btrfs: move checks for DUMMY_ROOT into a helper
[deliverable/linux.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
afe5fea7
TI
40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
5de865ee 42static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 43 struct extent_buffer *eb);
d97e63b6 44
df24a2b9 45struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 46{
df24a2b9 47 struct btrfs_path *path;
e00f7308 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 49 return path;
2c90e5d6
CM
50}
51
b4ce94de
CM
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
b4ce94de 77 */
4008c04a 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 79 struct extent_buffer *held, int held_rw)
b4ce94de
CM
80{
81 int i;
4008c04a
CM
82
83#ifdef CONFIG_DEBUG_LOCK_ALLOC
84 /* lockdep really cares that we take all of these spinlocks
85 * in the right order. If any of the locks in the path are not
86 * currently blocking, it is going to complain. So, make really
87 * really sure by forcing the path to blocking before we clear
88 * the path blocking.
89 */
bd681513
CM
90 if (held) {
91 btrfs_set_lock_blocking_rw(held, held_rw);
92 if (held_rw == BTRFS_WRITE_LOCK)
93 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94 else if (held_rw == BTRFS_READ_LOCK)
95 held_rw = BTRFS_READ_LOCK_BLOCKING;
96 }
4008c04a
CM
97 btrfs_set_path_blocking(p);
98#endif
99
100 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
101 if (p->nodes[i] && p->locks[i]) {
102 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104 p->locks[i] = BTRFS_WRITE_LOCK;
105 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106 p->locks[i] = BTRFS_READ_LOCK;
107 }
b4ce94de 108 }
4008c04a
CM
109
110#ifdef CONFIG_DEBUG_LOCK_ALLOC
111 if (held)
bd681513 112 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 113#endif
b4ce94de
CM
114}
115
d352ac68 116/* this also releases the path */
df24a2b9 117void btrfs_free_path(struct btrfs_path *p)
be0e5c09 118{
ff175d57
JJ
119 if (!p)
120 return;
b3b4aa74 121 btrfs_release_path(p);
df24a2b9 122 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
123}
124
d352ac68
CM
125/*
126 * path release drops references on the extent buffers in the path
127 * and it drops any locks held by this path
128 *
129 * It is safe to call this on paths that no locks or extent buffers held.
130 */
b3b4aa74 131noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
132{
133 int i;
a2135011 134
234b63a0 135 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 136 p->slots[i] = 0;
eb60ceac 137 if (!p->nodes[i])
925baedd
CM
138 continue;
139 if (p->locks[i]) {
bd681513 140 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
141 p->locks[i] = 0;
142 }
5f39d397 143 free_extent_buffer(p->nodes[i]);
3f157a2f 144 p->nodes[i] = NULL;
eb60ceac
CM
145 }
146}
147
d352ac68
CM
148/*
149 * safely gets a reference on the root node of a tree. A lock
150 * is not taken, so a concurrent writer may put a different node
151 * at the root of the tree. See btrfs_lock_root_node for the
152 * looping required.
153 *
154 * The extent buffer returned by this has a reference taken, so
155 * it won't disappear. It may stop being the root of the tree
156 * at any time because there are no locks held.
157 */
925baedd
CM
158struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159{
160 struct extent_buffer *eb;
240f62c8 161
3083ee2e
JB
162 while (1) {
163 rcu_read_lock();
164 eb = rcu_dereference(root->node);
165
166 /*
167 * RCU really hurts here, we could free up the root node because
168 * it was cow'ed but we may not get the new root node yet so do
169 * the inc_not_zero dance and if it doesn't work then
170 * synchronize_rcu and try again.
171 */
172 if (atomic_inc_not_zero(&eb->refs)) {
173 rcu_read_unlock();
174 break;
175 }
176 rcu_read_unlock();
177 synchronize_rcu();
178 }
925baedd
CM
179 return eb;
180}
181
d352ac68
CM
182/* loop around taking references on and locking the root node of the
183 * tree until you end up with a lock on the root. A locked buffer
184 * is returned, with a reference held.
185 */
925baedd
CM
186struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187{
188 struct extent_buffer *eb;
189
d397712b 190 while (1) {
925baedd
CM
191 eb = btrfs_root_node(root);
192 btrfs_tree_lock(eb);
240f62c8 193 if (eb == root->node)
925baedd 194 break;
925baedd
CM
195 btrfs_tree_unlock(eb);
196 free_extent_buffer(eb);
197 }
198 return eb;
199}
200
bd681513
CM
201/* loop around taking references on and locking the root node of the
202 * tree until you end up with a lock on the root. A locked buffer
203 * is returned, with a reference held.
204 */
48a3b636 205static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
206{
207 struct extent_buffer *eb;
208
209 while (1) {
210 eb = btrfs_root_node(root);
211 btrfs_tree_read_lock(eb);
212 if (eb == root->node)
213 break;
214 btrfs_tree_read_unlock(eb);
215 free_extent_buffer(eb);
216 }
217 return eb;
218}
219
d352ac68
CM
220/* cowonly root (everything not a reference counted cow subvolume), just get
221 * put onto a simple dirty list. transaction.c walks this to make sure they
222 * get properly updated on disk.
223 */
0b86a832
CM
224static void add_root_to_dirty_list(struct btrfs_root *root)
225{
e5846fc6 226 spin_lock(&root->fs_info->trans_lock);
27cdeb70
MX
227 if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
228 list_empty(&root->dirty_list)) {
0b86a832
CM
229 list_add(&root->dirty_list,
230 &root->fs_info->dirty_cowonly_roots);
231 }
e5846fc6 232 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
233}
234
d352ac68
CM
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
be20aa9d
CM
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
245 struct extent_buffer *cow;
be20aa9d
CM
246 int ret = 0;
247 int level;
5d4f98a2 248 struct btrfs_disk_key disk_key;
be20aa9d 249
27cdeb70
MX
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->fs_info->running_transaction->transid);
252 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
253 trans->transid != root->last_trans);
be20aa9d
CM
254
255 level = btrfs_header_level(buf);
5d4f98a2
YZ
256 if (level == 0)
257 btrfs_item_key(buf, &disk_key, 0);
258 else
259 btrfs_node_key(buf, &disk_key, 0);
31840ae1 260
5d4f98a2
YZ
261 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
262 new_root_objectid, &disk_key, level,
5581a51a 263 buf->start, 0);
5d4f98a2 264 if (IS_ERR(cow))
be20aa9d
CM
265 return PTR_ERR(cow);
266
267 copy_extent_buffer(cow, buf, 0, 0, cow->len);
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 277
0a4e5586 278 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
2b82032c
YZ
279 BTRFS_FSID_SIZE);
280
be20aa9d 281 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 282 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 283 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 284 else
e339a6b0 285 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 286
be20aa9d
CM
287 if (ret)
288 return ret;
289
290 btrfs_mark_buffer_dirty(cow);
291 *cow_ret = cow;
292 return 0;
293}
294
bd989ba3
JS
295enum mod_log_op {
296 MOD_LOG_KEY_REPLACE,
297 MOD_LOG_KEY_ADD,
298 MOD_LOG_KEY_REMOVE,
299 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301 MOD_LOG_MOVE_KEYS,
302 MOD_LOG_ROOT_REPLACE,
303};
304
305struct tree_mod_move {
306 int dst_slot;
307 int nr_items;
308};
309
310struct tree_mod_root {
311 u64 logical;
312 u8 level;
313};
314
315struct tree_mod_elem {
316 struct rb_node node;
317 u64 index; /* shifted logical */
097b8a7c 318 u64 seq;
bd989ba3
JS
319 enum mod_log_op op;
320
321 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 int slot;
323
324 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 u64 generation;
326
327 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328 struct btrfs_disk_key key;
329 u64 blockptr;
330
331 /* this is used for op == MOD_LOG_MOVE_KEYS */
332 struct tree_mod_move move;
333
334 /* this is used for op == MOD_LOG_ROOT_REPLACE */
335 struct tree_mod_root old_root;
336};
337
097b8a7c 338static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 339{
097b8a7c 340 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
341}
342
097b8a7c
JS
343static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344{
345 read_unlock(&fs_info->tree_mod_log_lock);
346}
347
348static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349{
350 write_lock(&fs_info->tree_mod_log_lock);
351}
352
353static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354{
355 write_unlock(&fs_info->tree_mod_log_lock);
356}
357
fc36ed7e 358/*
fcebe456 359 * Pull a new tree mod seq number for our operation.
fc36ed7e 360 */
fcebe456 361static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
362{
363 return atomic64_inc_return(&fs_info->tree_mod_seq);
364}
365
097b8a7c
JS
366/*
367 * This adds a new blocker to the tree mod log's blocker list if the @elem
368 * passed does not already have a sequence number set. So when a caller expects
369 * to record tree modifications, it should ensure to set elem->seq to zero
370 * before calling btrfs_get_tree_mod_seq.
371 * Returns a fresh, unused tree log modification sequence number, even if no new
372 * blocker was added.
373 */
374u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
375 struct seq_list *elem)
bd989ba3 376{
097b8a7c 377 tree_mod_log_write_lock(fs_info);
bd989ba3 378 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 379 if (!elem->seq) {
fcebe456 380 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 }
bd989ba3 383 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
384 tree_mod_log_write_unlock(fs_info);
385
fcebe456 386 return elem->seq;
bd989ba3
JS
387}
388
389void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
391{
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
399
400 if (!seq_putting)
401 return;
402
bd989ba3
JS
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
097b8a7c 405 elem->seq = 0;
bd989ba3
JS
406
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 408 if (cur_elem->seq < min_seq) {
bd989ba3
JS
409 if (seq_putting > cur_elem->seq) {
410 /*
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
413 */
097b8a7c
JS
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
bd989ba3
JS
416 }
417 min_seq = cur_elem->seq;
418 }
419 }
097b8a7c
JS
420 spin_unlock(&fs_info->tree_mod_seq_lock);
421
bd989ba3
JS
422 /*
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
425 */
097b8a7c 426 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 431 if (tm->seq > min_seq)
bd989ba3
JS
432 continue;
433 rb_erase(node, tm_root);
bd989ba3
JS
434 kfree(tm);
435 }
097b8a7c 436 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
437}
438
439/*
440 * key order of the log:
441 * index -> sequence
442 *
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
5de865ee
FDBM
446 *
447 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
448 */
449static noinline int
450__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
451{
452 struct rb_root *tm_root;
453 struct rb_node **new;
454 struct rb_node *parent = NULL;
455 struct tree_mod_elem *cur;
c8cc6341
JB
456
457 BUG_ON(!tm);
458
fcebe456 459 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 460
bd989ba3
JS
461 tm_root = &fs_info->tree_mod_log;
462 new = &tm_root->rb_node;
463 while (*new) {
464 cur = container_of(*new, struct tree_mod_elem, node);
465 parent = *new;
466 if (cur->index < tm->index)
467 new = &((*new)->rb_left);
468 else if (cur->index > tm->index)
469 new = &((*new)->rb_right);
097b8a7c 470 else if (cur->seq < tm->seq)
bd989ba3 471 new = &((*new)->rb_left);
097b8a7c 472 else if (cur->seq > tm->seq)
bd989ba3 473 new = &((*new)->rb_right);
5de865ee
FDBM
474 else
475 return -EEXIST;
bd989ba3
JS
476 }
477
478 rb_link_node(&tm->node, parent, new);
479 rb_insert_color(&tm->node, tm_root);
5de865ee 480 return 0;
bd989ba3
JS
481}
482
097b8a7c
JS
483/*
484 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
485 * returns zero with the tree_mod_log_lock acquired. The caller must hold
486 * this until all tree mod log insertions are recorded in the rb tree and then
487 * call tree_mod_log_write_unlock() to release.
488 */
e9b7fd4d
JS
489static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
490 struct extent_buffer *eb) {
491 smp_mb();
492 if (list_empty(&(fs_info)->tree_mod_seq_list))
493 return 1;
097b8a7c
JS
494 if (eb && btrfs_header_level(eb) == 0)
495 return 1;
5de865ee
FDBM
496
497 tree_mod_log_write_lock(fs_info);
498 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
499 tree_mod_log_write_unlock(fs_info);
500 return 1;
501 }
502
e9b7fd4d
JS
503 return 0;
504}
505
5de865ee
FDBM
506/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
507static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
508 struct extent_buffer *eb)
509{
510 smp_mb();
511 if (list_empty(&(fs_info)->tree_mod_seq_list))
512 return 0;
513 if (eb && btrfs_header_level(eb) == 0)
514 return 0;
515
516 return 1;
517}
518
519static struct tree_mod_elem *
520alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
521 enum mod_log_op op, gfp_t flags)
bd989ba3 522{
097b8a7c 523 struct tree_mod_elem *tm;
bd989ba3 524
c8cc6341
JB
525 tm = kzalloc(sizeof(*tm), flags);
526 if (!tm)
5de865ee 527 return NULL;
bd989ba3
JS
528
529 tm->index = eb->start >> PAGE_CACHE_SHIFT;
530 if (op != MOD_LOG_KEY_ADD) {
531 btrfs_node_key(eb, &tm->key, slot);
532 tm->blockptr = btrfs_node_blockptr(eb, slot);
533 }
534 tm->op = op;
535 tm->slot = slot;
536 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 537 RB_CLEAR_NODE(&tm->node);
bd989ba3 538
5de865ee 539 return tm;
097b8a7c
JS
540}
541
542static noinline int
c8cc6341
JB
543tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
544 struct extent_buffer *eb, int slot,
545 enum mod_log_op op, gfp_t flags)
097b8a7c 546{
5de865ee
FDBM
547 struct tree_mod_elem *tm;
548 int ret;
549
550 if (!tree_mod_need_log(fs_info, eb))
551 return 0;
552
553 tm = alloc_tree_mod_elem(eb, slot, op, flags);
554 if (!tm)
555 return -ENOMEM;
556
557 if (tree_mod_dont_log(fs_info, eb)) {
558 kfree(tm);
097b8a7c 559 return 0;
5de865ee
FDBM
560 }
561
562 ret = __tree_mod_log_insert(fs_info, tm);
563 tree_mod_log_write_unlock(fs_info);
564 if (ret)
565 kfree(tm);
097b8a7c 566
5de865ee 567 return ret;
097b8a7c
JS
568}
569
bd989ba3
JS
570static noinline int
571tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
572 struct extent_buffer *eb, int dst_slot, int src_slot,
573 int nr_items, gfp_t flags)
574{
5de865ee
FDBM
575 struct tree_mod_elem *tm = NULL;
576 struct tree_mod_elem **tm_list = NULL;
577 int ret = 0;
bd989ba3 578 int i;
5de865ee 579 int locked = 0;
bd989ba3 580
5de865ee 581 if (!tree_mod_need_log(fs_info, eb))
f395694c 582 return 0;
bd989ba3 583
5de865ee
FDBM
584 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
585 if (!tm_list)
586 return -ENOMEM;
587
588 tm = kzalloc(sizeof(*tm), flags);
589 if (!tm) {
590 ret = -ENOMEM;
591 goto free_tms;
592 }
593
594 tm->index = eb->start >> PAGE_CACHE_SHIFT;
595 tm->slot = src_slot;
596 tm->move.dst_slot = dst_slot;
597 tm->move.nr_items = nr_items;
598 tm->op = MOD_LOG_MOVE_KEYS;
599
600 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
601 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
602 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
603 if (!tm_list[i]) {
604 ret = -ENOMEM;
605 goto free_tms;
606 }
607 }
608
609 if (tree_mod_dont_log(fs_info, eb))
610 goto free_tms;
611 locked = 1;
612
01763a2e
JS
613 /*
614 * When we override something during the move, we log these removals.
615 * This can only happen when we move towards the beginning of the
616 * buffer, i.e. dst_slot < src_slot.
617 */
bd989ba3 618 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
5de865ee
FDBM
619 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
620 if (ret)
621 goto free_tms;
bd989ba3
JS
622 }
623
5de865ee
FDBM
624 ret = __tree_mod_log_insert(fs_info, tm);
625 if (ret)
626 goto free_tms;
627 tree_mod_log_write_unlock(fs_info);
628 kfree(tm_list);
f395694c 629
5de865ee
FDBM
630 return 0;
631free_tms:
632 for (i = 0; i < nr_items; i++) {
633 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
634 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
635 kfree(tm_list[i]);
636 }
637 if (locked)
638 tree_mod_log_write_unlock(fs_info);
639 kfree(tm_list);
640 kfree(tm);
bd989ba3 641
5de865ee 642 return ret;
bd989ba3
JS
643}
644
5de865ee
FDBM
645static inline int
646__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
647 struct tree_mod_elem **tm_list,
648 int nritems)
097b8a7c 649{
5de865ee 650 int i, j;
097b8a7c
JS
651 int ret;
652
097b8a7c 653 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
654 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
655 if (ret) {
656 for (j = nritems - 1; j > i; j--)
657 rb_erase(&tm_list[j]->node,
658 &fs_info->tree_mod_log);
659 return ret;
660 }
097b8a7c 661 }
5de865ee
FDBM
662
663 return 0;
097b8a7c
JS
664}
665
bd989ba3
JS
666static noinline int
667tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
668 struct extent_buffer *old_root,
90f8d62e
JS
669 struct extent_buffer *new_root, gfp_t flags,
670 int log_removal)
bd989ba3 671{
5de865ee
FDBM
672 struct tree_mod_elem *tm = NULL;
673 struct tree_mod_elem **tm_list = NULL;
674 int nritems = 0;
675 int ret = 0;
676 int i;
bd989ba3 677
5de865ee 678 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
679 return 0;
680
5de865ee
FDBM
681 if (log_removal && btrfs_header_level(old_root) > 0) {
682 nritems = btrfs_header_nritems(old_root);
683 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
684 flags);
685 if (!tm_list) {
686 ret = -ENOMEM;
687 goto free_tms;
688 }
689 for (i = 0; i < nritems; i++) {
690 tm_list[i] = alloc_tree_mod_elem(old_root, i,
691 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
692 if (!tm_list[i]) {
693 ret = -ENOMEM;
694 goto free_tms;
695 }
696 }
697 }
d9abbf1c 698
c8cc6341 699 tm = kzalloc(sizeof(*tm), flags);
5de865ee
FDBM
700 if (!tm) {
701 ret = -ENOMEM;
702 goto free_tms;
703 }
bd989ba3
JS
704
705 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
706 tm->old_root.logical = old_root->start;
707 tm->old_root.level = btrfs_header_level(old_root);
708 tm->generation = btrfs_header_generation(old_root);
709 tm->op = MOD_LOG_ROOT_REPLACE;
710
5de865ee
FDBM
711 if (tree_mod_dont_log(fs_info, NULL))
712 goto free_tms;
713
714 if (tm_list)
715 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
716 if (!ret)
717 ret = __tree_mod_log_insert(fs_info, tm);
718
719 tree_mod_log_write_unlock(fs_info);
720 if (ret)
721 goto free_tms;
722 kfree(tm_list);
723
724 return ret;
725
726free_tms:
727 if (tm_list) {
728 for (i = 0; i < nritems; i++)
729 kfree(tm_list[i]);
730 kfree(tm_list);
731 }
732 kfree(tm);
733
734 return ret;
bd989ba3
JS
735}
736
737static struct tree_mod_elem *
738__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
739 int smallest)
740{
741 struct rb_root *tm_root;
742 struct rb_node *node;
743 struct tree_mod_elem *cur = NULL;
744 struct tree_mod_elem *found = NULL;
745 u64 index = start >> PAGE_CACHE_SHIFT;
746
097b8a7c 747 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
748 tm_root = &fs_info->tree_mod_log;
749 node = tm_root->rb_node;
750 while (node) {
751 cur = container_of(node, struct tree_mod_elem, node);
752 if (cur->index < index) {
753 node = node->rb_left;
754 } else if (cur->index > index) {
755 node = node->rb_right;
097b8a7c 756 } else if (cur->seq < min_seq) {
bd989ba3
JS
757 node = node->rb_left;
758 } else if (!smallest) {
759 /* we want the node with the highest seq */
760 if (found)
097b8a7c 761 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
762 found = cur;
763 node = node->rb_left;
097b8a7c 764 } else if (cur->seq > min_seq) {
bd989ba3
JS
765 /* we want the node with the smallest seq */
766 if (found)
097b8a7c 767 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
768 found = cur;
769 node = node->rb_right;
770 } else {
771 found = cur;
772 break;
773 }
774 }
097b8a7c 775 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
776
777 return found;
778}
779
780/*
781 * this returns the element from the log with the smallest time sequence
782 * value that's in the log (the oldest log item). any element with a time
783 * sequence lower than min_seq will be ignored.
784 */
785static struct tree_mod_elem *
786tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
787 u64 min_seq)
788{
789 return __tree_mod_log_search(fs_info, start, min_seq, 1);
790}
791
792/*
793 * this returns the element from the log with the largest time sequence
794 * value that's in the log (the most recent log item). any element with
795 * a time sequence lower than min_seq will be ignored.
796 */
797static struct tree_mod_elem *
798tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
799{
800 return __tree_mod_log_search(fs_info, start, min_seq, 0);
801}
802
5de865ee 803static noinline int
bd989ba3
JS
804tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
805 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 806 unsigned long src_offset, int nr_items)
bd989ba3 807{
5de865ee
FDBM
808 int ret = 0;
809 struct tree_mod_elem **tm_list = NULL;
810 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 811 int i;
5de865ee 812 int locked = 0;
bd989ba3 813
5de865ee
FDBM
814 if (!tree_mod_need_log(fs_info, NULL))
815 return 0;
bd989ba3 816
c8cc6341 817 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
818 return 0;
819
820 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
821 GFP_NOFS);
822 if (!tm_list)
823 return -ENOMEM;
bd989ba3 824
5de865ee
FDBM
825 tm_list_add = tm_list;
826 tm_list_rem = tm_list + nr_items;
bd989ba3 827 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
828 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
829 MOD_LOG_KEY_REMOVE, GFP_NOFS);
830 if (!tm_list_rem[i]) {
831 ret = -ENOMEM;
832 goto free_tms;
833 }
834
835 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
836 MOD_LOG_KEY_ADD, GFP_NOFS);
837 if (!tm_list_add[i]) {
838 ret = -ENOMEM;
839 goto free_tms;
840 }
841 }
842
843 if (tree_mod_dont_log(fs_info, NULL))
844 goto free_tms;
845 locked = 1;
846
847 for (i = 0; i < nr_items; i++) {
848 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
849 if (ret)
850 goto free_tms;
851 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
852 if (ret)
853 goto free_tms;
bd989ba3 854 }
5de865ee
FDBM
855
856 tree_mod_log_write_unlock(fs_info);
857 kfree(tm_list);
858
859 return 0;
860
861free_tms:
862 for (i = 0; i < nr_items * 2; i++) {
863 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
864 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
865 kfree(tm_list[i]);
866 }
867 if (locked)
868 tree_mod_log_write_unlock(fs_info);
869 kfree(tm_list);
870
871 return ret;
bd989ba3
JS
872}
873
874static inline void
875tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
876 int dst_offset, int src_offset, int nr_items)
877{
878 int ret;
879 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
880 nr_items, GFP_NOFS);
881 BUG_ON(ret < 0);
882}
883
097b8a7c 884static noinline void
bd989ba3 885tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 886 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
887{
888 int ret;
889
78357766 890 ret = tree_mod_log_insert_key(fs_info, eb, slot,
c8cc6341
JB
891 MOD_LOG_KEY_REPLACE,
892 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
893 BUG_ON(ret < 0);
894}
895
5de865ee 896static noinline int
097b8a7c 897tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 898{
5de865ee
FDBM
899 struct tree_mod_elem **tm_list = NULL;
900 int nritems = 0;
901 int i;
902 int ret = 0;
903
904 if (btrfs_header_level(eb) == 0)
905 return 0;
906
907 if (!tree_mod_need_log(fs_info, NULL))
908 return 0;
909
910 nritems = btrfs_header_nritems(eb);
911 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
912 GFP_NOFS);
913 if (!tm_list)
914 return -ENOMEM;
915
916 for (i = 0; i < nritems; i++) {
917 tm_list[i] = alloc_tree_mod_elem(eb, i,
918 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
919 if (!tm_list[i]) {
920 ret = -ENOMEM;
921 goto free_tms;
922 }
923 }
924
e9b7fd4d 925 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
926 goto free_tms;
927
928 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
929 tree_mod_log_write_unlock(fs_info);
930 if (ret)
931 goto free_tms;
932 kfree(tm_list);
933
934 return 0;
935
936free_tms:
937 for (i = 0; i < nritems; i++)
938 kfree(tm_list[i]);
939 kfree(tm_list);
940
941 return ret;
bd989ba3
JS
942}
943
097b8a7c 944static noinline void
bd989ba3 945tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
946 struct extent_buffer *new_root_node,
947 int log_removal)
bd989ba3
JS
948{
949 int ret;
bd989ba3 950 ret = tree_mod_log_insert_root(root->fs_info, root->node,
90f8d62e 951 new_root_node, GFP_NOFS, log_removal);
bd989ba3
JS
952 BUG_ON(ret < 0);
953}
954
5d4f98a2
YZ
955/*
956 * check if the tree block can be shared by multiple trees
957 */
958int btrfs_block_can_be_shared(struct btrfs_root *root,
959 struct extent_buffer *buf)
960{
961 /*
962 * Tree blocks not in refernece counted trees and tree roots
963 * are never shared. If a block was allocated after the last
964 * snapshot and the block was not allocated by tree relocation,
965 * we know the block is not shared.
966 */
27cdeb70 967 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
968 buf != root->node && buf != root->commit_root &&
969 (btrfs_header_generation(buf) <=
970 btrfs_root_last_snapshot(&root->root_item) ||
971 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
972 return 1;
973#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 974 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
975 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
976 return 1;
977#endif
978 return 0;
979}
980
981static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
982 struct btrfs_root *root,
983 struct extent_buffer *buf,
f0486c68
YZ
984 struct extent_buffer *cow,
985 int *last_ref)
5d4f98a2
YZ
986{
987 u64 refs;
988 u64 owner;
989 u64 flags;
990 u64 new_flags = 0;
991 int ret;
992
993 /*
994 * Backrefs update rules:
995 *
996 * Always use full backrefs for extent pointers in tree block
997 * allocated by tree relocation.
998 *
999 * If a shared tree block is no longer referenced by its owner
1000 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1001 * use full backrefs for extent pointers in tree block.
1002 *
1003 * If a tree block is been relocating
1004 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1005 * use full backrefs for extent pointers in tree block.
1006 * The reason for this is some operations (such as drop tree)
1007 * are only allowed for blocks use full backrefs.
1008 */
1009
1010 if (btrfs_block_can_be_shared(root, buf)) {
1011 ret = btrfs_lookup_extent_info(trans, root, buf->start,
3173a18f
JB
1012 btrfs_header_level(buf), 1,
1013 &refs, &flags);
be1a5564
MF
1014 if (ret)
1015 return ret;
e5df9573
MF
1016 if (refs == 0) {
1017 ret = -EROFS;
1018 btrfs_std_error(root->fs_info, ret);
1019 return ret;
1020 }
5d4f98a2
YZ
1021 } else {
1022 refs = 1;
1023 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1024 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1025 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1026 else
1027 flags = 0;
1028 }
1029
1030 owner = btrfs_header_owner(buf);
1031 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1032 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1033
1034 if (refs > 1) {
1035 if ((owner == root->root_key.objectid ||
1036 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1037 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1038 ret = btrfs_inc_ref(trans, root, buf, 1);
79787eaa 1039 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1040
1041 if (root->root_key.objectid ==
1042 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1043 ret = btrfs_dec_ref(trans, root, buf, 0);
79787eaa 1044 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1045 ret = btrfs_inc_ref(trans, root, cow, 1);
79787eaa 1046 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1047 }
1048 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1049 } else {
1050
1051 if (root->root_key.objectid ==
1052 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1053 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1054 else
e339a6b0 1055 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1056 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1057 }
1058 if (new_flags != 0) {
b1c79e09
JB
1059 int level = btrfs_header_level(buf);
1060
5d4f98a2
YZ
1061 ret = btrfs_set_disk_extent_flags(trans, root,
1062 buf->start,
1063 buf->len,
b1c79e09 1064 new_flags, level, 0);
be1a5564
MF
1065 if (ret)
1066 return ret;
5d4f98a2
YZ
1067 }
1068 } else {
1069 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1070 if (root->root_key.objectid ==
1071 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1072 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1073 else
e339a6b0 1074 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1075 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1076 ret = btrfs_dec_ref(trans, root, buf, 1);
79787eaa 1077 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1078 }
1079 clean_tree_block(trans, root, buf);
f0486c68 1080 *last_ref = 1;
5d4f98a2
YZ
1081 }
1082 return 0;
1083}
1084
d352ac68 1085/*
d397712b
CM
1086 * does the dirty work in cow of a single block. The parent block (if
1087 * supplied) is updated to point to the new cow copy. The new buffer is marked
1088 * dirty and returned locked. If you modify the block it needs to be marked
1089 * dirty again.
d352ac68
CM
1090 *
1091 * search_start -- an allocation hint for the new block
1092 *
d397712b
CM
1093 * empty_size -- a hint that you plan on doing more cow. This is the size in
1094 * bytes the allocator should try to find free next to the block it returns.
1095 * This is just a hint and may be ignored by the allocator.
d352ac68 1096 */
d397712b 1097static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1098 struct btrfs_root *root,
1099 struct extent_buffer *buf,
1100 struct extent_buffer *parent, int parent_slot,
1101 struct extent_buffer **cow_ret,
9fa8cfe7 1102 u64 search_start, u64 empty_size)
02217ed2 1103{
5d4f98a2 1104 struct btrfs_disk_key disk_key;
5f39d397 1105 struct extent_buffer *cow;
be1a5564 1106 int level, ret;
f0486c68 1107 int last_ref = 0;
925baedd 1108 int unlock_orig = 0;
5d4f98a2 1109 u64 parent_start;
7bb86316 1110
925baedd
CM
1111 if (*cow_ret == buf)
1112 unlock_orig = 1;
1113
b9447ef8 1114 btrfs_assert_tree_locked(buf);
925baedd 1115
27cdeb70
MX
1116 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1117 trans->transid != root->fs_info->running_transaction->transid);
1118 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1119 trans->transid != root->last_trans);
5f39d397 1120
7bb86316 1121 level = btrfs_header_level(buf);
31840ae1 1122
5d4f98a2
YZ
1123 if (level == 0)
1124 btrfs_item_key(buf, &disk_key, 0);
1125 else
1126 btrfs_node_key(buf, &disk_key, 0);
1127
1128 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1129 if (parent)
1130 parent_start = parent->start;
1131 else
1132 parent_start = 0;
1133 } else
1134 parent_start = 0;
1135
1136 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1137 root->root_key.objectid, &disk_key,
5581a51a 1138 level, search_start, empty_size);
54aa1f4d
CM
1139 if (IS_ERR(cow))
1140 return PTR_ERR(cow);
6702ed49 1141
b4ce94de
CM
1142 /* cow is set to blocking by btrfs_init_new_buffer */
1143
5f39d397 1144 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 1145 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1146 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1147 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1148 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1149 BTRFS_HEADER_FLAG_RELOC);
1150 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1151 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1152 else
1153 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1154
0a4e5586 1155 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
2b82032c
YZ
1156 BTRFS_FSID_SIZE);
1157
be1a5564 1158 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1159 if (ret) {
79787eaa 1160 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1161 return ret;
1162 }
1a40e23b 1163
27cdeb70 1164 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4
JB
1165 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1166 if (ret)
1167 return ret;
1168 }
3fd0a558 1169
02217ed2 1170 if (buf == root->node) {
925baedd 1171 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1172 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1173 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1174 parent_start = buf->start;
1175 else
1176 parent_start = 0;
925baedd 1177
5f39d397 1178 extent_buffer_get(cow);
90f8d62e 1179 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1180 rcu_assign_pointer(root->node, cow);
925baedd 1181
f0486c68 1182 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1183 last_ref);
5f39d397 1184 free_extent_buffer(buf);
0b86a832 1185 add_root_to_dirty_list(root);
02217ed2 1186 } else {
5d4f98a2
YZ
1187 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1188 parent_start = parent->start;
1189 else
1190 parent_start = 0;
1191
1192 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e 1193 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
c8cc6341 1194 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1195 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1196 cow->start);
74493f7a
CM
1197 btrfs_set_node_ptr_generation(parent, parent_slot,
1198 trans->transid);
d6025579 1199 btrfs_mark_buffer_dirty(parent);
5de865ee
FDBM
1200 if (last_ref) {
1201 ret = tree_mod_log_free_eb(root->fs_info, buf);
1202 if (ret) {
1203 btrfs_abort_transaction(trans, root, ret);
1204 return ret;
1205 }
1206 }
f0486c68 1207 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1208 last_ref);
02217ed2 1209 }
925baedd
CM
1210 if (unlock_orig)
1211 btrfs_tree_unlock(buf);
3083ee2e 1212 free_extent_buffer_stale(buf);
ccd467d6 1213 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1214 *cow_ret = cow;
02217ed2
CM
1215 return 0;
1216}
1217
5d9e75c4
JS
1218/*
1219 * returns the logical address of the oldest predecessor of the given root.
1220 * entries older than time_seq are ignored.
1221 */
1222static struct tree_mod_elem *
1223__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1224 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1225{
1226 struct tree_mod_elem *tm;
1227 struct tree_mod_elem *found = NULL;
30b0463a 1228 u64 root_logical = eb_root->start;
5d9e75c4
JS
1229 int looped = 0;
1230
1231 if (!time_seq)
35a3621b 1232 return NULL;
5d9e75c4
JS
1233
1234 /*
1235 * the very last operation that's logged for a root is the replacement
1236 * operation (if it is replaced at all). this has the index of the *new*
1237 * root, making it the very first operation that's logged for this root.
1238 */
1239 while (1) {
1240 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1241 time_seq);
1242 if (!looped && !tm)
35a3621b 1243 return NULL;
5d9e75c4 1244 /*
28da9fb4
JS
1245 * if there are no tree operation for the oldest root, we simply
1246 * return it. this should only happen if that (old) root is at
1247 * level 0.
5d9e75c4 1248 */
28da9fb4
JS
1249 if (!tm)
1250 break;
5d9e75c4 1251
28da9fb4
JS
1252 /*
1253 * if there's an operation that's not a root replacement, we
1254 * found the oldest version of our root. normally, we'll find a
1255 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256 */
5d9e75c4
JS
1257 if (tm->op != MOD_LOG_ROOT_REPLACE)
1258 break;
1259
1260 found = tm;
1261 root_logical = tm->old_root.logical;
5d9e75c4
JS
1262 looped = 1;
1263 }
1264
a95236d9
JS
1265 /* if there's no old root to return, return what we found instead */
1266 if (!found)
1267 found = tm;
1268
5d9e75c4
JS
1269 return found;
1270}
1271
1272/*
1273 * tm is a pointer to the first operation to rewind within eb. then, all
1274 * previous operations will be rewinded (until we reach something older than
1275 * time_seq).
1276 */
1277static void
f1ca7e98
JB
1278__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1279 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1280{
1281 u32 n;
1282 struct rb_node *next;
1283 struct tree_mod_elem *tm = first_tm;
1284 unsigned long o_dst;
1285 unsigned long o_src;
1286 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1287
1288 n = btrfs_header_nritems(eb);
f1ca7e98 1289 tree_mod_log_read_lock(fs_info);
097b8a7c 1290 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1291 /*
1292 * all the operations are recorded with the operator used for
1293 * the modification. as we're going backwards, we do the
1294 * opposite of each operation here.
1295 */
1296 switch (tm->op) {
1297 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1298 BUG_ON(tm->slot < n);
1c697d4a 1299 /* Fallthrough */
95c80bb1 1300 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1301 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1302 btrfs_set_node_key(eb, &tm->key, tm->slot);
1303 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1304 btrfs_set_node_ptr_generation(eb, tm->slot,
1305 tm->generation);
4c3e6969 1306 n++;
5d9e75c4
JS
1307 break;
1308 case MOD_LOG_KEY_REPLACE:
1309 BUG_ON(tm->slot >= n);
1310 btrfs_set_node_key(eb, &tm->key, tm->slot);
1311 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1312 btrfs_set_node_ptr_generation(eb, tm->slot,
1313 tm->generation);
1314 break;
1315 case MOD_LOG_KEY_ADD:
19956c7e 1316 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1317 n--;
1318 break;
1319 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1320 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1321 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1322 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1323 tm->move.nr_items * p_size);
1324 break;
1325 case MOD_LOG_ROOT_REPLACE:
1326 /*
1327 * this operation is special. for roots, this must be
1328 * handled explicitly before rewinding.
1329 * for non-roots, this operation may exist if the node
1330 * was a root: root A -> child B; then A gets empty and
1331 * B is promoted to the new root. in the mod log, we'll
1332 * have a root-replace operation for B, a tree block
1333 * that is no root. we simply ignore that operation.
1334 */
1335 break;
1336 }
1337 next = rb_next(&tm->node);
1338 if (!next)
1339 break;
1340 tm = container_of(next, struct tree_mod_elem, node);
1341 if (tm->index != first_tm->index)
1342 break;
1343 }
f1ca7e98 1344 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1345 btrfs_set_header_nritems(eb, n);
1346}
1347
47fb091f
JS
1348/*
1349 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1350 * is returned. If rewind operations happen, a fresh buffer is returned. The
1351 * returned buffer is always read-locked. If the returned buffer is not the
1352 * input buffer, the lock on the input buffer is released and the input buffer
1353 * is freed (its refcount is decremented).
1354 */
5d9e75c4 1355static struct extent_buffer *
9ec72677
JB
1356tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1357 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1358{
1359 struct extent_buffer *eb_rewin;
1360 struct tree_mod_elem *tm;
1361
1362 if (!time_seq)
1363 return eb;
1364
1365 if (btrfs_header_level(eb) == 0)
1366 return eb;
1367
1368 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1369 if (!tm)
1370 return eb;
1371
9ec72677
JB
1372 btrfs_set_path_blocking(path);
1373 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1374
5d9e75c4
JS
1375 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1376 BUG_ON(tm->slot != 0);
1377 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1378 fs_info->tree_root->nodesize);
db7f3436 1379 if (!eb_rewin) {
9ec72677 1380 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1381 free_extent_buffer(eb);
1382 return NULL;
1383 }
5d9e75c4
JS
1384 btrfs_set_header_bytenr(eb_rewin, eb->start);
1385 btrfs_set_header_backref_rev(eb_rewin,
1386 btrfs_header_backref_rev(eb));
1387 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1388 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1389 } else {
1390 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1391 if (!eb_rewin) {
9ec72677 1392 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1393 free_extent_buffer(eb);
1394 return NULL;
1395 }
5d9e75c4
JS
1396 }
1397
9ec72677
JB
1398 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1399 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1400 free_extent_buffer(eb);
1401
47fb091f
JS
1402 extent_buffer_get(eb_rewin);
1403 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1404 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1405 WARN_ON(btrfs_header_nritems(eb_rewin) >
2a745b14 1406 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
5d9e75c4
JS
1407
1408 return eb_rewin;
1409}
1410
8ba97a15
JS
1411/*
1412 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1413 * value. If there are no changes, the current root->root_node is returned. If
1414 * anything changed in between, there's a fresh buffer allocated on which the
1415 * rewind operations are done. In any case, the returned buffer is read locked.
1416 * Returns NULL on error (with no locks held).
1417 */
5d9e75c4
JS
1418static inline struct extent_buffer *
1419get_old_root(struct btrfs_root *root, u64 time_seq)
1420{
1421 struct tree_mod_elem *tm;
30b0463a
JS
1422 struct extent_buffer *eb = NULL;
1423 struct extent_buffer *eb_root;
7bfdcf7f 1424 struct extent_buffer *old;
a95236d9 1425 struct tree_mod_root *old_root = NULL;
4325edd0 1426 u64 old_generation = 0;
a95236d9 1427 u64 logical;
834328a8 1428 u32 blocksize;
5d9e75c4 1429
30b0463a
JS
1430 eb_root = btrfs_read_lock_root_node(root);
1431 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5d9e75c4 1432 if (!tm)
30b0463a 1433 return eb_root;
5d9e75c4 1434
a95236d9
JS
1435 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1436 old_root = &tm->old_root;
1437 old_generation = tm->generation;
1438 logical = old_root->logical;
1439 } else {
30b0463a 1440 logical = eb_root->start;
a95236d9 1441 }
5d9e75c4 1442
a95236d9 1443 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8 1444 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1445 btrfs_tree_read_unlock(eb_root);
1446 free_extent_buffer(eb_root);
707e8a07 1447 blocksize = root->nodesize;
7bfdcf7f 1448 old = read_tree_block(root, logical, blocksize, 0);
fae7f21c 1449 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
416bc658 1450 free_extent_buffer(old);
efe120a0
FH
1451 btrfs_warn(root->fs_info,
1452 "failed to read tree block %llu from get_old_root", logical);
834328a8 1453 } else {
7bfdcf7f
LB
1454 eb = btrfs_clone_extent_buffer(old);
1455 free_extent_buffer(old);
834328a8
JS
1456 }
1457 } else if (old_root) {
30b0463a
JS
1458 btrfs_tree_read_unlock(eb_root);
1459 free_extent_buffer(eb_root);
28da9fb4 1460 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
834328a8 1461 } else {
9ec72677 1462 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1463 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1464 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1465 free_extent_buffer(eb_root);
834328a8
JS
1466 }
1467
8ba97a15
JS
1468 if (!eb)
1469 return NULL;
d6381084 1470 extent_buffer_get(eb);
8ba97a15 1471 btrfs_tree_read_lock(eb);
a95236d9 1472 if (old_root) {
5d9e75c4
JS
1473 btrfs_set_header_bytenr(eb, eb->start);
1474 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1475 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1476 btrfs_set_header_level(eb, old_root->level);
1477 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1478 }
28da9fb4 1479 if (tm)
f1ca7e98 1480 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
28da9fb4
JS
1481 else
1482 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1483 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1484
1485 return eb;
1486}
1487
5b6602e7
JS
1488int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1489{
1490 struct tree_mod_elem *tm;
1491 int level;
30b0463a 1492 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1493
30b0463a 1494 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1495 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1496 level = tm->old_root.level;
1497 } else {
30b0463a 1498 level = btrfs_header_level(eb_root);
5b6602e7 1499 }
30b0463a 1500 free_extent_buffer(eb_root);
5b6602e7
JS
1501
1502 return level;
1503}
1504
5d4f98a2
YZ
1505static inline int should_cow_block(struct btrfs_trans_handle *trans,
1506 struct btrfs_root *root,
1507 struct extent_buffer *buf)
1508{
fccb84c9 1509 if (btrfs_test_is_dummy_root(root))
faa2dbf0 1510 return 0;
fccb84c9 1511
f1ebcc74
LB
1512 /* ensure we can see the force_cow */
1513 smp_rmb();
1514
1515 /*
1516 * We do not need to cow a block if
1517 * 1) this block is not created or changed in this transaction;
1518 * 2) this block does not belong to TREE_RELOC tree;
1519 * 3) the root is not forced COW.
1520 *
1521 * What is forced COW:
1522 * when we create snapshot during commiting the transaction,
1523 * after we've finished coping src root, we must COW the shared
1524 * block to ensure the metadata consistency.
1525 */
5d4f98a2
YZ
1526 if (btrfs_header_generation(buf) == trans->transid &&
1527 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1528 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1529 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1530 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1531 return 0;
1532 return 1;
1533}
1534
d352ac68
CM
1535/*
1536 * cows a single block, see __btrfs_cow_block for the real work.
1537 * This version of it has extra checks so that a block isn't cow'd more than
1538 * once per transaction, as long as it hasn't been written yet
1539 */
d397712b 1540noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1541 struct btrfs_root *root, struct extent_buffer *buf,
1542 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1543 struct extent_buffer **cow_ret)
6702ed49
CM
1544{
1545 u64 search_start;
f510cfec 1546 int ret;
dc17ff8f 1547
31b1a2bd
JL
1548 if (trans->transaction != root->fs_info->running_transaction)
1549 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1550 trans->transid,
6702ed49 1551 root->fs_info->running_transaction->transid);
31b1a2bd
JL
1552
1553 if (trans->transid != root->fs_info->generation)
1554 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1555 trans->transid, root->fs_info->generation);
dc17ff8f 1556
5d4f98a2 1557 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1558 *cow_ret = buf;
1559 return 0;
1560 }
c487685d 1561
0b86a832 1562 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1563
1564 if (parent)
1565 btrfs_set_lock_blocking(parent);
1566 btrfs_set_lock_blocking(buf);
1567
f510cfec 1568 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1569 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1570
1571 trace_btrfs_cow_block(root, buf, *cow_ret);
1572
f510cfec 1573 return ret;
6702ed49
CM
1574}
1575
d352ac68
CM
1576/*
1577 * helper function for defrag to decide if two blocks pointed to by a
1578 * node are actually close by
1579 */
6b80053d 1580static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1581{
6b80053d 1582 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1583 return 1;
6b80053d 1584 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1585 return 1;
1586 return 0;
1587}
1588
081e9573
CM
1589/*
1590 * compare two keys in a memcmp fashion
1591 */
1592static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1593{
1594 struct btrfs_key k1;
1595
1596 btrfs_disk_key_to_cpu(&k1, disk);
1597
20736aba 1598 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1599}
1600
f3465ca4
JB
1601/*
1602 * same as comp_keys only with two btrfs_key's
1603 */
5d4f98a2 1604int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1605{
1606 if (k1->objectid > k2->objectid)
1607 return 1;
1608 if (k1->objectid < k2->objectid)
1609 return -1;
1610 if (k1->type > k2->type)
1611 return 1;
1612 if (k1->type < k2->type)
1613 return -1;
1614 if (k1->offset > k2->offset)
1615 return 1;
1616 if (k1->offset < k2->offset)
1617 return -1;
1618 return 0;
1619}
081e9573 1620
d352ac68
CM
1621/*
1622 * this is used by the defrag code to go through all the
1623 * leaves pointed to by a node and reallocate them so that
1624 * disk order is close to key order
1625 */
6702ed49 1626int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1627 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1628 int start_slot, u64 *last_ret,
a6b6e75e 1629 struct btrfs_key *progress)
6702ed49 1630{
6b80053d 1631 struct extent_buffer *cur;
6702ed49 1632 u64 blocknr;
ca7a79ad 1633 u64 gen;
e9d0b13b
CM
1634 u64 search_start = *last_ret;
1635 u64 last_block = 0;
6702ed49
CM
1636 u64 other;
1637 u32 parent_nritems;
6702ed49
CM
1638 int end_slot;
1639 int i;
1640 int err = 0;
f2183bde 1641 int parent_level;
6b80053d
CM
1642 int uptodate;
1643 u32 blocksize;
081e9573
CM
1644 int progress_passed = 0;
1645 struct btrfs_disk_key disk_key;
6702ed49 1646
5708b959 1647 parent_level = btrfs_header_level(parent);
5708b959 1648
6c1500f2
JL
1649 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650 WARN_ON(trans->transid != root->fs_info->generation);
86479a04 1651
6b80053d 1652 parent_nritems = btrfs_header_nritems(parent);
707e8a07 1653 blocksize = root->nodesize;
6702ed49
CM
1654 end_slot = parent_nritems;
1655
1656 if (parent_nritems == 1)
1657 return 0;
1658
b4ce94de
CM
1659 btrfs_set_lock_blocking(parent);
1660
6702ed49
CM
1661 for (i = start_slot; i < end_slot; i++) {
1662 int close = 1;
a6b6e75e 1663
081e9573
CM
1664 btrfs_node_key(parent, &disk_key, i);
1665 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1666 continue;
1667
1668 progress_passed = 1;
6b80053d 1669 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1670 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1671 if (last_block == 0)
1672 last_block = blocknr;
5708b959 1673
6702ed49 1674 if (i > 0) {
6b80053d
CM
1675 other = btrfs_node_blockptr(parent, i - 1);
1676 close = close_blocks(blocknr, other, blocksize);
6702ed49 1677 }
0ef3e66b 1678 if (!close && i < end_slot - 2) {
6b80053d
CM
1679 other = btrfs_node_blockptr(parent, i + 1);
1680 close = close_blocks(blocknr, other, blocksize);
6702ed49 1681 }
e9d0b13b
CM
1682 if (close) {
1683 last_block = blocknr;
6702ed49 1684 continue;
e9d0b13b 1685 }
6702ed49 1686
6b80053d
CM
1687 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1688 if (cur)
b9fab919 1689 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1690 else
1691 uptodate = 0;
5708b959 1692 if (!cur || !uptodate) {
6b80053d
CM
1693 if (!cur) {
1694 cur = read_tree_block(root, blocknr,
ca7a79ad 1695 blocksize, gen);
416bc658
JB
1696 if (!cur || !extent_buffer_uptodate(cur)) {
1697 free_extent_buffer(cur);
97d9a8a4 1698 return -EIO;
416bc658 1699 }
6b80053d 1700 } else if (!uptodate) {
018642a1
TI
1701 err = btrfs_read_buffer(cur, gen);
1702 if (err) {
1703 free_extent_buffer(cur);
1704 return err;
1705 }
f2183bde 1706 }
6702ed49 1707 }
e9d0b13b 1708 if (search_start == 0)
6b80053d 1709 search_start = last_block;
e9d0b13b 1710
e7a84565 1711 btrfs_tree_lock(cur);
b4ce94de 1712 btrfs_set_lock_blocking(cur);
6b80053d 1713 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1714 &cur, search_start,
6b80053d 1715 min(16 * blocksize,
9fa8cfe7 1716 (end_slot - i) * blocksize));
252c38f0 1717 if (err) {
e7a84565 1718 btrfs_tree_unlock(cur);
6b80053d 1719 free_extent_buffer(cur);
6702ed49 1720 break;
252c38f0 1721 }
e7a84565
CM
1722 search_start = cur->start;
1723 last_block = cur->start;
f2183bde 1724 *last_ret = search_start;
e7a84565
CM
1725 btrfs_tree_unlock(cur);
1726 free_extent_buffer(cur);
6702ed49
CM
1727 }
1728 return err;
1729}
1730
74123bd7
CM
1731/*
1732 * The leaf data grows from end-to-front in the node.
1733 * this returns the address of the start of the last item,
1734 * which is the stop of the leaf data stack
1735 */
123abc88 1736static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1737 struct extent_buffer *leaf)
be0e5c09 1738{
5f39d397 1739 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1740 if (nr == 0)
123abc88 1741 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1742 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1743}
1744
aa5d6bed 1745
74123bd7 1746/*
5f39d397
CM
1747 * search for key in the extent_buffer. The items start at offset p,
1748 * and they are item_size apart. There are 'max' items in p.
1749 *
74123bd7
CM
1750 * the slot in the array is returned via slot, and it points to
1751 * the place where you would insert key if it is not found in
1752 * the array.
1753 *
1754 * slot may point to max if the key is bigger than all of the keys
1755 */
e02119d5
CM
1756static noinline int generic_bin_search(struct extent_buffer *eb,
1757 unsigned long p,
1758 int item_size, struct btrfs_key *key,
1759 int max, int *slot)
be0e5c09
CM
1760{
1761 int low = 0;
1762 int high = max;
1763 int mid;
1764 int ret;
479965d6 1765 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1766 struct btrfs_disk_key unaligned;
1767 unsigned long offset;
5f39d397
CM
1768 char *kaddr = NULL;
1769 unsigned long map_start = 0;
1770 unsigned long map_len = 0;
479965d6 1771 int err;
be0e5c09 1772
d397712b 1773 while (low < high) {
be0e5c09 1774 mid = (low + high) / 2;
5f39d397
CM
1775 offset = p + mid * item_size;
1776
a6591715 1777 if (!kaddr || offset < map_start ||
5f39d397
CM
1778 (offset + sizeof(struct btrfs_disk_key)) >
1779 map_start + map_len) {
934d375b
CM
1780
1781 err = map_private_extent_buffer(eb, offset,
479965d6 1782 sizeof(struct btrfs_disk_key),
a6591715 1783 &kaddr, &map_start, &map_len);
479965d6
CM
1784
1785 if (!err) {
1786 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1787 map_start);
1788 } else {
1789 read_extent_buffer(eb, &unaligned,
1790 offset, sizeof(unaligned));
1791 tmp = &unaligned;
1792 }
5f39d397 1793
5f39d397
CM
1794 } else {
1795 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1796 map_start);
1797 }
be0e5c09
CM
1798 ret = comp_keys(tmp, key);
1799
1800 if (ret < 0)
1801 low = mid + 1;
1802 else if (ret > 0)
1803 high = mid;
1804 else {
1805 *slot = mid;
1806 return 0;
1807 }
1808 }
1809 *slot = low;
1810 return 1;
1811}
1812
97571fd0
CM
1813/*
1814 * simple bin_search frontend that does the right thing for
1815 * leaves vs nodes
1816 */
5f39d397
CM
1817static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1818 int level, int *slot)
be0e5c09 1819{
f775738f 1820 if (level == 0)
5f39d397
CM
1821 return generic_bin_search(eb,
1822 offsetof(struct btrfs_leaf, items),
0783fcfc 1823 sizeof(struct btrfs_item),
5f39d397 1824 key, btrfs_header_nritems(eb),
7518a238 1825 slot);
f775738f 1826 else
5f39d397
CM
1827 return generic_bin_search(eb,
1828 offsetof(struct btrfs_node, ptrs),
123abc88 1829 sizeof(struct btrfs_key_ptr),
5f39d397 1830 key, btrfs_header_nritems(eb),
7518a238 1831 slot);
be0e5c09
CM
1832}
1833
5d4f98a2
YZ
1834int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1835 int level, int *slot)
1836{
1837 return bin_search(eb, key, level, slot);
1838}
1839
f0486c68
YZ
1840static void root_add_used(struct btrfs_root *root, u32 size)
1841{
1842 spin_lock(&root->accounting_lock);
1843 btrfs_set_root_used(&root->root_item,
1844 btrfs_root_used(&root->root_item) + size);
1845 spin_unlock(&root->accounting_lock);
1846}
1847
1848static void root_sub_used(struct btrfs_root *root, u32 size)
1849{
1850 spin_lock(&root->accounting_lock);
1851 btrfs_set_root_used(&root->root_item,
1852 btrfs_root_used(&root->root_item) - size);
1853 spin_unlock(&root->accounting_lock);
1854}
1855
d352ac68
CM
1856/* given a node and slot number, this reads the blocks it points to. The
1857 * extent buffer is returned with a reference taken (but unlocked).
1858 * NULL is returned on error.
1859 */
e02119d5 1860static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1861 struct extent_buffer *parent, int slot)
bb803951 1862{
ca7a79ad 1863 int level = btrfs_header_level(parent);
416bc658
JB
1864 struct extent_buffer *eb;
1865
bb803951
CM
1866 if (slot < 0)
1867 return NULL;
5f39d397 1868 if (slot >= btrfs_header_nritems(parent))
bb803951 1869 return NULL;
ca7a79ad
CM
1870
1871 BUG_ON(level == 0);
1872
416bc658 1873 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
707e8a07 1874 root->nodesize,
416bc658
JB
1875 btrfs_node_ptr_generation(parent, slot));
1876 if (eb && !extent_buffer_uptodate(eb)) {
1877 free_extent_buffer(eb);
1878 eb = NULL;
1879 }
1880
1881 return eb;
bb803951
CM
1882}
1883
d352ac68
CM
1884/*
1885 * node level balancing, used to make sure nodes are in proper order for
1886 * item deletion. We balance from the top down, so we have to make sure
1887 * that a deletion won't leave an node completely empty later on.
1888 */
e02119d5 1889static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1890 struct btrfs_root *root,
1891 struct btrfs_path *path, int level)
bb803951 1892{
5f39d397
CM
1893 struct extent_buffer *right = NULL;
1894 struct extent_buffer *mid;
1895 struct extent_buffer *left = NULL;
1896 struct extent_buffer *parent = NULL;
bb803951
CM
1897 int ret = 0;
1898 int wret;
1899 int pslot;
bb803951 1900 int orig_slot = path->slots[level];
79f95c82 1901 u64 orig_ptr;
bb803951
CM
1902
1903 if (level == 0)
1904 return 0;
1905
5f39d397 1906 mid = path->nodes[level];
b4ce94de 1907
bd681513
CM
1908 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1909 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1910 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1911
1d4f8a0c 1912 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1913
a05a9bb1 1914 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1915 parent = path->nodes[level + 1];
a05a9bb1
LZ
1916 pslot = path->slots[level + 1];
1917 }
bb803951 1918
40689478
CM
1919 /*
1920 * deal with the case where there is only one pointer in the root
1921 * by promoting the node below to a root
1922 */
5f39d397
CM
1923 if (!parent) {
1924 struct extent_buffer *child;
bb803951 1925
5f39d397 1926 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1927 return 0;
1928
1929 /* promote the child to a root */
5f39d397 1930 child = read_node_slot(root, mid, 0);
305a26af
MF
1931 if (!child) {
1932 ret = -EROFS;
1933 btrfs_std_error(root->fs_info, ret);
1934 goto enospc;
1935 }
1936
925baedd 1937 btrfs_tree_lock(child);
b4ce94de 1938 btrfs_set_lock_blocking(child);
9fa8cfe7 1939 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1940 if (ret) {
1941 btrfs_tree_unlock(child);
1942 free_extent_buffer(child);
1943 goto enospc;
1944 }
2f375ab9 1945
90f8d62e 1946 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1947 rcu_assign_pointer(root->node, child);
925baedd 1948
0b86a832 1949 add_root_to_dirty_list(root);
925baedd 1950 btrfs_tree_unlock(child);
b4ce94de 1951
925baedd 1952 path->locks[level] = 0;
bb803951 1953 path->nodes[level] = NULL;
5f39d397 1954 clean_tree_block(trans, root, mid);
925baedd 1955 btrfs_tree_unlock(mid);
bb803951 1956 /* once for the path */
5f39d397 1957 free_extent_buffer(mid);
f0486c68
YZ
1958
1959 root_sub_used(root, mid->len);
5581a51a 1960 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1961 /* once for the root ptr */
3083ee2e 1962 free_extent_buffer_stale(mid);
f0486c68 1963 return 0;
bb803951 1964 }
5f39d397 1965 if (btrfs_header_nritems(mid) >
123abc88 1966 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1967 return 0;
1968
5f39d397
CM
1969 left = read_node_slot(root, parent, pslot - 1);
1970 if (left) {
925baedd 1971 btrfs_tree_lock(left);
b4ce94de 1972 btrfs_set_lock_blocking(left);
5f39d397 1973 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1974 parent, pslot - 1, &left);
54aa1f4d
CM
1975 if (wret) {
1976 ret = wret;
1977 goto enospc;
1978 }
2cc58cf2 1979 }
5f39d397
CM
1980 right = read_node_slot(root, parent, pslot + 1);
1981 if (right) {
925baedd 1982 btrfs_tree_lock(right);
b4ce94de 1983 btrfs_set_lock_blocking(right);
5f39d397 1984 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1985 parent, pslot + 1, &right);
2cc58cf2
CM
1986 if (wret) {
1987 ret = wret;
1988 goto enospc;
1989 }
1990 }
1991
1992 /* first, try to make some room in the middle buffer */
5f39d397
CM
1993 if (left) {
1994 orig_slot += btrfs_header_nritems(left);
bce4eae9 1995 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1996 if (wret < 0)
1997 ret = wret;
bb803951 1998 }
79f95c82
CM
1999
2000 /*
2001 * then try to empty the right most buffer into the middle
2002 */
5f39d397 2003 if (right) {
971a1f66 2004 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 2005 if (wret < 0 && wret != -ENOSPC)
79f95c82 2006 ret = wret;
5f39d397 2007 if (btrfs_header_nritems(right) == 0) {
5f39d397 2008 clean_tree_block(trans, root, right);
925baedd 2009 btrfs_tree_unlock(right);
afe5fea7 2010 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 2011 root_sub_used(root, right->len);
5581a51a 2012 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2013 free_extent_buffer_stale(right);
f0486c68 2014 right = NULL;
bb803951 2015 } else {
5f39d397
CM
2016 struct btrfs_disk_key right_key;
2017 btrfs_node_key(right, &right_key, 0);
f230475e 2018 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2019 pslot + 1, 0);
5f39d397
CM
2020 btrfs_set_node_key(parent, &right_key, pslot + 1);
2021 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2022 }
2023 }
5f39d397 2024 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2025 /*
2026 * we're not allowed to leave a node with one item in the
2027 * tree during a delete. A deletion from lower in the tree
2028 * could try to delete the only pointer in this node.
2029 * So, pull some keys from the left.
2030 * There has to be a left pointer at this point because
2031 * otherwise we would have pulled some pointers from the
2032 * right
2033 */
305a26af
MF
2034 if (!left) {
2035 ret = -EROFS;
2036 btrfs_std_error(root->fs_info, ret);
2037 goto enospc;
2038 }
5f39d397 2039 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 2040 if (wret < 0) {
79f95c82 2041 ret = wret;
54aa1f4d
CM
2042 goto enospc;
2043 }
bce4eae9
CM
2044 if (wret == 1) {
2045 wret = push_node_left(trans, root, left, mid, 1);
2046 if (wret < 0)
2047 ret = wret;
2048 }
79f95c82
CM
2049 BUG_ON(wret == 1);
2050 }
5f39d397 2051 if (btrfs_header_nritems(mid) == 0) {
5f39d397 2052 clean_tree_block(trans, root, mid);
925baedd 2053 btrfs_tree_unlock(mid);
afe5fea7 2054 del_ptr(root, path, level + 1, pslot);
f0486c68 2055 root_sub_used(root, mid->len);
5581a51a 2056 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2057 free_extent_buffer_stale(mid);
f0486c68 2058 mid = NULL;
79f95c82
CM
2059 } else {
2060 /* update the parent key to reflect our changes */
5f39d397
CM
2061 struct btrfs_disk_key mid_key;
2062 btrfs_node_key(mid, &mid_key, 0);
32adf090 2063 tree_mod_log_set_node_key(root->fs_info, parent,
f230475e 2064 pslot, 0);
5f39d397
CM
2065 btrfs_set_node_key(parent, &mid_key, pslot);
2066 btrfs_mark_buffer_dirty(parent);
79f95c82 2067 }
bb803951 2068
79f95c82 2069 /* update the path */
5f39d397
CM
2070 if (left) {
2071 if (btrfs_header_nritems(left) > orig_slot) {
2072 extent_buffer_get(left);
925baedd 2073 /* left was locked after cow */
5f39d397 2074 path->nodes[level] = left;
bb803951
CM
2075 path->slots[level + 1] -= 1;
2076 path->slots[level] = orig_slot;
925baedd
CM
2077 if (mid) {
2078 btrfs_tree_unlock(mid);
5f39d397 2079 free_extent_buffer(mid);
925baedd 2080 }
bb803951 2081 } else {
5f39d397 2082 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2083 path->slots[level] = orig_slot;
2084 }
2085 }
79f95c82 2086 /* double check we haven't messed things up */
e20d96d6 2087 if (orig_ptr !=
5f39d397 2088 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2089 BUG();
54aa1f4d 2090enospc:
925baedd
CM
2091 if (right) {
2092 btrfs_tree_unlock(right);
5f39d397 2093 free_extent_buffer(right);
925baedd
CM
2094 }
2095 if (left) {
2096 if (path->nodes[level] != left)
2097 btrfs_tree_unlock(left);
5f39d397 2098 free_extent_buffer(left);
925baedd 2099 }
bb803951
CM
2100 return ret;
2101}
2102
d352ac68
CM
2103/* Node balancing for insertion. Here we only split or push nodes around
2104 * when they are completely full. This is also done top down, so we
2105 * have to be pessimistic.
2106 */
d397712b 2107static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2108 struct btrfs_root *root,
2109 struct btrfs_path *path, int level)
e66f709b 2110{
5f39d397
CM
2111 struct extent_buffer *right = NULL;
2112 struct extent_buffer *mid;
2113 struct extent_buffer *left = NULL;
2114 struct extent_buffer *parent = NULL;
e66f709b
CM
2115 int ret = 0;
2116 int wret;
2117 int pslot;
2118 int orig_slot = path->slots[level];
e66f709b
CM
2119
2120 if (level == 0)
2121 return 1;
2122
5f39d397 2123 mid = path->nodes[level];
7bb86316 2124 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2125
a05a9bb1 2126 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2127 parent = path->nodes[level + 1];
a05a9bb1
LZ
2128 pslot = path->slots[level + 1];
2129 }
e66f709b 2130
5f39d397 2131 if (!parent)
e66f709b 2132 return 1;
e66f709b 2133
5f39d397 2134 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
2135
2136 /* first, try to make some room in the middle buffer */
5f39d397 2137 if (left) {
e66f709b 2138 u32 left_nr;
925baedd
CM
2139
2140 btrfs_tree_lock(left);
b4ce94de
CM
2141 btrfs_set_lock_blocking(left);
2142
5f39d397 2143 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
2144 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2145 wret = 1;
2146 } else {
5f39d397 2147 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2148 pslot - 1, &left);
54aa1f4d
CM
2149 if (ret)
2150 wret = 1;
2151 else {
54aa1f4d 2152 wret = push_node_left(trans, root,
971a1f66 2153 left, mid, 0);
54aa1f4d 2154 }
33ade1f8 2155 }
e66f709b
CM
2156 if (wret < 0)
2157 ret = wret;
2158 if (wret == 0) {
5f39d397 2159 struct btrfs_disk_key disk_key;
e66f709b 2160 orig_slot += left_nr;
5f39d397 2161 btrfs_node_key(mid, &disk_key, 0);
f230475e 2162 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2163 pslot, 0);
5f39d397
CM
2164 btrfs_set_node_key(parent, &disk_key, pslot);
2165 btrfs_mark_buffer_dirty(parent);
2166 if (btrfs_header_nritems(left) > orig_slot) {
2167 path->nodes[level] = left;
e66f709b
CM
2168 path->slots[level + 1] -= 1;
2169 path->slots[level] = orig_slot;
925baedd 2170 btrfs_tree_unlock(mid);
5f39d397 2171 free_extent_buffer(mid);
e66f709b
CM
2172 } else {
2173 orig_slot -=
5f39d397 2174 btrfs_header_nritems(left);
e66f709b 2175 path->slots[level] = orig_slot;
925baedd 2176 btrfs_tree_unlock(left);
5f39d397 2177 free_extent_buffer(left);
e66f709b 2178 }
e66f709b
CM
2179 return 0;
2180 }
925baedd 2181 btrfs_tree_unlock(left);
5f39d397 2182 free_extent_buffer(left);
e66f709b 2183 }
925baedd 2184 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
2185
2186 /*
2187 * then try to empty the right most buffer into the middle
2188 */
5f39d397 2189 if (right) {
33ade1f8 2190 u32 right_nr;
b4ce94de 2191
925baedd 2192 btrfs_tree_lock(right);
b4ce94de
CM
2193 btrfs_set_lock_blocking(right);
2194
5f39d397 2195 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2196 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2197 wret = 1;
2198 } else {
5f39d397
CM
2199 ret = btrfs_cow_block(trans, root, right,
2200 parent, pslot + 1,
9fa8cfe7 2201 &right);
54aa1f4d
CM
2202 if (ret)
2203 wret = 1;
2204 else {
54aa1f4d 2205 wret = balance_node_right(trans, root,
5f39d397 2206 right, mid);
54aa1f4d 2207 }
33ade1f8 2208 }
e66f709b
CM
2209 if (wret < 0)
2210 ret = wret;
2211 if (wret == 0) {
5f39d397
CM
2212 struct btrfs_disk_key disk_key;
2213
2214 btrfs_node_key(right, &disk_key, 0);
f230475e 2215 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2216 pslot + 1, 0);
5f39d397
CM
2217 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2218 btrfs_mark_buffer_dirty(parent);
2219
2220 if (btrfs_header_nritems(mid) <= orig_slot) {
2221 path->nodes[level] = right;
e66f709b
CM
2222 path->slots[level + 1] += 1;
2223 path->slots[level] = orig_slot -
5f39d397 2224 btrfs_header_nritems(mid);
925baedd 2225 btrfs_tree_unlock(mid);
5f39d397 2226 free_extent_buffer(mid);
e66f709b 2227 } else {
925baedd 2228 btrfs_tree_unlock(right);
5f39d397 2229 free_extent_buffer(right);
e66f709b 2230 }
e66f709b
CM
2231 return 0;
2232 }
925baedd 2233 btrfs_tree_unlock(right);
5f39d397 2234 free_extent_buffer(right);
e66f709b 2235 }
e66f709b
CM
2236 return 1;
2237}
2238
3c69faec 2239/*
d352ac68
CM
2240 * readahead one full node of leaves, finding things that are close
2241 * to the block in 'slot', and triggering ra on them.
3c69faec 2242 */
c8c42864
CM
2243static void reada_for_search(struct btrfs_root *root,
2244 struct btrfs_path *path,
2245 int level, int slot, u64 objectid)
3c69faec 2246{
5f39d397 2247 struct extent_buffer *node;
01f46658 2248 struct btrfs_disk_key disk_key;
3c69faec 2249 u32 nritems;
3c69faec 2250 u64 search;
a7175319 2251 u64 target;
6b80053d 2252 u64 nread = 0;
cb25c2ea 2253 u64 gen;
3c69faec 2254 int direction = path->reada;
5f39d397 2255 struct extent_buffer *eb;
6b80053d
CM
2256 u32 nr;
2257 u32 blocksize;
2258 u32 nscan = 0;
db94535d 2259
a6b6e75e 2260 if (level != 1)
6702ed49
CM
2261 return;
2262
2263 if (!path->nodes[level])
3c69faec
CM
2264 return;
2265
5f39d397 2266 node = path->nodes[level];
925baedd 2267
3c69faec 2268 search = btrfs_node_blockptr(node, slot);
707e8a07 2269 blocksize = root->nodesize;
6b80053d 2270 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
2271 if (eb) {
2272 free_extent_buffer(eb);
3c69faec
CM
2273 return;
2274 }
2275
a7175319 2276 target = search;
6b80053d 2277
5f39d397 2278 nritems = btrfs_header_nritems(node);
6b80053d 2279 nr = slot;
25b8b936 2280
d397712b 2281 while (1) {
6b80053d
CM
2282 if (direction < 0) {
2283 if (nr == 0)
2284 break;
2285 nr--;
2286 } else if (direction > 0) {
2287 nr++;
2288 if (nr >= nritems)
2289 break;
3c69faec 2290 }
01f46658
CM
2291 if (path->reada < 0 && objectid) {
2292 btrfs_node_key(node, &disk_key, nr);
2293 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2294 break;
2295 }
6b80053d 2296 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2297 if ((search <= target && target - search <= 65536) ||
2298 (search > target && search - target <= 65536)) {
cb25c2ea 2299 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2300 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2301 nread += blocksize;
2302 }
2303 nscan++;
a7175319 2304 if ((nread > 65536 || nscan > 32))
6b80053d 2305 break;
3c69faec
CM
2306 }
2307}
925baedd 2308
0b08851f
JB
2309static noinline void reada_for_balance(struct btrfs_root *root,
2310 struct btrfs_path *path, int level)
b4ce94de
CM
2311{
2312 int slot;
2313 int nritems;
2314 struct extent_buffer *parent;
2315 struct extent_buffer *eb;
2316 u64 gen;
2317 u64 block1 = 0;
2318 u64 block2 = 0;
b4ce94de
CM
2319 int blocksize;
2320
8c594ea8 2321 parent = path->nodes[level + 1];
b4ce94de 2322 if (!parent)
0b08851f 2323 return;
b4ce94de
CM
2324
2325 nritems = btrfs_header_nritems(parent);
8c594ea8 2326 slot = path->slots[level + 1];
707e8a07 2327 blocksize = root->nodesize;
b4ce94de
CM
2328
2329 if (slot > 0) {
2330 block1 = btrfs_node_blockptr(parent, slot - 1);
2331 gen = btrfs_node_ptr_generation(parent, slot - 1);
2332 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2333 /*
2334 * if we get -eagain from btrfs_buffer_uptodate, we
2335 * don't want to return eagain here. That will loop
2336 * forever
2337 */
2338 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2339 block1 = 0;
2340 free_extent_buffer(eb);
2341 }
8c594ea8 2342 if (slot + 1 < nritems) {
b4ce94de
CM
2343 block2 = btrfs_node_blockptr(parent, slot + 1);
2344 gen = btrfs_node_ptr_generation(parent, slot + 1);
2345 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2346 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2347 block2 = 0;
2348 free_extent_buffer(eb);
2349 }
8c594ea8 2350
0b08851f
JB
2351 if (block1)
2352 readahead_tree_block(root, block1, blocksize, 0);
2353 if (block2)
2354 readahead_tree_block(root, block2, blocksize, 0);
b4ce94de
CM
2355}
2356
2357
d352ac68 2358/*
d397712b
CM
2359 * when we walk down the tree, it is usually safe to unlock the higher layers
2360 * in the tree. The exceptions are when our path goes through slot 0, because
2361 * operations on the tree might require changing key pointers higher up in the
2362 * tree.
d352ac68 2363 *
d397712b
CM
2364 * callers might also have set path->keep_locks, which tells this code to keep
2365 * the lock if the path points to the last slot in the block. This is part of
2366 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2367 *
d397712b
CM
2368 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2369 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2370 */
e02119d5 2371static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2372 int lowest_unlock, int min_write_lock_level,
2373 int *write_lock_level)
925baedd
CM
2374{
2375 int i;
2376 int skip_level = level;
051e1b9f 2377 int no_skips = 0;
925baedd
CM
2378 struct extent_buffer *t;
2379
2380 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2381 if (!path->nodes[i])
2382 break;
2383 if (!path->locks[i])
2384 break;
051e1b9f 2385 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2386 skip_level = i + 1;
2387 continue;
2388 }
051e1b9f 2389 if (!no_skips && path->keep_locks) {
925baedd
CM
2390 u32 nritems;
2391 t = path->nodes[i];
2392 nritems = btrfs_header_nritems(t);
051e1b9f 2393 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2394 skip_level = i + 1;
2395 continue;
2396 }
2397 }
051e1b9f
CM
2398 if (skip_level < i && i >= lowest_unlock)
2399 no_skips = 1;
2400
925baedd
CM
2401 t = path->nodes[i];
2402 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2403 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2404 path->locks[i] = 0;
f7c79f30
CM
2405 if (write_lock_level &&
2406 i > min_write_lock_level &&
2407 i <= *write_lock_level) {
2408 *write_lock_level = i - 1;
2409 }
925baedd
CM
2410 }
2411 }
2412}
2413
b4ce94de
CM
2414/*
2415 * This releases any locks held in the path starting at level and
2416 * going all the way up to the root.
2417 *
2418 * btrfs_search_slot will keep the lock held on higher nodes in a few
2419 * corner cases, such as COW of the block at slot zero in the node. This
2420 * ignores those rules, and it should only be called when there are no
2421 * more updates to be done higher up in the tree.
2422 */
2423noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2424{
2425 int i;
2426
09a2a8f9 2427 if (path->keep_locks)
b4ce94de
CM
2428 return;
2429
2430 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2431 if (!path->nodes[i])
12f4dacc 2432 continue;
b4ce94de 2433 if (!path->locks[i])
12f4dacc 2434 continue;
bd681513 2435 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2436 path->locks[i] = 0;
2437 }
2438}
2439
c8c42864
CM
2440/*
2441 * helper function for btrfs_search_slot. The goal is to find a block
2442 * in cache without setting the path to blocking. If we find the block
2443 * we return zero and the path is unchanged.
2444 *
2445 * If we can't find the block, we set the path blocking and do some
2446 * reada. -EAGAIN is returned and the search must be repeated.
2447 */
2448static int
2449read_block_for_search(struct btrfs_trans_handle *trans,
2450 struct btrfs_root *root, struct btrfs_path *p,
2451 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2452 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2453{
2454 u64 blocknr;
2455 u64 gen;
2456 u32 blocksize;
2457 struct extent_buffer *b = *eb_ret;
2458 struct extent_buffer *tmp;
76a05b35 2459 int ret;
c8c42864
CM
2460
2461 blocknr = btrfs_node_blockptr(b, slot);
2462 gen = btrfs_node_ptr_generation(b, slot);
707e8a07 2463 blocksize = root->nodesize;
c8c42864
CM
2464
2465 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2466 if (tmp) {
b9fab919 2467 /* first we do an atomic uptodate check */
bdf7c00e
JB
2468 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2469 *eb_ret = tmp;
2470 return 0;
2471 }
2472
2473 /* the pages were up to date, but we failed
2474 * the generation number check. Do a full
2475 * read for the generation number that is correct.
2476 * We must do this without dropping locks so
2477 * we can trust our generation number
2478 */
2479 btrfs_set_path_blocking(p);
2480
2481 /* now we're allowed to do a blocking uptodate check */
2482 ret = btrfs_read_buffer(tmp, gen);
2483 if (!ret) {
2484 *eb_ret = tmp;
2485 return 0;
cb44921a 2486 }
bdf7c00e
JB
2487 free_extent_buffer(tmp);
2488 btrfs_release_path(p);
2489 return -EIO;
c8c42864
CM
2490 }
2491
2492 /*
2493 * reduce lock contention at high levels
2494 * of the btree by dropping locks before
76a05b35
CM
2495 * we read. Don't release the lock on the current
2496 * level because we need to walk this node to figure
2497 * out which blocks to read.
c8c42864 2498 */
8c594ea8
CM
2499 btrfs_unlock_up_safe(p, level + 1);
2500 btrfs_set_path_blocking(p);
2501
cb44921a 2502 free_extent_buffer(tmp);
c8c42864
CM
2503 if (p->reada)
2504 reada_for_search(root, p, level, slot, key->objectid);
2505
b3b4aa74 2506 btrfs_release_path(p);
76a05b35
CM
2507
2508 ret = -EAGAIN;
5bdd3536 2509 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2510 if (tmp) {
2511 /*
2512 * If the read above didn't mark this buffer up to date,
2513 * it will never end up being up to date. Set ret to EIO now
2514 * and give up so that our caller doesn't loop forever
2515 * on our EAGAINs.
2516 */
b9fab919 2517 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2518 ret = -EIO;
c8c42864 2519 free_extent_buffer(tmp);
76a05b35
CM
2520 }
2521 return ret;
c8c42864
CM
2522}
2523
2524/*
2525 * helper function for btrfs_search_slot. This does all of the checks
2526 * for node-level blocks and does any balancing required based on
2527 * the ins_len.
2528 *
2529 * If no extra work was required, zero is returned. If we had to
2530 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2531 * start over
2532 */
2533static int
2534setup_nodes_for_search(struct btrfs_trans_handle *trans,
2535 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2536 struct extent_buffer *b, int level, int ins_len,
2537 int *write_lock_level)
c8c42864
CM
2538{
2539 int ret;
2540 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2541 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2542 int sret;
2543
bd681513
CM
2544 if (*write_lock_level < level + 1) {
2545 *write_lock_level = level + 1;
2546 btrfs_release_path(p);
2547 goto again;
2548 }
2549
c8c42864 2550 btrfs_set_path_blocking(p);
0b08851f 2551 reada_for_balance(root, p, level);
c8c42864 2552 sret = split_node(trans, root, p, level);
bd681513 2553 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2554
2555 BUG_ON(sret > 0);
2556 if (sret) {
2557 ret = sret;
2558 goto done;
2559 }
2560 b = p->nodes[level];
2561 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2562 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2563 int sret;
2564
bd681513
CM
2565 if (*write_lock_level < level + 1) {
2566 *write_lock_level = level + 1;
2567 btrfs_release_path(p);
2568 goto again;
2569 }
2570
c8c42864 2571 btrfs_set_path_blocking(p);
0b08851f 2572 reada_for_balance(root, p, level);
c8c42864 2573 sret = balance_level(trans, root, p, level);
bd681513 2574 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2575
2576 if (sret) {
2577 ret = sret;
2578 goto done;
2579 }
2580 b = p->nodes[level];
2581 if (!b) {
b3b4aa74 2582 btrfs_release_path(p);
c8c42864
CM
2583 goto again;
2584 }
2585 BUG_ON(btrfs_header_nritems(b) == 1);
2586 }
2587 return 0;
2588
2589again:
2590 ret = -EAGAIN;
2591done:
2592 return ret;
2593}
2594
d7396f07
FDBM
2595static void key_search_validate(struct extent_buffer *b,
2596 struct btrfs_key *key,
2597 int level)
2598{
2599#ifdef CONFIG_BTRFS_ASSERT
2600 struct btrfs_disk_key disk_key;
2601
2602 btrfs_cpu_key_to_disk(&disk_key, key);
2603
2604 if (level == 0)
2605 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2606 offsetof(struct btrfs_leaf, items[0].key),
2607 sizeof(disk_key)));
2608 else
2609 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2610 offsetof(struct btrfs_node, ptrs[0].key),
2611 sizeof(disk_key)));
2612#endif
2613}
2614
2615static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2616 int level, int *prev_cmp, int *slot)
2617{
2618 if (*prev_cmp != 0) {
2619 *prev_cmp = bin_search(b, key, level, slot);
2620 return *prev_cmp;
2621 }
2622
2623 key_search_validate(b, key, level);
2624 *slot = 0;
2625
2626 return 0;
2627}
2628
3f870c28 2629int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
e33d5c3d
KN
2630 u64 iobjectid, u64 ioff, u8 key_type,
2631 struct btrfs_key *found_key)
2632{
2633 int ret;
2634 struct btrfs_key key;
2635 struct extent_buffer *eb;
3f870c28 2636 struct btrfs_path *path;
e33d5c3d
KN
2637
2638 key.type = key_type;
2639 key.objectid = iobjectid;
2640 key.offset = ioff;
2641
3f870c28
KN
2642 if (found_path == NULL) {
2643 path = btrfs_alloc_path();
2644 if (!path)
2645 return -ENOMEM;
2646 } else
2647 path = found_path;
2648
e33d5c3d 2649 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
3f870c28
KN
2650 if ((ret < 0) || (found_key == NULL)) {
2651 if (path != found_path)
2652 btrfs_free_path(path);
e33d5c3d 2653 return ret;
3f870c28 2654 }
e33d5c3d
KN
2655
2656 eb = path->nodes[0];
2657 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2658 ret = btrfs_next_leaf(fs_root, path);
2659 if (ret)
2660 return ret;
2661 eb = path->nodes[0];
2662 }
2663
2664 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2665 if (found_key->type != key.type ||
2666 found_key->objectid != key.objectid)
2667 return 1;
2668
2669 return 0;
2670}
2671
74123bd7
CM
2672/*
2673 * look for key in the tree. path is filled in with nodes along the way
2674 * if key is found, we return zero and you can find the item in the leaf
2675 * level of the path (level 0)
2676 *
2677 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2678 * be inserted, and 1 is returned. If there are other errors during the
2679 * search a negative error number is returned.
97571fd0
CM
2680 *
2681 * if ins_len > 0, nodes and leaves will be split as we walk down the
2682 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2683 * possible)
74123bd7 2684 */
e089f05c
CM
2685int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2686 *root, struct btrfs_key *key, struct btrfs_path *p, int
2687 ins_len, int cow)
be0e5c09 2688{
5f39d397 2689 struct extent_buffer *b;
be0e5c09
CM
2690 int slot;
2691 int ret;
33c66f43 2692 int err;
be0e5c09 2693 int level;
925baedd 2694 int lowest_unlock = 1;
bd681513
CM
2695 int root_lock;
2696 /* everything at write_lock_level or lower must be write locked */
2697 int write_lock_level = 0;
9f3a7427 2698 u8 lowest_level = 0;
f7c79f30 2699 int min_write_lock_level;
d7396f07 2700 int prev_cmp;
9f3a7427 2701
6702ed49 2702 lowest_level = p->lowest_level;
323ac95b 2703 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2704 WARN_ON(p->nodes[0] != NULL);
eb653de1 2705 BUG_ON(!cow && ins_len);
25179201 2706
bd681513 2707 if (ins_len < 0) {
925baedd 2708 lowest_unlock = 2;
65b51a00 2709
bd681513
CM
2710 /* when we are removing items, we might have to go up to level
2711 * two as we update tree pointers Make sure we keep write
2712 * for those levels as well
2713 */
2714 write_lock_level = 2;
2715 } else if (ins_len > 0) {
2716 /*
2717 * for inserting items, make sure we have a write lock on
2718 * level 1 so we can update keys
2719 */
2720 write_lock_level = 1;
2721 }
2722
2723 if (!cow)
2724 write_lock_level = -1;
2725
09a2a8f9 2726 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2727 write_lock_level = BTRFS_MAX_LEVEL;
2728
f7c79f30
CM
2729 min_write_lock_level = write_lock_level;
2730
bb803951 2731again:
d7396f07 2732 prev_cmp = -1;
bd681513
CM
2733 /*
2734 * we try very hard to do read locks on the root
2735 */
2736 root_lock = BTRFS_READ_LOCK;
2737 level = 0;
5d4f98a2 2738 if (p->search_commit_root) {
bd681513
CM
2739 /*
2740 * the commit roots are read only
2741 * so we always do read locks
2742 */
3f8a18cc
JB
2743 if (p->need_commit_sem)
2744 down_read(&root->fs_info->commit_root_sem);
5d4f98a2
YZ
2745 b = root->commit_root;
2746 extent_buffer_get(b);
bd681513 2747 level = btrfs_header_level(b);
3f8a18cc
JB
2748 if (p->need_commit_sem)
2749 up_read(&root->fs_info->commit_root_sem);
5d4f98a2 2750 if (!p->skip_locking)
bd681513 2751 btrfs_tree_read_lock(b);
5d4f98a2 2752 } else {
bd681513 2753 if (p->skip_locking) {
5d4f98a2 2754 b = btrfs_root_node(root);
bd681513
CM
2755 level = btrfs_header_level(b);
2756 } else {
2757 /* we don't know the level of the root node
2758 * until we actually have it read locked
2759 */
2760 b = btrfs_read_lock_root_node(root);
2761 level = btrfs_header_level(b);
2762 if (level <= write_lock_level) {
2763 /* whoops, must trade for write lock */
2764 btrfs_tree_read_unlock(b);
2765 free_extent_buffer(b);
2766 b = btrfs_lock_root_node(root);
2767 root_lock = BTRFS_WRITE_LOCK;
2768
2769 /* the level might have changed, check again */
2770 level = btrfs_header_level(b);
2771 }
2772 }
5d4f98a2 2773 }
bd681513
CM
2774 p->nodes[level] = b;
2775 if (!p->skip_locking)
2776 p->locks[level] = root_lock;
925baedd 2777
eb60ceac 2778 while (b) {
5f39d397 2779 level = btrfs_header_level(b);
65b51a00
CM
2780
2781 /*
2782 * setup the path here so we can release it under lock
2783 * contention with the cow code
2784 */
02217ed2 2785 if (cow) {
c8c42864
CM
2786 /*
2787 * if we don't really need to cow this block
2788 * then we don't want to set the path blocking,
2789 * so we test it here
2790 */
5d4f98a2 2791 if (!should_cow_block(trans, root, b))
65b51a00 2792 goto cow_done;
5d4f98a2 2793
bd681513
CM
2794 /*
2795 * must have write locks on this node and the
2796 * parent
2797 */
5124e00e
JB
2798 if (level > write_lock_level ||
2799 (level + 1 > write_lock_level &&
2800 level + 1 < BTRFS_MAX_LEVEL &&
2801 p->nodes[level + 1])) {
bd681513
CM
2802 write_lock_level = level + 1;
2803 btrfs_release_path(p);
2804 goto again;
2805 }
2806
160f4089 2807 btrfs_set_path_blocking(p);
33c66f43
YZ
2808 err = btrfs_cow_block(trans, root, b,
2809 p->nodes[level + 1],
2810 p->slots[level + 1], &b);
2811 if (err) {
33c66f43 2812 ret = err;
65b51a00 2813 goto done;
54aa1f4d 2814 }
02217ed2 2815 }
65b51a00 2816cow_done:
eb60ceac 2817 p->nodes[level] = b;
bd681513 2818 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2819
2820 /*
2821 * we have a lock on b and as long as we aren't changing
2822 * the tree, there is no way to for the items in b to change.
2823 * It is safe to drop the lock on our parent before we
2824 * go through the expensive btree search on b.
2825 *
eb653de1
FDBM
2826 * If we're inserting or deleting (ins_len != 0), then we might
2827 * be changing slot zero, which may require changing the parent.
2828 * So, we can't drop the lock until after we know which slot
2829 * we're operating on.
b4ce94de 2830 */
eb653de1
FDBM
2831 if (!ins_len && !p->keep_locks) {
2832 int u = level + 1;
2833
2834 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2835 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2836 p->locks[u] = 0;
2837 }
2838 }
b4ce94de 2839
d7396f07 2840 ret = key_search(b, key, level, &prev_cmp, &slot);
b4ce94de 2841
5f39d397 2842 if (level != 0) {
33c66f43
YZ
2843 int dec = 0;
2844 if (ret && slot > 0) {
2845 dec = 1;
be0e5c09 2846 slot -= 1;
33c66f43 2847 }
be0e5c09 2848 p->slots[level] = slot;
33c66f43 2849 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2850 ins_len, &write_lock_level);
33c66f43 2851 if (err == -EAGAIN)
c8c42864 2852 goto again;
33c66f43
YZ
2853 if (err) {
2854 ret = err;
c8c42864 2855 goto done;
33c66f43 2856 }
c8c42864
CM
2857 b = p->nodes[level];
2858 slot = p->slots[level];
b4ce94de 2859
bd681513
CM
2860 /*
2861 * slot 0 is special, if we change the key
2862 * we have to update the parent pointer
2863 * which means we must have a write lock
2864 * on the parent
2865 */
eb653de1 2866 if (slot == 0 && ins_len &&
bd681513
CM
2867 write_lock_level < level + 1) {
2868 write_lock_level = level + 1;
2869 btrfs_release_path(p);
2870 goto again;
2871 }
2872
f7c79f30
CM
2873 unlock_up(p, level, lowest_unlock,
2874 min_write_lock_level, &write_lock_level);
f9efa9c7 2875
925baedd 2876 if (level == lowest_level) {
33c66f43
YZ
2877 if (dec)
2878 p->slots[level]++;
5b21f2ed 2879 goto done;
925baedd 2880 }
ca7a79ad 2881
33c66f43 2882 err = read_block_for_search(trans, root, p,
5d9e75c4 2883 &b, level, slot, key, 0);
33c66f43 2884 if (err == -EAGAIN)
c8c42864 2885 goto again;
33c66f43
YZ
2886 if (err) {
2887 ret = err;
76a05b35 2888 goto done;
33c66f43 2889 }
76a05b35 2890
b4ce94de 2891 if (!p->skip_locking) {
bd681513
CM
2892 level = btrfs_header_level(b);
2893 if (level <= write_lock_level) {
2894 err = btrfs_try_tree_write_lock(b);
2895 if (!err) {
2896 btrfs_set_path_blocking(p);
2897 btrfs_tree_lock(b);
2898 btrfs_clear_path_blocking(p, b,
2899 BTRFS_WRITE_LOCK);
2900 }
2901 p->locks[level] = BTRFS_WRITE_LOCK;
2902 } else {
2903 err = btrfs_try_tree_read_lock(b);
2904 if (!err) {
2905 btrfs_set_path_blocking(p);
2906 btrfs_tree_read_lock(b);
2907 btrfs_clear_path_blocking(p, b,
2908 BTRFS_READ_LOCK);
2909 }
2910 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2911 }
bd681513 2912 p->nodes[level] = b;
b4ce94de 2913 }
be0e5c09
CM
2914 } else {
2915 p->slots[level] = slot;
87b29b20
YZ
2916 if (ins_len > 0 &&
2917 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2918 if (write_lock_level < 1) {
2919 write_lock_level = 1;
2920 btrfs_release_path(p);
2921 goto again;
2922 }
2923
b4ce94de 2924 btrfs_set_path_blocking(p);
33c66f43
YZ
2925 err = split_leaf(trans, root, key,
2926 p, ins_len, ret == 0);
bd681513 2927 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2928
33c66f43
YZ
2929 BUG_ON(err > 0);
2930 if (err) {
2931 ret = err;
65b51a00
CM
2932 goto done;
2933 }
5c680ed6 2934 }
459931ec 2935 if (!p->search_for_split)
f7c79f30
CM
2936 unlock_up(p, level, lowest_unlock,
2937 min_write_lock_level, &write_lock_level);
65b51a00 2938 goto done;
be0e5c09
CM
2939 }
2940 }
65b51a00
CM
2941 ret = 1;
2942done:
b4ce94de
CM
2943 /*
2944 * we don't really know what they plan on doing with the path
2945 * from here on, so for now just mark it as blocking
2946 */
b9473439
CM
2947 if (!p->leave_spinning)
2948 btrfs_set_path_blocking(p);
76a05b35 2949 if (ret < 0)
b3b4aa74 2950 btrfs_release_path(p);
65b51a00 2951 return ret;
be0e5c09
CM
2952}
2953
5d9e75c4
JS
2954/*
2955 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2956 * current state of the tree together with the operations recorded in the tree
2957 * modification log to search for the key in a previous version of this tree, as
2958 * denoted by the time_seq parameter.
2959 *
2960 * Naturally, there is no support for insert, delete or cow operations.
2961 *
2962 * The resulting path and return value will be set up as if we called
2963 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2964 */
2965int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2966 struct btrfs_path *p, u64 time_seq)
2967{
2968 struct extent_buffer *b;
2969 int slot;
2970 int ret;
2971 int err;
2972 int level;
2973 int lowest_unlock = 1;
2974 u8 lowest_level = 0;
d4b4087c 2975 int prev_cmp = -1;
5d9e75c4
JS
2976
2977 lowest_level = p->lowest_level;
2978 WARN_ON(p->nodes[0] != NULL);
2979
2980 if (p->search_commit_root) {
2981 BUG_ON(time_seq);
2982 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2983 }
2984
2985again:
5d9e75c4 2986 b = get_old_root(root, time_seq);
5d9e75c4 2987 level = btrfs_header_level(b);
5d9e75c4
JS
2988 p->locks[level] = BTRFS_READ_LOCK;
2989
2990 while (b) {
2991 level = btrfs_header_level(b);
2992 p->nodes[level] = b;
2993 btrfs_clear_path_blocking(p, NULL, 0);
2994
2995 /*
2996 * we have a lock on b and as long as we aren't changing
2997 * the tree, there is no way to for the items in b to change.
2998 * It is safe to drop the lock on our parent before we
2999 * go through the expensive btree search on b.
3000 */
3001 btrfs_unlock_up_safe(p, level + 1);
3002
d4b4087c
JB
3003 /*
3004 * Since we can unwind eb's we want to do a real search every
3005 * time.
3006 */
3007 prev_cmp = -1;
d7396f07 3008 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
3009
3010 if (level != 0) {
3011 int dec = 0;
3012 if (ret && slot > 0) {
3013 dec = 1;
3014 slot -= 1;
3015 }
3016 p->slots[level] = slot;
3017 unlock_up(p, level, lowest_unlock, 0, NULL);
3018
3019 if (level == lowest_level) {
3020 if (dec)
3021 p->slots[level]++;
3022 goto done;
3023 }
3024
3025 err = read_block_for_search(NULL, root, p, &b, level,
3026 slot, key, time_seq);
3027 if (err == -EAGAIN)
3028 goto again;
3029 if (err) {
3030 ret = err;
3031 goto done;
3032 }
3033
3034 level = btrfs_header_level(b);
3035 err = btrfs_try_tree_read_lock(b);
3036 if (!err) {
3037 btrfs_set_path_blocking(p);
3038 btrfs_tree_read_lock(b);
3039 btrfs_clear_path_blocking(p, b,
3040 BTRFS_READ_LOCK);
3041 }
9ec72677 3042 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
db7f3436
JB
3043 if (!b) {
3044 ret = -ENOMEM;
3045 goto done;
3046 }
5d9e75c4
JS
3047 p->locks[level] = BTRFS_READ_LOCK;
3048 p->nodes[level] = b;
5d9e75c4
JS
3049 } else {
3050 p->slots[level] = slot;
3051 unlock_up(p, level, lowest_unlock, 0, NULL);
3052 goto done;
3053 }
3054 }
3055 ret = 1;
3056done:
3057 if (!p->leave_spinning)
3058 btrfs_set_path_blocking(p);
3059 if (ret < 0)
3060 btrfs_release_path(p);
3061
3062 return ret;
3063}
3064
2f38b3e1
AJ
3065/*
3066 * helper to use instead of search slot if no exact match is needed but
3067 * instead the next or previous item should be returned.
3068 * When find_higher is true, the next higher item is returned, the next lower
3069 * otherwise.
3070 * When return_any and find_higher are both true, and no higher item is found,
3071 * return the next lower instead.
3072 * When return_any is true and find_higher is false, and no lower item is found,
3073 * return the next higher instead.
3074 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3075 * < 0 on error
3076 */
3077int btrfs_search_slot_for_read(struct btrfs_root *root,
3078 struct btrfs_key *key, struct btrfs_path *p,
3079 int find_higher, int return_any)
3080{
3081 int ret;
3082 struct extent_buffer *leaf;
3083
3084again:
3085 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3086 if (ret <= 0)
3087 return ret;
3088 /*
3089 * a return value of 1 means the path is at the position where the
3090 * item should be inserted. Normally this is the next bigger item,
3091 * but in case the previous item is the last in a leaf, path points
3092 * to the first free slot in the previous leaf, i.e. at an invalid
3093 * item.
3094 */
3095 leaf = p->nodes[0];
3096
3097 if (find_higher) {
3098 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3099 ret = btrfs_next_leaf(root, p);
3100 if (ret <= 0)
3101 return ret;
3102 if (!return_any)
3103 return 1;
3104 /*
3105 * no higher item found, return the next
3106 * lower instead
3107 */
3108 return_any = 0;
3109 find_higher = 0;
3110 btrfs_release_path(p);
3111 goto again;
3112 }
3113 } else {
e6793769
AJ
3114 if (p->slots[0] == 0) {
3115 ret = btrfs_prev_leaf(root, p);
3116 if (ret < 0)
3117 return ret;
3118 if (!ret) {
23c6bf6a
FDBM
3119 leaf = p->nodes[0];
3120 if (p->slots[0] == btrfs_header_nritems(leaf))
3121 p->slots[0]--;
e6793769 3122 return 0;
2f38b3e1 3123 }
e6793769
AJ
3124 if (!return_any)
3125 return 1;
3126 /*
3127 * no lower item found, return the next
3128 * higher instead
3129 */
3130 return_any = 0;
3131 find_higher = 1;
3132 btrfs_release_path(p);
3133 goto again;
3134 } else {
2f38b3e1
AJ
3135 --p->slots[0];
3136 }
3137 }
3138 return 0;
3139}
3140
74123bd7
CM
3141/*
3142 * adjust the pointers going up the tree, starting at level
3143 * making sure the right key of each node is points to 'key'.
3144 * This is used after shifting pointers to the left, so it stops
3145 * fixing up pointers when a given leaf/node is not in slot 0 of the
3146 * higher levels
aa5d6bed 3147 *
74123bd7 3148 */
d6a0a126 3149static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
143bede5 3150 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3151{
3152 int i;
5f39d397
CM
3153 struct extent_buffer *t;
3154
234b63a0 3155 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3156 int tslot = path->slots[i];
eb60ceac 3157 if (!path->nodes[i])
be0e5c09 3158 break;
5f39d397 3159 t = path->nodes[i];
32adf090 3160 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
5f39d397 3161 btrfs_set_node_key(t, key, tslot);
d6025579 3162 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3163 if (tslot != 0)
3164 break;
3165 }
3166}
3167
31840ae1
ZY
3168/*
3169 * update item key.
3170 *
3171 * This function isn't completely safe. It's the caller's responsibility
3172 * that the new key won't break the order
3173 */
afe5fea7 3174void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
143bede5 3175 struct btrfs_key *new_key)
31840ae1
ZY
3176{
3177 struct btrfs_disk_key disk_key;
3178 struct extent_buffer *eb;
3179 int slot;
3180
3181 eb = path->nodes[0];
3182 slot = path->slots[0];
3183 if (slot > 0) {
3184 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3185 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3186 }
3187 if (slot < btrfs_header_nritems(eb) - 1) {
3188 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3189 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3190 }
3191
3192 btrfs_cpu_key_to_disk(&disk_key, new_key);
3193 btrfs_set_item_key(eb, &disk_key, slot);
3194 btrfs_mark_buffer_dirty(eb);
3195 if (slot == 0)
d6a0a126 3196 fixup_low_keys(root, path, &disk_key, 1);
31840ae1
ZY
3197}
3198
74123bd7
CM
3199/*
3200 * try to push data from one node into the next node left in the
79f95c82 3201 * tree.
aa5d6bed
CM
3202 *
3203 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3204 * error, and > 0 if there was no room in the left hand block.
74123bd7 3205 */
98ed5174
CM
3206static int push_node_left(struct btrfs_trans_handle *trans,
3207 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 3208 struct extent_buffer *src, int empty)
be0e5c09 3209{
be0e5c09 3210 int push_items = 0;
bb803951
CM
3211 int src_nritems;
3212 int dst_nritems;
aa5d6bed 3213 int ret = 0;
be0e5c09 3214
5f39d397
CM
3215 src_nritems = btrfs_header_nritems(src);
3216 dst_nritems = btrfs_header_nritems(dst);
123abc88 3217 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
3218 WARN_ON(btrfs_header_generation(src) != trans->transid);
3219 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3220
bce4eae9 3221 if (!empty && src_nritems <= 8)
971a1f66
CM
3222 return 1;
3223
d397712b 3224 if (push_items <= 0)
be0e5c09
CM
3225 return 1;
3226
bce4eae9 3227 if (empty) {
971a1f66 3228 push_items = min(src_nritems, push_items);
bce4eae9
CM
3229 if (push_items < src_nritems) {
3230 /* leave at least 8 pointers in the node if
3231 * we aren't going to empty it
3232 */
3233 if (src_nritems - push_items < 8) {
3234 if (push_items <= 8)
3235 return 1;
3236 push_items -= 8;
3237 }
3238 }
3239 } else
3240 push_items = min(src_nritems - 8, push_items);
79f95c82 3241
5de865ee
FDBM
3242 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3243 push_items);
3244 if (ret) {
3245 btrfs_abort_transaction(trans, root, ret);
3246 return ret;
3247 }
5f39d397
CM
3248 copy_extent_buffer(dst, src,
3249 btrfs_node_key_ptr_offset(dst_nritems),
3250 btrfs_node_key_ptr_offset(0),
d397712b 3251 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3252
bb803951 3253 if (push_items < src_nritems) {
57911b8b
JS
3254 /*
3255 * don't call tree_mod_log_eb_move here, key removal was already
3256 * fully logged by tree_mod_log_eb_copy above.
3257 */
5f39d397
CM
3258 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3259 btrfs_node_key_ptr_offset(push_items),
3260 (src_nritems - push_items) *
3261 sizeof(struct btrfs_key_ptr));
3262 }
3263 btrfs_set_header_nritems(src, src_nritems - push_items);
3264 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3265 btrfs_mark_buffer_dirty(src);
3266 btrfs_mark_buffer_dirty(dst);
31840ae1 3267
79f95c82
CM
3268 return ret;
3269}
3270
3271/*
3272 * try to push data from one node into the next node right in the
3273 * tree.
3274 *
3275 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3276 * error, and > 0 if there was no room in the right hand block.
3277 *
3278 * this will only push up to 1/2 the contents of the left node over
3279 */
5f39d397
CM
3280static int balance_node_right(struct btrfs_trans_handle *trans,
3281 struct btrfs_root *root,
3282 struct extent_buffer *dst,
3283 struct extent_buffer *src)
79f95c82 3284{
79f95c82
CM
3285 int push_items = 0;
3286 int max_push;
3287 int src_nritems;
3288 int dst_nritems;
3289 int ret = 0;
79f95c82 3290
7bb86316
CM
3291 WARN_ON(btrfs_header_generation(src) != trans->transid);
3292 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3293
5f39d397
CM
3294 src_nritems = btrfs_header_nritems(src);
3295 dst_nritems = btrfs_header_nritems(dst);
123abc88 3296 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3297 if (push_items <= 0)
79f95c82 3298 return 1;
bce4eae9 3299
d397712b 3300 if (src_nritems < 4)
bce4eae9 3301 return 1;
79f95c82
CM
3302
3303 max_push = src_nritems / 2 + 1;
3304 /* don't try to empty the node */
d397712b 3305 if (max_push >= src_nritems)
79f95c82 3306 return 1;
252c38f0 3307
79f95c82
CM
3308 if (max_push < push_items)
3309 push_items = max_push;
3310
f230475e 3311 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3312 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3313 btrfs_node_key_ptr_offset(0),
3314 (dst_nritems) *
3315 sizeof(struct btrfs_key_ptr));
d6025579 3316
5de865ee
FDBM
3317 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3318 src_nritems - push_items, push_items);
3319 if (ret) {
3320 btrfs_abort_transaction(trans, root, ret);
3321 return ret;
3322 }
5f39d397
CM
3323 copy_extent_buffer(dst, src,
3324 btrfs_node_key_ptr_offset(0),
3325 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3326 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3327
5f39d397
CM
3328 btrfs_set_header_nritems(src, src_nritems - push_items);
3329 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3330
5f39d397
CM
3331 btrfs_mark_buffer_dirty(src);
3332 btrfs_mark_buffer_dirty(dst);
31840ae1 3333
aa5d6bed 3334 return ret;
be0e5c09
CM
3335}
3336
97571fd0
CM
3337/*
3338 * helper function to insert a new root level in the tree.
3339 * A new node is allocated, and a single item is inserted to
3340 * point to the existing root
aa5d6bed
CM
3341 *
3342 * returns zero on success or < 0 on failure.
97571fd0 3343 */
d397712b 3344static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3345 struct btrfs_root *root,
fdd99c72 3346 struct btrfs_path *path, int level)
5c680ed6 3347{
7bb86316 3348 u64 lower_gen;
5f39d397
CM
3349 struct extent_buffer *lower;
3350 struct extent_buffer *c;
925baedd 3351 struct extent_buffer *old;
5f39d397 3352 struct btrfs_disk_key lower_key;
5c680ed6
CM
3353
3354 BUG_ON(path->nodes[level]);
3355 BUG_ON(path->nodes[level-1] != root->node);
3356
7bb86316
CM
3357 lower = path->nodes[level-1];
3358 if (level == 1)
3359 btrfs_item_key(lower, &lower_key, 0);
3360 else
3361 btrfs_node_key(lower, &lower_key, 0);
3362
31840ae1 3363 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3364 root->root_key.objectid, &lower_key,
5581a51a 3365 level, root->node->start, 0);
5f39d397
CM
3366 if (IS_ERR(c))
3367 return PTR_ERR(c);
925baedd 3368
f0486c68
YZ
3369 root_add_used(root, root->nodesize);
3370
5d4f98a2 3371 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3372 btrfs_set_header_nritems(c, 1);
3373 btrfs_set_header_level(c, level);
db94535d 3374 btrfs_set_header_bytenr(c, c->start);
5f39d397 3375 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3376 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3377 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3378
0a4e5586 3379 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
5f39d397 3380 BTRFS_FSID_SIZE);
e17cade2
CM
3381
3382 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
b308bc2f 3383 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
e17cade2 3384
5f39d397 3385 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3386 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3387 lower_gen = btrfs_header_generation(lower);
31840ae1 3388 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3389
3390 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3391
5f39d397 3392 btrfs_mark_buffer_dirty(c);
d5719762 3393
925baedd 3394 old = root->node;
fdd99c72 3395 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3396 rcu_assign_pointer(root->node, c);
925baedd
CM
3397
3398 /* the super has an extra ref to root->node */
3399 free_extent_buffer(old);
3400
0b86a832 3401 add_root_to_dirty_list(root);
5f39d397
CM
3402 extent_buffer_get(c);
3403 path->nodes[level] = c;
bd681513 3404 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3405 path->slots[level] = 0;
3406 return 0;
3407}
3408
74123bd7
CM
3409/*
3410 * worker function to insert a single pointer in a node.
3411 * the node should have enough room for the pointer already
97571fd0 3412 *
74123bd7
CM
3413 * slot and level indicate where you want the key to go, and
3414 * blocknr is the block the key points to.
3415 */
143bede5
JM
3416static void insert_ptr(struct btrfs_trans_handle *trans,
3417 struct btrfs_root *root, struct btrfs_path *path,
3418 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3419 int slot, int level)
74123bd7 3420{
5f39d397 3421 struct extent_buffer *lower;
74123bd7 3422 int nritems;
f3ea38da 3423 int ret;
5c680ed6
CM
3424
3425 BUG_ON(!path->nodes[level]);
f0486c68 3426 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3427 lower = path->nodes[level];
3428 nritems = btrfs_header_nritems(lower);
c293498b 3429 BUG_ON(slot > nritems);
143bede5 3430 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3431 if (slot != nritems) {
c3e06965 3432 if (level)
f3ea38da
JS
3433 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3434 slot, nritems - slot);
5f39d397
CM
3435 memmove_extent_buffer(lower,
3436 btrfs_node_key_ptr_offset(slot + 1),
3437 btrfs_node_key_ptr_offset(slot),
d6025579 3438 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3439 }
c3e06965 3440 if (level) {
f3ea38da 3441 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
c8cc6341 3442 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3443 BUG_ON(ret < 0);
3444 }
5f39d397 3445 btrfs_set_node_key(lower, key, slot);
db94535d 3446 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3447 WARN_ON(trans->transid == 0);
3448 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3449 btrfs_set_header_nritems(lower, nritems + 1);
3450 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3451}
3452
97571fd0
CM
3453/*
3454 * split the node at the specified level in path in two.
3455 * The path is corrected to point to the appropriate node after the split
3456 *
3457 * Before splitting this tries to make some room in the node by pushing
3458 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3459 *
3460 * returns 0 on success and < 0 on failure
97571fd0 3461 */
e02119d5
CM
3462static noinline int split_node(struct btrfs_trans_handle *trans,
3463 struct btrfs_root *root,
3464 struct btrfs_path *path, int level)
be0e5c09 3465{
5f39d397
CM
3466 struct extent_buffer *c;
3467 struct extent_buffer *split;
3468 struct btrfs_disk_key disk_key;
be0e5c09 3469 int mid;
5c680ed6 3470 int ret;
7518a238 3471 u32 c_nritems;
eb60ceac 3472
5f39d397 3473 c = path->nodes[level];
7bb86316 3474 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3475 if (c == root->node) {
d9abbf1c 3476 /*
90f8d62e
JS
3477 * trying to split the root, lets make a new one
3478 *
fdd99c72 3479 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3480 * insert_new_root, because that root buffer will be kept as a
3481 * normal node. We are going to log removal of half of the
3482 * elements below with tree_mod_log_eb_copy. We're holding a
3483 * tree lock on the buffer, which is why we cannot race with
3484 * other tree_mod_log users.
d9abbf1c 3485 */
fdd99c72 3486 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3487 if (ret)
3488 return ret;
b3612421 3489 } else {
e66f709b 3490 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3491 c = path->nodes[level];
3492 if (!ret && btrfs_header_nritems(c) <
c448acf0 3493 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3494 return 0;
54aa1f4d
CM
3495 if (ret < 0)
3496 return ret;
be0e5c09 3497 }
e66f709b 3498
5f39d397 3499 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3500 mid = (c_nritems + 1) / 2;
3501 btrfs_node_key(c, &disk_key, mid);
7bb86316 3502
5d4f98a2 3503 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3504 root->root_key.objectid,
5581a51a 3505 &disk_key, level, c->start, 0);
5f39d397
CM
3506 if (IS_ERR(split))
3507 return PTR_ERR(split);
3508
f0486c68
YZ
3509 root_add_used(root, root->nodesize);
3510
5d4f98a2 3511 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3512 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3513 btrfs_set_header_bytenr(split, split->start);
5f39d397 3514 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3515 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3516 btrfs_set_header_owner(split, root->root_key.objectid);
3517 write_extent_buffer(split, root->fs_info->fsid,
0a4e5586 3518 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e17cade2 3519 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
b308bc2f 3520 btrfs_header_chunk_tree_uuid(split),
e17cade2 3521 BTRFS_UUID_SIZE);
54aa1f4d 3522
5de865ee
FDBM
3523 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3524 mid, c_nritems - mid);
3525 if (ret) {
3526 btrfs_abort_transaction(trans, root, ret);
3527 return ret;
3528 }
5f39d397
CM
3529 copy_extent_buffer(split, c,
3530 btrfs_node_key_ptr_offset(0),
3531 btrfs_node_key_ptr_offset(mid),
3532 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3533 btrfs_set_header_nritems(split, c_nritems - mid);
3534 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3535 ret = 0;
3536
5f39d397
CM
3537 btrfs_mark_buffer_dirty(c);
3538 btrfs_mark_buffer_dirty(split);
3539
143bede5 3540 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3541 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3542
5de08d7d 3543 if (path->slots[level] >= mid) {
5c680ed6 3544 path->slots[level] -= mid;
925baedd 3545 btrfs_tree_unlock(c);
5f39d397
CM
3546 free_extent_buffer(c);
3547 path->nodes[level] = split;
5c680ed6
CM
3548 path->slots[level + 1] += 1;
3549 } else {
925baedd 3550 btrfs_tree_unlock(split);
5f39d397 3551 free_extent_buffer(split);
be0e5c09 3552 }
aa5d6bed 3553 return ret;
be0e5c09
CM
3554}
3555
74123bd7
CM
3556/*
3557 * how many bytes are required to store the items in a leaf. start
3558 * and nr indicate which items in the leaf to check. This totals up the
3559 * space used both by the item structs and the item data
3560 */
5f39d397 3561static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3562{
41be1f3b
JB
3563 struct btrfs_item *start_item;
3564 struct btrfs_item *end_item;
3565 struct btrfs_map_token token;
be0e5c09 3566 int data_len;
5f39d397 3567 int nritems = btrfs_header_nritems(l);
d4dbff95 3568 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3569
3570 if (!nr)
3571 return 0;
41be1f3b 3572 btrfs_init_map_token(&token);
dd3cc16b
RK
3573 start_item = btrfs_item_nr(start);
3574 end_item = btrfs_item_nr(end);
41be1f3b
JB
3575 data_len = btrfs_token_item_offset(l, start_item, &token) +
3576 btrfs_token_item_size(l, start_item, &token);
3577 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3578 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3579 WARN_ON(data_len < 0);
be0e5c09
CM
3580 return data_len;
3581}
3582
d4dbff95
CM
3583/*
3584 * The space between the end of the leaf items and
3585 * the start of the leaf data. IOW, how much room
3586 * the leaf has left for both items and data
3587 */
d397712b 3588noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3589 struct extent_buffer *leaf)
d4dbff95 3590{
5f39d397
CM
3591 int nritems = btrfs_header_nritems(leaf);
3592 int ret;
3593 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3594 if (ret < 0) {
efe120a0
FH
3595 btrfs_crit(root->fs_info,
3596 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
ae2f5411 3597 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3598 leaf_space_used(leaf, 0, nritems), nritems);
3599 }
3600 return ret;
d4dbff95
CM
3601}
3602
99d8f83c
CM
3603/*
3604 * min slot controls the lowest index we're willing to push to the
3605 * right. We'll push up to and including min_slot, but no lower
3606 */
44871b1b
CM
3607static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3608 struct btrfs_root *root,
3609 struct btrfs_path *path,
3610 int data_size, int empty,
3611 struct extent_buffer *right,
99d8f83c
CM
3612 int free_space, u32 left_nritems,
3613 u32 min_slot)
00ec4c51 3614{
5f39d397 3615 struct extent_buffer *left = path->nodes[0];
44871b1b 3616 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3617 struct btrfs_map_token token;
5f39d397 3618 struct btrfs_disk_key disk_key;
00ec4c51 3619 int slot;
34a38218 3620 u32 i;
00ec4c51
CM
3621 int push_space = 0;
3622 int push_items = 0;
0783fcfc 3623 struct btrfs_item *item;
34a38218 3624 u32 nr;
7518a238 3625 u32 right_nritems;
5f39d397 3626 u32 data_end;
db94535d 3627 u32 this_item_size;
00ec4c51 3628
cfed81a0
CM
3629 btrfs_init_map_token(&token);
3630
34a38218
CM
3631 if (empty)
3632 nr = 0;
3633 else
99d8f83c 3634 nr = max_t(u32, 1, min_slot);
34a38218 3635
31840ae1 3636 if (path->slots[0] >= left_nritems)
87b29b20 3637 push_space += data_size;
31840ae1 3638
44871b1b 3639 slot = path->slots[1];
34a38218
CM
3640 i = left_nritems - 1;
3641 while (i >= nr) {
dd3cc16b 3642 item = btrfs_item_nr(i);
db94535d 3643
31840ae1
ZY
3644 if (!empty && push_items > 0) {
3645 if (path->slots[0] > i)
3646 break;
3647 if (path->slots[0] == i) {
3648 int space = btrfs_leaf_free_space(root, left);
3649 if (space + push_space * 2 > free_space)
3650 break;
3651 }
3652 }
3653
00ec4c51 3654 if (path->slots[0] == i)
87b29b20 3655 push_space += data_size;
db94535d 3656
db94535d
CM
3657 this_item_size = btrfs_item_size(left, item);
3658 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3659 break;
31840ae1 3660
00ec4c51 3661 push_items++;
db94535d 3662 push_space += this_item_size + sizeof(*item);
34a38218
CM
3663 if (i == 0)
3664 break;
3665 i--;
db94535d 3666 }
5f39d397 3667
925baedd
CM
3668 if (push_items == 0)
3669 goto out_unlock;
5f39d397 3670
6c1500f2 3671 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3672
00ec4c51 3673 /* push left to right */
5f39d397 3674 right_nritems = btrfs_header_nritems(right);
34a38218 3675
5f39d397 3676 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3677 push_space -= leaf_data_end(root, left);
5f39d397 3678
00ec4c51 3679 /* make room in the right data area */
5f39d397
CM
3680 data_end = leaf_data_end(root, right);
3681 memmove_extent_buffer(right,
3682 btrfs_leaf_data(right) + data_end - push_space,
3683 btrfs_leaf_data(right) + data_end,
3684 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3685
00ec4c51 3686 /* copy from the left data area */
5f39d397 3687 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3688 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3689 btrfs_leaf_data(left) + leaf_data_end(root, left),
3690 push_space);
5f39d397
CM
3691
3692 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3693 btrfs_item_nr_offset(0),
3694 right_nritems * sizeof(struct btrfs_item));
3695
00ec4c51 3696 /* copy the items from left to right */
5f39d397
CM
3697 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3698 btrfs_item_nr_offset(left_nritems - push_items),
3699 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3700
3701 /* update the item pointers */
7518a238 3702 right_nritems += push_items;
5f39d397 3703 btrfs_set_header_nritems(right, right_nritems);
123abc88 3704 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3705 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3706 item = btrfs_item_nr(i);
cfed81a0
CM
3707 push_space -= btrfs_token_item_size(right, item, &token);
3708 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3709 }
3710
7518a238 3711 left_nritems -= push_items;
5f39d397 3712 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3713
34a38218
CM
3714 if (left_nritems)
3715 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3716 else
3717 clean_tree_block(trans, root, left);
3718
5f39d397 3719 btrfs_mark_buffer_dirty(right);
a429e513 3720
5f39d397
CM
3721 btrfs_item_key(right, &disk_key, 0);
3722 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3723 btrfs_mark_buffer_dirty(upper);
02217ed2 3724
00ec4c51 3725 /* then fixup the leaf pointer in the path */
7518a238
CM
3726 if (path->slots[0] >= left_nritems) {
3727 path->slots[0] -= left_nritems;
925baedd
CM
3728 if (btrfs_header_nritems(path->nodes[0]) == 0)
3729 clean_tree_block(trans, root, path->nodes[0]);
3730 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3731 free_extent_buffer(path->nodes[0]);
3732 path->nodes[0] = right;
00ec4c51
CM
3733 path->slots[1] += 1;
3734 } else {
925baedd 3735 btrfs_tree_unlock(right);
5f39d397 3736 free_extent_buffer(right);
00ec4c51
CM
3737 }
3738 return 0;
925baedd
CM
3739
3740out_unlock:
3741 btrfs_tree_unlock(right);
3742 free_extent_buffer(right);
3743 return 1;
00ec4c51 3744}
925baedd 3745
44871b1b
CM
3746/*
3747 * push some data in the path leaf to the right, trying to free up at
3748 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3749 *
3750 * returns 1 if the push failed because the other node didn't have enough
3751 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3752 *
3753 * this will push starting from min_slot to the end of the leaf. It won't
3754 * push any slot lower than min_slot
44871b1b
CM
3755 */
3756static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3757 *root, struct btrfs_path *path,
3758 int min_data_size, int data_size,
3759 int empty, u32 min_slot)
44871b1b
CM
3760{
3761 struct extent_buffer *left = path->nodes[0];
3762 struct extent_buffer *right;
3763 struct extent_buffer *upper;
3764 int slot;
3765 int free_space;
3766 u32 left_nritems;
3767 int ret;
3768
3769 if (!path->nodes[1])
3770 return 1;
3771
3772 slot = path->slots[1];
3773 upper = path->nodes[1];
3774 if (slot >= btrfs_header_nritems(upper) - 1)
3775 return 1;
3776
3777 btrfs_assert_tree_locked(path->nodes[1]);
3778
3779 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3780 if (right == NULL)
3781 return 1;
3782
44871b1b
CM
3783 btrfs_tree_lock(right);
3784 btrfs_set_lock_blocking(right);
3785
3786 free_space = btrfs_leaf_free_space(root, right);
3787 if (free_space < data_size)
3788 goto out_unlock;
3789
3790 /* cow and double check */
3791 ret = btrfs_cow_block(trans, root, right, upper,
3792 slot + 1, &right);
3793 if (ret)
3794 goto out_unlock;
3795
3796 free_space = btrfs_leaf_free_space(root, right);
3797 if (free_space < data_size)
3798 goto out_unlock;
3799
3800 left_nritems = btrfs_header_nritems(left);
3801 if (left_nritems == 0)
3802 goto out_unlock;
3803
2ef1fed2
FDBM
3804 if (path->slots[0] == left_nritems && !empty) {
3805 /* Key greater than all keys in the leaf, right neighbor has
3806 * enough room for it and we're not emptying our leaf to delete
3807 * it, therefore use right neighbor to insert the new item and
3808 * no need to touch/dirty our left leaft. */
3809 btrfs_tree_unlock(left);
3810 free_extent_buffer(left);
3811 path->nodes[0] = right;
3812 path->slots[0] = 0;
3813 path->slots[1]++;
3814 return 0;
3815 }
3816
99d8f83c
CM
3817 return __push_leaf_right(trans, root, path, min_data_size, empty,
3818 right, free_space, left_nritems, min_slot);
44871b1b
CM
3819out_unlock:
3820 btrfs_tree_unlock(right);
3821 free_extent_buffer(right);
3822 return 1;
3823}
3824
74123bd7
CM
3825/*
3826 * push some data in the path leaf to the left, trying to free up at
3827 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3828 *
3829 * max_slot can put a limit on how far into the leaf we'll push items. The
3830 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3831 * items
74123bd7 3832 */
44871b1b
CM
3833static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3834 struct btrfs_root *root,
3835 struct btrfs_path *path, int data_size,
3836 int empty, struct extent_buffer *left,
99d8f83c
CM
3837 int free_space, u32 right_nritems,
3838 u32 max_slot)
be0e5c09 3839{
5f39d397
CM
3840 struct btrfs_disk_key disk_key;
3841 struct extent_buffer *right = path->nodes[0];
be0e5c09 3842 int i;
be0e5c09
CM
3843 int push_space = 0;
3844 int push_items = 0;
0783fcfc 3845 struct btrfs_item *item;
7518a238 3846 u32 old_left_nritems;
34a38218 3847 u32 nr;
aa5d6bed 3848 int ret = 0;
db94535d
CM
3849 u32 this_item_size;
3850 u32 old_left_item_size;
cfed81a0
CM
3851 struct btrfs_map_token token;
3852
3853 btrfs_init_map_token(&token);
be0e5c09 3854
34a38218 3855 if (empty)
99d8f83c 3856 nr = min(right_nritems, max_slot);
34a38218 3857 else
99d8f83c 3858 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3859
3860 for (i = 0; i < nr; i++) {
dd3cc16b 3861 item = btrfs_item_nr(i);
db94535d 3862
31840ae1
ZY
3863 if (!empty && push_items > 0) {
3864 if (path->slots[0] < i)
3865 break;
3866 if (path->slots[0] == i) {
3867 int space = btrfs_leaf_free_space(root, right);
3868 if (space + push_space * 2 > free_space)
3869 break;
3870 }
3871 }
3872
be0e5c09 3873 if (path->slots[0] == i)
87b29b20 3874 push_space += data_size;
db94535d
CM
3875
3876 this_item_size = btrfs_item_size(right, item);
3877 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3878 break;
db94535d 3879
be0e5c09 3880 push_items++;
db94535d
CM
3881 push_space += this_item_size + sizeof(*item);
3882 }
3883
be0e5c09 3884 if (push_items == 0) {
925baedd
CM
3885 ret = 1;
3886 goto out;
be0e5c09 3887 }
fae7f21c 3888 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3889
be0e5c09 3890 /* push data from right to left */
5f39d397
CM
3891 copy_extent_buffer(left, right,
3892 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3893 btrfs_item_nr_offset(0),
3894 push_items * sizeof(struct btrfs_item));
3895
123abc88 3896 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3897 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3898
3899 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3900 leaf_data_end(root, left) - push_space,
3901 btrfs_leaf_data(right) +
5f39d397 3902 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3903 push_space);
5f39d397 3904 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3905 BUG_ON(old_left_nritems <= 0);
eb60ceac 3906
db94535d 3907 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3908 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3909 u32 ioff;
db94535d 3910
dd3cc16b 3911 item = btrfs_item_nr(i);
db94535d 3912
cfed81a0
CM
3913 ioff = btrfs_token_item_offset(left, item, &token);
3914 btrfs_set_token_item_offset(left, item,
3915 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3916 &token);
be0e5c09 3917 }
5f39d397 3918 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3919
3920 /* fixup right node */
31b1a2bd
JL
3921 if (push_items > right_nritems)
3922 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3923 right_nritems);
34a38218
CM
3924
3925 if (push_items < right_nritems) {
3926 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3927 leaf_data_end(root, right);
3928 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3929 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3930 btrfs_leaf_data(right) +
3931 leaf_data_end(root, right), push_space);
3932
3933 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3934 btrfs_item_nr_offset(push_items),
3935 (btrfs_header_nritems(right) - push_items) *
3936 sizeof(struct btrfs_item));
34a38218 3937 }
eef1c494
Y
3938 right_nritems -= push_items;
3939 btrfs_set_header_nritems(right, right_nritems);
123abc88 3940 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397 3941 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3942 item = btrfs_item_nr(i);
db94535d 3943
cfed81a0
CM
3944 push_space = push_space - btrfs_token_item_size(right,
3945 item, &token);
3946 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3947 }
eb60ceac 3948
5f39d397 3949 btrfs_mark_buffer_dirty(left);
34a38218
CM
3950 if (right_nritems)
3951 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3952 else
3953 clean_tree_block(trans, root, right);
098f59c2 3954
5f39d397 3955 btrfs_item_key(right, &disk_key, 0);
d6a0a126 3956 fixup_low_keys(root, path, &disk_key, 1);
be0e5c09
CM
3957
3958 /* then fixup the leaf pointer in the path */
3959 if (path->slots[0] < push_items) {
3960 path->slots[0] += old_left_nritems;
925baedd 3961 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3962 free_extent_buffer(path->nodes[0]);
3963 path->nodes[0] = left;
be0e5c09
CM
3964 path->slots[1] -= 1;
3965 } else {
925baedd 3966 btrfs_tree_unlock(left);
5f39d397 3967 free_extent_buffer(left);
be0e5c09
CM
3968 path->slots[0] -= push_items;
3969 }
eb60ceac 3970 BUG_ON(path->slots[0] < 0);
aa5d6bed 3971 return ret;
925baedd
CM
3972out:
3973 btrfs_tree_unlock(left);
3974 free_extent_buffer(left);
3975 return ret;
be0e5c09
CM
3976}
3977
44871b1b
CM
3978/*
3979 * push some data in the path leaf to the left, trying to free up at
3980 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3981 *
3982 * max_slot can put a limit on how far into the leaf we'll push items. The
3983 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3984 * items
44871b1b
CM
3985 */
3986static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3987 *root, struct btrfs_path *path, int min_data_size,
3988 int data_size, int empty, u32 max_slot)
44871b1b
CM
3989{
3990 struct extent_buffer *right = path->nodes[0];
3991 struct extent_buffer *left;
3992 int slot;
3993 int free_space;
3994 u32 right_nritems;
3995 int ret = 0;
3996
3997 slot = path->slots[1];
3998 if (slot == 0)
3999 return 1;
4000 if (!path->nodes[1])
4001 return 1;
4002
4003 right_nritems = btrfs_header_nritems(right);
4004 if (right_nritems == 0)
4005 return 1;
4006
4007 btrfs_assert_tree_locked(path->nodes[1]);
4008
4009 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
4010 if (left == NULL)
4011 return 1;
4012
44871b1b
CM
4013 btrfs_tree_lock(left);
4014 btrfs_set_lock_blocking(left);
4015
4016 free_space = btrfs_leaf_free_space(root, left);
4017 if (free_space < data_size) {
4018 ret = 1;
4019 goto out;
4020 }
4021
4022 /* cow and double check */
4023 ret = btrfs_cow_block(trans, root, left,
4024 path->nodes[1], slot - 1, &left);
4025 if (ret) {
4026 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4027 if (ret == -ENOSPC)
4028 ret = 1;
44871b1b
CM
4029 goto out;
4030 }
4031
4032 free_space = btrfs_leaf_free_space(root, left);
4033 if (free_space < data_size) {
4034 ret = 1;
4035 goto out;
4036 }
4037
99d8f83c
CM
4038 return __push_leaf_left(trans, root, path, min_data_size,
4039 empty, left, free_space, right_nritems,
4040 max_slot);
44871b1b
CM
4041out:
4042 btrfs_tree_unlock(left);
4043 free_extent_buffer(left);
4044 return ret;
4045}
4046
4047/*
4048 * split the path's leaf in two, making sure there is at least data_size
4049 * available for the resulting leaf level of the path.
44871b1b 4050 */
143bede5
JM
4051static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4052 struct btrfs_root *root,
4053 struct btrfs_path *path,
4054 struct extent_buffer *l,
4055 struct extent_buffer *right,
4056 int slot, int mid, int nritems)
44871b1b
CM
4057{
4058 int data_copy_size;
4059 int rt_data_off;
4060 int i;
44871b1b 4061 struct btrfs_disk_key disk_key;
cfed81a0
CM
4062 struct btrfs_map_token token;
4063
4064 btrfs_init_map_token(&token);
44871b1b
CM
4065
4066 nritems = nritems - mid;
4067 btrfs_set_header_nritems(right, nritems);
4068 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4069
4070 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4071 btrfs_item_nr_offset(mid),
4072 nritems * sizeof(struct btrfs_item));
4073
4074 copy_extent_buffer(right, l,
4075 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4076 data_copy_size, btrfs_leaf_data(l) +
4077 leaf_data_end(root, l), data_copy_size);
4078
4079 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4080 btrfs_item_end_nr(l, mid);
4081
4082 for (i = 0; i < nritems; i++) {
dd3cc16b 4083 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4084 u32 ioff;
4085
cfed81a0
CM
4086 ioff = btrfs_token_item_offset(right, item, &token);
4087 btrfs_set_token_item_offset(right, item,
4088 ioff + rt_data_off, &token);
44871b1b
CM
4089 }
4090
44871b1b 4091 btrfs_set_header_nritems(l, mid);
44871b1b 4092 btrfs_item_key(right, &disk_key, 0);
143bede5 4093 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4094 path->slots[1] + 1, 1);
44871b1b
CM
4095
4096 btrfs_mark_buffer_dirty(right);
4097 btrfs_mark_buffer_dirty(l);
4098 BUG_ON(path->slots[0] != slot);
4099
44871b1b
CM
4100 if (mid <= slot) {
4101 btrfs_tree_unlock(path->nodes[0]);
4102 free_extent_buffer(path->nodes[0]);
4103 path->nodes[0] = right;
4104 path->slots[0] -= mid;
4105 path->slots[1] += 1;
4106 } else {
4107 btrfs_tree_unlock(right);
4108 free_extent_buffer(right);
4109 }
4110
4111 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4112}
4113
99d8f83c
CM
4114/*
4115 * double splits happen when we need to insert a big item in the middle
4116 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4117 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4118 * A B C
4119 *
4120 * We avoid this by trying to push the items on either side of our target
4121 * into the adjacent leaves. If all goes well we can avoid the double split
4122 * completely.
4123 */
4124static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4125 struct btrfs_root *root,
4126 struct btrfs_path *path,
4127 int data_size)
4128{
4129 int ret;
4130 int progress = 0;
4131 int slot;
4132 u32 nritems;
5a4267ca 4133 int space_needed = data_size;
99d8f83c
CM
4134
4135 slot = path->slots[0];
5a4267ca
FDBM
4136 if (slot < btrfs_header_nritems(path->nodes[0]))
4137 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
99d8f83c
CM
4138
4139 /*
4140 * try to push all the items after our slot into the
4141 * right leaf
4142 */
5a4267ca 4143 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4144 if (ret < 0)
4145 return ret;
4146
4147 if (ret == 0)
4148 progress++;
4149
4150 nritems = btrfs_header_nritems(path->nodes[0]);
4151 /*
4152 * our goal is to get our slot at the start or end of a leaf. If
4153 * we've done so we're done
4154 */
4155 if (path->slots[0] == 0 || path->slots[0] == nritems)
4156 return 0;
4157
4158 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4159 return 0;
4160
4161 /* try to push all the items before our slot into the next leaf */
4162 slot = path->slots[0];
5a4267ca 4163 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4164 if (ret < 0)
4165 return ret;
4166
4167 if (ret == 0)
4168 progress++;
4169
4170 if (progress)
4171 return 0;
4172 return 1;
4173}
4174
74123bd7
CM
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
aa5d6bed
CM
4178 *
4179 * returns 0 if all went well and < 0 on failure.
74123bd7 4180 */
e02119d5
CM
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182 struct btrfs_root *root,
4183 struct btrfs_key *ins_key,
4184 struct btrfs_path *path, int data_size,
4185 int extend)
be0e5c09 4186{
5d4f98a2 4187 struct btrfs_disk_key disk_key;
5f39d397 4188 struct extent_buffer *l;
7518a238 4189 u32 nritems;
eb60ceac
CM
4190 int mid;
4191 int slot;
5f39d397 4192 struct extent_buffer *right;
d4dbff95 4193 int ret = 0;
aa5d6bed 4194 int wret;
5d4f98a2 4195 int split;
cc0c5538 4196 int num_doubles = 0;
99d8f83c 4197 int tried_avoid_double = 0;
aa5d6bed 4198
a5719521
YZ
4199 l = path->nodes[0];
4200 slot = path->slots[0];
4201 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4202 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4203 return -EOVERFLOW;
4204
40689478 4205 /* first try to make some room by pushing left and right */
33157e05 4206 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4207 int space_needed = data_size;
4208
4209 if (slot < btrfs_header_nritems(l))
4210 space_needed -= btrfs_leaf_free_space(root, l);
4211
4212 wret = push_leaf_right(trans, root, path, space_needed,
4213 space_needed, 0, 0);
d397712b 4214 if (wret < 0)
eaee50e8 4215 return wret;
3685f791 4216 if (wret) {
5a4267ca
FDBM
4217 wret = push_leaf_left(trans, root, path, space_needed,
4218 space_needed, 0, (u32)-1);
3685f791
CM
4219 if (wret < 0)
4220 return wret;
4221 }
4222 l = path->nodes[0];
aa5d6bed 4223
3685f791 4224 /* did the pushes work? */
87b29b20 4225 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 4226 return 0;
3326d1b0 4227 }
aa5d6bed 4228
5c680ed6 4229 if (!path->nodes[1]) {
fdd99c72 4230 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4231 if (ret)
4232 return ret;
4233 }
cc0c5538 4234again:
5d4f98a2 4235 split = 1;
cc0c5538 4236 l = path->nodes[0];
eb60ceac 4237 slot = path->slots[0];
5f39d397 4238 nritems = btrfs_header_nritems(l);
d397712b 4239 mid = (nritems + 1) / 2;
54aa1f4d 4240
5d4f98a2
YZ
4241 if (mid <= slot) {
4242 if (nritems == 1 ||
4243 leaf_space_used(l, mid, nritems - mid) + data_size >
4244 BTRFS_LEAF_DATA_SIZE(root)) {
4245 if (slot >= nritems) {
4246 split = 0;
4247 } else {
4248 mid = slot;
4249 if (mid != nritems &&
4250 leaf_space_used(l, mid, nritems - mid) +
4251 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4252 if (data_size && !tried_avoid_double)
4253 goto push_for_double;
5d4f98a2
YZ
4254 split = 2;
4255 }
4256 }
4257 }
4258 } else {
4259 if (leaf_space_used(l, 0, mid) + data_size >
4260 BTRFS_LEAF_DATA_SIZE(root)) {
4261 if (!extend && data_size && slot == 0) {
4262 split = 0;
4263 } else if ((extend || !data_size) && slot == 0) {
4264 mid = 1;
4265 } else {
4266 mid = slot;
4267 if (mid != nritems &&
4268 leaf_space_used(l, mid, nritems - mid) +
4269 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4270 if (data_size && !tried_avoid_double)
4271 goto push_for_double;
67871254 4272 split = 2;
5d4f98a2
YZ
4273 }
4274 }
4275 }
4276 }
4277
4278 if (split == 0)
4279 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4280 else
4281 btrfs_item_key(l, &disk_key, mid);
4282
707e8a07 4283 right = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 4284 root->root_key.objectid,
5581a51a 4285 &disk_key, 0, l->start, 0);
f0486c68 4286 if (IS_ERR(right))
5f39d397 4287 return PTR_ERR(right);
f0486c68 4288
707e8a07 4289 root_add_used(root, root->nodesize);
5f39d397
CM
4290
4291 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4292 btrfs_set_header_bytenr(right, right->start);
5f39d397 4293 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4294 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4295 btrfs_set_header_owner(right, root->root_key.objectid);
4296 btrfs_set_header_level(right, 0);
4297 write_extent_buffer(right, root->fs_info->fsid,
0a4e5586 4298 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e17cade2
CM
4299
4300 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
b308bc2f 4301 btrfs_header_chunk_tree_uuid(right),
e17cade2 4302 BTRFS_UUID_SIZE);
44871b1b 4303
5d4f98a2
YZ
4304 if (split == 0) {
4305 if (mid <= slot) {
4306 btrfs_set_header_nritems(right, 0);
143bede5 4307 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4308 path->slots[1] + 1, 1);
5d4f98a2
YZ
4309 btrfs_tree_unlock(path->nodes[0]);
4310 free_extent_buffer(path->nodes[0]);
4311 path->nodes[0] = right;
4312 path->slots[0] = 0;
4313 path->slots[1] += 1;
4314 } else {
4315 btrfs_set_header_nritems(right, 0);
143bede5 4316 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4317 path->slots[1], 1);
5d4f98a2
YZ
4318 btrfs_tree_unlock(path->nodes[0]);
4319 free_extent_buffer(path->nodes[0]);
4320 path->nodes[0] = right;
4321 path->slots[0] = 0;
143bede5 4322 if (path->slots[1] == 0)
d6a0a126 4323 fixup_low_keys(root, path, &disk_key, 1);
d4dbff95 4324 }
5d4f98a2
YZ
4325 btrfs_mark_buffer_dirty(right);
4326 return ret;
d4dbff95 4327 }
74123bd7 4328
143bede5 4329 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4330
5d4f98a2 4331 if (split == 2) {
cc0c5538
CM
4332 BUG_ON(num_doubles != 0);
4333 num_doubles++;
4334 goto again;
a429e513 4335 }
44871b1b 4336
143bede5 4337 return 0;
99d8f83c
CM
4338
4339push_for_double:
4340 push_for_double_split(trans, root, path, data_size);
4341 tried_avoid_double = 1;
4342 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4343 return 0;
4344 goto again;
be0e5c09
CM
4345}
4346
ad48fd75
YZ
4347static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4348 struct btrfs_root *root,
4349 struct btrfs_path *path, int ins_len)
459931ec 4350{
ad48fd75 4351 struct btrfs_key key;
459931ec 4352 struct extent_buffer *leaf;
ad48fd75
YZ
4353 struct btrfs_file_extent_item *fi;
4354 u64 extent_len = 0;
4355 u32 item_size;
4356 int ret;
459931ec
CM
4357
4358 leaf = path->nodes[0];
ad48fd75
YZ
4359 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4360
4361 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4362 key.type != BTRFS_EXTENT_CSUM_KEY);
4363
4364 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4365 return 0;
459931ec
CM
4366
4367 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4368 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4369 fi = btrfs_item_ptr(leaf, path->slots[0],
4370 struct btrfs_file_extent_item);
4371 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4372 }
b3b4aa74 4373 btrfs_release_path(path);
459931ec 4374
459931ec 4375 path->keep_locks = 1;
ad48fd75
YZ
4376 path->search_for_split = 1;
4377 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4378 path->search_for_split = 0;
ad48fd75
YZ
4379 if (ret < 0)
4380 goto err;
459931ec 4381
ad48fd75
YZ
4382 ret = -EAGAIN;
4383 leaf = path->nodes[0];
459931ec 4384 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4385 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4386 goto err;
4387
109f6aef
CM
4388 /* the leaf has changed, it now has room. return now */
4389 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4390 goto err;
4391
ad48fd75
YZ
4392 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4393 fi = btrfs_item_ptr(leaf, path->slots[0],
4394 struct btrfs_file_extent_item);
4395 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4396 goto err;
459931ec
CM
4397 }
4398
b9473439 4399 btrfs_set_path_blocking(path);
ad48fd75 4400 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4401 if (ret)
4402 goto err;
459931ec 4403
ad48fd75 4404 path->keep_locks = 0;
b9473439 4405 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4406 return 0;
4407err:
4408 path->keep_locks = 0;
4409 return ret;
4410}
4411
4412static noinline int split_item(struct btrfs_trans_handle *trans,
4413 struct btrfs_root *root,
4414 struct btrfs_path *path,
4415 struct btrfs_key *new_key,
4416 unsigned long split_offset)
4417{
4418 struct extent_buffer *leaf;
4419 struct btrfs_item *item;
4420 struct btrfs_item *new_item;
4421 int slot;
4422 char *buf;
4423 u32 nritems;
4424 u32 item_size;
4425 u32 orig_offset;
4426 struct btrfs_disk_key disk_key;
4427
b9473439
CM
4428 leaf = path->nodes[0];
4429 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4430
b4ce94de
CM
4431 btrfs_set_path_blocking(path);
4432
dd3cc16b 4433 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4434 orig_offset = btrfs_item_offset(leaf, item);
4435 item_size = btrfs_item_size(leaf, item);
4436
459931ec 4437 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4438 if (!buf)
4439 return -ENOMEM;
4440
459931ec
CM
4441 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4442 path->slots[0]), item_size);
459931ec 4443
ad48fd75 4444 slot = path->slots[0] + 1;
459931ec 4445 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4446 if (slot != nritems) {
4447 /* shift the items */
4448 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4449 btrfs_item_nr_offset(slot),
4450 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4451 }
4452
4453 btrfs_cpu_key_to_disk(&disk_key, new_key);
4454 btrfs_set_item_key(leaf, &disk_key, slot);
4455
dd3cc16b 4456 new_item = btrfs_item_nr(slot);
459931ec
CM
4457
4458 btrfs_set_item_offset(leaf, new_item, orig_offset);
4459 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4460
4461 btrfs_set_item_offset(leaf, item,
4462 orig_offset + item_size - split_offset);
4463 btrfs_set_item_size(leaf, item, split_offset);
4464
4465 btrfs_set_header_nritems(leaf, nritems + 1);
4466
4467 /* write the data for the start of the original item */
4468 write_extent_buffer(leaf, buf,
4469 btrfs_item_ptr_offset(leaf, path->slots[0]),
4470 split_offset);
4471
4472 /* write the data for the new item */
4473 write_extent_buffer(leaf, buf + split_offset,
4474 btrfs_item_ptr_offset(leaf, slot),
4475 item_size - split_offset);
4476 btrfs_mark_buffer_dirty(leaf);
4477
ad48fd75 4478 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4479 kfree(buf);
ad48fd75
YZ
4480 return 0;
4481}
4482
4483/*
4484 * This function splits a single item into two items,
4485 * giving 'new_key' to the new item and splitting the
4486 * old one at split_offset (from the start of the item).
4487 *
4488 * The path may be released by this operation. After
4489 * the split, the path is pointing to the old item. The
4490 * new item is going to be in the same node as the old one.
4491 *
4492 * Note, the item being split must be smaller enough to live alone on
4493 * a tree block with room for one extra struct btrfs_item
4494 *
4495 * This allows us to split the item in place, keeping a lock on the
4496 * leaf the entire time.
4497 */
4498int btrfs_split_item(struct btrfs_trans_handle *trans,
4499 struct btrfs_root *root,
4500 struct btrfs_path *path,
4501 struct btrfs_key *new_key,
4502 unsigned long split_offset)
4503{
4504 int ret;
4505 ret = setup_leaf_for_split(trans, root, path,
4506 sizeof(struct btrfs_item));
4507 if (ret)
4508 return ret;
4509
4510 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4511 return ret;
4512}
4513
ad48fd75
YZ
4514/*
4515 * This function duplicate a item, giving 'new_key' to the new item.
4516 * It guarantees both items live in the same tree leaf and the new item
4517 * is contiguous with the original item.
4518 *
4519 * This allows us to split file extent in place, keeping a lock on the
4520 * leaf the entire time.
4521 */
4522int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4523 struct btrfs_root *root,
4524 struct btrfs_path *path,
4525 struct btrfs_key *new_key)
4526{
4527 struct extent_buffer *leaf;
4528 int ret;
4529 u32 item_size;
4530
4531 leaf = path->nodes[0];
4532 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4533 ret = setup_leaf_for_split(trans, root, path,
4534 item_size + sizeof(struct btrfs_item));
4535 if (ret)
4536 return ret;
4537
4538 path->slots[0]++;
afe5fea7 4539 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4540 item_size, item_size +
4541 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4542 leaf = path->nodes[0];
4543 memcpy_extent_buffer(leaf,
4544 btrfs_item_ptr_offset(leaf, path->slots[0]),
4545 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4546 item_size);
4547 return 0;
4548}
4549
d352ac68
CM
4550/*
4551 * make the item pointed to by the path smaller. new_size indicates
4552 * how small to make it, and from_end tells us if we just chop bytes
4553 * off the end of the item or if we shift the item to chop bytes off
4554 * the front.
4555 */
afe5fea7 4556void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4557 u32 new_size, int from_end)
b18c6685 4558{
b18c6685 4559 int slot;
5f39d397
CM
4560 struct extent_buffer *leaf;
4561 struct btrfs_item *item;
b18c6685
CM
4562 u32 nritems;
4563 unsigned int data_end;
4564 unsigned int old_data_start;
4565 unsigned int old_size;
4566 unsigned int size_diff;
4567 int i;
cfed81a0
CM
4568 struct btrfs_map_token token;
4569
4570 btrfs_init_map_token(&token);
b18c6685 4571
5f39d397 4572 leaf = path->nodes[0];
179e29e4
CM
4573 slot = path->slots[0];
4574
4575 old_size = btrfs_item_size_nr(leaf, slot);
4576 if (old_size == new_size)
143bede5 4577 return;
b18c6685 4578
5f39d397 4579 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4580 data_end = leaf_data_end(root, leaf);
4581
5f39d397 4582 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4583
b18c6685
CM
4584 size_diff = old_size - new_size;
4585
4586 BUG_ON(slot < 0);
4587 BUG_ON(slot >= nritems);
4588
4589 /*
4590 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4591 */
4592 /* first correct the data pointers */
4593 for (i = slot; i < nritems; i++) {
5f39d397 4594 u32 ioff;
dd3cc16b 4595 item = btrfs_item_nr(i);
db94535d 4596
cfed81a0
CM
4597 ioff = btrfs_token_item_offset(leaf, item, &token);
4598 btrfs_set_token_item_offset(leaf, item,
4599 ioff + size_diff, &token);
b18c6685 4600 }
db94535d 4601
b18c6685 4602 /* shift the data */
179e29e4
CM
4603 if (from_end) {
4604 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4605 data_end + size_diff, btrfs_leaf_data(leaf) +
4606 data_end, old_data_start + new_size - data_end);
4607 } else {
4608 struct btrfs_disk_key disk_key;
4609 u64 offset;
4610
4611 btrfs_item_key(leaf, &disk_key, slot);
4612
4613 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4614 unsigned long ptr;
4615 struct btrfs_file_extent_item *fi;
4616
4617 fi = btrfs_item_ptr(leaf, slot,
4618 struct btrfs_file_extent_item);
4619 fi = (struct btrfs_file_extent_item *)(
4620 (unsigned long)fi - size_diff);
4621
4622 if (btrfs_file_extent_type(leaf, fi) ==
4623 BTRFS_FILE_EXTENT_INLINE) {
4624 ptr = btrfs_item_ptr_offset(leaf, slot);
4625 memmove_extent_buffer(leaf, ptr,
d397712b 4626 (unsigned long)fi,
7ec20afb 4627 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4628 }
4629 }
4630
4631 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4632 data_end + size_diff, btrfs_leaf_data(leaf) +
4633 data_end, old_data_start - data_end);
4634
4635 offset = btrfs_disk_key_offset(&disk_key);
4636 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4637 btrfs_set_item_key(leaf, &disk_key, slot);
4638 if (slot == 0)
d6a0a126 4639 fixup_low_keys(root, path, &disk_key, 1);
179e29e4 4640 }
5f39d397 4641
dd3cc16b 4642 item = btrfs_item_nr(slot);
5f39d397
CM
4643 btrfs_set_item_size(leaf, item, new_size);
4644 btrfs_mark_buffer_dirty(leaf);
b18c6685 4645
5f39d397
CM
4646 if (btrfs_leaf_free_space(root, leaf) < 0) {
4647 btrfs_print_leaf(root, leaf);
b18c6685 4648 BUG();
5f39d397 4649 }
b18c6685
CM
4650}
4651
d352ac68 4652/*
8f69dbd2 4653 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4654 */
4b90c680 4655void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4656 u32 data_size)
6567e837 4657{
6567e837 4658 int slot;
5f39d397
CM
4659 struct extent_buffer *leaf;
4660 struct btrfs_item *item;
6567e837
CM
4661 u32 nritems;
4662 unsigned int data_end;
4663 unsigned int old_data;
4664 unsigned int old_size;
4665 int i;
cfed81a0
CM
4666 struct btrfs_map_token token;
4667
4668 btrfs_init_map_token(&token);
6567e837 4669
5f39d397 4670 leaf = path->nodes[0];
6567e837 4671
5f39d397 4672 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4673 data_end = leaf_data_end(root, leaf);
4674
5f39d397
CM
4675 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4676 btrfs_print_leaf(root, leaf);
6567e837 4677 BUG();
5f39d397 4678 }
6567e837 4679 slot = path->slots[0];
5f39d397 4680 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4681
4682 BUG_ON(slot < 0);
3326d1b0
CM
4683 if (slot >= nritems) {
4684 btrfs_print_leaf(root, leaf);
efe120a0 4685 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
d397712b 4686 slot, nritems);
3326d1b0
CM
4687 BUG_ON(1);
4688 }
6567e837
CM
4689
4690 /*
4691 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4692 */
4693 /* first correct the data pointers */
4694 for (i = slot; i < nritems; i++) {
5f39d397 4695 u32 ioff;
dd3cc16b 4696 item = btrfs_item_nr(i);
db94535d 4697
cfed81a0
CM
4698 ioff = btrfs_token_item_offset(leaf, item, &token);
4699 btrfs_set_token_item_offset(leaf, item,
4700 ioff - data_size, &token);
6567e837 4701 }
5f39d397 4702
6567e837 4703 /* shift the data */
5f39d397 4704 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4705 data_end - data_size, btrfs_leaf_data(leaf) +
4706 data_end, old_data - data_end);
5f39d397 4707
6567e837 4708 data_end = old_data;
5f39d397 4709 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4710 item = btrfs_item_nr(slot);
5f39d397
CM
4711 btrfs_set_item_size(leaf, item, old_size + data_size);
4712 btrfs_mark_buffer_dirty(leaf);
6567e837 4713
5f39d397
CM
4714 if (btrfs_leaf_free_space(root, leaf) < 0) {
4715 btrfs_print_leaf(root, leaf);
6567e837 4716 BUG();
5f39d397 4717 }
6567e837
CM
4718}
4719
74123bd7 4720/*
44871b1b
CM
4721 * this is a helper for btrfs_insert_empty_items, the main goal here is
4722 * to save stack depth by doing the bulk of the work in a function
4723 * that doesn't call btrfs_search_slot
74123bd7 4724 */
afe5fea7 4725void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
143bede5
JM
4726 struct btrfs_key *cpu_key, u32 *data_size,
4727 u32 total_data, u32 total_size, int nr)
be0e5c09 4728{
5f39d397 4729 struct btrfs_item *item;
9c58309d 4730 int i;
7518a238 4731 u32 nritems;
be0e5c09 4732 unsigned int data_end;
e2fa7227 4733 struct btrfs_disk_key disk_key;
44871b1b
CM
4734 struct extent_buffer *leaf;
4735 int slot;
cfed81a0
CM
4736 struct btrfs_map_token token;
4737
24cdc847
FM
4738 if (path->slots[0] == 0) {
4739 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4740 fixup_low_keys(root, path, &disk_key, 1);
4741 }
4742 btrfs_unlock_up_safe(path, 1);
4743
cfed81a0 4744 btrfs_init_map_token(&token);
e2fa7227 4745
5f39d397 4746 leaf = path->nodes[0];
44871b1b 4747 slot = path->slots[0];
74123bd7 4748
5f39d397 4749 nritems = btrfs_header_nritems(leaf);
123abc88 4750 data_end = leaf_data_end(root, leaf);
eb60ceac 4751
f25956cc 4752 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4753 btrfs_print_leaf(root, leaf);
efe120a0 4754 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
9c58309d 4755 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4756 BUG();
d4dbff95 4757 }
5f39d397 4758
be0e5c09 4759 if (slot != nritems) {
5f39d397 4760 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4761
5f39d397
CM
4762 if (old_data < data_end) {
4763 btrfs_print_leaf(root, leaf);
efe120a0 4764 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
5f39d397
CM
4765 slot, old_data, data_end);
4766 BUG_ON(1);
4767 }
be0e5c09
CM
4768 /*
4769 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4770 */
4771 /* first correct the data pointers */
0783fcfc 4772 for (i = slot; i < nritems; i++) {
5f39d397 4773 u32 ioff;
db94535d 4774
dd3cc16b 4775 item = btrfs_item_nr( i);
cfed81a0
CM
4776 ioff = btrfs_token_item_offset(leaf, item, &token);
4777 btrfs_set_token_item_offset(leaf, item,
4778 ioff - total_data, &token);
0783fcfc 4779 }
be0e5c09 4780 /* shift the items */
9c58309d 4781 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4782 btrfs_item_nr_offset(slot),
d6025579 4783 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4784
4785 /* shift the data */
5f39d397 4786 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4787 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4788 data_end, old_data - data_end);
be0e5c09
CM
4789 data_end = old_data;
4790 }
5f39d397 4791
62e2749e 4792 /* setup the item for the new data */
9c58309d
CM
4793 for (i = 0; i < nr; i++) {
4794 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4795 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4796 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4797 btrfs_set_token_item_offset(leaf, item,
4798 data_end - data_size[i], &token);
9c58309d 4799 data_end -= data_size[i];
cfed81a0 4800 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4801 }
44871b1b 4802
9c58309d 4803 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4804 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4805
5f39d397
CM
4806 if (btrfs_leaf_free_space(root, leaf) < 0) {
4807 btrfs_print_leaf(root, leaf);
be0e5c09 4808 BUG();
5f39d397 4809 }
44871b1b
CM
4810}
4811
4812/*
4813 * Given a key and some data, insert items into the tree.
4814 * This does all the path init required, making room in the tree if needed.
4815 */
4816int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4817 struct btrfs_root *root,
4818 struct btrfs_path *path,
4819 struct btrfs_key *cpu_key, u32 *data_size,
4820 int nr)
4821{
44871b1b
CM
4822 int ret = 0;
4823 int slot;
4824 int i;
4825 u32 total_size = 0;
4826 u32 total_data = 0;
4827
4828 for (i = 0; i < nr; i++)
4829 total_data += data_size[i];
4830
4831 total_size = total_data + (nr * sizeof(struct btrfs_item));
4832 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4833 if (ret == 0)
4834 return -EEXIST;
4835 if (ret < 0)
143bede5 4836 return ret;
44871b1b 4837
44871b1b
CM
4838 slot = path->slots[0];
4839 BUG_ON(slot < 0);
4840
afe5fea7 4841 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4842 total_data, total_size, nr);
143bede5 4843 return 0;
62e2749e
CM
4844}
4845
4846/*
4847 * Given a key and some data, insert an item into the tree.
4848 * This does all the path init required, making room in the tree if needed.
4849 */
e089f05c
CM
4850int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4851 *root, struct btrfs_key *cpu_key, void *data, u32
4852 data_size)
62e2749e
CM
4853{
4854 int ret = 0;
2c90e5d6 4855 struct btrfs_path *path;
5f39d397
CM
4856 struct extent_buffer *leaf;
4857 unsigned long ptr;
62e2749e 4858
2c90e5d6 4859 path = btrfs_alloc_path();
db5b493a
TI
4860 if (!path)
4861 return -ENOMEM;
2c90e5d6 4862 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4863 if (!ret) {
5f39d397
CM
4864 leaf = path->nodes[0];
4865 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4866 write_extent_buffer(leaf, data, ptr, data_size);
4867 btrfs_mark_buffer_dirty(leaf);
62e2749e 4868 }
2c90e5d6 4869 btrfs_free_path(path);
aa5d6bed 4870 return ret;
be0e5c09
CM
4871}
4872
74123bd7 4873/*
5de08d7d 4874 * delete the pointer from a given node.
74123bd7 4875 *
d352ac68
CM
4876 * the tree should have been previously balanced so the deletion does not
4877 * empty a node.
74123bd7 4878 */
afe5fea7
TI
4879static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4880 int level, int slot)
be0e5c09 4881{
5f39d397 4882 struct extent_buffer *parent = path->nodes[level];
7518a238 4883 u32 nritems;
f3ea38da 4884 int ret;
be0e5c09 4885
5f39d397 4886 nritems = btrfs_header_nritems(parent);
d397712b 4887 if (slot != nritems - 1) {
0e411ece 4888 if (level)
f3ea38da
JS
4889 tree_mod_log_eb_move(root->fs_info, parent, slot,
4890 slot + 1, nritems - slot - 1);
5f39d397
CM
4891 memmove_extent_buffer(parent,
4892 btrfs_node_key_ptr_offset(slot),
4893 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4894 sizeof(struct btrfs_key_ptr) *
4895 (nritems - slot - 1));
57ba86c0
CM
4896 } else if (level) {
4897 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
c8cc6341 4898 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4899 BUG_ON(ret < 0);
bb803951 4900 }
f3ea38da 4901
7518a238 4902 nritems--;
5f39d397 4903 btrfs_set_header_nritems(parent, nritems);
7518a238 4904 if (nritems == 0 && parent == root->node) {
5f39d397 4905 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4906 /* just turn the root into a leaf and break */
5f39d397 4907 btrfs_set_header_level(root->node, 0);
bb803951 4908 } else if (slot == 0) {
5f39d397
CM
4909 struct btrfs_disk_key disk_key;
4910
4911 btrfs_node_key(parent, &disk_key, 0);
d6a0a126 4912 fixup_low_keys(root, path, &disk_key, level + 1);
be0e5c09 4913 }
d6025579 4914 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4915}
4916
323ac95b
CM
4917/*
4918 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4919 * path->nodes[1].
323ac95b
CM
4920 *
4921 * This deletes the pointer in path->nodes[1] and frees the leaf
4922 * block extent. zero is returned if it all worked out, < 0 otherwise.
4923 *
4924 * The path must have already been setup for deleting the leaf, including
4925 * all the proper balancing. path->nodes[1] must be locked.
4926 */
143bede5
JM
4927static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4928 struct btrfs_root *root,
4929 struct btrfs_path *path,
4930 struct extent_buffer *leaf)
323ac95b 4931{
5d4f98a2 4932 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4933 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4934
4d081c41
CM
4935 /*
4936 * btrfs_free_extent is expensive, we want to make sure we
4937 * aren't holding any locks when we call it
4938 */
4939 btrfs_unlock_up_safe(path, 0);
4940
f0486c68
YZ
4941 root_sub_used(root, leaf->len);
4942
3083ee2e 4943 extent_buffer_get(leaf);
5581a51a 4944 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4945 free_extent_buffer_stale(leaf);
323ac95b 4946}
74123bd7
CM
4947/*
4948 * delete the item at the leaf level in path. If that empties
4949 * the leaf, remove it from the tree
4950 */
85e21bac
CM
4951int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4952 struct btrfs_path *path, int slot, int nr)
be0e5c09 4953{
5f39d397
CM
4954 struct extent_buffer *leaf;
4955 struct btrfs_item *item;
85e21bac
CM
4956 int last_off;
4957 int dsize = 0;
aa5d6bed
CM
4958 int ret = 0;
4959 int wret;
85e21bac 4960 int i;
7518a238 4961 u32 nritems;
cfed81a0
CM
4962 struct btrfs_map_token token;
4963
4964 btrfs_init_map_token(&token);
be0e5c09 4965
5f39d397 4966 leaf = path->nodes[0];
85e21bac
CM
4967 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4968
4969 for (i = 0; i < nr; i++)
4970 dsize += btrfs_item_size_nr(leaf, slot + i);
4971
5f39d397 4972 nritems = btrfs_header_nritems(leaf);
be0e5c09 4973
85e21bac 4974 if (slot + nr != nritems) {
123abc88 4975 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4976
4977 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4978 data_end + dsize,
4979 btrfs_leaf_data(leaf) + data_end,
85e21bac 4980 last_off - data_end);
5f39d397 4981
85e21bac 4982 for (i = slot + nr; i < nritems; i++) {
5f39d397 4983 u32 ioff;
db94535d 4984
dd3cc16b 4985 item = btrfs_item_nr(i);
cfed81a0
CM
4986 ioff = btrfs_token_item_offset(leaf, item, &token);
4987 btrfs_set_token_item_offset(leaf, item,
4988 ioff + dsize, &token);
0783fcfc 4989 }
db94535d 4990
5f39d397 4991 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4992 btrfs_item_nr_offset(slot + nr),
d6025579 4993 sizeof(struct btrfs_item) *
85e21bac 4994 (nritems - slot - nr));
be0e5c09 4995 }
85e21bac
CM
4996 btrfs_set_header_nritems(leaf, nritems - nr);
4997 nritems -= nr;
5f39d397 4998
74123bd7 4999 /* delete the leaf if we've emptied it */
7518a238 5000 if (nritems == 0) {
5f39d397
CM
5001 if (leaf == root->node) {
5002 btrfs_set_header_level(leaf, 0);
9a8dd150 5003 } else {
f0486c68
YZ
5004 btrfs_set_path_blocking(path);
5005 clean_tree_block(trans, root, leaf);
143bede5 5006 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5007 }
be0e5c09 5008 } else {
7518a238 5009 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5010 if (slot == 0) {
5f39d397
CM
5011 struct btrfs_disk_key disk_key;
5012
5013 btrfs_item_key(leaf, &disk_key, 0);
d6a0a126 5014 fixup_low_keys(root, path, &disk_key, 1);
aa5d6bed 5015 }
aa5d6bed 5016
74123bd7 5017 /* delete the leaf if it is mostly empty */
d717aa1d 5018 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
5019 /* push_leaf_left fixes the path.
5020 * make sure the path still points to our leaf
5021 * for possible call to del_ptr below
5022 */
4920c9ac 5023 slot = path->slots[1];
5f39d397
CM
5024 extent_buffer_get(leaf);
5025
b9473439 5026 btrfs_set_path_blocking(path);
99d8f83c
CM
5027 wret = push_leaf_left(trans, root, path, 1, 1,
5028 1, (u32)-1);
54aa1f4d 5029 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5030 ret = wret;
5f39d397
CM
5031
5032 if (path->nodes[0] == leaf &&
5033 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5034 wret = push_leaf_right(trans, root, path, 1,
5035 1, 1, 0);
54aa1f4d 5036 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5037 ret = wret;
5038 }
5f39d397
CM
5039
5040 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5041 path->slots[1] = slot;
143bede5 5042 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5043 free_extent_buffer(leaf);
143bede5 5044 ret = 0;
5de08d7d 5045 } else {
925baedd
CM
5046 /* if we're still in the path, make sure
5047 * we're dirty. Otherwise, one of the
5048 * push_leaf functions must have already
5049 * dirtied this buffer
5050 */
5051 if (path->nodes[0] == leaf)
5052 btrfs_mark_buffer_dirty(leaf);
5f39d397 5053 free_extent_buffer(leaf);
be0e5c09 5054 }
d5719762 5055 } else {
5f39d397 5056 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5057 }
5058 }
aa5d6bed 5059 return ret;
be0e5c09
CM
5060}
5061
7bb86316 5062/*
925baedd 5063 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5064 * returns 0 if it found something or 1 if there are no lesser leaves.
5065 * returns < 0 on io errors.
d352ac68
CM
5066 *
5067 * This may release the path, and so you may lose any locks held at the
5068 * time you call it.
7bb86316 5069 */
16e7549f 5070int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5071{
925baedd
CM
5072 struct btrfs_key key;
5073 struct btrfs_disk_key found_key;
5074 int ret;
7bb86316 5075
925baedd 5076 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5077
e8b0d724 5078 if (key.offset > 0) {
925baedd 5079 key.offset--;
e8b0d724 5080 } else if (key.type > 0) {
925baedd 5081 key.type--;
e8b0d724
FDBM
5082 key.offset = (u64)-1;
5083 } else if (key.objectid > 0) {
925baedd 5084 key.objectid--;
e8b0d724
FDBM
5085 key.type = (u8)-1;
5086 key.offset = (u64)-1;
5087 } else {
925baedd 5088 return 1;
e8b0d724 5089 }
7bb86316 5090
b3b4aa74 5091 btrfs_release_path(path);
925baedd
CM
5092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5093 if (ret < 0)
5094 return ret;
5095 btrfs_item_key(path->nodes[0], &found_key, 0);
5096 ret = comp_keys(&found_key, &key);
337c6f68
FM
5097 /*
5098 * We might have had an item with the previous key in the tree right
5099 * before we released our path. And after we released our path, that
5100 * item might have been pushed to the first slot (0) of the leaf we
5101 * were holding due to a tree balance. Alternatively, an item with the
5102 * previous key can exist as the only element of a leaf (big fat item).
5103 * Therefore account for these 2 cases, so that our callers (like
5104 * btrfs_previous_item) don't miss an existing item with a key matching
5105 * the previous key we computed above.
5106 */
5107 if (ret <= 0)
925baedd
CM
5108 return 0;
5109 return 1;
7bb86316
CM
5110}
5111
3f157a2f
CM
5112/*
5113 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5114 * for nodes or leaves that are have a minimum transaction id.
5115 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5116 *
5117 * This does not cow, but it does stuff the starting key it finds back
5118 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5119 * key and get a writable path.
5120 *
5121 * This does lock as it descends, and path->keep_locks should be set
5122 * to 1 by the caller.
5123 *
5124 * This honors path->lowest_level to prevent descent past a given level
5125 * of the tree.
5126 *
d352ac68
CM
5127 * min_trans indicates the oldest transaction that you are interested
5128 * in walking through. Any nodes or leaves older than min_trans are
5129 * skipped over (without reading them).
5130 *
3f157a2f
CM
5131 * returns zero if something useful was found, < 0 on error and 1 if there
5132 * was nothing in the tree that matched the search criteria.
5133 */
5134int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5135 struct btrfs_path *path,
3f157a2f
CM
5136 u64 min_trans)
5137{
5138 struct extent_buffer *cur;
5139 struct btrfs_key found_key;
5140 int slot;
9652480b 5141 int sret;
3f157a2f
CM
5142 u32 nritems;
5143 int level;
5144 int ret = 1;
f98de9b9 5145 int keep_locks = path->keep_locks;
3f157a2f 5146
f98de9b9 5147 path->keep_locks = 1;
3f157a2f 5148again:
bd681513 5149 cur = btrfs_read_lock_root_node(root);
3f157a2f 5150 level = btrfs_header_level(cur);
e02119d5 5151 WARN_ON(path->nodes[level]);
3f157a2f 5152 path->nodes[level] = cur;
bd681513 5153 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5154
5155 if (btrfs_header_generation(cur) < min_trans) {
5156 ret = 1;
5157 goto out;
5158 }
d397712b 5159 while (1) {
3f157a2f
CM
5160 nritems = btrfs_header_nritems(cur);
5161 level = btrfs_header_level(cur);
9652480b 5162 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 5163
323ac95b
CM
5164 /* at the lowest level, we're done, setup the path and exit */
5165 if (level == path->lowest_level) {
e02119d5
CM
5166 if (slot >= nritems)
5167 goto find_next_key;
3f157a2f
CM
5168 ret = 0;
5169 path->slots[level] = slot;
5170 btrfs_item_key_to_cpu(cur, &found_key, slot);
5171 goto out;
5172 }
9652480b
Y
5173 if (sret && slot > 0)
5174 slot--;
3f157a2f 5175 /*
de78b51a
ES
5176 * check this node pointer against the min_trans parameters.
5177 * If it is too old, old, skip to the next one.
3f157a2f 5178 */
d397712b 5179 while (slot < nritems) {
3f157a2f 5180 u64 gen;
e02119d5 5181
3f157a2f
CM
5182 gen = btrfs_node_ptr_generation(cur, slot);
5183 if (gen < min_trans) {
5184 slot++;
5185 continue;
5186 }
de78b51a 5187 break;
3f157a2f 5188 }
e02119d5 5189find_next_key:
3f157a2f
CM
5190 /*
5191 * we didn't find a candidate key in this node, walk forward
5192 * and find another one
5193 */
5194 if (slot >= nritems) {
e02119d5 5195 path->slots[level] = slot;
b4ce94de 5196 btrfs_set_path_blocking(path);
e02119d5 5197 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5198 min_trans);
e02119d5 5199 if (sret == 0) {
b3b4aa74 5200 btrfs_release_path(path);
3f157a2f
CM
5201 goto again;
5202 } else {
5203 goto out;
5204 }
5205 }
5206 /* save our key for returning back */
5207 btrfs_node_key_to_cpu(cur, &found_key, slot);
5208 path->slots[level] = slot;
5209 if (level == path->lowest_level) {
5210 ret = 0;
3f157a2f
CM
5211 goto out;
5212 }
b4ce94de 5213 btrfs_set_path_blocking(path);
3f157a2f 5214 cur = read_node_slot(root, cur, slot);
79787eaa 5215 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 5216
bd681513 5217 btrfs_tree_read_lock(cur);
b4ce94de 5218
bd681513 5219 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5220 path->nodes[level - 1] = cur;
f7c79f30 5221 unlock_up(path, level, 1, 0, NULL);
bd681513 5222 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5223 }
5224out:
f98de9b9
FM
5225 path->keep_locks = keep_locks;
5226 if (ret == 0) {
5227 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5228 btrfs_set_path_blocking(path);
3f157a2f 5229 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5230 }
3f157a2f
CM
5231 return ret;
5232}
5233
7069830a
AB
5234static void tree_move_down(struct btrfs_root *root,
5235 struct btrfs_path *path,
5236 int *level, int root_level)
5237{
74dd17fb 5238 BUG_ON(*level == 0);
7069830a
AB
5239 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5240 path->slots[*level]);
5241 path->slots[*level - 1] = 0;
5242 (*level)--;
5243}
5244
5245static int tree_move_next_or_upnext(struct btrfs_root *root,
5246 struct btrfs_path *path,
5247 int *level, int root_level)
5248{
5249 int ret = 0;
5250 int nritems;
5251 nritems = btrfs_header_nritems(path->nodes[*level]);
5252
5253 path->slots[*level]++;
5254
74dd17fb 5255 while (path->slots[*level] >= nritems) {
7069830a
AB
5256 if (*level == root_level)
5257 return -1;
5258
5259 /* move upnext */
5260 path->slots[*level] = 0;
5261 free_extent_buffer(path->nodes[*level]);
5262 path->nodes[*level] = NULL;
5263 (*level)++;
5264 path->slots[*level]++;
5265
5266 nritems = btrfs_header_nritems(path->nodes[*level]);
5267 ret = 1;
5268 }
5269 return ret;
5270}
5271
5272/*
5273 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5274 * or down.
5275 */
5276static int tree_advance(struct btrfs_root *root,
5277 struct btrfs_path *path,
5278 int *level, int root_level,
5279 int allow_down,
5280 struct btrfs_key *key)
5281{
5282 int ret;
5283
5284 if (*level == 0 || !allow_down) {
5285 ret = tree_move_next_or_upnext(root, path, level, root_level);
5286 } else {
5287 tree_move_down(root, path, level, root_level);
5288 ret = 0;
5289 }
5290 if (ret >= 0) {
5291 if (*level == 0)
5292 btrfs_item_key_to_cpu(path->nodes[*level], key,
5293 path->slots[*level]);
5294 else
5295 btrfs_node_key_to_cpu(path->nodes[*level], key,
5296 path->slots[*level]);
5297 }
5298 return ret;
5299}
5300
5301static int tree_compare_item(struct btrfs_root *left_root,
5302 struct btrfs_path *left_path,
5303 struct btrfs_path *right_path,
5304 char *tmp_buf)
5305{
5306 int cmp;
5307 int len1, len2;
5308 unsigned long off1, off2;
5309
5310 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5311 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5312 if (len1 != len2)
5313 return 1;
5314
5315 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5316 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5317 right_path->slots[0]);
5318
5319 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5320
5321 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5322 if (cmp)
5323 return 1;
5324 return 0;
5325}
5326
5327#define ADVANCE 1
5328#define ADVANCE_ONLY_NEXT -1
5329
5330/*
5331 * This function compares two trees and calls the provided callback for
5332 * every changed/new/deleted item it finds.
5333 * If shared tree blocks are encountered, whole subtrees are skipped, making
5334 * the compare pretty fast on snapshotted subvolumes.
5335 *
5336 * This currently works on commit roots only. As commit roots are read only,
5337 * we don't do any locking. The commit roots are protected with transactions.
5338 * Transactions are ended and rejoined when a commit is tried in between.
5339 *
5340 * This function checks for modifications done to the trees while comparing.
5341 * If it detects a change, it aborts immediately.
5342 */
5343int btrfs_compare_trees(struct btrfs_root *left_root,
5344 struct btrfs_root *right_root,
5345 btrfs_changed_cb_t changed_cb, void *ctx)
5346{
5347 int ret;
5348 int cmp;
7069830a
AB
5349 struct btrfs_path *left_path = NULL;
5350 struct btrfs_path *right_path = NULL;
5351 struct btrfs_key left_key;
5352 struct btrfs_key right_key;
5353 char *tmp_buf = NULL;
5354 int left_root_level;
5355 int right_root_level;
5356 int left_level;
5357 int right_level;
5358 int left_end_reached;
5359 int right_end_reached;
5360 int advance_left;
5361 int advance_right;
5362 u64 left_blockptr;
5363 u64 right_blockptr;
6baa4293
FM
5364 u64 left_gen;
5365 u64 right_gen;
7069830a
AB
5366
5367 left_path = btrfs_alloc_path();
5368 if (!left_path) {
5369 ret = -ENOMEM;
5370 goto out;
5371 }
5372 right_path = btrfs_alloc_path();
5373 if (!right_path) {
5374 ret = -ENOMEM;
5375 goto out;
5376 }
5377
707e8a07 5378 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
7069830a
AB
5379 if (!tmp_buf) {
5380 ret = -ENOMEM;
5381 goto out;
5382 }
5383
5384 left_path->search_commit_root = 1;
5385 left_path->skip_locking = 1;
5386 right_path->search_commit_root = 1;
5387 right_path->skip_locking = 1;
5388
7069830a
AB
5389 /*
5390 * Strategy: Go to the first items of both trees. Then do
5391 *
5392 * If both trees are at level 0
5393 * Compare keys of current items
5394 * If left < right treat left item as new, advance left tree
5395 * and repeat
5396 * If left > right treat right item as deleted, advance right tree
5397 * and repeat
5398 * If left == right do deep compare of items, treat as changed if
5399 * needed, advance both trees and repeat
5400 * If both trees are at the same level but not at level 0
5401 * Compare keys of current nodes/leafs
5402 * If left < right advance left tree and repeat
5403 * If left > right advance right tree and repeat
5404 * If left == right compare blockptrs of the next nodes/leafs
5405 * If they match advance both trees but stay at the same level
5406 * and repeat
5407 * If they don't match advance both trees while allowing to go
5408 * deeper and repeat
5409 * If tree levels are different
5410 * Advance the tree that needs it and repeat
5411 *
5412 * Advancing a tree means:
5413 * If we are at level 0, try to go to the next slot. If that's not
5414 * possible, go one level up and repeat. Stop when we found a level
5415 * where we could go to the next slot. We may at this point be on a
5416 * node or a leaf.
5417 *
5418 * If we are not at level 0 and not on shared tree blocks, go one
5419 * level deeper.
5420 *
5421 * If we are not at level 0 and on shared tree blocks, go one slot to
5422 * the right if possible or go up and right.
5423 */
5424
3f8a18cc 5425 down_read(&left_root->fs_info->commit_root_sem);
7069830a
AB
5426 left_level = btrfs_header_level(left_root->commit_root);
5427 left_root_level = left_level;
5428 left_path->nodes[left_level] = left_root->commit_root;
5429 extent_buffer_get(left_path->nodes[left_level]);
5430
5431 right_level = btrfs_header_level(right_root->commit_root);
5432 right_root_level = right_level;
5433 right_path->nodes[right_level] = right_root->commit_root;
5434 extent_buffer_get(right_path->nodes[right_level]);
3f8a18cc 5435 up_read(&left_root->fs_info->commit_root_sem);
7069830a
AB
5436
5437 if (left_level == 0)
5438 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5439 &left_key, left_path->slots[left_level]);
5440 else
5441 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5442 &left_key, left_path->slots[left_level]);
5443 if (right_level == 0)
5444 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5445 &right_key, right_path->slots[right_level]);
5446 else
5447 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5448 &right_key, right_path->slots[right_level]);
5449
5450 left_end_reached = right_end_reached = 0;
5451 advance_left = advance_right = 0;
5452
5453 while (1) {
7069830a
AB
5454 if (advance_left && !left_end_reached) {
5455 ret = tree_advance(left_root, left_path, &left_level,
5456 left_root_level,
5457 advance_left != ADVANCE_ONLY_NEXT,
5458 &left_key);
5459 if (ret < 0)
5460 left_end_reached = ADVANCE;
5461 advance_left = 0;
5462 }
5463 if (advance_right && !right_end_reached) {
5464 ret = tree_advance(right_root, right_path, &right_level,
5465 right_root_level,
5466 advance_right != ADVANCE_ONLY_NEXT,
5467 &right_key);
5468 if (ret < 0)
5469 right_end_reached = ADVANCE;
5470 advance_right = 0;
5471 }
5472
5473 if (left_end_reached && right_end_reached) {
5474 ret = 0;
5475 goto out;
5476 } else if (left_end_reached) {
5477 if (right_level == 0) {
5478 ret = changed_cb(left_root, right_root,
5479 left_path, right_path,
5480 &right_key,
5481 BTRFS_COMPARE_TREE_DELETED,
5482 ctx);
5483 if (ret < 0)
5484 goto out;
5485 }
5486 advance_right = ADVANCE;
5487 continue;
5488 } else if (right_end_reached) {
5489 if (left_level == 0) {
5490 ret = changed_cb(left_root, right_root,
5491 left_path, right_path,
5492 &left_key,
5493 BTRFS_COMPARE_TREE_NEW,
5494 ctx);
5495 if (ret < 0)
5496 goto out;
5497 }
5498 advance_left = ADVANCE;
5499 continue;
5500 }
5501
5502 if (left_level == 0 && right_level == 0) {
5503 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5504 if (cmp < 0) {
5505 ret = changed_cb(left_root, right_root,
5506 left_path, right_path,
5507 &left_key,
5508 BTRFS_COMPARE_TREE_NEW,
5509 ctx);
5510 if (ret < 0)
5511 goto out;
5512 advance_left = ADVANCE;
5513 } else if (cmp > 0) {
5514 ret = changed_cb(left_root, right_root,
5515 left_path, right_path,
5516 &right_key,
5517 BTRFS_COMPARE_TREE_DELETED,
5518 ctx);
5519 if (ret < 0)
5520 goto out;
5521 advance_right = ADVANCE;
5522 } else {
ba5e8f2e
JB
5523 enum btrfs_compare_tree_result cmp;
5524
74dd17fb 5525 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5526 ret = tree_compare_item(left_root, left_path,
5527 right_path, tmp_buf);
ba5e8f2e
JB
5528 if (ret)
5529 cmp = BTRFS_COMPARE_TREE_CHANGED;
5530 else
5531 cmp = BTRFS_COMPARE_TREE_SAME;
5532 ret = changed_cb(left_root, right_root,
5533 left_path, right_path,
5534 &left_key, cmp, ctx);
5535 if (ret < 0)
5536 goto out;
7069830a
AB
5537 advance_left = ADVANCE;
5538 advance_right = ADVANCE;
5539 }
5540 } else if (left_level == right_level) {
5541 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5542 if (cmp < 0) {
5543 advance_left = ADVANCE;
5544 } else if (cmp > 0) {
5545 advance_right = ADVANCE;
5546 } else {
5547 left_blockptr = btrfs_node_blockptr(
5548 left_path->nodes[left_level],
5549 left_path->slots[left_level]);
5550 right_blockptr = btrfs_node_blockptr(
5551 right_path->nodes[right_level],
5552 right_path->slots[right_level]);
6baa4293
FM
5553 left_gen = btrfs_node_ptr_generation(
5554 left_path->nodes[left_level],
5555 left_path->slots[left_level]);
5556 right_gen = btrfs_node_ptr_generation(
5557 right_path->nodes[right_level],
5558 right_path->slots[right_level]);
5559 if (left_blockptr == right_blockptr &&
5560 left_gen == right_gen) {
7069830a
AB
5561 /*
5562 * As we're on a shared block, don't
5563 * allow to go deeper.
5564 */
5565 advance_left = ADVANCE_ONLY_NEXT;
5566 advance_right = ADVANCE_ONLY_NEXT;
5567 } else {
5568 advance_left = ADVANCE;
5569 advance_right = ADVANCE;
5570 }
5571 }
5572 } else if (left_level < right_level) {
5573 advance_right = ADVANCE;
5574 } else {
5575 advance_left = ADVANCE;
5576 }
5577 }
5578
5579out:
5580 btrfs_free_path(left_path);
5581 btrfs_free_path(right_path);
5582 kfree(tmp_buf);
7069830a
AB
5583 return ret;
5584}
5585
3f157a2f
CM
5586/*
5587 * this is similar to btrfs_next_leaf, but does not try to preserve
5588 * and fixup the path. It looks for and returns the next key in the
de78b51a 5589 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5590 *
5591 * 0 is returned if another key is found, < 0 if there are any errors
5592 * and 1 is returned if there are no higher keys in the tree
5593 *
5594 * path->keep_locks should be set to 1 on the search made before
5595 * calling this function.
5596 */
e7a84565 5597int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5598 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5599{
e7a84565
CM
5600 int slot;
5601 struct extent_buffer *c;
5602
934d375b 5603 WARN_ON(!path->keep_locks);
d397712b 5604 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5605 if (!path->nodes[level])
5606 return 1;
5607
5608 slot = path->slots[level] + 1;
5609 c = path->nodes[level];
3f157a2f 5610next:
e7a84565 5611 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5612 int ret;
5613 int orig_lowest;
5614 struct btrfs_key cur_key;
5615 if (level + 1 >= BTRFS_MAX_LEVEL ||
5616 !path->nodes[level + 1])
e7a84565 5617 return 1;
33c66f43
YZ
5618
5619 if (path->locks[level + 1]) {
5620 level++;
5621 continue;
5622 }
5623
5624 slot = btrfs_header_nritems(c) - 1;
5625 if (level == 0)
5626 btrfs_item_key_to_cpu(c, &cur_key, slot);
5627 else
5628 btrfs_node_key_to_cpu(c, &cur_key, slot);
5629
5630 orig_lowest = path->lowest_level;
b3b4aa74 5631 btrfs_release_path(path);
33c66f43
YZ
5632 path->lowest_level = level;
5633 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5634 0, 0);
5635 path->lowest_level = orig_lowest;
5636 if (ret < 0)
5637 return ret;
5638
5639 c = path->nodes[level];
5640 slot = path->slots[level];
5641 if (ret == 0)
5642 slot++;
5643 goto next;
e7a84565 5644 }
33c66f43 5645
e7a84565
CM
5646 if (level == 0)
5647 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5648 else {
3f157a2f
CM
5649 u64 gen = btrfs_node_ptr_generation(c, slot);
5650
3f157a2f
CM
5651 if (gen < min_trans) {
5652 slot++;
5653 goto next;
5654 }
e7a84565 5655 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5656 }
e7a84565
CM
5657 return 0;
5658 }
5659 return 1;
5660}
5661
97571fd0 5662/*
925baedd 5663 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5664 * returns 0 if it found something or 1 if there are no greater leaves.
5665 * returns < 0 on io errors.
97571fd0 5666 */
234b63a0 5667int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5668{
5669 return btrfs_next_old_leaf(root, path, 0);
5670}
5671
5672int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5673 u64 time_seq)
d97e63b6
CM
5674{
5675 int slot;
8e73f275 5676 int level;
5f39d397 5677 struct extent_buffer *c;
8e73f275 5678 struct extent_buffer *next;
925baedd
CM
5679 struct btrfs_key key;
5680 u32 nritems;
5681 int ret;
8e73f275 5682 int old_spinning = path->leave_spinning;
bd681513 5683 int next_rw_lock = 0;
925baedd
CM
5684
5685 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5686 if (nritems == 0)
925baedd 5687 return 1;
925baedd 5688
8e73f275
CM
5689 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5690again:
5691 level = 1;
5692 next = NULL;
bd681513 5693 next_rw_lock = 0;
b3b4aa74 5694 btrfs_release_path(path);
8e73f275 5695
a2135011 5696 path->keep_locks = 1;
31533fb2 5697 path->leave_spinning = 1;
8e73f275 5698
3d7806ec
JS
5699 if (time_seq)
5700 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5701 else
5702 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5703 path->keep_locks = 0;
5704
5705 if (ret < 0)
5706 return ret;
5707
a2135011 5708 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5709 /*
5710 * by releasing the path above we dropped all our locks. A balance
5711 * could have added more items next to the key that used to be
5712 * at the very end of the block. So, check again here and
5713 * advance the path if there are now more items available.
5714 */
a2135011 5715 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5716 if (ret == 0)
5717 path->slots[0]++;
8e73f275 5718 ret = 0;
925baedd
CM
5719 goto done;
5720 }
0b43e04f
LB
5721 /*
5722 * So the above check misses one case:
5723 * - after releasing the path above, someone has removed the item that
5724 * used to be at the very end of the block, and balance between leafs
5725 * gets another one with bigger key.offset to replace it.
5726 *
5727 * This one should be returned as well, or we can get leaf corruption
5728 * later(esp. in __btrfs_drop_extents()).
5729 *
5730 * And a bit more explanation about this check,
5731 * with ret > 0, the key isn't found, the path points to the slot
5732 * where it should be inserted, so the path->slots[0] item must be the
5733 * bigger one.
5734 */
5735 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5736 ret = 0;
5737 goto done;
5738 }
d97e63b6 5739
d397712b 5740 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5741 if (!path->nodes[level]) {
5742 ret = 1;
5743 goto done;
5744 }
5f39d397 5745
d97e63b6
CM
5746 slot = path->slots[level] + 1;
5747 c = path->nodes[level];
5f39d397 5748 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5749 level++;
8e73f275
CM
5750 if (level == BTRFS_MAX_LEVEL) {
5751 ret = 1;
5752 goto done;
5753 }
d97e63b6
CM
5754 continue;
5755 }
5f39d397 5756
925baedd 5757 if (next) {
bd681513 5758 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5759 free_extent_buffer(next);
925baedd 5760 }
5f39d397 5761
8e73f275 5762 next = c;
bd681513 5763 next_rw_lock = path->locks[level];
8e73f275 5764 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5765 slot, &key, 0);
8e73f275
CM
5766 if (ret == -EAGAIN)
5767 goto again;
5f39d397 5768
76a05b35 5769 if (ret < 0) {
b3b4aa74 5770 btrfs_release_path(path);
76a05b35
CM
5771 goto done;
5772 }
5773
5cd57b2c 5774 if (!path->skip_locking) {
bd681513 5775 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5776 if (!ret && time_seq) {
5777 /*
5778 * If we don't get the lock, we may be racing
5779 * with push_leaf_left, holding that lock while
5780 * itself waiting for the leaf we've currently
5781 * locked. To solve this situation, we give up
5782 * on our lock and cycle.
5783 */
cf538830 5784 free_extent_buffer(next);
d42244a0
JS
5785 btrfs_release_path(path);
5786 cond_resched();
5787 goto again;
5788 }
8e73f275
CM
5789 if (!ret) {
5790 btrfs_set_path_blocking(path);
bd681513 5791 btrfs_tree_read_lock(next);
31533fb2 5792 btrfs_clear_path_blocking(path, next,
bd681513 5793 BTRFS_READ_LOCK);
8e73f275 5794 }
31533fb2 5795 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5796 }
d97e63b6
CM
5797 break;
5798 }
5799 path->slots[level] = slot;
d397712b 5800 while (1) {
d97e63b6
CM
5801 level--;
5802 c = path->nodes[level];
925baedd 5803 if (path->locks[level])
bd681513 5804 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5805
5f39d397 5806 free_extent_buffer(c);
d97e63b6
CM
5807 path->nodes[level] = next;
5808 path->slots[level] = 0;
a74a4b97 5809 if (!path->skip_locking)
bd681513 5810 path->locks[level] = next_rw_lock;
d97e63b6
CM
5811 if (!level)
5812 break;
b4ce94de 5813
8e73f275 5814 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5815 0, &key, 0);
8e73f275
CM
5816 if (ret == -EAGAIN)
5817 goto again;
5818
76a05b35 5819 if (ret < 0) {
b3b4aa74 5820 btrfs_release_path(path);
76a05b35
CM
5821 goto done;
5822 }
5823
5cd57b2c 5824 if (!path->skip_locking) {
bd681513 5825 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5826 if (!ret) {
5827 btrfs_set_path_blocking(path);
bd681513 5828 btrfs_tree_read_lock(next);
31533fb2 5829 btrfs_clear_path_blocking(path, next,
bd681513
CM
5830 BTRFS_READ_LOCK);
5831 }
31533fb2 5832 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5833 }
d97e63b6 5834 }
8e73f275 5835 ret = 0;
925baedd 5836done:
f7c79f30 5837 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5838 path->leave_spinning = old_spinning;
5839 if (!old_spinning)
5840 btrfs_set_path_blocking(path);
5841
5842 return ret;
d97e63b6 5843}
0b86a832 5844
3f157a2f
CM
5845/*
5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5847 * searching until it gets past min_objectid or finds an item of 'type'
5848 *
5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5850 */
0b86a832
CM
5851int btrfs_previous_item(struct btrfs_root *root,
5852 struct btrfs_path *path, u64 min_objectid,
5853 int type)
5854{
5855 struct btrfs_key found_key;
5856 struct extent_buffer *leaf;
e02119d5 5857 u32 nritems;
0b86a832
CM
5858 int ret;
5859
d397712b 5860 while (1) {
0b86a832 5861 if (path->slots[0] == 0) {
b4ce94de 5862 btrfs_set_path_blocking(path);
0b86a832
CM
5863 ret = btrfs_prev_leaf(root, path);
5864 if (ret != 0)
5865 return ret;
5866 } else {
5867 path->slots[0]--;
5868 }
5869 leaf = path->nodes[0];
e02119d5
CM
5870 nritems = btrfs_header_nritems(leaf);
5871 if (nritems == 0)
5872 return 1;
5873 if (path->slots[0] == nritems)
5874 path->slots[0]--;
5875
0b86a832 5876 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5877 if (found_key.objectid < min_objectid)
5878 break;
0a4eefbb
YZ
5879 if (found_key.type == type)
5880 return 0;
e02119d5
CM
5881 if (found_key.objectid == min_objectid &&
5882 found_key.type < type)
5883 break;
0b86a832
CM
5884 }
5885 return 1;
5886}
ade2e0b3
WS
5887
5888/*
5889 * search in extent tree to find a previous Metadata/Data extent item with
5890 * min objecitd.
5891 *
5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5893 */
5894int btrfs_previous_extent_item(struct btrfs_root *root,
5895 struct btrfs_path *path, u64 min_objectid)
5896{
5897 struct btrfs_key found_key;
5898 struct extent_buffer *leaf;
5899 u32 nritems;
5900 int ret;
5901
5902 while (1) {
5903 if (path->slots[0] == 0) {
5904 btrfs_set_path_blocking(path);
5905 ret = btrfs_prev_leaf(root, path);
5906 if (ret != 0)
5907 return ret;
5908 } else {
5909 path->slots[0]--;
5910 }
5911 leaf = path->nodes[0];
5912 nritems = btrfs_header_nritems(leaf);
5913 if (nritems == 0)
5914 return 1;
5915 if (path->slots[0] == nritems)
5916 path->slots[0]--;
5917
5918 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5919 if (found_key.objectid < min_objectid)
5920 break;
5921 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5922 found_key.type == BTRFS_METADATA_ITEM_KEY)
5923 return 0;
5924 if (found_key.objectid == min_objectid &&
5925 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5926 break;
5927 }
5928 return 1;
5929}
This page took 0.769728 seconds and 5 git commands to generate.