USB: xhci: properly set the "Mult" field of the endpoint context.
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
66d4eadd
SS
27
28#include "xhci.h"
29
0ebbab37
SS
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38{
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return 0;
700e2052 45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
0ebbab37
SS
46
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return 0;
51 }
700e2052
GKH
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
0ebbab37
SS
54
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
58
59 return seg;
60}
61
62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63{
64 if (!seg)
65 return;
66 if (seg->trbs) {
700e2052
GKH
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
0ebbab37
SS
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
700e2052 72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
0ebbab37
SS
73 kfree(seg);
74}
75
76/*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
85{
86 u32 val;
87
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
8e595a5d 92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
0ebbab37
SS
93
94 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96 val &= ~TRB_TYPE_BITMASK;
97 val |= TRB_TYPE(TRB_LINK);
b0567b3f
SS
98 /* Always set the chain bit with 0.95 hardware */
99 if (xhci_link_trb_quirk(xhci))
100 val |= TRB_CHAIN;
0ebbab37
SS
101 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102 }
700e2052
GKH
103 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104 (unsigned long long)prev->dma,
105 (unsigned long long)next->dma);
0ebbab37
SS
106}
107
108/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 109void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37
SS
110{
111 struct xhci_segment *seg;
112 struct xhci_segment *first_seg;
113
114 if (!ring || !ring->first_seg)
115 return;
116 first_seg = ring->first_seg;
117 seg = first_seg->next;
700e2052 118 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
0ebbab37
SS
119 while (seg != first_seg) {
120 struct xhci_segment *next = seg->next;
121 xhci_segment_free(xhci, seg);
122 seg = next;
123 }
124 xhci_segment_free(xhci, first_seg);
125 ring->first_seg = NULL;
126 kfree(ring);
127}
128
74f9fe21
SS
129static void xhci_initialize_ring_info(struct xhci_ring *ring)
130{
131 /* The ring is empty, so the enqueue pointer == dequeue pointer */
132 ring->enqueue = ring->first_seg->trbs;
133 ring->enq_seg = ring->first_seg;
134 ring->dequeue = ring->enqueue;
135 ring->deq_seg = ring->first_seg;
136 /* The ring is initialized to 0. The producer must write 1 to the cycle
137 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
138 * compare CCS to the cycle bit to check ownership, so CCS = 1.
139 */
140 ring->cycle_state = 1;
141 /* Not necessary for new rings, but needed for re-initialized rings */
142 ring->enq_updates = 0;
143 ring->deq_updates = 0;
144}
145
0ebbab37
SS
146/**
147 * Create a new ring with zero or more segments.
148 *
149 * Link each segment together into a ring.
150 * Set the end flag and the cycle toggle bit on the last segment.
151 * See section 4.9.1 and figures 15 and 16.
152 */
153static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154 unsigned int num_segs, bool link_trbs, gfp_t flags)
155{
156 struct xhci_ring *ring;
157 struct xhci_segment *prev;
158
159 ring = kzalloc(sizeof *(ring), flags);
700e2052 160 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
0ebbab37
SS
161 if (!ring)
162 return 0;
163
d0e96f5a 164 INIT_LIST_HEAD(&ring->td_list);
0ebbab37
SS
165 if (num_segs == 0)
166 return ring;
167
168 ring->first_seg = xhci_segment_alloc(xhci, flags);
169 if (!ring->first_seg)
170 goto fail;
171 num_segs--;
172
173 prev = ring->first_seg;
174 while (num_segs > 0) {
175 struct xhci_segment *next;
176
177 next = xhci_segment_alloc(xhci, flags);
178 if (!next)
179 goto fail;
180 xhci_link_segments(xhci, prev, next, link_trbs);
181
182 prev = next;
183 num_segs--;
184 }
185 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187 if (link_trbs) {
188 /* See section 4.9.2.1 and 6.4.4.1 */
189 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190 xhci_dbg(xhci, "Wrote link toggle flag to"
700e2052
GKH
191 " segment %p (virtual), 0x%llx (DMA)\n",
192 prev, (unsigned long long)prev->dma);
0ebbab37 193 }
74f9fe21 194 xhci_initialize_ring_info(ring);
0ebbab37
SS
195 return ring;
196
197fail:
198 xhci_ring_free(xhci, ring);
199 return 0;
200}
201
412566bd
SS
202void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203 struct xhci_virt_device *virt_dev,
204 unsigned int ep_index)
205{
206 int rings_cached;
207
208 rings_cached = virt_dev->num_rings_cached;
209 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210 virt_dev->num_rings_cached++;
211 rings_cached = virt_dev->num_rings_cached;
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 xhci_dbg(xhci, "Cached old ring, "
215 "%d ring%s cached\n",
216 rings_cached,
217 (rings_cached > 1) ? "s" : "");
218 } else {
219 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220 xhci_dbg(xhci, "Ring cache full (%d rings), "
221 "freeing ring\n",
222 virt_dev->num_rings_cached);
223 }
224 virt_dev->eps[ep_index].ring = NULL;
225}
226
74f9fe21
SS
227/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228 * pointers to the beginning of the ring.
229 */
230static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231 struct xhci_ring *ring)
232{
233 struct xhci_segment *seg = ring->first_seg;
234 do {
235 memset(seg->trbs, 0,
236 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237 /* All endpoint rings have link TRBs */
238 xhci_link_segments(xhci, seg, seg->next, 1);
239 seg = seg->next;
240 } while (seg != ring->first_seg);
241 xhci_initialize_ring_info(ring);
242 /* td list should be empty since all URBs have been cancelled,
243 * but just in case...
244 */
245 INIT_LIST_HEAD(&ring->td_list);
246}
247
d115b048
JY
248#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
250struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251 int type, gfp_t flags)
252{
253 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254 if (!ctx)
255 return NULL;
256
257 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258 ctx->type = type;
259 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260 if (type == XHCI_CTX_TYPE_INPUT)
261 ctx->size += CTX_SIZE(xhci->hcc_params);
262
263 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264 memset(ctx->bytes, 0, ctx->size);
265 return ctx;
266}
267
268void xhci_free_container_ctx(struct xhci_hcd *xhci,
269 struct xhci_container_ctx *ctx)
270{
a1d78c16
SS
271 if (!ctx)
272 return;
d115b048
JY
273 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274 kfree(ctx);
275}
276
277struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278 struct xhci_container_ctx *ctx)
279{
280 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281 return (struct xhci_input_control_ctx *)ctx->bytes;
282}
283
284struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285 struct xhci_container_ctx *ctx)
286{
287 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288 return (struct xhci_slot_ctx *)ctx->bytes;
289
290 return (struct xhci_slot_ctx *)
291 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
292}
293
294struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295 struct xhci_container_ctx *ctx,
296 unsigned int ep_index)
297{
298 /* increment ep index by offset of start of ep ctx array */
299 ep_index++;
300 if (ctx->type == XHCI_CTX_TYPE_INPUT)
301 ep_index++;
302
303 return (struct xhci_ep_ctx *)
304 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305}
306
6f5165cf
SS
307static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
308 struct xhci_virt_ep *ep)
309{
310 init_timer(&ep->stop_cmd_timer);
311 ep->stop_cmd_timer.data = (unsigned long) ep;
312 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
313 ep->xhci = xhci;
314}
315
d0e96f5a 316/* All the xhci_tds in the ring's TD list should be freed at this point */
3ffbba95
SS
317void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
318{
319 struct xhci_virt_device *dev;
320 int i;
321
322 /* Slot ID 0 is reserved */
323 if (slot_id == 0 || !xhci->devs[slot_id])
324 return;
325
326 dev = xhci->devs[slot_id];
8e595a5d 327 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
328 if (!dev)
329 return;
330
331 for (i = 0; i < 31; ++i)
63a0d9ab
SS
332 if (dev->eps[i].ring)
333 xhci_ring_free(xhci, dev->eps[i].ring);
3ffbba95 334
74f9fe21
SS
335 if (dev->ring_cache) {
336 for (i = 0; i < dev->num_rings_cached; i++)
337 xhci_ring_free(xhci, dev->ring_cache[i]);
338 kfree(dev->ring_cache);
339 }
340
3ffbba95 341 if (dev->in_ctx)
d115b048 342 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 343 if (dev->out_ctx)
d115b048
JY
344 xhci_free_container_ctx(xhci, dev->out_ctx);
345
3ffbba95
SS
346 kfree(xhci->devs[slot_id]);
347 xhci->devs[slot_id] = 0;
348}
349
350int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
351 struct usb_device *udev, gfp_t flags)
352{
3ffbba95 353 struct xhci_virt_device *dev;
63a0d9ab 354 int i;
3ffbba95
SS
355
356 /* Slot ID 0 is reserved */
357 if (slot_id == 0 || xhci->devs[slot_id]) {
358 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
359 return 0;
360 }
361
362 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
363 if (!xhci->devs[slot_id])
364 return 0;
365 dev = xhci->devs[slot_id];
366
d115b048
JY
367 /* Allocate the (output) device context that will be used in the HC. */
368 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
369 if (!dev->out_ctx)
370 goto fail;
d115b048 371
700e2052 372 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 373 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
374
375 /* Allocate the (input) device context for address device command */
d115b048 376 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
377 if (!dev->in_ctx)
378 goto fail;
d115b048 379
700e2052 380 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 381 (unsigned long long)dev->in_ctx->dma);
3ffbba95 382
6f5165cf
SS
383 /* Initialize the cancellation list and watchdog timers for each ep */
384 for (i = 0; i < 31; i++) {
385 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 386 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
6f5165cf 387 }
63a0d9ab 388
3ffbba95 389 /* Allocate endpoint 0 ring */
63a0d9ab
SS
390 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
391 if (!dev->eps[0].ring)
3ffbba95
SS
392 goto fail;
393
74f9fe21
SS
394 /* Allocate pointers to the ring cache */
395 dev->ring_cache = kzalloc(
396 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
397 flags);
398 if (!dev->ring_cache)
399 goto fail;
400 dev->num_rings_cached = 0;
401
f94e0186 402 init_completion(&dev->cmd_completion);
913a8a34 403 INIT_LIST_HEAD(&dev->cmd_list);
f94e0186 404
28c2d2ef 405 /* Point to output device context in dcbaa. */
d115b048 406 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
700e2052 407 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
3ffbba95 408 slot_id,
8e595a5d 409 &xhci->dcbaa->dev_context_ptrs[slot_id],
28c2d2ef 410 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
3ffbba95
SS
411
412 return 1;
413fail:
414 xhci_free_virt_device(xhci, slot_id);
415 return 0;
416}
417
418/* Setup an xHCI virtual device for a Set Address command */
419int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
420{
421 struct xhci_virt_device *dev;
422 struct xhci_ep_ctx *ep0_ctx;
423 struct usb_device *top_dev;
d115b048
JY
424 struct xhci_slot_ctx *slot_ctx;
425 struct xhci_input_control_ctx *ctrl_ctx;
3ffbba95
SS
426
427 dev = xhci->devs[udev->slot_id];
428 /* Slot ID 0 is reserved */
429 if (udev->slot_id == 0 || !dev) {
430 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
431 udev->slot_id);
432 return -EINVAL;
433 }
d115b048
JY
434 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
435 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
436 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95
SS
437
438 /* 2) New slot context and endpoint 0 context are valid*/
d115b048 439 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
3ffbba95
SS
440
441 /* 3) Only the control endpoint is valid - one endpoint context */
d115b048 442 slot_ctx->dev_info |= LAST_CTX(1);
3ffbba95 443
4a0cd967 444 slot_ctx->dev_info |= (u32) udev->route;
3ffbba95
SS
445 switch (udev->speed) {
446 case USB_SPEED_SUPER:
d115b048 447 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
3ffbba95
SS
448 break;
449 case USB_SPEED_HIGH:
d115b048 450 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
3ffbba95
SS
451 break;
452 case USB_SPEED_FULL:
d115b048 453 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
3ffbba95
SS
454 break;
455 case USB_SPEED_LOW:
d115b048 456 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
3ffbba95 457 break;
551cdbbe 458 case USB_SPEED_WIRELESS:
3ffbba95
SS
459 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
460 return -EINVAL;
461 break;
462 default:
463 /* Speed was set earlier, this shouldn't happen. */
464 BUG();
465 }
466 /* Find the root hub port this device is under */
467 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
468 top_dev = top_dev->parent)
469 /* Found device below root hub */;
d115b048 470 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
3ffbba95
SS
471 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
472
473 /* Is this a LS/FS device under a HS hub? */
3ffbba95
SS
474 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
475 udev->tt) {
d115b048
JY
476 slot_ctx->tt_info = udev->tt->hub->slot_id;
477 slot_ctx->tt_info |= udev->ttport << 8;
07b6de10
SS
478 if (udev->tt->multi)
479 slot_ctx->dev_info |= DEV_MTT;
3ffbba95 480 }
700e2052 481 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
482 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
483
484 /* Step 4 - ring already allocated */
485 /* Step 5 */
486 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
487 /*
3ffbba95
SS
488 * XXX: Not sure about wireless USB devices.
489 */
47aded8a
SS
490 switch (udev->speed) {
491 case USB_SPEED_SUPER:
3ffbba95 492 ep0_ctx->ep_info2 |= MAX_PACKET(512);
47aded8a
SS
493 break;
494 case USB_SPEED_HIGH:
495 /* USB core guesses at a 64-byte max packet first for FS devices */
496 case USB_SPEED_FULL:
497 ep0_ctx->ep_info2 |= MAX_PACKET(64);
498 break;
499 case USB_SPEED_LOW:
3ffbba95 500 ep0_ctx->ep_info2 |= MAX_PACKET(8);
47aded8a 501 break;
551cdbbe 502 case USB_SPEED_WIRELESS:
47aded8a
SS
503 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
504 return -EINVAL;
505 break;
506 default:
507 /* New speed? */
508 BUG();
509 }
3ffbba95
SS
510 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
511 ep0_ctx->ep_info2 |= MAX_BURST(0);
512 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
513
8e595a5d 514 ep0_ctx->deq =
63a0d9ab
SS
515 dev->eps[0].ring->first_seg->dma;
516 ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
3ffbba95
SS
517
518 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
519
520 return 0;
521}
522
f94e0186
SS
523/* Return the polling or NAK interval.
524 *
525 * The polling interval is expressed in "microframes". If xHCI's Interval field
526 * is set to N, it will service the endpoint every 2^(Interval)*125us.
527 *
528 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
529 * is set to 0.
530 */
531static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
532 struct usb_host_endpoint *ep)
533{
534 unsigned int interval = 0;
535
536 switch (udev->speed) {
537 case USB_SPEED_HIGH:
538 /* Max NAK rate */
539 if (usb_endpoint_xfer_control(&ep->desc) ||
540 usb_endpoint_xfer_bulk(&ep->desc))
541 interval = ep->desc.bInterval;
542 /* Fall through - SS and HS isoc/int have same decoding */
543 case USB_SPEED_SUPER:
544 if (usb_endpoint_xfer_int(&ep->desc) ||
545 usb_endpoint_xfer_isoc(&ep->desc)) {
546 if (ep->desc.bInterval == 0)
547 interval = 0;
548 else
549 interval = ep->desc.bInterval - 1;
550 if (interval > 15)
551 interval = 15;
552 if (interval != ep->desc.bInterval + 1)
553 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
554 ep->desc.bEndpointAddress, 1 << interval);
555 }
556 break;
557 /* Convert bInterval (in 1-255 frames) to microframes and round down to
558 * nearest power of 2.
559 */
560 case USB_SPEED_FULL:
561 case USB_SPEED_LOW:
562 if (usb_endpoint_xfer_int(&ep->desc) ||
563 usb_endpoint_xfer_isoc(&ep->desc)) {
564 interval = fls(8*ep->desc.bInterval) - 1;
565 if (interval > 10)
566 interval = 10;
567 if (interval < 3)
568 interval = 3;
569 if ((1 << interval) != 8*ep->desc.bInterval)
9ce669a8
SS
570 dev_warn(&udev->dev,
571 "ep %#x - rounding interval"
572 " to %d microframes, "
573 "ep desc says %d microframes\n",
574 ep->desc.bEndpointAddress,
575 1 << interval,
576 8*ep->desc.bInterval);
f94e0186
SS
577 }
578 break;
579 default:
580 BUG();
581 }
582 return EP_INTERVAL(interval);
583}
584
1cf62246
SS
585/* The "Mult" field in the endpoint context is only set for SuperSpeed devices.
586 * High speed endpoint descriptors can define "the number of additional
587 * transaction opportunities per microframe", but that goes in the Max Burst
588 * endpoint context field.
589 */
590static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
591 struct usb_host_endpoint *ep)
592{
593 if (udev->speed != USB_SPEED_SUPER || !ep->ss_ep_comp)
594 return 0;
595 return ep->ss_ep_comp->desc.bmAttributes;
596}
597
f94e0186
SS
598static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
599 struct usb_host_endpoint *ep)
600{
601 int in;
602 u32 type;
603
604 in = usb_endpoint_dir_in(&ep->desc);
605 if (usb_endpoint_xfer_control(&ep->desc)) {
606 type = EP_TYPE(CTRL_EP);
607 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
608 if (in)
609 type = EP_TYPE(BULK_IN_EP);
610 else
611 type = EP_TYPE(BULK_OUT_EP);
612 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
613 if (in)
614 type = EP_TYPE(ISOC_IN_EP);
615 else
616 type = EP_TYPE(ISOC_OUT_EP);
617 } else if (usb_endpoint_xfer_int(&ep->desc)) {
618 if (in)
619 type = EP_TYPE(INT_IN_EP);
620 else
621 type = EP_TYPE(INT_OUT_EP);
622 } else {
623 BUG();
624 }
625 return type;
626}
627
628int xhci_endpoint_init(struct xhci_hcd *xhci,
629 struct xhci_virt_device *virt_dev,
630 struct usb_device *udev,
f88ba78d
SS
631 struct usb_host_endpoint *ep,
632 gfp_t mem_flags)
f94e0186
SS
633{
634 unsigned int ep_index;
635 struct xhci_ep_ctx *ep_ctx;
636 struct xhci_ring *ep_ring;
637 unsigned int max_packet;
638 unsigned int max_burst;
639
640 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 641 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
642
643 /* Set up the endpoint ring */
63a0d9ab
SS
644 virt_dev->eps[ep_index].new_ring =
645 xhci_ring_alloc(xhci, 1, true, mem_flags);
74f9fe21
SS
646 if (!virt_dev->eps[ep_index].new_ring) {
647 /* Attempt to use the ring cache */
648 if (virt_dev->num_rings_cached == 0)
649 return -ENOMEM;
650 virt_dev->eps[ep_index].new_ring =
651 virt_dev->ring_cache[virt_dev->num_rings_cached];
652 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
653 virt_dev->num_rings_cached--;
654 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
655 }
63a0d9ab 656 ep_ring = virt_dev->eps[ep_index].new_ring;
8e595a5d 657 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
f94e0186
SS
658
659 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1cf62246 660 ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
f94e0186
SS
661
662 /* FIXME dig Mult and streams info out of ep companion desc */
663
47692d17
SS
664 /* Allow 3 retries for everything but isoc;
665 * error count = 0 means infinite retries.
666 */
f94e0186
SS
667 if (!usb_endpoint_xfer_isoc(&ep->desc))
668 ep_ctx->ep_info2 = ERROR_COUNT(3);
669 else
47692d17 670 ep_ctx->ep_info2 = ERROR_COUNT(1);
f94e0186
SS
671
672 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
673
674 /* Set the max packet size and max burst */
675 switch (udev->speed) {
676 case USB_SPEED_SUPER:
677 max_packet = ep->desc.wMaxPacketSize;
678 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
b10de142 679 /* dig out max burst from ep companion desc */
b7d6d998
SS
680 if (!ep->ss_ep_comp) {
681 xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
682 max_packet = 0;
683 } else {
684 max_packet = ep->ss_ep_comp->desc.bMaxBurst;
685 }
b10de142 686 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
f94e0186
SS
687 break;
688 case USB_SPEED_HIGH:
689 /* bits 11:12 specify the number of additional transaction
690 * opportunities per microframe (USB 2.0, section 9.6.6)
691 */
692 if (usb_endpoint_xfer_isoc(&ep->desc) ||
693 usb_endpoint_xfer_int(&ep->desc)) {
694 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
695 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
696 }
697 /* Fall through */
698 case USB_SPEED_FULL:
699 case USB_SPEED_LOW:
700 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
701 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
702 break;
703 default:
704 BUG();
705 }
706 /* FIXME Debug endpoint context */
707 return 0;
708}
709
710void xhci_endpoint_zero(struct xhci_hcd *xhci,
711 struct xhci_virt_device *virt_dev,
712 struct usb_host_endpoint *ep)
713{
714 unsigned int ep_index;
715 struct xhci_ep_ctx *ep_ctx;
716
717 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 718 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
719
720 ep_ctx->ep_info = 0;
721 ep_ctx->ep_info2 = 0;
8e595a5d 722 ep_ctx->deq = 0;
f94e0186
SS
723 ep_ctx->tx_info = 0;
724 /* Don't free the endpoint ring until the set interface or configuration
725 * request succeeds.
726 */
727}
728
f2217e8e
SS
729/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
730 * Useful when you want to change one particular aspect of the endpoint and then
731 * issue a configure endpoint command.
732 */
733void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
734 struct xhci_container_ctx *in_ctx,
735 struct xhci_container_ctx *out_ctx,
736 unsigned int ep_index)
f2217e8e
SS
737{
738 struct xhci_ep_ctx *out_ep_ctx;
739 struct xhci_ep_ctx *in_ep_ctx;
740
913a8a34
SS
741 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
742 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
743
744 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
745 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
746 in_ep_ctx->deq = out_ep_ctx->deq;
747 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
748}
749
750/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
751 * Useful when you want to change one particular aspect of the endpoint and then
752 * issue a configure endpoint command. Only the context entries field matters,
753 * but we'll copy the whole thing anyway.
754 */
913a8a34
SS
755void xhci_slot_copy(struct xhci_hcd *xhci,
756 struct xhci_container_ctx *in_ctx,
757 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
758{
759 struct xhci_slot_ctx *in_slot_ctx;
760 struct xhci_slot_ctx *out_slot_ctx;
761
913a8a34
SS
762 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
763 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
764
765 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
766 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
767 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
768 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
769}
770
254c80a3
JY
771/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
772static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
773{
774 int i;
775 struct device *dev = xhci_to_hcd(xhci)->self.controller;
776 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
777
778 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
779
780 if (!num_sp)
781 return 0;
782
783 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
784 if (!xhci->scratchpad)
785 goto fail_sp;
786
787 xhci->scratchpad->sp_array =
788 pci_alloc_consistent(to_pci_dev(dev),
789 num_sp * sizeof(u64),
790 &xhci->scratchpad->sp_dma);
791 if (!xhci->scratchpad->sp_array)
792 goto fail_sp2;
793
794 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
795 if (!xhci->scratchpad->sp_buffers)
796 goto fail_sp3;
797
798 xhci->scratchpad->sp_dma_buffers =
799 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
800
801 if (!xhci->scratchpad->sp_dma_buffers)
802 goto fail_sp4;
803
804 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
805 for (i = 0; i < num_sp; i++) {
806 dma_addr_t dma;
807 void *buf = pci_alloc_consistent(to_pci_dev(dev),
808 xhci->page_size, &dma);
809 if (!buf)
810 goto fail_sp5;
811
812 xhci->scratchpad->sp_array[i] = dma;
813 xhci->scratchpad->sp_buffers[i] = buf;
814 xhci->scratchpad->sp_dma_buffers[i] = dma;
815 }
816
817 return 0;
818
819 fail_sp5:
820 for (i = i - 1; i >= 0; i--) {
821 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
822 xhci->scratchpad->sp_buffers[i],
823 xhci->scratchpad->sp_dma_buffers[i]);
824 }
825 kfree(xhci->scratchpad->sp_dma_buffers);
826
827 fail_sp4:
828 kfree(xhci->scratchpad->sp_buffers);
829
830 fail_sp3:
831 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
832 xhci->scratchpad->sp_array,
833 xhci->scratchpad->sp_dma);
834
835 fail_sp2:
836 kfree(xhci->scratchpad);
837 xhci->scratchpad = NULL;
838
839 fail_sp:
840 return -ENOMEM;
841}
842
843static void scratchpad_free(struct xhci_hcd *xhci)
844{
845 int num_sp;
846 int i;
847 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
848
849 if (!xhci->scratchpad)
850 return;
851
852 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
853
854 for (i = 0; i < num_sp; i++) {
855 pci_free_consistent(pdev, xhci->page_size,
856 xhci->scratchpad->sp_buffers[i],
857 xhci->scratchpad->sp_dma_buffers[i]);
858 }
859 kfree(xhci->scratchpad->sp_dma_buffers);
860 kfree(xhci->scratchpad->sp_buffers);
861 pci_free_consistent(pdev, num_sp * sizeof(u64),
862 xhci->scratchpad->sp_array,
863 xhci->scratchpad->sp_dma);
864 kfree(xhci->scratchpad);
865 xhci->scratchpad = NULL;
866}
867
913a8a34 868struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
869 bool allocate_in_ctx, bool allocate_completion,
870 gfp_t mem_flags)
913a8a34
SS
871{
872 struct xhci_command *command;
873
874 command = kzalloc(sizeof(*command), mem_flags);
875 if (!command)
876 return NULL;
877
a1d78c16
SS
878 if (allocate_in_ctx) {
879 command->in_ctx =
880 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
881 mem_flags);
882 if (!command->in_ctx) {
883 kfree(command);
884 return NULL;
885 }
06e18291 886 }
913a8a34
SS
887
888 if (allocate_completion) {
889 command->completion =
890 kzalloc(sizeof(struct completion), mem_flags);
891 if (!command->completion) {
892 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 893 kfree(command);
913a8a34
SS
894 return NULL;
895 }
896 init_completion(command->completion);
897 }
898
899 command->status = 0;
900 INIT_LIST_HEAD(&command->cmd_list);
901 return command;
902}
903
904void xhci_free_command(struct xhci_hcd *xhci,
905 struct xhci_command *command)
906{
907 xhci_free_container_ctx(xhci,
908 command->in_ctx);
909 kfree(command->completion);
910 kfree(command);
911}
912
66d4eadd
SS
913void xhci_mem_cleanup(struct xhci_hcd *xhci)
914{
0ebbab37
SS
915 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
916 int size;
3ffbba95 917 int i;
0ebbab37
SS
918
919 /* Free the Event Ring Segment Table and the actual Event Ring */
d94c05e3
SS
920 if (xhci->ir_set) {
921 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
922 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
923 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
924 }
0ebbab37
SS
925 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
926 if (xhci->erst.entries)
927 pci_free_consistent(pdev, size,
928 xhci->erst.entries, xhci->erst.erst_dma_addr);
929 xhci->erst.entries = NULL;
930 xhci_dbg(xhci, "Freed ERST\n");
931 if (xhci->event_ring)
932 xhci_ring_free(xhci, xhci->event_ring);
933 xhci->event_ring = NULL;
934 xhci_dbg(xhci, "Freed event ring\n");
935
8e595a5d 936 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
0ebbab37
SS
937 if (xhci->cmd_ring)
938 xhci_ring_free(xhci, xhci->cmd_ring);
939 xhci->cmd_ring = NULL;
940 xhci_dbg(xhci, "Freed command ring\n");
3ffbba95
SS
941
942 for (i = 1; i < MAX_HC_SLOTS; ++i)
943 xhci_free_virt_device(xhci, i);
944
0ebbab37
SS
945 if (xhci->segment_pool)
946 dma_pool_destroy(xhci->segment_pool);
947 xhci->segment_pool = NULL;
948 xhci_dbg(xhci, "Freed segment pool\n");
3ffbba95
SS
949
950 if (xhci->device_pool)
951 dma_pool_destroy(xhci->device_pool);
952 xhci->device_pool = NULL;
953 xhci_dbg(xhci, "Freed device context pool\n");
954
8e595a5d 955 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
a74588f9
SS
956 if (xhci->dcbaa)
957 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
958 xhci->dcbaa, xhci->dcbaa->dma);
959 xhci->dcbaa = NULL;
3ffbba95 960
5294bea4 961 scratchpad_free(xhci);
66d4eadd
SS
962 xhci->page_size = 0;
963 xhci->page_shift = 0;
964}
965
6648f29d
SS
966static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
967 struct xhci_segment *input_seg,
968 union xhci_trb *start_trb,
969 union xhci_trb *end_trb,
970 dma_addr_t input_dma,
971 struct xhci_segment *result_seg,
972 char *test_name, int test_number)
973{
974 unsigned long long start_dma;
975 unsigned long long end_dma;
976 struct xhci_segment *seg;
977
978 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
979 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
980
981 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
982 if (seg != result_seg) {
983 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
984 test_name, test_number);
985 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
986 "input DMA 0x%llx\n",
987 input_seg,
988 (unsigned long long) input_dma);
989 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
990 "ending TRB %p (0x%llx DMA)\n",
991 start_trb, start_dma,
992 end_trb, end_dma);
993 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
994 result_seg, seg);
995 return -1;
996 }
997 return 0;
998}
999
1000/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1001static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1002{
1003 struct {
1004 dma_addr_t input_dma;
1005 struct xhci_segment *result_seg;
1006 } simple_test_vector [] = {
1007 /* A zeroed DMA field should fail */
1008 { 0, NULL },
1009 /* One TRB before the ring start should fail */
1010 { xhci->event_ring->first_seg->dma - 16, NULL },
1011 /* One byte before the ring start should fail */
1012 { xhci->event_ring->first_seg->dma - 1, NULL },
1013 /* Starting TRB should succeed */
1014 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1015 /* Ending TRB should succeed */
1016 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1017 xhci->event_ring->first_seg },
1018 /* One byte after the ring end should fail */
1019 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1020 /* One TRB after the ring end should fail */
1021 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1022 /* An address of all ones should fail */
1023 { (dma_addr_t) (~0), NULL },
1024 };
1025 struct {
1026 struct xhci_segment *input_seg;
1027 union xhci_trb *start_trb;
1028 union xhci_trb *end_trb;
1029 dma_addr_t input_dma;
1030 struct xhci_segment *result_seg;
1031 } complex_test_vector [] = {
1032 /* Test feeding a valid DMA address from a different ring */
1033 { .input_seg = xhci->event_ring->first_seg,
1034 .start_trb = xhci->event_ring->first_seg->trbs,
1035 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1036 .input_dma = xhci->cmd_ring->first_seg->dma,
1037 .result_seg = NULL,
1038 },
1039 /* Test feeding a valid end TRB from a different ring */
1040 { .input_seg = xhci->event_ring->first_seg,
1041 .start_trb = xhci->event_ring->first_seg->trbs,
1042 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1043 .input_dma = xhci->cmd_ring->first_seg->dma,
1044 .result_seg = NULL,
1045 },
1046 /* Test feeding a valid start and end TRB from a different ring */
1047 { .input_seg = xhci->event_ring->first_seg,
1048 .start_trb = xhci->cmd_ring->first_seg->trbs,
1049 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1050 .input_dma = xhci->cmd_ring->first_seg->dma,
1051 .result_seg = NULL,
1052 },
1053 /* TRB in this ring, but after this TD */
1054 { .input_seg = xhci->event_ring->first_seg,
1055 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1056 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1057 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1058 .result_seg = NULL,
1059 },
1060 /* TRB in this ring, but before this TD */
1061 { .input_seg = xhci->event_ring->first_seg,
1062 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1063 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1064 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1065 .result_seg = NULL,
1066 },
1067 /* TRB in this ring, but after this wrapped TD */
1068 { .input_seg = xhci->event_ring->first_seg,
1069 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1070 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1071 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1072 .result_seg = NULL,
1073 },
1074 /* TRB in this ring, but before this wrapped TD */
1075 { .input_seg = xhci->event_ring->first_seg,
1076 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1077 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1078 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1079 .result_seg = NULL,
1080 },
1081 /* TRB not in this ring, and we have a wrapped TD */
1082 { .input_seg = xhci->event_ring->first_seg,
1083 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1084 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1085 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1086 .result_seg = NULL,
1087 },
1088 };
1089
1090 unsigned int num_tests;
1091 int i, ret;
1092
1093 num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
1094 for (i = 0; i < num_tests; i++) {
1095 ret = xhci_test_trb_in_td(xhci,
1096 xhci->event_ring->first_seg,
1097 xhci->event_ring->first_seg->trbs,
1098 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1099 simple_test_vector[i].input_dma,
1100 simple_test_vector[i].result_seg,
1101 "Simple", i);
1102 if (ret < 0)
1103 return ret;
1104 }
1105
1106 num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1107 for (i = 0; i < num_tests; i++) {
1108 ret = xhci_test_trb_in_td(xhci,
1109 complex_test_vector[i].input_seg,
1110 complex_test_vector[i].start_trb,
1111 complex_test_vector[i].end_trb,
1112 complex_test_vector[i].input_dma,
1113 complex_test_vector[i].result_seg,
1114 "Complex", i);
1115 if (ret < 0)
1116 return ret;
1117 }
1118 xhci_dbg(xhci, "TRB math tests passed.\n");
1119 return 0;
1120}
1121
1122
66d4eadd
SS
1123int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1124{
0ebbab37
SS
1125 dma_addr_t dma;
1126 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 1127 unsigned int val, val2;
8e595a5d 1128 u64 val_64;
0ebbab37 1129 struct xhci_segment *seg;
66d4eadd
SS
1130 u32 page_size;
1131 int i;
1132
1133 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1134 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1135 for (i = 0; i < 16; i++) {
1136 if ((0x1 & page_size) != 0)
1137 break;
1138 page_size = page_size >> 1;
1139 }
1140 if (i < 16)
1141 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1142 else
1143 xhci_warn(xhci, "WARN: no supported page size\n");
1144 /* Use 4K pages, since that's common and the minimum the HC supports */
1145 xhci->page_shift = 12;
1146 xhci->page_size = 1 << xhci->page_shift;
1147 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1148
1149 /*
1150 * Program the Number of Device Slots Enabled field in the CONFIG
1151 * register with the max value of slots the HC can handle.
1152 */
1153 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1154 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1155 (unsigned int) val);
1156 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1157 val |= (val2 & ~HCS_SLOTS_MASK);
1158 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1159 (unsigned int) val);
1160 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1161
a74588f9
SS
1162 /*
1163 * Section 5.4.8 - doorbell array must be
1164 * "physically contiguous and 64-byte (cache line) aligned".
1165 */
1166 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1167 sizeof(*xhci->dcbaa), &dma);
1168 if (!xhci->dcbaa)
1169 goto fail;
1170 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1171 xhci->dcbaa->dma = dma;
700e2052
GKH
1172 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1173 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
8e595a5d 1174 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 1175
0ebbab37
SS
1176 /*
1177 * Initialize the ring segment pool. The ring must be a contiguous
1178 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1179 * however, the command ring segment needs 64-byte aligned segments,
1180 * so we pick the greater alignment need.
1181 */
1182 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1183 SEGMENT_SIZE, 64, xhci->page_size);
d115b048 1184
3ffbba95 1185 /* See Table 46 and Note on Figure 55 */
3ffbba95 1186 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 1187 2112, 64, xhci->page_size);
3ffbba95 1188 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
1189 goto fail;
1190
1191 /* Set up the command ring to have one segments for now. */
1192 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1193 if (!xhci->cmd_ring)
1194 goto fail;
700e2052
GKH
1195 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1196 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1197 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
1198
1199 /* Set the address in the Command Ring Control register */
8e595a5d
SS
1200 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1201 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1202 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 1203 xhci->cmd_ring->cycle_state;
8e595a5d
SS
1204 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1205 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
1206 xhci_dbg_cmd_ptrs(xhci);
1207
1208 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1209 val &= DBOFF_MASK;
1210 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1211 " from cap regs base addr\n", val);
1212 xhci->dba = (void *) xhci->cap_regs + val;
1213 xhci_dbg_regs(xhci);
1214 xhci_print_run_regs(xhci);
1215 /* Set ir_set to interrupt register set 0 */
1216 xhci->ir_set = (void *) xhci->run_regs->ir_set;
1217
1218 /*
1219 * Event ring setup: Allocate a normal ring, but also setup
1220 * the event ring segment table (ERST). Section 4.9.3.
1221 */
1222 xhci_dbg(xhci, "// Allocating event ring\n");
1223 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1224 if (!xhci->event_ring)
1225 goto fail;
6648f29d
SS
1226 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1227 goto fail;
0ebbab37
SS
1228
1229 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1230 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1231 if (!xhci->erst.entries)
1232 goto fail;
700e2052
GKH
1233 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1234 (unsigned long long)dma);
0ebbab37
SS
1235
1236 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1237 xhci->erst.num_entries = ERST_NUM_SEGS;
1238 xhci->erst.erst_dma_addr = dma;
700e2052 1239 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
0ebbab37 1240 xhci->erst.num_entries,
700e2052
GKH
1241 xhci->erst.entries,
1242 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
1243
1244 /* set ring base address and size for each segment table entry */
1245 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1246 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
8e595a5d 1247 entry->seg_addr = seg->dma;
0ebbab37
SS
1248 entry->seg_size = TRBS_PER_SEGMENT;
1249 entry->rsvd = 0;
1250 seg = seg->next;
1251 }
1252
1253 /* set ERST count with the number of entries in the segment table */
1254 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1255 val &= ERST_SIZE_MASK;
1256 val |= ERST_NUM_SEGS;
1257 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1258 val);
1259 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1260
1261 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1262 /* set the segment table base address */
700e2052
GKH
1263 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1264 (unsigned long long)xhci->erst.erst_dma_addr);
8e595a5d
SS
1265 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1266 val_64 &= ERST_PTR_MASK;
1267 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1268 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
1269
1270 /* Set the event ring dequeue address */
23e3be11 1271 xhci_set_hc_event_deq(xhci);
0ebbab37
SS
1272 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1273 xhci_print_ir_set(xhci, xhci->ir_set, 0);
1274
1275 /*
1276 * XXX: Might need to set the Interrupter Moderation Register to
1277 * something other than the default (~1ms minimum between interrupts).
1278 * See section 5.5.1.2.
1279 */
3ffbba95
SS
1280 init_completion(&xhci->addr_dev);
1281 for (i = 0; i < MAX_HC_SLOTS; ++i)
1282 xhci->devs[i] = 0;
66d4eadd 1283
254c80a3
JY
1284 if (scratchpad_alloc(xhci, flags))
1285 goto fail;
1286
66d4eadd 1287 return 0;
254c80a3 1288
66d4eadd
SS
1289fail:
1290 xhci_warn(xhci, "Couldn't initialize memory\n");
1291 xhci_mem_cleanup(xhci);
1292 return -ENOMEM;
1293}
This page took 0.333591 seconds and 5 git commands to generate.