Btrfs: fix oops on NULL trans handle in btrfs_truncate
[deliverable/linux.git] / fs / btrfs / delayed-inode.c
CommitLineData
16cdcec7
MX
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24
25#define BTRFS_DELAYED_WRITEBACK 400
26#define BTRFS_DELAYED_BACKGROUND 100
27
28static struct kmem_cache *delayed_node_cache;
29
30int __init btrfs_delayed_inode_init(void)
31{
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40}
41
42void btrfs_delayed_inode_exit(void)
43{
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46}
47
48static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51{
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65}
66
67static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70{
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77}
78
79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81{
82 return root->fs_info->delayed_root;
83}
84
2f7e33d4 85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
16cdcec7 86{
16cdcec7
MX
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
0d0ca30f 89 u64 ino = btrfs_ino(inode);
2f7e33d4 90 struct btrfs_delayed_node *node;
16cdcec7 91
16cdcec7
MX
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
2f7e33d4 94 atomic_inc(&node->refs);
16cdcec7
MX
95 return node;
96 }
97
98 spin_lock(&root->inode_lock);
0d0ca30f 99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
16cdcec7
MX
100 if (node) {
101 if (btrfs_inode->delayed_node) {
2f7e33d4
MX
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
16cdcec7 104 spin_unlock(&root->inode_lock);
2f7e33d4 105 return node;
16cdcec7
MX
106 }
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
112 }
113 spin_unlock(&root->inode_lock);
114
2f7e33d4
MX
115 return NULL;
116}
117
118static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
119 struct inode *inode)
120{
121 struct btrfs_delayed_node *node;
122 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
123 struct btrfs_root *root = btrfs_inode->root;
124 u64 ino = btrfs_ino(inode);
125 int ret;
126
127again:
128 node = btrfs_get_delayed_node(inode);
129 if (node)
130 return node;
131
16cdcec7
MX
132 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
133 if (!node)
134 return ERR_PTR(-ENOMEM);
0d0ca30f 135 btrfs_init_delayed_node(node, root, ino);
16cdcec7
MX
136
137 atomic_inc(&node->refs); /* cached in the btrfs inode */
138 atomic_inc(&node->refs); /* can be accessed */
139
140 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
141 if (ret) {
142 kmem_cache_free(delayed_node_cache, node);
143 return ERR_PTR(ret);
144 }
145
146 spin_lock(&root->inode_lock);
0d0ca30f 147 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
16cdcec7
MX
148 if (ret == -EEXIST) {
149 kmem_cache_free(delayed_node_cache, node);
150 spin_unlock(&root->inode_lock);
151 radix_tree_preload_end();
152 goto again;
153 }
154 btrfs_inode->delayed_node = node;
155 spin_unlock(&root->inode_lock);
156 radix_tree_preload_end();
157
158 return node;
159}
160
161/*
162 * Call it when holding delayed_node->mutex
163 *
164 * If mod = 1, add this node into the prepared list.
165 */
166static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
167 struct btrfs_delayed_node *node,
168 int mod)
169{
170 spin_lock(&root->lock);
171 if (node->in_list) {
172 if (!list_empty(&node->p_list))
173 list_move_tail(&node->p_list, &root->prepare_list);
174 else if (mod)
175 list_add_tail(&node->p_list, &root->prepare_list);
176 } else {
177 list_add_tail(&node->n_list, &root->node_list);
178 list_add_tail(&node->p_list, &root->prepare_list);
179 atomic_inc(&node->refs); /* inserted into list */
180 root->nodes++;
181 node->in_list = 1;
182 }
183 spin_unlock(&root->lock);
184}
185
186/* Call it when holding delayed_node->mutex */
187static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
188 struct btrfs_delayed_node *node)
189{
190 spin_lock(&root->lock);
191 if (node->in_list) {
192 root->nodes--;
193 atomic_dec(&node->refs); /* not in the list */
194 list_del_init(&node->n_list);
195 if (!list_empty(&node->p_list))
196 list_del_init(&node->p_list);
197 node->in_list = 0;
198 }
199 spin_unlock(&root->lock);
200}
201
202struct btrfs_delayed_node *btrfs_first_delayed_node(
203 struct btrfs_delayed_root *delayed_root)
204{
205 struct list_head *p;
206 struct btrfs_delayed_node *node = NULL;
207
208 spin_lock(&delayed_root->lock);
209 if (list_empty(&delayed_root->node_list))
210 goto out;
211
212 p = delayed_root->node_list.next;
213 node = list_entry(p, struct btrfs_delayed_node, n_list);
214 atomic_inc(&node->refs);
215out:
216 spin_unlock(&delayed_root->lock);
217
218 return node;
219}
220
221struct btrfs_delayed_node *btrfs_next_delayed_node(
222 struct btrfs_delayed_node *node)
223{
224 struct btrfs_delayed_root *delayed_root;
225 struct list_head *p;
226 struct btrfs_delayed_node *next = NULL;
227
228 delayed_root = node->root->fs_info->delayed_root;
229 spin_lock(&delayed_root->lock);
230 if (!node->in_list) { /* not in the list */
231 if (list_empty(&delayed_root->node_list))
232 goto out;
233 p = delayed_root->node_list.next;
234 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 goto out;
236 else
237 p = node->n_list.next;
238
239 next = list_entry(p, struct btrfs_delayed_node, n_list);
240 atomic_inc(&next->refs);
241out:
242 spin_unlock(&delayed_root->lock);
243
244 return next;
245}
246
247static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node *delayed_node,
249 int mod)
250{
251 struct btrfs_delayed_root *delayed_root;
252
253 if (!delayed_node)
254 return;
255
256 delayed_root = delayed_node->root->fs_info->delayed_root;
257
258 mutex_lock(&delayed_node->mutex);
259 if (delayed_node->count)
260 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
261 else
262 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
263 mutex_unlock(&delayed_node->mutex);
264
265 if (atomic_dec_and_test(&delayed_node->refs)) {
266 struct btrfs_root *root = delayed_node->root;
267 spin_lock(&root->inode_lock);
268 if (atomic_read(&delayed_node->refs) == 0) {
269 radix_tree_delete(&root->delayed_nodes_tree,
270 delayed_node->inode_id);
271 kmem_cache_free(delayed_node_cache, delayed_node);
272 }
273 spin_unlock(&root->inode_lock);
274 }
275}
276
277static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
278{
279 __btrfs_release_delayed_node(node, 0);
280}
281
282struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root *delayed_root)
284{
285 struct list_head *p;
286 struct btrfs_delayed_node *node = NULL;
287
288 spin_lock(&delayed_root->lock);
289 if (list_empty(&delayed_root->prepare_list))
290 goto out;
291
292 p = delayed_root->prepare_list.next;
293 list_del_init(p);
294 node = list_entry(p, struct btrfs_delayed_node, p_list);
295 atomic_inc(&node->refs);
296out:
297 spin_unlock(&delayed_root->lock);
298
299 return node;
300}
301
302static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node *node)
304{
305 __btrfs_release_delayed_node(node, 1);
306}
307
308struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
309{
310 struct btrfs_delayed_item *item;
311 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
312 if (item) {
313 item->data_len = data_len;
314 item->ins_or_del = 0;
315 item->bytes_reserved = 0;
16cdcec7
MX
316 item->delayed_node = NULL;
317 atomic_set(&item->refs, 1);
318 }
319 return item;
320}
321
322/*
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
328 *
329 * Note: if we don't find the right item, we will return the prev item and
330 * the next item.
331 */
332static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
333 struct rb_root *root,
334 struct btrfs_key *key,
335 struct btrfs_delayed_item **prev,
336 struct btrfs_delayed_item **next)
337{
338 struct rb_node *node, *prev_node = NULL;
339 struct btrfs_delayed_item *delayed_item = NULL;
340 int ret = 0;
341
342 node = root->rb_node;
343
344 while (node) {
345 delayed_item = rb_entry(node, struct btrfs_delayed_item,
346 rb_node);
347 prev_node = node;
348 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
349 if (ret < 0)
350 node = node->rb_right;
351 else if (ret > 0)
352 node = node->rb_left;
353 else
354 return delayed_item;
355 }
356
357 if (prev) {
358 if (!prev_node)
359 *prev = NULL;
360 else if (ret < 0)
361 *prev = delayed_item;
362 else if ((node = rb_prev(prev_node)) != NULL) {
363 *prev = rb_entry(node, struct btrfs_delayed_item,
364 rb_node);
365 } else
366 *prev = NULL;
367 }
368
369 if (next) {
370 if (!prev_node)
371 *next = NULL;
372 else if (ret > 0)
373 *next = delayed_item;
374 else if ((node = rb_next(prev_node)) != NULL) {
375 *next = rb_entry(node, struct btrfs_delayed_item,
376 rb_node);
377 } else
378 *next = NULL;
379 }
380 return NULL;
381}
382
383struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node *delayed_node,
385 struct btrfs_key *key)
386{
387 struct btrfs_delayed_item *item;
388
389 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
390 NULL, NULL);
391 return item;
392}
393
394struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node *delayed_node,
396 struct btrfs_key *key)
397{
398 struct btrfs_delayed_item *item;
399
400 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
401 NULL, NULL);
402 return item;
403}
404
405struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node *delayed_node,
407 struct btrfs_key *key)
408{
409 struct btrfs_delayed_item *item, *next;
410
411 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
412 NULL, &next);
413 if (!item)
414 item = next;
415
416 return item;
417}
418
419struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node *delayed_node,
421 struct btrfs_key *key)
422{
423 struct btrfs_delayed_item *item, *next;
424
425 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
426 NULL, &next);
427 if (!item)
428 item = next;
429
430 return item;
431}
432
433static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
434 struct btrfs_delayed_item *ins,
435 int action)
436{
437 struct rb_node **p, *node;
438 struct rb_node *parent_node = NULL;
439 struct rb_root *root;
440 struct btrfs_delayed_item *item;
441 int cmp;
442
443 if (action == BTRFS_DELAYED_INSERTION_ITEM)
444 root = &delayed_node->ins_root;
445 else if (action == BTRFS_DELAYED_DELETION_ITEM)
446 root = &delayed_node->del_root;
447 else
448 BUG();
449 p = &root->rb_node;
450 node = &ins->rb_node;
451
452 while (*p) {
453 parent_node = *p;
454 item = rb_entry(parent_node, struct btrfs_delayed_item,
455 rb_node);
456
457 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
458 if (cmp < 0)
459 p = &(*p)->rb_right;
460 else if (cmp > 0)
461 p = &(*p)->rb_left;
462 else
463 return -EEXIST;
464 }
465
466 rb_link_node(node, parent_node, p);
467 rb_insert_color(node, root);
468 ins->delayed_node = delayed_node;
469 ins->ins_or_del = action;
470
471 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
472 action == BTRFS_DELAYED_INSERTION_ITEM &&
473 ins->key.offset >= delayed_node->index_cnt)
474 delayed_node->index_cnt = ins->key.offset + 1;
475
476 delayed_node->count++;
477 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
478 return 0;
479}
480
481static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
482 struct btrfs_delayed_item *item)
483{
484 return __btrfs_add_delayed_item(node, item,
485 BTRFS_DELAYED_INSERTION_ITEM);
486}
487
488static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
489 struct btrfs_delayed_item *item)
490{
491 return __btrfs_add_delayed_item(node, item,
492 BTRFS_DELAYED_DELETION_ITEM);
493}
494
495static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
496{
497 struct rb_root *root;
498 struct btrfs_delayed_root *delayed_root;
499
500 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
501
502 BUG_ON(!delayed_root);
503 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
504 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
505
506 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
507 root = &delayed_item->delayed_node->ins_root;
508 else
509 root = &delayed_item->delayed_node->del_root;
510
511 rb_erase(&delayed_item->rb_node, root);
512 delayed_item->delayed_node->count--;
513 atomic_dec(&delayed_root->items);
514 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
515 waitqueue_active(&delayed_root->wait))
516 wake_up(&delayed_root->wait);
517}
518
519static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
520{
521 if (item) {
522 __btrfs_remove_delayed_item(item);
523 if (atomic_dec_and_test(&item->refs))
524 kfree(item);
525 }
526}
527
528struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node *delayed_node)
530{
531 struct rb_node *p;
532 struct btrfs_delayed_item *item = NULL;
533
534 p = rb_first(&delayed_node->ins_root);
535 if (p)
536 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
537
538 return item;
539}
540
541struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node *delayed_node)
543{
544 struct rb_node *p;
545 struct btrfs_delayed_item *item = NULL;
546
547 p = rb_first(&delayed_node->del_root);
548 if (p)
549 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
550
551 return item;
552}
553
554struct btrfs_delayed_item *__btrfs_next_delayed_item(
555 struct btrfs_delayed_item *item)
556{
557 struct rb_node *p;
558 struct btrfs_delayed_item *next = NULL;
559
560 p = rb_next(&item->rb_node);
561 if (p)
562 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
563
564 return next;
565}
566
16cdcec7
MX
567static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
568 u64 root_id)
569{
570 struct btrfs_key root_key;
571
572 if (root->objectid == root_id)
573 return root;
574
575 root_key.objectid = root_id;
576 root_key.type = BTRFS_ROOT_ITEM_KEY;
577 root_key.offset = (u64)-1;
578 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
579}
580
581static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584{
585 struct btrfs_block_rsv *src_rsv;
586 struct btrfs_block_rsv *dst_rsv;
587 u64 num_bytes;
588 int ret;
589
590 if (!trans->bytes_reserved)
591 return 0;
592
593 src_rsv = trans->block_rsv;
6d668dda 594 dst_rsv = &root->fs_info->delayed_block_rsv;
16cdcec7
MX
595
596 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
597 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
19fd2949 598 if (!ret)
16cdcec7 599 item->bytes_reserved = num_bytes;
16cdcec7
MX
600
601 return ret;
602}
603
604static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
605 struct btrfs_delayed_item *item)
606{
19fd2949
MX
607 struct btrfs_block_rsv *rsv;
608
16cdcec7
MX
609 if (!item->bytes_reserved)
610 return;
611
6d668dda 612 rsv = &root->fs_info->delayed_block_rsv;
19fd2949 613 btrfs_block_rsv_release(root, rsv,
16cdcec7
MX
614 item->bytes_reserved);
615}
616
617static int btrfs_delayed_inode_reserve_metadata(
618 struct btrfs_trans_handle *trans,
619 struct btrfs_root *root,
620 struct btrfs_delayed_node *node)
621{
622 struct btrfs_block_rsv *src_rsv;
623 struct btrfs_block_rsv *dst_rsv;
624 u64 num_bytes;
625 int ret;
626
16cdcec7 627 src_rsv = trans->block_rsv;
6d668dda 628 dst_rsv = &root->fs_info->delayed_block_rsv;
16cdcec7
MX
629
630 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
c06a0e12
JB
631
632 /*
633 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
634 * which doesn't reserve space for speed. This is a problem since we
635 * still need to reserve space for this update, so try to reserve the
636 * space.
637 *
638 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
639 * we're accounted for.
640 */
641 if (!trans->bytes_reserved &&
642 src_rsv != &root->fs_info->delalloc_block_rsv) {
643 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
644 /*
645 * Since we're under a transaction reserve_metadata_bytes could
646 * try to commit the transaction which will make it return
647 * EAGAIN to make us stop the transaction we have, so return
648 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
649 */
650 if (ret == -EAGAIN)
651 ret = -ENOSPC;
652 if (!ret)
653 node->bytes_reserved = num_bytes;
654 return ret;
655 }
656
16cdcec7
MX
657 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
658 if (!ret)
659 node->bytes_reserved = num_bytes;
660
661 return ret;
662}
663
664static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
665 struct btrfs_delayed_node *node)
666{
667 struct btrfs_block_rsv *rsv;
668
669 if (!node->bytes_reserved)
670 return;
671
6d668dda 672 rsv = &root->fs_info->delayed_block_rsv;
16cdcec7
MX
673 btrfs_block_rsv_release(root, rsv,
674 node->bytes_reserved);
675 node->bytes_reserved = 0;
676}
677
678/*
679 * This helper will insert some continuous items into the same leaf according
680 * to the free space of the leaf.
681 */
682static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
683 struct btrfs_root *root,
684 struct btrfs_path *path,
685 struct btrfs_delayed_item *item)
686{
687 struct btrfs_delayed_item *curr, *next;
688 int free_space;
689 int total_data_size = 0, total_size = 0;
690 struct extent_buffer *leaf;
691 char *data_ptr;
692 struct btrfs_key *keys;
693 u32 *data_size;
694 struct list_head head;
695 int slot;
696 int nitems;
697 int i;
698 int ret = 0;
699
700 BUG_ON(!path->nodes[0]);
701
702 leaf = path->nodes[0];
703 free_space = btrfs_leaf_free_space(root, leaf);
704 INIT_LIST_HEAD(&head);
705
706 next = item;
17aca1c9 707 nitems = 0;
16cdcec7
MX
708
709 /*
710 * count the number of the continuous items that we can insert in batch
711 */
712 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
713 free_space) {
714 total_data_size += next->data_len;
715 total_size += next->data_len + sizeof(struct btrfs_item);
716 list_add_tail(&next->tree_list, &head);
717 nitems++;
718
719 curr = next;
720 next = __btrfs_next_delayed_item(curr);
721 if (!next)
722 break;
723
724 if (!btrfs_is_continuous_delayed_item(curr, next))
725 break;
726 }
727
728 if (!nitems) {
729 ret = 0;
730 goto out;
731 }
732
733 /*
734 * we need allocate some memory space, but it might cause the task
735 * to sleep, so we set all locked nodes in the path to blocking locks
736 * first.
737 */
738 btrfs_set_path_blocking(path);
739
740 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
741 if (!keys) {
742 ret = -ENOMEM;
743 goto out;
744 }
745
746 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
747 if (!data_size) {
748 ret = -ENOMEM;
749 goto error;
750 }
751
752 /* get keys of all the delayed items */
753 i = 0;
754 list_for_each_entry(next, &head, tree_list) {
755 keys[i] = next->key;
756 data_size[i] = next->data_len;
757 i++;
758 }
759
760 /* reset all the locked nodes in the patch to spinning locks. */
bd681513 761 btrfs_clear_path_blocking(path, NULL, 0);
16cdcec7
MX
762
763 /* insert the keys of the items */
764 ret = setup_items_for_insert(trans, root, path, keys, data_size,
765 total_data_size, total_size, nitems);
766 if (ret)
767 goto error;
768
769 /* insert the dir index items */
770 slot = path->slots[0];
771 list_for_each_entry_safe(curr, next, &head, tree_list) {
772 data_ptr = btrfs_item_ptr(leaf, slot, char);
773 write_extent_buffer(leaf, &curr->data,
774 (unsigned long)data_ptr,
775 curr->data_len);
776 slot++;
777
778 btrfs_delayed_item_release_metadata(root, curr);
779
780 list_del(&curr->tree_list);
781 btrfs_release_delayed_item(curr);
782 }
783
784error:
785 kfree(data_size);
786 kfree(keys);
787out:
788 return ret;
789}
790
791/*
792 * This helper can just do simple insertion that needn't extend item for new
793 * data, such as directory name index insertion, inode insertion.
794 */
795static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
796 struct btrfs_root *root,
797 struct btrfs_path *path,
798 struct btrfs_delayed_item *delayed_item)
799{
800 struct extent_buffer *leaf;
801 struct btrfs_item *item;
802 char *ptr;
803 int ret;
804
805 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
806 delayed_item->data_len);
807 if (ret < 0 && ret != -EEXIST)
808 return ret;
809
810 leaf = path->nodes[0];
811
812 item = btrfs_item_nr(leaf, path->slots[0]);
813 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
814
815 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
816 delayed_item->data_len);
817 btrfs_mark_buffer_dirty(leaf);
818
819 btrfs_delayed_item_release_metadata(root, delayed_item);
820 return 0;
821}
822
823/*
824 * we insert an item first, then if there are some continuous items, we try
825 * to insert those items into the same leaf.
826 */
827static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
828 struct btrfs_path *path,
829 struct btrfs_root *root,
830 struct btrfs_delayed_node *node)
831{
832 struct btrfs_delayed_item *curr, *prev;
833 int ret = 0;
834
835do_again:
836 mutex_lock(&node->mutex);
837 curr = __btrfs_first_delayed_insertion_item(node);
838 if (!curr)
839 goto insert_end;
840
841 ret = btrfs_insert_delayed_item(trans, root, path, curr);
842 if (ret < 0) {
945d8962 843 btrfs_release_path(path);
16cdcec7
MX
844 goto insert_end;
845 }
846
847 prev = curr;
848 curr = __btrfs_next_delayed_item(prev);
849 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
850 /* insert the continuous items into the same leaf */
851 path->slots[0]++;
852 btrfs_batch_insert_items(trans, root, path, curr);
853 }
854 btrfs_release_delayed_item(prev);
855 btrfs_mark_buffer_dirty(path->nodes[0]);
856
945d8962 857 btrfs_release_path(path);
16cdcec7
MX
858 mutex_unlock(&node->mutex);
859 goto do_again;
860
861insert_end:
862 mutex_unlock(&node->mutex);
863 return ret;
864}
865
866static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
867 struct btrfs_root *root,
868 struct btrfs_path *path,
869 struct btrfs_delayed_item *item)
870{
871 struct btrfs_delayed_item *curr, *next;
872 struct extent_buffer *leaf;
873 struct btrfs_key key;
874 struct list_head head;
875 int nitems, i, last_item;
876 int ret = 0;
877
878 BUG_ON(!path->nodes[0]);
879
880 leaf = path->nodes[0];
881
882 i = path->slots[0];
883 last_item = btrfs_header_nritems(leaf) - 1;
884 if (i > last_item)
885 return -ENOENT; /* FIXME: Is errno suitable? */
886
887 next = item;
888 INIT_LIST_HEAD(&head);
889 btrfs_item_key_to_cpu(leaf, &key, i);
890 nitems = 0;
891 /*
892 * count the number of the dir index items that we can delete in batch
893 */
894 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
895 list_add_tail(&next->tree_list, &head);
896 nitems++;
897
898 curr = next;
899 next = __btrfs_next_delayed_item(curr);
900 if (!next)
901 break;
902
903 if (!btrfs_is_continuous_delayed_item(curr, next))
904 break;
905
906 i++;
907 if (i > last_item)
908 break;
909 btrfs_item_key_to_cpu(leaf, &key, i);
910 }
911
912 if (!nitems)
913 return 0;
914
915 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
916 if (ret)
917 goto out;
918
919 list_for_each_entry_safe(curr, next, &head, tree_list) {
920 btrfs_delayed_item_release_metadata(root, curr);
921 list_del(&curr->tree_list);
922 btrfs_release_delayed_item(curr);
923 }
924
925out:
926 return ret;
927}
928
929static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
930 struct btrfs_path *path,
931 struct btrfs_root *root,
932 struct btrfs_delayed_node *node)
933{
934 struct btrfs_delayed_item *curr, *prev;
935 int ret = 0;
936
937do_again:
938 mutex_lock(&node->mutex);
939 curr = __btrfs_first_delayed_deletion_item(node);
940 if (!curr)
941 goto delete_fail;
942
943 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
944 if (ret < 0)
945 goto delete_fail;
946 else if (ret > 0) {
947 /*
948 * can't find the item which the node points to, so this node
949 * is invalid, just drop it.
950 */
951 prev = curr;
952 curr = __btrfs_next_delayed_item(prev);
953 btrfs_release_delayed_item(prev);
954 ret = 0;
945d8962 955 btrfs_release_path(path);
16cdcec7
MX
956 if (curr)
957 goto do_again;
958 else
959 goto delete_fail;
960 }
961
962 btrfs_batch_delete_items(trans, root, path, curr);
945d8962 963 btrfs_release_path(path);
16cdcec7
MX
964 mutex_unlock(&node->mutex);
965 goto do_again;
966
967delete_fail:
945d8962 968 btrfs_release_path(path);
16cdcec7
MX
969 mutex_unlock(&node->mutex);
970 return ret;
971}
972
973static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
974{
975 struct btrfs_delayed_root *delayed_root;
976
977 if (delayed_node && delayed_node->inode_dirty) {
978 BUG_ON(!delayed_node->root);
979 delayed_node->inode_dirty = 0;
980 delayed_node->count--;
981
982 delayed_root = delayed_node->root->fs_info->delayed_root;
983 atomic_dec(&delayed_root->items);
984 if (atomic_read(&delayed_root->items) <
985 BTRFS_DELAYED_BACKGROUND &&
986 waitqueue_active(&delayed_root->wait))
987 wake_up(&delayed_root->wait);
988 }
989}
990
991static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
992 struct btrfs_root *root,
993 struct btrfs_path *path,
994 struct btrfs_delayed_node *node)
995{
996 struct btrfs_key key;
997 struct btrfs_inode_item *inode_item;
998 struct extent_buffer *leaf;
999 int ret;
1000
1001 mutex_lock(&node->mutex);
1002 if (!node->inode_dirty) {
1003 mutex_unlock(&node->mutex);
1004 return 0;
1005 }
1006
1007 key.objectid = node->inode_id;
1008 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1009 key.offset = 0;
1010 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1011 if (ret > 0) {
945d8962 1012 btrfs_release_path(path);
16cdcec7
MX
1013 mutex_unlock(&node->mutex);
1014 return -ENOENT;
1015 } else if (ret < 0) {
1016 mutex_unlock(&node->mutex);
1017 return ret;
1018 }
1019
1020 btrfs_unlock_up_safe(path, 1);
1021 leaf = path->nodes[0];
1022 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1023 struct btrfs_inode_item);
1024 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1025 sizeof(struct btrfs_inode_item));
1026 btrfs_mark_buffer_dirty(leaf);
945d8962 1027 btrfs_release_path(path);
16cdcec7
MX
1028
1029 btrfs_delayed_inode_release_metadata(root, node);
1030 btrfs_release_delayed_inode(node);
1031 mutex_unlock(&node->mutex);
1032
1033 return 0;
1034}
1035
1036/* Called when committing the transaction. */
1037int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1038 struct btrfs_root *root)
1039{
1040 struct btrfs_delayed_root *delayed_root;
1041 struct btrfs_delayed_node *curr_node, *prev_node;
1042 struct btrfs_path *path;
19fd2949 1043 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1044 int ret = 0;
1045
1046 path = btrfs_alloc_path();
1047 if (!path)
1048 return -ENOMEM;
1049 path->leave_spinning = 1;
1050
19fd2949 1051 block_rsv = trans->block_rsv;
6d668dda 1052 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1053
16cdcec7
MX
1054 delayed_root = btrfs_get_delayed_root(root);
1055
1056 curr_node = btrfs_first_delayed_node(delayed_root);
1057 while (curr_node) {
1058 root = curr_node->root;
1059 ret = btrfs_insert_delayed_items(trans, path, root,
1060 curr_node);
1061 if (!ret)
1062 ret = btrfs_delete_delayed_items(trans, path, root,
1063 curr_node);
1064 if (!ret)
1065 ret = btrfs_update_delayed_inode(trans, root, path,
1066 curr_node);
1067 if (ret) {
1068 btrfs_release_delayed_node(curr_node);
1069 break;
1070 }
1071
1072 prev_node = curr_node;
1073 curr_node = btrfs_next_delayed_node(curr_node);
1074 btrfs_release_delayed_node(prev_node);
1075 }
1076
1077 btrfs_free_path(path);
19fd2949 1078 trans->block_rsv = block_rsv;
16cdcec7
MX
1079 return ret;
1080}
1081
1082static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1083 struct btrfs_delayed_node *node)
1084{
1085 struct btrfs_path *path;
19fd2949 1086 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1087 int ret;
1088
1089 path = btrfs_alloc_path();
1090 if (!path)
1091 return -ENOMEM;
1092 path->leave_spinning = 1;
1093
19fd2949 1094 block_rsv = trans->block_rsv;
6d668dda 1095 trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
19fd2949 1096
16cdcec7
MX
1097 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1098 if (!ret)
1099 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1100 if (!ret)
1101 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1102 btrfs_free_path(path);
1103
19fd2949 1104 trans->block_rsv = block_rsv;
16cdcec7
MX
1105 return ret;
1106}
1107
1108int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1109 struct inode *inode)
1110{
1111 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1112 int ret;
1113
1114 if (!delayed_node)
1115 return 0;
1116
1117 mutex_lock(&delayed_node->mutex);
1118 if (!delayed_node->count) {
1119 mutex_unlock(&delayed_node->mutex);
1120 btrfs_release_delayed_node(delayed_node);
1121 return 0;
1122 }
1123 mutex_unlock(&delayed_node->mutex);
1124
1125 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1126 btrfs_release_delayed_node(delayed_node);
1127 return ret;
1128}
1129
1130void btrfs_remove_delayed_node(struct inode *inode)
1131{
1132 struct btrfs_delayed_node *delayed_node;
1133
1134 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1135 if (!delayed_node)
1136 return;
1137
1138 BTRFS_I(inode)->delayed_node = NULL;
1139 btrfs_release_delayed_node(delayed_node);
1140}
1141
1142struct btrfs_async_delayed_node {
1143 struct btrfs_root *root;
1144 struct btrfs_delayed_node *delayed_node;
1145 struct btrfs_work work;
1146};
1147
1148static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1149{
1150 struct btrfs_async_delayed_node *async_node;
1151 struct btrfs_trans_handle *trans;
1152 struct btrfs_path *path;
1153 struct btrfs_delayed_node *delayed_node = NULL;
1154 struct btrfs_root *root;
19fd2949 1155 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1156 unsigned long nr = 0;
1157 int need_requeue = 0;
1158 int ret;
1159
1160 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1161
1162 path = btrfs_alloc_path();
1163 if (!path)
1164 goto out;
1165 path->leave_spinning = 1;
1166
1167 delayed_node = async_node->delayed_node;
1168 root = delayed_node->root;
1169
ff5714cc 1170 trans = btrfs_join_transaction(root);
16cdcec7
MX
1171 if (IS_ERR(trans))
1172 goto free_path;
1173
19fd2949 1174 block_rsv = trans->block_rsv;
6d668dda 1175 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1176
16cdcec7
MX
1177 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1178 if (!ret)
1179 ret = btrfs_delete_delayed_items(trans, path, root,
1180 delayed_node);
1181
1182 if (!ret)
1183 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1184
1185 /*
1186 * Maybe new delayed items have been inserted, so we need requeue
1187 * the work. Besides that, we must dequeue the empty delayed nodes
1188 * to avoid the race between delayed items balance and the worker.
1189 * The race like this:
1190 * Task1 Worker thread
1191 * count == 0, needn't requeue
1192 * also needn't insert the
1193 * delayed node into prepare
1194 * list again.
1195 * add lots of delayed items
1196 * queue the delayed node
1197 * already in the list,
1198 * and not in the prepare
1199 * list, it means the delayed
1200 * node is being dealt with
1201 * by the worker.
1202 * do delayed items balance
1203 * the delayed node is being
1204 * dealt with by the worker
1205 * now, just wait.
1206 * the worker goto idle.
1207 * Task1 will sleep until the transaction is commited.
1208 */
1209 mutex_lock(&delayed_node->mutex);
1210 if (delayed_node->count)
1211 need_requeue = 1;
1212 else
1213 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1214 delayed_node);
1215 mutex_unlock(&delayed_node->mutex);
1216
1217 nr = trans->blocks_used;
1218
19fd2949 1219 trans->block_rsv = block_rsv;
16cdcec7
MX
1220 btrfs_end_transaction_dmeta(trans, root);
1221 __btrfs_btree_balance_dirty(root, nr);
1222free_path:
1223 btrfs_free_path(path);
1224out:
1225 if (need_requeue)
1226 btrfs_requeue_work(&async_node->work);
1227 else {
1228 btrfs_release_prepared_delayed_node(delayed_node);
1229 kfree(async_node);
1230 }
1231}
1232
1233static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1234 struct btrfs_root *root, int all)
1235{
1236 struct btrfs_async_delayed_node *async_node;
1237 struct btrfs_delayed_node *curr;
1238 int count = 0;
1239
1240again:
1241 curr = btrfs_first_prepared_delayed_node(delayed_root);
1242 if (!curr)
1243 return 0;
1244
1245 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1246 if (!async_node) {
1247 btrfs_release_prepared_delayed_node(curr);
1248 return -ENOMEM;
1249 }
1250
1251 async_node->root = root;
1252 async_node->delayed_node = curr;
1253
1254 async_node->work.func = btrfs_async_run_delayed_node_done;
1255 async_node->work.flags = 0;
1256
1257 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1258 count++;
1259
1260 if (all || count < 4)
1261 goto again;
1262
1263 return 0;
1264}
1265
e999376f
CM
1266void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1267{
1268 struct btrfs_delayed_root *delayed_root;
1269 delayed_root = btrfs_get_delayed_root(root);
1270 WARN_ON(btrfs_first_delayed_node(delayed_root));
1271}
1272
16cdcec7
MX
1273void btrfs_balance_delayed_items(struct btrfs_root *root)
1274{
1275 struct btrfs_delayed_root *delayed_root;
1276
1277 delayed_root = btrfs_get_delayed_root(root);
1278
1279 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1280 return;
1281
1282 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1283 int ret;
1284 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1285 if (ret)
1286 return;
1287
1288 wait_event_interruptible_timeout(
1289 delayed_root->wait,
1290 (atomic_read(&delayed_root->items) <
1291 BTRFS_DELAYED_BACKGROUND),
1292 HZ);
1293 return;
1294 }
1295
1296 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1297}
1298
1299int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1300 struct btrfs_root *root, const char *name,
1301 int name_len, struct inode *dir,
1302 struct btrfs_disk_key *disk_key, u8 type,
1303 u64 index)
1304{
1305 struct btrfs_delayed_node *delayed_node;
1306 struct btrfs_delayed_item *delayed_item;
1307 struct btrfs_dir_item *dir_item;
1308 int ret;
1309
1310 delayed_node = btrfs_get_or_create_delayed_node(dir);
1311 if (IS_ERR(delayed_node))
1312 return PTR_ERR(delayed_node);
1313
1314 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1315 if (!delayed_item) {
1316 ret = -ENOMEM;
1317 goto release_node;
1318 }
1319
1320 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1321 /*
1322 * we have reserved enough space when we start a new transaction,
1323 * so reserving metadata failure is impossible
1324 */
1325 BUG_ON(ret);
1326
0d0ca30f 1327 delayed_item->key.objectid = btrfs_ino(dir);
16cdcec7
MX
1328 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1329 delayed_item->key.offset = index;
1330
1331 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1332 dir_item->location = *disk_key;
1333 dir_item->transid = cpu_to_le64(trans->transid);
1334 dir_item->data_len = 0;
1335 dir_item->name_len = cpu_to_le16(name_len);
1336 dir_item->type = type;
1337 memcpy((char *)(dir_item + 1), name, name_len);
1338
1339 mutex_lock(&delayed_node->mutex);
1340 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1341 if (unlikely(ret)) {
1342 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1343 "the insertion tree of the delayed node"
1344 "(root id: %llu, inode id: %llu, errno: %d)\n",
1345 name,
1346 (unsigned long long)delayed_node->root->objectid,
1347 (unsigned long long)delayed_node->inode_id,
1348 ret);
1349 BUG();
1350 }
1351 mutex_unlock(&delayed_node->mutex);
1352
1353release_node:
1354 btrfs_release_delayed_node(delayed_node);
1355 return ret;
1356}
1357
1358static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1359 struct btrfs_delayed_node *node,
1360 struct btrfs_key *key)
1361{
1362 struct btrfs_delayed_item *item;
1363
1364 mutex_lock(&node->mutex);
1365 item = __btrfs_lookup_delayed_insertion_item(node, key);
1366 if (!item) {
1367 mutex_unlock(&node->mutex);
1368 return 1;
1369 }
1370
1371 btrfs_delayed_item_release_metadata(root, item);
1372 btrfs_release_delayed_item(item);
1373 mutex_unlock(&node->mutex);
1374 return 0;
1375}
1376
1377int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1378 struct btrfs_root *root, struct inode *dir,
1379 u64 index)
1380{
1381 struct btrfs_delayed_node *node;
1382 struct btrfs_delayed_item *item;
1383 struct btrfs_key item_key;
1384 int ret;
1385
1386 node = btrfs_get_or_create_delayed_node(dir);
1387 if (IS_ERR(node))
1388 return PTR_ERR(node);
1389
0d0ca30f 1390 item_key.objectid = btrfs_ino(dir);
16cdcec7
MX
1391 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1392 item_key.offset = index;
1393
1394 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1395 if (!ret)
1396 goto end;
1397
1398 item = btrfs_alloc_delayed_item(0);
1399 if (!item) {
1400 ret = -ENOMEM;
1401 goto end;
1402 }
1403
1404 item->key = item_key;
1405
1406 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1407 /*
1408 * we have reserved enough space when we start a new transaction,
1409 * so reserving metadata failure is impossible.
1410 */
1411 BUG_ON(ret);
1412
1413 mutex_lock(&node->mutex);
1414 ret = __btrfs_add_delayed_deletion_item(node, item);
1415 if (unlikely(ret)) {
1416 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1417 "into the deletion tree of the delayed node"
1418 "(root id: %llu, inode id: %llu, errno: %d)\n",
1419 (unsigned long long)index,
1420 (unsigned long long)node->root->objectid,
1421 (unsigned long long)node->inode_id,
1422 ret);
1423 BUG();
1424 }
1425 mutex_unlock(&node->mutex);
1426end:
1427 btrfs_release_delayed_node(node);
1428 return ret;
1429}
1430
1431int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1432{
2f7e33d4 1433 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
1434
1435 if (!delayed_node)
1436 return -ENOENT;
1437
1438 /*
1439 * Since we have held i_mutex of this directory, it is impossible that
1440 * a new directory index is added into the delayed node and index_cnt
1441 * is updated now. So we needn't lock the delayed node.
1442 */
2f7e33d4
MX
1443 if (!delayed_node->index_cnt) {
1444 btrfs_release_delayed_node(delayed_node);
16cdcec7 1445 return -EINVAL;
2f7e33d4 1446 }
16cdcec7
MX
1447
1448 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
2f7e33d4
MX
1449 btrfs_release_delayed_node(delayed_node);
1450 return 0;
16cdcec7
MX
1451}
1452
1453void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1454 struct list_head *del_list)
1455{
1456 struct btrfs_delayed_node *delayed_node;
1457 struct btrfs_delayed_item *item;
1458
1459 delayed_node = btrfs_get_delayed_node(inode);
1460 if (!delayed_node)
1461 return;
1462
1463 mutex_lock(&delayed_node->mutex);
1464 item = __btrfs_first_delayed_insertion_item(delayed_node);
1465 while (item) {
1466 atomic_inc(&item->refs);
1467 list_add_tail(&item->readdir_list, ins_list);
1468 item = __btrfs_next_delayed_item(item);
1469 }
1470
1471 item = __btrfs_first_delayed_deletion_item(delayed_node);
1472 while (item) {
1473 atomic_inc(&item->refs);
1474 list_add_tail(&item->readdir_list, del_list);
1475 item = __btrfs_next_delayed_item(item);
1476 }
1477 mutex_unlock(&delayed_node->mutex);
1478 /*
1479 * This delayed node is still cached in the btrfs inode, so refs
1480 * must be > 1 now, and we needn't check it is going to be freed
1481 * or not.
1482 *
1483 * Besides that, this function is used to read dir, we do not
1484 * insert/delete delayed items in this period. So we also needn't
1485 * requeue or dequeue this delayed node.
1486 */
1487 atomic_dec(&delayed_node->refs);
1488}
1489
1490void btrfs_put_delayed_items(struct list_head *ins_list,
1491 struct list_head *del_list)
1492{
1493 struct btrfs_delayed_item *curr, *next;
1494
1495 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1496 list_del(&curr->readdir_list);
1497 if (atomic_dec_and_test(&curr->refs))
1498 kfree(curr);
1499 }
1500
1501 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1502 list_del(&curr->readdir_list);
1503 if (atomic_dec_and_test(&curr->refs))
1504 kfree(curr);
1505 }
1506}
1507
1508int btrfs_should_delete_dir_index(struct list_head *del_list,
1509 u64 index)
1510{
1511 struct btrfs_delayed_item *curr, *next;
1512 int ret;
1513
1514 if (list_empty(del_list))
1515 return 0;
1516
1517 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1518 if (curr->key.offset > index)
1519 break;
1520
1521 list_del(&curr->readdir_list);
1522 ret = (curr->key.offset == index);
1523
1524 if (atomic_dec_and_test(&curr->refs))
1525 kfree(curr);
1526
1527 if (ret)
1528 return 1;
1529 else
1530 continue;
1531 }
1532 return 0;
1533}
1534
1535/*
1536 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1537 *
1538 */
1539int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1540 filldir_t filldir,
1541 struct list_head *ins_list)
1542{
1543 struct btrfs_dir_item *di;
1544 struct btrfs_delayed_item *curr, *next;
1545 struct btrfs_key location;
1546 char *name;
1547 int name_len;
1548 int over = 0;
1549 unsigned char d_type;
1550
1551 if (list_empty(ins_list))
1552 return 0;
1553
1554 /*
1555 * Changing the data of the delayed item is impossible. So
1556 * we needn't lock them. And we have held i_mutex of the
1557 * directory, nobody can delete any directory indexes now.
1558 */
1559 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1560 list_del(&curr->readdir_list);
1561
1562 if (curr->key.offset < filp->f_pos) {
1563 if (atomic_dec_and_test(&curr->refs))
1564 kfree(curr);
1565 continue;
1566 }
1567
1568 filp->f_pos = curr->key.offset;
1569
1570 di = (struct btrfs_dir_item *)curr->data;
1571 name = (char *)(di + 1);
1572 name_len = le16_to_cpu(di->name_len);
1573
1574 d_type = btrfs_filetype_table[di->type];
1575 btrfs_disk_key_to_cpu(&location, &di->location);
1576
1577 over = filldir(dirent, name, name_len, curr->key.offset,
1578 location.objectid, d_type);
1579
1580 if (atomic_dec_and_test(&curr->refs))
1581 kfree(curr);
1582
1583 if (over)
1584 return 1;
1585 }
1586 return 0;
1587}
1588
1589BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1590 generation, 64);
1591BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1592 sequence, 64);
1593BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1594 transid, 64);
1595BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1596BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1597 nbytes, 64);
1598BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1599 block_group, 64);
1600BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1601BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1602BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1603BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1604BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1605BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1606
1607BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1608BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1609
1610static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1611 struct btrfs_inode_item *inode_item,
1612 struct inode *inode)
1613{
1614 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1615 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1616 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1617 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1618 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1619 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1620 btrfs_set_stack_inode_generation(inode_item,
1621 BTRFS_I(inode)->generation);
1622 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1623 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1624 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1625 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
ff5714cc 1626 btrfs_set_stack_inode_block_group(inode_item, 0);
16cdcec7
MX
1627
1628 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1629 inode->i_atime.tv_sec);
1630 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1631 inode->i_atime.tv_nsec);
1632
1633 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1634 inode->i_mtime.tv_sec);
1635 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1636 inode->i_mtime.tv_nsec);
1637
1638 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1639 inode->i_ctime.tv_sec);
1640 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1641 inode->i_ctime.tv_nsec);
1642}
1643
2f7e33d4
MX
1644int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1645{
1646 struct btrfs_delayed_node *delayed_node;
1647 struct btrfs_inode_item *inode_item;
1648 struct btrfs_timespec *tspec;
1649
1650 delayed_node = btrfs_get_delayed_node(inode);
1651 if (!delayed_node)
1652 return -ENOENT;
1653
1654 mutex_lock(&delayed_node->mutex);
1655 if (!delayed_node->inode_dirty) {
1656 mutex_unlock(&delayed_node->mutex);
1657 btrfs_release_delayed_node(delayed_node);
1658 return -ENOENT;
1659 }
1660
1661 inode_item = &delayed_node->inode_item;
1662
1663 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1664 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1665 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1666 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1667 inode->i_nlink = btrfs_stack_inode_nlink(inode_item);
1668 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1669 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1670 BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
1671 inode->i_rdev = 0;
1672 *rdev = btrfs_stack_inode_rdev(inode_item);
1673 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1674
1675 tspec = btrfs_inode_atime(inode_item);
1676 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1677 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1678
1679 tspec = btrfs_inode_mtime(inode_item);
1680 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1681 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1682
1683 tspec = btrfs_inode_ctime(inode_item);
1684 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1685 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1686
1687 inode->i_generation = BTRFS_I(inode)->generation;
1688 BTRFS_I(inode)->index_cnt = (u64)-1;
1689
1690 mutex_unlock(&delayed_node->mutex);
1691 btrfs_release_delayed_node(delayed_node);
1692 return 0;
1693}
1694
16cdcec7
MX
1695int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1696 struct btrfs_root *root, struct inode *inode)
1697{
1698 struct btrfs_delayed_node *delayed_node;
aa0467d8 1699 int ret = 0;
16cdcec7
MX
1700
1701 delayed_node = btrfs_get_or_create_delayed_node(inode);
1702 if (IS_ERR(delayed_node))
1703 return PTR_ERR(delayed_node);
1704
1705 mutex_lock(&delayed_node->mutex);
1706 if (delayed_node->inode_dirty) {
1707 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1708 goto release_node;
1709 }
1710
1711 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
c06a0e12
JB
1712 if (ret)
1713 goto release_node;
16cdcec7
MX
1714
1715 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1716 delayed_node->inode_dirty = 1;
1717 delayed_node->count++;
1718 atomic_inc(&root->fs_info->delayed_root->items);
1719release_node:
1720 mutex_unlock(&delayed_node->mutex);
1721 btrfs_release_delayed_node(delayed_node);
1722 return ret;
1723}
1724
1725static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1726{
1727 struct btrfs_root *root = delayed_node->root;
1728 struct btrfs_delayed_item *curr_item, *prev_item;
1729
1730 mutex_lock(&delayed_node->mutex);
1731 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1732 while (curr_item) {
1733 btrfs_delayed_item_release_metadata(root, curr_item);
1734 prev_item = curr_item;
1735 curr_item = __btrfs_next_delayed_item(prev_item);
1736 btrfs_release_delayed_item(prev_item);
1737 }
1738
1739 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1740 while (curr_item) {
1741 btrfs_delayed_item_release_metadata(root, curr_item);
1742 prev_item = curr_item;
1743 curr_item = __btrfs_next_delayed_item(prev_item);
1744 btrfs_release_delayed_item(prev_item);
1745 }
1746
1747 if (delayed_node->inode_dirty) {
1748 btrfs_delayed_inode_release_metadata(root, delayed_node);
1749 btrfs_release_delayed_inode(delayed_node);
1750 }
1751 mutex_unlock(&delayed_node->mutex);
1752}
1753
1754void btrfs_kill_delayed_inode_items(struct inode *inode)
1755{
1756 struct btrfs_delayed_node *delayed_node;
1757
1758 delayed_node = btrfs_get_delayed_node(inode);
1759 if (!delayed_node)
1760 return;
1761
1762 __btrfs_kill_delayed_node(delayed_node);
1763 btrfs_release_delayed_node(delayed_node);
1764}
1765
1766void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1767{
1768 u64 inode_id = 0;
1769 struct btrfs_delayed_node *delayed_nodes[8];
1770 int i, n;
1771
1772 while (1) {
1773 spin_lock(&root->inode_lock);
1774 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1775 (void **)delayed_nodes, inode_id,
1776 ARRAY_SIZE(delayed_nodes));
1777 if (!n) {
1778 spin_unlock(&root->inode_lock);
1779 break;
1780 }
1781
1782 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1783
1784 for (i = 0; i < n; i++)
1785 atomic_inc(&delayed_nodes[i]->refs);
1786 spin_unlock(&root->inode_lock);
1787
1788 for (i = 0; i < n; i++) {
1789 __btrfs_kill_delayed_node(delayed_nodes[i]);
1790 btrfs_release_delayed_node(delayed_nodes[i]);
1791 }
1792 }
1793}
This page took 0.116096 seconds and 5 git commands to generate.