Btrfs: use delayed ref sequence numbers for all fs-tree updates
[deliverable/linux.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include "ctree.h"
20#include "disk-io.h"
21#include "backref.h"
8da6d581
JS
22#include "ulist.h"
23#include "transaction.h"
24#include "delayed-ref.h"
b916a59a 25#include "locking.h"
a542ad1b 26
976b1908
JS
27struct extent_inode_elem {
28 u64 inum;
29 u64 offset;
30 struct extent_inode_elem *next;
31};
32
33static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
34 struct btrfs_file_extent_item *fi,
35 u64 extent_item_pos,
36 struct extent_inode_elem **eie)
37{
38 u64 data_offset;
39 u64 data_len;
40 struct extent_inode_elem *e;
41
42 data_offset = btrfs_file_extent_offset(eb, fi);
43 data_len = btrfs_file_extent_num_bytes(eb, fi);
44
45 if (extent_item_pos < data_offset ||
46 extent_item_pos >= data_offset + data_len)
47 return 1;
48
49 e = kmalloc(sizeof(*e), GFP_NOFS);
50 if (!e)
51 return -ENOMEM;
52
53 e->next = *eie;
54 e->inum = key->objectid;
55 e->offset = key->offset + (extent_item_pos - data_offset);
56 *eie = e;
57
58 return 0;
59}
60
61static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
62 u64 extent_item_pos,
63 struct extent_inode_elem **eie)
64{
65 u64 disk_byte;
66 struct btrfs_key key;
67 struct btrfs_file_extent_item *fi;
68 int slot;
69 int nritems;
70 int extent_type;
71 int ret;
72
73 /*
74 * from the shared data ref, we only have the leaf but we need
75 * the key. thus, we must look into all items and see that we
76 * find one (some) with a reference to our extent item.
77 */
78 nritems = btrfs_header_nritems(eb);
79 for (slot = 0; slot < nritems; ++slot) {
80 btrfs_item_key_to_cpu(eb, &key, slot);
81 if (key.type != BTRFS_EXTENT_DATA_KEY)
82 continue;
83 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
84 extent_type = btrfs_file_extent_type(eb, fi);
85 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
86 continue;
87 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
88 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
89 if (disk_byte != wanted_disk_byte)
90 continue;
91
92 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
93 if (ret < 0)
94 return ret;
95 }
96
97 return 0;
98}
99
8da6d581
JS
100/*
101 * this structure records all encountered refs on the way up to the root
102 */
103struct __prelim_ref {
104 struct list_head list;
105 u64 root_id;
d5c88b73 106 struct btrfs_key key_for_search;
8da6d581
JS
107 int level;
108 int count;
109 u64 parent;
110 u64 wanted_disk_byte;
111};
112
d5c88b73
JS
113/*
114 * the rules for all callers of this function are:
115 * - obtaining the parent is the goal
116 * - if you add a key, you must know that it is a correct key
117 * - if you cannot add the parent or a correct key, then we will look into the
118 * block later to set a correct key
119 *
120 * delayed refs
121 * ============
122 * backref type | shared | indirect | shared | indirect
123 * information | tree | tree | data | data
124 * --------------------+--------+----------+--------+----------
125 * parent logical | y | - | - | -
126 * key to resolve | - | y | y | y
127 * tree block logical | - | - | - | -
128 * root for resolving | y | y | y | y
129 *
130 * - column 1: we've the parent -> done
131 * - column 2, 3, 4: we use the key to find the parent
132 *
133 * on disk refs (inline or keyed)
134 * ==============================
135 * backref type | shared | indirect | shared | indirect
136 * information | tree | tree | data | data
137 * --------------------+--------+----------+--------+----------
138 * parent logical | y | - | y | -
139 * key to resolve | - | - | - | y
140 * tree block logical | y | y | y | y
141 * root for resolving | - | y | y | y
142 *
143 * - column 1, 3: we've the parent -> done
144 * - column 2: we take the first key from the block to find the parent
145 * (see __add_missing_keys)
146 * - column 4: we use the key to find the parent
147 *
148 * additional information that's available but not required to find the parent
149 * block might help in merging entries to gain some speed.
150 */
151
8da6d581 152static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73
JS
153 struct btrfs_key *key, int level,
154 u64 parent, u64 wanted_disk_byte, int count)
8da6d581
JS
155{
156 struct __prelim_ref *ref;
157
158 /* in case we're adding delayed refs, we're holding the refs spinlock */
159 ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
160 if (!ref)
161 return -ENOMEM;
162
163 ref->root_id = root_id;
164 if (key)
d5c88b73 165 ref->key_for_search = *key;
8da6d581 166 else
d5c88b73 167 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581
JS
168
169 ref->level = level;
170 ref->count = count;
171 ref->parent = parent;
172 ref->wanted_disk_byte = wanted_disk_byte;
173 list_add_tail(&ref->list, head);
174
175 return 0;
176}
177
178static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
976b1908
JS
179 struct ulist *parents, int level,
180 struct btrfs_key *key, u64 wanted_disk_byte,
181 const u64 *extent_item_pos)
8da6d581
JS
182{
183 int ret;
184 int slot;
976b1908 185 struct extent_buffer *eb = path->nodes[level];
8da6d581 186 struct btrfs_file_extent_item *fi;
8da6d581 187 u64 disk_byte;
976b1908 188 u64 wanted_objectid = key->objectid;
8da6d581
JS
189
190add_parent:
191 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
192 if (ret < 0)
193 return ret;
194
195 if (level != 0)
196 return 0;
197
198 /*
199 * if the current leaf is full with EXTENT_DATA items, we must
200 * check the next one if that holds a reference as well.
201 * ref->count cannot be used to skip this check.
202 * repeat this until we don't find any additional EXTENT_DATA items.
203 */
204 while (1) {
205 ret = btrfs_next_leaf(root, path);
206 if (ret < 0)
207 return ret;
208 if (ret)
209 return 0;
210
211 eb = path->nodes[0];
212 for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
976b1908
JS
213 btrfs_item_key_to_cpu(eb, key, slot);
214 if (key->objectid != wanted_objectid ||
215 key->type != BTRFS_EXTENT_DATA_KEY)
8da6d581
JS
216 return 0;
217 fi = btrfs_item_ptr(eb, slot,
218 struct btrfs_file_extent_item);
219 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
220 if (disk_byte == wanted_disk_byte)
221 goto add_parent;
222 }
223 }
224
225 return 0;
226}
227
228/*
229 * resolve an indirect backref in the form (root_id, key, level)
230 * to a logical address
231 */
232static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
7a3ae2f8 233 int search_commit_root,
8445f61c 234 u64 time_seq,
8da6d581 235 struct __prelim_ref *ref,
976b1908
JS
236 struct ulist *parents,
237 const u64 *extent_item_pos)
8da6d581
JS
238{
239 struct btrfs_path *path;
240 struct btrfs_root *root;
241 struct btrfs_key root_key;
242 struct btrfs_key key = {0};
243 struct extent_buffer *eb;
244 int ret = 0;
245 int root_level;
246 int level = ref->level;
247
248 path = btrfs_alloc_path();
249 if (!path)
250 return -ENOMEM;
7a3ae2f8 251 path->search_commit_root = !!search_commit_root;
8da6d581
JS
252
253 root_key.objectid = ref->root_id;
254 root_key.type = BTRFS_ROOT_ITEM_KEY;
255 root_key.offset = (u64)-1;
256 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
257 if (IS_ERR(root)) {
258 ret = PTR_ERR(root);
259 goto out;
260 }
261
262 rcu_read_lock();
263 root_level = btrfs_header_level(root->node);
264 rcu_read_unlock();
265
266 if (root_level + 1 == level)
267 goto out;
268
269 path->lowest_level = level;
8445f61c 270 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
8da6d581
JS
271 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
272 "%d for key (%llu %u %llu)\n",
273 (unsigned long long)ref->root_id, level, ref->count, ret,
d5c88b73
JS
274 (unsigned long long)ref->key_for_search.objectid,
275 ref->key_for_search.type,
276 (unsigned long long)ref->key_for_search.offset);
8da6d581
JS
277 if (ret < 0)
278 goto out;
279
280 eb = path->nodes[level];
281 if (!eb) {
282 WARN_ON(1);
283 ret = 1;
284 goto out;
285 }
286
287 if (level == 0) {
288 if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
289 ret = btrfs_next_leaf(root, path);
290 if (ret)
291 goto out;
292 eb = path->nodes[0];
293 }
294
295 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
296 }
297
976b1908
JS
298 ret = add_all_parents(root, path, parents, level, &key,
299 ref->wanted_disk_byte, extent_item_pos);
8da6d581
JS
300out:
301 btrfs_free_path(path);
302 return ret;
303}
304
305/*
306 * resolve all indirect backrefs from the list
307 */
308static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
8445f61c 309 int search_commit_root, u64 time_seq,
976b1908
JS
310 struct list_head *head,
311 const u64 *extent_item_pos)
8da6d581
JS
312{
313 int err;
314 int ret = 0;
315 struct __prelim_ref *ref;
316 struct __prelim_ref *ref_safe;
317 struct __prelim_ref *new_ref;
318 struct ulist *parents;
319 struct ulist_node *node;
cd1b413c 320 struct ulist_iterator uiter;
8da6d581
JS
321
322 parents = ulist_alloc(GFP_NOFS);
323 if (!parents)
324 return -ENOMEM;
325
326 /*
327 * _safe allows us to insert directly after the current item without
328 * iterating over the newly inserted items.
329 * we're also allowed to re-assign ref during iteration.
330 */
331 list_for_each_entry_safe(ref, ref_safe, head, list) {
332 if (ref->parent) /* already direct */
333 continue;
334 if (ref->count == 0)
335 continue;
7a3ae2f8 336 err = __resolve_indirect_ref(fs_info, search_commit_root,
8445f61c
JS
337 time_seq, ref, parents,
338 extent_item_pos);
8da6d581
JS
339 if (err) {
340 if (ret == 0)
341 ret = err;
342 continue;
343 }
344
345 /* we put the first parent into the ref at hand */
cd1b413c
JS
346 ULIST_ITER_INIT(&uiter);
347 node = ulist_next(parents, &uiter);
8da6d581
JS
348 ref->parent = node ? node->val : 0;
349
350 /* additional parents require new refs being added here */
cd1b413c 351 while ((node = ulist_next(parents, &uiter))) {
8da6d581
JS
352 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
353 if (!new_ref) {
354 ret = -ENOMEM;
355 break;
356 }
357 memcpy(new_ref, ref, sizeof(*ref));
358 new_ref->parent = node->val;
359 list_add(&new_ref->list, &ref->list);
360 }
361 ulist_reinit(parents);
362 }
363
364 ulist_free(parents);
365 return ret;
366}
367
d5c88b73
JS
368static inline int ref_for_same_block(struct __prelim_ref *ref1,
369 struct __prelim_ref *ref2)
370{
371 if (ref1->level != ref2->level)
372 return 0;
373 if (ref1->root_id != ref2->root_id)
374 return 0;
375 if (ref1->key_for_search.type != ref2->key_for_search.type)
376 return 0;
377 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
378 return 0;
379 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
380 return 0;
381 if (ref1->parent != ref2->parent)
382 return 0;
383
384 return 1;
385}
386
387/*
388 * read tree blocks and add keys where required.
389 */
390static int __add_missing_keys(struct btrfs_fs_info *fs_info,
391 struct list_head *head)
392{
393 struct list_head *pos;
394 struct extent_buffer *eb;
395
396 list_for_each(pos, head) {
397 struct __prelim_ref *ref;
398 ref = list_entry(pos, struct __prelim_ref, list);
399
400 if (ref->parent)
401 continue;
402 if (ref->key_for_search.type)
403 continue;
404 BUG_ON(!ref->wanted_disk_byte);
405 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
406 fs_info->tree_root->leafsize, 0);
407 BUG_ON(!eb);
408 btrfs_tree_read_lock(eb);
409 if (btrfs_header_level(eb) == 0)
410 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
411 else
412 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
413 btrfs_tree_read_unlock(eb);
414 free_extent_buffer(eb);
415 }
416 return 0;
417}
418
8da6d581
JS
419/*
420 * merge two lists of backrefs and adjust counts accordingly
421 *
422 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
423 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
424 * additionally, we could even add a key range for the blocks we
425 * looked into to merge even more (-> replace unresolved refs by those
426 * having a parent).
8da6d581
JS
427 * mode = 2: merge identical parents
428 */
429static int __merge_refs(struct list_head *head, int mode)
430{
431 struct list_head *pos1;
432
433 list_for_each(pos1, head) {
434 struct list_head *n2;
435 struct list_head *pos2;
436 struct __prelim_ref *ref1;
437
438 ref1 = list_entry(pos1, struct __prelim_ref, list);
439
8da6d581
JS
440 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
441 pos2 = n2, n2 = pos2->next) {
442 struct __prelim_ref *ref2;
d5c88b73 443 struct __prelim_ref *xchg;
8da6d581
JS
444
445 ref2 = list_entry(pos2, struct __prelim_ref, list);
446
447 if (mode == 1) {
d5c88b73 448 if (!ref_for_same_block(ref1, ref2))
8da6d581 449 continue;
d5c88b73
JS
450 if (!ref1->parent && ref2->parent) {
451 xchg = ref1;
452 ref1 = ref2;
453 ref2 = xchg;
454 }
8da6d581
JS
455 ref1->count += ref2->count;
456 } else {
457 if (ref1->parent != ref2->parent)
458 continue;
459 ref1->count += ref2->count;
460 }
461 list_del(&ref2->list);
462 kfree(ref2);
463 }
464
465 }
466 return 0;
467}
468
469/*
470 * add all currently queued delayed refs from this head whose seq nr is
471 * smaller or equal that seq to the list
472 */
473static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
8da6d581
JS
474 struct list_head *prefs)
475{
476 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
477 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
478 struct btrfs_key key;
479 struct btrfs_key op_key = {0};
8da6d581 480 int sgn;
b1375d64 481 int ret = 0;
8da6d581
JS
482
483 if (extent_op && extent_op->update_key)
d5c88b73 484 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581
JS
485
486 while ((n = rb_prev(n))) {
487 struct btrfs_delayed_ref_node *node;
488 node = rb_entry(n, struct btrfs_delayed_ref_node,
489 rb_node);
490 if (node->bytenr != head->node.bytenr)
491 break;
492 WARN_ON(node->is_head);
493
494 if (node->seq > seq)
495 continue;
496
497 switch (node->action) {
498 case BTRFS_ADD_DELAYED_EXTENT:
499 case BTRFS_UPDATE_DELAYED_HEAD:
500 WARN_ON(1);
501 continue;
502 case BTRFS_ADD_DELAYED_REF:
503 sgn = 1;
504 break;
505 case BTRFS_DROP_DELAYED_REF:
506 sgn = -1;
507 break;
508 default:
509 BUG_ON(1);
510 }
511 switch (node->type) {
512 case BTRFS_TREE_BLOCK_REF_KEY: {
513 struct btrfs_delayed_tree_ref *ref;
514
515 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 516 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581
JS
517 ref->level + 1, 0, node->bytenr,
518 node->ref_mod * sgn);
519 break;
520 }
521 case BTRFS_SHARED_BLOCK_REF_KEY: {
522 struct btrfs_delayed_tree_ref *ref;
523
524 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 525 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
526 ref->level + 1, ref->parent,
527 node->bytenr,
528 node->ref_mod * sgn);
529 break;
530 }
531 case BTRFS_EXTENT_DATA_REF_KEY: {
532 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
533 ref = btrfs_delayed_node_to_data_ref(node);
534
535 key.objectid = ref->objectid;
536 key.type = BTRFS_EXTENT_DATA_KEY;
537 key.offset = ref->offset;
538 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
539 node->bytenr,
540 node->ref_mod * sgn);
541 break;
542 }
543 case BTRFS_SHARED_DATA_REF_KEY: {
544 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
545
546 ref = btrfs_delayed_node_to_data_ref(node);
547
548 key.objectid = ref->objectid;
549 key.type = BTRFS_EXTENT_DATA_KEY;
550 key.offset = ref->offset;
551 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
552 ref->parent, node->bytenr,
553 node->ref_mod * sgn);
554 break;
555 }
556 default:
557 WARN_ON(1);
558 }
559 BUG_ON(ret);
560 }
561
562 return 0;
563}
564
565/*
566 * add all inline backrefs for bytenr to the list
567 */
568static int __add_inline_refs(struct btrfs_fs_info *fs_info,
569 struct btrfs_path *path, u64 bytenr,
d5c88b73 570 int *info_level, struct list_head *prefs)
8da6d581 571{
b1375d64 572 int ret = 0;
8da6d581
JS
573 int slot;
574 struct extent_buffer *leaf;
575 struct btrfs_key key;
576 unsigned long ptr;
577 unsigned long end;
578 struct btrfs_extent_item *ei;
579 u64 flags;
580 u64 item_size;
581
582 /*
583 * enumerate all inline refs
584 */
585 leaf = path->nodes[0];
dadcaf78 586 slot = path->slots[0];
8da6d581
JS
587
588 item_size = btrfs_item_size_nr(leaf, slot);
589 BUG_ON(item_size < sizeof(*ei));
590
591 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
592 flags = btrfs_extent_flags(leaf, ei);
593
594 ptr = (unsigned long)(ei + 1);
595 end = (unsigned long)ei + item_size;
596
597 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
598 struct btrfs_tree_block_info *info;
8da6d581
JS
599
600 info = (struct btrfs_tree_block_info *)ptr;
601 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
602 ptr += sizeof(struct btrfs_tree_block_info);
603 BUG_ON(ptr > end);
604 } else {
605 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
606 }
607
608 while (ptr < end) {
609 struct btrfs_extent_inline_ref *iref;
610 u64 offset;
611 int type;
612
613 iref = (struct btrfs_extent_inline_ref *)ptr;
614 type = btrfs_extent_inline_ref_type(leaf, iref);
615 offset = btrfs_extent_inline_ref_offset(leaf, iref);
616
617 switch (type) {
618 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 619 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
620 *info_level + 1, offset,
621 bytenr, 1);
622 break;
623 case BTRFS_SHARED_DATA_REF_KEY: {
624 struct btrfs_shared_data_ref *sdref;
625 int count;
626
627 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
628 count = btrfs_shared_data_ref_count(leaf, sdref);
629 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
630 bytenr, count);
631 break;
632 }
633 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
634 ret = __add_prelim_ref(prefs, offset, NULL,
635 *info_level + 1, 0,
636 bytenr, 1);
8da6d581
JS
637 break;
638 case BTRFS_EXTENT_DATA_REF_KEY: {
639 struct btrfs_extent_data_ref *dref;
640 int count;
641 u64 root;
642
643 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
644 count = btrfs_extent_data_ref_count(leaf, dref);
645 key.objectid = btrfs_extent_data_ref_objectid(leaf,
646 dref);
647 key.type = BTRFS_EXTENT_DATA_KEY;
648 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
649 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73
JS
650 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
651 bytenr, count);
8da6d581
JS
652 break;
653 }
654 default:
655 WARN_ON(1);
656 }
657 BUG_ON(ret);
658 ptr += btrfs_extent_inline_ref_size(type);
659 }
660
661 return 0;
662}
663
664/*
665 * add all non-inline backrefs for bytenr to the list
666 */
667static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
668 struct btrfs_path *path, u64 bytenr,
d5c88b73 669 int info_level, struct list_head *prefs)
8da6d581
JS
670{
671 struct btrfs_root *extent_root = fs_info->extent_root;
672 int ret;
673 int slot;
674 struct extent_buffer *leaf;
675 struct btrfs_key key;
676
677 while (1) {
678 ret = btrfs_next_item(extent_root, path);
679 if (ret < 0)
680 break;
681 if (ret) {
682 ret = 0;
683 break;
684 }
685
686 slot = path->slots[0];
687 leaf = path->nodes[0];
688 btrfs_item_key_to_cpu(leaf, &key, slot);
689
690 if (key.objectid != bytenr)
691 break;
692 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
693 continue;
694 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
695 break;
696
697 switch (key.type) {
698 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 699 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
700 info_level + 1, key.offset,
701 bytenr, 1);
702 break;
703 case BTRFS_SHARED_DATA_REF_KEY: {
704 struct btrfs_shared_data_ref *sdref;
705 int count;
706
707 sdref = btrfs_item_ptr(leaf, slot,
708 struct btrfs_shared_data_ref);
709 count = btrfs_shared_data_ref_count(leaf, sdref);
710 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
711 bytenr, count);
712 break;
713 }
714 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
715 ret = __add_prelim_ref(prefs, key.offset, NULL,
716 info_level + 1, 0,
717 bytenr, 1);
8da6d581
JS
718 break;
719 case BTRFS_EXTENT_DATA_REF_KEY: {
720 struct btrfs_extent_data_ref *dref;
721 int count;
722 u64 root;
723
724 dref = btrfs_item_ptr(leaf, slot,
725 struct btrfs_extent_data_ref);
726 count = btrfs_extent_data_ref_count(leaf, dref);
727 key.objectid = btrfs_extent_data_ref_objectid(leaf,
728 dref);
729 key.type = BTRFS_EXTENT_DATA_KEY;
730 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
731 root = btrfs_extent_data_ref_root(leaf, dref);
732 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
d5c88b73 733 bytenr, count);
8da6d581
JS
734 break;
735 }
736 default:
737 WARN_ON(1);
738 }
739 BUG_ON(ret);
740 }
741
742 return ret;
743}
744
745/*
746 * this adds all existing backrefs (inline backrefs, backrefs and delayed
747 * refs) for the given bytenr to the refs list, merges duplicates and resolves
748 * indirect refs to their parent bytenr.
749 * When roots are found, they're added to the roots list
750 *
751 * FIXME some caching might speed things up
752 */
753static int find_parent_nodes(struct btrfs_trans_handle *trans,
754 struct btrfs_fs_info *fs_info, u64 bytenr,
8445f61c
JS
755 u64 delayed_ref_seq, u64 time_seq,
756 struct ulist *refs, struct ulist *roots,
976b1908 757 const u64 *extent_item_pos)
8da6d581
JS
758{
759 struct btrfs_key key;
760 struct btrfs_path *path;
8da6d581 761 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 762 struct btrfs_delayed_ref_head *head;
8da6d581
JS
763 int info_level = 0;
764 int ret;
7a3ae2f8 765 int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
8da6d581
JS
766 struct list_head prefs_delayed;
767 struct list_head prefs;
768 struct __prelim_ref *ref;
769
770 INIT_LIST_HEAD(&prefs);
771 INIT_LIST_HEAD(&prefs_delayed);
772
773 key.objectid = bytenr;
774 key.type = BTRFS_EXTENT_ITEM_KEY;
775 key.offset = (u64)-1;
776
777 path = btrfs_alloc_path();
778 if (!path)
779 return -ENOMEM;
7a3ae2f8 780 path->search_commit_root = !!search_commit_root;
8da6d581
JS
781
782 /*
783 * grab both a lock on the path and a lock on the delayed ref head.
784 * We need both to get a consistent picture of how the refs look
785 * at a specified point in time
786 */
787again:
d3b01064
LZ
788 head = NULL;
789
8da6d581
JS
790 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
791 if (ret < 0)
792 goto out;
793 BUG_ON(ret == 0);
794
7a3ae2f8
JS
795 if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
796 /*
797 * look if there are updates for this ref queued and lock the
798 * head
799 */
800 delayed_refs = &trans->transaction->delayed_refs;
801 spin_lock(&delayed_refs->lock);
802 head = btrfs_find_delayed_ref_head(trans, bytenr);
803 if (head) {
804 if (!mutex_trylock(&head->mutex)) {
805 atomic_inc(&head->node.refs);
806 spin_unlock(&delayed_refs->lock);
807
808 btrfs_release_path(path);
809
810 /*
811 * Mutex was contended, block until it's
812 * released and try again
813 */
814 mutex_lock(&head->mutex);
815 mutex_unlock(&head->mutex);
816 btrfs_put_delayed_ref(&head->node);
817 goto again;
818 }
8445f61c
JS
819 ret = __add_delayed_refs(head, delayed_ref_seq,
820 &prefs_delayed);
7a3ae2f8
JS
821 if (ret) {
822 spin_unlock(&delayed_refs->lock);
823 goto out;
824 }
d3b01064 825 }
7a3ae2f8 826 spin_unlock(&delayed_refs->lock);
8da6d581 827 }
8da6d581
JS
828
829 if (path->slots[0]) {
830 struct extent_buffer *leaf;
831 int slot;
832
dadcaf78 833 path->slots[0]--;
8da6d581 834 leaf = path->nodes[0];
dadcaf78 835 slot = path->slots[0];
8da6d581
JS
836 btrfs_item_key_to_cpu(leaf, &key, slot);
837 if (key.objectid == bytenr &&
838 key.type == BTRFS_EXTENT_ITEM_KEY) {
839 ret = __add_inline_refs(fs_info, path, bytenr,
d5c88b73 840 &info_level, &prefs);
8da6d581
JS
841 if (ret)
842 goto out;
d5c88b73 843 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
844 info_level, &prefs);
845 if (ret)
846 goto out;
847 }
848 }
849 btrfs_release_path(path);
850
8da6d581
JS
851 list_splice_init(&prefs_delayed, &prefs);
852
d5c88b73
JS
853 ret = __add_missing_keys(fs_info, &prefs);
854 if (ret)
855 goto out;
856
8da6d581
JS
857 ret = __merge_refs(&prefs, 1);
858 if (ret)
859 goto out;
860
8445f61c
JS
861 ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
862 &prefs, extent_item_pos);
8da6d581
JS
863 if (ret)
864 goto out;
865
866 ret = __merge_refs(&prefs, 2);
867 if (ret)
868 goto out;
869
870 while (!list_empty(&prefs)) {
871 ref = list_first_entry(&prefs, struct __prelim_ref, list);
872 list_del(&ref->list);
873 if (ref->count < 0)
874 WARN_ON(1);
875 if (ref->count && ref->root_id && ref->parent == 0) {
876 /* no parent == root of tree */
877 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
878 BUG_ON(ret < 0);
879 }
880 if (ref->count && ref->parent) {
976b1908
JS
881 struct extent_inode_elem *eie = NULL;
882 if (extent_item_pos) {
883 u32 bsz;
884 struct extent_buffer *eb;
885 bsz = btrfs_level_size(fs_info->extent_root,
886 info_level);
887 eb = read_tree_block(fs_info->extent_root,
888 ref->parent, bsz, 0);
889 BUG_ON(!eb);
890 ret = find_extent_in_eb(eb, bytenr,
891 *extent_item_pos, &eie);
892 free_extent_buffer(eb);
893 }
894 ret = ulist_add(refs, ref->parent,
895 (unsigned long)eie, GFP_NOFS);
8da6d581
JS
896 BUG_ON(ret < 0);
897 }
898 kfree(ref);
899 }
900
901out:
902 if (head)
903 mutex_unlock(&head->mutex);
904 btrfs_free_path(path);
905 while (!list_empty(&prefs)) {
906 ref = list_first_entry(&prefs, struct __prelim_ref, list);
907 list_del(&ref->list);
908 kfree(ref);
909 }
910 while (!list_empty(&prefs_delayed)) {
911 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
912 list);
913 list_del(&ref->list);
914 kfree(ref);
915 }
916
917 return ret;
918}
919
976b1908
JS
920static void free_leaf_list(struct ulist *blocks)
921{
922 struct ulist_node *node = NULL;
923 struct extent_inode_elem *eie;
924 struct extent_inode_elem *eie_next;
925 struct ulist_iterator uiter;
926
927 ULIST_ITER_INIT(&uiter);
928 while ((node = ulist_next(blocks, &uiter))) {
929 if (!node->aux)
930 continue;
931 eie = (struct extent_inode_elem *)node->aux;
932 for (; eie; eie = eie_next) {
933 eie_next = eie->next;
934 kfree(eie);
935 }
936 node->aux = 0;
937 }
938
939 ulist_free(blocks);
940}
941
8da6d581
JS
942/*
943 * Finds all leafs with a reference to the specified combination of bytenr and
944 * offset. key_list_head will point to a list of corresponding keys (caller must
945 * free each list element). The leafs will be stored in the leafs ulist, which
946 * must be freed with ulist_free.
947 *
948 * returns 0 on success, <0 on error
949 */
950static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
951 struct btrfs_fs_info *fs_info, u64 bytenr,
8445f61c
JS
952 u64 delayed_ref_seq, u64 time_seq,
953 struct ulist **leafs,
976b1908 954 const u64 *extent_item_pos)
8da6d581
JS
955{
956 struct ulist *tmp;
957 int ret;
958
959 tmp = ulist_alloc(GFP_NOFS);
960 if (!tmp)
961 return -ENOMEM;
962 *leafs = ulist_alloc(GFP_NOFS);
963 if (!*leafs) {
964 ulist_free(tmp);
965 return -ENOMEM;
966 }
967
8445f61c
JS
968 ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
969 time_seq, *leafs, tmp, extent_item_pos);
8da6d581
JS
970 ulist_free(tmp);
971
972 if (ret < 0 && ret != -ENOENT) {
976b1908 973 free_leaf_list(*leafs);
8da6d581
JS
974 return ret;
975 }
976
977 return 0;
978}
979
980/*
981 * walk all backrefs for a given extent to find all roots that reference this
982 * extent. Walking a backref means finding all extents that reference this
983 * extent and in turn walk the backrefs of those, too. Naturally this is a
984 * recursive process, but here it is implemented in an iterative fashion: We
985 * find all referencing extents for the extent in question and put them on a
986 * list. In turn, we find all referencing extents for those, further appending
987 * to the list. The way we iterate the list allows adding more elements after
988 * the current while iterating. The process stops when we reach the end of the
989 * list. Found roots are added to the roots list.
990 *
991 * returns 0 on success, < 0 on error.
992 */
993int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
994 struct btrfs_fs_info *fs_info, u64 bytenr,
8445f61c
JS
995 u64 delayed_ref_seq, u64 time_seq,
996 struct ulist **roots)
8da6d581
JS
997{
998 struct ulist *tmp;
999 struct ulist_node *node = NULL;
cd1b413c 1000 struct ulist_iterator uiter;
8da6d581
JS
1001 int ret;
1002
1003 tmp = ulist_alloc(GFP_NOFS);
1004 if (!tmp)
1005 return -ENOMEM;
1006 *roots = ulist_alloc(GFP_NOFS);
1007 if (!*roots) {
1008 ulist_free(tmp);
1009 return -ENOMEM;
1010 }
1011
cd1b413c 1012 ULIST_ITER_INIT(&uiter);
8da6d581 1013 while (1) {
8445f61c
JS
1014 ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
1015 time_seq, tmp, *roots, NULL);
8da6d581
JS
1016 if (ret < 0 && ret != -ENOENT) {
1017 ulist_free(tmp);
1018 ulist_free(*roots);
1019 return ret;
1020 }
cd1b413c 1021 node = ulist_next(tmp, &uiter);
8da6d581
JS
1022 if (!node)
1023 break;
1024 bytenr = node->val;
1025 }
1026
1027 ulist_free(tmp);
1028 return 0;
1029}
1030
1031
a542ad1b
JS
1032static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1033 struct btrfs_root *fs_root, struct btrfs_path *path,
1034 struct btrfs_key *found_key)
1035{
1036 int ret;
1037 struct btrfs_key key;
1038 struct extent_buffer *eb;
1039
1040 key.type = key_type;
1041 key.objectid = inum;
1042 key.offset = ioff;
1043
1044 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1045 if (ret < 0)
1046 return ret;
1047
1048 eb = path->nodes[0];
1049 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1050 ret = btrfs_next_leaf(fs_root, path);
1051 if (ret)
1052 return ret;
1053 eb = path->nodes[0];
1054 }
1055
1056 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1057 if (found_key->type != key.type || found_key->objectid != key.objectid)
1058 return 1;
1059
1060 return 0;
1061}
1062
1063/*
1064 * this makes the path point to (inum INODE_ITEM ioff)
1065 */
1066int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1067 struct btrfs_path *path)
1068{
1069 struct btrfs_key key;
1070 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1071 &key);
1072}
1073
1074static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1075 struct btrfs_path *path,
1076 struct btrfs_key *found_key)
1077{
1078 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1079 found_key);
1080}
1081
1082/*
1083 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1084 * of the path are separated by '/' and the path is guaranteed to be
1085 * 0-terminated. the path is only given within the current file system.
1086 * Therefore, it never starts with a '/'. the caller is responsible to provide
1087 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1088 * the start point of the resulting string is returned. this pointer is within
1089 * dest, normally.
1090 * in case the path buffer would overflow, the pointer is decremented further
1091 * as if output was written to the buffer, though no more output is actually
1092 * generated. that way, the caller can determine how much space would be
1093 * required for the path to fit into the buffer. in that case, the returned
1094 * value will be smaller than dest. callers must check this!
1095 */
1096static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1097 struct btrfs_inode_ref *iref,
1098 struct extent_buffer *eb_in, u64 parent,
1099 char *dest, u32 size)
1100{
1101 u32 len;
1102 int slot;
1103 u64 next_inum;
1104 int ret;
1105 s64 bytes_left = size - 1;
1106 struct extent_buffer *eb = eb_in;
1107 struct btrfs_key found_key;
b916a59a 1108 int leave_spinning = path->leave_spinning;
a542ad1b
JS
1109
1110 if (bytes_left >= 0)
1111 dest[bytes_left] = '\0';
1112
b916a59a 1113 path->leave_spinning = 1;
a542ad1b
JS
1114 while (1) {
1115 len = btrfs_inode_ref_name_len(eb, iref);
1116 bytes_left -= len;
1117 if (bytes_left >= 0)
1118 read_extent_buffer(eb, dest + bytes_left,
1119 (unsigned long)(iref + 1), len);
b916a59a
JS
1120 if (eb != eb_in) {
1121 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1122 free_extent_buffer(eb);
b916a59a 1123 }
a542ad1b 1124 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1125 if (ret > 0)
1126 ret = -ENOENT;
a542ad1b
JS
1127 if (ret)
1128 break;
1129 next_inum = found_key.offset;
1130
1131 /* regular exit ahead */
1132 if (parent == next_inum)
1133 break;
1134
1135 slot = path->slots[0];
1136 eb = path->nodes[0];
1137 /* make sure we can use eb after releasing the path */
b916a59a 1138 if (eb != eb_in) {
a542ad1b 1139 atomic_inc(&eb->refs);
b916a59a
JS
1140 btrfs_tree_read_lock(eb);
1141 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1142 }
a542ad1b
JS
1143 btrfs_release_path(path);
1144
1145 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1146 parent = next_inum;
1147 --bytes_left;
1148 if (bytes_left >= 0)
1149 dest[bytes_left] = '/';
1150 }
1151
1152 btrfs_release_path(path);
b916a59a 1153 path->leave_spinning = leave_spinning;
a542ad1b
JS
1154
1155 if (ret)
1156 return ERR_PTR(ret);
1157
1158 return dest + bytes_left;
1159}
1160
1161/*
1162 * this makes the path point to (logical EXTENT_ITEM *)
1163 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1164 * tree blocks and <0 on error.
1165 */
1166int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1167 struct btrfs_path *path, struct btrfs_key *found_key)
1168{
1169 int ret;
1170 u64 flags;
1171 u32 item_size;
1172 struct extent_buffer *eb;
1173 struct btrfs_extent_item *ei;
1174 struct btrfs_key key;
1175
1176 key.type = BTRFS_EXTENT_ITEM_KEY;
1177 key.objectid = logical;
1178 key.offset = (u64)-1;
1179
1180 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1181 if (ret < 0)
1182 return ret;
1183 ret = btrfs_previous_item(fs_info->extent_root, path,
1184 0, BTRFS_EXTENT_ITEM_KEY);
1185 if (ret < 0)
1186 return ret;
1187
1188 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1189 if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1190 found_key->objectid > logical ||
4692cf58
JS
1191 found_key->objectid + found_key->offset <= logical) {
1192 pr_debug("logical %llu is not within any extent\n",
1193 (unsigned long long)logical);
a542ad1b 1194 return -ENOENT;
4692cf58 1195 }
a542ad1b
JS
1196
1197 eb = path->nodes[0];
1198 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1199 BUG_ON(item_size < sizeof(*ei));
1200
1201 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1202 flags = btrfs_extent_flags(eb, ei);
1203
4692cf58
JS
1204 pr_debug("logical %llu is at position %llu within the extent (%llu "
1205 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1206 (unsigned long long)logical,
1207 (unsigned long long)(logical - found_key->objectid),
1208 (unsigned long long)found_key->objectid,
1209 (unsigned long long)found_key->offset,
1210 (unsigned long long)flags, item_size);
a542ad1b
JS
1211 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1212 return BTRFS_EXTENT_FLAG_TREE_BLOCK;
1213 if (flags & BTRFS_EXTENT_FLAG_DATA)
1214 return BTRFS_EXTENT_FLAG_DATA;
1215
1216 return -EIO;
1217}
1218
1219/*
1220 * helper function to iterate extent inline refs. ptr must point to a 0 value
1221 * for the first call and may be modified. it is used to track state.
1222 * if more refs exist, 0 is returned and the next call to
1223 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1224 * next ref. after the last ref was processed, 1 is returned.
1225 * returns <0 on error
1226 */
1227static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1228 struct btrfs_extent_item *ei, u32 item_size,
1229 struct btrfs_extent_inline_ref **out_eiref,
1230 int *out_type)
1231{
1232 unsigned long end;
1233 u64 flags;
1234 struct btrfs_tree_block_info *info;
1235
1236 if (!*ptr) {
1237 /* first call */
1238 flags = btrfs_extent_flags(eb, ei);
1239 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1240 info = (struct btrfs_tree_block_info *)(ei + 1);
1241 *out_eiref =
1242 (struct btrfs_extent_inline_ref *)(info + 1);
1243 } else {
1244 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1245 }
1246 *ptr = (unsigned long)*out_eiref;
1247 if ((void *)*ptr >= (void *)ei + item_size)
1248 return -ENOENT;
1249 }
1250
1251 end = (unsigned long)ei + item_size;
1252 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1253 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1254
1255 *ptr += btrfs_extent_inline_ref_size(*out_type);
1256 WARN_ON(*ptr > end);
1257 if (*ptr == end)
1258 return 1; /* last */
1259
1260 return 0;
1261}
1262
1263/*
1264 * reads the tree block backref for an extent. tree level and root are returned
1265 * through out_level and out_root. ptr must point to a 0 value for the first
1266 * call and may be modified (see __get_extent_inline_ref comment).
1267 * returns 0 if data was provided, 1 if there was no more data to provide or
1268 * <0 on error.
1269 */
1270int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1271 struct btrfs_extent_item *ei, u32 item_size,
1272 u64 *out_root, u8 *out_level)
1273{
1274 int ret;
1275 int type;
1276 struct btrfs_tree_block_info *info;
1277 struct btrfs_extent_inline_ref *eiref;
1278
1279 if (*ptr == (unsigned long)-1)
1280 return 1;
1281
1282 while (1) {
1283 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1284 &eiref, &type);
1285 if (ret < 0)
1286 return ret;
1287
1288 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1289 type == BTRFS_SHARED_BLOCK_REF_KEY)
1290 break;
1291
1292 if (ret == 1)
1293 return 1;
1294 }
1295
1296 /* we can treat both ref types equally here */
1297 info = (struct btrfs_tree_block_info *)(ei + 1);
1298 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1299 *out_level = btrfs_tree_block_level(eb, info);
1300
1301 if (ret == 1)
1302 *ptr = (unsigned long)-1;
1303
1304 return 0;
1305}
1306
976b1908
JS
1307static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1308 u64 root, u64 extent_item_objectid,
4692cf58 1309 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1310{
976b1908 1311 struct extent_inode_elem *eie;
4692cf58 1312 int ret = 0;
4692cf58 1313
976b1908 1314 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1315 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1316 "root %llu\n", extent_item_objectid,
1317 eie->inum, eie->offset, root);
1318 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1319 if (ret) {
976b1908
JS
1320 pr_debug("stopping iteration for %llu due to ret=%d\n",
1321 extent_item_objectid, ret);
4692cf58
JS
1322 break;
1323 }
a542ad1b
JS
1324 }
1325
a542ad1b
JS
1326 return ret;
1327}
1328
1329/*
1330 * calls iterate() for every inode that references the extent identified by
4692cf58 1331 * the given parameters.
a542ad1b
JS
1332 * when the iterator function returns a non-zero value, iteration stops.
1333 */
1334int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1335 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1336 int search_commit_root,
a542ad1b
JS
1337 iterate_extent_inodes_t *iterate, void *ctx)
1338{
a542ad1b 1339 int ret;
a542ad1b
JS
1340 struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1341 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
4692cf58 1342 struct btrfs_trans_handle *trans;
7a3ae2f8
JS
1343 struct ulist *refs = NULL;
1344 struct ulist *roots = NULL;
4692cf58
JS
1345 struct ulist_node *ref_node = NULL;
1346 struct ulist_node *root_node = NULL;
8445f61c
JS
1347 struct seq_list seq_elem = {};
1348 struct seq_list tree_mod_seq_elem = {};
cd1b413c
JS
1349 struct ulist_iterator ref_uiter;
1350 struct ulist_iterator root_uiter;
7a3ae2f8 1351 struct btrfs_delayed_ref_root *delayed_refs = NULL;
a542ad1b 1352
4692cf58
JS
1353 pr_debug("resolving all inodes for extent %llu\n",
1354 extent_item_objectid);
a542ad1b 1355
7a3ae2f8
JS
1356 if (search_commit_root) {
1357 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1358 } else {
1359 trans = btrfs_join_transaction(fs_info->extent_root);
1360 if (IS_ERR(trans))
1361 return PTR_ERR(trans);
1362
1363 delayed_refs = &trans->transaction->delayed_refs;
1364 spin_lock(&delayed_refs->lock);
1365 btrfs_get_delayed_seq(delayed_refs, &seq_elem);
1366 spin_unlock(&delayed_refs->lock);
8445f61c 1367 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1368 }
a542ad1b 1369
4692cf58 1370 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
8445f61c
JS
1371 seq_elem.seq, tree_mod_seq_elem.seq, &refs,
1372 &extent_item_pos);
4692cf58
JS
1373 if (ret)
1374 goto out;
a542ad1b 1375
cd1b413c
JS
1376 ULIST_ITER_INIT(&ref_uiter);
1377 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
976b1908 1378 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
8445f61c
JS
1379 seq_elem.seq,
1380 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1381 if (ret)
1382 break;
cd1b413c
JS
1383 ULIST_ITER_INIT(&root_uiter);
1384 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908
JS
1385 pr_debug("root %llu references leaf %llu, data list "
1386 "%#lx\n", root_node->val, ref_node->val,
1387 ref_node->aux);
1388 ret = iterate_leaf_refs(
1389 (struct extent_inode_elem *)ref_node->aux,
1390 root_node->val, extent_item_objectid,
1391 iterate, ctx);
4692cf58 1392 }
976b1908
JS
1393 ulist_free(roots);
1394 roots = NULL;
a542ad1b
JS
1395 }
1396
976b1908 1397 free_leaf_list(refs);
4692cf58
JS
1398 ulist_free(roots);
1399out:
7a3ae2f8 1400 if (!search_commit_root) {
8445f61c 1401 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8
JS
1402 btrfs_put_delayed_seq(delayed_refs, &seq_elem);
1403 btrfs_end_transaction(trans, fs_info->extent_root);
1404 }
1405
a542ad1b
JS
1406 return ret;
1407}
1408
1409int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1410 struct btrfs_path *path,
1411 iterate_extent_inodes_t *iterate, void *ctx)
1412{
1413 int ret;
4692cf58 1414 u64 extent_item_pos;
a542ad1b 1415 struct btrfs_key found_key;
7a3ae2f8 1416 int search_commit_root = path->search_commit_root;
a542ad1b
JS
1417
1418 ret = extent_from_logical(fs_info, logical, path,
1419 &found_key);
4692cf58 1420 btrfs_release_path(path);
a542ad1b
JS
1421 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1422 ret = -EINVAL;
1423 if (ret < 0)
1424 return ret;
1425
4692cf58 1426 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1427 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1428 extent_item_pos, search_commit_root,
1429 iterate, ctx);
a542ad1b
JS
1430
1431 return ret;
1432}
1433
1434static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1435 struct btrfs_path *path,
1436 iterate_irefs_t *iterate, void *ctx)
1437{
aefc1eb1 1438 int ret = 0;
a542ad1b
JS
1439 int slot;
1440 u32 cur;
1441 u32 len;
1442 u32 name_len;
1443 u64 parent = 0;
1444 int found = 0;
1445 struct extent_buffer *eb;
1446 struct btrfs_item *item;
1447 struct btrfs_inode_ref *iref;
1448 struct btrfs_key found_key;
1449
aefc1eb1 1450 while (!ret) {
b916a59a 1451 path->leave_spinning = 1;
a542ad1b
JS
1452 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1453 &found_key);
1454 if (ret < 0)
1455 break;
1456 if (ret) {
1457 ret = found ? 0 : -ENOENT;
1458 break;
1459 }
1460 ++found;
1461
1462 parent = found_key.offset;
1463 slot = path->slots[0];
1464 eb = path->nodes[0];
1465 /* make sure we can use eb after releasing the path */
1466 atomic_inc(&eb->refs);
b916a59a
JS
1467 btrfs_tree_read_lock(eb);
1468 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1469 btrfs_release_path(path);
1470
1471 item = btrfs_item_nr(eb, slot);
1472 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1473
1474 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1475 name_len = btrfs_inode_ref_name_len(eb, iref);
1476 /* path must be released before calling iterate()! */
4692cf58
JS
1477 pr_debug("following ref at offset %u for inode %llu in "
1478 "tree %llu\n", cur,
1479 (unsigned long long)found_key.objectid,
1480 (unsigned long long)fs_root->objectid);
a542ad1b 1481 ret = iterate(parent, iref, eb, ctx);
aefc1eb1 1482 if (ret)
a542ad1b 1483 break;
a542ad1b
JS
1484 len = sizeof(*iref) + name_len;
1485 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1486 }
b916a59a 1487 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1488 free_extent_buffer(eb);
1489 }
1490
1491 btrfs_release_path(path);
1492
1493 return ret;
1494}
1495
1496/*
1497 * returns 0 if the path could be dumped (probably truncated)
1498 * returns <0 in case of an error
1499 */
1500static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1501 struct extent_buffer *eb, void *ctx)
1502{
1503 struct inode_fs_paths *ipath = ctx;
1504 char *fspath;
1505 char *fspath_min;
1506 int i = ipath->fspath->elem_cnt;
1507 const int s_ptr = sizeof(char *);
1508 u32 bytes_left;
1509
1510 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1511 ipath->fspath->bytes_left - s_ptr : 0;
1512
740c3d22 1513 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
a542ad1b
JS
1514 fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1515 inum, fspath_min, bytes_left);
1516 if (IS_ERR(fspath))
1517 return PTR_ERR(fspath);
1518
1519 if (fspath > fspath_min) {
4692cf58 1520 pr_debug("path resolved: %s\n", fspath);
745c4d8e 1521 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1522 ++ipath->fspath->elem_cnt;
1523 ipath->fspath->bytes_left = fspath - fspath_min;
1524 } else {
4692cf58
JS
1525 pr_debug("missed path, not enough space. missing bytes: %lu, "
1526 "constructed so far: %s\n",
1527 (unsigned long)(fspath_min - fspath), fspath_min);
a542ad1b
JS
1528 ++ipath->fspath->elem_missed;
1529 ipath->fspath->bytes_missing += fspath_min - fspath;
1530 ipath->fspath->bytes_left = 0;
1531 }
1532
1533 return 0;
1534}
1535
1536/*
1537 * this dumps all file system paths to the inode into the ipath struct, provided
1538 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1539 * from ipath->fspath->val[i].
a542ad1b 1540 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1541 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1542 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1543 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1544 * have been needed to return all paths.
1545 */
1546int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1547{
1548 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1549 inode_to_path, ipath);
1550}
1551
a542ad1b
JS
1552struct btrfs_data_container *init_data_container(u32 total_bytes)
1553{
1554 struct btrfs_data_container *data;
1555 size_t alloc_bytes;
1556
1557 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1558 data = kmalloc(alloc_bytes, GFP_NOFS);
1559 if (!data)
1560 return ERR_PTR(-ENOMEM);
1561
1562 if (total_bytes >= sizeof(*data)) {
1563 data->bytes_left = total_bytes - sizeof(*data);
1564 data->bytes_missing = 0;
1565 } else {
1566 data->bytes_missing = sizeof(*data) - total_bytes;
1567 data->bytes_left = 0;
1568 }
1569
1570 data->elem_cnt = 0;
1571 data->elem_missed = 0;
1572
1573 return data;
1574}
1575
1576/*
1577 * allocates space to return multiple file system paths for an inode.
1578 * total_bytes to allocate are passed, note that space usable for actual path
1579 * information will be total_bytes - sizeof(struct inode_fs_paths).
1580 * the returned pointer must be freed with free_ipath() in the end.
1581 */
1582struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1583 struct btrfs_path *path)
1584{
1585 struct inode_fs_paths *ifp;
1586 struct btrfs_data_container *fspath;
1587
1588 fspath = init_data_container(total_bytes);
1589 if (IS_ERR(fspath))
1590 return (void *)fspath;
1591
1592 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1593 if (!ifp) {
1594 kfree(fspath);
1595 return ERR_PTR(-ENOMEM);
1596 }
1597
1598 ifp->btrfs_path = path;
1599 ifp->fspath = fspath;
1600 ifp->fs_root = fs_root;
1601
1602 return ifp;
1603}
1604
1605void free_ipath(struct inode_fs_paths *ipath)
1606{
4735fb28
JJ
1607 if (!ipath)
1608 return;
5eb56d25 1609 kfree(ipath->fspath);
a542ad1b
JS
1610 kfree(ipath);
1611}
This page took 0.101025 seconds and 5 git commands to generate.