btrfs: fix uninitialized return value
[deliverable/linux.git] / fs / btrfs / delayed-inode.c
CommitLineData
16cdcec7
MX
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24
25#define BTRFS_DELAYED_WRITEBACK 400
26#define BTRFS_DELAYED_BACKGROUND 100
27
28static struct kmem_cache *delayed_node_cache;
29
30int __init btrfs_delayed_inode_init(void)
31{
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40}
41
42void btrfs_delayed_inode_exit(void)
43{
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46}
47
48static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51{
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65}
66
67static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70{
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77}
78
79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81{
82 return root->fs_info->delayed_root;
83}
84
85static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
86 struct inode *inode)
87{
88 struct btrfs_delayed_node *node;
89 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 struct btrfs_root *root = btrfs_inode->root;
0d0ca30f 91 u64 ino = btrfs_ino(inode);
16cdcec7
MX
92 int ret;
93
94again:
95 node = ACCESS_ONCE(btrfs_inode->delayed_node);
96 if (node) {
97 atomic_inc(&node->refs); /* can be accessed */
98 return node;
99 }
100
101 spin_lock(&root->inode_lock);
0d0ca30f 102 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
16cdcec7
MX
103 if (node) {
104 if (btrfs_inode->delayed_node) {
105 spin_unlock(&root->inode_lock);
106 goto again;
107 }
108 btrfs_inode->delayed_node = node;
109 atomic_inc(&node->refs); /* can be accessed */
110 atomic_inc(&node->refs); /* cached in the inode */
111 spin_unlock(&root->inode_lock);
112 return node;
113 }
114 spin_unlock(&root->inode_lock);
115
116 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
117 if (!node)
118 return ERR_PTR(-ENOMEM);
0d0ca30f 119 btrfs_init_delayed_node(node, root, ino);
16cdcec7
MX
120
121 atomic_inc(&node->refs); /* cached in the btrfs inode */
122 atomic_inc(&node->refs); /* can be accessed */
123
124 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
125 if (ret) {
126 kmem_cache_free(delayed_node_cache, node);
127 return ERR_PTR(ret);
128 }
129
130 spin_lock(&root->inode_lock);
0d0ca30f 131 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
16cdcec7
MX
132 if (ret == -EEXIST) {
133 kmem_cache_free(delayed_node_cache, node);
134 spin_unlock(&root->inode_lock);
135 radix_tree_preload_end();
136 goto again;
137 }
138 btrfs_inode->delayed_node = node;
139 spin_unlock(&root->inode_lock);
140 radix_tree_preload_end();
141
142 return node;
143}
144
145/*
146 * Call it when holding delayed_node->mutex
147 *
148 * If mod = 1, add this node into the prepared list.
149 */
150static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
151 struct btrfs_delayed_node *node,
152 int mod)
153{
154 spin_lock(&root->lock);
155 if (node->in_list) {
156 if (!list_empty(&node->p_list))
157 list_move_tail(&node->p_list, &root->prepare_list);
158 else if (mod)
159 list_add_tail(&node->p_list, &root->prepare_list);
160 } else {
161 list_add_tail(&node->n_list, &root->node_list);
162 list_add_tail(&node->p_list, &root->prepare_list);
163 atomic_inc(&node->refs); /* inserted into list */
164 root->nodes++;
165 node->in_list = 1;
166 }
167 spin_unlock(&root->lock);
168}
169
170/* Call it when holding delayed_node->mutex */
171static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
172 struct btrfs_delayed_node *node)
173{
174 spin_lock(&root->lock);
175 if (node->in_list) {
176 root->nodes--;
177 atomic_dec(&node->refs); /* not in the list */
178 list_del_init(&node->n_list);
179 if (!list_empty(&node->p_list))
180 list_del_init(&node->p_list);
181 node->in_list = 0;
182 }
183 spin_unlock(&root->lock);
184}
185
186struct btrfs_delayed_node *btrfs_first_delayed_node(
187 struct btrfs_delayed_root *delayed_root)
188{
189 struct list_head *p;
190 struct btrfs_delayed_node *node = NULL;
191
192 spin_lock(&delayed_root->lock);
193 if (list_empty(&delayed_root->node_list))
194 goto out;
195
196 p = delayed_root->node_list.next;
197 node = list_entry(p, struct btrfs_delayed_node, n_list);
198 atomic_inc(&node->refs);
199out:
200 spin_unlock(&delayed_root->lock);
201
202 return node;
203}
204
205struct btrfs_delayed_node *btrfs_next_delayed_node(
206 struct btrfs_delayed_node *node)
207{
208 struct btrfs_delayed_root *delayed_root;
209 struct list_head *p;
210 struct btrfs_delayed_node *next = NULL;
211
212 delayed_root = node->root->fs_info->delayed_root;
213 spin_lock(&delayed_root->lock);
214 if (!node->in_list) { /* not in the list */
215 if (list_empty(&delayed_root->node_list))
216 goto out;
217 p = delayed_root->node_list.next;
218 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
219 goto out;
220 else
221 p = node->n_list.next;
222
223 next = list_entry(p, struct btrfs_delayed_node, n_list);
224 atomic_inc(&next->refs);
225out:
226 spin_unlock(&delayed_root->lock);
227
228 return next;
229}
230
231static void __btrfs_release_delayed_node(
232 struct btrfs_delayed_node *delayed_node,
233 int mod)
234{
235 struct btrfs_delayed_root *delayed_root;
236
237 if (!delayed_node)
238 return;
239
240 delayed_root = delayed_node->root->fs_info->delayed_root;
241
242 mutex_lock(&delayed_node->mutex);
243 if (delayed_node->count)
244 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
245 else
246 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
247 mutex_unlock(&delayed_node->mutex);
248
249 if (atomic_dec_and_test(&delayed_node->refs)) {
250 struct btrfs_root *root = delayed_node->root;
251 spin_lock(&root->inode_lock);
252 if (atomic_read(&delayed_node->refs) == 0) {
253 radix_tree_delete(&root->delayed_nodes_tree,
254 delayed_node->inode_id);
255 kmem_cache_free(delayed_node_cache, delayed_node);
256 }
257 spin_unlock(&root->inode_lock);
258 }
259}
260
261static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
262{
263 __btrfs_release_delayed_node(node, 0);
264}
265
266struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
267 struct btrfs_delayed_root *delayed_root)
268{
269 struct list_head *p;
270 struct btrfs_delayed_node *node = NULL;
271
272 spin_lock(&delayed_root->lock);
273 if (list_empty(&delayed_root->prepare_list))
274 goto out;
275
276 p = delayed_root->prepare_list.next;
277 list_del_init(p);
278 node = list_entry(p, struct btrfs_delayed_node, p_list);
279 atomic_inc(&node->refs);
280out:
281 spin_unlock(&delayed_root->lock);
282
283 return node;
284}
285
286static inline void btrfs_release_prepared_delayed_node(
287 struct btrfs_delayed_node *node)
288{
289 __btrfs_release_delayed_node(node, 1);
290}
291
292struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
293{
294 struct btrfs_delayed_item *item;
295 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
296 if (item) {
297 item->data_len = data_len;
298 item->ins_or_del = 0;
299 item->bytes_reserved = 0;
16cdcec7
MX
300 item->delayed_node = NULL;
301 atomic_set(&item->refs, 1);
302 }
303 return item;
304}
305
306/*
307 * __btrfs_lookup_delayed_item - look up the delayed item by key
308 * @delayed_node: pointer to the delayed node
309 * @key: the key to look up
310 * @prev: used to store the prev item if the right item isn't found
311 * @next: used to store the next item if the right item isn't found
312 *
313 * Note: if we don't find the right item, we will return the prev item and
314 * the next item.
315 */
316static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
317 struct rb_root *root,
318 struct btrfs_key *key,
319 struct btrfs_delayed_item **prev,
320 struct btrfs_delayed_item **next)
321{
322 struct rb_node *node, *prev_node = NULL;
323 struct btrfs_delayed_item *delayed_item = NULL;
324 int ret = 0;
325
326 node = root->rb_node;
327
328 while (node) {
329 delayed_item = rb_entry(node, struct btrfs_delayed_item,
330 rb_node);
331 prev_node = node;
332 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
333 if (ret < 0)
334 node = node->rb_right;
335 else if (ret > 0)
336 node = node->rb_left;
337 else
338 return delayed_item;
339 }
340
341 if (prev) {
342 if (!prev_node)
343 *prev = NULL;
344 else if (ret < 0)
345 *prev = delayed_item;
346 else if ((node = rb_prev(prev_node)) != NULL) {
347 *prev = rb_entry(node, struct btrfs_delayed_item,
348 rb_node);
349 } else
350 *prev = NULL;
351 }
352
353 if (next) {
354 if (!prev_node)
355 *next = NULL;
356 else if (ret > 0)
357 *next = delayed_item;
358 else if ((node = rb_next(prev_node)) != NULL) {
359 *next = rb_entry(node, struct btrfs_delayed_item,
360 rb_node);
361 } else
362 *next = NULL;
363 }
364 return NULL;
365}
366
367struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
368 struct btrfs_delayed_node *delayed_node,
369 struct btrfs_key *key)
370{
371 struct btrfs_delayed_item *item;
372
373 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
374 NULL, NULL);
375 return item;
376}
377
378struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
379 struct btrfs_delayed_node *delayed_node,
380 struct btrfs_key *key)
381{
382 struct btrfs_delayed_item *item;
383
384 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
385 NULL, NULL);
386 return item;
387}
388
389struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
390 struct btrfs_delayed_node *delayed_node,
391 struct btrfs_key *key)
392{
393 struct btrfs_delayed_item *item, *next;
394
395 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
396 NULL, &next);
397 if (!item)
398 item = next;
399
400 return item;
401}
402
403struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
404 struct btrfs_delayed_node *delayed_node,
405 struct btrfs_key *key)
406{
407 struct btrfs_delayed_item *item, *next;
408
409 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
410 NULL, &next);
411 if (!item)
412 item = next;
413
414 return item;
415}
416
417static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
418 struct btrfs_delayed_item *ins,
419 int action)
420{
421 struct rb_node **p, *node;
422 struct rb_node *parent_node = NULL;
423 struct rb_root *root;
424 struct btrfs_delayed_item *item;
425 int cmp;
426
427 if (action == BTRFS_DELAYED_INSERTION_ITEM)
428 root = &delayed_node->ins_root;
429 else if (action == BTRFS_DELAYED_DELETION_ITEM)
430 root = &delayed_node->del_root;
431 else
432 BUG();
433 p = &root->rb_node;
434 node = &ins->rb_node;
435
436 while (*p) {
437 parent_node = *p;
438 item = rb_entry(parent_node, struct btrfs_delayed_item,
439 rb_node);
440
441 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
442 if (cmp < 0)
443 p = &(*p)->rb_right;
444 else if (cmp > 0)
445 p = &(*p)->rb_left;
446 else
447 return -EEXIST;
448 }
449
450 rb_link_node(node, parent_node, p);
451 rb_insert_color(node, root);
452 ins->delayed_node = delayed_node;
453 ins->ins_or_del = action;
454
455 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
456 action == BTRFS_DELAYED_INSERTION_ITEM &&
457 ins->key.offset >= delayed_node->index_cnt)
458 delayed_node->index_cnt = ins->key.offset + 1;
459
460 delayed_node->count++;
461 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
462 return 0;
463}
464
465static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
466 struct btrfs_delayed_item *item)
467{
468 return __btrfs_add_delayed_item(node, item,
469 BTRFS_DELAYED_INSERTION_ITEM);
470}
471
472static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
473 struct btrfs_delayed_item *item)
474{
475 return __btrfs_add_delayed_item(node, item,
476 BTRFS_DELAYED_DELETION_ITEM);
477}
478
479static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
480{
481 struct rb_root *root;
482 struct btrfs_delayed_root *delayed_root;
483
484 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
485
486 BUG_ON(!delayed_root);
487 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
488 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
489
490 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
491 root = &delayed_item->delayed_node->ins_root;
492 else
493 root = &delayed_item->delayed_node->del_root;
494
495 rb_erase(&delayed_item->rb_node, root);
496 delayed_item->delayed_node->count--;
497 atomic_dec(&delayed_root->items);
498 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
499 waitqueue_active(&delayed_root->wait))
500 wake_up(&delayed_root->wait);
501}
502
503static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
504{
505 if (item) {
506 __btrfs_remove_delayed_item(item);
507 if (atomic_dec_and_test(&item->refs))
508 kfree(item);
509 }
510}
511
512struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
513 struct btrfs_delayed_node *delayed_node)
514{
515 struct rb_node *p;
516 struct btrfs_delayed_item *item = NULL;
517
518 p = rb_first(&delayed_node->ins_root);
519 if (p)
520 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
521
522 return item;
523}
524
525struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
526 struct btrfs_delayed_node *delayed_node)
527{
528 struct rb_node *p;
529 struct btrfs_delayed_item *item = NULL;
530
531 p = rb_first(&delayed_node->del_root);
532 if (p)
533 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
534
535 return item;
536}
537
538struct btrfs_delayed_item *__btrfs_next_delayed_item(
539 struct btrfs_delayed_item *item)
540{
541 struct rb_node *p;
542 struct btrfs_delayed_item *next = NULL;
543
544 p = rb_next(&item->rb_node);
545 if (p)
546 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
547
548 return next;
549}
550
551static inline struct btrfs_delayed_node *btrfs_get_delayed_node(
552 struct inode *inode)
553{
554 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
555 struct btrfs_delayed_node *delayed_node;
556
557 delayed_node = btrfs_inode->delayed_node;
558 if (delayed_node)
559 atomic_inc(&delayed_node->refs);
560
561 return delayed_node;
562}
563
564static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
565 u64 root_id)
566{
567 struct btrfs_key root_key;
568
569 if (root->objectid == root_id)
570 return root;
571
572 root_key.objectid = root_id;
573 root_key.type = BTRFS_ROOT_ITEM_KEY;
574 root_key.offset = (u64)-1;
575 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
576}
577
578static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
579 struct btrfs_root *root,
580 struct btrfs_delayed_item *item)
581{
582 struct btrfs_block_rsv *src_rsv;
583 struct btrfs_block_rsv *dst_rsv;
584 u64 num_bytes;
585 int ret;
586
587 if (!trans->bytes_reserved)
588 return 0;
589
590 src_rsv = trans->block_rsv;
591 dst_rsv = &root->fs_info->global_block_rsv;
592
593 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
594 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
19fd2949 595 if (!ret)
16cdcec7 596 item->bytes_reserved = num_bytes;
16cdcec7
MX
597
598 return ret;
599}
600
601static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
602 struct btrfs_delayed_item *item)
603{
19fd2949
MX
604 struct btrfs_block_rsv *rsv;
605
16cdcec7
MX
606 if (!item->bytes_reserved)
607 return;
608
19fd2949
MX
609 rsv = &root->fs_info->global_block_rsv;
610 btrfs_block_rsv_release(root, rsv,
16cdcec7
MX
611 item->bytes_reserved);
612}
613
614static int btrfs_delayed_inode_reserve_metadata(
615 struct btrfs_trans_handle *trans,
616 struct btrfs_root *root,
617 struct btrfs_delayed_node *node)
618{
619 struct btrfs_block_rsv *src_rsv;
620 struct btrfs_block_rsv *dst_rsv;
621 u64 num_bytes;
622 int ret;
623
624 if (!trans->bytes_reserved)
625 return 0;
626
627 src_rsv = trans->block_rsv;
628 dst_rsv = &root->fs_info->global_block_rsv;
629
630 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
631 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
632 if (!ret)
633 node->bytes_reserved = num_bytes;
634
635 return ret;
636}
637
638static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
639 struct btrfs_delayed_node *node)
640{
641 struct btrfs_block_rsv *rsv;
642
643 if (!node->bytes_reserved)
644 return;
645
646 rsv = &root->fs_info->global_block_rsv;
647 btrfs_block_rsv_release(root, rsv,
648 node->bytes_reserved);
649 node->bytes_reserved = 0;
650}
651
652/*
653 * This helper will insert some continuous items into the same leaf according
654 * to the free space of the leaf.
655 */
656static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct btrfs_delayed_item *item)
660{
661 struct btrfs_delayed_item *curr, *next;
662 int free_space;
663 int total_data_size = 0, total_size = 0;
664 struct extent_buffer *leaf;
665 char *data_ptr;
666 struct btrfs_key *keys;
667 u32 *data_size;
668 struct list_head head;
669 int slot;
670 int nitems;
671 int i;
672 int ret = 0;
673
674 BUG_ON(!path->nodes[0]);
675
676 leaf = path->nodes[0];
677 free_space = btrfs_leaf_free_space(root, leaf);
678 INIT_LIST_HEAD(&head);
679
680 next = item;
17aca1c9 681 nitems = 0;
16cdcec7
MX
682
683 /*
684 * count the number of the continuous items that we can insert in batch
685 */
686 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
687 free_space) {
688 total_data_size += next->data_len;
689 total_size += next->data_len + sizeof(struct btrfs_item);
690 list_add_tail(&next->tree_list, &head);
691 nitems++;
692
693 curr = next;
694 next = __btrfs_next_delayed_item(curr);
695 if (!next)
696 break;
697
698 if (!btrfs_is_continuous_delayed_item(curr, next))
699 break;
700 }
701
702 if (!nitems) {
703 ret = 0;
704 goto out;
705 }
706
707 /*
708 * we need allocate some memory space, but it might cause the task
709 * to sleep, so we set all locked nodes in the path to blocking locks
710 * first.
711 */
712 btrfs_set_path_blocking(path);
713
714 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
715 if (!keys) {
716 ret = -ENOMEM;
717 goto out;
718 }
719
720 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
721 if (!data_size) {
722 ret = -ENOMEM;
723 goto error;
724 }
725
726 /* get keys of all the delayed items */
727 i = 0;
728 list_for_each_entry(next, &head, tree_list) {
729 keys[i] = next->key;
730 data_size[i] = next->data_len;
731 i++;
732 }
733
734 /* reset all the locked nodes in the patch to spinning locks. */
735 btrfs_clear_path_blocking(path, NULL);
736
737 /* insert the keys of the items */
738 ret = setup_items_for_insert(trans, root, path, keys, data_size,
739 total_data_size, total_size, nitems);
740 if (ret)
741 goto error;
742
743 /* insert the dir index items */
744 slot = path->slots[0];
745 list_for_each_entry_safe(curr, next, &head, tree_list) {
746 data_ptr = btrfs_item_ptr(leaf, slot, char);
747 write_extent_buffer(leaf, &curr->data,
748 (unsigned long)data_ptr,
749 curr->data_len);
750 slot++;
751
752 btrfs_delayed_item_release_metadata(root, curr);
753
754 list_del(&curr->tree_list);
755 btrfs_release_delayed_item(curr);
756 }
757
758error:
759 kfree(data_size);
760 kfree(keys);
761out:
762 return ret;
763}
764
765/*
766 * This helper can just do simple insertion that needn't extend item for new
767 * data, such as directory name index insertion, inode insertion.
768 */
769static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
770 struct btrfs_root *root,
771 struct btrfs_path *path,
772 struct btrfs_delayed_item *delayed_item)
773{
774 struct extent_buffer *leaf;
775 struct btrfs_item *item;
776 char *ptr;
777 int ret;
778
779 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
780 delayed_item->data_len);
781 if (ret < 0 && ret != -EEXIST)
782 return ret;
783
784 leaf = path->nodes[0];
785
786 item = btrfs_item_nr(leaf, path->slots[0]);
787 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
788
789 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
790 delayed_item->data_len);
791 btrfs_mark_buffer_dirty(leaf);
792
793 btrfs_delayed_item_release_metadata(root, delayed_item);
794 return 0;
795}
796
797/*
798 * we insert an item first, then if there are some continuous items, we try
799 * to insert those items into the same leaf.
800 */
801static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
802 struct btrfs_path *path,
803 struct btrfs_root *root,
804 struct btrfs_delayed_node *node)
805{
806 struct btrfs_delayed_item *curr, *prev;
807 int ret = 0;
808
809do_again:
810 mutex_lock(&node->mutex);
811 curr = __btrfs_first_delayed_insertion_item(node);
812 if (!curr)
813 goto insert_end;
814
815 ret = btrfs_insert_delayed_item(trans, root, path, curr);
816 if (ret < 0) {
945d8962 817 btrfs_release_path(path);
16cdcec7
MX
818 goto insert_end;
819 }
820
821 prev = curr;
822 curr = __btrfs_next_delayed_item(prev);
823 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
824 /* insert the continuous items into the same leaf */
825 path->slots[0]++;
826 btrfs_batch_insert_items(trans, root, path, curr);
827 }
828 btrfs_release_delayed_item(prev);
829 btrfs_mark_buffer_dirty(path->nodes[0]);
830
945d8962 831 btrfs_release_path(path);
16cdcec7
MX
832 mutex_unlock(&node->mutex);
833 goto do_again;
834
835insert_end:
836 mutex_unlock(&node->mutex);
837 return ret;
838}
839
840static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct btrfs_path *path,
843 struct btrfs_delayed_item *item)
844{
845 struct btrfs_delayed_item *curr, *next;
846 struct extent_buffer *leaf;
847 struct btrfs_key key;
848 struct list_head head;
849 int nitems, i, last_item;
850 int ret = 0;
851
852 BUG_ON(!path->nodes[0]);
853
854 leaf = path->nodes[0];
855
856 i = path->slots[0];
857 last_item = btrfs_header_nritems(leaf) - 1;
858 if (i > last_item)
859 return -ENOENT; /* FIXME: Is errno suitable? */
860
861 next = item;
862 INIT_LIST_HEAD(&head);
863 btrfs_item_key_to_cpu(leaf, &key, i);
864 nitems = 0;
865 /*
866 * count the number of the dir index items that we can delete in batch
867 */
868 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
869 list_add_tail(&next->tree_list, &head);
870 nitems++;
871
872 curr = next;
873 next = __btrfs_next_delayed_item(curr);
874 if (!next)
875 break;
876
877 if (!btrfs_is_continuous_delayed_item(curr, next))
878 break;
879
880 i++;
881 if (i > last_item)
882 break;
883 btrfs_item_key_to_cpu(leaf, &key, i);
884 }
885
886 if (!nitems)
887 return 0;
888
889 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
890 if (ret)
891 goto out;
892
893 list_for_each_entry_safe(curr, next, &head, tree_list) {
894 btrfs_delayed_item_release_metadata(root, curr);
895 list_del(&curr->tree_list);
896 btrfs_release_delayed_item(curr);
897 }
898
899out:
900 return ret;
901}
902
903static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
904 struct btrfs_path *path,
905 struct btrfs_root *root,
906 struct btrfs_delayed_node *node)
907{
908 struct btrfs_delayed_item *curr, *prev;
909 int ret = 0;
910
911do_again:
912 mutex_lock(&node->mutex);
913 curr = __btrfs_first_delayed_deletion_item(node);
914 if (!curr)
915 goto delete_fail;
916
917 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
918 if (ret < 0)
919 goto delete_fail;
920 else if (ret > 0) {
921 /*
922 * can't find the item which the node points to, so this node
923 * is invalid, just drop it.
924 */
925 prev = curr;
926 curr = __btrfs_next_delayed_item(prev);
927 btrfs_release_delayed_item(prev);
928 ret = 0;
945d8962 929 btrfs_release_path(path);
16cdcec7
MX
930 if (curr)
931 goto do_again;
932 else
933 goto delete_fail;
934 }
935
936 btrfs_batch_delete_items(trans, root, path, curr);
945d8962 937 btrfs_release_path(path);
16cdcec7
MX
938 mutex_unlock(&node->mutex);
939 goto do_again;
940
941delete_fail:
945d8962 942 btrfs_release_path(path);
16cdcec7
MX
943 mutex_unlock(&node->mutex);
944 return ret;
945}
946
947static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
948{
949 struct btrfs_delayed_root *delayed_root;
950
951 if (delayed_node && delayed_node->inode_dirty) {
952 BUG_ON(!delayed_node->root);
953 delayed_node->inode_dirty = 0;
954 delayed_node->count--;
955
956 delayed_root = delayed_node->root->fs_info->delayed_root;
957 atomic_dec(&delayed_root->items);
958 if (atomic_read(&delayed_root->items) <
959 BTRFS_DELAYED_BACKGROUND &&
960 waitqueue_active(&delayed_root->wait))
961 wake_up(&delayed_root->wait);
962 }
963}
964
965static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
966 struct btrfs_root *root,
967 struct btrfs_path *path,
968 struct btrfs_delayed_node *node)
969{
970 struct btrfs_key key;
971 struct btrfs_inode_item *inode_item;
972 struct extent_buffer *leaf;
973 int ret;
974
975 mutex_lock(&node->mutex);
976 if (!node->inode_dirty) {
977 mutex_unlock(&node->mutex);
978 return 0;
979 }
980
981 key.objectid = node->inode_id;
982 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
983 key.offset = 0;
984 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
985 if (ret > 0) {
945d8962 986 btrfs_release_path(path);
16cdcec7
MX
987 mutex_unlock(&node->mutex);
988 return -ENOENT;
989 } else if (ret < 0) {
990 mutex_unlock(&node->mutex);
991 return ret;
992 }
993
994 btrfs_unlock_up_safe(path, 1);
995 leaf = path->nodes[0];
996 inode_item = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_inode_item);
998 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
999 sizeof(struct btrfs_inode_item));
1000 btrfs_mark_buffer_dirty(leaf);
945d8962 1001 btrfs_release_path(path);
16cdcec7
MX
1002
1003 btrfs_delayed_inode_release_metadata(root, node);
1004 btrfs_release_delayed_inode(node);
1005 mutex_unlock(&node->mutex);
1006
1007 return 0;
1008}
1009
1010/* Called when committing the transaction. */
1011int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1012 struct btrfs_root *root)
1013{
1014 struct btrfs_delayed_root *delayed_root;
1015 struct btrfs_delayed_node *curr_node, *prev_node;
1016 struct btrfs_path *path;
19fd2949 1017 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1018 int ret = 0;
1019
1020 path = btrfs_alloc_path();
1021 if (!path)
1022 return -ENOMEM;
1023 path->leave_spinning = 1;
1024
19fd2949
MX
1025 block_rsv = trans->block_rsv;
1026 trans->block_rsv = &root->fs_info->global_block_rsv;
1027
16cdcec7
MX
1028 delayed_root = btrfs_get_delayed_root(root);
1029
1030 curr_node = btrfs_first_delayed_node(delayed_root);
1031 while (curr_node) {
1032 root = curr_node->root;
1033 ret = btrfs_insert_delayed_items(trans, path, root,
1034 curr_node);
1035 if (!ret)
1036 ret = btrfs_delete_delayed_items(trans, path, root,
1037 curr_node);
1038 if (!ret)
1039 ret = btrfs_update_delayed_inode(trans, root, path,
1040 curr_node);
1041 if (ret) {
1042 btrfs_release_delayed_node(curr_node);
1043 break;
1044 }
1045
1046 prev_node = curr_node;
1047 curr_node = btrfs_next_delayed_node(curr_node);
1048 btrfs_release_delayed_node(prev_node);
1049 }
1050
1051 btrfs_free_path(path);
19fd2949 1052 trans->block_rsv = block_rsv;
16cdcec7
MX
1053 return ret;
1054}
1055
1056static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1057 struct btrfs_delayed_node *node)
1058{
1059 struct btrfs_path *path;
19fd2949 1060 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1061 int ret;
1062
1063 path = btrfs_alloc_path();
1064 if (!path)
1065 return -ENOMEM;
1066 path->leave_spinning = 1;
1067
19fd2949
MX
1068 block_rsv = trans->block_rsv;
1069 trans->block_rsv = &node->root->fs_info->global_block_rsv;
1070
16cdcec7
MX
1071 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1072 if (!ret)
1073 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1074 if (!ret)
1075 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1076 btrfs_free_path(path);
1077
19fd2949 1078 trans->block_rsv = block_rsv;
16cdcec7
MX
1079 return ret;
1080}
1081
1082int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1083 struct inode *inode)
1084{
1085 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1086 int ret;
1087
1088 if (!delayed_node)
1089 return 0;
1090
1091 mutex_lock(&delayed_node->mutex);
1092 if (!delayed_node->count) {
1093 mutex_unlock(&delayed_node->mutex);
1094 btrfs_release_delayed_node(delayed_node);
1095 return 0;
1096 }
1097 mutex_unlock(&delayed_node->mutex);
1098
1099 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1100 btrfs_release_delayed_node(delayed_node);
1101 return ret;
1102}
1103
1104void btrfs_remove_delayed_node(struct inode *inode)
1105{
1106 struct btrfs_delayed_node *delayed_node;
1107
1108 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1109 if (!delayed_node)
1110 return;
1111
1112 BTRFS_I(inode)->delayed_node = NULL;
1113 btrfs_release_delayed_node(delayed_node);
1114}
1115
1116struct btrfs_async_delayed_node {
1117 struct btrfs_root *root;
1118 struct btrfs_delayed_node *delayed_node;
1119 struct btrfs_work work;
1120};
1121
1122static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1123{
1124 struct btrfs_async_delayed_node *async_node;
1125 struct btrfs_trans_handle *trans;
1126 struct btrfs_path *path;
1127 struct btrfs_delayed_node *delayed_node = NULL;
1128 struct btrfs_root *root;
19fd2949 1129 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1130 unsigned long nr = 0;
1131 int need_requeue = 0;
1132 int ret;
1133
1134 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1135
1136 path = btrfs_alloc_path();
1137 if (!path)
1138 goto out;
1139 path->leave_spinning = 1;
1140
1141 delayed_node = async_node->delayed_node;
1142 root = delayed_node->root;
1143
ff5714cc 1144 trans = btrfs_join_transaction(root);
16cdcec7
MX
1145 if (IS_ERR(trans))
1146 goto free_path;
1147
19fd2949
MX
1148 block_rsv = trans->block_rsv;
1149 trans->block_rsv = &root->fs_info->global_block_rsv;
1150
16cdcec7
MX
1151 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1152 if (!ret)
1153 ret = btrfs_delete_delayed_items(trans, path, root,
1154 delayed_node);
1155
1156 if (!ret)
1157 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1158
1159 /*
1160 * Maybe new delayed items have been inserted, so we need requeue
1161 * the work. Besides that, we must dequeue the empty delayed nodes
1162 * to avoid the race between delayed items balance and the worker.
1163 * The race like this:
1164 * Task1 Worker thread
1165 * count == 0, needn't requeue
1166 * also needn't insert the
1167 * delayed node into prepare
1168 * list again.
1169 * add lots of delayed items
1170 * queue the delayed node
1171 * already in the list,
1172 * and not in the prepare
1173 * list, it means the delayed
1174 * node is being dealt with
1175 * by the worker.
1176 * do delayed items balance
1177 * the delayed node is being
1178 * dealt with by the worker
1179 * now, just wait.
1180 * the worker goto idle.
1181 * Task1 will sleep until the transaction is commited.
1182 */
1183 mutex_lock(&delayed_node->mutex);
1184 if (delayed_node->count)
1185 need_requeue = 1;
1186 else
1187 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1188 delayed_node);
1189 mutex_unlock(&delayed_node->mutex);
1190
1191 nr = trans->blocks_used;
1192
19fd2949 1193 trans->block_rsv = block_rsv;
16cdcec7
MX
1194 btrfs_end_transaction_dmeta(trans, root);
1195 __btrfs_btree_balance_dirty(root, nr);
1196free_path:
1197 btrfs_free_path(path);
1198out:
1199 if (need_requeue)
1200 btrfs_requeue_work(&async_node->work);
1201 else {
1202 btrfs_release_prepared_delayed_node(delayed_node);
1203 kfree(async_node);
1204 }
1205}
1206
1207static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1208 struct btrfs_root *root, int all)
1209{
1210 struct btrfs_async_delayed_node *async_node;
1211 struct btrfs_delayed_node *curr;
1212 int count = 0;
1213
1214again:
1215 curr = btrfs_first_prepared_delayed_node(delayed_root);
1216 if (!curr)
1217 return 0;
1218
1219 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1220 if (!async_node) {
1221 btrfs_release_prepared_delayed_node(curr);
1222 return -ENOMEM;
1223 }
1224
1225 async_node->root = root;
1226 async_node->delayed_node = curr;
1227
1228 async_node->work.func = btrfs_async_run_delayed_node_done;
1229 async_node->work.flags = 0;
1230
1231 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1232 count++;
1233
1234 if (all || count < 4)
1235 goto again;
1236
1237 return 0;
1238}
1239
1240void btrfs_balance_delayed_items(struct btrfs_root *root)
1241{
1242 struct btrfs_delayed_root *delayed_root;
1243
1244 delayed_root = btrfs_get_delayed_root(root);
1245
1246 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1247 return;
1248
1249 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1250 int ret;
1251 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1252 if (ret)
1253 return;
1254
1255 wait_event_interruptible_timeout(
1256 delayed_root->wait,
1257 (atomic_read(&delayed_root->items) <
1258 BTRFS_DELAYED_BACKGROUND),
1259 HZ);
1260 return;
1261 }
1262
1263 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1264}
1265
1266int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1267 struct btrfs_root *root, const char *name,
1268 int name_len, struct inode *dir,
1269 struct btrfs_disk_key *disk_key, u8 type,
1270 u64 index)
1271{
1272 struct btrfs_delayed_node *delayed_node;
1273 struct btrfs_delayed_item *delayed_item;
1274 struct btrfs_dir_item *dir_item;
1275 int ret;
1276
1277 delayed_node = btrfs_get_or_create_delayed_node(dir);
1278 if (IS_ERR(delayed_node))
1279 return PTR_ERR(delayed_node);
1280
1281 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1282 if (!delayed_item) {
1283 ret = -ENOMEM;
1284 goto release_node;
1285 }
1286
1287 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1288 /*
1289 * we have reserved enough space when we start a new transaction,
1290 * so reserving metadata failure is impossible
1291 */
1292 BUG_ON(ret);
1293
0d0ca30f 1294 delayed_item->key.objectid = btrfs_ino(dir);
16cdcec7
MX
1295 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1296 delayed_item->key.offset = index;
1297
1298 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1299 dir_item->location = *disk_key;
1300 dir_item->transid = cpu_to_le64(trans->transid);
1301 dir_item->data_len = 0;
1302 dir_item->name_len = cpu_to_le16(name_len);
1303 dir_item->type = type;
1304 memcpy((char *)(dir_item + 1), name, name_len);
1305
1306 mutex_lock(&delayed_node->mutex);
1307 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1308 if (unlikely(ret)) {
1309 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1310 "the insertion tree of the delayed node"
1311 "(root id: %llu, inode id: %llu, errno: %d)\n",
1312 name,
1313 (unsigned long long)delayed_node->root->objectid,
1314 (unsigned long long)delayed_node->inode_id,
1315 ret);
1316 BUG();
1317 }
1318 mutex_unlock(&delayed_node->mutex);
1319
1320release_node:
1321 btrfs_release_delayed_node(delayed_node);
1322 return ret;
1323}
1324
1325static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1326 struct btrfs_delayed_node *node,
1327 struct btrfs_key *key)
1328{
1329 struct btrfs_delayed_item *item;
1330
1331 mutex_lock(&node->mutex);
1332 item = __btrfs_lookup_delayed_insertion_item(node, key);
1333 if (!item) {
1334 mutex_unlock(&node->mutex);
1335 return 1;
1336 }
1337
1338 btrfs_delayed_item_release_metadata(root, item);
1339 btrfs_release_delayed_item(item);
1340 mutex_unlock(&node->mutex);
1341 return 0;
1342}
1343
1344int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1345 struct btrfs_root *root, struct inode *dir,
1346 u64 index)
1347{
1348 struct btrfs_delayed_node *node;
1349 struct btrfs_delayed_item *item;
1350 struct btrfs_key item_key;
1351 int ret;
1352
1353 node = btrfs_get_or_create_delayed_node(dir);
1354 if (IS_ERR(node))
1355 return PTR_ERR(node);
1356
0d0ca30f 1357 item_key.objectid = btrfs_ino(dir);
16cdcec7
MX
1358 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1359 item_key.offset = index;
1360
1361 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1362 if (!ret)
1363 goto end;
1364
1365 item = btrfs_alloc_delayed_item(0);
1366 if (!item) {
1367 ret = -ENOMEM;
1368 goto end;
1369 }
1370
1371 item->key = item_key;
1372
1373 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1374 /*
1375 * we have reserved enough space when we start a new transaction,
1376 * so reserving metadata failure is impossible.
1377 */
1378 BUG_ON(ret);
1379
1380 mutex_lock(&node->mutex);
1381 ret = __btrfs_add_delayed_deletion_item(node, item);
1382 if (unlikely(ret)) {
1383 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1384 "into the deletion tree of the delayed node"
1385 "(root id: %llu, inode id: %llu, errno: %d)\n",
1386 (unsigned long long)index,
1387 (unsigned long long)node->root->objectid,
1388 (unsigned long long)node->inode_id,
1389 ret);
1390 BUG();
1391 }
1392 mutex_unlock(&node->mutex);
1393end:
1394 btrfs_release_delayed_node(node);
1395 return ret;
1396}
1397
1398int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1399{
1400 struct btrfs_delayed_node *delayed_node = BTRFS_I(inode)->delayed_node;
1401 int ret = 0;
1402
1403 if (!delayed_node)
1404 return -ENOENT;
1405
1406 /*
1407 * Since we have held i_mutex of this directory, it is impossible that
1408 * a new directory index is added into the delayed node and index_cnt
1409 * is updated now. So we needn't lock the delayed node.
1410 */
1411 if (!delayed_node->index_cnt)
1412 return -EINVAL;
1413
1414 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1415 return ret;
1416}
1417
1418void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1419 struct list_head *del_list)
1420{
1421 struct btrfs_delayed_node *delayed_node;
1422 struct btrfs_delayed_item *item;
1423
1424 delayed_node = btrfs_get_delayed_node(inode);
1425 if (!delayed_node)
1426 return;
1427
1428 mutex_lock(&delayed_node->mutex);
1429 item = __btrfs_first_delayed_insertion_item(delayed_node);
1430 while (item) {
1431 atomic_inc(&item->refs);
1432 list_add_tail(&item->readdir_list, ins_list);
1433 item = __btrfs_next_delayed_item(item);
1434 }
1435
1436 item = __btrfs_first_delayed_deletion_item(delayed_node);
1437 while (item) {
1438 atomic_inc(&item->refs);
1439 list_add_tail(&item->readdir_list, del_list);
1440 item = __btrfs_next_delayed_item(item);
1441 }
1442 mutex_unlock(&delayed_node->mutex);
1443 /*
1444 * This delayed node is still cached in the btrfs inode, so refs
1445 * must be > 1 now, and we needn't check it is going to be freed
1446 * or not.
1447 *
1448 * Besides that, this function is used to read dir, we do not
1449 * insert/delete delayed items in this period. So we also needn't
1450 * requeue or dequeue this delayed node.
1451 */
1452 atomic_dec(&delayed_node->refs);
1453}
1454
1455void btrfs_put_delayed_items(struct list_head *ins_list,
1456 struct list_head *del_list)
1457{
1458 struct btrfs_delayed_item *curr, *next;
1459
1460 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1461 list_del(&curr->readdir_list);
1462 if (atomic_dec_and_test(&curr->refs))
1463 kfree(curr);
1464 }
1465
1466 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1467 list_del(&curr->readdir_list);
1468 if (atomic_dec_and_test(&curr->refs))
1469 kfree(curr);
1470 }
1471}
1472
1473int btrfs_should_delete_dir_index(struct list_head *del_list,
1474 u64 index)
1475{
1476 struct btrfs_delayed_item *curr, *next;
1477 int ret;
1478
1479 if (list_empty(del_list))
1480 return 0;
1481
1482 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1483 if (curr->key.offset > index)
1484 break;
1485
1486 list_del(&curr->readdir_list);
1487 ret = (curr->key.offset == index);
1488
1489 if (atomic_dec_and_test(&curr->refs))
1490 kfree(curr);
1491
1492 if (ret)
1493 return 1;
1494 else
1495 continue;
1496 }
1497 return 0;
1498}
1499
1500/*
1501 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1502 *
1503 */
1504int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1505 filldir_t filldir,
1506 struct list_head *ins_list)
1507{
1508 struct btrfs_dir_item *di;
1509 struct btrfs_delayed_item *curr, *next;
1510 struct btrfs_key location;
1511 char *name;
1512 int name_len;
1513 int over = 0;
1514 unsigned char d_type;
1515
1516 if (list_empty(ins_list))
1517 return 0;
1518
1519 /*
1520 * Changing the data of the delayed item is impossible. So
1521 * we needn't lock them. And we have held i_mutex of the
1522 * directory, nobody can delete any directory indexes now.
1523 */
1524 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1525 list_del(&curr->readdir_list);
1526
1527 if (curr->key.offset < filp->f_pos) {
1528 if (atomic_dec_and_test(&curr->refs))
1529 kfree(curr);
1530 continue;
1531 }
1532
1533 filp->f_pos = curr->key.offset;
1534
1535 di = (struct btrfs_dir_item *)curr->data;
1536 name = (char *)(di + 1);
1537 name_len = le16_to_cpu(di->name_len);
1538
1539 d_type = btrfs_filetype_table[di->type];
1540 btrfs_disk_key_to_cpu(&location, &di->location);
1541
1542 over = filldir(dirent, name, name_len, curr->key.offset,
1543 location.objectid, d_type);
1544
1545 if (atomic_dec_and_test(&curr->refs))
1546 kfree(curr);
1547
1548 if (over)
1549 return 1;
1550 }
1551 return 0;
1552}
1553
1554BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1555 generation, 64);
1556BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1557 sequence, 64);
1558BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1559 transid, 64);
1560BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1561BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1562 nbytes, 64);
1563BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1564 block_group, 64);
1565BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1566BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1567BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1568BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1569BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1570BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1571
1572BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1573BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1574
1575static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1576 struct btrfs_inode_item *inode_item,
1577 struct inode *inode)
1578{
1579 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1580 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1581 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1582 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1583 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1584 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1585 btrfs_set_stack_inode_generation(inode_item,
1586 BTRFS_I(inode)->generation);
1587 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1588 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1589 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1590 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
ff5714cc 1591 btrfs_set_stack_inode_block_group(inode_item, 0);
16cdcec7
MX
1592
1593 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1594 inode->i_atime.tv_sec);
1595 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1596 inode->i_atime.tv_nsec);
1597
1598 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1599 inode->i_mtime.tv_sec);
1600 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1601 inode->i_mtime.tv_nsec);
1602
1603 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1604 inode->i_ctime.tv_sec);
1605 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1606 inode->i_ctime.tv_nsec);
1607}
1608
1609int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1610 struct btrfs_root *root, struct inode *inode)
1611{
1612 struct btrfs_delayed_node *delayed_node;
aa0467d8 1613 int ret = 0;
16cdcec7
MX
1614
1615 delayed_node = btrfs_get_or_create_delayed_node(inode);
1616 if (IS_ERR(delayed_node))
1617 return PTR_ERR(delayed_node);
1618
1619 mutex_lock(&delayed_node->mutex);
1620 if (delayed_node->inode_dirty) {
1621 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1622 goto release_node;
1623 }
1624
1625 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1626 /*
1627 * we must reserve enough space when we start a new transaction,
1628 * so reserving metadata failure is impossible
1629 */
1630 BUG_ON(ret);
1631
1632 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1633 delayed_node->inode_dirty = 1;
1634 delayed_node->count++;
1635 atomic_inc(&root->fs_info->delayed_root->items);
1636release_node:
1637 mutex_unlock(&delayed_node->mutex);
1638 btrfs_release_delayed_node(delayed_node);
1639 return ret;
1640}
1641
1642static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1643{
1644 struct btrfs_root *root = delayed_node->root;
1645 struct btrfs_delayed_item *curr_item, *prev_item;
1646
1647 mutex_lock(&delayed_node->mutex);
1648 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1649 while (curr_item) {
1650 btrfs_delayed_item_release_metadata(root, curr_item);
1651 prev_item = curr_item;
1652 curr_item = __btrfs_next_delayed_item(prev_item);
1653 btrfs_release_delayed_item(prev_item);
1654 }
1655
1656 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1657 while (curr_item) {
1658 btrfs_delayed_item_release_metadata(root, curr_item);
1659 prev_item = curr_item;
1660 curr_item = __btrfs_next_delayed_item(prev_item);
1661 btrfs_release_delayed_item(prev_item);
1662 }
1663
1664 if (delayed_node->inode_dirty) {
1665 btrfs_delayed_inode_release_metadata(root, delayed_node);
1666 btrfs_release_delayed_inode(delayed_node);
1667 }
1668 mutex_unlock(&delayed_node->mutex);
1669}
1670
1671void btrfs_kill_delayed_inode_items(struct inode *inode)
1672{
1673 struct btrfs_delayed_node *delayed_node;
1674
1675 delayed_node = btrfs_get_delayed_node(inode);
1676 if (!delayed_node)
1677 return;
1678
1679 __btrfs_kill_delayed_node(delayed_node);
1680 btrfs_release_delayed_node(delayed_node);
1681}
1682
1683void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1684{
1685 u64 inode_id = 0;
1686 struct btrfs_delayed_node *delayed_nodes[8];
1687 int i, n;
1688
1689 while (1) {
1690 spin_lock(&root->inode_lock);
1691 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1692 (void **)delayed_nodes, inode_id,
1693 ARRAY_SIZE(delayed_nodes));
1694 if (!n) {
1695 spin_unlock(&root->inode_lock);
1696 break;
1697 }
1698
1699 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1700
1701 for (i = 0; i < n; i++)
1702 atomic_inc(&delayed_nodes[i]->refs);
1703 spin_unlock(&root->inode_lock);
1704
1705 for (i = 0; i < n; i++) {
1706 __btrfs_kill_delayed_node(delayed_nodes[i]);
1707 btrfs_release_delayed_node(delayed_nodes[i]);
1708 }
1709 }
1710}
This page took 0.099109 seconds and 5 git commands to generate.