Btrfs: skip locking when searching commit root
[deliverable/linux.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 struct extent_inode_elem *next;
32};
33
34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 struct btrfs_file_extent_item *fi,
36 u64 extent_item_pos,
37 struct extent_inode_elem **eie)
38{
8ca15e05 39 u64 offset = 0;
976b1908
JS
40 struct extent_inode_elem *e;
41
8ca15e05
JB
42 if (!btrfs_file_extent_compression(eb, fi) &&
43 !btrfs_file_extent_encryption(eb, fi) &&
44 !btrfs_file_extent_other_encoding(eb, fi)) {
45 u64 data_offset;
46 u64 data_len;
976b1908 47
8ca15e05
JB
48 data_offset = btrfs_file_extent_offset(eb, fi);
49 data_len = btrfs_file_extent_num_bytes(eb, fi);
50
51 if (extent_item_pos < data_offset ||
52 extent_item_pos >= data_offset + data_len)
53 return 1;
54 offset = extent_item_pos - data_offset;
55 }
976b1908
JS
56
57 e = kmalloc(sizeof(*e), GFP_NOFS);
58 if (!e)
59 return -ENOMEM;
60
61 e->next = *eie;
62 e->inum = key->objectid;
8ca15e05 63 e->offset = key->offset + offset;
976b1908
JS
64 *eie = e;
65
66 return 0;
67}
68
f05c4746
WS
69static void free_inode_elem_list(struct extent_inode_elem *eie)
70{
71 struct extent_inode_elem *eie_next;
72
73 for (; eie; eie = eie_next) {
74 eie_next = eie->next;
75 kfree(eie);
76 }
77}
78
976b1908
JS
79static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
80 u64 extent_item_pos,
81 struct extent_inode_elem **eie)
82{
83 u64 disk_byte;
84 struct btrfs_key key;
85 struct btrfs_file_extent_item *fi;
86 int slot;
87 int nritems;
88 int extent_type;
89 int ret;
90
91 /*
92 * from the shared data ref, we only have the leaf but we need
93 * the key. thus, we must look into all items and see that we
94 * find one (some) with a reference to our extent item.
95 */
96 nritems = btrfs_header_nritems(eb);
97 for (slot = 0; slot < nritems; ++slot) {
98 btrfs_item_key_to_cpu(eb, &key, slot);
99 if (key.type != BTRFS_EXTENT_DATA_KEY)
100 continue;
101 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
102 extent_type = btrfs_file_extent_type(eb, fi);
103 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
104 continue;
105 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
106 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
107 if (disk_byte != wanted_disk_byte)
108 continue;
109
110 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
111 if (ret < 0)
112 return ret;
113 }
114
115 return 0;
116}
117
8da6d581
JS
118/*
119 * this structure records all encountered refs on the way up to the root
120 */
121struct __prelim_ref {
122 struct list_head list;
123 u64 root_id;
d5c88b73 124 struct btrfs_key key_for_search;
8da6d581
JS
125 int level;
126 int count;
3301958b 127 struct extent_inode_elem *inode_list;
8da6d581
JS
128 u64 parent;
129 u64 wanted_disk_byte;
130};
131
b9e9a6cb
WS
132static struct kmem_cache *btrfs_prelim_ref_cache;
133
134int __init btrfs_prelim_ref_init(void)
135{
136 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
137 sizeof(struct __prelim_ref),
138 0,
139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
140 NULL);
141 if (!btrfs_prelim_ref_cache)
142 return -ENOMEM;
143 return 0;
144}
145
146void btrfs_prelim_ref_exit(void)
147{
148 if (btrfs_prelim_ref_cache)
149 kmem_cache_destroy(btrfs_prelim_ref_cache);
150}
151
d5c88b73
JS
152/*
153 * the rules for all callers of this function are:
154 * - obtaining the parent is the goal
155 * - if you add a key, you must know that it is a correct key
156 * - if you cannot add the parent or a correct key, then we will look into the
157 * block later to set a correct key
158 *
159 * delayed refs
160 * ============
161 * backref type | shared | indirect | shared | indirect
162 * information | tree | tree | data | data
163 * --------------------+--------+----------+--------+----------
164 * parent logical | y | - | - | -
165 * key to resolve | - | y | y | y
166 * tree block logical | - | - | - | -
167 * root for resolving | y | y | y | y
168 *
169 * - column 1: we've the parent -> done
170 * - column 2, 3, 4: we use the key to find the parent
171 *
172 * on disk refs (inline or keyed)
173 * ==============================
174 * backref type | shared | indirect | shared | indirect
175 * information | tree | tree | data | data
176 * --------------------+--------+----------+--------+----------
177 * parent logical | y | - | y | -
178 * key to resolve | - | - | - | y
179 * tree block logical | y | y | y | y
180 * root for resolving | - | y | y | y
181 *
182 * - column 1, 3: we've the parent -> done
183 * - column 2: we take the first key from the block to find the parent
184 * (see __add_missing_keys)
185 * - column 4: we use the key to find the parent
186 *
187 * additional information that's available but not required to find the parent
188 * block might help in merging entries to gain some speed.
189 */
190
8da6d581 191static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73 192 struct btrfs_key *key, int level,
742916b8
WS
193 u64 parent, u64 wanted_disk_byte, int count,
194 gfp_t gfp_mask)
8da6d581
JS
195{
196 struct __prelim_ref *ref;
197
48ec4736
LB
198 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
199 return 0;
200
b9e9a6cb 201 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
8da6d581
JS
202 if (!ref)
203 return -ENOMEM;
204
205 ref->root_id = root_id;
206 if (key)
d5c88b73 207 ref->key_for_search = *key;
8da6d581 208 else
d5c88b73 209 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 210
3301958b 211 ref->inode_list = NULL;
8da6d581
JS
212 ref->level = level;
213 ref->count = count;
214 ref->parent = parent;
215 ref->wanted_disk_byte = wanted_disk_byte;
216 list_add_tail(&ref->list, head);
217
218 return 0;
219}
220
221static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
7ef81ac8
JB
222 struct ulist *parents, struct __prelim_ref *ref,
223 int level, u64 time_seq, const u64 *extent_item_pos)
8da6d581 224{
69bca40d
AB
225 int ret = 0;
226 int slot;
227 struct extent_buffer *eb;
228 struct btrfs_key key;
7ef81ac8 229 struct btrfs_key *key_for_search = &ref->key_for_search;
8da6d581 230 struct btrfs_file_extent_item *fi;
ed8c4913 231 struct extent_inode_elem *eie = NULL, *old = NULL;
8da6d581 232 u64 disk_byte;
7ef81ac8
JB
233 u64 wanted_disk_byte = ref->wanted_disk_byte;
234 u64 count = 0;
8da6d581 235
69bca40d
AB
236 if (level != 0) {
237 eb = path->nodes[level];
238 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
239 if (ret < 0)
240 return ret;
8da6d581 241 return 0;
69bca40d 242 }
8da6d581
JS
243
244 /*
69bca40d
AB
245 * We normally enter this function with the path already pointing to
246 * the first item to check. But sometimes, we may enter it with
247 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 248 */
69bca40d 249 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
3d7806ec 250 ret = btrfs_next_old_leaf(root, path, time_seq);
8da6d581 251
7ef81ac8 252 while (!ret && count < ref->count) {
8da6d581 253 eb = path->nodes[0];
69bca40d
AB
254 slot = path->slots[0];
255
256 btrfs_item_key_to_cpu(eb, &key, slot);
257
258 if (key.objectid != key_for_search->objectid ||
259 key.type != BTRFS_EXTENT_DATA_KEY)
260 break;
261
262 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
263 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
264
265 if (disk_byte == wanted_disk_byte) {
266 eie = NULL;
ed8c4913 267 old = NULL;
7ef81ac8 268 count++;
69bca40d
AB
269 if (extent_item_pos) {
270 ret = check_extent_in_eb(&key, eb, fi,
271 *extent_item_pos,
272 &eie);
273 if (ret < 0)
274 break;
275 }
ed8c4913
JB
276 if (ret > 0)
277 goto next;
278 ret = ulist_add_merge(parents, eb->start,
279 (uintptr_t)eie,
280 (u64 *)&old, GFP_NOFS);
281 if (ret < 0)
282 break;
283 if (!ret && extent_item_pos) {
284 while (old->next)
285 old = old->next;
286 old->next = eie;
69bca40d 287 }
f05c4746 288 eie = NULL;
8da6d581 289 }
ed8c4913 290next:
69bca40d 291 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
292 }
293
69bca40d
AB
294 if (ret > 0)
295 ret = 0;
f05c4746
WS
296 else if (ret < 0)
297 free_inode_elem_list(eie);
69bca40d 298 return ret;
8da6d581
JS
299}
300
301/*
302 * resolve an indirect backref in the form (root_id, key, level)
303 * to a logical address
304 */
305static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
da61d31a
JB
306 struct btrfs_path *path, u64 time_seq,
307 struct __prelim_ref *ref,
308 struct ulist *parents,
309 const u64 *extent_item_pos)
8da6d581 310{
8da6d581
JS
311 struct btrfs_root *root;
312 struct btrfs_key root_key;
8da6d581
JS
313 struct extent_buffer *eb;
314 int ret = 0;
315 int root_level;
316 int level = ref->level;
538f72cd 317 int index;
8da6d581 318
8da6d581
JS
319 root_key.objectid = ref->root_id;
320 root_key.type = BTRFS_ROOT_ITEM_KEY;
321 root_key.offset = (u64)-1;
538f72cd
WS
322
323 index = srcu_read_lock(&fs_info->subvol_srcu);
324
8da6d581
JS
325 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
326 if (IS_ERR(root)) {
538f72cd 327 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581
JS
328 ret = PTR_ERR(root);
329 goto out;
330 }
331
5b6602e7 332 root_level = btrfs_old_root_level(root, time_seq);
8da6d581 333
538f72cd
WS
334 if (root_level + 1 == level) {
335 srcu_read_unlock(&fs_info->subvol_srcu, index);
8da6d581 336 goto out;
538f72cd 337 }
8da6d581
JS
338
339 path->lowest_level = level;
8445f61c 340 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
538f72cd
WS
341
342 /* root node has been locked, we can release @subvol_srcu safely here */
343 srcu_read_unlock(&fs_info->subvol_srcu, index);
344
8da6d581
JS
345 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
346 "%d for key (%llu %u %llu)\n",
c1c9ff7c
GU
347 ref->root_id, level, ref->count, ret,
348 ref->key_for_search.objectid, ref->key_for_search.type,
349 ref->key_for_search.offset);
8da6d581
JS
350 if (ret < 0)
351 goto out;
352
353 eb = path->nodes[level];
9345457f 354 while (!eb) {
fae7f21c 355 if (WARN_ON(!level)) {
9345457f
JS
356 ret = 1;
357 goto out;
358 }
359 level--;
360 eb = path->nodes[level];
8da6d581
JS
361 }
362
7ef81ac8
JB
363 ret = add_all_parents(root, path, parents, ref, level, time_seq,
364 extent_item_pos);
8da6d581 365out:
da61d31a
JB
366 path->lowest_level = 0;
367 btrfs_release_path(path);
8da6d581
JS
368 return ret;
369}
370
371/*
372 * resolve all indirect backrefs from the list
373 */
374static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
da61d31a 375 struct btrfs_path *path, u64 time_seq,
976b1908
JS
376 struct list_head *head,
377 const u64 *extent_item_pos)
8da6d581
JS
378{
379 int err;
380 int ret = 0;
381 struct __prelim_ref *ref;
382 struct __prelim_ref *ref_safe;
383 struct __prelim_ref *new_ref;
384 struct ulist *parents;
385 struct ulist_node *node;
cd1b413c 386 struct ulist_iterator uiter;
8da6d581
JS
387
388 parents = ulist_alloc(GFP_NOFS);
389 if (!parents)
390 return -ENOMEM;
391
392 /*
393 * _safe allows us to insert directly after the current item without
394 * iterating over the newly inserted items.
395 * we're also allowed to re-assign ref during iteration.
396 */
397 list_for_each_entry_safe(ref, ref_safe, head, list) {
398 if (ref->parent) /* already direct */
399 continue;
400 if (ref->count == 0)
401 continue;
da61d31a
JB
402 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
403 parents, extent_item_pos);
95def2ed
WS
404 /*
405 * we can only tolerate ENOENT,otherwise,we should catch error
406 * and return directly.
407 */
408 if (err == -ENOENT) {
8da6d581 409 continue;
95def2ed
WS
410 } else if (err) {
411 ret = err;
412 goto out;
413 }
8da6d581
JS
414
415 /* we put the first parent into the ref at hand */
cd1b413c
JS
416 ULIST_ITER_INIT(&uiter);
417 node = ulist_next(parents, &uiter);
8da6d581 418 ref->parent = node ? node->val : 0;
995e01b7 419 ref->inode_list = node ?
35a3621b 420 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
8da6d581
JS
421
422 /* additional parents require new refs being added here */
cd1b413c 423 while ((node = ulist_next(parents, &uiter))) {
b9e9a6cb
WS
424 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
425 GFP_NOFS);
8da6d581
JS
426 if (!new_ref) {
427 ret = -ENOMEM;
e36902d4 428 goto out;
8da6d581
JS
429 }
430 memcpy(new_ref, ref, sizeof(*ref));
431 new_ref->parent = node->val;
995e01b7
JS
432 new_ref->inode_list = (struct extent_inode_elem *)
433 (uintptr_t)node->aux;
8da6d581
JS
434 list_add(&new_ref->list, &ref->list);
435 }
436 ulist_reinit(parents);
437 }
e36902d4 438out:
8da6d581
JS
439 ulist_free(parents);
440 return ret;
441}
442
d5c88b73
JS
443static inline int ref_for_same_block(struct __prelim_ref *ref1,
444 struct __prelim_ref *ref2)
445{
446 if (ref1->level != ref2->level)
447 return 0;
448 if (ref1->root_id != ref2->root_id)
449 return 0;
450 if (ref1->key_for_search.type != ref2->key_for_search.type)
451 return 0;
452 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
453 return 0;
454 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
455 return 0;
456 if (ref1->parent != ref2->parent)
457 return 0;
458
459 return 1;
460}
461
462/*
463 * read tree blocks and add keys where required.
464 */
465static int __add_missing_keys(struct btrfs_fs_info *fs_info,
466 struct list_head *head)
467{
468 struct list_head *pos;
469 struct extent_buffer *eb;
470
471 list_for_each(pos, head) {
472 struct __prelim_ref *ref;
473 ref = list_entry(pos, struct __prelim_ref, list);
474
475 if (ref->parent)
476 continue;
477 if (ref->key_for_search.type)
478 continue;
479 BUG_ON(!ref->wanted_disk_byte);
480 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
481 fs_info->tree_root->leafsize, 0);
416bc658
JB
482 if (!eb || !extent_buffer_uptodate(eb)) {
483 free_extent_buffer(eb);
484 return -EIO;
485 }
d5c88b73
JS
486 btrfs_tree_read_lock(eb);
487 if (btrfs_header_level(eb) == 0)
488 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
489 else
490 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
491 btrfs_tree_read_unlock(eb);
492 free_extent_buffer(eb);
493 }
494 return 0;
495}
496
8da6d581
JS
497/*
498 * merge two lists of backrefs and adjust counts accordingly
499 *
500 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
501 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
502 * additionally, we could even add a key range for the blocks we
503 * looked into to merge even more (-> replace unresolved refs by those
504 * having a parent).
8da6d581
JS
505 * mode = 2: merge identical parents
506 */
692206b1 507static void __merge_refs(struct list_head *head, int mode)
8da6d581
JS
508{
509 struct list_head *pos1;
510
511 list_for_each(pos1, head) {
512 struct list_head *n2;
513 struct list_head *pos2;
514 struct __prelim_ref *ref1;
515
516 ref1 = list_entry(pos1, struct __prelim_ref, list);
517
8da6d581
JS
518 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
519 pos2 = n2, n2 = pos2->next) {
520 struct __prelim_ref *ref2;
d5c88b73 521 struct __prelim_ref *xchg;
3ef5969c 522 struct extent_inode_elem *eie;
8da6d581
JS
523
524 ref2 = list_entry(pos2, struct __prelim_ref, list);
525
526 if (mode == 1) {
d5c88b73 527 if (!ref_for_same_block(ref1, ref2))
8da6d581 528 continue;
d5c88b73
JS
529 if (!ref1->parent && ref2->parent) {
530 xchg = ref1;
531 ref1 = ref2;
532 ref2 = xchg;
533 }
8da6d581
JS
534 } else {
535 if (ref1->parent != ref2->parent)
536 continue;
8da6d581 537 }
3ef5969c
AB
538
539 eie = ref1->inode_list;
540 while (eie && eie->next)
541 eie = eie->next;
542 if (eie)
543 eie->next = ref2->inode_list;
544 else
545 ref1->inode_list = ref2->inode_list;
546 ref1->count += ref2->count;
547
8da6d581 548 list_del(&ref2->list);
b9e9a6cb 549 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
8da6d581
JS
550 }
551
552 }
8da6d581
JS
553}
554
555/*
556 * add all currently queued delayed refs from this head whose seq nr is
557 * smaller or equal that seq to the list
558 */
559static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
8da6d581
JS
560 struct list_head *prefs)
561{
562 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
563 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
564 struct btrfs_key key;
565 struct btrfs_key op_key = {0};
8da6d581 566 int sgn;
b1375d64 567 int ret = 0;
8da6d581
JS
568
569 if (extent_op && extent_op->update_key)
d5c88b73 570 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581 571
d7df2c79
JB
572 spin_lock(&head->lock);
573 n = rb_first(&head->ref_root);
574 while (n) {
8da6d581
JS
575 struct btrfs_delayed_ref_node *node;
576 node = rb_entry(n, struct btrfs_delayed_ref_node,
577 rb_node);
d7df2c79 578 n = rb_next(n);
8da6d581
JS
579 if (node->seq > seq)
580 continue;
581
582 switch (node->action) {
583 case BTRFS_ADD_DELAYED_EXTENT:
584 case BTRFS_UPDATE_DELAYED_HEAD:
585 WARN_ON(1);
586 continue;
587 case BTRFS_ADD_DELAYED_REF:
588 sgn = 1;
589 break;
590 case BTRFS_DROP_DELAYED_REF:
591 sgn = -1;
592 break;
593 default:
594 BUG_ON(1);
595 }
596 switch (node->type) {
597 case BTRFS_TREE_BLOCK_REF_KEY: {
598 struct btrfs_delayed_tree_ref *ref;
599
600 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 601 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581 602 ref->level + 1, 0, node->bytenr,
742916b8 603 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
604 break;
605 }
606 case BTRFS_SHARED_BLOCK_REF_KEY: {
607 struct btrfs_delayed_tree_ref *ref;
608
609 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 610 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
611 ref->level + 1, ref->parent,
612 node->bytenr,
742916b8 613 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
614 break;
615 }
616 case BTRFS_EXTENT_DATA_REF_KEY: {
617 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
618 ref = btrfs_delayed_node_to_data_ref(node);
619
620 key.objectid = ref->objectid;
621 key.type = BTRFS_EXTENT_DATA_KEY;
622 key.offset = ref->offset;
623 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
624 node->bytenr,
742916b8 625 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
626 break;
627 }
628 case BTRFS_SHARED_DATA_REF_KEY: {
629 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
630
631 ref = btrfs_delayed_node_to_data_ref(node);
632
633 key.objectid = ref->objectid;
634 key.type = BTRFS_EXTENT_DATA_KEY;
635 key.offset = ref->offset;
636 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
637 ref->parent, node->bytenr,
742916b8 638 node->ref_mod * sgn, GFP_ATOMIC);
8da6d581
JS
639 break;
640 }
641 default:
642 WARN_ON(1);
643 }
1149ab6b 644 if (ret)
d7df2c79 645 break;
8da6d581 646 }
d7df2c79
JB
647 spin_unlock(&head->lock);
648 return ret;
8da6d581
JS
649}
650
651/*
652 * add all inline backrefs for bytenr to the list
653 */
654static int __add_inline_refs(struct btrfs_fs_info *fs_info,
655 struct btrfs_path *path, u64 bytenr,
d5c88b73 656 int *info_level, struct list_head *prefs)
8da6d581 657{
b1375d64 658 int ret = 0;
8da6d581
JS
659 int slot;
660 struct extent_buffer *leaf;
661 struct btrfs_key key;
261c84b6 662 struct btrfs_key found_key;
8da6d581
JS
663 unsigned long ptr;
664 unsigned long end;
665 struct btrfs_extent_item *ei;
666 u64 flags;
667 u64 item_size;
668
669 /*
670 * enumerate all inline refs
671 */
672 leaf = path->nodes[0];
dadcaf78 673 slot = path->slots[0];
8da6d581
JS
674
675 item_size = btrfs_item_size_nr(leaf, slot);
676 BUG_ON(item_size < sizeof(*ei));
677
678 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
679 flags = btrfs_extent_flags(leaf, ei);
261c84b6 680 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
681
682 ptr = (unsigned long)(ei + 1);
683 end = (unsigned long)ei + item_size;
684
261c84b6
JB
685 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
686 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 687 struct btrfs_tree_block_info *info;
8da6d581
JS
688
689 info = (struct btrfs_tree_block_info *)ptr;
690 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
691 ptr += sizeof(struct btrfs_tree_block_info);
692 BUG_ON(ptr > end);
261c84b6
JB
693 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
694 *info_level = found_key.offset;
8da6d581
JS
695 } else {
696 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
697 }
698
699 while (ptr < end) {
700 struct btrfs_extent_inline_ref *iref;
701 u64 offset;
702 int type;
703
704 iref = (struct btrfs_extent_inline_ref *)ptr;
705 type = btrfs_extent_inline_ref_type(leaf, iref);
706 offset = btrfs_extent_inline_ref_offset(leaf, iref);
707
708 switch (type) {
709 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 710 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 711 *info_level + 1, offset,
742916b8 712 bytenr, 1, GFP_NOFS);
8da6d581
JS
713 break;
714 case BTRFS_SHARED_DATA_REF_KEY: {
715 struct btrfs_shared_data_ref *sdref;
716 int count;
717
718 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
719 count = btrfs_shared_data_ref_count(leaf, sdref);
720 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
742916b8 721 bytenr, count, GFP_NOFS);
8da6d581
JS
722 break;
723 }
724 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
725 ret = __add_prelim_ref(prefs, offset, NULL,
726 *info_level + 1, 0,
742916b8 727 bytenr, 1, GFP_NOFS);
8da6d581
JS
728 break;
729 case BTRFS_EXTENT_DATA_REF_KEY: {
730 struct btrfs_extent_data_ref *dref;
731 int count;
732 u64 root;
733
734 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
735 count = btrfs_extent_data_ref_count(leaf, dref);
736 key.objectid = btrfs_extent_data_ref_objectid(leaf,
737 dref);
738 key.type = BTRFS_EXTENT_DATA_KEY;
739 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
740 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73 741 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 742 bytenr, count, GFP_NOFS);
8da6d581
JS
743 break;
744 }
745 default:
746 WARN_ON(1);
747 }
1149ab6b
WS
748 if (ret)
749 return ret;
8da6d581
JS
750 ptr += btrfs_extent_inline_ref_size(type);
751 }
752
753 return 0;
754}
755
756/*
757 * add all non-inline backrefs for bytenr to the list
758 */
759static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
760 struct btrfs_path *path, u64 bytenr,
d5c88b73 761 int info_level, struct list_head *prefs)
8da6d581
JS
762{
763 struct btrfs_root *extent_root = fs_info->extent_root;
764 int ret;
765 int slot;
766 struct extent_buffer *leaf;
767 struct btrfs_key key;
768
769 while (1) {
770 ret = btrfs_next_item(extent_root, path);
771 if (ret < 0)
772 break;
773 if (ret) {
774 ret = 0;
775 break;
776 }
777
778 slot = path->slots[0];
779 leaf = path->nodes[0];
780 btrfs_item_key_to_cpu(leaf, &key, slot);
781
782 if (key.objectid != bytenr)
783 break;
784 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
785 continue;
786 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
787 break;
788
789 switch (key.type) {
790 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 791 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581 792 info_level + 1, key.offset,
742916b8 793 bytenr, 1, GFP_NOFS);
8da6d581
JS
794 break;
795 case BTRFS_SHARED_DATA_REF_KEY: {
796 struct btrfs_shared_data_ref *sdref;
797 int count;
798
799 sdref = btrfs_item_ptr(leaf, slot,
800 struct btrfs_shared_data_ref);
801 count = btrfs_shared_data_ref_count(leaf, sdref);
802 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
742916b8 803 bytenr, count, GFP_NOFS);
8da6d581
JS
804 break;
805 }
806 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
807 ret = __add_prelim_ref(prefs, key.offset, NULL,
808 info_level + 1, 0,
742916b8 809 bytenr, 1, GFP_NOFS);
8da6d581
JS
810 break;
811 case BTRFS_EXTENT_DATA_REF_KEY: {
812 struct btrfs_extent_data_ref *dref;
813 int count;
814 u64 root;
815
816 dref = btrfs_item_ptr(leaf, slot,
817 struct btrfs_extent_data_ref);
818 count = btrfs_extent_data_ref_count(leaf, dref);
819 key.objectid = btrfs_extent_data_ref_objectid(leaf,
820 dref);
821 key.type = BTRFS_EXTENT_DATA_KEY;
822 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
823 root = btrfs_extent_data_ref_root(leaf, dref);
824 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
742916b8 825 bytenr, count, GFP_NOFS);
8da6d581
JS
826 break;
827 }
828 default:
829 WARN_ON(1);
830 }
1149ab6b
WS
831 if (ret)
832 return ret;
833
8da6d581
JS
834 }
835
836 return ret;
837}
838
839/*
840 * this adds all existing backrefs (inline backrefs, backrefs and delayed
841 * refs) for the given bytenr to the refs list, merges duplicates and resolves
842 * indirect refs to their parent bytenr.
843 * When roots are found, they're added to the roots list
844 *
845 * FIXME some caching might speed things up
846 */
847static int find_parent_nodes(struct btrfs_trans_handle *trans,
848 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c
JS
849 u64 time_seq, struct ulist *refs,
850 struct ulist *roots, const u64 *extent_item_pos)
8da6d581
JS
851{
852 struct btrfs_key key;
853 struct btrfs_path *path;
8da6d581 854 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 855 struct btrfs_delayed_ref_head *head;
8da6d581
JS
856 int info_level = 0;
857 int ret;
858 struct list_head prefs_delayed;
859 struct list_head prefs;
860 struct __prelim_ref *ref;
f05c4746 861 struct extent_inode_elem *eie = NULL;
8da6d581
JS
862
863 INIT_LIST_HEAD(&prefs);
864 INIT_LIST_HEAD(&prefs_delayed);
865
866 key.objectid = bytenr;
8da6d581 867 key.offset = (u64)-1;
261c84b6
JB
868 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
869 key.type = BTRFS_METADATA_ITEM_KEY;
870 else
871 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
872
873 path = btrfs_alloc_path();
874 if (!path)
875 return -ENOMEM;
e84752d4 876 if (!trans) {
da61d31a 877 path->search_commit_root = 1;
e84752d4
WS
878 path->skip_locking = 1;
879 }
8da6d581
JS
880
881 /*
882 * grab both a lock on the path and a lock on the delayed ref head.
883 * We need both to get a consistent picture of how the refs look
884 * at a specified point in time
885 */
886again:
d3b01064
LZ
887 head = NULL;
888
8da6d581
JS
889 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
890 if (ret < 0)
891 goto out;
892 BUG_ON(ret == 0);
893
da61d31a 894 if (trans) {
7a3ae2f8
JS
895 /*
896 * look if there are updates for this ref queued and lock the
897 * head
898 */
899 delayed_refs = &trans->transaction->delayed_refs;
900 spin_lock(&delayed_refs->lock);
901 head = btrfs_find_delayed_ref_head(trans, bytenr);
902 if (head) {
903 if (!mutex_trylock(&head->mutex)) {
904 atomic_inc(&head->node.refs);
905 spin_unlock(&delayed_refs->lock);
906
907 btrfs_release_path(path);
908
909 /*
910 * Mutex was contended, block until it's
911 * released and try again
912 */
913 mutex_lock(&head->mutex);
914 mutex_unlock(&head->mutex);
915 btrfs_put_delayed_ref(&head->node);
916 goto again;
917 }
d7df2c79 918 spin_unlock(&delayed_refs->lock);
097b8a7c 919 ret = __add_delayed_refs(head, time_seq,
8445f61c 920 &prefs_delayed);
155725c9 921 mutex_unlock(&head->mutex);
d7df2c79 922 if (ret)
7a3ae2f8 923 goto out;
d7df2c79
JB
924 } else {
925 spin_unlock(&delayed_refs->lock);
d3b01064 926 }
8da6d581 927 }
8da6d581
JS
928
929 if (path->slots[0]) {
930 struct extent_buffer *leaf;
931 int slot;
932
dadcaf78 933 path->slots[0]--;
8da6d581 934 leaf = path->nodes[0];
dadcaf78 935 slot = path->slots[0];
8da6d581
JS
936 btrfs_item_key_to_cpu(leaf, &key, slot);
937 if (key.objectid == bytenr &&
261c84b6
JB
938 (key.type == BTRFS_EXTENT_ITEM_KEY ||
939 key.type == BTRFS_METADATA_ITEM_KEY)) {
8da6d581 940 ret = __add_inline_refs(fs_info, path, bytenr,
d5c88b73 941 &info_level, &prefs);
8da6d581
JS
942 if (ret)
943 goto out;
d5c88b73 944 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
945 info_level, &prefs);
946 if (ret)
947 goto out;
948 }
949 }
950 btrfs_release_path(path);
951
8da6d581
JS
952 list_splice_init(&prefs_delayed, &prefs);
953
d5c88b73
JS
954 ret = __add_missing_keys(fs_info, &prefs);
955 if (ret)
956 goto out;
957
692206b1 958 __merge_refs(&prefs, 1);
8da6d581 959
da61d31a
JB
960 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
961 extent_item_pos);
8da6d581
JS
962 if (ret)
963 goto out;
964
692206b1 965 __merge_refs(&prefs, 2);
8da6d581
JS
966
967 while (!list_empty(&prefs)) {
968 ref = list_first_entry(&prefs, struct __prelim_ref, list);
6c1500f2 969 WARN_ON(ref->count < 0);
98cfee21 970 if (roots && ref->count && ref->root_id && ref->parent == 0) {
8da6d581
JS
971 /* no parent == root of tree */
972 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
973 if (ret < 0)
974 goto out;
8da6d581
JS
975 }
976 if (ref->count && ref->parent) {
3301958b 977 if (extent_item_pos && !ref->inode_list) {
976b1908
JS
978 u32 bsz;
979 struct extent_buffer *eb;
980 bsz = btrfs_level_size(fs_info->extent_root,
981 info_level);
982 eb = read_tree_block(fs_info->extent_root,
983 ref->parent, bsz, 0);
416bc658
JB
984 if (!eb || !extent_buffer_uptodate(eb)) {
985 free_extent_buffer(eb);
c16c2e2e
WS
986 ret = -EIO;
987 goto out;
416bc658 988 }
976b1908
JS
989 ret = find_extent_in_eb(eb, bytenr,
990 *extent_item_pos, &eie);
991 free_extent_buffer(eb);
f5929cd8
FDBM
992 if (ret < 0)
993 goto out;
994 ref->inode_list = eie;
976b1908 995 }
3301958b 996 ret = ulist_add_merge(refs, ref->parent,
995e01b7 997 (uintptr_t)ref->inode_list,
34d73f54 998 (u64 *)&eie, GFP_NOFS);
f1723939
WS
999 if (ret < 0)
1000 goto out;
3301958b
JS
1001 if (!ret && extent_item_pos) {
1002 /*
1003 * we've recorded that parent, so we must extend
1004 * its inode list here
1005 */
1006 BUG_ON(!eie);
1007 while (eie->next)
1008 eie = eie->next;
1009 eie->next = ref->inode_list;
1010 }
f05c4746 1011 eie = NULL;
8da6d581 1012 }
a4fdb61e 1013 list_del(&ref->list);
b9e9a6cb 1014 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1015 }
1016
1017out:
8da6d581
JS
1018 btrfs_free_path(path);
1019 while (!list_empty(&prefs)) {
1020 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1021 list_del(&ref->list);
b9e9a6cb 1022 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581
JS
1023 }
1024 while (!list_empty(&prefs_delayed)) {
1025 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1026 list);
1027 list_del(&ref->list);
b9e9a6cb 1028 kmem_cache_free(btrfs_prelim_ref_cache, ref);
8da6d581 1029 }
f05c4746
WS
1030 if (ret < 0)
1031 free_inode_elem_list(eie);
8da6d581
JS
1032 return ret;
1033}
1034
976b1908
JS
1035static void free_leaf_list(struct ulist *blocks)
1036{
1037 struct ulist_node *node = NULL;
1038 struct extent_inode_elem *eie;
976b1908
JS
1039 struct ulist_iterator uiter;
1040
1041 ULIST_ITER_INIT(&uiter);
1042 while ((node = ulist_next(blocks, &uiter))) {
1043 if (!node->aux)
1044 continue;
995e01b7 1045 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
f05c4746 1046 free_inode_elem_list(eie);
976b1908
JS
1047 node->aux = 0;
1048 }
1049
1050 ulist_free(blocks);
1051}
1052
8da6d581
JS
1053/*
1054 * Finds all leafs with a reference to the specified combination of bytenr and
1055 * offset. key_list_head will point to a list of corresponding keys (caller must
1056 * free each list element). The leafs will be stored in the leafs ulist, which
1057 * must be freed with ulist_free.
1058 *
1059 * returns 0 on success, <0 on error
1060 */
1061static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1062 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1063 u64 time_seq, struct ulist **leafs,
976b1908 1064 const u64 *extent_item_pos)
8da6d581 1065{
8da6d581
JS
1066 int ret;
1067
8da6d581 1068 *leafs = ulist_alloc(GFP_NOFS);
98cfee21 1069 if (!*leafs)
8da6d581 1070 return -ENOMEM;
8da6d581 1071
097b8a7c 1072 ret = find_parent_nodes(trans, fs_info, bytenr,
98cfee21 1073 time_seq, *leafs, NULL, extent_item_pos);
8da6d581 1074 if (ret < 0 && ret != -ENOENT) {
976b1908 1075 free_leaf_list(*leafs);
8da6d581
JS
1076 return ret;
1077 }
1078
1079 return 0;
1080}
1081
1082/*
1083 * walk all backrefs for a given extent to find all roots that reference this
1084 * extent. Walking a backref means finding all extents that reference this
1085 * extent and in turn walk the backrefs of those, too. Naturally this is a
1086 * recursive process, but here it is implemented in an iterative fashion: We
1087 * find all referencing extents for the extent in question and put them on a
1088 * list. In turn, we find all referencing extents for those, further appending
1089 * to the list. The way we iterate the list allows adding more elements after
1090 * the current while iterating. The process stops when we reach the end of the
1091 * list. Found roots are added to the roots list.
1092 *
1093 * returns 0 on success, < 0 on error.
1094 */
1095int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1096 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1097 u64 time_seq, struct ulist **roots)
8da6d581
JS
1098{
1099 struct ulist *tmp;
1100 struct ulist_node *node = NULL;
cd1b413c 1101 struct ulist_iterator uiter;
8da6d581
JS
1102 int ret;
1103
1104 tmp = ulist_alloc(GFP_NOFS);
1105 if (!tmp)
1106 return -ENOMEM;
1107 *roots = ulist_alloc(GFP_NOFS);
1108 if (!*roots) {
1109 ulist_free(tmp);
1110 return -ENOMEM;
1111 }
1112
cd1b413c 1113 ULIST_ITER_INIT(&uiter);
8da6d581 1114 while (1) {
097b8a7c 1115 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1116 time_seq, tmp, *roots, NULL);
8da6d581
JS
1117 if (ret < 0 && ret != -ENOENT) {
1118 ulist_free(tmp);
1119 ulist_free(*roots);
1120 return ret;
1121 }
cd1b413c 1122 node = ulist_next(tmp, &uiter);
8da6d581
JS
1123 if (!node)
1124 break;
1125 bytenr = node->val;
bca1a290 1126 cond_resched();
8da6d581
JS
1127 }
1128
1129 ulist_free(tmp);
1130 return 0;
1131}
1132
a542ad1b
JS
1133/*
1134 * this makes the path point to (inum INODE_ITEM ioff)
1135 */
1136int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1137 struct btrfs_path *path)
1138{
1139 struct btrfs_key key;
e33d5c3d
KN
1140 return btrfs_find_item(fs_root, path, inum, ioff,
1141 BTRFS_INODE_ITEM_KEY, &key);
a542ad1b
JS
1142}
1143
1144static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1145 struct btrfs_path *path,
1146 struct btrfs_key *found_key)
1147{
e33d5c3d
KN
1148 return btrfs_find_item(fs_root, path, inum, ioff,
1149 BTRFS_INODE_REF_KEY, found_key);
a542ad1b
JS
1150}
1151
f186373f
MF
1152int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1153 u64 start_off, struct btrfs_path *path,
1154 struct btrfs_inode_extref **ret_extref,
1155 u64 *found_off)
1156{
1157 int ret, slot;
1158 struct btrfs_key key;
1159 struct btrfs_key found_key;
1160 struct btrfs_inode_extref *extref;
1161 struct extent_buffer *leaf;
1162 unsigned long ptr;
1163
1164 key.objectid = inode_objectid;
1165 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1166 key.offset = start_off;
1167
1168 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1169 if (ret < 0)
1170 return ret;
1171
1172 while (1) {
1173 leaf = path->nodes[0];
1174 slot = path->slots[0];
1175 if (slot >= btrfs_header_nritems(leaf)) {
1176 /*
1177 * If the item at offset is not found,
1178 * btrfs_search_slot will point us to the slot
1179 * where it should be inserted. In our case
1180 * that will be the slot directly before the
1181 * next INODE_REF_KEY_V2 item. In the case
1182 * that we're pointing to the last slot in a
1183 * leaf, we must move one leaf over.
1184 */
1185 ret = btrfs_next_leaf(root, path);
1186 if (ret) {
1187 if (ret >= 1)
1188 ret = -ENOENT;
1189 break;
1190 }
1191 continue;
1192 }
1193
1194 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1195
1196 /*
1197 * Check that we're still looking at an extended ref key for
1198 * this particular objectid. If we have different
1199 * objectid or type then there are no more to be found
1200 * in the tree and we can exit.
1201 */
1202 ret = -ENOENT;
1203 if (found_key.objectid != inode_objectid)
1204 break;
1205 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1206 break;
1207
1208 ret = 0;
1209 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1210 extref = (struct btrfs_inode_extref *)ptr;
1211 *ret_extref = extref;
1212 if (found_off)
1213 *found_off = found_key.offset;
1214 break;
1215 }
1216
1217 return ret;
1218}
1219
48a3b636
ES
1220/*
1221 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1222 * Elements of the path are separated by '/' and the path is guaranteed to be
1223 * 0-terminated. the path is only given within the current file system.
1224 * Therefore, it never starts with a '/'. the caller is responsible to provide
1225 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1226 * the start point of the resulting string is returned. this pointer is within
1227 * dest, normally.
1228 * in case the path buffer would overflow, the pointer is decremented further
1229 * as if output was written to the buffer, though no more output is actually
1230 * generated. that way, the caller can determine how much space would be
1231 * required for the path to fit into the buffer. in that case, the returned
1232 * value will be smaller than dest. callers must check this!
1233 */
96b5bd77
JS
1234char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1235 u32 name_len, unsigned long name_off,
1236 struct extent_buffer *eb_in, u64 parent,
1237 char *dest, u32 size)
a542ad1b 1238{
a542ad1b
JS
1239 int slot;
1240 u64 next_inum;
1241 int ret;
661bec6b 1242 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1243 struct extent_buffer *eb = eb_in;
1244 struct btrfs_key found_key;
b916a59a 1245 int leave_spinning = path->leave_spinning;
d24bec3a 1246 struct btrfs_inode_ref *iref;
a542ad1b
JS
1247
1248 if (bytes_left >= 0)
1249 dest[bytes_left] = '\0';
1250
b916a59a 1251 path->leave_spinning = 1;
a542ad1b 1252 while (1) {
d24bec3a 1253 bytes_left -= name_len;
a542ad1b
JS
1254 if (bytes_left >= 0)
1255 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1256 name_off, name_len);
b916a59a
JS
1257 if (eb != eb_in) {
1258 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1259 free_extent_buffer(eb);
b916a59a 1260 }
a542ad1b 1261 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1262 if (ret > 0)
1263 ret = -ENOENT;
a542ad1b
JS
1264 if (ret)
1265 break;
d24bec3a 1266
a542ad1b
JS
1267 next_inum = found_key.offset;
1268
1269 /* regular exit ahead */
1270 if (parent == next_inum)
1271 break;
1272
1273 slot = path->slots[0];
1274 eb = path->nodes[0];
1275 /* make sure we can use eb after releasing the path */
b916a59a 1276 if (eb != eb_in) {
a542ad1b 1277 atomic_inc(&eb->refs);
b916a59a
JS
1278 btrfs_tree_read_lock(eb);
1279 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1280 }
a542ad1b 1281 btrfs_release_path(path);
a542ad1b 1282 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1283
1284 name_len = btrfs_inode_ref_name_len(eb, iref);
1285 name_off = (unsigned long)(iref + 1);
1286
a542ad1b
JS
1287 parent = next_inum;
1288 --bytes_left;
1289 if (bytes_left >= 0)
1290 dest[bytes_left] = '/';
1291 }
1292
1293 btrfs_release_path(path);
b916a59a 1294 path->leave_spinning = leave_spinning;
a542ad1b
JS
1295
1296 if (ret)
1297 return ERR_PTR(ret);
1298
1299 return dest + bytes_left;
1300}
1301
1302/*
1303 * this makes the path point to (logical EXTENT_ITEM *)
1304 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1305 * tree blocks and <0 on error.
1306 */
1307int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1308 struct btrfs_path *path, struct btrfs_key *found_key,
1309 u64 *flags_ret)
a542ad1b
JS
1310{
1311 int ret;
1312 u64 flags;
261c84b6 1313 u64 size = 0;
a542ad1b
JS
1314 u32 item_size;
1315 struct extent_buffer *eb;
1316 struct btrfs_extent_item *ei;
1317 struct btrfs_key key;
1318
261c84b6
JB
1319 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1320 key.type = BTRFS_METADATA_ITEM_KEY;
1321 else
1322 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1323 key.objectid = logical;
1324 key.offset = (u64)-1;
1325
1326 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1327 if (ret < 0)
1328 return ret;
a542ad1b 1329
850a8cdf
WS
1330 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1331 if (ret) {
1332 if (ret > 0)
1333 ret = -ENOENT;
1334 return ret;
580f0a67 1335 }
850a8cdf 1336 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6
JB
1337 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1338 size = fs_info->extent_root->leafsize;
1339 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1340 size = found_key->offset;
1341
580f0a67 1342 if (found_key->objectid > logical ||
261c84b6 1343 found_key->objectid + size <= logical) {
c1c9ff7c 1344 pr_debug("logical %llu is not within any extent\n", logical);
a542ad1b 1345 return -ENOENT;
4692cf58 1346 }
a542ad1b
JS
1347
1348 eb = path->nodes[0];
1349 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1350 BUG_ON(item_size < sizeof(*ei));
1351
1352 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1353 flags = btrfs_extent_flags(eb, ei);
1354
4692cf58
JS
1355 pr_debug("logical %llu is at position %llu within the extent (%llu "
1356 "EXTENT_ITEM %llu) flags %#llx size %u\n",
c1c9ff7c
GU
1357 logical, logical - found_key->objectid, found_key->objectid,
1358 found_key->offset, flags, item_size);
69917e43
LB
1359
1360 WARN_ON(!flags_ret);
1361 if (flags_ret) {
1362 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1363 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1364 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1365 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1366 else
1367 BUG_ON(1);
1368 return 0;
1369 }
a542ad1b
JS
1370
1371 return -EIO;
1372}
1373
1374/*
1375 * helper function to iterate extent inline refs. ptr must point to a 0 value
1376 * for the first call and may be modified. it is used to track state.
1377 * if more refs exist, 0 is returned and the next call to
1378 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1379 * next ref. after the last ref was processed, 1 is returned.
1380 * returns <0 on error
1381 */
1382static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1383 struct btrfs_extent_item *ei, u32 item_size,
1384 struct btrfs_extent_inline_ref **out_eiref,
1385 int *out_type)
1386{
1387 unsigned long end;
1388 u64 flags;
1389 struct btrfs_tree_block_info *info;
1390
1391 if (!*ptr) {
1392 /* first call */
1393 flags = btrfs_extent_flags(eb, ei);
1394 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1395 info = (struct btrfs_tree_block_info *)(ei + 1);
1396 *out_eiref =
1397 (struct btrfs_extent_inline_ref *)(info + 1);
1398 } else {
1399 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1400 }
1401 *ptr = (unsigned long)*out_eiref;
1402 if ((void *)*ptr >= (void *)ei + item_size)
1403 return -ENOENT;
1404 }
1405
1406 end = (unsigned long)ei + item_size;
1407 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1408 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1409
1410 *ptr += btrfs_extent_inline_ref_size(*out_type);
1411 WARN_ON(*ptr > end);
1412 if (*ptr == end)
1413 return 1; /* last */
1414
1415 return 0;
1416}
1417
1418/*
1419 * reads the tree block backref for an extent. tree level and root are returned
1420 * through out_level and out_root. ptr must point to a 0 value for the first
1421 * call and may be modified (see __get_extent_inline_ref comment).
1422 * returns 0 if data was provided, 1 if there was no more data to provide or
1423 * <0 on error.
1424 */
1425int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1426 struct btrfs_extent_item *ei, u32 item_size,
1427 u64 *out_root, u8 *out_level)
1428{
1429 int ret;
1430 int type;
1431 struct btrfs_tree_block_info *info;
1432 struct btrfs_extent_inline_ref *eiref;
1433
1434 if (*ptr == (unsigned long)-1)
1435 return 1;
1436
1437 while (1) {
1438 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1439 &eiref, &type);
1440 if (ret < 0)
1441 return ret;
1442
1443 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1444 type == BTRFS_SHARED_BLOCK_REF_KEY)
1445 break;
1446
1447 if (ret == 1)
1448 return 1;
1449 }
1450
1451 /* we can treat both ref types equally here */
1452 info = (struct btrfs_tree_block_info *)(ei + 1);
1453 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1454 *out_level = btrfs_tree_block_level(eb, info);
1455
1456 if (ret == 1)
1457 *ptr = (unsigned long)-1;
1458
1459 return 0;
1460}
1461
976b1908
JS
1462static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1463 u64 root, u64 extent_item_objectid,
4692cf58 1464 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1465{
976b1908 1466 struct extent_inode_elem *eie;
4692cf58 1467 int ret = 0;
4692cf58 1468
976b1908 1469 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1470 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1471 "root %llu\n", extent_item_objectid,
1472 eie->inum, eie->offset, root);
1473 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1474 if (ret) {
976b1908
JS
1475 pr_debug("stopping iteration for %llu due to ret=%d\n",
1476 extent_item_objectid, ret);
4692cf58
JS
1477 break;
1478 }
a542ad1b
JS
1479 }
1480
a542ad1b
JS
1481 return ret;
1482}
1483
1484/*
1485 * calls iterate() for every inode that references the extent identified by
4692cf58 1486 * the given parameters.
a542ad1b
JS
1487 * when the iterator function returns a non-zero value, iteration stops.
1488 */
1489int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1490 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1491 int search_commit_root,
a542ad1b
JS
1492 iterate_extent_inodes_t *iterate, void *ctx)
1493{
a542ad1b 1494 int ret;
da61d31a 1495 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1496 struct ulist *refs = NULL;
1497 struct ulist *roots = NULL;
4692cf58
JS
1498 struct ulist_node *ref_node = NULL;
1499 struct ulist_node *root_node = NULL;
8445f61c 1500 struct seq_list tree_mod_seq_elem = {};
cd1b413c
JS
1501 struct ulist_iterator ref_uiter;
1502 struct ulist_iterator root_uiter;
a542ad1b 1503
4692cf58
JS
1504 pr_debug("resolving all inodes for extent %llu\n",
1505 extent_item_objectid);
a542ad1b 1506
da61d31a 1507 if (!search_commit_root) {
7a3ae2f8
JS
1508 trans = btrfs_join_transaction(fs_info->extent_root);
1509 if (IS_ERR(trans))
1510 return PTR_ERR(trans);
8445f61c 1511 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1512 }
a542ad1b 1513
4692cf58 1514 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1515 tree_mod_seq_elem.seq, &refs,
8445f61c 1516 &extent_item_pos);
4692cf58
JS
1517 if (ret)
1518 goto out;
a542ad1b 1519
cd1b413c
JS
1520 ULIST_ITER_INIT(&ref_uiter);
1521 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
976b1908 1522 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
097b8a7c 1523 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1524 if (ret)
1525 break;
cd1b413c
JS
1526 ULIST_ITER_INIT(&root_uiter);
1527 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1528 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1529 "%#llx\n", root_node->val, ref_node->val,
c1c9ff7c 1530 ref_node->aux);
995e01b7
JS
1531 ret = iterate_leaf_refs((struct extent_inode_elem *)
1532 (uintptr_t)ref_node->aux,
1533 root_node->val,
1534 extent_item_objectid,
1535 iterate, ctx);
4692cf58 1536 }
976b1908 1537 ulist_free(roots);
a542ad1b
JS
1538 }
1539
976b1908 1540 free_leaf_list(refs);
4692cf58 1541out:
7a3ae2f8 1542 if (!search_commit_root) {
8445f61c 1543 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8
JS
1544 btrfs_end_transaction(trans, fs_info->extent_root);
1545 }
1546
a542ad1b
JS
1547 return ret;
1548}
1549
1550int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1551 struct btrfs_path *path,
1552 iterate_extent_inodes_t *iterate, void *ctx)
1553{
1554 int ret;
4692cf58 1555 u64 extent_item_pos;
69917e43 1556 u64 flags = 0;
a542ad1b 1557 struct btrfs_key found_key;
7a3ae2f8 1558 int search_commit_root = path->search_commit_root;
a542ad1b 1559
69917e43 1560 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1561 btrfs_release_path(path);
a542ad1b
JS
1562 if (ret < 0)
1563 return ret;
69917e43 1564 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1565 return -EINVAL;
a542ad1b 1566
4692cf58 1567 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1568 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1569 extent_item_pos, search_commit_root,
1570 iterate, ctx);
a542ad1b
JS
1571
1572 return ret;
1573}
1574
d24bec3a
MF
1575typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1576 struct extent_buffer *eb, void *ctx);
1577
1578static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1579 struct btrfs_path *path,
1580 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1581{
aefc1eb1 1582 int ret = 0;
a542ad1b
JS
1583 int slot;
1584 u32 cur;
1585 u32 len;
1586 u32 name_len;
1587 u64 parent = 0;
1588 int found = 0;
1589 struct extent_buffer *eb;
1590 struct btrfs_item *item;
1591 struct btrfs_inode_ref *iref;
1592 struct btrfs_key found_key;
1593
aefc1eb1 1594 while (!ret) {
a542ad1b 1595 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
d24bec3a 1596 &found_key);
a542ad1b
JS
1597 if (ret < 0)
1598 break;
1599 if (ret) {
1600 ret = found ? 0 : -ENOENT;
1601 break;
1602 }
1603 ++found;
1604
1605 parent = found_key.offset;
1606 slot = path->slots[0];
3fe81ce2
FDBM
1607 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1608 if (!eb) {
1609 ret = -ENOMEM;
1610 break;
1611 }
1612 extent_buffer_get(eb);
b916a59a
JS
1613 btrfs_tree_read_lock(eb);
1614 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1615 btrfs_release_path(path);
1616
dd3cc16b 1617 item = btrfs_item_nr(slot);
a542ad1b
JS
1618 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1619
1620 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1621 name_len = btrfs_inode_ref_name_len(eb, iref);
1622 /* path must be released before calling iterate()! */
4692cf58 1623 pr_debug("following ref at offset %u for inode %llu in "
c1c9ff7c
GU
1624 "tree %llu\n", cur, found_key.objectid,
1625 fs_root->objectid);
d24bec3a
MF
1626 ret = iterate(parent, name_len,
1627 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1628 if (ret)
a542ad1b 1629 break;
a542ad1b
JS
1630 len = sizeof(*iref) + name_len;
1631 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1632 }
b916a59a 1633 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1634 free_extent_buffer(eb);
1635 }
1636
1637 btrfs_release_path(path);
1638
1639 return ret;
1640}
1641
d24bec3a
MF
1642static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1643 struct btrfs_path *path,
1644 iterate_irefs_t *iterate, void *ctx)
1645{
1646 int ret;
1647 int slot;
1648 u64 offset = 0;
1649 u64 parent;
1650 int found = 0;
1651 struct extent_buffer *eb;
1652 struct btrfs_inode_extref *extref;
1653 struct extent_buffer *leaf;
1654 u32 item_size;
1655 u32 cur_offset;
1656 unsigned long ptr;
1657
1658 while (1) {
1659 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1660 &offset);
1661 if (ret < 0)
1662 break;
1663 if (ret) {
1664 ret = found ? 0 : -ENOENT;
1665 break;
1666 }
1667 ++found;
1668
1669 slot = path->slots[0];
3fe81ce2
FDBM
1670 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1671 if (!eb) {
1672 ret = -ENOMEM;
1673 break;
1674 }
1675 extent_buffer_get(eb);
d24bec3a
MF
1676
1677 btrfs_tree_read_lock(eb);
1678 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1679 btrfs_release_path(path);
1680
1681 leaf = path->nodes[0];
e94acd86
VG
1682 item_size = btrfs_item_size_nr(leaf, slot);
1683 ptr = btrfs_item_ptr_offset(leaf, slot);
d24bec3a
MF
1684 cur_offset = 0;
1685
1686 while (cur_offset < item_size) {
1687 u32 name_len;
1688
1689 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1690 parent = btrfs_inode_extref_parent(eb, extref);
1691 name_len = btrfs_inode_extref_name_len(eb, extref);
1692 ret = iterate(parent, name_len,
1693 (unsigned long)&extref->name, eb, ctx);
1694 if (ret)
1695 break;
1696
1697 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1698 cur_offset += sizeof(*extref);
1699 }
1700 btrfs_tree_read_unlock_blocking(eb);
1701 free_extent_buffer(eb);
1702
1703 offset++;
1704 }
1705
1706 btrfs_release_path(path);
1707
1708 return ret;
1709}
1710
1711static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1712 struct btrfs_path *path, iterate_irefs_t *iterate,
1713 void *ctx)
1714{
1715 int ret;
1716 int found_refs = 0;
1717
1718 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1719 if (!ret)
1720 ++found_refs;
1721 else if (ret != -ENOENT)
1722 return ret;
1723
1724 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1725 if (ret == -ENOENT && found_refs)
1726 return 0;
1727
1728 return ret;
1729}
1730
a542ad1b
JS
1731/*
1732 * returns 0 if the path could be dumped (probably truncated)
1733 * returns <0 in case of an error
1734 */
d24bec3a
MF
1735static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1736 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1737{
1738 struct inode_fs_paths *ipath = ctx;
1739 char *fspath;
1740 char *fspath_min;
1741 int i = ipath->fspath->elem_cnt;
1742 const int s_ptr = sizeof(char *);
1743 u32 bytes_left;
1744
1745 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1746 ipath->fspath->bytes_left - s_ptr : 0;
1747
740c3d22 1748 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1749 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1750 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1751 if (IS_ERR(fspath))
1752 return PTR_ERR(fspath);
1753
1754 if (fspath > fspath_min) {
745c4d8e 1755 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1756 ++ipath->fspath->elem_cnt;
1757 ipath->fspath->bytes_left = fspath - fspath_min;
1758 } else {
1759 ++ipath->fspath->elem_missed;
1760 ipath->fspath->bytes_missing += fspath_min - fspath;
1761 ipath->fspath->bytes_left = 0;
1762 }
1763
1764 return 0;
1765}
1766
1767/*
1768 * this dumps all file system paths to the inode into the ipath struct, provided
1769 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1770 * from ipath->fspath->val[i].
a542ad1b 1771 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1772 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1773 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1774 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1775 * have been needed to return all paths.
1776 */
1777int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1778{
1779 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1780 inode_to_path, ipath);
a542ad1b
JS
1781}
1782
a542ad1b
JS
1783struct btrfs_data_container *init_data_container(u32 total_bytes)
1784{
1785 struct btrfs_data_container *data;
1786 size_t alloc_bytes;
1787
1788 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1789 data = vmalloc(alloc_bytes);
a542ad1b
JS
1790 if (!data)
1791 return ERR_PTR(-ENOMEM);
1792
1793 if (total_bytes >= sizeof(*data)) {
1794 data->bytes_left = total_bytes - sizeof(*data);
1795 data->bytes_missing = 0;
1796 } else {
1797 data->bytes_missing = sizeof(*data) - total_bytes;
1798 data->bytes_left = 0;
1799 }
1800
1801 data->elem_cnt = 0;
1802 data->elem_missed = 0;
1803
1804 return data;
1805}
1806
1807/*
1808 * allocates space to return multiple file system paths for an inode.
1809 * total_bytes to allocate are passed, note that space usable for actual path
1810 * information will be total_bytes - sizeof(struct inode_fs_paths).
1811 * the returned pointer must be freed with free_ipath() in the end.
1812 */
1813struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1814 struct btrfs_path *path)
1815{
1816 struct inode_fs_paths *ifp;
1817 struct btrfs_data_container *fspath;
1818
1819 fspath = init_data_container(total_bytes);
1820 if (IS_ERR(fspath))
1821 return (void *)fspath;
1822
1823 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1824 if (!ifp) {
1825 kfree(fspath);
1826 return ERR_PTR(-ENOMEM);
1827 }
1828
1829 ifp->btrfs_path = path;
1830 ifp->fspath = fspath;
1831 ifp->fs_root = fs_root;
1832
1833 return ifp;
1834}
1835
1836void free_ipath(struct inode_fs_paths *ipath)
1837{
4735fb28
JJ
1838 if (!ipath)
1839 return;
425d17a2 1840 vfree(ipath->fspath);
a542ad1b
JS
1841 kfree(ipath);
1842}
This page took 0.273773 seconds and 5 git commands to generate.