Btrfs: kill free_space pointer from inode structure
[deliverable/linux.git] / fs / btrfs / delayed-inode.c
CommitLineData
16cdcec7
MX
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24
25#define BTRFS_DELAYED_WRITEBACK 400
26#define BTRFS_DELAYED_BACKGROUND 100
27
28static struct kmem_cache *delayed_node_cache;
29
30int __init btrfs_delayed_inode_init(void)
31{
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40}
41
42void btrfs_delayed_inode_exit(void)
43{
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46}
47
48static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51{
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65}
66
67static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70{
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77}
78
79static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81{
82 return root->fs_info->delayed_root;
83}
84
2f7e33d4 85static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
16cdcec7 86{
16cdcec7
MX
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
0d0ca30f 89 u64 ino = btrfs_ino(inode);
2f7e33d4 90 struct btrfs_delayed_node *node;
16cdcec7 91
16cdcec7
MX
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
2f7e33d4 94 atomic_inc(&node->refs);
16cdcec7
MX
95 return node;
96 }
97
98 spin_lock(&root->inode_lock);
0d0ca30f 99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
16cdcec7
MX
100 if (node) {
101 if (btrfs_inode->delayed_node) {
2f7e33d4
MX
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
16cdcec7 104 spin_unlock(&root->inode_lock);
2f7e33d4 105 return node;
16cdcec7
MX
106 }
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
112 }
113 spin_unlock(&root->inode_lock);
114
2f7e33d4
MX
115 return NULL;
116}
117
79787eaa 118/* Will return either the node or PTR_ERR(-ENOMEM) */
2f7e33d4
MX
119static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
120 struct inode *inode)
121{
122 struct btrfs_delayed_node *node;
123 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
124 struct btrfs_root *root = btrfs_inode->root;
125 u64 ino = btrfs_ino(inode);
126 int ret;
127
128again:
129 node = btrfs_get_delayed_node(inode);
130 if (node)
131 return node;
132
16cdcec7
MX
133 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
134 if (!node)
135 return ERR_PTR(-ENOMEM);
0d0ca30f 136 btrfs_init_delayed_node(node, root, ino);
16cdcec7
MX
137
138 atomic_inc(&node->refs); /* cached in the btrfs inode */
139 atomic_inc(&node->refs); /* can be accessed */
140
141 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
142 if (ret) {
143 kmem_cache_free(delayed_node_cache, node);
144 return ERR_PTR(ret);
145 }
146
147 spin_lock(&root->inode_lock);
0d0ca30f 148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
16cdcec7
MX
149 if (ret == -EEXIST) {
150 kmem_cache_free(delayed_node_cache, node);
151 spin_unlock(&root->inode_lock);
152 radix_tree_preload_end();
153 goto again;
154 }
155 btrfs_inode->delayed_node = node;
156 spin_unlock(&root->inode_lock);
157 radix_tree_preload_end();
158
159 return node;
160}
161
162/*
163 * Call it when holding delayed_node->mutex
164 *
165 * If mod = 1, add this node into the prepared list.
166 */
167static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 struct btrfs_delayed_node *node,
169 int mod)
170{
171 spin_lock(&root->lock);
172 if (node->in_list) {
173 if (!list_empty(&node->p_list))
174 list_move_tail(&node->p_list, &root->prepare_list);
175 else if (mod)
176 list_add_tail(&node->p_list, &root->prepare_list);
177 } else {
178 list_add_tail(&node->n_list, &root->node_list);
179 list_add_tail(&node->p_list, &root->prepare_list);
180 atomic_inc(&node->refs); /* inserted into list */
181 root->nodes++;
182 node->in_list = 1;
183 }
184 spin_unlock(&root->lock);
185}
186
187/* Call it when holding delayed_node->mutex */
188static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 struct btrfs_delayed_node *node)
190{
191 spin_lock(&root->lock);
192 if (node->in_list) {
193 root->nodes--;
194 atomic_dec(&node->refs); /* not in the list */
195 list_del_init(&node->n_list);
196 if (!list_empty(&node->p_list))
197 list_del_init(&node->p_list);
198 node->in_list = 0;
199 }
200 spin_unlock(&root->lock);
201}
202
203struct btrfs_delayed_node *btrfs_first_delayed_node(
204 struct btrfs_delayed_root *delayed_root)
205{
206 struct list_head *p;
207 struct btrfs_delayed_node *node = NULL;
208
209 spin_lock(&delayed_root->lock);
210 if (list_empty(&delayed_root->node_list))
211 goto out;
212
213 p = delayed_root->node_list.next;
214 node = list_entry(p, struct btrfs_delayed_node, n_list);
215 atomic_inc(&node->refs);
216out:
217 spin_unlock(&delayed_root->lock);
218
219 return node;
220}
221
222struct btrfs_delayed_node *btrfs_next_delayed_node(
223 struct btrfs_delayed_node *node)
224{
225 struct btrfs_delayed_root *delayed_root;
226 struct list_head *p;
227 struct btrfs_delayed_node *next = NULL;
228
229 delayed_root = node->root->fs_info->delayed_root;
230 spin_lock(&delayed_root->lock);
231 if (!node->in_list) { /* not in the list */
232 if (list_empty(&delayed_root->node_list))
233 goto out;
234 p = delayed_root->node_list.next;
235 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
236 goto out;
237 else
238 p = node->n_list.next;
239
240 next = list_entry(p, struct btrfs_delayed_node, n_list);
241 atomic_inc(&next->refs);
242out:
243 spin_unlock(&delayed_root->lock);
244
245 return next;
246}
247
248static void __btrfs_release_delayed_node(
249 struct btrfs_delayed_node *delayed_node,
250 int mod)
251{
252 struct btrfs_delayed_root *delayed_root;
253
254 if (!delayed_node)
255 return;
256
257 delayed_root = delayed_node->root->fs_info->delayed_root;
258
259 mutex_lock(&delayed_node->mutex);
260 if (delayed_node->count)
261 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
262 else
263 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
264 mutex_unlock(&delayed_node->mutex);
265
266 if (atomic_dec_and_test(&delayed_node->refs)) {
267 struct btrfs_root *root = delayed_node->root;
268 spin_lock(&root->inode_lock);
269 if (atomic_read(&delayed_node->refs) == 0) {
270 radix_tree_delete(&root->delayed_nodes_tree,
271 delayed_node->inode_id);
272 kmem_cache_free(delayed_node_cache, delayed_node);
273 }
274 spin_unlock(&root->inode_lock);
275 }
276}
277
278static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279{
280 __btrfs_release_delayed_node(node, 0);
281}
282
283struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 struct btrfs_delayed_root *delayed_root)
285{
286 struct list_head *p;
287 struct btrfs_delayed_node *node = NULL;
288
289 spin_lock(&delayed_root->lock);
290 if (list_empty(&delayed_root->prepare_list))
291 goto out;
292
293 p = delayed_root->prepare_list.next;
294 list_del_init(p);
295 node = list_entry(p, struct btrfs_delayed_node, p_list);
296 atomic_inc(&node->refs);
297out:
298 spin_unlock(&delayed_root->lock);
299
300 return node;
301}
302
303static inline void btrfs_release_prepared_delayed_node(
304 struct btrfs_delayed_node *node)
305{
306 __btrfs_release_delayed_node(node, 1);
307}
308
309struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310{
311 struct btrfs_delayed_item *item;
312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 if (item) {
314 item->data_len = data_len;
315 item->ins_or_del = 0;
316 item->bytes_reserved = 0;
16cdcec7
MX
317 item->delayed_node = NULL;
318 atomic_set(&item->refs, 1);
319 }
320 return item;
321}
322
323/*
324 * __btrfs_lookup_delayed_item - look up the delayed item by key
325 * @delayed_node: pointer to the delayed node
326 * @key: the key to look up
327 * @prev: used to store the prev item if the right item isn't found
328 * @next: used to store the next item if the right item isn't found
329 *
330 * Note: if we don't find the right item, we will return the prev item and
331 * the next item.
332 */
333static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 struct rb_root *root,
335 struct btrfs_key *key,
336 struct btrfs_delayed_item **prev,
337 struct btrfs_delayed_item **next)
338{
339 struct rb_node *node, *prev_node = NULL;
340 struct btrfs_delayed_item *delayed_item = NULL;
341 int ret = 0;
342
343 node = root->rb_node;
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 prev_node = node;
349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 if (ret < 0)
351 node = node->rb_right;
352 else if (ret > 0)
353 node = node->rb_left;
354 else
355 return delayed_item;
356 }
357
358 if (prev) {
359 if (!prev_node)
360 *prev = NULL;
361 else if (ret < 0)
362 *prev = delayed_item;
363 else if ((node = rb_prev(prev_node)) != NULL) {
364 *prev = rb_entry(node, struct btrfs_delayed_item,
365 rb_node);
366 } else
367 *prev = NULL;
368 }
369
370 if (next) {
371 if (!prev_node)
372 *next = NULL;
373 else if (ret > 0)
374 *next = delayed_item;
375 else if ((node = rb_next(prev_node)) != NULL) {
376 *next = rb_entry(node, struct btrfs_delayed_item,
377 rb_node);
378 } else
379 *next = NULL;
380 }
381 return NULL;
382}
383
384struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 struct btrfs_delayed_node *delayed_node,
386 struct btrfs_key *key)
387{
388 struct btrfs_delayed_item *item;
389
390 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
391 NULL, NULL);
392 return item;
393}
394
395struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
396 struct btrfs_delayed_node *delayed_node,
397 struct btrfs_key *key)
398{
399 struct btrfs_delayed_item *item;
400
401 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
402 NULL, NULL);
403 return item;
404}
405
406struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
407 struct btrfs_delayed_node *delayed_node,
408 struct btrfs_key *key)
409{
410 struct btrfs_delayed_item *item, *next;
411
412 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
413 NULL, &next);
414 if (!item)
415 item = next;
416
417 return item;
418}
419
420struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
421 struct btrfs_delayed_node *delayed_node,
422 struct btrfs_key *key)
423{
424 struct btrfs_delayed_item *item, *next;
425
426 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
427 NULL, &next);
428 if (!item)
429 item = next;
430
431 return item;
432}
433
434static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
435 struct btrfs_delayed_item *ins,
436 int action)
437{
438 struct rb_node **p, *node;
439 struct rb_node *parent_node = NULL;
440 struct rb_root *root;
441 struct btrfs_delayed_item *item;
442 int cmp;
443
444 if (action == BTRFS_DELAYED_INSERTION_ITEM)
445 root = &delayed_node->ins_root;
446 else if (action == BTRFS_DELAYED_DELETION_ITEM)
447 root = &delayed_node->del_root;
448 else
449 BUG();
450 p = &root->rb_node;
451 node = &ins->rb_node;
452
453 while (*p) {
454 parent_node = *p;
455 item = rb_entry(parent_node, struct btrfs_delayed_item,
456 rb_node);
457
458 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
459 if (cmp < 0)
460 p = &(*p)->rb_right;
461 else if (cmp > 0)
462 p = &(*p)->rb_left;
463 else
464 return -EEXIST;
465 }
466
467 rb_link_node(node, parent_node, p);
468 rb_insert_color(node, root);
469 ins->delayed_node = delayed_node;
470 ins->ins_or_del = action;
471
472 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
473 action == BTRFS_DELAYED_INSERTION_ITEM &&
474 ins->key.offset >= delayed_node->index_cnt)
475 delayed_node->index_cnt = ins->key.offset + 1;
476
477 delayed_node->count++;
478 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
479 return 0;
480}
481
482static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
483 struct btrfs_delayed_item *item)
484{
485 return __btrfs_add_delayed_item(node, item,
486 BTRFS_DELAYED_INSERTION_ITEM);
487}
488
489static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
490 struct btrfs_delayed_item *item)
491{
492 return __btrfs_add_delayed_item(node, item,
493 BTRFS_DELAYED_DELETION_ITEM);
494}
495
496static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
497{
498 struct rb_root *root;
499 struct btrfs_delayed_root *delayed_root;
500
501 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
502
503 BUG_ON(!delayed_root);
504 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
505 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
506
507 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
508 root = &delayed_item->delayed_node->ins_root;
509 else
510 root = &delayed_item->delayed_node->del_root;
511
512 rb_erase(&delayed_item->rb_node, root);
513 delayed_item->delayed_node->count--;
514 atomic_dec(&delayed_root->items);
515 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
516 waitqueue_active(&delayed_root->wait))
517 wake_up(&delayed_root->wait);
518}
519
520static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
521{
522 if (item) {
523 __btrfs_remove_delayed_item(item);
524 if (atomic_dec_and_test(&item->refs))
525 kfree(item);
526 }
527}
528
529struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
530 struct btrfs_delayed_node *delayed_node)
531{
532 struct rb_node *p;
533 struct btrfs_delayed_item *item = NULL;
534
535 p = rb_first(&delayed_node->ins_root);
536 if (p)
537 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
538
539 return item;
540}
541
542struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
543 struct btrfs_delayed_node *delayed_node)
544{
545 struct rb_node *p;
546 struct btrfs_delayed_item *item = NULL;
547
548 p = rb_first(&delayed_node->del_root);
549 if (p)
550 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
551
552 return item;
553}
554
555struct btrfs_delayed_item *__btrfs_next_delayed_item(
556 struct btrfs_delayed_item *item)
557{
558 struct rb_node *p;
559 struct btrfs_delayed_item *next = NULL;
560
561 p = rb_next(&item->rb_node);
562 if (p)
563 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
564
565 return next;
566}
567
16cdcec7
MX
568static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
569 u64 root_id)
570{
571 struct btrfs_key root_key;
572
573 if (root->objectid == root_id)
574 return root;
575
576 root_key.objectid = root_id;
577 root_key.type = BTRFS_ROOT_ITEM_KEY;
578 root_key.offset = (u64)-1;
579 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
580}
581
582static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root,
584 struct btrfs_delayed_item *item)
585{
586 struct btrfs_block_rsv *src_rsv;
587 struct btrfs_block_rsv *dst_rsv;
588 u64 num_bytes;
589 int ret;
590
591 if (!trans->bytes_reserved)
592 return 0;
593
594 src_rsv = trans->block_rsv;
6d668dda 595 dst_rsv = &root->fs_info->delayed_block_rsv;
16cdcec7
MX
596
597 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
8c2a3ca2
JB
599 if (!ret) {
600 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
601 item->key.objectid,
602 num_bytes, 1);
16cdcec7 603 item->bytes_reserved = num_bytes;
8c2a3ca2 604 }
16cdcec7
MX
605
606 return ret;
607}
608
609static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
610 struct btrfs_delayed_item *item)
611{
19fd2949
MX
612 struct btrfs_block_rsv *rsv;
613
16cdcec7
MX
614 if (!item->bytes_reserved)
615 return;
616
6d668dda 617 rsv = &root->fs_info->delayed_block_rsv;
8c2a3ca2
JB
618 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
619 item->key.objectid, item->bytes_reserved,
620 0);
19fd2949 621 btrfs_block_rsv_release(root, rsv,
16cdcec7
MX
622 item->bytes_reserved);
623}
624
625static int btrfs_delayed_inode_reserve_metadata(
626 struct btrfs_trans_handle *trans,
627 struct btrfs_root *root,
7fd2ae21 628 struct inode *inode,
16cdcec7
MX
629 struct btrfs_delayed_node *node)
630{
631 struct btrfs_block_rsv *src_rsv;
632 struct btrfs_block_rsv *dst_rsv;
633 u64 num_bytes;
634 int ret;
8c2a3ca2 635 bool release = false;
16cdcec7 636
16cdcec7 637 src_rsv = trans->block_rsv;
6d668dda 638 dst_rsv = &root->fs_info->delayed_block_rsv;
16cdcec7
MX
639
640 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
c06a0e12
JB
641
642 /*
643 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
644 * which doesn't reserve space for speed. This is a problem since we
645 * still need to reserve space for this update, so try to reserve the
646 * space.
647 *
648 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
649 * we're accounted for.
650 */
e755d9ab
CM
651 if (!src_rsv || (!trans->bytes_reserved &&
652 src_rsv != &root->fs_info->delalloc_block_rsv)) {
c06a0e12
JB
653 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
654 /*
655 * Since we're under a transaction reserve_metadata_bytes could
656 * try to commit the transaction which will make it return
657 * EAGAIN to make us stop the transaction we have, so return
658 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
659 */
660 if (ret == -EAGAIN)
661 ret = -ENOSPC;
8c2a3ca2 662 if (!ret) {
c06a0e12 663 node->bytes_reserved = num_bytes;
8c2a3ca2
JB
664 trace_btrfs_space_reservation(root->fs_info,
665 "delayed_inode",
666 btrfs_ino(inode),
667 num_bytes, 1);
668 }
c06a0e12 669 return ret;
7fd2ae21
JB
670 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
671 spin_lock(&BTRFS_I(inode)->lock);
72ac3c0d
JB
672 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
673 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21
JB
674 spin_unlock(&BTRFS_I(inode)->lock);
675 release = true;
676 goto migrate;
677 }
678 spin_unlock(&BTRFS_I(inode)->lock);
679
680 /* Ok we didn't have space pre-reserved. This shouldn't happen
681 * too often but it can happen if we do delalloc to an existing
682 * inode which gets dirtied because of the time update, and then
683 * isn't touched again until after the transaction commits and
684 * then we try to write out the data. First try to be nice and
685 * reserve something strictly for us. If not be a pain and try
686 * to steal from the delalloc block rsv.
687 */
688 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
689 if (!ret)
690 goto out;
691
692 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
693 if (!ret)
694 goto out;
695
696 /*
697 * Ok this is a problem, let's just steal from the global rsv
698 * since this really shouldn't happen that often.
699 */
700 WARN_ON(1);
701 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
702 dst_rsv, num_bytes);
703 goto out;
c06a0e12
JB
704 }
705
7fd2ae21 706migrate:
16cdcec7 707 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
7fd2ae21
JB
708
709out:
710 /*
711 * Migrate only takes a reservation, it doesn't touch the size of the
712 * block_rsv. This is to simplify people who don't normally have things
713 * migrated from their block rsv. If they go to release their
714 * reservation, that will decrease the size as well, so if migrate
715 * reduced size we'd end up with a negative size. But for the
716 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
717 * but we could in fact do this reserve/migrate dance several times
718 * between the time we did the original reservation and we'd clean it
719 * up. So to take care of this, release the space for the meta
720 * reservation here. I think it may be time for a documentation page on
721 * how block rsvs. work.
722 */
8c2a3ca2
JB
723 if (!ret) {
724 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
725 btrfs_ino(inode), num_bytes, 1);
16cdcec7 726 node->bytes_reserved = num_bytes;
8c2a3ca2 727 }
16cdcec7 728
8c2a3ca2
JB
729 if (release) {
730 trace_btrfs_space_reservation(root->fs_info, "delalloc",
731 btrfs_ino(inode), num_bytes, 0);
7fd2ae21 732 btrfs_block_rsv_release(root, src_rsv, num_bytes);
8c2a3ca2 733 }
16cdcec7
MX
734
735 return ret;
736}
737
738static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
739 struct btrfs_delayed_node *node)
740{
741 struct btrfs_block_rsv *rsv;
742
743 if (!node->bytes_reserved)
744 return;
745
6d668dda 746 rsv = &root->fs_info->delayed_block_rsv;
8c2a3ca2
JB
747 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
748 node->inode_id, node->bytes_reserved, 0);
16cdcec7
MX
749 btrfs_block_rsv_release(root, rsv,
750 node->bytes_reserved);
751 node->bytes_reserved = 0;
752}
753
754/*
755 * This helper will insert some continuous items into the same leaf according
756 * to the free space of the leaf.
757 */
758static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
759 struct btrfs_root *root,
760 struct btrfs_path *path,
761 struct btrfs_delayed_item *item)
762{
763 struct btrfs_delayed_item *curr, *next;
764 int free_space;
765 int total_data_size = 0, total_size = 0;
766 struct extent_buffer *leaf;
767 char *data_ptr;
768 struct btrfs_key *keys;
769 u32 *data_size;
770 struct list_head head;
771 int slot;
772 int nitems;
773 int i;
774 int ret = 0;
775
776 BUG_ON(!path->nodes[0]);
777
778 leaf = path->nodes[0];
779 free_space = btrfs_leaf_free_space(root, leaf);
780 INIT_LIST_HEAD(&head);
781
782 next = item;
17aca1c9 783 nitems = 0;
16cdcec7
MX
784
785 /*
786 * count the number of the continuous items that we can insert in batch
787 */
788 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
789 free_space) {
790 total_data_size += next->data_len;
791 total_size += next->data_len + sizeof(struct btrfs_item);
792 list_add_tail(&next->tree_list, &head);
793 nitems++;
794
795 curr = next;
796 next = __btrfs_next_delayed_item(curr);
797 if (!next)
798 break;
799
800 if (!btrfs_is_continuous_delayed_item(curr, next))
801 break;
802 }
803
804 if (!nitems) {
805 ret = 0;
806 goto out;
807 }
808
809 /*
810 * we need allocate some memory space, but it might cause the task
811 * to sleep, so we set all locked nodes in the path to blocking locks
812 * first.
813 */
814 btrfs_set_path_blocking(path);
815
816 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
817 if (!keys) {
818 ret = -ENOMEM;
819 goto out;
820 }
821
822 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
823 if (!data_size) {
824 ret = -ENOMEM;
825 goto error;
826 }
827
828 /* get keys of all the delayed items */
829 i = 0;
830 list_for_each_entry(next, &head, tree_list) {
831 keys[i] = next->key;
832 data_size[i] = next->data_len;
833 i++;
834 }
835
836 /* reset all the locked nodes in the patch to spinning locks. */
bd681513 837 btrfs_clear_path_blocking(path, NULL, 0);
16cdcec7
MX
838
839 /* insert the keys of the items */
143bede5
JM
840 setup_items_for_insert(trans, root, path, keys, data_size,
841 total_data_size, total_size, nitems);
16cdcec7
MX
842
843 /* insert the dir index items */
844 slot = path->slots[0];
845 list_for_each_entry_safe(curr, next, &head, tree_list) {
846 data_ptr = btrfs_item_ptr(leaf, slot, char);
847 write_extent_buffer(leaf, &curr->data,
848 (unsigned long)data_ptr,
849 curr->data_len);
850 slot++;
851
852 btrfs_delayed_item_release_metadata(root, curr);
853
854 list_del(&curr->tree_list);
855 btrfs_release_delayed_item(curr);
856 }
857
858error:
859 kfree(data_size);
860 kfree(keys);
861out:
862 return ret;
863}
864
865/*
866 * This helper can just do simple insertion that needn't extend item for new
867 * data, such as directory name index insertion, inode insertion.
868 */
869static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
870 struct btrfs_root *root,
871 struct btrfs_path *path,
872 struct btrfs_delayed_item *delayed_item)
873{
874 struct extent_buffer *leaf;
875 struct btrfs_item *item;
876 char *ptr;
877 int ret;
878
879 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
880 delayed_item->data_len);
881 if (ret < 0 && ret != -EEXIST)
882 return ret;
883
884 leaf = path->nodes[0];
885
886 item = btrfs_item_nr(leaf, path->slots[0]);
887 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
888
889 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
890 delayed_item->data_len);
891 btrfs_mark_buffer_dirty(leaf);
892
893 btrfs_delayed_item_release_metadata(root, delayed_item);
894 return 0;
895}
896
897/*
898 * we insert an item first, then if there are some continuous items, we try
899 * to insert those items into the same leaf.
900 */
901static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
902 struct btrfs_path *path,
903 struct btrfs_root *root,
904 struct btrfs_delayed_node *node)
905{
906 struct btrfs_delayed_item *curr, *prev;
907 int ret = 0;
908
909do_again:
910 mutex_lock(&node->mutex);
911 curr = __btrfs_first_delayed_insertion_item(node);
912 if (!curr)
913 goto insert_end;
914
915 ret = btrfs_insert_delayed_item(trans, root, path, curr);
916 if (ret < 0) {
945d8962 917 btrfs_release_path(path);
16cdcec7
MX
918 goto insert_end;
919 }
920
921 prev = curr;
922 curr = __btrfs_next_delayed_item(prev);
923 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
924 /* insert the continuous items into the same leaf */
925 path->slots[0]++;
926 btrfs_batch_insert_items(trans, root, path, curr);
927 }
928 btrfs_release_delayed_item(prev);
929 btrfs_mark_buffer_dirty(path->nodes[0]);
930
945d8962 931 btrfs_release_path(path);
16cdcec7
MX
932 mutex_unlock(&node->mutex);
933 goto do_again;
934
935insert_end:
936 mutex_unlock(&node->mutex);
937 return ret;
938}
939
940static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
941 struct btrfs_root *root,
942 struct btrfs_path *path,
943 struct btrfs_delayed_item *item)
944{
945 struct btrfs_delayed_item *curr, *next;
946 struct extent_buffer *leaf;
947 struct btrfs_key key;
948 struct list_head head;
949 int nitems, i, last_item;
950 int ret = 0;
951
952 BUG_ON(!path->nodes[0]);
953
954 leaf = path->nodes[0];
955
956 i = path->slots[0];
957 last_item = btrfs_header_nritems(leaf) - 1;
958 if (i > last_item)
959 return -ENOENT; /* FIXME: Is errno suitable? */
960
961 next = item;
962 INIT_LIST_HEAD(&head);
963 btrfs_item_key_to_cpu(leaf, &key, i);
964 nitems = 0;
965 /*
966 * count the number of the dir index items that we can delete in batch
967 */
968 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
969 list_add_tail(&next->tree_list, &head);
970 nitems++;
971
972 curr = next;
973 next = __btrfs_next_delayed_item(curr);
974 if (!next)
975 break;
976
977 if (!btrfs_is_continuous_delayed_item(curr, next))
978 break;
979
980 i++;
981 if (i > last_item)
982 break;
983 btrfs_item_key_to_cpu(leaf, &key, i);
984 }
985
986 if (!nitems)
987 return 0;
988
989 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
990 if (ret)
991 goto out;
992
993 list_for_each_entry_safe(curr, next, &head, tree_list) {
994 btrfs_delayed_item_release_metadata(root, curr);
995 list_del(&curr->tree_list);
996 btrfs_release_delayed_item(curr);
997 }
998
999out:
1000 return ret;
1001}
1002
1003static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1004 struct btrfs_path *path,
1005 struct btrfs_root *root,
1006 struct btrfs_delayed_node *node)
1007{
1008 struct btrfs_delayed_item *curr, *prev;
1009 int ret = 0;
1010
1011do_again:
1012 mutex_lock(&node->mutex);
1013 curr = __btrfs_first_delayed_deletion_item(node);
1014 if (!curr)
1015 goto delete_fail;
1016
1017 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1018 if (ret < 0)
1019 goto delete_fail;
1020 else if (ret > 0) {
1021 /*
1022 * can't find the item which the node points to, so this node
1023 * is invalid, just drop it.
1024 */
1025 prev = curr;
1026 curr = __btrfs_next_delayed_item(prev);
1027 btrfs_release_delayed_item(prev);
1028 ret = 0;
945d8962 1029 btrfs_release_path(path);
16cdcec7
MX
1030 if (curr)
1031 goto do_again;
1032 else
1033 goto delete_fail;
1034 }
1035
1036 btrfs_batch_delete_items(trans, root, path, curr);
945d8962 1037 btrfs_release_path(path);
16cdcec7
MX
1038 mutex_unlock(&node->mutex);
1039 goto do_again;
1040
1041delete_fail:
945d8962 1042 btrfs_release_path(path);
16cdcec7
MX
1043 mutex_unlock(&node->mutex);
1044 return ret;
1045}
1046
1047static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1048{
1049 struct btrfs_delayed_root *delayed_root;
1050
1051 if (delayed_node && delayed_node->inode_dirty) {
1052 BUG_ON(!delayed_node->root);
1053 delayed_node->inode_dirty = 0;
1054 delayed_node->count--;
1055
1056 delayed_root = delayed_node->root->fs_info->delayed_root;
1057 atomic_dec(&delayed_root->items);
1058 if (atomic_read(&delayed_root->items) <
1059 BTRFS_DELAYED_BACKGROUND &&
1060 waitqueue_active(&delayed_root->wait))
1061 wake_up(&delayed_root->wait);
1062 }
1063}
1064
1065static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1066 struct btrfs_root *root,
1067 struct btrfs_path *path,
1068 struct btrfs_delayed_node *node)
1069{
1070 struct btrfs_key key;
1071 struct btrfs_inode_item *inode_item;
1072 struct extent_buffer *leaf;
1073 int ret;
1074
1075 mutex_lock(&node->mutex);
1076 if (!node->inode_dirty) {
1077 mutex_unlock(&node->mutex);
1078 return 0;
1079 }
1080
1081 key.objectid = node->inode_id;
1082 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083 key.offset = 0;
1084 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1085 if (ret > 0) {
945d8962 1086 btrfs_release_path(path);
16cdcec7
MX
1087 mutex_unlock(&node->mutex);
1088 return -ENOENT;
1089 } else if (ret < 0) {
1090 mutex_unlock(&node->mutex);
1091 return ret;
1092 }
1093
1094 btrfs_unlock_up_safe(path, 1);
1095 leaf = path->nodes[0];
1096 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1097 struct btrfs_inode_item);
1098 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1099 sizeof(struct btrfs_inode_item));
1100 btrfs_mark_buffer_dirty(leaf);
945d8962 1101 btrfs_release_path(path);
16cdcec7
MX
1102
1103 btrfs_delayed_inode_release_metadata(root, node);
1104 btrfs_release_delayed_inode(node);
1105 mutex_unlock(&node->mutex);
1106
1107 return 0;
1108}
1109
79787eaa
JM
1110/*
1111 * Called when committing the transaction.
1112 * Returns 0 on success.
1113 * Returns < 0 on error and returns with an aborted transaction with any
1114 * outstanding delayed items cleaned up.
1115 */
96c3f433
JB
1116static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1117 struct btrfs_root *root, int nr)
16cdcec7 1118{
79787eaa 1119 struct btrfs_root *curr_root = root;
16cdcec7
MX
1120 struct btrfs_delayed_root *delayed_root;
1121 struct btrfs_delayed_node *curr_node, *prev_node;
1122 struct btrfs_path *path;
19fd2949 1123 struct btrfs_block_rsv *block_rsv;
16cdcec7 1124 int ret = 0;
96c3f433 1125 bool count = (nr > 0);
16cdcec7 1126
79787eaa
JM
1127 if (trans->aborted)
1128 return -EIO;
1129
16cdcec7
MX
1130 path = btrfs_alloc_path();
1131 if (!path)
1132 return -ENOMEM;
1133 path->leave_spinning = 1;
1134
19fd2949 1135 block_rsv = trans->block_rsv;
6d668dda 1136 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1137
16cdcec7
MX
1138 delayed_root = btrfs_get_delayed_root(root);
1139
1140 curr_node = btrfs_first_delayed_node(delayed_root);
96c3f433 1141 while (curr_node && (!count || (count && nr--))) {
79787eaa
JM
1142 curr_root = curr_node->root;
1143 ret = btrfs_insert_delayed_items(trans, path, curr_root,
16cdcec7
MX
1144 curr_node);
1145 if (!ret)
79787eaa
JM
1146 ret = btrfs_delete_delayed_items(trans, path,
1147 curr_root, curr_node);
16cdcec7 1148 if (!ret)
79787eaa
JM
1149 ret = btrfs_update_delayed_inode(trans, curr_root,
1150 path, curr_node);
16cdcec7
MX
1151 if (ret) {
1152 btrfs_release_delayed_node(curr_node);
96c3f433 1153 curr_node = NULL;
79787eaa 1154 btrfs_abort_transaction(trans, root, ret);
16cdcec7
MX
1155 break;
1156 }
1157
1158 prev_node = curr_node;
1159 curr_node = btrfs_next_delayed_node(curr_node);
1160 btrfs_release_delayed_node(prev_node);
1161 }
1162
96c3f433
JB
1163 if (curr_node)
1164 btrfs_release_delayed_node(curr_node);
16cdcec7 1165 btrfs_free_path(path);
19fd2949 1166 trans->block_rsv = block_rsv;
79787eaa 1167
16cdcec7
MX
1168 return ret;
1169}
1170
96c3f433
JB
1171int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1172 struct btrfs_root *root)
1173{
1174 return __btrfs_run_delayed_items(trans, root, -1);
1175}
1176
1177int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1178 struct btrfs_root *root, int nr)
1179{
1180 return __btrfs_run_delayed_items(trans, root, nr);
1181}
1182
16cdcec7
MX
1183static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1184 struct btrfs_delayed_node *node)
1185{
1186 struct btrfs_path *path;
19fd2949 1187 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1188 int ret;
1189
1190 path = btrfs_alloc_path();
1191 if (!path)
1192 return -ENOMEM;
1193 path->leave_spinning = 1;
1194
19fd2949 1195 block_rsv = trans->block_rsv;
6d668dda 1196 trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
19fd2949 1197
16cdcec7
MX
1198 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1199 if (!ret)
1200 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1201 if (!ret)
1202 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1203 btrfs_free_path(path);
1204
19fd2949 1205 trans->block_rsv = block_rsv;
16cdcec7
MX
1206 return ret;
1207}
1208
1209int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1210 struct inode *inode)
1211{
1212 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1213 int ret;
1214
1215 if (!delayed_node)
1216 return 0;
1217
1218 mutex_lock(&delayed_node->mutex);
1219 if (!delayed_node->count) {
1220 mutex_unlock(&delayed_node->mutex);
1221 btrfs_release_delayed_node(delayed_node);
1222 return 0;
1223 }
1224 mutex_unlock(&delayed_node->mutex);
1225
1226 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1227 btrfs_release_delayed_node(delayed_node);
1228 return ret;
1229}
1230
1231void btrfs_remove_delayed_node(struct inode *inode)
1232{
1233 struct btrfs_delayed_node *delayed_node;
1234
1235 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1236 if (!delayed_node)
1237 return;
1238
1239 BTRFS_I(inode)->delayed_node = NULL;
1240 btrfs_release_delayed_node(delayed_node);
1241}
1242
1243struct btrfs_async_delayed_node {
1244 struct btrfs_root *root;
1245 struct btrfs_delayed_node *delayed_node;
1246 struct btrfs_work work;
1247};
1248
1249static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1250{
1251 struct btrfs_async_delayed_node *async_node;
1252 struct btrfs_trans_handle *trans;
1253 struct btrfs_path *path;
1254 struct btrfs_delayed_node *delayed_node = NULL;
1255 struct btrfs_root *root;
19fd2949 1256 struct btrfs_block_rsv *block_rsv;
16cdcec7
MX
1257 unsigned long nr = 0;
1258 int need_requeue = 0;
1259 int ret;
1260
1261 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1262
1263 path = btrfs_alloc_path();
1264 if (!path)
1265 goto out;
1266 path->leave_spinning = 1;
1267
1268 delayed_node = async_node->delayed_node;
1269 root = delayed_node->root;
1270
ff5714cc 1271 trans = btrfs_join_transaction(root);
16cdcec7
MX
1272 if (IS_ERR(trans))
1273 goto free_path;
1274
19fd2949 1275 block_rsv = trans->block_rsv;
6d668dda 1276 trans->block_rsv = &root->fs_info->delayed_block_rsv;
19fd2949 1277
16cdcec7
MX
1278 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1279 if (!ret)
1280 ret = btrfs_delete_delayed_items(trans, path, root,
1281 delayed_node);
1282
1283 if (!ret)
1284 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1285
1286 /*
1287 * Maybe new delayed items have been inserted, so we need requeue
1288 * the work. Besides that, we must dequeue the empty delayed nodes
1289 * to avoid the race between delayed items balance and the worker.
1290 * The race like this:
1291 * Task1 Worker thread
1292 * count == 0, needn't requeue
1293 * also needn't insert the
1294 * delayed node into prepare
1295 * list again.
1296 * add lots of delayed items
1297 * queue the delayed node
1298 * already in the list,
1299 * and not in the prepare
1300 * list, it means the delayed
1301 * node is being dealt with
1302 * by the worker.
1303 * do delayed items balance
1304 * the delayed node is being
1305 * dealt with by the worker
1306 * now, just wait.
1307 * the worker goto idle.
1308 * Task1 will sleep until the transaction is commited.
1309 */
1310 mutex_lock(&delayed_node->mutex);
1311 if (delayed_node->count)
1312 need_requeue = 1;
1313 else
1314 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1315 delayed_node);
1316 mutex_unlock(&delayed_node->mutex);
1317
1318 nr = trans->blocks_used;
1319
19fd2949 1320 trans->block_rsv = block_rsv;
16cdcec7
MX
1321 btrfs_end_transaction_dmeta(trans, root);
1322 __btrfs_btree_balance_dirty(root, nr);
1323free_path:
1324 btrfs_free_path(path);
1325out:
1326 if (need_requeue)
1327 btrfs_requeue_work(&async_node->work);
1328 else {
1329 btrfs_release_prepared_delayed_node(delayed_node);
1330 kfree(async_node);
1331 }
1332}
1333
1334static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1335 struct btrfs_root *root, int all)
1336{
1337 struct btrfs_async_delayed_node *async_node;
1338 struct btrfs_delayed_node *curr;
1339 int count = 0;
1340
1341again:
1342 curr = btrfs_first_prepared_delayed_node(delayed_root);
1343 if (!curr)
1344 return 0;
1345
1346 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1347 if (!async_node) {
1348 btrfs_release_prepared_delayed_node(curr);
1349 return -ENOMEM;
1350 }
1351
1352 async_node->root = root;
1353 async_node->delayed_node = curr;
1354
1355 async_node->work.func = btrfs_async_run_delayed_node_done;
1356 async_node->work.flags = 0;
1357
1358 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1359 count++;
1360
1361 if (all || count < 4)
1362 goto again;
1363
1364 return 0;
1365}
1366
e999376f
CM
1367void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1368{
1369 struct btrfs_delayed_root *delayed_root;
1370 delayed_root = btrfs_get_delayed_root(root);
1371 WARN_ON(btrfs_first_delayed_node(delayed_root));
1372}
1373
16cdcec7
MX
1374void btrfs_balance_delayed_items(struct btrfs_root *root)
1375{
1376 struct btrfs_delayed_root *delayed_root;
1377
1378 delayed_root = btrfs_get_delayed_root(root);
1379
1380 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1381 return;
1382
1383 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1384 int ret;
1385 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1386 if (ret)
1387 return;
1388
1389 wait_event_interruptible_timeout(
1390 delayed_root->wait,
1391 (atomic_read(&delayed_root->items) <
1392 BTRFS_DELAYED_BACKGROUND),
1393 HZ);
1394 return;
1395 }
1396
1397 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1398}
1399
79787eaa 1400/* Will return 0 or -ENOMEM */
16cdcec7
MX
1401int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root, const char *name,
1403 int name_len, struct inode *dir,
1404 struct btrfs_disk_key *disk_key, u8 type,
1405 u64 index)
1406{
1407 struct btrfs_delayed_node *delayed_node;
1408 struct btrfs_delayed_item *delayed_item;
1409 struct btrfs_dir_item *dir_item;
1410 int ret;
1411
1412 delayed_node = btrfs_get_or_create_delayed_node(dir);
1413 if (IS_ERR(delayed_node))
1414 return PTR_ERR(delayed_node);
1415
1416 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1417 if (!delayed_item) {
1418 ret = -ENOMEM;
1419 goto release_node;
1420 }
1421
0d0ca30f 1422 delayed_item->key.objectid = btrfs_ino(dir);
16cdcec7
MX
1423 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1424 delayed_item->key.offset = index;
1425
1426 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1427 dir_item->location = *disk_key;
1428 dir_item->transid = cpu_to_le64(trans->transid);
1429 dir_item->data_len = 0;
1430 dir_item->name_len = cpu_to_le16(name_len);
1431 dir_item->type = type;
1432 memcpy((char *)(dir_item + 1), name, name_len);
1433
8c2a3ca2
JB
1434 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1435 /*
1436 * we have reserved enough space when we start a new transaction,
1437 * so reserving metadata failure is impossible
1438 */
1439 BUG_ON(ret);
1440
1441
16cdcec7
MX
1442 mutex_lock(&delayed_node->mutex);
1443 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1444 if (unlikely(ret)) {
1445 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1446 "the insertion tree of the delayed node"
1447 "(root id: %llu, inode id: %llu, errno: %d)\n",
1448 name,
1449 (unsigned long long)delayed_node->root->objectid,
1450 (unsigned long long)delayed_node->inode_id,
1451 ret);
1452 BUG();
1453 }
1454 mutex_unlock(&delayed_node->mutex);
1455
1456release_node:
1457 btrfs_release_delayed_node(delayed_node);
1458 return ret;
1459}
1460
1461static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1462 struct btrfs_delayed_node *node,
1463 struct btrfs_key *key)
1464{
1465 struct btrfs_delayed_item *item;
1466
1467 mutex_lock(&node->mutex);
1468 item = __btrfs_lookup_delayed_insertion_item(node, key);
1469 if (!item) {
1470 mutex_unlock(&node->mutex);
1471 return 1;
1472 }
1473
1474 btrfs_delayed_item_release_metadata(root, item);
1475 btrfs_release_delayed_item(item);
1476 mutex_unlock(&node->mutex);
1477 return 0;
1478}
1479
1480int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1481 struct btrfs_root *root, struct inode *dir,
1482 u64 index)
1483{
1484 struct btrfs_delayed_node *node;
1485 struct btrfs_delayed_item *item;
1486 struct btrfs_key item_key;
1487 int ret;
1488
1489 node = btrfs_get_or_create_delayed_node(dir);
1490 if (IS_ERR(node))
1491 return PTR_ERR(node);
1492
0d0ca30f 1493 item_key.objectid = btrfs_ino(dir);
16cdcec7
MX
1494 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1495 item_key.offset = index;
1496
1497 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1498 if (!ret)
1499 goto end;
1500
1501 item = btrfs_alloc_delayed_item(0);
1502 if (!item) {
1503 ret = -ENOMEM;
1504 goto end;
1505 }
1506
1507 item->key = item_key;
1508
1509 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1510 /*
1511 * we have reserved enough space when we start a new transaction,
1512 * so reserving metadata failure is impossible.
1513 */
1514 BUG_ON(ret);
1515
1516 mutex_lock(&node->mutex);
1517 ret = __btrfs_add_delayed_deletion_item(node, item);
1518 if (unlikely(ret)) {
1519 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1520 "into the deletion tree of the delayed node"
1521 "(root id: %llu, inode id: %llu, errno: %d)\n",
1522 (unsigned long long)index,
1523 (unsigned long long)node->root->objectid,
1524 (unsigned long long)node->inode_id,
1525 ret);
1526 BUG();
1527 }
1528 mutex_unlock(&node->mutex);
1529end:
1530 btrfs_release_delayed_node(node);
1531 return ret;
1532}
1533
1534int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1535{
2f7e33d4 1536 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
16cdcec7
MX
1537
1538 if (!delayed_node)
1539 return -ENOENT;
1540
1541 /*
1542 * Since we have held i_mutex of this directory, it is impossible that
1543 * a new directory index is added into the delayed node and index_cnt
1544 * is updated now. So we needn't lock the delayed node.
1545 */
2f7e33d4
MX
1546 if (!delayed_node->index_cnt) {
1547 btrfs_release_delayed_node(delayed_node);
16cdcec7 1548 return -EINVAL;
2f7e33d4 1549 }
16cdcec7
MX
1550
1551 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
2f7e33d4
MX
1552 btrfs_release_delayed_node(delayed_node);
1553 return 0;
16cdcec7
MX
1554}
1555
1556void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1557 struct list_head *del_list)
1558{
1559 struct btrfs_delayed_node *delayed_node;
1560 struct btrfs_delayed_item *item;
1561
1562 delayed_node = btrfs_get_delayed_node(inode);
1563 if (!delayed_node)
1564 return;
1565
1566 mutex_lock(&delayed_node->mutex);
1567 item = __btrfs_first_delayed_insertion_item(delayed_node);
1568 while (item) {
1569 atomic_inc(&item->refs);
1570 list_add_tail(&item->readdir_list, ins_list);
1571 item = __btrfs_next_delayed_item(item);
1572 }
1573
1574 item = __btrfs_first_delayed_deletion_item(delayed_node);
1575 while (item) {
1576 atomic_inc(&item->refs);
1577 list_add_tail(&item->readdir_list, del_list);
1578 item = __btrfs_next_delayed_item(item);
1579 }
1580 mutex_unlock(&delayed_node->mutex);
1581 /*
1582 * This delayed node is still cached in the btrfs inode, so refs
1583 * must be > 1 now, and we needn't check it is going to be freed
1584 * or not.
1585 *
1586 * Besides that, this function is used to read dir, we do not
1587 * insert/delete delayed items in this period. So we also needn't
1588 * requeue or dequeue this delayed node.
1589 */
1590 atomic_dec(&delayed_node->refs);
1591}
1592
1593void btrfs_put_delayed_items(struct list_head *ins_list,
1594 struct list_head *del_list)
1595{
1596 struct btrfs_delayed_item *curr, *next;
1597
1598 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1599 list_del(&curr->readdir_list);
1600 if (atomic_dec_and_test(&curr->refs))
1601 kfree(curr);
1602 }
1603
1604 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1605 list_del(&curr->readdir_list);
1606 if (atomic_dec_and_test(&curr->refs))
1607 kfree(curr);
1608 }
1609}
1610
1611int btrfs_should_delete_dir_index(struct list_head *del_list,
1612 u64 index)
1613{
1614 struct btrfs_delayed_item *curr, *next;
1615 int ret;
1616
1617 if (list_empty(del_list))
1618 return 0;
1619
1620 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1621 if (curr->key.offset > index)
1622 break;
1623
1624 list_del(&curr->readdir_list);
1625 ret = (curr->key.offset == index);
1626
1627 if (atomic_dec_and_test(&curr->refs))
1628 kfree(curr);
1629
1630 if (ret)
1631 return 1;
1632 else
1633 continue;
1634 }
1635 return 0;
1636}
1637
1638/*
1639 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1640 *
1641 */
1642int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1643 filldir_t filldir,
1644 struct list_head *ins_list)
1645{
1646 struct btrfs_dir_item *di;
1647 struct btrfs_delayed_item *curr, *next;
1648 struct btrfs_key location;
1649 char *name;
1650 int name_len;
1651 int over = 0;
1652 unsigned char d_type;
1653
1654 if (list_empty(ins_list))
1655 return 0;
1656
1657 /*
1658 * Changing the data of the delayed item is impossible. So
1659 * we needn't lock them. And we have held i_mutex of the
1660 * directory, nobody can delete any directory indexes now.
1661 */
1662 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1663 list_del(&curr->readdir_list);
1664
1665 if (curr->key.offset < filp->f_pos) {
1666 if (atomic_dec_and_test(&curr->refs))
1667 kfree(curr);
1668 continue;
1669 }
1670
1671 filp->f_pos = curr->key.offset;
1672
1673 di = (struct btrfs_dir_item *)curr->data;
1674 name = (char *)(di + 1);
1675 name_len = le16_to_cpu(di->name_len);
1676
1677 d_type = btrfs_filetype_table[di->type];
1678 btrfs_disk_key_to_cpu(&location, &di->location);
1679
1680 over = filldir(dirent, name, name_len, curr->key.offset,
1681 location.objectid, d_type);
1682
1683 if (atomic_dec_and_test(&curr->refs))
1684 kfree(curr);
1685
1686 if (over)
1687 return 1;
1688 }
1689 return 0;
1690}
1691
1692BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1693 generation, 64);
1694BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1695 sequence, 64);
1696BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1697 transid, 64);
1698BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1699BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1700 nbytes, 64);
1701BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1702 block_group, 64);
1703BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1704BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1705BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1706BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1707BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1708BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1709
1710BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1711BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1712
1713static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1714 struct btrfs_inode_item *inode_item,
1715 struct inode *inode)
1716{
1717 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1718 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1719 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1720 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1721 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1722 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1723 btrfs_set_stack_inode_generation(inode_item,
1724 BTRFS_I(inode)->generation);
0c4d2d95 1725 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
16cdcec7
MX
1726 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1727 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1728 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
ff5714cc 1729 btrfs_set_stack_inode_block_group(inode_item, 0);
16cdcec7
MX
1730
1731 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1732 inode->i_atime.tv_sec);
1733 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1734 inode->i_atime.tv_nsec);
1735
1736 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1737 inode->i_mtime.tv_sec);
1738 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1739 inode->i_mtime.tv_nsec);
1740
1741 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1742 inode->i_ctime.tv_sec);
1743 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1744 inode->i_ctime.tv_nsec);
1745}
1746
2f7e33d4
MX
1747int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1748{
1749 struct btrfs_delayed_node *delayed_node;
1750 struct btrfs_inode_item *inode_item;
1751 struct btrfs_timespec *tspec;
1752
1753 delayed_node = btrfs_get_delayed_node(inode);
1754 if (!delayed_node)
1755 return -ENOENT;
1756
1757 mutex_lock(&delayed_node->mutex);
1758 if (!delayed_node->inode_dirty) {
1759 mutex_unlock(&delayed_node->mutex);
1760 btrfs_release_delayed_node(delayed_node);
1761 return -ENOENT;
1762 }
1763
1764 inode_item = &delayed_node->inode_item;
1765
1766 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1767 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1768 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1769 inode->i_mode = btrfs_stack_inode_mode(inode_item);
bfe86848 1770 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
2f7e33d4
MX
1771 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1772 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
0c4d2d95 1773 inode->i_version = btrfs_stack_inode_sequence(inode_item);
2f7e33d4
MX
1774 inode->i_rdev = 0;
1775 *rdev = btrfs_stack_inode_rdev(inode_item);
1776 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1777
1778 tspec = btrfs_inode_atime(inode_item);
1779 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1780 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1781
1782 tspec = btrfs_inode_mtime(inode_item);
1783 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1784 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1785
1786 tspec = btrfs_inode_ctime(inode_item);
1787 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1788 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1789
1790 inode->i_generation = BTRFS_I(inode)->generation;
1791 BTRFS_I(inode)->index_cnt = (u64)-1;
1792
1793 mutex_unlock(&delayed_node->mutex);
1794 btrfs_release_delayed_node(delayed_node);
1795 return 0;
1796}
1797
16cdcec7
MX
1798int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1799 struct btrfs_root *root, struct inode *inode)
1800{
1801 struct btrfs_delayed_node *delayed_node;
aa0467d8 1802 int ret = 0;
16cdcec7
MX
1803
1804 delayed_node = btrfs_get_or_create_delayed_node(inode);
1805 if (IS_ERR(delayed_node))
1806 return PTR_ERR(delayed_node);
1807
1808 mutex_lock(&delayed_node->mutex);
1809 if (delayed_node->inode_dirty) {
1810 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1811 goto release_node;
1812 }
1813
7fd2ae21
JB
1814 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1815 delayed_node);
c06a0e12
JB
1816 if (ret)
1817 goto release_node;
16cdcec7
MX
1818
1819 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1820 delayed_node->inode_dirty = 1;
1821 delayed_node->count++;
1822 atomic_inc(&root->fs_info->delayed_root->items);
1823release_node:
1824 mutex_unlock(&delayed_node->mutex);
1825 btrfs_release_delayed_node(delayed_node);
1826 return ret;
1827}
1828
1829static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1830{
1831 struct btrfs_root *root = delayed_node->root;
1832 struct btrfs_delayed_item *curr_item, *prev_item;
1833
1834 mutex_lock(&delayed_node->mutex);
1835 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1836 while (curr_item) {
1837 btrfs_delayed_item_release_metadata(root, curr_item);
1838 prev_item = curr_item;
1839 curr_item = __btrfs_next_delayed_item(prev_item);
1840 btrfs_release_delayed_item(prev_item);
1841 }
1842
1843 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1844 while (curr_item) {
1845 btrfs_delayed_item_release_metadata(root, curr_item);
1846 prev_item = curr_item;
1847 curr_item = __btrfs_next_delayed_item(prev_item);
1848 btrfs_release_delayed_item(prev_item);
1849 }
1850
1851 if (delayed_node->inode_dirty) {
1852 btrfs_delayed_inode_release_metadata(root, delayed_node);
1853 btrfs_release_delayed_inode(delayed_node);
1854 }
1855 mutex_unlock(&delayed_node->mutex);
1856}
1857
1858void btrfs_kill_delayed_inode_items(struct inode *inode)
1859{
1860 struct btrfs_delayed_node *delayed_node;
1861
1862 delayed_node = btrfs_get_delayed_node(inode);
1863 if (!delayed_node)
1864 return;
1865
1866 __btrfs_kill_delayed_node(delayed_node);
1867 btrfs_release_delayed_node(delayed_node);
1868}
1869
1870void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1871{
1872 u64 inode_id = 0;
1873 struct btrfs_delayed_node *delayed_nodes[8];
1874 int i, n;
1875
1876 while (1) {
1877 spin_lock(&root->inode_lock);
1878 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1879 (void **)delayed_nodes, inode_id,
1880 ARRAY_SIZE(delayed_nodes));
1881 if (!n) {
1882 spin_unlock(&root->inode_lock);
1883 break;
1884 }
1885
1886 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1887
1888 for (i = 0; i < n; i++)
1889 atomic_inc(&delayed_nodes[i]->refs);
1890 spin_unlock(&root->inode_lock);
1891
1892 for (i = 0; i < n; i++) {
1893 __btrfs_kill_delayed_node(delayed_nodes[i]);
1894 btrfs_release_delayed_node(delayed_nodes[i]);
1895 }
1896 }
1897}
67cde344
MX
1898
1899void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1900{
1901 struct btrfs_delayed_root *delayed_root;
1902 struct btrfs_delayed_node *curr_node, *prev_node;
1903
1904 delayed_root = btrfs_get_delayed_root(root);
1905
1906 curr_node = btrfs_first_delayed_node(delayed_root);
1907 while (curr_node) {
1908 __btrfs_kill_delayed_node(curr_node);
1909
1910 prev_node = curr_node;
1911 curr_node = btrfs_next_delayed_node(curr_node);
1912 btrfs_release_delayed_node(prev_node);
1913 }
1914}
1915
This page took 0.161586 seconds and 5 git commands to generate.