btrfs: enhance transaction abort infrastructure
[deliverable/linux.git] / fs / btrfs / delayed-inode.c
CommitLineData
16cdcec7
MX
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24
25#define BTRFS_DELAYED_WRITEBACK 400
26#define BTRFS_DELAYED_BACKGROUND 100
27
28static struct kmem_cache *delayed_node_cache;
29
30int __init btrfs_delayed_inode_init(void)
31{
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40}
41
42void btrfs_delayed_inode_exit(void)
43{
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46}
47
48static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51{
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65}
66
67static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70{
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77}
78
79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81{
82 return root->fs_info->delayed_root;
83}
84
2f7e33d4 85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
16cdcec7 86{
16cdcec7
MX
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
0d0ca30f 89 u64 ino = btrfs_ino(inode);
2f7e33d4 90 struct btrfs_delayed_node *node;
16cdcec7 91
16cdcec7
MX
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
2f7e33d4 94 atomic_inc(&node->refs);
16cdcec7
MX
95 return node;
96 }
97
98 spin_lock(&root->inode_lock);
0d0ca30f 99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
16cdcec7
MX
100 if (node) {
101 if (btrfs_inode->delayed_node) {
2f7e33d4
MX
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
16cdcec7 104 spin_unlock(&root->inode_lock);
2f7e33d4 105 return node;
16cdcec7
MX
106 }
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
112 }
113 spin_unlock(&root->inode_lock);
114
2f7e33d4
MX
115 return NULL;
116}
117
118static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
119 struct inode *inode)
120{
121 struct btrfs_delayed_node *node;
122 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
123 struct btrfs_root *root = btrfs_inode->root;
124 u64 ino = btrfs_ino(inode);
125 int ret;
126
127again:
128 node = btrfs_get_delayed_node(inode);
129 if (node)
130 return node;
131
16cdcec7
MX
132 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
133 if (!node)
134 return ERR_PTR(-ENOMEM);
0d0ca30f 135 btrfs_init_delayed_node(node, root, ino);
16cdcec7
MX
136
137 atomic_inc(&node->refs); /* cached in the btrfs inode */
138 atomic_inc(&node->refs); /* can be accessed */
139
140 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
141 if (ret) {
142 kmem_cache_free(delayed_node_cache, node);
143 return ERR_PTR(ret);
144 }
145
146 spin_lock(&root->inode_lock);
0d0ca30f 147 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
16cdcec7
MX
148 if (ret == -EEXIST) {
149 kmem_cache_free(delayed_node_cache, node);
150 spin_unlock(&root->inode_lock);
151 radix_tree_preload_end();
152 goto again;
153 }
154 btrfs_inode->delayed_node = node;
155 spin_unlock(&root->inode_lock);
156 radix_tree_preload_end();
157
158 return node;
159}
160
161/*
162 * Call it when holding delayed_node->mutex
163 *
164 * If mod = 1, add this node into the prepared list.
165 */
166static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
167 struct btrfs_delayed_node *node,
168 int mod)
169{
170 spin_lock(&root->lock);
171 if (node->in_list) {
172 if (!list_empty(&node->p_list))
173 list_move_tail(&node->p_list, &root->prepare_list);
174 else if (mod)
175 list_add_tail(&node->p_list, &root->prepare_list);
176 } else {
177 list_add_tail(&node->n_list, &root->node_list);
178 list_add_tail(&node->p_list, &root->prepare_list);
179 atomic_inc(&node->refs); /* inserted into list */
180 root->nodes++;
181 node->in_list = 1;
182 }
183 spin_unlock(&root->lock);
184}
185
186/* Call it when holding delayed_node->mutex */
187static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
188 struct btrfs_delayed_node *node)
189{
190 spin_lock(&root->lock);
191 if (node->in_list) {
192 root->nodes--;
193 atomic_dec(&node->refs); /* not in the list */
194 list_del_init(&node->n_list);
195 if (!list_empty(&node->p_list))
196 list_del_init(&node->p_list);
197 node->in_list = 0;
198 }
199 spin_unlock(&root->lock);
200}
201
202struct btrfs_delayed_node *btrfs_first_delayed_node(
203 struct btrfs_delayed_root *delayed_root)
204{
205 struct list_head *p;
206 struct btrfs_delayed_node *node = NULL;
207
208 spin_lock(&delayed_root->lock);
209 if (list_empty(&delayed_root->node_list))
210 goto out;
211
212 p = delayed_root->node_list.next;
213 node = list_entry(p, struct btrfs_delayed_node, n_list);
214 atomic_inc(&node->refs);
215out:
216 spin_unlock(&delayed_root->lock);
217
218 return node;
219}
220
221struct btrfs_delayed_node *btrfs_next_delayed_node(
222 struct btrfs_delayed_node *node)
223{
224 struct btrfs_delayed_root *delayed_root;
225 struct list_head *p;
226 struct btrfs_delayed_node *next = NULL;
227
228 delayed_root = node->root->fs_info->delayed_root;
229 spin_lock(&delayed_root->lock);
230 if (!node->in_list) { /* not in the list */
231 if (list_empty(&delayed_root->node_list))
232 goto out;
233 p = delayed_root->node_list.next;
234 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 goto out;
236 else
237 p = node->n_list.next;
238
239 next = list_entry(p, struct btrfs_delayed_node, n_list);
240 atomic_inc(&next->refs);
241out:
242 spin_unlock(&delayed_root->lock);
243
244 return next;
245}
246
247static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node *delayed_node,
249 int mod)
250{
251 struct btrfs_delayed_root *delayed_root;
252
253 if (!delayed_node)
254 return;
255
256 delayed_root = delayed_node->root->fs_info->delayed_root;
257
258 mutex_lock(&delayed_node->mutex);
259 if (delayed_node->count)
260 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
261 else
262 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
263 mutex_unlock(&delayed_node->mutex);
264
265 if (atomic_dec_and_test(&delayed_node->refs)) {
266 struct btrfs_root *root = delayed_node->root;
267 spin_lock(&root->inode_lock);
268 if (atomic_read(&delayed_node->refs) == 0) {
269 radix_tree_delete(&root->delayed_nodes_tree,
270 delayed_node->inode_id);
271 kmem_cache_free(delayed_node_cache, delayed_node);
272 }
273 spin_unlock(&root->inode_lock);
274 }
275}
276
277static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
278{
279 __btrfs_release_delayed_node(node, 0);
280}
281
282struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root *delayed_root)
284{
285 struct list_head *p;
286 struct btrfs_delayed_node *node = NULL;
287
288 spin_lock(&delayed_root->lock);
289 if (list_empty(&delayed_root->prepare_list))
290 goto out;
291
292 p = delayed_root->prepare_list.next;
293 list_del_init(p);
294 node = list_entry(p, struct btrfs_delayed_node, p_list);
295 atomic_inc(&node->refs);
296out:
297 spin_unlock(&delayed_root->lock);
298
299 return node;
300}
301
302static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node *node)
304{
305 __btrfs_release_delayed_node(node, 1);
306}
307
308struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
309{
310 struct btrfs_delayed_item *item;
311 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
312 if (item) {
313 item->data_len = data_len;
314 item->ins_or_del = 0;
315 item->bytes_reserved = 0;
16cdcec7
MX
316 item->delayed_node = NULL;
317 atomic_set(&item->refs, 1);
318 }
319 return item;
320}
321
322/*
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
328 *
329 * Note: if we don't find the right item, we will return the prev item and
330 * the next item.
331 */
332static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
333 struct rb_root *root,
334 struct btrfs_key *key,
335 struct btrfs_delayed_item **prev,
336 struct btrfs_delayed_item **next)
337{
338 struct rb_node *node, *prev_node = NULL;
339 struct btrfs_delayed_item *delayed_item = NULL;
340 int ret = 0;
341
342 node = root->rb_node;
343
344 while (node) {
345 delayed_item = rb_entry(node, struct btrfs_delayed_item,
346 rb_node);
347 prev_node = node;
348 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
349 if (ret < 0)
350 node = node->rb_right;
351 else if (ret > 0)
352 node = node->rb_left;
353 else
354 return delayed_item;
355 }
356
357 if (prev) {
358 if (!prev_node)
359 *prev = NULL;
360 else if (ret < 0)
361 *prev = delayed_item;
362 else if ((node = rb_prev(prev_node)) != NULL) {
363 *prev = rb_entry(node, struct btrfs_delayed_item,
364 rb_node);
365 } else
366 *prev = NULL;
367 }
368
369 if (next) {
370 if (!prev_node)
371 *next = NULL;
372 else if (ret > 0)
373 *next = delayed_item;
374 else if ((node = rb_next(prev_node)) != NULL) {
375 *next = rb_entry(node, struct btrfs_delayed_item,
376 rb_node);
377 } else
378 *next = NULL;
379 }
380 return NULL;
381}
382
383struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node *delayed_node,
385 struct btrfs_key *key)
386{
387 struct btrfs_delayed_item *item;
388
389 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
390 NULL, NULL);
391 return item;
392}
393
394struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node *delayed_node,
396 struct btrfs_key *key)
397{
398 struct btrfs_delayed_item *item;
399
400 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
401 NULL, NULL);
402 return item;
403}
404
405struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node *delayed_node,
407 struct btrfs_key *key)
408{
409 struct btrfs_delayed_item *item, *next;
410
411 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
412 NULL, &next);
413 if (!item)
414 item = next;
415
416 return item;
417}
418
419struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node *delayed_node,
421 struct btrfs_key *key)
422{
423 struct btrfs_delayed_item *item, *next;
424
425 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
426 NULL, &next);
427 if (!item)
428 item = next;
429
430 return item;
431}
432
433static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
434 struct btrfs_delayed_item *ins,
435 int action)
436{
437 struct rb_node **p, *node;
438 struct rb_node *parent_node = NULL;
439 struct rb_root *root;
440 struct btrfs_delayed_item *item;
441 int cmp;
442
443 if (action == BTRFS_DELAYED_INSERTION_ITEM)
444 root = &delayed_node->ins_root;
445 else if (action == BTRFS_DELAYED_DELETION_ITEM)
446 root = &delayed_node->del_root;
447 else
448 BUG();
449 p = &root->rb_node;
450 node = &ins->rb_node;
451
452 while (*p) {
453 parent_node = *p;
454 item = rb_entry(parent_node, struct btrfs_delayed_item,
455 rb_node);
456
457 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
458 if (cmp < 0)
459 p = &(*p)->rb_right;
460 else if (cmp > 0)
461 p = &(*p)->rb_left;
462 else
463 return -EEXIST;
464 }
465
466 rb_link_node(node, parent_node, p);
467 rb_insert_color(node, root);
468 ins->delayed_node = delayed_node;
469 ins->ins_or_del = action;
470
471 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
472 action == BTRFS_DELAYED_INSERTION_ITEM &&
473 ins->key.offset >= delayed_node->index_cnt)
474 delayed_node->index_cnt = ins->key.offset + 1;
475
476 delayed_node->count++;
477 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
478 return 0;
479}
480
481static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
482 struct btrfs_delayed_item *item)
483{
484 return __btrfs_add_delayed_item(node, item,
485 BTRFS_DELAYED_INSERTION_ITEM);
486}
487
488static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
489 struct btrfs_delayed_item *item)
490{
491 return __btrfs_add_delayed_item(node, item,
492 BTRFS_DELAYED_DELETION_ITEM);
493}
494
495static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
496{
497 struct rb_root *root;
498 struct btrfs_delayed_root *delayed_root;
499
500 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
501
502 BUG_ON(!delayed_root);
503 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
504 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
505
506 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
507 root = &delayed_item->delayed_node->ins_root;
508 else
509 root = &delayed_item->delayed_node->del_root;
510
511 rb_erase(&delayed_item->rb_node, root);
512 delayed_item->delayed_node->count--;
513 atomic_dec(&delayed_root->items);
514 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
515 waitqueue_active(&delayed_root->wait))
516 wake_up(&delayed_root->wait);
517}
518
519static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
520{
521 if (item) {
522 __btrfs_remove_delayed_item(item);
523 if (atomic_dec_and_test(&item->refs))
524 kfree(item);
525 }
526}
527
528struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node *delayed_node)
530{
531 struct rb_node *p;
532 struct btrfs_delayed_item *item = NULL;
533
534 p = rb_first(&delayed_node->ins_root);
535 if (p)
536 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
537
538 return item;
539}
540
541struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node *delayed_node)
543{
544 struct rb_node *p;
545 struct btrfs_delayed_item *item = NULL;
546
547 p = rb_first(&delayed_node->del_root);
548 if (p)
549 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
550
551 return item;
552}
553
554struct btrfs_delayed_item *__btrfs_next_delayed_item(
555 struct btrfs_delayed_item *item)
556{
557 struct rb_node *p;
558 struct btrfs_delayed_item *next = NULL;
559
560 p = rb_next(&item->rb_node);
561 if (p)
562 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
563
564 return next;
565}
566
16cdcec7
MX
567static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
568 u64 root_id)
569{
570 struct btrfs_key root_key;
571
572 if (root->objectid == root_id)
573 return root;
574
575 root_key.objectid = root_id;
576 root_key.type = BTRFS_ROOT_ITEM_KEY;
577 root_key.offset = (u64)-1;
578 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
579}
580
581static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584{
585 struct btrfs_block_rsv *src_rsv;
586 struct btrfs_block_rsv *dst_rsv;
587 u64 num_bytes;
588 int ret;
589
590 if (!trans->bytes_reserved)
591 return 0;
592
593 src_rsv = trans->block_rsv;
6d668dda 594 dst_rsv = &root->fs_info->delayed_block_rsv;
16cdcec7
MX
595
596 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
597 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
8c2a3ca2
JB
598 if (!ret) {
599 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
600 item->key.objectid,
601 num_bytes, 1);
16cdcec7 602 item->bytes_reserved = num_bytes;
8c2a3ca2 603 }
16cdcec7
MX
604
605 return ret;
606}
607
608static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
609 struct btrfs_delayed_item *item)
610{
19fd2949
MX
611 struct btrfs_block_rsv *rsv;
612
16cdcec7
MX
613 if (!item->bytes_reserved)
614 return;
615
6d668dda 616 rsv = &root->fs_info->delayed_block_rsv;
8c2a3ca2
JB
617 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
618 item->key.objectid, item->bytes_reserved,
619 0);
19fd2949 620 btrfs_block_rsv_release(root, rsv,
16cdcec7
MX
621 item->bytes_reserved);
622}
623
624static int btrfs_delayed_inode_reserve_metadata(
625 struct btrfs_trans_handle *trans,
626 struct btrfs_root *root,
7fd2ae21 627 struct inode *inode,
16cdcec7
MX
628 struct btrfs_delayed_node *node)
629{
630 struct btrfs_block_rsv *src_rsv;
631 struct btrfs_block_rsv *dst_rsv;
632 u64 num_bytes;
633 int ret;
8c2a3ca2 634 bool release = false;
16cdcec7 635
16cdcec7 636 src_rsv = trans->block_rsv;
6d668dda 637 dst_rsv = &root->fs_info->delayed_block_rsv;
16cdcec7
MX
638
639 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
c06a0e12
JB
640
641 /*
642 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
643 * which doesn't reserve space for speed. This is a problem since we
644 * still need to reserve space for this update, so try to reserve the
645 * space.
646 *
647 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
648 * we're accounted for.
649 */
e755d9ab
CM
650 if (!src_rsv || (!trans->bytes_reserved &&
651 src_rsv != &root->fs_info->delalloc_block_rsv)) {
c06a0e12
JB
652 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
653 /*
654 * Since we're under a transaction reserve_metadata_bytes could
655 * try to commit the transaction which will make it return
656 * EAGAIN to make us stop the transaction we have, so return
657 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
658 */
659 if (ret == -EAGAIN)
660 ret = -ENOSPC;
8c2a3ca2 661 if (!ret) {
c06a0e12 662 node->bytes_reserved = num_bytes;
8c2a3ca2
JB
663 trace_btrfs_space_reservation(root->fs_info,
664 "delayed_inode",
665 btrfs_ino(inode),
666 num_bytes, 1);
667 }
c06a0e12 668 return ret;
7fd2ae21
JB
669 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
670 spin_lock(&BTRFS_I(inode)->lock);
671 if (BTRFS_I(inode)->delalloc_meta_reserved) {
672 BTRFS_I(inode)->delalloc_meta_reserved = 0;
673 spin_unlock(&BTRFS_I(inode)->lock);
674 release = true;
675 goto migrate;
676 }
677 spin_unlock(&BTRFS_I(inode)->lock);
678
679 /* Ok we didn't have space pre-reserved. This shouldn't happen
680 * too often but it can happen if we do delalloc to an existing
681 * inode which gets dirtied because of the time update, and then
682 * isn't touched again until after the transaction commits and
683 * then we try to write out the data. First try to be nice and
684 * reserve something strictly for us. If not be a pain and try
685 * to steal from the delalloc block rsv.
686 */
687 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
688 if (!ret)
689 goto out;
690
691 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
692 if (!ret)
693 goto out;
694
695 /*
696 * Ok this is a problem, let's just steal from the global rsv
697 * since this really shouldn't happen that often.
698 */
699 WARN_ON(1);
700 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
701 dst_rsv, num_bytes);
702 goto out;
c06a0e12
JB
703 }
704
7fd2ae21 705migrate:
16cdcec7 706 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
7fd2ae21
JB
707
708out:
709 /*
710 * Migrate only takes a reservation, it doesn't touch the size of the
711 * block_rsv. This is to simplify people who don't normally have things
712 * migrated from their block rsv. If they go to release their
713 * reservation, that will decrease the size as well, so if migrate
714 * reduced size we'd end up with a negative size. But for the
715 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
716 * but we could in fact do this reserve/migrate dance several times
717 * between the time we did the original reservation and we'd clean it
718 * up. So to take care of this, release the space for the meta
719 * reservation here. I think it may be time for a documentation page on
720 * how block rsvs. work.
721 */
8c2a3ca2
JB
722 if (!ret) {
723 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
724 btrfs_ino(inode), num_bytes, 1);
16cdcec7 725 node->bytes_reserved = num_bytes;
8c2a3ca2 726 }
16cdcec7 727
8c2a3ca2
JB
728 if (release) {
729 trace_btrfs_space_reservation(root->fs_info, "delalloc",
730 btrfs_ino(inode), num_bytes, 0);
7fd2ae21 731 btrfs_block_rsv_release(root, src_rsv, num_bytes);
8c2a3ca2 732 }
16cdcec7
MX
733
734 return ret;
735}
736
737static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
738 struct btrfs_delayed_node *node)
739{
740 struct btrfs_block_rsv *rsv;
741
742 if (!node->bytes_reserved)
743 return;
744
6d668dda 745 rsv = &root->fs_info->delayed_block_rsv;
8c2a3ca2
JB
746 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
747 node->inode_id, node->bytes_reserved, 0);
16cdcec7
MX
748 btrfs_block_rsv_release(root, rsv,
749 node->bytes_reserved);
750 node->bytes_reserved = 0;
751}
752
753/*
754 * This helper will insert some continuous items into the same leaf according
755 * to the free space of the leaf.
756 */
757static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
758 struct btrfs_root *root,
759 struct btrfs_path *path,
760 struct btrfs_delayed_item *item)
761{
762 struct btrfs_delayed_item *curr, *next;
763 int free_space;
764 int total_data_size = 0, total_size = 0;
765 struct extent_buffer *leaf;
766 char *data_ptr;
767 struct btrfs_key *keys;
768 u32 *data_size;
769 struct list_head head;
770 int slot;
771 int nitems;
772 int i;
773 int ret = 0;
774
775 BUG_ON(!path->nodes[0]);
776
777 leaf = path->nodes[0];
778 free_space = btrfs_leaf_free_space(root, leaf);
779 INIT_LIST_HEAD(&head);
780
781 next = item;
17aca1c9 782 nitems = 0;
16cdcec7
MX
783
784 /*
785 * count the number of the continuous items that we can insert in batch
786 */
787 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
788 free_space) {
789 total_data_size += next->data_len;
790 total_size += next->data_len + sizeof(struct btrfs_item);
791 list_add_tail(&next->tree_list, &head);
792 nitems++;
793
794 curr = next;
795 next = __btrfs_next_delayed_item(curr);
796 if (!next)
797 break;
798
799 if (!btrfs_is_continuous_delayed_item(curr, next))
800 break;
801 }
802
803 if (!nitems) {
804 ret = 0;
805 goto out;
806 }
807
808 /*
809 * we need allocate some memory space, but it might cause the task
810 * to sleep, so we set all locked nodes in the path to blocking locks
811 * first.
812 */
813 btrfs_set_path_blocking(path);
814
815 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
816 if (!keys) {
817 ret = -ENOMEM;
818 goto out;
819 }
820
821 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
822 if (!data_size) {
823 ret = -ENOMEM;
824 goto error;
825 }
826
827 /* get keys of all the delayed items */
828 i = 0;
829 list_for_each_entry(next, &head, tree_list) {
830 keys[i] = next->key;
831 data_size[i] = next->data_len;
832 i++;
833 }
834
835 /* reset all the locked nodes in the patch to spinning locks. */
bd681513 836 btrfs_clear_path_blocking(path, NULL, 0);
16cdcec7
MX
837
838 /* insert the keys of the items */
143bede5
JM
839 setup_items_for_insert(trans, root, path, keys, data_size,
840 total_data_size, total_size, nitems);
16cdcec7
MX
841
842 /* insert the dir index items */
843 slot = path->slots[0];
844 list_for_each_entry_safe(curr, next, &head, tree_list) {
845 data_ptr = btrfs_item_ptr(leaf, slot, char);
846 write_extent_buffer(leaf, &curr->data,
847 (unsigned long)data_ptr,
848 curr->data_len);
849 slot++;
850
851 btrfs_delayed_item_release_metadata(root, curr);
852
853 list_del(&curr->tree_list);
854 btrfs_release_delayed_item(curr);
855 }
856
857error:
858 kfree(data_size);
859 kfree(keys);
860out:
861 return ret;
862}
863
864/*
865 * This helper can just do simple insertion that needn't extend item for new
866 * data, such as directory name index insertion, inode insertion.
867 */
868static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
869 struct btrfs_root *root,
870 struct btrfs_path *path,
871 struct btrfs_delayed_item *delayed_item)
872{
873 struct extent_buffer *leaf;
874 struct btrfs_item *item;
875 char *ptr;
876 int ret;
877
878 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
879 delayed_item->data_len);
880 if (ret < 0 && ret != -EEXIST)
881 return ret;
882
883 leaf = path->nodes[0];
884
885 item = btrfs_item_nr(leaf, path->slots[0]);
886 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
887
888 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
889 delayed_item->data_len);
890 btrfs_mark_buffer_dirty(leaf);
891
892 btrfs_delayed_item_release_metadata(root, delayed_item);
893 return 0;
894}
895
896/*
897 * we insert an item first, then if there are some continuous items, we try
898 * to insert those items into the same leaf.
899 */
900static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
901 struct btrfs_path *path,
902 struct btrfs_root *root,
903 struct btrfs_delayed_node *node)
904{
905 struct btrfs_delayed_item *curr, *prev;
906 int ret = 0;
907
908do_again:
909 mutex_lock(&node->mutex);
910 curr = __btrfs_first_delayed_insertion_item(node);
911 if (!curr)
912 goto insert_end;
913
914 ret = btrfs_insert_delayed_item(trans, root, path, curr);
915 if (ret < 0) {
945d8962 916 btrfs_release_path(path);
16cdcec7
MX
917 goto insert_end;
918 }
919
920 prev = curr;
921 curr = __btrfs_next_delayed_item(prev);
922 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
923 /* insert the continuous items into the same leaf */
924 path->slots[0]++;
925 btrfs_batch_insert_items(trans, root, path, curr);
926 }
927 btrfs_release_delayed_item(prev);
928 btrfs_mark_buffer_dirty(path->nodes[0]);
929
945d8962 930 btrfs_release_path(path);
16cdcec7
MX
931 mutex_unlock(&node->mutex);
932 goto do_again;
933
934insert_end:
935 mutex_unlock(&node->mutex);
936 return ret;
937}
938
939static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
940 struct btrfs_root *root,
941 struct btrfs_path *path,
942 struct btrfs_delayed_item *item)
943{
944 struct btrfs_delayed_item *curr, *next;
945 struct extent_buffer *leaf;
946 struct btrfs_key key;
947 struct list_head head;
948 int nitems, i, last_item;
949 int ret = 0;
950
951 BUG_ON(!path->nodes[0]);
952
953 leaf = path->nodes[0];
954
955 i = path->slots[0];
956 last_item = btrfs_header_nritems(leaf) - 1;
957 if (i > last_item)
958 return -ENOENT; /* FIXME: Is errno suitable? */
959
960 next = item;
961 INIT_LIST_HEAD(&head);
962 btrfs_item_key_to_cpu(leaf, &key, i);
963 nitems = 0;
964 /*
965 * count the number of the dir index items that we can delete in batch
966 */
967 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
968 list_add_tail(&next->tree_list, &head);
969 nitems++;
970
971 curr = next;
972 next = __btrfs_next_delayed_item(curr);
973 if (!next)
974 break;
975
976 if (!btrfs_is_continuous_delayed_item(curr, next))
977 break;
978
979 i++;
980 if (i > last_item)
981 break;
982 btrfs_item_key_to_cpu(leaf, &key, i);
983 }
984
985 if (!nitems)
986 return 0;
987
988 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
989 if (ret)
990 goto out;
991
992 list_for_each_entry_safe(curr, next, &head, tree_list) {
993 btrfs_delayed_item_release_metadata(root, curr);
994 list_del(&curr->tree_list);
995 btrfs_release_delayed_item(curr);
996 }
997
998out:
999 return ret;
1000}
1001
1002static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1003 struct btrfs_path *path,
1004 struct btrfs_root *root,
1005 struct btrfs_delayed_node *node)
1006{
1007 struct btrfs_delayed_item *curr, *prev;
1008 int ret = 0;
1009
1010do_again:
1011 mutex_lock(&node->mutex);
1012 curr = __btrfs_first_delayed_deletion_item(node);
1013 if (!curr)
1014 goto delete_fail;
1015
1016 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1017 if (ret < 0)
1018 goto delete_fail;
1019 else if (ret > 0) {
1020 /*
1021 * can't find the item which the node points to, so this node
1022 * is invalid, just drop it.
1023 */
1024 prev = curr;
1025 curr = __btrfs_next_delayed_item(prev);
1026 btrfs_release_delayed_item(prev);
1027 ret = 0;
945d8962 1028 btrfs_release_path(path);
16cdcec7
MX
1029 if (curr)
1030 goto do_again;
1031 else
1032 goto delete_fail;
1033 }
1034
1035 btrfs_batch_delete_items(trans, root, path, curr);
945d8962 1036 btrfs_release_path(path);
16cdcec7
MX
1037 mutex_unlock(&node->mutex);
1038 goto do_again;
1039
1040delete_fail:
945d8962 1041 btrfs_release_path(path);
16cdcec7
MX
1042 mutex_unlock(&node->mutex);
1043 return ret;
1044}
1045
1046static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1047{
1048 struct btrfs_delayed_root *delayed_root;
1049
1050 if (delayed_node && delayed_node->inode_dirty) {
1051 BUG_ON(!delayed_node->root);
1052 delayed_node->inode_dirty = 0;
1053 delayed_node->count--;
1054
1055 delayed_root = delayed_node->root->fs_info->delayed_root;
1056 atomic_dec(&delayed_root->items);
1057 if (atomic_read(&delayed_root->items) <
1058 BTRFS_DELAYED_BACKGROUND &&
1059 waitqueue_active(&delayed_root->wait))
1060 wake_up(&delayed_root->wait);
1061 }
1062}
1063
1064static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1065 struct btrfs_root *root,
1066 struct btrfs_path *path,
1067 struct btrfs_delayed_node *node)
1068{
1069 struct btrfs_key key;
1070 struct btrfs_inode_item *inode_item;
1071 struct extent_buffer *leaf;
1072 int ret;
1073
1074 mutex_lock(&node->mutex);
1075 if (!node->inode_dirty) {
1076 mutex_unlock(&node->mutex);
1077 return 0;
1078 }
1079
1080 key.objectid = node->inode_id;
1081 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1082 key.offset = 0;
1083 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1084 if (ret > 0) {
945d8962 1085 btrfs_release_path(path);
16cdcec7
MX
1086 mutex_unlock(&node->mutex);
1087 return -ENOENT;
1088 } else if (ret < 0) {
1089 mutex_unlock(&node->mutex);
1090 return ret;
1091 }
1092
1093 btrfs_unlock_up_safe(path, 1);
1094 leaf = path->nodes[0];
1095 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1096 struct btrfs_inode_item);
1097 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1098 sizeof(struct btrfs_inode_item));
1099 btrfs_mark_buffer_dirty(leaf);
945d8962 1100 btrfs_release_path(path);
16cdcec7
MX
1101
1102 btrfs_delayed_inode_release_metadata(root, node);
1103 btrfs_release_delayed_inode(node);
1104 mutex_unlock(&node->mutex);
1105
1106 return 0;
1107}
1108
1109/* Called when committing the transaction. */
1110int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1111 struct btrfs_root *root)
1112{
1113 struct btrfs_delayed_root *delayed_root;
1114 struct btrfs_delayed_node *curr_node, *prev_node;
1115 struct btrfs_path *path;
19fd2949 1116 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1117 int ret = 0;
1118
1119 path = btrfs_alloc_path();
1120 if (!path)
1121 return -ENOMEM;
1122 path->leave_spinning = 1;
1123
19fd2949 1124 block_rsv = trans->block_rsv;
6d668dda 1125 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1126
16cdcec7
MX
1127 delayed_root = btrfs_get_delayed_root(root);
1128
1129 curr_node = btrfs_first_delayed_node(delayed_root);
1130 while (curr_node) {
1131 root = curr_node->root;
1132 ret = btrfs_insert_delayed_items(trans, path, root,
1133 curr_node);
1134 if (!ret)
1135 ret = btrfs_delete_delayed_items(trans, path, root,
1136 curr_node);
1137 if (!ret)
1138 ret = btrfs_update_delayed_inode(trans, root, path,
1139 curr_node);
1140 if (ret) {
1141 btrfs_release_delayed_node(curr_node);
1142 break;
1143 }
1144
1145 prev_node = curr_node;
1146 curr_node = btrfs_next_delayed_node(curr_node);
1147 btrfs_release_delayed_node(prev_node);
1148 }
1149
1150 btrfs_free_path(path);
19fd2949 1151 trans->block_rsv = block_rsv;
16cdcec7
MX
1152 return ret;
1153}
1154
1155static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1156 struct btrfs_delayed_node *node)
1157{
1158 struct btrfs_path *path;
19fd2949 1159 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1160 int ret;
1161
1162 path = btrfs_alloc_path();
1163 if (!path)
1164 return -ENOMEM;
1165 path->leave_spinning = 1;
1166
19fd2949 1167 block_rsv = trans->block_rsv;
6d668dda 1168 trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
19fd2949 1169
16cdcec7
MX
1170 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1171 if (!ret)
1172 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1173 if (!ret)
1174 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1175 btrfs_free_path(path);
1176
19fd2949 1177 trans->block_rsv = block_rsv;
16cdcec7
MX
1178 return ret;
1179}
1180
1181int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1182 struct inode *inode)
1183{
1184 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1185 int ret;
1186
1187 if (!delayed_node)
1188 return 0;
1189
1190 mutex_lock(&delayed_node->mutex);
1191 if (!delayed_node->count) {
1192 mutex_unlock(&delayed_node->mutex);
1193 btrfs_release_delayed_node(delayed_node);
1194 return 0;
1195 }
1196 mutex_unlock(&delayed_node->mutex);
1197
1198 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1199 btrfs_release_delayed_node(delayed_node);
1200 return ret;
1201}
1202
1203void btrfs_remove_delayed_node(struct inode *inode)
1204{
1205 struct btrfs_delayed_node *delayed_node;
1206
1207 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1208 if (!delayed_node)
1209 return;
1210
1211 BTRFS_I(inode)->delayed_node = NULL;
1212 btrfs_release_delayed_node(delayed_node);
1213}
1214
1215struct btrfs_async_delayed_node {
1216 struct btrfs_root *root;
1217 struct btrfs_delayed_node *delayed_node;
1218 struct btrfs_work work;
1219};
1220
1221static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1222{
1223 struct btrfs_async_delayed_node *async_node;
1224 struct btrfs_trans_handle *trans;
1225 struct btrfs_path *path;
1226 struct btrfs_delayed_node *delayed_node = NULL;
1227 struct btrfs_root *root;
19fd2949 1228 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1229 unsigned long nr = 0;
1230 int need_requeue = 0;
1231 int ret;
1232
1233 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1234
1235 path = btrfs_alloc_path();
1236 if (!path)
1237 goto out;
1238 path->leave_spinning = 1;
1239
1240 delayed_node = async_node->delayed_node;
1241 root = delayed_node->root;
1242
ff5714cc 1243 trans = btrfs_join_transaction(root);
16cdcec7
MX
1244 if (IS_ERR(trans))
1245 goto free_path;
1246
19fd2949 1247 block_rsv = trans->block_rsv;
6d668dda 1248 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1249
16cdcec7
MX
1250 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1251 if (!ret)
1252 ret = btrfs_delete_delayed_items(trans, path, root,
1253 delayed_node);
1254
1255 if (!ret)
1256 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1257
1258 /*
1259 * Maybe new delayed items have been inserted, so we need requeue
1260 * the work. Besides that, we must dequeue the empty delayed nodes
1261 * to avoid the race between delayed items balance and the worker.
1262 * The race like this:
1263 * Task1 Worker thread
1264 * count == 0, needn't requeue
1265 * also needn't insert the
1266 * delayed node into prepare
1267 * list again.
1268 * add lots of delayed items
1269 * queue the delayed node
1270 * already in the list,
1271 * and not in the prepare
1272 * list, it means the delayed
1273 * node is being dealt with
1274 * by the worker.
1275 * do delayed items balance
1276 * the delayed node is being
1277 * dealt with by the worker
1278 * now, just wait.
1279 * the worker goto idle.
1280 * Task1 will sleep until the transaction is commited.
1281 */
1282 mutex_lock(&delayed_node->mutex);
1283 if (delayed_node->count)
1284 need_requeue = 1;
1285 else
1286 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1287 delayed_node);
1288 mutex_unlock(&delayed_node->mutex);
1289
1290 nr = trans->blocks_used;
1291
19fd2949 1292 trans->block_rsv = block_rsv;
16cdcec7
MX
1293 btrfs_end_transaction_dmeta(trans, root);
1294 __btrfs_btree_balance_dirty(root, nr);
1295free_path:
1296 btrfs_free_path(path);
1297out:
1298 if (need_requeue)
1299 btrfs_requeue_work(&async_node->work);
1300 else {
1301 btrfs_release_prepared_delayed_node(delayed_node);
1302 kfree(async_node);
1303 }
1304}
1305
1306static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1307 struct btrfs_root *root, int all)
1308{
1309 struct btrfs_async_delayed_node *async_node;
1310 struct btrfs_delayed_node *curr;
1311 int count = 0;
1312
1313again:
1314 curr = btrfs_first_prepared_delayed_node(delayed_root);
1315 if (!curr)
1316 return 0;
1317
1318 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1319 if (!async_node) {
1320 btrfs_release_prepared_delayed_node(curr);
1321 return -ENOMEM;
1322 }
1323
1324 async_node->root = root;
1325 async_node->delayed_node = curr;
1326
1327 async_node->work.func = btrfs_async_run_delayed_node_done;
1328 async_node->work.flags = 0;
1329
1330 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1331 count++;
1332
1333 if (all || count < 4)
1334 goto again;
1335
1336 return 0;
1337}
1338
e999376f
CM
1339void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1340{
1341 struct btrfs_delayed_root *delayed_root;
1342 delayed_root = btrfs_get_delayed_root(root);
1343 WARN_ON(btrfs_first_delayed_node(delayed_root));
1344}
1345
16cdcec7
MX
1346void btrfs_balance_delayed_items(struct btrfs_root *root)
1347{
1348 struct btrfs_delayed_root *delayed_root;
1349
1350 delayed_root = btrfs_get_delayed_root(root);
1351
1352 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1353 return;
1354
1355 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1356 int ret;
1357 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1358 if (ret)
1359 return;
1360
1361 wait_event_interruptible_timeout(
1362 delayed_root->wait,
1363 (atomic_read(&delayed_root->items) <
1364 BTRFS_DELAYED_BACKGROUND),
1365 HZ);
1366 return;
1367 }
1368
1369 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1370}
1371
1372int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1373 struct btrfs_root *root, const char *name,
1374 int name_len, struct inode *dir,
1375 struct btrfs_disk_key *disk_key, u8 type,
1376 u64 index)
1377{
1378 struct btrfs_delayed_node *delayed_node;
1379 struct btrfs_delayed_item *delayed_item;
1380 struct btrfs_dir_item *dir_item;
1381 int ret;
1382
1383 delayed_node = btrfs_get_or_create_delayed_node(dir);
1384 if (IS_ERR(delayed_node))
1385 return PTR_ERR(delayed_node);
1386
1387 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1388 if (!delayed_item) {
1389 ret = -ENOMEM;
1390 goto release_node;
1391 }
1392
0d0ca30f 1393 delayed_item->key.objectid = btrfs_ino(dir);
16cdcec7
MX
1394 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1395 delayed_item->key.offset = index;
1396
1397 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1398 dir_item->location = *disk_key;
1399 dir_item->transid = cpu_to_le64(trans->transid);
1400 dir_item->data_len = 0;
1401 dir_item->name_len = cpu_to_le16(name_len);
1402 dir_item->type = type;
1403 memcpy((char *)(dir_item + 1), name, name_len);
1404
8c2a3ca2
JB
1405 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1406 /*
1407 * we have reserved enough space when we start a new transaction,
1408 * so reserving metadata failure is impossible
1409 */
1410 BUG_ON(ret);
1411
1412
16cdcec7
MX
1413 mutex_lock(&delayed_node->mutex);
1414 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1415 if (unlikely(ret)) {
1416 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1417 "the insertion tree of the delayed node"
1418 "(root id: %llu, inode id: %llu, errno: %d)\n",
1419 name,
1420 (unsigned long long)delayed_node->root->objectid,
1421 (unsigned long long)delayed_node->inode_id,
1422 ret);
1423 BUG();
1424 }
1425 mutex_unlock(&delayed_node->mutex);
1426
1427release_node:
1428 btrfs_release_delayed_node(delayed_node);
1429 return ret;
1430}
1431
1432static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1433 struct btrfs_delayed_node *node,
1434 struct btrfs_key *key)
1435{
1436 struct btrfs_delayed_item *item;
1437
1438 mutex_lock(&node->mutex);
1439 item = __btrfs_lookup_delayed_insertion_item(node, key);
1440 if (!item) {
1441 mutex_unlock(&node->mutex);
1442 return 1;
1443 }
1444
1445 btrfs_delayed_item_release_metadata(root, item);
1446 btrfs_release_delayed_item(item);
1447 mutex_unlock(&node->mutex);
1448 return 0;
1449}
1450
1451int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1452 struct btrfs_root *root, struct inode *dir,
1453 u64 index)
1454{
1455 struct btrfs_delayed_node *node;
1456 struct btrfs_delayed_item *item;
1457 struct btrfs_key item_key;
1458 int ret;
1459
1460 node = btrfs_get_or_create_delayed_node(dir);
1461 if (IS_ERR(node))
1462 return PTR_ERR(node);
1463
0d0ca30f 1464 item_key.objectid = btrfs_ino(dir);
16cdcec7
MX
1465 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1466 item_key.offset = index;
1467
1468 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1469 if (!ret)
1470 goto end;
1471
1472 item = btrfs_alloc_delayed_item(0);
1473 if (!item) {
1474 ret = -ENOMEM;
1475 goto end;
1476 }
1477
1478 item->key = item_key;
1479
1480 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1481 /*
1482 * we have reserved enough space when we start a new transaction,
1483 * so reserving metadata failure is impossible.
1484 */
1485 BUG_ON(ret);
1486
1487 mutex_lock(&node->mutex);
1488 ret = __btrfs_add_delayed_deletion_item(node, item);
1489 if (unlikely(ret)) {
1490 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1491 "into the deletion tree of the delayed node"
1492 "(root id: %llu, inode id: %llu, errno: %d)\n",
1493 (unsigned long long)index,
1494 (unsigned long long)node->root->objectid,
1495 (unsigned long long)node->inode_id,
1496 ret);
1497 BUG();
1498 }
1499 mutex_unlock(&node->mutex);
1500end:
1501 btrfs_release_delayed_node(node);
1502 return ret;
1503}
1504
1505int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1506{
2f7e33d4 1507 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
1508
1509 if (!delayed_node)
1510 return -ENOENT;
1511
1512 /*
1513 * Since we have held i_mutex of this directory, it is impossible that
1514 * a new directory index is added into the delayed node and index_cnt
1515 * is updated now. So we needn't lock the delayed node.
1516 */
2f7e33d4
MX
1517 if (!delayed_node->index_cnt) {
1518 btrfs_release_delayed_node(delayed_node);
16cdcec7 1519 return -EINVAL;
2f7e33d4 1520 }
16cdcec7
MX
1521
1522 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
2f7e33d4
MX
1523 btrfs_release_delayed_node(delayed_node);
1524 return 0;
16cdcec7
MX
1525}
1526
1527void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1528 struct list_head *del_list)
1529{
1530 struct btrfs_delayed_node *delayed_node;
1531 struct btrfs_delayed_item *item;
1532
1533 delayed_node = btrfs_get_delayed_node(inode);
1534 if (!delayed_node)
1535 return;
1536
1537 mutex_lock(&delayed_node->mutex);
1538 item = __btrfs_first_delayed_insertion_item(delayed_node);
1539 while (item) {
1540 atomic_inc(&item->refs);
1541 list_add_tail(&item->readdir_list, ins_list);
1542 item = __btrfs_next_delayed_item(item);
1543 }
1544
1545 item = __btrfs_first_delayed_deletion_item(delayed_node);
1546 while (item) {
1547 atomic_inc(&item->refs);
1548 list_add_tail(&item->readdir_list, del_list);
1549 item = __btrfs_next_delayed_item(item);
1550 }
1551 mutex_unlock(&delayed_node->mutex);
1552 /*
1553 * This delayed node is still cached in the btrfs inode, so refs
1554 * must be > 1 now, and we needn't check it is going to be freed
1555 * or not.
1556 *
1557 * Besides that, this function is used to read dir, we do not
1558 * insert/delete delayed items in this period. So we also needn't
1559 * requeue or dequeue this delayed node.
1560 */
1561 atomic_dec(&delayed_node->refs);
1562}
1563
1564void btrfs_put_delayed_items(struct list_head *ins_list,
1565 struct list_head *del_list)
1566{
1567 struct btrfs_delayed_item *curr, *next;
1568
1569 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1570 list_del(&curr->readdir_list);
1571 if (atomic_dec_and_test(&curr->refs))
1572 kfree(curr);
1573 }
1574
1575 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1576 list_del(&curr->readdir_list);
1577 if (atomic_dec_and_test(&curr->refs))
1578 kfree(curr);
1579 }
1580}
1581
1582int btrfs_should_delete_dir_index(struct list_head *del_list,
1583 u64 index)
1584{
1585 struct btrfs_delayed_item *curr, *next;
1586 int ret;
1587
1588 if (list_empty(del_list))
1589 return 0;
1590
1591 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1592 if (curr->key.offset > index)
1593 break;
1594
1595 list_del(&curr->readdir_list);
1596 ret = (curr->key.offset == index);
1597
1598 if (atomic_dec_and_test(&curr->refs))
1599 kfree(curr);
1600
1601 if (ret)
1602 return 1;
1603 else
1604 continue;
1605 }
1606 return 0;
1607}
1608
1609/*
1610 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1611 *
1612 */
1613int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1614 filldir_t filldir,
1615 struct list_head *ins_list)
1616{
1617 struct btrfs_dir_item *di;
1618 struct btrfs_delayed_item *curr, *next;
1619 struct btrfs_key location;
1620 char *name;
1621 int name_len;
1622 int over = 0;
1623 unsigned char d_type;
1624
1625 if (list_empty(ins_list))
1626 return 0;
1627
1628 /*
1629 * Changing the data of the delayed item is impossible. So
1630 * we needn't lock them. And we have held i_mutex of the
1631 * directory, nobody can delete any directory indexes now.
1632 */
1633 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1634 list_del(&curr->readdir_list);
1635
1636 if (curr->key.offset < filp->f_pos) {
1637 if (atomic_dec_and_test(&curr->refs))
1638 kfree(curr);
1639 continue;
1640 }
1641
1642 filp->f_pos = curr->key.offset;
1643
1644 di = (struct btrfs_dir_item *)curr->data;
1645 name = (char *)(di + 1);
1646 name_len = le16_to_cpu(di->name_len);
1647
1648 d_type = btrfs_filetype_table[di->type];
1649 btrfs_disk_key_to_cpu(&location, &di->location);
1650
1651 over = filldir(dirent, name, name_len, curr->key.offset,
1652 location.objectid, d_type);
1653
1654 if (atomic_dec_and_test(&curr->refs))
1655 kfree(curr);
1656
1657 if (over)
1658 return 1;
1659 }
1660 return 0;
1661}
1662
1663BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1664 generation, 64);
1665BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1666 sequence, 64);
1667BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1668 transid, 64);
1669BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1670BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1671 nbytes, 64);
1672BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1673 block_group, 64);
1674BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1675BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1676BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1677BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1678BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1679BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1680
1681BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1682BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1683
1684static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1685 struct btrfs_inode_item *inode_item,
1686 struct inode *inode)
1687{
1688 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1689 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1690 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1691 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1692 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1693 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1694 btrfs_set_stack_inode_generation(inode_item,
1695 BTRFS_I(inode)->generation);
1696 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1697 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1698 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1699 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
ff5714cc 1700 btrfs_set_stack_inode_block_group(inode_item, 0);
16cdcec7
MX
1701
1702 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1703 inode->i_atime.tv_sec);
1704 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1705 inode->i_atime.tv_nsec);
1706
1707 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1708 inode->i_mtime.tv_sec);
1709 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1710 inode->i_mtime.tv_nsec);
1711
1712 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1713 inode->i_ctime.tv_sec);
1714 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1715 inode->i_ctime.tv_nsec);
1716}
1717
2f7e33d4
MX
1718int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1719{
1720 struct btrfs_delayed_node *delayed_node;
1721 struct btrfs_inode_item *inode_item;
1722 struct btrfs_timespec *tspec;
1723
1724 delayed_node = btrfs_get_delayed_node(inode);
1725 if (!delayed_node)
1726 return -ENOENT;
1727
1728 mutex_lock(&delayed_node->mutex);
1729 if (!delayed_node->inode_dirty) {
1730 mutex_unlock(&delayed_node->mutex);
1731 btrfs_release_delayed_node(delayed_node);
1732 return -ENOENT;
1733 }
1734
1735 inode_item = &delayed_node->inode_item;
1736
1737 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1738 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1739 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1740 inode->i_mode = btrfs_stack_inode_mode(inode_item);
bfe86848 1741 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
2f7e33d4
MX
1742 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1743 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1744 BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
1745 inode->i_rdev = 0;
1746 *rdev = btrfs_stack_inode_rdev(inode_item);
1747 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1748
1749 tspec = btrfs_inode_atime(inode_item);
1750 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1751 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1752
1753 tspec = btrfs_inode_mtime(inode_item);
1754 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1755 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1756
1757 tspec = btrfs_inode_ctime(inode_item);
1758 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1759 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1760
1761 inode->i_generation = BTRFS_I(inode)->generation;
1762 BTRFS_I(inode)->index_cnt = (u64)-1;
1763
1764 mutex_unlock(&delayed_node->mutex);
1765 btrfs_release_delayed_node(delayed_node);
1766 return 0;
1767}
1768
16cdcec7
MX
1769int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1770 struct btrfs_root *root, struct inode *inode)
1771{
1772 struct btrfs_delayed_node *delayed_node;
aa0467d8 1773 int ret = 0;
16cdcec7
MX
1774
1775 delayed_node = btrfs_get_or_create_delayed_node(inode);
1776 if (IS_ERR(delayed_node))
1777 return PTR_ERR(delayed_node);
1778
1779 mutex_lock(&delayed_node->mutex);
1780 if (delayed_node->inode_dirty) {
1781 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1782 goto release_node;
1783 }
1784
7fd2ae21
JB
1785 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1786 delayed_node);
c06a0e12
JB
1787 if (ret)
1788 goto release_node;
16cdcec7
MX
1789
1790 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1791 delayed_node->inode_dirty = 1;
1792 delayed_node->count++;
1793 atomic_inc(&root->fs_info->delayed_root->items);
1794release_node:
1795 mutex_unlock(&delayed_node->mutex);
1796 btrfs_release_delayed_node(delayed_node);
1797 return ret;
1798}
1799
1800static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1801{
1802 struct btrfs_root *root = delayed_node->root;
1803 struct btrfs_delayed_item *curr_item, *prev_item;
1804
1805 mutex_lock(&delayed_node->mutex);
1806 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1807 while (curr_item) {
1808 btrfs_delayed_item_release_metadata(root, curr_item);
1809 prev_item = curr_item;
1810 curr_item = __btrfs_next_delayed_item(prev_item);
1811 btrfs_release_delayed_item(prev_item);
1812 }
1813
1814 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1815 while (curr_item) {
1816 btrfs_delayed_item_release_metadata(root, curr_item);
1817 prev_item = curr_item;
1818 curr_item = __btrfs_next_delayed_item(prev_item);
1819 btrfs_release_delayed_item(prev_item);
1820 }
1821
1822 if (delayed_node->inode_dirty) {
1823 btrfs_delayed_inode_release_metadata(root, delayed_node);
1824 btrfs_release_delayed_inode(delayed_node);
1825 }
1826 mutex_unlock(&delayed_node->mutex);
1827}
1828
1829void btrfs_kill_delayed_inode_items(struct inode *inode)
1830{
1831 struct btrfs_delayed_node *delayed_node;
1832
1833 delayed_node = btrfs_get_delayed_node(inode);
1834 if (!delayed_node)
1835 return;
1836
1837 __btrfs_kill_delayed_node(delayed_node);
1838 btrfs_release_delayed_node(delayed_node);
1839}
1840
1841void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1842{
1843 u64 inode_id = 0;
1844 struct btrfs_delayed_node *delayed_nodes[8];
1845 int i, n;
1846
1847 while (1) {
1848 spin_lock(&root->inode_lock);
1849 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1850 (void **)delayed_nodes, inode_id,
1851 ARRAY_SIZE(delayed_nodes));
1852 if (!n) {
1853 spin_unlock(&root->inode_lock);
1854 break;
1855 }
1856
1857 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1858
1859 for (i = 0; i < n; i++)
1860 atomic_inc(&delayed_nodes[i]->refs);
1861 spin_unlock(&root->inode_lock);
1862
1863 for (i = 0; i < n; i++) {
1864 __btrfs_kill_delayed_node(delayed_nodes[i]);
1865 btrfs_release_delayed_node(delayed_nodes[i]);
1866 }
1867 }
1868}
This page took 0.189273 seconds and 5 git commands to generate.