xhci: remove CONFIG_USB_XHCI_HCD_DEBUGGING and unused code
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
66d4eadd
SS
27
28#include "xhci.h"
29
0ebbab37
SS
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
186a7ef1
AX
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 unsigned int cycle_state, gfp_t flags)
0ebbab37
SS
39{
40 struct xhci_segment *seg;
41 dma_addr_t dma;
186a7ef1 42 int i;
0ebbab37
SS
43
44 seg = kzalloc(sizeof *seg, flags);
45 if (!seg)
326b4810 46 return NULL;
0ebbab37
SS
47
48 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 if (!seg->trbs) {
50 kfree(seg);
326b4810 51 return NULL;
0ebbab37 52 }
0ebbab37 53
eb8ccd2b 54 memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
186a7ef1
AX
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= TRB_CYCLE;
59 }
0ebbab37
SS
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64}
65
66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67{
0ebbab37 68 if (seg->trbs) {
0ebbab37
SS
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
0ebbab37
SS
72 kfree(seg);
73}
74
70d43601
AX
75static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 struct xhci_segment *first)
77{
78 struct xhci_segment *seg;
79
80 seg = first->next;
81 while (seg != first) {
82 struct xhci_segment *next = seg->next;
83 xhci_segment_free(xhci, seg);
84 seg = next;
85 }
86 xhci_segment_free(xhci, first);
87}
88
0ebbab37
SS
89/*
90 * Make the prev segment point to the next segment.
91 *
92 * Change the last TRB in the prev segment to be a Link TRB which points to the
93 * DMA address of the next segment. The caller needs to set any Link TRB
94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
95 */
96static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
3b72fca0 97 struct xhci_segment *next, enum xhci_ring_type type)
0ebbab37
SS
98{
99 u32 val;
100
101 if (!prev || !next)
102 return;
103 prev->next = next;
3b72fca0 104 if (type != TYPE_EVENT) {
f5960b69
ME
105 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 cpu_to_le64(next->dma);
0ebbab37
SS
107
108 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
28ccd296 109 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0ebbab37
SS
110 val &= ~TRB_TYPE_BITMASK;
111 val |= TRB_TYPE(TRB_LINK);
b0567b3f 112 /* Always set the chain bit with 0.95 hardware */
7e393a83
AX
113 /* Set chain bit for isoc rings on AMD 0.96 host */
114 if (xhci_link_trb_quirk(xhci) ||
3b72fca0
AX
115 (type == TYPE_ISOC &&
116 (xhci->quirks & XHCI_AMD_0x96_HOST)))
b0567b3f 117 val |= TRB_CHAIN;
28ccd296 118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0ebbab37 119 }
0ebbab37
SS
120}
121
8dfec614
AX
122/*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129{
130 struct xhci_segment *next;
131
132 if (!ring || !first || !last)
133 return;
134
135 next = ring->enq_seg->next;
136 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 xhci_link_segments(xhci, last, next, ring->type);
138 ring->num_segs += num_segs;
139 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140
141 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 &= ~cpu_to_le32(LINK_TOGGLE);
144 last->trbs[TRBS_PER_SEGMENT-1].link.control
145 |= cpu_to_le32(LINK_TOGGLE);
146 ring->last_seg = last;
147 }
148}
149
0ebbab37 150/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 151void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37 152{
0e6c7f74 153 if (!ring)
0ebbab37 154 return;
70d43601
AX
155
156 if (ring->first_seg)
157 xhci_free_segments_for_ring(xhci, ring->first_seg);
158
0ebbab37
SS
159 kfree(ring);
160}
161
186a7ef1
AX
162static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 unsigned int cycle_state)
74f9fe21
SS
164{
165 /* The ring is empty, so the enqueue pointer == dequeue pointer */
166 ring->enqueue = ring->first_seg->trbs;
167 ring->enq_seg = ring->first_seg;
168 ring->dequeue = ring->enqueue;
169 ring->deq_seg = ring->first_seg;
170 /* The ring is initialized to 0. The producer must write 1 to the cycle
171 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
172 * compare CCS to the cycle bit to check ownership, so CCS = 1.
186a7ef1
AX
173 *
174 * New rings are initialized with cycle state equal to 1; if we are
175 * handling ring expansion, set the cycle state equal to the old ring.
74f9fe21 176 */
186a7ef1 177 ring->cycle_state = cycle_state;
74f9fe21
SS
178 /* Not necessary for new rings, but needed for re-initialized rings */
179 ring->enq_updates = 0;
180 ring->deq_updates = 0;
b008df60
AX
181
182 /*
183 * Each segment has a link TRB, and leave an extra TRB for SW
184 * accounting purpose
185 */
186 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
74f9fe21
SS
187}
188
70d43601
AX
189/* Allocate segments and link them for a ring */
190static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 struct xhci_segment **first, struct xhci_segment **last,
186a7ef1
AX
192 unsigned int num_segs, unsigned int cycle_state,
193 enum xhci_ring_type type, gfp_t flags)
70d43601
AX
194{
195 struct xhci_segment *prev;
196
186a7ef1 197 prev = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601
AX
198 if (!prev)
199 return -ENOMEM;
200 num_segs--;
201
202 *first = prev;
203 while (num_segs > 0) {
204 struct xhci_segment *next;
205
186a7ef1 206 next = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601 207 if (!next) {
68e5254a
JW
208 prev = *first;
209 while (prev) {
210 next = prev->next;
211 xhci_segment_free(xhci, prev);
212 prev = next;
213 }
70d43601
AX
214 return -ENOMEM;
215 }
216 xhci_link_segments(xhci, prev, next, type);
217
218 prev = next;
219 num_segs--;
220 }
221 xhci_link_segments(xhci, prev, *first, type);
222 *last = prev;
223
224 return 0;
225}
226
0ebbab37
SS
227/**
228 * Create a new ring with zero or more segments.
229 *
230 * Link each segment together into a ring.
231 * Set the end flag and the cycle toggle bit on the last segment.
232 * See section 4.9.1 and figures 15 and 16.
233 */
234static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
186a7ef1
AX
235 unsigned int num_segs, unsigned int cycle_state,
236 enum xhci_ring_type type, gfp_t flags)
0ebbab37
SS
237{
238 struct xhci_ring *ring;
70d43601 239 int ret;
0ebbab37
SS
240
241 ring = kzalloc(sizeof *(ring), flags);
0ebbab37 242 if (!ring)
326b4810 243 return NULL;
0ebbab37 244
3fe4fe08 245 ring->num_segs = num_segs;
d0e96f5a 246 INIT_LIST_HEAD(&ring->td_list);
3b72fca0 247 ring->type = type;
0ebbab37
SS
248 if (num_segs == 0)
249 return ring;
250
70d43601 251 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
186a7ef1 252 &ring->last_seg, num_segs, cycle_state, type, flags);
70d43601 253 if (ret)
0ebbab37 254 goto fail;
0ebbab37 255
3b72fca0
AX
256 /* Only event ring does not use link TRB */
257 if (type != TYPE_EVENT) {
0ebbab37 258 /* See section 4.9.2.1 and 6.4.4.1 */
70d43601 259 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
f5960b69 260 cpu_to_le32(LINK_TOGGLE);
0ebbab37 261 }
186a7ef1 262 xhci_initialize_ring_info(ring, cycle_state);
0ebbab37
SS
263 return ring;
264
265fail:
68e5254a 266 kfree(ring);
326b4810 267 return NULL;
0ebbab37
SS
268}
269
412566bd
SS
270void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
271 struct xhci_virt_device *virt_dev,
272 unsigned int ep_index)
273{
274 int rings_cached;
275
276 rings_cached = virt_dev->num_rings_cached;
277 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
412566bd
SS
278 virt_dev->ring_cache[rings_cached] =
279 virt_dev->eps[ep_index].ring;
30f89ca0 280 virt_dev->num_rings_cached++;
412566bd
SS
281 xhci_dbg(xhci, "Cached old ring, "
282 "%d ring%s cached\n",
30f89ca0
SS
283 virt_dev->num_rings_cached,
284 (virt_dev->num_rings_cached > 1) ? "s" : "");
412566bd
SS
285 } else {
286 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
287 xhci_dbg(xhci, "Ring cache full (%d rings), "
288 "freeing ring\n",
289 virt_dev->num_rings_cached);
290 }
291 virt_dev->eps[ep_index].ring = NULL;
292}
293
74f9fe21
SS
294/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
295 * pointers to the beginning of the ring.
296 */
297static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
186a7ef1
AX
298 struct xhci_ring *ring, unsigned int cycle_state,
299 enum xhci_ring_type type)
74f9fe21
SS
300{
301 struct xhci_segment *seg = ring->first_seg;
186a7ef1
AX
302 int i;
303
74f9fe21
SS
304 do {
305 memset(seg->trbs, 0,
306 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
186a7ef1
AX
307 if (cycle_state == 0) {
308 for (i = 0; i < TRBS_PER_SEGMENT; i++)
309 seg->trbs[i].link.control |= TRB_CYCLE;
310 }
74f9fe21 311 /* All endpoint rings have link TRBs */
3b72fca0 312 xhci_link_segments(xhci, seg, seg->next, type);
74f9fe21
SS
313 seg = seg->next;
314 } while (seg != ring->first_seg);
3b72fca0 315 ring->type = type;
186a7ef1 316 xhci_initialize_ring_info(ring, cycle_state);
74f9fe21
SS
317 /* td list should be empty since all URBs have been cancelled,
318 * but just in case...
319 */
320 INIT_LIST_HEAD(&ring->td_list);
321}
322
8dfec614
AX
323/*
324 * Expand an existing ring.
325 * Look for a cached ring or allocate a new ring which has same segment numbers
326 * and link the two rings.
327 */
328int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
329 unsigned int num_trbs, gfp_t flags)
330{
331 struct xhci_segment *first;
332 struct xhci_segment *last;
333 unsigned int num_segs;
334 unsigned int num_segs_needed;
335 int ret;
336
337 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
338 (TRBS_PER_SEGMENT - 1);
339
340 /* Allocate number of segments we needed, or double the ring size */
341 num_segs = ring->num_segs > num_segs_needed ?
342 ring->num_segs : num_segs_needed;
343
344 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
345 num_segs, ring->cycle_state, ring->type, flags);
346 if (ret)
347 return -ENOMEM;
348
349 xhci_link_rings(xhci, ring, first, last, num_segs);
350 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
351 ring->num_segs);
352
353 return 0;
354}
355
d115b048
JY
356#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
357
326b4810 358static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
359 int type, gfp_t flags)
360{
29f9d54b
SS
361 struct xhci_container_ctx *ctx;
362
363 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
364 return NULL;
365
366 ctx = kzalloc(sizeof(*ctx), flags);
d115b048
JY
367 if (!ctx)
368 return NULL;
369
d115b048
JY
370 ctx->type = type;
371 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
372 if (type == XHCI_CTX_TYPE_INPUT)
373 ctx->size += CTX_SIZE(xhci->hcc_params);
374
375 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
025f880c
MN
376 if (!ctx->bytes) {
377 kfree(ctx);
378 return NULL;
379 }
d115b048
JY
380 memset(ctx->bytes, 0, ctx->size);
381 return ctx;
382}
383
326b4810 384static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
385 struct xhci_container_ctx *ctx)
386{
a1d78c16
SS
387 if (!ctx)
388 return;
d115b048
JY
389 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
390 kfree(ctx);
391}
392
393struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
394 struct xhci_container_ctx *ctx)
395{
92f8e767
SS
396 if (ctx->type != XHCI_CTX_TYPE_INPUT)
397 return NULL;
398
d115b048
JY
399 return (struct xhci_input_control_ctx *)ctx->bytes;
400}
401
402struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
403 struct xhci_container_ctx *ctx)
404{
405 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
406 return (struct xhci_slot_ctx *)ctx->bytes;
407
408 return (struct xhci_slot_ctx *)
409 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
410}
411
412struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
413 struct xhci_container_ctx *ctx,
414 unsigned int ep_index)
415{
416 /* increment ep index by offset of start of ep ctx array */
417 ep_index++;
418 if (ctx->type == XHCI_CTX_TYPE_INPUT)
419 ep_index++;
420
421 return (struct xhci_ep_ctx *)
422 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
423}
424
8df75f42
SS
425
426/***************** Streams structures manipulation *************************/
427
8212a49d 428static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
429 unsigned int num_stream_ctxs,
430 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
431{
432 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
433
434 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 435 dma_free_coherent(&pdev->dev,
8df75f42
SS
436 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
437 stream_ctx, dma);
438 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
439 return dma_pool_free(xhci->small_streams_pool,
440 stream_ctx, dma);
441 else
442 return dma_pool_free(xhci->medium_streams_pool,
443 stream_ctx, dma);
444}
445
446/*
447 * The stream context array for each endpoint with bulk streams enabled can
448 * vary in size, based on:
449 * - how many streams the endpoint supports,
450 * - the maximum primary stream array size the host controller supports,
451 * - and how many streams the device driver asks for.
452 *
453 * The stream context array must be a power of 2, and can be as small as
454 * 64 bytes or as large as 1MB.
455 */
8212a49d 456static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
457 unsigned int num_stream_ctxs, dma_addr_t *dma,
458 gfp_t mem_flags)
459{
460 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
461
462 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 463 return dma_alloc_coherent(&pdev->dev,
8df75f42 464 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
22d45f01 465 dma, mem_flags);
8df75f42
SS
466 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
467 return dma_pool_alloc(xhci->small_streams_pool,
468 mem_flags, dma);
469 else
470 return dma_pool_alloc(xhci->medium_streams_pool,
471 mem_flags, dma);
472}
473
e9df17eb
SS
474struct xhci_ring *xhci_dma_to_transfer_ring(
475 struct xhci_virt_ep *ep,
476 u64 address)
477{
478 if (ep->ep_state & EP_HAS_STREAMS)
479 return radix_tree_lookup(&ep->stream_info->trb_address_map,
eb8ccd2b 480 address >> TRB_SEGMENT_SHIFT);
e9df17eb
SS
481 return ep->ring;
482}
483
e9df17eb
SS
484struct xhci_ring *xhci_stream_id_to_ring(
485 struct xhci_virt_device *dev,
486 unsigned int ep_index,
487 unsigned int stream_id)
488{
489 struct xhci_virt_ep *ep = &dev->eps[ep_index];
490
491 if (stream_id == 0)
492 return ep->ring;
493 if (!ep->stream_info)
494 return NULL;
495
496 if (stream_id > ep->stream_info->num_streams)
497 return NULL;
498 return ep->stream_info->stream_rings[stream_id];
499}
500
8df75f42
SS
501/*
502 * Change an endpoint's internal structure so it supports stream IDs. The
503 * number of requested streams includes stream 0, which cannot be used by device
504 * drivers.
505 *
506 * The number of stream contexts in the stream context array may be bigger than
507 * the number of streams the driver wants to use. This is because the number of
508 * stream context array entries must be a power of two.
509 *
510 * We need a radix tree for mapping physical addresses of TRBs to which stream
511 * ID they belong to. We need to do this because the host controller won't tell
512 * us which stream ring the TRB came from. We could store the stream ID in an
513 * event data TRB, but that doesn't help us for the cancellation case, since the
514 * endpoint may stop before it reaches that event data TRB.
515 *
516 * The radix tree maps the upper portion of the TRB DMA address to a ring
517 * segment that has the same upper portion of DMA addresses. For example, say I
518 * have segments of size 1KB, that are always 64-byte aligned. A segment may
519 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
520 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
521 * pass the radix tree a key to get the right stream ID:
522 *
523 * 0x10c90fff >> 10 = 0x43243
524 * 0x10c912c0 >> 10 = 0x43244
525 * 0x10c91400 >> 10 = 0x43245
526 *
527 * Obviously, only those TRBs with DMA addresses that are within the segment
528 * will make the radix tree return the stream ID for that ring.
529 *
530 * Caveats for the radix tree:
531 *
532 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
533 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
534 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
535 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
536 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
537 * extended systems (where the DMA address can be bigger than 32-bits),
538 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
539 */
540struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
541 unsigned int num_stream_ctxs,
542 unsigned int num_streams, gfp_t mem_flags)
543{
544 struct xhci_stream_info *stream_info;
545 u32 cur_stream;
546 struct xhci_ring *cur_ring;
547 unsigned long key;
548 u64 addr;
549 int ret;
550
551 xhci_dbg(xhci, "Allocating %u streams and %u "
552 "stream context array entries.\n",
553 num_streams, num_stream_ctxs);
554 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
555 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
556 return NULL;
557 }
558 xhci->cmd_ring_reserved_trbs++;
559
560 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
561 if (!stream_info)
562 goto cleanup_trbs;
563
564 stream_info->num_streams = num_streams;
565 stream_info->num_stream_ctxs = num_stream_ctxs;
566
567 /* Initialize the array of virtual pointers to stream rings. */
568 stream_info->stream_rings = kzalloc(
569 sizeof(struct xhci_ring *)*num_streams,
570 mem_flags);
571 if (!stream_info->stream_rings)
572 goto cleanup_info;
573
574 /* Initialize the array of DMA addresses for stream rings for the HW. */
575 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
576 num_stream_ctxs, &stream_info->ctx_array_dma,
577 mem_flags);
578 if (!stream_info->stream_ctx_array)
579 goto cleanup_ctx;
580 memset(stream_info->stream_ctx_array, 0,
581 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
582
583 /* Allocate everything needed to free the stream rings later */
584 stream_info->free_streams_command =
585 xhci_alloc_command(xhci, true, true, mem_flags);
586 if (!stream_info->free_streams_command)
587 goto cleanup_ctx;
588
589 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
590
591 /* Allocate rings for all the streams that the driver will use,
592 * and add their segment DMA addresses to the radix tree.
593 * Stream 0 is reserved.
594 */
595 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
596 stream_info->stream_rings[cur_stream] =
2fdcd47b 597 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
8df75f42
SS
598 cur_ring = stream_info->stream_rings[cur_stream];
599 if (!cur_ring)
600 goto cleanup_rings;
e9df17eb 601 cur_ring->stream_id = cur_stream;
8df75f42
SS
602 /* Set deq ptr, cycle bit, and stream context type */
603 addr = cur_ring->first_seg->dma |
604 SCT_FOR_CTX(SCT_PRI_TR) |
605 cur_ring->cycle_state;
f5960b69
ME
606 stream_info->stream_ctx_array[cur_stream].stream_ring =
607 cpu_to_le64(addr);
8df75f42
SS
608 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
609 cur_stream, (unsigned long long) addr);
610
611 key = (unsigned long)
eb8ccd2b 612 (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
8df75f42
SS
613 ret = radix_tree_insert(&stream_info->trb_address_map,
614 key, cur_ring);
615 if (ret) {
616 xhci_ring_free(xhci, cur_ring);
617 stream_info->stream_rings[cur_stream] = NULL;
618 goto cleanup_rings;
619 }
620 }
621 /* Leave the other unused stream ring pointers in the stream context
622 * array initialized to zero. This will cause the xHC to give us an
623 * error if the device asks for a stream ID we don't have setup (if it
624 * was any other way, the host controller would assume the ring is
625 * "empty" and wait forever for data to be queued to that stream ID).
626 */
8df75f42
SS
627
628 return stream_info;
629
630cleanup_rings:
631 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
632 cur_ring = stream_info->stream_rings[cur_stream];
633 if (cur_ring) {
634 addr = cur_ring->first_seg->dma;
635 radix_tree_delete(&stream_info->trb_address_map,
eb8ccd2b 636 addr >> TRB_SEGMENT_SHIFT);
8df75f42
SS
637 xhci_ring_free(xhci, cur_ring);
638 stream_info->stream_rings[cur_stream] = NULL;
639 }
640 }
641 xhci_free_command(xhci, stream_info->free_streams_command);
642cleanup_ctx:
643 kfree(stream_info->stream_rings);
644cleanup_info:
645 kfree(stream_info);
646cleanup_trbs:
647 xhci->cmd_ring_reserved_trbs--;
648 return NULL;
649}
650/*
651 * Sets the MaxPStreams field and the Linear Stream Array field.
652 * Sets the dequeue pointer to the stream context array.
653 */
654void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
655 struct xhci_ep_ctx *ep_ctx,
656 struct xhci_stream_info *stream_info)
657{
658 u32 max_primary_streams;
659 /* MaxPStreams is the number of stream context array entries, not the
660 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
661 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
662 */
663 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
664 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
665 1 << (max_primary_streams + 1));
28ccd296
ME
666 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
667 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
668 | EP_HAS_LSA);
669 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
8df75f42
SS
670}
671
672/*
673 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
674 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
675 * not at the beginning of the ring).
676 */
677void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
678 struct xhci_ep_ctx *ep_ctx,
679 struct xhci_virt_ep *ep)
680{
681 dma_addr_t addr;
28ccd296 682 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
8df75f42 683 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
28ccd296 684 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
8df75f42
SS
685}
686
687/* Frees all stream contexts associated with the endpoint,
688 *
689 * Caller should fix the endpoint context streams fields.
690 */
691void xhci_free_stream_info(struct xhci_hcd *xhci,
692 struct xhci_stream_info *stream_info)
693{
694 int cur_stream;
695 struct xhci_ring *cur_ring;
696 dma_addr_t addr;
697
698 if (!stream_info)
699 return;
700
701 for (cur_stream = 1; cur_stream < stream_info->num_streams;
702 cur_stream++) {
703 cur_ring = stream_info->stream_rings[cur_stream];
704 if (cur_ring) {
705 addr = cur_ring->first_seg->dma;
706 radix_tree_delete(&stream_info->trb_address_map,
eb8ccd2b 707 addr >> TRB_SEGMENT_SHIFT);
8df75f42
SS
708 xhci_ring_free(xhci, cur_ring);
709 stream_info->stream_rings[cur_stream] = NULL;
710 }
711 }
712 xhci_free_command(xhci, stream_info->free_streams_command);
713 xhci->cmd_ring_reserved_trbs--;
714 if (stream_info->stream_ctx_array)
715 xhci_free_stream_ctx(xhci,
716 stream_info->num_stream_ctxs,
717 stream_info->stream_ctx_array,
718 stream_info->ctx_array_dma);
719
720 if (stream_info)
721 kfree(stream_info->stream_rings);
722 kfree(stream_info);
723}
724
725
726/***************** Device context manipulation *************************/
727
6f5165cf
SS
728static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
729 struct xhci_virt_ep *ep)
730{
731 init_timer(&ep->stop_cmd_timer);
732 ep->stop_cmd_timer.data = (unsigned long) ep;
733 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
734 ep->xhci = xhci;
735}
736
839c817c
SS
737static void xhci_free_tt_info(struct xhci_hcd *xhci,
738 struct xhci_virt_device *virt_dev,
739 int slot_id)
740{
839c817c 741 struct list_head *tt_list_head;
46ed8f00
TI
742 struct xhci_tt_bw_info *tt_info, *next;
743 bool slot_found = false;
839c817c
SS
744
745 /* If the device never made it past the Set Address stage,
746 * it may not have the real_port set correctly.
747 */
748 if (virt_dev->real_port == 0 ||
749 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
750 xhci_dbg(xhci, "Bad real port.\n");
751 return;
752 }
753
754 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
46ed8f00
TI
755 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
756 /* Multi-TT hubs will have more than one entry */
757 if (tt_info->slot_id == slot_id) {
758 slot_found = true;
759 list_del(&tt_info->tt_list);
760 kfree(tt_info);
761 } else if (slot_found) {
839c817c 762 break;
46ed8f00 763 }
839c817c 764 }
839c817c
SS
765}
766
767int xhci_alloc_tt_info(struct xhci_hcd *xhci,
768 struct xhci_virt_device *virt_dev,
769 struct usb_device *hdev,
770 struct usb_tt *tt, gfp_t mem_flags)
771{
772 struct xhci_tt_bw_info *tt_info;
773 unsigned int num_ports;
774 int i, j;
775
776 if (!tt->multi)
777 num_ports = 1;
778 else
779 num_ports = hdev->maxchild;
780
781 for (i = 0; i < num_ports; i++, tt_info++) {
782 struct xhci_interval_bw_table *bw_table;
783
784 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
785 if (!tt_info)
786 goto free_tts;
787 INIT_LIST_HEAD(&tt_info->tt_list);
788 list_add(&tt_info->tt_list,
789 &xhci->rh_bw[virt_dev->real_port - 1].tts);
790 tt_info->slot_id = virt_dev->udev->slot_id;
791 if (tt->multi)
792 tt_info->ttport = i+1;
793 bw_table = &tt_info->bw_table;
794 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
795 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
796 }
797 return 0;
798
799free_tts:
800 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
801 return -ENOMEM;
802}
803
804
805/* All the xhci_tds in the ring's TD list should be freed at this point.
806 * Should be called with xhci->lock held if there is any chance the TT lists
807 * will be manipulated by the configure endpoint, allocate device, or update
808 * hub functions while this function is removing the TT entries from the list.
809 */
3ffbba95
SS
810void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
811{
812 struct xhci_virt_device *dev;
813 int i;
2e27980e 814 int old_active_eps = 0;
3ffbba95
SS
815
816 /* Slot ID 0 is reserved */
817 if (slot_id == 0 || !xhci->devs[slot_id])
818 return;
819
820 dev = xhci->devs[slot_id];
8e595a5d 821 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
822 if (!dev)
823 return;
824
2e27980e
SS
825 if (dev->tt_info)
826 old_active_eps = dev->tt_info->active_eps;
827
8df75f42 828 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
829 if (dev->eps[i].ring)
830 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
831 if (dev->eps[i].stream_info)
832 xhci_free_stream_info(xhci,
833 dev->eps[i].stream_info);
2e27980e
SS
834 /* Endpoints on the TT/root port lists should have been removed
835 * when usb_disable_device() was called for the device.
836 * We can't drop them anyway, because the udev might have gone
837 * away by this point, and we can't tell what speed it was.
838 */
839 if (!list_empty(&dev->eps[i].bw_endpoint_list))
840 xhci_warn(xhci, "Slot %u endpoint %u "
841 "not removed from BW list!\n",
842 slot_id, i);
8df75f42 843 }
839c817c
SS
844 /* If this is a hub, free the TT(s) from the TT list */
845 xhci_free_tt_info(xhci, dev, slot_id);
2e27980e
SS
846 /* If necessary, update the number of active TTs on this root port */
847 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
3ffbba95 848
74f9fe21
SS
849 if (dev->ring_cache) {
850 for (i = 0; i < dev->num_rings_cached; i++)
851 xhci_ring_free(xhci, dev->ring_cache[i]);
852 kfree(dev->ring_cache);
853 }
854
3ffbba95 855 if (dev->in_ctx)
d115b048 856 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 857 if (dev->out_ctx)
d115b048
JY
858 xhci_free_container_ctx(xhci, dev->out_ctx);
859
3ffbba95 860 kfree(xhci->devs[slot_id]);
326b4810 861 xhci->devs[slot_id] = NULL;
3ffbba95
SS
862}
863
864int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
865 struct usb_device *udev, gfp_t flags)
866{
3ffbba95 867 struct xhci_virt_device *dev;
63a0d9ab 868 int i;
3ffbba95
SS
869
870 /* Slot ID 0 is reserved */
871 if (slot_id == 0 || xhci->devs[slot_id]) {
872 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
873 return 0;
874 }
875
876 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
877 if (!xhci->devs[slot_id])
878 return 0;
879 dev = xhci->devs[slot_id];
880
d115b048
JY
881 /* Allocate the (output) device context that will be used in the HC. */
882 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
883 if (!dev->out_ctx)
884 goto fail;
d115b048 885
700e2052 886 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 887 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
888
889 /* Allocate the (input) device context for address device command */
d115b048 890 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
891 if (!dev->in_ctx)
892 goto fail;
d115b048 893
700e2052 894 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 895 (unsigned long long)dev->in_ctx->dma);
3ffbba95 896
6f5165cf
SS
897 /* Initialize the cancellation list and watchdog timers for each ep */
898 for (i = 0; i < 31; i++) {
899 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 900 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
2e27980e 901 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
6f5165cf 902 }
63a0d9ab 903
3ffbba95 904 /* Allocate endpoint 0 ring */
2fdcd47b 905 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
63a0d9ab 906 if (!dev->eps[0].ring)
3ffbba95
SS
907 goto fail;
908
74f9fe21
SS
909 /* Allocate pointers to the ring cache */
910 dev->ring_cache = kzalloc(
911 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
912 flags);
913 if (!dev->ring_cache)
914 goto fail;
915 dev->num_rings_cached = 0;
916
f94e0186 917 init_completion(&dev->cmd_completion);
913a8a34 918 INIT_LIST_HEAD(&dev->cmd_list);
64927730 919 dev->udev = udev;
f94e0186 920
28c2d2ef 921 /* Point to output device context in dcbaa. */
28ccd296 922 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
700e2052 923 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
28ccd296
ME
924 slot_id,
925 &xhci->dcbaa->dev_context_ptrs[slot_id],
f5960b69 926 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
3ffbba95
SS
927
928 return 1;
929fail:
930 xhci_free_virt_device(xhci, slot_id);
931 return 0;
932}
933
2d1ee590
SS
934void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
935 struct usb_device *udev)
936{
937 struct xhci_virt_device *virt_dev;
938 struct xhci_ep_ctx *ep0_ctx;
939 struct xhci_ring *ep_ring;
940
941 virt_dev = xhci->devs[udev->slot_id];
942 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
943 ep_ring = virt_dev->eps[0].ring;
944 /*
945 * FIXME we don't keep track of the dequeue pointer very well after a
946 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
947 * host to our enqueue pointer. This should only be called after a
948 * configured device has reset, so all control transfers should have
949 * been completed or cancelled before the reset.
950 */
28ccd296
ME
951 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
952 ep_ring->enqueue)
953 | ep_ring->cycle_state);
2d1ee590
SS
954}
955
f6ff0ac8
SS
956/*
957 * The xHCI roothub may have ports of differing speeds in any order in the port
958 * status registers. xhci->port_array provides an array of the port speed for
959 * each offset into the port status registers.
960 *
961 * The xHCI hardware wants to know the roothub port number that the USB device
962 * is attached to (or the roothub port its ancestor hub is attached to). All we
963 * know is the index of that port under either the USB 2.0 or the USB 3.0
964 * roothub, but that doesn't give us the real index into the HW port status
3f5eb141 965 * registers. Call xhci_find_raw_port_number() to get real index.
f6ff0ac8
SS
966 */
967static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
968 struct usb_device *udev)
969{
970 struct usb_device *top_dev;
3f5eb141
LT
971 struct usb_hcd *hcd;
972
973 if (udev->speed == USB_SPEED_SUPER)
974 hcd = xhci->shared_hcd;
975 else
976 hcd = xhci->main_hcd;
f6ff0ac8
SS
977
978 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
979 top_dev = top_dev->parent)
980 /* Found device below root hub */;
f6ff0ac8 981
3f5eb141 982 return xhci_find_raw_port_number(hcd, top_dev->portnum);
f6ff0ac8
SS
983}
984
3ffbba95
SS
985/* Setup an xHCI virtual device for a Set Address command */
986int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
987{
988 struct xhci_virt_device *dev;
989 struct xhci_ep_ctx *ep0_ctx;
d115b048 990 struct xhci_slot_ctx *slot_ctx;
f6ff0ac8 991 u32 port_num;
bd18fd5c 992 u32 max_packets;
f6ff0ac8 993 struct usb_device *top_dev;
3ffbba95
SS
994
995 dev = xhci->devs[udev->slot_id];
996 /* Slot ID 0 is reserved */
997 if (udev->slot_id == 0 || !dev) {
998 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
999 udev->slot_id);
1000 return -EINVAL;
1001 }
d115b048 1002 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
d115b048 1003 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95 1004
3ffbba95 1005 /* 3) Only the control endpoint is valid - one endpoint context */
f5960b69 1006 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
3ffbba95
SS
1007 switch (udev->speed) {
1008 case USB_SPEED_SUPER:
f5960b69 1009 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
bd18fd5c 1010 max_packets = MAX_PACKET(512);
3ffbba95
SS
1011 break;
1012 case USB_SPEED_HIGH:
f5960b69 1013 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
bd18fd5c 1014 max_packets = MAX_PACKET(64);
3ffbba95 1015 break;
bd18fd5c 1016 /* USB core guesses at a 64-byte max packet first for FS devices */
3ffbba95 1017 case USB_SPEED_FULL:
f5960b69 1018 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
bd18fd5c 1019 max_packets = MAX_PACKET(64);
3ffbba95
SS
1020 break;
1021 case USB_SPEED_LOW:
f5960b69 1022 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
bd18fd5c 1023 max_packets = MAX_PACKET(8);
3ffbba95 1024 break;
551cdbbe 1025 case USB_SPEED_WIRELESS:
3ffbba95
SS
1026 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1027 return -EINVAL;
1028 break;
1029 default:
1030 /* Speed was set earlier, this shouldn't happen. */
bd18fd5c 1031 return -EINVAL;
3ffbba95
SS
1032 }
1033 /* Find the root hub port this device is under */
f6ff0ac8
SS
1034 port_num = xhci_find_real_port_number(xhci, udev);
1035 if (!port_num)
1036 return -EINVAL;
f5960b69 1037 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
f6ff0ac8 1038 /* Set the port number in the virtual_device to the faked port number */
3ffbba95
SS
1039 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1040 top_dev = top_dev->parent)
1041 /* Found device below root hub */;
fe30182c 1042 dev->fake_port = top_dev->portnum;
66381755 1043 dev->real_port = port_num;
f6ff0ac8 1044 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
fe30182c 1045 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
3ffbba95 1046
839c817c
SS
1047 /* Find the right bandwidth table that this device will be a part of.
1048 * If this is a full speed device attached directly to a root port (or a
1049 * decendent of one), it counts as a primary bandwidth domain, not a
1050 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1051 * will never be created for the HS root hub.
1052 */
1053 if (!udev->tt || !udev->tt->hub->parent) {
1054 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1055 } else {
1056 struct xhci_root_port_bw_info *rh_bw;
1057 struct xhci_tt_bw_info *tt_bw;
1058
1059 rh_bw = &xhci->rh_bw[port_num - 1];
1060 /* Find the right TT. */
1061 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1062 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1063 continue;
1064
1065 if (!dev->udev->tt->multi ||
1066 (udev->tt->multi &&
1067 tt_bw->ttport == dev->udev->ttport)) {
1068 dev->bw_table = &tt_bw->bw_table;
1069 dev->tt_info = tt_bw;
1070 break;
1071 }
1072 }
1073 if (!dev->tt_info)
1074 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1075 }
1076
aa1b13ef
SS
1077 /* Is this a LS/FS device under an external HS hub? */
1078 if (udev->tt && udev->tt->hub->parent) {
28ccd296
ME
1079 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1080 (udev->ttport << 8));
07b6de10 1081 if (udev->tt->multi)
28ccd296 1082 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3ffbba95 1083 }
700e2052 1084 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
1085 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1086
1087 /* Step 4 - ring already allocated */
1088 /* Step 5 */
28ccd296 1089 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
bd18fd5c 1090
3ffbba95 1091 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
bd18fd5c
MN
1092 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1093 max_packets);
3ffbba95 1094
28ccd296
ME
1095 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1096 dev->eps[0].ring->cycle_state);
3ffbba95
SS
1097
1098 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1099
1100 return 0;
1101}
1102
dfa49c4a
DT
1103/*
1104 * Convert interval expressed as 2^(bInterval - 1) == interval into
1105 * straight exponent value 2^n == interval.
1106 *
1107 */
1108static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1109 struct usb_host_endpoint *ep)
1110{
1111 unsigned int interval;
1112
1113 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1114 if (interval != ep->desc.bInterval - 1)
1115 dev_warn(&udev->dev,
cd3c18ba 1116 "ep %#x - rounding interval to %d %sframes\n",
dfa49c4a 1117 ep->desc.bEndpointAddress,
cd3c18ba
DT
1118 1 << interval,
1119 udev->speed == USB_SPEED_FULL ? "" : "micro");
1120
1121 if (udev->speed == USB_SPEED_FULL) {
1122 /*
1123 * Full speed isoc endpoints specify interval in frames,
1124 * not microframes. We are using microframes everywhere,
1125 * so adjust accordingly.
1126 */
1127 interval += 3; /* 1 frame = 2^3 uframes */
1128 }
dfa49c4a
DT
1129
1130 return interval;
1131}
1132
1133/*
340a3504 1134 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
dfa49c4a
DT
1135 * microframes, rounded down to nearest power of 2.
1136 */
340a3504
SS
1137static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1138 struct usb_host_endpoint *ep, unsigned int desc_interval,
1139 unsigned int min_exponent, unsigned int max_exponent)
dfa49c4a
DT
1140{
1141 unsigned int interval;
1142
340a3504
SS
1143 interval = fls(desc_interval) - 1;
1144 interval = clamp_val(interval, min_exponent, max_exponent);
1145 if ((1 << interval) != desc_interval)
dfa49c4a
DT
1146 dev_warn(&udev->dev,
1147 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1148 ep->desc.bEndpointAddress,
1149 1 << interval,
340a3504 1150 desc_interval);
dfa49c4a
DT
1151
1152 return interval;
1153}
1154
340a3504
SS
1155static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1156 struct usb_host_endpoint *ep)
1157{
55c1945e
SS
1158 if (ep->desc.bInterval == 0)
1159 return 0;
340a3504
SS
1160 return xhci_microframes_to_exponent(udev, ep,
1161 ep->desc.bInterval, 0, 15);
1162}
1163
1164
1165static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1166 struct usb_host_endpoint *ep)
1167{
1168 return xhci_microframes_to_exponent(udev, ep,
1169 ep->desc.bInterval * 8, 3, 10);
1170}
1171
f94e0186
SS
1172/* Return the polling or NAK interval.
1173 *
1174 * The polling interval is expressed in "microframes". If xHCI's Interval field
1175 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1176 *
1177 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1178 * is set to 0.
1179 */
575688e1 1180static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
f94e0186
SS
1181 struct usb_host_endpoint *ep)
1182{
1183 unsigned int interval = 0;
1184
1185 switch (udev->speed) {
1186 case USB_SPEED_HIGH:
1187 /* Max NAK rate */
1188 if (usb_endpoint_xfer_control(&ep->desc) ||
dfa49c4a 1189 usb_endpoint_xfer_bulk(&ep->desc)) {
340a3504 1190 interval = xhci_parse_microframe_interval(udev, ep);
dfa49c4a
DT
1191 break;
1192 }
f94e0186 1193 /* Fall through - SS and HS isoc/int have same decoding */
dfa49c4a 1194
f94e0186
SS
1195 case USB_SPEED_SUPER:
1196 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1197 usb_endpoint_xfer_isoc(&ep->desc)) {
1198 interval = xhci_parse_exponent_interval(udev, ep);
f94e0186
SS
1199 }
1200 break;
dfa49c4a 1201
f94e0186 1202 case USB_SPEED_FULL:
b513d447 1203 if (usb_endpoint_xfer_isoc(&ep->desc)) {
dfa49c4a
DT
1204 interval = xhci_parse_exponent_interval(udev, ep);
1205 break;
1206 }
1207 /*
b513d447 1208 * Fall through for interrupt endpoint interval decoding
dfa49c4a
DT
1209 * since it uses the same rules as low speed interrupt
1210 * endpoints.
1211 */
1212
f94e0186
SS
1213 case USB_SPEED_LOW:
1214 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1215 usb_endpoint_xfer_isoc(&ep->desc)) {
1216
1217 interval = xhci_parse_frame_interval(udev, ep);
f94e0186
SS
1218 }
1219 break;
dfa49c4a 1220
f94e0186
SS
1221 default:
1222 BUG();
1223 }
1224 return EP_INTERVAL(interval);
1225}
1226
c30c791c 1227/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1cf62246
SS
1228 * High speed endpoint descriptors can define "the number of additional
1229 * transaction opportunities per microframe", but that goes in the Max Burst
1230 * endpoint context field.
1231 */
575688e1 1232static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1cf62246
SS
1233 struct usb_host_endpoint *ep)
1234{
c30c791c
SS
1235 if (udev->speed != USB_SPEED_SUPER ||
1236 !usb_endpoint_xfer_isoc(&ep->desc))
1cf62246 1237 return 0;
842f1690 1238 return ep->ss_ep_comp.bmAttributes;
1cf62246
SS
1239}
1240
575688e1 1241static u32 xhci_get_endpoint_type(struct usb_device *udev,
f94e0186
SS
1242 struct usb_host_endpoint *ep)
1243{
1244 int in;
1245 u32 type;
1246
1247 in = usb_endpoint_dir_in(&ep->desc);
1248 if (usb_endpoint_xfer_control(&ep->desc)) {
1249 type = EP_TYPE(CTRL_EP);
1250 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1251 if (in)
1252 type = EP_TYPE(BULK_IN_EP);
1253 else
1254 type = EP_TYPE(BULK_OUT_EP);
1255 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1256 if (in)
1257 type = EP_TYPE(ISOC_IN_EP);
1258 else
1259 type = EP_TYPE(ISOC_OUT_EP);
1260 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1261 if (in)
1262 type = EP_TYPE(INT_IN_EP);
1263 else
1264 type = EP_TYPE(INT_OUT_EP);
1265 } else {
17d65554 1266 type = 0;
f94e0186
SS
1267 }
1268 return type;
1269}
1270
9238f25d
SS
1271/* Return the maximum endpoint service interval time (ESIT) payload.
1272 * Basically, this is the maxpacket size, multiplied by the burst size
1273 * and mult size.
1274 */
575688e1 1275static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
9238f25d
SS
1276 struct usb_device *udev,
1277 struct usb_host_endpoint *ep)
1278{
1279 int max_burst;
1280 int max_packet;
1281
1282 /* Only applies for interrupt or isochronous endpoints */
1283 if (usb_endpoint_xfer_control(&ep->desc) ||
1284 usb_endpoint_xfer_bulk(&ep->desc))
1285 return 0;
1286
842f1690 1287 if (udev->speed == USB_SPEED_SUPER)
64b3c304 1288 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
9238f25d 1289
29cc8897
KM
1290 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1291 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
9238f25d
SS
1292 /* A 0 in max burst means 1 transfer per ESIT */
1293 return max_packet * (max_burst + 1);
1294}
1295
8df75f42
SS
1296/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1297 * Drivers will have to call usb_alloc_streams() to do that.
1298 */
f94e0186
SS
1299int xhci_endpoint_init(struct xhci_hcd *xhci,
1300 struct xhci_virt_device *virt_dev,
1301 struct usb_device *udev,
f88ba78d
SS
1302 struct usb_host_endpoint *ep,
1303 gfp_t mem_flags)
f94e0186
SS
1304{
1305 unsigned int ep_index;
1306 struct xhci_ep_ctx *ep_ctx;
1307 struct xhci_ring *ep_ring;
1308 unsigned int max_packet;
1309 unsigned int max_burst;
3b72fca0 1310 enum xhci_ring_type type;
9238f25d 1311 u32 max_esit_payload;
17d65554 1312 u32 endpoint_type;
f94e0186
SS
1313
1314 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1315 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186 1316
17d65554
MN
1317 endpoint_type = xhci_get_endpoint_type(udev, ep);
1318 if (!endpoint_type)
1319 return -EINVAL;
1320 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1321
3b72fca0 1322 type = usb_endpoint_type(&ep->desc);
f94e0186 1323 /* Set up the endpoint ring */
8dfec614 1324 virt_dev->eps[ep_index].new_ring =
2fdcd47b 1325 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
74f9fe21
SS
1326 if (!virt_dev->eps[ep_index].new_ring) {
1327 /* Attempt to use the ring cache */
1328 if (virt_dev->num_rings_cached == 0)
1329 return -ENOMEM;
1330 virt_dev->eps[ep_index].new_ring =
1331 virt_dev->ring_cache[virt_dev->num_rings_cached];
1332 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1333 virt_dev->num_rings_cached--;
7e393a83 1334 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
186a7ef1 1335 1, type);
74f9fe21 1336 }
d18240db 1337 virt_dev->eps[ep_index].skip = false;
63a0d9ab 1338 ep_ring = virt_dev->eps[ep_index].new_ring;
28ccd296 1339 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
f94e0186 1340
28ccd296
ME
1341 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1342 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
f94e0186
SS
1343
1344 /* FIXME dig Mult and streams info out of ep companion desc */
1345
47692d17 1346 /* Allow 3 retries for everything but isoc;
7b1fc2ea 1347 * CErr shall be set to 0 for Isoch endpoints.
47692d17 1348 */
f94e0186 1349 if (!usb_endpoint_xfer_isoc(&ep->desc))
17d65554 1350 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
f94e0186 1351 else
17d65554 1352 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
f94e0186
SS
1353
1354 /* Set the max packet size and max burst */
e4f47e36
AS
1355 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1356 max_burst = 0;
f94e0186
SS
1357 switch (udev->speed) {
1358 case USB_SPEED_SUPER:
b10de142 1359 /* dig out max burst from ep companion desc */
e4f47e36 1360 max_burst = ep->ss_ep_comp.bMaxBurst;
f94e0186
SS
1361 break;
1362 case USB_SPEED_HIGH:
e4f47e36
AS
1363 /* Some devices get this wrong */
1364 if (usb_endpoint_xfer_bulk(&ep->desc))
1365 max_packet = 512;
f94e0186
SS
1366 /* bits 11:12 specify the number of additional transaction
1367 * opportunities per microframe (USB 2.0, section 9.6.6)
1368 */
1369 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1370 usb_endpoint_xfer_int(&ep->desc)) {
29cc8897 1371 max_burst = (usb_endpoint_maxp(&ep->desc)
28ccd296 1372 & 0x1800) >> 11;
f94e0186 1373 }
e4f47e36 1374 break;
f94e0186
SS
1375 case USB_SPEED_FULL:
1376 case USB_SPEED_LOW:
f94e0186
SS
1377 break;
1378 default:
1379 BUG();
1380 }
e4f47e36
AS
1381 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1382 MAX_BURST(max_burst));
9238f25d 1383 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
28ccd296 1384 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
9238f25d
SS
1385
1386 /*
1387 * XXX no idea how to calculate the average TRB buffer length for bulk
1388 * endpoints, as the driver gives us no clue how big each scatter gather
1389 * list entry (or buffer) is going to be.
1390 *
1391 * For isochronous and interrupt endpoints, we set it to the max
1392 * available, until we have new API in the USB core to allow drivers to
1393 * declare how much bandwidth they actually need.
1394 *
1395 * Normally, it would be calculated by taking the total of the buffer
1396 * lengths in the TD and then dividing by the number of TRBs in a TD,
1397 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1398 * use Event Data TRBs, and we don't chain in a link TRB on short
1399 * transfers, we're basically dividing by 1.
51eb01a7
AX
1400 *
1401 * xHCI 1.0 specification indicates that the Average TRB Length should
1402 * be set to 8 for control endpoints.
9238f25d 1403 */
51eb01a7
AX
1404 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1405 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1406 else
1407 ep_ctx->tx_info |=
1408 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
9238f25d 1409
f94e0186
SS
1410 /* FIXME Debug endpoint context */
1411 return 0;
1412}
1413
1414void xhci_endpoint_zero(struct xhci_hcd *xhci,
1415 struct xhci_virt_device *virt_dev,
1416 struct usb_host_endpoint *ep)
1417{
1418 unsigned int ep_index;
1419 struct xhci_ep_ctx *ep_ctx;
1420
1421 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1422 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1423
1424 ep_ctx->ep_info = 0;
1425 ep_ctx->ep_info2 = 0;
8e595a5d 1426 ep_ctx->deq = 0;
f94e0186
SS
1427 ep_ctx->tx_info = 0;
1428 /* Don't free the endpoint ring until the set interface or configuration
1429 * request succeeds.
1430 */
1431}
1432
9af5d71d
SS
1433void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1434{
1435 bw_info->ep_interval = 0;
1436 bw_info->mult = 0;
1437 bw_info->num_packets = 0;
1438 bw_info->max_packet_size = 0;
1439 bw_info->type = 0;
1440 bw_info->max_esit_payload = 0;
1441}
1442
1443void xhci_update_bw_info(struct xhci_hcd *xhci,
1444 struct xhci_container_ctx *in_ctx,
1445 struct xhci_input_control_ctx *ctrl_ctx,
1446 struct xhci_virt_device *virt_dev)
1447{
1448 struct xhci_bw_info *bw_info;
1449 struct xhci_ep_ctx *ep_ctx;
1450 unsigned int ep_type;
1451 int i;
1452
1453 for (i = 1; i < 31; ++i) {
1454 bw_info = &virt_dev->eps[i].bw_info;
1455
1456 /* We can't tell what endpoint type is being dropped, but
1457 * unconditionally clearing the bandwidth info for non-periodic
1458 * endpoints should be harmless because the info will never be
1459 * set in the first place.
1460 */
1461 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1462 /* Dropped endpoint */
1463 xhci_clear_endpoint_bw_info(bw_info);
1464 continue;
1465 }
1466
1467 if (EP_IS_ADDED(ctrl_ctx, i)) {
1468 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1469 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1470
1471 /* Ignore non-periodic endpoints */
1472 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1473 ep_type != ISOC_IN_EP &&
1474 ep_type != INT_IN_EP)
1475 continue;
1476
1477 /* Added or changed endpoint */
1478 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1479 le32_to_cpu(ep_ctx->ep_info));
170c0263
SS
1480 /* Number of packets and mult are zero-based in the
1481 * input context, but we want one-based for the
1482 * interval table.
9af5d71d 1483 */
170c0263
SS
1484 bw_info->mult = CTX_TO_EP_MULT(
1485 le32_to_cpu(ep_ctx->ep_info)) + 1;
9af5d71d
SS
1486 bw_info->num_packets = CTX_TO_MAX_BURST(
1487 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1488 bw_info->max_packet_size = MAX_PACKET_DECODED(
1489 le32_to_cpu(ep_ctx->ep_info2));
1490 bw_info->type = ep_type;
1491 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1492 le32_to_cpu(ep_ctx->tx_info));
1493 }
1494 }
1495}
1496
f2217e8e
SS
1497/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1498 * Useful when you want to change one particular aspect of the endpoint and then
1499 * issue a configure endpoint command.
1500 */
1501void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1502 struct xhci_container_ctx *in_ctx,
1503 struct xhci_container_ctx *out_ctx,
1504 unsigned int ep_index)
f2217e8e
SS
1505{
1506 struct xhci_ep_ctx *out_ep_ctx;
1507 struct xhci_ep_ctx *in_ep_ctx;
1508
913a8a34
SS
1509 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1510 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1511
1512 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1513 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1514 in_ep_ctx->deq = out_ep_ctx->deq;
1515 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1516}
1517
1518/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1519 * Useful when you want to change one particular aspect of the endpoint and then
1520 * issue a configure endpoint command. Only the context entries field matters,
1521 * but we'll copy the whole thing anyway.
1522 */
913a8a34
SS
1523void xhci_slot_copy(struct xhci_hcd *xhci,
1524 struct xhci_container_ctx *in_ctx,
1525 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1526{
1527 struct xhci_slot_ctx *in_slot_ctx;
1528 struct xhci_slot_ctx *out_slot_ctx;
1529
913a8a34
SS
1530 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1531 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1532
1533 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1534 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1535 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1536 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1537}
1538
254c80a3
JY
1539/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1540static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1541{
1542 int i;
1543 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1544 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1545
1546 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1547
1548 if (!num_sp)
1549 return 0;
1550
1551 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1552 if (!xhci->scratchpad)
1553 goto fail_sp;
1554
22d45f01 1555 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
254c80a3 1556 num_sp * sizeof(u64),
22d45f01 1557 &xhci->scratchpad->sp_dma, flags);
254c80a3
JY
1558 if (!xhci->scratchpad->sp_array)
1559 goto fail_sp2;
1560
1561 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1562 if (!xhci->scratchpad->sp_buffers)
1563 goto fail_sp3;
1564
1565 xhci->scratchpad->sp_dma_buffers =
1566 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1567
1568 if (!xhci->scratchpad->sp_dma_buffers)
1569 goto fail_sp4;
1570
28ccd296 1571 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
254c80a3
JY
1572 for (i = 0; i < num_sp; i++) {
1573 dma_addr_t dma;
22d45f01
SAS
1574 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1575 flags);
254c80a3
JY
1576 if (!buf)
1577 goto fail_sp5;
1578
1579 xhci->scratchpad->sp_array[i] = dma;
1580 xhci->scratchpad->sp_buffers[i] = buf;
1581 xhci->scratchpad->sp_dma_buffers[i] = dma;
1582 }
1583
1584 return 0;
1585
1586 fail_sp5:
1587 for (i = i - 1; i >= 0; i--) {
22d45f01 1588 dma_free_coherent(dev, xhci->page_size,
254c80a3
JY
1589 xhci->scratchpad->sp_buffers[i],
1590 xhci->scratchpad->sp_dma_buffers[i]);
1591 }
1592 kfree(xhci->scratchpad->sp_dma_buffers);
1593
1594 fail_sp4:
1595 kfree(xhci->scratchpad->sp_buffers);
1596
1597 fail_sp3:
22d45f01 1598 dma_free_coherent(dev, num_sp * sizeof(u64),
254c80a3
JY
1599 xhci->scratchpad->sp_array,
1600 xhci->scratchpad->sp_dma);
1601
1602 fail_sp2:
1603 kfree(xhci->scratchpad);
1604 xhci->scratchpad = NULL;
1605
1606 fail_sp:
1607 return -ENOMEM;
1608}
1609
1610static void scratchpad_free(struct xhci_hcd *xhci)
1611{
1612 int num_sp;
1613 int i;
1614 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1615
1616 if (!xhci->scratchpad)
1617 return;
1618
1619 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1620
1621 for (i = 0; i < num_sp; i++) {
22d45f01 1622 dma_free_coherent(&pdev->dev, xhci->page_size,
254c80a3
JY
1623 xhci->scratchpad->sp_buffers[i],
1624 xhci->scratchpad->sp_dma_buffers[i]);
1625 }
1626 kfree(xhci->scratchpad->sp_dma_buffers);
1627 kfree(xhci->scratchpad->sp_buffers);
22d45f01 1628 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
254c80a3
JY
1629 xhci->scratchpad->sp_array,
1630 xhci->scratchpad->sp_dma);
1631 kfree(xhci->scratchpad);
1632 xhci->scratchpad = NULL;
1633}
1634
913a8a34 1635struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1636 bool allocate_in_ctx, bool allocate_completion,
1637 gfp_t mem_flags)
913a8a34
SS
1638{
1639 struct xhci_command *command;
1640
1641 command = kzalloc(sizeof(*command), mem_flags);
1642 if (!command)
1643 return NULL;
1644
a1d78c16
SS
1645 if (allocate_in_ctx) {
1646 command->in_ctx =
1647 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1648 mem_flags);
1649 if (!command->in_ctx) {
1650 kfree(command);
1651 return NULL;
1652 }
06e18291 1653 }
913a8a34
SS
1654
1655 if (allocate_completion) {
1656 command->completion =
1657 kzalloc(sizeof(struct completion), mem_flags);
1658 if (!command->completion) {
1659 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1660 kfree(command);
913a8a34
SS
1661 return NULL;
1662 }
1663 init_completion(command->completion);
1664 }
1665
1666 command->status = 0;
1667 INIT_LIST_HEAD(&command->cmd_list);
1668 return command;
1669}
1670
8e51adcc
AX
1671void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1672{
2ffdea25
AX
1673 if (urb_priv) {
1674 kfree(urb_priv->td[0]);
1675 kfree(urb_priv);
8e51adcc 1676 }
8e51adcc
AX
1677}
1678
913a8a34
SS
1679void xhci_free_command(struct xhci_hcd *xhci,
1680 struct xhci_command *command)
1681{
1682 xhci_free_container_ctx(xhci,
1683 command->in_ctx);
1684 kfree(command->completion);
1685 kfree(command);
1686}
1687
66d4eadd
SS
1688void xhci_mem_cleanup(struct xhci_hcd *xhci)
1689{
0ebbab37 1690 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
9574323c 1691 struct dev_info *dev_info, *next;
b92cc66c 1692 struct xhci_cd *cur_cd, *next_cd;
9574323c 1693 unsigned long flags;
0ebbab37 1694 int size;
32f1d2c5 1695 int i, j, num_ports;
0ebbab37
SS
1696
1697 /* Free the Event Ring Segment Table and the actual Event Ring */
0ebbab37
SS
1698 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1699 if (xhci->erst.entries)
22d45f01 1700 dma_free_coherent(&pdev->dev, size,
0ebbab37
SS
1701 xhci->erst.entries, xhci->erst.erst_dma_addr);
1702 xhci->erst.entries = NULL;
1703 xhci_dbg(xhci, "Freed ERST\n");
1704 if (xhci->event_ring)
1705 xhci_ring_free(xhci, xhci->event_ring);
1706 xhci->event_ring = NULL;
1707 xhci_dbg(xhci, "Freed event ring\n");
1708
dbc33303
SS
1709 if (xhci->lpm_command)
1710 xhci_free_command(xhci, xhci->lpm_command);
33b2831a 1711 xhci->cmd_ring_reserved_trbs = 0;
0ebbab37
SS
1712 if (xhci->cmd_ring)
1713 xhci_ring_free(xhci, xhci->cmd_ring);
1714 xhci->cmd_ring = NULL;
1715 xhci_dbg(xhci, "Freed command ring\n");
b92cc66c
EF
1716 list_for_each_entry_safe(cur_cd, next_cd,
1717 &xhci->cancel_cmd_list, cancel_cmd_list) {
1718 list_del(&cur_cd->cancel_cmd_list);
1719 kfree(cur_cd);
1720 }
3ffbba95
SS
1721
1722 for (i = 1; i < MAX_HC_SLOTS; ++i)
1723 xhci_free_virt_device(xhci, i);
1724
0ebbab37
SS
1725 if (xhci->segment_pool)
1726 dma_pool_destroy(xhci->segment_pool);
1727 xhci->segment_pool = NULL;
1728 xhci_dbg(xhci, "Freed segment pool\n");
3ffbba95
SS
1729
1730 if (xhci->device_pool)
1731 dma_pool_destroy(xhci->device_pool);
1732 xhci->device_pool = NULL;
1733 xhci_dbg(xhci, "Freed device context pool\n");
1734
8df75f42
SS
1735 if (xhci->small_streams_pool)
1736 dma_pool_destroy(xhci->small_streams_pool);
1737 xhci->small_streams_pool = NULL;
1738 xhci_dbg(xhci, "Freed small stream array pool\n");
1739
1740 if (xhci->medium_streams_pool)
1741 dma_pool_destroy(xhci->medium_streams_pool);
1742 xhci->medium_streams_pool = NULL;
1743 xhci_dbg(xhci, "Freed medium stream array pool\n");
1744
a74588f9 1745 if (xhci->dcbaa)
22d45f01 1746 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
a74588f9
SS
1747 xhci->dcbaa, xhci->dcbaa->dma);
1748 xhci->dcbaa = NULL;
3ffbba95 1749
5294bea4 1750 scratchpad_free(xhci);
da6699ce 1751
9574323c
AX
1752 spin_lock_irqsave(&xhci->lock, flags);
1753 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1754 list_del(&dev_info->list);
1755 kfree(dev_info);
1756 }
1757 spin_unlock_irqrestore(&xhci->lock, flags);
1758
88696ae4
VM
1759 if (!xhci->rh_bw)
1760 goto no_bw;
1761
32f1d2c5
TI
1762 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1763 for (i = 0; i < num_ports; i++) {
1764 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1765 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1766 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1767 while (!list_empty(ep))
1768 list_del_init(ep->next);
f8a9e72d
ON
1769 }
1770 }
1771
32f1d2c5
TI
1772 for (i = 0; i < num_ports; i++) {
1773 struct xhci_tt_bw_info *tt, *n;
1774 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1775 list_del(&tt->tt_list);
1776 kfree(tt);
1777 }
f8a9e72d
ON
1778 }
1779
88696ae4 1780no_bw:
da6699ce
SS
1781 xhci->num_usb2_ports = 0;
1782 xhci->num_usb3_ports = 0;
f8a9e72d 1783 xhci->num_active_eps = 0;
da6699ce
SS
1784 kfree(xhci->usb2_ports);
1785 kfree(xhci->usb3_ports);
1786 kfree(xhci->port_array);
839c817c 1787 kfree(xhci->rh_bw);
b630d4b9 1788 kfree(xhci->ext_caps);
da6699ce 1789
66d4eadd
SS
1790 xhci->page_size = 0;
1791 xhci->page_shift = 0;
20b67cf5 1792 xhci->bus_state[0].bus_suspended = 0;
f6ff0ac8 1793 xhci->bus_state[1].bus_suspended = 0;
66d4eadd
SS
1794}
1795
6648f29d
SS
1796static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1797 struct xhci_segment *input_seg,
1798 union xhci_trb *start_trb,
1799 union xhci_trb *end_trb,
1800 dma_addr_t input_dma,
1801 struct xhci_segment *result_seg,
1802 char *test_name, int test_number)
1803{
1804 unsigned long long start_dma;
1805 unsigned long long end_dma;
1806 struct xhci_segment *seg;
1807
1808 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1809 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1810
1811 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1812 if (seg != result_seg) {
1813 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1814 test_name, test_number);
1815 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1816 "input DMA 0x%llx\n",
1817 input_seg,
1818 (unsigned long long) input_dma);
1819 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1820 "ending TRB %p (0x%llx DMA)\n",
1821 start_trb, start_dma,
1822 end_trb, end_dma);
1823 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1824 result_seg, seg);
1825 return -1;
1826 }
1827 return 0;
1828}
1829
1830/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1831static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1832{
1833 struct {
1834 dma_addr_t input_dma;
1835 struct xhci_segment *result_seg;
1836 } simple_test_vector [] = {
1837 /* A zeroed DMA field should fail */
1838 { 0, NULL },
1839 /* One TRB before the ring start should fail */
1840 { xhci->event_ring->first_seg->dma - 16, NULL },
1841 /* One byte before the ring start should fail */
1842 { xhci->event_ring->first_seg->dma - 1, NULL },
1843 /* Starting TRB should succeed */
1844 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1845 /* Ending TRB should succeed */
1846 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1847 xhci->event_ring->first_seg },
1848 /* One byte after the ring end should fail */
1849 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1850 /* One TRB after the ring end should fail */
1851 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1852 /* An address of all ones should fail */
1853 { (dma_addr_t) (~0), NULL },
1854 };
1855 struct {
1856 struct xhci_segment *input_seg;
1857 union xhci_trb *start_trb;
1858 union xhci_trb *end_trb;
1859 dma_addr_t input_dma;
1860 struct xhci_segment *result_seg;
1861 } complex_test_vector [] = {
1862 /* Test feeding a valid DMA address from a different ring */
1863 { .input_seg = xhci->event_ring->first_seg,
1864 .start_trb = xhci->event_ring->first_seg->trbs,
1865 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1866 .input_dma = xhci->cmd_ring->first_seg->dma,
1867 .result_seg = NULL,
1868 },
1869 /* Test feeding a valid end TRB from a different ring */
1870 { .input_seg = xhci->event_ring->first_seg,
1871 .start_trb = xhci->event_ring->first_seg->trbs,
1872 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1873 .input_dma = xhci->cmd_ring->first_seg->dma,
1874 .result_seg = NULL,
1875 },
1876 /* Test feeding a valid start and end TRB from a different ring */
1877 { .input_seg = xhci->event_ring->first_seg,
1878 .start_trb = xhci->cmd_ring->first_seg->trbs,
1879 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1880 .input_dma = xhci->cmd_ring->first_seg->dma,
1881 .result_seg = NULL,
1882 },
1883 /* TRB in this ring, but after this TD */
1884 { .input_seg = xhci->event_ring->first_seg,
1885 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1886 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1887 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1888 .result_seg = NULL,
1889 },
1890 /* TRB in this ring, but before this TD */
1891 { .input_seg = xhci->event_ring->first_seg,
1892 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1893 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1894 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1895 .result_seg = NULL,
1896 },
1897 /* TRB in this ring, but after this wrapped TD */
1898 { .input_seg = xhci->event_ring->first_seg,
1899 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1900 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1901 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1902 .result_seg = NULL,
1903 },
1904 /* TRB in this ring, but before this wrapped TD */
1905 { .input_seg = xhci->event_ring->first_seg,
1906 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1907 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1908 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1909 .result_seg = NULL,
1910 },
1911 /* TRB not in this ring, and we have a wrapped TD */
1912 { .input_seg = xhci->event_ring->first_seg,
1913 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1914 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1915 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1916 .result_seg = NULL,
1917 },
1918 };
1919
1920 unsigned int num_tests;
1921 int i, ret;
1922
e10fa478 1923 num_tests = ARRAY_SIZE(simple_test_vector);
6648f29d
SS
1924 for (i = 0; i < num_tests; i++) {
1925 ret = xhci_test_trb_in_td(xhci,
1926 xhci->event_ring->first_seg,
1927 xhci->event_ring->first_seg->trbs,
1928 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1929 simple_test_vector[i].input_dma,
1930 simple_test_vector[i].result_seg,
1931 "Simple", i);
1932 if (ret < 0)
1933 return ret;
1934 }
1935
e10fa478 1936 num_tests = ARRAY_SIZE(complex_test_vector);
6648f29d
SS
1937 for (i = 0; i < num_tests; i++) {
1938 ret = xhci_test_trb_in_td(xhci,
1939 complex_test_vector[i].input_seg,
1940 complex_test_vector[i].start_trb,
1941 complex_test_vector[i].end_trb,
1942 complex_test_vector[i].input_dma,
1943 complex_test_vector[i].result_seg,
1944 "Complex", i);
1945 if (ret < 0)
1946 return ret;
1947 }
1948 xhci_dbg(xhci, "TRB math tests passed.\n");
1949 return 0;
1950}
1951
257d585a
SS
1952static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1953{
1954 u64 temp;
1955 dma_addr_t deq;
1956
1957 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1958 xhci->event_ring->dequeue);
1959 if (deq == 0 && !in_interrupt())
1960 xhci_warn(xhci, "WARN something wrong with SW event ring "
1961 "dequeue ptr.\n");
1962 /* Update HC event ring dequeue pointer */
1963 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1964 temp &= ERST_PTR_MASK;
1965 /* Don't clear the EHB bit (which is RW1C) because
1966 * there might be more events to service.
1967 */
1968 temp &= ~ERST_EHB;
1969 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1970 "preserving EHB bit\n");
1971 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1972 &xhci->ir_set->erst_dequeue);
1973}
1974
da6699ce 1975static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
b630d4b9 1976 __le32 __iomem *addr, u8 major_revision, int max_caps)
da6699ce
SS
1977{
1978 u32 temp, port_offset, port_count;
1979 int i;
1980
1981 if (major_revision > 0x03) {
1982 xhci_warn(xhci, "Ignoring unknown port speed, "
1983 "Ext Cap %p, revision = 0x%x\n",
1984 addr, major_revision);
1985 /* Ignoring port protocol we can't understand. FIXME */
1986 return;
1987 }
1988
1989 /* Port offset and count in the third dword, see section 7.2 */
1990 temp = xhci_readl(xhci, addr + 2);
1991 port_offset = XHCI_EXT_PORT_OFF(temp);
1992 port_count = XHCI_EXT_PORT_COUNT(temp);
1993 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1994 "count = %u, revision = 0x%x\n",
1995 addr, port_offset, port_count, major_revision);
1996 /* Port count includes the current port offset */
1997 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1998 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1999 return;
fc71ff75 2000
b630d4b9
MN
2001 /* cache usb2 port capabilities */
2002 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2003 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2004
fc71ff75
AX
2005 /* Check the host's USB2 LPM capability */
2006 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2007 (temp & XHCI_L1C)) {
2008 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2009 xhci->sw_lpm_support = 1;
2010 }
2011
2012 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2013 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2014 xhci->sw_lpm_support = 1;
2015 if (temp & XHCI_HLC) {
2016 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2017 xhci->hw_lpm_support = 1;
2018 }
2019 }
2020
da6699ce
SS
2021 port_offset--;
2022 for (i = port_offset; i < (port_offset + port_count); i++) {
2023 /* Duplicate entry. Ignore the port if the revisions differ. */
2024 if (xhci->port_array[i] != 0) {
2025 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2026 " port %u\n", addr, i);
2027 xhci_warn(xhci, "Port was marked as USB %u, "
2028 "duplicated as USB %u\n",
2029 xhci->port_array[i], major_revision);
2030 /* Only adjust the roothub port counts if we haven't
2031 * found a similar duplicate.
2032 */
2033 if (xhci->port_array[i] != major_revision &&
22e04870 2034 xhci->port_array[i] != DUPLICATE_ENTRY) {
da6699ce
SS
2035 if (xhci->port_array[i] == 0x03)
2036 xhci->num_usb3_ports--;
2037 else
2038 xhci->num_usb2_ports--;
22e04870 2039 xhci->port_array[i] = DUPLICATE_ENTRY;
da6699ce
SS
2040 }
2041 /* FIXME: Should we disable the port? */
f8bbeabc 2042 continue;
da6699ce
SS
2043 }
2044 xhci->port_array[i] = major_revision;
2045 if (major_revision == 0x03)
2046 xhci->num_usb3_ports++;
2047 else
2048 xhci->num_usb2_ports++;
2049 }
2050 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2051}
2052
2053/*
2054 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2055 * specify what speeds each port is supposed to be. We can't count on the port
2056 * speed bits in the PORTSC register being correct until a device is connected,
2057 * but we need to set up the two fake roothubs with the correct number of USB
2058 * 3.0 and USB 2.0 ports at host controller initialization time.
2059 */
2060static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2061{
b630d4b9
MN
2062 __le32 __iomem *addr, *tmp_addr;
2063 u32 offset, tmp_offset;
da6699ce 2064 unsigned int num_ports;
2e27980e 2065 int i, j, port_index;
b630d4b9 2066 int cap_count = 0;
da6699ce
SS
2067
2068 addr = &xhci->cap_regs->hcc_params;
2069 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2070 if (offset == 0) {
2071 xhci_err(xhci, "No Extended Capability registers, "
2072 "unable to set up roothub.\n");
2073 return -ENODEV;
2074 }
2075
2076 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2077 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2078 if (!xhci->port_array)
2079 return -ENOMEM;
2080
839c817c
SS
2081 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2082 if (!xhci->rh_bw)
2083 return -ENOMEM;
2e27980e
SS
2084 for (i = 0; i < num_ports; i++) {
2085 struct xhci_interval_bw_table *bw_table;
2086
839c817c 2087 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2e27980e
SS
2088 bw_table = &xhci->rh_bw[i].bw_table;
2089 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2090 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2091 }
839c817c 2092
da6699ce
SS
2093 /*
2094 * For whatever reason, the first capability offset is from the
2095 * capability register base, not from the HCCPARAMS register.
2096 * See section 5.3.6 for offset calculation.
2097 */
2098 addr = &xhci->cap_regs->hc_capbase + offset;
b630d4b9
MN
2099
2100 tmp_addr = addr;
2101 tmp_offset = offset;
2102
2103 /* count extended protocol capability entries for later caching */
2104 do {
2105 u32 cap_id;
2106 cap_id = xhci_readl(xhci, tmp_addr);
2107 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2108 cap_count++;
2109 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2110 tmp_addr += tmp_offset;
2111 } while (tmp_offset);
2112
2113 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2114 if (!xhci->ext_caps)
2115 return -ENOMEM;
2116
da6699ce
SS
2117 while (1) {
2118 u32 cap_id;
2119
2120 cap_id = xhci_readl(xhci, addr);
2121 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2122 xhci_add_in_port(xhci, num_ports, addr,
b630d4b9
MN
2123 (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2124 cap_count);
da6699ce
SS
2125 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2126 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2127 == num_ports)
2128 break;
2129 /*
2130 * Once you're into the Extended Capabilities, the offset is
2131 * always relative to the register holding the offset.
2132 */
2133 addr += offset;
2134 }
2135
2136 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2137 xhci_warn(xhci, "No ports on the roothubs?\n");
2138 return -ENODEV;
2139 }
2140 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2141 xhci->num_usb2_ports, xhci->num_usb3_ports);
d30b2a20
SS
2142
2143 /* Place limits on the number of roothub ports so that the hub
2144 * descriptors aren't longer than the USB core will allocate.
2145 */
2146 if (xhci->num_usb3_ports > 15) {
2147 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2148 xhci->num_usb3_ports = 15;
2149 }
2150 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2151 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2152 USB_MAXCHILDREN);
2153 xhci->num_usb2_ports = USB_MAXCHILDREN;
2154 }
2155
da6699ce
SS
2156 /*
2157 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2158 * Not sure how the USB core will handle a hub with no ports...
2159 */
2160 if (xhci->num_usb2_ports) {
2161 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2162 xhci->num_usb2_ports, flags);
2163 if (!xhci->usb2_ports)
2164 return -ENOMEM;
2165
2166 port_index = 0;
f8bbeabc
SS
2167 for (i = 0; i < num_ports; i++) {
2168 if (xhci->port_array[i] == 0x03 ||
2169 xhci->port_array[i] == 0 ||
22e04870 2170 xhci->port_array[i] == DUPLICATE_ENTRY)
f8bbeabc
SS
2171 continue;
2172
2173 xhci->usb2_ports[port_index] =
2174 &xhci->op_regs->port_status_base +
2175 NUM_PORT_REGS*i;
2176 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2177 "addr = %p\n", i,
2178 xhci->usb2_ports[port_index]);
2179 port_index++;
d30b2a20
SS
2180 if (port_index == xhci->num_usb2_ports)
2181 break;
f8bbeabc 2182 }
da6699ce
SS
2183 }
2184 if (xhci->num_usb3_ports) {
2185 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2186 xhci->num_usb3_ports, flags);
2187 if (!xhci->usb3_ports)
2188 return -ENOMEM;
2189
2190 port_index = 0;
2191 for (i = 0; i < num_ports; i++)
2192 if (xhci->port_array[i] == 0x03) {
2193 xhci->usb3_ports[port_index] =
2194 &xhci->op_regs->port_status_base +
2195 NUM_PORT_REGS*i;
2196 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2197 "addr = %p\n", i,
2198 xhci->usb3_ports[port_index]);
2199 port_index++;
d30b2a20
SS
2200 if (port_index == xhci->num_usb3_ports)
2201 break;
da6699ce
SS
2202 }
2203 }
2204 return 0;
2205}
6648f29d 2206
66d4eadd
SS
2207int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2208{
0ebbab37
SS
2209 dma_addr_t dma;
2210 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 2211 unsigned int val, val2;
8e595a5d 2212 u64 val_64;
0ebbab37 2213 struct xhci_segment *seg;
623bef9e 2214 u32 page_size, temp;
66d4eadd
SS
2215 int i;
2216
331de00a
SA
2217 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2218 INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2219
66d4eadd
SS
2220 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2221 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2222 for (i = 0; i < 16; i++) {
2223 if ((0x1 & page_size) != 0)
2224 break;
2225 page_size = page_size >> 1;
2226 }
2227 if (i < 16)
2228 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2229 else
2230 xhci_warn(xhci, "WARN: no supported page size\n");
2231 /* Use 4K pages, since that's common and the minimum the HC supports */
2232 xhci->page_shift = 12;
2233 xhci->page_size = 1 << xhci->page_shift;
2234 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2235
2236 /*
2237 * Program the Number of Device Slots Enabled field in the CONFIG
2238 * register with the max value of slots the HC can handle.
2239 */
2240 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2241 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2242 (unsigned int) val);
2243 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2244 val |= (val2 & ~HCS_SLOTS_MASK);
2245 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2246 (unsigned int) val);
2247 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2248
a74588f9
SS
2249 /*
2250 * Section 5.4.8 - doorbell array must be
2251 * "physically contiguous and 64-byte (cache line) aligned".
2252 */
22d45f01
SAS
2253 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2254 GFP_KERNEL);
a74588f9
SS
2255 if (!xhci->dcbaa)
2256 goto fail;
2257 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2258 xhci->dcbaa->dma = dma;
700e2052
GKH
2259 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2260 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
8e595a5d 2261 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 2262
0ebbab37
SS
2263 /*
2264 * Initialize the ring segment pool. The ring must be a contiguous
2265 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2266 * however, the command ring segment needs 64-byte aligned segments,
2267 * so we pick the greater alignment need.
2268 */
2269 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
eb8ccd2b 2270 TRB_SEGMENT_SIZE, 64, xhci->page_size);
d115b048 2271
3ffbba95 2272 /* See Table 46 and Note on Figure 55 */
3ffbba95 2273 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 2274 2112, 64, xhci->page_size);
3ffbba95 2275 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
2276 goto fail;
2277
8df75f42
SS
2278 /* Linear stream context arrays don't have any boundary restrictions,
2279 * and only need to be 16-byte aligned.
2280 */
2281 xhci->small_streams_pool =
2282 dma_pool_create("xHCI 256 byte stream ctx arrays",
2283 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2284 xhci->medium_streams_pool =
2285 dma_pool_create("xHCI 1KB stream ctx arrays",
2286 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2287 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
22d45f01 2288 * will be allocated with dma_alloc_coherent()
8df75f42
SS
2289 */
2290
2291 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2292 goto fail;
2293
0ebbab37 2294 /* Set up the command ring to have one segments for now. */
186a7ef1 2295 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
0ebbab37
SS
2296 if (!xhci->cmd_ring)
2297 goto fail;
700e2052
GKH
2298 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2299 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2300 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
2301
2302 /* Set the address in the Command Ring Control register */
8e595a5d
SS
2303 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2304 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2305 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 2306 xhci->cmd_ring->cycle_state;
8e595a5d
SS
2307 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2308 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
2309 xhci_dbg_cmd_ptrs(xhci);
2310
dbc33303
SS
2311 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2312 if (!xhci->lpm_command)
2313 goto fail;
2314
2315 /* Reserve one command ring TRB for disabling LPM.
2316 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2317 * disabling LPM, we only need to reserve one TRB for all devices.
2318 */
2319 xhci->cmd_ring_reserved_trbs++;
2320
0ebbab37
SS
2321 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2322 val &= DBOFF_MASK;
2323 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2324 " from cap regs base addr\n", val);
c50a00f8 2325 xhci->dba = (void __iomem *) xhci->cap_regs + val;
0ebbab37
SS
2326 xhci_dbg_regs(xhci);
2327 xhci_print_run_regs(xhci);
2328 /* Set ir_set to interrupt register set 0 */
c50a00f8 2329 xhci->ir_set = &xhci->run_regs->ir_set[0];
0ebbab37
SS
2330
2331 /*
2332 * Event ring setup: Allocate a normal ring, but also setup
2333 * the event ring segment table (ERST). Section 4.9.3.
2334 */
2335 xhci_dbg(xhci, "// Allocating event ring\n");
186a7ef1 2336 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
7e393a83 2337 flags);
0ebbab37
SS
2338 if (!xhci->event_ring)
2339 goto fail;
6648f29d
SS
2340 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2341 goto fail;
0ebbab37 2342
22d45f01
SAS
2343 xhci->erst.entries = dma_alloc_coherent(dev,
2344 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2345 GFP_KERNEL);
0ebbab37
SS
2346 if (!xhci->erst.entries)
2347 goto fail;
700e2052
GKH
2348 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2349 (unsigned long long)dma);
0ebbab37
SS
2350
2351 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2352 xhci->erst.num_entries = ERST_NUM_SEGS;
2353 xhci->erst.erst_dma_addr = dma;
700e2052 2354 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
0ebbab37 2355 xhci->erst.num_entries,
700e2052
GKH
2356 xhci->erst.entries,
2357 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
2358
2359 /* set ring base address and size for each segment table entry */
2360 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2361 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
28ccd296
ME
2362 entry->seg_addr = cpu_to_le64(seg->dma);
2363 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
0ebbab37
SS
2364 entry->rsvd = 0;
2365 seg = seg->next;
2366 }
2367
2368 /* set ERST count with the number of entries in the segment table */
2369 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2370 val &= ERST_SIZE_MASK;
2371 val |= ERST_NUM_SEGS;
2372 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2373 val);
2374 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2375
2376 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2377 /* set the segment table base address */
700e2052
GKH
2378 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2379 (unsigned long long)xhci->erst.erst_dma_addr);
8e595a5d
SS
2380 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2381 val_64 &= ERST_PTR_MASK;
2382 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2383 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
2384
2385 /* Set the event ring dequeue address */
23e3be11 2386 xhci_set_hc_event_deq(xhci);
0ebbab37 2387 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
09ece30e 2388 xhci_print_ir_set(xhci, 0);
0ebbab37
SS
2389
2390 /*
2391 * XXX: Might need to set the Interrupter Moderation Register to
2392 * something other than the default (~1ms minimum between interrupts).
2393 * See section 5.5.1.2.
2394 */
3ffbba95
SS
2395 init_completion(&xhci->addr_dev);
2396 for (i = 0; i < MAX_HC_SLOTS; ++i)
326b4810 2397 xhci->devs[i] = NULL;
f6ff0ac8 2398 for (i = 0; i < USB_MAXCHILDREN; ++i) {
20b67cf5 2399 xhci->bus_state[0].resume_done[i] = 0;
f6ff0ac8
SS
2400 xhci->bus_state[1].resume_done[i] = 0;
2401 }
66d4eadd 2402
254c80a3
JY
2403 if (scratchpad_alloc(xhci, flags))
2404 goto fail;
da6699ce
SS
2405 if (xhci_setup_port_arrays(xhci, flags))
2406 goto fail;
254c80a3 2407
623bef9e
SS
2408 /* Enable USB 3.0 device notifications for function remote wake, which
2409 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2410 * U3 (device suspend).
2411 */
2412 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2413 temp &= ~DEV_NOTE_MASK;
2414 temp |= DEV_NOTE_FWAKE;
2415 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2416
66d4eadd 2417 return 0;
254c80a3 2418
66d4eadd
SS
2419fail:
2420 xhci_warn(xhci, "Couldn't initialize memory\n");
159e1fcc
SS
2421 xhci_halt(xhci);
2422 xhci_reset(xhci);
66d4eadd
SS
2423 xhci_mem_cleanup(xhci);
2424 return -ENOMEM;
2425}
This page took 0.491271 seconds and 5 git commands to generate.