Btrfs: use a bit to track if we're in the radix tree
[deliverable/linux.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
6463fe58 33#include <linux/uuid.h>
803b2f54 34#include <linux/semaphore.h>
7e75bf3f 35#include <asm/unaligned.h>
eb60ceac
CM
36#include "ctree.h"
37#include "disk-io.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
48a3b636
ES
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 75
d352ac68
CM
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
ce9adaa5
CM
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
22c59948 87 int metadata;
ce9adaa5 88 struct list_head list;
8b712842 89 struct btrfs_work work;
ce9adaa5 90};
0da5468f 91
d352ac68
CM
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
44b8bd7e
CM
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
4a69a410
CM
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
103 int rw;
104 int mirror_num;
c8b97818 105 unsigned long bio_flags;
eaf25d93
CM
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
8b712842 111 struct btrfs_work work;
79787eaa 112 int error;
44b8bd7e
CM
113};
114
85d4e461
CM
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
4008c04a 125 *
85d4e461
CM
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 129 *
85d4e461
CM
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 133 *
85d4e461
CM
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
4008c04a
CM
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
85d4e461
CM
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 160 { .id = 0, .name_stem = "tree" },
4008c04a 161};
85d4e461
CM
162
163void __init btrfs_init_lockdep(void)
164{
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175}
176
177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179{
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191}
192
4008c04a
CM
193#endif
194
d352ac68
CM
195/*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
b2950863 199static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 200 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 201 int create)
7eccb903 202{
5f39d397
CM
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
890871be 207 read_lock(&em_tree->lock);
d1310b2e 208 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 212 read_unlock(&em_tree->lock);
5f39d397 213 goto out;
a061fc8d 214 }
890871be 215 read_unlock(&em_tree->lock);
7b13b7b1 216
172ddd60 217 em = alloc_extent_map();
5f39d397
CM
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
0afbaf8c 223 em->len = (u64)-1;
c8b97818 224 em->block_len = (u64)-1;
5f39d397 225 em->block_start = 0;
a061fc8d 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 227
890871be 228 write_lock(&em_tree->lock);
09a2a8f9 229 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
230 if (ret == -EEXIST) {
231 free_extent_map(em);
7b13b7b1 232 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 233 if (!em)
0433f20d 234 em = ERR_PTR(-EIO);
5f39d397 235 } else if (ret) {
7b13b7b1 236 free_extent_map(em);
0433f20d 237 em = ERR_PTR(ret);
5f39d397 238 }
890871be 239 write_unlock(&em_tree->lock);
7b13b7b1 240
5f39d397
CM
241out:
242 return em;
7eccb903
CM
243}
244
b0496686 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 246{
163e783e 247 return crc32c(seed, data, len);
19c00ddc
CM
248}
249
250void btrfs_csum_final(u32 crc, char *result)
251{
7e75bf3f 252 put_unaligned_le32(~crc, result);
19c00ddc
CM
253}
254
d352ac68
CM
255/*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
19c00ddc
CM
259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261{
6c41761f 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 263 char *result = NULL;
19c00ddc
CM
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
607d432d 272 unsigned long inline_result;
19c00ddc
CM
273
274 len = buf->len - offset;
d397712b 275 while (len > 0) {
19c00ddc 276 err = map_private_extent_buffer(buf, offset, 32,
a6591715 277 &kaddr, &map_start, &map_len);
d397712b 278 if (err)
19c00ddc 279 return 1;
19c00ddc 280 cur_len = min(len, map_len - (offset - map_start));
b0496686 281 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
607d432d
JB
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 303 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
304 "failed on %llu wanted %X found %X "
305 "level %d\n",
c1c9ff7c
GU
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 347 "found %llu\n",
c1c9ff7c 348 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 349 ret = 1;
0b32f4bb 350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41
JB
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
1259ab75 354 return ret;
1259ab75
CM
355}
356
1104a885
DS
357/*
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
360 */
361static int btrfs_check_super_csum(char *raw_disk_sb)
362{
363 struct btrfs_super_block *disk_sb =
364 (struct btrfs_super_block *)raw_disk_sb;
365 u16 csum_type = btrfs_super_csum_type(disk_sb);
366 int ret = 0;
367
368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369 u32 crc = ~(u32)0;
370 const int csum_size = sizeof(crc);
371 char result[csum_size];
372
373 /*
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
377 */
378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 btrfs_csum_final(crc, result);
381
382 if (memcmp(raw_disk_sb, result, csum_size))
383 ret = 1;
667e7d94
CM
384
385 if (ret && btrfs_super_generation(disk_sb) < 10) {
386 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
387 ret = 0;
388 }
1104a885
DS
389 }
390
391 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
392 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
393 csum_type);
394 ret = 1;
395 }
396
397 return ret;
398}
399
d352ac68
CM
400/*
401 * helper to read a given tree block, doing retries as required when
402 * the checksums don't match and we have alternate mirrors to try.
403 */
f188591e
CM
404static int btree_read_extent_buffer_pages(struct btrfs_root *root,
405 struct extent_buffer *eb,
ca7a79ad 406 u64 start, u64 parent_transid)
f188591e
CM
407{
408 struct extent_io_tree *io_tree;
ea466794 409 int failed = 0;
f188591e
CM
410 int ret;
411 int num_copies = 0;
412 int mirror_num = 0;
ea466794 413 int failed_mirror = 0;
f188591e 414
a826d6dc 415 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
416 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
417 while (1) {
bb82ab88
AJ
418 ret = read_extent_buffer_pages(io_tree, eb, start,
419 WAIT_COMPLETE,
f188591e 420 btree_get_extent, mirror_num);
256dd1bb
SB
421 if (!ret) {
422 if (!verify_parent_transid(io_tree, eb,
b9fab919 423 parent_transid, 0))
256dd1bb
SB
424 break;
425 else
426 ret = -EIO;
427 }
d397712b 428
a826d6dc
JB
429 /*
430 * This buffer's crc is fine, but its contents are corrupted, so
431 * there is no reason to read the other copies, they won't be
432 * any less wrong.
433 */
434 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
435 break;
436
5d964051 437 num_copies = btrfs_num_copies(root->fs_info,
f188591e 438 eb->start, eb->len);
4235298e 439 if (num_copies == 1)
ea466794 440 break;
4235298e 441
5cf1ab56
JB
442 if (!failed_mirror) {
443 failed = 1;
444 failed_mirror = eb->read_mirror;
445 }
446
f188591e 447 mirror_num++;
ea466794
JB
448 if (mirror_num == failed_mirror)
449 mirror_num++;
450
4235298e 451 if (mirror_num > num_copies)
ea466794 452 break;
f188591e 453 }
ea466794 454
c0901581 455 if (failed && !ret && failed_mirror)
ea466794
JB
456 repair_eb_io_failure(root, eb, failed_mirror);
457
458 return ret;
f188591e 459}
19c00ddc 460
d352ac68 461/*
d397712b
CM
462 * checksum a dirty tree block before IO. This has extra checks to make sure
463 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 464 */
d397712b 465
b2950863 466static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 467{
4eee4fa4 468 u64 start = page_offset(page);
19c00ddc 469 u64 found_start;
19c00ddc 470 struct extent_buffer *eb;
f188591e 471
4f2de97a
JB
472 eb = (struct extent_buffer *)page->private;
473 if (page != eb->pages[0])
474 return 0;
19c00ddc 475 found_start = btrfs_header_bytenr(eb);
fae7f21c 476 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 477 return 0;
19c00ddc 478 csum_tree_block(root, eb, 0);
19c00ddc
CM
479 return 0;
480}
481
2b82032c
YZ
482static int check_tree_block_fsid(struct btrfs_root *root,
483 struct extent_buffer *eb)
484{
485 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
486 u8 fsid[BTRFS_UUID_SIZE];
487 int ret = 1;
488
0a4e5586 489 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
490 while (fs_devices) {
491 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
492 ret = 0;
493 break;
494 }
495 fs_devices = fs_devices->seed;
496 }
497 return ret;
498}
499
a826d6dc
JB
500#define CORRUPT(reason, eb, root, slot) \
501 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
502 "root=%llu, slot=%d\n", reason, \
c1c9ff7c 503 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
504
505static noinline int check_leaf(struct btrfs_root *root,
506 struct extent_buffer *leaf)
507{
508 struct btrfs_key key;
509 struct btrfs_key leaf_key;
510 u32 nritems = btrfs_header_nritems(leaf);
511 int slot;
512
513 if (nritems == 0)
514 return 0;
515
516 /* Check the 0 item */
517 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
518 BTRFS_LEAF_DATA_SIZE(root)) {
519 CORRUPT("invalid item offset size pair", leaf, root, 0);
520 return -EIO;
521 }
522
523 /*
524 * Check to make sure each items keys are in the correct order and their
525 * offsets make sense. We only have to loop through nritems-1 because
526 * we check the current slot against the next slot, which verifies the
527 * next slot's offset+size makes sense and that the current's slot
528 * offset is correct.
529 */
530 for (slot = 0; slot < nritems - 1; slot++) {
531 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
532 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
533
534 /* Make sure the keys are in the right order */
535 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
536 CORRUPT("bad key order", leaf, root, slot);
537 return -EIO;
538 }
539
540 /*
541 * Make sure the offset and ends are right, remember that the
542 * item data starts at the end of the leaf and grows towards the
543 * front.
544 */
545 if (btrfs_item_offset_nr(leaf, slot) !=
546 btrfs_item_end_nr(leaf, slot + 1)) {
547 CORRUPT("slot offset bad", leaf, root, slot);
548 return -EIO;
549 }
550
551 /*
552 * Check to make sure that we don't point outside of the leaf,
553 * just incase all the items are consistent to eachother, but
554 * all point outside of the leaf.
555 */
556 if (btrfs_item_end_nr(leaf, slot) >
557 BTRFS_LEAF_DATA_SIZE(root)) {
558 CORRUPT("slot end outside of leaf", leaf, root, slot);
559 return -EIO;
560 }
561 }
562
563 return 0;
564}
565
facc8a22
MX
566static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
567 u64 phy_offset, struct page *page,
568 u64 start, u64 end, int mirror)
ce9adaa5 569{
ce9adaa5
CM
570 u64 found_start;
571 int found_level;
ce9adaa5
CM
572 struct extent_buffer *eb;
573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 574 int ret = 0;
727011e0 575 int reads_done;
ce9adaa5 576
ce9adaa5
CM
577 if (!page->private)
578 goto out;
d397712b 579
4f2de97a 580 eb = (struct extent_buffer *)page->private;
d397712b 581
0b32f4bb
JB
582 /* the pending IO might have been the only thing that kept this buffer
583 * in memory. Make sure we have a ref for all this other checks
584 */
585 extent_buffer_get(eb);
586
587 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
588 if (!reads_done)
589 goto err;
f188591e 590
5cf1ab56 591 eb->read_mirror = mirror;
ea466794
JB
592 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593 ret = -EIO;
594 goto err;
595 }
596
ce9adaa5 597 found_start = btrfs_header_bytenr(eb);
727011e0 598 if (found_start != eb->start) {
7a36ddec 599 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d 600 "%llu %llu\n",
c1c9ff7c 601 found_start, eb->start);
f188591e 602 ret = -EIO;
ce9adaa5
CM
603 goto err;
604 }
2b82032c 605 if (check_tree_block_fsid(root, eb)) {
7a36ddec 606 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
c1c9ff7c 607 eb->start);
1259ab75
CM
608 ret = -EIO;
609 goto err;
610 }
ce9adaa5 611 found_level = btrfs_header_level(eb);
1c24c3ce
JB
612 if (found_level >= BTRFS_MAX_LEVEL) {
613 btrfs_info(root->fs_info, "bad tree block level %d\n",
614 (int)btrfs_header_level(eb));
615 ret = -EIO;
616 goto err;
617 }
ce9adaa5 618
85d4e461
CM
619 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
620 eb, found_level);
4008c04a 621
ce9adaa5 622 ret = csum_tree_block(root, eb, 1);
a826d6dc 623 if (ret) {
f188591e 624 ret = -EIO;
a826d6dc
JB
625 goto err;
626 }
627
628 /*
629 * If this is a leaf block and it is corrupt, set the corrupt bit so
630 * that we don't try and read the other copies of this block, just
631 * return -EIO.
632 */
633 if (found_level == 0 && check_leaf(root, eb)) {
634 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
635 ret = -EIO;
636 }
ce9adaa5 637
0b32f4bb
JB
638 if (!ret)
639 set_extent_buffer_uptodate(eb);
ce9adaa5 640err:
79fb65a1
JB
641 if (reads_done &&
642 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 643 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 644
53b381b3
DW
645 if (ret) {
646 /*
647 * our io error hook is going to dec the io pages
648 * again, we have to make sure it has something
649 * to decrement
650 */
651 atomic_inc(&eb->io_pages);
0b32f4bb 652 clear_extent_buffer_uptodate(eb);
53b381b3 653 }
0b32f4bb 654 free_extent_buffer(eb);
ce9adaa5 655out:
f188591e 656 return ret;
ce9adaa5
CM
657}
658
ea466794 659static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 660{
4bb31e92
AJ
661 struct extent_buffer *eb;
662 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
663
4f2de97a 664 eb = (struct extent_buffer *)page->private;
ea466794 665 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 666 eb->read_mirror = failed_mirror;
53b381b3 667 atomic_dec(&eb->io_pages);
ea466794 668 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 669 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
670 return -EIO; /* we fixed nothing */
671}
672
ce9adaa5 673static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
674{
675 struct end_io_wq *end_io_wq = bio->bi_private;
676 struct btrfs_fs_info *fs_info;
ce9adaa5 677
ce9adaa5 678 fs_info = end_io_wq->info;
ce9adaa5 679 end_io_wq->error = err;
8b712842
CM
680 end_io_wq->work.func = end_workqueue_fn;
681 end_io_wq->work.flags = 0;
d20f7043 682
7b6d91da 683 if (bio->bi_rw & REQ_WRITE) {
53b381b3 684 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
cad321ad
CM
685 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
686 &end_io_wq->work);
53b381b3 687 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
0cb59c99
JB
688 btrfs_queue_worker(&fs_info->endio_freespace_worker,
689 &end_io_wq->work);
53b381b3
DW
690 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
691 btrfs_queue_worker(&fs_info->endio_raid56_workers,
692 &end_io_wq->work);
cad321ad
CM
693 else
694 btrfs_queue_worker(&fs_info->endio_write_workers,
695 &end_io_wq->work);
d20f7043 696 } else {
53b381b3
DW
697 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
698 btrfs_queue_worker(&fs_info->endio_raid56_workers,
699 &end_io_wq->work);
700 else if (end_io_wq->metadata)
d20f7043
CM
701 btrfs_queue_worker(&fs_info->endio_meta_workers,
702 &end_io_wq->work);
703 else
704 btrfs_queue_worker(&fs_info->endio_workers,
705 &end_io_wq->work);
706 }
ce9adaa5
CM
707}
708
0cb59c99
JB
709/*
710 * For the metadata arg you want
711 *
712 * 0 - if data
713 * 1 - if normal metadta
714 * 2 - if writing to the free space cache area
53b381b3 715 * 3 - raid parity work
0cb59c99 716 */
22c59948
CM
717int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
718 int metadata)
0b86a832 719{
ce9adaa5 720 struct end_io_wq *end_io_wq;
ce9adaa5
CM
721 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
722 if (!end_io_wq)
723 return -ENOMEM;
724
725 end_io_wq->private = bio->bi_private;
726 end_io_wq->end_io = bio->bi_end_io;
22c59948 727 end_io_wq->info = info;
ce9adaa5
CM
728 end_io_wq->error = 0;
729 end_io_wq->bio = bio;
22c59948 730 end_io_wq->metadata = metadata;
ce9adaa5
CM
731
732 bio->bi_private = end_io_wq;
733 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
734 return 0;
735}
736
b64a2851 737unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 738{
4854ddd0
CM
739 unsigned long limit = min_t(unsigned long,
740 info->workers.max_workers,
741 info->fs_devices->open_devices);
742 return 256 * limit;
743}
0986fe9e 744
4a69a410
CM
745static void run_one_async_start(struct btrfs_work *work)
746{
4a69a410 747 struct async_submit_bio *async;
79787eaa 748 int ret;
4a69a410
CM
749
750 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
751 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
752 async->mirror_num, async->bio_flags,
753 async->bio_offset);
754 if (ret)
755 async->error = ret;
4a69a410
CM
756}
757
758static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
759{
760 struct btrfs_fs_info *fs_info;
761 struct async_submit_bio *async;
4854ddd0 762 int limit;
8b712842
CM
763
764 async = container_of(work, struct async_submit_bio, work);
765 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 766
b64a2851 767 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
768 limit = limit * 2 / 3;
769
66657b31 770 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 771 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
772 wake_up(&fs_info->async_submit_wait);
773
79787eaa
JM
774 /* If an error occured we just want to clean up the bio and move on */
775 if (async->error) {
776 bio_endio(async->bio, async->error);
777 return;
778 }
779
4a69a410 780 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
781 async->mirror_num, async->bio_flags,
782 async->bio_offset);
4a69a410
CM
783}
784
785static void run_one_async_free(struct btrfs_work *work)
786{
787 struct async_submit_bio *async;
788
789 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
790 kfree(async);
791}
792
44b8bd7e
CM
793int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
794 int rw, struct bio *bio, int mirror_num,
c8b97818 795 unsigned long bio_flags,
eaf25d93 796 u64 bio_offset,
4a69a410
CM
797 extent_submit_bio_hook_t *submit_bio_start,
798 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
799{
800 struct async_submit_bio *async;
801
802 async = kmalloc(sizeof(*async), GFP_NOFS);
803 if (!async)
804 return -ENOMEM;
805
806 async->inode = inode;
807 async->rw = rw;
808 async->bio = bio;
809 async->mirror_num = mirror_num;
4a69a410
CM
810 async->submit_bio_start = submit_bio_start;
811 async->submit_bio_done = submit_bio_done;
812
813 async->work.func = run_one_async_start;
814 async->work.ordered_func = run_one_async_done;
815 async->work.ordered_free = run_one_async_free;
816
8b712842 817 async->work.flags = 0;
c8b97818 818 async->bio_flags = bio_flags;
eaf25d93 819 async->bio_offset = bio_offset;
8c8bee1d 820
79787eaa
JM
821 async->error = 0;
822
cb03c743 823 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 824
7b6d91da 825 if (rw & REQ_SYNC)
d313d7a3
CM
826 btrfs_set_work_high_prio(&async->work);
827
8b712842 828 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 829
d397712b 830 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
831 atomic_read(&fs_info->nr_async_submits)) {
832 wait_event(fs_info->async_submit_wait,
833 (atomic_read(&fs_info->nr_async_submits) == 0));
834 }
835
44b8bd7e
CM
836 return 0;
837}
838
ce3ed71a
CM
839static int btree_csum_one_bio(struct bio *bio)
840{
841 struct bio_vec *bvec = bio->bi_io_vec;
842 int bio_index = 0;
843 struct btrfs_root *root;
79787eaa 844 int ret = 0;
ce3ed71a
CM
845
846 WARN_ON(bio->bi_vcnt <= 0);
d397712b 847 while (bio_index < bio->bi_vcnt) {
ce3ed71a 848 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
849 ret = csum_dirty_buffer(root, bvec->bv_page);
850 if (ret)
851 break;
ce3ed71a
CM
852 bio_index++;
853 bvec++;
854 }
79787eaa 855 return ret;
ce3ed71a
CM
856}
857
4a69a410
CM
858static int __btree_submit_bio_start(struct inode *inode, int rw,
859 struct bio *bio, int mirror_num,
eaf25d93
CM
860 unsigned long bio_flags,
861 u64 bio_offset)
22c59948 862{
8b712842
CM
863 /*
864 * when we're called for a write, we're already in the async
5443be45 865 * submission context. Just jump into btrfs_map_bio
8b712842 866 */
79787eaa 867 return btree_csum_one_bio(bio);
4a69a410 868}
22c59948 869
4a69a410 870static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
4a69a410 873{
61891923
SB
874 int ret;
875
8b712842 876 /*
4a69a410
CM
877 * when we're called for a write, we're already in the async
878 * submission context. Just jump into btrfs_map_bio
8b712842 879 */
61891923
SB
880 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
881 if (ret)
882 bio_endio(bio, ret);
883 return ret;
0b86a832
CM
884}
885
de0022b9
JB
886static int check_async_write(struct inode *inode, unsigned long bio_flags)
887{
888 if (bio_flags & EXTENT_BIO_TREE_LOG)
889 return 0;
890#ifdef CONFIG_X86
891 if (cpu_has_xmm4_2)
892 return 0;
893#endif
894 return 1;
895}
896
44b8bd7e 897static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
898 int mirror_num, unsigned long bio_flags,
899 u64 bio_offset)
44b8bd7e 900{
de0022b9 901 int async = check_async_write(inode, bio_flags);
cad321ad
CM
902 int ret;
903
7b6d91da 904 if (!(rw & REQ_WRITE)) {
4a69a410
CM
905 /*
906 * called for a read, do the setup so that checksum validation
907 * can happen in the async kernel threads
908 */
f3f266ab
CM
909 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
910 bio, 1);
1d4284bd 911 if (ret)
61891923
SB
912 goto out_w_error;
913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
914 mirror_num, 0);
de0022b9
JB
915 } else if (!async) {
916 ret = btree_csum_one_bio(bio);
917 if (ret)
61891923
SB
918 goto out_w_error;
919 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
920 mirror_num, 0);
921 } else {
922 /*
923 * kthread helpers are used to submit writes so that
924 * checksumming can happen in parallel across all CPUs
925 */
926 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
927 inode, rw, bio, mirror_num, 0,
928 bio_offset,
929 __btree_submit_bio_start,
930 __btree_submit_bio_done);
44b8bd7e 931 }
d313d7a3 932
61891923
SB
933 if (ret) {
934out_w_error:
935 bio_endio(bio, ret);
936 }
937 return ret;
44b8bd7e
CM
938}
939
3dd1462e 940#ifdef CONFIG_MIGRATION
784b4e29 941static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
942 struct page *newpage, struct page *page,
943 enum migrate_mode mode)
784b4e29
CM
944{
945 /*
946 * we can't safely write a btree page from here,
947 * we haven't done the locking hook
948 */
949 if (PageDirty(page))
950 return -EAGAIN;
951 /*
952 * Buffers may be managed in a filesystem specific way.
953 * We must have no buffers or drop them.
954 */
955 if (page_has_private(page) &&
956 !try_to_release_page(page, GFP_KERNEL))
957 return -EAGAIN;
a6bc32b8 958 return migrate_page(mapping, newpage, page, mode);
784b4e29 959}
3dd1462e 960#endif
784b4e29 961
0da5468f
CM
962
963static int btree_writepages(struct address_space *mapping,
964 struct writeback_control *wbc)
965{
e2d84521
MX
966 struct btrfs_fs_info *fs_info;
967 int ret;
968
d8d5f3e1 969 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
970
971 if (wbc->for_kupdate)
972 return 0;
973
e2d84521 974 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 975 /* this is a bit racy, but that's ok */
e2d84521
MX
976 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
977 BTRFS_DIRTY_METADATA_THRESH);
978 if (ret < 0)
793955bc 979 return 0;
793955bc 980 }
0b32f4bb 981 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
982}
983
b2950863 984static int btree_readpage(struct file *file, struct page *page)
5f39d397 985{
d1310b2e
CM
986 struct extent_io_tree *tree;
987 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 988 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 989}
22b0ebda 990
70dec807 991static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 992{
98509cfc 993 if (PageWriteback(page) || PageDirty(page))
d397712b 994 return 0;
0c4e538b 995
f7a52a40 996 return try_release_extent_buffer(page);
d98237b3
CM
997}
998
d47992f8
LC
999static void btree_invalidatepage(struct page *page, unsigned int offset,
1000 unsigned int length)
d98237b3 1001{
d1310b2e
CM
1002 struct extent_io_tree *tree;
1003 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1004 extent_invalidatepage(tree, page, offset);
1005 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1006 if (PagePrivate(page)) {
d397712b
CM
1007 printk(KERN_WARNING "btrfs warning page private not zero "
1008 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1009 ClearPagePrivate(page);
1010 set_page_private(page, 0);
1011 page_cache_release(page);
1012 }
d98237b3
CM
1013}
1014
0b32f4bb
JB
1015static int btree_set_page_dirty(struct page *page)
1016{
bb146eb2 1017#ifdef DEBUG
0b32f4bb
JB
1018 struct extent_buffer *eb;
1019
1020 BUG_ON(!PagePrivate(page));
1021 eb = (struct extent_buffer *)page->private;
1022 BUG_ON(!eb);
1023 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1024 BUG_ON(!atomic_read(&eb->refs));
1025 btrfs_assert_tree_locked(eb);
bb146eb2 1026#endif
0b32f4bb
JB
1027 return __set_page_dirty_nobuffers(page);
1028}
1029
7f09410b 1030static const struct address_space_operations btree_aops = {
d98237b3 1031 .readpage = btree_readpage,
0da5468f 1032 .writepages = btree_writepages,
5f39d397
CM
1033 .releasepage = btree_releasepage,
1034 .invalidatepage = btree_invalidatepage,
5a92bc88 1035#ifdef CONFIG_MIGRATION
784b4e29 1036 .migratepage = btree_migratepage,
5a92bc88 1037#endif
0b32f4bb 1038 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1039};
1040
ca7a79ad
CM
1041int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1042 u64 parent_transid)
090d1875 1043{
5f39d397
CM
1044 struct extent_buffer *buf = NULL;
1045 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1046 int ret = 0;
090d1875 1047
db94535d 1048 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1049 if (!buf)
090d1875 1050 return 0;
d1310b2e 1051 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1052 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1053 free_extent_buffer(buf);
de428b63 1054 return ret;
090d1875
CM
1055}
1056
ab0fff03
AJ
1057int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 int mirror_num, struct extent_buffer **eb)
1059{
1060 struct extent_buffer *buf = NULL;
1061 struct inode *btree_inode = root->fs_info->btree_inode;
1062 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1063 int ret;
1064
1065 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1066 if (!buf)
1067 return 0;
1068
1069 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1070
1071 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1072 btree_get_extent, mirror_num);
1073 if (ret) {
1074 free_extent_buffer(buf);
1075 return ret;
1076 }
1077
1078 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1079 free_extent_buffer(buf);
1080 return -EIO;
0b32f4bb 1081 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1082 *eb = buf;
1083 } else {
1084 free_extent_buffer(buf);
1085 }
1086 return 0;
1087}
1088
0999df54
CM
1089struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1090 u64 bytenr, u32 blocksize)
1091{
1092 struct inode *btree_inode = root->fs_info->btree_inode;
1093 struct extent_buffer *eb;
452c75c3 1094 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr);
0999df54
CM
1095 return eb;
1096}
1097
1098struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1099 u64 bytenr, u32 blocksize)
1100{
1101 struct inode *btree_inode = root->fs_info->btree_inode;
1102 struct extent_buffer *eb;
1103
1104 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1105 bytenr, blocksize);
0999df54
CM
1106 return eb;
1107}
1108
1109
e02119d5
CM
1110int btrfs_write_tree_block(struct extent_buffer *buf)
1111{
727011e0 1112 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1113 buf->start + buf->len - 1);
e02119d5
CM
1114}
1115
1116int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1117{
727011e0 1118 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1119 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1120}
1121
0999df54 1122struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1123 u32 blocksize, u64 parent_transid)
0999df54
CM
1124{
1125 struct extent_buffer *buf = NULL;
0999df54
CM
1126 int ret;
1127
0999df54
CM
1128 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1129 if (!buf)
1130 return NULL;
0999df54 1131
ca7a79ad 1132 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1133 if (ret) {
1134 free_extent_buffer(buf);
1135 return NULL;
1136 }
5f39d397 1137 return buf;
ce9adaa5 1138
eb60ceac
CM
1139}
1140
d5c13f92
JM
1141void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1142 struct extent_buffer *buf)
ed2ff2cb 1143{
e2d84521
MX
1144 struct btrfs_fs_info *fs_info = root->fs_info;
1145
55c69072 1146 if (btrfs_header_generation(buf) ==
e2d84521 1147 fs_info->running_transaction->transid) {
b9447ef8 1148 btrfs_assert_tree_locked(buf);
b4ce94de 1149
b9473439 1150 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1151 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1152 -buf->len,
1153 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1154 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1155 btrfs_set_lock_blocking(buf);
1156 clear_extent_buffer_dirty(buf);
1157 }
925baedd 1158 }
5f39d397
CM
1159}
1160
143bede5
JM
1161static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1162 u32 stripesize, struct btrfs_root *root,
1163 struct btrfs_fs_info *fs_info,
1164 u64 objectid)
d97e63b6 1165{
cfaa7295 1166 root->node = NULL;
a28ec197 1167 root->commit_root = NULL;
db94535d
CM
1168 root->sectorsize = sectorsize;
1169 root->nodesize = nodesize;
1170 root->leafsize = leafsize;
87ee04eb 1171 root->stripesize = stripesize;
123abc88 1172 root->ref_cows = 0;
0b86a832 1173 root->track_dirty = 0;
c71bf099 1174 root->in_radix = 0;
d68fc57b
YZ
1175 root->orphan_item_inserted = 0;
1176 root->orphan_cleanup_state = 0;
0b86a832 1177
0f7d52f4
CM
1178 root->objectid = objectid;
1179 root->last_trans = 0;
13a8a7c8 1180 root->highest_objectid = 0;
eb73c1b7 1181 root->nr_delalloc_inodes = 0;
199c2a9c 1182 root->nr_ordered_extents = 0;
58176a96 1183 root->name = NULL;
6bef4d31 1184 root->inode_tree = RB_ROOT;
16cdcec7 1185 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1186 root->block_rsv = NULL;
d68fc57b 1187 root->orphan_block_rsv = NULL;
0b86a832
CM
1188
1189 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1190 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1191 INIT_LIST_HEAD(&root->delalloc_inodes);
1192 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1193 INIT_LIST_HEAD(&root->ordered_extents);
1194 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1195 INIT_LIST_HEAD(&root->logged_list[0]);
1196 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1197 spin_lock_init(&root->orphan_lock);
5d4f98a2 1198 spin_lock_init(&root->inode_lock);
eb73c1b7 1199 spin_lock_init(&root->delalloc_lock);
199c2a9c 1200 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1201 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1202 spin_lock_init(&root->log_extents_lock[0]);
1203 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1204 mutex_init(&root->objectid_mutex);
e02119d5 1205 mutex_init(&root->log_mutex);
7237f183
YZ
1206 init_waitqueue_head(&root->log_writer_wait);
1207 init_waitqueue_head(&root->log_commit_wait[0]);
1208 init_waitqueue_head(&root->log_commit_wait[1]);
1209 atomic_set(&root->log_commit[0], 0);
1210 atomic_set(&root->log_commit[1], 0);
1211 atomic_set(&root->log_writers, 0);
2ecb7923 1212 atomic_set(&root->log_batch, 0);
8a35d95f 1213 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1214 atomic_set(&root->refs, 1);
7237f183 1215 root->log_transid = 0;
257c62e1 1216 root->last_log_commit = 0;
06ea65a3
JB
1217 if (fs_info)
1218 extent_io_tree_init(&root->dirty_log_pages,
1219 fs_info->btree_inode->i_mapping);
017e5369 1220
3768f368
CM
1221 memset(&root->root_key, 0, sizeof(root->root_key));
1222 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1223 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1224 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1225 if (fs_info)
1226 root->defrag_trans_start = fs_info->generation;
1227 else
1228 root->defrag_trans_start = 0;
58176a96 1229 init_completion(&root->kobj_unregister);
6702ed49 1230 root->defrag_running = 0;
4d775673 1231 root->root_key.objectid = objectid;
0ee5dc67 1232 root->anon_dev = 0;
8ea05e3a 1233
5f3ab90a 1234 spin_lock_init(&root->root_item_lock);
3768f368
CM
1235}
1236
f84a8bd6 1237static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1238{
1239 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1240 if (root)
1241 root->fs_info = fs_info;
1242 return root;
1243}
1244
06ea65a3
JB
1245#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1246/* Should only be used by the testing infrastructure */
1247struct btrfs_root *btrfs_alloc_dummy_root(void)
1248{
1249 struct btrfs_root *root;
1250
1251 root = btrfs_alloc_root(NULL);
1252 if (!root)
1253 return ERR_PTR(-ENOMEM);
1254 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1255 root->dummy_root = 1;
1256
1257 return root;
1258}
1259#endif
1260
20897f5c
AJ
1261struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1262 struct btrfs_fs_info *fs_info,
1263 u64 objectid)
1264{
1265 struct extent_buffer *leaf;
1266 struct btrfs_root *tree_root = fs_info->tree_root;
1267 struct btrfs_root *root;
1268 struct btrfs_key key;
1269 int ret = 0;
6463fe58 1270 uuid_le uuid;
20897f5c
AJ
1271
1272 root = btrfs_alloc_root(fs_info);
1273 if (!root)
1274 return ERR_PTR(-ENOMEM);
1275
1276 __setup_root(tree_root->nodesize, tree_root->leafsize,
1277 tree_root->sectorsize, tree_root->stripesize,
1278 root, fs_info, objectid);
1279 root->root_key.objectid = objectid;
1280 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1281 root->root_key.offset = 0;
1282
1283 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1284 0, objectid, NULL, 0, 0, 0);
1285 if (IS_ERR(leaf)) {
1286 ret = PTR_ERR(leaf);
1dd05682 1287 leaf = NULL;
20897f5c
AJ
1288 goto fail;
1289 }
1290
20897f5c
AJ
1291 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1292 btrfs_set_header_bytenr(leaf, leaf->start);
1293 btrfs_set_header_generation(leaf, trans->transid);
1294 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1295 btrfs_set_header_owner(leaf, objectid);
1296 root->node = leaf;
1297
0a4e5586 1298 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1299 BTRFS_FSID_SIZE);
1300 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1301 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1302 BTRFS_UUID_SIZE);
1303 btrfs_mark_buffer_dirty(leaf);
1304
1305 root->commit_root = btrfs_root_node(root);
1306 root->track_dirty = 1;
1307
1308
1309 root->root_item.flags = 0;
1310 root->root_item.byte_limit = 0;
1311 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1312 btrfs_set_root_generation(&root->root_item, trans->transid);
1313 btrfs_set_root_level(&root->root_item, 0);
1314 btrfs_set_root_refs(&root->root_item, 1);
1315 btrfs_set_root_used(&root->root_item, leaf->len);
1316 btrfs_set_root_last_snapshot(&root->root_item, 0);
1317 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1318 uuid_le_gen(&uuid);
1319 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1320 root->root_item.drop_level = 0;
1321
1322 key.objectid = objectid;
1323 key.type = BTRFS_ROOT_ITEM_KEY;
1324 key.offset = 0;
1325 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1326 if (ret)
1327 goto fail;
1328
1329 btrfs_tree_unlock(leaf);
1330
1dd05682
TI
1331 return root;
1332
20897f5c 1333fail:
1dd05682
TI
1334 if (leaf) {
1335 btrfs_tree_unlock(leaf);
1336 free_extent_buffer(leaf);
1337 }
1338 kfree(root);
20897f5c 1339
1dd05682 1340 return ERR_PTR(ret);
20897f5c
AJ
1341}
1342
7237f183
YZ
1343static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1344 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1345{
1346 struct btrfs_root *root;
1347 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1348 struct extent_buffer *leaf;
e02119d5 1349
6f07e42e 1350 root = btrfs_alloc_root(fs_info);
e02119d5 1351 if (!root)
7237f183 1352 return ERR_PTR(-ENOMEM);
e02119d5
CM
1353
1354 __setup_root(tree_root->nodesize, tree_root->leafsize,
1355 tree_root->sectorsize, tree_root->stripesize,
1356 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1357
1358 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1359 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1360 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1361 /*
1362 * log trees do not get reference counted because they go away
1363 * before a real commit is actually done. They do store pointers
1364 * to file data extents, and those reference counts still get
1365 * updated (along with back refs to the log tree).
1366 */
e02119d5
CM
1367 root->ref_cows = 0;
1368
5d4f98a2 1369 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1370 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1371 0, 0, 0);
7237f183
YZ
1372 if (IS_ERR(leaf)) {
1373 kfree(root);
1374 return ERR_CAST(leaf);
1375 }
e02119d5 1376
5d4f98a2
YZ
1377 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1378 btrfs_set_header_bytenr(leaf, leaf->start);
1379 btrfs_set_header_generation(leaf, trans->transid);
1380 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1381 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1382 root->node = leaf;
e02119d5
CM
1383
1384 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1385 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1386 btrfs_mark_buffer_dirty(root->node);
1387 btrfs_tree_unlock(root->node);
7237f183
YZ
1388 return root;
1389}
1390
1391int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1392 struct btrfs_fs_info *fs_info)
1393{
1394 struct btrfs_root *log_root;
1395
1396 log_root = alloc_log_tree(trans, fs_info);
1397 if (IS_ERR(log_root))
1398 return PTR_ERR(log_root);
1399 WARN_ON(fs_info->log_root_tree);
1400 fs_info->log_root_tree = log_root;
1401 return 0;
1402}
1403
1404int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1405 struct btrfs_root *root)
1406{
1407 struct btrfs_root *log_root;
1408 struct btrfs_inode_item *inode_item;
1409
1410 log_root = alloc_log_tree(trans, root->fs_info);
1411 if (IS_ERR(log_root))
1412 return PTR_ERR(log_root);
1413
1414 log_root->last_trans = trans->transid;
1415 log_root->root_key.offset = root->root_key.objectid;
1416
1417 inode_item = &log_root->root_item.inode;
3cae210f
QW
1418 btrfs_set_stack_inode_generation(inode_item, 1);
1419 btrfs_set_stack_inode_size(inode_item, 3);
1420 btrfs_set_stack_inode_nlink(inode_item, 1);
1421 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1422 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1423
5d4f98a2 1424 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1425
1426 WARN_ON(root->log_root);
1427 root->log_root = log_root;
1428 root->log_transid = 0;
257c62e1 1429 root->last_log_commit = 0;
e02119d5
CM
1430 return 0;
1431}
1432
35a3621b
SB
1433static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1434 struct btrfs_key *key)
e02119d5
CM
1435{
1436 struct btrfs_root *root;
1437 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1438 struct btrfs_path *path;
84234f3a 1439 u64 generation;
db94535d 1440 u32 blocksize;
cb517eab 1441 int ret;
0f7d52f4 1442
cb517eab
MX
1443 path = btrfs_alloc_path();
1444 if (!path)
0f7d52f4 1445 return ERR_PTR(-ENOMEM);
cb517eab
MX
1446
1447 root = btrfs_alloc_root(fs_info);
1448 if (!root) {
1449 ret = -ENOMEM;
1450 goto alloc_fail;
0f7d52f4
CM
1451 }
1452
db94535d 1453 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1454 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1455 root, fs_info, key->objectid);
0f7d52f4 1456
cb517eab
MX
1457 ret = btrfs_find_root(tree_root, key, path,
1458 &root->root_item, &root->root_key);
0f7d52f4 1459 if (ret) {
13a8a7c8
YZ
1460 if (ret > 0)
1461 ret = -ENOENT;
cb517eab 1462 goto find_fail;
0f7d52f4 1463 }
13a8a7c8 1464
84234f3a 1465 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1466 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1467 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1468 blocksize, generation);
cb517eab
MX
1469 if (!root->node) {
1470 ret = -ENOMEM;
1471 goto find_fail;
1472 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1473 ret = -EIO;
1474 goto read_fail;
416bc658 1475 }
5d4f98a2 1476 root->commit_root = btrfs_root_node(root);
13a8a7c8 1477out:
cb517eab
MX
1478 btrfs_free_path(path);
1479 return root;
1480
1481read_fail:
1482 free_extent_buffer(root->node);
1483find_fail:
1484 kfree(root);
1485alloc_fail:
1486 root = ERR_PTR(ret);
1487 goto out;
1488}
1489
1490struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1491 struct btrfs_key *location)
1492{
1493 struct btrfs_root *root;
1494
1495 root = btrfs_read_tree_root(tree_root, location);
1496 if (IS_ERR(root))
1497 return root;
1498
1499 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1500 root->ref_cows = 1;
08fe4db1
LZ
1501 btrfs_check_and_init_root_item(&root->root_item);
1502 }
13a8a7c8 1503
5eda7b5e
CM
1504 return root;
1505}
1506
cb517eab
MX
1507int btrfs_init_fs_root(struct btrfs_root *root)
1508{
1509 int ret;
1510
1511 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1512 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1513 GFP_NOFS);
1514 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1515 ret = -ENOMEM;
1516 goto fail;
1517 }
1518
1519 btrfs_init_free_ino_ctl(root);
1520 mutex_init(&root->fs_commit_mutex);
1521 spin_lock_init(&root->cache_lock);
1522 init_waitqueue_head(&root->cache_wait);
1523
1524 ret = get_anon_bdev(&root->anon_dev);
1525 if (ret)
1526 goto fail;
1527 return 0;
1528fail:
1529 kfree(root->free_ino_ctl);
1530 kfree(root->free_ino_pinned);
1531 return ret;
1532}
1533
171170c1
ST
1534static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1535 u64 root_id)
cb517eab
MX
1536{
1537 struct btrfs_root *root;
1538
1539 spin_lock(&fs_info->fs_roots_radix_lock);
1540 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1541 (unsigned long)root_id);
1542 spin_unlock(&fs_info->fs_roots_radix_lock);
1543 return root;
1544}
1545
1546int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1547 struct btrfs_root *root)
1548{
1549 int ret;
1550
1551 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1552 if (ret)
1553 return ret;
1554
1555 spin_lock(&fs_info->fs_roots_radix_lock);
1556 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1557 (unsigned long)root->root_key.objectid,
1558 root);
1559 if (ret == 0)
1560 root->in_radix = 1;
1561 spin_unlock(&fs_info->fs_roots_radix_lock);
1562 radix_tree_preload_end();
1563
1564 return ret;
1565}
1566
c00869f1
MX
1567struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1568 struct btrfs_key *location,
1569 bool check_ref)
5eda7b5e
CM
1570{
1571 struct btrfs_root *root;
1572 int ret;
1573
edbd8d4e
CM
1574 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1575 return fs_info->tree_root;
1576 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1577 return fs_info->extent_root;
8f18cf13
CM
1578 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1579 return fs_info->chunk_root;
1580 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1581 return fs_info->dev_root;
0403e47e
YZ
1582 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1583 return fs_info->csum_root;
bcef60f2
AJ
1584 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1585 return fs_info->quota_root ? fs_info->quota_root :
1586 ERR_PTR(-ENOENT);
f7a81ea4
SB
1587 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1588 return fs_info->uuid_root ? fs_info->uuid_root :
1589 ERR_PTR(-ENOENT);
4df27c4d 1590again:
cb517eab 1591 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1592 if (root) {
c00869f1 1593 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1594 return ERR_PTR(-ENOENT);
5eda7b5e 1595 return root;
48475471 1596 }
5eda7b5e 1597
cb517eab 1598 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1599 if (IS_ERR(root))
1600 return root;
3394e160 1601
c00869f1 1602 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1603 ret = -ENOENT;
581bb050 1604 goto fail;
35a30d7c 1605 }
581bb050 1606
cb517eab 1607 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1608 if (ret)
1609 goto fail;
3394e160 1610
3f870c28
KN
1611 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1612 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1613 if (ret < 0)
1614 goto fail;
1615 if (ret == 0)
1616 root->orphan_item_inserted = 1;
1617
cb517eab 1618 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1619 if (ret) {
4df27c4d
YZ
1620 if (ret == -EEXIST) {
1621 free_fs_root(root);
1622 goto again;
1623 }
1624 goto fail;
0f7d52f4 1625 }
edbd8d4e 1626 return root;
4df27c4d
YZ
1627fail:
1628 free_fs_root(root);
1629 return ERR_PTR(ret);
edbd8d4e
CM
1630}
1631
04160088
CM
1632static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1633{
1634 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1635 int ret = 0;
04160088
CM
1636 struct btrfs_device *device;
1637 struct backing_dev_info *bdi;
b7967db7 1638
1f78160c
XG
1639 rcu_read_lock();
1640 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1641 if (!device->bdev)
1642 continue;
04160088
CM
1643 bdi = blk_get_backing_dev_info(device->bdev);
1644 if (bdi && bdi_congested(bdi, bdi_bits)) {
1645 ret = 1;
1646 break;
1647 }
1648 }
1f78160c 1649 rcu_read_unlock();
04160088
CM
1650 return ret;
1651}
1652
ad081f14
JA
1653/*
1654 * If this fails, caller must call bdi_destroy() to get rid of the
1655 * bdi again.
1656 */
04160088
CM
1657static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1658{
ad081f14
JA
1659 int err;
1660
1661 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1662 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1663 if (err)
1664 return err;
1665
4575c9cc 1666 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1667 bdi->congested_fn = btrfs_congested_fn;
1668 bdi->congested_data = info;
1669 return 0;
1670}
1671
8b712842
CM
1672/*
1673 * called by the kthread helper functions to finally call the bio end_io
1674 * functions. This is where read checksum verification actually happens
1675 */
1676static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1677{
ce9adaa5 1678 struct bio *bio;
8b712842 1679 struct end_io_wq *end_io_wq;
ce9adaa5 1680 int error;
ce9adaa5 1681
8b712842
CM
1682 end_io_wq = container_of(work, struct end_io_wq, work);
1683 bio = end_io_wq->bio;
ce9adaa5 1684
8b712842
CM
1685 error = end_io_wq->error;
1686 bio->bi_private = end_io_wq->private;
1687 bio->bi_end_io = end_io_wq->end_io;
1688 kfree(end_io_wq);
8b712842 1689 bio_endio(bio, error);
44b8bd7e
CM
1690}
1691
a74a4b97
CM
1692static int cleaner_kthread(void *arg)
1693{
1694 struct btrfs_root *root = arg;
d0278245 1695 int again;
a74a4b97
CM
1696
1697 do {
d0278245 1698 again = 0;
a74a4b97 1699
d0278245 1700 /* Make the cleaner go to sleep early. */
babbf170 1701 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1702 goto sleep;
1703
1704 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1705 goto sleep;
1706
dc7f370c
MX
1707 /*
1708 * Avoid the problem that we change the status of the fs
1709 * during the above check and trylock.
1710 */
babbf170 1711 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1712 mutex_unlock(&root->fs_info->cleaner_mutex);
1713 goto sleep;
76dda93c 1714 }
a74a4b97 1715
d0278245
MX
1716 btrfs_run_delayed_iputs(root);
1717 again = btrfs_clean_one_deleted_snapshot(root);
1718 mutex_unlock(&root->fs_info->cleaner_mutex);
1719
1720 /*
05323cd1
MX
1721 * The defragger has dealt with the R/O remount and umount,
1722 * needn't do anything special here.
d0278245
MX
1723 */
1724 btrfs_run_defrag_inodes(root->fs_info);
1725sleep:
9d1a2a3a 1726 if (!try_to_freeze() && !again) {
a74a4b97 1727 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1728 if (!kthread_should_stop())
1729 schedule();
a74a4b97
CM
1730 __set_current_state(TASK_RUNNING);
1731 }
1732 } while (!kthread_should_stop());
1733 return 0;
1734}
1735
1736static int transaction_kthread(void *arg)
1737{
1738 struct btrfs_root *root = arg;
1739 struct btrfs_trans_handle *trans;
1740 struct btrfs_transaction *cur;
8929ecfa 1741 u64 transid;
a74a4b97
CM
1742 unsigned long now;
1743 unsigned long delay;
914b2007 1744 bool cannot_commit;
a74a4b97
CM
1745
1746 do {
914b2007 1747 cannot_commit = false;
8b87dc17 1748 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1749 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1750
a4abeea4 1751 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1752 cur = root->fs_info->running_transaction;
1753 if (!cur) {
a4abeea4 1754 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1755 goto sleep;
1756 }
31153d81 1757
a74a4b97 1758 now = get_seconds();
4a9d8bde 1759 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1760 (now < cur->start_time ||
1761 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1762 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1763 delay = HZ * 5;
1764 goto sleep;
1765 }
8929ecfa 1766 transid = cur->transid;
a4abeea4 1767 spin_unlock(&root->fs_info->trans_lock);
56bec294 1768
79787eaa 1769 /* If the file system is aborted, this will always fail. */
354aa0fb 1770 trans = btrfs_attach_transaction(root);
914b2007 1771 if (IS_ERR(trans)) {
354aa0fb
MX
1772 if (PTR_ERR(trans) != -ENOENT)
1773 cannot_commit = true;
79787eaa 1774 goto sleep;
914b2007 1775 }
8929ecfa 1776 if (transid == trans->transid) {
79787eaa 1777 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1778 } else {
1779 btrfs_end_transaction(trans, root);
1780 }
a74a4b97
CM
1781sleep:
1782 wake_up_process(root->fs_info->cleaner_kthread);
1783 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1784
4e121c06
JB
1785 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1786 &root->fs_info->fs_state)))
1787 btrfs_cleanup_transaction(root);
a0acae0e 1788 if (!try_to_freeze()) {
a74a4b97 1789 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1790 if (!kthread_should_stop() &&
914b2007
JK
1791 (!btrfs_transaction_blocked(root->fs_info) ||
1792 cannot_commit))
8929ecfa 1793 schedule_timeout(delay);
a74a4b97
CM
1794 __set_current_state(TASK_RUNNING);
1795 }
1796 } while (!kthread_should_stop());
1797 return 0;
1798}
1799
af31f5e5
CM
1800/*
1801 * this will find the highest generation in the array of
1802 * root backups. The index of the highest array is returned,
1803 * or -1 if we can't find anything.
1804 *
1805 * We check to make sure the array is valid by comparing the
1806 * generation of the latest root in the array with the generation
1807 * in the super block. If they don't match we pitch it.
1808 */
1809static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1810{
1811 u64 cur;
1812 int newest_index = -1;
1813 struct btrfs_root_backup *root_backup;
1814 int i;
1815
1816 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1817 root_backup = info->super_copy->super_roots + i;
1818 cur = btrfs_backup_tree_root_gen(root_backup);
1819 if (cur == newest_gen)
1820 newest_index = i;
1821 }
1822
1823 /* check to see if we actually wrapped around */
1824 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1825 root_backup = info->super_copy->super_roots;
1826 cur = btrfs_backup_tree_root_gen(root_backup);
1827 if (cur == newest_gen)
1828 newest_index = 0;
1829 }
1830 return newest_index;
1831}
1832
1833
1834/*
1835 * find the oldest backup so we know where to store new entries
1836 * in the backup array. This will set the backup_root_index
1837 * field in the fs_info struct
1838 */
1839static void find_oldest_super_backup(struct btrfs_fs_info *info,
1840 u64 newest_gen)
1841{
1842 int newest_index = -1;
1843
1844 newest_index = find_newest_super_backup(info, newest_gen);
1845 /* if there was garbage in there, just move along */
1846 if (newest_index == -1) {
1847 info->backup_root_index = 0;
1848 } else {
1849 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1850 }
1851}
1852
1853/*
1854 * copy all the root pointers into the super backup array.
1855 * this will bump the backup pointer by one when it is
1856 * done
1857 */
1858static void backup_super_roots(struct btrfs_fs_info *info)
1859{
1860 int next_backup;
1861 struct btrfs_root_backup *root_backup;
1862 int last_backup;
1863
1864 next_backup = info->backup_root_index;
1865 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1866 BTRFS_NUM_BACKUP_ROOTS;
1867
1868 /*
1869 * just overwrite the last backup if we're at the same generation
1870 * this happens only at umount
1871 */
1872 root_backup = info->super_for_commit->super_roots + last_backup;
1873 if (btrfs_backup_tree_root_gen(root_backup) ==
1874 btrfs_header_generation(info->tree_root->node))
1875 next_backup = last_backup;
1876
1877 root_backup = info->super_for_commit->super_roots + next_backup;
1878
1879 /*
1880 * make sure all of our padding and empty slots get zero filled
1881 * regardless of which ones we use today
1882 */
1883 memset(root_backup, 0, sizeof(*root_backup));
1884
1885 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1886
1887 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1888 btrfs_set_backup_tree_root_gen(root_backup,
1889 btrfs_header_generation(info->tree_root->node));
1890
1891 btrfs_set_backup_tree_root_level(root_backup,
1892 btrfs_header_level(info->tree_root->node));
1893
1894 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1895 btrfs_set_backup_chunk_root_gen(root_backup,
1896 btrfs_header_generation(info->chunk_root->node));
1897 btrfs_set_backup_chunk_root_level(root_backup,
1898 btrfs_header_level(info->chunk_root->node));
1899
1900 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1901 btrfs_set_backup_extent_root_gen(root_backup,
1902 btrfs_header_generation(info->extent_root->node));
1903 btrfs_set_backup_extent_root_level(root_backup,
1904 btrfs_header_level(info->extent_root->node));
1905
7c7e82a7
CM
1906 /*
1907 * we might commit during log recovery, which happens before we set
1908 * the fs_root. Make sure it is valid before we fill it in.
1909 */
1910 if (info->fs_root && info->fs_root->node) {
1911 btrfs_set_backup_fs_root(root_backup,
1912 info->fs_root->node->start);
1913 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1914 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1915 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1916 btrfs_header_level(info->fs_root->node));
7c7e82a7 1917 }
af31f5e5
CM
1918
1919 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1920 btrfs_set_backup_dev_root_gen(root_backup,
1921 btrfs_header_generation(info->dev_root->node));
1922 btrfs_set_backup_dev_root_level(root_backup,
1923 btrfs_header_level(info->dev_root->node));
1924
1925 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1926 btrfs_set_backup_csum_root_gen(root_backup,
1927 btrfs_header_generation(info->csum_root->node));
1928 btrfs_set_backup_csum_root_level(root_backup,
1929 btrfs_header_level(info->csum_root->node));
1930
1931 btrfs_set_backup_total_bytes(root_backup,
1932 btrfs_super_total_bytes(info->super_copy));
1933 btrfs_set_backup_bytes_used(root_backup,
1934 btrfs_super_bytes_used(info->super_copy));
1935 btrfs_set_backup_num_devices(root_backup,
1936 btrfs_super_num_devices(info->super_copy));
1937
1938 /*
1939 * if we don't copy this out to the super_copy, it won't get remembered
1940 * for the next commit
1941 */
1942 memcpy(&info->super_copy->super_roots,
1943 &info->super_for_commit->super_roots,
1944 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1945}
1946
1947/*
1948 * this copies info out of the root backup array and back into
1949 * the in-memory super block. It is meant to help iterate through
1950 * the array, so you send it the number of backups you've already
1951 * tried and the last backup index you used.
1952 *
1953 * this returns -1 when it has tried all the backups
1954 */
1955static noinline int next_root_backup(struct btrfs_fs_info *info,
1956 struct btrfs_super_block *super,
1957 int *num_backups_tried, int *backup_index)
1958{
1959 struct btrfs_root_backup *root_backup;
1960 int newest = *backup_index;
1961
1962 if (*num_backups_tried == 0) {
1963 u64 gen = btrfs_super_generation(super);
1964
1965 newest = find_newest_super_backup(info, gen);
1966 if (newest == -1)
1967 return -1;
1968
1969 *backup_index = newest;
1970 *num_backups_tried = 1;
1971 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1972 /* we've tried all the backups, all done */
1973 return -1;
1974 } else {
1975 /* jump to the next oldest backup */
1976 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1977 BTRFS_NUM_BACKUP_ROOTS;
1978 *backup_index = newest;
1979 *num_backups_tried += 1;
1980 }
1981 root_backup = super->super_roots + newest;
1982
1983 btrfs_set_super_generation(super,
1984 btrfs_backup_tree_root_gen(root_backup));
1985 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1986 btrfs_set_super_root_level(super,
1987 btrfs_backup_tree_root_level(root_backup));
1988 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1989
1990 /*
1991 * fixme: the total bytes and num_devices need to match or we should
1992 * need a fsck
1993 */
1994 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1995 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1996 return 0;
1997}
1998
7abadb64
LB
1999/* helper to cleanup workers */
2000static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2001{
2002 btrfs_stop_workers(&fs_info->generic_worker);
2003 btrfs_stop_workers(&fs_info->fixup_workers);
2004 btrfs_stop_workers(&fs_info->delalloc_workers);
2005 btrfs_stop_workers(&fs_info->workers);
2006 btrfs_stop_workers(&fs_info->endio_workers);
2007 btrfs_stop_workers(&fs_info->endio_meta_workers);
2008 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2009 btrfs_stop_workers(&fs_info->rmw_workers);
2010 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2011 btrfs_stop_workers(&fs_info->endio_write_workers);
2012 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2013 btrfs_stop_workers(&fs_info->submit_workers);
2014 btrfs_stop_workers(&fs_info->delayed_workers);
2015 btrfs_stop_workers(&fs_info->caching_workers);
2016 btrfs_stop_workers(&fs_info->readahead_workers);
2017 btrfs_stop_workers(&fs_info->flush_workers);
2f232036 2018 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
7abadb64
LB
2019}
2020
2e9f5954
R
2021static void free_root_extent_buffers(struct btrfs_root *root)
2022{
2023 if (root) {
2024 free_extent_buffer(root->node);
2025 free_extent_buffer(root->commit_root);
2026 root->node = NULL;
2027 root->commit_root = NULL;
2028 }
2029}
2030
af31f5e5
CM
2031/* helper to cleanup tree roots */
2032static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2033{
2e9f5954 2034 free_root_extent_buffers(info->tree_root);
655b09fe 2035
2e9f5954
R
2036 free_root_extent_buffers(info->dev_root);
2037 free_root_extent_buffers(info->extent_root);
2038 free_root_extent_buffers(info->csum_root);
2039 free_root_extent_buffers(info->quota_root);
2040 free_root_extent_buffers(info->uuid_root);
2041 if (chunk_root)
2042 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2043}
2044
171f6537
JB
2045static void del_fs_roots(struct btrfs_fs_info *fs_info)
2046{
2047 int ret;
2048 struct btrfs_root *gang[8];
2049 int i;
2050
2051 while (!list_empty(&fs_info->dead_roots)) {
2052 gang[0] = list_entry(fs_info->dead_roots.next,
2053 struct btrfs_root, root_list);
2054 list_del(&gang[0]->root_list);
2055
2056 if (gang[0]->in_radix) {
cb517eab 2057 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2058 } else {
2059 free_extent_buffer(gang[0]->node);
2060 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2061 btrfs_put_fs_root(gang[0]);
171f6537
JB
2062 }
2063 }
2064
2065 while (1) {
2066 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2067 (void **)gang, 0,
2068 ARRAY_SIZE(gang));
2069 if (!ret)
2070 break;
2071 for (i = 0; i < ret; i++)
cb517eab 2072 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2073 }
2074}
af31f5e5 2075
ad2b2c80
AV
2076int open_ctree(struct super_block *sb,
2077 struct btrfs_fs_devices *fs_devices,
2078 char *options)
2e635a27 2079{
db94535d
CM
2080 u32 sectorsize;
2081 u32 nodesize;
2082 u32 leafsize;
2083 u32 blocksize;
87ee04eb 2084 u32 stripesize;
84234f3a 2085 u64 generation;
f2b636e8 2086 u64 features;
3de4586c 2087 struct btrfs_key location;
a061fc8d 2088 struct buffer_head *bh;
4d34b278 2089 struct btrfs_super_block *disk_super;
815745cf 2090 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2091 struct btrfs_root *tree_root;
4d34b278
ID
2092 struct btrfs_root *extent_root;
2093 struct btrfs_root *csum_root;
2094 struct btrfs_root *chunk_root;
2095 struct btrfs_root *dev_root;
bcef60f2 2096 struct btrfs_root *quota_root;
f7a81ea4 2097 struct btrfs_root *uuid_root;
e02119d5 2098 struct btrfs_root *log_tree_root;
eb60ceac 2099 int ret;
e58ca020 2100 int err = -EINVAL;
af31f5e5
CM
2101 int num_backups_tried = 0;
2102 int backup_index = 0;
70f80175
SB
2103 bool create_uuid_tree;
2104 bool check_uuid_tree;
4543df7e 2105
f84a8bd6 2106 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2107 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2108 if (!tree_root || !chunk_root) {
39279cc3
CM
2109 err = -ENOMEM;
2110 goto fail;
2111 }
76dda93c
YZ
2112
2113 ret = init_srcu_struct(&fs_info->subvol_srcu);
2114 if (ret) {
2115 err = ret;
2116 goto fail;
2117 }
2118
2119 ret = setup_bdi(fs_info, &fs_info->bdi);
2120 if (ret) {
2121 err = ret;
2122 goto fail_srcu;
2123 }
2124
e2d84521
MX
2125 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2126 if (ret) {
2127 err = ret;
2128 goto fail_bdi;
2129 }
2130 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2131 (1 + ilog2(nr_cpu_ids));
2132
963d678b
MX
2133 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2134 if (ret) {
2135 err = ret;
2136 goto fail_dirty_metadata_bytes;
2137 }
2138
76dda93c
YZ
2139 fs_info->btree_inode = new_inode(sb);
2140 if (!fs_info->btree_inode) {
2141 err = -ENOMEM;
963d678b 2142 goto fail_delalloc_bytes;
76dda93c
YZ
2143 }
2144
a6591715 2145 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2146
76dda93c 2147 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2148 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2149 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2150 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2151 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2152 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2153 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2154 spin_lock_init(&fs_info->trans_lock);
76dda93c 2155 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2156 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2157 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2158 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2159 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2160 spin_lock_init(&fs_info->super_lock);
f29021b2 2161 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2162 mutex_init(&fs_info->reloc_mutex);
de98ced9 2163 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2164
58176a96 2165 init_completion(&fs_info->kobj_unregister);
0b86a832 2166 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2167 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2168 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2169 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2170 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2171 BTRFS_BLOCK_RSV_GLOBAL);
2172 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2173 BTRFS_BLOCK_RSV_DELALLOC);
2174 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2175 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2176 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2177 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2178 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2179 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2180 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2181 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2182 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2183 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2184 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2185 fs_info->sb = sb;
6f568d35 2186 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2187 fs_info->metadata_ratio = 0;
4cb5300b 2188 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2189 fs_info->free_chunk_space = 0;
f29021b2 2190 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2191 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
c8b97818 2192
90519d66
AJ
2193 /* readahead state */
2194 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2195 spin_lock_init(&fs_info->reada_lock);
c8b97818 2196
b34b086c
CM
2197 fs_info->thread_pool_size = min_t(unsigned long,
2198 num_online_cpus() + 2, 8);
0afbaf8c 2199
199c2a9c
MX
2200 INIT_LIST_HEAD(&fs_info->ordered_roots);
2201 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2202 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2203 GFP_NOFS);
2204 if (!fs_info->delayed_root) {
2205 err = -ENOMEM;
2206 goto fail_iput;
2207 }
2208 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2209
a2de733c
AJ
2210 mutex_init(&fs_info->scrub_lock);
2211 atomic_set(&fs_info->scrubs_running, 0);
2212 atomic_set(&fs_info->scrub_pause_req, 0);
2213 atomic_set(&fs_info->scrubs_paused, 0);
2214 atomic_set(&fs_info->scrub_cancel_req, 0);
2215 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2216 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2217#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2218 fs_info->check_integrity_print_mask = 0;
2219#endif
a2de733c 2220
c9e9f97b
ID
2221 spin_lock_init(&fs_info->balance_lock);
2222 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2223 atomic_set(&fs_info->balance_running, 0);
2224 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2225 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2226 fs_info->balance_ctl = NULL;
837d5b6e 2227 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2228
a061fc8d
CM
2229 sb->s_blocksize = 4096;
2230 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2231 sb->s_bdi = &fs_info->bdi;
a061fc8d 2232
76dda93c 2233 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2234 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2235 /*
2236 * we set the i_size on the btree inode to the max possible int.
2237 * the real end of the address space is determined by all of
2238 * the devices in the system
2239 */
2240 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2241 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2242 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2243
5d4f98a2 2244 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2245 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2246 fs_info->btree_inode->i_mapping);
0b32f4bb 2247 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2248 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2249
2250 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2251
76dda93c
YZ
2252 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2253 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2254 sizeof(struct btrfs_key));
72ac3c0d
JB
2255 set_bit(BTRFS_INODE_DUMMY,
2256 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2257 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2258
0f9dd46c 2259 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2260 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2261 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2262
11833d66 2263 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2264 fs_info->btree_inode->i_mapping);
11833d66 2265 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2266 fs_info->btree_inode->i_mapping);
11833d66 2267 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2268 fs_info->do_barriers = 1;
e18e4809 2269
39279cc3 2270
5a3f23d5 2271 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2272 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2273 mutex_init(&fs_info->tree_log_mutex);
925baedd 2274 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2275 mutex_init(&fs_info->transaction_kthread_mutex);
2276 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2277 mutex_init(&fs_info->volume_mutex);
276e680d 2278 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2279 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2280 init_rwsem(&fs_info->subvol_sem);
803b2f54 2281 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2282 fs_info->dev_replace.lock_owner = 0;
2283 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2284 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2285 mutex_init(&fs_info->dev_replace.lock_management_lock);
2286 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2287
416ac51d 2288 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2289 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2290 fs_info->qgroup_tree = RB_ROOT;
2291 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2292 fs_info->qgroup_seq = 1;
2293 fs_info->quota_enabled = 0;
2294 fs_info->pending_quota_state = 0;
1e8f9158 2295 fs_info->qgroup_ulist = NULL;
2f232036 2296 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2297
fa9c0d79
CM
2298 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2299 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2300
e6dcd2dc 2301 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2302 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2303 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2304 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2305
53b381b3
DW
2306 ret = btrfs_alloc_stripe_hash_table(fs_info);
2307 if (ret) {
83c8266a 2308 err = ret;
53b381b3
DW
2309 goto fail_alloc;
2310 }
2311
0b86a832 2312 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2313 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2314
3c4bb26b 2315 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2316
2317 /*
2318 * Read super block and check the signature bytes only
2319 */
a512bbf8 2320 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2321 if (!bh) {
2322 err = -EINVAL;
16cdcec7 2323 goto fail_alloc;
20b45077 2324 }
39279cc3 2325
1104a885
DS
2326 /*
2327 * We want to check superblock checksum, the type is stored inside.
2328 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2329 */
2330 if (btrfs_check_super_csum(bh->b_data)) {
2331 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2332 err = -EINVAL;
2333 goto fail_alloc;
2334 }
2335
2336 /*
2337 * super_copy is zeroed at allocation time and we never touch the
2338 * following bytes up to INFO_SIZE, the checksum is calculated from
2339 * the whole block of INFO_SIZE
2340 */
6c41761f
DS
2341 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2342 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2343 sizeof(*fs_info->super_for_commit));
a061fc8d 2344 brelse(bh);
5f39d397 2345
6c41761f 2346 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2347
1104a885
DS
2348 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2349 if (ret) {
2350 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2351 err = -EINVAL;
2352 goto fail_alloc;
2353 }
2354
6c41761f 2355 disk_super = fs_info->super_copy;
0f7d52f4 2356 if (!btrfs_super_root(disk_super))
16cdcec7 2357 goto fail_alloc;
0f7d52f4 2358
acce952b 2359 /* check FS state, whether FS is broken. */
87533c47
MX
2360 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2361 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2362
af31f5e5
CM
2363 /*
2364 * run through our array of backup supers and setup
2365 * our ring pointer to the oldest one
2366 */
2367 generation = btrfs_super_generation(disk_super);
2368 find_oldest_super_backup(fs_info, generation);
2369
75e7cb7f
LB
2370 /*
2371 * In the long term, we'll store the compression type in the super
2372 * block, and it'll be used for per file compression control.
2373 */
2374 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2375
2b82032c
YZ
2376 ret = btrfs_parse_options(tree_root, options);
2377 if (ret) {
2378 err = ret;
16cdcec7 2379 goto fail_alloc;
2b82032c 2380 }
dfe25020 2381
f2b636e8
JB
2382 features = btrfs_super_incompat_flags(disk_super) &
2383 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2384 if (features) {
2385 printk(KERN_ERR "BTRFS: couldn't mount because of "
2386 "unsupported optional features (%Lx).\n",
c1c9ff7c 2387 features);
f2b636e8 2388 err = -EINVAL;
16cdcec7 2389 goto fail_alloc;
f2b636e8
JB
2390 }
2391
727011e0
CM
2392 if (btrfs_super_leafsize(disk_super) !=
2393 btrfs_super_nodesize(disk_super)) {
2394 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2395 "blocksizes don't match. node %d leaf %d\n",
2396 btrfs_super_nodesize(disk_super),
2397 btrfs_super_leafsize(disk_super));
2398 err = -EINVAL;
2399 goto fail_alloc;
2400 }
2401 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2402 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2403 "blocksize (%d) was too large\n",
2404 btrfs_super_leafsize(disk_super));
2405 err = -EINVAL;
2406 goto fail_alloc;
2407 }
2408
5d4f98a2 2409 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2410 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2411 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2412 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2413
3173a18f
JB
2414 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2415 printk(KERN_ERR "btrfs: has skinny extents\n");
2416
727011e0
CM
2417 /*
2418 * flag our filesystem as having big metadata blocks if
2419 * they are bigger than the page size
2420 */
2421 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2422 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2423 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2424 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2425 }
2426
bc3f116f
CM
2427 nodesize = btrfs_super_nodesize(disk_super);
2428 leafsize = btrfs_super_leafsize(disk_super);
2429 sectorsize = btrfs_super_sectorsize(disk_super);
2430 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2431 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2432 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2433
2434 /*
2435 * mixed block groups end up with duplicate but slightly offset
2436 * extent buffers for the same range. It leads to corruptions
2437 */
2438 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2439 (sectorsize != leafsize)) {
2440 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2441 "are not allowed for mixed block groups on %s\n",
2442 sb->s_id);
2443 goto fail_alloc;
2444 }
2445
ceda0864
MX
2446 /*
2447 * Needn't use the lock because there is no other task which will
2448 * update the flag.
2449 */
a6fa6fae 2450 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2451
f2b636e8
JB
2452 features = btrfs_super_compat_ro_flags(disk_super) &
2453 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2454 if (!(sb->s_flags & MS_RDONLY) && features) {
2455 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2456 "unsupported option features (%Lx).\n",
c1c9ff7c 2457 features);
f2b636e8 2458 err = -EINVAL;
16cdcec7 2459 goto fail_alloc;
f2b636e8 2460 }
61d92c32
CM
2461
2462 btrfs_init_workers(&fs_info->generic_worker,
2463 "genwork", 1, NULL);
2464
5443be45 2465 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2466 fs_info->thread_pool_size,
2467 &fs_info->generic_worker);
c8b97818 2468
771ed689 2469 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
45d5fd14 2470 fs_info->thread_pool_size, NULL);
771ed689 2471
8ccf6f19 2472 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
45d5fd14 2473 fs_info->thread_pool_size, NULL);
8ccf6f19 2474
5443be45 2475 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2476 min_t(u64, fs_devices->num_devices,
45d5fd14 2477 fs_info->thread_pool_size), NULL);
61b49440 2478
bab39bf9 2479 btrfs_init_workers(&fs_info->caching_workers, "cache",
45d5fd14 2480 fs_info->thread_pool_size, NULL);
bab39bf9 2481
61b49440
CM
2482 /* a higher idle thresh on the submit workers makes it much more
2483 * likely that bios will be send down in a sane order to the
2484 * devices
2485 */
2486 fs_info->submit_workers.idle_thresh = 64;
53863232 2487
771ed689 2488 fs_info->workers.idle_thresh = 16;
4a69a410 2489 fs_info->workers.ordered = 1;
61b49440 2490
771ed689
CM
2491 fs_info->delalloc_workers.idle_thresh = 2;
2492 fs_info->delalloc_workers.ordered = 1;
2493
61d92c32
CM
2494 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2495 &fs_info->generic_worker);
5443be45 2496 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2497 fs_info->thread_pool_size,
2498 &fs_info->generic_worker);
d20f7043 2499 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2500 fs_info->thread_pool_size,
2501 &fs_info->generic_worker);
cad321ad 2502 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2503 "endio-meta-write", fs_info->thread_pool_size,
2504 &fs_info->generic_worker);
53b381b3
DW
2505 btrfs_init_workers(&fs_info->endio_raid56_workers,
2506 "endio-raid56", fs_info->thread_pool_size,
2507 &fs_info->generic_worker);
2508 btrfs_init_workers(&fs_info->rmw_workers,
2509 "rmw", fs_info->thread_pool_size,
2510 &fs_info->generic_worker);
5443be45 2511 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2512 fs_info->thread_pool_size,
2513 &fs_info->generic_worker);
0cb59c99
JB
2514 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2515 1, &fs_info->generic_worker);
16cdcec7
MX
2516 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2517 fs_info->thread_pool_size,
2518 &fs_info->generic_worker);
90519d66
AJ
2519 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2520 fs_info->thread_pool_size,
2521 &fs_info->generic_worker);
2f232036
JS
2522 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2523 &fs_info->generic_worker);
61b49440
CM
2524
2525 /*
2526 * endios are largely parallel and should have a very
2527 * low idle thresh
2528 */
2529 fs_info->endio_workers.idle_thresh = 4;
b51912c9 2530 fs_info->endio_meta_workers.idle_thresh = 4;
53b381b3
DW
2531 fs_info->endio_raid56_workers.idle_thresh = 4;
2532 fs_info->rmw_workers.idle_thresh = 2;
b51912c9 2533
9042846b
CM
2534 fs_info->endio_write_workers.idle_thresh = 2;
2535 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2536 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2537
0dc3b84a
JB
2538 /*
2539 * btrfs_start_workers can really only fail because of ENOMEM so just
2540 * return -ENOMEM if any of these fail.
2541 */
2542 ret = btrfs_start_workers(&fs_info->workers);
2543 ret |= btrfs_start_workers(&fs_info->generic_worker);
2544 ret |= btrfs_start_workers(&fs_info->submit_workers);
2545 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2546 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2547 ret |= btrfs_start_workers(&fs_info->endio_workers);
2548 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2549 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2550 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
0dc3b84a
JB
2551 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2552 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2553 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2554 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2555 ret |= btrfs_start_workers(&fs_info->caching_workers);
2556 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2557 ret |= btrfs_start_workers(&fs_info->flush_workers);
2f232036 2558 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
0dc3b84a 2559 if (ret) {
fed425c7 2560 err = -ENOMEM;
0dc3b84a
JB
2561 goto fail_sb_buffer;
2562 }
4543df7e 2563
4575c9cc 2564 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2565 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2566 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2567
db94535d
CM
2568 tree_root->nodesize = nodesize;
2569 tree_root->leafsize = leafsize;
2570 tree_root->sectorsize = sectorsize;
87ee04eb 2571 tree_root->stripesize = stripesize;
a061fc8d
CM
2572
2573 sb->s_blocksize = sectorsize;
2574 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2575
3cae210f 2576 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
d397712b 2577 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2578 goto fail_sb_buffer;
2579 }
19c00ddc 2580
8d082fb7
LB
2581 if (sectorsize != PAGE_SIZE) {
2582 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2583 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2584 goto fail_sb_buffer;
2585 }
2586
925baedd 2587 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2588 ret = btrfs_read_sys_array(tree_root);
925baedd 2589 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2590 if (ret) {
d397712b
CM
2591 printk(KERN_WARNING "btrfs: failed to read the system "
2592 "array on %s\n", sb->s_id);
5d4f98a2 2593 goto fail_sb_buffer;
84eed90f 2594 }
0b86a832
CM
2595
2596 blocksize = btrfs_level_size(tree_root,
2597 btrfs_super_chunk_root_level(disk_super));
84234f3a 2598 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2599
2600 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2601 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2602
2603 chunk_root->node = read_tree_block(chunk_root,
2604 btrfs_super_chunk_root(disk_super),
84234f3a 2605 blocksize, generation);
416bc658
JB
2606 if (!chunk_root->node ||
2607 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
83121942
DW
2608 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2609 sb->s_id);
af31f5e5 2610 goto fail_tree_roots;
83121942 2611 }
5d4f98a2
YZ
2612 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2613 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2614
e17cade2 2615 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2616 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2617
0b86a832 2618 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2619 if (ret) {
d397712b
CM
2620 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2621 sb->s_id);
af31f5e5 2622 goto fail_tree_roots;
2b82032c 2623 }
0b86a832 2624
8dabb742
SB
2625 /*
2626 * keep the device that is marked to be the target device for the
2627 * dev_replace procedure
2628 */
2629 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2630
a6b0d5c8
CM
2631 if (!fs_devices->latest_bdev) {
2632 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2633 sb->s_id);
2634 goto fail_tree_roots;
2635 }
2636
af31f5e5 2637retry_root_backup:
db94535d
CM
2638 blocksize = btrfs_level_size(tree_root,
2639 btrfs_super_root_level(disk_super));
84234f3a 2640 generation = btrfs_super_generation(disk_super);
0b86a832 2641
e20d96d6 2642 tree_root->node = read_tree_block(tree_root,
db94535d 2643 btrfs_super_root(disk_super),
84234f3a 2644 blocksize, generation);
af31f5e5
CM
2645 if (!tree_root->node ||
2646 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2647 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2648 sb->s_id);
af31f5e5
CM
2649
2650 goto recovery_tree_root;
83121942 2651 }
af31f5e5 2652
5d4f98a2
YZ
2653 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2654 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2655 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2656
cb517eab
MX
2657 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2658 location.type = BTRFS_ROOT_ITEM_KEY;
2659 location.offset = 0;
2660
2661 extent_root = btrfs_read_tree_root(tree_root, &location);
2662 if (IS_ERR(extent_root)) {
2663 ret = PTR_ERR(extent_root);
af31f5e5 2664 goto recovery_tree_root;
cb517eab 2665 }
0b86a832 2666 extent_root->track_dirty = 1;
cb517eab 2667 fs_info->extent_root = extent_root;
0b86a832 2668
cb517eab
MX
2669 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2670 dev_root = btrfs_read_tree_root(tree_root, &location);
2671 if (IS_ERR(dev_root)) {
2672 ret = PTR_ERR(dev_root);
af31f5e5 2673 goto recovery_tree_root;
cb517eab 2674 }
5d4f98a2 2675 dev_root->track_dirty = 1;
cb517eab
MX
2676 fs_info->dev_root = dev_root;
2677 btrfs_init_devices_late(fs_info);
3768f368 2678
cb517eab
MX
2679 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2680 csum_root = btrfs_read_tree_root(tree_root, &location);
2681 if (IS_ERR(csum_root)) {
2682 ret = PTR_ERR(csum_root);
af31f5e5 2683 goto recovery_tree_root;
cb517eab 2684 }
d20f7043 2685 csum_root->track_dirty = 1;
cb517eab 2686 fs_info->csum_root = csum_root;
d20f7043 2687
cb517eab
MX
2688 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2689 quota_root = btrfs_read_tree_root(tree_root, &location);
2690 if (!IS_ERR(quota_root)) {
bcef60f2
AJ
2691 quota_root->track_dirty = 1;
2692 fs_info->quota_enabled = 1;
2693 fs_info->pending_quota_state = 1;
cb517eab 2694 fs_info->quota_root = quota_root;
bcef60f2
AJ
2695 }
2696
f7a81ea4
SB
2697 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2698 uuid_root = btrfs_read_tree_root(tree_root, &location);
2699 if (IS_ERR(uuid_root)) {
2700 ret = PTR_ERR(uuid_root);
2701 if (ret != -ENOENT)
2702 goto recovery_tree_root;
2703 create_uuid_tree = true;
70f80175 2704 check_uuid_tree = false;
f7a81ea4
SB
2705 } else {
2706 uuid_root->track_dirty = 1;
2707 fs_info->uuid_root = uuid_root;
70f80175
SB
2708 create_uuid_tree = false;
2709 check_uuid_tree =
2710 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2711 }
2712
8929ecfa
YZ
2713 fs_info->generation = generation;
2714 fs_info->last_trans_committed = generation;
8929ecfa 2715
68310a5e
ID
2716 ret = btrfs_recover_balance(fs_info);
2717 if (ret) {
2718 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2719 goto fail_block_groups;
2720 }
2721
733f4fbb
SB
2722 ret = btrfs_init_dev_stats(fs_info);
2723 if (ret) {
2724 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2725 ret);
2726 goto fail_block_groups;
2727 }
2728
8dabb742
SB
2729 ret = btrfs_init_dev_replace(fs_info);
2730 if (ret) {
2731 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2732 goto fail_block_groups;
2733 }
2734
2735 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2736
5ac1d209
JM
2737 ret = btrfs_sysfs_add_one(fs_info);
2738 if (ret) {
2739 pr_err("btrfs: failed to init sysfs interface: %d\n", ret);
2740 goto fail_block_groups;
2741 }
2742
c59021f8 2743 ret = btrfs_init_space_info(fs_info);
2744 if (ret) {
2745 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2746 goto fail_block_groups;
2747 }
2748
1b1d1f66
JB
2749 ret = btrfs_read_block_groups(extent_root);
2750 if (ret) {
2751 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2752 goto fail_block_groups;
2753 }
5af3e8cc
SB
2754 fs_info->num_tolerated_disk_barrier_failures =
2755 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2756 if (fs_info->fs_devices->missing_devices >
2757 fs_info->num_tolerated_disk_barrier_failures &&
2758 !(sb->s_flags & MS_RDONLY)) {
2759 printk(KERN_WARNING
2760 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2761 goto fail_block_groups;
2762 }
9078a3e1 2763
a74a4b97
CM
2764 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2765 "btrfs-cleaner");
57506d50 2766 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2767 goto fail_block_groups;
a74a4b97
CM
2768
2769 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2770 tree_root,
2771 "btrfs-transaction");
57506d50 2772 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2773 goto fail_cleaner;
a74a4b97 2774
c289811c
CM
2775 if (!btrfs_test_opt(tree_root, SSD) &&
2776 !btrfs_test_opt(tree_root, NOSSD) &&
2777 !fs_info->fs_devices->rotating) {
2778 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2779 "mode\n");
2780 btrfs_set_opt(fs_info->mount_opt, SSD);
2781 }
2782
21adbd5c
SB
2783#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2784 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2785 ret = btrfsic_mount(tree_root, fs_devices,
2786 btrfs_test_opt(tree_root,
2787 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2788 1 : 0,
2789 fs_info->check_integrity_print_mask);
2790 if (ret)
2791 printk(KERN_WARNING "btrfs: failed to initialize"
2792 " integrity check module %s\n", sb->s_id);
2793 }
2794#endif
bcef60f2
AJ
2795 ret = btrfs_read_qgroup_config(fs_info);
2796 if (ret)
2797 goto fail_trans_kthread;
21adbd5c 2798
acce952b 2799 /* do not make disk changes in broken FS */
68ce9682 2800 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2801 u64 bytenr = btrfs_super_log_root(disk_super);
2802
7c2ca468 2803 if (fs_devices->rw_devices == 0) {
d397712b
CM
2804 printk(KERN_WARNING "Btrfs log replay required "
2805 "on RO media\n");
7c2ca468 2806 err = -EIO;
bcef60f2 2807 goto fail_qgroup;
7c2ca468 2808 }
e02119d5
CM
2809 blocksize =
2810 btrfs_level_size(tree_root,
2811 btrfs_super_log_root_level(disk_super));
d18a2c44 2812
6f07e42e 2813 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2814 if (!log_tree_root) {
2815 err = -ENOMEM;
bcef60f2 2816 goto fail_qgroup;
676e4c86 2817 }
e02119d5
CM
2818
2819 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2820 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2821
2822 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2823 blocksize,
2824 generation + 1);
416bc658
JB
2825 if (!log_tree_root->node ||
2826 !extent_buffer_uptodate(log_tree_root->node)) {
2827 printk(KERN_ERR "btrfs: failed to read log tree\n");
2828 free_extent_buffer(log_tree_root->node);
2829 kfree(log_tree_root);
2830 goto fail_trans_kthread;
2831 }
79787eaa 2832 /* returns with log_tree_root freed on success */
e02119d5 2833 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2834 if (ret) {
2835 btrfs_error(tree_root->fs_info, ret,
2836 "Failed to recover log tree");
2837 free_extent_buffer(log_tree_root->node);
2838 kfree(log_tree_root);
2839 goto fail_trans_kthread;
2840 }
e556ce2c
YZ
2841
2842 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2843 ret = btrfs_commit_super(tree_root);
2844 if (ret)
2845 goto fail_trans_kthread;
e556ce2c 2846 }
e02119d5 2847 }
1a40e23b 2848
76dda93c 2849 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2850 if (ret)
2851 goto fail_trans_kthread;
76dda93c 2852
7c2ca468 2853 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2854 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2855 if (ret)
2856 goto fail_trans_kthread;
d68fc57b 2857
5d4f98a2 2858 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2859 if (ret < 0) {
2860 printk(KERN_WARNING
2861 "btrfs: failed to recover relocation\n");
2862 err = -EINVAL;
bcef60f2 2863 goto fail_qgroup;
d7ce5843 2864 }
7c2ca468 2865 }
1a40e23b 2866
3de4586c
CM
2867 location.objectid = BTRFS_FS_TREE_OBJECTID;
2868 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2869 location.offset = 0;
3de4586c 2870
3de4586c 2871 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2872 if (IS_ERR(fs_info->fs_root)) {
2873 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2874 goto fail_qgroup;
3140c9a3 2875 }
c289811c 2876
2b6ba629
ID
2877 if (sb->s_flags & MS_RDONLY)
2878 return 0;
59641015 2879
2b6ba629
ID
2880 down_read(&fs_info->cleanup_work_sem);
2881 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2882 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2883 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2884 close_ctree(tree_root);
2885 return ret;
2886 }
2887 up_read(&fs_info->cleanup_work_sem);
59641015 2888
2b6ba629
ID
2889 ret = btrfs_resume_balance_async(fs_info);
2890 if (ret) {
2891 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2892 close_ctree(tree_root);
2893 return ret;
e3acc2a6
JB
2894 }
2895
8dabb742
SB
2896 ret = btrfs_resume_dev_replace_async(fs_info);
2897 if (ret) {
2898 pr_warn("btrfs: failed to resume dev_replace\n");
2899 close_ctree(tree_root);
2900 return ret;
2901 }
2902
b382a324
JS
2903 btrfs_qgroup_rescan_resume(fs_info);
2904
f7a81ea4
SB
2905 if (create_uuid_tree) {
2906 pr_info("btrfs: creating UUID tree\n");
2907 ret = btrfs_create_uuid_tree(fs_info);
2908 if (ret) {
2909 pr_warn("btrfs: failed to create the UUID tree %d\n",
2910 ret);
2911 close_ctree(tree_root);
2912 return ret;
2913 }
f420ee1e
SB
2914 } else if (check_uuid_tree ||
2915 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
70f80175
SB
2916 pr_info("btrfs: checking UUID tree\n");
2917 ret = btrfs_check_uuid_tree(fs_info);
2918 if (ret) {
2919 pr_warn("btrfs: failed to check the UUID tree %d\n",
2920 ret);
2921 close_ctree(tree_root);
2922 return ret;
2923 }
2924 } else {
2925 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2926 }
2927
ad2b2c80 2928 return 0;
39279cc3 2929
bcef60f2
AJ
2930fail_qgroup:
2931 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2932fail_trans_kthread:
2933 kthread_stop(fs_info->transaction_kthread);
54067ae9 2934 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2935 del_fs_roots(fs_info);
3f157a2f 2936fail_cleaner:
a74a4b97 2937 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2938
2939 /*
2940 * make sure we're done with the btree inode before we stop our
2941 * kthreads
2942 */
2943 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2944
1b1d1f66 2945fail_block_groups:
54067ae9 2946 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2947 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2948
2949fail_tree_roots:
2950 free_root_pointers(fs_info, 1);
2b8195bb 2951 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2952
39279cc3 2953fail_sb_buffer:
7abadb64 2954 btrfs_stop_all_workers(fs_info);
16cdcec7 2955fail_alloc:
4543df7e 2956fail_iput:
586e46e2
ID
2957 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2958
4543df7e 2959 iput(fs_info->btree_inode);
963d678b
MX
2960fail_delalloc_bytes:
2961 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2962fail_dirty_metadata_bytes:
2963 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2964fail_bdi:
7e662854 2965 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2966fail_srcu:
2967 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2968fail:
53b381b3 2969 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2970 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2971 return err;
af31f5e5
CM
2972
2973recovery_tree_root:
af31f5e5
CM
2974 if (!btrfs_test_opt(tree_root, RECOVERY))
2975 goto fail_tree_roots;
2976
2977 free_root_pointers(fs_info, 0);
2978
2979 /* don't use the log in recovery mode, it won't be valid */
2980 btrfs_set_super_log_root(disk_super, 0);
2981
2982 /* we can't trust the free space cache either */
2983 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2984
2985 ret = next_root_backup(fs_info, fs_info->super_copy,
2986 &num_backups_tried, &backup_index);
2987 if (ret == -1)
2988 goto fail_block_groups;
2989 goto retry_root_backup;
eb60ceac
CM
2990}
2991
f2984462
CM
2992static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2993{
f2984462
CM
2994 if (uptodate) {
2995 set_buffer_uptodate(bh);
2996 } else {
442a4f63
SB
2997 struct btrfs_device *device = (struct btrfs_device *)
2998 bh->b_private;
2999
606686ee
JB
3000 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3001 "I/O error on %s\n",
3002 rcu_str_deref(device->name));
1259ab75
CM
3003 /* note, we dont' set_buffer_write_io_error because we have
3004 * our own ways of dealing with the IO errors
3005 */
f2984462 3006 clear_buffer_uptodate(bh);
442a4f63 3007 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3008 }
3009 unlock_buffer(bh);
3010 put_bh(bh);
3011}
3012
a512bbf8
YZ
3013struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3014{
3015 struct buffer_head *bh;
3016 struct buffer_head *latest = NULL;
3017 struct btrfs_super_block *super;
3018 int i;
3019 u64 transid = 0;
3020 u64 bytenr;
3021
3022 /* we would like to check all the supers, but that would make
3023 * a btrfs mount succeed after a mkfs from a different FS.
3024 * So, we need to add a special mount option to scan for
3025 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3026 */
3027 for (i = 0; i < 1; i++) {
3028 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3029 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3030 i_size_read(bdev->bd_inode))
a512bbf8 3031 break;
8068a47e
AJ
3032 bh = __bread(bdev, bytenr / 4096,
3033 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3034 if (!bh)
3035 continue;
3036
3037 super = (struct btrfs_super_block *)bh->b_data;
3038 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3039 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3040 brelse(bh);
3041 continue;
3042 }
3043
3044 if (!latest || btrfs_super_generation(super) > transid) {
3045 brelse(latest);
3046 latest = bh;
3047 transid = btrfs_super_generation(super);
3048 } else {
3049 brelse(bh);
3050 }
3051 }
3052 return latest;
3053}
3054
4eedeb75
HH
3055/*
3056 * this should be called twice, once with wait == 0 and
3057 * once with wait == 1. When wait == 0 is done, all the buffer heads
3058 * we write are pinned.
3059 *
3060 * They are released when wait == 1 is done.
3061 * max_mirrors must be the same for both runs, and it indicates how
3062 * many supers on this one device should be written.
3063 *
3064 * max_mirrors == 0 means to write them all.
3065 */
a512bbf8
YZ
3066static int write_dev_supers(struct btrfs_device *device,
3067 struct btrfs_super_block *sb,
3068 int do_barriers, int wait, int max_mirrors)
3069{
3070 struct buffer_head *bh;
3071 int i;
3072 int ret;
3073 int errors = 0;
3074 u32 crc;
3075 u64 bytenr;
a512bbf8
YZ
3076
3077 if (max_mirrors == 0)
3078 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3079
a512bbf8
YZ
3080 for (i = 0; i < max_mirrors; i++) {
3081 bytenr = btrfs_sb_offset(i);
3082 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3083 break;
3084
3085 if (wait) {
3086 bh = __find_get_block(device->bdev, bytenr / 4096,
3087 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3088 if (!bh) {
3089 errors++;
3090 continue;
3091 }
a512bbf8 3092 wait_on_buffer(bh);
4eedeb75
HH
3093 if (!buffer_uptodate(bh))
3094 errors++;
3095
3096 /* drop our reference */
3097 brelse(bh);
3098
3099 /* drop the reference from the wait == 0 run */
3100 brelse(bh);
3101 continue;
a512bbf8
YZ
3102 } else {
3103 btrfs_set_super_bytenr(sb, bytenr);
3104
3105 crc = ~(u32)0;
b0496686 3106 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3107 BTRFS_CSUM_SIZE, crc,
3108 BTRFS_SUPER_INFO_SIZE -
3109 BTRFS_CSUM_SIZE);
3110 btrfs_csum_final(crc, sb->csum);
3111
4eedeb75
HH
3112 /*
3113 * one reference for us, and we leave it for the
3114 * caller
3115 */
a512bbf8
YZ
3116 bh = __getblk(device->bdev, bytenr / 4096,
3117 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3118 if (!bh) {
3119 printk(KERN_ERR "btrfs: couldn't get super "
3120 "buffer head for bytenr %Lu\n", bytenr);
3121 errors++;
3122 continue;
3123 }
3124
a512bbf8
YZ
3125 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3126
4eedeb75 3127 /* one reference for submit_bh */
a512bbf8 3128 get_bh(bh);
4eedeb75
HH
3129
3130 set_buffer_uptodate(bh);
a512bbf8
YZ
3131 lock_buffer(bh);
3132 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3133 bh->b_private = device;
a512bbf8
YZ
3134 }
3135
387125fc
CM
3136 /*
3137 * we fua the first super. The others we allow
3138 * to go down lazy.
3139 */
21adbd5c 3140 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 3141 if (ret)
a512bbf8 3142 errors++;
a512bbf8
YZ
3143 }
3144 return errors < i ? 0 : -1;
3145}
3146
387125fc
CM
3147/*
3148 * endio for the write_dev_flush, this will wake anyone waiting
3149 * for the barrier when it is done
3150 */
3151static void btrfs_end_empty_barrier(struct bio *bio, int err)
3152{
3153 if (err) {
3154 if (err == -EOPNOTSUPP)
3155 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3156 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3157 }
3158 if (bio->bi_private)
3159 complete(bio->bi_private);
3160 bio_put(bio);
3161}
3162
3163/*
3164 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3165 * sent down. With wait == 1, it waits for the previous flush.
3166 *
3167 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3168 * capable
3169 */
3170static int write_dev_flush(struct btrfs_device *device, int wait)
3171{
3172 struct bio *bio;
3173 int ret = 0;
3174
3175 if (device->nobarriers)
3176 return 0;
3177
3178 if (wait) {
3179 bio = device->flush_bio;
3180 if (!bio)
3181 return 0;
3182
3183 wait_for_completion(&device->flush_wait);
3184
3185 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
3186 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3187 rcu_str_deref(device->name));
387125fc 3188 device->nobarriers = 1;
5af3e8cc 3189 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3190 ret = -EIO;
5af3e8cc
SB
3191 btrfs_dev_stat_inc_and_print(device,
3192 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3193 }
3194
3195 /* drop the reference from the wait == 0 run */
3196 bio_put(bio);
3197 device->flush_bio = NULL;
3198
3199 return ret;
3200 }
3201
3202 /*
3203 * one reference for us, and we leave it for the
3204 * caller
3205 */
9c017abc 3206 device->flush_bio = NULL;
9be3395b 3207 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3208 if (!bio)
3209 return -ENOMEM;
3210
3211 bio->bi_end_io = btrfs_end_empty_barrier;
3212 bio->bi_bdev = device->bdev;
3213 init_completion(&device->flush_wait);
3214 bio->bi_private = &device->flush_wait;
3215 device->flush_bio = bio;
3216
3217 bio_get(bio);
21adbd5c 3218 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3219
3220 return 0;
3221}
3222
3223/*
3224 * send an empty flush down to each device in parallel,
3225 * then wait for them
3226 */
3227static int barrier_all_devices(struct btrfs_fs_info *info)
3228{
3229 struct list_head *head;
3230 struct btrfs_device *dev;
5af3e8cc
SB
3231 int errors_send = 0;
3232 int errors_wait = 0;
387125fc
CM
3233 int ret;
3234
3235 /* send down all the barriers */
3236 head = &info->fs_devices->devices;
3237 list_for_each_entry_rcu(dev, head, dev_list) {
3238 if (!dev->bdev) {
5af3e8cc 3239 errors_send++;
387125fc
CM
3240 continue;
3241 }
3242 if (!dev->in_fs_metadata || !dev->writeable)
3243 continue;
3244
3245 ret = write_dev_flush(dev, 0);
3246 if (ret)
5af3e8cc 3247 errors_send++;
387125fc
CM
3248 }
3249
3250 /* wait for all the barriers */
3251 list_for_each_entry_rcu(dev, head, dev_list) {
3252 if (!dev->bdev) {
5af3e8cc 3253 errors_wait++;
387125fc
CM
3254 continue;
3255 }
3256 if (!dev->in_fs_metadata || !dev->writeable)
3257 continue;
3258
3259 ret = write_dev_flush(dev, 1);
3260 if (ret)
5af3e8cc 3261 errors_wait++;
387125fc 3262 }
5af3e8cc
SB
3263 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3264 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3265 return -EIO;
3266 return 0;
3267}
3268
5af3e8cc
SB
3269int btrfs_calc_num_tolerated_disk_barrier_failures(
3270 struct btrfs_fs_info *fs_info)
3271{
3272 struct btrfs_ioctl_space_info space;
3273 struct btrfs_space_info *sinfo;
3274 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3275 BTRFS_BLOCK_GROUP_SYSTEM,
3276 BTRFS_BLOCK_GROUP_METADATA,
3277 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3278 int num_types = 4;
3279 int i;
3280 int c;
3281 int num_tolerated_disk_barrier_failures =
3282 (int)fs_info->fs_devices->num_devices;
3283
3284 for (i = 0; i < num_types; i++) {
3285 struct btrfs_space_info *tmp;
3286
3287 sinfo = NULL;
3288 rcu_read_lock();
3289 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3290 if (tmp->flags == types[i]) {
3291 sinfo = tmp;
3292 break;
3293 }
3294 }
3295 rcu_read_unlock();
3296
3297 if (!sinfo)
3298 continue;
3299
3300 down_read(&sinfo->groups_sem);
3301 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3302 if (!list_empty(&sinfo->block_groups[c])) {
3303 u64 flags;
3304
3305 btrfs_get_block_group_info(
3306 &sinfo->block_groups[c], &space);
3307 if (space.total_bytes == 0 ||
3308 space.used_bytes == 0)
3309 continue;
3310 flags = space.flags;
3311 /*
3312 * return
3313 * 0: if dup, single or RAID0 is configured for
3314 * any of metadata, system or data, else
3315 * 1: if RAID5 is configured, or if RAID1 or
3316 * RAID10 is configured and only two mirrors
3317 * are used, else
3318 * 2: if RAID6 is configured, else
3319 * num_mirrors - 1: if RAID1 or RAID10 is
3320 * configured and more than
3321 * 2 mirrors are used.
3322 */
3323 if (num_tolerated_disk_barrier_failures > 0 &&
3324 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3325 BTRFS_BLOCK_GROUP_RAID0)) ||
3326 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3327 == 0)))
3328 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3329 else if (num_tolerated_disk_barrier_failures > 1) {
3330 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3331 BTRFS_BLOCK_GROUP_RAID5 |
3332 BTRFS_BLOCK_GROUP_RAID10)) {
3333 num_tolerated_disk_barrier_failures = 1;
3334 } else if (flags &
15b0a89d 3335 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3336 num_tolerated_disk_barrier_failures = 2;
3337 }
3338 }
5af3e8cc
SB
3339 }
3340 }
3341 up_read(&sinfo->groups_sem);
3342 }
3343
3344 return num_tolerated_disk_barrier_failures;
3345}
3346
48a3b636 3347static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3348{
e5e9a520 3349 struct list_head *head;
f2984462 3350 struct btrfs_device *dev;
a061fc8d 3351 struct btrfs_super_block *sb;
f2984462 3352 struct btrfs_dev_item *dev_item;
f2984462
CM
3353 int ret;
3354 int do_barriers;
a236aed1
CM
3355 int max_errors;
3356 int total_errors = 0;
a061fc8d 3357 u64 flags;
f2984462
CM
3358
3359 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3360 backup_super_roots(root->fs_info);
f2984462 3361
6c41761f 3362 sb = root->fs_info->super_for_commit;
a061fc8d 3363 dev_item = &sb->dev_item;
e5e9a520 3364
174ba509 3365 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3366 head = &root->fs_info->fs_devices->devices;
d7306801 3367 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3368
5af3e8cc
SB
3369 if (do_barriers) {
3370 ret = barrier_all_devices(root->fs_info);
3371 if (ret) {
3372 mutex_unlock(
3373 &root->fs_info->fs_devices->device_list_mutex);
3374 btrfs_error(root->fs_info, ret,
3375 "errors while submitting device barriers.");
3376 return ret;
3377 }
3378 }
387125fc 3379
1f78160c 3380 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3381 if (!dev->bdev) {
3382 total_errors++;
3383 continue;
3384 }
2b82032c 3385 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3386 continue;
3387
2b82032c 3388 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3389 btrfs_set_stack_device_type(dev_item, dev->type);
3390 btrfs_set_stack_device_id(dev_item, dev->devid);
3391 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3392 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3393 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3394 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3395 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3396 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3397 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3398
a061fc8d
CM
3399 flags = btrfs_super_flags(sb);
3400 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3401
a512bbf8 3402 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3403 if (ret)
3404 total_errors++;
f2984462 3405 }
a236aed1 3406 if (total_errors > max_errors) {
d397712b
CM
3407 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3408 total_errors);
a724b436 3409 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3410
9d565ba4
SB
3411 /* FUA is masked off if unsupported and can't be the reason */
3412 btrfs_error(root->fs_info, -EIO,
3413 "%d errors while writing supers", total_errors);
3414 return -EIO;
a236aed1 3415 }
f2984462 3416
a512bbf8 3417 total_errors = 0;
1f78160c 3418 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3419 if (!dev->bdev)
3420 continue;
2b82032c 3421 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3422 continue;
3423
a512bbf8
YZ
3424 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3425 if (ret)
3426 total_errors++;
f2984462 3427 }
174ba509 3428 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3429 if (total_errors > max_errors) {
79787eaa
JM
3430 btrfs_error(root->fs_info, -EIO,
3431 "%d errors while writing supers", total_errors);
3432 return -EIO;
a236aed1 3433 }
f2984462
CM
3434 return 0;
3435}
3436
a512bbf8
YZ
3437int write_ctree_super(struct btrfs_trans_handle *trans,
3438 struct btrfs_root *root, int max_mirrors)
eb60ceac 3439{
f570e757 3440 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3441}
3442
cb517eab
MX
3443/* Drop a fs root from the radix tree and free it. */
3444void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3445 struct btrfs_root *root)
2619ba1f 3446{
4df27c4d 3447 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3448 radix_tree_delete(&fs_info->fs_roots_radix,
3449 (unsigned long)root->root_key.objectid);
4df27c4d 3450 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3451
3452 if (btrfs_root_refs(&root->root_item) == 0)
3453 synchronize_srcu(&fs_info->subvol_srcu);
3454
d7634482 3455 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e
LB
3456 btrfs_free_log(NULL, root);
3457 btrfs_free_log_root_tree(NULL, fs_info);
3458 }
3459
581bb050
LZ
3460 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3461 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3462 free_fs_root(root);
4df27c4d
YZ
3463}
3464
3465static void free_fs_root(struct btrfs_root *root)
3466{
82d5902d 3467 iput(root->cache_inode);
4df27c4d 3468 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3469 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3470 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3471 if (root->anon_dev)
3472 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3473 free_extent_buffer(root->node);
3474 free_extent_buffer(root->commit_root);
581bb050
LZ
3475 kfree(root->free_ino_ctl);
3476 kfree(root->free_ino_pinned);
d397712b 3477 kfree(root->name);
b0feb9d9 3478 btrfs_put_fs_root(root);
2619ba1f
CM
3479}
3480
cb517eab
MX
3481void btrfs_free_fs_root(struct btrfs_root *root)
3482{
3483 free_fs_root(root);
2619ba1f
CM
3484}
3485
c146afad 3486int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3487{
c146afad
YZ
3488 u64 root_objectid = 0;
3489 struct btrfs_root *gang[8];
3490 int i;
3768f368 3491 int ret;
e089f05c 3492
c146afad
YZ
3493 while (1) {
3494 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3495 (void **)gang, root_objectid,
3496 ARRAY_SIZE(gang));
3497 if (!ret)
3498 break;
5d4f98a2
YZ
3499
3500 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3501 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3502 int err;
3503
c146afad 3504 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3505 err = btrfs_orphan_cleanup(gang[i]);
3506 if (err)
3507 return err;
c146afad
YZ
3508 }
3509 root_objectid++;
3510 }
3511 return 0;
3512}
a2135011 3513
c146afad
YZ
3514int btrfs_commit_super(struct btrfs_root *root)
3515{
3516 struct btrfs_trans_handle *trans;
a74a4b97 3517
c146afad 3518 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3519 btrfs_run_delayed_iputs(root);
c146afad 3520 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3521 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3522
3523 /* wait until ongoing cleanup work done */
3524 down_write(&root->fs_info->cleanup_work_sem);
3525 up_write(&root->fs_info->cleanup_work_sem);
3526
7a7eaa40 3527 trans = btrfs_join_transaction(root);
3612b495
TI
3528 if (IS_ERR(trans))
3529 return PTR_ERR(trans);
d52c1bcc 3530 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3531}
3532
3533int close_ctree(struct btrfs_root *root)
3534{
3535 struct btrfs_fs_info *fs_info = root->fs_info;
3536 int ret;
3537
3538 fs_info->closing = 1;
3539 smp_mb();
3540
803b2f54
SB
3541 /* wait for the uuid_scan task to finish */
3542 down(&fs_info->uuid_tree_rescan_sem);
3543 /* avoid complains from lockdep et al., set sem back to initial state */
3544 up(&fs_info->uuid_tree_rescan_sem);
3545
837d5b6e 3546 /* pause restriper - we want to resume on mount */
aa1b8cd4 3547 btrfs_pause_balance(fs_info);
837d5b6e 3548
8dabb742
SB
3549 btrfs_dev_replace_suspend_for_unmount(fs_info);
3550
aa1b8cd4 3551 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3552
3553 /* wait for any defraggers to finish */
3554 wait_event(fs_info->transaction_wait,
3555 (atomic_read(&fs_info->defrag_running) == 0));
3556
3557 /* clear out the rbtree of defraggable inodes */
26176e7c 3558 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3559
c146afad 3560 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3561 ret = btrfs_commit_super(root);
3562 if (ret)
3563 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3564 }
3565
87533c47 3566 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3567 btrfs_error_commit_super(root);
0f7d52f4 3568
300e4f8a
JB
3569 btrfs_put_block_group_cache(fs_info);
3570
e3029d9f
AV
3571 kthread_stop(fs_info->transaction_kthread);
3572 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3573
f25784b3
YZ
3574 fs_info->closing = 2;
3575 smp_mb();
3576
bcef60f2
AJ
3577 btrfs_free_qgroup_config(root->fs_info);
3578
963d678b
MX
3579 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3580 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3581 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3582 }
bcc63abb 3583
5ac1d209
JM
3584 btrfs_sysfs_remove_one(fs_info);
3585
c146afad 3586 del_fs_roots(fs_info);
d10c5f31 3587
2b1360da
JB
3588 btrfs_free_block_groups(fs_info);
3589
96192499
JB
3590 btrfs_stop_all_workers(fs_info);
3591
13e6c37b 3592 free_root_pointers(fs_info, 1);
9ad6b7bc 3593
13e6c37b 3594 iput(fs_info->btree_inode);
d6bfde87 3595
21adbd5c
SB
3596#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3597 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3598 btrfsic_unmount(root, fs_info->fs_devices);
3599#endif
3600
dfe25020 3601 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3602 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3603
e2d84521 3604 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3605 percpu_counter_destroy(&fs_info->delalloc_bytes);
04160088 3606 bdi_destroy(&fs_info->bdi);
76dda93c 3607 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3608
53b381b3
DW
3609 btrfs_free_stripe_hash_table(fs_info);
3610
1cb048f5
FDBM
3611 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3612 root->orphan_block_rsv = NULL;
3613
eb60ceac
CM
3614 return 0;
3615}
3616
b9fab919
CM
3617int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3618 int atomic)
5f39d397 3619{
1259ab75 3620 int ret;
727011e0 3621 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3622
0b32f4bb 3623 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3624 if (!ret)
3625 return ret;
3626
3627 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3628 parent_transid, atomic);
3629 if (ret == -EAGAIN)
3630 return ret;
1259ab75 3631 return !ret;
5f39d397
CM
3632}
3633
3634int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3635{
0b32f4bb 3636 return set_extent_buffer_uptodate(buf);
5f39d397 3637}
6702ed49 3638
5f39d397
CM
3639void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3640{
06ea65a3 3641 struct btrfs_root *root;
5f39d397 3642 u64 transid = btrfs_header_generation(buf);
b9473439 3643 int was_dirty;
b4ce94de 3644
06ea65a3
JB
3645#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3646 /*
3647 * This is a fast path so only do this check if we have sanity tests
3648 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3649 * outside of the sanity tests.
3650 */
3651 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3652 return;
3653#endif
3654 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3655 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3656 if (transid != root->fs_info->generation)
3657 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3658 "found %llu running %llu\n",
c1c9ff7c 3659 buf->start, transid, root->fs_info->generation);
0b32f4bb 3660 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3661 if (!was_dirty)
3662 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3663 buf->len,
3664 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3665}
3666
b53d3f5d
LB
3667static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3668 int flush_delayed)
16cdcec7
MX
3669{
3670 /*
3671 * looks as though older kernels can get into trouble with
3672 * this code, they end up stuck in balance_dirty_pages forever
3673 */
e2d84521 3674 int ret;
16cdcec7
MX
3675
3676 if (current->flags & PF_MEMALLOC)
3677 return;
3678
b53d3f5d
LB
3679 if (flush_delayed)
3680 btrfs_balance_delayed_items(root);
16cdcec7 3681
e2d84521
MX
3682 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3683 BTRFS_DIRTY_METADATA_THRESH);
3684 if (ret > 0) {
d0e1d66b
NJ
3685 balance_dirty_pages_ratelimited(
3686 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3687 }
3688 return;
3689}
3690
b53d3f5d 3691void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3692{
b53d3f5d
LB
3693 __btrfs_btree_balance_dirty(root, 1);
3694}
585ad2c3 3695
b53d3f5d
LB
3696void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3697{
3698 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3699}
6b80053d 3700
ca7a79ad 3701int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3702{
727011e0 3703 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3704 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3705}
0da5468f 3706
fcd1f065 3707static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3708 int read_only)
3709{
1104a885
DS
3710 /*
3711 * Placeholder for checks
3712 */
fcd1f065 3713 return 0;
acce952b 3714}
3715
48a3b636 3716static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3717{
acce952b 3718 mutex_lock(&root->fs_info->cleaner_mutex);
3719 btrfs_run_delayed_iputs(root);
3720 mutex_unlock(&root->fs_info->cleaner_mutex);
3721
3722 down_write(&root->fs_info->cleanup_work_sem);
3723 up_write(&root->fs_info->cleanup_work_sem);
3724
3725 /* cleanup FS via transaction */
3726 btrfs_cleanup_transaction(root);
acce952b 3727}
3728
569e0f35
JB
3729static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3730 struct btrfs_root *root)
acce952b 3731{
3732 struct btrfs_inode *btrfs_inode;
3733 struct list_head splice;
3734
3735 INIT_LIST_HEAD(&splice);
3736
3737 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3738 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3739
569e0f35 3740 list_splice_init(&t->ordered_operations, &splice);
acce952b 3741 while (!list_empty(&splice)) {
3742 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3743 ordered_operations);
3744
3745 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3746 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3747
3748 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3749
199c2a9c 3750 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3751 }
3752
199c2a9c 3753 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3754 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3755}
3756
143bede5 3757static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3758{
acce952b 3759 struct btrfs_ordered_extent *ordered;
acce952b 3760
199c2a9c 3761 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3762 /*
3763 * This will just short circuit the ordered completion stuff which will
3764 * make sure the ordered extent gets properly cleaned up.
3765 */
199c2a9c 3766 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3767 root_extent_list)
3768 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3769 spin_unlock(&root->ordered_extent_lock);
3770}
3771
3772static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3773{
3774 struct btrfs_root *root;
3775 struct list_head splice;
3776
3777 INIT_LIST_HEAD(&splice);
3778
3779 spin_lock(&fs_info->ordered_root_lock);
3780 list_splice_init(&fs_info->ordered_roots, &splice);
3781 while (!list_empty(&splice)) {
3782 root = list_first_entry(&splice, struct btrfs_root,
3783 ordered_root);
1de2cfde
JB
3784 list_move_tail(&root->ordered_root,
3785 &fs_info->ordered_roots);
199c2a9c
MX
3786
3787 btrfs_destroy_ordered_extents(root);
3788
3789 cond_resched_lock(&fs_info->ordered_root_lock);
3790 }
3791 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3792}
3793
35a3621b
SB
3794static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3795 struct btrfs_root *root)
acce952b 3796{
3797 struct rb_node *node;
3798 struct btrfs_delayed_ref_root *delayed_refs;
3799 struct btrfs_delayed_ref_node *ref;
3800 int ret = 0;
3801
3802 delayed_refs = &trans->delayed_refs;
3803
3804 spin_lock(&delayed_refs->lock);
3805 if (delayed_refs->num_entries == 0) {
cfece4db 3806 spin_unlock(&delayed_refs->lock);
acce952b 3807 printk(KERN_INFO "delayed_refs has NO entry\n");
3808 return ret;
3809 }
3810
b939d1ab 3811 while ((node = rb_first(&delayed_refs->root)) != NULL) {
eb12db69 3812 struct btrfs_delayed_ref_head *head = NULL;
e78417d1 3813 bool pin_bytes = false;
acce952b 3814
eb12db69 3815 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3816 atomic_set(&ref->refs, 1);
3817 if (btrfs_delayed_ref_is_head(ref)) {
acce952b 3818
3819 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3820 if (!mutex_trylock(&head->mutex)) {
3821 atomic_inc(&ref->refs);
3822 spin_unlock(&delayed_refs->lock);
3823
3824 /* Need to wait for the delayed ref to run */
3825 mutex_lock(&head->mutex);
3826 mutex_unlock(&head->mutex);
3827 btrfs_put_delayed_ref(ref);
3828
e18fca73 3829 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3830 continue;
3831 }
3832
54067ae9 3833 if (head->must_insert_reserved)
e78417d1 3834 pin_bytes = true;
78a6184a 3835 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3836 delayed_refs->num_heads--;
3837 if (list_empty(&head->cluster))
3838 delayed_refs->num_heads_ready--;
3839 list_del_init(&head->cluster);
acce952b 3840 }
eb12db69 3841
b939d1ab
JB
3842 ref->in_tree = 0;
3843 rb_erase(&ref->rb_node, &delayed_refs->root);
c46effa6
LB
3844 if (head)
3845 rb_erase(&head->href_node, &delayed_refs->href_root);
3846
b939d1ab 3847 delayed_refs->num_entries--;
acce952b 3848 spin_unlock(&delayed_refs->lock);
e78417d1
JB
3849 if (head) {
3850 if (pin_bytes)
3851 btrfs_pin_extent(root, ref->bytenr,
3852 ref->num_bytes, 1);
3853 mutex_unlock(&head->mutex);
3854 }
acce952b 3855 btrfs_put_delayed_ref(ref);
3856
3857 cond_resched();
3858 spin_lock(&delayed_refs->lock);
3859 }
3860
3861 spin_unlock(&delayed_refs->lock);
3862
3863 return ret;
3864}
3865
143bede5 3866static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3867{
3868 struct btrfs_inode *btrfs_inode;
3869 struct list_head splice;
3870
3871 INIT_LIST_HEAD(&splice);
3872
eb73c1b7
MX
3873 spin_lock(&root->delalloc_lock);
3874 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3875
3876 while (!list_empty(&splice)) {
eb73c1b7
MX
3877 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3878 delalloc_inodes);
acce952b 3879
3880 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3881 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3882 &btrfs_inode->runtime_flags);
eb73c1b7 3883 spin_unlock(&root->delalloc_lock);
acce952b 3884
3885 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3886
eb73c1b7 3887 spin_lock(&root->delalloc_lock);
acce952b 3888 }
3889
eb73c1b7
MX
3890 spin_unlock(&root->delalloc_lock);
3891}
3892
3893static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3894{
3895 struct btrfs_root *root;
3896 struct list_head splice;
3897
3898 INIT_LIST_HEAD(&splice);
3899
3900 spin_lock(&fs_info->delalloc_root_lock);
3901 list_splice_init(&fs_info->delalloc_roots, &splice);
3902 while (!list_empty(&splice)) {
3903 root = list_first_entry(&splice, struct btrfs_root,
3904 delalloc_root);
3905 list_del_init(&root->delalloc_root);
3906 root = btrfs_grab_fs_root(root);
3907 BUG_ON(!root);
3908 spin_unlock(&fs_info->delalloc_root_lock);
3909
3910 btrfs_destroy_delalloc_inodes(root);
3911 btrfs_put_fs_root(root);
3912
3913 spin_lock(&fs_info->delalloc_root_lock);
3914 }
3915 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3916}
3917
3918static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3919 struct extent_io_tree *dirty_pages,
3920 int mark)
3921{
3922 int ret;
acce952b 3923 struct extent_buffer *eb;
3924 u64 start = 0;
3925 u64 end;
acce952b 3926
3927 while (1) {
3928 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3929 mark, NULL);
acce952b 3930 if (ret)
3931 break;
3932
3933 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3934 while (start <= end) {
fd8b2b61
JB
3935 eb = btrfs_find_tree_block(root, start,
3936 root->leafsize);
69a85bd8 3937 start += root->leafsize;
fd8b2b61 3938 if (!eb)
acce952b 3939 continue;
fd8b2b61 3940 wait_on_extent_buffer_writeback(eb);
acce952b 3941
fd8b2b61
JB
3942 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3943 &eb->bflags))
3944 clear_extent_buffer_dirty(eb);
3945 free_extent_buffer_stale(eb);
acce952b 3946 }
3947 }
3948
3949 return ret;
3950}
3951
3952static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3953 struct extent_io_tree *pinned_extents)
3954{
3955 struct extent_io_tree *unpin;
3956 u64 start;
3957 u64 end;
3958 int ret;
ed0eaa14 3959 bool loop = true;
acce952b 3960
3961 unpin = pinned_extents;
ed0eaa14 3962again:
acce952b 3963 while (1) {
3964 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3965 EXTENT_DIRTY, NULL);
acce952b 3966 if (ret)
3967 break;
3968
3969 /* opt_discard */
5378e607
LD
3970 if (btrfs_test_opt(root, DISCARD))
3971 ret = btrfs_error_discard_extent(root, start,
3972 end + 1 - start,
3973 NULL);
acce952b 3974
3975 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3976 btrfs_error_unpin_extent_range(root, start, end);
3977 cond_resched();
3978 }
3979
ed0eaa14
LB
3980 if (loop) {
3981 if (unpin == &root->fs_info->freed_extents[0])
3982 unpin = &root->fs_info->freed_extents[1];
3983 else
3984 unpin = &root->fs_info->freed_extents[0];
3985 loop = false;
3986 goto again;
3987 }
3988
acce952b 3989 return 0;
3990}
3991
49b25e05
JM
3992void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3993 struct btrfs_root *root)
3994{
724e2315
JB
3995 btrfs_destroy_ordered_operations(cur_trans, root);
3996
49b25e05 3997 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 3998
4a9d8bde 3999 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4000 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4001
4a9d8bde 4002 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4003 wake_up(&root->fs_info->transaction_wait);
49b25e05 4004
67cde344
MX
4005 btrfs_destroy_delayed_inodes(root);
4006 btrfs_assert_delayed_root_empty(root);
49b25e05 4007
49b25e05
JM
4008 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4009 EXTENT_DIRTY);
6e841e32
LB
4010 btrfs_destroy_pinned_extent(root,
4011 root->fs_info->pinned_extents);
49b25e05 4012
4a9d8bde
MX
4013 cur_trans->state =TRANS_STATE_COMPLETED;
4014 wake_up(&cur_trans->commit_wait);
4015
49b25e05
JM
4016 /*
4017 memset(cur_trans, 0, sizeof(*cur_trans));
4018 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4019 */
4020}
4021
48a3b636 4022static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4023{
4024 struct btrfs_transaction *t;
acce952b 4025
acce952b 4026 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4027
a4abeea4 4028 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4029 while (!list_empty(&root->fs_info->trans_list)) {
4030 t = list_first_entry(&root->fs_info->trans_list,
4031 struct btrfs_transaction, list);
4032 if (t->state >= TRANS_STATE_COMMIT_START) {
4033 atomic_inc(&t->use_count);
4034 spin_unlock(&root->fs_info->trans_lock);
4035 btrfs_wait_for_commit(root, t->transid);
4036 btrfs_put_transaction(t);
4037 spin_lock(&root->fs_info->trans_lock);
4038 continue;
4039 }
4040 if (t == root->fs_info->running_transaction) {
4041 t->state = TRANS_STATE_COMMIT_DOING;
4042 spin_unlock(&root->fs_info->trans_lock);
4043 /*
4044 * We wait for 0 num_writers since we don't hold a trans
4045 * handle open currently for this transaction.
4046 */
4047 wait_event(t->writer_wait,
4048 atomic_read(&t->num_writers) == 0);
4049 } else {
4050 spin_unlock(&root->fs_info->trans_lock);
4051 }
4052 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4053
724e2315
JB
4054 spin_lock(&root->fs_info->trans_lock);
4055 if (t == root->fs_info->running_transaction)
4056 root->fs_info->running_transaction = NULL;
acce952b 4057 list_del_init(&t->list);
724e2315 4058 spin_unlock(&root->fs_info->trans_lock);
acce952b 4059
724e2315
JB
4060 btrfs_put_transaction(t);
4061 trace_btrfs_transaction_commit(root);
4062 spin_lock(&root->fs_info->trans_lock);
4063 }
4064 spin_unlock(&root->fs_info->trans_lock);
4065 btrfs_destroy_all_ordered_extents(root->fs_info);
4066 btrfs_destroy_delayed_inodes(root);
4067 btrfs_assert_delayed_root_empty(root);
4068 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4069 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4070 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4071
4072 return 0;
4073}
4074
d1310b2e 4075static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4076 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4077 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4078 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4079 /* note we're sharing with inode.c for the merge bio hook */
4080 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4081};
This page took 0.818703 seconds and 5 git commands to generate.