Btrfs: more 32 bit cleanups
[deliverable/linux.git] / fs / btrfs / ctree.c
CommitLineData
be0e5c09
CM
1#include <stdio.h>
2#include <stdlib.h>
3#include "kerncompat.h"
eb60ceac
CM
4#include "radix-tree.h"
5#include "ctree.h"
6#include "disk-io.h"
5de08d7d 7#include "print-tree.h"
9a8dd150 8
5c680ed6
CM
9int split_node(struct ctree_root *root, struct ctree_path *path, int level);
10int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size);
5de08d7d
CM
11int push_node_left(struct ctree_root *root, struct ctree_path *path, int level);
12int push_node_right(struct ctree_root *root,
13 struct ctree_path *path, int level);
14int del_ptr(struct ctree_root *root, struct ctree_path *path, int level);
d97e63b6 15
5de08d7d 16inline void init_path(struct ctree_path *p)
be0e5c09
CM
17{
18 memset(p, 0, sizeof(*p));
19}
20
5de08d7d 21void release_path(struct ctree_root *root, struct ctree_path *p)
eb60ceac
CM
22{
23 int i;
24 for (i = 0; i < MAX_LEVEL; i++) {
25 if (!p->nodes[i])
26 break;
27 tree_block_release(root, p->nodes[i]);
28 }
29}
30
74123bd7
CM
31/*
32 * The leaf data grows from end-to-front in the node.
33 * this returns the address of the start of the last item,
34 * which is the stop of the leaf data stack
35 */
be0e5c09
CM
36static inline unsigned int leaf_data_end(struct leaf *leaf)
37{
38 unsigned int nr = leaf->header.nritems;
39 if (nr == 0)
d97e63b6 40 return sizeof(leaf->data);
be0e5c09
CM
41 return leaf->items[nr-1].offset;
42}
43
74123bd7
CM
44/*
45 * The space between the end of the leaf items and
46 * the start of the leaf data. IOW, how much room
47 * the leaf has left for both items and data
48 */
5de08d7d 49int leaf_free_space(struct leaf *leaf)
be0e5c09
CM
50{
51 int data_end = leaf_data_end(leaf);
52 int nritems = leaf->header.nritems;
53 char *items_end = (char *)(leaf->items + nritems + 1);
54 return (char *)(leaf->data + data_end) - (char *)items_end;
55}
56
74123bd7
CM
57/*
58 * compare two keys in a memcmp fashion
59 */
be0e5c09
CM
60int comp_keys(struct key *k1, struct key *k2)
61{
62 if (k1->objectid > k2->objectid)
63 return 1;
64 if (k1->objectid < k2->objectid)
65 return -1;
66 if (k1->flags > k2->flags)
67 return 1;
68 if (k1->flags < k2->flags)
69 return -1;
70 if (k1->offset > k2->offset)
71 return 1;
72 if (k1->offset < k2->offset)
73 return -1;
74 return 0;
75}
74123bd7
CM
76
77/*
78 * search for key in the array p. items p are item_size apart
79 * and there are 'max' items in p
80 * the slot in the array is returned via slot, and it points to
81 * the place where you would insert key if it is not found in
82 * the array.
83 *
84 * slot may point to max if the key is bigger than all of the keys
85 */
be0e5c09
CM
86int generic_bin_search(char *p, int item_size, struct key *key,
87 int max, int *slot)
88{
89 int low = 0;
90 int high = max;
91 int mid;
92 int ret;
93 struct key *tmp;
94
95 while(low < high) {
96 mid = (low + high) / 2;
97 tmp = (struct key *)(p + mid * item_size);
98 ret = comp_keys(tmp, key);
99
100 if (ret < 0)
101 low = mid + 1;
102 else if (ret > 0)
103 high = mid;
104 else {
105 *slot = mid;
106 return 0;
107 }
108 }
109 *slot = low;
110 return 1;
111}
112
97571fd0
CM
113/*
114 * simple bin_search frontend that does the right thing for
115 * leaves vs nodes
116 */
be0e5c09
CM
117int bin_search(struct node *c, struct key *key, int *slot)
118{
119 if (is_leaf(c->header.flags)) {
120 struct leaf *l = (struct leaf *)c;
121 return generic_bin_search((void *)l->items, sizeof(struct item),
122 key, c->header.nritems, slot);
123 } else {
124 return generic_bin_search((void *)c->keys, sizeof(struct key),
125 key, c->header.nritems, slot);
126 }
127 return -1;
128}
129
74123bd7
CM
130/*
131 * look for key in the tree. path is filled in with nodes along the way
132 * if key is found, we return zero and you can find the item in the leaf
133 * level of the path (level 0)
134 *
135 * If the key isn't found, the path points to the slot where it should
136 * be inserted.
97571fd0
CM
137 *
138 * if ins_len > 0, nodes and leaves will be split as we walk down the
139 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
140 * possible)
74123bd7 141 */
5de08d7d
CM
142int search_slot(struct ctree_root *root, struct key *key,
143 struct ctree_path *p, int ins_len)
be0e5c09 144{
eb60ceac
CM
145 struct tree_buffer *b = root->node;
146 struct node *c;
be0e5c09
CM
147 int slot;
148 int ret;
149 int level;
5c680ed6 150
eb60ceac
CM
151 b->count++;
152 while (b) {
153 c = &b->node;
be0e5c09 154 level = node_level(c->header.flags);
eb60ceac 155 p->nodes[level] = b;
be0e5c09
CM
156 ret = bin_search(c, key, &slot);
157 if (!is_leaf(c->header.flags)) {
158 if (ret && slot > 0)
159 slot -= 1;
160 p->slots[level] = slot;
5de08d7d
CM
161 if (ins_len > 0 &&
162 c->header.nritems == NODEPTRS_PER_BLOCK) {
5c680ed6
CM
163 int sret = split_node(root, p, level);
164 BUG_ON(sret > 0);
165 if (sret)
166 return sret;
167 b = p->nodes[level];
168 c = &b->node;
169 slot = p->slots[level];
5de08d7d
CM
170 } else if (ins_len < 0 &&
171 c->header.nritems <= NODEPTRS_PER_BLOCK/4) {
172 u64 blocknr = b->blocknr;
173 slot = p->slots[level +1];
174 b->count++;
175 if (push_node_left(root, p, level))
176 push_node_right(root, p, level);
177 if (c->header.nritems == 0 &&
178 level < MAX_LEVEL - 1 &&
179 p->nodes[level + 1]) {
180 int tslot = p->slots[level + 1];
181
182 p->slots[level + 1] = slot;
183 del_ptr(root, p, level + 1);
184 p->slots[level + 1] = tslot;
185 tree_block_release(root, b);
186 free_extent(root, blocknr, 1);
187 } else {
188 tree_block_release(root, b);
189 }
190 b = p->nodes[level];
191 c = &b->node;
192 slot = p->slots[level];
5c680ed6 193 }
eb60ceac 194 b = read_tree_block(root, c->blockptrs[slot]);
be0e5c09
CM
195 continue;
196 } else {
5c680ed6 197 struct leaf *l = (struct leaf *)c;
be0e5c09 198 p->slots[level] = slot;
5de08d7d
CM
199 if (ins_len > 0 && leaf_free_space(l) <
200 sizeof(struct item) + ins_len) {
5c680ed6
CM
201 int sret = split_leaf(root, p, ins_len);
202 BUG_ON(sret > 0);
203 if (sret)
204 return sret;
205 }
be0e5c09
CM
206 return ret;
207 }
208 }
209 return -1;
210}
211
74123bd7
CM
212/*
213 * adjust the pointers going up the tree, starting at level
214 * making sure the right key of each node is points to 'key'.
215 * This is used after shifting pointers to the left, so it stops
216 * fixing up pointers when a given leaf/node is not in slot 0 of the
217 * higher levels
218 */
eb60ceac
CM
219static void fixup_low_keys(struct ctree_root *root,
220 struct ctree_path *path, struct key *key,
221 int level)
be0e5c09
CM
222{
223 int i;
be0e5c09 224 for (i = level; i < MAX_LEVEL; i++) {
eb60ceac 225 struct node *t;
be0e5c09 226 int tslot = path->slots[i];
eb60ceac 227 if (!path->nodes[i])
be0e5c09 228 break;
eb60ceac 229 t = &path->nodes[i]->node;
be0e5c09 230 memcpy(t->keys + tslot, key, sizeof(*key));
eb60ceac 231 write_tree_block(root, path->nodes[i]);
be0e5c09
CM
232 if (tslot != 0)
233 break;
234 }
235}
236
74123bd7
CM
237/*
238 * try to push data from one node into the next node left in the
239 * tree. The src node is found at specified level in the path.
240 * If some bytes were pushed, return 0, otherwise return 1.
241 *
242 * Lower nodes/leaves in the path are not touched, higher nodes may
243 * be modified to reflect the push.
244 *
245 * The path is altered to reflect the push.
246 */
be0e5c09
CM
247int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
248{
249 int slot;
250 struct node *left;
251 struct node *right;
252 int push_items = 0;
253 int left_nritems;
254 int right_nritems;
eb60ceac
CM
255 struct tree_buffer *t;
256 struct tree_buffer *right_buf;
be0e5c09
CM
257
258 if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
259 return 1;
260 slot = path->slots[level + 1];
261 if (slot == 0)
262 return 1;
263
eb60ceac
CM
264 t = read_tree_block(root,
265 path->nodes[level + 1]->node.blockptrs[slot - 1]);
266 left = &t->node;
267 right_buf = path->nodes[level];
268 right = &right_buf->node;
be0e5c09
CM
269 left_nritems = left->header.nritems;
270 right_nritems = right->header.nritems;
271 push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1);
eb60ceac
CM
272 if (push_items <= 0) {
273 tree_block_release(root, t);
be0e5c09 274 return 1;
eb60ceac 275 }
be0e5c09
CM
276
277 if (right_nritems < push_items)
278 push_items = right_nritems;
279 memcpy(left->keys + left_nritems, right->keys,
280 push_items * sizeof(struct key));
281 memcpy(left->blockptrs + left_nritems, right->blockptrs,
282 push_items * sizeof(u64));
283 memmove(right->keys, right->keys + push_items,
284 (right_nritems - push_items) * sizeof(struct key));
285 memmove(right->blockptrs, right->blockptrs + push_items,
286 (right_nritems - push_items) * sizeof(u64));
287 right->header.nritems -= push_items;
288 left->header.nritems += push_items;
289
290 /* adjust the pointers going up the tree */
eb60ceac
CM
291 fixup_low_keys(root, path, right->keys, level + 1);
292
293 write_tree_block(root, t);
294 write_tree_block(root, right_buf);
be0e5c09
CM
295
296 /* then fixup the leaf pointer in the path */
297 if (path->slots[level] < push_items) {
298 path->slots[level] += left_nritems;
eb60ceac
CM
299 tree_block_release(root, path->nodes[level]);
300 path->nodes[level] = t;
be0e5c09
CM
301 path->slots[level + 1] -= 1;
302 } else {
303 path->slots[level] -= push_items;
eb60ceac 304 tree_block_release(root, t);
be0e5c09
CM
305 }
306 return 0;
307}
308
74123bd7
CM
309/*
310 * try to push data from one node into the next node right in the
311 * tree. The src node is found at specified level in the path.
312 * If some bytes were pushed, return 0, otherwise return 1.
313 *
314 * Lower nodes/leaves in the path are not touched, higher nodes may
315 * be modified to reflect the push.
316 *
317 * The path is altered to reflect the push.
318 */
be0e5c09
CM
319int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
320{
321 int slot;
eb60ceac
CM
322 struct tree_buffer *t;
323 struct tree_buffer *src_buffer;
be0e5c09
CM
324 struct node *dst;
325 struct node *src;
326 int push_items = 0;
327 int dst_nritems;
328 int src_nritems;
329
74123bd7 330 /* can't push from the root */
be0e5c09
CM
331 if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
332 return 1;
74123bd7
CM
333
334 /* only try to push inside the node higher up */
be0e5c09
CM
335 slot = path->slots[level + 1];
336 if (slot == NODEPTRS_PER_BLOCK - 1)
337 return 1;
338
eb60ceac 339 if (slot >= path->nodes[level + 1]->node.header.nritems -1)
be0e5c09
CM
340 return 1;
341
eb60ceac
CM
342 t = read_tree_block(root,
343 path->nodes[level + 1]->node.blockptrs[slot + 1]);
344 dst = &t->node;
345 src_buffer = path->nodes[level];
346 src = &src_buffer->node;
be0e5c09
CM
347 dst_nritems = dst->header.nritems;
348 src_nritems = src->header.nritems;
349 push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1);
eb60ceac
CM
350 if (push_items <= 0) {
351 tree_block_release(root, t);
be0e5c09 352 return 1;
eb60ceac 353 }
be0e5c09
CM
354
355 if (src_nritems < push_items)
356 push_items = src_nritems;
357 memmove(dst->keys + push_items, dst->keys,
358 dst_nritems * sizeof(struct key));
359 memcpy(dst->keys, src->keys + src_nritems - push_items,
360 push_items * sizeof(struct key));
361
362 memmove(dst->blockptrs + push_items, dst->blockptrs,
363 dst_nritems * sizeof(u64));
364 memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
365 push_items * sizeof(u64));
366
367 src->header.nritems -= push_items;
368 dst->header.nritems += push_items;
369
370 /* adjust the pointers going up the tree */
eb60ceac 371 memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1,
be0e5c09 372 dst->keys, sizeof(struct key));
eb60ceac
CM
373
374 write_tree_block(root, path->nodes[level + 1]);
375 write_tree_block(root, t);
376 write_tree_block(root, src_buffer);
377
74123bd7 378 /* then fixup the pointers in the path */
be0e5c09
CM
379 if (path->slots[level] >= src->header.nritems) {
380 path->slots[level] -= src->header.nritems;
eb60ceac
CM
381 tree_block_release(root, path->nodes[level]);
382 path->nodes[level] = t;
be0e5c09 383 path->slots[level + 1] += 1;
eb60ceac
CM
384 } else {
385 tree_block_release(root, t);
be0e5c09
CM
386 }
387 return 0;
388}
389
97571fd0
CM
390/*
391 * helper function to insert a new root level in the tree.
392 * A new node is allocated, and a single item is inserted to
393 * point to the existing root
394 */
5de08d7d
CM
395static int insert_new_root(struct ctree_root *root,
396 struct ctree_path *path, int level)
5c680ed6
CM
397{
398 struct tree_buffer *t;
399 struct node *lower;
400 struct node *c;
401 struct key *lower_key;
402
403 BUG_ON(path->nodes[level]);
404 BUG_ON(path->nodes[level-1] != root->node);
405
406 t = alloc_free_block(root);
407 c = &t->node;
408 memset(c, 0, sizeof(c));
409 c->header.nritems = 1;
410 c->header.flags = node_level(level);
411 c->header.blocknr = t->blocknr;
412 c->header.parentid = root->node->node.header.parentid;
413 lower = &path->nodes[level-1]->node;
414 if (is_leaf(lower->header.flags))
415 lower_key = &((struct leaf *)lower)->items[0].key;
416 else
417 lower_key = lower->keys;
418 memcpy(c->keys, lower_key, sizeof(struct key));
419 c->blockptrs[0] = path->nodes[level-1]->blocknr;
420 /* the super has an extra ref to root->node */
421 tree_block_release(root, root->node);
422 root->node = t;
423 t->count++;
424 write_tree_block(root, t);
425 path->nodes[level] = t;
426 path->slots[level] = 0;
427 return 0;
428}
429
74123bd7
CM
430/*
431 * worker function to insert a single pointer in a node.
432 * the node should have enough room for the pointer already
97571fd0 433 *
74123bd7
CM
434 * slot and level indicate where you want the key to go, and
435 * blocknr is the block the key points to.
436 */
5c680ed6 437int insert_ptr(struct ctree_root *root,
74123bd7
CM
438 struct ctree_path *path, struct key *key,
439 u64 blocknr, int slot, int level)
440{
74123bd7 441 struct node *lower;
74123bd7 442 int nritems;
5c680ed6
CM
443
444 BUG_ON(!path->nodes[level]);
74123bd7
CM
445 lower = &path->nodes[level]->node;
446 nritems = lower->header.nritems;
447 if (slot > nritems)
448 BUG();
449 if (nritems == NODEPTRS_PER_BLOCK)
450 BUG();
451 if (slot != nritems) {
452 memmove(lower->keys + slot + 1, lower->keys + slot,
453 (nritems - slot) * sizeof(struct key));
454 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
455 (nritems - slot) * sizeof(u64));
456 }
457 memcpy(lower->keys + slot, key, sizeof(struct key));
458 lower->blockptrs[slot] = blocknr;
459 lower->header.nritems++;
460 if (lower->keys[1].objectid == 0)
461 BUG();
462 write_tree_block(root, path->nodes[level]);
463 return 0;
464}
465
97571fd0
CM
466/*
467 * split the node at the specified level in path in two.
468 * The path is corrected to point to the appropriate node after the split
469 *
470 * Before splitting this tries to make some room in the node by pushing
471 * left and right, if either one works, it returns right away.
472 */
5c680ed6 473int split_node(struct ctree_root *root, struct ctree_path *path, int level)
be0e5c09 474{
5c680ed6
CM
475 struct tree_buffer *t;
476 struct node *c;
477 struct tree_buffer *split_buffer;
478 struct node *split;
be0e5c09 479 int mid;
5c680ed6 480 int ret;
eb60ceac 481
5c680ed6
CM
482 ret = push_node_left(root, path, level);
483 if (!ret)
484 return 0;
485 ret = push_node_right(root, path, level);
486 if (!ret)
487 return 0;
488 t = path->nodes[level];
489 c = &t->node;
490 if (t == root->node) {
491 /* trying to split the root, lets make a new one */
492 ret = insert_new_root(root, path, level + 1);
493 if (ret)
494 return ret;
be0e5c09 495 }
5c680ed6
CM
496 split_buffer = alloc_free_block(root);
497 split = &split_buffer->node;
498 split->header.flags = c->header.flags;
499 split->header.blocknr = split_buffer->blocknr;
500 split->header.parentid = root->node->node.header.parentid;
501 mid = (c->header.nritems + 1) / 2;
502 memcpy(split->keys, c->keys + mid,
503 (c->header.nritems - mid) * sizeof(struct key));
504 memcpy(split->blockptrs, c->blockptrs + mid,
505 (c->header.nritems - mid) * sizeof(u64));
506 split->header.nritems = c->header.nritems - mid;
507 c->header.nritems = mid;
508 write_tree_block(root, t);
509 write_tree_block(root, split_buffer);
510 insert_ptr(root, path, split->keys, split_buffer->blocknr,
511 path->slots[level + 1] + 1, level + 1);
5de08d7d 512 if (path->slots[level] >= mid) {
5c680ed6
CM
513 path->slots[level] -= mid;
514 tree_block_release(root, t);
515 path->nodes[level] = split_buffer;
516 path->slots[level + 1] += 1;
517 } else {
518 tree_block_release(root, split_buffer);
be0e5c09 519 }
5c680ed6 520 return 0;
be0e5c09
CM
521}
522
74123bd7
CM
523/*
524 * how many bytes are required to store the items in a leaf. start
525 * and nr indicate which items in the leaf to check. This totals up the
526 * space used both by the item structs and the item data
527 */
be0e5c09
CM
528int leaf_space_used(struct leaf *l, int start, int nr)
529{
530 int data_len;
531 int end = start + nr - 1;
532
533 if (!nr)
534 return 0;
535 data_len = l->items[start].offset + l->items[start].size;
536 data_len = data_len - l->items[end].offset;
537 data_len += sizeof(struct item) * nr;
538 return data_len;
539}
540
00ec4c51
CM
541/*
542 * push some data in the path leaf to the right, trying to free up at
543 * least data_size bytes. returns zero if the push worked, nonzero otherwise
544 */
545int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
546 int data_size)
547{
548 struct tree_buffer *left_buf = path->nodes[0];
549 struct leaf *left = &left_buf->leaf;
550 struct leaf *right;
551 struct tree_buffer *right_buf;
552 struct tree_buffer *upper;
553 int slot;
554 int i;
555 int free_space;
556 int push_space = 0;
557 int push_items = 0;
558 struct item *item;
559
560 slot = path->slots[1];
561 if (!path->nodes[1]) {
562 return 1;
563 }
564 upper = path->nodes[1];
565 if (slot >= upper->node.header.nritems - 1) {
566 return 1;
567 }
568 right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
569 right = &right_buf->leaf;
570 free_space = leaf_free_space(right);
571 if (free_space < data_size + sizeof(struct item)) {
572 tree_block_release(root, right_buf);
573 return 1;
574 }
575 for (i = left->header.nritems - 1; i >= 0; i--) {
576 item = left->items + i;
577 if (path->slots[0] == i)
578 push_space += data_size + sizeof(*item);
579 if (item->size + sizeof(*item) + push_space > free_space)
580 break;
581 push_items++;
582 push_space += item->size + sizeof(*item);
583 }
584 if (push_items == 0) {
585 tree_block_release(root, right_buf);
586 return 1;
587 }
588 /* push left to right */
589 push_space = left->items[left->header.nritems - push_items].offset +
590 left->items[left->header.nritems - push_items].size;
591 push_space -= leaf_data_end(left);
592 /* make room in the right data area */
593 memmove(right->data + leaf_data_end(right) - push_space,
594 right->data + leaf_data_end(right),
595 LEAF_DATA_SIZE - leaf_data_end(right));
596 /* copy from the left data area */
597 memcpy(right->data + LEAF_DATA_SIZE - push_space,
598 left->data + leaf_data_end(left),
599 push_space);
600 memmove(right->items + push_items, right->items,
601 right->header.nritems * sizeof(struct item));
602 /* copy the items from left to right */
603 memcpy(right->items, left->items + left->header.nritems - push_items,
604 push_items * sizeof(struct item));
605
606 /* update the item pointers */
607 right->header.nritems += push_items;
608 push_space = LEAF_DATA_SIZE;
609 for (i = 0; i < right->header.nritems; i++) {
610 right->items[i].offset = push_space - right->items[i].size;
611 push_space = right->items[i].offset;
612 }
613 left->header.nritems -= push_items;
614
615 write_tree_block(root, left_buf);
616 write_tree_block(root, right_buf);
617 memcpy(upper->node.keys + slot + 1,
618 &right->items[0].key, sizeof(struct key));
619 write_tree_block(root, upper);
620 /* then fixup the leaf pointer in the path */
621 // FIXME use nritems in here somehow
622 if (path->slots[0] >= left->header.nritems) {
623 path->slots[0] -= left->header.nritems;
624 tree_block_release(root, path->nodes[0]);
625 path->nodes[0] = right_buf;
626 path->slots[1] += 1;
627 } else {
628 tree_block_release(root, right_buf);
629 }
630 return 0;
631}
74123bd7
CM
632/*
633 * push some data in the path leaf to the left, trying to free up at
634 * least data_size bytes. returns zero if the push worked, nonzero otherwise
635 */
be0e5c09
CM
636int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
637 int data_size)
638{
eb60ceac
CM
639 struct tree_buffer *right_buf = path->nodes[0];
640 struct leaf *right = &right_buf->leaf;
641 struct tree_buffer *t;
be0e5c09
CM
642 struct leaf *left;
643 int slot;
644 int i;
645 int free_space;
646 int push_space = 0;
647 int push_items = 0;
648 struct item *item;
649 int old_left_nritems;
650
651 slot = path->slots[1];
652 if (slot == 0) {
653 return 1;
654 }
655 if (!path->nodes[1]) {
656 return 1;
657 }
eb60ceac
CM
658 t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
659 left = &t->leaf;
be0e5c09
CM
660 free_space = leaf_free_space(left);
661 if (free_space < data_size + sizeof(struct item)) {
eb60ceac 662 tree_block_release(root, t);
be0e5c09
CM
663 return 1;
664 }
665 for (i = 0; i < right->header.nritems; i++) {
666 item = right->items + i;
667 if (path->slots[0] == i)
668 push_space += data_size + sizeof(*item);
669 if (item->size + sizeof(*item) + push_space > free_space)
670 break;
671 push_items++;
672 push_space += item->size + sizeof(*item);
673 }
674 if (push_items == 0) {
eb60ceac 675 tree_block_release(root, t);
be0e5c09
CM
676 return 1;
677 }
678 /* push data from right to left */
679 memcpy(left->items + left->header.nritems,
680 right->items, push_items * sizeof(struct item));
681 push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
682 memcpy(left->data + leaf_data_end(left) - push_space,
683 right->data + right->items[push_items - 1].offset,
684 push_space);
685 old_left_nritems = left->header.nritems;
eb60ceac
CM
686 BUG_ON(old_left_nritems < 0);
687
be0e5c09
CM
688 for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
689 left->items[i].offset -= LEAF_DATA_SIZE -
690 left->items[old_left_nritems -1].offset;
691 }
692 left->header.nritems += push_items;
693
694 /* fixup right node */
695 push_space = right->items[push_items-1].offset - leaf_data_end(right);
696 memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
697 leaf_data_end(right), push_space);
698 memmove(right->items, right->items + push_items,
699 (right->header.nritems - push_items) * sizeof(struct item));
700 right->header.nritems -= push_items;
701 push_space = LEAF_DATA_SIZE;
eb60ceac 702
be0e5c09
CM
703 for (i = 0; i < right->header.nritems; i++) {
704 right->items[i].offset = push_space - right->items[i].size;
705 push_space = right->items[i].offset;
706 }
eb60ceac
CM
707
708 write_tree_block(root, t);
709 write_tree_block(root, right_buf);
710
711 fixup_low_keys(root, path, &right->items[0].key, 1);
be0e5c09
CM
712
713 /* then fixup the leaf pointer in the path */
714 if (path->slots[0] < push_items) {
715 path->slots[0] += old_left_nritems;
eb60ceac
CM
716 tree_block_release(root, path->nodes[0]);
717 path->nodes[0] = t;
be0e5c09
CM
718 path->slots[1] -= 1;
719 } else {
eb60ceac 720 tree_block_release(root, t);
be0e5c09
CM
721 path->slots[0] -= push_items;
722 }
eb60ceac 723 BUG_ON(path->slots[0] < 0);
be0e5c09
CM
724 return 0;
725}
726
74123bd7
CM
727/*
728 * split the path's leaf in two, making sure there is at least data_size
729 * available for the resulting leaf level of the path.
730 */
be0e5c09
CM
731int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
732{
eb60ceac
CM
733 struct tree_buffer *l_buf = path->nodes[0];
734 struct leaf *l = &l_buf->leaf;
735 int nritems;
736 int mid;
737 int slot;
be0e5c09 738 struct leaf *right;
eb60ceac 739 struct tree_buffer *right_buffer;
be0e5c09
CM
740 int space_needed = data_size + sizeof(struct item);
741 int data_copy_size;
742 int rt_data_off;
743 int i;
744 int ret;
745
00ec4c51
CM
746 if (push_leaf_left(root, path, data_size) == 0 ||
747 push_leaf_right(root, path, data_size) == 0) {
eb60ceac
CM
748 l_buf = path->nodes[0];
749 l = &l_buf->leaf;
750 if (leaf_free_space(l) >= sizeof(struct item) + data_size)
751 return 0;
be0e5c09 752 }
5c680ed6
CM
753 if (!path->nodes[1]) {
754 ret = insert_new_root(root, path, 1);
755 if (ret)
756 return ret;
757 }
eb60ceac
CM
758 slot = path->slots[0];
759 nritems = l->header.nritems;
760 mid = (nritems + 1)/ 2;
761
762 right_buffer = alloc_free_block(root);
763 BUG_ON(!right_buffer);
764 BUG_ON(mid == nritems);
765 right = &right_buffer->leaf;
be0e5c09
CM
766 memset(right, 0, sizeof(*right));
767 if (mid <= slot) {
97571fd0 768 /* FIXME, just alloc a new leaf here */
be0e5c09
CM
769 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
770 LEAF_DATA_SIZE)
771 BUG();
772 } else {
97571fd0 773 /* FIXME, just alloc a new leaf here */
be0e5c09
CM
774 if (leaf_space_used(l, 0, mid + 1) + space_needed >
775 LEAF_DATA_SIZE)
776 BUG();
777 }
778 right->header.nritems = nritems - mid;
eb60ceac
CM
779 right->header.blocknr = right_buffer->blocknr;
780 right->header.flags = node_level(0);
cfaa7295 781 right->header.parentid = root->node->node.header.parentid;
be0e5c09
CM
782 data_copy_size = l->items[mid].offset + l->items[mid].size -
783 leaf_data_end(l);
784 memcpy(right->items, l->items + mid,
785 (nritems - mid) * sizeof(struct item));
786 memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
787 l->data + leaf_data_end(l), data_copy_size);
788 rt_data_off = LEAF_DATA_SIZE -
789 (l->items[mid].offset + l->items[mid].size);
74123bd7
CM
790
791 for (i = 0; i < right->header.nritems; i++)
be0e5c09 792 right->items[i].offset += rt_data_off;
74123bd7 793
be0e5c09
CM
794 l->header.nritems = mid;
795 ret = insert_ptr(root, path, &right->items[0].key,
5c680ed6 796 right_buffer->blocknr, path->slots[1] + 1, 1);
eb60ceac
CM
797 write_tree_block(root, right_buffer);
798 write_tree_block(root, l_buf);
799
800 BUG_ON(path->slots[0] != slot);
be0e5c09 801 if (mid <= slot) {
eb60ceac
CM
802 tree_block_release(root, path->nodes[0]);
803 path->nodes[0] = right_buffer;
be0e5c09
CM
804 path->slots[0] -= mid;
805 path->slots[1] += 1;
eb60ceac
CM
806 } else
807 tree_block_release(root, right_buffer);
808 BUG_ON(path->slots[0] < 0);
be0e5c09
CM
809 return ret;
810}
811
74123bd7
CM
812/*
813 * Given a key and some data, insert an item into the tree.
814 * This does all the path init required, making room in the tree if needed.
815 */
be0e5c09
CM
816int insert_item(struct ctree_root *root, struct key *key,
817 void *data, int data_size)
818{
819 int ret;
820 int slot;
eb60ceac 821 int slot_orig;
be0e5c09 822 struct leaf *leaf;
eb60ceac 823 struct tree_buffer *leaf_buf;
be0e5c09
CM
824 unsigned int nritems;
825 unsigned int data_end;
826 struct ctree_path path;
827
74123bd7 828 /* create a root if there isn't one */
5c680ed6 829 if (!root->node)
cfaa7295 830 BUG();
be0e5c09 831 init_path(&path);
5c680ed6 832 ret = search_slot(root, key, &path, data_size);
eb60ceac
CM
833 if (ret == 0) {
834 release_path(root, &path);
be0e5c09 835 return -EEXIST;
eb60ceac 836 }
be0e5c09 837
eb60ceac
CM
838 slot_orig = path.slots[0];
839 leaf_buf = path.nodes[0];
840 leaf = &leaf_buf->leaf;
74123bd7 841
be0e5c09
CM
842 nritems = leaf->header.nritems;
843 data_end = leaf_data_end(leaf);
eb60ceac 844
be0e5c09
CM
845 if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
846 BUG();
847
848 slot = path.slots[0];
eb60ceac 849 BUG_ON(slot < 0);
be0e5c09 850 if (slot == 0)
eb60ceac 851 fixup_low_keys(root, &path, key, 1);
be0e5c09
CM
852 if (slot != nritems) {
853 int i;
854 unsigned int old_data = leaf->items[slot].offset +
855 leaf->items[slot].size;
856
857 /*
858 * item0..itemN ... dataN.offset..dataN.size .. data0.size
859 */
860 /* first correct the data pointers */
861 for (i = slot; i < nritems; i++)
862 leaf->items[i].offset -= data_size;
863
864 /* shift the items */
865 memmove(leaf->items + slot + 1, leaf->items + slot,
866 (nritems - slot) * sizeof(struct item));
867
868 /* shift the data */
869 memmove(leaf->data + data_end - data_size, leaf->data +
870 data_end, old_data - data_end);
871 data_end = old_data;
872 }
74123bd7 873 /* copy the new data in */
be0e5c09
CM
874 memcpy(&leaf->items[slot].key, key, sizeof(struct key));
875 leaf->items[slot].offset = data_end - data_size;
876 leaf->items[slot].size = data_size;
877 memcpy(leaf->data + data_end - data_size, data, data_size);
878 leaf->header.nritems += 1;
eb60ceac 879 write_tree_block(root, leaf_buf);
be0e5c09
CM
880 if (leaf_free_space(leaf) < 0)
881 BUG();
eb60ceac 882 release_path(root, &path);
be0e5c09
CM
883 return 0;
884}
885
74123bd7 886/*
5de08d7d 887 * delete the pointer from a given node.
74123bd7
CM
888 *
889 * If the delete empties a node, the node is removed from the tree,
890 * continuing all the way the root if required. The root is converted into
891 * a leaf if all the nodes are emptied.
892 */
be0e5c09
CM
893int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
894{
895 int slot;
eb60ceac 896 struct tree_buffer *t;
be0e5c09
CM
897 struct node *node;
898 int nritems;
9a8dd150 899 u64 blocknr;
be0e5c09
CM
900
901 while(1) {
eb60ceac
CM
902 t = path->nodes[level];
903 if (!t)
be0e5c09 904 break;
eb60ceac 905 node = &t->node;
be0e5c09
CM
906 slot = path->slots[level];
907 nritems = node->header.nritems;
908
909 if (slot != nritems -1) {
910 memmove(node->keys + slot, node->keys + slot + 1,
911 sizeof(struct key) * (nritems - slot - 1));
912 memmove(node->blockptrs + slot,
913 node->blockptrs + slot + 1,
914 sizeof(u64) * (nritems - slot - 1));
915 }
916 node->header.nritems--;
eb60ceac 917 write_tree_block(root, t);
9a8dd150 918 blocknr = t->blocknr;
be0e5c09 919 if (node->header.nritems != 0) {
be0e5c09 920 if (slot == 0)
eb60ceac
CM
921 fixup_low_keys(root, path, node->keys,
922 level + 1);
5de08d7d 923 break;
be0e5c09 924 }
eb60ceac
CM
925 if (t == root->node) {
926 /* just turn the root into a leaf and break */
927 root->node->node.header.flags = node_level(0);
928 write_tree_block(root, t);
be0e5c09
CM
929 break;
930 }
931 level++;
9a8dd150 932 free_extent(root, blocknr, 1);
be0e5c09
CM
933 if (!path->nodes[level])
934 BUG();
be0e5c09
CM
935 }
936 return 0;
937}
938
74123bd7
CM
939/*
940 * delete the item at the leaf level in path. If that empties
941 * the leaf, remove it from the tree
942 */
4920c9ac 943int del_item(struct ctree_root *root, struct ctree_path *path)
be0e5c09 944{
be0e5c09
CM
945 int slot;
946 struct leaf *leaf;
eb60ceac 947 struct tree_buffer *leaf_buf;
be0e5c09
CM
948 int doff;
949 int dsize;
950
eb60ceac
CM
951 leaf_buf = path->nodes[0];
952 leaf = &leaf_buf->leaf;
4920c9ac 953 slot = path->slots[0];
be0e5c09
CM
954 doff = leaf->items[slot].offset;
955 dsize = leaf->items[slot].size;
956
957 if (slot != leaf->header.nritems - 1) {
958 int i;
959 int data_end = leaf_data_end(leaf);
960 memmove(leaf->data + data_end + dsize,
961 leaf->data + data_end,
962 doff - data_end);
963 for (i = slot + 1; i < leaf->header.nritems; i++)
964 leaf->items[i].offset += dsize;
965 memmove(leaf->items + slot, leaf->items + slot + 1,
966 sizeof(struct item) *
967 (leaf->header.nritems - slot - 1));
968 }
969 leaf->header.nritems -= 1;
74123bd7 970 /* delete the leaf if we've emptied it */
be0e5c09 971 if (leaf->header.nritems == 0) {
eb60ceac
CM
972 if (leaf_buf == root->node) {
973 leaf->header.flags = node_level(0);
974 write_tree_block(root, leaf_buf);
9a8dd150 975 } else {
4920c9ac 976 del_ptr(root, path, 1);
9a8dd150
CM
977 free_extent(root, leaf_buf->blocknr, 1);
978 }
be0e5c09 979 } else {
5de08d7d 980 int used = leaf_space_used(leaf, 0, leaf->header.nritems);
be0e5c09 981 if (slot == 0)
eb60ceac
CM
982 fixup_low_keys(root, path, &leaf->items[0].key, 1);
983 write_tree_block(root, leaf_buf);
74123bd7 984 /* delete the leaf if it is mostly empty */
5de08d7d 985 if (used < LEAF_DATA_SIZE / 3) {
be0e5c09
CM
986 /* push_leaf_left fixes the path.
987 * make sure the path still points to our leaf
988 * for possible call to del_ptr below
989 */
4920c9ac 990 slot = path->slots[1];
eb60ceac 991 leaf_buf->count++;
4920c9ac 992 push_leaf_left(root, path, 1);
00ec4c51
CM
993 if (leaf->header.nritems)
994 push_leaf_right(root, path, 1);
be0e5c09 995 if (leaf->header.nritems == 0) {
5de08d7d 996 u64 blocknr = leaf_buf->blocknr;
4920c9ac
CM
997 path->slots[1] = slot;
998 del_ptr(root, path, 1);
5de08d7d
CM
999 tree_block_release(root, leaf_buf);
1000 free_extent(root, blocknr, 1);
1001 } else {
1002 tree_block_release(root, leaf_buf);
be0e5c09
CM
1003 }
1004 }
1005 }
1006 return 0;
1007}
1008
97571fd0
CM
1009/*
1010 * walk up the tree as far as required to find the next leaf.
1011 * returns 0 if it found something or -1 if there are no greater leaves.
1012 */
d97e63b6
CM
1013int next_leaf(struct ctree_root *root, struct ctree_path *path)
1014{
1015 int slot;
1016 int level = 1;
1017 u64 blocknr;
1018 struct tree_buffer *c;
cfaa7295 1019 struct tree_buffer *next = NULL;
d97e63b6
CM
1020
1021 while(level < MAX_LEVEL) {
1022 if (!path->nodes[level])
1023 return -1;
1024 slot = path->slots[level] + 1;
1025 c = path->nodes[level];
1026 if (slot >= c->node.header.nritems) {
1027 level++;
1028 continue;
1029 }
1030 blocknr = c->node.blockptrs[slot];
cfaa7295
CM
1031 if (next)
1032 tree_block_release(root, next);
d97e63b6
CM
1033 next = read_tree_block(root, blocknr);
1034 break;
1035 }
1036 path->slots[level] = slot;
1037 while(1) {
1038 level--;
1039 c = path->nodes[level];
1040 tree_block_release(root, c);
1041 path->nodes[level] = next;
1042 path->slots[level] = 0;
1043 if (!level)
1044 break;
1045 next = read_tree_block(root, next->node.blockptrs[0]);
1046 }
1047 return 0;
1048}
1049
fec577fb
CM
1050/* some sample code to insert,search & delete items */
1051#if 0
be0e5c09
CM
1052/* for testing only */
1053int next_key(int i, int max_key) {
5de08d7d 1054 return rand() % max_key;
00ec4c51 1055 //return i;
be0e5c09 1056}
be0e5c09 1057int main() {
be0e5c09 1058 struct key ins;
4920c9ac 1059 struct key last = { (u64)-1, 0, 0};
be0e5c09
CM
1060 char *buf;
1061 int i;
1062 int num;
1063 int ret;
5de08d7d
CM
1064 int run_size = 20000000;
1065 int max_key = 100000000;
be0e5c09
CM
1066 int tree_size = 0;
1067 struct ctree_path path;
cfaa7295 1068 struct ctree_super_block super;
fec577fb 1069 struct ctree_root *root;
be0e5c09 1070
eb60ceac
CM
1071 radix_tree_init();
1072
1073
cfaa7295 1074 root = open_ctree("dbfile", &super);
be0e5c09 1075 srand(55);
be0e5c09
CM
1076 for (i = 0; i < run_size; i++) {
1077 buf = malloc(64);
1078 num = next_key(i, max_key);
1079 // num = i;
1080 sprintf(buf, "string-%d", num);
5de08d7d 1081 if (i % 10000 == 0)
00ec4c51 1082 fprintf(stderr, "insert %d:%d\n", num, i);
be0e5c09
CM
1083 ins.objectid = num;
1084 ins.offset = 0;
1085 ins.flags = 0;
eb60ceac 1086 ret = insert_item(root, &ins, buf, strlen(buf));
be0e5c09
CM
1087 if (!ret)
1088 tree_size++;
5de08d7d 1089 free(buf);
be0e5c09 1090 }
cfaa7295 1091 write_ctree_super(root, &super);
eb60ceac 1092 close_ctree(root);
cfaa7295
CM
1093
1094 root = open_ctree("dbfile", &super);
eb60ceac 1095 printf("starting search\n");
be0e5c09
CM
1096 srand(55);
1097 for (i = 0; i < run_size; i++) {
1098 num = next_key(i, max_key);
1099 ins.objectid = num;
be0e5c09 1100 init_path(&path);
5de08d7d 1101 if (i % 10000 == 0)
00ec4c51 1102 fprintf(stderr, "search %d:%d\n", num, i);
5c680ed6 1103 ret = search_slot(root, &ins, &path, 0);
be0e5c09 1104 if (ret) {
eb60ceac 1105 print_tree(root, root->node);
be0e5c09
CM
1106 printf("unable to find %d\n", num);
1107 exit(1);
1108 }
eb60ceac
CM
1109 release_path(root, &path);
1110 }
cfaa7295 1111 write_ctree_super(root, &super);
eb60ceac 1112 close_ctree(root);
cfaa7295 1113 root = open_ctree("dbfile", &super);
eb60ceac
CM
1114 printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
1115 node_level(root->node->node.header.flags),
1116 root->node->node.header.nritems,
1117 NODEPTRS_PER_BLOCK - root->node->node.header.nritems);
1118 printf("all searches good, deleting some items\n");
be0e5c09
CM
1119 i = 0;
1120 srand(55);
4920c9ac
CM
1121 for (i = 0 ; i < run_size/4; i++) {
1122 num = next_key(i, max_key);
1123 ins.objectid = num;
1124 init_path(&path);
5de08d7d
CM
1125 ret = search_slot(root, &ins, &path, -1);
1126 if (!ret) {
1127 if (i % 10000 == 0)
00ec4c51 1128 fprintf(stderr, "del %d:%d\n", num, i);
5de08d7d
CM
1129 ret = del_item(root, &path);
1130 if (ret != 0)
1131 BUG();
1132 tree_size--;
1133 }
eb60ceac 1134 release_path(root, &path);
4920c9ac 1135 }
5de08d7d
CM
1136 write_ctree_super(root, &super);
1137 close_ctree(root);
1138 root = open_ctree("dbfile", &super);
4920c9ac 1139 srand(128);
be0e5c09 1140 for (i = 0; i < run_size; i++) {
4920c9ac 1141 buf = malloc(64);
be0e5c09 1142 num = next_key(i, max_key);
4920c9ac 1143 sprintf(buf, "string-%d", num);
be0e5c09 1144 ins.objectid = num;
5de08d7d 1145 if (i % 10000 == 0)
00ec4c51 1146 fprintf(stderr, "insert %d:%d\n", num, i);
eb60ceac 1147 ret = insert_item(root, &ins, buf, strlen(buf));
4920c9ac
CM
1148 if (!ret)
1149 tree_size++;
5de08d7d 1150 free(buf);
4920c9ac 1151 }
cfaa7295 1152 write_ctree_super(root, &super);
eb60ceac 1153 close_ctree(root);
cfaa7295 1154 root = open_ctree("dbfile", &super);
eb60ceac 1155 srand(128);
9a8dd150 1156 printf("starting search2\n");
eb60ceac
CM
1157 for (i = 0; i < run_size; i++) {
1158 num = next_key(i, max_key);
1159 ins.objectid = num;
1160 init_path(&path);
5de08d7d 1161 if (i % 10000 == 0)
00ec4c51 1162 fprintf(stderr, "search %d:%d\n", num, i);
5c680ed6 1163 ret = search_slot(root, &ins, &path, 0);
eb60ceac
CM
1164 if (ret) {
1165 print_tree(root, root->node);
1166 printf("unable to find %d\n", num);
1167 exit(1);
1168 }
1169 release_path(root, &path);
1170 }
1171 printf("starting big long delete run\n");
1172 while(root->node && root->node->node.header.nritems > 0) {
4920c9ac
CM
1173 struct leaf *leaf;
1174 int slot;
1175 ins.objectid = (u64)-1;
1176 init_path(&path);
5de08d7d 1177 ret = search_slot(root, &ins, &path, -1);
4920c9ac
CM
1178 if (ret == 0)
1179 BUG();
1180
eb60ceac 1181 leaf = &path.nodes[0]->leaf;
4920c9ac
CM
1182 slot = path.slots[0];
1183 if (slot != leaf->header.nritems)
1184 BUG();
1185 while(path.slots[0] > 0) {
1186 path.slots[0] -= 1;
1187 slot = path.slots[0];
eb60ceac 1188 leaf = &path.nodes[0]->leaf;
4920c9ac
CM
1189
1190 if (comp_keys(&last, &leaf->items[slot].key) <= 0)
1191 BUG();
1192 memcpy(&last, &leaf->items[slot].key, sizeof(last));
5de08d7d
CM
1193 if (tree_size % 10000 == 0)
1194 printf("big del %d:%d\n", tree_size, i);
eb60ceac
CM
1195 ret = del_item(root, &path);
1196 if (ret != 0) {
1197 printf("del_item returned %d\n", ret);
4920c9ac 1198 BUG();
eb60ceac 1199 }
4920c9ac
CM
1200 tree_size--;
1201 }
eb60ceac 1202 release_path(root, &path);
be0e5c09 1203 }
4920c9ac 1204 printf("tree size is now %d\n", tree_size);
9a8dd150 1205 printf("map tree\n");
00ec4c51 1206 print_tree(root->extent_root, root->extent_root->node);
5de08d7d
CM
1207 write_ctree_super(root, &super);
1208 close_ctree(root);
be0e5c09
CM
1209 return 0;
1210}
fec577fb 1211#endif
This page took 0.077358 seconds and 5 git commands to generate.