Btrfs: set/change the label of a mounted file system
[deliverable/linux.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
eb60ceac 49
de0022b9
JB
50#ifdef CONFIG_X86
51#include <asm/cpufeature.h>
52#endif
53
d1310b2e 54static struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 56static void free_fs_root(struct btrfs_root *root);
fcd1f065 57static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 58 int read_only);
569e0f35
JB
59static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
60 struct btrfs_root *root);
143bede5 61static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 62static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
63 struct btrfs_root *root);
143bede5
JM
64static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
ce9adaa5 71
d352ac68
CM
72/*
73 * end_io_wq structs are used to do processing in task context when an IO is
74 * complete. This is used during reads to verify checksums, and it is used
75 * by writes to insert metadata for new file extents after IO is complete.
76 */
ce9adaa5
CM
77struct end_io_wq {
78 struct bio *bio;
79 bio_end_io_t *end_io;
80 void *private;
81 struct btrfs_fs_info *info;
82 int error;
22c59948 83 int metadata;
ce9adaa5 84 struct list_head list;
8b712842 85 struct btrfs_work work;
ce9adaa5 86};
0da5468f 87
d352ac68
CM
88/*
89 * async submit bios are used to offload expensive checksumming
90 * onto the worker threads. They checksum file and metadata bios
91 * just before they are sent down the IO stack.
92 */
44b8bd7e
CM
93struct async_submit_bio {
94 struct inode *inode;
95 struct bio *bio;
96 struct list_head list;
4a69a410
CM
97 extent_submit_bio_hook_t *submit_bio_start;
98 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
99 int rw;
100 int mirror_num;
c8b97818 101 unsigned long bio_flags;
eaf25d93
CM
102 /*
103 * bio_offset is optional, can be used if the pages in the bio
104 * can't tell us where in the file the bio should go
105 */
106 u64 bio_offset;
8b712842 107 struct btrfs_work work;
79787eaa 108 int error;
44b8bd7e
CM
109};
110
85d4e461
CM
111/*
112 * Lockdep class keys for extent_buffer->lock's in this root. For a given
113 * eb, the lockdep key is determined by the btrfs_root it belongs to and
114 * the level the eb occupies in the tree.
115 *
116 * Different roots are used for different purposes and may nest inside each
117 * other and they require separate keysets. As lockdep keys should be
118 * static, assign keysets according to the purpose of the root as indicated
119 * by btrfs_root->objectid. This ensures that all special purpose roots
120 * have separate keysets.
4008c04a 121 *
85d4e461
CM
122 * Lock-nesting across peer nodes is always done with the immediate parent
123 * node locked thus preventing deadlock. As lockdep doesn't know this, use
124 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 125 *
85d4e461
CM
126 * The key is set by the readpage_end_io_hook after the buffer has passed
127 * csum validation but before the pages are unlocked. It is also set by
128 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 129 *
85d4e461
CM
130 * We also add a check to make sure the highest level of the tree is the
131 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
132 * needs update as well.
4008c04a
CM
133 */
134#ifdef CONFIG_DEBUG_LOCK_ALLOC
135# if BTRFS_MAX_LEVEL != 8
136# error
137# endif
85d4e461
CM
138
139static struct btrfs_lockdep_keyset {
140 u64 id; /* root objectid */
141 const char *name_stem; /* lock name stem */
142 char names[BTRFS_MAX_LEVEL + 1][20];
143 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
144} btrfs_lockdep_keysets[] = {
145 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
146 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
147 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
148 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
149 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
150 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
151 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
152 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
153 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
154 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
155 { .id = 0, .name_stem = "tree" },
4008c04a 156};
85d4e461
CM
157
158void __init btrfs_init_lockdep(void)
159{
160 int i, j;
161
162 /* initialize lockdep class names */
163 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
164 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
165
166 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
167 snprintf(ks->names[j], sizeof(ks->names[j]),
168 "btrfs-%s-%02d", ks->name_stem, j);
169 }
170}
171
172void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
173 int level)
174{
175 struct btrfs_lockdep_keyset *ks;
176
177 BUG_ON(level >= ARRAY_SIZE(ks->keys));
178
179 /* find the matching keyset, id 0 is the default entry */
180 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
181 if (ks->id == objectid)
182 break;
183
184 lockdep_set_class_and_name(&eb->lock,
185 &ks->keys[level], ks->names[level]);
186}
187
4008c04a
CM
188#endif
189
d352ac68
CM
190/*
191 * extents on the btree inode are pretty simple, there's one extent
192 * that covers the entire device
193 */
b2950863 194static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 195 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 196 int create)
7eccb903 197{
5f39d397
CM
198 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
199 struct extent_map *em;
200 int ret;
201
890871be 202 read_lock(&em_tree->lock);
d1310b2e 203 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
204 if (em) {
205 em->bdev =
206 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 207 read_unlock(&em_tree->lock);
5f39d397 208 goto out;
a061fc8d 209 }
890871be 210 read_unlock(&em_tree->lock);
7b13b7b1 211
172ddd60 212 em = alloc_extent_map();
5f39d397
CM
213 if (!em) {
214 em = ERR_PTR(-ENOMEM);
215 goto out;
216 }
217 em->start = 0;
0afbaf8c 218 em->len = (u64)-1;
c8b97818 219 em->block_len = (u64)-1;
5f39d397 220 em->block_start = 0;
a061fc8d 221 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 222
890871be 223 write_lock(&em_tree->lock);
5f39d397
CM
224 ret = add_extent_mapping(em_tree, em);
225 if (ret == -EEXIST) {
226 free_extent_map(em);
7b13b7b1 227 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 228 if (!em)
0433f20d 229 em = ERR_PTR(-EIO);
5f39d397 230 } else if (ret) {
7b13b7b1 231 free_extent_map(em);
0433f20d 232 em = ERR_PTR(ret);
5f39d397 233 }
890871be 234 write_unlock(&em_tree->lock);
7b13b7b1 235
5f39d397
CM
236out:
237 return em;
7eccb903
CM
238}
239
19c00ddc
CM
240u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
241{
163e783e 242 return crc32c(seed, data, len);
19c00ddc
CM
243}
244
245void btrfs_csum_final(u32 crc, char *result)
246{
7e75bf3f 247 put_unaligned_le32(~crc, result);
19c00ddc
CM
248}
249
d352ac68
CM
250/*
251 * compute the csum for a btree block, and either verify it or write it
252 * into the csum field of the block.
253 */
19c00ddc
CM
254static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
255 int verify)
256{
6c41761f 257 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 258 char *result = NULL;
19c00ddc
CM
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
266 u32 crc = ~(u32)0;
607d432d 267 unsigned long inline_result;
19c00ddc
CM
268
269 len = buf->len - offset;
d397712b 270 while (len > 0) {
19c00ddc 271 err = map_private_extent_buffer(buf, offset, 32,
a6591715 272 &kaddr, &map_start, &map_len);
d397712b 273 if (err)
19c00ddc 274 return 1;
19c00ddc
CM
275 cur_len = min(len, map_len - (offset - map_start));
276 crc = btrfs_csum_data(root, kaddr + offset - map_start,
277 crc, cur_len);
278 len -= cur_len;
279 offset += cur_len;
19c00ddc 280 }
607d432d
JB
281 if (csum_size > sizeof(inline_result)) {
282 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
283 if (!result)
284 return 1;
285 } else {
286 result = (char *)&inline_result;
287 }
288
19c00ddc
CM
289 btrfs_csum_final(crc, result);
290
291 if (verify) {
607d432d 292 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
293 u32 val;
294 u32 found = 0;
607d432d 295 memcpy(&found, result, csum_size);
e4204ded 296
607d432d 297 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 298 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
299 "failed on %llu wanted %X found %X "
300 "level %d\n",
301 root->fs_info->sb->s_id,
302 (unsigned long long)buf->start, val, found,
303 btrfs_header_level(buf));
607d432d
JB
304 if (result != (char *)&inline_result)
305 kfree(result);
19c00ddc
CM
306 return 1;
307 }
308 } else {
607d432d 309 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 310 }
607d432d
JB
311 if (result != (char *)&inline_result)
312 kfree(result);
19c00ddc
CM
313 return 0;
314}
315
d352ac68
CM
316/*
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
321 */
1259ab75 322static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
323 struct extent_buffer *eb, u64 parent_transid,
324 int atomic)
1259ab75 325{
2ac55d41 326 struct extent_state *cached_state = NULL;
1259ab75
CM
327 int ret;
328
329 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
330 return 0;
331
b9fab919
CM
332 if (atomic)
333 return -EAGAIN;
334
2ac55d41 335 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 336 0, &cached_state);
0b32f4bb 337 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
338 btrfs_header_generation(eb) == parent_transid) {
339 ret = 0;
340 goto out;
341 }
7a36ddec 342 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
343 "found %llu\n",
344 (unsigned long long)eb->start,
345 (unsigned long long)parent_transid,
346 (unsigned long long)btrfs_header_generation(eb));
1259ab75 347 ret = 1;
0b32f4bb 348 clear_extent_buffer_uptodate(eb);
33958dc6 349out:
2ac55d41
JB
350 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
351 &cached_state, GFP_NOFS);
1259ab75 352 return ret;
1259ab75
CM
353}
354
d352ac68
CM
355/*
356 * helper to read a given tree block, doing retries as required when
357 * the checksums don't match and we have alternate mirrors to try.
358 */
f188591e
CM
359static int btree_read_extent_buffer_pages(struct btrfs_root *root,
360 struct extent_buffer *eb,
ca7a79ad 361 u64 start, u64 parent_transid)
f188591e
CM
362{
363 struct extent_io_tree *io_tree;
ea466794 364 int failed = 0;
f188591e
CM
365 int ret;
366 int num_copies = 0;
367 int mirror_num = 0;
ea466794 368 int failed_mirror = 0;
f188591e 369
a826d6dc 370 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
371 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
372 while (1) {
bb82ab88
AJ
373 ret = read_extent_buffer_pages(io_tree, eb, start,
374 WAIT_COMPLETE,
f188591e 375 btree_get_extent, mirror_num);
256dd1bb
SB
376 if (!ret) {
377 if (!verify_parent_transid(io_tree, eb,
b9fab919 378 parent_transid, 0))
256dd1bb
SB
379 break;
380 else
381 ret = -EIO;
382 }
d397712b 383
a826d6dc
JB
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
390 break;
391
5d964051 392 num_copies = btrfs_num_copies(root->fs_info,
f188591e 393 eb->start, eb->len);
4235298e 394 if (num_copies == 1)
ea466794 395 break;
4235298e 396
5cf1ab56
JB
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
f188591e 402 mirror_num++;
ea466794
JB
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
4235298e 406 if (mirror_num > num_copies)
ea466794 407 break;
f188591e 408 }
ea466794 409
c0901581 410 if (failed && !ret && failed_mirror)
ea466794
JB
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
f188591e 414}
19c00ddc 415
d352ac68 416/*
d397712b
CM
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 419 */
d397712b 420
b2950863 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 422{
d1310b2e 423 struct extent_io_tree *tree;
4eee4fa4 424 u64 start = page_offset(page);
19c00ddc 425 u64 found_start;
19c00ddc 426 struct extent_buffer *eb;
f188591e 427
d1310b2e 428 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 429
4f2de97a
JB
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
19c00ddc
CM
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
55c69072 435 WARN_ON(1);
4f2de97a 436 return 0;
55c69072 437 }
55c69072 438 if (!PageUptodate(page)) {
55c69072 439 WARN_ON(1);
4f2de97a 440 return 0;
19c00ddc 441 }
19c00ddc 442 csum_tree_block(root, eb, 0);
19c00ddc
CM
443 return 0;
444}
445
2b82032c
YZ
446static int check_tree_block_fsid(struct btrfs_root *root,
447 struct extent_buffer *eb)
448{
449 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
450 u8 fsid[BTRFS_UUID_SIZE];
451 int ret = 1;
452
453 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
454 BTRFS_FSID_SIZE);
455 while (fs_devices) {
456 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
457 ret = 0;
458 break;
459 }
460 fs_devices = fs_devices->seed;
461 }
462 return ret;
463}
464
a826d6dc
JB
465#define CORRUPT(reason, eb, root, slot) \
466 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
467 "root=%llu, slot=%d\n", reason, \
468 (unsigned long long)btrfs_header_bytenr(eb), \
469 (unsigned long long)root->objectid, slot)
470
471static noinline int check_leaf(struct btrfs_root *root,
472 struct extent_buffer *leaf)
473{
474 struct btrfs_key key;
475 struct btrfs_key leaf_key;
476 u32 nritems = btrfs_header_nritems(leaf);
477 int slot;
478
479 if (nritems == 0)
480 return 0;
481
482 /* Check the 0 item */
483 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
484 BTRFS_LEAF_DATA_SIZE(root)) {
485 CORRUPT("invalid item offset size pair", leaf, root, 0);
486 return -EIO;
487 }
488
489 /*
490 * Check to make sure each items keys are in the correct order and their
491 * offsets make sense. We only have to loop through nritems-1 because
492 * we check the current slot against the next slot, which verifies the
493 * next slot's offset+size makes sense and that the current's slot
494 * offset is correct.
495 */
496 for (slot = 0; slot < nritems - 1; slot++) {
497 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
498 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
499
500 /* Make sure the keys are in the right order */
501 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
502 CORRUPT("bad key order", leaf, root, slot);
503 return -EIO;
504 }
505
506 /*
507 * Make sure the offset and ends are right, remember that the
508 * item data starts at the end of the leaf and grows towards the
509 * front.
510 */
511 if (btrfs_item_offset_nr(leaf, slot) !=
512 btrfs_item_end_nr(leaf, slot + 1)) {
513 CORRUPT("slot offset bad", leaf, root, slot);
514 return -EIO;
515 }
516
517 /*
518 * Check to make sure that we don't point outside of the leaf,
519 * just incase all the items are consistent to eachother, but
520 * all point outside of the leaf.
521 */
522 if (btrfs_item_end_nr(leaf, slot) >
523 BTRFS_LEAF_DATA_SIZE(root)) {
524 CORRUPT("slot end outside of leaf", leaf, root, slot);
525 return -EIO;
526 }
527 }
528
529 return 0;
530}
531
727011e0
CM
532struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
533 struct page *page, int max_walk)
534{
535 struct extent_buffer *eb;
536 u64 start = page_offset(page);
537 u64 target = start;
538 u64 min_start;
539
540 if (start < max_walk)
541 min_start = 0;
542 else
543 min_start = start - max_walk;
544
545 while (start >= min_start) {
546 eb = find_extent_buffer(tree, start, 0);
547 if (eb) {
548 /*
549 * we found an extent buffer and it contains our page
550 * horray!
551 */
552 if (eb->start <= target &&
553 eb->start + eb->len > target)
554 return eb;
555
556 /* we found an extent buffer that wasn't for us */
557 free_extent_buffer(eb);
558 return NULL;
559 }
560 if (start == 0)
561 break;
562 start -= PAGE_CACHE_SIZE;
563 }
564 return NULL;
565}
566
b2950863 567static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 568 struct extent_state *state, int mirror)
ce9adaa5
CM
569{
570 struct extent_io_tree *tree;
571 u64 found_start;
572 int found_level;
ce9adaa5
CM
573 struct extent_buffer *eb;
574 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 575 int ret = 0;
727011e0 576 int reads_done;
ce9adaa5 577
ce9adaa5
CM
578 if (!page->private)
579 goto out;
d397712b 580
727011e0 581 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 582 eb = (struct extent_buffer *)page->private;
d397712b 583
0b32f4bb
JB
584 /* the pending IO might have been the only thing that kept this buffer
585 * in memory. Make sure we have a ref for all this other checks
586 */
587 extent_buffer_get(eb);
588
589 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
590 if (!reads_done)
591 goto err;
f188591e 592
5cf1ab56 593 eb->read_mirror = mirror;
ea466794
JB
594 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
595 ret = -EIO;
596 goto err;
597 }
598
ce9adaa5 599 found_start = btrfs_header_bytenr(eb);
727011e0 600 if (found_start != eb->start) {
7a36ddec 601 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
602 "%llu %llu\n",
603 (unsigned long long)found_start,
604 (unsigned long long)eb->start);
f188591e 605 ret = -EIO;
ce9adaa5
CM
606 goto err;
607 }
2b82032c 608 if (check_tree_block_fsid(root, eb)) {
7a36ddec 609 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 610 (unsigned long long)eb->start);
1259ab75
CM
611 ret = -EIO;
612 goto err;
613 }
ce9adaa5
CM
614 found_level = btrfs_header_level(eb);
615
85d4e461
CM
616 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
617 eb, found_level);
4008c04a 618
ce9adaa5 619 ret = csum_tree_block(root, eb, 1);
a826d6dc 620 if (ret) {
f188591e 621 ret = -EIO;
a826d6dc
JB
622 goto err;
623 }
624
625 /*
626 * If this is a leaf block and it is corrupt, set the corrupt bit so
627 * that we don't try and read the other copies of this block, just
628 * return -EIO.
629 */
630 if (found_level == 0 && check_leaf(root, eb)) {
631 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
632 ret = -EIO;
633 }
ce9adaa5 634
0b32f4bb
JB
635 if (!ret)
636 set_extent_buffer_uptodate(eb);
ce9adaa5 637err:
4bb31e92
AJ
638 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
639 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
640 btree_readahead_hook(root, eb, eb->start, ret);
641 }
642
0b32f4bb
JB
643 if (ret)
644 clear_extent_buffer_uptodate(eb);
645 free_extent_buffer(eb);
ce9adaa5 646out:
f188591e 647 return ret;
ce9adaa5
CM
648}
649
ea466794 650static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 651{
4bb31e92
AJ
652 struct extent_buffer *eb;
653 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
654
4f2de97a 655 eb = (struct extent_buffer *)page->private;
ea466794 656 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 657 eb->read_mirror = failed_mirror;
ea466794 658 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 659 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
660 return -EIO; /* we fixed nothing */
661}
662
ce9adaa5 663static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
664{
665 struct end_io_wq *end_io_wq = bio->bi_private;
666 struct btrfs_fs_info *fs_info;
ce9adaa5 667
ce9adaa5 668 fs_info = end_io_wq->info;
ce9adaa5 669 end_io_wq->error = err;
8b712842
CM
670 end_io_wq->work.func = end_workqueue_fn;
671 end_io_wq->work.flags = 0;
d20f7043 672
7b6d91da 673 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 674 if (end_io_wq->metadata == 1)
cad321ad
CM
675 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
676 &end_io_wq->work);
0cb59c99
JB
677 else if (end_io_wq->metadata == 2)
678 btrfs_queue_worker(&fs_info->endio_freespace_worker,
679 &end_io_wq->work);
cad321ad
CM
680 else
681 btrfs_queue_worker(&fs_info->endio_write_workers,
682 &end_io_wq->work);
d20f7043
CM
683 } else {
684 if (end_io_wq->metadata)
685 btrfs_queue_worker(&fs_info->endio_meta_workers,
686 &end_io_wq->work);
687 else
688 btrfs_queue_worker(&fs_info->endio_workers,
689 &end_io_wq->work);
690 }
ce9adaa5
CM
691}
692
0cb59c99
JB
693/*
694 * For the metadata arg you want
695 *
696 * 0 - if data
697 * 1 - if normal metadta
698 * 2 - if writing to the free space cache area
699 */
22c59948
CM
700int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
701 int metadata)
0b86a832 702{
ce9adaa5 703 struct end_io_wq *end_io_wq;
ce9adaa5
CM
704 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
705 if (!end_io_wq)
706 return -ENOMEM;
707
708 end_io_wq->private = bio->bi_private;
709 end_io_wq->end_io = bio->bi_end_io;
22c59948 710 end_io_wq->info = info;
ce9adaa5
CM
711 end_io_wq->error = 0;
712 end_io_wq->bio = bio;
22c59948 713 end_io_wq->metadata = metadata;
ce9adaa5
CM
714
715 bio->bi_private = end_io_wq;
716 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
717 return 0;
718}
719
b64a2851 720unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 721{
4854ddd0
CM
722 unsigned long limit = min_t(unsigned long,
723 info->workers.max_workers,
724 info->fs_devices->open_devices);
725 return 256 * limit;
726}
0986fe9e 727
4a69a410
CM
728static void run_one_async_start(struct btrfs_work *work)
729{
4a69a410 730 struct async_submit_bio *async;
79787eaa 731 int ret;
4a69a410
CM
732
733 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
734 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
735 async->mirror_num, async->bio_flags,
736 async->bio_offset);
737 if (ret)
738 async->error = ret;
4a69a410
CM
739}
740
741static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
742{
743 struct btrfs_fs_info *fs_info;
744 struct async_submit_bio *async;
4854ddd0 745 int limit;
8b712842
CM
746
747 async = container_of(work, struct async_submit_bio, work);
748 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 749
b64a2851 750 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
751 limit = limit * 2 / 3;
752
66657b31 753 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 754 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
755 wake_up(&fs_info->async_submit_wait);
756
79787eaa
JM
757 /* If an error occured we just want to clean up the bio and move on */
758 if (async->error) {
759 bio_endio(async->bio, async->error);
760 return;
761 }
762
4a69a410 763 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
764 async->mirror_num, async->bio_flags,
765 async->bio_offset);
4a69a410
CM
766}
767
768static void run_one_async_free(struct btrfs_work *work)
769{
770 struct async_submit_bio *async;
771
772 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
773 kfree(async);
774}
775
44b8bd7e
CM
776int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
777 int rw, struct bio *bio, int mirror_num,
c8b97818 778 unsigned long bio_flags,
eaf25d93 779 u64 bio_offset,
4a69a410
CM
780 extent_submit_bio_hook_t *submit_bio_start,
781 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
782{
783 struct async_submit_bio *async;
784
785 async = kmalloc(sizeof(*async), GFP_NOFS);
786 if (!async)
787 return -ENOMEM;
788
789 async->inode = inode;
790 async->rw = rw;
791 async->bio = bio;
792 async->mirror_num = mirror_num;
4a69a410
CM
793 async->submit_bio_start = submit_bio_start;
794 async->submit_bio_done = submit_bio_done;
795
796 async->work.func = run_one_async_start;
797 async->work.ordered_func = run_one_async_done;
798 async->work.ordered_free = run_one_async_free;
799
8b712842 800 async->work.flags = 0;
c8b97818 801 async->bio_flags = bio_flags;
eaf25d93 802 async->bio_offset = bio_offset;
8c8bee1d 803
79787eaa
JM
804 async->error = 0;
805
cb03c743 806 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 807
7b6d91da 808 if (rw & REQ_SYNC)
d313d7a3
CM
809 btrfs_set_work_high_prio(&async->work);
810
8b712842 811 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 812
d397712b 813 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
814 atomic_read(&fs_info->nr_async_submits)) {
815 wait_event(fs_info->async_submit_wait,
816 (atomic_read(&fs_info->nr_async_submits) == 0));
817 }
818
44b8bd7e
CM
819 return 0;
820}
821
ce3ed71a
CM
822static int btree_csum_one_bio(struct bio *bio)
823{
824 struct bio_vec *bvec = bio->bi_io_vec;
825 int bio_index = 0;
826 struct btrfs_root *root;
79787eaa 827 int ret = 0;
ce3ed71a
CM
828
829 WARN_ON(bio->bi_vcnt <= 0);
d397712b 830 while (bio_index < bio->bi_vcnt) {
ce3ed71a 831 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
832 ret = csum_dirty_buffer(root, bvec->bv_page);
833 if (ret)
834 break;
ce3ed71a
CM
835 bio_index++;
836 bvec++;
837 }
79787eaa 838 return ret;
ce3ed71a
CM
839}
840
4a69a410
CM
841static int __btree_submit_bio_start(struct inode *inode, int rw,
842 struct bio *bio, int mirror_num,
eaf25d93
CM
843 unsigned long bio_flags,
844 u64 bio_offset)
22c59948 845{
8b712842
CM
846 /*
847 * when we're called for a write, we're already in the async
5443be45 848 * submission context. Just jump into btrfs_map_bio
8b712842 849 */
79787eaa 850 return btree_csum_one_bio(bio);
4a69a410 851}
22c59948 852
4a69a410 853static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
854 int mirror_num, unsigned long bio_flags,
855 u64 bio_offset)
4a69a410 856{
61891923
SB
857 int ret;
858
8b712842 859 /*
4a69a410
CM
860 * when we're called for a write, we're already in the async
861 * submission context. Just jump into btrfs_map_bio
8b712842 862 */
61891923
SB
863 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
864 if (ret)
865 bio_endio(bio, ret);
866 return ret;
0b86a832
CM
867}
868
de0022b9
JB
869static int check_async_write(struct inode *inode, unsigned long bio_flags)
870{
871 if (bio_flags & EXTENT_BIO_TREE_LOG)
872 return 0;
873#ifdef CONFIG_X86
874 if (cpu_has_xmm4_2)
875 return 0;
876#endif
877 return 1;
878}
879
44b8bd7e 880static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
881 int mirror_num, unsigned long bio_flags,
882 u64 bio_offset)
44b8bd7e 883{
de0022b9 884 int async = check_async_write(inode, bio_flags);
cad321ad
CM
885 int ret;
886
7b6d91da 887 if (!(rw & REQ_WRITE)) {
4a69a410
CM
888 /*
889 * called for a read, do the setup so that checksum validation
890 * can happen in the async kernel threads
891 */
f3f266ab
CM
892 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
893 bio, 1);
1d4284bd 894 if (ret)
61891923
SB
895 goto out_w_error;
896 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
897 mirror_num, 0);
de0022b9
JB
898 } else if (!async) {
899 ret = btree_csum_one_bio(bio);
900 if (ret)
61891923
SB
901 goto out_w_error;
902 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
903 mirror_num, 0);
904 } else {
905 /*
906 * kthread helpers are used to submit writes so that
907 * checksumming can happen in parallel across all CPUs
908 */
909 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
910 inode, rw, bio, mirror_num, 0,
911 bio_offset,
912 __btree_submit_bio_start,
913 __btree_submit_bio_done);
44b8bd7e 914 }
d313d7a3 915
61891923
SB
916 if (ret) {
917out_w_error:
918 bio_endio(bio, ret);
919 }
920 return ret;
44b8bd7e
CM
921}
922
3dd1462e 923#ifdef CONFIG_MIGRATION
784b4e29 924static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
925 struct page *newpage, struct page *page,
926 enum migrate_mode mode)
784b4e29
CM
927{
928 /*
929 * we can't safely write a btree page from here,
930 * we haven't done the locking hook
931 */
932 if (PageDirty(page))
933 return -EAGAIN;
934 /*
935 * Buffers may be managed in a filesystem specific way.
936 * We must have no buffers or drop them.
937 */
938 if (page_has_private(page) &&
939 !try_to_release_page(page, GFP_KERNEL))
940 return -EAGAIN;
a6bc32b8 941 return migrate_page(mapping, newpage, page, mode);
784b4e29 942}
3dd1462e 943#endif
784b4e29 944
0da5468f
CM
945
946static int btree_writepages(struct address_space *mapping,
947 struct writeback_control *wbc)
948{
d1310b2e 949 struct extent_io_tree *tree;
e2d84521
MX
950 struct btrfs_fs_info *fs_info;
951 int ret;
952
d1310b2e 953 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 954 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
955
956 if (wbc->for_kupdate)
957 return 0;
958
e2d84521 959 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 960 /* this is a bit racy, but that's ok */
e2d84521
MX
961 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
962 BTRFS_DIRTY_METADATA_THRESH);
963 if (ret < 0)
793955bc 964 return 0;
793955bc 965 }
0b32f4bb 966 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
967}
968
b2950863 969static int btree_readpage(struct file *file, struct page *page)
5f39d397 970{
d1310b2e
CM
971 struct extent_io_tree *tree;
972 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 973 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 974}
22b0ebda 975
70dec807 976static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 977{
98509cfc 978 if (PageWriteback(page) || PageDirty(page))
d397712b 979 return 0;
0c4e538b
DS
980 /*
981 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
982 * slab allocation from alloc_extent_state down the callchain where
983 * it'd hit a BUG_ON as those flags are not allowed.
984 */
985 gfp_flags &= ~GFP_SLAB_BUG_MASK;
986
3083ee2e 987 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
988}
989
5f39d397 990static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 991{
d1310b2e
CM
992 struct extent_io_tree *tree;
993 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
994 extent_invalidatepage(tree, page, offset);
995 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 996 if (PagePrivate(page)) {
d397712b
CM
997 printk(KERN_WARNING "btrfs warning page private not zero "
998 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
999 ClearPagePrivate(page);
1000 set_page_private(page, 0);
1001 page_cache_release(page);
1002 }
d98237b3
CM
1003}
1004
0b32f4bb
JB
1005static int btree_set_page_dirty(struct page *page)
1006{
bb146eb2 1007#ifdef DEBUG
0b32f4bb
JB
1008 struct extent_buffer *eb;
1009
1010 BUG_ON(!PagePrivate(page));
1011 eb = (struct extent_buffer *)page->private;
1012 BUG_ON(!eb);
1013 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014 BUG_ON(!atomic_read(&eb->refs));
1015 btrfs_assert_tree_locked(eb);
bb146eb2 1016#endif
0b32f4bb
JB
1017 return __set_page_dirty_nobuffers(page);
1018}
1019
7f09410b 1020static const struct address_space_operations btree_aops = {
d98237b3 1021 .readpage = btree_readpage,
0da5468f 1022 .writepages = btree_writepages,
5f39d397
CM
1023 .releasepage = btree_releasepage,
1024 .invalidatepage = btree_invalidatepage,
5a92bc88 1025#ifdef CONFIG_MIGRATION
784b4e29 1026 .migratepage = btree_migratepage,
5a92bc88 1027#endif
0b32f4bb 1028 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1029};
1030
ca7a79ad
CM
1031int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1032 u64 parent_transid)
090d1875 1033{
5f39d397
CM
1034 struct extent_buffer *buf = NULL;
1035 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1036 int ret = 0;
090d1875 1037
db94535d 1038 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1039 if (!buf)
090d1875 1040 return 0;
d1310b2e 1041 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1042 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1043 free_extent_buffer(buf);
de428b63 1044 return ret;
090d1875
CM
1045}
1046
ab0fff03
AJ
1047int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048 int mirror_num, struct extent_buffer **eb)
1049{
1050 struct extent_buffer *buf = NULL;
1051 struct inode *btree_inode = root->fs_info->btree_inode;
1052 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1053 int ret;
1054
1055 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1056 if (!buf)
1057 return 0;
1058
1059 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1060
1061 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1062 btree_get_extent, mirror_num);
1063 if (ret) {
1064 free_extent_buffer(buf);
1065 return ret;
1066 }
1067
1068 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1069 free_extent_buffer(buf);
1070 return -EIO;
0b32f4bb 1071 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1072 *eb = buf;
1073 } else {
1074 free_extent_buffer(buf);
1075 }
1076 return 0;
1077}
1078
0999df54
CM
1079struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1080 u64 bytenr, u32 blocksize)
1081{
1082 struct inode *btree_inode = root->fs_info->btree_inode;
1083 struct extent_buffer *eb;
1084 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1085 bytenr, blocksize);
0999df54
CM
1086 return eb;
1087}
1088
1089struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1090 u64 bytenr, u32 blocksize)
1091{
1092 struct inode *btree_inode = root->fs_info->btree_inode;
1093 struct extent_buffer *eb;
1094
1095 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1096 bytenr, blocksize);
0999df54
CM
1097 return eb;
1098}
1099
1100
e02119d5
CM
1101int btrfs_write_tree_block(struct extent_buffer *buf)
1102{
727011e0 1103 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1104 buf->start + buf->len - 1);
e02119d5
CM
1105}
1106
1107int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1108{
727011e0 1109 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1110 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1111}
1112
0999df54 1113struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1114 u32 blocksize, u64 parent_transid)
0999df54
CM
1115{
1116 struct extent_buffer *buf = NULL;
0999df54
CM
1117 int ret;
1118
0999df54
CM
1119 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1120 if (!buf)
1121 return NULL;
0999df54 1122
ca7a79ad 1123 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1124 return buf;
ce9adaa5 1125
eb60ceac
CM
1126}
1127
d5c13f92
JM
1128void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1129 struct extent_buffer *buf)
ed2ff2cb 1130{
e2d84521
MX
1131 struct btrfs_fs_info *fs_info = root->fs_info;
1132
55c69072 1133 if (btrfs_header_generation(buf) ==
e2d84521 1134 fs_info->running_transaction->transid) {
b9447ef8 1135 btrfs_assert_tree_locked(buf);
b4ce94de 1136
b9473439 1137 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1138 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1139 -buf->len,
1140 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1141 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1142 btrfs_set_lock_blocking(buf);
1143 clear_extent_buffer_dirty(buf);
1144 }
925baedd 1145 }
5f39d397
CM
1146}
1147
143bede5
JM
1148static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1149 u32 stripesize, struct btrfs_root *root,
1150 struct btrfs_fs_info *fs_info,
1151 u64 objectid)
d97e63b6 1152{
cfaa7295 1153 root->node = NULL;
a28ec197 1154 root->commit_root = NULL;
db94535d
CM
1155 root->sectorsize = sectorsize;
1156 root->nodesize = nodesize;
1157 root->leafsize = leafsize;
87ee04eb 1158 root->stripesize = stripesize;
123abc88 1159 root->ref_cows = 0;
0b86a832 1160 root->track_dirty = 0;
c71bf099 1161 root->in_radix = 0;
d68fc57b
YZ
1162 root->orphan_item_inserted = 0;
1163 root->orphan_cleanup_state = 0;
0b86a832 1164
0f7d52f4
CM
1165 root->objectid = objectid;
1166 root->last_trans = 0;
13a8a7c8 1167 root->highest_objectid = 0;
58176a96 1168 root->name = NULL;
6bef4d31 1169 root->inode_tree = RB_ROOT;
16cdcec7 1170 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1171 root->block_rsv = NULL;
d68fc57b 1172 root->orphan_block_rsv = NULL;
0b86a832
CM
1173
1174 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1175 INIT_LIST_HEAD(&root->root_list);
2ab28f32
JB
1176 INIT_LIST_HEAD(&root->logged_list[0]);
1177 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1178 spin_lock_init(&root->orphan_lock);
5d4f98a2 1179 spin_lock_init(&root->inode_lock);
f0486c68 1180 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1181 spin_lock_init(&root->log_extents_lock[0]);
1182 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1183 mutex_init(&root->objectid_mutex);
e02119d5 1184 mutex_init(&root->log_mutex);
7237f183
YZ
1185 init_waitqueue_head(&root->log_writer_wait);
1186 init_waitqueue_head(&root->log_commit_wait[0]);
1187 init_waitqueue_head(&root->log_commit_wait[1]);
1188 atomic_set(&root->log_commit[0], 0);
1189 atomic_set(&root->log_commit[1], 0);
1190 atomic_set(&root->log_writers, 0);
2ecb7923 1191 atomic_set(&root->log_batch, 0);
8a35d95f 1192 atomic_set(&root->orphan_inodes, 0);
7237f183 1193 root->log_transid = 0;
257c62e1 1194 root->last_log_commit = 0;
d0c803c4 1195 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1196 fs_info->btree_inode->i_mapping);
017e5369 1197
3768f368
CM
1198 memset(&root->root_key, 0, sizeof(root->root_key));
1199 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1200 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1201 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1202 root->defrag_trans_start = fs_info->generation;
58176a96 1203 init_completion(&root->kobj_unregister);
6702ed49 1204 root->defrag_running = 0;
4d775673 1205 root->root_key.objectid = objectid;
0ee5dc67 1206 root->anon_dev = 0;
8ea05e3a 1207
5f3ab90a 1208 spin_lock_init(&root->root_item_lock);
3768f368
CM
1209}
1210
200a5c17
JM
1211static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1212 struct btrfs_fs_info *fs_info,
1213 u64 objectid,
1214 struct btrfs_root *root)
3768f368
CM
1215{
1216 int ret;
db94535d 1217 u32 blocksize;
84234f3a 1218 u64 generation;
3768f368 1219
db94535d 1220 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1221 tree_root->sectorsize, tree_root->stripesize,
1222 root, fs_info, objectid);
3768f368
CM
1223 ret = btrfs_find_last_root(tree_root, objectid,
1224 &root->root_item, &root->root_key);
4df27c4d
YZ
1225 if (ret > 0)
1226 return -ENOENT;
200a5c17
JM
1227 else if (ret < 0)
1228 return ret;
3768f368 1229
84234f3a 1230 generation = btrfs_root_generation(&root->root_item);
db94535d 1231 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1232 root->commit_root = NULL;
db94535d 1233 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1234 blocksize, generation);
b9fab919 1235 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1236 free_extent_buffer(root->node);
af31f5e5 1237 root->node = NULL;
68433b73
CM
1238 return -EIO;
1239 }
4df27c4d 1240 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1241 return 0;
1242}
1243
f84a8bd6 1244static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1245{
1246 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1247 if (root)
1248 root->fs_info = fs_info;
1249 return root;
1250}
1251
20897f5c
AJ
1252struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_fs_info *fs_info,
1254 u64 objectid)
1255{
1256 struct extent_buffer *leaf;
1257 struct btrfs_root *tree_root = fs_info->tree_root;
1258 struct btrfs_root *root;
1259 struct btrfs_key key;
1260 int ret = 0;
1261 u64 bytenr;
1262
1263 root = btrfs_alloc_root(fs_info);
1264 if (!root)
1265 return ERR_PTR(-ENOMEM);
1266
1267 __setup_root(tree_root->nodesize, tree_root->leafsize,
1268 tree_root->sectorsize, tree_root->stripesize,
1269 root, fs_info, objectid);
1270 root->root_key.objectid = objectid;
1271 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 root->root_key.offset = 0;
1273
1274 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1275 0, objectid, NULL, 0, 0, 0);
1276 if (IS_ERR(leaf)) {
1277 ret = PTR_ERR(leaf);
1278 goto fail;
1279 }
1280
1281 bytenr = leaf->start;
1282 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1283 btrfs_set_header_bytenr(leaf, leaf->start);
1284 btrfs_set_header_generation(leaf, trans->transid);
1285 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1286 btrfs_set_header_owner(leaf, objectid);
1287 root->node = leaf;
1288
1289 write_extent_buffer(leaf, fs_info->fsid,
1290 (unsigned long)btrfs_header_fsid(leaf),
1291 BTRFS_FSID_SIZE);
1292 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1293 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1294 BTRFS_UUID_SIZE);
1295 btrfs_mark_buffer_dirty(leaf);
1296
1297 root->commit_root = btrfs_root_node(root);
1298 root->track_dirty = 1;
1299
1300
1301 root->root_item.flags = 0;
1302 root->root_item.byte_limit = 0;
1303 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1304 btrfs_set_root_generation(&root->root_item, trans->transid);
1305 btrfs_set_root_level(&root->root_item, 0);
1306 btrfs_set_root_refs(&root->root_item, 1);
1307 btrfs_set_root_used(&root->root_item, leaf->len);
1308 btrfs_set_root_last_snapshot(&root->root_item, 0);
1309 btrfs_set_root_dirid(&root->root_item, 0);
1310 root->root_item.drop_level = 0;
1311
1312 key.objectid = objectid;
1313 key.type = BTRFS_ROOT_ITEM_KEY;
1314 key.offset = 0;
1315 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1316 if (ret)
1317 goto fail;
1318
1319 btrfs_tree_unlock(leaf);
1320
1321fail:
1322 if (ret)
1323 return ERR_PTR(ret);
1324
1325 return root;
1326}
1327
7237f183
YZ
1328static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1330{
1331 struct btrfs_root *root;
1332 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1333 struct extent_buffer *leaf;
e02119d5 1334
6f07e42e 1335 root = btrfs_alloc_root(fs_info);
e02119d5 1336 if (!root)
7237f183 1337 return ERR_PTR(-ENOMEM);
e02119d5
CM
1338
1339 __setup_root(tree_root->nodesize, tree_root->leafsize,
1340 tree_root->sectorsize, tree_root->stripesize,
1341 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1342
1343 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1344 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1345 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1346 /*
1347 * log trees do not get reference counted because they go away
1348 * before a real commit is actually done. They do store pointers
1349 * to file data extents, and those reference counts still get
1350 * updated (along with back refs to the log tree).
1351 */
e02119d5
CM
1352 root->ref_cows = 0;
1353
5d4f98a2 1354 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1355 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1356 0, 0, 0);
7237f183
YZ
1357 if (IS_ERR(leaf)) {
1358 kfree(root);
1359 return ERR_CAST(leaf);
1360 }
e02119d5 1361
5d4f98a2
YZ
1362 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1363 btrfs_set_header_bytenr(leaf, leaf->start);
1364 btrfs_set_header_generation(leaf, trans->transid);
1365 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1366 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1367 root->node = leaf;
e02119d5
CM
1368
1369 write_extent_buffer(root->node, root->fs_info->fsid,
1370 (unsigned long)btrfs_header_fsid(root->node),
1371 BTRFS_FSID_SIZE);
1372 btrfs_mark_buffer_dirty(root->node);
1373 btrfs_tree_unlock(root->node);
7237f183
YZ
1374 return root;
1375}
1376
1377int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1378 struct btrfs_fs_info *fs_info)
1379{
1380 struct btrfs_root *log_root;
1381
1382 log_root = alloc_log_tree(trans, fs_info);
1383 if (IS_ERR(log_root))
1384 return PTR_ERR(log_root);
1385 WARN_ON(fs_info->log_root_tree);
1386 fs_info->log_root_tree = log_root;
1387 return 0;
1388}
1389
1390int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1391 struct btrfs_root *root)
1392{
1393 struct btrfs_root *log_root;
1394 struct btrfs_inode_item *inode_item;
1395
1396 log_root = alloc_log_tree(trans, root->fs_info);
1397 if (IS_ERR(log_root))
1398 return PTR_ERR(log_root);
1399
1400 log_root->last_trans = trans->transid;
1401 log_root->root_key.offset = root->root_key.objectid;
1402
1403 inode_item = &log_root->root_item.inode;
1404 inode_item->generation = cpu_to_le64(1);
1405 inode_item->size = cpu_to_le64(3);
1406 inode_item->nlink = cpu_to_le32(1);
1407 inode_item->nbytes = cpu_to_le64(root->leafsize);
1408 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1409
5d4f98a2 1410 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1411
1412 WARN_ON(root->log_root);
1413 root->log_root = log_root;
1414 root->log_transid = 0;
257c62e1 1415 root->last_log_commit = 0;
e02119d5
CM
1416 return 0;
1417}
1418
1419struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1420 struct btrfs_key *location)
1421{
1422 struct btrfs_root *root;
1423 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1424 struct btrfs_path *path;
5f39d397 1425 struct extent_buffer *l;
84234f3a 1426 u64 generation;
db94535d 1427 u32 blocksize;
0f7d52f4 1428 int ret = 0;
8ea05e3a 1429 int slot;
0f7d52f4 1430
6f07e42e 1431 root = btrfs_alloc_root(fs_info);
0cf6c620 1432 if (!root)
0f7d52f4 1433 return ERR_PTR(-ENOMEM);
0f7d52f4 1434 if (location->offset == (u64)-1) {
db94535d 1435 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1436 location->objectid, root);
1437 if (ret) {
0f7d52f4
CM
1438 kfree(root);
1439 return ERR_PTR(ret);
1440 }
13a8a7c8 1441 goto out;
0f7d52f4
CM
1442 }
1443
db94535d 1444 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1445 tree_root->sectorsize, tree_root->stripesize,
1446 root, fs_info, location->objectid);
0f7d52f4
CM
1447
1448 path = btrfs_alloc_path();
db5b493a
TI
1449 if (!path) {
1450 kfree(root);
1451 return ERR_PTR(-ENOMEM);
1452 }
0f7d52f4 1453 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1454 if (ret == 0) {
1455 l = path->nodes[0];
8ea05e3a
AB
1456 slot = path->slots[0];
1457 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1458 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1459 }
0f7d52f4
CM
1460 btrfs_free_path(path);
1461 if (ret) {
5e540f77 1462 kfree(root);
13a8a7c8
YZ
1463 if (ret > 0)
1464 ret = -ENOENT;
0f7d52f4
CM
1465 return ERR_PTR(ret);
1466 }
13a8a7c8 1467
84234f3a 1468 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1469 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1470 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1471 blocksize, generation);
5d4f98a2 1472 root->commit_root = btrfs_root_node(root);
79787eaa 1473 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1474out:
08fe4db1 1475 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1476 root->ref_cows = 1;
08fe4db1
LZ
1477 btrfs_check_and_init_root_item(&root->root_item);
1478 }
13a8a7c8 1479
5eda7b5e
CM
1480 return root;
1481}
1482
edbd8d4e
CM
1483struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1484 struct btrfs_key *location)
5eda7b5e
CM
1485{
1486 struct btrfs_root *root;
1487 int ret;
1488
edbd8d4e
CM
1489 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1490 return fs_info->tree_root;
1491 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1492 return fs_info->extent_root;
8f18cf13
CM
1493 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1494 return fs_info->chunk_root;
1495 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1496 return fs_info->dev_root;
0403e47e
YZ
1497 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1498 return fs_info->csum_root;
bcef60f2
AJ
1499 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1500 return fs_info->quota_root ? fs_info->quota_root :
1501 ERR_PTR(-ENOENT);
4df27c4d
YZ
1502again:
1503 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1504 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1505 (unsigned long)location->objectid);
4df27c4d 1506 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1507 if (root)
1508 return root;
1509
e02119d5 1510 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1511 if (IS_ERR(root))
1512 return root;
3394e160 1513
581bb050 1514 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1515 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1516 GFP_NOFS);
35a30d7c
DS
1517 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1518 ret = -ENOMEM;
581bb050 1519 goto fail;
35a30d7c 1520 }
581bb050
LZ
1521
1522 btrfs_init_free_ino_ctl(root);
1523 mutex_init(&root->fs_commit_mutex);
1524 spin_lock_init(&root->cache_lock);
1525 init_waitqueue_head(&root->cache_wait);
1526
0ee5dc67 1527 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1528 if (ret)
1529 goto fail;
3394e160 1530
d68fc57b
YZ
1531 if (btrfs_root_refs(&root->root_item) == 0) {
1532 ret = -ENOENT;
1533 goto fail;
1534 }
1535
1536 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1537 if (ret < 0)
1538 goto fail;
1539 if (ret == 0)
1540 root->orphan_item_inserted = 1;
1541
4df27c4d
YZ
1542 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1543 if (ret)
1544 goto fail;
1545
1546 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1547 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548 (unsigned long)root->root_key.objectid,
0f7d52f4 1549 root);
d68fc57b 1550 if (ret == 0)
4df27c4d 1551 root->in_radix = 1;
d68fc57b 1552
4df27c4d
YZ
1553 spin_unlock(&fs_info->fs_roots_radix_lock);
1554 radix_tree_preload_end();
0f7d52f4 1555 if (ret) {
4df27c4d
YZ
1556 if (ret == -EEXIST) {
1557 free_fs_root(root);
1558 goto again;
1559 }
1560 goto fail;
0f7d52f4 1561 }
4df27c4d
YZ
1562
1563 ret = btrfs_find_dead_roots(fs_info->tree_root,
1564 root->root_key.objectid);
1565 WARN_ON(ret);
edbd8d4e 1566 return root;
4df27c4d
YZ
1567fail:
1568 free_fs_root(root);
1569 return ERR_PTR(ret);
edbd8d4e
CM
1570}
1571
04160088
CM
1572static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1573{
1574 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1575 int ret = 0;
04160088
CM
1576 struct btrfs_device *device;
1577 struct backing_dev_info *bdi;
b7967db7 1578
1f78160c
XG
1579 rcu_read_lock();
1580 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1581 if (!device->bdev)
1582 continue;
04160088
CM
1583 bdi = blk_get_backing_dev_info(device->bdev);
1584 if (bdi && bdi_congested(bdi, bdi_bits)) {
1585 ret = 1;
1586 break;
1587 }
1588 }
1f78160c 1589 rcu_read_unlock();
04160088
CM
1590 return ret;
1591}
1592
ad081f14
JA
1593/*
1594 * If this fails, caller must call bdi_destroy() to get rid of the
1595 * bdi again.
1596 */
04160088
CM
1597static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1598{
ad081f14
JA
1599 int err;
1600
1601 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1602 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1603 if (err)
1604 return err;
1605
4575c9cc 1606 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1607 bdi->congested_fn = btrfs_congested_fn;
1608 bdi->congested_data = info;
1609 return 0;
1610}
1611
8b712842
CM
1612/*
1613 * called by the kthread helper functions to finally call the bio end_io
1614 * functions. This is where read checksum verification actually happens
1615 */
1616static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1617{
ce9adaa5 1618 struct bio *bio;
8b712842
CM
1619 struct end_io_wq *end_io_wq;
1620 struct btrfs_fs_info *fs_info;
ce9adaa5 1621 int error;
ce9adaa5 1622
8b712842
CM
1623 end_io_wq = container_of(work, struct end_io_wq, work);
1624 bio = end_io_wq->bio;
1625 fs_info = end_io_wq->info;
ce9adaa5 1626
8b712842
CM
1627 error = end_io_wq->error;
1628 bio->bi_private = end_io_wq->private;
1629 bio->bi_end_io = end_io_wq->end_io;
1630 kfree(end_io_wq);
8b712842 1631 bio_endio(bio, error);
44b8bd7e
CM
1632}
1633
a74a4b97
CM
1634static int cleaner_kthread(void *arg)
1635{
1636 struct btrfs_root *root = arg;
1637
1638 do {
76dda93c
YZ
1639 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1640 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1641 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1642 btrfs_clean_old_snapshots(root);
1643 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1644 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1645 }
a74a4b97 1646
a0acae0e 1647 if (!try_to_freeze()) {
a74a4b97 1648 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1649 if (!kthread_should_stop())
1650 schedule();
a74a4b97
CM
1651 __set_current_state(TASK_RUNNING);
1652 }
1653 } while (!kthread_should_stop());
1654 return 0;
1655}
1656
1657static int transaction_kthread(void *arg)
1658{
1659 struct btrfs_root *root = arg;
1660 struct btrfs_trans_handle *trans;
1661 struct btrfs_transaction *cur;
8929ecfa 1662 u64 transid;
a74a4b97
CM
1663 unsigned long now;
1664 unsigned long delay;
914b2007 1665 bool cannot_commit;
a74a4b97
CM
1666
1667 do {
914b2007 1668 cannot_commit = false;
a74a4b97 1669 delay = HZ * 30;
a74a4b97
CM
1670 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1671
a4abeea4 1672 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1673 cur = root->fs_info->running_transaction;
1674 if (!cur) {
a4abeea4 1675 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1676 goto sleep;
1677 }
31153d81 1678
a74a4b97 1679 now = get_seconds();
8929ecfa
YZ
1680 if (!cur->blocked &&
1681 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1682 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1683 delay = HZ * 5;
1684 goto sleep;
1685 }
8929ecfa 1686 transid = cur->transid;
a4abeea4 1687 spin_unlock(&root->fs_info->trans_lock);
56bec294 1688
79787eaa 1689 /* If the file system is aborted, this will always fail. */
354aa0fb 1690 trans = btrfs_attach_transaction(root);
914b2007 1691 if (IS_ERR(trans)) {
354aa0fb
MX
1692 if (PTR_ERR(trans) != -ENOENT)
1693 cannot_commit = true;
79787eaa 1694 goto sleep;
914b2007 1695 }
8929ecfa 1696 if (transid == trans->transid) {
79787eaa 1697 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1698 } else {
1699 btrfs_end_transaction(trans, root);
1700 }
a74a4b97
CM
1701sleep:
1702 wake_up_process(root->fs_info->cleaner_kthread);
1703 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1704
a0acae0e 1705 if (!try_to_freeze()) {
a74a4b97 1706 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1707 if (!kthread_should_stop() &&
914b2007
JK
1708 (!btrfs_transaction_blocked(root->fs_info) ||
1709 cannot_commit))
8929ecfa 1710 schedule_timeout(delay);
a74a4b97
CM
1711 __set_current_state(TASK_RUNNING);
1712 }
1713 } while (!kthread_should_stop());
1714 return 0;
1715}
1716
af31f5e5
CM
1717/*
1718 * this will find the highest generation in the array of
1719 * root backups. The index of the highest array is returned,
1720 * or -1 if we can't find anything.
1721 *
1722 * We check to make sure the array is valid by comparing the
1723 * generation of the latest root in the array with the generation
1724 * in the super block. If they don't match we pitch it.
1725 */
1726static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1727{
1728 u64 cur;
1729 int newest_index = -1;
1730 struct btrfs_root_backup *root_backup;
1731 int i;
1732
1733 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1734 root_backup = info->super_copy->super_roots + i;
1735 cur = btrfs_backup_tree_root_gen(root_backup);
1736 if (cur == newest_gen)
1737 newest_index = i;
1738 }
1739
1740 /* check to see if we actually wrapped around */
1741 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1742 root_backup = info->super_copy->super_roots;
1743 cur = btrfs_backup_tree_root_gen(root_backup);
1744 if (cur == newest_gen)
1745 newest_index = 0;
1746 }
1747 return newest_index;
1748}
1749
1750
1751/*
1752 * find the oldest backup so we know where to store new entries
1753 * in the backup array. This will set the backup_root_index
1754 * field in the fs_info struct
1755 */
1756static void find_oldest_super_backup(struct btrfs_fs_info *info,
1757 u64 newest_gen)
1758{
1759 int newest_index = -1;
1760
1761 newest_index = find_newest_super_backup(info, newest_gen);
1762 /* if there was garbage in there, just move along */
1763 if (newest_index == -1) {
1764 info->backup_root_index = 0;
1765 } else {
1766 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1767 }
1768}
1769
1770/*
1771 * copy all the root pointers into the super backup array.
1772 * this will bump the backup pointer by one when it is
1773 * done
1774 */
1775static void backup_super_roots(struct btrfs_fs_info *info)
1776{
1777 int next_backup;
1778 struct btrfs_root_backup *root_backup;
1779 int last_backup;
1780
1781 next_backup = info->backup_root_index;
1782 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1783 BTRFS_NUM_BACKUP_ROOTS;
1784
1785 /*
1786 * just overwrite the last backup if we're at the same generation
1787 * this happens only at umount
1788 */
1789 root_backup = info->super_for_commit->super_roots + last_backup;
1790 if (btrfs_backup_tree_root_gen(root_backup) ==
1791 btrfs_header_generation(info->tree_root->node))
1792 next_backup = last_backup;
1793
1794 root_backup = info->super_for_commit->super_roots + next_backup;
1795
1796 /*
1797 * make sure all of our padding and empty slots get zero filled
1798 * regardless of which ones we use today
1799 */
1800 memset(root_backup, 0, sizeof(*root_backup));
1801
1802 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1803
1804 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1805 btrfs_set_backup_tree_root_gen(root_backup,
1806 btrfs_header_generation(info->tree_root->node));
1807
1808 btrfs_set_backup_tree_root_level(root_backup,
1809 btrfs_header_level(info->tree_root->node));
1810
1811 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1812 btrfs_set_backup_chunk_root_gen(root_backup,
1813 btrfs_header_generation(info->chunk_root->node));
1814 btrfs_set_backup_chunk_root_level(root_backup,
1815 btrfs_header_level(info->chunk_root->node));
1816
1817 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1818 btrfs_set_backup_extent_root_gen(root_backup,
1819 btrfs_header_generation(info->extent_root->node));
1820 btrfs_set_backup_extent_root_level(root_backup,
1821 btrfs_header_level(info->extent_root->node));
1822
7c7e82a7
CM
1823 /*
1824 * we might commit during log recovery, which happens before we set
1825 * the fs_root. Make sure it is valid before we fill it in.
1826 */
1827 if (info->fs_root && info->fs_root->node) {
1828 btrfs_set_backup_fs_root(root_backup,
1829 info->fs_root->node->start);
1830 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1831 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1832 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1833 btrfs_header_level(info->fs_root->node));
7c7e82a7 1834 }
af31f5e5
CM
1835
1836 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1837 btrfs_set_backup_dev_root_gen(root_backup,
1838 btrfs_header_generation(info->dev_root->node));
1839 btrfs_set_backup_dev_root_level(root_backup,
1840 btrfs_header_level(info->dev_root->node));
1841
1842 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1843 btrfs_set_backup_csum_root_gen(root_backup,
1844 btrfs_header_generation(info->csum_root->node));
1845 btrfs_set_backup_csum_root_level(root_backup,
1846 btrfs_header_level(info->csum_root->node));
1847
1848 btrfs_set_backup_total_bytes(root_backup,
1849 btrfs_super_total_bytes(info->super_copy));
1850 btrfs_set_backup_bytes_used(root_backup,
1851 btrfs_super_bytes_used(info->super_copy));
1852 btrfs_set_backup_num_devices(root_backup,
1853 btrfs_super_num_devices(info->super_copy));
1854
1855 /*
1856 * if we don't copy this out to the super_copy, it won't get remembered
1857 * for the next commit
1858 */
1859 memcpy(&info->super_copy->super_roots,
1860 &info->super_for_commit->super_roots,
1861 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1862}
1863
1864/*
1865 * this copies info out of the root backup array and back into
1866 * the in-memory super block. It is meant to help iterate through
1867 * the array, so you send it the number of backups you've already
1868 * tried and the last backup index you used.
1869 *
1870 * this returns -1 when it has tried all the backups
1871 */
1872static noinline int next_root_backup(struct btrfs_fs_info *info,
1873 struct btrfs_super_block *super,
1874 int *num_backups_tried, int *backup_index)
1875{
1876 struct btrfs_root_backup *root_backup;
1877 int newest = *backup_index;
1878
1879 if (*num_backups_tried == 0) {
1880 u64 gen = btrfs_super_generation(super);
1881
1882 newest = find_newest_super_backup(info, gen);
1883 if (newest == -1)
1884 return -1;
1885
1886 *backup_index = newest;
1887 *num_backups_tried = 1;
1888 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1889 /* we've tried all the backups, all done */
1890 return -1;
1891 } else {
1892 /* jump to the next oldest backup */
1893 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1894 BTRFS_NUM_BACKUP_ROOTS;
1895 *backup_index = newest;
1896 *num_backups_tried += 1;
1897 }
1898 root_backup = super->super_roots + newest;
1899
1900 btrfs_set_super_generation(super,
1901 btrfs_backup_tree_root_gen(root_backup));
1902 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1903 btrfs_set_super_root_level(super,
1904 btrfs_backup_tree_root_level(root_backup));
1905 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1906
1907 /*
1908 * fixme: the total bytes and num_devices need to match or we should
1909 * need a fsck
1910 */
1911 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1912 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1913 return 0;
1914}
1915
1916/* helper to cleanup tree roots */
1917static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1918{
1919 free_extent_buffer(info->tree_root->node);
1920 free_extent_buffer(info->tree_root->commit_root);
1921 free_extent_buffer(info->dev_root->node);
1922 free_extent_buffer(info->dev_root->commit_root);
1923 free_extent_buffer(info->extent_root->node);
1924 free_extent_buffer(info->extent_root->commit_root);
1925 free_extent_buffer(info->csum_root->node);
1926 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1927 if (info->quota_root) {
1928 free_extent_buffer(info->quota_root->node);
1929 free_extent_buffer(info->quota_root->commit_root);
1930 }
af31f5e5
CM
1931
1932 info->tree_root->node = NULL;
1933 info->tree_root->commit_root = NULL;
1934 info->dev_root->node = NULL;
1935 info->dev_root->commit_root = NULL;
1936 info->extent_root->node = NULL;
1937 info->extent_root->commit_root = NULL;
1938 info->csum_root->node = NULL;
1939 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1940 if (info->quota_root) {
1941 info->quota_root->node = NULL;
1942 info->quota_root->commit_root = NULL;
1943 }
af31f5e5
CM
1944
1945 if (chunk_root) {
1946 free_extent_buffer(info->chunk_root->node);
1947 free_extent_buffer(info->chunk_root->commit_root);
1948 info->chunk_root->node = NULL;
1949 info->chunk_root->commit_root = NULL;
1950 }
1951}
1952
1953
ad2b2c80
AV
1954int open_ctree(struct super_block *sb,
1955 struct btrfs_fs_devices *fs_devices,
1956 char *options)
2e635a27 1957{
db94535d
CM
1958 u32 sectorsize;
1959 u32 nodesize;
1960 u32 leafsize;
1961 u32 blocksize;
87ee04eb 1962 u32 stripesize;
84234f3a 1963 u64 generation;
f2b636e8 1964 u64 features;
3de4586c 1965 struct btrfs_key location;
a061fc8d 1966 struct buffer_head *bh;
4d34b278 1967 struct btrfs_super_block *disk_super;
815745cf 1968 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1969 struct btrfs_root *tree_root;
4d34b278
ID
1970 struct btrfs_root *extent_root;
1971 struct btrfs_root *csum_root;
1972 struct btrfs_root *chunk_root;
1973 struct btrfs_root *dev_root;
bcef60f2 1974 struct btrfs_root *quota_root;
e02119d5 1975 struct btrfs_root *log_tree_root;
eb60ceac 1976 int ret;
e58ca020 1977 int err = -EINVAL;
af31f5e5
CM
1978 int num_backups_tried = 0;
1979 int backup_index = 0;
4543df7e 1980
f84a8bd6 1981 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1982 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1983 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1984 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1985 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 1986 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 1987
f84a8bd6 1988 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 1989 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
1990 err = -ENOMEM;
1991 goto fail;
1992 }
76dda93c
YZ
1993
1994 ret = init_srcu_struct(&fs_info->subvol_srcu);
1995 if (ret) {
1996 err = ret;
1997 goto fail;
1998 }
1999
2000 ret = setup_bdi(fs_info, &fs_info->bdi);
2001 if (ret) {
2002 err = ret;
2003 goto fail_srcu;
2004 }
2005
e2d84521
MX
2006 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2007 if (ret) {
2008 err = ret;
2009 goto fail_bdi;
2010 }
2011 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2012 (1 + ilog2(nr_cpu_ids));
2013
963d678b
MX
2014 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2015 if (ret) {
2016 err = ret;
2017 goto fail_dirty_metadata_bytes;
2018 }
2019
76dda93c
YZ
2020 fs_info->btree_inode = new_inode(sb);
2021 if (!fs_info->btree_inode) {
2022 err = -ENOMEM;
963d678b 2023 goto fail_delalloc_bytes;
76dda93c
YZ
2024 }
2025
a6591715 2026 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2027
76dda93c 2028 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2029 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2030 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2031 INIT_LIST_HEAD(&fs_info->delayed_iputs);
ea8c2819 2032 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
11833d66 2033 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2034 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2035 spin_lock_init(&fs_info->trans_lock);
76dda93c 2036 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2037 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2038 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2039 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2040 spin_lock_init(&fs_info->tree_mod_seq_lock);
2041 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2042 mutex_init(&fs_info->reloc_mutex);
de98ced9 2043 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2044
58176a96 2045 init_completion(&fs_info->kobj_unregister);
0b86a832 2046 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2047 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2048 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2049 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2050 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2051 BTRFS_BLOCK_RSV_GLOBAL);
2052 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2053 BTRFS_BLOCK_RSV_DELALLOC);
2054 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2055 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2056 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2057 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2058 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2059 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2060 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2061 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2062 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2063 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2064 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2065 fs_info->sb = sb;
6f568d35 2066 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2067 fs_info->metadata_ratio = 0;
4cb5300b 2068 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2069 fs_info->trans_no_join = 0;
2bf64758 2070 fs_info->free_chunk_space = 0;
f29021b2 2071 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2072
90519d66
AJ
2073 /* readahead state */
2074 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2075 spin_lock_init(&fs_info->reada_lock);
c8b97818 2076
b34b086c
CM
2077 fs_info->thread_pool_size = min_t(unsigned long,
2078 num_online_cpus() + 2, 8);
0afbaf8c 2079
3eaa2885
CM
2080 INIT_LIST_HEAD(&fs_info->ordered_extents);
2081 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2082 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2083 GFP_NOFS);
2084 if (!fs_info->delayed_root) {
2085 err = -ENOMEM;
2086 goto fail_iput;
2087 }
2088 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2089
a2de733c
AJ
2090 mutex_init(&fs_info->scrub_lock);
2091 atomic_set(&fs_info->scrubs_running, 0);
2092 atomic_set(&fs_info->scrub_pause_req, 0);
2093 atomic_set(&fs_info->scrubs_paused, 0);
2094 atomic_set(&fs_info->scrub_cancel_req, 0);
2095 init_waitqueue_head(&fs_info->scrub_pause_wait);
2096 init_rwsem(&fs_info->scrub_super_lock);
2097 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2098#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2099 fs_info->check_integrity_print_mask = 0;
2100#endif
a2de733c 2101
c9e9f97b
ID
2102 spin_lock_init(&fs_info->balance_lock);
2103 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2104 atomic_set(&fs_info->balance_running, 0);
2105 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2106 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2107 fs_info->balance_ctl = NULL;
837d5b6e 2108 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2109
a061fc8d
CM
2110 sb->s_blocksize = 4096;
2111 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2112 sb->s_bdi = &fs_info->bdi;
a061fc8d 2113
76dda93c 2114 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2115 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2116 /*
2117 * we set the i_size on the btree inode to the max possible int.
2118 * the real end of the address space is determined by all of
2119 * the devices in the system
2120 */
2121 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2122 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2123 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2124
5d4f98a2 2125 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2126 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2127 fs_info->btree_inode->i_mapping);
0b32f4bb 2128 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2129 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2130
2131 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2132
76dda93c
YZ
2133 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2134 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2135 sizeof(struct btrfs_key));
72ac3c0d
JB
2136 set_bit(BTRFS_INODE_DUMMY,
2137 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2138 insert_inode_hash(fs_info->btree_inode);
76dda93c 2139
0f9dd46c 2140 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2141 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2142 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2143
11833d66 2144 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2145 fs_info->btree_inode->i_mapping);
11833d66 2146 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2147 fs_info->btree_inode->i_mapping);
11833d66 2148 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2149 fs_info->do_barriers = 1;
e18e4809 2150
39279cc3 2151
5a3f23d5 2152 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2153 mutex_init(&fs_info->tree_log_mutex);
925baedd 2154 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2155 mutex_init(&fs_info->transaction_kthread_mutex);
2156 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2157 mutex_init(&fs_info->volume_mutex);
276e680d 2158 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2159 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2160 init_rwsem(&fs_info->subvol_sem);
e922e087
SB
2161 fs_info->dev_replace.lock_owner = 0;
2162 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2163 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2164 mutex_init(&fs_info->dev_replace.lock_management_lock);
2165 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2166
416ac51d
AJ
2167 spin_lock_init(&fs_info->qgroup_lock);
2168 fs_info->qgroup_tree = RB_ROOT;
2169 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2170 fs_info->qgroup_seq = 1;
2171 fs_info->quota_enabled = 0;
2172 fs_info->pending_quota_state = 0;
2173
fa9c0d79
CM
2174 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2175 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2176
e6dcd2dc 2177 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2178 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2179 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2180 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2181
0b86a832 2182 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2183 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2184
3c4bb26b 2185 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2186 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2187 if (!bh) {
2188 err = -EINVAL;
16cdcec7 2189 goto fail_alloc;
20b45077 2190 }
39279cc3 2191
6c41761f
DS
2192 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2193 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2194 sizeof(*fs_info->super_for_commit));
a061fc8d 2195 brelse(bh);
5f39d397 2196
6c41761f 2197 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2198
6c41761f 2199 disk_super = fs_info->super_copy;
0f7d52f4 2200 if (!btrfs_super_root(disk_super))
16cdcec7 2201 goto fail_alloc;
0f7d52f4 2202
acce952b 2203 /* check FS state, whether FS is broken. */
87533c47
MX
2204 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2205 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2206
fcd1f065
DS
2207 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2208 if (ret) {
2209 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2210 err = ret;
2211 goto fail_alloc;
2212 }
acce952b 2213
af31f5e5
CM
2214 /*
2215 * run through our array of backup supers and setup
2216 * our ring pointer to the oldest one
2217 */
2218 generation = btrfs_super_generation(disk_super);
2219 find_oldest_super_backup(fs_info, generation);
2220
75e7cb7f
LB
2221 /*
2222 * In the long term, we'll store the compression type in the super
2223 * block, and it'll be used for per file compression control.
2224 */
2225 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2226
2b82032c
YZ
2227 ret = btrfs_parse_options(tree_root, options);
2228 if (ret) {
2229 err = ret;
16cdcec7 2230 goto fail_alloc;
2b82032c 2231 }
dfe25020 2232
f2b636e8
JB
2233 features = btrfs_super_incompat_flags(disk_super) &
2234 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2235 if (features) {
2236 printk(KERN_ERR "BTRFS: couldn't mount because of "
2237 "unsupported optional features (%Lx).\n",
21380931 2238 (unsigned long long)features);
f2b636e8 2239 err = -EINVAL;
16cdcec7 2240 goto fail_alloc;
f2b636e8
JB
2241 }
2242
727011e0
CM
2243 if (btrfs_super_leafsize(disk_super) !=
2244 btrfs_super_nodesize(disk_super)) {
2245 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2246 "blocksizes don't match. node %d leaf %d\n",
2247 btrfs_super_nodesize(disk_super),
2248 btrfs_super_leafsize(disk_super));
2249 err = -EINVAL;
2250 goto fail_alloc;
2251 }
2252 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2253 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2254 "blocksize (%d) was too large\n",
2255 btrfs_super_leafsize(disk_super));
2256 err = -EINVAL;
2257 goto fail_alloc;
2258 }
2259
5d4f98a2 2260 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2261 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2262 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2263 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2264
2265 /*
2266 * flag our filesystem as having big metadata blocks if
2267 * they are bigger than the page size
2268 */
2269 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2270 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2271 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2272 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2273 }
2274
bc3f116f
CM
2275 nodesize = btrfs_super_nodesize(disk_super);
2276 leafsize = btrfs_super_leafsize(disk_super);
2277 sectorsize = btrfs_super_sectorsize(disk_super);
2278 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2279 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2280 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2281
2282 /*
2283 * mixed block groups end up with duplicate but slightly offset
2284 * extent buffers for the same range. It leads to corruptions
2285 */
2286 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2287 (sectorsize != leafsize)) {
2288 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2289 "are not allowed for mixed block groups on %s\n",
2290 sb->s_id);
2291 goto fail_alloc;
2292 }
2293
a6fa6fae 2294 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2295
f2b636e8
JB
2296 features = btrfs_super_compat_ro_flags(disk_super) &
2297 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2298 if (!(sb->s_flags & MS_RDONLY) && features) {
2299 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2300 "unsupported option features (%Lx).\n",
21380931 2301 (unsigned long long)features);
f2b636e8 2302 err = -EINVAL;
16cdcec7 2303 goto fail_alloc;
f2b636e8 2304 }
61d92c32
CM
2305
2306 btrfs_init_workers(&fs_info->generic_worker,
2307 "genwork", 1, NULL);
2308
5443be45 2309 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2310 fs_info->thread_pool_size,
2311 &fs_info->generic_worker);
c8b97818 2312
771ed689 2313 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2314 fs_info->thread_pool_size,
2315 &fs_info->generic_worker);
771ed689 2316
8ccf6f19
MX
2317 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2318 fs_info->thread_pool_size,
2319 &fs_info->generic_worker);
2320
5443be45 2321 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2322 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2323 fs_info->thread_pool_size),
2324 &fs_info->generic_worker);
61b49440 2325
bab39bf9
JB
2326 btrfs_init_workers(&fs_info->caching_workers, "cache",
2327 2, &fs_info->generic_worker);
2328
61b49440
CM
2329 /* a higher idle thresh on the submit workers makes it much more
2330 * likely that bios will be send down in a sane order to the
2331 * devices
2332 */
2333 fs_info->submit_workers.idle_thresh = 64;
53863232 2334
771ed689 2335 fs_info->workers.idle_thresh = 16;
4a69a410 2336 fs_info->workers.ordered = 1;
61b49440 2337
771ed689
CM
2338 fs_info->delalloc_workers.idle_thresh = 2;
2339 fs_info->delalloc_workers.ordered = 1;
2340
61d92c32
CM
2341 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2342 &fs_info->generic_worker);
5443be45 2343 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2344 fs_info->thread_pool_size,
2345 &fs_info->generic_worker);
d20f7043 2346 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2347 fs_info->thread_pool_size,
2348 &fs_info->generic_worker);
cad321ad 2349 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2350 "endio-meta-write", fs_info->thread_pool_size,
2351 &fs_info->generic_worker);
5443be45 2352 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2353 fs_info->thread_pool_size,
2354 &fs_info->generic_worker);
0cb59c99
JB
2355 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2356 1, &fs_info->generic_worker);
16cdcec7
MX
2357 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2358 fs_info->thread_pool_size,
2359 &fs_info->generic_worker);
90519d66
AJ
2360 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2361 fs_info->thread_pool_size,
2362 &fs_info->generic_worker);
61b49440
CM
2363
2364 /*
2365 * endios are largely parallel and should have a very
2366 * low idle thresh
2367 */
2368 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2369 fs_info->endio_meta_workers.idle_thresh = 4;
2370
9042846b
CM
2371 fs_info->endio_write_workers.idle_thresh = 2;
2372 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2373 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2374
0dc3b84a
JB
2375 /*
2376 * btrfs_start_workers can really only fail because of ENOMEM so just
2377 * return -ENOMEM if any of these fail.
2378 */
2379 ret = btrfs_start_workers(&fs_info->workers);
2380 ret |= btrfs_start_workers(&fs_info->generic_worker);
2381 ret |= btrfs_start_workers(&fs_info->submit_workers);
2382 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2383 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2384 ret |= btrfs_start_workers(&fs_info->endio_workers);
2385 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2386 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2387 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2388 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2389 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2390 ret |= btrfs_start_workers(&fs_info->caching_workers);
2391 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2392 ret |= btrfs_start_workers(&fs_info->flush_workers);
0dc3b84a 2393 if (ret) {
fed425c7 2394 err = -ENOMEM;
0dc3b84a
JB
2395 goto fail_sb_buffer;
2396 }
4543df7e 2397
4575c9cc 2398 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2399 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2400 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2401
db94535d
CM
2402 tree_root->nodesize = nodesize;
2403 tree_root->leafsize = leafsize;
2404 tree_root->sectorsize = sectorsize;
87ee04eb 2405 tree_root->stripesize = stripesize;
a061fc8d
CM
2406
2407 sb->s_blocksize = sectorsize;
2408 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2409
39279cc3
CM
2410 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2411 sizeof(disk_super->magic))) {
d397712b 2412 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2413 goto fail_sb_buffer;
2414 }
19c00ddc 2415
8d082fb7
LB
2416 if (sectorsize != PAGE_SIZE) {
2417 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2418 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2419 goto fail_sb_buffer;
2420 }
2421
925baedd 2422 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2423 ret = btrfs_read_sys_array(tree_root);
925baedd 2424 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2425 if (ret) {
d397712b
CM
2426 printk(KERN_WARNING "btrfs: failed to read the system "
2427 "array on %s\n", sb->s_id);
5d4f98a2 2428 goto fail_sb_buffer;
84eed90f 2429 }
0b86a832
CM
2430
2431 blocksize = btrfs_level_size(tree_root,
2432 btrfs_super_chunk_root_level(disk_super));
84234f3a 2433 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2434
2435 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2436 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2437
2438 chunk_root->node = read_tree_block(chunk_root,
2439 btrfs_super_chunk_root(disk_super),
84234f3a 2440 blocksize, generation);
79787eaa 2441 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2442 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2443 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2444 sb->s_id);
af31f5e5 2445 goto fail_tree_roots;
83121942 2446 }
5d4f98a2
YZ
2447 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2448 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2449
e17cade2 2450 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2451 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2452 BTRFS_UUID_SIZE);
e17cade2 2453
0b86a832 2454 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2455 if (ret) {
d397712b
CM
2456 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2457 sb->s_id);
af31f5e5 2458 goto fail_tree_roots;
2b82032c 2459 }
0b86a832 2460
8dabb742
SB
2461 /*
2462 * keep the device that is marked to be the target device for the
2463 * dev_replace procedure
2464 */
2465 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2466
a6b0d5c8
CM
2467 if (!fs_devices->latest_bdev) {
2468 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2469 sb->s_id);
2470 goto fail_tree_roots;
2471 }
2472
af31f5e5 2473retry_root_backup:
db94535d
CM
2474 blocksize = btrfs_level_size(tree_root,
2475 btrfs_super_root_level(disk_super));
84234f3a 2476 generation = btrfs_super_generation(disk_super);
0b86a832 2477
e20d96d6 2478 tree_root->node = read_tree_block(tree_root,
db94535d 2479 btrfs_super_root(disk_super),
84234f3a 2480 blocksize, generation);
af31f5e5
CM
2481 if (!tree_root->node ||
2482 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2483 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2484 sb->s_id);
af31f5e5
CM
2485
2486 goto recovery_tree_root;
83121942 2487 }
af31f5e5 2488
5d4f98a2
YZ
2489 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2490 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2491
2492 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2493 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2494 if (ret)
af31f5e5 2495 goto recovery_tree_root;
0b86a832
CM
2496 extent_root->track_dirty = 1;
2497
2498 ret = find_and_setup_root(tree_root, fs_info,
2499 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2500 if (ret)
af31f5e5 2501 goto recovery_tree_root;
5d4f98a2 2502 dev_root->track_dirty = 1;
3768f368 2503
d20f7043
CM
2504 ret = find_and_setup_root(tree_root, fs_info,
2505 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2506 if (ret)
af31f5e5 2507 goto recovery_tree_root;
d20f7043
CM
2508 csum_root->track_dirty = 1;
2509
bcef60f2
AJ
2510 ret = find_and_setup_root(tree_root, fs_info,
2511 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2512 if (ret) {
2513 kfree(quota_root);
2514 quota_root = fs_info->quota_root = NULL;
2515 } else {
2516 quota_root->track_dirty = 1;
2517 fs_info->quota_enabled = 1;
2518 fs_info->pending_quota_state = 1;
2519 }
2520
8929ecfa
YZ
2521 fs_info->generation = generation;
2522 fs_info->last_trans_committed = generation;
8929ecfa 2523
68310a5e
ID
2524 ret = btrfs_recover_balance(fs_info);
2525 if (ret) {
2526 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2527 goto fail_block_groups;
2528 }
2529
733f4fbb
SB
2530 ret = btrfs_init_dev_stats(fs_info);
2531 if (ret) {
2532 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2533 ret);
2534 goto fail_block_groups;
2535 }
2536
8dabb742
SB
2537 ret = btrfs_init_dev_replace(fs_info);
2538 if (ret) {
2539 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2540 goto fail_block_groups;
2541 }
2542
2543 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2544
c59021f8 2545 ret = btrfs_init_space_info(fs_info);
2546 if (ret) {
2547 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2548 goto fail_block_groups;
2549 }
2550
1b1d1f66
JB
2551 ret = btrfs_read_block_groups(extent_root);
2552 if (ret) {
2553 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2554 goto fail_block_groups;
2555 }
5af3e8cc
SB
2556 fs_info->num_tolerated_disk_barrier_failures =
2557 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2558 if (fs_info->fs_devices->missing_devices >
2559 fs_info->num_tolerated_disk_barrier_failures &&
2560 !(sb->s_flags & MS_RDONLY)) {
2561 printk(KERN_WARNING
2562 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2563 goto fail_block_groups;
2564 }
9078a3e1 2565
a74a4b97
CM
2566 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2567 "btrfs-cleaner");
57506d50 2568 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2569 goto fail_block_groups;
a74a4b97
CM
2570
2571 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2572 tree_root,
2573 "btrfs-transaction");
57506d50 2574 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2575 goto fail_cleaner;
a74a4b97 2576
c289811c
CM
2577 if (!btrfs_test_opt(tree_root, SSD) &&
2578 !btrfs_test_opt(tree_root, NOSSD) &&
2579 !fs_info->fs_devices->rotating) {
2580 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2581 "mode\n");
2582 btrfs_set_opt(fs_info->mount_opt, SSD);
2583 }
2584
21adbd5c
SB
2585#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2586 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2587 ret = btrfsic_mount(tree_root, fs_devices,
2588 btrfs_test_opt(tree_root,
2589 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2590 1 : 0,
2591 fs_info->check_integrity_print_mask);
2592 if (ret)
2593 printk(KERN_WARNING "btrfs: failed to initialize"
2594 " integrity check module %s\n", sb->s_id);
2595 }
2596#endif
bcef60f2
AJ
2597 ret = btrfs_read_qgroup_config(fs_info);
2598 if (ret)
2599 goto fail_trans_kthread;
21adbd5c 2600
acce952b 2601 /* do not make disk changes in broken FS */
68ce9682 2602 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2603 u64 bytenr = btrfs_super_log_root(disk_super);
2604
7c2ca468 2605 if (fs_devices->rw_devices == 0) {
d397712b
CM
2606 printk(KERN_WARNING "Btrfs log replay required "
2607 "on RO media\n");
7c2ca468 2608 err = -EIO;
bcef60f2 2609 goto fail_qgroup;
7c2ca468 2610 }
e02119d5
CM
2611 blocksize =
2612 btrfs_level_size(tree_root,
2613 btrfs_super_log_root_level(disk_super));
d18a2c44 2614
6f07e42e 2615 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2616 if (!log_tree_root) {
2617 err = -ENOMEM;
bcef60f2 2618 goto fail_qgroup;
676e4c86 2619 }
e02119d5
CM
2620
2621 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2622 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2623
2624 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2625 blocksize,
2626 generation + 1);
79787eaa 2627 /* returns with log_tree_root freed on success */
e02119d5 2628 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2629 if (ret) {
2630 btrfs_error(tree_root->fs_info, ret,
2631 "Failed to recover log tree");
2632 free_extent_buffer(log_tree_root->node);
2633 kfree(log_tree_root);
2634 goto fail_trans_kthread;
2635 }
e556ce2c
YZ
2636
2637 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2638 ret = btrfs_commit_super(tree_root);
2639 if (ret)
2640 goto fail_trans_kthread;
e556ce2c 2641 }
e02119d5 2642 }
1a40e23b 2643
76dda93c 2644 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2645 if (ret)
2646 goto fail_trans_kthread;
76dda93c 2647
7c2ca468 2648 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2649 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2650 if (ret)
2651 goto fail_trans_kthread;
d68fc57b 2652
5d4f98a2 2653 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2654 if (ret < 0) {
2655 printk(KERN_WARNING
2656 "btrfs: failed to recover relocation\n");
2657 err = -EINVAL;
bcef60f2 2658 goto fail_qgroup;
d7ce5843 2659 }
7c2ca468 2660 }
1a40e23b 2661
3de4586c
CM
2662 location.objectid = BTRFS_FS_TREE_OBJECTID;
2663 location.type = BTRFS_ROOT_ITEM_KEY;
2664 location.offset = (u64)-1;
2665
3de4586c
CM
2666 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2667 if (!fs_info->fs_root)
bcef60f2 2668 goto fail_qgroup;
3140c9a3
DC
2669 if (IS_ERR(fs_info->fs_root)) {
2670 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2671 goto fail_qgroup;
3140c9a3 2672 }
c289811c 2673
2b6ba629
ID
2674 if (sb->s_flags & MS_RDONLY)
2675 return 0;
59641015 2676
2b6ba629
ID
2677 down_read(&fs_info->cleanup_work_sem);
2678 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2679 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2680 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2681 close_ctree(tree_root);
2682 return ret;
2683 }
2684 up_read(&fs_info->cleanup_work_sem);
59641015 2685
2b6ba629
ID
2686 ret = btrfs_resume_balance_async(fs_info);
2687 if (ret) {
2688 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2689 close_ctree(tree_root);
2690 return ret;
e3acc2a6
JB
2691 }
2692
8dabb742
SB
2693 ret = btrfs_resume_dev_replace_async(fs_info);
2694 if (ret) {
2695 pr_warn("btrfs: failed to resume dev_replace\n");
2696 close_ctree(tree_root);
2697 return ret;
2698 }
2699
ad2b2c80 2700 return 0;
39279cc3 2701
bcef60f2
AJ
2702fail_qgroup:
2703 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2704fail_trans_kthread:
2705 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2706fail_cleaner:
a74a4b97 2707 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2708
2709 /*
2710 * make sure we're done with the btree inode before we stop our
2711 * kthreads
2712 */
2713 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2714
1b1d1f66
JB
2715fail_block_groups:
2716 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2717
2718fail_tree_roots:
2719 free_root_pointers(fs_info, 1);
2b8195bb 2720 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2721
39279cc3 2722fail_sb_buffer:
61d92c32 2723 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2724 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2725 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2726 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2727 btrfs_stop_workers(&fs_info->workers);
2728 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2729 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2730 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2731 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2732 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2733 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2734 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2735 btrfs_stop_workers(&fs_info->caching_workers);
8ccf6f19 2736 btrfs_stop_workers(&fs_info->flush_workers);
16cdcec7 2737fail_alloc:
4543df7e 2738fail_iput:
586e46e2
ID
2739 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2740
4543df7e 2741 iput(fs_info->btree_inode);
963d678b
MX
2742fail_delalloc_bytes:
2743 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2744fail_dirty_metadata_bytes:
2745 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2746fail_bdi:
7e662854 2747 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2748fail_srcu:
2749 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2750fail:
586e46e2 2751 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2752 return err;
af31f5e5
CM
2753
2754recovery_tree_root:
af31f5e5
CM
2755 if (!btrfs_test_opt(tree_root, RECOVERY))
2756 goto fail_tree_roots;
2757
2758 free_root_pointers(fs_info, 0);
2759
2760 /* don't use the log in recovery mode, it won't be valid */
2761 btrfs_set_super_log_root(disk_super, 0);
2762
2763 /* we can't trust the free space cache either */
2764 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2765
2766 ret = next_root_backup(fs_info, fs_info->super_copy,
2767 &num_backups_tried, &backup_index);
2768 if (ret == -1)
2769 goto fail_block_groups;
2770 goto retry_root_backup;
eb60ceac
CM
2771}
2772
f2984462
CM
2773static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2774{
f2984462
CM
2775 if (uptodate) {
2776 set_buffer_uptodate(bh);
2777 } else {
442a4f63
SB
2778 struct btrfs_device *device = (struct btrfs_device *)
2779 bh->b_private;
2780
606686ee
JB
2781 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2782 "I/O error on %s\n",
2783 rcu_str_deref(device->name));
1259ab75
CM
2784 /* note, we dont' set_buffer_write_io_error because we have
2785 * our own ways of dealing with the IO errors
2786 */
f2984462 2787 clear_buffer_uptodate(bh);
442a4f63 2788 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2789 }
2790 unlock_buffer(bh);
2791 put_bh(bh);
2792}
2793
a512bbf8
YZ
2794struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2795{
2796 struct buffer_head *bh;
2797 struct buffer_head *latest = NULL;
2798 struct btrfs_super_block *super;
2799 int i;
2800 u64 transid = 0;
2801 u64 bytenr;
2802
2803 /* we would like to check all the supers, but that would make
2804 * a btrfs mount succeed after a mkfs from a different FS.
2805 * So, we need to add a special mount option to scan for
2806 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2807 */
2808 for (i = 0; i < 1; i++) {
2809 bytenr = btrfs_sb_offset(i);
2810 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2811 break;
2812 bh = __bread(bdev, bytenr / 4096, 4096);
2813 if (!bh)
2814 continue;
2815
2816 super = (struct btrfs_super_block *)bh->b_data;
2817 if (btrfs_super_bytenr(super) != bytenr ||
2818 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2819 sizeof(super->magic))) {
2820 brelse(bh);
2821 continue;
2822 }
2823
2824 if (!latest || btrfs_super_generation(super) > transid) {
2825 brelse(latest);
2826 latest = bh;
2827 transid = btrfs_super_generation(super);
2828 } else {
2829 brelse(bh);
2830 }
2831 }
2832 return latest;
2833}
2834
4eedeb75
HH
2835/*
2836 * this should be called twice, once with wait == 0 and
2837 * once with wait == 1. When wait == 0 is done, all the buffer heads
2838 * we write are pinned.
2839 *
2840 * They are released when wait == 1 is done.
2841 * max_mirrors must be the same for both runs, and it indicates how
2842 * many supers on this one device should be written.
2843 *
2844 * max_mirrors == 0 means to write them all.
2845 */
a512bbf8
YZ
2846static int write_dev_supers(struct btrfs_device *device,
2847 struct btrfs_super_block *sb,
2848 int do_barriers, int wait, int max_mirrors)
2849{
2850 struct buffer_head *bh;
2851 int i;
2852 int ret;
2853 int errors = 0;
2854 u32 crc;
2855 u64 bytenr;
a512bbf8
YZ
2856
2857 if (max_mirrors == 0)
2858 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2859
a512bbf8
YZ
2860 for (i = 0; i < max_mirrors; i++) {
2861 bytenr = btrfs_sb_offset(i);
2862 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2863 break;
2864
2865 if (wait) {
2866 bh = __find_get_block(device->bdev, bytenr / 4096,
2867 BTRFS_SUPER_INFO_SIZE);
2868 BUG_ON(!bh);
a512bbf8 2869 wait_on_buffer(bh);
4eedeb75
HH
2870 if (!buffer_uptodate(bh))
2871 errors++;
2872
2873 /* drop our reference */
2874 brelse(bh);
2875
2876 /* drop the reference from the wait == 0 run */
2877 brelse(bh);
2878 continue;
a512bbf8
YZ
2879 } else {
2880 btrfs_set_super_bytenr(sb, bytenr);
2881
2882 crc = ~(u32)0;
2883 crc = btrfs_csum_data(NULL, (char *)sb +
2884 BTRFS_CSUM_SIZE, crc,
2885 BTRFS_SUPER_INFO_SIZE -
2886 BTRFS_CSUM_SIZE);
2887 btrfs_csum_final(crc, sb->csum);
2888
4eedeb75
HH
2889 /*
2890 * one reference for us, and we leave it for the
2891 * caller
2892 */
a512bbf8
YZ
2893 bh = __getblk(device->bdev, bytenr / 4096,
2894 BTRFS_SUPER_INFO_SIZE);
2895 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2896
4eedeb75 2897 /* one reference for submit_bh */
a512bbf8 2898 get_bh(bh);
4eedeb75
HH
2899
2900 set_buffer_uptodate(bh);
a512bbf8
YZ
2901 lock_buffer(bh);
2902 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2903 bh->b_private = device;
a512bbf8
YZ
2904 }
2905
387125fc
CM
2906 /*
2907 * we fua the first super. The others we allow
2908 * to go down lazy.
2909 */
21adbd5c 2910 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2911 if (ret)
a512bbf8 2912 errors++;
a512bbf8
YZ
2913 }
2914 return errors < i ? 0 : -1;
2915}
2916
387125fc
CM
2917/*
2918 * endio for the write_dev_flush, this will wake anyone waiting
2919 * for the barrier when it is done
2920 */
2921static void btrfs_end_empty_barrier(struct bio *bio, int err)
2922{
2923 if (err) {
2924 if (err == -EOPNOTSUPP)
2925 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2926 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2927 }
2928 if (bio->bi_private)
2929 complete(bio->bi_private);
2930 bio_put(bio);
2931}
2932
2933/*
2934 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2935 * sent down. With wait == 1, it waits for the previous flush.
2936 *
2937 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2938 * capable
2939 */
2940static int write_dev_flush(struct btrfs_device *device, int wait)
2941{
2942 struct bio *bio;
2943 int ret = 0;
2944
2945 if (device->nobarriers)
2946 return 0;
2947
2948 if (wait) {
2949 bio = device->flush_bio;
2950 if (!bio)
2951 return 0;
2952
2953 wait_for_completion(&device->flush_wait);
2954
2955 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2956 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2957 rcu_str_deref(device->name));
387125fc 2958 device->nobarriers = 1;
5af3e8cc 2959 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 2960 ret = -EIO;
5af3e8cc
SB
2961 btrfs_dev_stat_inc_and_print(device,
2962 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2963 }
2964
2965 /* drop the reference from the wait == 0 run */
2966 bio_put(bio);
2967 device->flush_bio = NULL;
2968
2969 return ret;
2970 }
2971
2972 /*
2973 * one reference for us, and we leave it for the
2974 * caller
2975 */
9c017abc 2976 device->flush_bio = NULL;
387125fc
CM
2977 bio = bio_alloc(GFP_NOFS, 0);
2978 if (!bio)
2979 return -ENOMEM;
2980
2981 bio->bi_end_io = btrfs_end_empty_barrier;
2982 bio->bi_bdev = device->bdev;
2983 init_completion(&device->flush_wait);
2984 bio->bi_private = &device->flush_wait;
2985 device->flush_bio = bio;
2986
2987 bio_get(bio);
21adbd5c 2988 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2989
2990 return 0;
2991}
2992
2993/*
2994 * send an empty flush down to each device in parallel,
2995 * then wait for them
2996 */
2997static int barrier_all_devices(struct btrfs_fs_info *info)
2998{
2999 struct list_head *head;
3000 struct btrfs_device *dev;
5af3e8cc
SB
3001 int errors_send = 0;
3002 int errors_wait = 0;
387125fc
CM
3003 int ret;
3004
3005 /* send down all the barriers */
3006 head = &info->fs_devices->devices;
3007 list_for_each_entry_rcu(dev, head, dev_list) {
3008 if (!dev->bdev) {
5af3e8cc 3009 errors_send++;
387125fc
CM
3010 continue;
3011 }
3012 if (!dev->in_fs_metadata || !dev->writeable)
3013 continue;
3014
3015 ret = write_dev_flush(dev, 0);
3016 if (ret)
5af3e8cc 3017 errors_send++;
387125fc
CM
3018 }
3019
3020 /* wait for all the barriers */
3021 list_for_each_entry_rcu(dev, head, dev_list) {
3022 if (!dev->bdev) {
5af3e8cc 3023 errors_wait++;
387125fc
CM
3024 continue;
3025 }
3026 if (!dev->in_fs_metadata || !dev->writeable)
3027 continue;
3028
3029 ret = write_dev_flush(dev, 1);
3030 if (ret)
5af3e8cc 3031 errors_wait++;
387125fc 3032 }
5af3e8cc
SB
3033 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3034 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3035 return -EIO;
3036 return 0;
3037}
3038
5af3e8cc
SB
3039int btrfs_calc_num_tolerated_disk_barrier_failures(
3040 struct btrfs_fs_info *fs_info)
3041{
3042 struct btrfs_ioctl_space_info space;
3043 struct btrfs_space_info *sinfo;
3044 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3045 BTRFS_BLOCK_GROUP_SYSTEM,
3046 BTRFS_BLOCK_GROUP_METADATA,
3047 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3048 int num_types = 4;
3049 int i;
3050 int c;
3051 int num_tolerated_disk_barrier_failures =
3052 (int)fs_info->fs_devices->num_devices;
3053
3054 for (i = 0; i < num_types; i++) {
3055 struct btrfs_space_info *tmp;
3056
3057 sinfo = NULL;
3058 rcu_read_lock();
3059 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3060 if (tmp->flags == types[i]) {
3061 sinfo = tmp;
3062 break;
3063 }
3064 }
3065 rcu_read_unlock();
3066
3067 if (!sinfo)
3068 continue;
3069
3070 down_read(&sinfo->groups_sem);
3071 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3072 if (!list_empty(&sinfo->block_groups[c])) {
3073 u64 flags;
3074
3075 btrfs_get_block_group_info(
3076 &sinfo->block_groups[c], &space);
3077 if (space.total_bytes == 0 ||
3078 space.used_bytes == 0)
3079 continue;
3080 flags = space.flags;
3081 /*
3082 * return
3083 * 0: if dup, single or RAID0 is configured for
3084 * any of metadata, system or data, else
3085 * 1: if RAID5 is configured, or if RAID1 or
3086 * RAID10 is configured and only two mirrors
3087 * are used, else
3088 * 2: if RAID6 is configured, else
3089 * num_mirrors - 1: if RAID1 or RAID10 is
3090 * configured and more than
3091 * 2 mirrors are used.
3092 */
3093 if (num_tolerated_disk_barrier_failures > 0 &&
3094 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3095 BTRFS_BLOCK_GROUP_RAID0)) ||
3096 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3097 == 0)))
3098 num_tolerated_disk_barrier_failures = 0;
3099 else if (num_tolerated_disk_barrier_failures > 1
3100 &&
3101 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3102 BTRFS_BLOCK_GROUP_RAID10)))
3103 num_tolerated_disk_barrier_failures = 1;
3104 }
3105 }
3106 up_read(&sinfo->groups_sem);
3107 }
3108
3109 return num_tolerated_disk_barrier_failures;
3110}
3111
a512bbf8 3112int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3113{
e5e9a520 3114 struct list_head *head;
f2984462 3115 struct btrfs_device *dev;
a061fc8d 3116 struct btrfs_super_block *sb;
f2984462 3117 struct btrfs_dev_item *dev_item;
f2984462
CM
3118 int ret;
3119 int do_barriers;
a236aed1
CM
3120 int max_errors;
3121 int total_errors = 0;
a061fc8d 3122 u64 flags;
f2984462 3123
6c41761f 3124 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 3125 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3126 backup_super_roots(root->fs_info);
f2984462 3127
6c41761f 3128 sb = root->fs_info->super_for_commit;
a061fc8d 3129 dev_item = &sb->dev_item;
e5e9a520 3130
174ba509 3131 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3132 head = &root->fs_info->fs_devices->devices;
387125fc 3133
5af3e8cc
SB
3134 if (do_barriers) {
3135 ret = barrier_all_devices(root->fs_info);
3136 if (ret) {
3137 mutex_unlock(
3138 &root->fs_info->fs_devices->device_list_mutex);
3139 btrfs_error(root->fs_info, ret,
3140 "errors while submitting device barriers.");
3141 return ret;
3142 }
3143 }
387125fc 3144
1f78160c 3145 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3146 if (!dev->bdev) {
3147 total_errors++;
3148 continue;
3149 }
2b82032c 3150 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3151 continue;
3152
2b82032c 3153 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3154 btrfs_set_stack_device_type(dev_item, dev->type);
3155 btrfs_set_stack_device_id(dev_item, dev->devid);
3156 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3157 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3158 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3159 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3160 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3161 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3162 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3163
a061fc8d
CM
3164 flags = btrfs_super_flags(sb);
3165 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3166
a512bbf8 3167 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3168 if (ret)
3169 total_errors++;
f2984462 3170 }
a236aed1 3171 if (total_errors > max_errors) {
d397712b
CM
3172 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3173 total_errors);
79787eaa
JM
3174
3175 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3176 BUG();
3177 }
f2984462 3178
a512bbf8 3179 total_errors = 0;
1f78160c 3180 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3181 if (!dev->bdev)
3182 continue;
2b82032c 3183 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3184 continue;
3185
a512bbf8
YZ
3186 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3187 if (ret)
3188 total_errors++;
f2984462 3189 }
174ba509 3190 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3191 if (total_errors > max_errors) {
79787eaa
JM
3192 btrfs_error(root->fs_info, -EIO,
3193 "%d errors while writing supers", total_errors);
3194 return -EIO;
a236aed1 3195 }
f2984462
CM
3196 return 0;
3197}
3198
a512bbf8
YZ
3199int write_ctree_super(struct btrfs_trans_handle *trans,
3200 struct btrfs_root *root, int max_mirrors)
eb60ceac 3201{
e66f709b 3202 int ret;
5f39d397 3203
a512bbf8 3204 ret = write_all_supers(root, max_mirrors);
5f39d397 3205 return ret;
cfaa7295
CM
3206}
3207
143bede5 3208void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3209{
4df27c4d 3210 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3211 radix_tree_delete(&fs_info->fs_roots_radix,
3212 (unsigned long)root->root_key.objectid);
4df27c4d 3213 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3214
3215 if (btrfs_root_refs(&root->root_item) == 0)
3216 synchronize_srcu(&fs_info->subvol_srcu);
3217
581bb050
LZ
3218 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3219 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3220 free_fs_root(root);
4df27c4d
YZ
3221}
3222
3223static void free_fs_root(struct btrfs_root *root)
3224{
82d5902d 3225 iput(root->cache_inode);
4df27c4d 3226 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3227 if (root->anon_dev)
3228 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3229 free_extent_buffer(root->node);
3230 free_extent_buffer(root->commit_root);
581bb050
LZ
3231 kfree(root->free_ino_ctl);
3232 kfree(root->free_ino_pinned);
d397712b 3233 kfree(root->name);
2619ba1f 3234 kfree(root);
2619ba1f
CM
3235}
3236
143bede5 3237static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3238{
3239 int ret;
3240 struct btrfs_root *gang[8];
3241 int i;
3242
76dda93c
YZ
3243 while (!list_empty(&fs_info->dead_roots)) {
3244 gang[0] = list_entry(fs_info->dead_roots.next,
3245 struct btrfs_root, root_list);
3246 list_del(&gang[0]->root_list);
3247
3248 if (gang[0]->in_radix) {
3249 btrfs_free_fs_root(fs_info, gang[0]);
3250 } else {
3251 free_extent_buffer(gang[0]->node);
3252 free_extent_buffer(gang[0]->commit_root);
3253 kfree(gang[0]);
3254 }
3255 }
3256
d397712b 3257 while (1) {
0f7d52f4
CM
3258 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3259 (void **)gang, 0,
3260 ARRAY_SIZE(gang));
3261 if (!ret)
3262 break;
2619ba1f 3263 for (i = 0; i < ret; i++)
5eda7b5e 3264 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3265 }
0f7d52f4 3266}
b4100d64 3267
c146afad 3268int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3269{
c146afad
YZ
3270 u64 root_objectid = 0;
3271 struct btrfs_root *gang[8];
3272 int i;
3768f368 3273 int ret;
e089f05c 3274
c146afad
YZ
3275 while (1) {
3276 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3277 (void **)gang, root_objectid,
3278 ARRAY_SIZE(gang));
3279 if (!ret)
3280 break;
5d4f98a2
YZ
3281
3282 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3283 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3284 int err;
3285
c146afad 3286 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3287 err = btrfs_orphan_cleanup(gang[i]);
3288 if (err)
3289 return err;
c146afad
YZ
3290 }
3291 root_objectid++;
3292 }
3293 return 0;
3294}
a2135011 3295
c146afad
YZ
3296int btrfs_commit_super(struct btrfs_root *root)
3297{
3298 struct btrfs_trans_handle *trans;
3299 int ret;
a74a4b97 3300
c146afad 3301 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3302 btrfs_run_delayed_iputs(root);
a74a4b97 3303 btrfs_clean_old_snapshots(root);
c146afad 3304 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3305
3306 /* wait until ongoing cleanup work done */
3307 down_write(&root->fs_info->cleanup_work_sem);
3308 up_write(&root->fs_info->cleanup_work_sem);
3309
7a7eaa40 3310 trans = btrfs_join_transaction(root);
3612b495
TI
3311 if (IS_ERR(trans))
3312 return PTR_ERR(trans);
54aa1f4d 3313 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3314 if (ret)
3315 return ret;
c146afad 3316 /* run commit again to drop the original snapshot */
7a7eaa40 3317 trans = btrfs_join_transaction(root);
3612b495
TI
3318 if (IS_ERR(trans))
3319 return PTR_ERR(trans);
79787eaa
JM
3320 ret = btrfs_commit_transaction(trans, root);
3321 if (ret)
3322 return ret;
79154b1b 3323 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3324 if (ret) {
3325 btrfs_error(root->fs_info, ret,
3326 "Failed to sync btree inode to disk.");
3327 return ret;
3328 }
d6bfde87 3329
a512bbf8 3330 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3331 return ret;
3332}
3333
3334int close_ctree(struct btrfs_root *root)
3335{
3336 struct btrfs_fs_info *fs_info = root->fs_info;
3337 int ret;
3338
3339 fs_info->closing = 1;
3340 smp_mb();
3341
837d5b6e 3342 /* pause restriper - we want to resume on mount */
aa1b8cd4 3343 btrfs_pause_balance(fs_info);
837d5b6e 3344
8dabb742
SB
3345 btrfs_dev_replace_suspend_for_unmount(fs_info);
3346
aa1b8cd4 3347 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3348
3349 /* wait for any defraggers to finish */
3350 wait_event(fs_info->transaction_wait,
3351 (atomic_read(&fs_info->defrag_running) == 0));
3352
3353 /* clear out the rbtree of defraggable inodes */
26176e7c 3354 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3355
c146afad 3356 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3357 ret = btrfs_commit_super(root);
3358 if (ret)
3359 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3360 }
3361
87533c47 3362 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3363 btrfs_error_commit_super(root);
0f7d52f4 3364
300e4f8a
JB
3365 btrfs_put_block_group_cache(fs_info);
3366
e3029d9f
AV
3367 kthread_stop(fs_info->transaction_kthread);
3368 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3369
f25784b3
YZ
3370 fs_info->closing = 2;
3371 smp_mb();
3372
bcef60f2
AJ
3373 btrfs_free_qgroup_config(root->fs_info);
3374
963d678b
MX
3375 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3376 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3377 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3378 }
bcc63abb 3379
5d4f98a2
YZ
3380 free_extent_buffer(fs_info->extent_root->node);
3381 free_extent_buffer(fs_info->extent_root->commit_root);
3382 free_extent_buffer(fs_info->tree_root->node);
3383 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3384 free_extent_buffer(fs_info->chunk_root->node);
3385 free_extent_buffer(fs_info->chunk_root->commit_root);
3386 free_extent_buffer(fs_info->dev_root->node);
3387 free_extent_buffer(fs_info->dev_root->commit_root);
3388 free_extent_buffer(fs_info->csum_root->node);
3389 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3390 if (fs_info->quota_root) {
3391 free_extent_buffer(fs_info->quota_root->node);
3392 free_extent_buffer(fs_info->quota_root->commit_root);
3393 }
d20f7043 3394
e3029d9f 3395 btrfs_free_block_groups(fs_info);
d10c5f31 3396
c146afad 3397 del_fs_roots(fs_info);
d10c5f31 3398
c146afad 3399 iput(fs_info->btree_inode);
9ad6b7bc 3400
61d92c32 3401 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3402 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3403 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3404 btrfs_stop_workers(&fs_info->workers);
3405 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3406 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3407 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3408 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3409 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3410 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3411 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3412 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3413 btrfs_stop_workers(&fs_info->readahead_workers);
8ccf6f19 3414 btrfs_stop_workers(&fs_info->flush_workers);
d6bfde87 3415
21adbd5c
SB
3416#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3417 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3418 btrfsic_unmount(root, fs_info->fs_devices);
3419#endif
3420
dfe25020 3421 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3422 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3423
e2d84521 3424 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3425 percpu_counter_destroy(&fs_info->delalloc_bytes);
04160088 3426 bdi_destroy(&fs_info->bdi);
76dda93c 3427 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3428
eb60ceac
CM
3429 return 0;
3430}
3431
b9fab919
CM
3432int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3433 int atomic)
5f39d397 3434{
1259ab75 3435 int ret;
727011e0 3436 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3437
0b32f4bb 3438 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3439 if (!ret)
3440 return ret;
3441
3442 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3443 parent_transid, atomic);
3444 if (ret == -EAGAIN)
3445 return ret;
1259ab75 3446 return !ret;
5f39d397
CM
3447}
3448
3449int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3450{
0b32f4bb 3451 return set_extent_buffer_uptodate(buf);
5f39d397 3452}
6702ed49 3453
5f39d397
CM
3454void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3455{
727011e0 3456 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3457 u64 transid = btrfs_header_generation(buf);
b9473439 3458 int was_dirty;
b4ce94de 3459
b9447ef8 3460 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3461 if (transid != root->fs_info->generation)
3462 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3463 "found %llu running %llu\n",
db94535d 3464 (unsigned long long)buf->start,
d397712b
CM
3465 (unsigned long long)transid,
3466 (unsigned long long)root->fs_info->generation);
0b32f4bb 3467 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3468 if (!was_dirty)
3469 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3470 buf->len,
3471 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3472}
3473
b53d3f5d
LB
3474static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3475 int flush_delayed)
16cdcec7
MX
3476{
3477 /*
3478 * looks as though older kernels can get into trouble with
3479 * this code, they end up stuck in balance_dirty_pages forever
3480 */
e2d84521 3481 int ret;
16cdcec7
MX
3482
3483 if (current->flags & PF_MEMALLOC)
3484 return;
3485
b53d3f5d
LB
3486 if (flush_delayed)
3487 btrfs_balance_delayed_items(root);
16cdcec7 3488
e2d84521
MX
3489 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3490 BTRFS_DIRTY_METADATA_THRESH);
3491 if (ret > 0) {
16cdcec7
MX
3492 balance_dirty_pages_ratelimited_nr(
3493 root->fs_info->btree_inode->i_mapping, 1);
3494 }
3495 return;
3496}
3497
b53d3f5d 3498void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3499{
b53d3f5d
LB
3500 __btrfs_btree_balance_dirty(root, 1);
3501}
585ad2c3 3502
b53d3f5d
LB
3503void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3504{
3505 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3506}
6b80053d 3507
ca7a79ad 3508int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3509{
727011e0 3510 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3511 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3512}
0da5468f 3513
fcd1f065 3514static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3515 int read_only)
3516{
fcd1f065
DS
3517 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3518 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3519 return -EINVAL;
3520 }
3521
acce952b 3522 if (read_only)
fcd1f065 3523 return 0;
acce952b 3524
fcd1f065 3525 return 0;
acce952b 3526}
3527
68ce9682 3528void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3529{
acce952b 3530 mutex_lock(&root->fs_info->cleaner_mutex);
3531 btrfs_run_delayed_iputs(root);
3532 mutex_unlock(&root->fs_info->cleaner_mutex);
3533
3534 down_write(&root->fs_info->cleanup_work_sem);
3535 up_write(&root->fs_info->cleanup_work_sem);
3536
3537 /* cleanup FS via transaction */
3538 btrfs_cleanup_transaction(root);
acce952b 3539}
3540
569e0f35
JB
3541static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3542 struct btrfs_root *root)
acce952b 3543{
3544 struct btrfs_inode *btrfs_inode;
3545 struct list_head splice;
3546
3547 INIT_LIST_HEAD(&splice);
3548
3549 mutex_lock(&root->fs_info->ordered_operations_mutex);
3550 spin_lock(&root->fs_info->ordered_extent_lock);
3551
569e0f35 3552 list_splice_init(&t->ordered_operations, &splice);
acce952b 3553 while (!list_empty(&splice)) {
3554 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3555 ordered_operations);
3556
3557 list_del_init(&btrfs_inode->ordered_operations);
3558
3559 btrfs_invalidate_inodes(btrfs_inode->root);
3560 }
3561
3562 spin_unlock(&root->fs_info->ordered_extent_lock);
3563 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3564}
3565
143bede5 3566static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3567{
acce952b 3568 struct btrfs_ordered_extent *ordered;
acce952b 3569
3570 spin_lock(&root->fs_info->ordered_extent_lock);
779880ef
JB
3571 /*
3572 * This will just short circuit the ordered completion stuff which will
3573 * make sure the ordered extent gets properly cleaned up.
3574 */
3575 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3576 root_extent_list)
3577 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
acce952b 3578 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3579}
3580
79787eaa
JM
3581int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3582 struct btrfs_root *root)
acce952b 3583{
3584 struct rb_node *node;
3585 struct btrfs_delayed_ref_root *delayed_refs;
3586 struct btrfs_delayed_ref_node *ref;
3587 int ret = 0;
3588
3589 delayed_refs = &trans->delayed_refs;
3590
3591 spin_lock(&delayed_refs->lock);
3592 if (delayed_refs->num_entries == 0) {
cfece4db 3593 spin_unlock(&delayed_refs->lock);
acce952b 3594 printk(KERN_INFO "delayed_refs has NO entry\n");
3595 return ret;
3596 }
3597
b939d1ab 3598 while ((node = rb_first(&delayed_refs->root)) != NULL) {
eb12db69 3599 struct btrfs_delayed_ref_head *head = NULL;
acce952b 3600
eb12db69 3601 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3602 atomic_set(&ref->refs, 1);
3603 if (btrfs_delayed_ref_is_head(ref)) {
acce952b 3604
3605 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3606 if (!mutex_trylock(&head->mutex)) {
3607 atomic_inc(&ref->refs);
3608 spin_unlock(&delayed_refs->lock);
3609
3610 /* Need to wait for the delayed ref to run */
3611 mutex_lock(&head->mutex);
3612 mutex_unlock(&head->mutex);
3613 btrfs_put_delayed_ref(ref);
3614
e18fca73 3615 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3616 continue;
3617 }
3618
78a6184a 3619 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3620 delayed_refs->num_heads--;
3621 if (list_empty(&head->cluster))
3622 delayed_refs->num_heads_ready--;
3623 list_del_init(&head->cluster);
acce952b 3624 }
eb12db69 3625
b939d1ab
JB
3626 ref->in_tree = 0;
3627 rb_erase(&ref->rb_node, &delayed_refs->root);
3628 delayed_refs->num_entries--;
eb12db69
JB
3629 if (head)
3630 mutex_unlock(&head->mutex);
acce952b 3631 spin_unlock(&delayed_refs->lock);
3632 btrfs_put_delayed_ref(ref);
3633
3634 cond_resched();
3635 spin_lock(&delayed_refs->lock);
3636 }
3637
3638 spin_unlock(&delayed_refs->lock);
3639
3640 return ret;
3641}
3642
143bede5 3643static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3644{
3645 struct btrfs_pending_snapshot *snapshot;
3646 struct list_head splice;
3647
3648 INIT_LIST_HEAD(&splice);
3649
3650 list_splice_init(&t->pending_snapshots, &splice);
3651
3652 while (!list_empty(&splice)) {
3653 snapshot = list_entry(splice.next,
3654 struct btrfs_pending_snapshot,
3655 list);
3656
3657 list_del_init(&snapshot->list);
3658
3659 kfree(snapshot);
3660 }
acce952b 3661}
3662
143bede5 3663static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3664{
3665 struct btrfs_inode *btrfs_inode;
3666 struct list_head splice;
3667
3668 INIT_LIST_HEAD(&splice);
3669
acce952b 3670 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3671 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3672
3673 while (!list_empty(&splice)) {
3674 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3675 delalloc_inodes);
3676
3677 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3678 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3679 &btrfs_inode->runtime_flags);
acce952b 3680
3681 btrfs_invalidate_inodes(btrfs_inode->root);
3682 }
3683
3684 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3685}
3686
3687static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3688 struct extent_io_tree *dirty_pages,
3689 int mark)
3690{
3691 int ret;
3692 struct page *page;
3693 struct inode *btree_inode = root->fs_info->btree_inode;
3694 struct extent_buffer *eb;
3695 u64 start = 0;
3696 u64 end;
3697 u64 offset;
3698 unsigned long index;
3699
3700 while (1) {
3701 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3702 mark, NULL);
acce952b 3703 if (ret)
3704 break;
3705
3706 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3707 while (start <= end) {
3708 index = start >> PAGE_CACHE_SHIFT;
3709 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3710 page = find_get_page(btree_inode->i_mapping, index);
3711 if (!page)
3712 continue;
3713 offset = page_offset(page);
3714
3715 spin_lock(&dirty_pages->buffer_lock);
3716 eb = radix_tree_lookup(
3717 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3718 offset >> PAGE_CACHE_SHIFT);
3719 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3720 if (eb)
acce952b 3721 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3722 &eb->bflags);
acce952b 3723 if (PageWriteback(page))
3724 end_page_writeback(page);
3725
3726 lock_page(page);
3727 if (PageDirty(page)) {
3728 clear_page_dirty_for_io(page);
3729 spin_lock_irq(&page->mapping->tree_lock);
3730 radix_tree_tag_clear(&page->mapping->page_tree,
3731 page_index(page),
3732 PAGECACHE_TAG_DIRTY);
3733 spin_unlock_irq(&page->mapping->tree_lock);
3734 }
3735
acce952b 3736 unlock_page(page);
ee670f0a 3737 page_cache_release(page);
acce952b 3738 }
3739 }
3740
3741 return ret;
3742}
3743
3744static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3745 struct extent_io_tree *pinned_extents)
3746{
3747 struct extent_io_tree *unpin;
3748 u64 start;
3749 u64 end;
3750 int ret;
ed0eaa14 3751 bool loop = true;
acce952b 3752
3753 unpin = pinned_extents;
ed0eaa14 3754again:
acce952b 3755 while (1) {
3756 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3757 EXTENT_DIRTY, NULL);
acce952b 3758 if (ret)
3759 break;
3760
3761 /* opt_discard */
5378e607
LD
3762 if (btrfs_test_opt(root, DISCARD))
3763 ret = btrfs_error_discard_extent(root, start,
3764 end + 1 - start,
3765 NULL);
acce952b 3766
3767 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3768 btrfs_error_unpin_extent_range(root, start, end);
3769 cond_resched();
3770 }
3771
ed0eaa14
LB
3772 if (loop) {
3773 if (unpin == &root->fs_info->freed_extents[0])
3774 unpin = &root->fs_info->freed_extents[1];
3775 else
3776 unpin = &root->fs_info->freed_extents[0];
3777 loop = false;
3778 goto again;
3779 }
3780
acce952b 3781 return 0;
3782}
3783
49b25e05
JM
3784void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3785 struct btrfs_root *root)
3786{
3787 btrfs_destroy_delayed_refs(cur_trans, root);
3788 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3789 cur_trans->dirty_pages.dirty_bytes);
3790
3791 /* FIXME: cleanup wait for commit */
3792 cur_trans->in_commit = 1;
3793 cur_trans->blocked = 1;
d7096fc3 3794 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3795
3796 cur_trans->blocked = 0;
d7096fc3 3797 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3798
3799 cur_trans->commit_done = 1;
d7096fc3 3800 wake_up(&cur_trans->commit_wait);
49b25e05 3801
67cde344
MX
3802 btrfs_destroy_delayed_inodes(root);
3803 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3804
3805 btrfs_destroy_pending_snapshots(cur_trans);
3806
3807 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3808 EXTENT_DIRTY);
6e841e32
LB
3809 btrfs_destroy_pinned_extent(root,
3810 root->fs_info->pinned_extents);
49b25e05
JM
3811
3812 /*
3813 memset(cur_trans, 0, sizeof(*cur_trans));
3814 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3815 */
3816}
3817
3818int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3819{
3820 struct btrfs_transaction *t;
3821 LIST_HEAD(list);
3822
acce952b 3823 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3824
a4abeea4 3825 spin_lock(&root->fs_info->trans_lock);
acce952b 3826 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3827 root->fs_info->trans_no_join = 1;
3828 spin_unlock(&root->fs_info->trans_lock);
3829
acce952b 3830 while (!list_empty(&list)) {
3831 t = list_entry(list.next, struct btrfs_transaction, list);
acce952b 3832
569e0f35 3833 btrfs_destroy_ordered_operations(t, root);
acce952b 3834
3835 btrfs_destroy_ordered_extents(root);
3836
3837 btrfs_destroy_delayed_refs(t, root);
3838
3839 btrfs_block_rsv_release(root,
3840 &root->fs_info->trans_block_rsv,
3841 t->dirty_pages.dirty_bytes);
3842
3843 /* FIXME: cleanup wait for commit */
3844 t->in_commit = 1;
3845 t->blocked = 1;
66657b31 3846 smp_mb();
acce952b 3847 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3848 wake_up(&root->fs_info->transaction_blocked_wait);
3849
3850 t->blocked = 0;
66657b31 3851 smp_mb();
acce952b 3852 if (waitqueue_active(&root->fs_info->transaction_wait))
3853 wake_up(&root->fs_info->transaction_wait);
acce952b 3854
acce952b 3855 t->commit_done = 1;
66657b31 3856 smp_mb();
acce952b 3857 if (waitqueue_active(&t->commit_wait))
3858 wake_up(&t->commit_wait);
acce952b 3859
67cde344
MX
3860 btrfs_destroy_delayed_inodes(root);
3861 btrfs_assert_delayed_root_empty(root);
3862
acce952b 3863 btrfs_destroy_pending_snapshots(t);
3864
3865 btrfs_destroy_delalloc_inodes(root);
3866
a4abeea4 3867 spin_lock(&root->fs_info->trans_lock);
acce952b 3868 root->fs_info->running_transaction = NULL;
a4abeea4 3869 spin_unlock(&root->fs_info->trans_lock);
acce952b 3870
3871 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3872 EXTENT_DIRTY);
3873
3874 btrfs_destroy_pinned_extent(root,
3875 root->fs_info->pinned_extents);
3876
13c5a93e 3877 atomic_set(&t->use_count, 0);
acce952b 3878 list_del_init(&t->list);
3879 memset(t, 0, sizeof(*t));
3880 kmem_cache_free(btrfs_transaction_cachep, t);
3881 }
3882
a4abeea4
JB
3883 spin_lock(&root->fs_info->trans_lock);
3884 root->fs_info->trans_no_join = 0;
3885 spin_unlock(&root->fs_info->trans_lock);
acce952b 3886 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3887
3888 return 0;
3889}
3890
d1310b2e 3891static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 3892 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3893 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3894 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3895 /* note we're sharing with inode.c for the merge bio hook */
3896 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3897};
This page took 0.653766 seconds and 5 git commands to generate.