xhci: Remove BUG_ON in xhci_get_input_control_ctx.
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
66d4eadd
SS
27
28#include "xhci.h"
29
0ebbab37
SS
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
186a7ef1
AX
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 unsigned int cycle_state, gfp_t flags)
0ebbab37
SS
39{
40 struct xhci_segment *seg;
41 dma_addr_t dma;
186a7ef1 42 int i;
0ebbab37
SS
43
44 seg = kzalloc(sizeof *seg, flags);
45 if (!seg)
326b4810 46 return NULL;
0ebbab37
SS
47
48 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 if (!seg->trbs) {
50 kfree(seg);
326b4810 51 return NULL;
0ebbab37 52 }
0ebbab37 53
eb8ccd2b 54 memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
186a7ef1
AX
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= TRB_CYCLE;
59 }
0ebbab37
SS
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64}
65
66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67{
0ebbab37 68 if (seg->trbs) {
0ebbab37
SS
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
0ebbab37
SS
72 kfree(seg);
73}
74
70d43601
AX
75static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 struct xhci_segment *first)
77{
78 struct xhci_segment *seg;
79
80 seg = first->next;
81 while (seg != first) {
82 struct xhci_segment *next = seg->next;
83 xhci_segment_free(xhci, seg);
84 seg = next;
85 }
86 xhci_segment_free(xhci, first);
87}
88
0ebbab37
SS
89/*
90 * Make the prev segment point to the next segment.
91 *
92 * Change the last TRB in the prev segment to be a Link TRB which points to the
93 * DMA address of the next segment. The caller needs to set any Link TRB
94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
95 */
96static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
3b72fca0 97 struct xhci_segment *next, enum xhci_ring_type type)
0ebbab37
SS
98{
99 u32 val;
100
101 if (!prev || !next)
102 return;
103 prev->next = next;
3b72fca0 104 if (type != TYPE_EVENT) {
f5960b69
ME
105 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 cpu_to_le64(next->dma);
0ebbab37
SS
107
108 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
28ccd296 109 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0ebbab37
SS
110 val &= ~TRB_TYPE_BITMASK;
111 val |= TRB_TYPE(TRB_LINK);
b0567b3f 112 /* Always set the chain bit with 0.95 hardware */
7e393a83
AX
113 /* Set chain bit for isoc rings on AMD 0.96 host */
114 if (xhci_link_trb_quirk(xhci) ||
3b72fca0
AX
115 (type == TYPE_ISOC &&
116 (xhci->quirks & XHCI_AMD_0x96_HOST)))
b0567b3f 117 val |= TRB_CHAIN;
28ccd296 118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0ebbab37 119 }
0ebbab37
SS
120}
121
8dfec614
AX
122/*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129{
130 struct xhci_segment *next;
131
132 if (!ring || !first || !last)
133 return;
134
135 next = ring->enq_seg->next;
136 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 xhci_link_segments(xhci, last, next, ring->type);
138 ring->num_segs += num_segs;
139 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140
141 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 &= ~cpu_to_le32(LINK_TOGGLE);
144 last->trbs[TRBS_PER_SEGMENT-1].link.control
145 |= cpu_to_le32(LINK_TOGGLE);
146 ring->last_seg = last;
147 }
148}
149
0ebbab37 150/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 151void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37 152{
0e6c7f74 153 if (!ring)
0ebbab37 154 return;
70d43601
AX
155
156 if (ring->first_seg)
157 xhci_free_segments_for_ring(xhci, ring->first_seg);
158
0ebbab37
SS
159 kfree(ring);
160}
161
186a7ef1
AX
162static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 unsigned int cycle_state)
74f9fe21
SS
164{
165 /* The ring is empty, so the enqueue pointer == dequeue pointer */
166 ring->enqueue = ring->first_seg->trbs;
167 ring->enq_seg = ring->first_seg;
168 ring->dequeue = ring->enqueue;
169 ring->deq_seg = ring->first_seg;
170 /* The ring is initialized to 0. The producer must write 1 to the cycle
171 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
172 * compare CCS to the cycle bit to check ownership, so CCS = 1.
186a7ef1
AX
173 *
174 * New rings are initialized with cycle state equal to 1; if we are
175 * handling ring expansion, set the cycle state equal to the old ring.
74f9fe21 176 */
186a7ef1 177 ring->cycle_state = cycle_state;
74f9fe21
SS
178 /* Not necessary for new rings, but needed for re-initialized rings */
179 ring->enq_updates = 0;
180 ring->deq_updates = 0;
b008df60
AX
181
182 /*
183 * Each segment has a link TRB, and leave an extra TRB for SW
184 * accounting purpose
185 */
186 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
74f9fe21
SS
187}
188
70d43601
AX
189/* Allocate segments and link them for a ring */
190static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 struct xhci_segment **first, struct xhci_segment **last,
186a7ef1
AX
192 unsigned int num_segs, unsigned int cycle_state,
193 enum xhci_ring_type type, gfp_t flags)
70d43601
AX
194{
195 struct xhci_segment *prev;
196
186a7ef1 197 prev = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601
AX
198 if (!prev)
199 return -ENOMEM;
200 num_segs--;
201
202 *first = prev;
203 while (num_segs > 0) {
204 struct xhci_segment *next;
205
186a7ef1 206 next = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601 207 if (!next) {
68e5254a
JW
208 prev = *first;
209 while (prev) {
210 next = prev->next;
211 xhci_segment_free(xhci, prev);
212 prev = next;
213 }
70d43601
AX
214 return -ENOMEM;
215 }
216 xhci_link_segments(xhci, prev, next, type);
217
218 prev = next;
219 num_segs--;
220 }
221 xhci_link_segments(xhci, prev, *first, type);
222 *last = prev;
223
224 return 0;
225}
226
0ebbab37
SS
227/**
228 * Create a new ring with zero or more segments.
229 *
230 * Link each segment together into a ring.
231 * Set the end flag and the cycle toggle bit on the last segment.
232 * See section 4.9.1 and figures 15 and 16.
233 */
234static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
186a7ef1
AX
235 unsigned int num_segs, unsigned int cycle_state,
236 enum xhci_ring_type type, gfp_t flags)
0ebbab37
SS
237{
238 struct xhci_ring *ring;
70d43601 239 int ret;
0ebbab37
SS
240
241 ring = kzalloc(sizeof *(ring), flags);
0ebbab37 242 if (!ring)
326b4810 243 return NULL;
0ebbab37 244
3fe4fe08 245 ring->num_segs = num_segs;
d0e96f5a 246 INIT_LIST_HEAD(&ring->td_list);
3b72fca0 247 ring->type = type;
0ebbab37
SS
248 if (num_segs == 0)
249 return ring;
250
70d43601 251 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
186a7ef1 252 &ring->last_seg, num_segs, cycle_state, type, flags);
70d43601 253 if (ret)
0ebbab37 254 goto fail;
0ebbab37 255
3b72fca0
AX
256 /* Only event ring does not use link TRB */
257 if (type != TYPE_EVENT) {
0ebbab37 258 /* See section 4.9.2.1 and 6.4.4.1 */
70d43601 259 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
f5960b69 260 cpu_to_le32(LINK_TOGGLE);
0ebbab37 261 }
186a7ef1 262 xhci_initialize_ring_info(ring, cycle_state);
0ebbab37
SS
263 return ring;
264
265fail:
68e5254a 266 kfree(ring);
326b4810 267 return NULL;
0ebbab37
SS
268}
269
412566bd
SS
270void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
271 struct xhci_virt_device *virt_dev,
272 unsigned int ep_index)
273{
274 int rings_cached;
275
276 rings_cached = virt_dev->num_rings_cached;
277 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
412566bd
SS
278 virt_dev->ring_cache[rings_cached] =
279 virt_dev->eps[ep_index].ring;
30f89ca0 280 virt_dev->num_rings_cached++;
412566bd
SS
281 xhci_dbg(xhci, "Cached old ring, "
282 "%d ring%s cached\n",
30f89ca0
SS
283 virt_dev->num_rings_cached,
284 (virt_dev->num_rings_cached > 1) ? "s" : "");
412566bd
SS
285 } else {
286 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
287 xhci_dbg(xhci, "Ring cache full (%d rings), "
288 "freeing ring\n",
289 virt_dev->num_rings_cached);
290 }
291 virt_dev->eps[ep_index].ring = NULL;
292}
293
74f9fe21
SS
294/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
295 * pointers to the beginning of the ring.
296 */
297static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
186a7ef1
AX
298 struct xhci_ring *ring, unsigned int cycle_state,
299 enum xhci_ring_type type)
74f9fe21
SS
300{
301 struct xhci_segment *seg = ring->first_seg;
186a7ef1
AX
302 int i;
303
74f9fe21
SS
304 do {
305 memset(seg->trbs, 0,
306 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
186a7ef1
AX
307 if (cycle_state == 0) {
308 for (i = 0; i < TRBS_PER_SEGMENT; i++)
309 seg->trbs[i].link.control |= TRB_CYCLE;
310 }
74f9fe21 311 /* All endpoint rings have link TRBs */
3b72fca0 312 xhci_link_segments(xhci, seg, seg->next, type);
74f9fe21
SS
313 seg = seg->next;
314 } while (seg != ring->first_seg);
3b72fca0 315 ring->type = type;
186a7ef1 316 xhci_initialize_ring_info(ring, cycle_state);
74f9fe21
SS
317 /* td list should be empty since all URBs have been cancelled,
318 * but just in case...
319 */
320 INIT_LIST_HEAD(&ring->td_list);
321}
322
8dfec614
AX
323/*
324 * Expand an existing ring.
325 * Look for a cached ring or allocate a new ring which has same segment numbers
326 * and link the two rings.
327 */
328int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
329 unsigned int num_trbs, gfp_t flags)
330{
331 struct xhci_segment *first;
332 struct xhci_segment *last;
333 unsigned int num_segs;
334 unsigned int num_segs_needed;
335 int ret;
336
337 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
338 (TRBS_PER_SEGMENT - 1);
339
340 /* Allocate number of segments we needed, or double the ring size */
341 num_segs = ring->num_segs > num_segs_needed ?
342 ring->num_segs : num_segs_needed;
343
344 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
345 num_segs, ring->cycle_state, ring->type, flags);
346 if (ret)
347 return -ENOMEM;
348
349 xhci_link_rings(xhci, ring, first, last, num_segs);
350 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
351 ring->num_segs);
352
353 return 0;
354}
355
d115b048
JY
356#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
357
326b4810 358static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
359 int type, gfp_t flags)
360{
29f9d54b
SS
361 struct xhci_container_ctx *ctx;
362
363 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
364 return NULL;
365
366 ctx = kzalloc(sizeof(*ctx), flags);
d115b048
JY
367 if (!ctx)
368 return NULL;
369
d115b048
JY
370 ctx->type = type;
371 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
372 if (type == XHCI_CTX_TYPE_INPUT)
373 ctx->size += CTX_SIZE(xhci->hcc_params);
374
375 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
376 memset(ctx->bytes, 0, ctx->size);
377 return ctx;
378}
379
326b4810 380static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
381 struct xhci_container_ctx *ctx)
382{
a1d78c16
SS
383 if (!ctx)
384 return;
d115b048
JY
385 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
386 kfree(ctx);
387}
388
389struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
390 struct xhci_container_ctx *ctx)
391{
92f8e767
SS
392 if (ctx->type != XHCI_CTX_TYPE_INPUT)
393 return NULL;
394
d115b048
JY
395 return (struct xhci_input_control_ctx *)ctx->bytes;
396}
397
398struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
399 struct xhci_container_ctx *ctx)
400{
401 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
402 return (struct xhci_slot_ctx *)ctx->bytes;
403
404 return (struct xhci_slot_ctx *)
405 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
406}
407
408struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
409 struct xhci_container_ctx *ctx,
410 unsigned int ep_index)
411{
412 /* increment ep index by offset of start of ep ctx array */
413 ep_index++;
414 if (ctx->type == XHCI_CTX_TYPE_INPUT)
415 ep_index++;
416
417 return (struct xhci_ep_ctx *)
418 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
419}
420
8df75f42
SS
421
422/***************** Streams structures manipulation *************************/
423
8212a49d 424static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
425 unsigned int num_stream_ctxs,
426 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
427{
428 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
429
430 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 431 dma_free_coherent(&pdev->dev,
8df75f42
SS
432 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
433 stream_ctx, dma);
434 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
435 return dma_pool_free(xhci->small_streams_pool,
436 stream_ctx, dma);
437 else
438 return dma_pool_free(xhci->medium_streams_pool,
439 stream_ctx, dma);
440}
441
442/*
443 * The stream context array for each endpoint with bulk streams enabled can
444 * vary in size, based on:
445 * - how many streams the endpoint supports,
446 * - the maximum primary stream array size the host controller supports,
447 * - and how many streams the device driver asks for.
448 *
449 * The stream context array must be a power of 2, and can be as small as
450 * 64 bytes or as large as 1MB.
451 */
8212a49d 452static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
453 unsigned int num_stream_ctxs, dma_addr_t *dma,
454 gfp_t mem_flags)
455{
456 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
457
458 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 459 return dma_alloc_coherent(&pdev->dev,
8df75f42 460 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
22d45f01 461 dma, mem_flags);
8df75f42
SS
462 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
463 return dma_pool_alloc(xhci->small_streams_pool,
464 mem_flags, dma);
465 else
466 return dma_pool_alloc(xhci->medium_streams_pool,
467 mem_flags, dma);
468}
469
e9df17eb
SS
470struct xhci_ring *xhci_dma_to_transfer_ring(
471 struct xhci_virt_ep *ep,
472 u64 address)
473{
474 if (ep->ep_state & EP_HAS_STREAMS)
475 return radix_tree_lookup(&ep->stream_info->trb_address_map,
eb8ccd2b 476 address >> TRB_SEGMENT_SHIFT);
e9df17eb
SS
477 return ep->ring;
478}
479
480/* Only use this when you know stream_info is valid */
8df75f42 481#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
e9df17eb 482static struct xhci_ring *dma_to_stream_ring(
8df75f42
SS
483 struct xhci_stream_info *stream_info,
484 u64 address)
485{
486 return radix_tree_lookup(&stream_info->trb_address_map,
eb8ccd2b 487 address >> TRB_SEGMENT_SHIFT);
8df75f42
SS
488}
489#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
490
e9df17eb
SS
491struct xhci_ring *xhci_stream_id_to_ring(
492 struct xhci_virt_device *dev,
493 unsigned int ep_index,
494 unsigned int stream_id)
495{
496 struct xhci_virt_ep *ep = &dev->eps[ep_index];
497
498 if (stream_id == 0)
499 return ep->ring;
500 if (!ep->stream_info)
501 return NULL;
502
503 if (stream_id > ep->stream_info->num_streams)
504 return NULL;
505 return ep->stream_info->stream_rings[stream_id];
506}
507
8df75f42
SS
508#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
509static int xhci_test_radix_tree(struct xhci_hcd *xhci,
510 unsigned int num_streams,
511 struct xhci_stream_info *stream_info)
512{
513 u32 cur_stream;
514 struct xhci_ring *cur_ring;
515 u64 addr;
516
517 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
518 struct xhci_ring *mapped_ring;
519 int trb_size = sizeof(union xhci_trb);
520
521 cur_ring = stream_info->stream_rings[cur_stream];
522 for (addr = cur_ring->first_seg->dma;
eb8ccd2b 523 addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
8df75f42
SS
524 addr += trb_size) {
525 mapped_ring = dma_to_stream_ring(stream_info, addr);
526 if (cur_ring != mapped_ring) {
527 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
528 "didn't map to stream ID %u; "
529 "mapped to ring %p\n",
530 (unsigned long long) addr,
531 cur_stream,
532 mapped_ring);
533 return -EINVAL;
534 }
535 }
536 /* One TRB after the end of the ring segment shouldn't return a
537 * pointer to the current ring (although it may be a part of a
538 * different ring).
539 */
540 mapped_ring = dma_to_stream_ring(stream_info, addr);
541 if (mapped_ring != cur_ring) {
542 /* One TRB before should also fail */
543 addr = cur_ring->first_seg->dma - trb_size;
544 mapped_ring = dma_to_stream_ring(stream_info, addr);
545 }
546 if (mapped_ring == cur_ring) {
547 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
548 "mapped to valid stream ID %u; "
549 "mapped ring = %p\n",
550 (unsigned long long) addr,
551 cur_stream,
552 mapped_ring);
553 return -EINVAL;
554 }
555 }
556 return 0;
557}
558#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
559
560/*
561 * Change an endpoint's internal structure so it supports stream IDs. The
562 * number of requested streams includes stream 0, which cannot be used by device
563 * drivers.
564 *
565 * The number of stream contexts in the stream context array may be bigger than
566 * the number of streams the driver wants to use. This is because the number of
567 * stream context array entries must be a power of two.
568 *
569 * We need a radix tree for mapping physical addresses of TRBs to which stream
570 * ID they belong to. We need to do this because the host controller won't tell
571 * us which stream ring the TRB came from. We could store the stream ID in an
572 * event data TRB, but that doesn't help us for the cancellation case, since the
573 * endpoint may stop before it reaches that event data TRB.
574 *
575 * The radix tree maps the upper portion of the TRB DMA address to a ring
576 * segment that has the same upper portion of DMA addresses. For example, say I
577 * have segments of size 1KB, that are always 64-byte aligned. A segment may
578 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
579 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
580 * pass the radix tree a key to get the right stream ID:
581 *
582 * 0x10c90fff >> 10 = 0x43243
583 * 0x10c912c0 >> 10 = 0x43244
584 * 0x10c91400 >> 10 = 0x43245
585 *
586 * Obviously, only those TRBs with DMA addresses that are within the segment
587 * will make the radix tree return the stream ID for that ring.
588 *
589 * Caveats for the radix tree:
590 *
591 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
592 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
593 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
594 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
595 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
596 * extended systems (where the DMA address can be bigger than 32-bits),
597 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
598 */
599struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
600 unsigned int num_stream_ctxs,
601 unsigned int num_streams, gfp_t mem_flags)
602{
603 struct xhci_stream_info *stream_info;
604 u32 cur_stream;
605 struct xhci_ring *cur_ring;
606 unsigned long key;
607 u64 addr;
608 int ret;
609
610 xhci_dbg(xhci, "Allocating %u streams and %u "
611 "stream context array entries.\n",
612 num_streams, num_stream_ctxs);
613 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
614 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
615 return NULL;
616 }
617 xhci->cmd_ring_reserved_trbs++;
618
619 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
620 if (!stream_info)
621 goto cleanup_trbs;
622
623 stream_info->num_streams = num_streams;
624 stream_info->num_stream_ctxs = num_stream_ctxs;
625
626 /* Initialize the array of virtual pointers to stream rings. */
627 stream_info->stream_rings = kzalloc(
628 sizeof(struct xhci_ring *)*num_streams,
629 mem_flags);
630 if (!stream_info->stream_rings)
631 goto cleanup_info;
632
633 /* Initialize the array of DMA addresses for stream rings for the HW. */
634 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
635 num_stream_ctxs, &stream_info->ctx_array_dma,
636 mem_flags);
637 if (!stream_info->stream_ctx_array)
638 goto cleanup_ctx;
639 memset(stream_info->stream_ctx_array, 0,
640 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
641
642 /* Allocate everything needed to free the stream rings later */
643 stream_info->free_streams_command =
644 xhci_alloc_command(xhci, true, true, mem_flags);
645 if (!stream_info->free_streams_command)
646 goto cleanup_ctx;
647
648 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
649
650 /* Allocate rings for all the streams that the driver will use,
651 * and add their segment DMA addresses to the radix tree.
652 * Stream 0 is reserved.
653 */
654 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
655 stream_info->stream_rings[cur_stream] =
2fdcd47b 656 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
8df75f42
SS
657 cur_ring = stream_info->stream_rings[cur_stream];
658 if (!cur_ring)
659 goto cleanup_rings;
e9df17eb 660 cur_ring->stream_id = cur_stream;
8df75f42
SS
661 /* Set deq ptr, cycle bit, and stream context type */
662 addr = cur_ring->first_seg->dma |
663 SCT_FOR_CTX(SCT_PRI_TR) |
664 cur_ring->cycle_state;
f5960b69
ME
665 stream_info->stream_ctx_array[cur_stream].stream_ring =
666 cpu_to_le64(addr);
8df75f42
SS
667 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
668 cur_stream, (unsigned long long) addr);
669
670 key = (unsigned long)
eb8ccd2b 671 (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
8df75f42
SS
672 ret = radix_tree_insert(&stream_info->trb_address_map,
673 key, cur_ring);
674 if (ret) {
675 xhci_ring_free(xhci, cur_ring);
676 stream_info->stream_rings[cur_stream] = NULL;
677 goto cleanup_rings;
678 }
679 }
680 /* Leave the other unused stream ring pointers in the stream context
681 * array initialized to zero. This will cause the xHC to give us an
682 * error if the device asks for a stream ID we don't have setup (if it
683 * was any other way, the host controller would assume the ring is
684 * "empty" and wait forever for data to be queued to that stream ID).
685 */
686#if XHCI_DEBUG
687 /* Do a little test on the radix tree to make sure it returns the
688 * correct values.
689 */
690 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
691 goto cleanup_rings;
692#endif
693
694 return stream_info;
695
696cleanup_rings:
697 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
698 cur_ring = stream_info->stream_rings[cur_stream];
699 if (cur_ring) {
700 addr = cur_ring->first_seg->dma;
701 radix_tree_delete(&stream_info->trb_address_map,
eb8ccd2b 702 addr >> TRB_SEGMENT_SHIFT);
8df75f42
SS
703 xhci_ring_free(xhci, cur_ring);
704 stream_info->stream_rings[cur_stream] = NULL;
705 }
706 }
707 xhci_free_command(xhci, stream_info->free_streams_command);
708cleanup_ctx:
709 kfree(stream_info->stream_rings);
710cleanup_info:
711 kfree(stream_info);
712cleanup_trbs:
713 xhci->cmd_ring_reserved_trbs--;
714 return NULL;
715}
716/*
717 * Sets the MaxPStreams field and the Linear Stream Array field.
718 * Sets the dequeue pointer to the stream context array.
719 */
720void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
721 struct xhci_ep_ctx *ep_ctx,
722 struct xhci_stream_info *stream_info)
723{
724 u32 max_primary_streams;
725 /* MaxPStreams is the number of stream context array entries, not the
726 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
727 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
728 */
729 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
730 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
731 1 << (max_primary_streams + 1));
28ccd296
ME
732 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
734 | EP_HAS_LSA);
735 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
8df75f42
SS
736}
737
738/*
739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741 * not at the beginning of the ring).
742 */
743void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
744 struct xhci_ep_ctx *ep_ctx,
745 struct xhci_virt_ep *ep)
746{
747 dma_addr_t addr;
28ccd296 748 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
8df75f42 749 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
28ccd296 750 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
8df75f42
SS
751}
752
753/* Frees all stream contexts associated with the endpoint,
754 *
755 * Caller should fix the endpoint context streams fields.
756 */
757void xhci_free_stream_info(struct xhci_hcd *xhci,
758 struct xhci_stream_info *stream_info)
759{
760 int cur_stream;
761 struct xhci_ring *cur_ring;
762 dma_addr_t addr;
763
764 if (!stream_info)
765 return;
766
767 for (cur_stream = 1; cur_stream < stream_info->num_streams;
768 cur_stream++) {
769 cur_ring = stream_info->stream_rings[cur_stream];
770 if (cur_ring) {
771 addr = cur_ring->first_seg->dma;
772 radix_tree_delete(&stream_info->trb_address_map,
eb8ccd2b 773 addr >> TRB_SEGMENT_SHIFT);
8df75f42
SS
774 xhci_ring_free(xhci, cur_ring);
775 stream_info->stream_rings[cur_stream] = NULL;
776 }
777 }
778 xhci_free_command(xhci, stream_info->free_streams_command);
779 xhci->cmd_ring_reserved_trbs--;
780 if (stream_info->stream_ctx_array)
781 xhci_free_stream_ctx(xhci,
782 stream_info->num_stream_ctxs,
783 stream_info->stream_ctx_array,
784 stream_info->ctx_array_dma);
785
786 if (stream_info)
787 kfree(stream_info->stream_rings);
788 kfree(stream_info);
789}
790
791
792/***************** Device context manipulation *************************/
793
6f5165cf
SS
794static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
795 struct xhci_virt_ep *ep)
796{
797 init_timer(&ep->stop_cmd_timer);
798 ep->stop_cmd_timer.data = (unsigned long) ep;
799 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
800 ep->xhci = xhci;
801}
802
839c817c
SS
803static void xhci_free_tt_info(struct xhci_hcd *xhci,
804 struct xhci_virt_device *virt_dev,
805 int slot_id)
806{
839c817c 807 struct list_head *tt_list_head;
46ed8f00
TI
808 struct xhci_tt_bw_info *tt_info, *next;
809 bool slot_found = false;
839c817c
SS
810
811 /* If the device never made it past the Set Address stage,
812 * it may not have the real_port set correctly.
813 */
814 if (virt_dev->real_port == 0 ||
815 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
816 xhci_dbg(xhci, "Bad real port.\n");
817 return;
818 }
819
820 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
46ed8f00
TI
821 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
822 /* Multi-TT hubs will have more than one entry */
823 if (tt_info->slot_id == slot_id) {
824 slot_found = true;
825 list_del(&tt_info->tt_list);
826 kfree(tt_info);
827 } else if (slot_found) {
839c817c 828 break;
46ed8f00 829 }
839c817c 830 }
839c817c
SS
831}
832
833int xhci_alloc_tt_info(struct xhci_hcd *xhci,
834 struct xhci_virt_device *virt_dev,
835 struct usb_device *hdev,
836 struct usb_tt *tt, gfp_t mem_flags)
837{
838 struct xhci_tt_bw_info *tt_info;
839 unsigned int num_ports;
840 int i, j;
841
842 if (!tt->multi)
843 num_ports = 1;
844 else
845 num_ports = hdev->maxchild;
846
847 for (i = 0; i < num_ports; i++, tt_info++) {
848 struct xhci_interval_bw_table *bw_table;
849
850 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
851 if (!tt_info)
852 goto free_tts;
853 INIT_LIST_HEAD(&tt_info->tt_list);
854 list_add(&tt_info->tt_list,
855 &xhci->rh_bw[virt_dev->real_port - 1].tts);
856 tt_info->slot_id = virt_dev->udev->slot_id;
857 if (tt->multi)
858 tt_info->ttport = i+1;
859 bw_table = &tt_info->bw_table;
860 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
861 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
862 }
863 return 0;
864
865free_tts:
866 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
867 return -ENOMEM;
868}
869
870
871/* All the xhci_tds in the ring's TD list should be freed at this point.
872 * Should be called with xhci->lock held if there is any chance the TT lists
873 * will be manipulated by the configure endpoint, allocate device, or update
874 * hub functions while this function is removing the TT entries from the list.
875 */
3ffbba95
SS
876void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
877{
878 struct xhci_virt_device *dev;
879 int i;
2e27980e 880 int old_active_eps = 0;
3ffbba95
SS
881
882 /* Slot ID 0 is reserved */
883 if (slot_id == 0 || !xhci->devs[slot_id])
884 return;
885
886 dev = xhci->devs[slot_id];
8e595a5d 887 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
888 if (!dev)
889 return;
890
2e27980e
SS
891 if (dev->tt_info)
892 old_active_eps = dev->tt_info->active_eps;
893
8df75f42 894 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
895 if (dev->eps[i].ring)
896 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
897 if (dev->eps[i].stream_info)
898 xhci_free_stream_info(xhci,
899 dev->eps[i].stream_info);
2e27980e
SS
900 /* Endpoints on the TT/root port lists should have been removed
901 * when usb_disable_device() was called for the device.
902 * We can't drop them anyway, because the udev might have gone
903 * away by this point, and we can't tell what speed it was.
904 */
905 if (!list_empty(&dev->eps[i].bw_endpoint_list))
906 xhci_warn(xhci, "Slot %u endpoint %u "
907 "not removed from BW list!\n",
908 slot_id, i);
8df75f42 909 }
839c817c
SS
910 /* If this is a hub, free the TT(s) from the TT list */
911 xhci_free_tt_info(xhci, dev, slot_id);
2e27980e
SS
912 /* If necessary, update the number of active TTs on this root port */
913 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
3ffbba95 914
74f9fe21
SS
915 if (dev->ring_cache) {
916 for (i = 0; i < dev->num_rings_cached; i++)
917 xhci_ring_free(xhci, dev->ring_cache[i]);
918 kfree(dev->ring_cache);
919 }
920
3ffbba95 921 if (dev->in_ctx)
d115b048 922 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 923 if (dev->out_ctx)
d115b048
JY
924 xhci_free_container_ctx(xhci, dev->out_ctx);
925
3ffbba95 926 kfree(xhci->devs[slot_id]);
326b4810 927 xhci->devs[slot_id] = NULL;
3ffbba95
SS
928}
929
930int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
931 struct usb_device *udev, gfp_t flags)
932{
3ffbba95 933 struct xhci_virt_device *dev;
63a0d9ab 934 int i;
3ffbba95
SS
935
936 /* Slot ID 0 is reserved */
937 if (slot_id == 0 || xhci->devs[slot_id]) {
938 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
939 return 0;
940 }
941
942 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
943 if (!xhci->devs[slot_id])
944 return 0;
945 dev = xhci->devs[slot_id];
946
d115b048
JY
947 /* Allocate the (output) device context that will be used in the HC. */
948 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
949 if (!dev->out_ctx)
950 goto fail;
d115b048 951
700e2052 952 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 953 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
954
955 /* Allocate the (input) device context for address device command */
d115b048 956 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
957 if (!dev->in_ctx)
958 goto fail;
d115b048 959
700e2052 960 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 961 (unsigned long long)dev->in_ctx->dma);
3ffbba95 962
6f5165cf
SS
963 /* Initialize the cancellation list and watchdog timers for each ep */
964 for (i = 0; i < 31; i++) {
965 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 966 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
2e27980e 967 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
6f5165cf 968 }
63a0d9ab 969
3ffbba95 970 /* Allocate endpoint 0 ring */
2fdcd47b 971 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
63a0d9ab 972 if (!dev->eps[0].ring)
3ffbba95
SS
973 goto fail;
974
74f9fe21
SS
975 /* Allocate pointers to the ring cache */
976 dev->ring_cache = kzalloc(
977 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
978 flags);
979 if (!dev->ring_cache)
980 goto fail;
981 dev->num_rings_cached = 0;
982
f94e0186 983 init_completion(&dev->cmd_completion);
913a8a34 984 INIT_LIST_HEAD(&dev->cmd_list);
64927730 985 dev->udev = udev;
f94e0186 986
28c2d2ef 987 /* Point to output device context in dcbaa. */
28ccd296 988 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
700e2052 989 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
28ccd296
ME
990 slot_id,
991 &xhci->dcbaa->dev_context_ptrs[slot_id],
f5960b69 992 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
3ffbba95
SS
993
994 return 1;
995fail:
996 xhci_free_virt_device(xhci, slot_id);
997 return 0;
998}
999
2d1ee590
SS
1000void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1001 struct usb_device *udev)
1002{
1003 struct xhci_virt_device *virt_dev;
1004 struct xhci_ep_ctx *ep0_ctx;
1005 struct xhci_ring *ep_ring;
1006
1007 virt_dev = xhci->devs[udev->slot_id];
1008 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1009 ep_ring = virt_dev->eps[0].ring;
1010 /*
1011 * FIXME we don't keep track of the dequeue pointer very well after a
1012 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1013 * host to our enqueue pointer. This should only be called after a
1014 * configured device has reset, so all control transfers should have
1015 * been completed or cancelled before the reset.
1016 */
28ccd296
ME
1017 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1018 ep_ring->enqueue)
1019 | ep_ring->cycle_state);
2d1ee590
SS
1020}
1021
f6ff0ac8
SS
1022/*
1023 * The xHCI roothub may have ports of differing speeds in any order in the port
1024 * status registers. xhci->port_array provides an array of the port speed for
1025 * each offset into the port status registers.
1026 *
1027 * The xHCI hardware wants to know the roothub port number that the USB device
1028 * is attached to (or the roothub port its ancestor hub is attached to). All we
1029 * know is the index of that port under either the USB 2.0 or the USB 3.0
1030 * roothub, but that doesn't give us the real index into the HW port status
3f5eb141 1031 * registers. Call xhci_find_raw_port_number() to get real index.
f6ff0ac8
SS
1032 */
1033static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1034 struct usb_device *udev)
1035{
1036 struct usb_device *top_dev;
3f5eb141
LT
1037 struct usb_hcd *hcd;
1038
1039 if (udev->speed == USB_SPEED_SUPER)
1040 hcd = xhci->shared_hcd;
1041 else
1042 hcd = xhci->main_hcd;
f6ff0ac8
SS
1043
1044 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1045 top_dev = top_dev->parent)
1046 /* Found device below root hub */;
f6ff0ac8 1047
3f5eb141 1048 return xhci_find_raw_port_number(hcd, top_dev->portnum);
f6ff0ac8
SS
1049}
1050
3ffbba95
SS
1051/* Setup an xHCI virtual device for a Set Address command */
1052int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1053{
1054 struct xhci_virt_device *dev;
1055 struct xhci_ep_ctx *ep0_ctx;
d115b048 1056 struct xhci_slot_ctx *slot_ctx;
f6ff0ac8
SS
1057 u32 port_num;
1058 struct usb_device *top_dev;
3ffbba95
SS
1059
1060 dev = xhci->devs[udev->slot_id];
1061 /* Slot ID 0 is reserved */
1062 if (udev->slot_id == 0 || !dev) {
1063 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1064 udev->slot_id);
1065 return -EINVAL;
1066 }
d115b048 1067 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
d115b048 1068 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95 1069
3ffbba95 1070 /* 3) Only the control endpoint is valid - one endpoint context */
f5960b69 1071 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
3ffbba95
SS
1072 switch (udev->speed) {
1073 case USB_SPEED_SUPER:
f5960b69 1074 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
3ffbba95
SS
1075 break;
1076 case USB_SPEED_HIGH:
f5960b69 1077 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
3ffbba95
SS
1078 break;
1079 case USB_SPEED_FULL:
f5960b69 1080 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
3ffbba95
SS
1081 break;
1082 case USB_SPEED_LOW:
f5960b69 1083 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
3ffbba95 1084 break;
551cdbbe 1085 case USB_SPEED_WIRELESS:
3ffbba95
SS
1086 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1087 return -EINVAL;
1088 break;
1089 default:
1090 /* Speed was set earlier, this shouldn't happen. */
1091 BUG();
1092 }
1093 /* Find the root hub port this device is under */
f6ff0ac8
SS
1094 port_num = xhci_find_real_port_number(xhci, udev);
1095 if (!port_num)
1096 return -EINVAL;
f5960b69 1097 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
f6ff0ac8 1098 /* Set the port number in the virtual_device to the faked port number */
3ffbba95
SS
1099 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1100 top_dev = top_dev->parent)
1101 /* Found device below root hub */;
fe30182c 1102 dev->fake_port = top_dev->portnum;
66381755 1103 dev->real_port = port_num;
f6ff0ac8 1104 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
fe30182c 1105 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
3ffbba95 1106
839c817c
SS
1107 /* Find the right bandwidth table that this device will be a part of.
1108 * If this is a full speed device attached directly to a root port (or a
1109 * decendent of one), it counts as a primary bandwidth domain, not a
1110 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1111 * will never be created for the HS root hub.
1112 */
1113 if (!udev->tt || !udev->tt->hub->parent) {
1114 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1115 } else {
1116 struct xhci_root_port_bw_info *rh_bw;
1117 struct xhci_tt_bw_info *tt_bw;
1118
1119 rh_bw = &xhci->rh_bw[port_num - 1];
1120 /* Find the right TT. */
1121 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1122 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1123 continue;
1124
1125 if (!dev->udev->tt->multi ||
1126 (udev->tt->multi &&
1127 tt_bw->ttport == dev->udev->ttport)) {
1128 dev->bw_table = &tt_bw->bw_table;
1129 dev->tt_info = tt_bw;
1130 break;
1131 }
1132 }
1133 if (!dev->tt_info)
1134 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1135 }
1136
aa1b13ef
SS
1137 /* Is this a LS/FS device under an external HS hub? */
1138 if (udev->tt && udev->tt->hub->parent) {
28ccd296
ME
1139 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1140 (udev->ttport << 8));
07b6de10 1141 if (udev->tt->multi)
28ccd296 1142 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3ffbba95 1143 }
700e2052 1144 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
1145 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1146
1147 /* Step 4 - ring already allocated */
1148 /* Step 5 */
28ccd296 1149 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
3ffbba95 1150 /*
3ffbba95
SS
1151 * XXX: Not sure about wireless USB devices.
1152 */
47aded8a
SS
1153 switch (udev->speed) {
1154 case USB_SPEED_SUPER:
28ccd296 1155 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
47aded8a
SS
1156 break;
1157 case USB_SPEED_HIGH:
1158 /* USB core guesses at a 64-byte max packet first for FS devices */
1159 case USB_SPEED_FULL:
28ccd296 1160 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
47aded8a
SS
1161 break;
1162 case USB_SPEED_LOW:
28ccd296 1163 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
47aded8a 1164 break;
551cdbbe 1165 case USB_SPEED_WIRELESS:
47aded8a
SS
1166 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1167 return -EINVAL;
1168 break;
1169 default:
1170 /* New speed? */
1171 BUG();
1172 }
3ffbba95 1173 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
28ccd296 1174 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
3ffbba95 1175
28ccd296
ME
1176 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1177 dev->eps[0].ring->cycle_state);
3ffbba95
SS
1178
1179 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1180
1181 return 0;
1182}
1183
dfa49c4a
DT
1184/*
1185 * Convert interval expressed as 2^(bInterval - 1) == interval into
1186 * straight exponent value 2^n == interval.
1187 *
1188 */
1189static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1190 struct usb_host_endpoint *ep)
1191{
1192 unsigned int interval;
1193
1194 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1195 if (interval != ep->desc.bInterval - 1)
1196 dev_warn(&udev->dev,
cd3c18ba 1197 "ep %#x - rounding interval to %d %sframes\n",
dfa49c4a 1198 ep->desc.bEndpointAddress,
cd3c18ba
DT
1199 1 << interval,
1200 udev->speed == USB_SPEED_FULL ? "" : "micro");
1201
1202 if (udev->speed == USB_SPEED_FULL) {
1203 /*
1204 * Full speed isoc endpoints specify interval in frames,
1205 * not microframes. We are using microframes everywhere,
1206 * so adjust accordingly.
1207 */
1208 interval += 3; /* 1 frame = 2^3 uframes */
1209 }
dfa49c4a
DT
1210
1211 return interval;
1212}
1213
1214/*
340a3504 1215 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
dfa49c4a
DT
1216 * microframes, rounded down to nearest power of 2.
1217 */
340a3504
SS
1218static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1219 struct usb_host_endpoint *ep, unsigned int desc_interval,
1220 unsigned int min_exponent, unsigned int max_exponent)
dfa49c4a
DT
1221{
1222 unsigned int interval;
1223
340a3504
SS
1224 interval = fls(desc_interval) - 1;
1225 interval = clamp_val(interval, min_exponent, max_exponent);
1226 if ((1 << interval) != desc_interval)
dfa49c4a
DT
1227 dev_warn(&udev->dev,
1228 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1229 ep->desc.bEndpointAddress,
1230 1 << interval,
340a3504 1231 desc_interval);
dfa49c4a
DT
1232
1233 return interval;
1234}
1235
340a3504
SS
1236static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1237 struct usb_host_endpoint *ep)
1238{
55c1945e
SS
1239 if (ep->desc.bInterval == 0)
1240 return 0;
340a3504
SS
1241 return xhci_microframes_to_exponent(udev, ep,
1242 ep->desc.bInterval, 0, 15);
1243}
1244
1245
1246static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1247 struct usb_host_endpoint *ep)
1248{
1249 return xhci_microframes_to_exponent(udev, ep,
1250 ep->desc.bInterval * 8, 3, 10);
1251}
1252
f94e0186
SS
1253/* Return the polling or NAK interval.
1254 *
1255 * The polling interval is expressed in "microframes". If xHCI's Interval field
1256 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1257 *
1258 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1259 * is set to 0.
1260 */
575688e1 1261static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
f94e0186
SS
1262 struct usb_host_endpoint *ep)
1263{
1264 unsigned int interval = 0;
1265
1266 switch (udev->speed) {
1267 case USB_SPEED_HIGH:
1268 /* Max NAK rate */
1269 if (usb_endpoint_xfer_control(&ep->desc) ||
dfa49c4a 1270 usb_endpoint_xfer_bulk(&ep->desc)) {
340a3504 1271 interval = xhci_parse_microframe_interval(udev, ep);
dfa49c4a
DT
1272 break;
1273 }
f94e0186 1274 /* Fall through - SS and HS isoc/int have same decoding */
dfa49c4a 1275
f94e0186
SS
1276 case USB_SPEED_SUPER:
1277 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1278 usb_endpoint_xfer_isoc(&ep->desc)) {
1279 interval = xhci_parse_exponent_interval(udev, ep);
f94e0186
SS
1280 }
1281 break;
dfa49c4a 1282
f94e0186 1283 case USB_SPEED_FULL:
b513d447 1284 if (usb_endpoint_xfer_isoc(&ep->desc)) {
dfa49c4a
DT
1285 interval = xhci_parse_exponent_interval(udev, ep);
1286 break;
1287 }
1288 /*
b513d447 1289 * Fall through for interrupt endpoint interval decoding
dfa49c4a
DT
1290 * since it uses the same rules as low speed interrupt
1291 * endpoints.
1292 */
1293
f94e0186
SS
1294 case USB_SPEED_LOW:
1295 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1296 usb_endpoint_xfer_isoc(&ep->desc)) {
1297
1298 interval = xhci_parse_frame_interval(udev, ep);
f94e0186
SS
1299 }
1300 break;
dfa49c4a 1301
f94e0186
SS
1302 default:
1303 BUG();
1304 }
1305 return EP_INTERVAL(interval);
1306}
1307
c30c791c 1308/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1cf62246
SS
1309 * High speed endpoint descriptors can define "the number of additional
1310 * transaction opportunities per microframe", but that goes in the Max Burst
1311 * endpoint context field.
1312 */
575688e1 1313static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1cf62246
SS
1314 struct usb_host_endpoint *ep)
1315{
c30c791c
SS
1316 if (udev->speed != USB_SPEED_SUPER ||
1317 !usb_endpoint_xfer_isoc(&ep->desc))
1cf62246 1318 return 0;
842f1690 1319 return ep->ss_ep_comp.bmAttributes;
1cf62246
SS
1320}
1321
575688e1 1322static u32 xhci_get_endpoint_type(struct usb_device *udev,
f94e0186
SS
1323 struct usb_host_endpoint *ep)
1324{
1325 int in;
1326 u32 type;
1327
1328 in = usb_endpoint_dir_in(&ep->desc);
1329 if (usb_endpoint_xfer_control(&ep->desc)) {
1330 type = EP_TYPE(CTRL_EP);
1331 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1332 if (in)
1333 type = EP_TYPE(BULK_IN_EP);
1334 else
1335 type = EP_TYPE(BULK_OUT_EP);
1336 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1337 if (in)
1338 type = EP_TYPE(ISOC_IN_EP);
1339 else
1340 type = EP_TYPE(ISOC_OUT_EP);
1341 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1342 if (in)
1343 type = EP_TYPE(INT_IN_EP);
1344 else
1345 type = EP_TYPE(INT_OUT_EP);
1346 } else {
1347 BUG();
1348 }
1349 return type;
1350}
1351
9238f25d
SS
1352/* Return the maximum endpoint service interval time (ESIT) payload.
1353 * Basically, this is the maxpacket size, multiplied by the burst size
1354 * and mult size.
1355 */
575688e1 1356static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
9238f25d
SS
1357 struct usb_device *udev,
1358 struct usb_host_endpoint *ep)
1359{
1360 int max_burst;
1361 int max_packet;
1362
1363 /* Only applies for interrupt or isochronous endpoints */
1364 if (usb_endpoint_xfer_control(&ep->desc) ||
1365 usb_endpoint_xfer_bulk(&ep->desc))
1366 return 0;
1367
842f1690 1368 if (udev->speed == USB_SPEED_SUPER)
64b3c304 1369 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
9238f25d 1370
29cc8897
KM
1371 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1372 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
9238f25d
SS
1373 /* A 0 in max burst means 1 transfer per ESIT */
1374 return max_packet * (max_burst + 1);
1375}
1376
8df75f42
SS
1377/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1378 * Drivers will have to call usb_alloc_streams() to do that.
1379 */
f94e0186
SS
1380int xhci_endpoint_init(struct xhci_hcd *xhci,
1381 struct xhci_virt_device *virt_dev,
1382 struct usb_device *udev,
f88ba78d
SS
1383 struct usb_host_endpoint *ep,
1384 gfp_t mem_flags)
f94e0186
SS
1385{
1386 unsigned int ep_index;
1387 struct xhci_ep_ctx *ep_ctx;
1388 struct xhci_ring *ep_ring;
1389 unsigned int max_packet;
1390 unsigned int max_burst;
3b72fca0 1391 enum xhci_ring_type type;
9238f25d 1392 u32 max_esit_payload;
f94e0186
SS
1393
1394 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1395 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186 1396
3b72fca0 1397 type = usb_endpoint_type(&ep->desc);
f94e0186 1398 /* Set up the endpoint ring */
8dfec614 1399 virt_dev->eps[ep_index].new_ring =
2fdcd47b 1400 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
74f9fe21
SS
1401 if (!virt_dev->eps[ep_index].new_ring) {
1402 /* Attempt to use the ring cache */
1403 if (virt_dev->num_rings_cached == 0)
1404 return -ENOMEM;
1405 virt_dev->eps[ep_index].new_ring =
1406 virt_dev->ring_cache[virt_dev->num_rings_cached];
1407 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1408 virt_dev->num_rings_cached--;
7e393a83 1409 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
186a7ef1 1410 1, type);
74f9fe21 1411 }
d18240db 1412 virt_dev->eps[ep_index].skip = false;
63a0d9ab 1413 ep_ring = virt_dev->eps[ep_index].new_ring;
28ccd296 1414 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
f94e0186 1415
28ccd296
ME
1416 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1417 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
f94e0186
SS
1418
1419 /* FIXME dig Mult and streams info out of ep companion desc */
1420
47692d17 1421 /* Allow 3 retries for everything but isoc;
7b1fc2ea 1422 * CErr shall be set to 0 for Isoch endpoints.
47692d17 1423 */
f94e0186 1424 if (!usb_endpoint_xfer_isoc(&ep->desc))
28ccd296 1425 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
f94e0186 1426 else
7b1fc2ea 1427 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
f94e0186 1428
28ccd296 1429 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
f94e0186
SS
1430
1431 /* Set the max packet size and max burst */
e4f47e36
AS
1432 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1433 max_burst = 0;
f94e0186
SS
1434 switch (udev->speed) {
1435 case USB_SPEED_SUPER:
b10de142 1436 /* dig out max burst from ep companion desc */
e4f47e36 1437 max_burst = ep->ss_ep_comp.bMaxBurst;
f94e0186
SS
1438 break;
1439 case USB_SPEED_HIGH:
e4f47e36
AS
1440 /* Some devices get this wrong */
1441 if (usb_endpoint_xfer_bulk(&ep->desc))
1442 max_packet = 512;
f94e0186
SS
1443 /* bits 11:12 specify the number of additional transaction
1444 * opportunities per microframe (USB 2.0, section 9.6.6)
1445 */
1446 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1447 usb_endpoint_xfer_int(&ep->desc)) {
29cc8897 1448 max_burst = (usb_endpoint_maxp(&ep->desc)
28ccd296 1449 & 0x1800) >> 11;
f94e0186 1450 }
e4f47e36 1451 break;
f94e0186
SS
1452 case USB_SPEED_FULL:
1453 case USB_SPEED_LOW:
f94e0186
SS
1454 break;
1455 default:
1456 BUG();
1457 }
e4f47e36
AS
1458 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1459 MAX_BURST(max_burst));
9238f25d 1460 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
28ccd296 1461 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
9238f25d
SS
1462
1463 /*
1464 * XXX no idea how to calculate the average TRB buffer length for bulk
1465 * endpoints, as the driver gives us no clue how big each scatter gather
1466 * list entry (or buffer) is going to be.
1467 *
1468 * For isochronous and interrupt endpoints, we set it to the max
1469 * available, until we have new API in the USB core to allow drivers to
1470 * declare how much bandwidth they actually need.
1471 *
1472 * Normally, it would be calculated by taking the total of the buffer
1473 * lengths in the TD and then dividing by the number of TRBs in a TD,
1474 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1475 * use Event Data TRBs, and we don't chain in a link TRB on short
1476 * transfers, we're basically dividing by 1.
51eb01a7
AX
1477 *
1478 * xHCI 1.0 specification indicates that the Average TRB Length should
1479 * be set to 8 for control endpoints.
9238f25d 1480 */
51eb01a7
AX
1481 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1482 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1483 else
1484 ep_ctx->tx_info |=
1485 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
9238f25d 1486
f94e0186
SS
1487 /* FIXME Debug endpoint context */
1488 return 0;
1489}
1490
1491void xhci_endpoint_zero(struct xhci_hcd *xhci,
1492 struct xhci_virt_device *virt_dev,
1493 struct usb_host_endpoint *ep)
1494{
1495 unsigned int ep_index;
1496 struct xhci_ep_ctx *ep_ctx;
1497
1498 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1499 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1500
1501 ep_ctx->ep_info = 0;
1502 ep_ctx->ep_info2 = 0;
8e595a5d 1503 ep_ctx->deq = 0;
f94e0186
SS
1504 ep_ctx->tx_info = 0;
1505 /* Don't free the endpoint ring until the set interface or configuration
1506 * request succeeds.
1507 */
1508}
1509
9af5d71d
SS
1510void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1511{
1512 bw_info->ep_interval = 0;
1513 bw_info->mult = 0;
1514 bw_info->num_packets = 0;
1515 bw_info->max_packet_size = 0;
1516 bw_info->type = 0;
1517 bw_info->max_esit_payload = 0;
1518}
1519
1520void xhci_update_bw_info(struct xhci_hcd *xhci,
1521 struct xhci_container_ctx *in_ctx,
1522 struct xhci_input_control_ctx *ctrl_ctx,
1523 struct xhci_virt_device *virt_dev)
1524{
1525 struct xhci_bw_info *bw_info;
1526 struct xhci_ep_ctx *ep_ctx;
1527 unsigned int ep_type;
1528 int i;
1529
1530 for (i = 1; i < 31; ++i) {
1531 bw_info = &virt_dev->eps[i].bw_info;
1532
1533 /* We can't tell what endpoint type is being dropped, but
1534 * unconditionally clearing the bandwidth info for non-periodic
1535 * endpoints should be harmless because the info will never be
1536 * set in the first place.
1537 */
1538 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1539 /* Dropped endpoint */
1540 xhci_clear_endpoint_bw_info(bw_info);
1541 continue;
1542 }
1543
1544 if (EP_IS_ADDED(ctrl_ctx, i)) {
1545 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1546 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1547
1548 /* Ignore non-periodic endpoints */
1549 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1550 ep_type != ISOC_IN_EP &&
1551 ep_type != INT_IN_EP)
1552 continue;
1553
1554 /* Added or changed endpoint */
1555 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1556 le32_to_cpu(ep_ctx->ep_info));
170c0263
SS
1557 /* Number of packets and mult are zero-based in the
1558 * input context, but we want one-based for the
1559 * interval table.
9af5d71d 1560 */
170c0263
SS
1561 bw_info->mult = CTX_TO_EP_MULT(
1562 le32_to_cpu(ep_ctx->ep_info)) + 1;
9af5d71d
SS
1563 bw_info->num_packets = CTX_TO_MAX_BURST(
1564 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1565 bw_info->max_packet_size = MAX_PACKET_DECODED(
1566 le32_to_cpu(ep_ctx->ep_info2));
1567 bw_info->type = ep_type;
1568 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1569 le32_to_cpu(ep_ctx->tx_info));
1570 }
1571 }
1572}
1573
f2217e8e
SS
1574/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1575 * Useful when you want to change one particular aspect of the endpoint and then
1576 * issue a configure endpoint command.
1577 */
1578void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1579 struct xhci_container_ctx *in_ctx,
1580 struct xhci_container_ctx *out_ctx,
1581 unsigned int ep_index)
f2217e8e
SS
1582{
1583 struct xhci_ep_ctx *out_ep_ctx;
1584 struct xhci_ep_ctx *in_ep_ctx;
1585
913a8a34
SS
1586 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1587 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1588
1589 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1590 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1591 in_ep_ctx->deq = out_ep_ctx->deq;
1592 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1593}
1594
1595/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1596 * Useful when you want to change one particular aspect of the endpoint and then
1597 * issue a configure endpoint command. Only the context entries field matters,
1598 * but we'll copy the whole thing anyway.
1599 */
913a8a34
SS
1600void xhci_slot_copy(struct xhci_hcd *xhci,
1601 struct xhci_container_ctx *in_ctx,
1602 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1603{
1604 struct xhci_slot_ctx *in_slot_ctx;
1605 struct xhci_slot_ctx *out_slot_ctx;
1606
913a8a34
SS
1607 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1608 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1609
1610 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1611 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1612 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1613 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1614}
1615
254c80a3
JY
1616/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1617static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1618{
1619 int i;
1620 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1621 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1622
1623 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1624
1625 if (!num_sp)
1626 return 0;
1627
1628 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1629 if (!xhci->scratchpad)
1630 goto fail_sp;
1631
22d45f01 1632 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
254c80a3 1633 num_sp * sizeof(u64),
22d45f01 1634 &xhci->scratchpad->sp_dma, flags);
254c80a3
JY
1635 if (!xhci->scratchpad->sp_array)
1636 goto fail_sp2;
1637
1638 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1639 if (!xhci->scratchpad->sp_buffers)
1640 goto fail_sp3;
1641
1642 xhci->scratchpad->sp_dma_buffers =
1643 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1644
1645 if (!xhci->scratchpad->sp_dma_buffers)
1646 goto fail_sp4;
1647
28ccd296 1648 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
254c80a3
JY
1649 for (i = 0; i < num_sp; i++) {
1650 dma_addr_t dma;
22d45f01
SAS
1651 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1652 flags);
254c80a3
JY
1653 if (!buf)
1654 goto fail_sp5;
1655
1656 xhci->scratchpad->sp_array[i] = dma;
1657 xhci->scratchpad->sp_buffers[i] = buf;
1658 xhci->scratchpad->sp_dma_buffers[i] = dma;
1659 }
1660
1661 return 0;
1662
1663 fail_sp5:
1664 for (i = i - 1; i >= 0; i--) {
22d45f01 1665 dma_free_coherent(dev, xhci->page_size,
254c80a3
JY
1666 xhci->scratchpad->sp_buffers[i],
1667 xhci->scratchpad->sp_dma_buffers[i]);
1668 }
1669 kfree(xhci->scratchpad->sp_dma_buffers);
1670
1671 fail_sp4:
1672 kfree(xhci->scratchpad->sp_buffers);
1673
1674 fail_sp3:
22d45f01 1675 dma_free_coherent(dev, num_sp * sizeof(u64),
254c80a3
JY
1676 xhci->scratchpad->sp_array,
1677 xhci->scratchpad->sp_dma);
1678
1679 fail_sp2:
1680 kfree(xhci->scratchpad);
1681 xhci->scratchpad = NULL;
1682
1683 fail_sp:
1684 return -ENOMEM;
1685}
1686
1687static void scratchpad_free(struct xhci_hcd *xhci)
1688{
1689 int num_sp;
1690 int i;
1691 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1692
1693 if (!xhci->scratchpad)
1694 return;
1695
1696 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1697
1698 for (i = 0; i < num_sp; i++) {
22d45f01 1699 dma_free_coherent(&pdev->dev, xhci->page_size,
254c80a3
JY
1700 xhci->scratchpad->sp_buffers[i],
1701 xhci->scratchpad->sp_dma_buffers[i]);
1702 }
1703 kfree(xhci->scratchpad->sp_dma_buffers);
1704 kfree(xhci->scratchpad->sp_buffers);
22d45f01 1705 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
254c80a3
JY
1706 xhci->scratchpad->sp_array,
1707 xhci->scratchpad->sp_dma);
1708 kfree(xhci->scratchpad);
1709 xhci->scratchpad = NULL;
1710}
1711
913a8a34 1712struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1713 bool allocate_in_ctx, bool allocate_completion,
1714 gfp_t mem_flags)
913a8a34
SS
1715{
1716 struct xhci_command *command;
1717
1718 command = kzalloc(sizeof(*command), mem_flags);
1719 if (!command)
1720 return NULL;
1721
a1d78c16
SS
1722 if (allocate_in_ctx) {
1723 command->in_ctx =
1724 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1725 mem_flags);
1726 if (!command->in_ctx) {
1727 kfree(command);
1728 return NULL;
1729 }
06e18291 1730 }
913a8a34
SS
1731
1732 if (allocate_completion) {
1733 command->completion =
1734 kzalloc(sizeof(struct completion), mem_flags);
1735 if (!command->completion) {
1736 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1737 kfree(command);
913a8a34
SS
1738 return NULL;
1739 }
1740 init_completion(command->completion);
1741 }
1742
1743 command->status = 0;
1744 INIT_LIST_HEAD(&command->cmd_list);
1745 return command;
1746}
1747
8e51adcc
AX
1748void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1749{
2ffdea25
AX
1750 if (urb_priv) {
1751 kfree(urb_priv->td[0]);
1752 kfree(urb_priv);
8e51adcc 1753 }
8e51adcc
AX
1754}
1755
913a8a34
SS
1756void xhci_free_command(struct xhci_hcd *xhci,
1757 struct xhci_command *command)
1758{
1759 xhci_free_container_ctx(xhci,
1760 command->in_ctx);
1761 kfree(command->completion);
1762 kfree(command);
1763}
1764
66d4eadd
SS
1765void xhci_mem_cleanup(struct xhci_hcd *xhci)
1766{
0ebbab37 1767 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
9574323c 1768 struct dev_info *dev_info, *next;
b92cc66c 1769 struct xhci_cd *cur_cd, *next_cd;
9574323c 1770 unsigned long flags;
0ebbab37 1771 int size;
32f1d2c5 1772 int i, j, num_ports;
0ebbab37
SS
1773
1774 /* Free the Event Ring Segment Table and the actual Event Ring */
0ebbab37
SS
1775 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1776 if (xhci->erst.entries)
22d45f01 1777 dma_free_coherent(&pdev->dev, size,
0ebbab37
SS
1778 xhci->erst.entries, xhci->erst.erst_dma_addr);
1779 xhci->erst.entries = NULL;
1780 xhci_dbg(xhci, "Freed ERST\n");
1781 if (xhci->event_ring)
1782 xhci_ring_free(xhci, xhci->event_ring);
1783 xhci->event_ring = NULL;
1784 xhci_dbg(xhci, "Freed event ring\n");
1785
dbc33303
SS
1786 if (xhci->lpm_command)
1787 xhci_free_command(xhci, xhci->lpm_command);
33b2831a 1788 xhci->cmd_ring_reserved_trbs = 0;
0ebbab37
SS
1789 if (xhci->cmd_ring)
1790 xhci_ring_free(xhci, xhci->cmd_ring);
1791 xhci->cmd_ring = NULL;
1792 xhci_dbg(xhci, "Freed command ring\n");
b92cc66c
EF
1793 list_for_each_entry_safe(cur_cd, next_cd,
1794 &xhci->cancel_cmd_list, cancel_cmd_list) {
1795 list_del(&cur_cd->cancel_cmd_list);
1796 kfree(cur_cd);
1797 }
3ffbba95
SS
1798
1799 for (i = 1; i < MAX_HC_SLOTS; ++i)
1800 xhci_free_virt_device(xhci, i);
1801
0ebbab37
SS
1802 if (xhci->segment_pool)
1803 dma_pool_destroy(xhci->segment_pool);
1804 xhci->segment_pool = NULL;
1805 xhci_dbg(xhci, "Freed segment pool\n");
3ffbba95
SS
1806
1807 if (xhci->device_pool)
1808 dma_pool_destroy(xhci->device_pool);
1809 xhci->device_pool = NULL;
1810 xhci_dbg(xhci, "Freed device context pool\n");
1811
8df75f42
SS
1812 if (xhci->small_streams_pool)
1813 dma_pool_destroy(xhci->small_streams_pool);
1814 xhci->small_streams_pool = NULL;
1815 xhci_dbg(xhci, "Freed small stream array pool\n");
1816
1817 if (xhci->medium_streams_pool)
1818 dma_pool_destroy(xhci->medium_streams_pool);
1819 xhci->medium_streams_pool = NULL;
1820 xhci_dbg(xhci, "Freed medium stream array pool\n");
1821
a74588f9 1822 if (xhci->dcbaa)
22d45f01 1823 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
a74588f9
SS
1824 xhci->dcbaa, xhci->dcbaa->dma);
1825 xhci->dcbaa = NULL;
3ffbba95 1826
5294bea4 1827 scratchpad_free(xhci);
da6699ce 1828
9574323c
AX
1829 spin_lock_irqsave(&xhci->lock, flags);
1830 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1831 list_del(&dev_info->list);
1832 kfree(dev_info);
1833 }
1834 spin_unlock_irqrestore(&xhci->lock, flags);
1835
88696ae4
VM
1836 if (!xhci->rh_bw)
1837 goto no_bw;
1838
32f1d2c5
TI
1839 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1840 for (i = 0; i < num_ports; i++) {
1841 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1842 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1843 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1844 while (!list_empty(ep))
1845 list_del_init(ep->next);
f8a9e72d
ON
1846 }
1847 }
1848
32f1d2c5
TI
1849 for (i = 0; i < num_ports; i++) {
1850 struct xhci_tt_bw_info *tt, *n;
1851 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1852 list_del(&tt->tt_list);
1853 kfree(tt);
1854 }
f8a9e72d
ON
1855 }
1856
88696ae4 1857no_bw:
da6699ce
SS
1858 xhci->num_usb2_ports = 0;
1859 xhci->num_usb3_ports = 0;
f8a9e72d 1860 xhci->num_active_eps = 0;
da6699ce
SS
1861 kfree(xhci->usb2_ports);
1862 kfree(xhci->usb3_ports);
1863 kfree(xhci->port_array);
839c817c 1864 kfree(xhci->rh_bw);
b630d4b9 1865 kfree(xhci->ext_caps);
da6699ce 1866
66d4eadd
SS
1867 xhci->page_size = 0;
1868 xhci->page_shift = 0;
20b67cf5 1869 xhci->bus_state[0].bus_suspended = 0;
f6ff0ac8 1870 xhci->bus_state[1].bus_suspended = 0;
66d4eadd
SS
1871}
1872
6648f29d
SS
1873static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1874 struct xhci_segment *input_seg,
1875 union xhci_trb *start_trb,
1876 union xhci_trb *end_trb,
1877 dma_addr_t input_dma,
1878 struct xhci_segment *result_seg,
1879 char *test_name, int test_number)
1880{
1881 unsigned long long start_dma;
1882 unsigned long long end_dma;
1883 struct xhci_segment *seg;
1884
1885 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1886 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1887
1888 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1889 if (seg != result_seg) {
1890 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1891 test_name, test_number);
1892 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1893 "input DMA 0x%llx\n",
1894 input_seg,
1895 (unsigned long long) input_dma);
1896 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1897 "ending TRB %p (0x%llx DMA)\n",
1898 start_trb, start_dma,
1899 end_trb, end_dma);
1900 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1901 result_seg, seg);
1902 return -1;
1903 }
1904 return 0;
1905}
1906
1907/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1908static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1909{
1910 struct {
1911 dma_addr_t input_dma;
1912 struct xhci_segment *result_seg;
1913 } simple_test_vector [] = {
1914 /* A zeroed DMA field should fail */
1915 { 0, NULL },
1916 /* One TRB before the ring start should fail */
1917 { xhci->event_ring->first_seg->dma - 16, NULL },
1918 /* One byte before the ring start should fail */
1919 { xhci->event_ring->first_seg->dma - 1, NULL },
1920 /* Starting TRB should succeed */
1921 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1922 /* Ending TRB should succeed */
1923 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1924 xhci->event_ring->first_seg },
1925 /* One byte after the ring end should fail */
1926 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1927 /* One TRB after the ring end should fail */
1928 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1929 /* An address of all ones should fail */
1930 { (dma_addr_t) (~0), NULL },
1931 };
1932 struct {
1933 struct xhci_segment *input_seg;
1934 union xhci_trb *start_trb;
1935 union xhci_trb *end_trb;
1936 dma_addr_t input_dma;
1937 struct xhci_segment *result_seg;
1938 } complex_test_vector [] = {
1939 /* Test feeding a valid DMA address from a different ring */
1940 { .input_seg = xhci->event_ring->first_seg,
1941 .start_trb = xhci->event_ring->first_seg->trbs,
1942 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1943 .input_dma = xhci->cmd_ring->first_seg->dma,
1944 .result_seg = NULL,
1945 },
1946 /* Test feeding a valid end TRB from a different ring */
1947 { .input_seg = xhci->event_ring->first_seg,
1948 .start_trb = xhci->event_ring->first_seg->trbs,
1949 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1950 .input_dma = xhci->cmd_ring->first_seg->dma,
1951 .result_seg = NULL,
1952 },
1953 /* Test feeding a valid start and end TRB from a different ring */
1954 { .input_seg = xhci->event_ring->first_seg,
1955 .start_trb = xhci->cmd_ring->first_seg->trbs,
1956 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1957 .input_dma = xhci->cmd_ring->first_seg->dma,
1958 .result_seg = NULL,
1959 },
1960 /* TRB in this ring, but after this TD */
1961 { .input_seg = xhci->event_ring->first_seg,
1962 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1963 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1964 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1965 .result_seg = NULL,
1966 },
1967 /* TRB in this ring, but before this TD */
1968 { .input_seg = xhci->event_ring->first_seg,
1969 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1970 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1971 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1972 .result_seg = NULL,
1973 },
1974 /* TRB in this ring, but after this wrapped TD */
1975 { .input_seg = xhci->event_ring->first_seg,
1976 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1977 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1978 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1979 .result_seg = NULL,
1980 },
1981 /* TRB in this ring, but before this wrapped TD */
1982 { .input_seg = xhci->event_ring->first_seg,
1983 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1984 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1985 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1986 .result_seg = NULL,
1987 },
1988 /* TRB not in this ring, and we have a wrapped TD */
1989 { .input_seg = xhci->event_ring->first_seg,
1990 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1991 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1992 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1993 .result_seg = NULL,
1994 },
1995 };
1996
1997 unsigned int num_tests;
1998 int i, ret;
1999
e10fa478 2000 num_tests = ARRAY_SIZE(simple_test_vector);
6648f29d
SS
2001 for (i = 0; i < num_tests; i++) {
2002 ret = xhci_test_trb_in_td(xhci,
2003 xhci->event_ring->first_seg,
2004 xhci->event_ring->first_seg->trbs,
2005 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2006 simple_test_vector[i].input_dma,
2007 simple_test_vector[i].result_seg,
2008 "Simple", i);
2009 if (ret < 0)
2010 return ret;
2011 }
2012
e10fa478 2013 num_tests = ARRAY_SIZE(complex_test_vector);
6648f29d
SS
2014 for (i = 0; i < num_tests; i++) {
2015 ret = xhci_test_trb_in_td(xhci,
2016 complex_test_vector[i].input_seg,
2017 complex_test_vector[i].start_trb,
2018 complex_test_vector[i].end_trb,
2019 complex_test_vector[i].input_dma,
2020 complex_test_vector[i].result_seg,
2021 "Complex", i);
2022 if (ret < 0)
2023 return ret;
2024 }
2025 xhci_dbg(xhci, "TRB math tests passed.\n");
2026 return 0;
2027}
2028
257d585a
SS
2029static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2030{
2031 u64 temp;
2032 dma_addr_t deq;
2033
2034 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2035 xhci->event_ring->dequeue);
2036 if (deq == 0 && !in_interrupt())
2037 xhci_warn(xhci, "WARN something wrong with SW event ring "
2038 "dequeue ptr.\n");
2039 /* Update HC event ring dequeue pointer */
2040 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2041 temp &= ERST_PTR_MASK;
2042 /* Don't clear the EHB bit (which is RW1C) because
2043 * there might be more events to service.
2044 */
2045 temp &= ~ERST_EHB;
2046 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2047 "preserving EHB bit\n");
2048 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2049 &xhci->ir_set->erst_dequeue);
2050}
2051
da6699ce 2052static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
b630d4b9 2053 __le32 __iomem *addr, u8 major_revision, int max_caps)
da6699ce
SS
2054{
2055 u32 temp, port_offset, port_count;
2056 int i;
2057
2058 if (major_revision > 0x03) {
2059 xhci_warn(xhci, "Ignoring unknown port speed, "
2060 "Ext Cap %p, revision = 0x%x\n",
2061 addr, major_revision);
2062 /* Ignoring port protocol we can't understand. FIXME */
2063 return;
2064 }
2065
2066 /* Port offset and count in the third dword, see section 7.2 */
2067 temp = xhci_readl(xhci, addr + 2);
2068 port_offset = XHCI_EXT_PORT_OFF(temp);
2069 port_count = XHCI_EXT_PORT_COUNT(temp);
2070 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2071 "count = %u, revision = 0x%x\n",
2072 addr, port_offset, port_count, major_revision);
2073 /* Port count includes the current port offset */
2074 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2075 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2076 return;
fc71ff75 2077
b630d4b9
MN
2078 /* cache usb2 port capabilities */
2079 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2080 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2081
fc71ff75
AX
2082 /* Check the host's USB2 LPM capability */
2083 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2084 (temp & XHCI_L1C)) {
2085 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2086 xhci->sw_lpm_support = 1;
2087 }
2088
2089 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2090 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2091 xhci->sw_lpm_support = 1;
2092 if (temp & XHCI_HLC) {
2093 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2094 xhci->hw_lpm_support = 1;
2095 }
2096 }
2097
da6699ce
SS
2098 port_offset--;
2099 for (i = port_offset; i < (port_offset + port_count); i++) {
2100 /* Duplicate entry. Ignore the port if the revisions differ. */
2101 if (xhci->port_array[i] != 0) {
2102 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2103 " port %u\n", addr, i);
2104 xhci_warn(xhci, "Port was marked as USB %u, "
2105 "duplicated as USB %u\n",
2106 xhci->port_array[i], major_revision);
2107 /* Only adjust the roothub port counts if we haven't
2108 * found a similar duplicate.
2109 */
2110 if (xhci->port_array[i] != major_revision &&
22e04870 2111 xhci->port_array[i] != DUPLICATE_ENTRY) {
da6699ce
SS
2112 if (xhci->port_array[i] == 0x03)
2113 xhci->num_usb3_ports--;
2114 else
2115 xhci->num_usb2_ports--;
22e04870 2116 xhci->port_array[i] = DUPLICATE_ENTRY;
da6699ce
SS
2117 }
2118 /* FIXME: Should we disable the port? */
f8bbeabc 2119 continue;
da6699ce
SS
2120 }
2121 xhci->port_array[i] = major_revision;
2122 if (major_revision == 0x03)
2123 xhci->num_usb3_ports++;
2124 else
2125 xhci->num_usb2_ports++;
2126 }
2127 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2128}
2129
2130/*
2131 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2132 * specify what speeds each port is supposed to be. We can't count on the port
2133 * speed bits in the PORTSC register being correct until a device is connected,
2134 * but we need to set up the two fake roothubs with the correct number of USB
2135 * 3.0 and USB 2.0 ports at host controller initialization time.
2136 */
2137static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2138{
b630d4b9
MN
2139 __le32 __iomem *addr, *tmp_addr;
2140 u32 offset, tmp_offset;
da6699ce 2141 unsigned int num_ports;
2e27980e 2142 int i, j, port_index;
b630d4b9 2143 int cap_count = 0;
da6699ce
SS
2144
2145 addr = &xhci->cap_regs->hcc_params;
2146 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2147 if (offset == 0) {
2148 xhci_err(xhci, "No Extended Capability registers, "
2149 "unable to set up roothub.\n");
2150 return -ENODEV;
2151 }
2152
2153 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2154 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2155 if (!xhci->port_array)
2156 return -ENOMEM;
2157
839c817c
SS
2158 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2159 if (!xhci->rh_bw)
2160 return -ENOMEM;
2e27980e
SS
2161 for (i = 0; i < num_ports; i++) {
2162 struct xhci_interval_bw_table *bw_table;
2163
839c817c 2164 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2e27980e
SS
2165 bw_table = &xhci->rh_bw[i].bw_table;
2166 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2167 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2168 }
839c817c 2169
da6699ce
SS
2170 /*
2171 * For whatever reason, the first capability offset is from the
2172 * capability register base, not from the HCCPARAMS register.
2173 * See section 5.3.6 for offset calculation.
2174 */
2175 addr = &xhci->cap_regs->hc_capbase + offset;
b630d4b9
MN
2176
2177 tmp_addr = addr;
2178 tmp_offset = offset;
2179
2180 /* count extended protocol capability entries for later caching */
2181 do {
2182 u32 cap_id;
2183 cap_id = xhci_readl(xhci, tmp_addr);
2184 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2185 cap_count++;
2186 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2187 tmp_addr += tmp_offset;
2188 } while (tmp_offset);
2189
2190 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2191 if (!xhci->ext_caps)
2192 return -ENOMEM;
2193
da6699ce
SS
2194 while (1) {
2195 u32 cap_id;
2196
2197 cap_id = xhci_readl(xhci, addr);
2198 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2199 xhci_add_in_port(xhci, num_ports, addr,
b630d4b9
MN
2200 (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2201 cap_count);
da6699ce
SS
2202 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2203 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2204 == num_ports)
2205 break;
2206 /*
2207 * Once you're into the Extended Capabilities, the offset is
2208 * always relative to the register holding the offset.
2209 */
2210 addr += offset;
2211 }
2212
2213 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2214 xhci_warn(xhci, "No ports on the roothubs?\n");
2215 return -ENODEV;
2216 }
2217 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2218 xhci->num_usb2_ports, xhci->num_usb3_ports);
d30b2a20
SS
2219
2220 /* Place limits on the number of roothub ports so that the hub
2221 * descriptors aren't longer than the USB core will allocate.
2222 */
2223 if (xhci->num_usb3_ports > 15) {
2224 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2225 xhci->num_usb3_ports = 15;
2226 }
2227 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2228 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2229 USB_MAXCHILDREN);
2230 xhci->num_usb2_ports = USB_MAXCHILDREN;
2231 }
2232
da6699ce
SS
2233 /*
2234 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2235 * Not sure how the USB core will handle a hub with no ports...
2236 */
2237 if (xhci->num_usb2_ports) {
2238 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2239 xhci->num_usb2_ports, flags);
2240 if (!xhci->usb2_ports)
2241 return -ENOMEM;
2242
2243 port_index = 0;
f8bbeabc
SS
2244 for (i = 0; i < num_ports; i++) {
2245 if (xhci->port_array[i] == 0x03 ||
2246 xhci->port_array[i] == 0 ||
22e04870 2247 xhci->port_array[i] == DUPLICATE_ENTRY)
f8bbeabc
SS
2248 continue;
2249
2250 xhci->usb2_ports[port_index] =
2251 &xhci->op_regs->port_status_base +
2252 NUM_PORT_REGS*i;
2253 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2254 "addr = %p\n", i,
2255 xhci->usb2_ports[port_index]);
2256 port_index++;
d30b2a20
SS
2257 if (port_index == xhci->num_usb2_ports)
2258 break;
f8bbeabc 2259 }
da6699ce
SS
2260 }
2261 if (xhci->num_usb3_ports) {
2262 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2263 xhci->num_usb3_ports, flags);
2264 if (!xhci->usb3_ports)
2265 return -ENOMEM;
2266
2267 port_index = 0;
2268 for (i = 0; i < num_ports; i++)
2269 if (xhci->port_array[i] == 0x03) {
2270 xhci->usb3_ports[port_index] =
2271 &xhci->op_regs->port_status_base +
2272 NUM_PORT_REGS*i;
2273 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2274 "addr = %p\n", i,
2275 xhci->usb3_ports[port_index]);
2276 port_index++;
d30b2a20
SS
2277 if (port_index == xhci->num_usb3_ports)
2278 break;
da6699ce
SS
2279 }
2280 }
2281 return 0;
2282}
6648f29d 2283
66d4eadd
SS
2284int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2285{
0ebbab37
SS
2286 dma_addr_t dma;
2287 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 2288 unsigned int val, val2;
8e595a5d 2289 u64 val_64;
0ebbab37 2290 struct xhci_segment *seg;
623bef9e 2291 u32 page_size, temp;
66d4eadd
SS
2292 int i;
2293
331de00a
SA
2294 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2295 INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2296
66d4eadd
SS
2297 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2298 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2299 for (i = 0; i < 16; i++) {
2300 if ((0x1 & page_size) != 0)
2301 break;
2302 page_size = page_size >> 1;
2303 }
2304 if (i < 16)
2305 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2306 else
2307 xhci_warn(xhci, "WARN: no supported page size\n");
2308 /* Use 4K pages, since that's common and the minimum the HC supports */
2309 xhci->page_shift = 12;
2310 xhci->page_size = 1 << xhci->page_shift;
2311 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2312
2313 /*
2314 * Program the Number of Device Slots Enabled field in the CONFIG
2315 * register with the max value of slots the HC can handle.
2316 */
2317 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2318 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2319 (unsigned int) val);
2320 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2321 val |= (val2 & ~HCS_SLOTS_MASK);
2322 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2323 (unsigned int) val);
2324 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2325
a74588f9
SS
2326 /*
2327 * Section 5.4.8 - doorbell array must be
2328 * "physically contiguous and 64-byte (cache line) aligned".
2329 */
22d45f01
SAS
2330 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2331 GFP_KERNEL);
a74588f9
SS
2332 if (!xhci->dcbaa)
2333 goto fail;
2334 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2335 xhci->dcbaa->dma = dma;
700e2052
GKH
2336 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2337 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
8e595a5d 2338 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 2339
0ebbab37
SS
2340 /*
2341 * Initialize the ring segment pool. The ring must be a contiguous
2342 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2343 * however, the command ring segment needs 64-byte aligned segments,
2344 * so we pick the greater alignment need.
2345 */
2346 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
eb8ccd2b 2347 TRB_SEGMENT_SIZE, 64, xhci->page_size);
d115b048 2348
3ffbba95 2349 /* See Table 46 and Note on Figure 55 */
3ffbba95 2350 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 2351 2112, 64, xhci->page_size);
3ffbba95 2352 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
2353 goto fail;
2354
8df75f42
SS
2355 /* Linear stream context arrays don't have any boundary restrictions,
2356 * and only need to be 16-byte aligned.
2357 */
2358 xhci->small_streams_pool =
2359 dma_pool_create("xHCI 256 byte stream ctx arrays",
2360 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2361 xhci->medium_streams_pool =
2362 dma_pool_create("xHCI 1KB stream ctx arrays",
2363 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2364 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
22d45f01 2365 * will be allocated with dma_alloc_coherent()
8df75f42
SS
2366 */
2367
2368 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2369 goto fail;
2370
0ebbab37 2371 /* Set up the command ring to have one segments for now. */
186a7ef1 2372 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
0ebbab37
SS
2373 if (!xhci->cmd_ring)
2374 goto fail;
700e2052
GKH
2375 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2376 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2377 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
2378
2379 /* Set the address in the Command Ring Control register */
8e595a5d
SS
2380 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2381 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2382 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 2383 xhci->cmd_ring->cycle_state;
8e595a5d
SS
2384 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2385 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
2386 xhci_dbg_cmd_ptrs(xhci);
2387
dbc33303
SS
2388 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2389 if (!xhci->lpm_command)
2390 goto fail;
2391
2392 /* Reserve one command ring TRB for disabling LPM.
2393 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2394 * disabling LPM, we only need to reserve one TRB for all devices.
2395 */
2396 xhci->cmd_ring_reserved_trbs++;
2397
0ebbab37
SS
2398 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2399 val &= DBOFF_MASK;
2400 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2401 " from cap regs base addr\n", val);
c50a00f8 2402 xhci->dba = (void __iomem *) xhci->cap_regs + val;
0ebbab37
SS
2403 xhci_dbg_regs(xhci);
2404 xhci_print_run_regs(xhci);
2405 /* Set ir_set to interrupt register set 0 */
c50a00f8 2406 xhci->ir_set = &xhci->run_regs->ir_set[0];
0ebbab37
SS
2407
2408 /*
2409 * Event ring setup: Allocate a normal ring, but also setup
2410 * the event ring segment table (ERST). Section 4.9.3.
2411 */
2412 xhci_dbg(xhci, "// Allocating event ring\n");
186a7ef1 2413 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
7e393a83 2414 flags);
0ebbab37
SS
2415 if (!xhci->event_ring)
2416 goto fail;
6648f29d
SS
2417 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2418 goto fail;
0ebbab37 2419
22d45f01
SAS
2420 xhci->erst.entries = dma_alloc_coherent(dev,
2421 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2422 GFP_KERNEL);
0ebbab37
SS
2423 if (!xhci->erst.entries)
2424 goto fail;
700e2052
GKH
2425 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2426 (unsigned long long)dma);
0ebbab37
SS
2427
2428 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2429 xhci->erst.num_entries = ERST_NUM_SEGS;
2430 xhci->erst.erst_dma_addr = dma;
700e2052 2431 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
0ebbab37 2432 xhci->erst.num_entries,
700e2052
GKH
2433 xhci->erst.entries,
2434 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
2435
2436 /* set ring base address and size for each segment table entry */
2437 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2438 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
28ccd296
ME
2439 entry->seg_addr = cpu_to_le64(seg->dma);
2440 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
0ebbab37
SS
2441 entry->rsvd = 0;
2442 seg = seg->next;
2443 }
2444
2445 /* set ERST count with the number of entries in the segment table */
2446 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2447 val &= ERST_SIZE_MASK;
2448 val |= ERST_NUM_SEGS;
2449 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2450 val);
2451 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2452
2453 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2454 /* set the segment table base address */
700e2052
GKH
2455 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2456 (unsigned long long)xhci->erst.erst_dma_addr);
8e595a5d
SS
2457 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2458 val_64 &= ERST_PTR_MASK;
2459 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2460 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
2461
2462 /* Set the event ring dequeue address */
23e3be11 2463 xhci_set_hc_event_deq(xhci);
0ebbab37 2464 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
09ece30e 2465 xhci_print_ir_set(xhci, 0);
0ebbab37
SS
2466
2467 /*
2468 * XXX: Might need to set the Interrupter Moderation Register to
2469 * something other than the default (~1ms minimum between interrupts).
2470 * See section 5.5.1.2.
2471 */
3ffbba95
SS
2472 init_completion(&xhci->addr_dev);
2473 for (i = 0; i < MAX_HC_SLOTS; ++i)
326b4810 2474 xhci->devs[i] = NULL;
f6ff0ac8 2475 for (i = 0; i < USB_MAXCHILDREN; ++i) {
20b67cf5 2476 xhci->bus_state[0].resume_done[i] = 0;
f6ff0ac8
SS
2477 xhci->bus_state[1].resume_done[i] = 0;
2478 }
66d4eadd 2479
254c80a3
JY
2480 if (scratchpad_alloc(xhci, flags))
2481 goto fail;
da6699ce
SS
2482 if (xhci_setup_port_arrays(xhci, flags))
2483 goto fail;
254c80a3 2484
623bef9e
SS
2485 /* Enable USB 3.0 device notifications for function remote wake, which
2486 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2487 * U3 (device suspend).
2488 */
2489 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2490 temp &= ~DEV_NOTE_MASK;
2491 temp |= DEV_NOTE_FWAKE;
2492 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2493
66d4eadd 2494 return 0;
254c80a3 2495
66d4eadd
SS
2496fail:
2497 xhci_warn(xhci, "Couldn't initialize memory\n");
159e1fcc
SS
2498 xhci_halt(xhci);
2499 xhci_reset(xhci);
66d4eadd
SS
2500 xhci_mem_cleanup(xhci);
2501 return -ENOMEM;
2502}
This page took 0.452657 seconds and 5 git commands to generate.