USB: musb cppi bugfixes
[deliverable/linux.git] / drivers / usb / musb / cppi_dma.c
CommitLineData
550a7375
FB
1/*
2 * Copyright (C) 2005-2006 by Texas Instruments
3 *
4 * This file implements a DMA interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7 */
8
9#include <linux/usb.h>
10
11#include "musb_core.h"
704a1485 12#include "musb_debug.h"
550a7375
FB
13#include "cppi_dma.h"
14
15
16/* CPPI DMA status 7-mar-2006:
17 *
18 * - See musb_{host,gadget}.c for more info
19 *
20 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
21 * which can easily saturate the CPU under non-mass-storage loads.
22 *
23 * NOTES 24-aug-2006 (2.6.18-rc4):
24 *
25 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
26 * evidently after the 1 byte packet was received and acked, the queue
27 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003,
28 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
29 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx
30 * of its next (512 byte) packet. IRQ issues?
31 *
32 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will
33 * evidently also directly update the RX and TX CSRs ... so audit all
34 * host and peripheral side DMA code to avoid CSR access after DMA has
35 * been started.
36 */
37
38/* REVISIT now we can avoid preallocating these descriptors; or
39 * more simply, switch to a global freelist not per-channel ones.
40 * Note: at full speed, 64 descriptors == 4K bulk data.
41 */
42#define NUM_TXCHAN_BD 64
43#define NUM_RXCHAN_BD 64
44
45static inline void cpu_drain_writebuffer(void)
46{
47 wmb();
48#ifdef CONFIG_CPU_ARM926T
49 /* REVISIT this "should not be needed",
50 * but lack of it sure seemed to hurt ...
51 */
52 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
53#endif
54}
55
56static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
57{
58 struct cppi_descriptor *bd = c->freelist;
59
60 if (bd)
61 c->freelist = bd->next;
62 return bd;
63}
64
65static inline void
66cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
67{
68 if (!bd)
69 return;
70 bd->next = c->freelist;
71 c->freelist = bd;
72}
73
74/*
75 * Start DMA controller
76 *
77 * Initialize the DMA controller as necessary.
78 */
79
80/* zero out entire rx state RAM entry for the channel */
81static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
82{
83 musb_writel(&rx->rx_skipbytes, 0, 0);
84 musb_writel(&rx->rx_head, 0, 0);
85 musb_writel(&rx->rx_sop, 0, 0);
86 musb_writel(&rx->rx_current, 0, 0);
87 musb_writel(&rx->rx_buf_current, 0, 0);
88 musb_writel(&rx->rx_len_len, 0, 0);
89 musb_writel(&rx->rx_cnt_cnt, 0, 0);
90}
91
92/* zero out entire tx state RAM entry for the channel */
93static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
94{
95 musb_writel(&tx->tx_head, 0, 0);
96 musb_writel(&tx->tx_buf, 0, 0);
97 musb_writel(&tx->tx_current, 0, 0);
98 musb_writel(&tx->tx_buf_current, 0, 0);
99 musb_writel(&tx->tx_info, 0, 0);
100 musb_writel(&tx->tx_rem_len, 0, 0);
101 /* musb_writel(&tx->tx_dummy, 0, 0); */
102 musb_writel(&tx->tx_complete, 0, ptr);
103}
104
105static void __init cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
106{
107 int j;
108
109 /* initialize channel fields */
110 c->head = NULL;
111 c->tail = NULL;
112 c->last_processed = NULL;
113 c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
114 c->controller = cppi;
115 c->is_rndis = 0;
116 c->freelist = NULL;
117
118 /* build the BD Free list for the channel */
119 for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
120 struct cppi_descriptor *bd;
121 dma_addr_t dma;
122
123 bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
124 bd->dma = dma;
125 cppi_bd_free(c, bd);
126 }
127}
128
129static int cppi_channel_abort(struct dma_channel *);
130
131static void cppi_pool_free(struct cppi_channel *c)
132{
133 struct cppi *cppi = c->controller;
134 struct cppi_descriptor *bd;
135
136 (void) cppi_channel_abort(&c->channel);
137 c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
138 c->controller = NULL;
139
140 /* free all its bds */
141 bd = c->last_processed;
142 do {
143 if (bd)
144 dma_pool_free(cppi->pool, bd, bd->dma);
145 bd = cppi_bd_alloc(c);
146 } while (bd);
147 c->last_processed = NULL;
148}
149
150static int __init cppi_controller_start(struct dma_controller *c)
151{
152 struct cppi *controller;
153 void __iomem *tibase;
154 int i;
155
156 controller = container_of(c, struct cppi, controller);
157
158 /* do whatever is necessary to start controller */
159 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
160 controller->tx[i].transmit = true;
161 controller->tx[i].index = i;
162 }
163 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
164 controller->rx[i].transmit = false;
165 controller->rx[i].index = i;
166 }
167
168 /* setup BD list on a per channel basis */
169 for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
170 cppi_pool_init(controller, controller->tx + i);
171 for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
172 cppi_pool_init(controller, controller->rx + i);
173
174 tibase = controller->tibase;
175 INIT_LIST_HEAD(&controller->tx_complete);
176
177 /* initialise tx/rx channel head pointers to zero */
178 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
179 struct cppi_channel *tx_ch = controller->tx + i;
180 struct cppi_tx_stateram __iomem *tx;
181
182 INIT_LIST_HEAD(&tx_ch->tx_complete);
183
184 tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
185 tx_ch->state_ram = tx;
186 cppi_reset_tx(tx, 0);
187 }
188 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
189 struct cppi_channel *rx_ch = controller->rx + i;
190 struct cppi_rx_stateram __iomem *rx;
191
192 INIT_LIST_HEAD(&rx_ch->tx_complete);
193
194 rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
195 rx_ch->state_ram = rx;
196 cppi_reset_rx(rx);
197 }
198
199 /* enable individual cppi channels */
200 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
201 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
202 musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
203 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
204
205 /* enable tx/rx CPPI control */
206 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
207 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
208
209 /* disable RNDIS mode, also host rx RNDIS autorequest */
210 musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
211 musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
212
213 return 0;
214}
215
216/*
217 * Stop DMA controller
218 *
219 * De-Init the DMA controller as necessary.
220 */
221
222static int cppi_controller_stop(struct dma_controller *c)
223{
224 struct cppi *controller;
225 void __iomem *tibase;
226 int i;
227
228 controller = container_of(c, struct cppi, controller);
229
230 tibase = controller->tibase;
231 /* DISABLE INDIVIDUAL CHANNEL Interrupts */
232 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
233 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
234 musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
235 DAVINCI_DMA_ALL_CHANNELS_ENABLE);
236
237 DBG(1, "Tearing down RX and TX Channels\n");
238 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
239 /* FIXME restructure of txdma to use bds like rxdma */
240 controller->tx[i].last_processed = NULL;
241 cppi_pool_free(controller->tx + i);
242 }
243 for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
244 cppi_pool_free(controller->rx + i);
245
246 /* in Tx Case proper teardown is supported. We resort to disabling
247 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
248 * complete TX CPPI cannot be disabled.
249 */
250 /*disable tx/rx cppi */
251 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
252 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
253
254 return 0;
255}
256
257/* While dma channel is allocated, we only want the core irqs active
258 * for fault reports, otherwise we'd get irqs that we don't care about.
259 * Except for TX irqs, where dma done != fifo empty and reusable ...
260 *
261 * NOTE: docs don't say either way, but irq masking **enables** irqs.
262 *
263 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
264 */
265static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
266{
267 musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
268}
269
270static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
271{
272 musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
273}
274
275
276/*
277 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to
278 * each transfer direction of a non-control endpoint, so allocating
279 * (and deallocating) is mostly a way to notice bad housekeeping on
280 * the software side. We assume the irqs are always active.
281 */
282static struct dma_channel *
283cppi_channel_allocate(struct dma_controller *c,
284 struct musb_hw_ep *ep, u8 transmit)
285{
286 struct cppi *controller;
287 u8 index;
288 struct cppi_channel *cppi_ch;
289 void __iomem *tibase;
290
291 controller = container_of(c, struct cppi, controller);
292 tibase = controller->tibase;
293
294 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
295 index = ep->epnum - 1;
296
297 /* return the corresponding CPPI Channel Handle, and
298 * probably disable the non-CPPI irq until we need it.
299 */
300 if (transmit) {
301 if (index >= ARRAY_SIZE(controller->tx)) {
302 DBG(1, "no %cX%d CPPI channel\n", 'T', index);
303 return NULL;
304 }
305 cppi_ch = controller->tx + index;
306 } else {
307 if (index >= ARRAY_SIZE(controller->rx)) {
308 DBG(1, "no %cX%d CPPI channel\n", 'R', index);
309 return NULL;
310 }
311 cppi_ch = controller->rx + index;
312 core_rxirq_disable(tibase, ep->epnum);
313 }
314
315 /* REVISIT make this an error later once the same driver code works
316 * with the other DMA engine too
317 */
318 if (cppi_ch->hw_ep)
319 DBG(1, "re-allocating DMA%d %cX channel %p\n",
320 index, transmit ? 'T' : 'R', cppi_ch);
321 cppi_ch->hw_ep = ep;
322 cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
323
324 DBG(4, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
325 return &cppi_ch->channel;
326}
327
328/* Release a CPPI Channel. */
329static void cppi_channel_release(struct dma_channel *channel)
330{
331 struct cppi_channel *c;
332 void __iomem *tibase;
333
334 /* REVISIT: for paranoia, check state and abort if needed... */
335
336 c = container_of(channel, struct cppi_channel, channel);
337 tibase = c->controller->tibase;
338 if (!c->hw_ep)
339 DBG(1, "releasing idle DMA channel %p\n", c);
340 else if (!c->transmit)
341 core_rxirq_enable(tibase, c->index + 1);
342
343 /* for now, leave its cppi IRQ enabled (we won't trigger it) */
344 c->hw_ep = NULL;
345 channel->status = MUSB_DMA_STATUS_UNKNOWN;
346}
347
348/* Context: controller irqlocked */
349static void
350cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
351{
352 void __iomem *base = c->controller->mregs;
353 struct cppi_rx_stateram __iomem *rx = c->state_ram;
354
355 musb_ep_select(base, c->index + 1);
356
357 DBG(level, "RX DMA%d%s: %d left, csr %04x, "
358 "%08x H%08x S%08x C%08x, "
359 "B%08x L%08x %08x .. %08x"
360 "\n",
361 c->index, tag,
362 musb_readl(c->controller->tibase,
363 DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
364 musb_readw(c->hw_ep->regs, MUSB_RXCSR),
365
366 musb_readl(&rx->rx_skipbytes, 0),
367 musb_readl(&rx->rx_head, 0),
368 musb_readl(&rx->rx_sop, 0),
369 musb_readl(&rx->rx_current, 0),
370
371 musb_readl(&rx->rx_buf_current, 0),
372 musb_readl(&rx->rx_len_len, 0),
373 musb_readl(&rx->rx_cnt_cnt, 0),
374 musb_readl(&rx->rx_complete, 0)
375 );
376}
377
378/* Context: controller irqlocked */
379static void
380cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
381{
382 void __iomem *base = c->controller->mregs;
383 struct cppi_tx_stateram __iomem *tx = c->state_ram;
384
385 musb_ep_select(base, c->index + 1);
386
387 DBG(level, "TX DMA%d%s: csr %04x, "
388 "H%08x S%08x C%08x %08x, "
389 "F%08x L%08x .. %08x"
390 "\n",
391 c->index, tag,
392 musb_readw(c->hw_ep->regs, MUSB_TXCSR),
393
394 musb_readl(&tx->tx_head, 0),
395 musb_readl(&tx->tx_buf, 0),
396 musb_readl(&tx->tx_current, 0),
397 musb_readl(&tx->tx_buf_current, 0),
398
399 musb_readl(&tx->tx_info, 0),
400 musb_readl(&tx->tx_rem_len, 0),
401 /* dummy/unused word 6 */
402 musb_readl(&tx->tx_complete, 0)
403 );
404}
405
406/* Context: controller irqlocked */
407static inline void
408cppi_rndis_update(struct cppi_channel *c, int is_rx,
409 void __iomem *tibase, int is_rndis)
410{
411 /* we may need to change the rndis flag for this cppi channel */
412 if (c->is_rndis != is_rndis) {
413 u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG);
414 u32 temp = 1 << (c->index);
415
416 if (is_rx)
417 temp <<= 16;
418 if (is_rndis)
419 value |= temp;
420 else
421 value &= ~temp;
422 musb_writel(tibase, DAVINCI_RNDIS_REG, value);
423 c->is_rndis = is_rndis;
424 }
425}
426
704a1485 427#ifdef CONFIG_USB_MUSB_DEBUG
550a7375
FB
428static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
429{
430 pr_debug("RXBD/%s %08x: "
431 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
432 tag, bd->dma,
433 bd->hw_next, bd->hw_bufp, bd->hw_off_len,
434 bd->hw_options);
435}
704a1485 436#endif
550a7375
FB
437
438static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
439{
704a1485 440#ifdef CONFIG_USB_MUSB_DEBUG
550a7375
FB
441 struct cppi_descriptor *bd;
442
443 if (!_dbg_level(level))
444 return;
445 cppi_dump_rx(level, rx, tag);
446 if (rx->last_processed)
447 cppi_dump_rxbd("last", rx->last_processed);
448 for (bd = rx->head; bd; bd = bd->next)
449 cppi_dump_rxbd("active", bd);
450#endif
451}
452
453
454/* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
455 * so we won't ever use it (see "CPPI RX Woes" below).
456 */
457static inline int cppi_autoreq_update(struct cppi_channel *rx,
458 void __iomem *tibase, int onepacket, unsigned n_bds)
459{
460 u32 val;
461
462#ifdef RNDIS_RX_IS_USABLE
463 u32 tmp;
464 /* assert(is_host_active(musb)) */
465
466 /* start from "AutoReq never" */
467 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
468 val = tmp & ~((0x3) << (rx->index * 2));
469
470 /* HCD arranged reqpkt for packet #1. we arrange int
471 * for all but the last one, maybe in two segments.
472 */
473 if (!onepacket) {
474#if 0
475 /* use two segments, autoreq "all" then the last "never" */
476 val |= ((0x3) << (rx->index * 2));
477 n_bds--;
478#else
479 /* one segment, autoreq "all-but-last" */
480 val |= ((0x1) << (rx->index * 2));
481#endif
482 }
483
484 if (val != tmp) {
485 int n = 100;
486
487 /* make sure that autoreq is updated before continuing */
488 musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
489 do {
490 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
491 if (tmp == val)
492 break;
493 cpu_relax();
494 } while (n-- > 0);
495 }
496#endif
497
498 /* REQPKT is turned off after each segment */
499 if (n_bds && rx->channel.actual_len) {
500 void __iomem *regs = rx->hw_ep->regs;
501
502 val = musb_readw(regs, MUSB_RXCSR);
503 if (!(val & MUSB_RXCSR_H_REQPKT)) {
504 val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
505 musb_writew(regs, MUSB_RXCSR, val);
506 /* flush writebufer */
507 val = musb_readw(regs, MUSB_RXCSR);
508 }
509 }
510 return n_bds;
511}
512
513
514/* Buffer enqueuing Logic:
515 *
516 * - RX builds new queues each time, to help handle routine "early
517 * termination" cases (faults, including errors and short reads)
518 * more correctly.
519 *
520 * - for now, TX reuses the same queue of BDs every time
521 *
522 * REVISIT long term, we want a normal dynamic model.
523 * ... the goal will be to append to the
524 * existing queue, processing completed "dma buffers" (segments) on the fly.
525 *
526 * Otherwise we force an IRQ latency between requests, which slows us a lot
527 * (especially in "transparent" dma). Unfortunately that model seems to be
528 * inherent in the DMA model from the Mentor code, except in the rare case
529 * of transfers big enough (~128+ KB) that we could append "middle" segments
530 * in the TX paths. (RX can't do this, see below.)
531 *
532 * That's true even in the CPPI- friendly iso case, where most urbs have
533 * several small segments provided in a group and where the "packet at a time"
534 * "transparent" DMA model is always correct, even on the RX side.
535 */
536
537/*
538 * CPPI TX:
539 * ========
540 * TX is a lot more reasonable than RX; it doesn't need to run in
541 * irq-per-packet mode very often. RNDIS mode seems to behave too
542 * (except how it handles the exactly-N-packets case). Building a
543 * txdma queue with multiple requests (urb or usb_request) looks
544 * like it would work ... but fault handling would need much testing.
545 *
546 * The main issue with TX mode RNDIS relates to transfer lengths that
547 * are an exact multiple of the packet length. It appears that there's
548 * a hiccup in that case (maybe the DMA completes before the ZLP gets
549 * written?) boiling down to not being able to rely on CPPI writing any
550 * terminating zero length packet before the next transfer is written.
551 * So that's punted to PIO; better yet, gadget drivers can avoid it.
552 *
553 * Plus, there's allegedly an undocumented constraint that rndis transfer
554 * length be a multiple of 64 bytes ... but the chip doesn't act that
555 * way, and we really don't _want_ that behavior anyway.
556 *
557 * On TX, "transparent" mode works ... although experiments have shown
558 * problems trying to use the SOP/EOP bits in different USB packets.
559 *
560 * REVISIT try to handle terminating zero length packets using CPPI
561 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet
562 * links avoid that issue by forcing them to avoid zlps.)
563 */
564static void
565cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
566{
567 unsigned maxpacket = tx->maxpacket;
568 dma_addr_t addr = tx->buf_dma + tx->offset;
569 size_t length = tx->buf_len - tx->offset;
570 struct cppi_descriptor *bd;
571 unsigned n_bds;
572 unsigned i;
573 struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram;
574 int rndis;
575
576 /* TX can use the CPPI "rndis" mode, where we can probably fit this
577 * transfer in one BD and one IRQ. The only time we would NOT want
578 * to use it is when hardware constraints prevent it, or if we'd
579 * trigger the "send a ZLP?" confusion.
580 */
581 rndis = (maxpacket & 0x3f) == 0
582 && length < 0xffff
583 && (length % maxpacket) != 0;
584
585 if (rndis) {
586 maxpacket = length;
587 n_bds = 1;
588 } else {
589 n_bds = length / maxpacket;
590 if (!length || (length % maxpacket))
591 n_bds++;
592 n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
593 length = min(n_bds * maxpacket, length);
594 }
595
596 DBG(4, "TX DMA%d, pktSz %d %s bds %d dma 0x%x len %u\n",
597 tx->index,
598 maxpacket,
599 rndis ? "rndis" : "transparent",
600 n_bds,
601 addr, length);
602
603 cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
604
605 /* assuming here that channel_program is called during
606 * transfer initiation ... current code maintains state
607 * for one outstanding request only (no queues, not even
608 * the implicit ones of an iso urb).
609 */
610
611 bd = tx->freelist;
612 tx->head = bd;
613 tx->last_processed = NULL;
614
615 /* FIXME use BD pool like RX side does, and just queue
616 * the minimum number for this request.
617 */
618
619 /* Prepare queue of BDs first, then hand it to hardware.
620 * All BDs except maybe the last should be of full packet
621 * size; for RNDIS there _is_ only that last packet.
622 */
623 for (i = 0; i < n_bds; ) {
624 if (++i < n_bds && bd->next)
625 bd->hw_next = bd->next->dma;
626 else
627 bd->hw_next = 0;
628
629 bd->hw_bufp = tx->buf_dma + tx->offset;
630
631 /* FIXME set EOP only on the last packet,
632 * SOP only on the first ... avoid IRQs
633 */
634 if ((tx->offset + maxpacket) <= tx->buf_len) {
635 tx->offset += maxpacket;
636 bd->hw_off_len = maxpacket;
637 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
638 | CPPI_OWN_SET | maxpacket;
639 } else {
640 /* only this one may be a partial USB Packet */
641 u32 partial_len;
642
643 partial_len = tx->buf_len - tx->offset;
644 tx->offset = tx->buf_len;
645 bd->hw_off_len = partial_len;
646
647 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
648 | CPPI_OWN_SET | partial_len;
649 if (partial_len == 0)
650 bd->hw_options |= CPPI_ZERO_SET;
651 }
652
653 DBG(5, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
654 bd, bd->hw_next, bd->hw_bufp,
655 bd->hw_off_len, bd->hw_options);
656
657 /* update the last BD enqueued to the list */
658 tx->tail = bd;
659 bd = bd->next;
660 }
661
662 /* BDs live in DMA-coherent memory, but writes might be pending */
663 cpu_drain_writebuffer();
664
665 /* Write to the HeadPtr in state RAM to trigger */
666 musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
667
668 cppi_dump_tx(5, tx, "/S");
669}
670
671/*
672 * CPPI RX Woes:
673 * =============
674 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte
675 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
676 * (Full speed transfers have similar scenarios.)
677 *
678 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
679 * and the next packet goes into a buffer that's queued later; while (b) fills
680 * the buffer with 1024 bytes. How to do that with CPPI?
681 *
682 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
683 * (b) loses **BADLY** because nothing (!) happens when that second packet
684 * fills the buffer, much less when a third one arrives. (Which makes this
685 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination
686 * is optional, and it's fine if peripherals -- not hosts! -- pad messages
687 * out to end-of-buffer. Standard PCI host controller DMA descriptors
688 * implement that mode by default ... which is no accident.)
689 *
690 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
691 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX
692 * ignores SOP/EOP markings and processes both of those BDs; so both packets
693 * are loaded into the buffer (with a 212 byte gap between them), and the next
694 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
695 * are intended as outputs for RX queues, not inputs...)
696 *
697 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
698 * reliably make both cases work, with software handling both cases correctly
699 * and at the significant penalty of needing an IRQ per packet. (The lack of
700 * I/O overlap can be slightly ameliorated by enabling double buffering.)
701 *
702 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could
703 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
704 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
705 * with guaranteed driver level fault recovery and scrubbing out what's left
706 * of that garbaged datastream.
707 *
708 * But there seems to be no way to identify the cases where CPPI RNDIS mode
709 * is appropriate -- which do NOT include RNDIS host drivers, but do include
710 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
711 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
712 * that applies best on the peripheral side (and which could fail rudely).
713 *
714 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
715 * cases other than mass storage class. Otherwise we're correct but slow,
716 * since CPPI penalizes our need for a "true RNDIS" default mode.
717 */
718
719
720/* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
721 *
722 * IFF
723 * (a) peripheral mode ... since rndis peripherals could pad their
724 * writes to hosts, causing i/o failure; or we'd have to cope with
725 * a largely unknowable variety of host side protocol variants
726 * (b) and short reads are NOT errors ... since full reads would
727 * cause those same i/o failures
728 * (c) and read length is
729 * - less than 64KB (max per cppi descriptor)
730 * - not a multiple of 4096 (g_zero default, full reads typical)
731 * - N (>1) packets long, ditto (full reads not EXPECTED)
732 * THEN
733 * try rx rndis mode
734 *
735 * Cost of heuristic failing: RXDMA wedges at the end of transfers that
736 * fill out the whole buffer. Buggy host side usb network drivers could
737 * trigger that, but "in the field" such bugs seem to be all but unknown.
738 *
739 * So this module parameter lets the heuristic be disabled. When using
740 * gadgetfs, the heuristic will probably need to be disabled.
741 */
742static int cppi_rx_rndis = 1;
743
744module_param(cppi_rx_rndis, bool, 0);
745MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
746
747
748/**
749 * cppi_next_rx_segment - dma read for the next chunk of a buffer
750 * @musb: the controller
751 * @rx: dma channel
752 * @onepacket: true unless caller treats short reads as errors, and
753 * performs fault recovery above usbcore.
754 * Context: controller irqlocked
755 *
756 * See above notes about why we can't use multi-BD RX queues except in
757 * rare cases (mass storage class), and can never use the hardware "rndis"
758 * mode (since it's not a "true" RNDIS mode) with complete safety..
759 *
760 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
761 * code to recover from corrupted datastreams after each short transfer.
762 */
763static void
764cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
765{
766 unsigned maxpacket = rx->maxpacket;
767 dma_addr_t addr = rx->buf_dma + rx->offset;
768 size_t length = rx->buf_len - rx->offset;
769 struct cppi_descriptor *bd, *tail;
770 unsigned n_bds;
771 unsigned i;
772 void __iomem *tibase = musb->ctrl_base;
773 int is_rndis = 0;
774 struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram;
775
776 if (onepacket) {
777 /* almost every USB driver, host or peripheral side */
778 n_bds = 1;
779
780 /* maybe apply the heuristic above */
781 if (cppi_rx_rndis
782 && is_peripheral_active(musb)
783 && length > maxpacket
784 && (length & ~0xffff) == 0
785 && (length & 0x0fff) != 0
786 && (length & (maxpacket - 1)) == 0) {
787 maxpacket = length;
788 is_rndis = 1;
789 }
790 } else {
791 /* virtually nothing except mass storage class */
792 if (length > 0xffff) {
793 n_bds = 0xffff / maxpacket;
794 length = n_bds * maxpacket;
795 } else {
796 n_bds = length / maxpacket;
797 if (length % maxpacket)
798 n_bds++;
799 }
800 if (n_bds == 1)
801 onepacket = 1;
802 else
803 n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
804 }
805
806 /* In host mode, autorequest logic can generate some IN tokens; it's
807 * tricky since we can't leave REQPKT set in RXCSR after the transfer
808 * finishes. So: multipacket transfers involve two or more segments.
809 * And always at least two IRQs ... RNDIS mode is not an option.
810 */
811 if (is_host_active(musb))
812 n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
813
814 cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
815
816 length = min(n_bds * maxpacket, length);
817
818 DBG(4, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
819 "dma 0x%x len %u %u/%u\n",
820 rx->index, maxpacket,
821 onepacket
822 ? (is_rndis ? "rndis" : "onepacket")
823 : "multipacket",
824 n_bds,
825 musb_readl(tibase,
826 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
827 & 0xffff,
828 addr, length, rx->channel.actual_len, rx->buf_len);
829
830 /* only queue one segment at a time, since the hardware prevents
831 * correct queue shutdown after unexpected short packets
832 */
833 bd = cppi_bd_alloc(rx);
834 rx->head = bd;
835
836 /* Build BDs for all packets in this segment */
837 for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
838 u32 bd_len;
839
840 if (i) {
841 bd = cppi_bd_alloc(rx);
842 if (!bd)
843 break;
844 tail->next = bd;
845 tail->hw_next = bd->dma;
846 }
847 bd->hw_next = 0;
848
849 /* all but the last packet will be maxpacket size */
850 if (maxpacket < length)
851 bd_len = maxpacket;
852 else
853 bd_len = length;
854
855 bd->hw_bufp = addr;
856 addr += bd_len;
857 rx->offset += bd_len;
858
859 bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
860 bd->buflen = bd_len;
861
862 bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
863 length -= bd_len;
864 }
865
866 /* we always expect at least one reusable BD! */
867 if (!tail) {
868 WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
869 return;
870 } else if (i < n_bds)
871 WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
872
873 tail->next = NULL;
874 tail->hw_next = 0;
875
876 bd = rx->head;
877 rx->tail = tail;
878
879 /* short reads and other faults should terminate this entire
880 * dma segment. we want one "dma packet" per dma segment, not
881 * one per USB packet, terminating the whole queue at once...
882 * NOTE that current hardware seems to ignore SOP and EOP.
883 */
884 bd->hw_options |= CPPI_SOP_SET;
885 tail->hw_options |= CPPI_EOP_SET;
886
704a1485
HV
887#ifdef CONFIG_USB_MUSB_DEBUG
888 if (_dbg_level(5)) {
550a7375
FB
889 struct cppi_descriptor *d;
890
891 for (d = rx->head; d; d = d->next)
892 cppi_dump_rxbd("S", d);
893 }
704a1485 894#endif
550a7375
FB
895
896 /* in case the preceding transfer left some state... */
897 tail = rx->last_processed;
898 if (tail) {
899 tail->next = bd;
900 tail->hw_next = bd->dma;
901 }
902
903 core_rxirq_enable(tibase, rx->index + 1);
904
905 /* BDs live in DMA-coherent memory, but writes might be pending */
906 cpu_drain_writebuffer();
907
908 /* REVISIT specs say to write this AFTER the BUFCNT register
909 * below ... but that loses badly.
910 */
911 musb_writel(&rx_ram->rx_head, 0, bd->dma);
912
913 /* bufferCount must be at least 3, and zeroes on completion
914 * unless it underflows below zero, or stops at two, or keeps
915 * growing ... grr.
916 */
917 i = musb_readl(tibase,
918 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
919 & 0xffff;
920
921 if (!i)
922 musb_writel(tibase,
923 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
924 n_bds + 2);
925 else if (n_bds > (i - 3))
926 musb_writel(tibase,
927 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
928 n_bds - (i - 3));
929
930 i = musb_readl(tibase,
931 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
932 & 0xffff;
933 if (i < (2 + n_bds)) {
934 DBG(2, "bufcnt%d underrun - %d (for %d)\n",
935 rx->index, i, n_bds);
936 musb_writel(tibase,
937 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
938 n_bds + 2);
939 }
940
941 cppi_dump_rx(4, rx, "/S");
942}
943
944/**
945 * cppi_channel_program - program channel for data transfer
946 * @ch: the channel
947 * @maxpacket: max packet size
948 * @mode: For RX, 1 unless the usb protocol driver promised to treat
949 * all short reads as errors and kick in high level fault recovery.
950 * For TX, ignored because of RNDIS mode races/glitches.
951 * @dma_addr: dma address of buffer
952 * @len: length of buffer
953 * Context: controller irqlocked
954 */
955static int cppi_channel_program(struct dma_channel *ch,
956 u16 maxpacket, u8 mode,
957 dma_addr_t dma_addr, u32 len)
958{
959 struct cppi_channel *cppi_ch;
960 struct cppi *controller;
961 struct musb *musb;
962
963 cppi_ch = container_of(ch, struct cppi_channel, channel);
964 controller = cppi_ch->controller;
965 musb = controller->musb;
966
967 switch (ch->status) {
968 case MUSB_DMA_STATUS_BUS_ABORT:
969 case MUSB_DMA_STATUS_CORE_ABORT:
970 /* fault irq handler should have handled cleanup */
971 WARNING("%cX DMA%d not cleaned up after abort!\n",
972 cppi_ch->transmit ? 'T' : 'R',
973 cppi_ch->index);
974 /* WARN_ON(1); */
975 break;
976 case MUSB_DMA_STATUS_BUSY:
977 WARNING("program active channel? %cX DMA%d\n",
978 cppi_ch->transmit ? 'T' : 'R',
979 cppi_ch->index);
980 /* WARN_ON(1); */
981 break;
982 case MUSB_DMA_STATUS_UNKNOWN:
983 DBG(1, "%cX DMA%d not allocated!\n",
984 cppi_ch->transmit ? 'T' : 'R',
985 cppi_ch->index);
986 /* FALLTHROUGH */
987 case MUSB_DMA_STATUS_FREE:
988 break;
989 }
990
991 ch->status = MUSB_DMA_STATUS_BUSY;
992
993 /* set transfer parameters, then queue up its first segment */
994 cppi_ch->buf_dma = dma_addr;
995 cppi_ch->offset = 0;
996 cppi_ch->maxpacket = maxpacket;
997 cppi_ch->buf_len = len;
998
999 /* TX channel? or RX? */
1000 if (cppi_ch->transmit)
1001 cppi_next_tx_segment(musb, cppi_ch);
1002 else
1003 cppi_next_rx_segment(musb, cppi_ch, mode);
1004
1005 return true;
1006}
1007
1008static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1009{
1010 struct cppi_channel *rx = &cppi->rx[ch];
1011 struct cppi_rx_stateram __iomem *state = rx->state_ram;
1012 struct cppi_descriptor *bd;
1013 struct cppi_descriptor *last = rx->last_processed;
1014 bool completed = false;
1015 bool acked = false;
1016 int i;
1017 dma_addr_t safe2ack;
1018 void __iomem *regs = rx->hw_ep->regs;
1019
1020 cppi_dump_rx(6, rx, "/K");
1021
1022 bd = last ? last->next : rx->head;
1023 if (!bd)
1024 return false;
1025
1026 /* run through all completed BDs */
1027 for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1028 (safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1029 i++, bd = bd->next) {
1030 u16 len;
1031
1032 /* catch latest BD writes from CPPI */
1033 rmb();
1034 if (!completed && (bd->hw_options & CPPI_OWN_SET))
1035 break;
1036
1037 DBG(5, "C/RXBD %08x: nxt %08x buf %08x "
1038 "off.len %08x opt.len %08x (%d)\n",
1039 bd->dma, bd->hw_next, bd->hw_bufp,
1040 bd->hw_off_len, bd->hw_options,
1041 rx->channel.actual_len);
1042
1043 /* actual packet received length */
1044 if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1045 len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1046 else
1047 len = 0;
1048
1049 if (bd->hw_options & CPPI_EOQ_MASK)
1050 completed = true;
1051
1052 if (!completed && len < bd->buflen) {
1053 /* NOTE: when we get a short packet, RXCSR_H_REQPKT
1054 * must have been cleared, and no more DMA packets may
1055 * active be in the queue... TI docs didn't say, but
1056 * CPPI ignores those BDs even though OWN is still set.
1057 */
1058 completed = true;
1059 DBG(3, "rx short %d/%d (%d)\n",
1060 len, bd->buflen,
1061 rx->channel.actual_len);
1062 }
1063
1064 /* If we got here, we expect to ack at least one BD; meanwhile
1065 * CPPI may completing other BDs while we scan this list...
1066 *
1067 * RACE: we can notice OWN cleared before CPPI raises the
1068 * matching irq by writing that BD as the completion pointer.
1069 * In such cases, stop scanning and wait for the irq, avoiding
1070 * lost acks and states where BD ownership is unclear.
1071 */
1072 if (bd->dma == safe2ack) {
1073 musb_writel(&state->rx_complete, 0, safe2ack);
1074 safe2ack = musb_readl(&state->rx_complete, 0);
1075 acked = true;
1076 if (bd->dma == safe2ack)
1077 safe2ack = 0;
1078 }
1079
1080 rx->channel.actual_len += len;
1081
1082 cppi_bd_free(rx, last);
1083 last = bd;
1084
1085 /* stop scanning on end-of-segment */
1086 if (bd->hw_next == 0)
1087 completed = true;
1088 }
1089 rx->last_processed = last;
1090
1091 /* dma abort, lost ack, or ... */
1092 if (!acked && last) {
1093 int csr;
1094
1095 if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1096 musb_writel(&state->rx_complete, 0, safe2ack);
1097 if (safe2ack == 0) {
1098 cppi_bd_free(rx, last);
1099 rx->last_processed = NULL;
1100
1101 /* if we land here on the host side, H_REQPKT will
1102 * be clear and we need to restart the queue...
1103 */
1104 WARN_ON(rx->head);
1105 }
1106 musb_ep_select(cppi->mregs, rx->index + 1);
1107 csr = musb_readw(regs, MUSB_RXCSR);
1108 if (csr & MUSB_RXCSR_DMAENAB) {
1109 DBG(4, "list%d %p/%p, last %08x%s, csr %04x\n",
1110 rx->index,
1111 rx->head, rx->tail,
1112 rx->last_processed
1113 ? rx->last_processed->dma
1114 : 0,
1115 completed ? ", completed" : "",
1116 csr);
1117 cppi_dump_rxq(4, "/what?", rx);
1118 }
1119 }
1120 if (!completed) {
1121 int csr;
1122
1123 rx->head = bd;
1124
1125 /* REVISIT seems like "autoreq all but EOP" doesn't...
1126 * setting it here "should" be racey, but seems to work
1127 */
1128 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1129 if (is_host_active(cppi->musb)
1130 && bd
1131 && !(csr & MUSB_RXCSR_H_REQPKT)) {
1132 csr |= MUSB_RXCSR_H_REQPKT;
1133 musb_writew(regs, MUSB_RXCSR,
1134 MUSB_RXCSR_H_WZC_BITS | csr);
1135 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1136 }
1137 } else {
1138 rx->head = NULL;
1139 rx->tail = NULL;
1140 }
1141
1142 cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1143 return completed;
1144}
1145
1146void cppi_completion(struct musb *musb, u32 rx, u32 tx)
1147{
1148 void __iomem *tibase;
1149 int i, index;
1150 struct cppi *cppi;
1151 struct musb_hw_ep *hw_ep = NULL;
1152
1153 cppi = container_of(musb->dma_controller, struct cppi, controller);
1154
1155 tibase = musb->ctrl_base;
1156
1157 /* process TX channels */
1158 for (index = 0; tx; tx = tx >> 1, index++) {
1159 struct cppi_channel *tx_ch;
1160 struct cppi_tx_stateram __iomem *tx_ram;
1161 bool completed = false;
1162 struct cppi_descriptor *bd;
1163
1164 if (!(tx & 1))
1165 continue;
1166
1167 tx_ch = cppi->tx + index;
1168 tx_ram = tx_ch->state_ram;
1169
1170 /* FIXME need a cppi_tx_scan() routine, which
1171 * can also be called from abort code
1172 */
1173
1174 cppi_dump_tx(5, tx_ch, "/E");
1175
1176 bd = tx_ch->head;
1177
1178 if (NULL == bd) {
1179 DBG(1, "null BD\n");
1180 continue;
1181 }
1182
1183 /* run through all completed BDs */
1184 for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1185 i++, bd = bd->next) {
1186 u16 len;
1187
1188 /* catch latest BD writes from CPPI */
1189 rmb();
1190 if (bd->hw_options & CPPI_OWN_SET)
1191 break;
1192
1193 DBG(5, "C/TXBD %p n %x b %x off %x opt %x\n",
1194 bd, bd->hw_next, bd->hw_bufp,
1195 bd->hw_off_len, bd->hw_options);
1196
1197 len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1198 tx_ch->channel.actual_len += len;
1199
1200 tx_ch->last_processed = bd;
1201
1202 /* write completion register to acknowledge
1203 * processing of completed BDs, and possibly
1204 * release the IRQ; EOQ might not be set ...
1205 *
1206 * REVISIT use the same ack strategy as rx
1207 *
1208 * REVISIT have observed bit 18 set; huh??
1209 */
1210 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1211 musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1212
1213 /* stop scanning on end-of-segment */
1214 if (bd->hw_next == 0)
1215 completed = true;
1216 }
1217
1218 /* on end of segment, maybe go to next one */
1219 if (completed) {
1220 /* cppi_dump_tx(4, tx_ch, "/complete"); */
1221
1222 /* transfer more, or report completion */
1223 if (tx_ch->offset >= tx_ch->buf_len) {
1224 tx_ch->head = NULL;
1225 tx_ch->tail = NULL;
1226 tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1227
1228 hw_ep = tx_ch->hw_ep;
1229
1230 /* Peripheral role never repurposes the
1231 * endpoint, so immediate completion is
1232 * safe. Host role waits for the fifo
1233 * to empty (TXPKTRDY irq) before going
1234 * to the next queued bulk transfer.
1235 */
1236 if (is_host_active(cppi->musb)) {
1237#if 0
1238 /* WORKAROUND because we may
1239 * not always get TXKPTRDY ...
1240 */
1241 int csr;
1242
1243 csr = musb_readw(hw_ep->regs,
1244 MUSB_TXCSR);
1245 if (csr & MUSB_TXCSR_TXPKTRDY)
1246#endif
1247 completed = false;
1248 }
1249 if (completed)
1250 musb_dma_completion(musb, index + 1, 1);
1251
1252 } else {
1253 /* Bigger transfer than we could fit in
1254 * that first batch of descriptors...
1255 */
1256 cppi_next_tx_segment(musb, tx_ch);
1257 }
1258 } else
1259 tx_ch->head = bd;
1260 }
1261
1262 /* Start processing the RX block */
1263 for (index = 0; rx; rx = rx >> 1, index++) {
1264
1265 if (rx & 1) {
1266 struct cppi_channel *rx_ch;
1267
1268 rx_ch = cppi->rx + index;
1269
1270 /* let incomplete dma segments finish */
1271 if (!cppi_rx_scan(cppi, index))
1272 continue;
1273
1274 /* start another dma segment if needed */
1275 if (rx_ch->channel.actual_len != rx_ch->buf_len
1276 && rx_ch->channel.actual_len
1277 == rx_ch->offset) {
1278 cppi_next_rx_segment(musb, rx_ch, 1);
1279 continue;
1280 }
1281
1282 /* all segments completed! */
1283 rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1284
1285 hw_ep = rx_ch->hw_ep;
1286
1287 core_rxirq_disable(tibase, index + 1);
1288 musb_dma_completion(musb, index + 1, 0);
1289 }
1290 }
1291
1292 /* write to CPPI EOI register to re-enable interrupts */
1293 musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1294}
1295
1296/* Instantiate a software object representing a DMA controller. */
1297struct dma_controller *__init
1298dma_controller_create(struct musb *musb, void __iomem *mregs)
1299{
1300 struct cppi *controller;
1301
1302 controller = kzalloc(sizeof *controller, GFP_KERNEL);
1303 if (!controller)
1304 return NULL;
1305
1306 controller->mregs = mregs;
1307 controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1308
1309 controller->musb = musb;
1310 controller->controller.start = cppi_controller_start;
1311 controller->controller.stop = cppi_controller_stop;
1312 controller->controller.channel_alloc = cppi_channel_allocate;
1313 controller->controller.channel_release = cppi_channel_release;
1314 controller->controller.channel_program = cppi_channel_program;
1315 controller->controller.channel_abort = cppi_channel_abort;
1316
1317 /* NOTE: allocating from on-chip SRAM would give the least
1318 * contention for memory access, if that ever matters here.
1319 */
1320
1321 /* setup BufferPool */
1322 controller->pool = dma_pool_create("cppi",
1323 controller->musb->controller,
1324 sizeof(struct cppi_descriptor),
1325 CPPI_DESCRIPTOR_ALIGN, 0);
1326 if (!controller->pool) {
1327 kfree(controller);
1328 return NULL;
1329 }
1330
1331 return &controller->controller;
1332}
1333
1334/*
1335 * Destroy a previously-instantiated DMA controller.
1336 */
1337void dma_controller_destroy(struct dma_controller *c)
1338{
1339 struct cppi *cppi;
1340
1341 cppi = container_of(c, struct cppi, controller);
1342
1343 /* assert: caller stopped the controller first */
1344 dma_pool_destroy(cppi->pool);
1345
1346 kfree(cppi);
1347}
1348
1349/*
1350 * Context: controller irqlocked, endpoint selected
1351 */
1352static int cppi_channel_abort(struct dma_channel *channel)
1353{
1354 struct cppi_channel *cppi_ch;
1355 struct cppi *controller;
1356 void __iomem *mbase;
1357 void __iomem *tibase;
1358 void __iomem *regs;
1359 u32 value;
1360 struct cppi_descriptor *queue;
1361
1362 cppi_ch = container_of(channel, struct cppi_channel, channel);
1363
1364 controller = cppi_ch->controller;
1365
1366 switch (channel->status) {
1367 case MUSB_DMA_STATUS_BUS_ABORT:
1368 case MUSB_DMA_STATUS_CORE_ABORT:
1369 /* from RX or TX fault irq handler */
1370 case MUSB_DMA_STATUS_BUSY:
1371 /* the hardware needs shutting down */
1372 regs = cppi_ch->hw_ep->regs;
1373 break;
1374 case MUSB_DMA_STATUS_UNKNOWN:
1375 case MUSB_DMA_STATUS_FREE:
1376 return 0;
1377 default:
1378 return -EINVAL;
1379 }
1380
1381 if (!cppi_ch->transmit && cppi_ch->head)
1382 cppi_dump_rxq(3, "/abort", cppi_ch);
1383
1384 mbase = controller->mregs;
1385 tibase = controller->tibase;
1386
1387 queue = cppi_ch->head;
1388 cppi_ch->head = NULL;
1389 cppi_ch->tail = NULL;
1390
1391 /* REVISIT should rely on caller having done this,
1392 * and caller should rely on us not changing it.
1393 * peripheral code is safe ... check host too.
1394 */
1395 musb_ep_select(mbase, cppi_ch->index + 1);
1396
1397 if (cppi_ch->transmit) {
1398 struct cppi_tx_stateram __iomem *tx_ram;
1399 int enabled;
1400
1401 /* mask interrupts raised to signal teardown complete. */
1402 enabled = musb_readl(tibase, DAVINCI_TXCPPI_INTENAB_REG)
1403 & (1 << cppi_ch->index);
1404 if (enabled)
1405 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
1406 (1 << cppi_ch->index));
1407
1408 /* REVISIT put timeouts on these controller handshakes */
1409
1410 cppi_dump_tx(6, cppi_ch, " (teardown)");
1411
1412 /* teardown DMA engine then usb core */
1413 do {
1414 value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1415 } while (!(value & CPPI_TEAR_READY));
1416 musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1417
1418 tx_ram = cppi_ch->state_ram;
1419 do {
1420 value = musb_readl(&tx_ram->tx_complete, 0);
1421 } while (0xFFFFFFFC != value);
1422 musb_writel(&tx_ram->tx_complete, 0, 0xFFFFFFFC);
1423
1424 /* FIXME clean up the transfer state ... here?
1425 * the completion routine should get called with
1426 * an appropriate status code.
1427 */
1428
1429 value = musb_readw(regs, MUSB_TXCSR);
1430 value &= ~MUSB_TXCSR_DMAENAB;
1431 value |= MUSB_TXCSR_FLUSHFIFO;
1432 musb_writew(regs, MUSB_TXCSR, value);
1433 musb_writew(regs, MUSB_TXCSR, value);
1434
1435 /* re-enable interrupt */
1436 if (enabled)
1437 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
1438 (1 << cppi_ch->index));
1439
1440 /* While we scrub the TX state RAM, ensure that we clean
1441 * up any interrupt that's currently asserted:
1442 * 1. Write to completion Ptr value 0x1(bit 0 set)
1443 * (write back mode)
1444 * 2. Write to completion Ptr value 0x0(bit 0 cleared)
1445 * (compare mode)
1446 * Value written is compared(for bits 31:2) and when
1447 * equal, interrupt is deasserted.
1448 */
1449 cppi_reset_tx(tx_ram, 1);
1450 musb_writel(&tx_ram->tx_complete, 0, 0);
1451
1452 cppi_dump_tx(5, cppi_ch, " (done teardown)");
1453
1454 /* REVISIT tx side _should_ clean up the same way
1455 * as the RX side ... this does no cleanup at all!
1456 */
1457
1458 } else /* RX */ {
1459 u16 csr;
1460
1461 /* NOTE: docs don't guarantee any of this works ... we
1462 * expect that if the usb core stops telling the cppi core
1463 * to pull more data from it, then it'll be safe to flush
1464 * current RX DMA state iff any pending fifo transfer is done.
1465 */
1466
1467 core_rxirq_disable(tibase, cppi_ch->index + 1);
1468
1469 /* for host, ensure ReqPkt is never set again */
1470 if (is_host_active(cppi_ch->controller->musb)) {
1471 value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1472 value &= ~((0x3) << (cppi_ch->index * 2));
1473 musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1474 }
1475
1476 csr = musb_readw(regs, MUSB_RXCSR);
1477
1478 /* for host, clear (just) ReqPkt at end of current packet(s) */
1479 if (is_host_active(cppi_ch->controller->musb)) {
1480 csr |= MUSB_RXCSR_H_WZC_BITS;
1481 csr &= ~MUSB_RXCSR_H_REQPKT;
1482 } else
1483 csr |= MUSB_RXCSR_P_WZC_BITS;
1484
1485 /* clear dma enable */
1486 csr &= ~(MUSB_RXCSR_DMAENAB);
1487 musb_writew(regs, MUSB_RXCSR, csr);
1488 csr = musb_readw(regs, MUSB_RXCSR);
1489
1490 /* Quiesce: wait for current dma to finish (if not cleanup).
1491 * We can't use bit zero of stateram->rx_sop, since that
1492 * refers to an entire "DMA packet" not just emptying the
1493 * current fifo. Most segments need multiple usb packets.
1494 */
1495 if (channel->status == MUSB_DMA_STATUS_BUSY)
1496 udelay(50);
1497
1498 /* scan the current list, reporting any data that was
1499 * transferred and acking any IRQ
1500 */
1501 cppi_rx_scan(controller, cppi_ch->index);
1502
1503 /* clobber the existing state once it's idle
1504 *
1505 * NOTE: arguably, we should also wait for all the other
1506 * RX channels to quiesce (how??) and then temporarily
1507 * disable RXCPPI_CTRL_REG ... but it seems that we can
1508 * rely on the controller restarting from state ram, with
1509 * only RXCPPI_BUFCNT state being bogus. BUFCNT will
1510 * correct itself after the next DMA transfer though.
1511 *
1512 * REVISIT does using rndis mode change that?
1513 */
1514 cppi_reset_rx(cppi_ch->state_ram);
1515
1516 /* next DMA request _should_ load cppi head ptr */
1517
1518 /* ... we don't "free" that list, only mutate it in place. */
1519 cppi_dump_rx(5, cppi_ch, " (done abort)");
1520
1521 /* clean up previously pending bds */
1522 cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1523 cppi_ch->last_processed = NULL;
1524
1525 while (queue) {
1526 struct cppi_descriptor *tmp = queue->next;
1527
1528 cppi_bd_free(cppi_ch, queue);
1529 queue = tmp;
1530 }
1531 }
1532
1533 channel->status = MUSB_DMA_STATUS_FREE;
1534 cppi_ch->buf_dma = 0;
1535 cppi_ch->offset = 0;
1536 cppi_ch->buf_len = 0;
1537 cppi_ch->maxpacket = 0;
1538 return 0;
1539}
1540
1541/* TBD Queries:
1542 *
1543 * Power Management ... probably turn off cppi during suspend, restart;
1544 * check state ram? Clocking is presumably shared with usb core.
1545 */
This page took 0.131578 seconds and 5 git commands to generate.