btrfs: __add_reloc_root error push-up
[deliverable/linux.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
44b8bd7e
CM
102};
103
85d4e461
CM
104/*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
4008c04a 114 *
85d4e461
CM
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 118 *
85d4e461
CM
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 122 *
85d4e461
CM
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
4008c04a
CM
126 */
127#ifdef CONFIG_DEBUG_LOCK_ALLOC
128# if BTRFS_MAX_LEVEL != 8
129# error
130# endif
85d4e461
CM
131
132static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137} btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
4008c04a 149};
85d4e461
CM
150
151void __init btrfs_init_lockdep(void)
152{
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163}
164
165void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167{
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179}
180
4008c04a
CM
181#endif
182
d352ac68
CM
183/*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
b2950863 187static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 188 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 189 int create)
7eccb903 190{
5f39d397
CM
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
890871be 195 read_lock(&em_tree->lock);
d1310b2e 196 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 200 read_unlock(&em_tree->lock);
5f39d397 201 goto out;
a061fc8d 202 }
890871be 203 read_unlock(&em_tree->lock);
7b13b7b1 204
172ddd60 205 em = alloc_extent_map();
5f39d397
CM
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
0afbaf8c 211 em->len = (u64)-1;
c8b97818 212 em->block_len = (u64)-1;
5f39d397 213 em->block_start = 0;
a061fc8d 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 215
890871be 216 write_lock(&em_tree->lock);
5f39d397
CM
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
0afbaf8c
CM
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
5f39d397 222 free_extent_map(em);
7b13b7b1 223 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 224 if (em) {
7b13b7b1 225 ret = 0;
0afbaf8c
CM
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
7b13b7b1 229 ret = -EIO;
0afbaf8c 230 }
5f39d397 231 } else if (ret) {
7b13b7b1
CM
232 free_extent_map(em);
233 em = NULL;
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1
CM
236
237 if (ret)
238 em = ERR_PTR(ret);
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
19c00ddc
CM
243u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244{
163e783e 245 return crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41
JB
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
2ac55d41 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
a826d6dc 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
bb82ab88
AJ
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
f188591e 372 btree_get_extent, mirror_num);
1259ab75
CM
373 if (!ret &&
374 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 375 return ret;
d397712b 376
a826d6dc
JB
377 /*
378 * This buffer's crc is fine, but its contents are corrupted, so
379 * there is no reason to read the other copies, they won't be
380 * any less wrong.
381 */
382 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383 return ret;
384
f188591e
CM
385 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386 eb->start, eb->len);
4235298e 387 if (num_copies == 1)
f188591e 388 return ret;
4235298e 389
f188591e 390 mirror_num++;
4235298e 391 if (mirror_num > num_copies)
f188591e 392 return ret;
f188591e 393 }
f188591e
CM
394 return -EIO;
395}
19c00ddc 396
d352ac68 397/*
d397712b
CM
398 * checksum a dirty tree block before IO. This has extra checks to make sure
399 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 400 */
d397712b 401
b2950863 402static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 403{
d1310b2e 404 struct extent_io_tree *tree;
35ebb934 405 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 406 u64 found_start;
19c00ddc
CM
407 unsigned long len;
408 struct extent_buffer *eb;
f188591e
CM
409 int ret;
410
d1310b2e 411 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 412
eb14ab8e
CM
413 if (page->private == EXTENT_PAGE_PRIVATE) {
414 WARN_ON(1);
19c00ddc 415 goto out;
eb14ab8e
CM
416 }
417 if (!page->private) {
418 WARN_ON(1);
19c00ddc 419 goto out;
eb14ab8e 420 }
19c00ddc 421 len = page->private >> 2;
d397712b
CM
422 WARN_ON(len == 0);
423
ba144192 424 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
425 if (eb == NULL) {
426 WARN_ON(1);
427 goto out;
428 }
ca7a79ad
CM
429 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430 btrfs_header_generation(eb));
f188591e 431 BUG_ON(ret);
784b4e29
CM
432 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
19c00ddc
CM
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
55c69072
CM
436 WARN_ON(1);
437 goto err;
438 }
439 if (eb->first_page != page) {
55c69072
CM
440 WARN_ON(1);
441 goto err;
442 }
443 if (!PageUptodate(page)) {
55c69072
CM
444 WARN_ON(1);
445 goto err;
19c00ddc 446 }
19c00ddc 447 csum_tree_block(root, eb, 0);
55c69072 448err:
19c00ddc
CM
449 free_extent_buffer(eb);
450out:
451 return 0;
452}
453
2b82032c
YZ
454static int check_tree_block_fsid(struct btrfs_root *root,
455 struct extent_buffer *eb)
456{
457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 u8 fsid[BTRFS_UUID_SIZE];
459 int ret = 1;
460
461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 BTRFS_FSID_SIZE);
463 while (fs_devices) {
464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 ret = 0;
466 break;
467 }
468 fs_devices = fs_devices->seed;
469 }
470 return ret;
471}
472
a826d6dc
JB
473#define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
478
479static noinline int check_leaf(struct btrfs_root *root,
480 struct extent_buffer *leaf)
481{
482 struct btrfs_key key;
483 struct btrfs_key leaf_key;
484 u32 nritems = btrfs_header_nritems(leaf);
485 int slot;
486
487 if (nritems == 0)
488 return 0;
489
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root)) {
493 CORRUPT("invalid item offset size pair", leaf, root, 0);
494 return -EIO;
495 }
496
497 /*
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
502 * offset is correct.
503 */
504 for (slot = 0; slot < nritems - 1; slot++) {
505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 CORRUPT("bad key order", leaf, root, slot);
511 return -EIO;
512 }
513
514 /*
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
517 * front.
518 */
519 if (btrfs_item_offset_nr(leaf, slot) !=
520 btrfs_item_end_nr(leaf, slot + 1)) {
521 CORRUPT("slot offset bad", leaf, root, slot);
522 return -EIO;
523 }
524
525 /*
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
529 */
530 if (btrfs_item_end_nr(leaf, slot) >
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("slot end outside of leaf", leaf, root, slot);
533 return -EIO;
534 }
535 }
536
537 return 0;
538}
539
b2950863 540static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
541 struct extent_state *state)
542{
543 struct extent_io_tree *tree;
544 u64 found_start;
545 int found_level;
546 unsigned long len;
547 struct extent_buffer *eb;
548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 549 int ret = 0;
ce9adaa5
CM
550
551 tree = &BTRFS_I(page->mapping->host)->io_tree;
552 if (page->private == EXTENT_PAGE_PRIVATE)
553 goto out;
554 if (!page->private)
555 goto out;
d397712b 556
ce9adaa5 557 len = page->private >> 2;
d397712b
CM
558 WARN_ON(len == 0);
559
ba144192 560 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
561 if (eb == NULL) {
562 ret = -EIO;
563 goto out;
564 }
f188591e 565
ce9adaa5 566 found_start = btrfs_header_bytenr(eb);
23a07867 567 if (found_start != start) {
7a36ddec 568 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
569 "%llu %llu\n",
570 (unsigned long long)found_start,
571 (unsigned long long)eb->start);
f188591e 572 ret = -EIO;
ce9adaa5
CM
573 goto err;
574 }
575 if (eb->first_page != page) {
d397712b
CM
576 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577 eb->first_page->index, page->index);
ce9adaa5 578 WARN_ON(1);
f188591e 579 ret = -EIO;
ce9adaa5
CM
580 goto err;
581 }
2b82032c 582 if (check_tree_block_fsid(root, eb)) {
7a36ddec 583 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 584 (unsigned long long)eb->start);
1259ab75
CM
585 ret = -EIO;
586 goto err;
587 }
ce9adaa5
CM
588 found_level = btrfs_header_level(eb);
589
85d4e461
CM
590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591 eb, found_level);
4008c04a 592
ce9adaa5 593 ret = csum_tree_block(root, eb, 1);
a826d6dc 594 if (ret) {
f188591e 595 ret = -EIO;
a826d6dc
JB
596 goto err;
597 }
598
599 /*
600 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 * that we don't try and read the other copies of this block, just
602 * return -EIO.
603 */
604 if (found_level == 0 && check_leaf(root, eb)) {
605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 ret = -EIO;
607 }
ce9adaa5
CM
608
609 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610 end = eb->start + end - 1;
ce9adaa5 611err:
4bb31e92
AJ
612 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614 btree_readahead_hook(root, eb, eb->start, ret);
615 }
616
ce9adaa5
CM
617 free_extent_buffer(eb);
618out:
f188591e 619 return ret;
ce9adaa5
CM
620}
621
4bb31e92
AJ
622static int btree_io_failed_hook(struct bio *failed_bio,
623 struct page *page, u64 start, u64 end,
32240a91 624 int mirror_num, struct extent_state *state)
4bb31e92
AJ
625{
626 struct extent_io_tree *tree;
627 unsigned long len;
628 struct extent_buffer *eb;
629 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630
631 tree = &BTRFS_I(page->mapping->host)->io_tree;
632 if (page->private == EXTENT_PAGE_PRIVATE)
633 goto out;
634 if (!page->private)
635 goto out;
636
637 len = page->private >> 2;
638 WARN_ON(len == 0);
639
640 eb = alloc_extent_buffer(tree, start, len, page);
641 if (eb == NULL)
642 goto out;
643
644 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646 btree_readahead_hook(root, eb, eb->start, -EIO);
647 }
c674e04e 648 free_extent_buffer(eb);
4bb31e92
AJ
649
650out:
651 return -EIO; /* we fixed nothing */
652}
653
ce9adaa5 654static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
655{
656 struct end_io_wq *end_io_wq = bio->bi_private;
657 struct btrfs_fs_info *fs_info;
ce9adaa5 658
ce9adaa5 659 fs_info = end_io_wq->info;
ce9adaa5 660 end_io_wq->error = err;
8b712842
CM
661 end_io_wq->work.func = end_workqueue_fn;
662 end_io_wq->work.flags = 0;
d20f7043 663
7b6d91da 664 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 665 if (end_io_wq->metadata == 1)
cad321ad
CM
666 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667 &end_io_wq->work);
0cb59c99
JB
668 else if (end_io_wq->metadata == 2)
669 btrfs_queue_worker(&fs_info->endio_freespace_worker,
670 &end_io_wq->work);
cad321ad
CM
671 else
672 btrfs_queue_worker(&fs_info->endio_write_workers,
673 &end_io_wq->work);
d20f7043
CM
674 } else {
675 if (end_io_wq->metadata)
676 btrfs_queue_worker(&fs_info->endio_meta_workers,
677 &end_io_wq->work);
678 else
679 btrfs_queue_worker(&fs_info->endio_workers,
680 &end_io_wq->work);
681 }
ce9adaa5
CM
682}
683
0cb59c99
JB
684/*
685 * For the metadata arg you want
686 *
687 * 0 - if data
688 * 1 - if normal metadta
689 * 2 - if writing to the free space cache area
690 */
22c59948
CM
691int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692 int metadata)
0b86a832 693{
ce9adaa5 694 struct end_io_wq *end_io_wq;
ce9adaa5
CM
695 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696 if (!end_io_wq)
697 return -ENOMEM;
698
699 end_io_wq->private = bio->bi_private;
700 end_io_wq->end_io = bio->bi_end_io;
22c59948 701 end_io_wq->info = info;
ce9adaa5
CM
702 end_io_wq->error = 0;
703 end_io_wq->bio = bio;
22c59948 704 end_io_wq->metadata = metadata;
ce9adaa5
CM
705
706 bio->bi_private = end_io_wq;
707 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
708 return 0;
709}
710
b64a2851 711unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 712{
4854ddd0
CM
713 unsigned long limit = min_t(unsigned long,
714 info->workers.max_workers,
715 info->fs_devices->open_devices);
716 return 256 * limit;
717}
0986fe9e 718
4a69a410
CM
719static void run_one_async_start(struct btrfs_work *work)
720{
4a69a410
CM
721 struct async_submit_bio *async;
722
723 async = container_of(work, struct async_submit_bio, work);
4a69a410 724 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
725 async->mirror_num, async->bio_flags,
726 async->bio_offset);
4a69a410
CM
727}
728
729static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
730{
731 struct btrfs_fs_info *fs_info;
732 struct async_submit_bio *async;
4854ddd0 733 int limit;
8b712842
CM
734
735 async = container_of(work, struct async_submit_bio, work);
736 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 737
b64a2851 738 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
739 limit = limit * 2 / 3;
740
8b712842 741 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 742
b64a2851
CM
743 if (atomic_read(&fs_info->nr_async_submits) < limit &&
744 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
745 wake_up(&fs_info->async_submit_wait);
746
4a69a410 747 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
748 async->mirror_num, async->bio_flags,
749 async->bio_offset);
4a69a410
CM
750}
751
752static void run_one_async_free(struct btrfs_work *work)
753{
754 struct async_submit_bio *async;
755
756 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
757 kfree(async);
758}
759
44b8bd7e
CM
760int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761 int rw, struct bio *bio, int mirror_num,
c8b97818 762 unsigned long bio_flags,
eaf25d93 763 u64 bio_offset,
4a69a410
CM
764 extent_submit_bio_hook_t *submit_bio_start,
765 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
766{
767 struct async_submit_bio *async;
768
769 async = kmalloc(sizeof(*async), GFP_NOFS);
770 if (!async)
771 return -ENOMEM;
772
773 async->inode = inode;
774 async->rw = rw;
775 async->bio = bio;
776 async->mirror_num = mirror_num;
4a69a410
CM
777 async->submit_bio_start = submit_bio_start;
778 async->submit_bio_done = submit_bio_done;
779
780 async->work.func = run_one_async_start;
781 async->work.ordered_func = run_one_async_done;
782 async->work.ordered_free = run_one_async_free;
783
8b712842 784 async->work.flags = 0;
c8b97818 785 async->bio_flags = bio_flags;
eaf25d93 786 async->bio_offset = bio_offset;
8c8bee1d 787
cb03c743 788 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 789
7b6d91da 790 if (rw & REQ_SYNC)
d313d7a3
CM
791 btrfs_set_work_high_prio(&async->work);
792
8b712842 793 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 794
d397712b 795 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
796 atomic_read(&fs_info->nr_async_submits)) {
797 wait_event(fs_info->async_submit_wait,
798 (atomic_read(&fs_info->nr_async_submits) == 0));
799 }
800
44b8bd7e
CM
801 return 0;
802}
803
ce3ed71a
CM
804static int btree_csum_one_bio(struct bio *bio)
805{
806 struct bio_vec *bvec = bio->bi_io_vec;
807 int bio_index = 0;
808 struct btrfs_root *root;
809
810 WARN_ON(bio->bi_vcnt <= 0);
d397712b 811 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
812 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813 csum_dirty_buffer(root, bvec->bv_page);
814 bio_index++;
815 bvec++;
816 }
817 return 0;
818}
819
4a69a410
CM
820static int __btree_submit_bio_start(struct inode *inode, int rw,
821 struct bio *bio, int mirror_num,
eaf25d93
CM
822 unsigned long bio_flags,
823 u64 bio_offset)
22c59948 824{
8b712842
CM
825 /*
826 * when we're called for a write, we're already in the async
5443be45 827 * submission context. Just jump into btrfs_map_bio
8b712842 828 */
4a69a410
CM
829 btree_csum_one_bio(bio);
830 return 0;
831}
22c59948 832
4a69a410 833static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
834 int mirror_num, unsigned long bio_flags,
835 u64 bio_offset)
4a69a410 836{
8b712842 837 /*
4a69a410
CM
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
8b712842 840 */
8b712842 841 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
842}
843
44b8bd7e 844static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
845 int mirror_num, unsigned long bio_flags,
846 u64 bio_offset)
44b8bd7e 847{
cad321ad
CM
848 int ret;
849
355808c2
JM
850 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, bio, 1);
851 if (ret)
852 return ret;
cad321ad 853
7b6d91da 854 if (!(rw & REQ_WRITE)) {
4a69a410
CM
855 /*
856 * called for a read, do the setup so that checksum validation
857 * can happen in the async kernel threads
858 */
4a69a410 859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 860 mirror_num, 0);
44b8bd7e 861 }
d313d7a3 862
cad321ad
CM
863 /*
864 * kthread helpers are used to submit writes so that checksumming
865 * can happen in parallel across all CPUs
866 */
44b8bd7e 867 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 868 inode, rw, bio, mirror_num, 0,
eaf25d93 869 bio_offset,
4a69a410
CM
870 __btree_submit_bio_start,
871 __btree_submit_bio_done);
44b8bd7e
CM
872}
873
3dd1462e 874#ifdef CONFIG_MIGRATION
784b4e29 875static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
876 struct page *newpage, struct page *page,
877 enum migrate_mode mode)
784b4e29
CM
878{
879 /*
880 * we can't safely write a btree page from here,
881 * we haven't done the locking hook
882 */
883 if (PageDirty(page))
884 return -EAGAIN;
885 /*
886 * Buffers may be managed in a filesystem specific way.
887 * We must have no buffers or drop them.
888 */
889 if (page_has_private(page) &&
890 !try_to_release_page(page, GFP_KERNEL))
891 return -EAGAIN;
a6bc32b8 892 return migrate_page(mapping, newpage, page, mode);
784b4e29 893}
3dd1462e 894#endif
784b4e29 895
0da5468f
CM
896static int btree_writepage(struct page *page, struct writeback_control *wbc)
897{
d1310b2e 898 struct extent_io_tree *tree;
b9473439
CM
899 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
900 struct extent_buffer *eb;
901 int was_dirty;
902
d1310b2e 903 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
904 if (!(current->flags & PF_MEMALLOC)) {
905 return extent_write_full_page(tree, page,
906 btree_get_extent, wbc);
907 }
5443be45 908
b9473439 909 redirty_page_for_writepage(wbc, page);
784b4e29 910 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
911 WARN_ON(!eb);
912
913 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
914 if (!was_dirty) {
915 spin_lock(&root->fs_info->delalloc_lock);
916 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
917 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 918 }
b9473439
CM
919 free_extent_buffer(eb);
920
921 unlock_page(page);
922 return 0;
5f39d397 923}
0da5468f
CM
924
925static int btree_writepages(struct address_space *mapping,
926 struct writeback_control *wbc)
927{
d1310b2e
CM
928 struct extent_io_tree *tree;
929 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 930 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 931 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 932 u64 num_dirty;
24ab9cd8 933 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
934
935 if (wbc->for_kupdate)
936 return 0;
937
b9473439
CM
938 /* this is a bit racy, but that's ok */
939 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 940 if (num_dirty < thresh)
793955bc 941 return 0;
793955bc 942 }
0da5468f
CM
943 return extent_writepages(tree, mapping, btree_get_extent, wbc);
944}
945
b2950863 946static int btree_readpage(struct file *file, struct page *page)
5f39d397 947{
d1310b2e
CM
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 950 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 951}
22b0ebda 952
70dec807 953static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 954{
d1310b2e
CM
955 struct extent_io_tree *tree;
956 struct extent_map_tree *map;
5f39d397 957 int ret;
d98237b3 958
98509cfc 959 if (PageWriteback(page) || PageDirty(page))
d397712b 960 return 0;
98509cfc 961
d1310b2e
CM
962 tree = &BTRFS_I(page->mapping->host)->io_tree;
963 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 964
0c4e538b
DS
965 /*
966 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
967 * slab allocation from alloc_extent_state down the callchain where
968 * it'd hit a BUG_ON as those flags are not allowed.
969 */
970 gfp_flags &= ~GFP_SLAB_BUG_MASK;
971
7b13b7b1 972 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 973 if (!ret)
6af118ce 974 return 0;
6af118ce
CM
975
976 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
977 if (ret == 1) {
978 ClearPagePrivate(page);
979 set_page_private(page, 0);
980 page_cache_release(page);
981 }
6af118ce 982
d98237b3
CM
983 return ret;
984}
985
5f39d397 986static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 987{
d1310b2e
CM
988 struct extent_io_tree *tree;
989 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
990 extent_invalidatepage(tree, page, offset);
991 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 992 if (PagePrivate(page)) {
d397712b
CM
993 printk(KERN_WARNING "btrfs warning page private not zero "
994 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
995 ClearPagePrivate(page);
996 set_page_private(page, 0);
997 page_cache_release(page);
998 }
d98237b3
CM
999}
1000
7f09410b 1001static const struct address_space_operations btree_aops = {
d98237b3
CM
1002 .readpage = btree_readpage,
1003 .writepage = btree_writepage,
0da5468f 1004 .writepages = btree_writepages,
5f39d397
CM
1005 .releasepage = btree_releasepage,
1006 .invalidatepage = btree_invalidatepage,
5a92bc88 1007#ifdef CONFIG_MIGRATION
784b4e29 1008 .migratepage = btree_migratepage,
5a92bc88 1009#endif
d98237b3
CM
1010};
1011
ca7a79ad
CM
1012int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1013 u64 parent_transid)
090d1875 1014{
5f39d397
CM
1015 struct extent_buffer *buf = NULL;
1016 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1017 int ret = 0;
090d1875 1018
db94535d 1019 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1020 if (!buf)
090d1875 1021 return 0;
d1310b2e 1022 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1023 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1024 free_extent_buffer(buf);
de428b63 1025 return ret;
090d1875
CM
1026}
1027
ab0fff03
AJ
1028int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029 int mirror_num, struct extent_buffer **eb)
1030{
1031 struct extent_buffer *buf = NULL;
1032 struct inode *btree_inode = root->fs_info->btree_inode;
1033 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1034 int ret;
1035
1036 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1037 if (!buf)
1038 return 0;
1039
1040 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1041
1042 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1043 btree_get_extent, mirror_num);
1044 if (ret) {
1045 free_extent_buffer(buf);
1046 return ret;
1047 }
1048
1049 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1050 free_extent_buffer(buf);
1051 return -EIO;
1052 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1053 *eb = buf;
1054 } else {
1055 free_extent_buffer(buf);
1056 }
1057 return 0;
1058}
1059
0999df54
CM
1060struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1061 u64 bytenr, u32 blocksize)
1062{
1063 struct inode *btree_inode = root->fs_info->btree_inode;
1064 struct extent_buffer *eb;
1065 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1066 bytenr, blocksize);
0999df54
CM
1067 return eb;
1068}
1069
1070struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1071 u64 bytenr, u32 blocksize)
1072{
1073 struct inode *btree_inode = root->fs_info->btree_inode;
1074 struct extent_buffer *eb;
1075
1076 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 1077 bytenr, blocksize, NULL);
0999df54
CM
1078 return eb;
1079}
1080
1081
e02119d5
CM
1082int btrfs_write_tree_block(struct extent_buffer *buf)
1083{
8aa38c31
CH
1084 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1085 buf->start + buf->len - 1);
e02119d5
CM
1086}
1087
1088int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1089{
8aa38c31
CH
1090 return filemap_fdatawait_range(buf->first_page->mapping,
1091 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1092}
1093
0999df54 1094struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1095 u32 blocksize, u64 parent_transid)
0999df54
CM
1096{
1097 struct extent_buffer *buf = NULL;
0999df54
CM
1098 int ret;
1099
0999df54
CM
1100 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1101 if (!buf)
1102 return NULL;
0999df54 1103
ca7a79ad 1104 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1105
d397712b 1106 if (ret == 0)
b4ce94de 1107 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1108 return buf;
ce9adaa5 1109
eb60ceac
CM
1110}
1111
d5c13f92
JM
1112void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1113 struct extent_buffer *buf)
ed2ff2cb 1114{
5f39d397 1115 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1116 if (btrfs_header_generation(buf) ==
925baedd 1117 root->fs_info->running_transaction->transid) {
b9447ef8 1118 btrfs_assert_tree_locked(buf);
b4ce94de 1119
b9473439
CM
1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1121 spin_lock(&root->fs_info->delalloc_lock);
1122 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1123 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1124 else {
1125 spin_unlock(&root->fs_info->delalloc_lock);
1126 btrfs_panic(root->fs_info, -EOVERFLOW,
1127 "Can't clear %lu bytes from "
1128 " dirty_mdatadata_bytes (%lu)",
1129 buf->len,
1130 root->fs_info->dirty_metadata_bytes);
1131 }
b9473439
CM
1132 spin_unlock(&root->fs_info->delalloc_lock);
1133 }
b4ce94de 1134
b9473439
CM
1135 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1136 btrfs_set_lock_blocking(buf);
d1310b2e 1137 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1138 buf);
925baedd 1139 }
5f39d397
CM
1140}
1141
db94535d 1142static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1143 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1144 struct btrfs_fs_info *fs_info,
e20d96d6 1145 u64 objectid)
d97e63b6 1146{
cfaa7295 1147 root->node = NULL;
a28ec197 1148 root->commit_root = NULL;
db94535d
CM
1149 root->sectorsize = sectorsize;
1150 root->nodesize = nodesize;
1151 root->leafsize = leafsize;
87ee04eb 1152 root->stripesize = stripesize;
123abc88 1153 root->ref_cows = 0;
0b86a832 1154 root->track_dirty = 0;
c71bf099 1155 root->in_radix = 0;
d68fc57b
YZ
1156 root->orphan_item_inserted = 0;
1157 root->orphan_cleanup_state = 0;
0b86a832 1158
0f7d52f4
CM
1159 root->objectid = objectid;
1160 root->last_trans = 0;
13a8a7c8 1161 root->highest_objectid = 0;
58176a96 1162 root->name = NULL;
6bef4d31 1163 root->inode_tree = RB_ROOT;
16cdcec7 1164 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1165 root->block_rsv = NULL;
d68fc57b 1166 root->orphan_block_rsv = NULL;
0b86a832
CM
1167
1168 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1169 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1170 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1171 spin_lock_init(&root->orphan_lock);
5d4f98a2 1172 spin_lock_init(&root->inode_lock);
f0486c68 1173 spin_lock_init(&root->accounting_lock);
a2135011 1174 mutex_init(&root->objectid_mutex);
e02119d5 1175 mutex_init(&root->log_mutex);
7237f183
YZ
1176 init_waitqueue_head(&root->log_writer_wait);
1177 init_waitqueue_head(&root->log_commit_wait[0]);
1178 init_waitqueue_head(&root->log_commit_wait[1]);
1179 atomic_set(&root->log_commit[0], 0);
1180 atomic_set(&root->log_commit[1], 0);
1181 atomic_set(&root->log_writers, 0);
1182 root->log_batch = 0;
1183 root->log_transid = 0;
257c62e1 1184 root->last_log_commit = 0;
d0c803c4 1185 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1186 fs_info->btree_inode->i_mapping);
017e5369 1187
3768f368
CM
1188 memset(&root->root_key, 0, sizeof(root->root_key));
1189 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1190 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1191 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1192 root->defrag_trans_start = fs_info->generation;
58176a96 1193 init_completion(&root->kobj_unregister);
6702ed49 1194 root->defrag_running = 0;
4d775673 1195 root->root_key.objectid = objectid;
0ee5dc67 1196 root->anon_dev = 0;
3768f368
CM
1197 return 0;
1198}
1199
200a5c17
JM
1200static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1201 struct btrfs_fs_info *fs_info,
1202 u64 objectid,
1203 struct btrfs_root *root)
3768f368
CM
1204{
1205 int ret;
db94535d 1206 u32 blocksize;
84234f3a 1207 u64 generation;
3768f368 1208
db94535d 1209 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1210 tree_root->sectorsize, tree_root->stripesize,
1211 root, fs_info, objectid);
3768f368
CM
1212 ret = btrfs_find_last_root(tree_root, objectid,
1213 &root->root_item, &root->root_key);
4df27c4d
YZ
1214 if (ret > 0)
1215 return -ENOENT;
200a5c17
JM
1216 else if (ret < 0)
1217 return ret;
3768f368 1218
84234f3a 1219 generation = btrfs_root_generation(&root->root_item);
db94535d 1220 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1221 root->commit_root = NULL;
db94535d 1222 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1223 blocksize, generation);
68433b73
CM
1224 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1225 free_extent_buffer(root->node);
af31f5e5 1226 root->node = NULL;
68433b73
CM
1227 return -EIO;
1228 }
4df27c4d 1229 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1230 return 0;
1231}
1232
f84a8bd6 1233static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1234{
1235 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1236 if (root)
1237 root->fs_info = fs_info;
1238 return root;
1239}
1240
7237f183
YZ
1241static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1242 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1243{
1244 struct btrfs_root *root;
1245 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1246 struct extent_buffer *leaf;
e02119d5 1247
6f07e42e 1248 root = btrfs_alloc_root(fs_info);
e02119d5 1249 if (!root)
7237f183 1250 return ERR_PTR(-ENOMEM);
e02119d5
CM
1251
1252 __setup_root(tree_root->nodesize, tree_root->leafsize,
1253 tree_root->sectorsize, tree_root->stripesize,
1254 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1255
1256 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1257 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1258 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1259 /*
1260 * log trees do not get reference counted because they go away
1261 * before a real commit is actually done. They do store pointers
1262 * to file data extents, and those reference counts still get
1263 * updated (along with back refs to the log tree).
1264 */
e02119d5
CM
1265 root->ref_cows = 0;
1266
5d4f98a2 1267 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1268 BTRFS_TREE_LOG_OBJECTID, NULL,
1269 0, 0, 0, 0);
7237f183
YZ
1270 if (IS_ERR(leaf)) {
1271 kfree(root);
1272 return ERR_CAST(leaf);
1273 }
e02119d5 1274
5d4f98a2
YZ
1275 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1276 btrfs_set_header_bytenr(leaf, leaf->start);
1277 btrfs_set_header_generation(leaf, trans->transid);
1278 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1279 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1280 root->node = leaf;
e02119d5
CM
1281
1282 write_extent_buffer(root->node, root->fs_info->fsid,
1283 (unsigned long)btrfs_header_fsid(root->node),
1284 BTRFS_FSID_SIZE);
1285 btrfs_mark_buffer_dirty(root->node);
1286 btrfs_tree_unlock(root->node);
7237f183
YZ
1287 return root;
1288}
1289
1290int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1291 struct btrfs_fs_info *fs_info)
1292{
1293 struct btrfs_root *log_root;
1294
1295 log_root = alloc_log_tree(trans, fs_info);
1296 if (IS_ERR(log_root))
1297 return PTR_ERR(log_root);
1298 WARN_ON(fs_info->log_root_tree);
1299 fs_info->log_root_tree = log_root;
1300 return 0;
1301}
1302
1303int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1304 struct btrfs_root *root)
1305{
1306 struct btrfs_root *log_root;
1307 struct btrfs_inode_item *inode_item;
1308
1309 log_root = alloc_log_tree(trans, root->fs_info);
1310 if (IS_ERR(log_root))
1311 return PTR_ERR(log_root);
1312
1313 log_root->last_trans = trans->transid;
1314 log_root->root_key.offset = root->root_key.objectid;
1315
1316 inode_item = &log_root->root_item.inode;
1317 inode_item->generation = cpu_to_le64(1);
1318 inode_item->size = cpu_to_le64(3);
1319 inode_item->nlink = cpu_to_le32(1);
1320 inode_item->nbytes = cpu_to_le64(root->leafsize);
1321 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1322
5d4f98a2 1323 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1324
1325 WARN_ON(root->log_root);
1326 root->log_root = log_root;
1327 root->log_transid = 0;
257c62e1 1328 root->last_log_commit = 0;
e02119d5
CM
1329 return 0;
1330}
1331
1332struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1333 struct btrfs_key *location)
1334{
1335 struct btrfs_root *root;
1336 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1337 struct btrfs_path *path;
5f39d397 1338 struct extent_buffer *l;
84234f3a 1339 u64 generation;
db94535d 1340 u32 blocksize;
0f7d52f4
CM
1341 int ret = 0;
1342
6f07e42e 1343 root = btrfs_alloc_root(fs_info);
0cf6c620 1344 if (!root)
0f7d52f4 1345 return ERR_PTR(-ENOMEM);
0f7d52f4 1346 if (location->offset == (u64)-1) {
db94535d 1347 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1348 location->objectid, root);
1349 if (ret) {
0f7d52f4
CM
1350 kfree(root);
1351 return ERR_PTR(ret);
1352 }
13a8a7c8 1353 goto out;
0f7d52f4
CM
1354 }
1355
db94535d 1356 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1357 tree_root->sectorsize, tree_root->stripesize,
1358 root, fs_info, location->objectid);
0f7d52f4
CM
1359
1360 path = btrfs_alloc_path();
db5b493a
TI
1361 if (!path) {
1362 kfree(root);
1363 return ERR_PTR(-ENOMEM);
1364 }
0f7d52f4 1365 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1366 if (ret == 0) {
1367 l = path->nodes[0];
1368 read_extent_buffer(l, &root->root_item,
1369 btrfs_item_ptr_offset(l, path->slots[0]),
1370 sizeof(root->root_item));
1371 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1372 }
0f7d52f4
CM
1373 btrfs_free_path(path);
1374 if (ret) {
5e540f77 1375 kfree(root);
13a8a7c8
YZ
1376 if (ret > 0)
1377 ret = -ENOENT;
0f7d52f4
CM
1378 return ERR_PTR(ret);
1379 }
13a8a7c8 1380
84234f3a 1381 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1382 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1383 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1384 blocksize, generation);
5d4f98a2 1385 root->commit_root = btrfs_root_node(root);
0f7d52f4 1386 BUG_ON(!root->node);
13a8a7c8 1387out:
08fe4db1 1388 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1389 root->ref_cows = 1;
08fe4db1
LZ
1390 btrfs_check_and_init_root_item(&root->root_item);
1391 }
13a8a7c8 1392
5eda7b5e
CM
1393 return root;
1394}
1395
edbd8d4e
CM
1396struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1397 struct btrfs_key *location)
5eda7b5e
CM
1398{
1399 struct btrfs_root *root;
1400 int ret;
1401
edbd8d4e
CM
1402 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1403 return fs_info->tree_root;
1404 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1405 return fs_info->extent_root;
8f18cf13
CM
1406 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1407 return fs_info->chunk_root;
1408 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1409 return fs_info->dev_root;
0403e47e
YZ
1410 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1411 return fs_info->csum_root;
4df27c4d
YZ
1412again:
1413 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1414 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1415 (unsigned long)location->objectid);
4df27c4d 1416 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1417 if (root)
1418 return root;
1419
e02119d5 1420 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1421 if (IS_ERR(root))
1422 return root;
3394e160 1423
581bb050 1424 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1425 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1426 GFP_NOFS);
35a30d7c
DS
1427 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1428 ret = -ENOMEM;
581bb050 1429 goto fail;
35a30d7c 1430 }
581bb050
LZ
1431
1432 btrfs_init_free_ino_ctl(root);
1433 mutex_init(&root->fs_commit_mutex);
1434 spin_lock_init(&root->cache_lock);
1435 init_waitqueue_head(&root->cache_wait);
1436
0ee5dc67 1437 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1438 if (ret)
1439 goto fail;
3394e160 1440
d68fc57b
YZ
1441 if (btrfs_root_refs(&root->root_item) == 0) {
1442 ret = -ENOENT;
1443 goto fail;
1444 }
1445
1446 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1447 if (ret < 0)
1448 goto fail;
1449 if (ret == 0)
1450 root->orphan_item_inserted = 1;
1451
4df27c4d
YZ
1452 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1453 if (ret)
1454 goto fail;
1455
1456 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1457 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1458 (unsigned long)root->root_key.objectid,
0f7d52f4 1459 root);
d68fc57b 1460 if (ret == 0)
4df27c4d 1461 root->in_radix = 1;
d68fc57b 1462
4df27c4d
YZ
1463 spin_unlock(&fs_info->fs_roots_radix_lock);
1464 radix_tree_preload_end();
0f7d52f4 1465 if (ret) {
4df27c4d
YZ
1466 if (ret == -EEXIST) {
1467 free_fs_root(root);
1468 goto again;
1469 }
1470 goto fail;
0f7d52f4 1471 }
4df27c4d
YZ
1472
1473 ret = btrfs_find_dead_roots(fs_info->tree_root,
1474 root->root_key.objectid);
1475 WARN_ON(ret);
edbd8d4e 1476 return root;
4df27c4d
YZ
1477fail:
1478 free_fs_root(root);
1479 return ERR_PTR(ret);
edbd8d4e
CM
1480}
1481
04160088
CM
1482static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1483{
1484 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1485 int ret = 0;
04160088
CM
1486 struct btrfs_device *device;
1487 struct backing_dev_info *bdi;
b7967db7 1488
1f78160c
XG
1489 rcu_read_lock();
1490 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1491 if (!device->bdev)
1492 continue;
04160088
CM
1493 bdi = blk_get_backing_dev_info(device->bdev);
1494 if (bdi && bdi_congested(bdi, bdi_bits)) {
1495 ret = 1;
1496 break;
1497 }
1498 }
1f78160c 1499 rcu_read_unlock();
04160088
CM
1500 return ret;
1501}
1502
ad081f14
JA
1503/*
1504 * If this fails, caller must call bdi_destroy() to get rid of the
1505 * bdi again.
1506 */
04160088
CM
1507static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1508{
ad081f14
JA
1509 int err;
1510
1511 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1512 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1513 if (err)
1514 return err;
1515
4575c9cc 1516 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1517 bdi->congested_fn = btrfs_congested_fn;
1518 bdi->congested_data = info;
1519 return 0;
1520}
1521
ce9adaa5
CM
1522static int bio_ready_for_csum(struct bio *bio)
1523{
1524 u64 length = 0;
1525 u64 buf_len = 0;
1526 u64 start = 0;
1527 struct page *page;
1528 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1529 struct bio_vec *bvec;
1530 int i;
1531 int ret;
1532
1533 bio_for_each_segment(bvec, bio, i) {
1534 page = bvec->bv_page;
1535 if (page->private == EXTENT_PAGE_PRIVATE) {
1536 length += bvec->bv_len;
1537 continue;
1538 }
1539 if (!page->private) {
1540 length += bvec->bv_len;
1541 continue;
1542 }
1543 length = bvec->bv_len;
1544 buf_len = page->private >> 2;
1545 start = page_offset(page) + bvec->bv_offset;
1546 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1547 }
1548 /* are we fully contained in this bio? */
1549 if (buf_len <= length)
1550 return 1;
1551
1552 ret = extent_range_uptodate(io_tree, start + length,
1553 start + buf_len - 1);
ce9adaa5
CM
1554 return ret;
1555}
1556
8b712842
CM
1557/*
1558 * called by the kthread helper functions to finally call the bio end_io
1559 * functions. This is where read checksum verification actually happens
1560 */
1561static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1562{
ce9adaa5 1563 struct bio *bio;
8b712842
CM
1564 struct end_io_wq *end_io_wq;
1565 struct btrfs_fs_info *fs_info;
ce9adaa5 1566 int error;
ce9adaa5 1567
8b712842
CM
1568 end_io_wq = container_of(work, struct end_io_wq, work);
1569 bio = end_io_wq->bio;
1570 fs_info = end_io_wq->info;
ce9adaa5 1571
cad321ad 1572 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1573 * be checksummed at once. This makes sure the entire block is in
1574 * ram and up to date before trying to verify things. For
1575 * blocksize <= pagesize, it is basically a noop
1576 */
7b6d91da 1577 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1578 !bio_ready_for_csum(bio)) {
d20f7043 1579 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1580 &end_io_wq->work);
1581 return;
1582 }
1583 error = end_io_wq->error;
1584 bio->bi_private = end_io_wq->private;
1585 bio->bi_end_io = end_io_wq->end_io;
1586 kfree(end_io_wq);
8b712842 1587 bio_endio(bio, error);
44b8bd7e
CM
1588}
1589
a74a4b97
CM
1590static int cleaner_kthread(void *arg)
1591{
1592 struct btrfs_root *root = arg;
1593
1594 do {
a74a4b97 1595 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1596
1597 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1598 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1599 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1600 btrfs_clean_old_snapshots(root);
1601 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1602 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1603 }
a74a4b97 1604
a0acae0e 1605 if (!try_to_freeze()) {
a74a4b97 1606 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1607 if (!kthread_should_stop())
1608 schedule();
a74a4b97
CM
1609 __set_current_state(TASK_RUNNING);
1610 }
1611 } while (!kthread_should_stop());
1612 return 0;
1613}
1614
1615static int transaction_kthread(void *arg)
1616{
1617 struct btrfs_root *root = arg;
1618 struct btrfs_trans_handle *trans;
1619 struct btrfs_transaction *cur;
8929ecfa 1620 u64 transid;
a74a4b97
CM
1621 unsigned long now;
1622 unsigned long delay;
1623 int ret;
1624
1625 do {
a74a4b97
CM
1626 delay = HZ * 30;
1627 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1628 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1629
a4abeea4 1630 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1631 cur = root->fs_info->running_transaction;
1632 if (!cur) {
a4abeea4 1633 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1634 goto sleep;
1635 }
31153d81 1636
a74a4b97 1637 now = get_seconds();
8929ecfa
YZ
1638 if (!cur->blocked &&
1639 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1640 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1641 delay = HZ * 5;
1642 goto sleep;
1643 }
8929ecfa 1644 transid = cur->transid;
a4abeea4 1645 spin_unlock(&root->fs_info->trans_lock);
56bec294 1646
7a7eaa40 1647 trans = btrfs_join_transaction(root);
3612b495 1648 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1649 if (transid == trans->transid) {
1650 ret = btrfs_commit_transaction(trans, root);
1651 BUG_ON(ret);
1652 } else {
1653 btrfs_end_transaction(trans, root);
1654 }
a74a4b97
CM
1655sleep:
1656 wake_up_process(root->fs_info->cleaner_kthread);
1657 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1658
a0acae0e 1659 if (!try_to_freeze()) {
a74a4b97 1660 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1661 if (!kthread_should_stop() &&
1662 !btrfs_transaction_blocked(root->fs_info))
1663 schedule_timeout(delay);
a74a4b97
CM
1664 __set_current_state(TASK_RUNNING);
1665 }
1666 } while (!kthread_should_stop());
1667 return 0;
1668}
1669
af31f5e5
CM
1670/*
1671 * this will find the highest generation in the array of
1672 * root backups. The index of the highest array is returned,
1673 * or -1 if we can't find anything.
1674 *
1675 * We check to make sure the array is valid by comparing the
1676 * generation of the latest root in the array with the generation
1677 * in the super block. If they don't match we pitch it.
1678 */
1679static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1680{
1681 u64 cur;
1682 int newest_index = -1;
1683 struct btrfs_root_backup *root_backup;
1684 int i;
1685
1686 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1687 root_backup = info->super_copy->super_roots + i;
1688 cur = btrfs_backup_tree_root_gen(root_backup);
1689 if (cur == newest_gen)
1690 newest_index = i;
1691 }
1692
1693 /* check to see if we actually wrapped around */
1694 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1695 root_backup = info->super_copy->super_roots;
1696 cur = btrfs_backup_tree_root_gen(root_backup);
1697 if (cur == newest_gen)
1698 newest_index = 0;
1699 }
1700 return newest_index;
1701}
1702
1703
1704/*
1705 * find the oldest backup so we know where to store new entries
1706 * in the backup array. This will set the backup_root_index
1707 * field in the fs_info struct
1708 */
1709static void find_oldest_super_backup(struct btrfs_fs_info *info,
1710 u64 newest_gen)
1711{
1712 int newest_index = -1;
1713
1714 newest_index = find_newest_super_backup(info, newest_gen);
1715 /* if there was garbage in there, just move along */
1716 if (newest_index == -1) {
1717 info->backup_root_index = 0;
1718 } else {
1719 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1720 }
1721}
1722
1723/*
1724 * copy all the root pointers into the super backup array.
1725 * this will bump the backup pointer by one when it is
1726 * done
1727 */
1728static void backup_super_roots(struct btrfs_fs_info *info)
1729{
1730 int next_backup;
1731 struct btrfs_root_backup *root_backup;
1732 int last_backup;
1733
1734 next_backup = info->backup_root_index;
1735 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1736 BTRFS_NUM_BACKUP_ROOTS;
1737
1738 /*
1739 * just overwrite the last backup if we're at the same generation
1740 * this happens only at umount
1741 */
1742 root_backup = info->super_for_commit->super_roots + last_backup;
1743 if (btrfs_backup_tree_root_gen(root_backup) ==
1744 btrfs_header_generation(info->tree_root->node))
1745 next_backup = last_backup;
1746
1747 root_backup = info->super_for_commit->super_roots + next_backup;
1748
1749 /*
1750 * make sure all of our padding and empty slots get zero filled
1751 * regardless of which ones we use today
1752 */
1753 memset(root_backup, 0, sizeof(*root_backup));
1754
1755 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1756
1757 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1758 btrfs_set_backup_tree_root_gen(root_backup,
1759 btrfs_header_generation(info->tree_root->node));
1760
1761 btrfs_set_backup_tree_root_level(root_backup,
1762 btrfs_header_level(info->tree_root->node));
1763
1764 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1765 btrfs_set_backup_chunk_root_gen(root_backup,
1766 btrfs_header_generation(info->chunk_root->node));
1767 btrfs_set_backup_chunk_root_level(root_backup,
1768 btrfs_header_level(info->chunk_root->node));
1769
1770 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1771 btrfs_set_backup_extent_root_gen(root_backup,
1772 btrfs_header_generation(info->extent_root->node));
1773 btrfs_set_backup_extent_root_level(root_backup,
1774 btrfs_header_level(info->extent_root->node));
1775
7c7e82a7
CM
1776 /*
1777 * we might commit during log recovery, which happens before we set
1778 * the fs_root. Make sure it is valid before we fill it in.
1779 */
1780 if (info->fs_root && info->fs_root->node) {
1781 btrfs_set_backup_fs_root(root_backup,
1782 info->fs_root->node->start);
1783 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1784 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1785 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1786 btrfs_header_level(info->fs_root->node));
7c7e82a7 1787 }
af31f5e5
CM
1788
1789 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1790 btrfs_set_backup_dev_root_gen(root_backup,
1791 btrfs_header_generation(info->dev_root->node));
1792 btrfs_set_backup_dev_root_level(root_backup,
1793 btrfs_header_level(info->dev_root->node));
1794
1795 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1796 btrfs_set_backup_csum_root_gen(root_backup,
1797 btrfs_header_generation(info->csum_root->node));
1798 btrfs_set_backup_csum_root_level(root_backup,
1799 btrfs_header_level(info->csum_root->node));
1800
1801 btrfs_set_backup_total_bytes(root_backup,
1802 btrfs_super_total_bytes(info->super_copy));
1803 btrfs_set_backup_bytes_used(root_backup,
1804 btrfs_super_bytes_used(info->super_copy));
1805 btrfs_set_backup_num_devices(root_backup,
1806 btrfs_super_num_devices(info->super_copy));
1807
1808 /*
1809 * if we don't copy this out to the super_copy, it won't get remembered
1810 * for the next commit
1811 */
1812 memcpy(&info->super_copy->super_roots,
1813 &info->super_for_commit->super_roots,
1814 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1815}
1816
1817/*
1818 * this copies info out of the root backup array and back into
1819 * the in-memory super block. It is meant to help iterate through
1820 * the array, so you send it the number of backups you've already
1821 * tried and the last backup index you used.
1822 *
1823 * this returns -1 when it has tried all the backups
1824 */
1825static noinline int next_root_backup(struct btrfs_fs_info *info,
1826 struct btrfs_super_block *super,
1827 int *num_backups_tried, int *backup_index)
1828{
1829 struct btrfs_root_backup *root_backup;
1830 int newest = *backup_index;
1831
1832 if (*num_backups_tried == 0) {
1833 u64 gen = btrfs_super_generation(super);
1834
1835 newest = find_newest_super_backup(info, gen);
1836 if (newest == -1)
1837 return -1;
1838
1839 *backup_index = newest;
1840 *num_backups_tried = 1;
1841 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1842 /* we've tried all the backups, all done */
1843 return -1;
1844 } else {
1845 /* jump to the next oldest backup */
1846 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1847 BTRFS_NUM_BACKUP_ROOTS;
1848 *backup_index = newest;
1849 *num_backups_tried += 1;
1850 }
1851 root_backup = super->super_roots + newest;
1852
1853 btrfs_set_super_generation(super,
1854 btrfs_backup_tree_root_gen(root_backup));
1855 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1856 btrfs_set_super_root_level(super,
1857 btrfs_backup_tree_root_level(root_backup));
1858 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1859
1860 /*
1861 * fixme: the total bytes and num_devices need to match or we should
1862 * need a fsck
1863 */
1864 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1865 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1866 return 0;
1867}
1868
1869/* helper to cleanup tree roots */
1870static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1871{
1872 free_extent_buffer(info->tree_root->node);
1873 free_extent_buffer(info->tree_root->commit_root);
1874 free_extent_buffer(info->dev_root->node);
1875 free_extent_buffer(info->dev_root->commit_root);
1876 free_extent_buffer(info->extent_root->node);
1877 free_extent_buffer(info->extent_root->commit_root);
1878 free_extent_buffer(info->csum_root->node);
1879 free_extent_buffer(info->csum_root->commit_root);
1880
1881 info->tree_root->node = NULL;
1882 info->tree_root->commit_root = NULL;
1883 info->dev_root->node = NULL;
1884 info->dev_root->commit_root = NULL;
1885 info->extent_root->node = NULL;
1886 info->extent_root->commit_root = NULL;
1887 info->csum_root->node = NULL;
1888 info->csum_root->commit_root = NULL;
1889
1890 if (chunk_root) {
1891 free_extent_buffer(info->chunk_root->node);
1892 free_extent_buffer(info->chunk_root->commit_root);
1893 info->chunk_root->node = NULL;
1894 info->chunk_root->commit_root = NULL;
1895 }
1896}
1897
1898
ad2b2c80
AV
1899int open_ctree(struct super_block *sb,
1900 struct btrfs_fs_devices *fs_devices,
1901 char *options)
2e635a27 1902{
db94535d
CM
1903 u32 sectorsize;
1904 u32 nodesize;
1905 u32 leafsize;
1906 u32 blocksize;
87ee04eb 1907 u32 stripesize;
84234f3a 1908 u64 generation;
f2b636e8 1909 u64 features;
3de4586c 1910 struct btrfs_key location;
a061fc8d 1911 struct buffer_head *bh;
4d34b278 1912 struct btrfs_super_block *disk_super;
815745cf 1913 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1914 struct btrfs_root *tree_root;
4d34b278
ID
1915 struct btrfs_root *extent_root;
1916 struct btrfs_root *csum_root;
1917 struct btrfs_root *chunk_root;
1918 struct btrfs_root *dev_root;
e02119d5 1919 struct btrfs_root *log_tree_root;
eb60ceac 1920 int ret;
e58ca020 1921 int err = -EINVAL;
af31f5e5
CM
1922 int num_backups_tried = 0;
1923 int backup_index = 0;
4543df7e 1924
f84a8bd6 1925 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1926 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1927 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1928 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1929 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1930
f84a8bd6
AV
1931 if (!tree_root || !extent_root || !csum_root ||
1932 !chunk_root || !dev_root) {
39279cc3
CM
1933 err = -ENOMEM;
1934 goto fail;
1935 }
76dda93c
YZ
1936
1937 ret = init_srcu_struct(&fs_info->subvol_srcu);
1938 if (ret) {
1939 err = ret;
1940 goto fail;
1941 }
1942
1943 ret = setup_bdi(fs_info, &fs_info->bdi);
1944 if (ret) {
1945 err = ret;
1946 goto fail_srcu;
1947 }
1948
1949 fs_info->btree_inode = new_inode(sb);
1950 if (!fs_info->btree_inode) {
1951 err = -ENOMEM;
1952 goto fail_bdi;
1953 }
1954
a6591715 1955 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1956
76dda93c 1957 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1958 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1959 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1960 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1961 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1962 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1963 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1964 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1965 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1966 spin_lock_init(&fs_info->trans_lock);
31153d81 1967 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1968 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1969 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1970 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1971 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1972 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1973
58176a96 1974 init_completion(&fs_info->kobj_unregister);
0b86a832 1975 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1976 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1977 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1978 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1979 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1980 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1981 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1982 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1983 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1984 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1985 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1986 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1987 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1988 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1989 fs_info->sb = sb;
6f568d35 1990 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1991 fs_info->metadata_ratio = 0;
4cb5300b 1992 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1993 fs_info->trans_no_join = 0;
2bf64758 1994 fs_info->free_chunk_space = 0;
c8b97818 1995
90519d66
AJ
1996 /* readahead state */
1997 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1998 spin_lock_init(&fs_info->reada_lock);
c8b97818 1999
b34b086c
CM
2000 fs_info->thread_pool_size = min_t(unsigned long,
2001 num_online_cpus() + 2, 8);
0afbaf8c 2002
3eaa2885
CM
2003 INIT_LIST_HEAD(&fs_info->ordered_extents);
2004 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2005 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2006 GFP_NOFS);
2007 if (!fs_info->delayed_root) {
2008 err = -ENOMEM;
2009 goto fail_iput;
2010 }
2011 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2012
a2de733c
AJ
2013 mutex_init(&fs_info->scrub_lock);
2014 atomic_set(&fs_info->scrubs_running, 0);
2015 atomic_set(&fs_info->scrub_pause_req, 0);
2016 atomic_set(&fs_info->scrubs_paused, 0);
2017 atomic_set(&fs_info->scrub_cancel_req, 0);
2018 init_waitqueue_head(&fs_info->scrub_pause_wait);
2019 init_rwsem(&fs_info->scrub_super_lock);
2020 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2021#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2022 fs_info->check_integrity_print_mask = 0;
2023#endif
a2de733c 2024
c9e9f97b
ID
2025 spin_lock_init(&fs_info->balance_lock);
2026 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2027 atomic_set(&fs_info->balance_running, 0);
2028 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2029 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2030 fs_info->balance_ctl = NULL;
837d5b6e 2031 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2032
a061fc8d
CM
2033 sb->s_blocksize = 4096;
2034 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2035 sb->s_bdi = &fs_info->bdi;
a061fc8d 2036
76dda93c 2037 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2038 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2039 /*
2040 * we set the i_size on the btree inode to the max possible int.
2041 * the real end of the address space is determined by all of
2042 * the devices in the system
2043 */
2044 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2045 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2046 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2047
5d4f98a2 2048 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2049 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2050 fs_info->btree_inode->i_mapping);
a8067e02 2051 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2052
2053 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2054
76dda93c
YZ
2055 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2056 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2057 sizeof(struct btrfs_key));
2058 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 2059 insert_inode_hash(fs_info->btree_inode);
76dda93c 2060
0f9dd46c 2061 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2062 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2063
11833d66 2064 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2065 fs_info->btree_inode->i_mapping);
11833d66 2066 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2067 fs_info->btree_inode->i_mapping);
11833d66 2068 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2069 fs_info->do_barriers = 1;
e18e4809 2070
39279cc3 2071
5a3f23d5 2072 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2073 mutex_init(&fs_info->tree_log_mutex);
925baedd 2074 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2075 mutex_init(&fs_info->transaction_kthread_mutex);
2076 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2077 mutex_init(&fs_info->volume_mutex);
276e680d 2078 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2079 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2080 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2081
2082 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2083 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2084
e6dcd2dc 2085 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2086 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2087 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2088 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2089
0b86a832 2090 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2091 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2092
a512bbf8 2093 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2094 if (!bh) {
2095 err = -EINVAL;
16cdcec7 2096 goto fail_alloc;
20b45077 2097 }
39279cc3 2098
6c41761f
DS
2099 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2100 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2101 sizeof(*fs_info->super_for_commit));
a061fc8d 2102 brelse(bh);
5f39d397 2103
6c41761f 2104 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2105
6c41761f 2106 disk_super = fs_info->super_copy;
0f7d52f4 2107 if (!btrfs_super_root(disk_super))
16cdcec7 2108 goto fail_alloc;
0f7d52f4 2109
acce952b 2110 /* check FS state, whether FS is broken. */
2111 fs_info->fs_state |= btrfs_super_flags(disk_super);
2112
2113 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2114
af31f5e5
CM
2115 /*
2116 * run through our array of backup supers and setup
2117 * our ring pointer to the oldest one
2118 */
2119 generation = btrfs_super_generation(disk_super);
2120 find_oldest_super_backup(fs_info, generation);
2121
75e7cb7f
LB
2122 /*
2123 * In the long term, we'll store the compression type in the super
2124 * block, and it'll be used for per file compression control.
2125 */
2126 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2127
2b82032c
YZ
2128 ret = btrfs_parse_options(tree_root, options);
2129 if (ret) {
2130 err = ret;
16cdcec7 2131 goto fail_alloc;
2b82032c 2132 }
dfe25020 2133
f2b636e8
JB
2134 features = btrfs_super_incompat_flags(disk_super) &
2135 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2136 if (features) {
2137 printk(KERN_ERR "BTRFS: couldn't mount because of "
2138 "unsupported optional features (%Lx).\n",
21380931 2139 (unsigned long long)features);
f2b636e8 2140 err = -EINVAL;
16cdcec7 2141 goto fail_alloc;
f2b636e8
JB
2142 }
2143
5d4f98a2 2144 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2145 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2146 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2147 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2148 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2149
f2b636e8
JB
2150 features = btrfs_super_compat_ro_flags(disk_super) &
2151 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2152 if (!(sb->s_flags & MS_RDONLY) && features) {
2153 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2154 "unsupported option features (%Lx).\n",
21380931 2155 (unsigned long long)features);
f2b636e8 2156 err = -EINVAL;
16cdcec7 2157 goto fail_alloc;
f2b636e8 2158 }
61d92c32
CM
2159
2160 btrfs_init_workers(&fs_info->generic_worker,
2161 "genwork", 1, NULL);
2162
5443be45 2163 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2164 fs_info->thread_pool_size,
2165 &fs_info->generic_worker);
c8b97818 2166
771ed689 2167 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2168 fs_info->thread_pool_size,
2169 &fs_info->generic_worker);
771ed689 2170
5443be45 2171 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2172 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2173 fs_info->thread_pool_size),
2174 &fs_info->generic_worker);
61b49440 2175
bab39bf9
JB
2176 btrfs_init_workers(&fs_info->caching_workers, "cache",
2177 2, &fs_info->generic_worker);
2178
61b49440
CM
2179 /* a higher idle thresh on the submit workers makes it much more
2180 * likely that bios will be send down in a sane order to the
2181 * devices
2182 */
2183 fs_info->submit_workers.idle_thresh = 64;
53863232 2184
771ed689 2185 fs_info->workers.idle_thresh = 16;
4a69a410 2186 fs_info->workers.ordered = 1;
61b49440 2187
771ed689
CM
2188 fs_info->delalloc_workers.idle_thresh = 2;
2189 fs_info->delalloc_workers.ordered = 1;
2190
61d92c32
CM
2191 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2192 &fs_info->generic_worker);
5443be45 2193 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2194 fs_info->thread_pool_size,
2195 &fs_info->generic_worker);
d20f7043 2196 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2197 fs_info->thread_pool_size,
2198 &fs_info->generic_worker);
cad321ad 2199 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2200 "endio-meta-write", fs_info->thread_pool_size,
2201 &fs_info->generic_worker);
5443be45 2202 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2203 fs_info->thread_pool_size,
2204 &fs_info->generic_worker);
0cb59c99
JB
2205 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2206 1, &fs_info->generic_worker);
16cdcec7
MX
2207 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2208 fs_info->thread_pool_size,
2209 &fs_info->generic_worker);
90519d66
AJ
2210 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2211 fs_info->thread_pool_size,
2212 &fs_info->generic_worker);
61b49440
CM
2213
2214 /*
2215 * endios are largely parallel and should have a very
2216 * low idle thresh
2217 */
2218 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2219 fs_info->endio_meta_workers.idle_thresh = 4;
2220
9042846b
CM
2221 fs_info->endio_write_workers.idle_thresh = 2;
2222 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2223 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2224
0dc3b84a
JB
2225 /*
2226 * btrfs_start_workers can really only fail because of ENOMEM so just
2227 * return -ENOMEM if any of these fail.
2228 */
2229 ret = btrfs_start_workers(&fs_info->workers);
2230 ret |= btrfs_start_workers(&fs_info->generic_worker);
2231 ret |= btrfs_start_workers(&fs_info->submit_workers);
2232 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2233 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2234 ret |= btrfs_start_workers(&fs_info->endio_workers);
2235 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2236 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2237 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2238 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2239 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2240 ret |= btrfs_start_workers(&fs_info->caching_workers);
2241 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2242 if (ret) {
2243 ret = -ENOMEM;
2244 goto fail_sb_buffer;
2245 }
4543df7e 2246
4575c9cc 2247 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2248 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2249 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2250
db94535d
CM
2251 nodesize = btrfs_super_nodesize(disk_super);
2252 leafsize = btrfs_super_leafsize(disk_super);
2253 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2254 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2255 tree_root->nodesize = nodesize;
2256 tree_root->leafsize = leafsize;
2257 tree_root->sectorsize = sectorsize;
87ee04eb 2258 tree_root->stripesize = stripesize;
a061fc8d
CM
2259
2260 sb->s_blocksize = sectorsize;
2261 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2262
39279cc3
CM
2263 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264 sizeof(disk_super->magic))) {
d397712b 2265 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2266 goto fail_sb_buffer;
2267 }
19c00ddc 2268
941b2ddf
KM
2269 if (sectorsize < PAGE_SIZE) {
2270 printk(KERN_WARNING "btrfs: Incompatible sector size "
2271 "found on %s\n", sb->s_id);
2272 goto fail_sb_buffer;
2273 }
2274
925baedd 2275 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2276 ret = btrfs_read_sys_array(tree_root);
925baedd 2277 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2278 if (ret) {
d397712b
CM
2279 printk(KERN_WARNING "btrfs: failed to read the system "
2280 "array on %s\n", sb->s_id);
5d4f98a2 2281 goto fail_sb_buffer;
84eed90f 2282 }
0b86a832
CM
2283
2284 blocksize = btrfs_level_size(tree_root,
2285 btrfs_super_chunk_root_level(disk_super));
84234f3a 2286 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2287
2288 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2289 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291 chunk_root->node = read_tree_block(chunk_root,
2292 btrfs_super_chunk_root(disk_super),
84234f3a 2293 blocksize, generation);
0b86a832 2294 BUG_ON(!chunk_root->node);
83121942
DW
2295 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297 sb->s_id);
af31f5e5 2298 goto fail_tree_roots;
83121942 2299 }
5d4f98a2
YZ
2300 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2302
e17cade2 2303 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2304 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305 BTRFS_UUID_SIZE);
e17cade2 2306
0b86a832 2307 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2308 if (ret) {
d397712b
CM
2309 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310 sb->s_id);
af31f5e5 2311 goto fail_tree_roots;
2b82032c 2312 }
0b86a832 2313
dfe25020
CM
2314 btrfs_close_extra_devices(fs_devices);
2315
a6b0d5c8
CM
2316 if (!fs_devices->latest_bdev) {
2317 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318 sb->s_id);
2319 goto fail_tree_roots;
2320 }
2321
af31f5e5 2322retry_root_backup:
db94535d
CM
2323 blocksize = btrfs_level_size(tree_root,
2324 btrfs_super_root_level(disk_super));
84234f3a 2325 generation = btrfs_super_generation(disk_super);
0b86a832 2326
e20d96d6 2327 tree_root->node = read_tree_block(tree_root,
db94535d 2328 btrfs_super_root(disk_super),
84234f3a 2329 blocksize, generation);
af31f5e5
CM
2330 if (!tree_root->node ||
2331 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2332 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333 sb->s_id);
af31f5e5
CM
2334
2335 goto recovery_tree_root;
83121942 2336 }
af31f5e5 2337
5d4f98a2
YZ
2338 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2340
2341 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2342 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2343 if (ret)
af31f5e5 2344 goto recovery_tree_root;
0b86a832
CM
2345 extent_root->track_dirty = 1;
2346
2347 ret = find_and_setup_root(tree_root, fs_info,
2348 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2349 if (ret)
af31f5e5 2350 goto recovery_tree_root;
5d4f98a2 2351 dev_root->track_dirty = 1;
3768f368 2352
d20f7043
CM
2353 ret = find_and_setup_root(tree_root, fs_info,
2354 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355 if (ret)
af31f5e5 2356 goto recovery_tree_root;
d20f7043
CM
2357
2358 csum_root->track_dirty = 1;
2359
8929ecfa
YZ
2360 fs_info->generation = generation;
2361 fs_info->last_trans_committed = generation;
8929ecfa 2362
c59021f8 2363 ret = btrfs_init_space_info(fs_info);
2364 if (ret) {
2365 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2366 goto fail_block_groups;
2367 }
2368
1b1d1f66
JB
2369 ret = btrfs_read_block_groups(extent_root);
2370 if (ret) {
2371 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2372 goto fail_block_groups;
2373 }
9078a3e1 2374
a74a4b97
CM
2375 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2376 "btrfs-cleaner");
57506d50 2377 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2378 goto fail_block_groups;
a74a4b97
CM
2379
2380 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2381 tree_root,
2382 "btrfs-transaction");
57506d50 2383 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2384 goto fail_cleaner;
a74a4b97 2385
c289811c
CM
2386 if (!btrfs_test_opt(tree_root, SSD) &&
2387 !btrfs_test_opt(tree_root, NOSSD) &&
2388 !fs_info->fs_devices->rotating) {
2389 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2390 "mode\n");
2391 btrfs_set_opt(fs_info->mount_opt, SSD);
2392 }
2393
21adbd5c
SB
2394#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2395 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2396 ret = btrfsic_mount(tree_root, fs_devices,
2397 btrfs_test_opt(tree_root,
2398 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2399 1 : 0,
2400 fs_info->check_integrity_print_mask);
2401 if (ret)
2402 printk(KERN_WARNING "btrfs: failed to initialize"
2403 " integrity check module %s\n", sb->s_id);
2404 }
2405#endif
2406
acce952b 2407 /* do not make disk changes in broken FS */
2408 if (btrfs_super_log_root(disk_super) != 0 &&
2409 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2410 u64 bytenr = btrfs_super_log_root(disk_super);
2411
7c2ca468 2412 if (fs_devices->rw_devices == 0) {
d397712b
CM
2413 printk(KERN_WARNING "Btrfs log replay required "
2414 "on RO media\n");
7c2ca468
CM
2415 err = -EIO;
2416 goto fail_trans_kthread;
2417 }
e02119d5
CM
2418 blocksize =
2419 btrfs_level_size(tree_root,
2420 btrfs_super_log_root_level(disk_super));
d18a2c44 2421
6f07e42e 2422 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2423 if (!log_tree_root) {
2424 err = -ENOMEM;
2425 goto fail_trans_kthread;
2426 }
e02119d5
CM
2427
2428 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2429 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2430
2431 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2432 blocksize,
2433 generation + 1);
e02119d5
CM
2434 ret = btrfs_recover_log_trees(log_tree_root);
2435 BUG_ON(ret);
e556ce2c
YZ
2436
2437 if (sb->s_flags & MS_RDONLY) {
2438 ret = btrfs_commit_super(tree_root);
2439 BUG_ON(ret);
2440 }
e02119d5 2441 }
1a40e23b 2442
76dda93c
YZ
2443 ret = btrfs_find_orphan_roots(tree_root);
2444 BUG_ON(ret);
2445
7c2ca468 2446 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2447 ret = btrfs_cleanup_fs_roots(fs_info);
2448 BUG_ON(ret);
2449
5d4f98a2 2450 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2451 if (ret < 0) {
2452 printk(KERN_WARNING
2453 "btrfs: failed to recover relocation\n");
2454 err = -EINVAL;
2455 goto fail_trans_kthread;
2456 }
7c2ca468 2457 }
1a40e23b 2458
3de4586c
CM
2459 location.objectid = BTRFS_FS_TREE_OBJECTID;
2460 location.type = BTRFS_ROOT_ITEM_KEY;
2461 location.offset = (u64)-1;
2462
3de4586c
CM
2463 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2464 if (!fs_info->fs_root)
7c2ca468 2465 goto fail_trans_kthread;
3140c9a3
DC
2466 if (IS_ERR(fs_info->fs_root)) {
2467 err = PTR_ERR(fs_info->fs_root);
2468 goto fail_trans_kthread;
2469 }
c289811c 2470
e3acc2a6
JB
2471 if (!(sb->s_flags & MS_RDONLY)) {
2472 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2473 err = btrfs_orphan_cleanup(fs_info->fs_root);
2474 if (!err)
2475 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2476 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2477
2478 if (!err)
2479 err = btrfs_recover_balance(fs_info->tree_root);
2480
66b4ffd1
JB
2481 if (err) {
2482 close_ctree(tree_root);
ad2b2c80 2483 return err;
66b4ffd1 2484 }
e3acc2a6
JB
2485 }
2486
ad2b2c80 2487 return 0;
39279cc3 2488
7c2ca468
CM
2489fail_trans_kthread:
2490 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2491fail_cleaner:
a74a4b97 2492 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2493
2494 /*
2495 * make sure we're done with the btree inode before we stop our
2496 * kthreads
2497 */
2498 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2499 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2500
1b1d1f66
JB
2501fail_block_groups:
2502 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2503
2504fail_tree_roots:
2505 free_root_pointers(fs_info, 1);
2506
39279cc3 2507fail_sb_buffer:
61d92c32 2508 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2509 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2510 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2511 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2512 btrfs_stop_workers(&fs_info->workers);
2513 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2514 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2515 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2516 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2517 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2518 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2519 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2520 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2521fail_alloc:
4543df7e 2522fail_iput:
586e46e2
ID
2523 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2524
7c2ca468 2525 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2526 iput(fs_info->btree_inode);
ad081f14 2527fail_bdi:
7e662854 2528 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2529fail_srcu:
2530 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2531fail:
586e46e2 2532 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2533 return err;
af31f5e5
CM
2534
2535recovery_tree_root:
af31f5e5
CM
2536 if (!btrfs_test_opt(tree_root, RECOVERY))
2537 goto fail_tree_roots;
2538
2539 free_root_pointers(fs_info, 0);
2540
2541 /* don't use the log in recovery mode, it won't be valid */
2542 btrfs_set_super_log_root(disk_super, 0);
2543
2544 /* we can't trust the free space cache either */
2545 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2546
2547 ret = next_root_backup(fs_info, fs_info->super_copy,
2548 &num_backups_tried, &backup_index);
2549 if (ret == -1)
2550 goto fail_block_groups;
2551 goto retry_root_backup;
eb60ceac
CM
2552}
2553
f2984462
CM
2554static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2555{
2556 char b[BDEVNAME_SIZE];
2557
2558 if (uptodate) {
2559 set_buffer_uptodate(bh);
2560 } else {
7a36ddec 2561 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2562 "I/O error on %s\n",
2563 bdevname(bh->b_bdev, b));
1259ab75
CM
2564 /* note, we dont' set_buffer_write_io_error because we have
2565 * our own ways of dealing with the IO errors
2566 */
f2984462
CM
2567 clear_buffer_uptodate(bh);
2568 }
2569 unlock_buffer(bh);
2570 put_bh(bh);
2571}
2572
a512bbf8
YZ
2573struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2574{
2575 struct buffer_head *bh;
2576 struct buffer_head *latest = NULL;
2577 struct btrfs_super_block *super;
2578 int i;
2579 u64 transid = 0;
2580 u64 bytenr;
2581
2582 /* we would like to check all the supers, but that would make
2583 * a btrfs mount succeed after a mkfs from a different FS.
2584 * So, we need to add a special mount option to scan for
2585 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2586 */
2587 for (i = 0; i < 1; i++) {
2588 bytenr = btrfs_sb_offset(i);
2589 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2590 break;
2591 bh = __bread(bdev, bytenr / 4096, 4096);
2592 if (!bh)
2593 continue;
2594
2595 super = (struct btrfs_super_block *)bh->b_data;
2596 if (btrfs_super_bytenr(super) != bytenr ||
2597 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2598 sizeof(super->magic))) {
2599 brelse(bh);
2600 continue;
2601 }
2602
2603 if (!latest || btrfs_super_generation(super) > transid) {
2604 brelse(latest);
2605 latest = bh;
2606 transid = btrfs_super_generation(super);
2607 } else {
2608 brelse(bh);
2609 }
2610 }
2611 return latest;
2612}
2613
4eedeb75
HH
2614/*
2615 * this should be called twice, once with wait == 0 and
2616 * once with wait == 1. When wait == 0 is done, all the buffer heads
2617 * we write are pinned.
2618 *
2619 * They are released when wait == 1 is done.
2620 * max_mirrors must be the same for both runs, and it indicates how
2621 * many supers on this one device should be written.
2622 *
2623 * max_mirrors == 0 means to write them all.
2624 */
a512bbf8
YZ
2625static int write_dev_supers(struct btrfs_device *device,
2626 struct btrfs_super_block *sb,
2627 int do_barriers, int wait, int max_mirrors)
2628{
2629 struct buffer_head *bh;
2630 int i;
2631 int ret;
2632 int errors = 0;
2633 u32 crc;
2634 u64 bytenr;
a512bbf8
YZ
2635
2636 if (max_mirrors == 0)
2637 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2638
a512bbf8
YZ
2639 for (i = 0; i < max_mirrors; i++) {
2640 bytenr = btrfs_sb_offset(i);
2641 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2642 break;
2643
2644 if (wait) {
2645 bh = __find_get_block(device->bdev, bytenr / 4096,
2646 BTRFS_SUPER_INFO_SIZE);
2647 BUG_ON(!bh);
a512bbf8 2648 wait_on_buffer(bh);
4eedeb75
HH
2649 if (!buffer_uptodate(bh))
2650 errors++;
2651
2652 /* drop our reference */
2653 brelse(bh);
2654
2655 /* drop the reference from the wait == 0 run */
2656 brelse(bh);
2657 continue;
a512bbf8
YZ
2658 } else {
2659 btrfs_set_super_bytenr(sb, bytenr);
2660
2661 crc = ~(u32)0;
2662 crc = btrfs_csum_data(NULL, (char *)sb +
2663 BTRFS_CSUM_SIZE, crc,
2664 BTRFS_SUPER_INFO_SIZE -
2665 BTRFS_CSUM_SIZE);
2666 btrfs_csum_final(crc, sb->csum);
2667
4eedeb75
HH
2668 /*
2669 * one reference for us, and we leave it for the
2670 * caller
2671 */
a512bbf8
YZ
2672 bh = __getblk(device->bdev, bytenr / 4096,
2673 BTRFS_SUPER_INFO_SIZE);
2674 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2675
4eedeb75 2676 /* one reference for submit_bh */
a512bbf8 2677 get_bh(bh);
4eedeb75
HH
2678
2679 set_buffer_uptodate(bh);
a512bbf8
YZ
2680 lock_buffer(bh);
2681 bh->b_end_io = btrfs_end_buffer_write_sync;
2682 }
2683
387125fc
CM
2684 /*
2685 * we fua the first super. The others we allow
2686 * to go down lazy.
2687 */
21adbd5c 2688 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2689 if (ret)
a512bbf8 2690 errors++;
a512bbf8
YZ
2691 }
2692 return errors < i ? 0 : -1;
2693}
2694
387125fc
CM
2695/*
2696 * endio for the write_dev_flush, this will wake anyone waiting
2697 * for the barrier when it is done
2698 */
2699static void btrfs_end_empty_barrier(struct bio *bio, int err)
2700{
2701 if (err) {
2702 if (err == -EOPNOTSUPP)
2703 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2704 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2705 }
2706 if (bio->bi_private)
2707 complete(bio->bi_private);
2708 bio_put(bio);
2709}
2710
2711/*
2712 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2713 * sent down. With wait == 1, it waits for the previous flush.
2714 *
2715 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2716 * capable
2717 */
2718static int write_dev_flush(struct btrfs_device *device, int wait)
2719{
2720 struct bio *bio;
2721 int ret = 0;
2722
2723 if (device->nobarriers)
2724 return 0;
2725
2726 if (wait) {
2727 bio = device->flush_bio;
2728 if (!bio)
2729 return 0;
2730
2731 wait_for_completion(&device->flush_wait);
2732
2733 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2734 printk("btrfs: disabling barriers on dev %s\n",
2735 device->name);
2736 device->nobarriers = 1;
2737 }
2738 if (!bio_flagged(bio, BIO_UPTODATE)) {
2739 ret = -EIO;
2740 }
2741
2742 /* drop the reference from the wait == 0 run */
2743 bio_put(bio);
2744 device->flush_bio = NULL;
2745
2746 return ret;
2747 }
2748
2749 /*
2750 * one reference for us, and we leave it for the
2751 * caller
2752 */
2753 device->flush_bio = NULL;;
2754 bio = bio_alloc(GFP_NOFS, 0);
2755 if (!bio)
2756 return -ENOMEM;
2757
2758 bio->bi_end_io = btrfs_end_empty_barrier;
2759 bio->bi_bdev = device->bdev;
2760 init_completion(&device->flush_wait);
2761 bio->bi_private = &device->flush_wait;
2762 device->flush_bio = bio;
2763
2764 bio_get(bio);
21adbd5c 2765 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2766
2767 return 0;
2768}
2769
2770/*
2771 * send an empty flush down to each device in parallel,
2772 * then wait for them
2773 */
2774static int barrier_all_devices(struct btrfs_fs_info *info)
2775{
2776 struct list_head *head;
2777 struct btrfs_device *dev;
2778 int errors = 0;
2779 int ret;
2780
2781 /* send down all the barriers */
2782 head = &info->fs_devices->devices;
2783 list_for_each_entry_rcu(dev, head, dev_list) {
2784 if (!dev->bdev) {
2785 errors++;
2786 continue;
2787 }
2788 if (!dev->in_fs_metadata || !dev->writeable)
2789 continue;
2790
2791 ret = write_dev_flush(dev, 0);
2792 if (ret)
2793 errors++;
2794 }
2795
2796 /* wait for all the barriers */
2797 list_for_each_entry_rcu(dev, head, dev_list) {
2798 if (!dev->bdev) {
2799 errors++;
2800 continue;
2801 }
2802 if (!dev->in_fs_metadata || !dev->writeable)
2803 continue;
2804
2805 ret = write_dev_flush(dev, 1);
2806 if (ret)
2807 errors++;
2808 }
2809 if (errors)
2810 return -EIO;
2811 return 0;
2812}
2813
a512bbf8 2814int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2815{
e5e9a520 2816 struct list_head *head;
f2984462 2817 struct btrfs_device *dev;
a061fc8d 2818 struct btrfs_super_block *sb;
f2984462 2819 struct btrfs_dev_item *dev_item;
f2984462
CM
2820 int ret;
2821 int do_barriers;
a236aed1
CM
2822 int max_errors;
2823 int total_errors = 0;
a061fc8d 2824 u64 flags;
f2984462 2825
6c41761f 2826 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2827 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2828 backup_super_roots(root->fs_info);
f2984462 2829
6c41761f 2830 sb = root->fs_info->super_for_commit;
a061fc8d 2831 dev_item = &sb->dev_item;
e5e9a520 2832
174ba509 2833 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2834 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2835
2836 if (do_barriers)
2837 barrier_all_devices(root->fs_info);
2838
1f78160c 2839 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2840 if (!dev->bdev) {
2841 total_errors++;
2842 continue;
2843 }
2b82032c 2844 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2845 continue;
2846
2b82032c 2847 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2848 btrfs_set_stack_device_type(dev_item, dev->type);
2849 btrfs_set_stack_device_id(dev_item, dev->devid);
2850 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2851 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2852 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2853 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2854 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2855 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2856 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2857
a061fc8d
CM
2858 flags = btrfs_super_flags(sb);
2859 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2860
a512bbf8 2861 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2862 if (ret)
2863 total_errors++;
f2984462 2864 }
a236aed1 2865 if (total_errors > max_errors) {
d397712b
CM
2866 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2867 total_errors);
a236aed1
CM
2868 BUG();
2869 }
f2984462 2870
a512bbf8 2871 total_errors = 0;
1f78160c 2872 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2873 if (!dev->bdev)
2874 continue;
2b82032c 2875 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2876 continue;
2877
a512bbf8
YZ
2878 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2879 if (ret)
2880 total_errors++;
f2984462 2881 }
174ba509 2882 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2883 if (total_errors > max_errors) {
d397712b
CM
2884 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2885 total_errors);
a236aed1
CM
2886 BUG();
2887 }
f2984462
CM
2888 return 0;
2889}
2890
a512bbf8
YZ
2891int write_ctree_super(struct btrfs_trans_handle *trans,
2892 struct btrfs_root *root, int max_mirrors)
eb60ceac 2893{
e66f709b 2894 int ret;
5f39d397 2895
a512bbf8 2896 ret = write_all_supers(root, max_mirrors);
5f39d397 2897 return ret;
cfaa7295
CM
2898}
2899
5eda7b5e 2900int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2901{
4df27c4d 2902 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2903 radix_tree_delete(&fs_info->fs_roots_radix,
2904 (unsigned long)root->root_key.objectid);
4df27c4d 2905 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2906
2907 if (btrfs_root_refs(&root->root_item) == 0)
2908 synchronize_srcu(&fs_info->subvol_srcu);
2909
581bb050
LZ
2910 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2911 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2912 free_fs_root(root);
2913 return 0;
2914}
2915
2916static void free_fs_root(struct btrfs_root *root)
2917{
82d5902d 2918 iput(root->cache_inode);
4df27c4d 2919 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2920 if (root->anon_dev)
2921 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2922 free_extent_buffer(root->node);
2923 free_extent_buffer(root->commit_root);
581bb050
LZ
2924 kfree(root->free_ino_ctl);
2925 kfree(root->free_ino_pinned);
d397712b 2926 kfree(root->name);
2619ba1f 2927 kfree(root);
2619ba1f
CM
2928}
2929
35b7e476 2930static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2931{
2932 int ret;
2933 struct btrfs_root *gang[8];
2934 int i;
2935
76dda93c
YZ
2936 while (!list_empty(&fs_info->dead_roots)) {
2937 gang[0] = list_entry(fs_info->dead_roots.next,
2938 struct btrfs_root, root_list);
2939 list_del(&gang[0]->root_list);
2940
2941 if (gang[0]->in_radix) {
2942 btrfs_free_fs_root(fs_info, gang[0]);
2943 } else {
2944 free_extent_buffer(gang[0]->node);
2945 free_extent_buffer(gang[0]->commit_root);
2946 kfree(gang[0]);
2947 }
2948 }
2949
d397712b 2950 while (1) {
0f7d52f4
CM
2951 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2952 (void **)gang, 0,
2953 ARRAY_SIZE(gang));
2954 if (!ret)
2955 break;
2619ba1f 2956 for (i = 0; i < ret; i++)
5eda7b5e 2957 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2958 }
2959 return 0;
2960}
b4100d64 2961
c146afad 2962int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2963{
c146afad
YZ
2964 u64 root_objectid = 0;
2965 struct btrfs_root *gang[8];
2966 int i;
3768f368 2967 int ret;
e089f05c 2968
c146afad
YZ
2969 while (1) {
2970 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2971 (void **)gang, root_objectid,
2972 ARRAY_SIZE(gang));
2973 if (!ret)
2974 break;
5d4f98a2
YZ
2975
2976 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2977 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2978 int err;
2979
c146afad 2980 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2981 err = btrfs_orphan_cleanup(gang[i]);
2982 if (err)
2983 return err;
c146afad
YZ
2984 }
2985 root_objectid++;
2986 }
2987 return 0;
2988}
a2135011 2989
c146afad
YZ
2990int btrfs_commit_super(struct btrfs_root *root)
2991{
2992 struct btrfs_trans_handle *trans;
2993 int ret;
a74a4b97 2994
c146afad 2995 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2996 btrfs_run_delayed_iputs(root);
a74a4b97 2997 btrfs_clean_old_snapshots(root);
c146afad 2998 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2999
3000 /* wait until ongoing cleanup work done */
3001 down_write(&root->fs_info->cleanup_work_sem);
3002 up_write(&root->fs_info->cleanup_work_sem);
3003
7a7eaa40 3004 trans = btrfs_join_transaction(root);
3612b495
TI
3005 if (IS_ERR(trans))
3006 return PTR_ERR(trans);
54aa1f4d 3007 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
3008 BUG_ON(ret);
3009 /* run commit again to drop the original snapshot */
7a7eaa40 3010 trans = btrfs_join_transaction(root);
3612b495
TI
3011 if (IS_ERR(trans))
3012 return PTR_ERR(trans);
79154b1b
CM
3013 btrfs_commit_transaction(trans, root);
3014 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 3015 BUG_ON(ret);
d6bfde87 3016
a512bbf8 3017 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3018 return ret;
3019}
3020
3021int close_ctree(struct btrfs_root *root)
3022{
3023 struct btrfs_fs_info *fs_info = root->fs_info;
3024 int ret;
3025
3026 fs_info->closing = 1;
3027 smp_mb();
3028
837d5b6e
ID
3029 /* pause restriper - we want to resume on mount */
3030 btrfs_pause_balance(root->fs_info);
3031
a2de733c 3032 btrfs_scrub_cancel(root);
4cb5300b
CM
3033
3034 /* wait for any defraggers to finish */
3035 wait_event(fs_info->transaction_wait,
3036 (atomic_read(&fs_info->defrag_running) == 0));
3037
3038 /* clear out the rbtree of defraggable inodes */
e3029d9f 3039 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3040
acce952b 3041 /*
3042 * Here come 2 situations when btrfs is broken to flip readonly:
3043 *
3044 * 1. when btrfs flips readonly somewhere else before
3045 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3046 * and btrfs will skip to write sb directly to keep
3047 * ERROR state on disk.
3048 *
3049 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3050 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3051 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3052 * btrfs will cleanup all FS resources first and write sb then.
3053 */
c146afad 3054 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3055 ret = btrfs_commit_super(root);
3056 if (ret)
3057 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3058 }
3059
3060 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3061 ret = btrfs_error_commit_super(root);
d397712b
CM
3062 if (ret)
3063 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3064 }
0f7d52f4 3065
300e4f8a
JB
3066 btrfs_put_block_group_cache(fs_info);
3067
e3029d9f
AV
3068 kthread_stop(fs_info->transaction_kthread);
3069 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3070
f25784b3
YZ
3071 fs_info->closing = 2;
3072 smp_mb();
3073
b0c68f8b 3074 if (fs_info->delalloc_bytes) {
d397712b 3075 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3076 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3077 }
31153d81 3078 if (fs_info->total_ref_cache_size) {
d397712b
CM
3079 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3080 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3081 }
bcc63abb 3082
5d4f98a2
YZ
3083 free_extent_buffer(fs_info->extent_root->node);
3084 free_extent_buffer(fs_info->extent_root->commit_root);
3085 free_extent_buffer(fs_info->tree_root->node);
3086 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3087 free_extent_buffer(fs_info->chunk_root->node);
3088 free_extent_buffer(fs_info->chunk_root->commit_root);
3089 free_extent_buffer(fs_info->dev_root->node);
3090 free_extent_buffer(fs_info->dev_root->commit_root);
3091 free_extent_buffer(fs_info->csum_root->node);
3092 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3093
e3029d9f 3094 btrfs_free_block_groups(fs_info);
d10c5f31 3095
c146afad 3096 del_fs_roots(fs_info);
d10c5f31 3097
c146afad 3098 iput(fs_info->btree_inode);
9ad6b7bc 3099
61d92c32 3100 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3101 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3102 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3103 btrfs_stop_workers(&fs_info->workers);
3104 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3105 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3106 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3107 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3108 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3109 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3110 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3111 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3112 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3113
21adbd5c
SB
3114#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3115 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3116 btrfsic_unmount(root, fs_info->fs_devices);
3117#endif
3118
dfe25020 3119 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3120 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3121
04160088 3122 bdi_destroy(&fs_info->bdi);
76dda93c 3123 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3124
eb60ceac
CM
3125 return 0;
3126}
3127
1259ab75 3128int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3129{
1259ab75 3130 int ret;
810191ff 3131 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 3132
2ac55d41
JB
3133 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3134 NULL);
1259ab75
CM
3135 if (!ret)
3136 return ret;
3137
3138 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3139 parent_transid);
3140 return !ret;
5f39d397
CM
3141}
3142
3143int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3144{
810191ff 3145 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 3146 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
3147 buf);
3148}
6702ed49 3149
5f39d397
CM
3150void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3151{
810191ff 3152 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
3153 u64 transid = btrfs_header_generation(buf);
3154 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 3155 int was_dirty;
b4ce94de 3156
b9447ef8 3157 btrfs_assert_tree_locked(buf);
ccd467d6 3158 if (transid != root->fs_info->generation) {
d397712b
CM
3159 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3160 "found %llu running %llu\n",
db94535d 3161 (unsigned long long)buf->start,
d397712b
CM
3162 (unsigned long long)transid,
3163 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3164 WARN_ON(1);
3165 }
b9473439
CM
3166 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3167 buf);
3168 if (!was_dirty) {
3169 spin_lock(&root->fs_info->delalloc_lock);
3170 root->fs_info->dirty_metadata_bytes += buf->len;
3171 spin_unlock(&root->fs_info->delalloc_lock);
3172 }
eb60ceac
CM
3173}
3174
d3c2fdcf 3175void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3176{
3177 /*
3178 * looks as though older kernels can get into trouble with
3179 * this code, they end up stuck in balance_dirty_pages forever
3180 */
3181 u64 num_dirty;
3182 unsigned long thresh = 32 * 1024 * 1024;
3183
3184 if (current->flags & PF_MEMALLOC)
3185 return;
3186
3187 btrfs_balance_delayed_items(root);
3188
3189 num_dirty = root->fs_info->dirty_metadata_bytes;
3190
3191 if (num_dirty > thresh) {
3192 balance_dirty_pages_ratelimited_nr(
3193 root->fs_info->btree_inode->i_mapping, 1);
3194 }
3195 return;
3196}
3197
3198void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3199{
188de649
CM
3200 /*
3201 * looks as though older kernels can get into trouble with
3202 * this code, they end up stuck in balance_dirty_pages forever
3203 */
d6bfde87 3204 u64 num_dirty;
771ed689 3205 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3206
6933c02e 3207 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3208 return;
3209
585ad2c3
CM
3210 num_dirty = root->fs_info->dirty_metadata_bytes;
3211
d6bfde87
CM
3212 if (num_dirty > thresh) {
3213 balance_dirty_pages_ratelimited_nr(
d7fc640e 3214 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3215 }
188de649 3216 return;
35b7e476 3217}
6b80053d 3218
ca7a79ad 3219int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3220{
810191ff 3221 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 3222 int ret;
ca7a79ad 3223 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 3224 if (ret == 0)
b4ce94de 3225 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 3226 return ret;
6b80053d 3227}
0da5468f 3228
01d658f2
CM
3229static int btree_lock_page_hook(struct page *page, void *data,
3230 void (*flush_fn)(void *))
4bef0848
CM
3231{
3232 struct inode *inode = page->mapping->host;
b9473439 3233 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
3234 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3235 struct extent_buffer *eb;
3236 unsigned long len;
3237 u64 bytenr = page_offset(page);
3238
3239 if (page->private == EXTENT_PAGE_PRIVATE)
3240 goto out;
3241
3242 len = page->private >> 2;
f09d1f60 3243 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
3244 if (!eb)
3245 goto out;
3246
01d658f2
CM
3247 if (!btrfs_try_tree_write_lock(eb)) {
3248 flush_fn(data);
3249 btrfs_tree_lock(eb);
3250 }
4bef0848 3251 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3252
3253 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3254 spin_lock(&root->fs_info->delalloc_lock);
3255 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3256 root->fs_info->dirty_metadata_bytes -= eb->len;
3257 else
3258 WARN_ON(1);
3259 spin_unlock(&root->fs_info->delalloc_lock);
3260 }
3261
4bef0848
CM
3262 btrfs_tree_unlock(eb);
3263 free_extent_buffer(eb);
3264out:
01d658f2
CM
3265 if (!trylock_page(page)) {
3266 flush_fn(data);
3267 lock_page(page);
3268 }
4bef0848
CM
3269 return 0;
3270}
3271
acce952b 3272static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3273 int read_only)
3274{
3275 if (read_only)
3276 return;
3277
3278 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3279 printk(KERN_WARNING "warning: mount fs with errors, "
3280 "running btrfsck is recommended\n");
3281}
3282
3283int btrfs_error_commit_super(struct btrfs_root *root)
3284{
3285 int ret;
3286
3287 mutex_lock(&root->fs_info->cleaner_mutex);
3288 btrfs_run_delayed_iputs(root);
3289 mutex_unlock(&root->fs_info->cleaner_mutex);
3290
3291 down_write(&root->fs_info->cleanup_work_sem);
3292 up_write(&root->fs_info->cleanup_work_sem);
3293
3294 /* cleanup FS via transaction */
3295 btrfs_cleanup_transaction(root);
3296
3297 ret = write_ctree_super(NULL, root, 0);
3298
3299 return ret;
3300}
3301
3302static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3303{
3304 struct btrfs_inode *btrfs_inode;
3305 struct list_head splice;
3306
3307 INIT_LIST_HEAD(&splice);
3308
3309 mutex_lock(&root->fs_info->ordered_operations_mutex);
3310 spin_lock(&root->fs_info->ordered_extent_lock);
3311
3312 list_splice_init(&root->fs_info->ordered_operations, &splice);
3313 while (!list_empty(&splice)) {
3314 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3315 ordered_operations);
3316
3317 list_del_init(&btrfs_inode->ordered_operations);
3318
3319 btrfs_invalidate_inodes(btrfs_inode->root);
3320 }
3321
3322 spin_unlock(&root->fs_info->ordered_extent_lock);
3323 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3324
3325 return 0;
3326}
3327
3328static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3329{
3330 struct list_head splice;
3331 struct btrfs_ordered_extent *ordered;
3332 struct inode *inode;
3333
3334 INIT_LIST_HEAD(&splice);
3335
3336 spin_lock(&root->fs_info->ordered_extent_lock);
3337
3338 list_splice_init(&root->fs_info->ordered_extents, &splice);
3339 while (!list_empty(&splice)) {
3340 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3341 root_extent_list);
3342
3343 list_del_init(&ordered->root_extent_list);
3344 atomic_inc(&ordered->refs);
3345
3346 /* the inode may be getting freed (in sys_unlink path). */
3347 inode = igrab(ordered->inode);
3348
3349 spin_unlock(&root->fs_info->ordered_extent_lock);
3350 if (inode)
3351 iput(inode);
3352
3353 atomic_set(&ordered->refs, 1);
3354 btrfs_put_ordered_extent(ordered);
3355
3356 spin_lock(&root->fs_info->ordered_extent_lock);
3357 }
3358
3359 spin_unlock(&root->fs_info->ordered_extent_lock);
3360
3361 return 0;
3362}
3363
3364static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3365 struct btrfs_root *root)
3366{
3367 struct rb_node *node;
3368 struct btrfs_delayed_ref_root *delayed_refs;
3369 struct btrfs_delayed_ref_node *ref;
3370 int ret = 0;
3371
3372 delayed_refs = &trans->delayed_refs;
3373
3374 spin_lock(&delayed_refs->lock);
3375 if (delayed_refs->num_entries == 0) {
cfece4db 3376 spin_unlock(&delayed_refs->lock);
acce952b 3377 printk(KERN_INFO "delayed_refs has NO entry\n");
3378 return ret;
3379 }
3380
3381 node = rb_first(&delayed_refs->root);
3382 while (node) {
3383 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3384 node = rb_next(node);
3385
3386 ref->in_tree = 0;
3387 rb_erase(&ref->rb_node, &delayed_refs->root);
3388 delayed_refs->num_entries--;
3389
3390 atomic_set(&ref->refs, 1);
3391 if (btrfs_delayed_ref_is_head(ref)) {
3392 struct btrfs_delayed_ref_head *head;
3393
3394 head = btrfs_delayed_node_to_head(ref);
3395 mutex_lock(&head->mutex);
3396 kfree(head->extent_op);
3397 delayed_refs->num_heads--;
3398 if (list_empty(&head->cluster))
3399 delayed_refs->num_heads_ready--;
3400 list_del_init(&head->cluster);
3401 mutex_unlock(&head->mutex);
3402 }
3403
3404 spin_unlock(&delayed_refs->lock);
3405 btrfs_put_delayed_ref(ref);
3406
3407 cond_resched();
3408 spin_lock(&delayed_refs->lock);
3409 }
3410
3411 spin_unlock(&delayed_refs->lock);
3412
3413 return ret;
3414}
3415
3416static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3417{
3418 struct btrfs_pending_snapshot *snapshot;
3419 struct list_head splice;
3420
3421 INIT_LIST_HEAD(&splice);
3422
3423 list_splice_init(&t->pending_snapshots, &splice);
3424
3425 while (!list_empty(&splice)) {
3426 snapshot = list_entry(splice.next,
3427 struct btrfs_pending_snapshot,
3428 list);
3429
3430 list_del_init(&snapshot->list);
3431
3432 kfree(snapshot);
3433 }
3434
3435 return 0;
3436}
3437
3438static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3439{
3440 struct btrfs_inode *btrfs_inode;
3441 struct list_head splice;
3442
3443 INIT_LIST_HEAD(&splice);
3444
acce952b 3445 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3446 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3447
3448 while (!list_empty(&splice)) {
3449 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3450 delalloc_inodes);
3451
3452 list_del_init(&btrfs_inode->delalloc_inodes);
3453
3454 btrfs_invalidate_inodes(btrfs_inode->root);
3455 }
3456
3457 spin_unlock(&root->fs_info->delalloc_lock);
3458
3459 return 0;
3460}
3461
3462static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3463 struct extent_io_tree *dirty_pages,
3464 int mark)
3465{
3466 int ret;
3467 struct page *page;
3468 struct inode *btree_inode = root->fs_info->btree_inode;
3469 struct extent_buffer *eb;
3470 u64 start = 0;
3471 u64 end;
3472 u64 offset;
3473 unsigned long index;
3474
3475 while (1) {
3476 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3477 mark);
3478 if (ret)
3479 break;
3480
3481 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3482 while (start <= end) {
3483 index = start >> PAGE_CACHE_SHIFT;
3484 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3485 page = find_get_page(btree_inode->i_mapping, index);
3486 if (!page)
3487 continue;
3488 offset = page_offset(page);
3489
3490 spin_lock(&dirty_pages->buffer_lock);
3491 eb = radix_tree_lookup(
3492 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3493 offset >> PAGE_CACHE_SHIFT);
3494 spin_unlock(&dirty_pages->buffer_lock);
3495 if (eb) {
3496 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3497 &eb->bflags);
3498 atomic_set(&eb->refs, 1);
3499 }
3500 if (PageWriteback(page))
3501 end_page_writeback(page);
3502
3503 lock_page(page);
3504 if (PageDirty(page)) {
3505 clear_page_dirty_for_io(page);
3506 spin_lock_irq(&page->mapping->tree_lock);
3507 radix_tree_tag_clear(&page->mapping->page_tree,
3508 page_index(page),
3509 PAGECACHE_TAG_DIRTY);
3510 spin_unlock_irq(&page->mapping->tree_lock);
3511 }
3512
3513 page->mapping->a_ops->invalidatepage(page, 0);
3514 unlock_page(page);
3515 }
3516 }
3517
3518 return ret;
3519}
3520
3521static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3522 struct extent_io_tree *pinned_extents)
3523{
3524 struct extent_io_tree *unpin;
3525 u64 start;
3526 u64 end;
3527 int ret;
3528
3529 unpin = pinned_extents;
3530 while (1) {
3531 ret = find_first_extent_bit(unpin, 0, &start, &end,
3532 EXTENT_DIRTY);
3533 if (ret)
3534 break;
3535
3536 /* opt_discard */
5378e607
LD
3537 if (btrfs_test_opt(root, DISCARD))
3538 ret = btrfs_error_discard_extent(root, start,
3539 end + 1 - start,
3540 NULL);
acce952b 3541
3542 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3543 btrfs_error_unpin_extent_range(root, start, end);
3544 cond_resched();
3545 }
3546
3547 return 0;
3548}
3549
3550static int btrfs_cleanup_transaction(struct btrfs_root *root)
3551{
3552 struct btrfs_transaction *t;
3553 LIST_HEAD(list);
3554
3555 WARN_ON(1);
3556
acce952b 3557 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3558
a4abeea4 3559 spin_lock(&root->fs_info->trans_lock);
acce952b 3560 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3561 root->fs_info->trans_no_join = 1;
3562 spin_unlock(&root->fs_info->trans_lock);
3563
acce952b 3564 while (!list_empty(&list)) {
3565 t = list_entry(list.next, struct btrfs_transaction, list);
3566 if (!t)
3567 break;
3568
3569 btrfs_destroy_ordered_operations(root);
3570
3571 btrfs_destroy_ordered_extents(root);
3572
3573 btrfs_destroy_delayed_refs(t, root);
3574
3575 btrfs_block_rsv_release(root,
3576 &root->fs_info->trans_block_rsv,
3577 t->dirty_pages.dirty_bytes);
3578
3579 /* FIXME: cleanup wait for commit */
3580 t->in_commit = 1;
3581 t->blocked = 1;
3582 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3583 wake_up(&root->fs_info->transaction_blocked_wait);
3584
3585 t->blocked = 0;
3586 if (waitqueue_active(&root->fs_info->transaction_wait))
3587 wake_up(&root->fs_info->transaction_wait);
acce952b 3588
acce952b 3589 t->commit_done = 1;
3590 if (waitqueue_active(&t->commit_wait))
3591 wake_up(&t->commit_wait);
acce952b 3592
3593 btrfs_destroy_pending_snapshots(t);
3594
3595 btrfs_destroy_delalloc_inodes(root);
3596
a4abeea4 3597 spin_lock(&root->fs_info->trans_lock);
acce952b 3598 root->fs_info->running_transaction = NULL;
a4abeea4 3599 spin_unlock(&root->fs_info->trans_lock);
acce952b 3600
3601 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3602 EXTENT_DIRTY);
3603
3604 btrfs_destroy_pinned_extent(root,
3605 root->fs_info->pinned_extents);
3606
13c5a93e 3607 atomic_set(&t->use_count, 0);
acce952b 3608 list_del_init(&t->list);
3609 memset(t, 0, sizeof(*t));
3610 kmem_cache_free(btrfs_transaction_cachep, t);
3611 }
3612
a4abeea4
JB
3613 spin_lock(&root->fs_info->trans_lock);
3614 root->fs_info->trans_no_join = 0;
3615 spin_unlock(&root->fs_info->trans_lock);
acce952b 3616 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3617
3618 return 0;
3619}
3620
d1310b2e 3621static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3622 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3623 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3624 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3625 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3626 /* note we're sharing with inode.c for the merge bio hook */
3627 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3628};
This page took 0.479491 seconds and 5 git commands to generate.