Btrfs: bugfix: ignore the wrong key for indirect tree block backrefs
[deliverable/linux.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include "ctree.h"
20#include "disk-io.h"
21#include "backref.h"
8da6d581
JS
22#include "ulist.h"
23#include "transaction.h"
24#include "delayed-ref.h"
b916a59a 25#include "locking.h"
a542ad1b 26
8da6d581
JS
27/*
28 * this structure records all encountered refs on the way up to the root
29 */
30struct __prelim_ref {
31 struct list_head list;
32 u64 root_id;
d5c88b73 33 struct btrfs_key key_for_search;
8da6d581
JS
34 int level;
35 int count;
36 u64 parent;
37 u64 wanted_disk_byte;
38};
39
d5c88b73
JS
40/*
41 * the rules for all callers of this function are:
42 * - obtaining the parent is the goal
43 * - if you add a key, you must know that it is a correct key
44 * - if you cannot add the parent or a correct key, then we will look into the
45 * block later to set a correct key
46 *
47 * delayed refs
48 * ============
49 * backref type | shared | indirect | shared | indirect
50 * information | tree | tree | data | data
51 * --------------------+--------+----------+--------+----------
52 * parent logical | y | - | - | -
53 * key to resolve | - | y | y | y
54 * tree block logical | - | - | - | -
55 * root for resolving | y | y | y | y
56 *
57 * - column 1: we've the parent -> done
58 * - column 2, 3, 4: we use the key to find the parent
59 *
60 * on disk refs (inline or keyed)
61 * ==============================
62 * backref type | shared | indirect | shared | indirect
63 * information | tree | tree | data | data
64 * --------------------+--------+----------+--------+----------
65 * parent logical | y | - | y | -
66 * key to resolve | - | - | - | y
67 * tree block logical | y | y | y | y
68 * root for resolving | - | y | y | y
69 *
70 * - column 1, 3: we've the parent -> done
71 * - column 2: we take the first key from the block to find the parent
72 * (see __add_missing_keys)
73 * - column 4: we use the key to find the parent
74 *
75 * additional information that's available but not required to find the parent
76 * block might help in merging entries to gain some speed.
77 */
78
8da6d581 79static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73
JS
80 struct btrfs_key *key, int level,
81 u64 parent, u64 wanted_disk_byte, int count)
8da6d581
JS
82{
83 struct __prelim_ref *ref;
84
85 /* in case we're adding delayed refs, we're holding the refs spinlock */
86 ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
87 if (!ref)
88 return -ENOMEM;
89
90 ref->root_id = root_id;
91 if (key)
d5c88b73 92 ref->key_for_search = *key;
8da6d581 93 else
d5c88b73 94 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581
JS
95
96 ref->level = level;
97 ref->count = count;
98 ref->parent = parent;
99 ref->wanted_disk_byte = wanted_disk_byte;
100 list_add_tail(&ref->list, head);
101
102 return 0;
103}
104
105static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
106 struct ulist *parents,
107 struct extent_buffer *eb, int level,
108 u64 wanted_objectid, u64 wanted_disk_byte)
109{
110 int ret;
111 int slot;
112 struct btrfs_file_extent_item *fi;
113 struct btrfs_key key;
114 u64 disk_byte;
115
116add_parent:
117 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
118 if (ret < 0)
119 return ret;
120
121 if (level != 0)
122 return 0;
123
124 /*
125 * if the current leaf is full with EXTENT_DATA items, we must
126 * check the next one if that holds a reference as well.
127 * ref->count cannot be used to skip this check.
128 * repeat this until we don't find any additional EXTENT_DATA items.
129 */
130 while (1) {
131 ret = btrfs_next_leaf(root, path);
132 if (ret < 0)
133 return ret;
134 if (ret)
135 return 0;
136
137 eb = path->nodes[0];
138 for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
139 btrfs_item_key_to_cpu(eb, &key, slot);
140 if (key.objectid != wanted_objectid ||
141 key.type != BTRFS_EXTENT_DATA_KEY)
142 return 0;
143 fi = btrfs_item_ptr(eb, slot,
144 struct btrfs_file_extent_item);
145 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
146 if (disk_byte == wanted_disk_byte)
147 goto add_parent;
148 }
149 }
150
151 return 0;
152}
153
154/*
155 * resolve an indirect backref in the form (root_id, key, level)
156 * to a logical address
157 */
158static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
7a3ae2f8 159 int search_commit_root,
8da6d581
JS
160 struct __prelim_ref *ref,
161 struct ulist *parents)
162{
163 struct btrfs_path *path;
164 struct btrfs_root *root;
165 struct btrfs_key root_key;
166 struct btrfs_key key = {0};
167 struct extent_buffer *eb;
168 int ret = 0;
169 int root_level;
170 int level = ref->level;
171
172 path = btrfs_alloc_path();
173 if (!path)
174 return -ENOMEM;
7a3ae2f8 175 path->search_commit_root = !!search_commit_root;
8da6d581
JS
176
177 root_key.objectid = ref->root_id;
178 root_key.type = BTRFS_ROOT_ITEM_KEY;
179 root_key.offset = (u64)-1;
180 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
181 if (IS_ERR(root)) {
182 ret = PTR_ERR(root);
183 goto out;
184 }
185
186 rcu_read_lock();
187 root_level = btrfs_header_level(root->node);
188 rcu_read_unlock();
189
190 if (root_level + 1 == level)
191 goto out;
192
193 path->lowest_level = level;
d5c88b73 194 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 0, 0);
8da6d581
JS
195 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
196 "%d for key (%llu %u %llu)\n",
197 (unsigned long long)ref->root_id, level, ref->count, ret,
d5c88b73
JS
198 (unsigned long long)ref->key_for_search.objectid,
199 ref->key_for_search.type,
200 (unsigned long long)ref->key_for_search.offset);
8da6d581
JS
201 if (ret < 0)
202 goto out;
203
204 eb = path->nodes[level];
205 if (!eb) {
206 WARN_ON(1);
207 ret = 1;
208 goto out;
209 }
210
211 if (level == 0) {
212 if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
213 ret = btrfs_next_leaf(root, path);
214 if (ret)
215 goto out;
216 eb = path->nodes[0];
217 }
218
219 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
220 }
221
222 /* the last two parameters will only be used for level == 0 */
223 ret = add_all_parents(root, path, parents, eb, level, key.objectid,
224 ref->wanted_disk_byte);
225out:
226 btrfs_free_path(path);
227 return ret;
228}
229
230/*
231 * resolve all indirect backrefs from the list
232 */
233static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
7a3ae2f8 234 int search_commit_root,
8da6d581
JS
235 struct list_head *head)
236{
237 int err;
238 int ret = 0;
239 struct __prelim_ref *ref;
240 struct __prelim_ref *ref_safe;
241 struct __prelim_ref *new_ref;
242 struct ulist *parents;
243 struct ulist_node *node;
cd1b413c 244 struct ulist_iterator uiter;
8da6d581
JS
245
246 parents = ulist_alloc(GFP_NOFS);
247 if (!parents)
248 return -ENOMEM;
249
250 /*
251 * _safe allows us to insert directly after the current item without
252 * iterating over the newly inserted items.
253 * we're also allowed to re-assign ref during iteration.
254 */
255 list_for_each_entry_safe(ref, ref_safe, head, list) {
256 if (ref->parent) /* already direct */
257 continue;
258 if (ref->count == 0)
259 continue;
7a3ae2f8
JS
260 err = __resolve_indirect_ref(fs_info, search_commit_root,
261 ref, parents);
8da6d581
JS
262 if (err) {
263 if (ret == 0)
264 ret = err;
265 continue;
266 }
267
268 /* we put the first parent into the ref at hand */
cd1b413c
JS
269 ULIST_ITER_INIT(&uiter);
270 node = ulist_next(parents, &uiter);
8da6d581
JS
271 ref->parent = node ? node->val : 0;
272
273 /* additional parents require new refs being added here */
cd1b413c 274 while ((node = ulist_next(parents, &uiter))) {
8da6d581
JS
275 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
276 if (!new_ref) {
277 ret = -ENOMEM;
278 break;
279 }
280 memcpy(new_ref, ref, sizeof(*ref));
281 new_ref->parent = node->val;
282 list_add(&new_ref->list, &ref->list);
283 }
284 ulist_reinit(parents);
285 }
286
287 ulist_free(parents);
288 return ret;
289}
290
d5c88b73
JS
291static inline int ref_for_same_block(struct __prelim_ref *ref1,
292 struct __prelim_ref *ref2)
293{
294 if (ref1->level != ref2->level)
295 return 0;
296 if (ref1->root_id != ref2->root_id)
297 return 0;
298 if (ref1->key_for_search.type != ref2->key_for_search.type)
299 return 0;
300 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
301 return 0;
302 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
303 return 0;
304 if (ref1->parent != ref2->parent)
305 return 0;
306
307 return 1;
308}
309
310/*
311 * read tree blocks and add keys where required.
312 */
313static int __add_missing_keys(struct btrfs_fs_info *fs_info,
314 struct list_head *head)
315{
316 struct list_head *pos;
317 struct extent_buffer *eb;
318
319 list_for_each(pos, head) {
320 struct __prelim_ref *ref;
321 ref = list_entry(pos, struct __prelim_ref, list);
322
323 if (ref->parent)
324 continue;
325 if (ref->key_for_search.type)
326 continue;
327 BUG_ON(!ref->wanted_disk_byte);
328 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
329 fs_info->tree_root->leafsize, 0);
330 BUG_ON(!eb);
331 btrfs_tree_read_lock(eb);
332 if (btrfs_header_level(eb) == 0)
333 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
334 else
335 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
336 btrfs_tree_read_unlock(eb);
337 free_extent_buffer(eb);
338 }
339 return 0;
340}
341
8da6d581
JS
342/*
343 * merge two lists of backrefs and adjust counts accordingly
344 *
345 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
346 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
347 * additionally, we could even add a key range for the blocks we
348 * looked into to merge even more (-> replace unresolved refs by those
349 * having a parent).
8da6d581
JS
350 * mode = 2: merge identical parents
351 */
352static int __merge_refs(struct list_head *head, int mode)
353{
354 struct list_head *pos1;
355
356 list_for_each(pos1, head) {
357 struct list_head *n2;
358 struct list_head *pos2;
359 struct __prelim_ref *ref1;
360
361 ref1 = list_entry(pos1, struct __prelim_ref, list);
362
8da6d581
JS
363 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
364 pos2 = n2, n2 = pos2->next) {
365 struct __prelim_ref *ref2;
d5c88b73 366 struct __prelim_ref *xchg;
8da6d581
JS
367
368 ref2 = list_entry(pos2, struct __prelim_ref, list);
369
370 if (mode == 1) {
d5c88b73 371 if (!ref_for_same_block(ref1, ref2))
8da6d581 372 continue;
d5c88b73
JS
373 if (!ref1->parent && ref2->parent) {
374 xchg = ref1;
375 ref1 = ref2;
376 ref2 = xchg;
377 }
8da6d581
JS
378 ref1->count += ref2->count;
379 } else {
380 if (ref1->parent != ref2->parent)
381 continue;
382 ref1->count += ref2->count;
383 }
384 list_del(&ref2->list);
385 kfree(ref2);
386 }
387
388 }
389 return 0;
390}
391
392/*
393 * add all currently queued delayed refs from this head whose seq nr is
394 * smaller or equal that seq to the list
395 */
396static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
8da6d581
JS
397 struct list_head *prefs)
398{
399 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
400 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
401 struct btrfs_key key;
402 struct btrfs_key op_key = {0};
8da6d581 403 int sgn;
b1375d64 404 int ret = 0;
8da6d581
JS
405
406 if (extent_op && extent_op->update_key)
d5c88b73 407 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581
JS
408
409 while ((n = rb_prev(n))) {
410 struct btrfs_delayed_ref_node *node;
411 node = rb_entry(n, struct btrfs_delayed_ref_node,
412 rb_node);
413 if (node->bytenr != head->node.bytenr)
414 break;
415 WARN_ON(node->is_head);
416
417 if (node->seq > seq)
418 continue;
419
420 switch (node->action) {
421 case BTRFS_ADD_DELAYED_EXTENT:
422 case BTRFS_UPDATE_DELAYED_HEAD:
423 WARN_ON(1);
424 continue;
425 case BTRFS_ADD_DELAYED_REF:
426 sgn = 1;
427 break;
428 case BTRFS_DROP_DELAYED_REF:
429 sgn = -1;
430 break;
431 default:
432 BUG_ON(1);
433 }
434 switch (node->type) {
435 case BTRFS_TREE_BLOCK_REF_KEY: {
436 struct btrfs_delayed_tree_ref *ref;
437
438 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 439 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581
JS
440 ref->level + 1, 0, node->bytenr,
441 node->ref_mod * sgn);
442 break;
443 }
444 case BTRFS_SHARED_BLOCK_REF_KEY: {
445 struct btrfs_delayed_tree_ref *ref;
446
447 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 448 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
449 ref->level + 1, ref->parent,
450 node->bytenr,
451 node->ref_mod * sgn);
452 break;
453 }
454 case BTRFS_EXTENT_DATA_REF_KEY: {
455 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
456 ref = btrfs_delayed_node_to_data_ref(node);
457
458 key.objectid = ref->objectid;
459 key.type = BTRFS_EXTENT_DATA_KEY;
460 key.offset = ref->offset;
461 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
462 node->bytenr,
463 node->ref_mod * sgn);
464 break;
465 }
466 case BTRFS_SHARED_DATA_REF_KEY: {
467 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
468
469 ref = btrfs_delayed_node_to_data_ref(node);
470
471 key.objectid = ref->objectid;
472 key.type = BTRFS_EXTENT_DATA_KEY;
473 key.offset = ref->offset;
474 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
475 ref->parent, node->bytenr,
476 node->ref_mod * sgn);
477 break;
478 }
479 default:
480 WARN_ON(1);
481 }
482 BUG_ON(ret);
483 }
484
485 return 0;
486}
487
488/*
489 * add all inline backrefs for bytenr to the list
490 */
491static int __add_inline_refs(struct btrfs_fs_info *fs_info,
492 struct btrfs_path *path, u64 bytenr,
d5c88b73 493 int *info_level, struct list_head *prefs)
8da6d581 494{
b1375d64 495 int ret = 0;
8da6d581
JS
496 int slot;
497 struct extent_buffer *leaf;
498 struct btrfs_key key;
499 unsigned long ptr;
500 unsigned long end;
501 struct btrfs_extent_item *ei;
502 u64 flags;
503 u64 item_size;
504
505 /*
506 * enumerate all inline refs
507 */
508 leaf = path->nodes[0];
dadcaf78 509 slot = path->slots[0];
8da6d581
JS
510
511 item_size = btrfs_item_size_nr(leaf, slot);
512 BUG_ON(item_size < sizeof(*ei));
513
514 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
515 flags = btrfs_extent_flags(leaf, ei);
516
517 ptr = (unsigned long)(ei + 1);
518 end = (unsigned long)ei + item_size;
519
520 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
521 struct btrfs_tree_block_info *info;
8da6d581
JS
522
523 info = (struct btrfs_tree_block_info *)ptr;
524 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
525 ptr += sizeof(struct btrfs_tree_block_info);
526 BUG_ON(ptr > end);
527 } else {
528 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
529 }
530
531 while (ptr < end) {
532 struct btrfs_extent_inline_ref *iref;
533 u64 offset;
534 int type;
535
536 iref = (struct btrfs_extent_inline_ref *)ptr;
537 type = btrfs_extent_inline_ref_type(leaf, iref);
538 offset = btrfs_extent_inline_ref_offset(leaf, iref);
539
540 switch (type) {
541 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 542 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
543 *info_level + 1, offset,
544 bytenr, 1);
545 break;
546 case BTRFS_SHARED_DATA_REF_KEY: {
547 struct btrfs_shared_data_ref *sdref;
548 int count;
549
550 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
551 count = btrfs_shared_data_ref_count(leaf, sdref);
552 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
553 bytenr, count);
554 break;
555 }
556 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
557 ret = __add_prelim_ref(prefs, offset, NULL,
558 *info_level + 1, 0,
559 bytenr, 1);
8da6d581
JS
560 break;
561 case BTRFS_EXTENT_DATA_REF_KEY: {
562 struct btrfs_extent_data_ref *dref;
563 int count;
564 u64 root;
565
566 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
567 count = btrfs_extent_data_ref_count(leaf, dref);
568 key.objectid = btrfs_extent_data_ref_objectid(leaf,
569 dref);
570 key.type = BTRFS_EXTENT_DATA_KEY;
571 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
572 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73
JS
573 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
574 bytenr, count);
8da6d581
JS
575 break;
576 }
577 default:
578 WARN_ON(1);
579 }
580 BUG_ON(ret);
581 ptr += btrfs_extent_inline_ref_size(type);
582 }
583
584 return 0;
585}
586
587/*
588 * add all non-inline backrefs for bytenr to the list
589 */
590static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
591 struct btrfs_path *path, u64 bytenr,
d5c88b73 592 int info_level, struct list_head *prefs)
8da6d581
JS
593{
594 struct btrfs_root *extent_root = fs_info->extent_root;
595 int ret;
596 int slot;
597 struct extent_buffer *leaf;
598 struct btrfs_key key;
599
600 while (1) {
601 ret = btrfs_next_item(extent_root, path);
602 if (ret < 0)
603 break;
604 if (ret) {
605 ret = 0;
606 break;
607 }
608
609 slot = path->slots[0];
610 leaf = path->nodes[0];
611 btrfs_item_key_to_cpu(leaf, &key, slot);
612
613 if (key.objectid != bytenr)
614 break;
615 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
616 continue;
617 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
618 break;
619
620 switch (key.type) {
621 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 622 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
623 info_level + 1, key.offset,
624 bytenr, 1);
625 break;
626 case BTRFS_SHARED_DATA_REF_KEY: {
627 struct btrfs_shared_data_ref *sdref;
628 int count;
629
630 sdref = btrfs_item_ptr(leaf, slot,
631 struct btrfs_shared_data_ref);
632 count = btrfs_shared_data_ref_count(leaf, sdref);
633 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
634 bytenr, count);
635 break;
636 }
637 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
638 ret = __add_prelim_ref(prefs, key.offset, NULL,
639 info_level + 1, 0,
640 bytenr, 1);
8da6d581
JS
641 break;
642 case BTRFS_EXTENT_DATA_REF_KEY: {
643 struct btrfs_extent_data_ref *dref;
644 int count;
645 u64 root;
646
647 dref = btrfs_item_ptr(leaf, slot,
648 struct btrfs_extent_data_ref);
649 count = btrfs_extent_data_ref_count(leaf, dref);
650 key.objectid = btrfs_extent_data_ref_objectid(leaf,
651 dref);
652 key.type = BTRFS_EXTENT_DATA_KEY;
653 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
654 root = btrfs_extent_data_ref_root(leaf, dref);
655 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
d5c88b73 656 bytenr, count);
8da6d581
JS
657 break;
658 }
659 default:
660 WARN_ON(1);
661 }
662 BUG_ON(ret);
663 }
664
665 return ret;
666}
667
668/*
669 * this adds all existing backrefs (inline backrefs, backrefs and delayed
670 * refs) for the given bytenr to the refs list, merges duplicates and resolves
671 * indirect refs to their parent bytenr.
672 * When roots are found, they're added to the roots list
673 *
674 * FIXME some caching might speed things up
675 */
676static int find_parent_nodes(struct btrfs_trans_handle *trans,
677 struct btrfs_fs_info *fs_info, u64 bytenr,
678 u64 seq, struct ulist *refs, struct ulist *roots)
679{
680 struct btrfs_key key;
681 struct btrfs_path *path;
8da6d581 682 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 683 struct btrfs_delayed_ref_head *head;
8da6d581
JS
684 int info_level = 0;
685 int ret;
7a3ae2f8 686 int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
8da6d581
JS
687 struct list_head prefs_delayed;
688 struct list_head prefs;
689 struct __prelim_ref *ref;
690
691 INIT_LIST_HEAD(&prefs);
692 INIT_LIST_HEAD(&prefs_delayed);
693
694 key.objectid = bytenr;
695 key.type = BTRFS_EXTENT_ITEM_KEY;
696 key.offset = (u64)-1;
697
698 path = btrfs_alloc_path();
699 if (!path)
700 return -ENOMEM;
7a3ae2f8 701 path->search_commit_root = !!search_commit_root;
8da6d581
JS
702
703 /*
704 * grab both a lock on the path and a lock on the delayed ref head.
705 * We need both to get a consistent picture of how the refs look
706 * at a specified point in time
707 */
708again:
d3b01064
LZ
709 head = NULL;
710
8da6d581
JS
711 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
712 if (ret < 0)
713 goto out;
714 BUG_ON(ret == 0);
715
7a3ae2f8
JS
716 if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
717 /*
718 * look if there are updates for this ref queued and lock the
719 * head
720 */
721 delayed_refs = &trans->transaction->delayed_refs;
722 spin_lock(&delayed_refs->lock);
723 head = btrfs_find_delayed_ref_head(trans, bytenr);
724 if (head) {
725 if (!mutex_trylock(&head->mutex)) {
726 atomic_inc(&head->node.refs);
727 spin_unlock(&delayed_refs->lock);
728
729 btrfs_release_path(path);
730
731 /*
732 * Mutex was contended, block until it's
733 * released and try again
734 */
735 mutex_lock(&head->mutex);
736 mutex_unlock(&head->mutex);
737 btrfs_put_delayed_ref(&head->node);
738 goto again;
739 }
d5c88b73 740 ret = __add_delayed_refs(head, seq, &prefs_delayed);
7a3ae2f8
JS
741 if (ret) {
742 spin_unlock(&delayed_refs->lock);
743 goto out;
744 }
d3b01064 745 }
7a3ae2f8 746 spin_unlock(&delayed_refs->lock);
8da6d581 747 }
8da6d581
JS
748
749 if (path->slots[0]) {
750 struct extent_buffer *leaf;
751 int slot;
752
dadcaf78 753 path->slots[0]--;
8da6d581 754 leaf = path->nodes[0];
dadcaf78 755 slot = path->slots[0];
8da6d581
JS
756 btrfs_item_key_to_cpu(leaf, &key, slot);
757 if (key.objectid == bytenr &&
758 key.type == BTRFS_EXTENT_ITEM_KEY) {
759 ret = __add_inline_refs(fs_info, path, bytenr,
d5c88b73 760 &info_level, &prefs);
8da6d581
JS
761 if (ret)
762 goto out;
d5c88b73 763 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
764 info_level, &prefs);
765 if (ret)
766 goto out;
767 }
768 }
769 btrfs_release_path(path);
770
8da6d581
JS
771 list_splice_init(&prefs_delayed, &prefs);
772
d5c88b73
JS
773 ret = __add_missing_keys(fs_info, &prefs);
774 if (ret)
775 goto out;
776
8da6d581
JS
777 ret = __merge_refs(&prefs, 1);
778 if (ret)
779 goto out;
780
7a3ae2f8 781 ret = __resolve_indirect_refs(fs_info, search_commit_root, &prefs);
8da6d581
JS
782 if (ret)
783 goto out;
784
785 ret = __merge_refs(&prefs, 2);
786 if (ret)
787 goto out;
788
789 while (!list_empty(&prefs)) {
790 ref = list_first_entry(&prefs, struct __prelim_ref, list);
791 list_del(&ref->list);
792 if (ref->count < 0)
793 WARN_ON(1);
794 if (ref->count && ref->root_id && ref->parent == 0) {
795 /* no parent == root of tree */
796 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
797 BUG_ON(ret < 0);
798 }
799 if (ref->count && ref->parent) {
800 ret = ulist_add(refs, ref->parent, 0, GFP_NOFS);
801 BUG_ON(ret < 0);
802 }
803 kfree(ref);
804 }
805
806out:
807 if (head)
808 mutex_unlock(&head->mutex);
809 btrfs_free_path(path);
810 while (!list_empty(&prefs)) {
811 ref = list_first_entry(&prefs, struct __prelim_ref, list);
812 list_del(&ref->list);
813 kfree(ref);
814 }
815 while (!list_empty(&prefs_delayed)) {
816 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
817 list);
818 list_del(&ref->list);
819 kfree(ref);
820 }
821
822 return ret;
823}
824
825/*
826 * Finds all leafs with a reference to the specified combination of bytenr and
827 * offset. key_list_head will point to a list of corresponding keys (caller must
828 * free each list element). The leafs will be stored in the leafs ulist, which
829 * must be freed with ulist_free.
830 *
831 * returns 0 on success, <0 on error
832 */
833static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
834 struct btrfs_fs_info *fs_info, u64 bytenr,
835 u64 num_bytes, u64 seq, struct ulist **leafs)
836{
837 struct ulist *tmp;
838 int ret;
839
840 tmp = ulist_alloc(GFP_NOFS);
841 if (!tmp)
842 return -ENOMEM;
843 *leafs = ulist_alloc(GFP_NOFS);
844 if (!*leafs) {
845 ulist_free(tmp);
846 return -ENOMEM;
847 }
848
849 ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp);
850 ulist_free(tmp);
851
852 if (ret < 0 && ret != -ENOENT) {
853 ulist_free(*leafs);
854 return ret;
855 }
856
857 return 0;
858}
859
860/*
861 * walk all backrefs for a given extent to find all roots that reference this
862 * extent. Walking a backref means finding all extents that reference this
863 * extent and in turn walk the backrefs of those, too. Naturally this is a
864 * recursive process, but here it is implemented in an iterative fashion: We
865 * find all referencing extents for the extent in question and put them on a
866 * list. In turn, we find all referencing extents for those, further appending
867 * to the list. The way we iterate the list allows adding more elements after
868 * the current while iterating. The process stops when we reach the end of the
869 * list. Found roots are added to the roots list.
870 *
871 * returns 0 on success, < 0 on error.
872 */
873int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
874 struct btrfs_fs_info *fs_info, u64 bytenr,
875 u64 num_bytes, u64 seq, struct ulist **roots)
876{
877 struct ulist *tmp;
878 struct ulist_node *node = NULL;
cd1b413c 879 struct ulist_iterator uiter;
8da6d581
JS
880 int ret;
881
882 tmp = ulist_alloc(GFP_NOFS);
883 if (!tmp)
884 return -ENOMEM;
885 *roots = ulist_alloc(GFP_NOFS);
886 if (!*roots) {
887 ulist_free(tmp);
888 return -ENOMEM;
889 }
890
cd1b413c 891 ULIST_ITER_INIT(&uiter);
8da6d581
JS
892 while (1) {
893 ret = find_parent_nodes(trans, fs_info, bytenr, seq,
894 tmp, *roots);
895 if (ret < 0 && ret != -ENOENT) {
896 ulist_free(tmp);
897 ulist_free(*roots);
898 return ret;
899 }
cd1b413c 900 node = ulist_next(tmp, &uiter);
8da6d581
JS
901 if (!node)
902 break;
903 bytenr = node->val;
904 }
905
906 ulist_free(tmp);
907 return 0;
908}
909
910
a542ad1b
JS
911static int __inode_info(u64 inum, u64 ioff, u8 key_type,
912 struct btrfs_root *fs_root, struct btrfs_path *path,
913 struct btrfs_key *found_key)
914{
915 int ret;
916 struct btrfs_key key;
917 struct extent_buffer *eb;
918
919 key.type = key_type;
920 key.objectid = inum;
921 key.offset = ioff;
922
923 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
924 if (ret < 0)
925 return ret;
926
927 eb = path->nodes[0];
928 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
929 ret = btrfs_next_leaf(fs_root, path);
930 if (ret)
931 return ret;
932 eb = path->nodes[0];
933 }
934
935 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
936 if (found_key->type != key.type || found_key->objectid != key.objectid)
937 return 1;
938
939 return 0;
940}
941
942/*
943 * this makes the path point to (inum INODE_ITEM ioff)
944 */
945int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
946 struct btrfs_path *path)
947{
948 struct btrfs_key key;
949 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
950 &key);
951}
952
953static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
954 struct btrfs_path *path,
955 struct btrfs_key *found_key)
956{
957 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
958 found_key);
959}
960
961/*
962 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
963 * of the path are separated by '/' and the path is guaranteed to be
964 * 0-terminated. the path is only given within the current file system.
965 * Therefore, it never starts with a '/'. the caller is responsible to provide
966 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
967 * the start point of the resulting string is returned. this pointer is within
968 * dest, normally.
969 * in case the path buffer would overflow, the pointer is decremented further
970 * as if output was written to the buffer, though no more output is actually
971 * generated. that way, the caller can determine how much space would be
972 * required for the path to fit into the buffer. in that case, the returned
973 * value will be smaller than dest. callers must check this!
974 */
975static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
976 struct btrfs_inode_ref *iref,
977 struct extent_buffer *eb_in, u64 parent,
978 char *dest, u32 size)
979{
980 u32 len;
981 int slot;
982 u64 next_inum;
983 int ret;
984 s64 bytes_left = size - 1;
985 struct extent_buffer *eb = eb_in;
986 struct btrfs_key found_key;
b916a59a 987 int leave_spinning = path->leave_spinning;
a542ad1b
JS
988
989 if (bytes_left >= 0)
990 dest[bytes_left] = '\0';
991
b916a59a 992 path->leave_spinning = 1;
a542ad1b
JS
993 while (1) {
994 len = btrfs_inode_ref_name_len(eb, iref);
995 bytes_left -= len;
996 if (bytes_left >= 0)
997 read_extent_buffer(eb, dest + bytes_left,
998 (unsigned long)(iref + 1), len);
b916a59a
JS
999 if (eb != eb_in) {
1000 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1001 free_extent_buffer(eb);
b916a59a 1002 }
a542ad1b 1003 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1004 if (ret > 0)
1005 ret = -ENOENT;
a542ad1b
JS
1006 if (ret)
1007 break;
1008 next_inum = found_key.offset;
1009
1010 /* regular exit ahead */
1011 if (parent == next_inum)
1012 break;
1013
1014 slot = path->slots[0];
1015 eb = path->nodes[0];
1016 /* make sure we can use eb after releasing the path */
b916a59a 1017 if (eb != eb_in) {
a542ad1b 1018 atomic_inc(&eb->refs);
b916a59a
JS
1019 btrfs_tree_read_lock(eb);
1020 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1021 }
a542ad1b
JS
1022 btrfs_release_path(path);
1023
1024 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1025 parent = next_inum;
1026 --bytes_left;
1027 if (bytes_left >= 0)
1028 dest[bytes_left] = '/';
1029 }
1030
1031 btrfs_release_path(path);
b916a59a 1032 path->leave_spinning = leave_spinning;
a542ad1b
JS
1033
1034 if (ret)
1035 return ERR_PTR(ret);
1036
1037 return dest + bytes_left;
1038}
1039
1040/*
1041 * this makes the path point to (logical EXTENT_ITEM *)
1042 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1043 * tree blocks and <0 on error.
1044 */
1045int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1046 struct btrfs_path *path, struct btrfs_key *found_key)
1047{
1048 int ret;
1049 u64 flags;
1050 u32 item_size;
1051 struct extent_buffer *eb;
1052 struct btrfs_extent_item *ei;
1053 struct btrfs_key key;
1054
1055 key.type = BTRFS_EXTENT_ITEM_KEY;
1056 key.objectid = logical;
1057 key.offset = (u64)-1;
1058
1059 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1060 if (ret < 0)
1061 return ret;
1062 ret = btrfs_previous_item(fs_info->extent_root, path,
1063 0, BTRFS_EXTENT_ITEM_KEY);
1064 if (ret < 0)
1065 return ret;
1066
1067 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1068 if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1069 found_key->objectid > logical ||
4692cf58
JS
1070 found_key->objectid + found_key->offset <= logical) {
1071 pr_debug("logical %llu is not within any extent\n",
1072 (unsigned long long)logical);
a542ad1b 1073 return -ENOENT;
4692cf58 1074 }
a542ad1b
JS
1075
1076 eb = path->nodes[0];
1077 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1078 BUG_ON(item_size < sizeof(*ei));
1079
1080 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1081 flags = btrfs_extent_flags(eb, ei);
1082
4692cf58
JS
1083 pr_debug("logical %llu is at position %llu within the extent (%llu "
1084 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1085 (unsigned long long)logical,
1086 (unsigned long long)(logical - found_key->objectid),
1087 (unsigned long long)found_key->objectid,
1088 (unsigned long long)found_key->offset,
1089 (unsigned long long)flags, item_size);
a542ad1b
JS
1090 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1091 return BTRFS_EXTENT_FLAG_TREE_BLOCK;
1092 if (flags & BTRFS_EXTENT_FLAG_DATA)
1093 return BTRFS_EXTENT_FLAG_DATA;
1094
1095 return -EIO;
1096}
1097
1098/*
1099 * helper function to iterate extent inline refs. ptr must point to a 0 value
1100 * for the first call and may be modified. it is used to track state.
1101 * if more refs exist, 0 is returned and the next call to
1102 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1103 * next ref. after the last ref was processed, 1 is returned.
1104 * returns <0 on error
1105 */
1106static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1107 struct btrfs_extent_item *ei, u32 item_size,
1108 struct btrfs_extent_inline_ref **out_eiref,
1109 int *out_type)
1110{
1111 unsigned long end;
1112 u64 flags;
1113 struct btrfs_tree_block_info *info;
1114
1115 if (!*ptr) {
1116 /* first call */
1117 flags = btrfs_extent_flags(eb, ei);
1118 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1119 info = (struct btrfs_tree_block_info *)(ei + 1);
1120 *out_eiref =
1121 (struct btrfs_extent_inline_ref *)(info + 1);
1122 } else {
1123 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1124 }
1125 *ptr = (unsigned long)*out_eiref;
1126 if ((void *)*ptr >= (void *)ei + item_size)
1127 return -ENOENT;
1128 }
1129
1130 end = (unsigned long)ei + item_size;
1131 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1132 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1133
1134 *ptr += btrfs_extent_inline_ref_size(*out_type);
1135 WARN_ON(*ptr > end);
1136 if (*ptr == end)
1137 return 1; /* last */
1138
1139 return 0;
1140}
1141
1142/*
1143 * reads the tree block backref for an extent. tree level and root are returned
1144 * through out_level and out_root. ptr must point to a 0 value for the first
1145 * call and may be modified (see __get_extent_inline_ref comment).
1146 * returns 0 if data was provided, 1 if there was no more data to provide or
1147 * <0 on error.
1148 */
1149int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1150 struct btrfs_extent_item *ei, u32 item_size,
1151 u64 *out_root, u8 *out_level)
1152{
1153 int ret;
1154 int type;
1155 struct btrfs_tree_block_info *info;
1156 struct btrfs_extent_inline_ref *eiref;
1157
1158 if (*ptr == (unsigned long)-1)
1159 return 1;
1160
1161 while (1) {
1162 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1163 &eiref, &type);
1164 if (ret < 0)
1165 return ret;
1166
1167 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1168 type == BTRFS_SHARED_BLOCK_REF_KEY)
1169 break;
1170
1171 if (ret == 1)
1172 return 1;
1173 }
1174
1175 /* we can treat both ref types equally here */
1176 info = (struct btrfs_tree_block_info *)(ei + 1);
1177 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1178 *out_level = btrfs_tree_block_level(eb, info);
1179
1180 if (ret == 1)
1181 *ptr = (unsigned long)-1;
1182
1183 return 0;
1184}
1185
7a3ae2f8 1186static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, u64 logical,
4692cf58
JS
1187 u64 orig_extent_item_objectid,
1188 u64 extent_item_pos, u64 root,
1189 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b
JS
1190{
1191 u64 disk_byte;
1192 struct btrfs_key key;
1193 struct btrfs_file_extent_item *fi;
1194 struct extent_buffer *eb;
1195 int slot;
1196 int nritems;
4692cf58
JS
1197 int ret = 0;
1198 int extent_type;
1199 u64 data_offset;
1200 u64 data_len;
a542ad1b
JS
1201
1202 eb = read_tree_block(fs_info->tree_root, logical,
1203 fs_info->tree_root->leafsize, 0);
1204 if (!eb)
1205 return -EIO;
1206
1207 /*
1208 * from the shared data ref, we only have the leaf but we need
1209 * the key. thus, we must look into all items and see that we
1210 * find one (some) with a reference to our extent item.
1211 */
1212 nritems = btrfs_header_nritems(eb);
1213 for (slot = 0; slot < nritems; ++slot) {
1214 btrfs_item_key_to_cpu(eb, &key, slot);
1215 if (key.type != BTRFS_EXTENT_DATA_KEY)
1216 continue;
1217 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4692cf58
JS
1218 extent_type = btrfs_file_extent_type(eb, fi);
1219 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1220 continue;
1221 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
a542ad1b 1222 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
4692cf58
JS
1223 if (disk_byte != orig_extent_item_objectid)
1224 continue;
a542ad1b 1225
4692cf58
JS
1226 data_offset = btrfs_file_extent_offset(eb, fi);
1227 data_len = btrfs_file_extent_num_bytes(eb, fi);
1228
1229 if (extent_item_pos < data_offset ||
1230 extent_item_pos >= data_offset + data_len)
1231 continue;
1232
1233 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1234 "root %llu\n", orig_extent_item_objectid,
1235 key.objectid, key.offset, root);
1236 ret = iterate(key.objectid,
1237 key.offset + (extent_item_pos - data_offset),
1238 root, ctx);
1239 if (ret) {
1240 pr_debug("stopping iteration because ret=%d\n", ret);
1241 break;
1242 }
a542ad1b
JS
1243 }
1244
1245 free_extent_buffer(eb);
4692cf58 1246
a542ad1b
JS
1247 return ret;
1248}
1249
1250/*
1251 * calls iterate() for every inode that references the extent identified by
4692cf58 1252 * the given parameters.
a542ad1b
JS
1253 * when the iterator function returns a non-zero value, iteration stops.
1254 */
1255int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1256 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1257 int search_commit_root,
a542ad1b
JS
1258 iterate_extent_inodes_t *iterate, void *ctx)
1259{
a542ad1b 1260 int ret;
a542ad1b
JS
1261 struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1262 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
4692cf58 1263 struct btrfs_trans_handle *trans;
7a3ae2f8
JS
1264 struct ulist *refs = NULL;
1265 struct ulist *roots = NULL;
4692cf58
JS
1266 struct ulist_node *ref_node = NULL;
1267 struct ulist_node *root_node = NULL;
1268 struct seq_list seq_elem;
cd1b413c
JS
1269 struct ulist_iterator ref_uiter;
1270 struct ulist_iterator root_uiter;
7a3ae2f8 1271 struct btrfs_delayed_ref_root *delayed_refs = NULL;
a542ad1b 1272
4692cf58
JS
1273 pr_debug("resolving all inodes for extent %llu\n",
1274 extent_item_objectid);
a542ad1b 1275
7a3ae2f8
JS
1276 if (search_commit_root) {
1277 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1278 } else {
1279 trans = btrfs_join_transaction(fs_info->extent_root);
1280 if (IS_ERR(trans))
1281 return PTR_ERR(trans);
1282
1283 delayed_refs = &trans->transaction->delayed_refs;
1284 spin_lock(&delayed_refs->lock);
1285 btrfs_get_delayed_seq(delayed_refs, &seq_elem);
1286 spin_unlock(&delayed_refs->lock);
1287 }
a542ad1b 1288
4692cf58
JS
1289 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1290 extent_item_pos, seq_elem.seq,
1291 &refs);
a542ad1b 1292
4692cf58
JS
1293 if (ret)
1294 goto out;
a542ad1b 1295
cd1b413c
JS
1296 ULIST_ITER_INIT(&ref_uiter);
1297 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
4692cf58
JS
1298 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1,
1299 seq_elem.seq, &roots);
1300 if (ret)
1301 break;
cd1b413c
JS
1302 ULIST_ITER_INIT(&root_uiter);
1303 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
4692cf58
JS
1304 pr_debug("root %llu references leaf %llu\n",
1305 root_node->val, ref_node->val);
7a3ae2f8 1306 ret = iterate_leaf_refs(fs_info, ref_node->val,
4692cf58
JS
1307 extent_item_objectid,
1308 extent_item_pos, root_node->val,
1309 iterate, ctx);
1310 }
a542ad1b
JS
1311 }
1312
4692cf58
JS
1313 ulist_free(refs);
1314 ulist_free(roots);
1315out:
7a3ae2f8
JS
1316 if (!search_commit_root) {
1317 btrfs_put_delayed_seq(delayed_refs, &seq_elem);
1318 btrfs_end_transaction(trans, fs_info->extent_root);
1319 }
1320
a542ad1b
JS
1321 return ret;
1322}
1323
1324int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1325 struct btrfs_path *path,
1326 iterate_extent_inodes_t *iterate, void *ctx)
1327{
1328 int ret;
4692cf58 1329 u64 extent_item_pos;
a542ad1b 1330 struct btrfs_key found_key;
7a3ae2f8 1331 int search_commit_root = path->search_commit_root;
a542ad1b
JS
1332
1333 ret = extent_from_logical(fs_info, logical, path,
1334 &found_key);
4692cf58 1335 btrfs_release_path(path);
a542ad1b
JS
1336 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1337 ret = -EINVAL;
1338 if (ret < 0)
1339 return ret;
1340
4692cf58 1341 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1342 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1343 extent_item_pos, search_commit_root,
1344 iterate, ctx);
a542ad1b
JS
1345
1346 return ret;
1347}
1348
1349static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1350 struct btrfs_path *path,
1351 iterate_irefs_t *iterate, void *ctx)
1352{
aefc1eb1 1353 int ret = 0;
a542ad1b
JS
1354 int slot;
1355 u32 cur;
1356 u32 len;
1357 u32 name_len;
1358 u64 parent = 0;
1359 int found = 0;
1360 struct extent_buffer *eb;
1361 struct btrfs_item *item;
1362 struct btrfs_inode_ref *iref;
1363 struct btrfs_key found_key;
1364
aefc1eb1 1365 while (!ret) {
b916a59a 1366 path->leave_spinning = 1;
a542ad1b
JS
1367 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1368 &found_key);
1369 if (ret < 0)
1370 break;
1371 if (ret) {
1372 ret = found ? 0 : -ENOENT;
1373 break;
1374 }
1375 ++found;
1376
1377 parent = found_key.offset;
1378 slot = path->slots[0];
1379 eb = path->nodes[0];
1380 /* make sure we can use eb after releasing the path */
1381 atomic_inc(&eb->refs);
b916a59a
JS
1382 btrfs_tree_read_lock(eb);
1383 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1384 btrfs_release_path(path);
1385
1386 item = btrfs_item_nr(eb, slot);
1387 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1388
1389 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1390 name_len = btrfs_inode_ref_name_len(eb, iref);
1391 /* path must be released before calling iterate()! */
4692cf58
JS
1392 pr_debug("following ref at offset %u for inode %llu in "
1393 "tree %llu\n", cur,
1394 (unsigned long long)found_key.objectid,
1395 (unsigned long long)fs_root->objectid);
a542ad1b 1396 ret = iterate(parent, iref, eb, ctx);
aefc1eb1 1397 if (ret)
a542ad1b 1398 break;
a542ad1b
JS
1399 len = sizeof(*iref) + name_len;
1400 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1401 }
b916a59a 1402 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1403 free_extent_buffer(eb);
1404 }
1405
1406 btrfs_release_path(path);
1407
1408 return ret;
1409}
1410
1411/*
1412 * returns 0 if the path could be dumped (probably truncated)
1413 * returns <0 in case of an error
1414 */
1415static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1416 struct extent_buffer *eb, void *ctx)
1417{
1418 struct inode_fs_paths *ipath = ctx;
1419 char *fspath;
1420 char *fspath_min;
1421 int i = ipath->fspath->elem_cnt;
1422 const int s_ptr = sizeof(char *);
1423 u32 bytes_left;
1424
1425 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1426 ipath->fspath->bytes_left - s_ptr : 0;
1427
740c3d22 1428 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
a542ad1b
JS
1429 fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1430 inum, fspath_min, bytes_left);
1431 if (IS_ERR(fspath))
1432 return PTR_ERR(fspath);
1433
1434 if (fspath > fspath_min) {
4692cf58 1435 pr_debug("path resolved: %s\n", fspath);
745c4d8e 1436 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1437 ++ipath->fspath->elem_cnt;
1438 ipath->fspath->bytes_left = fspath - fspath_min;
1439 } else {
4692cf58
JS
1440 pr_debug("missed path, not enough space. missing bytes: %lu, "
1441 "constructed so far: %s\n",
1442 (unsigned long)(fspath_min - fspath), fspath_min);
a542ad1b
JS
1443 ++ipath->fspath->elem_missed;
1444 ipath->fspath->bytes_missing += fspath_min - fspath;
1445 ipath->fspath->bytes_left = 0;
1446 }
1447
1448 return 0;
1449}
1450
1451/*
1452 * this dumps all file system paths to the inode into the ipath struct, provided
1453 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1454 * from ipath->fspath->val[i].
a542ad1b 1455 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1456 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1457 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1458 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1459 * have been needed to return all paths.
1460 */
1461int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1462{
1463 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1464 inode_to_path, ipath);
1465}
1466
a542ad1b
JS
1467struct btrfs_data_container *init_data_container(u32 total_bytes)
1468{
1469 struct btrfs_data_container *data;
1470 size_t alloc_bytes;
1471
1472 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1473 data = kmalloc(alloc_bytes, GFP_NOFS);
1474 if (!data)
1475 return ERR_PTR(-ENOMEM);
1476
1477 if (total_bytes >= sizeof(*data)) {
1478 data->bytes_left = total_bytes - sizeof(*data);
1479 data->bytes_missing = 0;
1480 } else {
1481 data->bytes_missing = sizeof(*data) - total_bytes;
1482 data->bytes_left = 0;
1483 }
1484
1485 data->elem_cnt = 0;
1486 data->elem_missed = 0;
1487
1488 return data;
1489}
1490
1491/*
1492 * allocates space to return multiple file system paths for an inode.
1493 * total_bytes to allocate are passed, note that space usable for actual path
1494 * information will be total_bytes - sizeof(struct inode_fs_paths).
1495 * the returned pointer must be freed with free_ipath() in the end.
1496 */
1497struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1498 struct btrfs_path *path)
1499{
1500 struct inode_fs_paths *ifp;
1501 struct btrfs_data_container *fspath;
1502
1503 fspath = init_data_container(total_bytes);
1504 if (IS_ERR(fspath))
1505 return (void *)fspath;
1506
1507 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1508 if (!ifp) {
1509 kfree(fspath);
1510 return ERR_PTR(-ENOMEM);
1511 }
1512
1513 ifp->btrfs_path = path;
1514 ifp->fspath = fspath;
1515 ifp->fs_root = fs_root;
1516
1517 return ifp;
1518}
1519
1520void free_ipath(struct inode_fs_paths *ipath)
1521{
4735fb28
JJ
1522 if (!ipath)
1523 return;
5eb56d25 1524 kfree(ipath->fspath);
a542ad1b
JS
1525 kfree(ipath);
1526}
This page took 0.102105 seconds and 5 git commands to generate.