Merge branch 'pm-cpufreq'
[deliverable/linux.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 struct extent_inode_elem *next;
32};
33
34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 struct btrfs_file_extent_item *fi,
36 u64 extent_item_pos,
37 struct extent_inode_elem **eie)
38{
8ca15e05 39 u64 offset = 0;
976b1908
JS
40 struct extent_inode_elem *e;
41
8ca15e05
JB
42 if (!btrfs_file_extent_compression(eb, fi) &&
43 !btrfs_file_extent_encryption(eb, fi) &&
44 !btrfs_file_extent_other_encoding(eb, fi)) {
45 u64 data_offset;
46 u64 data_len;
976b1908 47
8ca15e05
JB
48 data_offset = btrfs_file_extent_offset(eb, fi);
49 data_len = btrfs_file_extent_num_bytes(eb, fi);
50
51 if (extent_item_pos < data_offset ||
52 extent_item_pos >= data_offset + data_len)
53 return 1;
54 offset = extent_item_pos - data_offset;
55 }
976b1908
JS
56
57 e = kmalloc(sizeof(*e), GFP_NOFS);
58 if (!e)
59 return -ENOMEM;
60
61 e->next = *eie;
62 e->inum = key->objectid;
8ca15e05 63 e->offset = key->offset + offset;
976b1908
JS
64 *eie = e;
65
66 return 0;
67}
68
f05c4746
WS
69static void free_inode_elem_list(struct extent_inode_elem *eie)
70{
71 struct extent_inode_elem *eie_next;
72
73 for (; eie; eie = eie_next) {
74 eie_next = eie->next;
75 kfree(eie);
76 }
77}
78
976b1908
JS
79static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
80 u64 extent_item_pos,
81 struct extent_inode_elem **eie)
82{
83 u64 disk_byte;
84 struct btrfs_key key;
85 struct btrfs_file_extent_item *fi;
86 int slot;
87 int nritems;
88 int extent_type;
89 int ret;
90
91 /*
92 * from the shared data ref, we only have the leaf but we need
93 * the key. thus, we must look into all items and see that we
94 * find one (some) with a reference to our extent item.
95 */
96 nritems = btrfs_header_nritems(eb);
97 for (slot = 0; slot < nritems; ++slot) {
98 btrfs_item_key_to_cpu(eb, &key, slot);
99 if (key.type != BTRFS_EXTENT_DATA_KEY)
100 continue;
101 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
102 extent_type = btrfs_file_extent_type(eb, fi);
103 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
104 continue;
105 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
106 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
107 if (disk_byte != wanted_disk_byte)
108 continue;
109
110 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
111 if (ret < 0)
112 return ret;
113 }
114
115 return 0;
116}
117
8da6d581
JS
118/*
119 * this structure records all encountered refs on the way up to the root
120 */
121struct __prelim_ref {
122 struct list_head list;
123 u64 root_id;
d5c88b73 124 struct btrfs_key key_for_search;
8da6d581
JS
125 int level;
126 int count;
3301958b 127 struct extent_inode_elem *inode_list;
8da6d581
JS
128 u64 parent;
129 u64 wanted_disk_byte;
130};
131
b9e9a6cb
WS
132static struct kmem_cache *btrfs_prelim_ref_cache;
133
134int __init btrfs_prelim_ref_init(void)
135{
136 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
137 sizeof(struct __prelim_ref),
138 0,
139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
140 NULL);
141 if (!btrfs_prelim_ref_cache)
142 return -ENOMEM;
143 return 0;
144}
145
146void btrfs_prelim_ref_exit(void)
147{
148 if (btrfs_prelim_ref_cache)
149 kmem_cache_destroy(btrfs_prelim_ref_cache);
150}
151
d5c88b73
JS
152/*
153 * the rules for all callers of this function are:
154 * - obtaining the parent is the goal
155 * - if you add a key, you must know that it is a correct key
156 * - if you cannot add the parent or a correct key, then we will look into the
157 * block later to set a correct key
158 *
159 * delayed refs
160 * ============
161 * backref type | shared | indirect | shared | indirect
162 * information | tree | tree | data | data
163 * --------------------+--------+----------+--------+----------
164 * parent logical | y | - | - | -
165 * key to resolve | - | y | y | y
166 * tree block logical | - | - | - | -
167 * root for resolving | y | y | y | y
168 *
169 * - column 1: we've the parent -> done
170 * - column 2, 3, 4: we use the key to find the parent
171 *
172 * on disk refs (inline or keyed)
173 * ==============================
174 * backref type | shared | indirect | shared | indirect
175 * information | tree | tree | data | data
176 * --------------------+--------+----------+--------+----------
177 * parent logical | y | - | y | -
178 * key to resolve | - | - | - | y
179 * tree block logical | y | y | y | y
180 * root for resolving | - | y | y | y
181 *
182 * - column 1, 3: we've the parent -> done
183 * - column 2: we take the first key from the block to find the parent
184 * (see __add_missing_keys)
185 * - column 4: we use the key to find the parent
186 *
187 * additional information that's available but not required to find the parent
188 * block might help in merging entries to gain some speed.
189 */
190
8da6d581 191static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73 192 struct btrfs_key *key, int level,
742916b8
WS
193 u64 parent, u64 wanted_disk_byte, int count,
194 gfp_t gfp_mask)
8da6d581
JS
195{
196 struct __prelim_ref *ref;
197
48ec4736
LB
198 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
199 return 0;
200
b9e9a6cb 201 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
202 if (!ref)
203 return -ENOMEM;
204
205 ref->root_id = root_id;
206 if (key)
d5c88b73 207 ref->key_for_search = *key;
8da6d581 208 else
d5c88b73 209 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 210
3301958b 211 ref->inode_list = NULL;
8da6d581
JS
212 ref->level = level;
213 ref->count = count;
214 ref->parent = parent;
215 ref->wanted_disk_byte = wanted_disk_byte;
216 list_add_tail(&ref->list, head);
217
218 return 0;
219}
220
221static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
7ef81ac8 222 struct ulist *parents, struct __prelim_ref *ref,
44853868
JB
223 int level, u64 time_seq, const u64 *extent_item_pos,
224 u64 total_refs)
8da6d581 225{
69bca40d
AB
226 int ret = 0;
227 int slot;
228 struct extent_buffer *eb;
229 struct btrfs_key key;
7ef81ac8 230 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 231 struct btrfs_file_extent_item *fi;
ed8c4913 232 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 233 u64 disk_byte;
7ef81ac8
JB
234 u64 wanted_disk_byte = ref->wanted_disk_byte;
235 u64 count = 0;
8da6d581 236
69bca40d
AB
237 if (level != 0) {
238 eb = path->nodes[level];
239 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
240 if (ret < 0)
241 return ret;
8da6d581 242 return 0;
69bca40d 243 }
8da6d581
JS
244
245 /*
69bca40d
AB
246 * We normally enter this function with the path already pointing to
247 * the first item to check. But sometimes, we may enter it with
248 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 249 */
69bca40d 250 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
3d7806ec 251 ret = btrfs_next_old_leaf(root, path, time_seq);
8da6d581 252
44853868 253 while (!ret && count < total_refs) {
8da6d581 254 eb = path->nodes[0];
69bca40d
AB
255 slot = path->slots[0];
256
257 btrfs_item_key_to_cpu(eb, &key, slot);
258
259 if (key.objectid != key_for_search->objectid ||
260 key.type != BTRFS_EXTENT_DATA_KEY)
261 break;
262
263 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
264 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
265
266 if (disk_byte == wanted_disk_byte) {
267 eie = NULL;
ed8c4913 268 old = NULL;
7ef81ac8 269 count++;
69bca40d
AB
270 if (extent_item_pos) {
271 ret = check_extent_in_eb(&key, eb, fi,
272 *extent_item_pos,
273 &eie);
274 if (ret < 0)
275 break;
276 }
ed8c4913
JB
277 if (ret > 0)
278 goto next;
279 ret = ulist_add_merge(parents, eb->start,
280 (uintptr_t)eie,
281 (u64 *)&old, GFP_NOFS);
282 if (ret < 0)
283 break;
284 if (!ret && extent_item_pos) {
285 while (old->next)
286 old = old->next;
287 old->next = eie;
69bca40d 288 }
f05c4746 289 eie = NULL;
8da6d581 290 }
ed8c4913 291next:
69bca40d 292 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
293 }
294
69bca40d
AB
295 if (ret > 0)
296 ret = 0;
f05c4746
WS
297 else if (ret < 0)
298 free_inode_elem_list(eie);
69bca40d 299 return ret;
8da6d581
JS
300}
301
302/*
303 * resolve an indirect backref in the form (root_id, key, level)
304 * to a logical address
305 */
306static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
da61d31a
JB
307 struct btrfs_path *path, u64 time_seq,
308 struct __prelim_ref *ref,
309 struct ulist *parents,
44853868 310 const u64 *extent_item_pos, u64 total_refs)
8da6d581 311{
8da6d581
JS
312 struct btrfs_root *root;
313 struct btrfs_key root_key;
8da6d581
JS
314 struct extent_buffer *eb;
315 int ret = 0;
316 int root_level;
317 int level = ref->level;
538f72cd 318 int index;
8da6d581 319
8da6d581
JS
320 root_key.objectid = ref->root_id;
321 root_key.type = BTRFS_ROOT_ITEM_KEY;
322 root_key.offset = (u64)-1;
538f72cd
WS
323
324 index = srcu_read_lock(&fs_info->subvol_srcu);
325
8da6d581
JS
326 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
327 if (IS_ERR(root)) {
538f72cd 328 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581
JS
329 ret = PTR_ERR(root);
330 goto out;
331 }
332
5b6602e7 333 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 334
538f72cd
WS
335 if (root_level + 1 == level) {
336 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 337 goto out;
538f72cd 338 }
8da6d581
JS
339
340 path->lowest_level = level;
8445f61c 341 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
538f72cd
WS
342
343 /* root node has been locked, we can release @subvol_srcu safely here */
344 srcu_read_unlock(&fs_info->subvol_srcu, index);
345
8da6d581
JS
346 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
347 "%d for key (%llu %u %llu)\n",
c1c9ff7c
GU
348 ref->root_id, level, ref->count, ret,
349 ref->key_for_search.objectid, ref->key_for_search.type,
350 ref->key_for_search.offset);
8da6d581
JS
351 if (ret < 0)
352 goto out;
353
354 eb = path->nodes[level];
9345457f 355 while (!eb) {
fae7f21c 356 if (WARN_ON(!level)) {
9345457f
JS
357 ret = 1;
358 goto out;
359 }
360 level--;
361 eb = path->nodes[level];
8da6d581
JS
362 }
363
7ef81ac8 364 ret = add_all_parents(root, path, parents, ref, level, time_seq,
44853868 365 extent_item_pos, total_refs);
8da6d581 366out:
da61d31a
JB
367 path->lowest_level = 0;
368 btrfs_release_path(path);
8da6d581
JS
369 return ret;
370}
371
372/*
373 * resolve all indirect backrefs from the list
374 */
375static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
da61d31a 376 struct btrfs_path *path, u64 time_seq,
976b1908 377 struct list_head *head,
44853868 378 const u64 *extent_item_pos, u64 total_refs)
8da6d581
JS
379{
380 int err;
381 int ret = 0;
382 struct __prelim_ref *ref;
383 struct __prelim_ref *ref_safe;
384 struct __prelim_ref *new_ref;
385 struct ulist *parents;
386 struct ulist_node *node;
cd1b413c 387 struct ulist_iterator uiter;
8da6d581
JS
388
389 parents = ulist_alloc(GFP_NOFS);
390 if (!parents)
391 return -ENOMEM;
392
393 /*
394 * _safe allows us to insert directly after the current item without
395 * iterating over the newly inserted items.
396 * we're also allowed to re-assign ref during iteration.
397 */
398 list_for_each_entry_safe(ref, ref_safe, head, list) {
399 if (ref->parent) /* already direct */
400 continue;
401 if (ref->count == 0)
402 continue;
da61d31a 403 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
44853868
JB
404 parents, extent_item_pos,
405 total_refs);
95def2ed
WS
406 /*
407 * we can only tolerate ENOENT,otherwise,we should catch error
408 * and return directly.
409 */
410 if (err == -ENOENT) {
8da6d581 411 continue;
95def2ed
WS
412 } else if (err) {
413 ret = err;
414 goto out;
415 }
8da6d581
JS
416
417 /* we put the first parent into the ref at hand */
cd1b413c
JS
418 ULIST_ITER_INIT(&uiter);
419 node = ulist_next(parents, &uiter);
8da6d581 420 ref->parent = node ? node->val : 0;
995e01b7 421 ref->inode_list = node ?
35a3621b 422 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
8da6d581
JS
423
424 /* additional parents require new refs being added here */
cd1b413c 425 while ((node = ulist_next(parents, &uiter))) {
b9e9a6cb
WS
426 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
427 GFP_NOFS);
8da6d581
JS
428 if (!new_ref) {
429 ret = -ENOMEM;
e36902d4 430 goto out;
8da6d581
JS
431 }
432 memcpy(new_ref, ref, sizeof(*ref));
433 new_ref->parent = node->val;
995e01b7
JS
434 new_ref->inode_list = (struct extent_inode_elem *)
435 (uintptr_t)node->aux;
8da6d581
JS
436 list_add(&new_ref->list, &ref->list);
437 }
438 ulist_reinit(parents);
439 }
e36902d4 440out:
8da6d581
JS
441 ulist_free(parents);
442 return ret;
443}
444
d5c88b73
JS
445static inline int ref_for_same_block(struct __prelim_ref *ref1,
446 struct __prelim_ref *ref2)
447{
448 if (ref1->level != ref2->level)
449 return 0;
450 if (ref1->root_id != ref2->root_id)
451 return 0;
452 if (ref1->key_for_search.type != ref2->key_for_search.type)
453 return 0;
454 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
455 return 0;
456 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
457 return 0;
458 if (ref1->parent != ref2->parent)
459 return 0;
460
461 return 1;
462}
463
464/*
465 * read tree blocks and add keys where required.
466 */
467static int __add_missing_keys(struct btrfs_fs_info *fs_info,
468 struct list_head *head)
469{
470 struct list_head *pos;
471 struct extent_buffer *eb;
472
473 list_for_each(pos, head) {
474 struct __prelim_ref *ref;
475 ref = list_entry(pos, struct __prelim_ref, list);
476
477 if (ref->parent)
478 continue;
479 if (ref->key_for_search.type)
480 continue;
481 BUG_ON(!ref->wanted_disk_byte);
482 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
483 fs_info->tree_root->leafsize, 0);
416bc658
JB
484 if (!eb || !extent_buffer_uptodate(eb)) {
485 free_extent_buffer(eb);
486 return -EIO;
487 }
d5c88b73
JS
488 btrfs_tree_read_lock(eb);
489 if (btrfs_header_level(eb) == 0)
490 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
491 else
492 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
493 btrfs_tree_read_unlock(eb);
494 free_extent_buffer(eb);
495 }
496 return 0;
497}
498
8da6d581
JS
499/*
500 * merge two lists of backrefs and adjust counts accordingly
501 *
502 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
503 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
504 * additionally, we could even add a key range for the blocks we
505 * looked into to merge even more (-> replace unresolved refs by those
506 * having a parent).
8da6d581
JS
507 * mode = 2: merge identical parents
508 */
692206b1 509static void __merge_refs(struct list_head *head, int mode)
8da6d581
JS
510{
511 struct list_head *pos1;
512
513 list_for_each(pos1, head) {
514 struct list_head *n2;
515 struct list_head *pos2;
516 struct __prelim_ref *ref1;
517
518 ref1 = list_entry(pos1, struct __prelim_ref, list);
519
8da6d581
JS
520 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
521 pos2 = n2, n2 = pos2->next) {
522 struct __prelim_ref *ref2;
d5c88b73 523 struct __prelim_ref *xchg;
3ef5969c 524 struct extent_inode_elem *eie;
8da6d581
JS
525
526 ref2 = list_entry(pos2, struct __prelim_ref, list);
527
528 if (mode == 1) {
d5c88b73 529 if (!ref_for_same_block(ref1, ref2))
8da6d581 530 continue;
d5c88b73
JS
531 if (!ref1->parent && ref2->parent) {
532 xchg = ref1;
533 ref1 = ref2;
534 ref2 = xchg;
535 }
8da6d581
JS
536 } else {
537 if (ref1->parent != ref2->parent)
538 continue;
8da6d581 539 }
3ef5969c
AB
540
541 eie = ref1->inode_list;
542 while (eie && eie->next)
543 eie = eie->next;
544 if (eie)
545 eie->next = ref2->inode_list;
546 else
547 ref1->inode_list = ref2->inode_list;
548 ref1->count += ref2->count;
549
8da6d581 550 list_del(&ref2->list);
b9e9a6cb 551 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
8da6d581
JS
552 }
553
554 }
8da6d581
JS
555}
556
557/*
558 * add all currently queued delayed refs from this head whose seq nr is
559 * smaller or equal that seq to the list
560 */
561static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
44853868 562 struct list_head *prefs, u64 *total_refs)
8da6d581
JS
563{
564 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
565 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
566 struct btrfs_key key;
567 struct btrfs_key op_key = {0};
8da6d581 568 int sgn;
b1375d64 569 int ret = 0;
8da6d581
JS
570
571 if (extent_op && extent_op->update_key)
d5c88b73 572 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581 573
d7df2c79
JB
574 spin_lock(&head->lock);
575 n = rb_first(&head->ref_root);
576 while (n) {
8da6d581
JS
577 struct btrfs_delayed_ref_node *node;
578 node = rb_entry(n, struct btrfs_delayed_ref_node,
579 rb_node);
d7df2c79 580 n = rb_next(n);
8da6d581
JS
581 if (node->seq > seq)
582 continue;
583
584 switch (node->action) {
585 case BTRFS_ADD_DELAYED_EXTENT:
586 case BTRFS_UPDATE_DELAYED_HEAD:
587 WARN_ON(1);
588 continue;
589 case BTRFS_ADD_DELAYED_REF:
590 sgn = 1;
591 break;
592 case BTRFS_DROP_DELAYED_REF:
593 sgn = -1;
594 break;
595 default:
596 BUG_ON(1);
597 }
44853868 598 *total_refs += (node->ref_mod * sgn);
8da6d581
JS
599 switch (node->type) {
600 case BTRFS_TREE_BLOCK_REF_KEY: {
601 struct btrfs_delayed_tree_ref *ref;
602
603 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 604 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581 605 ref->level + 1, 0, node->bytenr,
742916b8 606 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
607 break;
608 }
609 case BTRFS_SHARED_BLOCK_REF_KEY: {
610 struct btrfs_delayed_tree_ref *ref;
611
612 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 613 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
614 ref->level + 1, ref->parent,
615 node->bytenr,
742916b8 616 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
617 break;
618 }
619 case BTRFS_EXTENT_DATA_REF_KEY: {
620 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
621 ref = btrfs_delayed_node_to_data_ref(node);
622
623 key.objectid = ref->objectid;
624 key.type = BTRFS_EXTENT_DATA_KEY;
625 key.offset = ref->offset;
626 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
627 node->bytenr,
742916b8 628 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
629 break;
630 }
631 case BTRFS_SHARED_DATA_REF_KEY: {
632 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
633
634 ref = btrfs_delayed_node_to_data_ref(node);
635
636 key.objectid = ref->objectid;
637 key.type = BTRFS_EXTENT_DATA_KEY;
638 key.offset = ref->offset;
639 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
640 ref->parent, node->bytenr,
742916b8 641 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
642 break;
643 }
644 default:
645 WARN_ON(1);
646 }
1149ab6b 647 if (ret)
d7df2c79 648 break;
8da6d581 649 }
d7df2c79
JB
650 spin_unlock(&head->lock);
651 return ret;
8da6d581
JS
652}
653
654/*
655 * add all inline backrefs for bytenr to the list
656 */
657static int __add_inline_refs(struct btrfs_fs_info *fs_info,
658 struct btrfs_path *path, u64 bytenr,
44853868
JB
659 int *info_level, struct list_head *prefs,
660 u64 *total_refs)
8da6d581 661{
b1375d64 662 int ret = 0;
8da6d581
JS
663 int slot;
664 struct extent_buffer *leaf;
665 struct btrfs_key key;
261c84b6 666 struct btrfs_key found_key;
8da6d581
JS
667 unsigned long ptr;
668 unsigned long end;
669 struct btrfs_extent_item *ei;
670 u64 flags;
671 u64 item_size;
672
673 /*
674 * enumerate all inline refs
675 */
676 leaf = path->nodes[0];
dadcaf78 677 slot = path->slots[0];
8da6d581
JS
678
679 item_size = btrfs_item_size_nr(leaf, slot);
680 BUG_ON(item_size < sizeof(*ei));
681
682 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
683 flags = btrfs_extent_flags(leaf, ei);
44853868 684 *total_refs += btrfs_extent_refs(leaf, ei);
261c84b6 685 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
686
687 ptr = (unsigned long)(ei + 1);
688 end = (unsigned long)ei + item_size;
689
261c84b6
JB
690 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
691 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 692 struct btrfs_tree_block_info *info;
8da6d581
JS
693
694 info = (struct btrfs_tree_block_info *)ptr;
695 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
696 ptr += sizeof(struct btrfs_tree_block_info);
697 BUG_ON(ptr > end);
261c84b6
JB
698 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
699 *info_level = found_key.offset;
8da6d581
JS
700 } else {
701 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
702 }
703
704 while (ptr < end) {
705 struct btrfs_extent_inline_ref *iref;
706 u64 offset;
707 int type;
708
709 iref = (struct btrfs_extent_inline_ref *)ptr;
710 type = btrfs_extent_inline_ref_type(leaf, iref);
711 offset = btrfs_extent_inline_ref_offset(leaf, iref);
712
713 switch (type) {
714 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 715 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 716 *info_level + 1, offset,
742916b8 717 bytenr, 1, GFP_NOFS);
8da6d581
JS
718 break;
719 case BTRFS_SHARED_DATA_REF_KEY: {
720 struct btrfs_shared_data_ref *sdref;
721 int count;
722
723 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
724 count = btrfs_shared_data_ref_count(leaf, sdref);
725 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
742916b8 726 bytenr, count, GFP_NOFS);
8da6d581
JS
727 break;
728 }
729 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
730 ret = __add_prelim_ref(prefs, offset, NULL,
731 *info_level + 1, 0,
742916b8 732 bytenr, 1, GFP_NOFS);
8da6d581
JS
733 break;
734 case BTRFS_EXTENT_DATA_REF_KEY: {
735 struct btrfs_extent_data_ref *dref;
736 int count;
737 u64 root;
738
739 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
740 count = btrfs_extent_data_ref_count(leaf, dref);
741 key.objectid = btrfs_extent_data_ref_objectid(leaf,
742 dref);
743 key.type = BTRFS_EXTENT_DATA_KEY;
744 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
745 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73 746 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 747 bytenr, count, GFP_NOFS);
8da6d581
JS
748 break;
749 }
750 default:
751 WARN_ON(1);
752 }
1149ab6b
WS
753 if (ret)
754 return ret;
8da6d581
JS
755 ptr += btrfs_extent_inline_ref_size(type);
756 }
757
758 return 0;
759}
760
761/*
762 * add all non-inline backrefs for bytenr to the list
763 */
764static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
765 struct btrfs_path *path, u64 bytenr,
d5c88b73 766 int info_level, struct list_head *prefs)
8da6d581
JS
767{
768 struct btrfs_root *extent_root = fs_info->extent_root;
769 int ret;
770 int slot;
771 struct extent_buffer *leaf;
772 struct btrfs_key key;
773
774 while (1) {
775 ret = btrfs_next_item(extent_root, path);
776 if (ret < 0)
777 break;
778 if (ret) {
779 ret = 0;
780 break;
781 }
782
783 slot = path->slots[0];
784 leaf = path->nodes[0];
785 btrfs_item_key_to_cpu(leaf, &key, slot);
786
787 if (key.objectid != bytenr)
788 break;
789 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
790 continue;
791 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
792 break;
793
794 switch (key.type) {
795 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 796 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 797 info_level + 1, key.offset,
742916b8 798 bytenr, 1, GFP_NOFS);
8da6d581
JS
799 break;
800 case BTRFS_SHARED_DATA_REF_KEY: {
801 struct btrfs_shared_data_ref *sdref;
802 int count;
803
804 sdref = btrfs_item_ptr(leaf, slot,
805 struct btrfs_shared_data_ref);
806 count = btrfs_shared_data_ref_count(leaf, sdref);
807 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
742916b8 808 bytenr, count, GFP_NOFS);
8da6d581
JS
809 break;
810 }
811 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
812 ret = __add_prelim_ref(prefs, key.offset, NULL,
813 info_level + 1, 0,
742916b8 814 bytenr, 1, GFP_NOFS);
8da6d581
JS
815 break;
816 case BTRFS_EXTENT_DATA_REF_KEY: {
817 struct btrfs_extent_data_ref *dref;
818 int count;
819 u64 root;
820
821 dref = btrfs_item_ptr(leaf, slot,
822 struct btrfs_extent_data_ref);
823 count = btrfs_extent_data_ref_count(leaf, dref);
824 key.objectid = btrfs_extent_data_ref_objectid(leaf,
825 dref);
826 key.type = BTRFS_EXTENT_DATA_KEY;
827 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
828 root = btrfs_extent_data_ref_root(leaf, dref);
829 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 830 bytenr, count, GFP_NOFS);
8da6d581
JS
831 break;
832 }
833 default:
834 WARN_ON(1);
835 }
1149ab6b
WS
836 if (ret)
837 return ret;
838
8da6d581
JS
839 }
840
841 return ret;
842}
843
844/*
845 * this adds all existing backrefs (inline backrefs, backrefs and delayed
846 * refs) for the given bytenr to the refs list, merges duplicates and resolves
847 * indirect refs to their parent bytenr.
848 * When roots are found, they're added to the roots list
849 *
850 * FIXME some caching might speed things up
851 */
852static int find_parent_nodes(struct btrfs_trans_handle *trans,
853 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c
JS
854 u64 time_seq, struct ulist *refs,
855 struct ulist *roots, const u64 *extent_item_pos)
8da6d581
JS
856{
857 struct btrfs_key key;
858 struct btrfs_path *path;
8da6d581 859 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 860 struct btrfs_delayed_ref_head *head;
8da6d581
JS
861 int info_level = 0;
862 int ret;
863 struct list_head prefs_delayed;
864 struct list_head prefs;
865 struct __prelim_ref *ref;
f05c4746 866 struct extent_inode_elem *eie = NULL;
44853868 867 u64 total_refs = 0;
8da6d581
JS
868
869 INIT_LIST_HEAD(&prefs);
870 INIT_LIST_HEAD(&prefs_delayed);
871
872 key.objectid = bytenr;
8da6d581 873 key.offset = (u64)-1;
261c84b6
JB
874 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
875 key.type = BTRFS_METADATA_ITEM_KEY;
876 else
877 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
878
879 path = btrfs_alloc_path();
880 if (!path)
881 return -ENOMEM;
e84752d4 882 if (!trans) {
da61d31a 883 path->search_commit_root = 1;
e84752d4
WS
884 path->skip_locking = 1;
885 }
8da6d581
JS
886
887 /*
888 * grab both a lock on the path and a lock on the delayed ref head.
889 * We need both to get a consistent picture of how the refs look
890 * at a specified point in time
891 */
892again:
d3b01064
LZ
893 head = NULL;
894
8da6d581
JS
895 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
896 if (ret < 0)
897 goto out;
898 BUG_ON(ret == 0);
899
da61d31a 900 if (trans) {
7a3ae2f8
JS
901 /*
902 * look if there are updates for this ref queued and lock the
903 * head
904 */
905 delayed_refs = &trans->transaction->delayed_refs;
906 spin_lock(&delayed_refs->lock);
907 head = btrfs_find_delayed_ref_head(trans, bytenr);
908 if (head) {
909 if (!mutex_trylock(&head->mutex)) {
910 atomic_inc(&head->node.refs);
911 spin_unlock(&delayed_refs->lock);
912
913 btrfs_release_path(path);
914
915 /*
916 * Mutex was contended, block until it's
917 * released and try again
918 */
919 mutex_lock(&head->mutex);
920 mutex_unlock(&head->mutex);
921 btrfs_put_delayed_ref(&head->node);
922 goto again;
923 }
d7df2c79 924 spin_unlock(&delayed_refs->lock);
097b8a7c 925 ret = __add_delayed_refs(head, time_seq,
44853868 926 &prefs_delayed, &total_refs);
155725c9 927 mutex_unlock(&head->mutex);
d7df2c79 928 if (ret)
7a3ae2f8 929 goto out;
d7df2c79
JB
930 } else {
931 spin_unlock(&delayed_refs->lock);
d3b01064 932 }
8da6d581 933 }
8da6d581
JS
934
935 if (path->slots[0]) {
936 struct extent_buffer *leaf;
937 int slot;
938
dadcaf78 939 path->slots[0]--;
8da6d581 940 leaf = path->nodes[0];
dadcaf78 941 slot = path->slots[0];
8da6d581
JS
942 btrfs_item_key_to_cpu(leaf, &key, slot);
943 if (key.objectid == bytenr &&
261c84b6
JB
944 (key.type == BTRFS_EXTENT_ITEM_KEY ||
945 key.type == BTRFS_METADATA_ITEM_KEY)) {
8da6d581 946 ret = __add_inline_refs(fs_info, path, bytenr,
44853868
JB
947 &info_level, &prefs,
948 &total_refs);
8da6d581
JS
949 if (ret)
950 goto out;
d5c88b73 951 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
952 info_level, &prefs);
953 if (ret)
954 goto out;
955 }
956 }
957 btrfs_release_path(path);
958
8da6d581
JS
959 list_splice_init(&prefs_delayed, &prefs);
960
d5c88b73
JS
961 ret = __add_missing_keys(fs_info, &prefs);
962 if (ret)
963 goto out;
964
692206b1 965 __merge_refs(&prefs, 1);
8da6d581 966
da61d31a 967 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
44853868 968 extent_item_pos, total_refs);
8da6d581
JS
969 if (ret)
970 goto out;
971
692206b1 972 __merge_refs(&prefs, 2);
8da6d581
JS
973
974 while (!list_empty(&prefs)) {
975 ref = list_first_entry(&prefs, struct __prelim_ref, list);
6c1500f2 976 WARN_ON(ref->count < 0);
98cfee21 977 if (roots && ref->count && ref->root_id && ref->parent == 0) {
8da6d581
JS
978 /* no parent == root of tree */
979 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
980 if (ret < 0)
981 goto out;
8da6d581
JS
982 }
983 if (ref->count && ref->parent) {
3301958b 984 if (extent_item_pos && !ref->inode_list) {
976b1908
JS
985 u32 bsz;
986 struct extent_buffer *eb;
987 bsz = btrfs_level_size(fs_info->extent_root,
988 info_level);
989 eb = read_tree_block(fs_info->extent_root,
990 ref->parent, bsz, 0);
416bc658
JB
991 if (!eb || !extent_buffer_uptodate(eb)) {
992 free_extent_buffer(eb);
c16c2e2e
WS
993 ret = -EIO;
994 goto out;
416bc658 995 }
976b1908
JS
996 ret = find_extent_in_eb(eb, bytenr,
997 *extent_item_pos, &eie);
998 free_extent_buffer(eb);
f5929cd8
FDBM
999 if (ret < 0)
1000 goto out;
1001 ref->inode_list = eie;
976b1908 1002 }
3301958b 1003 ret = ulist_add_merge(refs, ref->parent,
995e01b7 1004 (uintptr_t)ref->inode_list,
34d73f54 1005 (u64 *)&eie, GFP_NOFS);
f1723939
WS
1006 if (ret < 0)
1007 goto out;
3301958b
JS
1008 if (!ret && extent_item_pos) {
1009 /*
1010 * we've recorded that parent, so we must extend
1011 * its inode list here
1012 */
1013 BUG_ON(!eie);
1014 while (eie->next)
1015 eie = eie->next;
1016 eie->next = ref->inode_list;
1017 }
f05c4746 1018 eie = NULL;
8da6d581 1019 }
a4fdb61e 1020 list_del(&ref->list);
b9e9a6cb 1021 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1022 }
1023
1024out:
8da6d581
JS
1025 btrfs_free_path(path);
1026 while (!list_empty(&prefs)) {
1027 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1028 list_del(&ref->list);
b9e9a6cb 1029 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1030 }
1031 while (!list_empty(&prefs_delayed)) {
1032 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1033 list);
1034 list_del(&ref->list);
b9e9a6cb 1035 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581 1036 }
f05c4746
WS
1037 if (ret < 0)
1038 free_inode_elem_list(eie);
8da6d581
JS
1039 return ret;
1040}
1041
976b1908
JS
1042static void free_leaf_list(struct ulist *blocks)
1043{
1044 struct ulist_node *node = NULL;
1045 struct extent_inode_elem *eie;
976b1908
JS
1046 struct ulist_iterator uiter;
1047
1048 ULIST_ITER_INIT(&uiter);
1049 while ((node = ulist_next(blocks, &uiter))) {
1050 if (!node->aux)
1051 continue;
995e01b7 1052 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
f05c4746 1053 free_inode_elem_list(eie);
976b1908
JS
1054 node->aux = 0;
1055 }
1056
1057 ulist_free(blocks);
1058}
1059
8da6d581
JS
1060/*
1061 * Finds all leafs with a reference to the specified combination of bytenr and
1062 * offset. key_list_head will point to a list of corresponding keys (caller must
1063 * free each list element). The leafs will be stored in the leafs ulist, which
1064 * must be freed with ulist_free.
1065 *
1066 * returns 0 on success, <0 on error
1067 */
1068static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1069 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1070 u64 time_seq, struct ulist **leafs,
976b1908 1071 const u64 *extent_item_pos)
8da6d581 1072{
8da6d581
JS
1073 int ret;
1074
8da6d581 1075 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1076 if (!*leafs)
8da6d581 1077 return -ENOMEM;
8da6d581 1078
097b8a7c 1079 ret = find_parent_nodes(trans, fs_info, bytenr,
98cfee21 1080 time_seq, *leafs, NULL, extent_item_pos);
8da6d581 1081 if (ret < 0 && ret != -ENOENT) {
976b1908 1082 free_leaf_list(*leafs);
8da6d581
JS
1083 return ret;
1084 }
1085
1086 return 0;
1087}
1088
1089/*
1090 * walk all backrefs for a given extent to find all roots that reference this
1091 * extent. Walking a backref means finding all extents that reference this
1092 * extent and in turn walk the backrefs of those, too. Naturally this is a
1093 * recursive process, but here it is implemented in an iterative fashion: We
1094 * find all referencing extents for the extent in question and put them on a
1095 * list. In turn, we find all referencing extents for those, further appending
1096 * to the list. The way we iterate the list allows adding more elements after
1097 * the current while iterating. The process stops when we reach the end of the
1098 * list. Found roots are added to the roots list.
1099 *
1100 * returns 0 on success, < 0 on error.
1101 */
1102int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1103 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1104 u64 time_seq, struct ulist **roots)
8da6d581
JS
1105{
1106 struct ulist *tmp;
1107 struct ulist_node *node = NULL;
cd1b413c 1108 struct ulist_iterator uiter;
8da6d581
JS
1109 int ret;
1110
1111 tmp = ulist_alloc(GFP_NOFS);
1112 if (!tmp)
1113 return -ENOMEM;
1114 *roots = ulist_alloc(GFP_NOFS);
1115 if (!*roots) {
1116 ulist_free(tmp);
1117 return -ENOMEM;
1118 }
1119
cd1b413c 1120 ULIST_ITER_INIT(&uiter);
8da6d581 1121 while (1) {
097b8a7c 1122 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1123 time_seq, tmp, *roots, NULL);
8da6d581
JS
1124 if (ret < 0 && ret != -ENOENT) {
1125 ulist_free(tmp);
1126 ulist_free(*roots);
1127 return ret;
1128 }
cd1b413c 1129 node = ulist_next(tmp, &uiter);
8da6d581
JS
1130 if (!node)
1131 break;
1132 bytenr = node->val;
bca1a290 1133 cond_resched();
8da6d581
JS
1134 }
1135
1136 ulist_free(tmp);
1137 return 0;
1138}
1139
a542ad1b
JS
1140/*
1141 * this makes the path point to (inum INODE_ITEM ioff)
1142 */
1143int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1144 struct btrfs_path *path)
1145{
1146 struct btrfs_key key;
e33d5c3d
KN
1147 return btrfs_find_item(fs_root, path, inum, ioff,
1148 BTRFS_INODE_ITEM_KEY, &key);
a542ad1b
JS
1149}
1150
1151static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1152 struct btrfs_path *path,
1153 struct btrfs_key *found_key)
1154{
e33d5c3d
KN
1155 return btrfs_find_item(fs_root, path, inum, ioff,
1156 BTRFS_INODE_REF_KEY, found_key);
a542ad1b
JS
1157}
1158
f186373f
MF
1159int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1160 u64 start_off, struct btrfs_path *path,
1161 struct btrfs_inode_extref **ret_extref,
1162 u64 *found_off)
1163{
1164 int ret, slot;
1165 struct btrfs_key key;
1166 struct btrfs_key found_key;
1167 struct btrfs_inode_extref *extref;
1168 struct extent_buffer *leaf;
1169 unsigned long ptr;
1170
1171 key.objectid = inode_objectid;
1172 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1173 key.offset = start_off;
1174
1175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1176 if (ret < 0)
1177 return ret;
1178
1179 while (1) {
1180 leaf = path->nodes[0];
1181 slot = path->slots[0];
1182 if (slot >= btrfs_header_nritems(leaf)) {
1183 /*
1184 * If the item at offset is not found,
1185 * btrfs_search_slot will point us to the slot
1186 * where it should be inserted. In our case
1187 * that will be the slot directly before the
1188 * next INODE_REF_KEY_V2 item. In the case
1189 * that we're pointing to the last slot in a
1190 * leaf, we must move one leaf over.
1191 */
1192 ret = btrfs_next_leaf(root, path);
1193 if (ret) {
1194 if (ret >= 1)
1195 ret = -ENOENT;
1196 break;
1197 }
1198 continue;
1199 }
1200
1201 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1202
1203 /*
1204 * Check that we're still looking at an extended ref key for
1205 * this particular objectid. If we have different
1206 * objectid or type then there are no more to be found
1207 * in the tree and we can exit.
1208 */
1209 ret = -ENOENT;
1210 if (found_key.objectid != inode_objectid)
1211 break;
1212 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1213 break;
1214
1215 ret = 0;
1216 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1217 extref = (struct btrfs_inode_extref *)ptr;
1218 *ret_extref = extref;
1219 if (found_off)
1220 *found_off = found_key.offset;
1221 break;
1222 }
1223
1224 return ret;
1225}
1226
48a3b636
ES
1227/*
1228 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1229 * Elements of the path are separated by '/' and the path is guaranteed to be
1230 * 0-terminated. the path is only given within the current file system.
1231 * Therefore, it never starts with a '/'. the caller is responsible to provide
1232 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1233 * the start point of the resulting string is returned. this pointer is within
1234 * dest, normally.
1235 * in case the path buffer would overflow, the pointer is decremented further
1236 * as if output was written to the buffer, though no more output is actually
1237 * generated. that way, the caller can determine how much space would be
1238 * required for the path to fit into the buffer. in that case, the returned
1239 * value will be smaller than dest. callers must check this!
1240 */
96b5bd77
JS
1241char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1242 u32 name_len, unsigned long name_off,
1243 struct extent_buffer *eb_in, u64 parent,
1244 char *dest, u32 size)
a542ad1b 1245{
a542ad1b
JS
1246 int slot;
1247 u64 next_inum;
1248 int ret;
661bec6b 1249 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1250 struct extent_buffer *eb = eb_in;
1251 struct btrfs_key found_key;
b916a59a 1252 int leave_spinning = path->leave_spinning;
d24bec3a 1253 struct btrfs_inode_ref *iref;
a542ad1b
JS
1254
1255 if (bytes_left >= 0)
1256 dest[bytes_left] = '\0';
1257
b916a59a 1258 path->leave_spinning = 1;
a542ad1b 1259 while (1) {
d24bec3a 1260 bytes_left -= name_len;
a542ad1b
JS
1261 if (bytes_left >= 0)
1262 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1263 name_off, name_len);
b916a59a
JS
1264 if (eb != eb_in) {
1265 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1266 free_extent_buffer(eb);
b916a59a 1267 }
a542ad1b 1268 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1269 if (ret > 0)
1270 ret = -ENOENT;
a542ad1b
JS
1271 if (ret)
1272 break;
d24bec3a 1273
a542ad1b
JS
1274 next_inum = found_key.offset;
1275
1276 /* regular exit ahead */
1277 if (parent == next_inum)
1278 break;
1279
1280 slot = path->slots[0];
1281 eb = path->nodes[0];
1282 /* make sure we can use eb after releasing the path */
b916a59a 1283 if (eb != eb_in) {
a542ad1b 1284 atomic_inc(&eb->refs);
b916a59a
JS
1285 btrfs_tree_read_lock(eb);
1286 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1287 }
a542ad1b 1288 btrfs_release_path(path);
a542ad1b 1289 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1290
1291 name_len = btrfs_inode_ref_name_len(eb, iref);
1292 name_off = (unsigned long)(iref + 1);
1293
a542ad1b
JS
1294 parent = next_inum;
1295 --bytes_left;
1296 if (bytes_left >= 0)
1297 dest[bytes_left] = '/';
1298 }
1299
1300 btrfs_release_path(path);
b916a59a 1301 path->leave_spinning = leave_spinning;
a542ad1b
JS
1302
1303 if (ret)
1304 return ERR_PTR(ret);
1305
1306 return dest + bytes_left;
1307}
1308
1309/*
1310 * this makes the path point to (logical EXTENT_ITEM *)
1311 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1312 * tree blocks and <0 on error.
1313 */
1314int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1315 struct btrfs_path *path, struct btrfs_key *found_key,
1316 u64 *flags_ret)
a542ad1b
JS
1317{
1318 int ret;
1319 u64 flags;
261c84b6 1320 u64 size = 0;
a542ad1b
JS
1321 u32 item_size;
1322 struct extent_buffer *eb;
1323 struct btrfs_extent_item *ei;
1324 struct btrfs_key key;
1325
261c84b6
JB
1326 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1327 key.type = BTRFS_METADATA_ITEM_KEY;
1328 else
1329 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1330 key.objectid = logical;
1331 key.offset = (u64)-1;
1332
1333 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1334 if (ret < 0)
1335 return ret;
a542ad1b 1336
850a8cdf
WS
1337 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1338 if (ret) {
1339 if (ret > 0)
1340 ret = -ENOENT;
1341 return ret;
580f0a67 1342 }
850a8cdf 1343 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6
JB
1344 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1345 size = fs_info->extent_root->leafsize;
1346 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1347 size = found_key->offset;
1348
580f0a67 1349 if (found_key->objectid > logical ||
261c84b6 1350 found_key->objectid + size <= logical) {
c1c9ff7c 1351 pr_debug("logical %llu is not within any extent\n", logical);
a542ad1b 1352 return -ENOENT;
4692cf58 1353 }
a542ad1b
JS
1354
1355 eb = path->nodes[0];
1356 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1357 BUG_ON(item_size < sizeof(*ei));
1358
1359 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1360 flags = btrfs_extent_flags(eb, ei);
1361
4692cf58
JS
1362 pr_debug("logical %llu is at position %llu within the extent (%llu "
1363 "EXTENT_ITEM %llu) flags %#llx size %u\n",
c1c9ff7c
GU
1364 logical, logical - found_key->objectid, found_key->objectid,
1365 found_key->offset, flags, item_size);
69917e43
LB
1366
1367 WARN_ON(!flags_ret);
1368 if (flags_ret) {
1369 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1370 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1371 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1372 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1373 else
1374 BUG_ON(1);
1375 return 0;
1376 }
a542ad1b
JS
1377
1378 return -EIO;
1379}
1380
1381/*
1382 * helper function to iterate extent inline refs. ptr must point to a 0 value
1383 * for the first call and may be modified. it is used to track state.
1384 * if more refs exist, 0 is returned and the next call to
1385 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1386 * next ref. after the last ref was processed, 1 is returned.
1387 * returns <0 on error
1388 */
1389static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1390 struct btrfs_extent_item *ei, u32 item_size,
1391 struct btrfs_extent_inline_ref **out_eiref,
1392 int *out_type)
1393{
1394 unsigned long end;
1395 u64 flags;
1396 struct btrfs_tree_block_info *info;
1397
1398 if (!*ptr) {
1399 /* first call */
1400 flags = btrfs_extent_flags(eb, ei);
1401 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1402 info = (struct btrfs_tree_block_info *)(ei + 1);
1403 *out_eiref =
1404 (struct btrfs_extent_inline_ref *)(info + 1);
1405 } else {
1406 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1407 }
1408 *ptr = (unsigned long)*out_eiref;
1409 if ((void *)*ptr >= (void *)ei + item_size)
1410 return -ENOENT;
1411 }
1412
1413 end = (unsigned long)ei + item_size;
1414 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1415 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1416
1417 *ptr += btrfs_extent_inline_ref_size(*out_type);
1418 WARN_ON(*ptr > end);
1419 if (*ptr == end)
1420 return 1; /* last */
1421
1422 return 0;
1423}
1424
1425/*
1426 * reads the tree block backref for an extent. tree level and root are returned
1427 * through out_level and out_root. ptr must point to a 0 value for the first
1428 * call and may be modified (see __get_extent_inline_ref comment).
1429 * returns 0 if data was provided, 1 if there was no more data to provide or
1430 * <0 on error.
1431 */
1432int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1433 struct btrfs_extent_item *ei, u32 item_size,
1434 u64 *out_root, u8 *out_level)
1435{
1436 int ret;
1437 int type;
1438 struct btrfs_tree_block_info *info;
1439 struct btrfs_extent_inline_ref *eiref;
1440
1441 if (*ptr == (unsigned long)-1)
1442 return 1;
1443
1444 while (1) {
1445 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1446 &eiref, &type);
1447 if (ret < 0)
1448 return ret;
1449
1450 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1451 type == BTRFS_SHARED_BLOCK_REF_KEY)
1452 break;
1453
1454 if (ret == 1)
1455 return 1;
1456 }
1457
1458 /* we can treat both ref types equally here */
1459 info = (struct btrfs_tree_block_info *)(ei + 1);
1460 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1461 *out_level = btrfs_tree_block_level(eb, info);
1462
1463 if (ret == 1)
1464 *ptr = (unsigned long)-1;
1465
1466 return 0;
1467}
1468
976b1908
JS
1469static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1470 u64 root, u64 extent_item_objectid,
4692cf58 1471 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1472{
976b1908 1473 struct extent_inode_elem *eie;
4692cf58 1474 int ret = 0;
4692cf58 1475
976b1908 1476 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1477 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1478 "root %llu\n", extent_item_objectid,
1479 eie->inum, eie->offset, root);
1480 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1481 if (ret) {
976b1908
JS
1482 pr_debug("stopping iteration for %llu due to ret=%d\n",
1483 extent_item_objectid, ret);
4692cf58
JS
1484 break;
1485 }
a542ad1b
JS
1486 }
1487
a542ad1b
JS
1488 return ret;
1489}
1490
1491/*
1492 * calls iterate() for every inode that references the extent identified by
4692cf58 1493 * the given parameters.
a542ad1b
JS
1494 * when the iterator function returns a non-zero value, iteration stops.
1495 */
1496int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1497 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1498 int search_commit_root,
a542ad1b
JS
1499 iterate_extent_inodes_t *iterate, void *ctx)
1500{
a542ad1b 1501 int ret;
da61d31a 1502 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1503 struct ulist *refs = NULL;
1504 struct ulist *roots = NULL;
4692cf58
JS
1505 struct ulist_node *ref_node = NULL;
1506 struct ulist_node *root_node = NULL;
8445f61c 1507 struct seq_list tree_mod_seq_elem = {};
cd1b413c
JS
1508 struct ulist_iterator ref_uiter;
1509 struct ulist_iterator root_uiter;
a542ad1b 1510
4692cf58
JS
1511 pr_debug("resolving all inodes for extent %llu\n",
1512 extent_item_objectid);
a542ad1b 1513
da61d31a 1514 if (!search_commit_root) {
7a3ae2f8
JS
1515 trans = btrfs_join_transaction(fs_info->extent_root);
1516 if (IS_ERR(trans))
1517 return PTR_ERR(trans);
8445f61c 1518 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1519 }
a542ad1b 1520
4692cf58 1521 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1522 tree_mod_seq_elem.seq, &refs,
8445f61c 1523 &extent_item_pos);
4692cf58
JS
1524 if (ret)
1525 goto out;
a542ad1b 1526
cd1b413c
JS
1527 ULIST_ITER_INIT(&ref_uiter);
1528 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
976b1908 1529 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
097b8a7c 1530 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1531 if (ret)
1532 break;
cd1b413c
JS
1533 ULIST_ITER_INIT(&root_uiter);
1534 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1535 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1536 "%#llx\n", root_node->val, ref_node->val,
c1c9ff7c 1537 ref_node->aux);
995e01b7
JS
1538 ret = iterate_leaf_refs((struct extent_inode_elem *)
1539 (uintptr_t)ref_node->aux,
1540 root_node->val,
1541 extent_item_objectid,
1542 iterate, ctx);
4692cf58 1543 }
976b1908 1544 ulist_free(roots);
a542ad1b
JS
1545 }
1546
976b1908 1547 free_leaf_list(refs);
4692cf58 1548out:
7a3ae2f8 1549 if (!search_commit_root) {
8445f61c 1550 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8
JS
1551 btrfs_end_transaction(trans, fs_info->extent_root);
1552 }
1553
a542ad1b
JS
1554 return ret;
1555}
1556
1557int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1558 struct btrfs_path *path,
1559 iterate_extent_inodes_t *iterate, void *ctx)
1560{
1561 int ret;
4692cf58 1562 u64 extent_item_pos;
69917e43 1563 u64 flags = 0;
a542ad1b 1564 struct btrfs_key found_key;
7a3ae2f8 1565 int search_commit_root = path->search_commit_root;
a542ad1b 1566
69917e43 1567 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1568 btrfs_release_path(path);
a542ad1b
JS
1569 if (ret < 0)
1570 return ret;
69917e43 1571 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1572 return -EINVAL;
a542ad1b 1573
4692cf58 1574 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1575 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1576 extent_item_pos, search_commit_root,
1577 iterate, ctx);
a542ad1b
JS
1578
1579 return ret;
1580}
1581
d24bec3a
MF
1582typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1583 struct extent_buffer *eb, void *ctx);
1584
1585static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1586 struct btrfs_path *path,
1587 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1588{
aefc1eb1 1589 int ret = 0;
a542ad1b
JS
1590 int slot;
1591 u32 cur;
1592 u32 len;
1593 u32 name_len;
1594 u64 parent = 0;
1595 int found = 0;
1596 struct extent_buffer *eb;
1597 struct btrfs_item *item;
1598 struct btrfs_inode_ref *iref;
1599 struct btrfs_key found_key;
1600
aefc1eb1 1601 while (!ret) {
a542ad1b 1602 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
d24bec3a 1603 &found_key);
a542ad1b
JS
1604 if (ret < 0)
1605 break;
1606 if (ret) {
1607 ret = found ? 0 : -ENOENT;
1608 break;
1609 }
1610 ++found;
1611
1612 parent = found_key.offset;
1613 slot = path->slots[0];
3fe81ce2
FDBM
1614 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1615 if (!eb) {
1616 ret = -ENOMEM;
1617 break;
1618 }
1619 extent_buffer_get(eb);
b916a59a
JS
1620 btrfs_tree_read_lock(eb);
1621 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1622 btrfs_release_path(path);
1623
dd3cc16b 1624 item = btrfs_item_nr(slot);
a542ad1b
JS
1625 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1626
1627 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1628 name_len = btrfs_inode_ref_name_len(eb, iref);
1629 /* path must be released before calling iterate()! */
4692cf58 1630 pr_debug("following ref at offset %u for inode %llu in "
c1c9ff7c
GU
1631 "tree %llu\n", cur, found_key.objectid,
1632 fs_root->objectid);
d24bec3a
MF
1633 ret = iterate(parent, name_len,
1634 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1635 if (ret)
a542ad1b 1636 break;
a542ad1b
JS
1637 len = sizeof(*iref) + name_len;
1638 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1639 }
b916a59a 1640 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1641 free_extent_buffer(eb);
1642 }
1643
1644 btrfs_release_path(path);
1645
1646 return ret;
1647}
1648
d24bec3a
MF
1649static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1650 struct btrfs_path *path,
1651 iterate_irefs_t *iterate, void *ctx)
1652{
1653 int ret;
1654 int slot;
1655 u64 offset = 0;
1656 u64 parent;
1657 int found = 0;
1658 struct extent_buffer *eb;
1659 struct btrfs_inode_extref *extref;
1660 struct extent_buffer *leaf;
1661 u32 item_size;
1662 u32 cur_offset;
1663 unsigned long ptr;
1664
1665 while (1) {
1666 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1667 &offset);
1668 if (ret < 0)
1669 break;
1670 if (ret) {
1671 ret = found ? 0 : -ENOENT;
1672 break;
1673 }
1674 ++found;
1675
1676 slot = path->slots[0];
3fe81ce2
FDBM
1677 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1678 if (!eb) {
1679 ret = -ENOMEM;
1680 break;
1681 }
1682 extent_buffer_get(eb);
d24bec3a
MF
1683
1684 btrfs_tree_read_lock(eb);
1685 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1686 btrfs_release_path(path);
1687
1688 leaf = path->nodes[0];
e94acd86
VG
1689 item_size = btrfs_item_size_nr(leaf, slot);
1690 ptr = btrfs_item_ptr_offset(leaf, slot);
d24bec3a
MF
1691 cur_offset = 0;
1692
1693 while (cur_offset < item_size) {
1694 u32 name_len;
1695
1696 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1697 parent = btrfs_inode_extref_parent(eb, extref);
1698 name_len = btrfs_inode_extref_name_len(eb, extref);
1699 ret = iterate(parent, name_len,
1700 (unsigned long)&extref->name, eb, ctx);
1701 if (ret)
1702 break;
1703
1704 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1705 cur_offset += sizeof(*extref);
1706 }
1707 btrfs_tree_read_unlock_blocking(eb);
1708 free_extent_buffer(eb);
1709
1710 offset++;
1711 }
1712
1713 btrfs_release_path(path);
1714
1715 return ret;
1716}
1717
1718static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1719 struct btrfs_path *path, iterate_irefs_t *iterate,
1720 void *ctx)
1721{
1722 int ret;
1723 int found_refs = 0;
1724
1725 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1726 if (!ret)
1727 ++found_refs;
1728 else if (ret != -ENOENT)
1729 return ret;
1730
1731 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1732 if (ret == -ENOENT && found_refs)
1733 return 0;
1734
1735 return ret;
1736}
1737
a542ad1b
JS
1738/*
1739 * returns 0 if the path could be dumped (probably truncated)
1740 * returns <0 in case of an error
1741 */
d24bec3a
MF
1742static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1743 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1744{
1745 struct inode_fs_paths *ipath = ctx;
1746 char *fspath;
1747 char *fspath_min;
1748 int i = ipath->fspath->elem_cnt;
1749 const int s_ptr = sizeof(char *);
1750 u32 bytes_left;
1751
1752 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1753 ipath->fspath->bytes_left - s_ptr : 0;
1754
740c3d22 1755 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1756 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1757 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1758 if (IS_ERR(fspath))
1759 return PTR_ERR(fspath);
1760
1761 if (fspath > fspath_min) {
745c4d8e 1762 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1763 ++ipath->fspath->elem_cnt;
1764 ipath->fspath->bytes_left = fspath - fspath_min;
1765 } else {
1766 ++ipath->fspath->elem_missed;
1767 ipath->fspath->bytes_missing += fspath_min - fspath;
1768 ipath->fspath->bytes_left = 0;
1769 }
1770
1771 return 0;
1772}
1773
1774/*
1775 * this dumps all file system paths to the inode into the ipath struct, provided
1776 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1777 * from ipath->fspath->val[i].
a542ad1b 1778 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1779 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1780 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1781 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1782 * have been needed to return all paths.
1783 */
1784int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1785{
1786 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1787 inode_to_path, ipath);
a542ad1b
JS
1788}
1789
a542ad1b
JS
1790struct btrfs_data_container *init_data_container(u32 total_bytes)
1791{
1792 struct btrfs_data_container *data;
1793 size_t alloc_bytes;
1794
1795 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1796 data = vmalloc(alloc_bytes);
a542ad1b
JS
1797 if (!data)
1798 return ERR_PTR(-ENOMEM);
1799
1800 if (total_bytes >= sizeof(*data)) {
1801 data->bytes_left = total_bytes - sizeof(*data);
1802 data->bytes_missing = 0;
1803 } else {
1804 data->bytes_missing = sizeof(*data) - total_bytes;
1805 data->bytes_left = 0;
1806 }
1807
1808 data->elem_cnt = 0;
1809 data->elem_missed = 0;
1810
1811 return data;
1812}
1813
1814/*
1815 * allocates space to return multiple file system paths for an inode.
1816 * total_bytes to allocate are passed, note that space usable for actual path
1817 * information will be total_bytes - sizeof(struct inode_fs_paths).
1818 * the returned pointer must be freed with free_ipath() in the end.
1819 */
1820struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1821 struct btrfs_path *path)
1822{
1823 struct inode_fs_paths *ifp;
1824 struct btrfs_data_container *fspath;
1825
1826 fspath = init_data_container(total_bytes);
1827 if (IS_ERR(fspath))
1828 return (void *)fspath;
1829
1830 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1831 if (!ifp) {
1832 kfree(fspath);
1833 return ERR_PTR(-ENOMEM);
1834 }
1835
1836 ifp->btrfs_path = path;
1837 ifp->fspath = fspath;
1838 ifp->fs_root = fs_root;
1839
1840 return ifp;
1841}
1842
1843void free_ipath(struct inode_fs_paths *ipath)
1844{
4735fb28
JJ
1845 if (!ipath)
1846 return;
425d17a2 1847 vfree(ipath->fspath);
a542ad1b
JS
1848 kfree(ipath);
1849}
This page took 0.233907 seconds and 5 git commands to generate.