USB: xhci: Bandwidth allocation support
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
66d4eadd
SS
25
26#include "xhci.h"
27
0ebbab37
SS
28/*
29 * Allocates a generic ring segment from the ring pool, sets the dma address,
30 * initializes the segment to zero, and sets the private next pointer to NULL.
31 *
32 * Section 4.11.1.1:
33 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
34 */
35static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
36{
37 struct xhci_segment *seg;
38 dma_addr_t dma;
39
40 seg = kzalloc(sizeof *seg, flags);
41 if (!seg)
42 return 0;
43 xhci_dbg(xhci, "Allocating priv segment structure at 0x%x\n",
44 (unsigned int) seg);
45
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
49 return 0;
50 }
51 xhci_dbg(xhci, "// Allocating segment at 0x%x (virtual) 0x%x (DMA)\n",
52 (unsigned int) seg->trbs, (u32) dma);
53
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 seg->dma = dma;
56 seg->next = NULL;
57
58 return seg;
59}
60
61static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
62{
63 if (!seg)
64 return;
65 if (seg->trbs) {
66 xhci_dbg(xhci, "Freeing DMA segment at 0x%x"
67 " (virtual) 0x%x (DMA)\n",
68 (unsigned int) seg->trbs, (u32) seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 xhci_dbg(xhci, "Freeing priv segment structure at 0x%x\n",
73 (unsigned int) seg);
74 kfree(seg);
75}
76
77/*
78 * Make the prev segment point to the next segment.
79 *
80 * Change the last TRB in the prev segment to be a Link TRB which points to the
81 * DMA address of the next segment. The caller needs to set any Link TRB
82 * related flags, such as End TRB, Toggle Cycle, and no snoop.
83 */
84static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
85 struct xhci_segment *next, bool link_trbs)
86{
87 u32 val;
88
89 if (!prev || !next)
90 return;
91 prev->next = next;
92 if (link_trbs) {
93 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr[0] = next->dma;
94
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
99 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
100 }
101 xhci_dbg(xhci, "Linking segment 0x%x to segment 0x%x (DMA)\n",
102 prev->dma, next->dma);
103}
104
105/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 106void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37
SS
107{
108 struct xhci_segment *seg;
109 struct xhci_segment *first_seg;
110
111 if (!ring || !ring->first_seg)
112 return;
113 first_seg = ring->first_seg;
114 seg = first_seg->next;
115 xhci_dbg(xhci, "Freeing ring at 0x%x\n", (unsigned int) ring);
116 while (seg != first_seg) {
117 struct xhci_segment *next = seg->next;
118 xhci_segment_free(xhci, seg);
119 seg = next;
120 }
121 xhci_segment_free(xhci, first_seg);
122 ring->first_seg = NULL;
123 kfree(ring);
124}
125
126/**
127 * Create a new ring with zero or more segments.
128 *
129 * Link each segment together into a ring.
130 * Set the end flag and the cycle toggle bit on the last segment.
131 * See section 4.9.1 and figures 15 and 16.
132 */
133static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
134 unsigned int num_segs, bool link_trbs, gfp_t flags)
135{
136 struct xhci_ring *ring;
137 struct xhci_segment *prev;
138
139 ring = kzalloc(sizeof *(ring), flags);
140 xhci_dbg(xhci, "Allocating ring at 0x%x\n", (unsigned int) ring);
141 if (!ring)
142 return 0;
143
d0e96f5a 144 INIT_LIST_HEAD(&ring->td_list);
0ebbab37
SS
145 if (num_segs == 0)
146 return ring;
147
148 ring->first_seg = xhci_segment_alloc(xhci, flags);
149 if (!ring->first_seg)
150 goto fail;
151 num_segs--;
152
153 prev = ring->first_seg;
154 while (num_segs > 0) {
155 struct xhci_segment *next;
156
157 next = xhci_segment_alloc(xhci, flags);
158 if (!next)
159 goto fail;
160 xhci_link_segments(xhci, prev, next, link_trbs);
161
162 prev = next;
163 num_segs--;
164 }
165 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
166
167 if (link_trbs) {
168 /* See section 4.9.2.1 and 6.4.4.1 */
169 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
170 xhci_dbg(xhci, "Wrote link toggle flag to"
171 " segment 0x%x (virtual), 0x%x (DMA)\n",
172 (unsigned int) prev, (u32) prev->dma);
173 }
174 /* The ring is empty, so the enqueue pointer == dequeue pointer */
175 ring->enqueue = ring->first_seg->trbs;
7f84eef0 176 ring->enq_seg = ring->first_seg;
0ebbab37 177 ring->dequeue = ring->enqueue;
7f84eef0 178 ring->deq_seg = ring->first_seg;
0ebbab37
SS
179 /* The ring is initialized to 0. The producer must write 1 to the cycle
180 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
181 * compare CCS to the cycle bit to check ownership, so CCS = 1.
182 */
183 ring->cycle_state = 1;
184
185 return ring;
186
187fail:
188 xhci_ring_free(xhci, ring);
189 return 0;
190}
191
d0e96f5a 192/* All the xhci_tds in the ring's TD list should be freed at this point */
3ffbba95
SS
193void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
194{
195 struct xhci_virt_device *dev;
196 int i;
197
198 /* Slot ID 0 is reserved */
199 if (slot_id == 0 || !xhci->devs[slot_id])
200 return;
201
202 dev = xhci->devs[slot_id];
203 xhci->dcbaa->dev_context_ptrs[2*slot_id] = 0;
204 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
205 if (!dev)
206 return;
207
208 for (i = 0; i < 31; ++i)
209 if (dev->ep_rings[i])
210 xhci_ring_free(xhci, dev->ep_rings[i]);
211
212 if (dev->in_ctx)
213 dma_pool_free(xhci->device_pool,
214 dev->in_ctx, dev->in_ctx_dma);
215 if (dev->out_ctx)
216 dma_pool_free(xhci->device_pool,
217 dev->out_ctx, dev->out_ctx_dma);
218 kfree(xhci->devs[slot_id]);
219 xhci->devs[slot_id] = 0;
220}
221
222int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
223 struct usb_device *udev, gfp_t flags)
224{
225 dma_addr_t dma;
226 struct xhci_virt_device *dev;
227
228 /* Slot ID 0 is reserved */
229 if (slot_id == 0 || xhci->devs[slot_id]) {
230 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
231 return 0;
232 }
233
234 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
235 if (!xhci->devs[slot_id])
236 return 0;
237 dev = xhci->devs[slot_id];
238
239 /* Allocate the (output) device context that will be used in the HC */
240 dev->out_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
241 if (!dev->out_ctx)
242 goto fail;
243 dev->out_ctx_dma = dma;
244 xhci_dbg(xhci, "Slot %d output ctx = 0x%x (dma)\n", slot_id, dma);
245 memset(dev->out_ctx, 0, sizeof(*dev->out_ctx));
246
247 /* Allocate the (input) device context for address device command */
248 dev->in_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
249 if (!dev->in_ctx)
250 goto fail;
251 dev->in_ctx_dma = dma;
252 xhci_dbg(xhci, "Slot %d input ctx = 0x%x (dma)\n", slot_id, dma);
253 memset(dev->in_ctx, 0, sizeof(*dev->in_ctx));
254
255 /* Allocate endpoint 0 ring */
256 dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
257 if (!dev->ep_rings[0])
258 goto fail;
259
f94e0186
SS
260 init_completion(&dev->cmd_completion);
261
3ffbba95
SS
262 /*
263 * Point to output device context in dcbaa; skip the output control
264 * context, which is eight 32 bit fields (or 32 bytes long)
265 */
266 xhci->dcbaa->dev_context_ptrs[2*slot_id] =
267 (u32) dev->out_ctx_dma + (32);
268 xhci_dbg(xhci, "Set slot id %d dcbaa entry 0x%x to 0x%x\n",
269 slot_id,
270 (unsigned int) &xhci->dcbaa->dev_context_ptrs[2*slot_id],
271 dev->out_ctx_dma);
272 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
273
274 return 1;
275fail:
276 xhci_free_virt_device(xhci, slot_id);
277 return 0;
278}
279
280/* Setup an xHCI virtual device for a Set Address command */
281int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
282{
283 struct xhci_virt_device *dev;
284 struct xhci_ep_ctx *ep0_ctx;
285 struct usb_device *top_dev;
286
287 dev = xhci->devs[udev->slot_id];
288 /* Slot ID 0 is reserved */
289 if (udev->slot_id == 0 || !dev) {
290 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
291 udev->slot_id);
292 return -EINVAL;
293 }
294 ep0_ctx = &dev->in_ctx->ep[0];
295
296 /* 2) New slot context and endpoint 0 context are valid*/
297 dev->in_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
298
299 /* 3) Only the control endpoint is valid - one endpoint context */
300 dev->in_ctx->slot.dev_info |= LAST_CTX(1);
301
302 switch (udev->speed) {
303 case USB_SPEED_SUPER:
304 dev->in_ctx->slot.dev_info |= (u32) udev->route;
305 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_SS;
306 break;
307 case USB_SPEED_HIGH:
308 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_HS;
309 break;
310 case USB_SPEED_FULL:
311 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_FS;
312 break;
313 case USB_SPEED_LOW:
314 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_LS;
315 break;
316 case USB_SPEED_VARIABLE:
317 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
318 return -EINVAL;
319 break;
320 default:
321 /* Speed was set earlier, this shouldn't happen. */
322 BUG();
323 }
324 /* Find the root hub port this device is under */
325 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
326 top_dev = top_dev->parent)
327 /* Found device below root hub */;
328 dev->in_ctx->slot.dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
329 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
330
331 /* Is this a LS/FS device under a HS hub? */
332 /*
333 * FIXME: I don't think this is right, where does the TT info for the
334 * roothub or parent hub come from?
335 */
336 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
337 udev->tt) {
338 dev->in_ctx->slot.tt_info = udev->tt->hub->slot_id;
339 dev->in_ctx->slot.tt_info |= udev->ttport << 8;
340 }
341 xhci_dbg(xhci, "udev->tt = 0x%x\n", (unsigned int) udev->tt);
342 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
343
344 /* Step 4 - ring already allocated */
345 /* Step 5 */
346 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
347 /*
348 * See section 4.3 bullet 6:
349 * The default Max Packet size for ep0 is "8 bytes for a USB2
350 * LS/FS/HS device or 512 bytes for a USB3 SS device"
351 * XXX: Not sure about wireless USB devices.
352 */
353 if (udev->speed == USB_SPEED_SUPER)
354 ep0_ctx->ep_info2 |= MAX_PACKET(512);
355 else
356 ep0_ctx->ep_info2 |= MAX_PACKET(8);
357 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
358 ep0_ctx->ep_info2 |= MAX_BURST(0);
359 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
360
361 ep0_ctx->deq[0] =
362 dev->ep_rings[0]->first_seg->dma;
363 ep0_ctx->deq[0] |= dev->ep_rings[0]->cycle_state;
364 ep0_ctx->deq[1] = 0;
365
366 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
367
368 return 0;
369}
370
f94e0186
SS
371/* Return the polling or NAK interval.
372 *
373 * The polling interval is expressed in "microframes". If xHCI's Interval field
374 * is set to N, it will service the endpoint every 2^(Interval)*125us.
375 *
376 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
377 * is set to 0.
378 */
379static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
380 struct usb_host_endpoint *ep)
381{
382 unsigned int interval = 0;
383
384 switch (udev->speed) {
385 case USB_SPEED_HIGH:
386 /* Max NAK rate */
387 if (usb_endpoint_xfer_control(&ep->desc) ||
388 usb_endpoint_xfer_bulk(&ep->desc))
389 interval = ep->desc.bInterval;
390 /* Fall through - SS and HS isoc/int have same decoding */
391 case USB_SPEED_SUPER:
392 if (usb_endpoint_xfer_int(&ep->desc) ||
393 usb_endpoint_xfer_isoc(&ep->desc)) {
394 if (ep->desc.bInterval == 0)
395 interval = 0;
396 else
397 interval = ep->desc.bInterval - 1;
398 if (interval > 15)
399 interval = 15;
400 if (interval != ep->desc.bInterval + 1)
401 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
402 ep->desc.bEndpointAddress, 1 << interval);
403 }
404 break;
405 /* Convert bInterval (in 1-255 frames) to microframes and round down to
406 * nearest power of 2.
407 */
408 case USB_SPEED_FULL:
409 case USB_SPEED_LOW:
410 if (usb_endpoint_xfer_int(&ep->desc) ||
411 usb_endpoint_xfer_isoc(&ep->desc)) {
412 interval = fls(8*ep->desc.bInterval) - 1;
413 if (interval > 10)
414 interval = 10;
415 if (interval < 3)
416 interval = 3;
417 if ((1 << interval) != 8*ep->desc.bInterval)
418 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
419 ep->desc.bEndpointAddress, 1 << interval);
420 }
421 break;
422 default:
423 BUG();
424 }
425 return EP_INTERVAL(interval);
426}
427
428static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
429 struct usb_host_endpoint *ep)
430{
431 int in;
432 u32 type;
433
434 in = usb_endpoint_dir_in(&ep->desc);
435 if (usb_endpoint_xfer_control(&ep->desc)) {
436 type = EP_TYPE(CTRL_EP);
437 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
438 if (in)
439 type = EP_TYPE(BULK_IN_EP);
440 else
441 type = EP_TYPE(BULK_OUT_EP);
442 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
443 if (in)
444 type = EP_TYPE(ISOC_IN_EP);
445 else
446 type = EP_TYPE(ISOC_OUT_EP);
447 } else if (usb_endpoint_xfer_int(&ep->desc)) {
448 if (in)
449 type = EP_TYPE(INT_IN_EP);
450 else
451 type = EP_TYPE(INT_OUT_EP);
452 } else {
453 BUG();
454 }
455 return type;
456}
457
458int xhci_endpoint_init(struct xhci_hcd *xhci,
459 struct xhci_virt_device *virt_dev,
460 struct usb_device *udev,
461 struct usb_host_endpoint *ep)
462{
463 unsigned int ep_index;
464 struct xhci_ep_ctx *ep_ctx;
465 struct xhci_ring *ep_ring;
466 unsigned int max_packet;
467 unsigned int max_burst;
468
469 ep_index = xhci_get_endpoint_index(&ep->desc);
470 ep_ctx = &virt_dev->in_ctx->ep[ep_index];
471
472 /* Set up the endpoint ring */
473 virt_dev->new_ep_rings[ep_index] = xhci_ring_alloc(xhci, 1, true, GFP_KERNEL);
474 if (!virt_dev->new_ep_rings[ep_index])
475 return -ENOMEM;
476 ep_ring = virt_dev->new_ep_rings[ep_index];
477 ep_ctx->deq[1] = 0;
478 ep_ctx->deq[0] = ep_ring->first_seg->dma | ep_ring->cycle_state;
479
480 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
481
482 /* FIXME dig Mult and streams info out of ep companion desc */
483
484 /* Allow 3 retries for everything but isoc */
485 if (!usb_endpoint_xfer_isoc(&ep->desc))
486 ep_ctx->ep_info2 = ERROR_COUNT(3);
487 else
488 ep_ctx->ep_info2 = ERROR_COUNT(0);
489
490 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
491
492 /* Set the max packet size and max burst */
493 switch (udev->speed) {
494 case USB_SPEED_SUPER:
495 max_packet = ep->desc.wMaxPacketSize;
496 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
497 /* FIXME dig out burst from ep companion desc */
498 break;
499 case USB_SPEED_HIGH:
500 /* bits 11:12 specify the number of additional transaction
501 * opportunities per microframe (USB 2.0, section 9.6.6)
502 */
503 if (usb_endpoint_xfer_isoc(&ep->desc) ||
504 usb_endpoint_xfer_int(&ep->desc)) {
505 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
506 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
507 }
508 /* Fall through */
509 case USB_SPEED_FULL:
510 case USB_SPEED_LOW:
511 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
512 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
513 break;
514 default:
515 BUG();
516 }
517 /* FIXME Debug endpoint context */
518 return 0;
519}
520
521void xhci_endpoint_zero(struct xhci_hcd *xhci,
522 struct xhci_virt_device *virt_dev,
523 struct usb_host_endpoint *ep)
524{
525 unsigned int ep_index;
526 struct xhci_ep_ctx *ep_ctx;
527
528 ep_index = xhci_get_endpoint_index(&ep->desc);
529 ep_ctx = &virt_dev->in_ctx->ep[ep_index];
530
531 ep_ctx->ep_info = 0;
532 ep_ctx->ep_info2 = 0;
533 ep_ctx->deq[1] = 0;
534 ep_ctx->deq[0] = 0;
535 ep_ctx->tx_info = 0;
536 /* Don't free the endpoint ring until the set interface or configuration
537 * request succeeds.
538 */
539}
540
66d4eadd
SS
541void xhci_mem_cleanup(struct xhci_hcd *xhci)
542{
0ebbab37
SS
543 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
544 int size;
3ffbba95 545 int i;
0ebbab37
SS
546
547 /* Free the Event Ring Segment Table and the actual Event Ring */
548 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
549 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
550 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[0]);
551 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[1]);
552 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[0]);
553 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
554 if (xhci->erst.entries)
555 pci_free_consistent(pdev, size,
556 xhci->erst.entries, xhci->erst.erst_dma_addr);
557 xhci->erst.entries = NULL;
558 xhci_dbg(xhci, "Freed ERST\n");
559 if (xhci->event_ring)
560 xhci_ring_free(xhci, xhci->event_ring);
561 xhci->event_ring = NULL;
562 xhci_dbg(xhci, "Freed event ring\n");
563
564 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[1]);
565 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[0]);
566 if (xhci->cmd_ring)
567 xhci_ring_free(xhci, xhci->cmd_ring);
568 xhci->cmd_ring = NULL;
569 xhci_dbg(xhci, "Freed command ring\n");
3ffbba95
SS
570
571 for (i = 1; i < MAX_HC_SLOTS; ++i)
572 xhci_free_virt_device(xhci, i);
573
0ebbab37
SS
574 if (xhci->segment_pool)
575 dma_pool_destroy(xhci->segment_pool);
576 xhci->segment_pool = NULL;
577 xhci_dbg(xhci, "Freed segment pool\n");
3ffbba95
SS
578
579 if (xhci->device_pool)
580 dma_pool_destroy(xhci->device_pool);
581 xhci->device_pool = NULL;
582 xhci_dbg(xhci, "Freed device context pool\n");
583
a74588f9
SS
584 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[1]);
585 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[0]);
586 if (xhci->dcbaa)
587 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
588 xhci->dcbaa, xhci->dcbaa->dma);
589 xhci->dcbaa = NULL;
3ffbba95 590
66d4eadd
SS
591 xhci->page_size = 0;
592 xhci->page_shift = 0;
593}
594
595int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
596{
0ebbab37
SS
597 dma_addr_t dma;
598 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 599 unsigned int val, val2;
0ebbab37 600 struct xhci_segment *seg;
66d4eadd
SS
601 u32 page_size;
602 int i;
603
604 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
605 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
606 for (i = 0; i < 16; i++) {
607 if ((0x1 & page_size) != 0)
608 break;
609 page_size = page_size >> 1;
610 }
611 if (i < 16)
612 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
613 else
614 xhci_warn(xhci, "WARN: no supported page size\n");
615 /* Use 4K pages, since that's common and the minimum the HC supports */
616 xhci->page_shift = 12;
617 xhci->page_size = 1 << xhci->page_shift;
618 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
619
620 /*
621 * Program the Number of Device Slots Enabled field in the CONFIG
622 * register with the max value of slots the HC can handle.
623 */
624 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
625 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
626 (unsigned int) val);
627 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
628 val |= (val2 & ~HCS_SLOTS_MASK);
629 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
630 (unsigned int) val);
631 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
632
a74588f9
SS
633 /*
634 * Section 5.4.8 - doorbell array must be
635 * "physically contiguous and 64-byte (cache line) aligned".
636 */
637 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
638 sizeof(*xhci->dcbaa), &dma);
639 if (!xhci->dcbaa)
640 goto fail;
641 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
642 xhci->dcbaa->dma = dma;
3ffbba95
SS
643 xhci_dbg(xhci, "// Device context base array address = 0x%x (DMA), 0x%x (virt)\n",
644 xhci->dcbaa->dma, (unsigned int) xhci->dcbaa);
a74588f9
SS
645 xhci_writel(xhci, (u32) 0, &xhci->op_regs->dcbaa_ptr[1]);
646 xhci_writel(xhci, dma, &xhci->op_regs->dcbaa_ptr[0]);
647
0ebbab37
SS
648 /*
649 * Initialize the ring segment pool. The ring must be a contiguous
650 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
651 * however, the command ring segment needs 64-byte aligned segments,
652 * so we pick the greater alignment need.
653 */
654 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
655 SEGMENT_SIZE, 64, xhci->page_size);
3ffbba95
SS
656 /* See Table 46 and Note on Figure 55 */
657 /* FIXME support 64-byte contexts */
658 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
659 sizeof(struct xhci_device_control),
660 64, xhci->page_size);
661 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
662 goto fail;
663
664 /* Set up the command ring to have one segments for now. */
665 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
666 if (!xhci->cmd_ring)
667 goto fail;
668 xhci_dbg(xhci, "Allocated command ring at 0x%x\n", (unsigned int) xhci->cmd_ring);
669 xhci_dbg(xhci, "First segment DMA is 0x%x\n", (unsigned int) xhci->cmd_ring->first_seg->dma);
670
671 /* Set the address in the Command Ring Control register */
672 val = xhci_readl(xhci, &xhci->op_regs->cmd_ring[0]);
673 val = (val & ~CMD_RING_ADDR_MASK) |
674 (xhci->cmd_ring->first_seg->dma & CMD_RING_ADDR_MASK) |
675 xhci->cmd_ring->cycle_state;
676 xhci_dbg(xhci, "// Setting command ring address high bits to 0x0\n");
677 xhci_writel(xhci, (u32) 0, &xhci->op_regs->cmd_ring[1]);
678 xhci_dbg(xhci, "// Setting command ring address low bits to 0x%x\n", val);
679 xhci_writel(xhci, val, &xhci->op_regs->cmd_ring[0]);
680 xhci_dbg_cmd_ptrs(xhci);
681
682 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
683 val &= DBOFF_MASK;
684 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
685 " from cap regs base addr\n", val);
686 xhci->dba = (void *) xhci->cap_regs + val;
687 xhci_dbg_regs(xhci);
688 xhci_print_run_regs(xhci);
689 /* Set ir_set to interrupt register set 0 */
690 xhci->ir_set = (void *) xhci->run_regs->ir_set;
691
692 /*
693 * Event ring setup: Allocate a normal ring, but also setup
694 * the event ring segment table (ERST). Section 4.9.3.
695 */
696 xhci_dbg(xhci, "// Allocating event ring\n");
697 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
698 if (!xhci->event_ring)
699 goto fail;
700
701 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
702 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
703 if (!xhci->erst.entries)
704 goto fail;
705 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%x\n", dma);
706
707 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
708 xhci->erst.num_entries = ERST_NUM_SEGS;
709 xhci->erst.erst_dma_addr = dma;
710 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = 0x%x, dma addr = 0x%x\n",
711 xhci->erst.num_entries,
712 (unsigned int) xhci->erst.entries,
713 xhci->erst.erst_dma_addr);
714
715 /* set ring base address and size for each segment table entry */
716 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
717 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
718 entry->seg_addr[1] = 0;
719 entry->seg_addr[0] = seg->dma;
720 entry->seg_size = TRBS_PER_SEGMENT;
721 entry->rsvd = 0;
722 seg = seg->next;
723 }
724
725 /* set ERST count with the number of entries in the segment table */
726 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
727 val &= ERST_SIZE_MASK;
728 val |= ERST_NUM_SEGS;
729 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
730 val);
731 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
732
733 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
734 /* set the segment table base address */
735 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%x\n",
736 xhci->erst.erst_dma_addr);
737 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
738 val = xhci_readl(xhci, &xhci->ir_set->erst_base[0]);
739 val &= ERST_PTR_MASK;
740 val |= (xhci->erst.erst_dma_addr & ~ERST_PTR_MASK);
741 xhci_writel(xhci, val, &xhci->ir_set->erst_base[0]);
742
743 /* Set the event ring dequeue address */
7f84eef0 744 set_hc_event_deq(xhci);
0ebbab37
SS
745 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
746 xhci_print_ir_set(xhci, xhci->ir_set, 0);
747
748 /*
749 * XXX: Might need to set the Interrupter Moderation Register to
750 * something other than the default (~1ms minimum between interrupts).
751 * See section 5.5.1.2.
752 */
3ffbba95
SS
753 init_completion(&xhci->addr_dev);
754 for (i = 0; i < MAX_HC_SLOTS; ++i)
755 xhci->devs[i] = 0;
66d4eadd
SS
756
757 return 0;
758fail:
759 xhci_warn(xhci, "Couldn't initialize memory\n");
760 xhci_mem_cleanup(xhci);
761 return -ENOMEM;
762}
This page took 0.05576 seconds and 5 git commands to generate.