1305
1306 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1307 if (ret < 0) {
1308 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
8b9bc460
LM
1309 /*
1310 * Don't think there's much we can do other than watch the
1311 * driver fail.
1312 */
5b7d70c6
BD
1313 }
1314}
1315
5b7d70c6
BD
1316/**
1317 * s3c_hsotg_complete_request - complete a request given to us
1318 * @hsotg: The device state.
1319 * @hs_ep: The endpoint the request was on.
1320 * @hs_req: The request to complete.
1321 * @result: The result code (0 => Ok, otherwise errno)
1322 *
1323 * The given request has finished, so call the necessary completion
1324 * if it has one and then look to see if we can start a new request
1325 * on the endpoint.
1326 *
1327 * Note, expects the ep to already be locked as appropriate.
8b9bc460 1328 */
5b7d70c6
BD
1329static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1330 struct s3c_hsotg_ep *hs_ep,
1331 struct s3c_hsotg_req *hs_req,
1332 int result)
1333{
1334 bool restart;
1335
1336 if (!hs_req) {
1337 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1338 return;
1339 }
1340
1341 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1342 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1343
8b9bc460
LM
1344 /*
1345 * only replace the status if we've not already set an error
1346 * from a previous transaction
1347 */
5b7d70c6
BD
1348
1349 if (hs_req->req.status == -EINPROGRESS)
1350 hs_req->req.status = result;
1351
1352 hs_ep->req = NULL;
1353 list_del_init(&hs_req->queue);
1354
1355 if (using_dma(hsotg))
1356 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1357
8b9bc460
LM
1358 /*
1359 * call the complete request with the locks off, just in case the
1360 * request tries to queue more work for this endpoint.
1361 */
5b7d70c6
BD
1362
1363 if (hs_req->req.complete) {
22258f49 1364 spin_unlock(&hsotg->lock);
5b7d70c6 1365 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
22258f49 1366 spin_lock(&hsotg->lock);
5b7d70c6
BD
1367 }
1368
8b9bc460
LM
1369 /*
1370 * Look to see if there is anything else to do. Note, the completion
5b7d70c6 1371 * of the previous request may have caused a new request to be started
8b9bc460
LM
1372 * so be careful when doing this.
1373 */
5b7d70c6
BD
1374
1375 if (!hs_ep->req && result >= 0) {
1376 restart = !list_empty(&hs_ep->queue);
1377 if (restart) {
1378 hs_req = get_ep_head(hs_ep);
1379 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1380 }
1381 }
1382}
1383
5b7d70c6
BD
1384/**
1385 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1386 * @hsotg: The device state.
1387 * @ep_idx: The endpoint index for the data
1388 * @size: The size of data in the fifo, in bytes
1389 *
1390 * The FIFO status shows there is data to read from the FIFO for a given
1391 * endpoint, so sort out whether we need to read the data into a request
1392 * that has been made for that endpoint.
1393 */
1394static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1395{
1396 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1397 struct s3c_hsotg_req *hs_req = hs_ep->req;
94cb8fd6 1398 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
5b7d70c6
BD
1399 int to_read;
1400 int max_req;
1401 int read_ptr;
1402
22258f49 1403
5b7d70c6 1404 if (!hs_req) {
94cb8fd6 1405 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
5b7d70c6
BD
1406 int ptr;
1407
1408 dev_warn(hsotg->dev,
1409 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1410 __func__, size, ep_idx, epctl);
1411
1412 /* dump the data from the FIFO, we've nothing we can do */
1413 for (ptr = 0; ptr < size; ptr += 4)
1414 (void)readl(fifo);
1415
1416 return;
1417 }
1418
5b7d70c6
BD
1419 to_read = size;
1420 read_ptr = hs_req->req.actual;
1421 max_req = hs_req->req.length - read_ptr;
1422
a33e7136
BD
1423 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1424 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1425
5b7d70c6 1426 if (to_read > max_req) {
8b9bc460
LM
1427 /*
1428 * more data appeared than we where willing
5b7d70c6
BD
1429 * to deal with in this request.
1430 */
1431
1432 /* currently we don't deal this */
1433 WARN_ON_ONCE(1);
1434 }
1435
5b7d70c6
BD
1436 hs_ep->total_data += to_read;
1437 hs_req->req.actual += to_read;
1438 to_read = DIV_ROUND_UP(to_read, 4);
1439
8b9bc460
LM
1440 /*
1441 * note, we might over-write the buffer end by 3 bytes depending on
1442 * alignment of the data.
1443 */
5b7d70c6 1444 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
5b7d70c6
BD
1445}
1446
1447/**
1448 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1449 * @hsotg: The device instance
1450 * @req: The request currently on this endpoint
1451 *
1452 * Generate a zero-length IN packet request for terminating a SETUP
1453 * transaction.
1454 *
1455 * Note, since we don't write any data to the TxFIFO, then it is
25985edc 1456 * currently believed that we do not need to wait for any space in
5b7d70c6
BD
1457 * the TxFIFO.
1458 */
1459static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1460 struct s3c_hsotg_req *req)
1461{
1462 u32 ctrl;
1463
1464 if (!req) {
1465 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1466 return;
1467 }
1468
1469 if (req->req.length == 0) {
1470 hsotg->eps[0].sent_zlp = 1;
1471 s3c_hsotg_enqueue_setup(hsotg);
1472 return;
1473 }
1474
1475 hsotg->eps[0].dir_in = 1;
1476 hsotg->eps[0].sent_zlp = 1;
1477
1478 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1479
1480 /* issue a zero-sized packet to terminate this */
94cb8fd6
LM
1481 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
1482 DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
5b7d70c6 1483
94cb8fd6
LM
1484 ctrl = readl(hsotg->regs + DIEPCTL0);
1485 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
1486 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
1487 ctrl |= DxEPCTL_USBActEp;
1488 writel(ctrl, hsotg->regs + DIEPCTL0);
5b7d70c6
BD
1489}
1490
1491/**
1492 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1493 * @hsotg: The device instance
1494 * @epnum: The endpoint received from
1495 * @was_setup: Set if processing a SetupDone event.
1496 *
1497 * The RXFIFO has delivered an OutDone event, which means that the data
1498 * transfer for an OUT endpoint has been completed, either by a short
1499 * packet or by the finish of a transfer.
8b9bc460 1500 */
5b7d70c6
BD
1501static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1502 int epnum, bool was_setup)
1503{
94cb8fd6 1504 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
5b7d70c6
BD
1505 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1506 struct s3c_hsotg_req *hs_req = hs_ep->req;
1507 struct usb_request *req = &hs_req->req;
94cb8fd6 1508 unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
5b7d70c6
BD
1509 int result = 0;
1510
1511 if (!hs_req) {
1512 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1513 return;
1514 }
1515
1516 if (using_dma(hsotg)) {
5b7d70c6 1517 unsigned size_done;
5b7d70c6 1518
8b9bc460
LM
1519 /*
1520 * Calculate the size of the transfer by checking how much
5b7d70c6
BD
1521 * is left in the endpoint size register and then working it
1522 * out from the amount we loaded for the transfer.
1523 *
1524 * We need to do this as DMA pointers are always 32bit aligned
1525 * so may overshoot/undershoot the transfer.
1526 */
1527
5b7d70c6
BD
1528 size_done = hs_ep->size_loaded - size_left;
1529 size_done += hs_ep->last_load;
1530
1531 req->actual = size_done;
1532 }
1533
a33e7136
BD
1534 /* if there is more request to do, schedule new transfer */
1535 if (req->actual < req->length && size_left == 0) {
1536 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1537 return;
71225bee
LM
1538 } else if (epnum == 0) {
1539 /*
1540 * After was_setup = 1 =>
1541 * set CNAK for non Setup requests
1542 */
1543 hsotg->setup = was_setup ? 0 : 1;
a33e7136
BD
1544 }
1545
5b7d70c6
BD
1546 if (req->actual < req->length && req->short_not_ok) {
1547 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1548 __func__, req->actual, req->length);
1549
8b9bc460
LM
1550 /*
1551 * todo - what should we return here? there's no one else
1552 * even bothering to check the status.
1553 */
5b7d70c6
BD
1554 }
1555
1556 if (epnum == 0) {
d3ca0259
LM
1557 /*
1558 * Condition req->complete != s3c_hsotg_complete_setup says:
1559 * send ZLP when we have an asynchronous request from gadget
1560 */
5b7d70c6
BD
1561 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1562 s3c_hsotg_send_zlp(hsotg, hs_req);
1563 }
1564
5ad1d316 1565 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
5b7d70c6
BD
1566}
1567
1568/**
1569 * s3c_hsotg_read_frameno - read current frame number
1570 * @hsotg: The device instance
1571 *
1572 * Return the current frame number
8b9bc460 1573 */
5b7d70c6
BD
1574static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1575{
1576 u32 dsts;
1577
94cb8fd6
LM
1578 dsts = readl(hsotg->regs + DSTS);
1579 dsts &= DSTS_SOFFN_MASK;
1580 dsts >>= DSTS_SOFFN_SHIFT;
5b7d70c6
BD
1581
1582 return dsts;
1583}
1584
1585/**
1586 * s3c_hsotg_handle_rx - RX FIFO has data
1587 * @hsotg: The device instance
1588 *
1589 * The IRQ handler has detected that the RX FIFO has some data in it
1590 * that requires processing, so find out what is in there and do the
1591 * appropriate read.
1592 *
25985edc 1593 * The RXFIFO is a true FIFO, the packets coming out are still in packet
5b7d70c6
BD
1594 * chunks, so if you have x packets received on an endpoint you'll get x
1595 * FIFO events delivered, each with a packet's worth of data in it.
1596 *
1597 * When using DMA, we should not be processing events from the RXFIFO
1598 * as the actual data should be sent to the memory directly and we turn
1599 * on the completion interrupts to get notifications of transfer completion.
1600 */
0978f8c5 1601static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
5b7d70c6 1602{
94cb8fd6 1603 u32 grxstsr = readl(hsotg->regs + GRXSTSP);
5b7d70c6
BD
1604 u32 epnum, status, size;
1605
1606 WARN_ON(using_dma(hsotg));
1607
94cb8fd6
LM
1608 epnum = grxstsr & GRXSTS_EPNum_MASK;
1609 status = grxstsr & GRXSTS_PktSts_MASK;
5b7d70c6 1610
94cb8fd6
LM
1611 size = grxstsr & GRXSTS_ByteCnt_MASK;
1612 size >>= GRXSTS_ByteCnt_SHIFT;
5b7d70c6
BD
1613
1614 if (1)
1615 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1616 __func__, grxstsr, size, epnum);
1617
94cb8fd6 1618#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
5b7d70c6 1619
94cb8fd6
LM
1620 switch (status >> GRXSTS_PktSts_SHIFT) {
1621 case __status(GRXSTS_PktSts_GlobalOutNAK):
5b7d70c6
BD
1622 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1623 break;
1624
94cb8fd6 1625 case __status(GRXSTS_PktSts_OutDone):
5b7d70c6
BD
1626 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1627 s3c_hsotg_read_frameno(hsotg));
1628
1629 if (!using_dma(hsotg))
1630 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1631 break;
1632
94cb8fd6 1633 case __status(GRXSTS_PktSts_SetupDone):
5b7d70c6
BD
1634 dev_dbg(hsotg->dev,
1635 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1636 s3c_hsotg_read_frameno(hsotg),
94cb8fd6 1637 readl(hsotg->regs + DOEPCTL(0)));
5b7d70c6
BD
1638
1639 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1640 break;
1641
94cb8fd6 1642 case __status(GRXSTS_PktSts_OutRX):
5b7d70c6
BD
1643 s3c_hsotg_rx_data(hsotg, epnum, size);
1644 break;
1645
94cb8fd6 1646 case __status(GRXSTS_PktSts_SetupRX):
5b7d70c6
BD
1647 dev_dbg(hsotg->dev,
1648 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1649 s3c_hsotg_read_frameno(hsotg),
94cb8fd6 1650 readl(hsotg->regs + DOEPCTL(0)));
5b7d70c6
BD
1651
1652 s3c_hsotg_rx_data(hsotg, epnum, size);
1653 break;
1654
1655 default:
1656 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1657 __func__, grxstsr);
1658
1659 s3c_hsotg_dump(hsotg);
1660 break;
1661 }
1662}
1663
1664/**
1665 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1666 * @mps: The maximum packet size in bytes.
8b9bc460 1667 */
5b7d70c6
BD
1668static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1669{
1670 switch (mps) {
1671 case 64:
94cb8fd6 1672 return D0EPCTL_MPS_64;
5b7d70c6 1673 case 32:
94cb8fd6 1674 return D0EPCTL_MPS_32;
5b7d70c6 1675 case 16:
94cb8fd6 1676 return D0EPCTL_MPS_16;
5b7d70c6 1677 case 8:
94cb8fd6 1678 return D0EPCTL_MPS_8;
5b7d70c6
BD
1679 }
1680
1681 /* bad max packet size, warn and return invalid result */
1682 WARN_ON(1);
1683 return (u32)-1;
1684}
1685
1686/**
1687 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1688 * @hsotg: The driver state.
1689 * @ep: The index number of the endpoint
1690 * @mps: The maximum packet size in bytes
1691 *
1692 * Configure the maximum packet size for the given endpoint, updating
1693 * the hardware control registers to reflect this.
1694 */
1695static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1696 unsigned int ep, unsigned int mps)
1697{
1698 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1699 void __iomem *regs = hsotg->regs;
1700 u32 mpsval;
1701 u32 reg;
1702
1703 if (ep == 0) {
1704 /* EP0 is a special case */
1705 mpsval = s3c_hsotg_ep0_mps(mps);
1706 if (mpsval > 3)
1707 goto bad_mps;
1708 } else {
94cb8fd6 1709 if (mps >= DxEPCTL_MPS_LIMIT+1)
5b7d70c6
BD
1710 goto bad_mps;
1711
1712 mpsval = mps;
1713 }
1714
1715 hs_ep->ep.maxpacket = mps;
1716
8b9bc460
LM
1717 /*
1718 * update both the in and out endpoint controldir_ registers, even
1719 * if one of the directions may not be in use.
1720 */
5b7d70c6 1721
94cb8fd6
LM
1722 reg = readl(regs + DIEPCTL(ep));
1723 reg &= ~DxEPCTL_MPS_MASK;
5b7d70c6 1724 reg |= mpsval;
94cb8fd6 1725 writel(reg, regs + DIEPCTL(ep));
5b7d70c6 1726
659ad60c 1727 if (ep) {
94cb8fd6
LM
1728 reg = readl(regs + DOEPCTL(ep));
1729 reg &= ~DxEPCTL_MPS_MASK;
659ad60c 1730 reg |= mpsval;
94cb8fd6 1731 writel(reg, regs + DOEPCTL(ep));
659ad60c 1732 }
5b7d70c6
BD
1733
1734 return;
1735
1736bad_mps:
1737 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1738}
1739
9c39ddc6
AT
1740/**
1741 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1742 * @hsotg: The driver state
1743 * @idx: The index for the endpoint (0..15)
1744 */
1745static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1746{
1747 int timeout;
1748 int val;
1749
94cb8fd6
LM
1750 writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
1751 hsotg->regs + GRSTCTL);
9c39ddc6
AT
1752
1753 /* wait until the fifo is flushed */
1754 timeout = 100;
1755
1756 while (1) {
94cb8fd6 1757 val = readl(hsotg->regs + GRSTCTL);
9c39ddc6 1758
94cb8fd6 1759 if ((val & (GRSTCTL_TxFFlsh)) == 0)
9c39ddc6
AT
1760 break;
1761
1762 if (--timeout == 0) {
1763 dev_err(hsotg->dev,
1764 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1765 __func__, val);
1766 }
1767
1768 udelay(1);
1769 }
1770}
5b7d70c6
BD
1771
1772/**
1773 * s3c_hsotg_trytx - check to see if anything needs transmitting
1774 * @hsotg: The driver state
1775 * @hs_ep: The driver endpoint to check.
1776 *
1777 * Check to see if there is a request that has data to send, and if so
1778 * make an attempt to write data into the FIFO.
1779 */
1780static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1781 struct s3c_hsotg_ep *hs_ep)
1782{
1783 struct s3c_hsotg_req *hs_req = hs_ep->req;
1784
1785 if (!hs_ep->dir_in || !hs_req)
1786 return 0;
1787
1788 if (hs_req->req.actual < hs_req->req.length) {
1789 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1790 hs_ep->index);
1791 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1792 }
1793
1794 return 0;
1795}
1796
1797/**
1798 * s3c_hsotg_complete_in - complete IN transfer
1799 * @hsotg: The device state.
1800 * @hs_ep: The endpoint that has just completed.
1801 *
1802 * An IN transfer has been completed, update the transfer's state and then
1803 * call the relevant completion routines.
1804 */
1805static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1806 struct s3c_hsotg_ep *hs_ep)
1807{
1808 struct s3c_hsotg_req *hs_req = hs_ep->req;
94cb8fd6 1809 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
5b7d70c6
BD
1810 int size_left, size_done;
1811
1812 if (!hs_req) {
1813 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1814 return;
1815 }
1816
d3ca0259
LM
1817 /* Finish ZLP handling for IN EP0 transactions */
1818 if (hsotg->eps[0].sent_zlp) {
1819 dev_dbg(hsotg->dev, "zlp packet received\n");
5ad1d316 1820 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
d3ca0259
LM
1821 return;
1822 }
1823
8b9bc460
LM
1824 /*
1825 * Calculate the size of the transfer by checking how much is left
5b7d70c6
BD
1826 * in the endpoint size register and then working it out from
1827 * the amount we loaded for the transfer.
1828 *
1829 * We do this even for DMA, as the transfer may have incremented
1830 * past the end of the buffer (DMA transfers are always 32bit
1831 * aligned).
1832 */
1833
94cb8fd6 1834 size_left = DxEPTSIZ_XferSize_GET(epsize);
5b7d70c6
BD
1835
1836 size_done = hs_ep->size_loaded - size_left;
1837 size_done += hs_ep->last_load;
1838
1839 if (hs_req->req.actual != size_done)
1840 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1841 __func__, hs_req->req.actual, size_done);
1842
1843 hs_req->req.actual = size_done;
d3ca0259
LM
1844 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1845 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1846
1847 /*
1848 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1849 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1850 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1851 * inform the host that no more data is available.
1852 * The state of req.zero member is checked to be sure that the value to
1853 * send is smaller than wValue expected from host.
1854 * Check req.length to NOT send another ZLP when the current one is
1855 * under completion (the one for which this completion has been called).
1856 */
1857 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1858 hs_req->req.length == hs_req->req.actual &&
1859 !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1860
1861 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1862 s3c_hsotg_send_zlp(hsotg, hs_req);
5b7d70c6 1863
d3ca0259
LM
1864 return;
1865 }
5b7d70c6
BD
1866
1867 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1868 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1869 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1870 } else
5ad1d316 1871 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
5b7d70c6
BD
1872}
1873
1874/**
1875 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1876 * @hsotg: The driver state
1877 * @idx: The index for the endpoint (0..15)
1878 * @dir_in: Set if this is an IN endpoint
1879 *
1880 * Process and clear any interrupt pending for an individual endpoint
8b9bc460 1881 */
5b7d70c6
BD
1882static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1883 int dir_in)
1884{
1885 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
94cb8fd6
LM
1886 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1887 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1888 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
5b7d70c6 1889 u32 ints;
5b7d70c6
BD
1890
1891 ints = readl(hsotg->regs + epint_reg);
1892
a3395f0d
AT
1893 /* Clear endpoint interrupts */
1894 writel(ints, hsotg->regs + epint_reg);
1895
5b7d70c6
BD
1896 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1897 __func__, idx, dir_in ? "in" : "out", ints);
1898
94cb8fd6 1899 if (ints & DxEPINT_XferCompl) {
5b7d70c6
BD
1900 dev_dbg(hsotg->dev,
1901 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1902 __func__, readl(hsotg->regs + epctl_reg),
1903 readl(hsotg->regs + epsiz_reg));
1904
8b9bc460
LM
1905 /*
1906 * we get OutDone from the FIFO, so we only need to look
1907 * at completing IN requests here
1908 */
5b7d70c6
BD
1909 if (dir_in) {
1910 s3c_hsotg_complete_in(hsotg, hs_ep);
1911
c9a64ea8 1912 if (idx == 0 && !hs_ep->req)
5b7d70c6
BD
1913 s3c_hsotg_enqueue_setup(hsotg);
1914 } else if (using_dma(hsotg)) {
8b9bc460
LM
1915 /*
1916 * We're using DMA, we need to fire an OutDone here
1917 * as we ignore the RXFIFO.
1918 */
5b7d70c6
BD
1919
1920 s3c_hsotg_handle_outdone(hsotg, idx, false);
1921 }
5b7d70c6
BD
1922 }
1923
94cb8fd6 1924 if (ints & DxEPINT_EPDisbld) {
5b7d70c6 1925 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
5b7d70c6 1926
9c39ddc6
AT
1927 if (dir_in) {
1928 int epctl = readl(hsotg->regs + epctl_reg);
1929
1930 s3c_hsotg_txfifo_flush(hsotg, idx);
1931
94cb8fd6
LM
1932 if ((epctl & DxEPCTL_Stall) &&
1933 (epctl & DxEPCTL_EPType_Bulk)) {
1934 int dctl = readl(hsotg->regs + DCTL);
9c39ddc6 1935
94cb8fd6
LM
1936 dctl |= DCTL_CGNPInNAK;
1937 writel(dctl, hsotg->regs + DCTL);
9c39ddc6
AT
1938 }
1939 }
1940 }
1941
94cb8fd6 1942 if (ints & DxEPINT_AHBErr)
5b7d70c6 1943 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
5b7d70c6 1944
94cb8fd6 1945 if (ints & DxEPINT_Setup) { /* Setup or Timeout */
5b7d70c6
BD
1946 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1947
1948 if (using_dma(hsotg) && idx == 0) {
8b9bc460
LM
1949 /*
1950 * this is the notification we've received a
5b7d70c6
BD
1951 * setup packet. In non-DMA mode we'd get this
1952 * from the RXFIFO, instead we need to process
8b9bc460
LM
1953 * the setup here.
1954 */
5b7d70c6
BD
1955
1956 if (dir_in)
1957 WARN_ON_ONCE(1);
1958 else
1959 s3c_hsotg_handle_outdone(hsotg, 0, true);
1960 }
5b7d70c6
BD
1961 }
1962
94cb8fd6 1963 if (ints & DxEPINT_Back2BackSetup)
5b7d70c6 1964 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
5b7d70c6
BD
1965
1966 if (dir_in) {
8b9bc460 1967 /* not sure if this is important, but we'll clear it anyway */
94cb8fd6 1968 if (ints & DIEPMSK_INTknTXFEmpMsk) {
5b7d70c6
BD
1969 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1970 __func__, idx);
5b7d70c6
BD
1971 }
1972
1973 /* this probably means something bad is happening */
94cb8fd6 1974 if (ints & DIEPMSK_INTknEPMisMsk) {
5b7d70c6
BD
1975 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1976 __func__, idx);
5b7d70c6 1977 }
10aebc77
BD
1978
1979 /* FIFO has space or is empty (see GAHBCFG) */
1980 if (hsotg->dedicated_fifos &&
94cb8fd6 1981 ints & DIEPMSK_TxFIFOEmpty) {
10aebc77
BD
1982 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1983 __func__, idx);
70fa030f
AT
1984 if (!using_dma(hsotg))
1985 s3c_hsotg_trytx(hsotg, hs_ep);
10aebc77 1986 }
5b7d70c6 1987 }
5b7d70c6
BD
1988}
1989
1990/**
1991 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1992 * @hsotg: The device state.
1993 *
1994 * Handle updating the device settings after the enumeration phase has
1995 * been completed.
8b9bc460 1996 */
5b7d70c6
BD
1997static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1998{
94cb8fd6 1999 u32 dsts = readl(hsotg->regs + DSTS);
5b7d70c6
BD
2000 int ep0_mps = 0, ep_mps;
2001
8b9bc460
LM
2002 /*
2003 * This should signal the finish of the enumeration phase
5b7d70c6 2004 * of the USB handshaking, so we should now know what rate
8b9bc460
LM
2005 * we connected at.
2006 */
5b7d70c6
BD
2007
2008 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2009
8b9bc460
LM
2010 /*
2011 * note, since we're limited by the size of transfer on EP0, and
5b7d70c6 2012 * it seems IN transfers must be a even number of packets we do
8b9bc460
LM
2013 * not advertise a 64byte MPS on EP0.
2014 */
5b7d70c6
BD
2015
2016 /* catch both EnumSpd_FS and EnumSpd_FS48 */
94cb8fd6
LM
2017 switch (dsts & DSTS_EnumSpd_MASK) {
2018 case DSTS_EnumSpd_FS:
2019 case DSTS_EnumSpd_FS48:
5b7d70c6 2020 hsotg->gadget.speed = USB_SPEED_FULL;
5b7d70c6
BD
2021 ep0_mps = EP0_MPS_LIMIT;
2022 ep_mps = 64;
2023 break;
2024
94cb8fd6 2025 case DSTS_EnumSpd_HS:
5b7d70c6 2026 hsotg->gadget.speed = USB_SPEED_HIGH;
5b7d70c6
BD
2027 ep0_mps = EP0_MPS_LIMIT;
2028 ep_mps = 512;
2029 break;
2030
94cb8fd6 2031 case DSTS_EnumSpd_LS:
5b7d70c6 2032 hsotg->gadget.speed = USB_SPEED_LOW;
8b9bc460
LM
2033 /*
2034 * note, we don't actually support LS in this driver at the
5b7d70c6
BD
2035 * moment, and the documentation seems to imply that it isn't
2036 * supported by the PHYs on some of the devices.
2037 */
2038 break;
2039 }
e538dfda
MN
2040 dev_info(hsotg->dev, "new device is %s\n",
2041 usb_speed_string(hsotg->gadget.speed));
5b7d70c6 2042
8b9bc460
LM
2043 /*
2044 * we should now know the maximum packet size for an
2045 * endpoint, so set the endpoints to a default value.
2046 */
5b7d70c6
BD
2047
2048 if (ep0_mps) {
2049 int i;
2050 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
b3f489b2 2051 for (i = 1; i < hsotg->num_of_eps; i++)
5b7d70c6
BD
2052 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
2053 }
2054
2055 /* ensure after enumeration our EP0 is active */
2056
2057 s3c_hsotg_enqueue_setup(hsotg);
2058
2059 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
94cb8fd6
LM
2060 readl(hsotg->regs + DIEPCTL0),
2061 readl(hsotg->regs + DOEPCTL0));
5b7d70c6
BD
2062}
2063
2064/**
2065 * kill_all_requests - remove all requests from the endpoint's queue
2066 * @hsotg: The device state.
2067 * @ep: The endpoint the requests may be on.
2068 * @result: The result code to use.
2069 * @force: Force removal of any current requests
2070 *
2071 * Go through the requests on the given endpoint and mark them
2072 * completed with the given result code.
2073 */
2074static void kill_all_requests(struct s3c_hsotg *hsotg,
2075 struct s3c_hsotg_ep *ep,
2076 int result, bool force)
2077{
2078 struct s3c_hsotg_req *req, *treq;
5b7d70c6
BD
2079
2080 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
8b9bc460
LM
2081 /*
2082 * currently, we can't do much about an already
2083 * running request on an in endpoint
2084 */
5b7d70c6
BD
2085
2086 if (ep->req == req && ep->dir_in && !force)
2087 continue;
2088
2089 s3c_hsotg_complete_request(hsotg, ep, req,
2090 result);
2091 }
5b7d70c6
BD
2092}
2093
2094#define call_gadget(_hs, _entry) \
2095 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
5ad1d316
LM
2096 (_hs)->driver && (_hs)->driver->_entry) { \
2097 spin_unlock(&_hs->lock); \
2098 (_hs)->driver->_entry(&(_hs)->gadget); \
2099 spin_lock(&_hs->lock); \
2100 }
5b7d70c6
BD
2101
2102/**
5e891342 2103 * s3c_hsotg_disconnect - disconnect service
5b7d70c6
BD
2104 * @hsotg: The device state.
2105 *
5e891342
LM
2106 * The device has been disconnected. Remove all current
2107 * transactions and signal the gadget driver that this
2108 * has happened.
8b9bc460 2109 */
5e891342 2110static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
5b7d70c6
BD
2111{
2112 unsigned ep;
2113
b3f489b2 2114 for (ep = 0; ep < hsotg->num_of_eps; ep++)
5b7d70c6
BD
2115 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2116
2117 call_gadget(hsotg, disconnect);
2118}
2119
2120/**
2121 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2122 * @hsotg: The device state:
2123 * @periodic: True if this is a periodic FIFO interrupt
2124 */
2125static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2126{
2127 struct s3c_hsotg_ep *ep;
2128 int epno, ret;
2129
2130 /* look through for any more data to transmit */
2131
b3f489b2 2132 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
5b7d70c6
BD
2133 ep = &hsotg->eps[epno];
2134
2135 if (!ep->dir_in)
2136 continue;
2137
2138 if ((periodic && !ep->periodic) ||
2139 (!periodic && ep->periodic))
2140 continue;
2141
2142 ret = s3c_hsotg_trytx(hsotg, ep);
2143 if (ret < 0)
2144 break;
2145 }
2146}
2147
5b7d70c6 2148/* IRQ flags which will trigger a retry around the IRQ loop */
94cb8fd6
LM
2149#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
2150 GINTSTS_PTxFEmp | \
2151 GINTSTS_RxFLvl)
5b7d70c6 2152
308d734e
LM
2153/**
2154 * s3c_hsotg_corereset - issue softreset to the core
2155 * @hsotg: The device state
2156 *
2157 * Issue a soft reset to the core, and await the core finishing it.
8b9bc460 2158 */
308d734e
LM
2159static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2160{
2161 int timeout;
2162 u32 grstctl;
2163
2164 dev_dbg(hsotg->dev, "resetting core\n");
2165
2166 /* issue soft reset */
94cb8fd6 2167 writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
308d734e 2168
2868fea2 2169 timeout = 10000;
308d734e 2170 do {
94cb8fd6
LM
2171 grstctl = readl(hsotg->regs + GRSTCTL);
2172 } while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
308d734e 2173
94cb8fd6 2174 if (grstctl & GRSTCTL_CSftRst) {
308d734e
LM
2175 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2176 return -EINVAL;
2177 }
2178
2868fea2 2179 timeout = 10000;
308d734e
LM
2180
2181 while (1) {
94cb8fd6 2182 u32 grstctl = readl(hsotg->regs + GRSTCTL);
308d734e
LM
2183
2184 if (timeout-- < 0) {
2185 dev_info(hsotg->dev,
2186 "%s: reset failed, GRSTCTL=%08x\n",
2187 __func__, grstctl);
2188 return -ETIMEDOUT;
2189 }
2190
94cb8fd6 2191 if (!(grstctl & GRSTCTL_AHBIdle))
308d734e
LM
2192 continue;
2193
2194 break; /* reset done */
2195 }
2196
2197 dev_dbg(hsotg->dev, "reset successful\n");
2198 return 0;
2199}
2200
8b9bc460
LM
2201/**
2202 * s3c_hsotg_core_init - issue softreset to the core
2203 * @hsotg: The device state
2204 *
2205 * Issue a soft reset to the core, and await the core finishing it.
2206 */
308d734e
LM
2207static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2208{
2209 s3c_hsotg_corereset(hsotg);
2210
2211 /*
2212 * we must now enable ep0 ready for host detection and then
2213 * set configuration.
2214 */
2215
2216 /* set the PLL on, remove the HNP/SRP and set the PHY */
94cb8fd6
LM
2217 writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
2218 (0x5 << 10), hsotg->regs + GUSBCFG);
308d734e
LM
2219
2220 s3c_hsotg_init_fifo(hsotg);
2221
94cb8fd6 2222 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
308d734e 2223
94cb8fd6 2224 writel(1 << 18 | DCFG_DevSpd_HS, hsotg->regs + DCFG);
308d734e
LM
2225
2226 /* Clear any pending OTG interrupts */
94cb8fd6 2227 writel(0xffffffff, hsotg->regs + GOTGINT);
308d734e
LM
2228
2229 /* Clear any pending interrupts */
94cb8fd6 2230 writel(0xffffffff, hsotg->regs + GINTSTS);
308d734e 2231
94cb8fd6
LM
2232 writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
2233 GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
2234 GINTSTS_ConIDStsChng | GINTSTS_USBRst |
2235 GINTSTS_EnumDone | GINTSTS_OTGInt |
2236 GINTSTS_USBSusp | GINTSTS_WkUpInt,
2237 hsotg->regs + GINTMSK);
308d734e
LM
2238
2239 if (using_dma(hsotg))
94cb8fd6
LM
2240 writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
2241 GAHBCFG_HBstLen_Incr4,
2242 hsotg->regs + GAHBCFG);
308d734e 2243 else
94cb8fd6 2244 writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
308d734e
LM
2245
2246 /*
2247 * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2248 * up being flooded with interrupts if the host is polling the
2249 * endpoint to try and read data.
2250 */
2251
94cb8fd6
LM
2252 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
2253 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
2254 DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2255 DIEPMSK_INTknEPMisMsk,
2256 hsotg->regs + DIEPMSK);
308d734e
LM
2257
2258 /*
2259 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2260 * DMA mode we may need this.
2261 */
94cb8fd6
LM
2262 writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
2263 DIEPMSK_TimeOUTMsk) : 0) |
2264 DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
2265 DOEPMSK_SetupMsk,
2266 hsotg->regs + DOEPMSK);
308d734e 2267
94cb8fd6 2268 writel(0, hsotg->regs + DAINTMSK);
308d734e
LM
2269
2270 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
94cb8fd6
LM
2271 readl(hsotg->regs + DIEPCTL0),
2272 readl(hsotg->regs + DOEPCTL0));
308d734e
LM
2273
2274 /* enable in and out endpoint interrupts */
94cb8fd6 2275 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
308d734e
LM
2276
2277 /*
2278 * Enable the RXFIFO when in slave mode, as this is how we collect
2279 * the data. In DMA mode, we get events from the FIFO but also
2280 * things we cannot process, so do not use it.
2281 */
2282 if (!using_dma(hsotg))
94cb8fd6 2283 s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
308d734e
LM
2284
2285 /* Enable interrupts for EP0 in and out */
2286 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2287 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2288
94cb8fd6 2289 __orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
308d734e 2290 udelay(10); /* see openiboot */
94cb8fd6 2291 __bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
308d734e 2292
94cb8fd6 2293 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
308d734e
LM
2294
2295 /*
94cb8fd6 2296 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
308d734e
LM
2297 * writing to the EPCTL register..
2298 */
2299
2300 /* set to read 1 8byte packet */
94cb8fd6
LM
2301 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
2302 DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
308d734e
LM
2303
2304 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
94cb8fd6
LM
2305 DxEPCTL_CNAK | DxEPCTL_EPEna |
2306 DxEPCTL_USBActEp,
2307 hsotg->regs + DOEPCTL0);
308d734e
LM
2308
2309 /* enable, but don't activate EP0in */
2310 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
94cb8fd6 2311 DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
308d734e
LM
2312
2313 s3c_hsotg_enqueue_setup(hsotg);
2314
2315 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
94cb8fd6
LM
2316 readl(hsotg->regs + DIEPCTL0),
2317 readl(hsotg->regs + DOEPCTL0));
308d734e
LM
2318
2319 /* clear global NAKs */
94cb8fd6
LM
2320 writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
2321 hsotg->regs + DCTL);
308d734e
LM
2322
2323 /* must be at-least 3ms to allow bus to see disconnect */
2324 mdelay(3);
2325
2326 /* remove the soft-disconnect and let's go */
94cb8fd6 2327 __bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
308d734e
LM
2328}
2329
5b7d70c6
BD
2330/**
2331 * s3c_hsotg_irq - handle device interrupt
2332 * @irq: The IRQ number triggered
2333 * @pw: The pw value when registered the handler.
2334 */
2335static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2336{
2337 struct s3c_hsotg *hsotg = pw;
2338 int retry_count = 8;
2339 u32 gintsts;
2340 u32 gintmsk;
2341
5ad1d316 2342 spin_lock(&hsotg->lock);
5b7d70c6 2343irq_retry:
94cb8fd6
LM
2344 gintsts = readl(hsotg->regs + GINTSTS);
2345 gintmsk = readl(hsotg->regs + GINTMSK);
5b7d70c6
BD
2346
2347 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2348 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2349
2350 gintsts &= gintmsk;
2351
94cb8fd6
LM
2352 if (gintsts & GINTSTS_OTGInt) {
2353 u32 otgint = readl(hsotg->regs + GOTGINT);
5b7d70c6
BD
2354
2355 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2356
94cb8fd6 2357 writel(otgint, hsotg->regs + GOTGINT);
5b7d70c6
BD
2358 }
2359
94cb8fd6 2360 if (gintsts & GINTSTS_SessReqInt) {
5b7d70c6 2361 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
94cb8fd6 2362 writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
5b7d70c6
BD
2363 }
2364
94cb8fd6
LM
2365 if (gintsts & GINTSTS_EnumDone) {
2366 writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
a3395f0d
AT
2367
2368 s3c_hsotg_irq_enumdone(hsotg);
5b7d70c6
BD
2369 }
2370
94cb8fd6 2371 if (gintsts & GINTSTS_ConIDStsChng) {
5b7d70c6 2372 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
94cb8fd6
LM
2373 readl(hsotg->regs + DSTS),
2374 readl(hsotg->regs + GOTGCTL));
5b7d70c6 2375
94cb8fd6 2376 writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
5b7d70c6
BD
2377 }
2378
94cb8fd6
LM
2379 if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
2380 u32 daint = readl(hsotg->regs + DAINT);
2381 u32 daint_out = daint >> DAINT_OutEP_SHIFT;
2382 u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
5b7d70c6
BD
2383 int ep;
2384
2385 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2386
2387 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2388 if (daint_out & 1)
2389 s3c_hsotg_epint(hsotg, ep, 0);
2390 }
2391
2392 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2393 if (daint_in & 1)
2394 s3c_hsotg_epint(hsotg, ep, 1);
2395 }
5b7d70c6
BD
2396 }
2397
94cb8fd6 2398 if (gintsts & GINTSTS_USBRst) {
12a1f4dc 2399
94cb8fd6 2400 u32 usb_status = readl(hsotg->regs + GOTGCTL);
12a1f4dc 2401
5b7d70c6
BD
2402 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2403 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
94cb8fd6 2404 readl(hsotg->regs + GNPTXSTS));
5b7d70c6 2405
94cb8fd6 2406 writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
a3395f0d 2407
94cb8fd6 2408 if (usb_status & GOTGCTL_BSESVLD) {
12a1f4dc
LM
2409 if (time_after(jiffies, hsotg->last_rst +
2410 msecs_to_jiffies(200))) {
5b7d70c6 2411
12a1f4dc
LM
2412 kill_all_requests(hsotg, &hsotg->eps[0],
2413 -ECONNRESET, true);
5b7d70c6 2414
12a1f4dc
LM
2415 s3c_hsotg_core_init(hsotg);
2416 hsotg->last_rst = jiffies;
2417 }
2418 }
5b7d70c6
BD
2419 }
2420
2421 /* check both FIFOs */
2422
94cb8fd6 2423 if (gintsts & GINTSTS_NPTxFEmp) {
5b7d70c6
BD
2424 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2425
8b9bc460
LM
2426 /*
2427 * Disable the interrupt to stop it happening again
5b7d70c6 2428 * unless one of these endpoint routines decides that
8b9bc460
LM
2429 * it needs re-enabling
2430 */
5b7d70c6 2431
94cb8fd6 2432 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
5b7d70c6 2433 s3c_hsotg_irq_fifoempty(hsotg, false);
5b7d70c6
BD
2434 }
2435
94cb8fd6 2436 if (gintsts & GINTSTS_PTxFEmp) {
5b7d70c6
BD
2437 dev_dbg(hsotg->dev, "PTxFEmp\n");
2438
94cb8fd6 2439 /* See note in GINTSTS_NPTxFEmp */
5b7d70c6 2440
94cb8fd6 2441 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
5b7d70c6 2442 s3c_hsotg_irq_fifoempty(hsotg, true);
5b7d70c6
BD
2443 }
2444
94cb8fd6 2445 if (gintsts & GINTSTS_RxFLvl) {
8b9bc460
LM
2446 /*
2447 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
5b7d70c6 2448 * we need to retry s3c_hsotg_handle_rx if this is still
8b9bc460
LM
2449 * set.
2450 */
5b7d70c6
BD
2451
2452 s3c_hsotg_handle_rx(hsotg);
5b7d70c6
BD
2453 }
2454
94cb8fd6 2455 if (gintsts & GINTSTS_ModeMis) {
5b7d70c6 2456 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
94cb8fd6 2457 writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
5b7d70c6
BD
2458 }
2459
94cb8fd6
LM
2460 if (gintsts & GINTSTS_USBSusp) {
2461 dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2462 writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
5b7d70c6
BD
2463
2464 call_gadget(hsotg, suspend);
12a1f4dc 2465 s3c_hsotg_disconnect(hsotg);
5b7d70c6
BD
2466 }
2467
94cb8fd6
LM
2468 if (gintsts & GINTSTS_WkUpInt) {
2469 dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2470 writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
5b7d70c6
BD
2471
2472 call_gadget(hsotg, resume);
2473 }
2474
94cb8fd6
LM
2475 if (gintsts & GINTSTS_ErlySusp) {
2476 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2477 writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
5b7d70c6
BD
2478 }
2479
8b9bc460
LM
2480 /*
2481 * these next two seem to crop-up occasionally causing the core
5b7d70c6 2482 * to shutdown the USB transfer, so try clearing them and logging
8b9bc460
LM
2483 * the occurrence.
2484 */
5b7d70c6 2485
94cb8fd6 2486 if (gintsts & GINTSTS_GOUTNakEff) {
5b7d70c6
BD
2487 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2488
94cb8fd6 2489 writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
a3395f0d
AT
2490
2491 s3c_hsotg_dump(hsotg);
5b7d70c6
BD
2492 }
2493
94cb8fd6 2494 if (gintsts & GINTSTS_GINNakEff) {
5b7d70c6
BD
2495 dev_info(hsotg->dev, "GINNakEff triggered\n");
2496
94cb8fd6 2497 writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
a3395f0d
AT
2498
2499 s3c_hsotg_dump(hsotg);
5b7d70c6
BD
2500 }
2501
8b9bc460
LM
2502 /*
2503 * if we've had fifo events, we should try and go around the
2504 * loop again to see if there's any point in returning yet.
2505 */
5b7d70c6
BD
2506
2507 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2508 goto irq_retry;
2509
5ad1d316
LM
2510 spin_unlock(&hsotg->lock);
2511
5b7d70c6
BD
2512 return IRQ_HANDLED;
2513}
2514
2515/**
2516 * s3c_hsotg_ep_enable - enable the given endpoint
2517 * @ep: The USB endpint to configure
2518 * @desc: The USB endpoint descriptor to configure with.
2519 *
2520 * This is called from the USB gadget code's usb_ep_enable().
8b9bc460 2521 */
5b7d70c6
BD
2522static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2523 const struct usb_endpoint_descriptor *desc)
2524{
2525 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2526 struct s3c_hsotg *hsotg = hs_ep->parent;
2527 unsigned long flags;
2528 int index = hs_ep->index;
2529 u32 epctrl_reg;
2530 u32 epctrl;
2531 u32 mps;
2532 int dir_in;
19c190f9 2533 int ret = 0;
5b7d70c6
BD
2534
2535 dev_dbg(hsotg->dev,
2536 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2537 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2538 desc->wMaxPacketSize, desc->bInterval);
2539
2540 /* not to be called for EP0 */
2541 WARN_ON(index == 0);
2542
2543 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2544 if (dir_in != hs_ep->dir_in) {
2545 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2546 return -EINVAL;
2547 }
2548
29cc8897 2549 mps = usb_endpoint_maxp(desc);
5b7d70c6
BD
2550
2551 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2552
94cb8fd6 2553 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
5b7d70c6
BD
2554 epctrl = readl(hsotg->regs + epctrl_reg);
2555
2556 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2557 __func__, epctrl, epctrl_reg);
2558
22258f49 2559 spin_lock_irqsave(&hsotg->lock, flags);
5b7d70c6 2560
94cb8fd6
LM
2561 epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
2562 epctrl |= DxEPCTL_MPS(mps);
5b7d70c6 2563
8b9bc460
LM
2564 /*
2565 * mark the endpoint as active, otherwise the core may ignore
2566 * transactions entirely for this endpoint
2567 */
94cb8fd6 2568 epctrl |= DxEPCTL_USBActEp;
5b7d70c6 2569
8b9bc460
LM
2570 /*
2571 * set the NAK status on the endpoint, otherwise we might try and
5b7d70c6
BD
2572 * do something with data that we've yet got a request to process
2573 * since the RXFIFO will take data for an endpoint even if the
2574 * size register hasn't been set.
2575 */
2576
94cb8fd6 2577 epctrl |= DxEPCTL_SNAK;
5b7d70c6
BD
2578
2579 /* update the endpoint state */
2580 hs_ep->ep.maxpacket = mps;
2581
2582 /* default, set to non-periodic */
2583 hs_ep->periodic = 0;
2584
2585 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2586 case USB_ENDPOINT_XFER_ISOC:
2587 dev_err(hsotg->dev, "no current ISOC support\n");
19c190f9
JL
2588 ret = -EINVAL;
2589 goto out;
5b7d70c6
BD
2590
2591 case USB_ENDPOINT_XFER_BULK:
94cb8fd6 2592 epctrl |= DxEPCTL_EPType_Bulk;
5b7d70c6
BD
2593 break;
2594
2595 case USB_ENDPOINT_XFER_INT:
2596 if (dir_in) {
8b9bc460
LM
2597 /*
2598 * Allocate our TxFNum by simply using the index
5b7d70c6
BD
2599 * of the endpoint for the moment. We could do
2600 * something better if the host indicates how
8b9bc460
LM
2601 * many FIFOs we are expecting to use.
2602 */
5b7d70c6
BD
2603
2604 hs_ep->periodic = 1;
94cb8fd6 2605 epctrl |= DxEPCTL_TxFNum(index);
5b7d70c6
BD
2606 }
2607
94cb8fd6 2608 epctrl |= DxEPCTL_EPType_Intterupt;
5b7d70c6
BD
2609 break;
2610
2611 case USB_ENDPOINT_XFER_CONTROL:
94cb8fd6 2612 epctrl |= DxEPCTL_EPType_Control;
5b7d70c6
BD
2613 break;
2614 }
2615
8b9bc460
LM
2616 /*
2617 * if the hardware has dedicated fifos, we must give each IN EP
10aebc77
BD
2618 * a unique tx-fifo even if it is non-periodic.
2619 */
2620 if (dir_in && hsotg->dedicated_fifos)
94cb8fd6 2621 epctrl |= DxEPCTL_TxFNum(index);
10aebc77 2622
5b7d70c6
BD
2623 /* for non control endpoints, set PID to D0 */
2624 if (index)
94cb8fd6 2625 epctrl |= DxEPCTL_SetD0PID;
5b7d70c6
BD
2626
2627 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2628 __func__, epctrl);
2629
2630 writel(epctrl, hsotg->regs + epctrl_reg);
2631 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2632 __func__, readl(hsotg->regs + epctrl_reg));
2633
2634 /* enable the endpoint interrupt */
2635 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2636
19c190f9 2637out:
22258f49 2638 spin_unlock_irqrestore(&hsotg->lock, flags);
19c190f9 2639 return ret;
5b7d70c6
BD
2640}
2641
8b9bc460
LM
2642/**
2643 * s3c_hsotg_ep_disable - disable given endpoint
2644 * @ep: The endpoint to disable.
2645 */
5b7d70c6
BD
2646static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2647{
2648 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2649 struct s3c_hsotg *hsotg = hs_ep->parent;
2650 int dir_in = hs_ep->dir_in;
2651 int index = hs_ep->index;
2652 unsigned long flags;
2653 u32 epctrl_reg;
2654 u32 ctrl;
2655
2656 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2657
2658 if (ep == &hsotg->eps[0].ep) {
2659 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2660 return -EINVAL;
2661 }
2662
94cb8fd6 2663 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
5b7d70c6 2664
5ad1d316 2665 spin_lock_irqsave(&hsotg->lock, flags);
5b7d70c6
BD
2666 /* terminate all requests with shutdown */
2667 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2668
5b7d70c6
BD
2669
2670 ctrl = readl(hsotg->regs + epctrl_reg);
94cb8fd6
LM
2671 ctrl &= ~DxEPCTL_EPEna;
2672 ctrl &= ~DxEPCTL_USBActEp;
2673 ctrl |= DxEPCTL_SNAK;
5b7d70c6
BD
2674
2675 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2676 writel(ctrl, hsotg->regs + epctrl_reg);
2677
2678 /* disable endpoint interrupts */
2679 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2680
22258f49 2681 spin_unlock_irqrestore(&hsotg->lock, flags);
5b7d70c6
BD
2682 return 0;
2683}
2684
2685/**
2686 * on_list - check request is on the given endpoint
2687 * @ep: The endpoint to check.
2688 * @test: The request to test if it is on the endpoint.
8b9bc460 2689 */
5b7d70c6
BD
2690static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2691{
2692 struct s3c_hsotg_req *req, *treq;
2693
2694 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2695 if (req == test)
2696 return true;
2697 }
2698
2699 return false;
2700}
2701
8b9bc460
LM
2702/**
2703 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2704 * @ep: The endpoint to dequeue.
2705 * @req: The request to be removed from a queue.
2706 */
5b7d70c6
BD
2707static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2708{
2709 struct s3c_hsotg_req *hs_req = our_req(req);
2710 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2711 struct s3c_hsotg *hs = hs_ep->parent;
2712 unsigned long flags;
2713
2714 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2715
22258f49 2716 spin_lock_irqsave(&hs->lock, flags);
5b7d70c6
BD
2717
2718 if (!on_list(hs_ep, hs_req)) {
22258f49 2719 spin_unlock_irqrestore(&hs->lock, flags);
5b7d70c6
BD
2720 return -EINVAL;
2721 }
2722
2723 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
22258f49 2724 spin_unlock_irqrestore(&hs->lock, flags);
5b7d70c6
BD
2725
2726 return 0;
2727}
2728
8b9bc460
LM
2729/**
2730 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2731 * @ep: The endpoint to set halt.
2732 * @value: Set or unset the halt.
2733 */
5b7d70c6
BD
2734static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2735{
2736 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2737 struct s3c_hsotg *hs = hs_ep->parent;
2738 int index = hs_ep->index;
5b7d70c6
BD
2739 u32 epreg;
2740 u32 epctl;
9c39ddc6 2741 u32 xfertype;
5b7d70c6
BD
2742
2743 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2744
5b7d70c6
BD
2745 /* write both IN and OUT control registers */
2746
94cb8fd6 2747 epreg = DIEPCTL(index);
5b7d70c6
BD
2748 epctl = readl(hs->regs + epreg);
2749
9c39ddc6 2750 if (value) {
94cb8fd6
LM
2751 epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
2752 if (epctl & DxEPCTL_EPEna)
2753 epctl |= DxEPCTL_EPDis;
9c39ddc6 2754 } else {
94cb8fd6
LM
2755 epctl &= ~DxEPCTL_Stall;
2756 xfertype = epctl & DxEPCTL_EPType_MASK;
2757 if (xfertype == DxEPCTL_EPType_Bulk ||
2758 xfertype == DxEPCTL_EPType_Intterupt)
2759 epctl |= DxEPCTL_SetD0PID;
9c39ddc6 2760 }
5b7d70c6
BD
2761
2762 writel(epctl, hs->regs + epreg);
2763
94cb8fd6 2764 epreg = DOEPCTL(index);
5b7d70c6
BD
2765 epctl = readl(hs->regs + epreg);
2766
2767 if (value)
94cb8fd6 2768 epctl |= DxEPCTL_Stall;
9c39ddc6 2769 else {
94cb8fd6
LM
2770 epctl &= ~DxEPCTL_Stall;
2771 xfertype = epctl & DxEPCTL_EPType_MASK;
2772 if (xfertype == DxEPCTL_EPType_Bulk ||
2773 xfertype == DxEPCTL_EPType_Intterupt)
2774 epctl |= DxEPCTL_SetD0PID;
9c39ddc6 2775 }
5b7d70c6
BD
2776
2777 writel(epctl, hs->regs + epreg);
2778
5b7d70c6
BD
2779 return 0;
2780}
2781
5ad1d316
LM
2782/**
2783 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2784 * @ep: The endpoint to set halt.
2785 * @value: Set or unset the halt.
2786 */
2787static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2788{
2789 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2790 struct s3c_hsotg *hs = hs_ep->parent;
2791 unsigned long flags = 0;
2792 int ret = 0;
2793
2794 spin_lock_irqsave(&hs->lock, flags);
2795 ret = s3c_hsotg_ep_sethalt(ep, value);
2796 spin_unlock_irqrestore(&hs->lock, flags);
2797
2798 return ret;
2799}
2800
5b7d70c6
BD
2801static struct usb_ep_ops s3c_hsotg_ep_ops = {
2802 .enable = s3c_hsotg_ep_enable,
2803 .disable = s3c_hsotg_ep_disable,
2804 .alloc_request = s3c_hsotg_ep_alloc_request,
2805 .free_request = s3c_hsotg_ep_free_request,
5ad1d316 2806 .queue = s3c_hsotg_ep_queue_lock,
5b7d70c6 2807 .dequeue = s3c_hsotg_ep_dequeue,
5ad1d316 2808 .set_halt = s3c_hsotg_ep_sethalt_lock,
25985edc 2809 /* note, don't believe we have any call for the fifo routines */
5b7d70c6
BD
2810};
2811
41188786
LM
2812/**
2813 * s3c_hsotg_phy_enable - enable platform phy dev
8b9bc460 2814 * @hsotg: The driver state
41188786
LM
2815 *
2816 * A wrapper for platform code responsible for controlling
2817 * low-level USB code
2818 */
2819static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2820{
2821 struct platform_device *pdev = to_platform_device(hsotg->dev);
2822
2823 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
b2e587db
PP
2824
2825 if (hsotg->phy)
2826 usb_phy_init(hsotg->phy);
2827 else if (hsotg->plat->phy_init)
41188786
LM
2828 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2829}
2830
2831/**
2832 * s3c_hsotg_phy_disable - disable platform phy dev
8b9bc460 2833 * @hsotg: The driver state
41188786
LM
2834 *
2835 * A wrapper for platform code responsible for controlling
2836 * low-level USB code
2837 */
2838static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2839{
2840 struct platform_device *pdev = to_platform_device(hsotg->dev);
2841
b2e587db
PP
2842 if (hsotg->phy)
2843 usb_phy_shutdown(hsotg->phy);
2844 else if (hsotg->plat->phy_exit)
41188786
LM
2845 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2846}
2847
8b9bc460
LM
2848/**
2849 * s3c_hsotg_init - initalize the usb core
2850 * @hsotg: The driver state
2851 */
b3f489b2
LM
2852static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2853{
2854 /* unmask subset of endpoint interrupts */
2855
94cb8fd6
LM
2856 writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2857 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
2858 hsotg->regs + DIEPMSK);
b3f489b2 2859
94cb8fd6
LM
2860 writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
2861 DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
2862 hsotg->regs + DOEPMSK);
b3f489b2 2863
94cb8fd6 2864 writel(0, hsotg->regs + DAINTMSK);
b3f489b2
LM
2865
2866 /* Be in disconnected state until gadget is registered */
94cb8fd6 2867 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
b3f489b2
LM
2868
2869 if (0) {
2870 /* post global nak until we're ready */
94cb8fd6
LM
2871 writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
2872 hsotg->regs + DCTL);
b3f489b2
LM
2873 }
2874
2875 /* setup fifos */
2876
2877 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
94cb8fd6
LM
2878 readl(hsotg->regs + GRXFSIZ),
2879 readl(hsotg->regs + GNPTXFSIZ));
b3f489b2
LM
2880
2881 s3c_hsotg_init_fifo(hsotg);
2882
2883 /* set the PLL on, remove the HNP/SRP and set the PHY */
94cb8fd6
LM
2884 writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
2885 hsotg->regs + GUSBCFG);
b3f489b2 2886
94cb8fd6
LM
2887 writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
2888 hsotg->regs + GAHBCFG);
b3f489b2
LM
2889}
2890
8b9bc460
LM
2891/**
2892 * s3c_hsotg_udc_start - prepare the udc for work
2893 * @gadget: The usb gadget state
2894 * @driver: The usb gadget driver
2895 *
2896 * Perform initialization to prepare udc device and driver
2897 * to work.
2898 */
f65f0f10
LM
2899static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2900 struct usb_gadget_driver *driver)
5b7d70c6 2901{
f99b2bfe 2902 struct s3c_hsotg *hsotg = to_hsotg(gadget);
5b7d70c6
BD
2903 int ret;
2904
2905 if (!hsotg) {
2906 printk(KERN_ERR "%s: called with no device\n", __func__);
2907 return -ENODEV;
2908 }
2909
2910 if (!driver) {
2911 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2912 return -EINVAL;
2913 }
2914
7177aed4 2915 if (driver->max_speed < USB_SPEED_FULL)
5b7d70c6 2916 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
5b7d70c6 2917
f65f0f10 2918 if (!driver->setup) {
5b7d70c6
BD
2919 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2920 return -EINVAL;
2921 }
2922
2923 WARN_ON(hsotg->driver);
2924
2925 driver->driver.bus = NULL;
2926 hsotg->driver = driver;
7d7b2292 2927 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
5b7d70c6
BD
2928 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2929
f65f0f10
LM
2930 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2931 hsotg->supplies);
5b7d70c6 2932 if (ret) {
f65f0f10 2933 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
5b7d70c6
BD
2934 goto err;
2935 }
2936
12a1f4dc 2937 hsotg->last_rst = jiffies;
5b7d70c6
BD
2938 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2939 return 0;
2940
2941err:
2942 hsotg->driver = NULL;
5b7d70c6
BD
2943 return ret;
2944}
2945
8b9bc460
LM
2946/**
2947 * s3c_hsotg_udc_stop - stop the udc
2948 * @gadget: The usb gadget state
2949 * @driver: The usb gadget driver
2950 *
2951 * Stop udc hw block and stay tunned for future transmissions
2952 */
f65f0f10
LM
2953static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
2954 struct usb_gadget_driver *driver)
5b7d70c6 2955{
f99b2bfe 2956 struct s3c_hsotg *hsotg = to_hsotg(gadget);
2b19a52c 2957 unsigned long flags = 0;
5b7d70c6
BD
2958 int ep;
2959
2960 if (!hsotg)
2961 return -ENODEV;
2962
5b7d70c6 2963 /* all endpoints should be shutdown */
b3f489b2 2964 for (ep = 0; ep < hsotg->num_of_eps; ep++)
5b7d70c6
BD
2965 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2966
2b19a52c
LM
2967 spin_lock_irqsave(&hsotg->lock, flags);
2968
f65f0f10 2969 s3c_hsotg_phy_disable(hsotg);
5b7d70c6 2970
c8c10253
MS
2971 if (!driver)
2972 hsotg->driver = NULL;
2973
5b7d70c6 2974 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5b7d70c6 2975
2b19a52c
LM
2976 spin_unlock_irqrestore(&hsotg->lock, flags);
2977
c8c10253 2978 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
5b7d70c6
BD
2979
2980 return 0;
2981}
5b7d70c6 2982
8b9bc460
LM
2983/**
2984 * s3c_hsotg_gadget_getframe - read the frame number
2985 * @gadget: The usb gadget state
2986 *
2987 * Read the {micro} frame number
2988 */
5b7d70c6
BD
2989static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2990{
2991 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2992}
2993
a188b689
LM
2994/**
2995 * s3c_hsotg_pullup - connect/disconnect the USB PHY
2996 * @gadget: The usb gadget state
2997 * @is_on: Current state of the USB PHY
2998 *
2999 * Connect/Disconnect the USB PHY pullup
3000 */
3001static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3002{
3003 struct s3c_hsotg *hsotg = to_hsotg(gadget);
3004 unsigned long flags = 0;
3005
3006 dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
3007
3008 spin_lock_irqsave(&hsotg->lock, flags);
3009 if (is_on) {
3010 s3c_hsotg_phy_enable(hsotg);
3011 s3c_hsotg_core_init(hsotg);
3012 } else {
3013 s3c_hsotg_disconnect(hsotg);
3014 s3c_hsotg_phy_disable(hsotg);
3015 }
3016
3017 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3018 spin_unlock_irqrestore(&hsotg->lock, flags);
3019
3020 return 0;
3021}
3022
eeef4587 3023static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
5b7d70c6 3024 .get_frame = s3c_hsotg_gadget_getframe,
f65f0f10
LM
3025 .udc_start = s3c_hsotg_udc_start,
3026 .udc_stop = s3c_hsotg_udc_stop,
a188b689 3027 .pullup = s3c_hsotg_pullup,
5b7d70c6
BD
3028};
3029
3030/**
3031 * s3c_hsotg_initep - initialise a single endpoint
3032 * @hsotg: The device state.
3033 * @hs_ep: The endpoint to be initialised.
3034 * @epnum: The endpoint number
3035 *
3036 * Initialise the given endpoint (as part of the probe and device state
3037 * creation) to give to the gadget driver. Setup the endpoint name, any
3038 * direction information and other state that may be required.
3039 */
41ac7b3a 3040static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
5b7d70c6
BD
3041 struct s3c_hsotg_ep *hs_ep,
3042 int epnum)
3043{
3044 u32 ptxfifo;
3045 char *dir;
3046
3047 if (epnum == 0)
3048 dir = "";
3049 else if ((epnum % 2) == 0) {
3050 dir = "out";
3051 } else {
3052 dir = "in";
3053 hs_ep->dir_in = 1;
3054 }
3055
3056 hs_ep->index = epnum;
3057
3058 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3059
3060 INIT_LIST_HEAD(&hs_ep->queue);
3061 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3062
5b7d70c6
BD
3063 /* add to the list of endpoints known by the gadget driver */
3064 if (epnum)
3065 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3066
3067 hs_ep->parent = hsotg;
3068 hs_ep->ep.name = hs_ep->name;
3069 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
3070 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3071
8b9bc460
LM
3072 /*
3073 * Read the FIFO size for the Periodic TX FIFO, even if we're
5b7d70c6
BD
3074 * an OUT endpoint, we may as well do this if in future the
3075 * code is changed to make each endpoint's direction changeable.
3076 */
3077
94cb8fd6
LM
3078 ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
3079 hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
5b7d70c6 3080
8b9bc460
LM
3081 /*
3082 * if we're using dma, we need to set the next-endpoint pointer
5b7d70c6
BD
3083 * to be something valid.
3084 */
3085
3086 if (using_dma(hsotg)) {
94cb8fd6
LM
3087 u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
3088 writel(next, hsotg->regs + DIEPCTL(epnum));
3089 writel(next, hsotg->regs + DOEPCTL(epnum));
5b7d70c6
BD
3090 }
3091}
3092
b3f489b2
LM
3093/**
3094 * s3c_hsotg_hw_cfg - read HW configuration registers
3095 * @param: The device state
3096 *
3097 * Read the USB core HW configuration registers
3098 */
3099static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
5b7d70c6 3100{
b3f489b2
LM
3101 u32 cfg2, cfg4;
3102 /* check hardware configuration */
5b7d70c6 3103
b3f489b2
LM
3104 cfg2 = readl(hsotg->regs + 0x48);
3105 hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
10aebc77 3106
b3f489b2 3107 dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
10aebc77
BD
3108
3109 cfg4 = readl(hsotg->regs + 0x50);
3110 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3111
3112 dev_info(hsotg->dev, "%s fifos\n",
3113 hsotg->dedicated_fifos ? "dedicated" : "shared");
5b7d70c6
BD
3114}
3115
8b9bc460
LM
3116/**
3117 * s3c_hsotg_dump - dump state of the udc
3118 * @param: The device state
3119 */
5b7d70c6
BD
3120static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3121{
83a01804 3122#ifdef DEBUG
5b7d70c6
BD
3123 struct device *dev = hsotg->dev;
3124 void __iomem *regs = hsotg->regs;
3125 u32 val;
3126 int idx;
3127
3128 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
94cb8fd6
LM
3129 readl(regs + DCFG), readl(regs + DCTL),
3130 readl(regs + DIEPMSK));
5b7d70c6
BD
3131
3132 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
94cb8fd6 3133 readl(regs + GAHBCFG), readl(regs + 0x44));
5b7d70c6
BD
3134
3135 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
94cb8fd6 3136 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
5b7d70c6
BD
3137
3138 /* show periodic fifo settings */
3139
3140 for (idx = 1; idx <= 15; idx++) {
94cb8fd6 3141 val = readl(regs + DPTXFSIZn(idx));
5b7d70c6 3142 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
94cb8fd6
LM
3143 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3144 val & DPTXFSIZn_DPTxFStAddr_MASK);
5b7d70c6
BD
3145 }
3146
3147 for (idx = 0; idx < 15; idx++) {
3148 dev_info(dev,
3149 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
94cb8fd6
LM
3150 readl(regs + DIEPCTL(idx)),
3151 readl(regs + DIEPTSIZ(idx)),
3152 readl(regs + DIEPDMA(idx)));
5b7d70c6 3153
94cb8fd6 3154 val = readl(regs + DOEPCTL(idx));
5b7d70c6
BD
3155 dev_info(dev,
3156 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
94cb8fd6
LM
3157 idx, readl(regs + DOEPCTL(idx)),
3158 readl(regs + DOEPTSIZ(idx)),
3159 readl(regs + DOEPDMA(idx)));
5b7d70c6
BD
3160
3161 }
3162
3163 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
94cb8fd6 3164 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
83a01804 3165#endif
5b7d70c6
BD
3166}
3167
5b7d70c6
BD
3168/**
3169 * state_show - debugfs: show overall driver and device state.
3170 * @seq: The seq file to write to.
3171 * @v: Unused parameter.
3172 *
3173 * This debugfs entry shows the overall state of the hardware and
3174 * some general information about each of the endpoints available
3175 * to the system.
3176 */
3177static int state_show(struct seq_file *seq, void *v)
3178{
3179 struct s3c_hsotg *hsotg = seq->private;
3180 void __iomem *regs = hsotg->regs;
3181 int idx;
3182
3183 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
94cb8fd6
LM
3184 readl(regs + DCFG),
3185 readl(regs + DCTL),
3186 readl(regs + DSTS));
5b7d70c6
BD
3187
3188 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
94cb8fd6 3189 readl(regs + DIEPMSK), readl(regs + DOEPMSK));
5b7d70c6
BD
3190
3191 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
94cb8fd6
LM
3192 readl(regs + GINTMSK),
3193 readl(regs + GINTSTS));
5b7d70c6
BD
3194
3195 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
94cb8fd6
LM
3196 readl(regs + DAINTMSK),
3197 readl(regs + DAINT));
5b7d70c6
BD
3198
3199 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
94cb8fd6
LM
3200 readl(regs + GNPTXSTS),
3201 readl(regs + GRXSTSR));
5b7d70c6
BD
3202
3203 seq_printf(seq, "\nEndpoint status:\n");
3204
3205 for (idx = 0; idx < 15; idx++) {
3206 u32 in, out;
3207
94cb8fd6
LM
3208 in = readl(regs + DIEPCTL(idx));
3209 out = readl(regs + DOEPCTL(idx));
5b7d70c6
BD
3210
3211 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3212 idx, in, out);
3213
94cb8fd6
LM
3214 in = readl(regs + DIEPTSIZ(idx));
3215 out = readl(regs + DOEPTSIZ(idx));
5b7d70c6
BD
3216
3217 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3218 in, out);
3219
3220 seq_printf(seq, "\n");
3221 }
3222
3223 return 0;
3224}
3225
3226static int state_open(struct inode *inode, struct file *file)
3227{
3228 return single_open(file, state_show, inode->i_private);
3229}
3230
3231static const struct file_operations state_fops = {
3232 .owner = THIS_MODULE,
3233 .open = state_open,
3234 .read = seq_read,
3235 .llseek = seq_lseek,
3236 .release = single_release,
3237};
3238
3239/**
3240 * fifo_show - debugfs: show the fifo information
3241 * @seq: The seq_file to write data to.
3242 * @v: Unused parameter.
3243 *
3244 * Show the FIFO information for the overall fifo and all the
3245 * periodic transmission FIFOs.
8b9bc460 3246 */
5b7d70c6
BD
3247static int fifo_show(struct seq_file *seq, void *v)
3248{
3249 struct s3c_hsotg *hsotg = seq->private;
3250 void __iomem *regs = hsotg->regs;
3251 u32 val;
3252 int idx;
3253
3254 seq_printf(seq, "Non-periodic FIFOs:\n");
94cb8fd6 3255 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
5b7d70c6 3256
94cb8fd6 3257 val = readl(regs + GNPTXFSIZ);
5b7d70c6 3258 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
94cb8fd6
LM
3259 val >> GNPTXFSIZ_NPTxFDep_SHIFT,
3260 val & GNPTXFSIZ_NPTxFStAddr_MASK);
5b7d70c6
BD
3261
3262 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3263
3264 for (idx = 1; idx <= 15; idx++) {
94cb8fd6 3265 val = readl(regs + DPTXFSIZn(idx));
5b7d70c6
BD
3266
3267 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
94cb8fd6
LM
3268 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3269 val & DPTXFSIZn_DPTxFStAddr_MASK);
5b7d70c6
BD
3270 }
3271
3272 return 0;
3273}
3274
3275static int fifo_open(struct inode *inode, struct file *file)
3276{
3277 return single_open(file, fifo_show, inode->i_private);
3278}
3279
3280static const struct file_operations fifo_fops = {
3281 .owner = THIS_MODULE,
3282 .open = fifo_open,
3283 .read = seq_read,
3284 .llseek = seq_lseek,
3285 .release = single_release,
3286};
3287
3288
3289static const char *decode_direction(int is_in)
3290{
3291 return is_in ? "in" : "out";
3292}
3293
3294/**
3295 * ep_show - debugfs: show the state of an endpoint.
3296 * @seq: The seq_file to write data to.
3297 * @v: Unused parameter.
3298 *
3299 * This debugfs entry shows the state of the given endpoint (one is
3300 * registered for each available).
8b9bc460 3301 */
5b7d70c6
BD
3302static int ep_show(struct seq_file *seq, void *v)
3303{
3304 struct s3c_hsotg_ep *ep = seq->private;
3305 struct s3c_hsotg *hsotg = ep->parent;
3306 struct s3c_hsotg_req *req;
3307 void __iomem *regs = hsotg->regs;
3308 int index = ep->index;
3309 int show_limit = 15;
3310 unsigned long flags;
3311
3312 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3313 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3314
3315 /* first show the register state */
3316
3317 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
94cb8fd6
LM
3318 readl(regs + DIEPCTL(index)),
3319 readl(regs + DOEPCTL(index)));
5b7d70c6
BD
3320
3321 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
94cb8fd6
LM
3322 readl(regs + DIEPDMA(index)),
3323 readl(regs + DOEPDMA(index)));
5b7d70c6
BD
3324
3325 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
94cb8fd6
LM
3326 readl(regs + DIEPINT(index)),
3327 readl(regs + DOEPINT(index)));
5b7d70c6
BD
3328
3329 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
94cb8fd6
LM
3330 readl(regs + DIEPTSIZ(index)),
3331 readl(regs + DOEPTSIZ(index)));
5b7d70c6
BD
3332
3333 seq_printf(seq, "\n");
3334 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3335 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3336
3337 seq_printf(seq, "request list (%p,%p):\n",
3338 ep->queue.next, ep->queue.prev);
3339
22258f49 3340 spin_lock_irqsave(&hsotg->lock, flags);
5b7d70c6
BD
3341
3342 list_for_each_entry(req, &ep->queue, queue) {
3343 if (--show_limit < 0) {
3344 seq_printf(seq, "not showing more requests...\n");
3345 break;
3346 }
3347
3348 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3349 req == ep->req ? '*' : ' ',
3350 req, req->req.length, req->req.buf);
3351 seq_printf(seq, "%d done, res %d\n",
3352 req->req.actual, req->req.status);
3353 }
3354
22258f49 3355 spin_unlock_irqrestore(&hsotg->lock, flags);
5b7d70c6
BD
3356
3357 return 0;
3358}
3359
3360static int ep_open(struct inode *inode, struct file *file)
3361{
3362 return single_open(file, ep_show, inode->i_private);
3363}
3364
3365static const struct file_operations ep_fops = {
3366 .owner = THIS_MODULE,
3367 .open = ep_open,
3368 .read = seq_read,
3369 .llseek = seq_lseek,
3370 .release = single_release,
3371};
3372
3373/**
3374 * s3c_hsotg_create_debug - create debugfs directory and files
3375 * @hsotg: The driver state
3376 *
3377 * Create the debugfs files to allow the user to get information
3378 * about the state of the system. The directory name is created
3379 * with the same name as the device itself, in case we end up
3380 * with multiple blocks in future systems.
8b9bc460 3381 */
41ac7b3a 3382static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
5b7d70c6
BD
3383{
3384 struct dentry *root;
3385 unsigned epidx;
3386
3387 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3388 hsotg->debug_root = root;
3389 if (IS_ERR(root)) {
3390 dev_err(hsotg->dev, "cannot create debug root\n");
3391 return;
3392 }
3393
3394 /* create general state file */
3395
3396 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3397 hsotg, &state_fops);
3398
3399 if (IS_ERR(hsotg->debug_file))
3400 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3401
3402 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3403 hsotg, &fifo_fops);
3404
3405 if (IS_ERR(hsotg->debug_fifo))
3406 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3407
3408 /* create one file for each endpoint */
3409
b3f489b2 3410 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
5b7d70c6
BD
3411 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3412
3413 ep->debugfs = debugfs_create_file(ep->name, 0444,
3414 root, ep, &ep_fops);
3415
3416 if (IS_ERR(ep->debugfs))
3417 dev_err(hsotg->dev, "failed to create %s debug file\n",
3418 ep->name);
3419 }
3420}
3421
3422/**
3423 * s3c_hsotg_delete_debug - cleanup debugfs entries
3424 * @hsotg: The driver state
3425 *
3426 * Cleanup (remove) the debugfs files for use on module exit.
8b9bc460 3427 */
fb4e98ab 3428static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
5b7d70c6
BD
3429{
3430 unsigned epidx;
3431
b3f489b2 3432 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
5b7d70c6
BD
3433 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3434 debugfs_remove(ep->debugfs);
3435 }
3436
3437 debugfs_remove(hsotg->debug_file);
3438 debugfs_remove(hsotg->debug_fifo);
3439 debugfs_remove(hsotg->debug_root);
3440}
3441
8b9bc460
LM
3442/**
3443 * s3c_hsotg_probe - probe function for hsotg driver
3444 * @pdev: The platform information for the driver
3445 */
f026a52d 3446
41ac7b3a 3447static int s3c_hsotg_probe(struct platform_device *pdev)
5b7d70c6 3448{
e01ee9f5 3449 struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
b2e587db 3450 struct usb_phy *phy;
5b7d70c6 3451 struct device *dev = &pdev->dev;
b3f489b2 3452 struct s3c_hsotg_ep *eps;
5b7d70c6
BD
3453 struct s3c_hsotg *hsotg;
3454 struct resource *res;
3455 int epnum;
3456 int ret;
fc9a731e 3457 int i;
5b7d70c6 3458
338edabc 3459 hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
5b7d70c6
BD
3460 if (!hsotg) {
3461 dev_err(dev, "cannot get memory\n");
3462 return -ENOMEM;
3463 }
3464
b2e587db 3465 phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
f4f5ba5e 3466 if (IS_ERR(phy)) {
b2e587db 3467 /* Fallback for pdata */
e01ee9f5 3468 plat = dev_get_platdata(&pdev->dev);
b2e587db
PP
3469 if (!plat) {
3470 dev_err(&pdev->dev, "no platform data or transceiver defined\n");
3471 return -EPROBE_DEFER;
3472 } else {
3473 hsotg->plat = plat;
3474 }
3475 } else {
3476 hsotg->phy = phy;
3477 }
3478
5b7d70c6 3479 hsotg->dev = dev;
5b7d70c6 3480
84749c6d 3481 hsotg->clk = devm_clk_get(&pdev->dev, "otg");
31ee04de
MS
3482 if (IS_ERR(hsotg->clk)) {
3483 dev_err(dev, "cannot get otg clock\n");
338edabc 3484 return PTR_ERR(hsotg->clk);
31ee04de
MS
3485 }
3486
5b7d70c6
BD
3487 platform_set_drvdata(pdev, hsotg);
3488
3489 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5b7d70c6 3490
148e1134
TR
3491 hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3492 if (IS_ERR(hsotg->regs)) {
3493 ret = PTR_ERR(hsotg->regs);
338edabc 3494 goto err_clk;
5b7d70c6
BD
3495 }
3496
3497 ret = platform_get_irq(pdev, 0);
3498 if (ret < 0) {
3499 dev_err(dev, "cannot find IRQ\n");
338edabc 3500 goto err_clk;
5b7d70c6
BD
3501 }
3502
22258f49
LM
3503 spin_lock_init(&hsotg->lock);
3504
5b7d70c6
BD
3505 hsotg->irq = ret;
3506
338edabc
SK
3507 ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3508 dev_name(dev), hsotg);
5b7d70c6
BD
3509 if (ret < 0) {
3510 dev_err(dev, "cannot claim IRQ\n");
338edabc 3511 goto err_clk;
5b7d70c6
BD
3512 }
3513
3514 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3515
d327ab5b 3516 hsotg->gadget.max_speed = USB_SPEED_HIGH;
5b7d70c6
BD
3517 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3518 hsotg->gadget.name = dev_name(dev);
5b7d70c6 3519
5b7d70c6
BD
3520 /* reset the system */
3521
04b4a0fc 3522 clk_prepare_enable(hsotg->clk);
31ee04de 3523
fc9a731e
LM
3524 /* regulators */
3525
3526 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3527 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3528
cd76213e 3529 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
fc9a731e
LM
3530 hsotg->supplies);
3531 if (ret) {
3532 dev_err(dev, "failed to request supplies: %d\n", ret);
338edabc 3533 goto err_clk;
fc9a731e
LM
3534 }
3535
3536 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3537 hsotg->supplies);
3538
3539 if (ret) {
3540 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3541 goto err_supplies;
3542 }
3543
41188786
LM
3544 /* usb phy enable */
3545 s3c_hsotg_phy_enable(hsotg);
5b7d70c6 3546
5b7d70c6
BD
3547 s3c_hsotg_corereset(hsotg);
3548 s3c_hsotg_init(hsotg);
b3f489b2
LM
3549 s3c_hsotg_hw_cfg(hsotg);
3550
3551 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3552
3553 if (hsotg->num_of_eps == 0) {
3554 dev_err(dev, "wrong number of EPs (zero)\n");
dfdda5a0 3555 ret = -EINVAL;
b3f489b2
LM
3556 goto err_supplies;
3557 }
3558
3559 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3560 GFP_KERNEL);
3561 if (!eps) {
3562 dev_err(dev, "cannot get memory\n");
dfdda5a0 3563 ret = -ENOMEM;
b3f489b2
LM
3564 goto err_supplies;
3565 }
3566
3567 hsotg->eps = eps;
3568
3569 /* setup endpoint information */
3570
3571 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3572 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3573
3574 /* allocate EP0 request */
3575
3576 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3577 GFP_KERNEL);
3578 if (!hsotg->ctrl_req) {
3579 dev_err(dev, "failed to allocate ctrl req\n");
dfdda5a0 3580 ret = -ENOMEM;
b3f489b2
LM
3581 goto err_ep_mem;
3582 }
5b7d70c6
BD
3583
3584 /* initialise the endpoints now the core has been initialised */
b3f489b2 3585 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
5b7d70c6
BD
3586 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3587
f65f0f10
LM
3588 /* disable power and clock */
3589
3590 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3591 hsotg->supplies);
3592 if (ret) {
3593 dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3594 goto err_ep_mem;
3595 }
3596
3597 s3c_hsotg_phy_disable(hsotg);
3598
0f91349b
SAS
3599 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3600 if (ret)
b3f489b2 3601 goto err_ep_mem;
0f91349b 3602
5b7d70c6
BD
3603 s3c_hsotg_create_debug(hsotg);
3604
3605 s3c_hsotg_dump(hsotg);
3606
5b7d70c6
BD
3607 return 0;
3608
1d144c67 3609err_ep_mem:
b3f489b2 3610 kfree(eps);
fc9a731e 3611err_supplies:
41188786 3612 s3c_hsotg_phy_disable(hsotg);
31ee04de 3613err_clk:
1d144c67 3614 clk_disable_unprepare(hsotg->clk);
338edabc 3615
5b7d70c6
BD
3616 return ret;
3617}
3618
8b9bc460
LM
3619/**
3620 * s3c_hsotg_remove - remove function for hsotg driver
3621 * @pdev: The platform information for the driver
3622 */
fb4e98ab 3623static int s3c_hsotg_remove(struct platform_device *pdev)
5b7d70c6
BD
3624{
3625 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3626
0f91349b
SAS
3627 usb_del_gadget_udc(&hsotg->gadget);
3628
5b7d70c6
BD
3629 s3c_hsotg_delete_debug(hsotg);
3630
f65f0f10
LM
3631 if (hsotg->driver) {
3632 /* should have been done already by driver model core */
3633 usb_gadget_unregister_driver(hsotg->driver);
3634 }
5b7d70c6 3635
41188786 3636 s3c_hsotg_phy_disable(hsotg);
04b4a0fc 3637 clk_disable_unprepare(hsotg->clk);
31ee04de 3638
5b7d70c6
BD
3639 return 0;
3640}
3641
3642#if 1
3643#define s3c_hsotg_suspend NULL
3644#define s3c_hsotg_resume NULL
3645#endif
3646
c50f056c
TF
3647#ifdef CONFIG_OF
3648static const struct of_device_id s3c_hsotg_of_ids[] = {
3649 { .compatible = "samsung,s3c6400-hsotg", },
3650 { /* sentinel */ }
3651};
3652MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3653#endif
3654
5b7d70c6
BD
3655static struct platform_driver s3c_hsotg_driver = {
3656 .driver = {
3657 .name = "s3c-hsotg",
3658 .owner = THIS_MODULE,
c50f056c 3659 .of_match_table = of_match_ptr(s3c_hsotg_of_ids),
5b7d70c6
BD
3660 },
3661 .probe = s3c_hsotg_probe,
7690417d 3662 .remove = s3c_hsotg_remove,
5b7d70c6
BD
3663 .suspend = s3c_hsotg_suspend,
3664 .resume = s3c_hsotg_resume,
3665};
3666
cc27c96c 3667module_platform_driver(s3c_hsotg_driver);
5b7d70c6
BD
3668
3669MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3670MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3671MODULE_LICENSE("GPL");
3672MODULE_ALIAS("platform:s3c-hsotg");
This page took 0.537104 seconds and 5 git commands to generate.