btrfs: Fix lockdep warning of wr_ctx->wr_lock in scrub_free_wr_ctx()
[deliverable/linux.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
dc046b10
JB
28/* Just an arbitrary number so we can be sure this happened */
29#define BACKREF_FOUND_SHARED 6
30
976b1908
JS
31struct extent_inode_elem {
32 u64 inum;
33 u64 offset;
34 struct extent_inode_elem *next;
35};
36
37static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38 struct btrfs_file_extent_item *fi,
39 u64 extent_item_pos,
40 struct extent_inode_elem **eie)
41{
8ca15e05 42 u64 offset = 0;
976b1908
JS
43 struct extent_inode_elem *e;
44
8ca15e05
JB
45 if (!btrfs_file_extent_compression(eb, fi) &&
46 !btrfs_file_extent_encryption(eb, fi) &&
47 !btrfs_file_extent_other_encoding(eb, fi)) {
48 u64 data_offset;
49 u64 data_len;
976b1908 50
8ca15e05
JB
51 data_offset = btrfs_file_extent_offset(eb, fi);
52 data_len = btrfs_file_extent_num_bytes(eb, fi);
53
54 if (extent_item_pos < data_offset ||
55 extent_item_pos >= data_offset + data_len)
56 return 1;
57 offset = extent_item_pos - data_offset;
58 }
976b1908
JS
59
60 e = kmalloc(sizeof(*e), GFP_NOFS);
61 if (!e)
62 return -ENOMEM;
63
64 e->next = *eie;
65 e->inum = key->objectid;
8ca15e05 66 e->offset = key->offset + offset;
976b1908
JS
67 *eie = e;
68
69 return 0;
70}
71
f05c4746
WS
72static void free_inode_elem_list(struct extent_inode_elem *eie)
73{
74 struct extent_inode_elem *eie_next;
75
76 for (; eie; eie = eie_next) {
77 eie_next = eie->next;
78 kfree(eie);
79 }
80}
81
976b1908
JS
82static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83 u64 extent_item_pos,
84 struct extent_inode_elem **eie)
85{
86 u64 disk_byte;
87 struct btrfs_key key;
88 struct btrfs_file_extent_item *fi;
89 int slot;
90 int nritems;
91 int extent_type;
92 int ret;
93
94 /*
95 * from the shared data ref, we only have the leaf but we need
96 * the key. thus, we must look into all items and see that we
97 * find one (some) with a reference to our extent item.
98 */
99 nritems = btrfs_header_nritems(eb);
100 for (slot = 0; slot < nritems; ++slot) {
101 btrfs_item_key_to_cpu(eb, &key, slot);
102 if (key.type != BTRFS_EXTENT_DATA_KEY)
103 continue;
104 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105 extent_type = btrfs_file_extent_type(eb, fi);
106 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107 continue;
108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110 if (disk_byte != wanted_disk_byte)
111 continue;
112
113 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114 if (ret < 0)
115 return ret;
116 }
117
118 return 0;
119}
120
8da6d581
JS
121/*
122 * this structure records all encountered refs on the way up to the root
123 */
124struct __prelim_ref {
125 struct list_head list;
126 u64 root_id;
d5c88b73 127 struct btrfs_key key_for_search;
8da6d581
JS
128 int level;
129 int count;
3301958b 130 struct extent_inode_elem *inode_list;
8da6d581
JS
131 u64 parent;
132 u64 wanted_disk_byte;
133};
134
b9e9a6cb
WS
135static struct kmem_cache *btrfs_prelim_ref_cache;
136
137int __init btrfs_prelim_ref_init(void)
138{
139 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140 sizeof(struct __prelim_ref),
141 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143 NULL);
144 if (!btrfs_prelim_ref_cache)
145 return -ENOMEM;
146 return 0;
147}
148
149void btrfs_prelim_ref_exit(void)
150{
151 if (btrfs_prelim_ref_cache)
152 kmem_cache_destroy(btrfs_prelim_ref_cache);
153}
154
d5c88b73
JS
155/*
156 * the rules for all callers of this function are:
157 * - obtaining the parent is the goal
158 * - if you add a key, you must know that it is a correct key
159 * - if you cannot add the parent or a correct key, then we will look into the
160 * block later to set a correct key
161 *
162 * delayed refs
163 * ============
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | - | -
168 * key to resolve | - | y | y | y
169 * tree block logical | - | - | - | -
170 * root for resolving | y | y | y | y
171 *
172 * - column 1: we've the parent -> done
173 * - column 2, 3, 4: we use the key to find the parent
174 *
175 * on disk refs (inline or keyed)
176 * ==============================
177 * backref type | shared | indirect | shared | indirect
178 * information | tree | tree | data | data
179 * --------------------+--------+----------+--------+----------
180 * parent logical | y | - | y | -
181 * key to resolve | - | - | - | y
182 * tree block logical | y | y | y | y
183 * root for resolving | - | y | y | y
184 *
185 * - column 1, 3: we've the parent -> done
186 * - column 2: we take the first key from the block to find the parent
187 * (see __add_missing_keys)
188 * - column 4: we use the key to find the parent
189 *
190 * additional information that's available but not required to find the parent
191 * block might help in merging entries to gain some speed.
192 */
193
8da6d581 194static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73 195 struct btrfs_key *key, int level,
742916b8
WS
196 u64 parent, u64 wanted_disk_byte, int count,
197 gfp_t gfp_mask)
8da6d581
JS
198{
199 struct __prelim_ref *ref;
200
48ec4736
LB
201 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202 return 0;
203
b9e9a6cb 204 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
205 if (!ref)
206 return -ENOMEM;
207
208 ref->root_id = root_id;
209 if (key)
d5c88b73 210 ref->key_for_search = *key;
8da6d581 211 else
d5c88b73 212 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 213
3301958b 214 ref->inode_list = NULL;
8da6d581
JS
215 ref->level = level;
216 ref->count = count;
217 ref->parent = parent;
218 ref->wanted_disk_byte = wanted_disk_byte;
219 list_add_tail(&ref->list, head);
220
221 return 0;
222}
223
224static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
7ef81ac8 225 struct ulist *parents, struct __prelim_ref *ref,
44853868
JB
226 int level, u64 time_seq, const u64 *extent_item_pos,
227 u64 total_refs)
8da6d581 228{
69bca40d
AB
229 int ret = 0;
230 int slot;
231 struct extent_buffer *eb;
232 struct btrfs_key key;
7ef81ac8 233 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 234 struct btrfs_file_extent_item *fi;
ed8c4913 235 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 236 u64 disk_byte;
7ef81ac8
JB
237 u64 wanted_disk_byte = ref->wanted_disk_byte;
238 u64 count = 0;
8da6d581 239
69bca40d
AB
240 if (level != 0) {
241 eb = path->nodes[level];
242 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
243 if (ret < 0)
244 return ret;
8da6d581 245 return 0;
69bca40d 246 }
8da6d581
JS
247
248 /*
69bca40d
AB
249 * We normally enter this function with the path already pointing to
250 * the first item to check. But sometimes, we may enter it with
251 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 252 */
69bca40d 253 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
3d7806ec 254 ret = btrfs_next_old_leaf(root, path, time_seq);
8da6d581 255
44853868 256 while (!ret && count < total_refs) {
8da6d581 257 eb = path->nodes[0];
69bca40d
AB
258 slot = path->slots[0];
259
260 btrfs_item_key_to_cpu(eb, &key, slot);
261
262 if (key.objectid != key_for_search->objectid ||
263 key.type != BTRFS_EXTENT_DATA_KEY)
264 break;
265
266 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
267 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
268
269 if (disk_byte == wanted_disk_byte) {
270 eie = NULL;
ed8c4913 271 old = NULL;
7ef81ac8 272 count++;
69bca40d
AB
273 if (extent_item_pos) {
274 ret = check_extent_in_eb(&key, eb, fi,
275 *extent_item_pos,
276 &eie);
277 if (ret < 0)
278 break;
279 }
ed8c4913
JB
280 if (ret > 0)
281 goto next;
4eb1f66d
TI
282 ret = ulist_add_merge_ptr(parents, eb->start,
283 eie, (void **)&old, GFP_NOFS);
ed8c4913
JB
284 if (ret < 0)
285 break;
286 if (!ret && extent_item_pos) {
287 while (old->next)
288 old = old->next;
289 old->next = eie;
69bca40d 290 }
f05c4746 291 eie = NULL;
8da6d581 292 }
ed8c4913 293next:
69bca40d 294 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
295 }
296
69bca40d
AB
297 if (ret > 0)
298 ret = 0;
f05c4746
WS
299 else if (ret < 0)
300 free_inode_elem_list(eie);
69bca40d 301 return ret;
8da6d581
JS
302}
303
304/*
305 * resolve an indirect backref in the form (root_id, key, level)
306 * to a logical address
307 */
308static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
da61d31a
JB
309 struct btrfs_path *path, u64 time_seq,
310 struct __prelim_ref *ref,
311 struct ulist *parents,
44853868 312 const u64 *extent_item_pos, u64 total_refs)
8da6d581 313{
8da6d581
JS
314 struct btrfs_root *root;
315 struct btrfs_key root_key;
8da6d581
JS
316 struct extent_buffer *eb;
317 int ret = 0;
318 int root_level;
319 int level = ref->level;
538f72cd 320 int index;
8da6d581 321
8da6d581
JS
322 root_key.objectid = ref->root_id;
323 root_key.type = BTRFS_ROOT_ITEM_KEY;
324 root_key.offset = (u64)-1;
538f72cd
WS
325
326 index = srcu_read_lock(&fs_info->subvol_srcu);
327
8da6d581
JS
328 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
329 if (IS_ERR(root)) {
538f72cd 330 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581
JS
331 ret = PTR_ERR(root);
332 goto out;
333 }
334
9e351cc8
JB
335 if (path->search_commit_root)
336 root_level = btrfs_header_level(root->commit_root);
337 else
338 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 339
538f72cd
WS
340 if (root_level + 1 == level) {
341 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 342 goto out;
538f72cd 343 }
8da6d581
JS
344
345 path->lowest_level = level;
8445f61c 346 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
538f72cd
WS
347
348 /* root node has been locked, we can release @subvol_srcu safely here */
349 srcu_read_unlock(&fs_info->subvol_srcu, index);
350
8da6d581
JS
351 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
352 "%d for key (%llu %u %llu)\n",
c1c9ff7c
GU
353 ref->root_id, level, ref->count, ret,
354 ref->key_for_search.objectid, ref->key_for_search.type,
355 ref->key_for_search.offset);
8da6d581
JS
356 if (ret < 0)
357 goto out;
358
359 eb = path->nodes[level];
9345457f 360 while (!eb) {
fae7f21c 361 if (WARN_ON(!level)) {
9345457f
JS
362 ret = 1;
363 goto out;
364 }
365 level--;
366 eb = path->nodes[level];
8da6d581
JS
367 }
368
7ef81ac8 369 ret = add_all_parents(root, path, parents, ref, level, time_seq,
44853868 370 extent_item_pos, total_refs);
8da6d581 371out:
da61d31a
JB
372 path->lowest_level = 0;
373 btrfs_release_path(path);
8da6d581
JS
374 return ret;
375}
376
377/*
378 * resolve all indirect backrefs from the list
379 */
380static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
da61d31a 381 struct btrfs_path *path, u64 time_seq,
976b1908 382 struct list_head *head,
dc046b10
JB
383 const u64 *extent_item_pos, u64 total_refs,
384 u64 root_objectid)
8da6d581
JS
385{
386 int err;
387 int ret = 0;
388 struct __prelim_ref *ref;
389 struct __prelim_ref *ref_safe;
390 struct __prelim_ref *new_ref;
391 struct ulist *parents;
392 struct ulist_node *node;
cd1b413c 393 struct ulist_iterator uiter;
8da6d581
JS
394
395 parents = ulist_alloc(GFP_NOFS);
396 if (!parents)
397 return -ENOMEM;
398
399 /*
400 * _safe allows us to insert directly after the current item without
401 * iterating over the newly inserted items.
402 * we're also allowed to re-assign ref during iteration.
403 */
404 list_for_each_entry_safe(ref, ref_safe, head, list) {
405 if (ref->parent) /* already direct */
406 continue;
407 if (ref->count == 0)
408 continue;
dc046b10
JB
409 if (root_objectid && ref->root_id != root_objectid) {
410 ret = BACKREF_FOUND_SHARED;
411 goto out;
412 }
da61d31a 413 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
44853868
JB
414 parents, extent_item_pos,
415 total_refs);
95def2ed
WS
416 /*
417 * we can only tolerate ENOENT,otherwise,we should catch error
418 * and return directly.
419 */
420 if (err == -ENOENT) {
8da6d581 421 continue;
95def2ed
WS
422 } else if (err) {
423 ret = err;
424 goto out;
425 }
8da6d581
JS
426
427 /* we put the first parent into the ref at hand */
cd1b413c
JS
428 ULIST_ITER_INIT(&uiter);
429 node = ulist_next(parents, &uiter);
8da6d581 430 ref->parent = node ? node->val : 0;
995e01b7 431 ref->inode_list = node ?
35a3621b 432 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
8da6d581
JS
433
434 /* additional parents require new refs being added here */
cd1b413c 435 while ((node = ulist_next(parents, &uiter))) {
b9e9a6cb
WS
436 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
437 GFP_NOFS);
8da6d581
JS
438 if (!new_ref) {
439 ret = -ENOMEM;
e36902d4 440 goto out;
8da6d581
JS
441 }
442 memcpy(new_ref, ref, sizeof(*ref));
443 new_ref->parent = node->val;
995e01b7
JS
444 new_ref->inode_list = (struct extent_inode_elem *)
445 (uintptr_t)node->aux;
8da6d581
JS
446 list_add(&new_ref->list, &ref->list);
447 }
448 ulist_reinit(parents);
449 }
e36902d4 450out:
8da6d581
JS
451 ulist_free(parents);
452 return ret;
453}
454
d5c88b73
JS
455static inline int ref_for_same_block(struct __prelim_ref *ref1,
456 struct __prelim_ref *ref2)
457{
458 if (ref1->level != ref2->level)
459 return 0;
460 if (ref1->root_id != ref2->root_id)
461 return 0;
462 if (ref1->key_for_search.type != ref2->key_for_search.type)
463 return 0;
464 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
465 return 0;
466 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
467 return 0;
468 if (ref1->parent != ref2->parent)
469 return 0;
470
471 return 1;
472}
473
474/*
475 * read tree blocks and add keys where required.
476 */
477static int __add_missing_keys(struct btrfs_fs_info *fs_info,
478 struct list_head *head)
479{
480 struct list_head *pos;
481 struct extent_buffer *eb;
482
483 list_for_each(pos, head) {
484 struct __prelim_ref *ref;
485 ref = list_entry(pos, struct __prelim_ref, list);
486
487 if (ref->parent)
488 continue;
489 if (ref->key_for_search.type)
490 continue;
491 BUG_ON(!ref->wanted_disk_byte);
492 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
ce86cd59 493 0);
64c043de
LB
494 if (IS_ERR(eb)) {
495 return PTR_ERR(eb);
496 } else if (!extent_buffer_uptodate(eb)) {
416bc658
JB
497 free_extent_buffer(eb);
498 return -EIO;
499 }
d5c88b73
JS
500 btrfs_tree_read_lock(eb);
501 if (btrfs_header_level(eb) == 0)
502 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
503 else
504 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
505 btrfs_tree_read_unlock(eb);
506 free_extent_buffer(eb);
507 }
508 return 0;
509}
510
8da6d581
JS
511/*
512 * merge two lists of backrefs and adjust counts accordingly
513 *
514 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
515 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
516 * additionally, we could even add a key range for the blocks we
517 * looked into to merge even more (-> replace unresolved refs by those
518 * having a parent).
8da6d581
JS
519 * mode = 2: merge identical parents
520 */
692206b1 521static void __merge_refs(struct list_head *head, int mode)
8da6d581
JS
522{
523 struct list_head *pos1;
524
525 list_for_each(pos1, head) {
526 struct list_head *n2;
527 struct list_head *pos2;
528 struct __prelim_ref *ref1;
529
530 ref1 = list_entry(pos1, struct __prelim_ref, list);
531
8da6d581
JS
532 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
533 pos2 = n2, n2 = pos2->next) {
534 struct __prelim_ref *ref2;
d5c88b73 535 struct __prelim_ref *xchg;
3ef5969c 536 struct extent_inode_elem *eie;
8da6d581
JS
537
538 ref2 = list_entry(pos2, struct __prelim_ref, list);
539
540 if (mode == 1) {
d5c88b73 541 if (!ref_for_same_block(ref1, ref2))
8da6d581 542 continue;
d5c88b73
JS
543 if (!ref1->parent && ref2->parent) {
544 xchg = ref1;
545 ref1 = ref2;
546 ref2 = xchg;
547 }
8da6d581
JS
548 } else {
549 if (ref1->parent != ref2->parent)
550 continue;
8da6d581 551 }
3ef5969c
AB
552
553 eie = ref1->inode_list;
554 while (eie && eie->next)
555 eie = eie->next;
556 if (eie)
557 eie->next = ref2->inode_list;
558 else
559 ref1->inode_list = ref2->inode_list;
560 ref1->count += ref2->count;
561
8da6d581 562 list_del(&ref2->list);
b9e9a6cb 563 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
8da6d581
JS
564 }
565
566 }
8da6d581
JS
567}
568
569/*
570 * add all currently queued delayed refs from this head whose seq nr is
571 * smaller or equal that seq to the list
572 */
573static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
dc046b10
JB
574 struct list_head *prefs, u64 *total_refs,
575 u64 inum)
8da6d581
JS
576{
577 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
578 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
579 struct btrfs_key key;
580 struct btrfs_key op_key = {0};
8da6d581 581 int sgn;
b1375d64 582 int ret = 0;
8da6d581
JS
583
584 if (extent_op && extent_op->update_key)
d5c88b73 585 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581 586
d7df2c79
JB
587 spin_lock(&head->lock);
588 n = rb_first(&head->ref_root);
589 while (n) {
8da6d581
JS
590 struct btrfs_delayed_ref_node *node;
591 node = rb_entry(n, struct btrfs_delayed_ref_node,
592 rb_node);
d7df2c79 593 n = rb_next(n);
8da6d581
JS
594 if (node->seq > seq)
595 continue;
596
597 switch (node->action) {
598 case BTRFS_ADD_DELAYED_EXTENT:
599 case BTRFS_UPDATE_DELAYED_HEAD:
600 WARN_ON(1);
601 continue;
602 case BTRFS_ADD_DELAYED_REF:
603 sgn = 1;
604 break;
605 case BTRFS_DROP_DELAYED_REF:
606 sgn = -1;
607 break;
608 default:
609 BUG_ON(1);
610 }
44853868 611 *total_refs += (node->ref_mod * sgn);
8da6d581
JS
612 switch (node->type) {
613 case BTRFS_TREE_BLOCK_REF_KEY: {
614 struct btrfs_delayed_tree_ref *ref;
615
616 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 617 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581 618 ref->level + 1, 0, node->bytenr,
742916b8 619 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
620 break;
621 }
622 case BTRFS_SHARED_BLOCK_REF_KEY: {
623 struct btrfs_delayed_tree_ref *ref;
624
625 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 626 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
627 ref->level + 1, ref->parent,
628 node->bytenr,
742916b8 629 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
630 break;
631 }
632 case BTRFS_EXTENT_DATA_REF_KEY: {
633 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
634 ref = btrfs_delayed_node_to_data_ref(node);
635
636 key.objectid = ref->objectid;
637 key.type = BTRFS_EXTENT_DATA_KEY;
638 key.offset = ref->offset;
dc046b10
JB
639
640 /*
641 * Found a inum that doesn't match our known inum, we
642 * know it's shared.
643 */
644 if (inum && ref->objectid != inum) {
645 ret = BACKREF_FOUND_SHARED;
646 break;
647 }
648
8da6d581
JS
649 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
650 node->bytenr,
742916b8 651 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
652 break;
653 }
654 case BTRFS_SHARED_DATA_REF_KEY: {
655 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
656
657 ref = btrfs_delayed_node_to_data_ref(node);
658
659 key.objectid = ref->objectid;
660 key.type = BTRFS_EXTENT_DATA_KEY;
661 key.offset = ref->offset;
662 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
663 ref->parent, node->bytenr,
742916b8 664 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
665 break;
666 }
667 default:
668 WARN_ON(1);
669 }
1149ab6b 670 if (ret)
d7df2c79 671 break;
8da6d581 672 }
d7df2c79
JB
673 spin_unlock(&head->lock);
674 return ret;
8da6d581
JS
675}
676
677/*
678 * add all inline backrefs for bytenr to the list
679 */
680static int __add_inline_refs(struct btrfs_fs_info *fs_info,
681 struct btrfs_path *path, u64 bytenr,
44853868 682 int *info_level, struct list_head *prefs,
dc046b10 683 u64 *total_refs, u64 inum)
8da6d581 684{
b1375d64 685 int ret = 0;
8da6d581
JS
686 int slot;
687 struct extent_buffer *leaf;
688 struct btrfs_key key;
261c84b6 689 struct btrfs_key found_key;
8da6d581
JS
690 unsigned long ptr;
691 unsigned long end;
692 struct btrfs_extent_item *ei;
693 u64 flags;
694 u64 item_size;
695
696 /*
697 * enumerate all inline refs
698 */
699 leaf = path->nodes[0];
dadcaf78 700 slot = path->slots[0];
8da6d581
JS
701
702 item_size = btrfs_item_size_nr(leaf, slot);
703 BUG_ON(item_size < sizeof(*ei));
704
705 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
706 flags = btrfs_extent_flags(leaf, ei);
44853868 707 *total_refs += btrfs_extent_refs(leaf, ei);
261c84b6 708 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
709
710 ptr = (unsigned long)(ei + 1);
711 end = (unsigned long)ei + item_size;
712
261c84b6
JB
713 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
714 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 715 struct btrfs_tree_block_info *info;
8da6d581
JS
716
717 info = (struct btrfs_tree_block_info *)ptr;
718 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
719 ptr += sizeof(struct btrfs_tree_block_info);
720 BUG_ON(ptr > end);
261c84b6
JB
721 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
722 *info_level = found_key.offset;
8da6d581
JS
723 } else {
724 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
725 }
726
727 while (ptr < end) {
728 struct btrfs_extent_inline_ref *iref;
729 u64 offset;
730 int type;
731
732 iref = (struct btrfs_extent_inline_ref *)ptr;
733 type = btrfs_extent_inline_ref_type(leaf, iref);
734 offset = btrfs_extent_inline_ref_offset(leaf, iref);
735
736 switch (type) {
737 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 738 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 739 *info_level + 1, offset,
742916b8 740 bytenr, 1, GFP_NOFS);
8da6d581
JS
741 break;
742 case BTRFS_SHARED_DATA_REF_KEY: {
743 struct btrfs_shared_data_ref *sdref;
744 int count;
745
746 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
747 count = btrfs_shared_data_ref_count(leaf, sdref);
748 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
742916b8 749 bytenr, count, GFP_NOFS);
8da6d581
JS
750 break;
751 }
752 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
753 ret = __add_prelim_ref(prefs, offset, NULL,
754 *info_level + 1, 0,
742916b8 755 bytenr, 1, GFP_NOFS);
8da6d581
JS
756 break;
757 case BTRFS_EXTENT_DATA_REF_KEY: {
758 struct btrfs_extent_data_ref *dref;
759 int count;
760 u64 root;
761
762 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
763 count = btrfs_extent_data_ref_count(leaf, dref);
764 key.objectid = btrfs_extent_data_ref_objectid(leaf,
765 dref);
766 key.type = BTRFS_EXTENT_DATA_KEY;
767 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10
JB
768
769 if (inum && key.objectid != inum) {
770 ret = BACKREF_FOUND_SHARED;
771 break;
772 }
773
8da6d581 774 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73 775 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 776 bytenr, count, GFP_NOFS);
8da6d581
JS
777 break;
778 }
779 default:
780 WARN_ON(1);
781 }
1149ab6b
WS
782 if (ret)
783 return ret;
8da6d581
JS
784 ptr += btrfs_extent_inline_ref_size(type);
785 }
786
787 return 0;
788}
789
790/*
791 * add all non-inline backrefs for bytenr to the list
792 */
793static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
794 struct btrfs_path *path, u64 bytenr,
dc046b10 795 int info_level, struct list_head *prefs, u64 inum)
8da6d581
JS
796{
797 struct btrfs_root *extent_root = fs_info->extent_root;
798 int ret;
799 int slot;
800 struct extent_buffer *leaf;
801 struct btrfs_key key;
802
803 while (1) {
804 ret = btrfs_next_item(extent_root, path);
805 if (ret < 0)
806 break;
807 if (ret) {
808 ret = 0;
809 break;
810 }
811
812 slot = path->slots[0];
813 leaf = path->nodes[0];
814 btrfs_item_key_to_cpu(leaf, &key, slot);
815
816 if (key.objectid != bytenr)
817 break;
818 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
819 continue;
820 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
821 break;
822
823 switch (key.type) {
824 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 825 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 826 info_level + 1, key.offset,
742916b8 827 bytenr, 1, GFP_NOFS);
8da6d581
JS
828 break;
829 case BTRFS_SHARED_DATA_REF_KEY: {
830 struct btrfs_shared_data_ref *sdref;
831 int count;
832
833 sdref = btrfs_item_ptr(leaf, slot,
834 struct btrfs_shared_data_ref);
835 count = btrfs_shared_data_ref_count(leaf, sdref);
836 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
742916b8 837 bytenr, count, GFP_NOFS);
8da6d581
JS
838 break;
839 }
840 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
841 ret = __add_prelim_ref(prefs, key.offset, NULL,
842 info_level + 1, 0,
742916b8 843 bytenr, 1, GFP_NOFS);
8da6d581
JS
844 break;
845 case BTRFS_EXTENT_DATA_REF_KEY: {
846 struct btrfs_extent_data_ref *dref;
847 int count;
848 u64 root;
849
850 dref = btrfs_item_ptr(leaf, slot,
851 struct btrfs_extent_data_ref);
852 count = btrfs_extent_data_ref_count(leaf, dref);
853 key.objectid = btrfs_extent_data_ref_objectid(leaf,
854 dref);
855 key.type = BTRFS_EXTENT_DATA_KEY;
856 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
dc046b10
JB
857
858 if (inum && key.objectid != inum) {
859 ret = BACKREF_FOUND_SHARED;
860 break;
861 }
862
8da6d581
JS
863 root = btrfs_extent_data_ref_root(leaf, dref);
864 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 865 bytenr, count, GFP_NOFS);
8da6d581
JS
866 break;
867 }
868 default:
869 WARN_ON(1);
870 }
1149ab6b
WS
871 if (ret)
872 return ret;
873
8da6d581
JS
874 }
875
876 return ret;
877}
878
879/*
880 * this adds all existing backrefs (inline backrefs, backrefs and delayed
881 * refs) for the given bytenr to the refs list, merges duplicates and resolves
882 * indirect refs to their parent bytenr.
883 * When roots are found, they're added to the roots list
884 *
2c2ed5aa
MF
885 * NOTE: This can return values > 0
886 *
8da6d581
JS
887 * FIXME some caching might speed things up
888 */
889static int find_parent_nodes(struct btrfs_trans_handle *trans,
890 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 891 u64 time_seq, struct ulist *refs,
dc046b10
JB
892 struct ulist *roots, const u64 *extent_item_pos,
893 u64 root_objectid, u64 inum)
8da6d581
JS
894{
895 struct btrfs_key key;
896 struct btrfs_path *path;
8da6d581 897 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 898 struct btrfs_delayed_ref_head *head;
8da6d581
JS
899 int info_level = 0;
900 int ret;
901 struct list_head prefs_delayed;
902 struct list_head prefs;
903 struct __prelim_ref *ref;
f05c4746 904 struct extent_inode_elem *eie = NULL;
44853868 905 u64 total_refs = 0;
8da6d581
JS
906
907 INIT_LIST_HEAD(&prefs);
908 INIT_LIST_HEAD(&prefs_delayed);
909
910 key.objectid = bytenr;
8da6d581 911 key.offset = (u64)-1;
261c84b6
JB
912 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
913 key.type = BTRFS_METADATA_ITEM_KEY;
914 else
915 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
916
917 path = btrfs_alloc_path();
918 if (!path)
919 return -ENOMEM;
e84752d4 920 if (!trans) {
da61d31a 921 path->search_commit_root = 1;
e84752d4
WS
922 path->skip_locking = 1;
923 }
8da6d581
JS
924
925 /*
926 * grab both a lock on the path and a lock on the delayed ref head.
927 * We need both to get a consistent picture of how the refs look
928 * at a specified point in time
929 */
930again:
d3b01064
LZ
931 head = NULL;
932
8da6d581
JS
933 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
934 if (ret < 0)
935 goto out;
936 BUG_ON(ret == 0);
937
faa2dbf0
JB
938#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
939 if (trans && likely(trans->type != __TRANS_DUMMY)) {
940#else
da61d31a 941 if (trans) {
faa2dbf0 942#endif
7a3ae2f8
JS
943 /*
944 * look if there are updates for this ref queued and lock the
945 * head
946 */
947 delayed_refs = &trans->transaction->delayed_refs;
948 spin_lock(&delayed_refs->lock);
949 head = btrfs_find_delayed_ref_head(trans, bytenr);
950 if (head) {
951 if (!mutex_trylock(&head->mutex)) {
952 atomic_inc(&head->node.refs);
953 spin_unlock(&delayed_refs->lock);
954
955 btrfs_release_path(path);
956
957 /*
958 * Mutex was contended, block until it's
959 * released and try again
960 */
961 mutex_lock(&head->mutex);
962 mutex_unlock(&head->mutex);
963 btrfs_put_delayed_ref(&head->node);
964 goto again;
965 }
d7df2c79 966 spin_unlock(&delayed_refs->lock);
097b8a7c 967 ret = __add_delayed_refs(head, time_seq,
dc046b10
JB
968 &prefs_delayed, &total_refs,
969 inum);
155725c9 970 mutex_unlock(&head->mutex);
d7df2c79 971 if (ret)
7a3ae2f8 972 goto out;
d7df2c79
JB
973 } else {
974 spin_unlock(&delayed_refs->lock);
d3b01064 975 }
8da6d581 976 }
8da6d581
JS
977
978 if (path->slots[0]) {
979 struct extent_buffer *leaf;
980 int slot;
981
dadcaf78 982 path->slots[0]--;
8da6d581 983 leaf = path->nodes[0];
dadcaf78 984 slot = path->slots[0];
8da6d581
JS
985 btrfs_item_key_to_cpu(leaf, &key, slot);
986 if (key.objectid == bytenr &&
261c84b6
JB
987 (key.type == BTRFS_EXTENT_ITEM_KEY ||
988 key.type == BTRFS_METADATA_ITEM_KEY)) {
8da6d581 989 ret = __add_inline_refs(fs_info, path, bytenr,
44853868 990 &info_level, &prefs,
dc046b10 991 &total_refs, inum);
8da6d581
JS
992 if (ret)
993 goto out;
d5c88b73 994 ret = __add_keyed_refs(fs_info, path, bytenr,
dc046b10 995 info_level, &prefs, inum);
8da6d581
JS
996 if (ret)
997 goto out;
998 }
999 }
1000 btrfs_release_path(path);
1001
8da6d581
JS
1002 list_splice_init(&prefs_delayed, &prefs);
1003
d5c88b73
JS
1004 ret = __add_missing_keys(fs_info, &prefs);
1005 if (ret)
1006 goto out;
1007
692206b1 1008 __merge_refs(&prefs, 1);
8da6d581 1009
da61d31a 1010 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
dc046b10
JB
1011 extent_item_pos, total_refs,
1012 root_objectid);
8da6d581
JS
1013 if (ret)
1014 goto out;
1015
692206b1 1016 __merge_refs(&prefs, 2);
8da6d581
JS
1017
1018 while (!list_empty(&prefs)) {
1019 ref = list_first_entry(&prefs, struct __prelim_ref, list);
6c1500f2 1020 WARN_ON(ref->count < 0);
98cfee21 1021 if (roots && ref->count && ref->root_id && ref->parent == 0) {
dc046b10
JB
1022 if (root_objectid && ref->root_id != root_objectid) {
1023 ret = BACKREF_FOUND_SHARED;
1024 goto out;
1025 }
1026
8da6d581
JS
1027 /* no parent == root of tree */
1028 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
1029 if (ret < 0)
1030 goto out;
8da6d581
JS
1031 }
1032 if (ref->count && ref->parent) {
8a56457f
JB
1033 if (extent_item_pos && !ref->inode_list &&
1034 ref->level == 0) {
976b1908 1035 struct extent_buffer *eb;
707e8a07 1036
976b1908 1037 eb = read_tree_block(fs_info->extent_root,
ce86cd59 1038 ref->parent, 0);
64c043de
LB
1039 if (IS_ERR(eb)) {
1040 ret = PTR_ERR(eb);
1041 goto out;
1042 } else if (!extent_buffer_uptodate(eb)) {
416bc658 1043 free_extent_buffer(eb);
c16c2e2e
WS
1044 ret = -EIO;
1045 goto out;
416bc658 1046 }
6f7ff6d7
FM
1047 btrfs_tree_read_lock(eb);
1048 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
976b1908
JS
1049 ret = find_extent_in_eb(eb, bytenr,
1050 *extent_item_pos, &eie);
6f7ff6d7 1051 btrfs_tree_read_unlock_blocking(eb);
976b1908 1052 free_extent_buffer(eb);
f5929cd8
FDBM
1053 if (ret < 0)
1054 goto out;
1055 ref->inode_list = eie;
976b1908 1056 }
4eb1f66d
TI
1057 ret = ulist_add_merge_ptr(refs, ref->parent,
1058 ref->inode_list,
1059 (void **)&eie, GFP_NOFS);
f1723939
WS
1060 if (ret < 0)
1061 goto out;
3301958b
JS
1062 if (!ret && extent_item_pos) {
1063 /*
1064 * we've recorded that parent, so we must extend
1065 * its inode list here
1066 */
1067 BUG_ON(!eie);
1068 while (eie->next)
1069 eie = eie->next;
1070 eie->next = ref->inode_list;
1071 }
f05c4746 1072 eie = NULL;
8da6d581 1073 }
a4fdb61e 1074 list_del(&ref->list);
b9e9a6cb 1075 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1076 }
1077
1078out:
8da6d581
JS
1079 btrfs_free_path(path);
1080 while (!list_empty(&prefs)) {
1081 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1082 list_del(&ref->list);
b9e9a6cb 1083 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1084 }
1085 while (!list_empty(&prefs_delayed)) {
1086 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1087 list);
1088 list_del(&ref->list);
b9e9a6cb 1089 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581 1090 }
f05c4746
WS
1091 if (ret < 0)
1092 free_inode_elem_list(eie);
8da6d581
JS
1093 return ret;
1094}
1095
976b1908
JS
1096static void free_leaf_list(struct ulist *blocks)
1097{
1098 struct ulist_node *node = NULL;
1099 struct extent_inode_elem *eie;
976b1908
JS
1100 struct ulist_iterator uiter;
1101
1102 ULIST_ITER_INIT(&uiter);
1103 while ((node = ulist_next(blocks, &uiter))) {
1104 if (!node->aux)
1105 continue;
995e01b7 1106 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
f05c4746 1107 free_inode_elem_list(eie);
976b1908
JS
1108 node->aux = 0;
1109 }
1110
1111 ulist_free(blocks);
1112}
1113
8da6d581
JS
1114/*
1115 * Finds all leafs with a reference to the specified combination of bytenr and
1116 * offset. key_list_head will point to a list of corresponding keys (caller must
1117 * free each list element). The leafs will be stored in the leafs ulist, which
1118 * must be freed with ulist_free.
1119 *
1120 * returns 0 on success, <0 on error
1121 */
1122static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1123 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1124 u64 time_seq, struct ulist **leafs,
976b1908 1125 const u64 *extent_item_pos)
8da6d581 1126{
8da6d581
JS
1127 int ret;
1128
8da6d581 1129 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1130 if (!*leafs)
8da6d581 1131 return -ENOMEM;
8da6d581 1132
097b8a7c 1133 ret = find_parent_nodes(trans, fs_info, bytenr,
dc046b10 1134 time_seq, *leafs, NULL, extent_item_pos, 0, 0);
8da6d581 1135 if (ret < 0 && ret != -ENOENT) {
976b1908 1136 free_leaf_list(*leafs);
8da6d581
JS
1137 return ret;
1138 }
1139
1140 return 0;
1141}
1142
1143/*
1144 * walk all backrefs for a given extent to find all roots that reference this
1145 * extent. Walking a backref means finding all extents that reference this
1146 * extent and in turn walk the backrefs of those, too. Naturally this is a
1147 * recursive process, but here it is implemented in an iterative fashion: We
1148 * find all referencing extents for the extent in question and put them on a
1149 * list. In turn, we find all referencing extents for those, further appending
1150 * to the list. The way we iterate the list allows adding more elements after
1151 * the current while iterating. The process stops when we reach the end of the
1152 * list. Found roots are added to the roots list.
1153 *
1154 * returns 0 on success, < 0 on error.
1155 */
9e351cc8
JB
1156static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1157 struct btrfs_fs_info *fs_info, u64 bytenr,
1158 u64 time_seq, struct ulist **roots)
8da6d581
JS
1159{
1160 struct ulist *tmp;
1161 struct ulist_node *node = NULL;
cd1b413c 1162 struct ulist_iterator uiter;
8da6d581
JS
1163 int ret;
1164
1165 tmp = ulist_alloc(GFP_NOFS);
1166 if (!tmp)
1167 return -ENOMEM;
1168 *roots = ulist_alloc(GFP_NOFS);
1169 if (!*roots) {
1170 ulist_free(tmp);
1171 return -ENOMEM;
1172 }
1173
cd1b413c 1174 ULIST_ITER_INIT(&uiter);
8da6d581 1175 while (1) {
097b8a7c 1176 ret = find_parent_nodes(trans, fs_info, bytenr,
dc046b10 1177 time_seq, tmp, *roots, NULL, 0, 0);
8da6d581
JS
1178 if (ret < 0 && ret != -ENOENT) {
1179 ulist_free(tmp);
1180 ulist_free(*roots);
1181 return ret;
1182 }
cd1b413c 1183 node = ulist_next(tmp, &uiter);
8da6d581
JS
1184 if (!node)
1185 break;
1186 bytenr = node->val;
bca1a290 1187 cond_resched();
8da6d581
JS
1188 }
1189
1190 ulist_free(tmp);
1191 return 0;
1192}
1193
9e351cc8
JB
1194int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1195 struct btrfs_fs_info *fs_info, u64 bytenr,
1196 u64 time_seq, struct ulist **roots)
1197{
1198 int ret;
1199
1200 if (!trans)
1201 down_read(&fs_info->commit_root_sem);
1202 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1203 if (!trans)
1204 up_read(&fs_info->commit_root_sem);
1205 return ret;
1206}
1207
2c2ed5aa
MF
1208/**
1209 * btrfs_check_shared - tell us whether an extent is shared
1210 *
1211 * @trans: optional trans handle
1212 *
1213 * btrfs_check_shared uses the backref walking code but will short
1214 * circuit as soon as it finds a root or inode that doesn't match the
1215 * one passed in. This provides a significant performance benefit for
1216 * callers (such as fiemap) which want to know whether the extent is
1217 * shared but do not need a ref count.
1218 *
1219 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1220 */
dc046b10
JB
1221int btrfs_check_shared(struct btrfs_trans_handle *trans,
1222 struct btrfs_fs_info *fs_info, u64 root_objectid,
1223 u64 inum, u64 bytenr)
1224{
1225 struct ulist *tmp = NULL;
1226 struct ulist *roots = NULL;
1227 struct ulist_iterator uiter;
1228 struct ulist_node *node;
3284da7b 1229 struct seq_list elem = SEQ_LIST_INIT(elem);
dc046b10
JB
1230 int ret = 0;
1231
1232 tmp = ulist_alloc(GFP_NOFS);
1233 roots = ulist_alloc(GFP_NOFS);
1234 if (!tmp || !roots) {
1235 ulist_free(tmp);
1236 ulist_free(roots);
1237 return -ENOMEM;
1238 }
1239
1240 if (trans)
1241 btrfs_get_tree_mod_seq(fs_info, &elem);
1242 else
1243 down_read(&fs_info->commit_root_sem);
1244 ULIST_ITER_INIT(&uiter);
1245 while (1) {
1246 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1247 roots, NULL, root_objectid, inum);
1248 if (ret == BACKREF_FOUND_SHARED) {
2c2ed5aa 1249 /* this is the only condition under which we return 1 */
dc046b10
JB
1250 ret = 1;
1251 break;
1252 }
1253 if (ret < 0 && ret != -ENOENT)
1254 break;
2c2ed5aa 1255 ret = 0;
dc046b10
JB
1256 node = ulist_next(tmp, &uiter);
1257 if (!node)
1258 break;
1259 bytenr = node->val;
1260 cond_resched();
1261 }
1262 if (trans)
1263 btrfs_put_tree_mod_seq(fs_info, &elem);
1264 else
1265 up_read(&fs_info->commit_root_sem);
1266 ulist_free(tmp);
1267 ulist_free(roots);
1268 return ret;
1269}
1270
f186373f
MF
1271int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1272 u64 start_off, struct btrfs_path *path,
1273 struct btrfs_inode_extref **ret_extref,
1274 u64 *found_off)
1275{
1276 int ret, slot;
1277 struct btrfs_key key;
1278 struct btrfs_key found_key;
1279 struct btrfs_inode_extref *extref;
1280 struct extent_buffer *leaf;
1281 unsigned long ptr;
1282
1283 key.objectid = inode_objectid;
962a298f 1284 key.type = BTRFS_INODE_EXTREF_KEY;
f186373f
MF
1285 key.offset = start_off;
1286
1287 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1288 if (ret < 0)
1289 return ret;
1290
1291 while (1) {
1292 leaf = path->nodes[0];
1293 slot = path->slots[0];
1294 if (slot >= btrfs_header_nritems(leaf)) {
1295 /*
1296 * If the item at offset is not found,
1297 * btrfs_search_slot will point us to the slot
1298 * where it should be inserted. In our case
1299 * that will be the slot directly before the
1300 * next INODE_REF_KEY_V2 item. In the case
1301 * that we're pointing to the last slot in a
1302 * leaf, we must move one leaf over.
1303 */
1304 ret = btrfs_next_leaf(root, path);
1305 if (ret) {
1306 if (ret >= 1)
1307 ret = -ENOENT;
1308 break;
1309 }
1310 continue;
1311 }
1312
1313 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1314
1315 /*
1316 * Check that we're still looking at an extended ref key for
1317 * this particular objectid. If we have different
1318 * objectid or type then there are no more to be found
1319 * in the tree and we can exit.
1320 */
1321 ret = -ENOENT;
1322 if (found_key.objectid != inode_objectid)
1323 break;
962a298f 1324 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
f186373f
MF
1325 break;
1326
1327 ret = 0;
1328 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1329 extref = (struct btrfs_inode_extref *)ptr;
1330 *ret_extref = extref;
1331 if (found_off)
1332 *found_off = found_key.offset;
1333 break;
1334 }
1335
1336 return ret;
1337}
1338
48a3b636
ES
1339/*
1340 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1341 * Elements of the path are separated by '/' and the path is guaranteed to be
1342 * 0-terminated. the path is only given within the current file system.
1343 * Therefore, it never starts with a '/'. the caller is responsible to provide
1344 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1345 * the start point of the resulting string is returned. this pointer is within
1346 * dest, normally.
1347 * in case the path buffer would overflow, the pointer is decremented further
1348 * as if output was written to the buffer, though no more output is actually
1349 * generated. that way, the caller can determine how much space would be
1350 * required for the path to fit into the buffer. in that case, the returned
1351 * value will be smaller than dest. callers must check this!
1352 */
96b5bd77
JS
1353char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1354 u32 name_len, unsigned long name_off,
1355 struct extent_buffer *eb_in, u64 parent,
1356 char *dest, u32 size)
a542ad1b 1357{
a542ad1b
JS
1358 int slot;
1359 u64 next_inum;
1360 int ret;
661bec6b 1361 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1362 struct extent_buffer *eb = eb_in;
1363 struct btrfs_key found_key;
b916a59a 1364 int leave_spinning = path->leave_spinning;
d24bec3a 1365 struct btrfs_inode_ref *iref;
a542ad1b
JS
1366
1367 if (bytes_left >= 0)
1368 dest[bytes_left] = '\0';
1369
b916a59a 1370 path->leave_spinning = 1;
a542ad1b 1371 while (1) {
d24bec3a 1372 bytes_left -= name_len;
a542ad1b
JS
1373 if (bytes_left >= 0)
1374 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1375 name_off, name_len);
b916a59a
JS
1376 if (eb != eb_in) {
1377 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1378 free_extent_buffer(eb);
b916a59a 1379 }
c234a24d
DS
1380 ret = btrfs_find_item(fs_root, path, parent, 0,
1381 BTRFS_INODE_REF_KEY, &found_key);
8f24b496
JS
1382 if (ret > 0)
1383 ret = -ENOENT;
a542ad1b
JS
1384 if (ret)
1385 break;
d24bec3a 1386
a542ad1b
JS
1387 next_inum = found_key.offset;
1388
1389 /* regular exit ahead */
1390 if (parent == next_inum)
1391 break;
1392
1393 slot = path->slots[0];
1394 eb = path->nodes[0];
1395 /* make sure we can use eb after releasing the path */
b916a59a 1396 if (eb != eb_in) {
a542ad1b 1397 atomic_inc(&eb->refs);
b916a59a
JS
1398 btrfs_tree_read_lock(eb);
1399 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1400 }
a542ad1b 1401 btrfs_release_path(path);
a542ad1b 1402 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1403
1404 name_len = btrfs_inode_ref_name_len(eb, iref);
1405 name_off = (unsigned long)(iref + 1);
1406
a542ad1b
JS
1407 parent = next_inum;
1408 --bytes_left;
1409 if (bytes_left >= 0)
1410 dest[bytes_left] = '/';
1411 }
1412
1413 btrfs_release_path(path);
b916a59a 1414 path->leave_spinning = leave_spinning;
a542ad1b
JS
1415
1416 if (ret)
1417 return ERR_PTR(ret);
1418
1419 return dest + bytes_left;
1420}
1421
1422/*
1423 * this makes the path point to (logical EXTENT_ITEM *)
1424 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1425 * tree blocks and <0 on error.
1426 */
1427int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1428 struct btrfs_path *path, struct btrfs_key *found_key,
1429 u64 *flags_ret)
a542ad1b
JS
1430{
1431 int ret;
1432 u64 flags;
261c84b6 1433 u64 size = 0;
a542ad1b
JS
1434 u32 item_size;
1435 struct extent_buffer *eb;
1436 struct btrfs_extent_item *ei;
1437 struct btrfs_key key;
1438
261c84b6
JB
1439 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1440 key.type = BTRFS_METADATA_ITEM_KEY;
1441 else
1442 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1443 key.objectid = logical;
1444 key.offset = (u64)-1;
1445
1446 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1447 if (ret < 0)
1448 return ret;
a542ad1b 1449
850a8cdf
WS
1450 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1451 if (ret) {
1452 if (ret > 0)
1453 ret = -ENOENT;
1454 return ret;
580f0a67 1455 }
850a8cdf 1456 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6 1457 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
707e8a07 1458 size = fs_info->extent_root->nodesize;
261c84b6
JB
1459 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1460 size = found_key->offset;
1461
580f0a67 1462 if (found_key->objectid > logical ||
261c84b6 1463 found_key->objectid + size <= logical) {
c1c9ff7c 1464 pr_debug("logical %llu is not within any extent\n", logical);
a542ad1b 1465 return -ENOENT;
4692cf58 1466 }
a542ad1b
JS
1467
1468 eb = path->nodes[0];
1469 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1470 BUG_ON(item_size < sizeof(*ei));
1471
1472 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1473 flags = btrfs_extent_flags(eb, ei);
1474
4692cf58
JS
1475 pr_debug("logical %llu is at position %llu within the extent (%llu "
1476 "EXTENT_ITEM %llu) flags %#llx size %u\n",
c1c9ff7c
GU
1477 logical, logical - found_key->objectid, found_key->objectid,
1478 found_key->offset, flags, item_size);
69917e43
LB
1479
1480 WARN_ON(!flags_ret);
1481 if (flags_ret) {
1482 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1483 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1484 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1485 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1486 else
1487 BUG_ON(1);
1488 return 0;
1489 }
a542ad1b
JS
1490
1491 return -EIO;
1492}
1493
1494/*
1495 * helper function to iterate extent inline refs. ptr must point to a 0 value
1496 * for the first call and may be modified. it is used to track state.
1497 * if more refs exist, 0 is returned and the next call to
1498 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1499 * next ref. after the last ref was processed, 1 is returned.
1500 * returns <0 on error
1501 */
1502static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1503 struct btrfs_key *key,
1504 struct btrfs_extent_item *ei, u32 item_size,
1505 struct btrfs_extent_inline_ref **out_eiref,
1506 int *out_type)
a542ad1b
JS
1507{
1508 unsigned long end;
1509 u64 flags;
1510 struct btrfs_tree_block_info *info;
1511
1512 if (!*ptr) {
1513 /* first call */
1514 flags = btrfs_extent_flags(eb, ei);
1515 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6eda71d0
LB
1516 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1517 /* a skinny metadata extent */
1518 *out_eiref =
1519 (struct btrfs_extent_inline_ref *)(ei + 1);
1520 } else {
1521 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1522 info = (struct btrfs_tree_block_info *)(ei + 1);
1523 *out_eiref =
1524 (struct btrfs_extent_inline_ref *)(info + 1);
1525 }
a542ad1b
JS
1526 } else {
1527 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1528 }
1529 *ptr = (unsigned long)*out_eiref;
cd857dd6 1530 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
a542ad1b
JS
1531 return -ENOENT;
1532 }
1533
1534 end = (unsigned long)ei + item_size;
6eda71d0 1535 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
a542ad1b
JS
1536 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1537
1538 *ptr += btrfs_extent_inline_ref_size(*out_type);
1539 WARN_ON(*ptr > end);
1540 if (*ptr == end)
1541 return 1; /* last */
1542
1543 return 0;
1544}
1545
1546/*
1547 * reads the tree block backref for an extent. tree level and root are returned
1548 * through out_level and out_root. ptr must point to a 0 value for the first
1549 * call and may be modified (see __get_extent_inline_ref comment).
1550 * returns 0 if data was provided, 1 if there was no more data to provide or
1551 * <0 on error.
1552 */
1553int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
6eda71d0
LB
1554 struct btrfs_key *key, struct btrfs_extent_item *ei,
1555 u32 item_size, u64 *out_root, u8 *out_level)
a542ad1b
JS
1556{
1557 int ret;
1558 int type;
a542ad1b
JS
1559 struct btrfs_extent_inline_ref *eiref;
1560
1561 if (*ptr == (unsigned long)-1)
1562 return 1;
1563
1564 while (1) {
6eda71d0
LB
1565 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1566 &eiref, &type);
a542ad1b
JS
1567 if (ret < 0)
1568 return ret;
1569
1570 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1571 type == BTRFS_SHARED_BLOCK_REF_KEY)
1572 break;
1573
1574 if (ret == 1)
1575 return 1;
1576 }
1577
1578 /* we can treat both ref types equally here */
a542ad1b 1579 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
a1317f45
FM
1580
1581 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1582 struct btrfs_tree_block_info *info;
1583
1584 info = (struct btrfs_tree_block_info *)(ei + 1);
1585 *out_level = btrfs_tree_block_level(eb, info);
1586 } else {
1587 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1588 *out_level = (u8)key->offset;
1589 }
a542ad1b
JS
1590
1591 if (ret == 1)
1592 *ptr = (unsigned long)-1;
1593
1594 return 0;
1595}
1596
976b1908
JS
1597static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1598 u64 root, u64 extent_item_objectid,
4692cf58 1599 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1600{
976b1908 1601 struct extent_inode_elem *eie;
4692cf58 1602 int ret = 0;
4692cf58 1603
976b1908 1604 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1605 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1606 "root %llu\n", extent_item_objectid,
1607 eie->inum, eie->offset, root);
1608 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1609 if (ret) {
976b1908
JS
1610 pr_debug("stopping iteration for %llu due to ret=%d\n",
1611 extent_item_objectid, ret);
4692cf58
JS
1612 break;
1613 }
a542ad1b
JS
1614 }
1615
a542ad1b
JS
1616 return ret;
1617}
1618
1619/*
1620 * calls iterate() for every inode that references the extent identified by
4692cf58 1621 * the given parameters.
a542ad1b
JS
1622 * when the iterator function returns a non-zero value, iteration stops.
1623 */
1624int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1625 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1626 int search_commit_root,
a542ad1b
JS
1627 iterate_extent_inodes_t *iterate, void *ctx)
1628{
a542ad1b 1629 int ret;
da61d31a 1630 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1631 struct ulist *refs = NULL;
1632 struct ulist *roots = NULL;
4692cf58
JS
1633 struct ulist_node *ref_node = NULL;
1634 struct ulist_node *root_node = NULL;
3284da7b 1635 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
cd1b413c
JS
1636 struct ulist_iterator ref_uiter;
1637 struct ulist_iterator root_uiter;
a542ad1b 1638
4692cf58
JS
1639 pr_debug("resolving all inodes for extent %llu\n",
1640 extent_item_objectid);
a542ad1b 1641
da61d31a 1642 if (!search_commit_root) {
7a3ae2f8
JS
1643 trans = btrfs_join_transaction(fs_info->extent_root);
1644 if (IS_ERR(trans))
1645 return PTR_ERR(trans);
8445f61c 1646 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
9e351cc8
JB
1647 } else {
1648 down_read(&fs_info->commit_root_sem);
7a3ae2f8 1649 }
a542ad1b 1650
4692cf58 1651 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1652 tree_mod_seq_elem.seq, &refs,
8445f61c 1653 &extent_item_pos);
4692cf58
JS
1654 if (ret)
1655 goto out;
a542ad1b 1656
cd1b413c
JS
1657 ULIST_ITER_INIT(&ref_uiter);
1658 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
9e351cc8
JB
1659 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1660 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1661 if (ret)
1662 break;
cd1b413c
JS
1663 ULIST_ITER_INIT(&root_uiter);
1664 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1665 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1666 "%#llx\n", root_node->val, ref_node->val,
c1c9ff7c 1667 ref_node->aux);
995e01b7
JS
1668 ret = iterate_leaf_refs((struct extent_inode_elem *)
1669 (uintptr_t)ref_node->aux,
1670 root_node->val,
1671 extent_item_objectid,
1672 iterate, ctx);
4692cf58 1673 }
976b1908 1674 ulist_free(roots);
a542ad1b
JS
1675 }
1676
976b1908 1677 free_leaf_list(refs);
4692cf58 1678out:
7a3ae2f8 1679 if (!search_commit_root) {
8445f61c 1680 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1681 btrfs_end_transaction(trans, fs_info->extent_root);
9e351cc8
JB
1682 } else {
1683 up_read(&fs_info->commit_root_sem);
7a3ae2f8
JS
1684 }
1685
a542ad1b
JS
1686 return ret;
1687}
1688
1689int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1690 struct btrfs_path *path,
1691 iterate_extent_inodes_t *iterate, void *ctx)
1692{
1693 int ret;
4692cf58 1694 u64 extent_item_pos;
69917e43 1695 u64 flags = 0;
a542ad1b 1696 struct btrfs_key found_key;
7a3ae2f8 1697 int search_commit_root = path->search_commit_root;
a542ad1b 1698
69917e43 1699 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1700 btrfs_release_path(path);
a542ad1b
JS
1701 if (ret < 0)
1702 return ret;
69917e43 1703 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1704 return -EINVAL;
a542ad1b 1705
4692cf58 1706 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1707 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1708 extent_item_pos, search_commit_root,
1709 iterate, ctx);
a542ad1b
JS
1710
1711 return ret;
1712}
1713
d24bec3a
MF
1714typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1715 struct extent_buffer *eb, void *ctx);
1716
1717static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1718 struct btrfs_path *path,
1719 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1720{
aefc1eb1 1721 int ret = 0;
a542ad1b
JS
1722 int slot;
1723 u32 cur;
1724 u32 len;
1725 u32 name_len;
1726 u64 parent = 0;
1727 int found = 0;
1728 struct extent_buffer *eb;
1729 struct btrfs_item *item;
1730 struct btrfs_inode_ref *iref;
1731 struct btrfs_key found_key;
1732
aefc1eb1 1733 while (!ret) {
c234a24d
DS
1734 ret = btrfs_find_item(fs_root, path, inum,
1735 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1736 &found_key);
1737
a542ad1b
JS
1738 if (ret < 0)
1739 break;
1740 if (ret) {
1741 ret = found ? 0 : -ENOENT;
1742 break;
1743 }
1744 ++found;
1745
1746 parent = found_key.offset;
1747 slot = path->slots[0];
3fe81ce2
FDBM
1748 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1749 if (!eb) {
1750 ret = -ENOMEM;
1751 break;
1752 }
1753 extent_buffer_get(eb);
b916a59a
JS
1754 btrfs_tree_read_lock(eb);
1755 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1756 btrfs_release_path(path);
1757
dd3cc16b 1758 item = btrfs_item_nr(slot);
a542ad1b
JS
1759 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1760
1761 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1762 name_len = btrfs_inode_ref_name_len(eb, iref);
1763 /* path must be released before calling iterate()! */
4692cf58 1764 pr_debug("following ref at offset %u for inode %llu in "
c1c9ff7c
GU
1765 "tree %llu\n", cur, found_key.objectid,
1766 fs_root->objectid);
d24bec3a
MF
1767 ret = iterate(parent, name_len,
1768 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1769 if (ret)
a542ad1b 1770 break;
a542ad1b
JS
1771 len = sizeof(*iref) + name_len;
1772 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1773 }
b916a59a 1774 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1775 free_extent_buffer(eb);
1776 }
1777
1778 btrfs_release_path(path);
1779
1780 return ret;
1781}
1782
d24bec3a
MF
1783static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1784 struct btrfs_path *path,
1785 iterate_irefs_t *iterate, void *ctx)
1786{
1787 int ret;
1788 int slot;
1789 u64 offset = 0;
1790 u64 parent;
1791 int found = 0;
1792 struct extent_buffer *eb;
1793 struct btrfs_inode_extref *extref;
1794 struct extent_buffer *leaf;
1795 u32 item_size;
1796 u32 cur_offset;
1797 unsigned long ptr;
1798
1799 while (1) {
1800 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1801 &offset);
1802 if (ret < 0)
1803 break;
1804 if (ret) {
1805 ret = found ? 0 : -ENOENT;
1806 break;
1807 }
1808 ++found;
1809
1810 slot = path->slots[0];
3fe81ce2
FDBM
1811 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1812 if (!eb) {
1813 ret = -ENOMEM;
1814 break;
1815 }
1816 extent_buffer_get(eb);
d24bec3a
MF
1817
1818 btrfs_tree_read_lock(eb);
1819 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1820 btrfs_release_path(path);
1821
1822 leaf = path->nodes[0];
e94acd86
VG
1823 item_size = btrfs_item_size_nr(leaf, slot);
1824 ptr = btrfs_item_ptr_offset(leaf, slot);
d24bec3a
MF
1825 cur_offset = 0;
1826
1827 while (cur_offset < item_size) {
1828 u32 name_len;
1829
1830 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1831 parent = btrfs_inode_extref_parent(eb, extref);
1832 name_len = btrfs_inode_extref_name_len(eb, extref);
1833 ret = iterate(parent, name_len,
1834 (unsigned long)&extref->name, eb, ctx);
1835 if (ret)
1836 break;
1837
1838 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1839 cur_offset += sizeof(*extref);
1840 }
1841 btrfs_tree_read_unlock_blocking(eb);
1842 free_extent_buffer(eb);
1843
1844 offset++;
1845 }
1846
1847 btrfs_release_path(path);
1848
1849 return ret;
1850}
1851
1852static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1853 struct btrfs_path *path, iterate_irefs_t *iterate,
1854 void *ctx)
1855{
1856 int ret;
1857 int found_refs = 0;
1858
1859 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1860 if (!ret)
1861 ++found_refs;
1862 else if (ret != -ENOENT)
1863 return ret;
1864
1865 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1866 if (ret == -ENOENT && found_refs)
1867 return 0;
1868
1869 return ret;
1870}
1871
a542ad1b
JS
1872/*
1873 * returns 0 if the path could be dumped (probably truncated)
1874 * returns <0 in case of an error
1875 */
d24bec3a
MF
1876static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1877 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1878{
1879 struct inode_fs_paths *ipath = ctx;
1880 char *fspath;
1881 char *fspath_min;
1882 int i = ipath->fspath->elem_cnt;
1883 const int s_ptr = sizeof(char *);
1884 u32 bytes_left;
1885
1886 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1887 ipath->fspath->bytes_left - s_ptr : 0;
1888
740c3d22 1889 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1890 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1891 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1892 if (IS_ERR(fspath))
1893 return PTR_ERR(fspath);
1894
1895 if (fspath > fspath_min) {
745c4d8e 1896 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1897 ++ipath->fspath->elem_cnt;
1898 ipath->fspath->bytes_left = fspath - fspath_min;
1899 } else {
1900 ++ipath->fspath->elem_missed;
1901 ipath->fspath->bytes_missing += fspath_min - fspath;
1902 ipath->fspath->bytes_left = 0;
1903 }
1904
1905 return 0;
1906}
1907
1908/*
1909 * this dumps all file system paths to the inode into the ipath struct, provided
1910 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1911 * from ipath->fspath->val[i].
a542ad1b 1912 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1913 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1914 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1915 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1916 * have been needed to return all paths.
1917 */
1918int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1919{
1920 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1921 inode_to_path, ipath);
a542ad1b
JS
1922}
1923
a542ad1b
JS
1924struct btrfs_data_container *init_data_container(u32 total_bytes)
1925{
1926 struct btrfs_data_container *data;
1927 size_t alloc_bytes;
1928
1929 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1930 data = vmalloc(alloc_bytes);
a542ad1b
JS
1931 if (!data)
1932 return ERR_PTR(-ENOMEM);
1933
1934 if (total_bytes >= sizeof(*data)) {
1935 data->bytes_left = total_bytes - sizeof(*data);
1936 data->bytes_missing = 0;
1937 } else {
1938 data->bytes_missing = sizeof(*data) - total_bytes;
1939 data->bytes_left = 0;
1940 }
1941
1942 data->elem_cnt = 0;
1943 data->elem_missed = 0;
1944
1945 return data;
1946}
1947
1948/*
1949 * allocates space to return multiple file system paths for an inode.
1950 * total_bytes to allocate are passed, note that space usable for actual path
1951 * information will be total_bytes - sizeof(struct inode_fs_paths).
1952 * the returned pointer must be freed with free_ipath() in the end.
1953 */
1954struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1955 struct btrfs_path *path)
1956{
1957 struct inode_fs_paths *ifp;
1958 struct btrfs_data_container *fspath;
1959
1960 fspath = init_data_container(total_bytes);
1961 if (IS_ERR(fspath))
1962 return (void *)fspath;
1963
1964 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1965 if (!ifp) {
1966 kfree(fspath);
1967 return ERR_PTR(-ENOMEM);
1968 }
1969
1970 ifp->btrfs_path = path;
1971 ifp->fspath = fspath;
1972 ifp->fs_root = fs_root;
1973
1974 return ifp;
1975}
1976
1977void free_ipath(struct inode_fs_paths *ipath)
1978{
4735fb28
JJ
1979 if (!ipath)
1980 return;
425d17a2 1981 vfree(ipath->fspath);
a542ad1b
JS
1982 kfree(ipath);
1983}
This page took 0.224813 seconds and 5 git commands to generate.