Btrfs: detect corruption when non-root leaf has zero item
[deliverable/linux.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
319e4d06
QW
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
e8c9f186 64static const struct extent_io_ops btree_extent_io_ops;
8b712842 65static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 66static void free_fs_root(struct btrfs_root *root);
fcd1f065 67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 68 int read_only);
143bede5 69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
143bede5 72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
48a3b636
ES
78static int btrfs_cleanup_transaction(struct btrfs_root *root);
79static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 80
d352ac68 81/*
97eb6b69
DS
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
97eb6b69 86struct btrfs_end_io_wq {
ce9adaa5
CM
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
bfebd8b5 92 enum btrfs_wq_endio_type metadata;
ce9adaa5 93 struct list_head list;
8b712842 94 struct btrfs_work work;
ce9adaa5 95};
0da5468f 96
97eb6b69
DS
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
fba4b697 104 SLAB_MEM_SPREAD,
97eb6b69
DS
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
5598e900 113 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
114}
115
d352ac68
CM
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
44b8bd7e
CM
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
4a69a410
CM
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
127 int rw;
128 int mirror_num;
c8b97818 129 unsigned long bio_flags;
eaf25d93
CM
130 /*
131 * bio_offset is optional, can be used if the pages in the bio
132 * can't tell us where in the file the bio should go
133 */
134 u64 bio_offset;
8b712842 135 struct btrfs_work work;
79787eaa 136 int error;
44b8bd7e
CM
137};
138
85d4e461
CM
139/*
140 * Lockdep class keys for extent_buffer->lock's in this root. For a given
141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
142 * the level the eb occupies in the tree.
143 *
144 * Different roots are used for different purposes and may nest inside each
145 * other and they require separate keysets. As lockdep keys should be
146 * static, assign keysets according to the purpose of the root as indicated
147 * by btrfs_root->objectid. This ensures that all special purpose roots
148 * have separate keysets.
4008c04a 149 *
85d4e461
CM
150 * Lock-nesting across peer nodes is always done with the immediate parent
151 * node locked thus preventing deadlock. As lockdep doesn't know this, use
152 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 153 *
85d4e461
CM
154 * The key is set by the readpage_end_io_hook after the buffer has passed
155 * csum validation but before the pages are unlocked. It is also set by
156 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 157 *
85d4e461
CM
158 * We also add a check to make sure the highest level of the tree is the
159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
160 * needs update as well.
4008c04a
CM
161 */
162#ifdef CONFIG_DEBUG_LOCK_ALLOC
163# if BTRFS_MAX_LEVEL != 8
164# error
165# endif
85d4e461
CM
166
167static struct btrfs_lockdep_keyset {
168 u64 id; /* root objectid */
169 const char *name_stem; /* lock name stem */
170 char names[BTRFS_MAX_LEVEL + 1][20];
171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
172} btrfs_lockdep_keysets[] = {
173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 185 { .id = 0, .name_stem = "tree" },
4008c04a 186};
85d4e461
CM
187
188void __init btrfs_init_lockdep(void)
189{
190 int i, j;
191
192 /* initialize lockdep class names */
193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 snprintf(ks->names[j], sizeof(ks->names[j]),
198 "btrfs-%s-%02d", ks->name_stem, j);
199 }
200}
201
202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 int level)
204{
205 struct btrfs_lockdep_keyset *ks;
206
207 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209 /* find the matching keyset, id 0 is the default entry */
210 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 if (ks->id == objectid)
212 break;
213
214 lockdep_set_class_and_name(&eb->lock,
215 &ks->keys[level], ks->names[level]);
216}
217
4008c04a
CM
218#endif
219
d352ac68
CM
220/*
221 * extents on the btree inode are pretty simple, there's one extent
222 * that covers the entire device
223 */
b2950863 224static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 225 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 226 int create)
7eccb903 227{
5f39d397
CM
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
890871be 232 read_lock(&em_tree->lock);
d1310b2e 233 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
234 if (em) {
235 em->bdev =
236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 237 read_unlock(&em_tree->lock);
5f39d397 238 goto out;
a061fc8d 239 }
890871be 240 read_unlock(&em_tree->lock);
7b13b7b1 241
172ddd60 242 em = alloc_extent_map();
5f39d397
CM
243 if (!em) {
244 em = ERR_PTR(-ENOMEM);
245 goto out;
246 }
247 em->start = 0;
0afbaf8c 248 em->len = (u64)-1;
c8b97818 249 em->block_len = (u64)-1;
5f39d397 250 em->block_start = 0;
a061fc8d 251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 252
890871be 253 write_lock(&em_tree->lock);
09a2a8f9 254 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
255 if (ret == -EEXIST) {
256 free_extent_map(em);
7b13b7b1 257 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 258 if (!em)
0433f20d 259 em = ERR_PTR(-EIO);
5f39d397 260 } else if (ret) {
7b13b7b1 261 free_extent_map(em);
0433f20d 262 em = ERR_PTR(ret);
5f39d397 263 }
890871be 264 write_unlock(&em_tree->lock);
7b13b7b1 265
5f39d397
CM
266out:
267 return em;
7eccb903
CM
268}
269
b0496686 270u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 271{
0b947aff 272 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
273}
274
275void btrfs_csum_final(u32 crc, char *result)
276{
7e75bf3f 277 put_unaligned_le32(~crc, result);
19c00ddc
CM
278}
279
d352ac68
CM
280/*
281 * compute the csum for a btree block, and either verify it or write it
282 * into the csum field of the block.
283 */
01d58472
DD
284static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 struct extent_buffer *buf,
19c00ddc
CM
286 int verify)
287{
01d58472 288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 289 char *result = NULL;
19c00ddc
CM
290 unsigned long len;
291 unsigned long cur_len;
292 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
293 char *kaddr;
294 unsigned long map_start;
295 unsigned long map_len;
296 int err;
297 u32 crc = ~(u32)0;
607d432d 298 unsigned long inline_result;
19c00ddc
CM
299
300 len = buf->len - offset;
d397712b 301 while (len > 0) {
19c00ddc 302 err = map_private_extent_buffer(buf, offset, 32,
a6591715 303 &kaddr, &map_start, &map_len);
d397712b 304 if (err)
8bd98f0e 305 return err;
19c00ddc 306 cur_len = min(len, map_len - (offset - map_start));
b0496686 307 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
19c00ddc 311 }
607d432d 312 if (csum_size > sizeof(inline_result)) {
31e818fe 313 result = kzalloc(csum_size, GFP_NOFS);
607d432d 314 if (!result)
8bd98f0e 315 return -ENOMEM;
607d432d
JB
316 } else {
317 result = (char *)&inline_result;
318 }
319
19c00ddc
CM
320 btrfs_csum_final(crc, result);
321
322 if (verify) {
607d432d 323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
324 u32 val;
325 u32 found = 0;
607d432d 326 memcpy(&found, result, csum_size);
e4204ded 327
607d432d 328 read_extent_buffer(buf, &val, 0, csum_size);
94647322
DS
329 btrfs_warn_rl(fs_info,
330 "%s checksum verify failed on %llu wanted %X found %X "
331 "level %d",
01d58472 332 fs_info->sb->s_id, buf->start,
efe120a0 333 val, found, btrfs_header_level(buf));
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
8bd98f0e 336 return -EUCLEAN;
19c00ddc
CM
337 }
338 } else {
607d432d 339 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 340 }
607d432d
JB
341 if (result != (char *)&inline_result)
342 kfree(result);
19c00ddc
CM
343 return 0;
344}
345
d352ac68
CM
346/*
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
351 */
1259ab75 352static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
353 struct extent_buffer *eb, u64 parent_transid,
354 int atomic)
1259ab75 355{
2ac55d41 356 struct extent_state *cached_state = NULL;
1259ab75 357 int ret;
2755a0de 358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
359
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 return 0;
362
b9fab919
CM
363 if (atomic)
364 return -EAGAIN;
365
a26e8c9f
JB
366 if (need_lock) {
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 }
370
2ac55d41 371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 372 &cached_state);
0b32f4bb 373 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
374 btrfs_header_generation(eb) == parent_transid) {
375 ret = 0;
376 goto out;
377 }
94647322
DS
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
380 eb->start,
29549aec 381 parent_transid, btrfs_header_generation(eb));
1259ab75 382 ret = 1;
a26e8c9f
JB
383
384 /*
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
01327610 387 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
391 */
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
33958dc6 394out:
2ac55d41
JB
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
472b909f
JB
397 if (need_lock)
398 btrfs_tree_read_unlock_blocking(eb);
1259ab75 399 return ret;
1259ab75
CM
400}
401
1104a885
DS
402/*
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
405 */
406static int btrfs_check_super_csum(char *raw_disk_sb)
407{
408 struct btrfs_super_block *disk_sb =
409 (struct btrfs_super_block *)raw_disk_sb;
410 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 int ret = 0;
412
413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 u32 crc = ~(u32)0;
415 const int csum_size = sizeof(crc);
416 char result[csum_size];
417
418 /*
419 * The super_block structure does not span the whole
420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 421 * is filled with zeros and is included in the checksum.
1104a885
DS
422 */
423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 btrfs_csum_final(crc, result);
426
427 if (memcmp(raw_disk_sb, result, csum_size))
428 ret = 1;
429 }
430
431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
433 csum_type);
434 ret = 1;
435 }
436
437 return ret;
438}
439
d352ac68
CM
440/*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
443 */
f188591e
CM
444static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 struct extent_buffer *eb,
ca7a79ad 446 u64 start, u64 parent_transid)
f188591e
CM
447{
448 struct extent_io_tree *io_tree;
ea466794 449 int failed = 0;
f188591e
CM
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
ea466794 453 int failed_mirror = 0;
f188591e 454
a826d6dc 455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 while (1) {
bb82ab88
AJ
458 ret = read_extent_buffer_pages(io_tree, eb, start,
459 WAIT_COMPLETE,
f188591e 460 btree_get_extent, mirror_num);
256dd1bb
SB
461 if (!ret) {
462 if (!verify_parent_transid(io_tree, eb,
b9fab919 463 parent_transid, 0))
256dd1bb
SB
464 break;
465 else
466 ret = -EIO;
467 }
d397712b 468
a826d6dc
JB
469 /*
470 * This buffer's crc is fine, but its contents are corrupted, so
471 * there is no reason to read the other copies, they won't be
472 * any less wrong.
473 */
474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
475 break;
476
5d964051 477 num_copies = btrfs_num_copies(root->fs_info,
f188591e 478 eb->start, eb->len);
4235298e 479 if (num_copies == 1)
ea466794 480 break;
4235298e 481
5cf1ab56
JB
482 if (!failed_mirror) {
483 failed = 1;
484 failed_mirror = eb->read_mirror;
485 }
486
f188591e 487 mirror_num++;
ea466794
JB
488 if (mirror_num == failed_mirror)
489 mirror_num++;
490
4235298e 491 if (mirror_num > num_copies)
ea466794 492 break;
f188591e 493 }
ea466794 494
c0901581 495 if (failed && !ret && failed_mirror)
ea466794
JB
496 repair_eb_io_failure(root, eb, failed_mirror);
497
498 return ret;
f188591e 499}
19c00ddc 500
d352ac68 501/*
d397712b
CM
502 * checksum a dirty tree block before IO. This has extra checks to make sure
503 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 504 */
d397712b 505
01d58472 506static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 507{
4eee4fa4 508 u64 start = page_offset(page);
19c00ddc 509 u64 found_start;
19c00ddc 510 struct extent_buffer *eb;
f188591e 511
4f2de97a
JB
512 eb = (struct extent_buffer *)page->private;
513 if (page != eb->pages[0])
514 return 0;
0f805531 515
19c00ddc 516 found_start = btrfs_header_bytenr(eb);
0f805531
AL
517 /*
518 * Please do not consolidate these warnings into a single if.
519 * It is useful to know what went wrong.
520 */
521 if (WARN_ON(found_start != start))
522 return -EUCLEAN;
523 if (WARN_ON(!PageUptodate(page)))
524 return -EUCLEAN;
525
526 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
8bd98f0e 529 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
530}
531
01d58472 532static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
533 struct extent_buffer *eb)
534{
01d58472 535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
536 u8 fsid[BTRFS_UUID_SIZE];
537 int ret = 1;
538
0a4e5586 539 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
540 while (fs_devices) {
541 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 ret = 0;
543 break;
544 }
545 fs_devices = fs_devices->seed;
546 }
547 return ret;
548}
549
a826d6dc 550#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
551 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
552 "root=%llu, slot=%d", reason, \
c1c9ff7c 553 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
554
555static noinline int check_leaf(struct btrfs_root *root,
556 struct extent_buffer *leaf)
557{
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
1ba98d08
LB
563 if (nritems == 0) {
564 struct btrfs_root *check_root;
565
566 key.objectid = btrfs_header_owner(leaf);
567 key.type = BTRFS_ROOT_ITEM_KEY;
568 key.offset = (u64)-1;
569
570 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
571 /*
572 * The only reason we also check NULL here is that during
573 * open_ctree() some roots has not yet been set up.
574 */
575 if (!IS_ERR_OR_NULL(check_root)) {
576 /* if leaf is the root, then it's fine */
577 if (leaf->start !=
578 btrfs_root_bytenr(&check_root->root_item)) {
579 CORRUPT("non-root leaf's nritems is 0",
580 leaf, root, 0);
581 return -EIO;
582 }
583 }
a826d6dc 584 return 0;
1ba98d08 585 }
a826d6dc
JB
586
587 /* Check the 0 item */
588 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
589 BTRFS_LEAF_DATA_SIZE(root)) {
590 CORRUPT("invalid item offset size pair", leaf, root, 0);
591 return -EIO;
592 }
593
594 /*
595 * Check to make sure each items keys are in the correct order and their
596 * offsets make sense. We only have to loop through nritems-1 because
597 * we check the current slot against the next slot, which verifies the
598 * next slot's offset+size makes sense and that the current's slot
599 * offset is correct.
600 */
601 for (slot = 0; slot < nritems - 1; slot++) {
602 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
603 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
604
605 /* Make sure the keys are in the right order */
606 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
607 CORRUPT("bad key order", leaf, root, slot);
608 return -EIO;
609 }
610
611 /*
612 * Make sure the offset and ends are right, remember that the
613 * item data starts at the end of the leaf and grows towards the
614 * front.
615 */
616 if (btrfs_item_offset_nr(leaf, slot) !=
617 btrfs_item_end_nr(leaf, slot + 1)) {
618 CORRUPT("slot offset bad", leaf, root, slot);
619 return -EIO;
620 }
621
622 /*
623 * Check to make sure that we don't point outside of the leaf,
01327610 624 * just in case all the items are consistent to each other, but
a826d6dc
JB
625 * all point outside of the leaf.
626 */
627 if (btrfs_item_end_nr(leaf, slot) >
628 BTRFS_LEAF_DATA_SIZE(root)) {
629 CORRUPT("slot end outside of leaf", leaf, root, slot);
630 return -EIO;
631 }
632 }
633
634 return 0;
635}
636
053ab70f
LB
637static int check_node(struct btrfs_root *root, struct extent_buffer *node)
638{
639 unsigned long nr = btrfs_header_nritems(node);
640
641 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
642 btrfs_crit(root->fs_info,
643 "corrupt node: block %llu root %llu nritems %lu",
644 node->start, root->objectid, nr);
645 return -EIO;
646 }
647 return 0;
648}
649
facc8a22
MX
650static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
651 u64 phy_offset, struct page *page,
652 u64 start, u64 end, int mirror)
ce9adaa5 653{
ce9adaa5
CM
654 u64 found_start;
655 int found_level;
ce9adaa5
CM
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 658 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 659 int ret = 0;
727011e0 660 int reads_done;
ce9adaa5 661
ce9adaa5
CM
662 if (!page->private)
663 goto out;
d397712b 664
4f2de97a 665 eb = (struct extent_buffer *)page->private;
d397712b 666
0b32f4bb
JB
667 /* the pending IO might have been the only thing that kept this buffer
668 * in memory. Make sure we have a ref for all this other checks
669 */
670 extent_buffer_get(eb);
671
672 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
673 if (!reads_done)
674 goto err;
f188591e 675
5cf1ab56 676 eb->read_mirror = mirror;
656f30db 677 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
678 ret = -EIO;
679 goto err;
680 }
681
ce9adaa5 682 found_start = btrfs_header_bytenr(eb);
727011e0 683 if (found_start != eb->start) {
02873e43
ZL
684 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
685 found_start, eb->start);
f188591e 686 ret = -EIO;
ce9adaa5
CM
687 goto err;
688 }
02873e43
ZL
689 if (check_tree_block_fsid(fs_info, eb)) {
690 btrfs_err_rl(fs_info, "bad fsid on block %llu",
691 eb->start);
1259ab75
CM
692 ret = -EIO;
693 goto err;
694 }
ce9adaa5 695 found_level = btrfs_header_level(eb);
1c24c3ce 696 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
697 btrfs_err(fs_info, "bad tree block level %d",
698 (int)btrfs_header_level(eb));
1c24c3ce
JB
699 ret = -EIO;
700 goto err;
701 }
ce9adaa5 702
85d4e461
CM
703 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
704 eb, found_level);
4008c04a 705
02873e43 706 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 707 if (ret)
a826d6dc 708 goto err;
a826d6dc
JB
709
710 /*
711 * If this is a leaf block and it is corrupt, set the corrupt bit so
712 * that we don't try and read the other copies of this block, just
713 * return -EIO.
714 */
715 if (found_level == 0 && check_leaf(root, eb)) {
716 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
717 ret = -EIO;
718 }
ce9adaa5 719
053ab70f
LB
720 if (found_level > 0 && check_node(root, eb))
721 ret = -EIO;
722
0b32f4bb
JB
723 if (!ret)
724 set_extent_buffer_uptodate(eb);
ce9adaa5 725err:
79fb65a1
JB
726 if (reads_done &&
727 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 728 btree_readahead_hook(fs_info, eb, eb->start, ret);
4bb31e92 729
53b381b3
DW
730 if (ret) {
731 /*
732 * our io error hook is going to dec the io pages
733 * again, we have to make sure it has something
734 * to decrement
735 */
736 atomic_inc(&eb->io_pages);
0b32f4bb 737 clear_extent_buffer_uptodate(eb);
53b381b3 738 }
0b32f4bb 739 free_extent_buffer(eb);
ce9adaa5 740out:
f188591e 741 return ret;
ce9adaa5
CM
742}
743
ea466794 744static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 745{
4bb31e92 746 struct extent_buffer *eb;
4bb31e92 747
4f2de97a 748 eb = (struct extent_buffer *)page->private;
656f30db 749 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 750 eb->read_mirror = failed_mirror;
53b381b3 751 atomic_dec(&eb->io_pages);
ea466794 752 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
02873e43 753 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
4bb31e92
AJ
754 return -EIO; /* we fixed nothing */
755}
756
4246a0b6 757static void end_workqueue_bio(struct bio *bio)
ce9adaa5 758{
97eb6b69 759 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 760 struct btrfs_fs_info *fs_info;
9e0af237
LB
761 struct btrfs_workqueue *wq;
762 btrfs_work_func_t func;
ce9adaa5 763
ce9adaa5 764 fs_info = end_io_wq->info;
4246a0b6 765 end_io_wq->error = bio->bi_error;
d20f7043 766
7b6d91da 767 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
768 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
769 wq = fs_info->endio_meta_write_workers;
770 func = btrfs_endio_meta_write_helper;
771 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
772 wq = fs_info->endio_freespace_worker;
773 func = btrfs_freespace_write_helper;
774 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
775 wq = fs_info->endio_raid56_workers;
776 func = btrfs_endio_raid56_helper;
777 } else {
778 wq = fs_info->endio_write_workers;
779 func = btrfs_endio_write_helper;
780 }
d20f7043 781 } else {
8b110e39
MX
782 if (unlikely(end_io_wq->metadata ==
783 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
784 wq = fs_info->endio_repair_workers;
785 func = btrfs_endio_repair_helper;
786 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
787 wq = fs_info->endio_raid56_workers;
788 func = btrfs_endio_raid56_helper;
789 } else if (end_io_wq->metadata) {
790 wq = fs_info->endio_meta_workers;
791 func = btrfs_endio_meta_helper;
792 } else {
793 wq = fs_info->endio_workers;
794 func = btrfs_endio_helper;
795 }
d20f7043 796 }
9e0af237
LB
797
798 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
799 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
800}
801
22c59948 802int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 803 enum btrfs_wq_endio_type metadata)
0b86a832 804{
97eb6b69 805 struct btrfs_end_io_wq *end_io_wq;
8b110e39 806
97eb6b69 807 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
808 if (!end_io_wq)
809 return -ENOMEM;
810
811 end_io_wq->private = bio->bi_private;
812 end_io_wq->end_io = bio->bi_end_io;
22c59948 813 end_io_wq->info = info;
ce9adaa5
CM
814 end_io_wq->error = 0;
815 end_io_wq->bio = bio;
22c59948 816 end_io_wq->metadata = metadata;
ce9adaa5
CM
817
818 bio->bi_private = end_io_wq;
819 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
820 return 0;
821}
822
b64a2851 823unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 824{
4854ddd0 825 unsigned long limit = min_t(unsigned long,
5cdc7ad3 826 info->thread_pool_size,
4854ddd0
CM
827 info->fs_devices->open_devices);
828 return 256 * limit;
829}
0986fe9e 830
4a69a410
CM
831static void run_one_async_start(struct btrfs_work *work)
832{
4a69a410 833 struct async_submit_bio *async;
79787eaa 834 int ret;
4a69a410
CM
835
836 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
837 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
838 async->mirror_num, async->bio_flags,
839 async->bio_offset);
840 if (ret)
841 async->error = ret;
4a69a410
CM
842}
843
844static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
845{
846 struct btrfs_fs_info *fs_info;
847 struct async_submit_bio *async;
4854ddd0 848 int limit;
8b712842
CM
849
850 async = container_of(work, struct async_submit_bio, work);
851 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 852
b64a2851 853 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
854 limit = limit * 2 / 3;
855
ee863954
DS
856 /*
857 * atomic_dec_return implies a barrier for waitqueue_active
858 */
66657b31 859 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 860 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
861 wake_up(&fs_info->async_submit_wait);
862
bb7ab3b9 863 /* If an error occurred we just want to clean up the bio and move on */
79787eaa 864 if (async->error) {
4246a0b6
CH
865 async->bio->bi_error = async->error;
866 bio_endio(async->bio);
79787eaa
JM
867 return;
868 }
869
4a69a410 870 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
871 async->mirror_num, async->bio_flags,
872 async->bio_offset);
4a69a410
CM
873}
874
875static void run_one_async_free(struct btrfs_work *work)
876{
877 struct async_submit_bio *async;
878
879 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
880 kfree(async);
881}
882
44b8bd7e
CM
883int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
884 int rw, struct bio *bio, int mirror_num,
c8b97818 885 unsigned long bio_flags,
eaf25d93 886 u64 bio_offset,
4a69a410
CM
887 extent_submit_bio_hook_t *submit_bio_start,
888 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
889{
890 struct async_submit_bio *async;
891
892 async = kmalloc(sizeof(*async), GFP_NOFS);
893 if (!async)
894 return -ENOMEM;
895
896 async->inode = inode;
897 async->rw = rw;
898 async->bio = bio;
899 async->mirror_num = mirror_num;
4a69a410
CM
900 async->submit_bio_start = submit_bio_start;
901 async->submit_bio_done = submit_bio_done;
902
9e0af237 903 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 904 run_one_async_done, run_one_async_free);
4a69a410 905
c8b97818 906 async->bio_flags = bio_flags;
eaf25d93 907 async->bio_offset = bio_offset;
8c8bee1d 908
79787eaa
JM
909 async->error = 0;
910
cb03c743 911 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 912
7b6d91da 913 if (rw & REQ_SYNC)
5cdc7ad3 914 btrfs_set_work_high_priority(&async->work);
d313d7a3 915
5cdc7ad3 916 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 917
d397712b 918 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
919 atomic_read(&fs_info->nr_async_submits)) {
920 wait_event(fs_info->async_submit_wait,
921 (atomic_read(&fs_info->nr_async_submits) == 0));
922 }
923
44b8bd7e
CM
924 return 0;
925}
926
ce3ed71a
CM
927static int btree_csum_one_bio(struct bio *bio)
928{
2c30c71b 929 struct bio_vec *bvec;
ce3ed71a 930 struct btrfs_root *root;
2c30c71b 931 int i, ret = 0;
ce3ed71a 932
2c30c71b 933 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 934 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 935 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
936 if (ret)
937 break;
ce3ed71a 938 }
2c30c71b 939
79787eaa 940 return ret;
ce3ed71a
CM
941}
942
4a69a410
CM
943static int __btree_submit_bio_start(struct inode *inode, int rw,
944 struct bio *bio, int mirror_num,
eaf25d93
CM
945 unsigned long bio_flags,
946 u64 bio_offset)
22c59948 947{
8b712842
CM
948 /*
949 * when we're called for a write, we're already in the async
5443be45 950 * submission context. Just jump into btrfs_map_bio
8b712842 951 */
79787eaa 952 return btree_csum_one_bio(bio);
4a69a410 953}
22c59948 954
4a69a410 955static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
956 int mirror_num, unsigned long bio_flags,
957 u64 bio_offset)
4a69a410 958{
61891923
SB
959 int ret;
960
8b712842 961 /*
4a69a410
CM
962 * when we're called for a write, we're already in the async
963 * submission context. Just jump into btrfs_map_bio
8b712842 964 */
61891923 965 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
966 if (ret) {
967 bio->bi_error = ret;
968 bio_endio(bio);
969 }
61891923 970 return ret;
0b86a832
CM
971}
972
de0022b9
JB
973static int check_async_write(struct inode *inode, unsigned long bio_flags)
974{
975 if (bio_flags & EXTENT_BIO_TREE_LOG)
976 return 0;
977#ifdef CONFIG_X86
bc696ca0 978 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
979 return 0;
980#endif
981 return 1;
982}
983
44b8bd7e 984static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
985 int mirror_num, unsigned long bio_flags,
986 u64 bio_offset)
44b8bd7e 987{
de0022b9 988 int async = check_async_write(inode, bio_flags);
cad321ad
CM
989 int ret;
990
7b6d91da 991 if (!(rw & REQ_WRITE)) {
4a69a410
CM
992 /*
993 * called for a read, do the setup so that checksum validation
994 * can happen in the async kernel threads
995 */
f3f266ab 996 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 997 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 998 if (ret)
61891923
SB
999 goto out_w_error;
1000 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
1001 mirror_num, 0);
de0022b9
JB
1002 } else if (!async) {
1003 ret = btree_csum_one_bio(bio);
1004 if (ret)
61891923
SB
1005 goto out_w_error;
1006 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
1007 mirror_num, 0);
1008 } else {
1009 /*
1010 * kthread helpers are used to submit writes so that
1011 * checksumming can happen in parallel across all CPUs
1012 */
1013 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1014 inode, rw, bio, mirror_num, 0,
1015 bio_offset,
1016 __btree_submit_bio_start,
1017 __btree_submit_bio_done);
44b8bd7e 1018 }
d313d7a3 1019
4246a0b6
CH
1020 if (ret)
1021 goto out_w_error;
1022 return 0;
1023
61891923 1024out_w_error:
4246a0b6
CH
1025 bio->bi_error = ret;
1026 bio_endio(bio);
61891923 1027 return ret;
44b8bd7e
CM
1028}
1029
3dd1462e 1030#ifdef CONFIG_MIGRATION
784b4e29 1031static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
1032 struct page *newpage, struct page *page,
1033 enum migrate_mode mode)
784b4e29
CM
1034{
1035 /*
1036 * we can't safely write a btree page from here,
1037 * we haven't done the locking hook
1038 */
1039 if (PageDirty(page))
1040 return -EAGAIN;
1041 /*
1042 * Buffers may be managed in a filesystem specific way.
1043 * We must have no buffers or drop them.
1044 */
1045 if (page_has_private(page) &&
1046 !try_to_release_page(page, GFP_KERNEL))
1047 return -EAGAIN;
a6bc32b8 1048 return migrate_page(mapping, newpage, page, mode);
784b4e29 1049}
3dd1462e 1050#endif
784b4e29 1051
0da5468f
CM
1052
1053static int btree_writepages(struct address_space *mapping,
1054 struct writeback_control *wbc)
1055{
e2d84521
MX
1056 struct btrfs_fs_info *fs_info;
1057 int ret;
1058
d8d5f3e1 1059 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1060
1061 if (wbc->for_kupdate)
1062 return 0;
1063
e2d84521 1064 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1065 /* this is a bit racy, but that's ok */
e2d84521
MX
1066 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1067 BTRFS_DIRTY_METADATA_THRESH);
1068 if (ret < 0)
793955bc 1069 return 0;
793955bc 1070 }
0b32f4bb 1071 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1072}
1073
b2950863 1074static int btree_readpage(struct file *file, struct page *page)
5f39d397 1075{
d1310b2e
CM
1076 struct extent_io_tree *tree;
1077 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1078 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1079}
22b0ebda 1080
70dec807 1081static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1082{
98509cfc 1083 if (PageWriteback(page) || PageDirty(page))
d397712b 1084 return 0;
0c4e538b 1085
f7a52a40 1086 return try_release_extent_buffer(page);
d98237b3
CM
1087}
1088
d47992f8
LC
1089static void btree_invalidatepage(struct page *page, unsigned int offset,
1090 unsigned int length)
d98237b3 1091{
d1310b2e
CM
1092 struct extent_io_tree *tree;
1093 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1094 extent_invalidatepage(tree, page, offset);
1095 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1096 if (PagePrivate(page)) {
efe120a0
FH
1097 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1098 "page private not zero on page %llu",
1099 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1100 ClearPagePrivate(page);
1101 set_page_private(page, 0);
09cbfeaf 1102 put_page(page);
9ad6b7bc 1103 }
d98237b3
CM
1104}
1105
0b32f4bb
JB
1106static int btree_set_page_dirty(struct page *page)
1107{
bb146eb2 1108#ifdef DEBUG
0b32f4bb
JB
1109 struct extent_buffer *eb;
1110
1111 BUG_ON(!PagePrivate(page));
1112 eb = (struct extent_buffer *)page->private;
1113 BUG_ON(!eb);
1114 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1115 BUG_ON(!atomic_read(&eb->refs));
1116 btrfs_assert_tree_locked(eb);
bb146eb2 1117#endif
0b32f4bb
JB
1118 return __set_page_dirty_nobuffers(page);
1119}
1120
7f09410b 1121static const struct address_space_operations btree_aops = {
d98237b3 1122 .readpage = btree_readpage,
0da5468f 1123 .writepages = btree_writepages,
5f39d397
CM
1124 .releasepage = btree_releasepage,
1125 .invalidatepage = btree_invalidatepage,
5a92bc88 1126#ifdef CONFIG_MIGRATION
784b4e29 1127 .migratepage = btree_migratepage,
5a92bc88 1128#endif
0b32f4bb 1129 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1130};
1131
d3e46fea 1132void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1133{
5f39d397
CM
1134 struct extent_buffer *buf = NULL;
1135 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1136
a83fffb7 1137 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1138 if (IS_ERR(buf))
6197d86e 1139 return;
d1310b2e 1140 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1141 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1142 free_extent_buffer(buf);
090d1875
CM
1143}
1144
c0dcaa4d 1145int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1146 int mirror_num, struct extent_buffer **eb)
1147{
1148 struct extent_buffer *buf = NULL;
1149 struct inode *btree_inode = root->fs_info->btree_inode;
1150 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1151 int ret;
1152
a83fffb7 1153 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2 1154 if (IS_ERR(buf))
ab0fff03
AJ
1155 return 0;
1156
1157 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1158
1159 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1160 btree_get_extent, mirror_num);
1161 if (ret) {
1162 free_extent_buffer(buf);
1163 return ret;
1164 }
1165
1166 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1167 free_extent_buffer(buf);
1168 return -EIO;
0b32f4bb 1169 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1170 *eb = buf;
1171 } else {
1172 free_extent_buffer(buf);
1173 }
1174 return 0;
1175}
1176
01d58472 1177struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1178 u64 bytenr)
0999df54 1179{
01d58472 1180 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1181}
1182
1183struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1184 u64 bytenr)
0999df54 1185{
f5ee5c9a 1186 if (btrfs_is_testing(root->fs_info))
b9ef22de
FX
1187 return alloc_test_extent_buffer(root->fs_info, bytenr,
1188 root->nodesize);
ce3e6984 1189 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1190}
1191
1192
e02119d5
CM
1193int btrfs_write_tree_block(struct extent_buffer *buf)
1194{
727011e0 1195 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1196 buf->start + buf->len - 1);
e02119d5
CM
1197}
1198
1199int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1200{
727011e0 1201 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1202 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1203}
1204
0999df54 1205struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1206 u64 parent_transid)
0999df54
CM
1207{
1208 struct extent_buffer *buf = NULL;
0999df54
CM
1209 int ret;
1210
a83fffb7 1211 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
1212 if (IS_ERR(buf))
1213 return buf;
0999df54 1214
ca7a79ad 1215 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1216 if (ret) {
1217 free_extent_buffer(buf);
64c043de 1218 return ERR_PTR(ret);
0f0fe8f7 1219 }
5f39d397 1220 return buf;
ce9adaa5 1221
eb60ceac
CM
1222}
1223
01d58472
DD
1224void clean_tree_block(struct btrfs_trans_handle *trans,
1225 struct btrfs_fs_info *fs_info,
d5c13f92 1226 struct extent_buffer *buf)
ed2ff2cb 1227{
55c69072 1228 if (btrfs_header_generation(buf) ==
e2d84521 1229 fs_info->running_transaction->transid) {
b9447ef8 1230 btrfs_assert_tree_locked(buf);
b4ce94de 1231
b9473439 1232 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1233 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1234 -buf->len,
1235 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1236 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1237 btrfs_set_lock_blocking(buf);
1238 clear_extent_buffer_dirty(buf);
1239 }
925baedd 1240 }
5f39d397
CM
1241}
1242
8257b2dc
MX
1243static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1244{
1245 struct btrfs_subvolume_writers *writers;
1246 int ret;
1247
1248 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1249 if (!writers)
1250 return ERR_PTR(-ENOMEM);
1251
908c7f19 1252 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1253 if (ret < 0) {
1254 kfree(writers);
1255 return ERR_PTR(ret);
1256 }
1257
1258 init_waitqueue_head(&writers->wait);
1259 return writers;
1260}
1261
1262static void
1263btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1264{
1265 percpu_counter_destroy(&writers->counter);
1266 kfree(writers);
1267}
1268
707e8a07
DS
1269static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1270 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1271 u64 objectid)
d97e63b6 1272{
7c0260ee 1273 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1274 root->node = NULL;
a28ec197 1275 root->commit_root = NULL;
db94535d
CM
1276 root->sectorsize = sectorsize;
1277 root->nodesize = nodesize;
87ee04eb 1278 root->stripesize = stripesize;
27cdeb70 1279 root->state = 0;
d68fc57b 1280 root->orphan_cleanup_state = 0;
0b86a832 1281
0f7d52f4
CM
1282 root->objectid = objectid;
1283 root->last_trans = 0;
13a8a7c8 1284 root->highest_objectid = 0;
eb73c1b7 1285 root->nr_delalloc_inodes = 0;
199c2a9c 1286 root->nr_ordered_extents = 0;
58176a96 1287 root->name = NULL;
6bef4d31 1288 root->inode_tree = RB_ROOT;
16cdcec7 1289 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1290 root->block_rsv = NULL;
d68fc57b 1291 root->orphan_block_rsv = NULL;
0b86a832
CM
1292
1293 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1294 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1295 INIT_LIST_HEAD(&root->delalloc_inodes);
1296 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1297 INIT_LIST_HEAD(&root->ordered_extents);
1298 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1299 INIT_LIST_HEAD(&root->logged_list[0]);
1300 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1301 spin_lock_init(&root->orphan_lock);
5d4f98a2 1302 spin_lock_init(&root->inode_lock);
eb73c1b7 1303 spin_lock_init(&root->delalloc_lock);
199c2a9c 1304 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1305 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1306 spin_lock_init(&root->log_extents_lock[0]);
1307 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1308 mutex_init(&root->objectid_mutex);
e02119d5 1309 mutex_init(&root->log_mutex);
31f3d255 1310 mutex_init(&root->ordered_extent_mutex);
573bfb72 1311 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1312 init_waitqueue_head(&root->log_writer_wait);
1313 init_waitqueue_head(&root->log_commit_wait[0]);
1314 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1315 INIT_LIST_HEAD(&root->log_ctxs[0]);
1316 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1317 atomic_set(&root->log_commit[0], 0);
1318 atomic_set(&root->log_commit[1], 0);
1319 atomic_set(&root->log_writers, 0);
2ecb7923 1320 atomic_set(&root->log_batch, 0);
8a35d95f 1321 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1322 atomic_set(&root->refs, 1);
8257b2dc 1323 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1324 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1325 root->log_transid = 0;
d1433deb 1326 root->log_transid_committed = -1;
257c62e1 1327 root->last_log_commit = 0;
7c0260ee 1328 if (!dummy)
06ea65a3
JB
1329 extent_io_tree_init(&root->dirty_log_pages,
1330 fs_info->btree_inode->i_mapping);
017e5369 1331
3768f368
CM
1332 memset(&root->root_key, 0, sizeof(root->root_key));
1333 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1334 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1335 if (!dummy)
06ea65a3
JB
1336 root->defrag_trans_start = fs_info->generation;
1337 else
1338 root->defrag_trans_start = 0;
4d775673 1339 root->root_key.objectid = objectid;
0ee5dc67 1340 root->anon_dev = 0;
8ea05e3a 1341
5f3ab90a 1342 spin_lock_init(&root->root_item_lock);
3768f368
CM
1343}
1344
74e4d827
DS
1345static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1346 gfp_t flags)
6f07e42e 1347{
74e4d827 1348 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1349 if (root)
1350 root->fs_info = fs_info;
1351 return root;
1352}
1353
06ea65a3
JB
1354#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1355/* Should only be used by the testing infrastructure */
7c0260ee
JM
1356struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1357 u32 sectorsize, u32 nodesize)
06ea65a3
JB
1358{
1359 struct btrfs_root *root;
1360
7c0260ee
JM
1361 if (!fs_info)
1362 return ERR_PTR(-EINVAL);
1363
1364 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1365 if (!root)
1366 return ERR_PTR(-ENOMEM);
b9ef22de 1367 /* We don't use the stripesize in selftest, set it as sectorsize */
7c0260ee 1368 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
ef9f2db3 1369 BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1370 root->alloc_bytenr = 0;
06ea65a3
JB
1371
1372 return root;
1373}
1374#endif
1375
20897f5c
AJ
1376struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1377 struct btrfs_fs_info *fs_info,
1378 u64 objectid)
1379{
1380 struct extent_buffer *leaf;
1381 struct btrfs_root *tree_root = fs_info->tree_root;
1382 struct btrfs_root *root;
1383 struct btrfs_key key;
1384 int ret = 0;
6463fe58 1385 uuid_le uuid;
20897f5c 1386
74e4d827 1387 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1388 if (!root)
1389 return ERR_PTR(-ENOMEM);
1390
707e8a07
DS
1391 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1392 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1393 root->root_key.objectid = objectid;
1394 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1395 root->root_key.offset = 0;
1396
4d75f8a9 1397 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1398 if (IS_ERR(leaf)) {
1399 ret = PTR_ERR(leaf);
1dd05682 1400 leaf = NULL;
20897f5c
AJ
1401 goto fail;
1402 }
1403
20897f5c
AJ
1404 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1405 btrfs_set_header_bytenr(leaf, leaf->start);
1406 btrfs_set_header_generation(leaf, trans->transid);
1407 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1408 btrfs_set_header_owner(leaf, objectid);
1409 root->node = leaf;
1410
0a4e5586 1411 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1412 BTRFS_FSID_SIZE);
1413 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1414 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1415 BTRFS_UUID_SIZE);
1416 btrfs_mark_buffer_dirty(leaf);
1417
1418 root->commit_root = btrfs_root_node(root);
27cdeb70 1419 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1420
1421 root->root_item.flags = 0;
1422 root->root_item.byte_limit = 0;
1423 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1424 btrfs_set_root_generation(&root->root_item, trans->transid);
1425 btrfs_set_root_level(&root->root_item, 0);
1426 btrfs_set_root_refs(&root->root_item, 1);
1427 btrfs_set_root_used(&root->root_item, leaf->len);
1428 btrfs_set_root_last_snapshot(&root->root_item, 0);
1429 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1430 uuid_le_gen(&uuid);
1431 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1432 root->root_item.drop_level = 0;
1433
1434 key.objectid = objectid;
1435 key.type = BTRFS_ROOT_ITEM_KEY;
1436 key.offset = 0;
1437 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1438 if (ret)
1439 goto fail;
1440
1441 btrfs_tree_unlock(leaf);
1442
1dd05682
TI
1443 return root;
1444
20897f5c 1445fail:
1dd05682
TI
1446 if (leaf) {
1447 btrfs_tree_unlock(leaf);
59885b39 1448 free_extent_buffer(root->commit_root);
1dd05682
TI
1449 free_extent_buffer(leaf);
1450 }
1451 kfree(root);
20897f5c 1452
1dd05682 1453 return ERR_PTR(ret);
20897f5c
AJ
1454}
1455
7237f183
YZ
1456static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1457 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1458{
1459 struct btrfs_root *root;
1460 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1461 struct extent_buffer *leaf;
e02119d5 1462
74e4d827 1463 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1464 if (!root)
7237f183 1465 return ERR_PTR(-ENOMEM);
e02119d5 1466
707e8a07
DS
1467 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1468 tree_root->stripesize, root, fs_info,
1469 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1470
1471 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1472 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1473 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1474
7237f183 1475 /*
27cdeb70
MX
1476 * DON'T set REF_COWS for log trees
1477 *
7237f183
YZ
1478 * log trees do not get reference counted because they go away
1479 * before a real commit is actually done. They do store pointers
1480 * to file data extents, and those reference counts still get
1481 * updated (along with back refs to the log tree).
1482 */
e02119d5 1483
4d75f8a9
DS
1484 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1485 NULL, 0, 0, 0);
7237f183
YZ
1486 if (IS_ERR(leaf)) {
1487 kfree(root);
1488 return ERR_CAST(leaf);
1489 }
e02119d5 1490
5d4f98a2
YZ
1491 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1492 btrfs_set_header_bytenr(leaf, leaf->start);
1493 btrfs_set_header_generation(leaf, trans->transid);
1494 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1495 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1496 root->node = leaf;
e02119d5
CM
1497
1498 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1499 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1500 btrfs_mark_buffer_dirty(root->node);
1501 btrfs_tree_unlock(root->node);
7237f183
YZ
1502 return root;
1503}
1504
1505int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1506 struct btrfs_fs_info *fs_info)
1507{
1508 struct btrfs_root *log_root;
1509
1510 log_root = alloc_log_tree(trans, fs_info);
1511 if (IS_ERR(log_root))
1512 return PTR_ERR(log_root);
1513 WARN_ON(fs_info->log_root_tree);
1514 fs_info->log_root_tree = log_root;
1515 return 0;
1516}
1517
1518int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1519 struct btrfs_root *root)
1520{
1521 struct btrfs_root *log_root;
1522 struct btrfs_inode_item *inode_item;
1523
1524 log_root = alloc_log_tree(trans, root->fs_info);
1525 if (IS_ERR(log_root))
1526 return PTR_ERR(log_root);
1527
1528 log_root->last_trans = trans->transid;
1529 log_root->root_key.offset = root->root_key.objectid;
1530
1531 inode_item = &log_root->root_item.inode;
3cae210f
QW
1532 btrfs_set_stack_inode_generation(inode_item, 1);
1533 btrfs_set_stack_inode_size(inode_item, 3);
1534 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1535 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1536 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1537
5d4f98a2 1538 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1539
1540 WARN_ON(root->log_root);
1541 root->log_root = log_root;
1542 root->log_transid = 0;
d1433deb 1543 root->log_transid_committed = -1;
257c62e1 1544 root->last_log_commit = 0;
e02119d5
CM
1545 return 0;
1546}
1547
35a3621b
SB
1548static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1549 struct btrfs_key *key)
e02119d5
CM
1550{
1551 struct btrfs_root *root;
1552 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1553 struct btrfs_path *path;
84234f3a 1554 u64 generation;
cb517eab 1555 int ret;
0f7d52f4 1556
cb517eab
MX
1557 path = btrfs_alloc_path();
1558 if (!path)
0f7d52f4 1559 return ERR_PTR(-ENOMEM);
cb517eab 1560
74e4d827 1561 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1562 if (!root) {
1563 ret = -ENOMEM;
1564 goto alloc_fail;
0f7d52f4
CM
1565 }
1566
707e8a07
DS
1567 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1568 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1569
cb517eab
MX
1570 ret = btrfs_find_root(tree_root, key, path,
1571 &root->root_item, &root->root_key);
0f7d52f4 1572 if (ret) {
13a8a7c8
YZ
1573 if (ret > 0)
1574 ret = -ENOENT;
cb517eab 1575 goto find_fail;
0f7d52f4 1576 }
13a8a7c8 1577
84234f3a 1578 generation = btrfs_root_generation(&root->root_item);
db94535d 1579 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1580 generation);
64c043de
LB
1581 if (IS_ERR(root->node)) {
1582 ret = PTR_ERR(root->node);
cb517eab
MX
1583 goto find_fail;
1584 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1585 ret = -EIO;
64c043de
LB
1586 free_extent_buffer(root->node);
1587 goto find_fail;
416bc658 1588 }
5d4f98a2 1589 root->commit_root = btrfs_root_node(root);
13a8a7c8 1590out:
cb517eab
MX
1591 btrfs_free_path(path);
1592 return root;
1593
cb517eab
MX
1594find_fail:
1595 kfree(root);
1596alloc_fail:
1597 root = ERR_PTR(ret);
1598 goto out;
1599}
1600
1601struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1602 struct btrfs_key *location)
1603{
1604 struct btrfs_root *root;
1605
1606 root = btrfs_read_tree_root(tree_root, location);
1607 if (IS_ERR(root))
1608 return root;
1609
1610 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1611 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1612 btrfs_check_and_init_root_item(&root->root_item);
1613 }
13a8a7c8 1614
5eda7b5e
CM
1615 return root;
1616}
1617
cb517eab
MX
1618int btrfs_init_fs_root(struct btrfs_root *root)
1619{
1620 int ret;
8257b2dc 1621 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1622
1623 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1624 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1625 GFP_NOFS);
1626 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1627 ret = -ENOMEM;
1628 goto fail;
1629 }
1630
8257b2dc
MX
1631 writers = btrfs_alloc_subvolume_writers();
1632 if (IS_ERR(writers)) {
1633 ret = PTR_ERR(writers);
1634 goto fail;
1635 }
1636 root->subv_writers = writers;
1637
cb517eab 1638 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1639 spin_lock_init(&root->ino_cache_lock);
1640 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1641
1642 ret = get_anon_bdev(&root->anon_dev);
1643 if (ret)
876d2cf1 1644 goto fail;
f32e48e9
CR
1645
1646 mutex_lock(&root->objectid_mutex);
1647 ret = btrfs_find_highest_objectid(root,
1648 &root->highest_objectid);
1649 if (ret) {
1650 mutex_unlock(&root->objectid_mutex);
876d2cf1 1651 goto fail;
f32e48e9
CR
1652 }
1653
1654 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1655
1656 mutex_unlock(&root->objectid_mutex);
1657
cb517eab
MX
1658 return 0;
1659fail:
876d2cf1 1660 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1661 return ret;
1662}
1663
35bbb97f
JM
1664struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1665 u64 root_id)
cb517eab
MX
1666{
1667 struct btrfs_root *root;
1668
1669 spin_lock(&fs_info->fs_roots_radix_lock);
1670 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1671 (unsigned long)root_id);
1672 spin_unlock(&fs_info->fs_roots_radix_lock);
1673 return root;
1674}
1675
1676int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1677 struct btrfs_root *root)
1678{
1679 int ret;
1680
e1860a77 1681 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1682 if (ret)
1683 return ret;
1684
1685 spin_lock(&fs_info->fs_roots_radix_lock);
1686 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1687 (unsigned long)root->root_key.objectid,
1688 root);
1689 if (ret == 0)
27cdeb70 1690 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1691 spin_unlock(&fs_info->fs_roots_radix_lock);
1692 radix_tree_preload_end();
1693
1694 return ret;
1695}
1696
c00869f1
MX
1697struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1698 struct btrfs_key *location,
1699 bool check_ref)
5eda7b5e
CM
1700{
1701 struct btrfs_root *root;
381cf658 1702 struct btrfs_path *path;
1d4c08e0 1703 struct btrfs_key key;
5eda7b5e
CM
1704 int ret;
1705
edbd8d4e
CM
1706 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1707 return fs_info->tree_root;
1708 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1709 return fs_info->extent_root;
8f18cf13
CM
1710 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1711 return fs_info->chunk_root;
1712 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1713 return fs_info->dev_root;
0403e47e
YZ
1714 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1715 return fs_info->csum_root;
bcef60f2
AJ
1716 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1717 return fs_info->quota_root ? fs_info->quota_root :
1718 ERR_PTR(-ENOENT);
f7a81ea4
SB
1719 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1720 return fs_info->uuid_root ? fs_info->uuid_root :
1721 ERR_PTR(-ENOENT);
70f6d82e
OS
1722 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1723 return fs_info->free_space_root ? fs_info->free_space_root :
1724 ERR_PTR(-ENOENT);
4df27c4d 1725again:
cb517eab 1726 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1727 if (root) {
c00869f1 1728 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1729 return ERR_PTR(-ENOENT);
5eda7b5e 1730 return root;
48475471 1731 }
5eda7b5e 1732
cb517eab 1733 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1734 if (IS_ERR(root))
1735 return root;
3394e160 1736
c00869f1 1737 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1738 ret = -ENOENT;
581bb050 1739 goto fail;
35a30d7c 1740 }
581bb050 1741
cb517eab 1742 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1743 if (ret)
1744 goto fail;
3394e160 1745
381cf658
DS
1746 path = btrfs_alloc_path();
1747 if (!path) {
1748 ret = -ENOMEM;
1749 goto fail;
1750 }
1d4c08e0
DS
1751 key.objectid = BTRFS_ORPHAN_OBJECTID;
1752 key.type = BTRFS_ORPHAN_ITEM_KEY;
1753 key.offset = location->objectid;
1754
1755 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1756 btrfs_free_path(path);
d68fc57b
YZ
1757 if (ret < 0)
1758 goto fail;
1759 if (ret == 0)
27cdeb70 1760 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1761
cb517eab 1762 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1763 if (ret) {
4df27c4d
YZ
1764 if (ret == -EEXIST) {
1765 free_fs_root(root);
1766 goto again;
1767 }
1768 goto fail;
0f7d52f4 1769 }
edbd8d4e 1770 return root;
4df27c4d
YZ
1771fail:
1772 free_fs_root(root);
1773 return ERR_PTR(ret);
edbd8d4e
CM
1774}
1775
04160088
CM
1776static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1777{
1778 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1779 int ret = 0;
04160088
CM
1780 struct btrfs_device *device;
1781 struct backing_dev_info *bdi;
b7967db7 1782
1f78160c
XG
1783 rcu_read_lock();
1784 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1785 if (!device->bdev)
1786 continue;
04160088 1787 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1788 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1789 ret = 1;
1790 break;
1791 }
1792 }
1f78160c 1793 rcu_read_unlock();
04160088
CM
1794 return ret;
1795}
1796
04160088
CM
1797static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1798{
ad081f14
JA
1799 int err;
1800
b4caecd4 1801 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1802 if (err)
1803 return err;
1804
09cbfeaf 1805 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
04160088
CM
1806 bdi->congested_fn = btrfs_congested_fn;
1807 bdi->congested_data = info;
da2f0f74 1808 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1809 return 0;
1810}
1811
8b712842
CM
1812/*
1813 * called by the kthread helper functions to finally call the bio end_io
1814 * functions. This is where read checksum verification actually happens
1815 */
1816static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1817{
ce9adaa5 1818 struct bio *bio;
97eb6b69 1819 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1820
97eb6b69 1821 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1822 bio = end_io_wq->bio;
ce9adaa5 1823
4246a0b6 1824 bio->bi_error = end_io_wq->error;
8b712842
CM
1825 bio->bi_private = end_io_wq->private;
1826 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1827 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1828 bio_endio(bio);
44b8bd7e
CM
1829}
1830
a74a4b97
CM
1831static int cleaner_kthread(void *arg)
1832{
1833 struct btrfs_root *root = arg;
d0278245 1834 int again;
da288d28 1835 struct btrfs_trans_handle *trans;
a74a4b97
CM
1836
1837 do {
d0278245 1838 again = 0;
a74a4b97 1839
d0278245 1840 /* Make the cleaner go to sleep early. */
babbf170 1841 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1842 goto sleep;
1843
90c711ab
ZB
1844 /*
1845 * Do not do anything if we might cause open_ctree() to block
1846 * before we have finished mounting the filesystem.
1847 */
1848 if (!root->fs_info->open)
1849 goto sleep;
1850
d0278245
MX
1851 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1852 goto sleep;
1853
dc7f370c
MX
1854 /*
1855 * Avoid the problem that we change the status of the fs
1856 * during the above check and trylock.
1857 */
babbf170 1858 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1859 mutex_unlock(&root->fs_info->cleaner_mutex);
1860 goto sleep;
76dda93c 1861 }
a74a4b97 1862
c2d6cb16 1863 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
d0278245 1864 btrfs_run_delayed_iputs(root);
c2d6cb16
FM
1865 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1866
d0278245
MX
1867 again = btrfs_clean_one_deleted_snapshot(root);
1868 mutex_unlock(&root->fs_info->cleaner_mutex);
1869
1870 /*
05323cd1
MX
1871 * The defragger has dealt with the R/O remount and umount,
1872 * needn't do anything special here.
d0278245
MX
1873 */
1874 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1875
1876 /*
1877 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1878 * with relocation (btrfs_relocate_chunk) and relocation
1879 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1880 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1881 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1882 * unused block groups.
1883 */
1884 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1885sleep:
838fe188 1886 if (!again) {
a74a4b97 1887 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1888 if (!kthread_should_stop())
1889 schedule();
a74a4b97
CM
1890 __set_current_state(TASK_RUNNING);
1891 }
1892 } while (!kthread_should_stop());
da288d28
FM
1893
1894 /*
1895 * Transaction kthread is stopped before us and wakes us up.
1896 * However we might have started a new transaction and COWed some
1897 * tree blocks when deleting unused block groups for example. So
1898 * make sure we commit the transaction we started to have a clean
1899 * shutdown when evicting the btree inode - if it has dirty pages
1900 * when we do the final iput() on it, eviction will trigger a
1901 * writeback for it which will fail with null pointer dereferences
1902 * since work queues and other resources were already released and
1903 * destroyed by the time the iput/eviction/writeback is made.
1904 */
1905 trans = btrfs_attach_transaction(root);
1906 if (IS_ERR(trans)) {
1907 if (PTR_ERR(trans) != -ENOENT)
1908 btrfs_err(root->fs_info,
1909 "cleaner transaction attach returned %ld",
1910 PTR_ERR(trans));
1911 } else {
1912 int ret;
1913
1914 ret = btrfs_commit_transaction(trans, root);
1915 if (ret)
1916 btrfs_err(root->fs_info,
1917 "cleaner open transaction commit returned %d",
1918 ret);
1919 }
1920
a74a4b97
CM
1921 return 0;
1922}
1923
1924static int transaction_kthread(void *arg)
1925{
1926 struct btrfs_root *root = arg;
1927 struct btrfs_trans_handle *trans;
1928 struct btrfs_transaction *cur;
8929ecfa 1929 u64 transid;
a74a4b97
CM
1930 unsigned long now;
1931 unsigned long delay;
914b2007 1932 bool cannot_commit;
a74a4b97
CM
1933
1934 do {
914b2007 1935 cannot_commit = false;
8b87dc17 1936 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1937 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1938
a4abeea4 1939 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1940 cur = root->fs_info->running_transaction;
1941 if (!cur) {
a4abeea4 1942 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1943 goto sleep;
1944 }
31153d81 1945
a74a4b97 1946 now = get_seconds();
4a9d8bde 1947 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1948 (now < cur->start_time ||
1949 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1950 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1951 delay = HZ * 5;
1952 goto sleep;
1953 }
8929ecfa 1954 transid = cur->transid;
a4abeea4 1955 spin_unlock(&root->fs_info->trans_lock);
56bec294 1956
79787eaa 1957 /* If the file system is aborted, this will always fail. */
354aa0fb 1958 trans = btrfs_attach_transaction(root);
914b2007 1959 if (IS_ERR(trans)) {
354aa0fb
MX
1960 if (PTR_ERR(trans) != -ENOENT)
1961 cannot_commit = true;
79787eaa 1962 goto sleep;
914b2007 1963 }
8929ecfa 1964 if (transid == trans->transid) {
79787eaa 1965 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1966 } else {
1967 btrfs_end_transaction(trans, root);
1968 }
a74a4b97
CM
1969sleep:
1970 wake_up_process(root->fs_info->cleaner_kthread);
1971 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1972
4e121c06
JB
1973 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1974 &root->fs_info->fs_state)))
1975 btrfs_cleanup_transaction(root);
ce63f891
JK
1976 set_current_state(TASK_INTERRUPTIBLE);
1977 if (!kthread_should_stop() &&
1978 (!btrfs_transaction_blocked(root->fs_info) ||
1979 cannot_commit))
1980 schedule_timeout(delay);
1981 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1982 } while (!kthread_should_stop());
1983 return 0;
1984}
1985
af31f5e5
CM
1986/*
1987 * this will find the highest generation in the array of
1988 * root backups. The index of the highest array is returned,
1989 * or -1 if we can't find anything.
1990 *
1991 * We check to make sure the array is valid by comparing the
1992 * generation of the latest root in the array with the generation
1993 * in the super block. If they don't match we pitch it.
1994 */
1995static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1996{
1997 u64 cur;
1998 int newest_index = -1;
1999 struct btrfs_root_backup *root_backup;
2000 int i;
2001
2002 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2003 root_backup = info->super_copy->super_roots + i;
2004 cur = btrfs_backup_tree_root_gen(root_backup);
2005 if (cur == newest_gen)
2006 newest_index = i;
2007 }
2008
2009 /* check to see if we actually wrapped around */
2010 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2011 root_backup = info->super_copy->super_roots;
2012 cur = btrfs_backup_tree_root_gen(root_backup);
2013 if (cur == newest_gen)
2014 newest_index = 0;
2015 }
2016 return newest_index;
2017}
2018
2019
2020/*
2021 * find the oldest backup so we know where to store new entries
2022 * in the backup array. This will set the backup_root_index
2023 * field in the fs_info struct
2024 */
2025static void find_oldest_super_backup(struct btrfs_fs_info *info,
2026 u64 newest_gen)
2027{
2028 int newest_index = -1;
2029
2030 newest_index = find_newest_super_backup(info, newest_gen);
2031 /* if there was garbage in there, just move along */
2032 if (newest_index == -1) {
2033 info->backup_root_index = 0;
2034 } else {
2035 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2036 }
2037}
2038
2039/*
2040 * copy all the root pointers into the super backup array.
2041 * this will bump the backup pointer by one when it is
2042 * done
2043 */
2044static void backup_super_roots(struct btrfs_fs_info *info)
2045{
2046 int next_backup;
2047 struct btrfs_root_backup *root_backup;
2048 int last_backup;
2049
2050 next_backup = info->backup_root_index;
2051 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2052 BTRFS_NUM_BACKUP_ROOTS;
2053
2054 /*
2055 * just overwrite the last backup if we're at the same generation
2056 * this happens only at umount
2057 */
2058 root_backup = info->super_for_commit->super_roots + last_backup;
2059 if (btrfs_backup_tree_root_gen(root_backup) ==
2060 btrfs_header_generation(info->tree_root->node))
2061 next_backup = last_backup;
2062
2063 root_backup = info->super_for_commit->super_roots + next_backup;
2064
2065 /*
2066 * make sure all of our padding and empty slots get zero filled
2067 * regardless of which ones we use today
2068 */
2069 memset(root_backup, 0, sizeof(*root_backup));
2070
2071 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2072
2073 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2074 btrfs_set_backup_tree_root_gen(root_backup,
2075 btrfs_header_generation(info->tree_root->node));
2076
2077 btrfs_set_backup_tree_root_level(root_backup,
2078 btrfs_header_level(info->tree_root->node));
2079
2080 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2081 btrfs_set_backup_chunk_root_gen(root_backup,
2082 btrfs_header_generation(info->chunk_root->node));
2083 btrfs_set_backup_chunk_root_level(root_backup,
2084 btrfs_header_level(info->chunk_root->node));
2085
2086 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2087 btrfs_set_backup_extent_root_gen(root_backup,
2088 btrfs_header_generation(info->extent_root->node));
2089 btrfs_set_backup_extent_root_level(root_backup,
2090 btrfs_header_level(info->extent_root->node));
2091
7c7e82a7
CM
2092 /*
2093 * we might commit during log recovery, which happens before we set
2094 * the fs_root. Make sure it is valid before we fill it in.
2095 */
2096 if (info->fs_root && info->fs_root->node) {
2097 btrfs_set_backup_fs_root(root_backup,
2098 info->fs_root->node->start);
2099 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2100 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2101 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2102 btrfs_header_level(info->fs_root->node));
7c7e82a7 2103 }
af31f5e5
CM
2104
2105 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2106 btrfs_set_backup_dev_root_gen(root_backup,
2107 btrfs_header_generation(info->dev_root->node));
2108 btrfs_set_backup_dev_root_level(root_backup,
2109 btrfs_header_level(info->dev_root->node));
2110
2111 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2112 btrfs_set_backup_csum_root_gen(root_backup,
2113 btrfs_header_generation(info->csum_root->node));
2114 btrfs_set_backup_csum_root_level(root_backup,
2115 btrfs_header_level(info->csum_root->node));
2116
2117 btrfs_set_backup_total_bytes(root_backup,
2118 btrfs_super_total_bytes(info->super_copy));
2119 btrfs_set_backup_bytes_used(root_backup,
2120 btrfs_super_bytes_used(info->super_copy));
2121 btrfs_set_backup_num_devices(root_backup,
2122 btrfs_super_num_devices(info->super_copy));
2123
2124 /*
2125 * if we don't copy this out to the super_copy, it won't get remembered
2126 * for the next commit
2127 */
2128 memcpy(&info->super_copy->super_roots,
2129 &info->super_for_commit->super_roots,
2130 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2131}
2132
2133/*
2134 * this copies info out of the root backup array and back into
2135 * the in-memory super block. It is meant to help iterate through
2136 * the array, so you send it the number of backups you've already
2137 * tried and the last backup index you used.
2138 *
2139 * this returns -1 when it has tried all the backups
2140 */
2141static noinline int next_root_backup(struct btrfs_fs_info *info,
2142 struct btrfs_super_block *super,
2143 int *num_backups_tried, int *backup_index)
2144{
2145 struct btrfs_root_backup *root_backup;
2146 int newest = *backup_index;
2147
2148 if (*num_backups_tried == 0) {
2149 u64 gen = btrfs_super_generation(super);
2150
2151 newest = find_newest_super_backup(info, gen);
2152 if (newest == -1)
2153 return -1;
2154
2155 *backup_index = newest;
2156 *num_backups_tried = 1;
2157 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2158 /* we've tried all the backups, all done */
2159 return -1;
2160 } else {
2161 /* jump to the next oldest backup */
2162 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2163 BTRFS_NUM_BACKUP_ROOTS;
2164 *backup_index = newest;
2165 *num_backups_tried += 1;
2166 }
2167 root_backup = super->super_roots + newest;
2168
2169 btrfs_set_super_generation(super,
2170 btrfs_backup_tree_root_gen(root_backup));
2171 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2172 btrfs_set_super_root_level(super,
2173 btrfs_backup_tree_root_level(root_backup));
2174 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2175
2176 /*
2177 * fixme: the total bytes and num_devices need to match or we should
2178 * need a fsck
2179 */
2180 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2181 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2182 return 0;
2183}
2184
7abadb64
LB
2185/* helper to cleanup workers */
2186static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2187{
dc6e3209 2188 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2189 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2190 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2191 btrfs_destroy_workqueue(fs_info->endio_workers);
2192 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2193 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2194 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2195 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2196 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2197 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2198 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2199 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2200 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2201 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2202 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2203 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2204 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2205 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2206}
2207
2e9f5954
R
2208static void free_root_extent_buffers(struct btrfs_root *root)
2209{
2210 if (root) {
2211 free_extent_buffer(root->node);
2212 free_extent_buffer(root->commit_root);
2213 root->node = NULL;
2214 root->commit_root = NULL;
2215 }
2216}
2217
af31f5e5
CM
2218/* helper to cleanup tree roots */
2219static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2220{
2e9f5954 2221 free_root_extent_buffers(info->tree_root);
655b09fe 2222
2e9f5954
R
2223 free_root_extent_buffers(info->dev_root);
2224 free_root_extent_buffers(info->extent_root);
2225 free_root_extent_buffers(info->csum_root);
2226 free_root_extent_buffers(info->quota_root);
2227 free_root_extent_buffers(info->uuid_root);
2228 if (chunk_root)
2229 free_root_extent_buffers(info->chunk_root);
70f6d82e 2230 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2231}
2232
faa2dbf0 2233void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2234{
2235 int ret;
2236 struct btrfs_root *gang[8];
2237 int i;
2238
2239 while (!list_empty(&fs_info->dead_roots)) {
2240 gang[0] = list_entry(fs_info->dead_roots.next,
2241 struct btrfs_root, root_list);
2242 list_del(&gang[0]->root_list);
2243
27cdeb70 2244 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2245 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2246 } else {
2247 free_extent_buffer(gang[0]->node);
2248 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2249 btrfs_put_fs_root(gang[0]);
171f6537
JB
2250 }
2251 }
2252
2253 while (1) {
2254 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2255 (void **)gang, 0,
2256 ARRAY_SIZE(gang));
2257 if (!ret)
2258 break;
2259 for (i = 0; i < ret; i++)
cb517eab 2260 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2261 }
1a4319cc
LB
2262
2263 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2264 btrfs_free_log_root_tree(NULL, fs_info);
2265 btrfs_destroy_pinned_extent(fs_info->tree_root,
2266 fs_info->pinned_extents);
2267 }
171f6537 2268}
af31f5e5 2269
638aa7ed
ES
2270static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2271{
2272 mutex_init(&fs_info->scrub_lock);
2273 atomic_set(&fs_info->scrubs_running, 0);
2274 atomic_set(&fs_info->scrub_pause_req, 0);
2275 atomic_set(&fs_info->scrubs_paused, 0);
2276 atomic_set(&fs_info->scrub_cancel_req, 0);
2277 init_waitqueue_head(&fs_info->scrub_pause_wait);
2278 fs_info->scrub_workers_refcnt = 0;
2279}
2280
779a65a4
ES
2281static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2282{
2283 spin_lock_init(&fs_info->balance_lock);
2284 mutex_init(&fs_info->balance_mutex);
2285 atomic_set(&fs_info->balance_running, 0);
2286 atomic_set(&fs_info->balance_pause_req, 0);
2287 atomic_set(&fs_info->balance_cancel_req, 0);
2288 fs_info->balance_ctl = NULL;
2289 init_waitqueue_head(&fs_info->balance_wait_q);
2290}
2291
f37938e0
ES
2292static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2293 struct btrfs_root *tree_root)
2294{
2295 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2296 set_nlink(fs_info->btree_inode, 1);
2297 /*
2298 * we set the i_size on the btree inode to the max possible int.
2299 * the real end of the address space is determined by all of
2300 * the devices in the system
2301 */
2302 fs_info->btree_inode->i_size = OFFSET_MAX;
2303 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2304
2305 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2306 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2307 fs_info->btree_inode->i_mapping);
2308 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2309 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2310
2311 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2312
2313 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2314 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2315 sizeof(struct btrfs_key));
2316 set_bit(BTRFS_INODE_DUMMY,
2317 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2318 btrfs_insert_inode_hash(fs_info->btree_inode);
2319}
2320
ad618368
ES
2321static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2322{
2323 fs_info->dev_replace.lock_owner = 0;
2324 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2325 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2326 rwlock_init(&fs_info->dev_replace.lock);
2327 atomic_set(&fs_info->dev_replace.read_locks, 0);
2328 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2329 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2330 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2331}
2332
f9e92e40
ES
2333static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2334{
2335 spin_lock_init(&fs_info->qgroup_lock);
2336 mutex_init(&fs_info->qgroup_ioctl_lock);
2337 fs_info->qgroup_tree = RB_ROOT;
2338 fs_info->qgroup_op_tree = RB_ROOT;
2339 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2340 fs_info->qgroup_seq = 1;
2341 fs_info->quota_enabled = 0;
2342 fs_info->pending_quota_state = 0;
2343 fs_info->qgroup_ulist = NULL;
d2c609b8 2344 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2345 mutex_init(&fs_info->qgroup_rescan_lock);
2346}
2347
2a458198
ES
2348static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2349 struct btrfs_fs_devices *fs_devices)
2350{
2351 int max_active = fs_info->thread_pool_size;
6f011058 2352 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2353
2354 fs_info->workers =
cb001095
JM
2355 btrfs_alloc_workqueue(fs_info, "worker",
2356 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2357
2358 fs_info->delalloc_workers =
cb001095
JM
2359 btrfs_alloc_workqueue(fs_info, "delalloc",
2360 flags, max_active, 2);
2a458198
ES
2361
2362 fs_info->flush_workers =
cb001095
JM
2363 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2364 flags, max_active, 0);
2a458198
ES
2365
2366 fs_info->caching_workers =
cb001095 2367 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2368
2369 /*
2370 * a higher idle thresh on the submit workers makes it much more
2371 * likely that bios will be send down in a sane order to the
2372 * devices
2373 */
2374 fs_info->submit_workers =
cb001095 2375 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2376 min_t(u64, fs_devices->num_devices,
2377 max_active), 64);
2378
2379 fs_info->fixup_workers =
cb001095 2380 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2381
2382 /*
2383 * endios are largely parallel and should have a very
2384 * low idle thresh
2385 */
2386 fs_info->endio_workers =
cb001095 2387 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2388 fs_info->endio_meta_workers =
cb001095
JM
2389 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2390 max_active, 4);
2a458198 2391 fs_info->endio_meta_write_workers =
cb001095
JM
2392 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2393 max_active, 2);
2a458198 2394 fs_info->endio_raid56_workers =
cb001095
JM
2395 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2396 max_active, 4);
2a458198 2397 fs_info->endio_repair_workers =
cb001095 2398 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2399 fs_info->rmw_workers =
cb001095 2400 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2401 fs_info->endio_write_workers =
cb001095
JM
2402 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2403 max_active, 2);
2a458198 2404 fs_info->endio_freespace_worker =
cb001095
JM
2405 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2406 max_active, 0);
2a458198 2407 fs_info->delayed_workers =
cb001095
JM
2408 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2409 max_active, 0);
2a458198 2410 fs_info->readahead_workers =
cb001095
JM
2411 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2412 max_active, 2);
2a458198 2413 fs_info->qgroup_rescan_workers =
cb001095 2414 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2415 fs_info->extent_workers =
cb001095 2416 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2417 min_t(u64, fs_devices->num_devices,
2418 max_active), 8);
2419
2420 if (!(fs_info->workers && fs_info->delalloc_workers &&
2421 fs_info->submit_workers && fs_info->flush_workers &&
2422 fs_info->endio_workers && fs_info->endio_meta_workers &&
2423 fs_info->endio_meta_write_workers &&
2424 fs_info->endio_repair_workers &&
2425 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2426 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2427 fs_info->caching_workers && fs_info->readahead_workers &&
2428 fs_info->fixup_workers && fs_info->delayed_workers &&
2429 fs_info->extent_workers &&
2430 fs_info->qgroup_rescan_workers)) {
2431 return -ENOMEM;
2432 }
2433
2434 return 0;
2435}
2436
63443bf5
ES
2437static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2438 struct btrfs_fs_devices *fs_devices)
2439{
2440 int ret;
2441 struct btrfs_root *tree_root = fs_info->tree_root;
2442 struct btrfs_root *log_tree_root;
2443 struct btrfs_super_block *disk_super = fs_info->super_copy;
2444 u64 bytenr = btrfs_super_log_root(disk_super);
2445
2446 if (fs_devices->rw_devices == 0) {
f14d104d 2447 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2448 return -EIO;
2449 }
2450
74e4d827 2451 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2452 if (!log_tree_root)
2453 return -ENOMEM;
2454
2455 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2456 tree_root->stripesize, log_tree_root, fs_info,
2457 BTRFS_TREE_LOG_OBJECTID);
2458
2459 log_tree_root->node = read_tree_block(tree_root, bytenr,
2460 fs_info->generation + 1);
64c043de 2461 if (IS_ERR(log_tree_root->node)) {
f14d104d 2462 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2463 ret = PTR_ERR(log_tree_root->node);
64c043de 2464 kfree(log_tree_root);
0eeff236 2465 return ret;
64c043de 2466 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2467 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2468 free_extent_buffer(log_tree_root->node);
2469 kfree(log_tree_root);
2470 return -EIO;
2471 }
2472 /* returns with log_tree_root freed on success */
2473 ret = btrfs_recover_log_trees(log_tree_root);
2474 if (ret) {
34d97007 2475 btrfs_handle_fs_error(tree_root->fs_info, ret,
63443bf5
ES
2476 "Failed to recover log tree");
2477 free_extent_buffer(log_tree_root->node);
2478 kfree(log_tree_root);
2479 return ret;
2480 }
2481
2482 if (fs_info->sb->s_flags & MS_RDONLY) {
2483 ret = btrfs_commit_super(tree_root);
2484 if (ret)
2485 return ret;
2486 }
2487
2488 return 0;
2489}
2490
4bbcaa64
ES
2491static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2492 struct btrfs_root *tree_root)
2493{
a4f3d2c4 2494 struct btrfs_root *root;
4bbcaa64
ES
2495 struct btrfs_key location;
2496 int ret;
2497
2498 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2499 location.type = BTRFS_ROOT_ITEM_KEY;
2500 location.offset = 0;
2501
a4f3d2c4
DS
2502 root = btrfs_read_tree_root(tree_root, &location);
2503 if (IS_ERR(root))
2504 return PTR_ERR(root);
2505 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2506 fs_info->extent_root = root;
4bbcaa64
ES
2507
2508 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2509 root = btrfs_read_tree_root(tree_root, &location);
2510 if (IS_ERR(root))
2511 return PTR_ERR(root);
2512 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2513 fs_info->dev_root = root;
4bbcaa64
ES
2514 btrfs_init_devices_late(fs_info);
2515
2516 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2517 root = btrfs_read_tree_root(tree_root, &location);
2518 if (IS_ERR(root))
2519 return PTR_ERR(root);
2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 fs_info->csum_root = root;
4bbcaa64
ES
2522
2523 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2524 root = btrfs_read_tree_root(tree_root, &location);
2525 if (!IS_ERR(root)) {
2526 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2527 fs_info->quota_enabled = 1;
2528 fs_info->pending_quota_state = 1;
a4f3d2c4 2529 fs_info->quota_root = root;
4bbcaa64
ES
2530 }
2531
2532 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2533 root = btrfs_read_tree_root(tree_root, &location);
2534 if (IS_ERR(root)) {
2535 ret = PTR_ERR(root);
4bbcaa64
ES
2536 if (ret != -ENOENT)
2537 return ret;
2538 } else {
a4f3d2c4
DS
2539 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2540 fs_info->uuid_root = root;
4bbcaa64
ES
2541 }
2542
70f6d82e
OS
2543 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2544 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2545 root = btrfs_read_tree_root(tree_root, &location);
2546 if (IS_ERR(root))
2547 return PTR_ERR(root);
2548 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2549 fs_info->free_space_root = root;
2550 }
2551
4bbcaa64
ES
2552 return 0;
2553}
2554
ad2b2c80
AV
2555int open_ctree(struct super_block *sb,
2556 struct btrfs_fs_devices *fs_devices,
2557 char *options)
2e635a27 2558{
db94535d
CM
2559 u32 sectorsize;
2560 u32 nodesize;
87ee04eb 2561 u32 stripesize;
84234f3a 2562 u64 generation;
f2b636e8 2563 u64 features;
3de4586c 2564 struct btrfs_key location;
a061fc8d 2565 struct buffer_head *bh;
4d34b278 2566 struct btrfs_super_block *disk_super;
815745cf 2567 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2568 struct btrfs_root *tree_root;
4d34b278 2569 struct btrfs_root *chunk_root;
eb60ceac 2570 int ret;
e58ca020 2571 int err = -EINVAL;
af31f5e5
CM
2572 int num_backups_tried = 0;
2573 int backup_index = 0;
5cdc7ad3 2574 int max_active;
4543df7e 2575
74e4d827
DS
2576 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2577 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2578 if (!tree_root || !chunk_root) {
39279cc3
CM
2579 err = -ENOMEM;
2580 goto fail;
2581 }
76dda93c
YZ
2582
2583 ret = init_srcu_struct(&fs_info->subvol_srcu);
2584 if (ret) {
2585 err = ret;
2586 goto fail;
2587 }
2588
2589 ret = setup_bdi(fs_info, &fs_info->bdi);
2590 if (ret) {
2591 err = ret;
2592 goto fail_srcu;
2593 }
2594
908c7f19 2595 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2596 if (ret) {
2597 err = ret;
2598 goto fail_bdi;
2599 }
09cbfeaf 2600 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2601 (1 + ilog2(nr_cpu_ids));
2602
908c7f19 2603 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2604 if (ret) {
2605 err = ret;
2606 goto fail_dirty_metadata_bytes;
2607 }
2608
908c7f19 2609 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2610 if (ret) {
2611 err = ret;
2612 goto fail_delalloc_bytes;
2613 }
2614
76dda93c
YZ
2615 fs_info->btree_inode = new_inode(sb);
2616 if (!fs_info->btree_inode) {
2617 err = -ENOMEM;
c404e0dc 2618 goto fail_bio_counter;
76dda93c
YZ
2619 }
2620
a6591715 2621 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2622
76dda93c 2623 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2624 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2625 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2626 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2627 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2628 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2629 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2630 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2631 spin_lock_init(&fs_info->trans_lock);
76dda93c 2632 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2633 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2634 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2635 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2636 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2637 spin_lock_init(&fs_info->super_lock);
fcebe456 2638 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2639 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2640 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2641 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2642 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2643 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2644 mutex_init(&fs_info->reloc_mutex);
573bfb72 2645 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2646 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2647 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2648
0b86a832 2649 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2650 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2651 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2652 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2653 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2654 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2655 BTRFS_BLOCK_RSV_GLOBAL);
2656 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2657 BTRFS_BLOCK_RSV_DELALLOC);
2658 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2659 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2660 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2661 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2662 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2663 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2664 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2665 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2666 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2667 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2668 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2669 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2670 atomic64_set(&fs_info->tree_mod_seq, 0);
9e7cc91a 2671 fs_info->fs_frozen = 0;
e20d96d6 2672 fs_info->sb = sb;
95ac567a 2673 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2674 fs_info->metadata_ratio = 0;
4cb5300b 2675 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2676 fs_info->free_chunk_space = 0;
f29021b2 2677 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2678 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2679 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2680 /* readahead state */
d0164adc 2681 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2682 spin_lock_init(&fs_info->reada_lock);
c8b97818 2683
b34b086c
CM
2684 fs_info->thread_pool_size = min_t(unsigned long,
2685 num_online_cpus() + 2, 8);
0afbaf8c 2686
199c2a9c
MX
2687 INIT_LIST_HEAD(&fs_info->ordered_roots);
2688 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7 2689 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2690 GFP_KERNEL);
16cdcec7
MX
2691 if (!fs_info->delayed_root) {
2692 err = -ENOMEM;
2693 goto fail_iput;
2694 }
2695 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2696
638aa7ed 2697 btrfs_init_scrub(fs_info);
21adbd5c
SB
2698#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2699 fs_info->check_integrity_print_mask = 0;
2700#endif
779a65a4 2701 btrfs_init_balance(fs_info);
21c7e756 2702 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2703
a061fc8d
CM
2704 sb->s_blocksize = 4096;
2705 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2706 sb->s_bdi = &fs_info->bdi;
a061fc8d 2707
f37938e0 2708 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2709
0f9dd46c 2710 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2711 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2712 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2713
11833d66 2714 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2715 fs_info->btree_inode->i_mapping);
11833d66 2716 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2717 fs_info->btree_inode->i_mapping);
11833d66 2718 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2719 fs_info->do_barriers = 1;
e18e4809 2720
39279cc3 2721
5a3f23d5 2722 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2723 mutex_init(&fs_info->tree_log_mutex);
925baedd 2724 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2725 mutex_init(&fs_info->transaction_kthread_mutex);
2726 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2727 mutex_init(&fs_info->volume_mutex);
1bbc621e 2728 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2729 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2730 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2731 init_rwsem(&fs_info->subvol_sem);
803b2f54 2732 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2733
ad618368 2734 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2735 btrfs_init_qgroup(fs_info);
416ac51d 2736
fa9c0d79
CM
2737 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2738 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2739
e6dcd2dc 2740 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2741 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2742 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2743 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2744
04216820
FM
2745 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2746
53b381b3
DW
2747 ret = btrfs_alloc_stripe_hash_table(fs_info);
2748 if (ret) {
83c8266a 2749 err = ret;
53b381b3
DW
2750 goto fail_alloc;
2751 }
2752
707e8a07 2753 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2754 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2755
3c4bb26b 2756 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2757
2758 /*
2759 * Read super block and check the signature bytes only
2760 */
a512bbf8 2761 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2762 if (IS_ERR(bh)) {
2763 err = PTR_ERR(bh);
16cdcec7 2764 goto fail_alloc;
20b45077 2765 }
39279cc3 2766
1104a885
DS
2767 /*
2768 * We want to check superblock checksum, the type is stored inside.
2769 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2770 */
2771 if (btrfs_check_super_csum(bh->b_data)) {
05135f59 2772 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2773 err = -EINVAL;
b2acdddf 2774 brelse(bh);
1104a885
DS
2775 goto fail_alloc;
2776 }
2777
2778 /*
2779 * super_copy is zeroed at allocation time and we never touch the
2780 * following bytes up to INFO_SIZE, the checksum is calculated from
2781 * the whole block of INFO_SIZE
2782 */
6c41761f
DS
2783 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2784 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2785 sizeof(*fs_info->super_for_commit));
a061fc8d 2786 brelse(bh);
5f39d397 2787
6c41761f 2788 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2789
1104a885
DS
2790 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2791 if (ret) {
05135f59 2792 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2793 err = -EINVAL;
2794 goto fail_alloc;
2795 }
2796
6c41761f 2797 disk_super = fs_info->super_copy;
0f7d52f4 2798 if (!btrfs_super_root(disk_super))
16cdcec7 2799 goto fail_alloc;
0f7d52f4 2800
acce952b 2801 /* check FS state, whether FS is broken. */
87533c47
MX
2802 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2803 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2804
af31f5e5
CM
2805 /*
2806 * run through our array of backup supers and setup
2807 * our ring pointer to the oldest one
2808 */
2809 generation = btrfs_super_generation(disk_super);
2810 find_oldest_super_backup(fs_info, generation);
2811
75e7cb7f
LB
2812 /*
2813 * In the long term, we'll store the compression type in the super
2814 * block, and it'll be used for per file compression control.
2815 */
2816 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2817
96da0919 2818 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2b82032c
YZ
2819 if (ret) {
2820 err = ret;
16cdcec7 2821 goto fail_alloc;
2b82032c 2822 }
dfe25020 2823
f2b636e8
JB
2824 features = btrfs_super_incompat_flags(disk_super) &
2825 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2826 if (features) {
05135f59
DS
2827 btrfs_err(fs_info,
2828 "cannot mount because of unsupported optional features (%llx)",
2829 features);
f2b636e8 2830 err = -EINVAL;
16cdcec7 2831 goto fail_alloc;
f2b636e8
JB
2832 }
2833
5d4f98a2 2834 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2835 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2836 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2837 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2838
3173a18f 2839 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2840 btrfs_info(fs_info, "has skinny extents");
3173a18f 2841
727011e0
CM
2842 /*
2843 * flag our filesystem as having big metadata blocks if
2844 * they are bigger than the page size
2845 */
09cbfeaf 2846 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2847 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2848 btrfs_info(fs_info,
2849 "flagging fs with big metadata feature");
727011e0
CM
2850 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2851 }
2852
bc3f116f 2853 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2854 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2855 stripesize = sectorsize;
707e8a07 2856 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2857 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2858
2859 /*
2860 * mixed block groups end up with duplicate but slightly offset
2861 * extent buffers for the same range. It leads to corruptions
2862 */
2863 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2864 (sectorsize != nodesize)) {
05135f59
DS
2865 btrfs_err(fs_info,
2866"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2867 nodesize, sectorsize);
bc3f116f
CM
2868 goto fail_alloc;
2869 }
2870
ceda0864
MX
2871 /*
2872 * Needn't use the lock because there is no other task which will
2873 * update the flag.
2874 */
a6fa6fae 2875 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2876
f2b636e8
JB
2877 features = btrfs_super_compat_ro_flags(disk_super) &
2878 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2879 if (!(sb->s_flags & MS_RDONLY) && features) {
05135f59
DS
2880 btrfs_err(fs_info,
2881 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2882 features);
f2b636e8 2883 err = -EINVAL;
16cdcec7 2884 goto fail_alloc;
f2b636e8 2885 }
61d92c32 2886
5cdc7ad3 2887 max_active = fs_info->thread_pool_size;
61d92c32 2888
2a458198
ES
2889 ret = btrfs_init_workqueues(fs_info, fs_devices);
2890 if (ret) {
2891 err = ret;
0dc3b84a
JB
2892 goto fail_sb_buffer;
2893 }
4543df7e 2894
4575c9cc 2895 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2896 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
09cbfeaf 2897 SZ_4M / PAGE_SIZE);
4575c9cc 2898
db94535d 2899 tree_root->nodesize = nodesize;
db94535d 2900 tree_root->sectorsize = sectorsize;
87ee04eb 2901 tree_root->stripesize = stripesize;
a061fc8d
CM
2902
2903 sb->s_blocksize = sectorsize;
2904 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2905
925baedd 2906 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2907 ret = btrfs_read_sys_array(tree_root);
925baedd 2908 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2909 if (ret) {
05135f59 2910 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2911 goto fail_sb_buffer;
84eed90f 2912 }
0b86a832 2913
84234f3a 2914 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2915
707e8a07
DS
2916 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2917 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2918
2919 chunk_root->node = read_tree_block(chunk_root,
2920 btrfs_super_chunk_root(disk_super),
ce86cd59 2921 generation);
64c043de
LB
2922 if (IS_ERR(chunk_root->node) ||
2923 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2924 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2925 if (!IS_ERR(chunk_root->node))
2926 free_extent_buffer(chunk_root->node);
95ab1f64 2927 chunk_root->node = NULL;
af31f5e5 2928 goto fail_tree_roots;
83121942 2929 }
5d4f98a2
YZ
2930 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2931 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2932
e17cade2 2933 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2934 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2935
0b86a832 2936 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2937 if (ret) {
05135f59 2938 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2939 goto fail_tree_roots;
2b82032c 2940 }
0b86a832 2941
8dabb742
SB
2942 /*
2943 * keep the device that is marked to be the target device for the
2944 * dev_replace procedure
2945 */
9eaed21e 2946 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2947
a6b0d5c8 2948 if (!fs_devices->latest_bdev) {
05135f59 2949 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2950 goto fail_tree_roots;
2951 }
2952
af31f5e5 2953retry_root_backup:
84234f3a 2954 generation = btrfs_super_generation(disk_super);
0b86a832 2955
e20d96d6 2956 tree_root->node = read_tree_block(tree_root,
db94535d 2957 btrfs_super_root(disk_super),
ce86cd59 2958 generation);
64c043de
LB
2959 if (IS_ERR(tree_root->node) ||
2960 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2961 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2962 if (!IS_ERR(tree_root->node))
2963 free_extent_buffer(tree_root->node);
95ab1f64 2964 tree_root->node = NULL;
af31f5e5 2965 goto recovery_tree_root;
83121942 2966 }
af31f5e5 2967
5d4f98a2
YZ
2968 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2969 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2970 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2971
f32e48e9
CR
2972 mutex_lock(&tree_root->objectid_mutex);
2973 ret = btrfs_find_highest_objectid(tree_root,
2974 &tree_root->highest_objectid);
2975 if (ret) {
2976 mutex_unlock(&tree_root->objectid_mutex);
2977 goto recovery_tree_root;
2978 }
2979
2980 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2981
2982 mutex_unlock(&tree_root->objectid_mutex);
2983
4bbcaa64
ES
2984 ret = btrfs_read_roots(fs_info, tree_root);
2985 if (ret)
af31f5e5 2986 goto recovery_tree_root;
f7a81ea4 2987
8929ecfa
YZ
2988 fs_info->generation = generation;
2989 fs_info->last_trans_committed = generation;
8929ecfa 2990
68310a5e
ID
2991 ret = btrfs_recover_balance(fs_info);
2992 if (ret) {
05135f59 2993 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2994 goto fail_block_groups;
2995 }
2996
733f4fbb
SB
2997 ret = btrfs_init_dev_stats(fs_info);
2998 if (ret) {
05135f59 2999 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3000 goto fail_block_groups;
3001 }
3002
8dabb742
SB
3003 ret = btrfs_init_dev_replace(fs_info);
3004 if (ret) {
05135f59 3005 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3006 goto fail_block_groups;
3007 }
3008
9eaed21e 3009 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 3010
b7c35e81
AJ
3011 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3012 if (ret) {
05135f59
DS
3013 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3014 ret);
b7c35e81
AJ
3015 goto fail_block_groups;
3016 }
3017
3018 ret = btrfs_sysfs_add_device(fs_devices);
3019 if (ret) {
05135f59
DS
3020 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3021 ret);
b7c35e81
AJ
3022 goto fail_fsdev_sysfs;
3023 }
3024
96f3136e 3025 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3026 if (ret) {
05135f59 3027 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3028 goto fail_fsdev_sysfs;
c59021f8 3029 }
3030
c59021f8 3031 ret = btrfs_init_space_info(fs_info);
3032 if (ret) {
05135f59 3033 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3034 goto fail_sysfs;
c59021f8 3035 }
3036
4bbcaa64 3037 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 3038 if (ret) {
05135f59 3039 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3040 goto fail_sysfs;
1b1d1f66 3041 }
5af3e8cc
SB
3042 fs_info->num_tolerated_disk_barrier_failures =
3043 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3044 if (fs_info->fs_devices->missing_devices >
3045 fs_info->num_tolerated_disk_barrier_failures &&
3046 !(sb->s_flags & MS_RDONLY)) {
05135f59
DS
3047 btrfs_warn(fs_info,
3048"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
78fa1770
ZL
3049 fs_info->fs_devices->missing_devices,
3050 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3051 goto fail_sysfs;
292fd7fc 3052 }
9078a3e1 3053
a74a4b97
CM
3054 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3055 "btrfs-cleaner");
57506d50 3056 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3057 goto fail_sysfs;
a74a4b97
CM
3058
3059 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3060 tree_root,
3061 "btrfs-transaction");
57506d50 3062 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3063 goto fail_cleaner;
a74a4b97 3064
3cdde224
JM
3065 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3066 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
c289811c 3067 !fs_info->fs_devices->rotating) {
05135f59 3068 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
c289811c
CM
3069 btrfs_set_opt(fs_info->mount_opt, SSD);
3070 }
3071
572d9ab7 3072 /*
01327610 3073 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3074 * not have to wait for transaction commit
3075 */
3076 btrfs_apply_pending_changes(fs_info);
3818aea2 3077
21adbd5c 3078#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3cdde224 3079 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
21adbd5c 3080 ret = btrfsic_mount(tree_root, fs_devices,
3cdde224 3081 btrfs_test_opt(tree_root->fs_info,
21adbd5c
SB
3082 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3083 1 : 0,
3084 fs_info->check_integrity_print_mask);
3085 if (ret)
05135f59
DS
3086 btrfs_warn(fs_info,
3087 "failed to initialize integrity check module: %d",
3088 ret);
21adbd5c
SB
3089 }
3090#endif
bcef60f2
AJ
3091 ret = btrfs_read_qgroup_config(fs_info);
3092 if (ret)
3093 goto fail_trans_kthread;
21adbd5c 3094
96da0919
QW
3095 /* do not make disk changes in broken FS or nologreplay is given */
3096 if (btrfs_super_log_root(disk_super) != 0 &&
3cdde224 3097 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
63443bf5 3098 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3099 if (ret) {
63443bf5 3100 err = ret;
28c16cbb 3101 goto fail_qgroup;
79787eaa 3102 }
e02119d5 3103 }
1a40e23b 3104
76dda93c 3105 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3106 if (ret)
28c16cbb 3107 goto fail_qgroup;
76dda93c 3108
7c2ca468 3109 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3110 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3111 if (ret)
28c16cbb 3112 goto fail_qgroup;
90c711ab
ZB
3113
3114 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3115 ret = btrfs_recover_relocation(tree_root);
90c711ab 3116 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3117 if (ret < 0) {
05135f59
DS
3118 btrfs_warn(fs_info, "failed to recover relocation: %d",
3119 ret);
d7ce5843 3120 err = -EINVAL;
bcef60f2 3121 goto fail_qgroup;
d7ce5843 3122 }
7c2ca468 3123 }
1a40e23b 3124
3de4586c
CM
3125 location.objectid = BTRFS_FS_TREE_OBJECTID;
3126 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3127 location.offset = 0;
3de4586c 3128
3de4586c 3129 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3130 if (IS_ERR(fs_info->fs_root)) {
3131 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3132 goto fail_qgroup;
3140c9a3 3133 }
c289811c 3134
2b6ba629
ID
3135 if (sb->s_flags & MS_RDONLY)
3136 return 0;
59641015 3137
3cdde224 3138 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
511711af 3139 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3140 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3141 ret = btrfs_create_free_space_tree(fs_info);
3142 if (ret) {
05135f59
DS
3143 btrfs_warn(fs_info,
3144 "failed to create free space tree: %d", ret);
511711af
CM
3145 close_ctree(tree_root);
3146 return ret;
3147 }
3148 }
3149
2b6ba629
ID
3150 down_read(&fs_info->cleanup_work_sem);
3151 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3152 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3153 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3154 close_ctree(tree_root);
3155 return ret;
3156 }
3157 up_read(&fs_info->cleanup_work_sem);
59641015 3158
2b6ba629
ID
3159 ret = btrfs_resume_balance_async(fs_info);
3160 if (ret) {
05135f59 3161 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
2b6ba629
ID
3162 close_ctree(tree_root);
3163 return ret;
e3acc2a6
JB
3164 }
3165
8dabb742
SB
3166 ret = btrfs_resume_dev_replace_async(fs_info);
3167 if (ret) {
05135f59 3168 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
8dabb742
SB
3169 close_ctree(tree_root);
3170 return ret;
3171 }
3172
b382a324
JS
3173 btrfs_qgroup_rescan_resume(fs_info);
3174
3cdde224 3175 if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
70f6d82e 3176 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3177 btrfs_info(fs_info, "clearing free space tree");
70f6d82e
OS
3178 ret = btrfs_clear_free_space_tree(fs_info);
3179 if (ret) {
05135f59
DS
3180 btrfs_warn(fs_info,
3181 "failed to clear free space tree: %d", ret);
70f6d82e
OS
3182 close_ctree(tree_root);
3183 return ret;
3184 }
3185 }
3186
4bbcaa64 3187 if (!fs_info->uuid_root) {
05135f59 3188 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3189 ret = btrfs_create_uuid_tree(fs_info);
3190 if (ret) {
05135f59
DS
3191 btrfs_warn(fs_info,
3192 "failed to create the UUID tree: %d", ret);
f7a81ea4
SB
3193 close_ctree(tree_root);
3194 return ret;
3195 }
3cdde224 3196 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3197 fs_info->generation !=
3198 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3199 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3200 ret = btrfs_check_uuid_tree(fs_info);
3201 if (ret) {
05135f59
DS
3202 btrfs_warn(fs_info,
3203 "failed to check the UUID tree: %d", ret);
70f80175
SB
3204 close_ctree(tree_root);
3205 return ret;
3206 }
3207 } else {
3208 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3209 }
3210
47ab2a6c
JB
3211 fs_info->open = 1;
3212
8dcddfa0
QW
3213 /*
3214 * backuproot only affect mount behavior, and if open_ctree succeeded,
3215 * no need to keep the flag
3216 */
3217 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3218
ad2b2c80 3219 return 0;
39279cc3 3220
bcef60f2
AJ
3221fail_qgroup:
3222 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3223fail_trans_kthread:
3224 kthread_stop(fs_info->transaction_kthread);
54067ae9 3225 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3226 btrfs_free_fs_roots(fs_info);
3f157a2f 3227fail_cleaner:
a74a4b97 3228 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3229
3230 /*
3231 * make sure we're done with the btree inode before we stop our
3232 * kthreads
3233 */
3234 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3235
2365dd3c 3236fail_sysfs:
6618a59b 3237 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3238
b7c35e81
AJ
3239fail_fsdev_sysfs:
3240 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3241
1b1d1f66 3242fail_block_groups:
54067ae9 3243 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3244 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3245
3246fail_tree_roots:
3247 free_root_pointers(fs_info, 1);
2b8195bb 3248 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3249
39279cc3 3250fail_sb_buffer:
7abadb64 3251 btrfs_stop_all_workers(fs_info);
16cdcec7 3252fail_alloc:
4543df7e 3253fail_iput:
586e46e2
ID
3254 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3255
4543df7e 3256 iput(fs_info->btree_inode);
c404e0dc
MX
3257fail_bio_counter:
3258 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3259fail_delalloc_bytes:
3260 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3261fail_dirty_metadata_bytes:
3262 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3263fail_bdi:
7e662854 3264 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3265fail_srcu:
3266 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3267fail:
53b381b3 3268 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3269 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3270 return err;
af31f5e5
CM
3271
3272recovery_tree_root:
3cdde224 3273 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
af31f5e5
CM
3274 goto fail_tree_roots;
3275
3276 free_root_pointers(fs_info, 0);
3277
3278 /* don't use the log in recovery mode, it won't be valid */
3279 btrfs_set_super_log_root(disk_super, 0);
3280
3281 /* we can't trust the free space cache either */
3282 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3283
3284 ret = next_root_backup(fs_info, fs_info->super_copy,
3285 &num_backups_tried, &backup_index);
3286 if (ret == -1)
3287 goto fail_block_groups;
3288 goto retry_root_backup;
eb60ceac
CM
3289}
3290
f2984462
CM
3291static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3292{
f2984462
CM
3293 if (uptodate) {
3294 set_buffer_uptodate(bh);
3295 } else {
442a4f63
SB
3296 struct btrfs_device *device = (struct btrfs_device *)
3297 bh->b_private;
3298
b14af3b4
DS
3299 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3300 "lost page write due to IO error on %s",
606686ee 3301 rcu_str_deref(device->name));
01327610 3302 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3303 * our own ways of dealing with the IO errors
3304 */
f2984462 3305 clear_buffer_uptodate(bh);
442a4f63 3306 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3307 }
3308 unlock_buffer(bh);
3309 put_bh(bh);
3310}
3311
29c36d72
AJ
3312int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3313 struct buffer_head **bh_ret)
3314{
3315 struct buffer_head *bh;
3316 struct btrfs_super_block *super;
3317 u64 bytenr;
3318
3319 bytenr = btrfs_sb_offset(copy_num);
3320 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3321 return -EINVAL;
3322
3323 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3324 /*
3325 * If we fail to read from the underlying devices, as of now
3326 * the best option we have is to mark it EIO.
3327 */
3328 if (!bh)
3329 return -EIO;
3330
3331 super = (struct btrfs_super_block *)bh->b_data;
3332 if (btrfs_super_bytenr(super) != bytenr ||
3333 btrfs_super_magic(super) != BTRFS_MAGIC) {
3334 brelse(bh);
3335 return -EINVAL;
3336 }
3337
3338 *bh_ret = bh;
3339 return 0;
3340}
3341
3342
a512bbf8
YZ
3343struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3344{
3345 struct buffer_head *bh;
3346 struct buffer_head *latest = NULL;
3347 struct btrfs_super_block *super;
3348 int i;
3349 u64 transid = 0;
92fc03fb 3350 int ret = -EINVAL;
a512bbf8
YZ
3351
3352 /* we would like to check all the supers, but that would make
3353 * a btrfs mount succeed after a mkfs from a different FS.
3354 * So, we need to add a special mount option to scan for
3355 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3356 */
3357 for (i = 0; i < 1; i++) {
29c36d72
AJ
3358 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3359 if (ret)
a512bbf8
YZ
3360 continue;
3361
3362 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3363
3364 if (!latest || btrfs_super_generation(super) > transid) {
3365 brelse(latest);
3366 latest = bh;
3367 transid = btrfs_super_generation(super);
3368 } else {
3369 brelse(bh);
3370 }
3371 }
92fc03fb
AJ
3372
3373 if (!latest)
3374 return ERR_PTR(ret);
3375
a512bbf8
YZ
3376 return latest;
3377}
3378
4eedeb75
HH
3379/*
3380 * this should be called twice, once with wait == 0 and
3381 * once with wait == 1. When wait == 0 is done, all the buffer heads
3382 * we write are pinned.
3383 *
3384 * They are released when wait == 1 is done.
3385 * max_mirrors must be the same for both runs, and it indicates how
3386 * many supers on this one device should be written.
3387 *
3388 * max_mirrors == 0 means to write them all.
3389 */
a512bbf8
YZ
3390static int write_dev_supers(struct btrfs_device *device,
3391 struct btrfs_super_block *sb,
3392 int do_barriers, int wait, int max_mirrors)
3393{
3394 struct buffer_head *bh;
3395 int i;
3396 int ret;
3397 int errors = 0;
3398 u32 crc;
3399 u64 bytenr;
a512bbf8
YZ
3400
3401 if (max_mirrors == 0)
3402 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3403
a512bbf8
YZ
3404 for (i = 0; i < max_mirrors; i++) {
3405 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3406 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3407 device->commit_total_bytes)
a512bbf8
YZ
3408 break;
3409
3410 if (wait) {
3411 bh = __find_get_block(device->bdev, bytenr / 4096,
3412 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3413 if (!bh) {
3414 errors++;
3415 continue;
3416 }
a512bbf8 3417 wait_on_buffer(bh);
4eedeb75
HH
3418 if (!buffer_uptodate(bh))
3419 errors++;
3420
3421 /* drop our reference */
3422 brelse(bh);
3423
3424 /* drop the reference from the wait == 0 run */
3425 brelse(bh);
3426 continue;
a512bbf8
YZ
3427 } else {
3428 btrfs_set_super_bytenr(sb, bytenr);
3429
3430 crc = ~(u32)0;
b0496686 3431 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3432 BTRFS_CSUM_SIZE, crc,
3433 BTRFS_SUPER_INFO_SIZE -
3434 BTRFS_CSUM_SIZE);
3435 btrfs_csum_final(crc, sb->csum);
3436
4eedeb75
HH
3437 /*
3438 * one reference for us, and we leave it for the
3439 * caller
3440 */
a512bbf8
YZ
3441 bh = __getblk(device->bdev, bytenr / 4096,
3442 BTRFS_SUPER_INFO_SIZE);
634554dc 3443 if (!bh) {
f14d104d
DS
3444 btrfs_err(device->dev_root->fs_info,
3445 "couldn't get super buffer head for bytenr %llu",
3446 bytenr);
634554dc
JB
3447 errors++;
3448 continue;
3449 }
3450
a512bbf8
YZ
3451 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3452
4eedeb75 3453 /* one reference for submit_bh */
a512bbf8 3454 get_bh(bh);
4eedeb75
HH
3455
3456 set_buffer_uptodate(bh);
a512bbf8
YZ
3457 lock_buffer(bh);
3458 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3459 bh->b_private = device;
a512bbf8
YZ
3460 }
3461
387125fc
CM
3462 /*
3463 * we fua the first super. The others we allow
3464 * to go down lazy.
3465 */
e8117c26
WS
3466 if (i == 0)
3467 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3468 else
3469 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3470 if (ret)
a512bbf8 3471 errors++;
a512bbf8
YZ
3472 }
3473 return errors < i ? 0 : -1;
3474}
3475
387125fc
CM
3476/*
3477 * endio for the write_dev_flush, this will wake anyone waiting
3478 * for the barrier when it is done
3479 */
4246a0b6 3480static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3481{
387125fc
CM
3482 if (bio->bi_private)
3483 complete(bio->bi_private);
3484 bio_put(bio);
3485}
3486
3487/*
3488 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3489 * sent down. With wait == 1, it waits for the previous flush.
3490 *
3491 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3492 * capable
3493 */
3494static int write_dev_flush(struct btrfs_device *device, int wait)
3495{
3496 struct bio *bio;
3497 int ret = 0;
3498
3499 if (device->nobarriers)
3500 return 0;
3501
3502 if (wait) {
3503 bio = device->flush_bio;
3504 if (!bio)
3505 return 0;
3506
3507 wait_for_completion(&device->flush_wait);
3508
4246a0b6
CH
3509 if (bio->bi_error) {
3510 ret = bio->bi_error;
5af3e8cc
SB
3511 btrfs_dev_stat_inc_and_print(device,
3512 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3513 }
3514
3515 /* drop the reference from the wait == 0 run */
3516 bio_put(bio);
3517 device->flush_bio = NULL;
3518
3519 return ret;
3520 }
3521
3522 /*
3523 * one reference for us, and we leave it for the
3524 * caller
3525 */
9c017abc 3526 device->flush_bio = NULL;
9be3395b 3527 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3528 if (!bio)
3529 return -ENOMEM;
3530
3531 bio->bi_end_io = btrfs_end_empty_barrier;
3532 bio->bi_bdev = device->bdev;
3533 init_completion(&device->flush_wait);
3534 bio->bi_private = &device->flush_wait;
3535 device->flush_bio = bio;
3536
3537 bio_get(bio);
21adbd5c 3538 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3539
3540 return 0;
3541}
3542
3543/*
3544 * send an empty flush down to each device in parallel,
3545 * then wait for them
3546 */
3547static int barrier_all_devices(struct btrfs_fs_info *info)
3548{
3549 struct list_head *head;
3550 struct btrfs_device *dev;
5af3e8cc
SB
3551 int errors_send = 0;
3552 int errors_wait = 0;
387125fc
CM
3553 int ret;
3554
3555 /* send down all the barriers */
3556 head = &info->fs_devices->devices;
3557 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3558 if (dev->missing)
3559 continue;
387125fc 3560 if (!dev->bdev) {
5af3e8cc 3561 errors_send++;
387125fc
CM
3562 continue;
3563 }
3564 if (!dev->in_fs_metadata || !dev->writeable)
3565 continue;
3566
3567 ret = write_dev_flush(dev, 0);
3568 if (ret)
5af3e8cc 3569 errors_send++;
387125fc
CM
3570 }
3571
3572 /* wait for all the barriers */
3573 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3574 if (dev->missing)
3575 continue;
387125fc 3576 if (!dev->bdev) {
5af3e8cc 3577 errors_wait++;
387125fc
CM
3578 continue;
3579 }
3580 if (!dev->in_fs_metadata || !dev->writeable)
3581 continue;
3582
3583 ret = write_dev_flush(dev, 1);
3584 if (ret)
5af3e8cc 3585 errors_wait++;
387125fc 3586 }
5af3e8cc
SB
3587 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3588 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3589 return -EIO;
3590 return 0;
3591}
3592
943c6e99
ZL
3593int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3594{
8789f4fe
ZL
3595 int raid_type;
3596 int min_tolerated = INT_MAX;
943c6e99 3597
8789f4fe
ZL
3598 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3599 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3600 min_tolerated = min(min_tolerated,
3601 btrfs_raid_array[BTRFS_RAID_SINGLE].
3602 tolerated_failures);
943c6e99 3603
8789f4fe
ZL
3604 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3605 if (raid_type == BTRFS_RAID_SINGLE)
3606 continue;
3607 if (!(flags & btrfs_raid_group[raid_type]))
3608 continue;
3609 min_tolerated = min(min_tolerated,
3610 btrfs_raid_array[raid_type].
3611 tolerated_failures);
3612 }
943c6e99 3613
8789f4fe
ZL
3614 if (min_tolerated == INT_MAX) {
3615 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3616 min_tolerated = 0;
3617 }
3618
3619 return min_tolerated;
943c6e99
ZL
3620}
3621
5af3e8cc
SB
3622int btrfs_calc_num_tolerated_disk_barrier_failures(
3623 struct btrfs_fs_info *fs_info)
3624{
3625 struct btrfs_ioctl_space_info space;
3626 struct btrfs_space_info *sinfo;
3627 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3628 BTRFS_BLOCK_GROUP_SYSTEM,
3629 BTRFS_BLOCK_GROUP_METADATA,
3630 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3631 int i;
3632 int c;
3633 int num_tolerated_disk_barrier_failures =
3634 (int)fs_info->fs_devices->num_devices;
3635
2c458045 3636 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3637 struct btrfs_space_info *tmp;
3638
3639 sinfo = NULL;
3640 rcu_read_lock();
3641 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3642 if (tmp->flags == types[i]) {
3643 sinfo = tmp;
3644 break;
3645 }
3646 }
3647 rcu_read_unlock();
3648
3649 if (!sinfo)
3650 continue;
3651
3652 down_read(&sinfo->groups_sem);
3653 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3654 u64 flags;
3655
3656 if (list_empty(&sinfo->block_groups[c]))
3657 continue;
3658
3659 btrfs_get_block_group_info(&sinfo->block_groups[c],
3660 &space);
3661 if (space.total_bytes == 0 || space.used_bytes == 0)
3662 continue;
3663 flags = space.flags;
943c6e99
ZL
3664
3665 num_tolerated_disk_barrier_failures = min(
3666 num_tolerated_disk_barrier_failures,
3667 btrfs_get_num_tolerated_disk_barrier_failures(
3668 flags));
5af3e8cc
SB
3669 }
3670 up_read(&sinfo->groups_sem);
3671 }
3672
3673 return num_tolerated_disk_barrier_failures;
3674}
3675
48a3b636 3676static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3677{
e5e9a520 3678 struct list_head *head;
f2984462 3679 struct btrfs_device *dev;
a061fc8d 3680 struct btrfs_super_block *sb;
f2984462 3681 struct btrfs_dev_item *dev_item;
f2984462
CM
3682 int ret;
3683 int do_barriers;
a236aed1
CM
3684 int max_errors;
3685 int total_errors = 0;
a061fc8d 3686 u64 flags;
f2984462 3687
3cdde224 3688 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
af31f5e5 3689 backup_super_roots(root->fs_info);
f2984462 3690
6c41761f 3691 sb = root->fs_info->super_for_commit;
a061fc8d 3692 dev_item = &sb->dev_item;
e5e9a520 3693
174ba509 3694 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3695 head = &root->fs_info->fs_devices->devices;
d7306801 3696 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3697
5af3e8cc
SB
3698 if (do_barriers) {
3699 ret = barrier_all_devices(root->fs_info);
3700 if (ret) {
3701 mutex_unlock(
3702 &root->fs_info->fs_devices->device_list_mutex);
34d97007 3703 btrfs_handle_fs_error(root->fs_info, ret,
5af3e8cc
SB
3704 "errors while submitting device barriers.");
3705 return ret;
3706 }
3707 }
387125fc 3708
1f78160c 3709 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3710 if (!dev->bdev) {
3711 total_errors++;
3712 continue;
3713 }
2b82032c 3714 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3715 continue;
3716
2b82032c 3717 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3718 btrfs_set_stack_device_type(dev_item, dev->type);
3719 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3720 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3721 dev->commit_total_bytes);
ce7213c7
MX
3722 btrfs_set_stack_device_bytes_used(dev_item,
3723 dev->commit_bytes_used);
a061fc8d
CM
3724 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3725 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3726 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3727 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3728 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3729
a061fc8d
CM
3730 flags = btrfs_super_flags(sb);
3731 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3732
a512bbf8 3733 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3734 if (ret)
3735 total_errors++;
f2984462 3736 }
a236aed1 3737 if (total_errors > max_errors) {
efe120a0 3738 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3739 total_errors);
a724b436 3740 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3741
9d565ba4 3742 /* FUA is masked off if unsupported and can't be the reason */
34d97007 3743 btrfs_handle_fs_error(root->fs_info, -EIO,
9d565ba4
SB
3744 "%d errors while writing supers", total_errors);
3745 return -EIO;
a236aed1 3746 }
f2984462 3747
a512bbf8 3748 total_errors = 0;
1f78160c 3749 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3750 if (!dev->bdev)
3751 continue;
2b82032c 3752 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3753 continue;
3754
a512bbf8
YZ
3755 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3756 if (ret)
3757 total_errors++;
f2984462 3758 }
174ba509 3759 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3760 if (total_errors > max_errors) {
34d97007 3761 btrfs_handle_fs_error(root->fs_info, -EIO,
79787eaa
JM
3762 "%d errors while writing supers", total_errors);
3763 return -EIO;
a236aed1 3764 }
f2984462
CM
3765 return 0;
3766}
3767
a512bbf8
YZ
3768int write_ctree_super(struct btrfs_trans_handle *trans,
3769 struct btrfs_root *root, int max_mirrors)
eb60ceac 3770{
f570e757 3771 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3772}
3773
cb517eab
MX
3774/* Drop a fs root from the radix tree and free it. */
3775void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3776 struct btrfs_root *root)
2619ba1f 3777{
4df27c4d 3778 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3779 radix_tree_delete(&fs_info->fs_roots_radix,
3780 (unsigned long)root->root_key.objectid);
4df27c4d 3781 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3782
3783 if (btrfs_root_refs(&root->root_item) == 0)
3784 synchronize_srcu(&fs_info->subvol_srcu);
3785
1c1ea4f7 3786 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3787 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3788 if (root->reloc_root) {
3789 free_extent_buffer(root->reloc_root->node);
3790 free_extent_buffer(root->reloc_root->commit_root);
3791 btrfs_put_fs_root(root->reloc_root);
3792 root->reloc_root = NULL;
3793 }
3794 }
3321719e 3795
faa2dbf0
JB
3796 if (root->free_ino_pinned)
3797 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3798 if (root->free_ino_ctl)
3799 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3800 free_fs_root(root);
4df27c4d
YZ
3801}
3802
3803static void free_fs_root(struct btrfs_root *root)
3804{
57cdc8db 3805 iput(root->ino_cache_inode);
4df27c4d 3806 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3807 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3808 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3809 if (root->anon_dev)
3810 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3811 if (root->subv_writers)
3812 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3813 free_extent_buffer(root->node);
3814 free_extent_buffer(root->commit_root);
581bb050
LZ
3815 kfree(root->free_ino_ctl);
3816 kfree(root->free_ino_pinned);
d397712b 3817 kfree(root->name);
b0feb9d9 3818 btrfs_put_fs_root(root);
2619ba1f
CM
3819}
3820
cb517eab
MX
3821void btrfs_free_fs_root(struct btrfs_root *root)
3822{
3823 free_fs_root(root);
2619ba1f
CM
3824}
3825
c146afad 3826int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3827{
c146afad
YZ
3828 u64 root_objectid = 0;
3829 struct btrfs_root *gang[8];
65d33fd7
QW
3830 int i = 0;
3831 int err = 0;
3832 unsigned int ret = 0;
3833 int index;
e089f05c 3834
c146afad 3835 while (1) {
65d33fd7 3836 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3837 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3838 (void **)gang, root_objectid,
3839 ARRAY_SIZE(gang));
65d33fd7
QW
3840 if (!ret) {
3841 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3842 break;
65d33fd7 3843 }
5d4f98a2 3844 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3845
c146afad 3846 for (i = 0; i < ret; i++) {
65d33fd7
QW
3847 /* Avoid to grab roots in dead_roots */
3848 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3849 gang[i] = NULL;
3850 continue;
3851 }
3852 /* grab all the search result for later use */
3853 gang[i] = btrfs_grab_fs_root(gang[i]);
3854 }
3855 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3856
65d33fd7
QW
3857 for (i = 0; i < ret; i++) {
3858 if (!gang[i])
3859 continue;
c146afad 3860 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3861 err = btrfs_orphan_cleanup(gang[i]);
3862 if (err)
65d33fd7
QW
3863 break;
3864 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3865 }
3866 root_objectid++;
3867 }
65d33fd7
QW
3868
3869 /* release the uncleaned roots due to error */
3870 for (; i < ret; i++) {
3871 if (gang[i])
3872 btrfs_put_fs_root(gang[i]);
3873 }
3874 return err;
c146afad 3875}
a2135011 3876
c146afad
YZ
3877int btrfs_commit_super(struct btrfs_root *root)
3878{
3879 struct btrfs_trans_handle *trans;
a74a4b97 3880
c146afad 3881 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3882 btrfs_run_delayed_iputs(root);
c146afad 3883 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3884 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3885
3886 /* wait until ongoing cleanup work done */
3887 down_write(&root->fs_info->cleanup_work_sem);
3888 up_write(&root->fs_info->cleanup_work_sem);
3889
7a7eaa40 3890 trans = btrfs_join_transaction(root);
3612b495
TI
3891 if (IS_ERR(trans))
3892 return PTR_ERR(trans);
d52c1bcc 3893 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3894}
3895
3abdbd78 3896void close_ctree(struct btrfs_root *root)
c146afad
YZ
3897{
3898 struct btrfs_fs_info *fs_info = root->fs_info;
3899 int ret;
3900
3901 fs_info->closing = 1;
3902 smp_mb();
3903
7343dd61 3904 /* wait for the qgroup rescan worker to stop */
d06f23d6 3905 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3906
803b2f54
SB
3907 /* wait for the uuid_scan task to finish */
3908 down(&fs_info->uuid_tree_rescan_sem);
3909 /* avoid complains from lockdep et al., set sem back to initial state */
3910 up(&fs_info->uuid_tree_rescan_sem);
3911
837d5b6e 3912 /* pause restriper - we want to resume on mount */
aa1b8cd4 3913 btrfs_pause_balance(fs_info);
837d5b6e 3914
8dabb742
SB
3915 btrfs_dev_replace_suspend_for_unmount(fs_info);
3916
aa1b8cd4 3917 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3918
3919 /* wait for any defraggers to finish */
3920 wait_event(fs_info->transaction_wait,
3921 (atomic_read(&fs_info->defrag_running) == 0));
3922
3923 /* clear out the rbtree of defraggable inodes */
26176e7c 3924 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3925
21c7e756
MX
3926 cancel_work_sync(&fs_info->async_reclaim_work);
3927
c146afad 3928 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3929 /*
3930 * If the cleaner thread is stopped and there are
3931 * block groups queued for removal, the deletion will be
3932 * skipped when we quit the cleaner thread.
3933 */
e44163e1 3934 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3935
acce952b 3936 ret = btrfs_commit_super(root);
3937 if (ret)
04892340 3938 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3939 }
3940
87533c47 3941 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3942 btrfs_error_commit_super(root);
0f7d52f4 3943
e3029d9f
AV
3944 kthread_stop(fs_info->transaction_kthread);
3945 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3946
f25784b3
YZ
3947 fs_info->closing = 2;
3948 smp_mb();
3949
04892340 3950 btrfs_free_qgroup_config(fs_info);
bcef60f2 3951
963d678b 3952 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3953 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3954 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3955 }
bcc63abb 3956
6618a59b 3957 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3958 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3959
faa2dbf0 3960 btrfs_free_fs_roots(fs_info);
d10c5f31 3961
1a4319cc
LB
3962 btrfs_put_block_group_cache(fs_info);
3963
2b1360da
JB
3964 btrfs_free_block_groups(fs_info);
3965
de348ee0
WS
3966 /*
3967 * we must make sure there is not any read request to
3968 * submit after we stopping all workers.
3969 */
3970 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3971 btrfs_stop_all_workers(fs_info);
3972
47ab2a6c 3973 fs_info->open = 0;
13e6c37b 3974 free_root_pointers(fs_info, 1);
9ad6b7bc 3975
13e6c37b 3976 iput(fs_info->btree_inode);
d6bfde87 3977
21adbd5c 3978#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3cdde224 3979 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
21adbd5c
SB
3980 btrfsic_unmount(root, fs_info->fs_devices);
3981#endif
3982
dfe25020 3983 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3984 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3985
e2d84521 3986 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3987 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3988 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3989 bdi_destroy(&fs_info->bdi);
76dda93c 3990 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3991
53b381b3
DW
3992 btrfs_free_stripe_hash_table(fs_info);
3993
cdfb080e 3994 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3995 root->orphan_block_rsv = NULL;
04216820
FM
3996
3997 lock_chunks(root);
3998 while (!list_empty(&fs_info->pinned_chunks)) {
3999 struct extent_map *em;
4000
4001 em = list_first_entry(&fs_info->pinned_chunks,
4002 struct extent_map, list);
4003 list_del_init(&em->list);
4004 free_extent_map(em);
4005 }
4006 unlock_chunks(root);
eb60ceac
CM
4007}
4008
b9fab919
CM
4009int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4010 int atomic)
5f39d397 4011{
1259ab75 4012 int ret;
727011e0 4013 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4014
0b32f4bb 4015 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4016 if (!ret)
4017 return ret;
4018
4019 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4020 parent_transid, atomic);
4021 if (ret == -EAGAIN)
4022 return ret;
1259ab75 4023 return !ret;
5f39d397
CM
4024}
4025
5f39d397
CM
4026void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4027{
06ea65a3 4028 struct btrfs_root *root;
5f39d397 4029 u64 transid = btrfs_header_generation(buf);
b9473439 4030 int was_dirty;
b4ce94de 4031
06ea65a3
JB
4032#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4033 /*
4034 * This is a fast path so only do this check if we have sanity tests
4035 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4036 * outside of the sanity tests.
4037 */
4038 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4039 return;
4040#endif
4041 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 4042 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
4043 if (transid != root->fs_info->generation)
4044 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 4045 "found %llu running %llu\n",
c1c9ff7c 4046 buf->start, transid, root->fs_info->generation);
0b32f4bb 4047 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
4048 if (!was_dirty)
4049 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4050 buf->len,
4051 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
4052#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4053 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4054 btrfs_print_leaf(root, buf);
4055 ASSERT(0);
4056 }
4057#endif
eb60ceac
CM
4058}
4059
b53d3f5d
LB
4060static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4061 int flush_delayed)
16cdcec7
MX
4062{
4063 /*
4064 * looks as though older kernels can get into trouble with
4065 * this code, they end up stuck in balance_dirty_pages forever
4066 */
e2d84521 4067 int ret;
16cdcec7
MX
4068
4069 if (current->flags & PF_MEMALLOC)
4070 return;
4071
b53d3f5d
LB
4072 if (flush_delayed)
4073 btrfs_balance_delayed_items(root);
16cdcec7 4074
e2d84521
MX
4075 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4076 BTRFS_DIRTY_METADATA_THRESH);
4077 if (ret > 0) {
d0e1d66b
NJ
4078 balance_dirty_pages_ratelimited(
4079 root->fs_info->btree_inode->i_mapping);
16cdcec7 4080 }
16cdcec7
MX
4081}
4082
b53d3f5d 4083void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 4084{
b53d3f5d
LB
4085 __btrfs_btree_balance_dirty(root, 1);
4086}
585ad2c3 4087
b53d3f5d
LB
4088void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4089{
4090 __btrfs_btree_balance_dirty(root, 0);
35b7e476 4091}
6b80053d 4092
ca7a79ad 4093int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4094{
727011e0 4095 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 4096 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 4097}
0da5468f 4098
fcd1f065 4099static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4100 int read_only)
4101{
c926093e 4102 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
4103 u64 nodesize = btrfs_super_nodesize(sb);
4104 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
4105 int ret = 0;
4106
319e4d06
QW
4107 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4108 printk(KERN_ERR "BTRFS: no valid FS found\n");
4109 ret = -EINVAL;
4110 }
4111 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4112 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4113 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
21e7626b
DS
4114 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4115 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4116 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4117 ret = -EINVAL;
4118 }
21e7626b
DS
4119 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4120 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4121 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4122 ret = -EINVAL;
4123 }
21e7626b
DS
4124 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4125 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4126 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4127 ret = -EINVAL;
4128 }
4129
1104a885 4130 /*
319e4d06
QW
4131 * Check sectorsize and nodesize first, other check will need it.
4132 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 4133 */
319e4d06
QW
4134 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4135 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4136 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4137 ret = -EINVAL;
4138 }
4139 /* Only PAGE SIZE is supported yet */
09cbfeaf 4140 if (sectorsize != PAGE_SIZE) {
319e4d06 4141 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
09cbfeaf 4142 sectorsize, PAGE_SIZE);
319e4d06
QW
4143 ret = -EINVAL;
4144 }
4145 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4146 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4147 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4148 ret = -EINVAL;
4149 }
4150 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4151 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4152 le32_to_cpu(sb->__unused_leafsize),
4153 nodesize);
4154 ret = -EINVAL;
4155 }
4156
4157 /* Root alignment check */
4158 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
c926093e 4159 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 4160 btrfs_super_root(sb));
319e4d06
QW
4161 ret = -EINVAL;
4162 }
4163 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
cd743fac
DS
4164 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4165 btrfs_super_chunk_root(sb));
75d6ad38
DS
4166 ret = -EINVAL;
4167 }
319e4d06
QW
4168 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4169 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4170 btrfs_super_log_root(sb));
75d6ad38
DS
4171 ret = -EINVAL;
4172 }
4173
c926093e
DS
4174 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4175 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4176 fs_info->fsid, sb->dev_item.fsid);
4177 ret = -EINVAL;
4178 }
4179
4180 /*
4181 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4182 * done later
4183 */
99e3ecfc
LB
4184 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4185 btrfs_err(fs_info, "bytes_used is too small %llu",
4186 btrfs_super_bytes_used(sb));
4187 ret = -EINVAL;
4188 }
b7f67055 4189 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc
LB
4190 btrfs_err(fs_info, "invalid stripesize %u",
4191 btrfs_super_stripesize(sb));
4192 ret = -EINVAL;
4193 }
21e7626b 4194 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4195 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4196 btrfs_super_num_devices(sb));
75d6ad38
DS
4197 if (btrfs_super_num_devices(sb) == 0) {
4198 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4199 ret = -EINVAL;
4200 }
c926093e 4201
21e7626b 4202 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4203 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4204 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4205 ret = -EINVAL;
4206 }
4207
ce7fca5f
DS
4208 /*
4209 * Obvious sys_chunk_array corruptions, it must hold at least one key
4210 * and one chunk
4211 */
4212 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4213 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4214 btrfs_super_sys_array_size(sb),
4215 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4216 ret = -EINVAL;
4217 }
4218 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4219 + sizeof(struct btrfs_chunk)) {
d2207129 4220 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4221 btrfs_super_sys_array_size(sb),
4222 sizeof(struct btrfs_disk_key)
4223 + sizeof(struct btrfs_chunk));
4224 ret = -EINVAL;
4225 }
4226
c926093e
DS
4227 /*
4228 * The generation is a global counter, we'll trust it more than the others
4229 * but it's still possible that it's the one that's wrong.
4230 */
21e7626b 4231 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4232 printk(KERN_WARNING
4233 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4234 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4235 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4236 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4237 printk(KERN_WARNING
4238 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4239 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4240
4241 return ret;
acce952b 4242}
4243
48a3b636 4244static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4245{
acce952b 4246 mutex_lock(&root->fs_info->cleaner_mutex);
4247 btrfs_run_delayed_iputs(root);
4248 mutex_unlock(&root->fs_info->cleaner_mutex);
4249
4250 down_write(&root->fs_info->cleanup_work_sem);
4251 up_write(&root->fs_info->cleanup_work_sem);
4252
4253 /* cleanup FS via transaction */
4254 btrfs_cleanup_transaction(root);
acce952b 4255}
4256
143bede5 4257static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4258{
acce952b 4259 struct btrfs_ordered_extent *ordered;
acce952b 4260
199c2a9c 4261 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4262 /*
4263 * This will just short circuit the ordered completion stuff which will
4264 * make sure the ordered extent gets properly cleaned up.
4265 */
199c2a9c 4266 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4267 root_extent_list)
4268 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4269 spin_unlock(&root->ordered_extent_lock);
4270}
4271
4272static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4273{
4274 struct btrfs_root *root;
4275 struct list_head splice;
4276
4277 INIT_LIST_HEAD(&splice);
4278
4279 spin_lock(&fs_info->ordered_root_lock);
4280 list_splice_init(&fs_info->ordered_roots, &splice);
4281 while (!list_empty(&splice)) {
4282 root = list_first_entry(&splice, struct btrfs_root,
4283 ordered_root);
1de2cfde
JB
4284 list_move_tail(&root->ordered_root,
4285 &fs_info->ordered_roots);
199c2a9c 4286
2a85d9ca 4287 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4288 btrfs_destroy_ordered_extents(root);
4289
2a85d9ca
LB
4290 cond_resched();
4291 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4292 }
4293 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4294}
4295
35a3621b
SB
4296static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4297 struct btrfs_root *root)
acce952b 4298{
4299 struct rb_node *node;
4300 struct btrfs_delayed_ref_root *delayed_refs;
4301 struct btrfs_delayed_ref_node *ref;
4302 int ret = 0;
4303
4304 delayed_refs = &trans->delayed_refs;
4305
4306 spin_lock(&delayed_refs->lock);
d7df2c79 4307 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4308 spin_unlock(&delayed_refs->lock);
efe120a0 4309 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4310 return ret;
4311 }
4312
d7df2c79
JB
4313 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4314 struct btrfs_delayed_ref_head *head;
c6fc2454 4315 struct btrfs_delayed_ref_node *tmp;
e78417d1 4316 bool pin_bytes = false;
acce952b 4317
d7df2c79
JB
4318 head = rb_entry(node, struct btrfs_delayed_ref_head,
4319 href_node);
4320 if (!mutex_trylock(&head->mutex)) {
4321 atomic_inc(&head->node.refs);
4322 spin_unlock(&delayed_refs->lock);
eb12db69 4323
d7df2c79 4324 mutex_lock(&head->mutex);
e78417d1 4325 mutex_unlock(&head->mutex);
d7df2c79
JB
4326 btrfs_put_delayed_ref(&head->node);
4327 spin_lock(&delayed_refs->lock);
4328 continue;
4329 }
4330 spin_lock(&head->lock);
c6fc2454
QW
4331 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4332 list) {
d7df2c79 4333 ref->in_tree = 0;
c6fc2454 4334 list_del(&ref->list);
d7df2c79
JB
4335 atomic_dec(&delayed_refs->num_entries);
4336 btrfs_put_delayed_ref(ref);
e78417d1 4337 }
d7df2c79
JB
4338 if (head->must_insert_reserved)
4339 pin_bytes = true;
4340 btrfs_free_delayed_extent_op(head->extent_op);
4341 delayed_refs->num_heads--;
4342 if (head->processing == 0)
4343 delayed_refs->num_heads_ready--;
4344 atomic_dec(&delayed_refs->num_entries);
4345 head->node.in_tree = 0;
4346 rb_erase(&head->href_node, &delayed_refs->href_root);
4347 spin_unlock(&head->lock);
4348 spin_unlock(&delayed_refs->lock);
4349 mutex_unlock(&head->mutex);
acce952b 4350
d7df2c79
JB
4351 if (pin_bytes)
4352 btrfs_pin_extent(root, head->node.bytenr,
4353 head->node.num_bytes, 1);
4354 btrfs_put_delayed_ref(&head->node);
acce952b 4355 cond_resched();
4356 spin_lock(&delayed_refs->lock);
4357 }
4358
4359 spin_unlock(&delayed_refs->lock);
4360
4361 return ret;
4362}
4363
143bede5 4364static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4365{
4366 struct btrfs_inode *btrfs_inode;
4367 struct list_head splice;
4368
4369 INIT_LIST_HEAD(&splice);
4370
eb73c1b7
MX
4371 spin_lock(&root->delalloc_lock);
4372 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4373
4374 while (!list_empty(&splice)) {
eb73c1b7
MX
4375 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4376 delalloc_inodes);
acce952b 4377
4378 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4379 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4380 &btrfs_inode->runtime_flags);
eb73c1b7 4381 spin_unlock(&root->delalloc_lock);
acce952b 4382
4383 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4384
eb73c1b7 4385 spin_lock(&root->delalloc_lock);
acce952b 4386 }
4387
eb73c1b7
MX
4388 spin_unlock(&root->delalloc_lock);
4389}
4390
4391static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4392{
4393 struct btrfs_root *root;
4394 struct list_head splice;
4395
4396 INIT_LIST_HEAD(&splice);
4397
4398 spin_lock(&fs_info->delalloc_root_lock);
4399 list_splice_init(&fs_info->delalloc_roots, &splice);
4400 while (!list_empty(&splice)) {
4401 root = list_first_entry(&splice, struct btrfs_root,
4402 delalloc_root);
4403 list_del_init(&root->delalloc_root);
4404 root = btrfs_grab_fs_root(root);
4405 BUG_ON(!root);
4406 spin_unlock(&fs_info->delalloc_root_lock);
4407
4408 btrfs_destroy_delalloc_inodes(root);
4409 btrfs_put_fs_root(root);
4410
4411 spin_lock(&fs_info->delalloc_root_lock);
4412 }
4413 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4414}
4415
4416static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4417 struct extent_io_tree *dirty_pages,
4418 int mark)
4419{
4420 int ret;
acce952b 4421 struct extent_buffer *eb;
4422 u64 start = 0;
4423 u64 end;
acce952b 4424
4425 while (1) {
4426 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4427 mark, NULL);
acce952b 4428 if (ret)
4429 break;
4430
91166212 4431 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4432 while (start <= end) {
01d58472 4433 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4434 start += root->nodesize;
fd8b2b61 4435 if (!eb)
acce952b 4436 continue;
fd8b2b61 4437 wait_on_extent_buffer_writeback(eb);
acce952b 4438
fd8b2b61
JB
4439 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4440 &eb->bflags))
4441 clear_extent_buffer_dirty(eb);
4442 free_extent_buffer_stale(eb);
acce952b 4443 }
4444 }
4445
4446 return ret;
4447}
4448
4449static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4450 struct extent_io_tree *pinned_extents)
4451{
4452 struct extent_io_tree *unpin;
4453 u64 start;
4454 u64 end;
4455 int ret;
ed0eaa14 4456 bool loop = true;
acce952b 4457
4458 unpin = pinned_extents;
ed0eaa14 4459again:
acce952b 4460 while (1) {
4461 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4462 EXTENT_DIRTY, NULL);
acce952b 4463 if (ret)
4464 break;
4465
af6f8f60 4466 clear_extent_dirty(unpin, start, end);
acce952b 4467 btrfs_error_unpin_extent_range(root, start, end);
4468 cond_resched();
4469 }
4470
ed0eaa14
LB
4471 if (loop) {
4472 if (unpin == &root->fs_info->freed_extents[0])
4473 unpin = &root->fs_info->freed_extents[1];
4474 else
4475 unpin = &root->fs_info->freed_extents[0];
4476 loop = false;
4477 goto again;
4478 }
4479
acce952b 4480 return 0;
4481}
4482
49b25e05
JM
4483void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4484 struct btrfs_root *root)
4485{
4486 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4487
4a9d8bde 4488 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4489 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4490
4a9d8bde 4491 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4492 wake_up(&root->fs_info->transaction_wait);
49b25e05 4493
67cde344
MX
4494 btrfs_destroy_delayed_inodes(root);
4495 btrfs_assert_delayed_root_empty(root);
49b25e05 4496
49b25e05
JM
4497 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4498 EXTENT_DIRTY);
6e841e32
LB
4499 btrfs_destroy_pinned_extent(root,
4500 root->fs_info->pinned_extents);
49b25e05 4501
4a9d8bde
MX
4502 cur_trans->state =TRANS_STATE_COMPLETED;
4503 wake_up(&cur_trans->commit_wait);
4504
49b25e05
JM
4505 /*
4506 memset(cur_trans, 0, sizeof(*cur_trans));
4507 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4508 */
4509}
4510
48a3b636 4511static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4512{
4513 struct btrfs_transaction *t;
acce952b 4514
acce952b 4515 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4516
a4abeea4 4517 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4518 while (!list_empty(&root->fs_info->trans_list)) {
4519 t = list_first_entry(&root->fs_info->trans_list,
4520 struct btrfs_transaction, list);
4521 if (t->state >= TRANS_STATE_COMMIT_START) {
4522 atomic_inc(&t->use_count);
4523 spin_unlock(&root->fs_info->trans_lock);
4524 btrfs_wait_for_commit(root, t->transid);
4525 btrfs_put_transaction(t);
4526 spin_lock(&root->fs_info->trans_lock);
4527 continue;
4528 }
4529 if (t == root->fs_info->running_transaction) {
4530 t->state = TRANS_STATE_COMMIT_DOING;
4531 spin_unlock(&root->fs_info->trans_lock);
4532 /*
4533 * We wait for 0 num_writers since we don't hold a trans
4534 * handle open currently for this transaction.
4535 */
4536 wait_event(t->writer_wait,
4537 atomic_read(&t->num_writers) == 0);
4538 } else {
4539 spin_unlock(&root->fs_info->trans_lock);
4540 }
4541 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4542
724e2315
JB
4543 spin_lock(&root->fs_info->trans_lock);
4544 if (t == root->fs_info->running_transaction)
4545 root->fs_info->running_transaction = NULL;
acce952b 4546 list_del_init(&t->list);
724e2315 4547 spin_unlock(&root->fs_info->trans_lock);
acce952b 4548
724e2315
JB
4549 btrfs_put_transaction(t);
4550 trace_btrfs_transaction_commit(root);
4551 spin_lock(&root->fs_info->trans_lock);
4552 }
4553 spin_unlock(&root->fs_info->trans_lock);
4554 btrfs_destroy_all_ordered_extents(root->fs_info);
4555 btrfs_destroy_delayed_inodes(root);
4556 btrfs_assert_delayed_root_empty(root);
4557 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4558 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4559 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4560
4561 return 0;
4562}
4563
e8c9f186 4564static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4565 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4566 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4567 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4568 /* note we're sharing with inode.c for the merge bio hook */
4569 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4570};
This page took 0.932773 seconds and 5 git commands to generate.