Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
fb25e914
JB
63/*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76};
77
ce93ec54
JB
78static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
5d4f98a2
YZ
81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
c682f9b3 83 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
c682f9b3 86 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 99 int level, struct btrfs_key *ins);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
758f2dfc 128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66 235 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 236 start, end, EXTENT_UPTODATE);
11833d66
YZ
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 249 start, end, EXTENT_UPTODATE);
11833d66 250 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 251 start, end, EXTENT_UPTODATE);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
a5ed9182
OS
361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
73fa48b6 399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
bab39bf9 403 struct btrfs_root *extent_root;
e37c9e69 404 struct btrfs_path *path;
5f39d397 405 struct extent_buffer *leaf;
11833d66 406 struct btrfs_key key;
817d52f8 407 u64 total_found = 0;
11833d66
YZ
408 u64 last = 0;
409 u32 nritems;
73fa48b6 410 int ret;
d0bd4560 411 bool wakeup = true;
f510cfec 412
bab39bf9
JB
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
e37c9e69
CM
417 path = btrfs_alloc_path();
418 if (!path)
73fa48b6 419 return -ENOMEM;
7d7d6068 420
817d52f8 421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 422
d0bd4560
JB
423#ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431#endif
5cd57b2c 432 /*
817d52f8
JB
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
5cd57b2c
CM
437 */
438 path->skip_locking = 1;
817d52f8 439 path->search_commit_root = 1;
e4058b54 440 path->reada = READA_FORWARD;
817d52f8 441
e4404d6e 442 key.objectid = last;
e37c9e69 443 key.offset = 0;
11833d66 444 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 445
52ee28d2 446next:
11833d66 447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 448 if (ret < 0)
73fa48b6 449 goto out;
a512bbf8 450
11833d66
YZ
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
d397712b 454 while (1) {
7841cb28 455 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 456 last = (u64)-1;
817d52f8 457 break;
f25784b3 458 }
817d52f8 459
11833d66
YZ
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
e37c9e69 465 break;
817d52f8 466
c9ea7b24 467 if (need_resched() ||
9e351cc8 468 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
469 if (wakeup)
470 caching_ctl->progress = last;
ff5714cc 471 btrfs_release_path(path);
9e351cc8 472 up_read(&fs_info->commit_root_sem);
589d8ade 473 mutex_unlock(&caching_ctl->mutex);
11833d66 474 cond_resched();
73fa48b6
OS
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
589d8ade 478 }
0a3896d0
JB
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
73fa48b6 482 goto out;
0a3896d0
JB
483 if (ret)
484 break;
589d8ade
JB
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
11833d66 488 }
817d52f8 489
52ee28d2
LB
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
d0bd4560
JB
495 if (wakeup)
496 caching_ctl->progress = last;
52ee28d2
LB
497 btrfs_release_path(path);
498 goto next;
499 }
500
11833d66
YZ
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
817d52f8 503 continue;
e37c9e69 504 }
0f9dd46c 505
e37c9e69 506 if (key.objectid >= block_group->key.objectid +
0f9dd46c 507 block_group->key.offset)
e37c9e69 508 break;
7d7d6068 509
3173a18f
JB
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
3173a18f
JB
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
707e8a07 517 fs_info->tree_root->nodesize;
3173a18f
JB
518 else
519 last = key.objectid + key.offset;
817d52f8 520
73fa48b6 521 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 522 total_found = 0;
d0bd4560
JB
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
11833d66 525 }
817d52f8 526 }
e37c9e69
CM
527 path->slots[0]++;
528 }
817d52f8 529 ret = 0;
e37c9e69 530
817d52f8
JB
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
11833d66 534 caching_ctl->progress = (u64)-1;
817d52f8 535
73fa48b6
OS
536out:
537 btrfs_free_path(path);
538 return ret;
539}
540
541static noinline void caching_thread(struct btrfs_work *work)
542{
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
b4570aa9 546 struct btrfs_root *extent_root;
73fa48b6
OS
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
b4570aa9 552 extent_root = fs_info->extent_root;
73fa48b6
OS
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
1e144fb8
OS
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
73fa48b6 561
817d52f8 562 spin_lock(&block_group->lock);
11833d66 563 block_group->caching_ctl = NULL;
73fa48b6 564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 565 spin_unlock(&block_group->lock);
0f9dd46c 566
d0bd4560
JB
567#ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580#endif
581
582 caching_ctl->progress = (u64)-1;
11833d66 583
9e351cc8 584 up_read(&fs_info->commit_root_sem);
73fa48b6 585 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 586 mutex_unlock(&caching_ctl->mutex);
73fa48b6 587
11833d66
YZ
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
11dfe35a 591 btrfs_put_block_group(block_group);
817d52f8
JB
592}
593
9d66e233 594static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 595 int load_cache_only)
817d52f8 596{
291c7d2f 597 DEFINE_WAIT(wait);
11833d66
YZ
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
600 int ret = 0;
601
291c7d2f 602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
603 if (!caching_ctl)
604 return -ENOMEM;
291c7d2f
JB
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
291c7d2f
JB
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
11833d66 646 return 0;
291c7d2f
JB
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
11833d66 652
d53ba474 653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 654 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
291c7d2f 659 cache->caching_ctl = NULL;
9d66e233
JB
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 662 caching_ctl->progress = (u64)-1;
9d66e233 663 } else {
291c7d2f
JB
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 669 cache->has_caching_ctl = 1;
291c7d2f 670 }
9d66e233
JB
671 }
672 spin_unlock(&cache->lock);
d0bd4560
JB
673#ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688#endif
cb83b7b8
JB
689 mutex_unlock(&caching_ctl->mutex);
690
291c7d2f 691 wake_up(&caching_ctl->wait);
3c14874a 692 if (ret == 1) {
291c7d2f 693 put_caching_control(caching_ctl);
3c14874a 694 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 695 return 0;
3c14874a 696 }
291c7d2f
JB
697 } else {
698 /*
1e144fb8
OS
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 708 cache->has_caching_ctl = 1;
291c7d2f
JB
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
9d66e233
JB
712 }
713
291c7d2f
JB
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
11833d66 716 return 0;
817d52f8 717 }
817d52f8 718
9e351cc8 719 down_write(&fs_info->commit_root_sem);
291c7d2f 720 atomic_inc(&caching_ctl->count);
11833d66 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 722 up_write(&fs_info->commit_root_sem);
11833d66 723
11dfe35a 724 btrfs_get_block_group(cache);
11833d66 725
e66f0bb1 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 727
ef8bbdfe 728 return ret;
e37c9e69
CM
729}
730
0f9dd46c
JB
731/*
732 * return the block group that starts at or after bytenr
733 */
d397712b
CM
734static struct btrfs_block_group_cache *
735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 736{
0f9dd46c 737 struct btrfs_block_group_cache *cache;
0ef3e66b 738
0f9dd46c 739 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 740
0f9dd46c 741 return cache;
0ef3e66b
CM
742}
743
0f9dd46c 744/*
9f55684c 745 * return the block group that contains the given bytenr
0f9dd46c 746 */
d397712b
CM
747struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
be744175 750{
0f9dd46c 751 struct btrfs_block_group_cache *cache;
be744175 752
0f9dd46c 753 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 754
0f9dd46c 755 return cache;
be744175 756}
0b86a832 757
0f9dd46c
JB
758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
6324fbf3 760{
0f9dd46c 761 struct list_head *head = &info->space_info;
0f9dd46c 762 struct btrfs_space_info *found;
4184ea7f 763
52ba6929 764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 765
4184ea7f
CM
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
67377734 768 if (found->flags & flags) {
4184ea7f 769 rcu_read_unlock();
0f9dd46c 770 return found;
4184ea7f 771 }
0f9dd46c 772 }
4184ea7f 773 rcu_read_unlock();
0f9dd46c 774 return NULL;
6324fbf3
CM
775}
776
4184ea7f
CM
777/*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782{
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790}
791
1a4ed8fd
FM
792/* simple helper to search for an existing data extent at a given offset */
793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
794{
795 int ret;
796 struct btrfs_key key;
31840ae1 797 struct btrfs_path *path;
e02119d5 798
31840ae1 799 path = btrfs_alloc_path();
d8926bb3
MF
800 if (!path)
801 return -ENOMEM;
802
e02119d5
CM
803 key.objectid = start;
804 key.offset = len;
3173a18f 805 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
31840ae1 808 btrfs_free_path(path);
7bb86316
CM
809 return ret;
810}
811
a22285a6 812/*
3173a18f 813 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
3173a18f 823 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
824{
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
3173a18f
JB
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 841 offset = root->nodesize;
3173a18f
JB
842 metadata = 0;
843 }
844
a22285a6
YZ
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
a22285a6
YZ
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
639eefc8
FDBM
853
854search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
a22285a6
YZ
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
3173a18f 867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 874 key.offset == root->nodesize)
74be9510
FDBM
875 ret = 0;
876 }
3173a18f
JB
877 }
878
a22285a6
YZ
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896#else
897 BUG();
898#endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
b3b4aa74 918 btrfs_release_path(path);
a22285a6 919
8cc33e5c
DS
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
a22285a6
YZ
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
639eefc8 927 goto search_again;
a22285a6 928 }
d7df2c79 929 spin_lock(&head->lock);
a22285a6
YZ
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
d7df2c79 936 spin_unlock(&head->lock);
a22285a6
YZ
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946out_free:
947 btrfs_free_path(path);
948 return ret;
949}
950
d8d5f3e1
CM
951/*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
5d4f98a2
YZ
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
01327610 983 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
d8d5f3e1
CM
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1013 * - different files inside a single subvolume
d8d5f3e1
CM
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
5d4f98a2 1016 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1017 *
1018 * - Objectid of the subvolume root
d8d5f3e1 1019 * - objectid of the file holding the reference
5d4f98a2
YZ
1020 * - original offset in the file
1021 * - how many bookend extents
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
d8d5f3e1 1025 *
5d4f98a2 1026 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1027 *
5d4f98a2 1028 * - number of pointers in the tree leaf
d8d5f3e1 1029 *
5d4f98a2
YZ
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
d8d5f3e1 1035 *
5d4f98a2 1036 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1037 *
5d4f98a2
YZ
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1040 *
5d4f98a2 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1042 *
5d4f98a2 1043 * Btree extents can be referenced by:
d8d5f3e1 1044 *
5d4f98a2 1045 * - Different subvolumes
d8d5f3e1 1046 *
5d4f98a2
YZ
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
d8d5f3e1 1051 *
5d4f98a2
YZ
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
d8d5f3e1 1055 */
31840ae1 1056
5d4f98a2
YZ
1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
7bb86316 1062{
5d4f98a2
YZ
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
7bb86316 1068 struct btrfs_key key;
5d4f98a2
YZ
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
79787eaa 1088 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
b3b4aa74 1104 btrfs_release_path(path);
5d4f98a2
YZ
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
79787eaa 1114 BUG_ON(ret); /* Corruption */
5d4f98a2 1115
4b90c680 1116 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136}
1137#endif
1138
1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140{
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
14a958e6 1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1147 lenum = cpu_to_le64(owner);
14a958e6 1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1149 lenum = cpu_to_le64(offset);
14a958e6 1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153}
1154
1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157{
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161}
1162
1163static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166{
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172}
1173
1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180{
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
31840ae1 1183 struct extent_buffer *leaf;
5d4f98a2 1184 u32 nritems;
74493f7a 1185 int ret;
5d4f98a2
YZ
1186 int recow;
1187 int err = -ENOENT;
74493f7a 1188
31840ae1 1189 key.objectid = bytenr;
5d4f98a2
YZ
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
31840ae1 1205
5d4f98a2
YZ
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1211 btrfs_release_path(path);
5d4f98a2
YZ
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219#endif
1220 goto fail;
31840ae1
ZY
1221 }
1222
1223 leaf = path->nodes[0];
5d4f98a2
YZ
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
b3b4aa74 1249 btrfs_release_path(path);
5d4f98a2
YZ
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
31840ae1 1256 }
5d4f98a2
YZ
1257fail:
1258 return err;
31840ae1
ZY
1259}
1260
5d4f98a2
YZ
1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
31840ae1
ZY
1267{
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 size;
31840ae1
ZY
1271 u32 num_refs;
1272 int ret;
74493f7a 1273
74493f7a 1274 key.objectid = bytenr;
5d4f98a2
YZ
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
74493f7a 1285
5d4f98a2
YZ
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
31840ae1 1293 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1301 }
5d4f98a2
YZ
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
31840ae1 1316
5d4f98a2
YZ
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1331 }
31840ae1 1332 }
5d4f98a2
YZ
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335fail:
b3b4aa74 1336 btrfs_release_path(path);
7bb86316 1337 return ret;
74493f7a
CM
1338}
1339
5d4f98a2
YZ
1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
fcebe456 1343 int refs_to_drop, int *last_ref)
31840ae1 1344{
5d4f98a2
YZ
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1348 struct extent_buffer *leaf;
5d4f98a2 1349 u32 num_refs = 0;
31840ae1
ZY
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
5d4f98a2
YZ
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369#endif
1370 } else {
1371 BUG();
1372 }
1373
56bec294
CM
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
5d4f98a2 1376
31840ae1
ZY
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
fcebe456 1379 *last_ref = 1;
31840ae1 1380 } else {
5d4f98a2
YZ
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392#endif
31840ae1
ZY
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
31840ae1
ZY
1395 return ret;
1396}
1397
9ed0dea0 1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1399 struct btrfs_extent_inline_ref *iref)
15916de8 1400{
5d4f98a2
YZ
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1432#endif
5d4f98a2
YZ
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437}
15916de8 1438
5d4f98a2
YZ
1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1f3c79a2 1444{
5d4f98a2 1445 struct btrfs_key key;
1f3c79a2 1446 int ret;
1f3c79a2 1447
5d4f98a2
YZ
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1f3c79a2
LH
1455 }
1456
5d4f98a2
YZ
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
b3b4aa74 1462 btrfs_release_path(path);
5d4f98a2
YZ
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1f3c79a2 1468#endif
5d4f98a2 1469 return ret;
1f3c79a2
LH
1470}
1471
5d4f98a2
YZ
1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
31840ae1 1477{
5d4f98a2 1478 struct btrfs_key key;
31840ae1 1479 int ret;
31840ae1 1480
5d4f98a2
YZ
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1491 btrfs_release_path(path);
31840ae1
ZY
1492 return ret;
1493}
1494
5d4f98a2 1495static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1496{
5d4f98a2
YZ
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
31840ae1 1510}
56bec294 1511
2c47e605
YZ
1512static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
56bec294 1514
02217ed2 1515{
2c47e605 1516 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1517 if (!path->nodes[level])
1518 break;
5d4f98a2
YZ
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531}
037e6390 1532
5d4f98a2
YZ
1533/*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546static noinline_for_stack
1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554{
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
3173a18f
JB
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
26b8003f 1570
db94535d 1571 key.objectid = bytenr;
31840ae1 1572 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1573 key.offset = num_bytes;
31840ae1 1574
5d4f98a2
YZ
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1578 path->keep_locks = 1;
5d4f98a2
YZ
1579 } else
1580 extra_size = -1;
3173a18f
JB
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591again:
5d4f98a2 1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1593 if (ret < 0) {
5d4f98a2
YZ
1594 err = ret;
1595 goto out;
1596 }
3173a18f
JB
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
9ce49a0b 1614 key.objectid = bytenr;
3173a18f
JB
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
79787eaa
JM
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
fae7f21c 1625 } else if (WARN_ON(ret)) {
492104c8 1626 err = -EIO;
492104c8 1627 goto out;
79787eaa 1628 }
5d4f98a2
YZ
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647#endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
5d4f98a2
YZ
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
3173a18f 1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
5d4f98a2
YZ
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
2c47e605
YZ
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
85d4198e 1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728out:
85d4198e 1729 if (insert) {
5d4f98a2
YZ
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734}
1735
1736/*
1737 * helper to add new inline back ref
1738 */
1739static noinline_for_stack
fd279fae 1740void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1746{
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
5d4f98a2
YZ
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
4b90c680 1763 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1798}
1799
1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806{
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
54aa1f4d 1813 return ret;
5d4f98a2 1814
b3b4aa74 1815 btrfs_release_path(path);
5d4f98a2
YZ
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
b9473439 1824 }
5d4f98a2
YZ
1825 return ret;
1826}
31840ae1 1827
5d4f98a2
YZ
1828/*
1829 * helper to update/remove inline back ref
1830 */
1831static noinline_for_stack
afe5fea7 1832void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
fcebe456
JB
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
5d4f98a2
YZ
1838{
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
5d4f98a2
YZ
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
56bec294 1870 }
31840ae1 1871
5d4f98a2
YZ
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
afe5fea7 1890 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1893}
1894
1895static noinline_for_stack
1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903{
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1912 update_inline_extent_backref(root, path, iref,
fcebe456 1913 refs_to_add, extent_op, NULL);
5d4f98a2 1914 } else if (ret == -ENOENT) {
fd279fae 1915 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
771ed689 1919 }
5d4f98a2
YZ
1920 return ret;
1921}
31840ae1 1922
5d4f98a2
YZ
1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928{
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940}
56bec294 1941
5d4f98a2
YZ
1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
fcebe456 1946 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1947{
143bede5 1948 int ret = 0;
b9473439 1949
5d4f98a2
YZ
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
afe5fea7 1952 update_inline_extent_backref(root, path, iref,
fcebe456 1953 -refs_to_drop, NULL, last_ref);
5d4f98a2 1954 } else if (is_data) {
fcebe456
JB
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
5d4f98a2 1957 } else {
fcebe456 1958 *last_ref = 1;
5d4f98a2
YZ
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962}
1963
86557861 1964#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
5d4f98a2 1967{
86557861
JM
1968 int j, ret = 0;
1969 u64 bytes_left, end;
4d89d377 1970 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1971
4d89d377
JM
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
d04c6b88 1977
4d89d377 1978 *discarded_bytes = 0;
86557861
JM
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2030 GFP_NOFS, 0);
2031 if (!ret)
86557861 2032 *discarded_bytes += bytes_left;
4d89d377 2033 }
d04c6b88 2034 return ret;
5d4f98a2 2035}
5d4f98a2 2036
1edb647b
FM
2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2039{
5d4f98a2 2040 int ret;
5378e607 2041 u64 discarded_bytes = 0;
a1d3c478 2042 struct btrfs_bio *bbio = NULL;
5d4f98a2 2043
e244a0ae 2044
2999241d
FM
2045 /*
2046 * Avoid races with device replace and make sure our bbio has devices
2047 * associated to its stripes that don't go away while we are discarding.
2048 */
2049 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2050 /* Tell the block device(s) that the sectors can be discarded */
b3d3fa51 2051 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
a1d3c478 2052 bytenr, &num_bytes, &bbio, 0);
79787eaa 2053 /* Error condition is -ENOMEM */
5d4f98a2 2054 if (!ret) {
a1d3c478 2055 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2056 int i;
2057
5d4f98a2 2058
a1d3c478 2059 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2060 u64 bytes;
d5e2003c
JB
2061 if (!stripe->dev->can_discard)
2062 continue;
2063
5378e607
LD
2064 ret = btrfs_issue_discard(stripe->dev->bdev,
2065 stripe->physical,
d04c6b88
JM
2066 stripe->length,
2067 &bytes);
5378e607 2068 if (!ret)
d04c6b88 2069 discarded_bytes += bytes;
5378e607 2070 else if (ret != -EOPNOTSUPP)
79787eaa 2071 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2072
2073 /*
2074 * Just in case we get back EOPNOTSUPP for some reason,
2075 * just ignore the return value so we don't screw up
2076 * people calling discard_extent.
2077 */
2078 ret = 0;
5d4f98a2 2079 }
6e9606d2 2080 btrfs_put_bbio(bbio);
5d4f98a2 2081 }
2999241d 2082 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2083
2084 if (actual_bytes)
2085 *actual_bytes = discarded_bytes;
2086
5d4f98a2 2087
53b381b3
DW
2088 if (ret == -EOPNOTSUPP)
2089 ret = 0;
5d4f98a2 2090 return ret;
5d4f98a2
YZ
2091}
2092
79787eaa 2093/* Can return -ENOMEM */
5d4f98a2
YZ
2094int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *root,
2096 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2097 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2098{
2099 int ret;
66d7e7f0
AJ
2100 struct btrfs_fs_info *fs_info = root->fs_info;
2101
5d4f98a2
YZ
2102 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104
2105 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2106 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107 num_bytes,
5d4f98a2 2108 parent, root_objectid, (int)owner,
b06c4bf5 2109 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2110 } else {
66d7e7f0 2111 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2112 num_bytes, parent, root_objectid,
2113 owner, offset, 0,
b06c4bf5 2114 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2115 }
2116 return ret;
2117}
2118
2119static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
c682f9b3 2121 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2122 u64 parent, u64 root_objectid,
2123 u64 owner, u64 offset, int refs_to_add,
2124 struct btrfs_delayed_extent_op *extent_op)
2125{
fcebe456 2126 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2127 struct btrfs_path *path;
2128 struct extent_buffer *leaf;
2129 struct btrfs_extent_item *item;
fcebe456 2130 struct btrfs_key key;
c682f9b3
QW
2131 u64 bytenr = node->bytenr;
2132 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2133 u64 refs;
2134 int ret;
5d4f98a2
YZ
2135
2136 path = btrfs_alloc_path();
2137 if (!path)
2138 return -ENOMEM;
2139
e4058b54 2140 path->reada = READA_FORWARD;
5d4f98a2
YZ
2141 path->leave_spinning = 1;
2142 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2143 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144 bytenr, num_bytes, parent,
5d4f98a2
YZ
2145 root_objectid, owner, offset,
2146 refs_to_add, extent_op);
0ed4792a 2147 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2148 goto out;
fcebe456
JB
2149
2150 /*
2151 * Ok we had -EAGAIN which means we didn't have space to insert and
2152 * inline extent ref, so just update the reference count and add a
2153 * normal backref.
2154 */
5d4f98a2 2155 leaf = path->nodes[0];
fcebe456 2156 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2157 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158 refs = btrfs_extent_refs(leaf, item);
2159 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160 if (extent_op)
2161 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2162
5d4f98a2 2163 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2164 btrfs_release_path(path);
56bec294 2165
e4058b54 2166 path->reada = READA_FORWARD;
b9473439 2167 path->leave_spinning = 1;
56bec294
CM
2168 /* now insert the actual backref */
2169 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2170 path, bytenr, parent, root_objectid,
2171 owner, offset, refs_to_add);
79787eaa
JM
2172 if (ret)
2173 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2174out:
56bec294 2175 btrfs_free_path(path);
30d133fc 2176 return ret;
56bec294
CM
2177}
2178
5d4f98a2
YZ
2179static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root,
2181 struct btrfs_delayed_ref_node *node,
2182 struct btrfs_delayed_extent_op *extent_op,
2183 int insert_reserved)
56bec294 2184{
5d4f98a2
YZ
2185 int ret = 0;
2186 struct btrfs_delayed_data_ref *ref;
2187 struct btrfs_key ins;
2188 u64 parent = 0;
2189 u64 ref_root = 0;
2190 u64 flags = 0;
2191
2192 ins.objectid = node->bytenr;
2193 ins.offset = node->num_bytes;
2194 ins.type = BTRFS_EXTENT_ITEM_KEY;
2195
2196 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2197 trace_run_delayed_data_ref(node, ref, node->action);
2198
5d4f98a2
YZ
2199 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200 parent = ref->parent;
fcebe456 2201 ref_root = ref->root;
5d4f98a2
YZ
2202
2203 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2204 if (extent_op)
5d4f98a2 2205 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2206 ret = alloc_reserved_file_extent(trans, root,
2207 parent, ref_root, flags,
2208 ref->objectid, ref->offset,
2209 &ins, node->ref_mod);
5d4f98a2 2210 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2211 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2212 ref_root, ref->objectid,
2213 ref->offset, node->ref_mod,
c682f9b3 2214 extent_op);
5d4f98a2 2215 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2216 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2217 ref_root, ref->objectid,
2218 ref->offset, node->ref_mod,
c682f9b3 2219 extent_op);
5d4f98a2
YZ
2220 } else {
2221 BUG();
2222 }
2223 return ret;
2224}
2225
2226static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227 struct extent_buffer *leaf,
2228 struct btrfs_extent_item *ei)
2229{
2230 u64 flags = btrfs_extent_flags(leaf, ei);
2231 if (extent_op->update_flags) {
2232 flags |= extent_op->flags_to_set;
2233 btrfs_set_extent_flags(leaf, ei, flags);
2234 }
2235
2236 if (extent_op->update_key) {
2237 struct btrfs_tree_block_info *bi;
2238 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239 bi = (struct btrfs_tree_block_info *)(ei + 1);
2240 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241 }
2242}
2243
2244static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op)
2248{
2249 struct btrfs_key key;
2250 struct btrfs_path *path;
2251 struct btrfs_extent_item *ei;
2252 struct extent_buffer *leaf;
2253 u32 item_size;
56bec294 2254 int ret;
5d4f98a2 2255 int err = 0;
b1c79e09 2256 int metadata = !extent_op->is_data;
5d4f98a2 2257
79787eaa
JM
2258 if (trans->aborted)
2259 return 0;
2260
3173a18f
JB
2261 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262 metadata = 0;
2263
5d4f98a2
YZ
2264 path = btrfs_alloc_path();
2265 if (!path)
2266 return -ENOMEM;
2267
2268 key.objectid = node->bytenr;
5d4f98a2 2269
3173a18f 2270 if (metadata) {
3173a18f 2271 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2272 key.offset = extent_op->level;
3173a18f
JB
2273 } else {
2274 key.type = BTRFS_EXTENT_ITEM_KEY;
2275 key.offset = node->num_bytes;
2276 }
2277
2278again:
e4058b54 2279 path->reada = READA_FORWARD;
5d4f98a2
YZ
2280 path->leave_spinning = 1;
2281 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282 path, 0, 1);
2283 if (ret < 0) {
2284 err = ret;
2285 goto out;
2286 }
2287 if (ret > 0) {
3173a18f 2288 if (metadata) {
55994887
FDBM
2289 if (path->slots[0] > 0) {
2290 path->slots[0]--;
2291 btrfs_item_key_to_cpu(path->nodes[0], &key,
2292 path->slots[0]);
2293 if (key.objectid == node->bytenr &&
2294 key.type == BTRFS_EXTENT_ITEM_KEY &&
2295 key.offset == node->num_bytes)
2296 ret = 0;
2297 }
2298 if (ret > 0) {
2299 btrfs_release_path(path);
2300 metadata = 0;
3173a18f 2301
55994887
FDBM
2302 key.objectid = node->bytenr;
2303 key.offset = node->num_bytes;
2304 key.type = BTRFS_EXTENT_ITEM_KEY;
2305 goto again;
2306 }
2307 } else {
2308 err = -EIO;
2309 goto out;
3173a18f 2310 }
5d4f98a2
YZ
2311 }
2312
2313 leaf = path->nodes[0];
2314 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316 if (item_size < sizeof(*ei)) {
2317 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318 path, (u64)-1, 0);
2319 if (ret < 0) {
2320 err = ret;
2321 goto out;
2322 }
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 }
2326#endif
2327 BUG_ON(item_size < sizeof(*ei));
2328 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2330
5d4f98a2
YZ
2331 btrfs_mark_buffer_dirty(leaf);
2332out:
2333 btrfs_free_path(path);
2334 return err;
56bec294
CM
2335}
2336
5d4f98a2
YZ
2337static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338 struct btrfs_root *root,
2339 struct btrfs_delayed_ref_node *node,
2340 struct btrfs_delayed_extent_op *extent_op,
2341 int insert_reserved)
56bec294
CM
2342{
2343 int ret = 0;
5d4f98a2
YZ
2344 struct btrfs_delayed_tree_ref *ref;
2345 struct btrfs_key ins;
2346 u64 parent = 0;
2347 u64 ref_root = 0;
3173a18f
JB
2348 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349 SKINNY_METADATA);
56bec294 2350
5d4f98a2 2351 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2352 trace_run_delayed_tree_ref(node, ref, node->action);
2353
5d4f98a2
YZ
2354 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355 parent = ref->parent;
fcebe456 2356 ref_root = ref->root;
5d4f98a2 2357
3173a18f
JB
2358 ins.objectid = node->bytenr;
2359 if (skinny_metadata) {
2360 ins.offset = ref->level;
2361 ins.type = BTRFS_METADATA_ITEM_KEY;
2362 } else {
2363 ins.offset = node->num_bytes;
2364 ins.type = BTRFS_EXTENT_ITEM_KEY;
2365 }
2366
5d4f98a2
YZ
2367 BUG_ON(node->ref_mod != 1);
2368 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2369 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2370 ret = alloc_reserved_tree_block(trans, root,
2371 parent, ref_root,
2372 extent_op->flags_to_set,
2373 &extent_op->key,
b06c4bf5 2374 ref->level, &ins);
5d4f98a2 2375 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2376 ret = __btrfs_inc_extent_ref(trans, root, node,
2377 parent, ref_root,
2378 ref->level, 0, 1,
fcebe456 2379 extent_op);
5d4f98a2 2380 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2381 ret = __btrfs_free_extent(trans, root, node,
2382 parent, ref_root,
2383 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2384 } else {
2385 BUG();
2386 }
56bec294
CM
2387 return ret;
2388}
2389
2390/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2391static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 struct btrfs_delayed_ref_node *node,
2394 struct btrfs_delayed_extent_op *extent_op,
2395 int insert_reserved)
56bec294 2396{
79787eaa
JM
2397 int ret = 0;
2398
857cc2fc
JB
2399 if (trans->aborted) {
2400 if (insert_reserved)
2401 btrfs_pin_extent(root, node->bytenr,
2402 node->num_bytes, 1);
79787eaa 2403 return 0;
857cc2fc 2404 }
79787eaa 2405
5d4f98a2 2406 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2407 struct btrfs_delayed_ref_head *head;
2408 /*
2409 * we've hit the end of the chain and we were supposed
2410 * to insert this extent into the tree. But, it got
2411 * deleted before we ever needed to insert it, so all
2412 * we have to do is clean up the accounting
2413 */
5d4f98a2
YZ
2414 BUG_ON(extent_op);
2415 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2416 trace_run_delayed_ref_head(node, head, node->action);
2417
56bec294 2418 if (insert_reserved) {
f0486c68
YZ
2419 btrfs_pin_extent(root, node->bytenr,
2420 node->num_bytes, 1);
5d4f98a2
YZ
2421 if (head->is_data) {
2422 ret = btrfs_del_csums(trans, root,
2423 node->bytenr,
2424 node->num_bytes);
5d4f98a2 2425 }
56bec294 2426 }
297d750b
QW
2427
2428 /* Also free its reserved qgroup space */
2429 btrfs_qgroup_free_delayed_ref(root->fs_info,
2430 head->qgroup_ref_root,
2431 head->qgroup_reserved);
79787eaa 2432 return ret;
56bec294
CM
2433 }
2434
5d4f98a2
YZ
2435 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438 insert_reserved);
2439 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441 ret = run_delayed_data_ref(trans, root, node, extent_op,
2442 insert_reserved);
2443 else
2444 BUG();
2445 return ret;
56bec294
CM
2446}
2447
c6fc2454 2448static inline struct btrfs_delayed_ref_node *
56bec294
CM
2449select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450{
cffc3374
FM
2451 struct btrfs_delayed_ref_node *ref;
2452
c6fc2454
QW
2453 if (list_empty(&head->ref_list))
2454 return NULL;
d7df2c79 2455
cffc3374
FM
2456 /*
2457 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458 * This is to prevent a ref count from going down to zero, which deletes
2459 * the extent item from the extent tree, when there still are references
2460 * to add, which would fail because they would not find the extent item.
2461 */
2462 list_for_each_entry(ref, &head->ref_list, list) {
2463 if (ref->action == BTRFS_ADD_DELAYED_REF)
2464 return ref;
2465 }
2466
c6fc2454
QW
2467 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468 list);
56bec294
CM
2469}
2470
79787eaa
JM
2471/*
2472 * Returns 0 on success or if called with an already aborted transaction.
2473 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474 */
d7df2c79
JB
2475static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476 struct btrfs_root *root,
2477 unsigned long nr)
56bec294 2478{
56bec294
CM
2479 struct btrfs_delayed_ref_root *delayed_refs;
2480 struct btrfs_delayed_ref_node *ref;
2481 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2482 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2483 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2484 ktime_t start = ktime_get();
56bec294 2485 int ret;
d7df2c79 2486 unsigned long count = 0;
0a2b2a84 2487 unsigned long actual_count = 0;
56bec294 2488 int must_insert_reserved = 0;
56bec294
CM
2489
2490 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2491 while (1) {
2492 if (!locked_ref) {
d7df2c79 2493 if (count >= nr)
56bec294 2494 break;
56bec294 2495
d7df2c79
JB
2496 spin_lock(&delayed_refs->lock);
2497 locked_ref = btrfs_select_ref_head(trans);
2498 if (!locked_ref) {
2499 spin_unlock(&delayed_refs->lock);
2500 break;
2501 }
c3e69d58
CM
2502
2503 /* grab the lock that says we are going to process
2504 * all the refs for this head */
2505 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2506 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2507 /*
2508 * we may have dropped the spin lock to get the head
2509 * mutex lock, and that might have given someone else
2510 * time to free the head. If that's true, it has been
2511 * removed from our list and we can move on.
2512 */
2513 if (ret == -EAGAIN) {
2514 locked_ref = NULL;
2515 count++;
2516 continue;
56bec294
CM
2517 }
2518 }
a28ec197 2519
2c3cf7d5
FM
2520 /*
2521 * We need to try and merge add/drops of the same ref since we
2522 * can run into issues with relocate dropping the implicit ref
2523 * and then it being added back again before the drop can
2524 * finish. If we merged anything we need to re-loop so we can
2525 * get a good ref.
2526 * Or we can get node references of the same type that weren't
2527 * merged when created due to bumps in the tree mod seq, and
2528 * we need to merge them to prevent adding an inline extent
2529 * backref before dropping it (triggering a BUG_ON at
2530 * insert_inline_extent_backref()).
2531 */
d7df2c79 2532 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2533 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534 locked_ref);
ae1e206b 2535
d1270cd9
AJ
2536 /*
2537 * locked_ref is the head node, so we have to go one
2538 * node back for any delayed ref updates
2539 */
2540 ref = select_delayed_ref(locked_ref);
2541
2542 if (ref && ref->seq &&
097b8a7c 2543 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2544 spin_unlock(&locked_ref->lock);
093486c4 2545 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2546 spin_lock(&delayed_refs->lock);
2547 locked_ref->processing = 0;
d1270cd9
AJ
2548 delayed_refs->num_heads_ready++;
2549 spin_unlock(&delayed_refs->lock);
d7df2c79 2550 locked_ref = NULL;
d1270cd9 2551 cond_resched();
27a377db 2552 count++;
d1270cd9
AJ
2553 continue;
2554 }
2555
56bec294
CM
2556 /*
2557 * record the must insert reserved flag before we
2558 * drop the spin lock.
2559 */
2560 must_insert_reserved = locked_ref->must_insert_reserved;
2561 locked_ref->must_insert_reserved = 0;
7bb86316 2562
5d4f98a2
YZ
2563 extent_op = locked_ref->extent_op;
2564 locked_ref->extent_op = NULL;
2565
56bec294 2566 if (!ref) {
d7df2c79
JB
2567
2568
56bec294
CM
2569 /* All delayed refs have been processed, Go ahead
2570 * and send the head node to run_one_delayed_ref,
2571 * so that any accounting fixes can happen
2572 */
2573 ref = &locked_ref->node;
5d4f98a2
YZ
2574
2575 if (extent_op && must_insert_reserved) {
78a6184a 2576 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2577 extent_op = NULL;
2578 }
2579
2580 if (extent_op) {
d7df2c79 2581 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2582 ret = run_delayed_extent_op(trans, root,
2583 ref, extent_op);
78a6184a 2584 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2585
79787eaa 2586 if (ret) {
857cc2fc
JB
2587 /*
2588 * Need to reset must_insert_reserved if
2589 * there was an error so the abort stuff
2590 * can cleanup the reserved space
2591 * properly.
2592 */
2593 if (must_insert_reserved)
2594 locked_ref->must_insert_reserved = 1;
d7df2c79 2595 locked_ref->processing = 0;
c2cf52eb 2596 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2597 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2598 return ret;
2599 }
d7df2c79 2600 continue;
5d4f98a2 2601 }
02217ed2 2602
d7df2c79 2603 /*
01327610 2604 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
c6fc2454 2611 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2612 locked_ref->extent_op) {
d7df2c79
JB
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
c46effa6
LB
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
d7df2c79
JB
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
0a2b2a84 2623 actual_count++;
d7df2c79 2624 ref->in_tree = 0;
c6fc2454 2625 list_del(&ref->list);
c46effa6 2626 }
d7df2c79
JB
2627 atomic_dec(&delayed_refs->num_entries);
2628
093486c4 2629 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2630 /*
2631 * when we play the delayed ref, also correct the
2632 * ref_mod on head
2633 */
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2638 break;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2641 break;
2642 default:
2643 WARN_ON(1);
2644 }
2645 }
d7df2c79 2646 spin_unlock(&locked_ref->lock);
925baedd 2647
5d4f98a2 2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2649 must_insert_reserved);
eb099670 2650
78a6184a 2651 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2652 if (ret) {
d7df2c79 2653 locked_ref->processing = 0;
093486c4
MX
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
c2cf52eb 2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2657 return ret;
2658 }
2659
093486c4
MX
2660 /*
2661 * If this node is a head, that means all the refs in this head
2662 * have been dealt with, and we will pick the next head to deal
2663 * with, so we must unlock the head and drop it from the cluster
2664 * list before we release it.
2665 */
2666 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2667 if (locked_ref->is_data &&
2668 locked_ref->total_ref_mod < 0) {
2669 spin_lock(&delayed_refs->lock);
2670 delayed_refs->pending_csums -= ref->num_bytes;
2671 spin_unlock(&delayed_refs->lock);
2672 }
093486c4
MX
2673 btrfs_delayed_ref_unlock(locked_ref);
2674 locked_ref = NULL;
2675 }
2676 btrfs_put_delayed_ref(ref);
2677 count++;
c3e69d58 2678 cond_resched();
c3e69d58 2679 }
0a2b2a84
JB
2680
2681 /*
2682 * We don't want to include ref heads since we can have empty ref heads
2683 * and those will drastically skew our runtime down since we just do
2684 * accounting, no actual extent tree updates.
2685 */
2686 if (actual_count > 0) {
2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 u64 avg;
2689
2690 /*
2691 * We weigh the current average higher than our current runtime
2692 * to avoid large swings in the average.
2693 */
2694 spin_lock(&delayed_refs->lock);
2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2697 spin_unlock(&delayed_refs->lock);
2698 }
d7df2c79 2699 return 0;
c3e69d58
CM
2700}
2701
709c0486
AJ
2702#ifdef SCRAMBLE_DELAYED_REFS
2703/*
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2707 */
2708static u64 find_middle(struct rb_root *root)
2709{
2710 struct rb_node *n = root->rb_node;
2711 struct btrfs_delayed_ref_node *entry;
2712 int alt = 1;
2713 u64 middle;
2714 u64 first = 0, last = 0;
2715
2716 n = rb_first(root);
2717 if (n) {
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 first = entry->bytenr;
2720 }
2721 n = rb_last(root);
2722 if (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 last = entry->bytenr;
2725 }
2726 n = root->rb_node;
2727
2728 while (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 WARN_ON(!entry->in_tree);
2731
2732 middle = entry->bytenr;
2733
2734 if (alt)
2735 n = n->rb_left;
2736 else
2737 n = n->rb_right;
2738
2739 alt = 1 - alt;
2740 }
2741 return middle;
2742}
2743#endif
2744
1be41b78
JB
2745static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746{
2747 u64 num_bytes;
2748
2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 sizeof(struct btrfs_extent_inline_ref));
2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754 /*
2755 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2756 * closer to what we're really going to want to use.
1be41b78 2757 */
f8c269d7 2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2759}
2760
1262133b
JB
2761/*
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2764 */
28f75a0e 2765u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2766{
2767 u64 csum_size;
2768 u64 num_csums_per_leaf;
2769 u64 num_csums;
2770
2771 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772 num_csums_per_leaf = div64_u64(csum_size,
2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 num_csums += num_csums_per_leaf - 1;
2776 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 return num_csums;
2778}
2779
0a2b2a84 2780int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2781 struct btrfs_root *root)
2782{
2783 struct btrfs_block_rsv *global_rsv;
2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2788 int ret = 0;
2789
2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 num_heads = heads_to_leaves(root, num_heads);
2792 if (num_heads > 1)
707e8a07 2793 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2794 num_bytes <<= 1;
28f75a0e 2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 num_dirty_bgs);
1be41b78
JB
2798 global_rsv = &root->fs_info->global_block_rsv;
2799
2800 /*
2801 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 * wiggle room since running delayed refs can create more delayed refs.
2803 */
cb723e49
JB
2804 if (global_rsv->space_info->full) {
2805 num_dirty_bgs_bytes <<= 1;
1be41b78 2806 num_bytes <<= 1;
cb723e49 2807 }
1be41b78
JB
2808
2809 spin_lock(&global_rsv->lock);
cb723e49 2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2811 ret = 1;
2812 spin_unlock(&global_rsv->lock);
2813 return ret;
2814}
2815
0a2b2a84
JB
2816int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root)
2818{
2819 struct btrfs_fs_info *fs_info = root->fs_info;
2820 u64 num_entries =
2821 atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 u64 avg_runtime;
a79b7d4b 2823 u64 val;
0a2b2a84
JB
2824
2825 smp_mb();
2826 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2827 val = num_entries * avg_runtime;
0a2b2a84
JB
2828 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 return 1;
a79b7d4b
CM
2830 if (val >= NSEC_PER_SEC / 2)
2831 return 2;
0a2b2a84
JB
2832
2833 return btrfs_check_space_for_delayed_refs(trans, root);
2834}
2835
a79b7d4b
CM
2836struct async_delayed_refs {
2837 struct btrfs_root *root;
31b9655f 2838 u64 transid;
a79b7d4b
CM
2839 int count;
2840 int error;
2841 int sync;
2842 struct completion wait;
2843 struct btrfs_work work;
2844};
2845
2846static void delayed_ref_async_start(struct btrfs_work *work)
2847{
2848 struct async_delayed_refs *async;
2849 struct btrfs_trans_handle *trans;
2850 int ret;
2851
2852 async = container_of(work, struct async_delayed_refs, work);
2853
0f873eca
CM
2854 /* if the commit is already started, we don't need to wait here */
2855 if (btrfs_transaction_blocked(async->root->fs_info))
31b9655f 2856 goto done;
31b9655f 2857
0f873eca
CM
2858 trans = btrfs_join_transaction(async->root);
2859 if (IS_ERR(trans)) {
2860 async->error = PTR_ERR(trans);
a79b7d4b
CM
2861 goto done;
2862 }
2863
2864 /*
01327610 2865 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2866 * wait on delayed refs
2867 */
2868 trans->sync = true;
0f873eca
CM
2869
2870 /* Don't bother flushing if we got into a different transaction */
2871 if (trans->transid > async->transid)
2872 goto end;
2873
a79b7d4b
CM
2874 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2875 if (ret)
2876 async->error = ret;
0f873eca 2877end:
a79b7d4b
CM
2878 ret = btrfs_end_transaction(trans, async->root);
2879 if (ret && !async->error)
2880 async->error = ret;
2881done:
2882 if (async->sync)
2883 complete(&async->wait);
2884 else
2885 kfree(async);
2886}
2887
2888int btrfs_async_run_delayed_refs(struct btrfs_root *root,
31b9655f 2889 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2890{
2891 struct async_delayed_refs *async;
2892 int ret;
2893
2894 async = kmalloc(sizeof(*async), GFP_NOFS);
2895 if (!async)
2896 return -ENOMEM;
2897
2898 async->root = root->fs_info->tree_root;
2899 async->count = count;
2900 async->error = 0;
31b9655f 2901 async->transid = transid;
a79b7d4b
CM
2902 if (wait)
2903 async->sync = 1;
2904 else
2905 async->sync = 0;
2906 init_completion(&async->wait);
2907
9e0af237
LB
2908 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2910
2911 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2912
2913 if (wait) {
2914 wait_for_completion(&async->wait);
2915 ret = async->error;
2916 kfree(async);
2917 return ret;
2918 }
2919 return 0;
2920}
2921
c3e69d58
CM
2922/*
2923 * this starts processing the delayed reference count updates and
2924 * extent insertions we have queued up so far. count can be
2925 * 0, which means to process everything in the tree at the start
2926 * of the run (but not newly added entries), or it can be some target
2927 * number you'd like to process.
79787eaa
JM
2928 *
2929 * Returns 0 on success or if called with an aborted transaction
2930 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2931 */
2932int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root, unsigned long count)
2934{
2935 struct rb_node *node;
2936 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2937 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2938 int ret;
2939 int run_all = count == (unsigned long)-1;
d9a0540a 2940 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2941
79787eaa
JM
2942 /* We'll clean this up in btrfs_cleanup_transaction */
2943 if (trans->aborted)
2944 return 0;
2945
511711af
CM
2946 if (root->fs_info->creating_free_space_tree)
2947 return 0;
2948
c3e69d58
CM
2949 if (root == root->fs_info->extent_root)
2950 root = root->fs_info->tree_root;
2951
2952 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2953 if (count == 0)
d7df2c79 2954 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2955
c3e69d58 2956again:
709c0486
AJ
2957#ifdef SCRAMBLE_DELAYED_REFS
2958 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2959#endif
d9a0540a 2960 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2961 ret = __btrfs_run_delayed_refs(trans, root, count);
2962 if (ret < 0) {
2963 btrfs_abort_transaction(trans, root, ret);
2964 return ret;
eb099670 2965 }
c3e69d58 2966
56bec294 2967 if (run_all) {
d7df2c79 2968 if (!list_empty(&trans->new_bgs))
ea658bad 2969 btrfs_create_pending_block_groups(trans, root);
ea658bad 2970
d7df2c79 2971 spin_lock(&delayed_refs->lock);
c46effa6 2972 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2973 if (!node) {
2974 spin_unlock(&delayed_refs->lock);
56bec294 2975 goto out;
d7df2c79 2976 }
c3e69d58 2977 count = (unsigned long)-1;
e9d0b13b 2978
56bec294 2979 while (node) {
c46effa6
LB
2980 head = rb_entry(node, struct btrfs_delayed_ref_head,
2981 href_node);
2982 if (btrfs_delayed_ref_is_head(&head->node)) {
2983 struct btrfs_delayed_ref_node *ref;
5caf2a00 2984
c46effa6 2985 ref = &head->node;
56bec294
CM
2986 atomic_inc(&ref->refs);
2987
2988 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2989 /*
2990 * Mutex was contended, block until it's
2991 * released and try again
2992 */
56bec294
CM
2993 mutex_lock(&head->mutex);
2994 mutex_unlock(&head->mutex);
2995
2996 btrfs_put_delayed_ref(ref);
1887be66 2997 cond_resched();
56bec294 2998 goto again;
c46effa6
LB
2999 } else {
3000 WARN_ON(1);
56bec294
CM
3001 }
3002 node = rb_next(node);
3003 }
3004 spin_unlock(&delayed_refs->lock);
d7df2c79 3005 cond_resched();
56bec294 3006 goto again;
5f39d397 3007 }
54aa1f4d 3008out:
edf39272 3009 assert_qgroups_uptodate(trans);
d9a0540a 3010 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3011 return 0;
3012}
3013
5d4f98a2
YZ
3014int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015 struct btrfs_root *root,
3016 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3017 int level, int is_data)
5d4f98a2
YZ
3018{
3019 struct btrfs_delayed_extent_op *extent_op;
3020 int ret;
3021
78a6184a 3022 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3023 if (!extent_op)
3024 return -ENOMEM;
3025
3026 extent_op->flags_to_set = flags;
35b3ad50
DS
3027 extent_op->update_flags = true;
3028 extent_op->update_key = false;
3029 extent_op->is_data = is_data ? true : false;
b1c79e09 3030 extent_op->level = level;
5d4f98a2 3031
66d7e7f0
AJ
3032 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033 num_bytes, extent_op);
5d4f98a2 3034 if (ret)
78a6184a 3035 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3036 return ret;
3037}
3038
3039static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root,
3041 struct btrfs_path *path,
3042 u64 objectid, u64 offset, u64 bytenr)
3043{
3044 struct btrfs_delayed_ref_head *head;
3045 struct btrfs_delayed_ref_node *ref;
3046 struct btrfs_delayed_data_ref *data_ref;
3047 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3048 int ret = 0;
3049
5d4f98a2
YZ
3050 delayed_refs = &trans->transaction->delayed_refs;
3051 spin_lock(&delayed_refs->lock);
3052 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3053 if (!head) {
3054 spin_unlock(&delayed_refs->lock);
3055 return 0;
3056 }
5d4f98a2
YZ
3057
3058 if (!mutex_trylock(&head->mutex)) {
3059 atomic_inc(&head->node.refs);
3060 spin_unlock(&delayed_refs->lock);
3061
b3b4aa74 3062 btrfs_release_path(path);
5d4f98a2 3063
8cc33e5c
DS
3064 /*
3065 * Mutex was contended, block until it's released and let
3066 * caller try again
3067 */
5d4f98a2
YZ
3068 mutex_lock(&head->mutex);
3069 mutex_unlock(&head->mutex);
3070 btrfs_put_delayed_ref(&head->node);
3071 return -EAGAIN;
3072 }
d7df2c79 3073 spin_unlock(&delayed_refs->lock);
5d4f98a2 3074
d7df2c79 3075 spin_lock(&head->lock);
c6fc2454 3076 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3077 /* If it's a shared ref we know a cross reference exists */
3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 ret = 1;
3080 break;
3081 }
5d4f98a2 3082
d7df2c79 3083 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3084
d7df2c79
JB
3085 /*
3086 * If our ref doesn't match the one we're currently looking at
3087 * then we have a cross reference.
3088 */
3089 if (data_ref->root != root->root_key.objectid ||
3090 data_ref->objectid != objectid ||
3091 data_ref->offset != offset) {
3092 ret = 1;
3093 break;
3094 }
5d4f98a2 3095 }
d7df2c79 3096 spin_unlock(&head->lock);
5d4f98a2 3097 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3098 return ret;
3099}
3100
3101static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct btrfs_path *path,
3104 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3105{
3106 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3107 struct extent_buffer *leaf;
5d4f98a2
YZ
3108 struct btrfs_extent_data_ref *ref;
3109 struct btrfs_extent_inline_ref *iref;
3110 struct btrfs_extent_item *ei;
f321e491 3111 struct btrfs_key key;
5d4f98a2 3112 u32 item_size;
be20aa9d 3113 int ret;
925baedd 3114
be20aa9d 3115 key.objectid = bytenr;
31840ae1 3116 key.offset = (u64)-1;
f321e491 3117 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3118
be20aa9d
CM
3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 if (ret < 0)
3121 goto out;
79787eaa 3122 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3123
3124 ret = -ENOENT;
3125 if (path->slots[0] == 0)
31840ae1 3126 goto out;
be20aa9d 3127
31840ae1 3128 path->slots[0]--;
f321e491 3129 leaf = path->nodes[0];
5d4f98a2 3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3131
5d4f98a2 3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3133 goto out;
f321e491 3134
5d4f98a2
YZ
3135 ret = 1;
3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 if (item_size < sizeof(*ei)) {
3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 goto out;
3141 }
3142#endif
3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3144
5d4f98a2
YZ
3145 if (item_size != sizeof(*ei) +
3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 goto out;
be20aa9d 3148
5d4f98a2
YZ
3149 if (btrfs_extent_generation(leaf, ei) <=
3150 btrfs_root_last_snapshot(&root->root_item))
3151 goto out;
3152
3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 BTRFS_EXTENT_DATA_REF_KEY)
3156 goto out;
3157
3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 if (btrfs_extent_refs(leaf, ei) !=
3160 btrfs_extent_data_ref_count(leaf, ref) ||
3161 btrfs_extent_data_ref_root(leaf, ref) !=
3162 root->root_key.objectid ||
3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 goto out;
3166
3167 ret = 0;
3168out:
3169 return ret;
3170}
3171
3172int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 u64 objectid, u64 offset, u64 bytenr)
3175{
3176 struct btrfs_path *path;
3177 int ret;
3178 int ret2;
3179
3180 path = btrfs_alloc_path();
3181 if (!path)
3182 return -ENOENT;
3183
3184 do {
3185 ret = check_committed_ref(trans, root, path, objectid,
3186 offset, bytenr);
3187 if (ret && ret != -ENOENT)
f321e491 3188 goto out;
80ff3856 3189
5d4f98a2
YZ
3190 ret2 = check_delayed_ref(trans, root, path, objectid,
3191 offset, bytenr);
3192 } while (ret2 == -EAGAIN);
3193
3194 if (ret2 && ret2 != -ENOENT) {
3195 ret = ret2;
3196 goto out;
f321e491 3197 }
5d4f98a2
YZ
3198
3199 if (ret != -ENOENT || ret2 != -ENOENT)
3200 ret = 0;
be20aa9d 3201out:
80ff3856 3202 btrfs_free_path(path);
f0486c68
YZ
3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204 WARN_ON(ret > 0);
f321e491 3205 return ret;
be20aa9d 3206}
c5739bba 3207
5d4f98a2 3208static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3209 struct btrfs_root *root,
5d4f98a2 3210 struct extent_buffer *buf,
e339a6b0 3211 int full_backref, int inc)
31840ae1
ZY
3212{
3213 u64 bytenr;
5d4f98a2
YZ
3214 u64 num_bytes;
3215 u64 parent;
31840ae1 3216 u64 ref_root;
31840ae1 3217 u32 nritems;
31840ae1
ZY
3218 struct btrfs_key key;
3219 struct btrfs_file_extent_item *fi;
3220 int i;
3221 int level;
3222 int ret = 0;
31840ae1 3223 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3224 u64, u64, u64, u64, u64, u64);
31840ae1 3225
fccb84c9
DS
3226
3227 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3228 return 0;
fccb84c9 3229
31840ae1 3230 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3231 nritems = btrfs_header_nritems(buf);
3232 level = btrfs_header_level(buf);
3233
27cdeb70 3234 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3235 return 0;
31840ae1 3236
5d4f98a2
YZ
3237 if (inc)
3238 process_func = btrfs_inc_extent_ref;
3239 else
3240 process_func = btrfs_free_extent;
31840ae1 3241
5d4f98a2
YZ
3242 if (full_backref)
3243 parent = buf->start;
3244 else
3245 parent = 0;
3246
3247 for (i = 0; i < nritems; i++) {
31840ae1 3248 if (level == 0) {
5d4f98a2 3249 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3250 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3251 continue;
5d4f98a2 3252 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3253 struct btrfs_file_extent_item);
3254 if (btrfs_file_extent_type(buf, fi) ==
3255 BTRFS_FILE_EXTENT_INLINE)
3256 continue;
3257 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258 if (bytenr == 0)
3259 continue;
5d4f98a2
YZ
3260
3261 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3262 key.offset -= btrfs_file_extent_offset(buf, fi);
3263 ret = process_func(trans, root, bytenr, num_bytes,
3264 parent, ref_root, key.objectid,
b06c4bf5 3265 key.offset);
31840ae1
ZY
3266 if (ret)
3267 goto fail;
3268 } else {
5d4f98a2 3269 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3270 num_bytes = root->nodesize;
5d4f98a2 3271 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3272 parent, ref_root, level - 1, 0);
31840ae1
ZY
3273 if (ret)
3274 goto fail;
3275 }
3276 }
3277 return 0;
3278fail:
5d4f98a2
YZ
3279 return ret;
3280}
3281
3282int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3283 struct extent_buffer *buf, int full_backref)
5d4f98a2 3284{
e339a6b0 3285 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3286}
3287
3288int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3289 struct extent_buffer *buf, int full_backref)
5d4f98a2 3290{
e339a6b0 3291 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3292}
3293
9078a3e1
CM
3294static int write_one_cache_group(struct btrfs_trans_handle *trans,
3295 struct btrfs_root *root,
3296 struct btrfs_path *path,
3297 struct btrfs_block_group_cache *cache)
3298{
3299 int ret;
9078a3e1 3300 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3301 unsigned long bi;
3302 struct extent_buffer *leaf;
9078a3e1 3303
9078a3e1 3304 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3305 if (ret) {
3306 if (ret > 0)
3307 ret = -ENOENT;
54aa1f4d 3308 goto fail;
df95e7f0 3309 }
5f39d397
CM
3310
3311 leaf = path->nodes[0];
3312 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3313 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3314 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3315fail:
24b89d08 3316 btrfs_release_path(path);
df95e7f0 3317 return ret;
9078a3e1
CM
3318
3319}
3320
4a8c9a62
YZ
3321static struct btrfs_block_group_cache *
3322next_block_group(struct btrfs_root *root,
3323 struct btrfs_block_group_cache *cache)
3324{
3325 struct rb_node *node;
292cbd51 3326
4a8c9a62 3327 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3328
3329 /* If our block group was removed, we need a full search. */
3330 if (RB_EMPTY_NODE(&cache->cache_node)) {
3331 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3332
3333 spin_unlock(&root->fs_info->block_group_cache_lock);
3334 btrfs_put_block_group(cache);
3335 cache = btrfs_lookup_first_block_group(root->fs_info,
3336 next_bytenr);
3337 return cache;
3338 }
4a8c9a62
YZ
3339 node = rb_next(&cache->cache_node);
3340 btrfs_put_block_group(cache);
3341 if (node) {
3342 cache = rb_entry(node, struct btrfs_block_group_cache,
3343 cache_node);
11dfe35a 3344 btrfs_get_block_group(cache);
4a8c9a62
YZ
3345 } else
3346 cache = NULL;
3347 spin_unlock(&root->fs_info->block_group_cache_lock);
3348 return cache;
3349}
3350
0af3d00b
JB
3351static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352 struct btrfs_trans_handle *trans,
3353 struct btrfs_path *path)
3354{
3355 struct btrfs_root *root = block_group->fs_info->tree_root;
3356 struct inode *inode = NULL;
3357 u64 alloc_hint = 0;
2b20982e 3358 int dcs = BTRFS_DC_ERROR;
f8c269d7 3359 u64 num_pages = 0;
0af3d00b
JB
3360 int retries = 0;
3361 int ret = 0;
3362
3363 /*
3364 * If this block group is smaller than 100 megs don't bother caching the
3365 * block group.
3366 */
ee22184b 3367 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3368 spin_lock(&block_group->lock);
3369 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 spin_unlock(&block_group->lock);
3371 return 0;
3372 }
3373
0c0ef4bc
JB
3374 if (trans->aborted)
3375 return 0;
0af3d00b
JB
3376again:
3377 inode = lookup_free_space_inode(root, block_group, path);
3378 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 ret = PTR_ERR(inode);
b3b4aa74 3380 btrfs_release_path(path);
0af3d00b
JB
3381 goto out;
3382 }
3383
3384 if (IS_ERR(inode)) {
3385 BUG_ON(retries);
3386 retries++;
3387
3388 if (block_group->ro)
3389 goto out_free;
3390
3391 ret = create_free_space_inode(root, trans, block_group, path);
3392 if (ret)
3393 goto out_free;
3394 goto again;
3395 }
3396
5b0e95bf
JB
3397 /* We've already setup this transaction, go ahead and exit */
3398 if (block_group->cache_generation == trans->transid &&
3399 i_size_read(inode)) {
3400 dcs = BTRFS_DC_SETUP;
3401 goto out_put;
3402 }
3403
0af3d00b
JB
3404 /*
3405 * We want to set the generation to 0, that way if anything goes wrong
3406 * from here on out we know not to trust this cache when we load up next
3407 * time.
3408 */
3409 BTRFS_I(inode)->generation = 0;
3410 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3411 if (ret) {
3412 /*
3413 * So theoretically we could recover from this, simply set the
3414 * super cache generation to 0 so we know to invalidate the
3415 * cache, but then we'd have to keep track of the block groups
3416 * that fail this way so we know we _have_ to reset this cache
3417 * before the next commit or risk reading stale cache. So to
3418 * limit our exposure to horrible edge cases lets just abort the
3419 * transaction, this only happens in really bad situations
3420 * anyway.
3421 */
3422 btrfs_abort_transaction(trans, root, ret);
3423 goto out_put;
3424 }
0af3d00b
JB
3425 WARN_ON(ret);
3426
3427 if (i_size_read(inode) > 0) {
7b61cd92
MX
3428 ret = btrfs_check_trunc_cache_free_space(root,
3429 &root->fs_info->global_block_rsv);
3430 if (ret)
3431 goto out_put;
3432
1bbc621e 3433 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3434 if (ret)
3435 goto out_put;
3436 }
3437
3438 spin_lock(&block_group->lock);
cf7c1ef6 3439 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3440 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3441 /*
3442 * don't bother trying to write stuff out _if_
3443 * a) we're not cached,
3444 * b) we're with nospace_cache mount option.
3445 */
2b20982e 3446 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3447 spin_unlock(&block_group->lock);
3448 goto out_put;
3449 }
3450 spin_unlock(&block_group->lock);
3451
2968b1f4
JB
3452 /*
3453 * We hit an ENOSPC when setting up the cache in this transaction, just
3454 * skip doing the setup, we've already cleared the cache so we're safe.
3455 */
3456 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3457 ret = -ENOSPC;
3458 goto out_put;
3459 }
3460
6fc823b1
JB
3461 /*
3462 * Try to preallocate enough space based on how big the block group is.
3463 * Keep in mind this has to include any pinned space which could end up
3464 * taking up quite a bit since it's not folded into the other space
3465 * cache.
3466 */
ee22184b 3467 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3468 if (!num_pages)
3469 num_pages = 1;
3470
0af3d00b 3471 num_pages *= 16;
09cbfeaf 3472 num_pages *= PAGE_SIZE;
0af3d00b 3473
7cf5b976 3474 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3475 if (ret)
3476 goto out_put;
3477
3478 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3479 num_pages, num_pages,
3480 &alloc_hint);
2968b1f4
JB
3481 /*
3482 * Our cache requires contiguous chunks so that we don't modify a bunch
3483 * of metadata or split extents when writing the cache out, which means
3484 * we can enospc if we are heavily fragmented in addition to just normal
3485 * out of space conditions. So if we hit this just skip setting up any
3486 * other block groups for this transaction, maybe we'll unpin enough
3487 * space the next time around.
3488 */
2b20982e
JB
3489 if (!ret)
3490 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3491 else if (ret == -ENOSPC)
3492 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3493 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3494
0af3d00b
JB
3495out_put:
3496 iput(inode);
3497out_free:
b3b4aa74 3498 btrfs_release_path(path);
0af3d00b
JB
3499out:
3500 spin_lock(&block_group->lock);
e65cbb94 3501 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3502 block_group->cache_generation = trans->transid;
2b20982e 3503 block_group->disk_cache_state = dcs;
0af3d00b
JB
3504 spin_unlock(&block_group->lock);
3505
3506 return ret;
3507}
3508
dcdf7f6d
JB
3509int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root)
3511{
3512 struct btrfs_block_group_cache *cache, *tmp;
3513 struct btrfs_transaction *cur_trans = trans->transaction;
3514 struct btrfs_path *path;
3515
3516 if (list_empty(&cur_trans->dirty_bgs) ||
3517 !btrfs_test_opt(root, SPACE_CACHE))
3518 return 0;
3519
3520 path = btrfs_alloc_path();
3521 if (!path)
3522 return -ENOMEM;
3523
3524 /* Could add new block groups, use _safe just in case */
3525 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3526 dirty_list) {
3527 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3528 cache_save_setup(cache, trans, path);
3529 }
3530
3531 btrfs_free_path(path);
3532 return 0;
3533}
3534
1bbc621e
CM
3535/*
3536 * transaction commit does final block group cache writeback during a
3537 * critical section where nothing is allowed to change the FS. This is
3538 * required in order for the cache to actually match the block group,
3539 * but can introduce a lot of latency into the commit.
3540 *
3541 * So, btrfs_start_dirty_block_groups is here to kick off block group
3542 * cache IO. There's a chance we'll have to redo some of it if the
3543 * block group changes again during the commit, but it greatly reduces
3544 * the commit latency by getting rid of the easy block groups while
3545 * we're still allowing others to join the commit.
3546 */
3547int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3548 struct btrfs_root *root)
9078a3e1 3549{
4a8c9a62 3550 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3551 struct btrfs_transaction *cur_trans = trans->transaction;
3552 int ret = 0;
c9dc4c65 3553 int should_put;
1bbc621e
CM
3554 struct btrfs_path *path = NULL;
3555 LIST_HEAD(dirty);
3556 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3557 int num_started = 0;
1bbc621e
CM
3558 int loops = 0;
3559
3560 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3561 if (list_empty(&cur_trans->dirty_bgs)) {
3562 spin_unlock(&cur_trans->dirty_bgs_lock);
3563 return 0;
1bbc621e 3564 }
b58d1a9e 3565 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3566 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3567
1bbc621e 3568again:
1bbc621e
CM
3569 /*
3570 * make sure all the block groups on our dirty list actually
3571 * exist
3572 */
3573 btrfs_create_pending_block_groups(trans, root);
3574
3575 if (!path) {
3576 path = btrfs_alloc_path();
3577 if (!path)
3578 return -ENOMEM;
3579 }
3580
b58d1a9e
FM
3581 /*
3582 * cache_write_mutex is here only to save us from balance or automatic
3583 * removal of empty block groups deleting this block group while we are
3584 * writing out the cache
3585 */
3586 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3587 while (!list_empty(&dirty)) {
3588 cache = list_first_entry(&dirty,
3589 struct btrfs_block_group_cache,
3590 dirty_list);
1bbc621e
CM
3591 /*
3592 * this can happen if something re-dirties a block
3593 * group that is already under IO. Just wait for it to
3594 * finish and then do it all again
3595 */
3596 if (!list_empty(&cache->io_list)) {
3597 list_del_init(&cache->io_list);
3598 btrfs_wait_cache_io(root, trans, cache,
3599 &cache->io_ctl, path,
3600 cache->key.objectid);
3601 btrfs_put_block_group(cache);
3602 }
3603
3604
3605 /*
3606 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3607 * if it should update the cache_state. Don't delete
3608 * until after we wait.
3609 *
3610 * Since we're not running in the commit critical section
3611 * we need the dirty_bgs_lock to protect from update_block_group
3612 */
3613 spin_lock(&cur_trans->dirty_bgs_lock);
3614 list_del_init(&cache->dirty_list);
3615 spin_unlock(&cur_trans->dirty_bgs_lock);
3616
3617 should_put = 1;
3618
3619 cache_save_setup(cache, trans, path);
3620
3621 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3622 cache->io_ctl.inode = NULL;
3623 ret = btrfs_write_out_cache(root, trans, cache, path);
3624 if (ret == 0 && cache->io_ctl.inode) {
3625 num_started++;
3626 should_put = 0;
3627
3628 /*
3629 * the cache_write_mutex is protecting
3630 * the io_list
3631 */
3632 list_add_tail(&cache->io_list, io);
3633 } else {
3634 /*
3635 * if we failed to write the cache, the
3636 * generation will be bad and life goes on
3637 */
3638 ret = 0;
3639 }
3640 }
ff1f8250 3641 if (!ret) {
1bbc621e 3642 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3643 /*
3644 * Our block group might still be attached to the list
3645 * of new block groups in the transaction handle of some
3646 * other task (struct btrfs_trans_handle->new_bgs). This
3647 * means its block group item isn't yet in the extent
3648 * tree. If this happens ignore the error, as we will
3649 * try again later in the critical section of the
3650 * transaction commit.
3651 */
3652 if (ret == -ENOENT) {
3653 ret = 0;
3654 spin_lock(&cur_trans->dirty_bgs_lock);
3655 if (list_empty(&cache->dirty_list)) {
3656 list_add_tail(&cache->dirty_list,
3657 &cur_trans->dirty_bgs);
3658 btrfs_get_block_group(cache);
3659 }
3660 spin_unlock(&cur_trans->dirty_bgs_lock);
3661 } else if (ret) {
3662 btrfs_abort_transaction(trans, root, ret);
3663 }
3664 }
1bbc621e
CM
3665
3666 /* if its not on the io list, we need to put the block group */
3667 if (should_put)
3668 btrfs_put_block_group(cache);
3669
3670 if (ret)
3671 break;
b58d1a9e
FM
3672
3673 /*
3674 * Avoid blocking other tasks for too long. It might even save
3675 * us from writing caches for block groups that are going to be
3676 * removed.
3677 */
3678 mutex_unlock(&trans->transaction->cache_write_mutex);
3679 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3680 }
b58d1a9e 3681 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3682
3683 /*
3684 * go through delayed refs for all the stuff we've just kicked off
3685 * and then loop back (just once)
3686 */
3687 ret = btrfs_run_delayed_refs(trans, root, 0);
3688 if (!ret && loops == 0) {
3689 loops++;
3690 spin_lock(&cur_trans->dirty_bgs_lock);
3691 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3692 /*
3693 * dirty_bgs_lock protects us from concurrent block group
3694 * deletes too (not just cache_write_mutex).
3695 */
3696 if (!list_empty(&dirty)) {
3697 spin_unlock(&cur_trans->dirty_bgs_lock);
3698 goto again;
3699 }
1bbc621e 3700 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3701 }
3702
3703 btrfs_free_path(path);
3704 return ret;
3705}
3706
3707int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3708 struct btrfs_root *root)
3709{
3710 struct btrfs_block_group_cache *cache;
3711 struct btrfs_transaction *cur_trans = trans->transaction;
3712 int ret = 0;
3713 int should_put;
3714 struct btrfs_path *path;
3715 struct list_head *io = &cur_trans->io_bgs;
3716 int num_started = 0;
9078a3e1
CM
3717
3718 path = btrfs_alloc_path();
3719 if (!path)
3720 return -ENOMEM;
3721
ce93ec54 3722 /*
e44081ef
FM
3723 * Even though we are in the critical section of the transaction commit,
3724 * we can still have concurrent tasks adding elements to this
3725 * transaction's list of dirty block groups. These tasks correspond to
3726 * endio free space workers started when writeback finishes for a
3727 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3728 * allocate new block groups as a result of COWing nodes of the root
3729 * tree when updating the free space inode. The writeback for the space
3730 * caches is triggered by an earlier call to
3731 * btrfs_start_dirty_block_groups() and iterations of the following
3732 * loop.
3733 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3734 * delayed refs to make sure we have the best chance at doing this all
3735 * in one shot.
3736 */
e44081ef 3737 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3738 while (!list_empty(&cur_trans->dirty_bgs)) {
3739 cache = list_first_entry(&cur_trans->dirty_bgs,
3740 struct btrfs_block_group_cache,
3741 dirty_list);
c9dc4c65
CM
3742
3743 /*
3744 * this can happen if cache_save_setup re-dirties a block
3745 * group that is already under IO. Just wait for it to
3746 * finish and then do it all again
3747 */
3748 if (!list_empty(&cache->io_list)) {
e44081ef 3749 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3750 list_del_init(&cache->io_list);
3751 btrfs_wait_cache_io(root, trans, cache,
3752 &cache->io_ctl, path,
3753 cache->key.objectid);
3754 btrfs_put_block_group(cache);
e44081ef 3755 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3756 }
3757
1bbc621e
CM
3758 /*
3759 * don't remove from the dirty list until after we've waited
3760 * on any pending IO
3761 */
ce93ec54 3762 list_del_init(&cache->dirty_list);
e44081ef 3763 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3764 should_put = 1;
3765
1bbc621e 3766 cache_save_setup(cache, trans, path);
c9dc4c65 3767
ce93ec54 3768 if (!ret)
c9dc4c65
CM
3769 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3770
3771 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3772 cache->io_ctl.inode = NULL;
3773 ret = btrfs_write_out_cache(root, trans, cache, path);
3774 if (ret == 0 && cache->io_ctl.inode) {
3775 num_started++;
3776 should_put = 0;
1bbc621e 3777 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3778 } else {
3779 /*
3780 * if we failed to write the cache, the
3781 * generation will be bad and life goes on
3782 */
3783 ret = 0;
3784 }
3785 }
ff1f8250 3786 if (!ret) {
ce93ec54 3787 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3788 /*
3789 * One of the free space endio workers might have
3790 * created a new block group while updating a free space
3791 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3792 * and hasn't released its transaction handle yet, in
3793 * which case the new block group is still attached to
3794 * its transaction handle and its creation has not
3795 * finished yet (no block group item in the extent tree
3796 * yet, etc). If this is the case, wait for all free
3797 * space endio workers to finish and retry. This is a
3798 * a very rare case so no need for a more efficient and
3799 * complex approach.
3800 */
3801 if (ret == -ENOENT) {
3802 wait_event(cur_trans->writer_wait,
3803 atomic_read(&cur_trans->num_writers) == 1);
3804 ret = write_one_cache_group(trans, root, path,
3805 cache);
3806 }
ff1f8250
FM
3807 if (ret)
3808 btrfs_abort_transaction(trans, root, ret);
3809 }
c9dc4c65
CM
3810
3811 /* if its not on the io list, we need to put the block group */
3812 if (should_put)
3813 btrfs_put_block_group(cache);
e44081ef 3814 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3815 }
e44081ef 3816 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3817
1bbc621e
CM
3818 while (!list_empty(io)) {
3819 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3820 io_list);
3821 list_del_init(&cache->io_list);
c9dc4c65
CM
3822 btrfs_wait_cache_io(root, trans, cache,
3823 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3824 btrfs_put_block_group(cache);
3825 }
3826
9078a3e1 3827 btrfs_free_path(path);
ce93ec54 3828 return ret;
9078a3e1
CM
3829}
3830
d2fb3437
YZ
3831int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3832{
3833 struct btrfs_block_group_cache *block_group;
3834 int readonly = 0;
3835
3836 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3837 if (!block_group || block_group->ro)
3838 readonly = 1;
3839 if (block_group)
fa9c0d79 3840 btrfs_put_block_group(block_group);
d2fb3437
YZ
3841 return readonly;
3842}
3843
f78c436c
FM
3844bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3845{
3846 struct btrfs_block_group_cache *bg;
3847 bool ret = true;
3848
3849 bg = btrfs_lookup_block_group(fs_info, bytenr);
3850 if (!bg)
3851 return false;
3852
3853 spin_lock(&bg->lock);
3854 if (bg->ro)
3855 ret = false;
3856 else
3857 atomic_inc(&bg->nocow_writers);
3858 spin_unlock(&bg->lock);
3859
3860 /* no put on block group, done by btrfs_dec_nocow_writers */
3861 if (!ret)
3862 btrfs_put_block_group(bg);
3863
3864 return ret;
3865
3866}
3867
3868void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3869{
3870 struct btrfs_block_group_cache *bg;
3871
3872 bg = btrfs_lookup_block_group(fs_info, bytenr);
3873 ASSERT(bg);
3874 if (atomic_dec_and_test(&bg->nocow_writers))
3875 wake_up_atomic_t(&bg->nocow_writers);
3876 /*
3877 * Once for our lookup and once for the lookup done by a previous call
3878 * to btrfs_inc_nocow_writers()
3879 */
3880 btrfs_put_block_group(bg);
3881 btrfs_put_block_group(bg);
3882}
3883
3884static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3885{
3886 schedule();
3887 return 0;
3888}
3889
3890void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3891{
3892 wait_on_atomic_t(&bg->nocow_writers,
3893 btrfs_wait_nocow_writers_atomic_t,
3894 TASK_UNINTERRUPTIBLE);
3895}
3896
6ab0a202
JM
3897static const char *alloc_name(u64 flags)
3898{
3899 switch (flags) {
3900 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3901 return "mixed";
3902 case BTRFS_BLOCK_GROUP_METADATA:
3903 return "metadata";
3904 case BTRFS_BLOCK_GROUP_DATA:
3905 return "data";
3906 case BTRFS_BLOCK_GROUP_SYSTEM:
3907 return "system";
3908 default:
3909 WARN_ON(1);
3910 return "invalid-combination";
3911 };
3912}
3913
593060d7
CM
3914static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3915 u64 total_bytes, u64 bytes_used,
3916 struct btrfs_space_info **space_info)
3917{
3918 struct btrfs_space_info *found;
b742bb82
YZ
3919 int i;
3920 int factor;
b150a4f1 3921 int ret;
b742bb82
YZ
3922
3923 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3924 BTRFS_BLOCK_GROUP_RAID10))
3925 factor = 2;
3926 else
3927 factor = 1;
593060d7
CM
3928
3929 found = __find_space_info(info, flags);
3930 if (found) {
25179201 3931 spin_lock(&found->lock);
593060d7 3932 found->total_bytes += total_bytes;
89a55897 3933 found->disk_total += total_bytes * factor;
593060d7 3934 found->bytes_used += bytes_used;
b742bb82 3935 found->disk_used += bytes_used * factor;
2e6e5183
FM
3936 if (total_bytes > 0)
3937 found->full = 0;
25179201 3938 spin_unlock(&found->lock);
593060d7
CM
3939 *space_info = found;
3940 return 0;
3941 }
c146afad 3942 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3943 if (!found)
3944 return -ENOMEM;
3945
908c7f19 3946 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3947 if (ret) {
3948 kfree(found);
3949 return ret;
3950 }
3951
c1895442 3952 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3953 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3954 init_rwsem(&found->groups_sem);
0f9dd46c 3955 spin_lock_init(&found->lock);
52ba6929 3956 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3957 found->total_bytes = total_bytes;
89a55897 3958 found->disk_total = total_bytes * factor;
593060d7 3959 found->bytes_used = bytes_used;
b742bb82 3960 found->disk_used = bytes_used * factor;
593060d7 3961 found->bytes_pinned = 0;
e8569813 3962 found->bytes_reserved = 0;
c146afad 3963 found->bytes_readonly = 0;
f0486c68 3964 found->bytes_may_use = 0;
6af3e3ad 3965 found->full = 0;
4f4db217 3966 found->max_extent_size = 0;
0e4f8f88 3967 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3968 found->chunk_alloc = 0;
fdb5effd
JB
3969 found->flush = 0;
3970 init_waitqueue_head(&found->wait);
633c0aad 3971 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3972
3973 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3974 info->space_info_kobj, "%s",
3975 alloc_name(found->flags));
3976 if (ret) {
3977 kfree(found);
3978 return ret;
3979 }
3980
593060d7 3981 *space_info = found;
4184ea7f 3982 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3983 if (flags & BTRFS_BLOCK_GROUP_DATA)
3984 info->data_sinfo = found;
6ab0a202
JM
3985
3986 return ret;
593060d7
CM
3987}
3988
8790d502
CM
3989static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3990{
899c81ea
ID
3991 u64 extra_flags = chunk_to_extended(flags) &
3992 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3993
de98ced9 3994 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3995 if (flags & BTRFS_BLOCK_GROUP_DATA)
3996 fs_info->avail_data_alloc_bits |= extra_flags;
3997 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3998 fs_info->avail_metadata_alloc_bits |= extra_flags;
3999 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4000 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4001 write_sequnlock(&fs_info->profiles_lock);
8790d502 4002}
593060d7 4003
fc67c450
ID
4004/*
4005 * returns target flags in extended format or 0 if restripe for this
4006 * chunk_type is not in progress
c6664b42
ID
4007 *
4008 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4009 */
4010static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4011{
4012 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4013 u64 target = 0;
4014
fc67c450
ID
4015 if (!bctl)
4016 return 0;
4017
4018 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4019 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4020 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4021 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4022 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4023 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4024 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4025 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4026 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4027 }
4028
4029 return target;
4030}
4031
a46d11a8
ID
4032/*
4033 * @flags: available profiles in extended format (see ctree.h)
4034 *
e4d8ec0f
ID
4035 * Returns reduced profile in chunk format. If profile changing is in
4036 * progress (either running or paused) picks the target profile (if it's
4037 * already available), otherwise falls back to plain reducing.
a46d11a8 4038 */
48a3b636 4039static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4040{
95669976 4041 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4042 u64 target;
9c170b26
ZL
4043 u64 raid_type;
4044 u64 allowed = 0;
a061fc8d 4045
fc67c450
ID
4046 /*
4047 * see if restripe for this chunk_type is in progress, if so
4048 * try to reduce to the target profile
4049 */
e4d8ec0f 4050 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4051 target = get_restripe_target(root->fs_info, flags);
4052 if (target) {
4053 /* pick target profile only if it's already available */
4054 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4055 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4056 return extended_to_chunk(target);
e4d8ec0f
ID
4057 }
4058 }
4059 spin_unlock(&root->fs_info->balance_lock);
4060
53b381b3 4061 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4062 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4063 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4064 allowed |= btrfs_raid_group[raid_type];
4065 }
4066 allowed &= flags;
4067
4068 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4069 allowed = BTRFS_BLOCK_GROUP_RAID6;
4070 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4071 allowed = BTRFS_BLOCK_GROUP_RAID5;
4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4073 allowed = BTRFS_BLOCK_GROUP_RAID10;
4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4075 allowed = BTRFS_BLOCK_GROUP_RAID1;
4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4077 allowed = BTRFS_BLOCK_GROUP_RAID0;
4078
4079 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4080
4081 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4082}
4083
f8213bdc 4084static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4085{
de98ced9 4086 unsigned seq;
f8213bdc 4087 u64 flags;
de98ced9
MX
4088
4089 do {
f8213bdc 4090 flags = orig_flags;
de98ced9
MX
4091 seq = read_seqbegin(&root->fs_info->profiles_lock);
4092
4093 if (flags & BTRFS_BLOCK_GROUP_DATA)
4094 flags |= root->fs_info->avail_data_alloc_bits;
4095 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4096 flags |= root->fs_info->avail_system_alloc_bits;
4097 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4098 flags |= root->fs_info->avail_metadata_alloc_bits;
4099 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4100
b742bb82 4101 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4102}
4103
6d07bcec 4104u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4105{
b742bb82 4106 u64 flags;
53b381b3 4107 u64 ret;
9ed74f2d 4108
b742bb82
YZ
4109 if (data)
4110 flags = BTRFS_BLOCK_GROUP_DATA;
4111 else if (root == root->fs_info->chunk_root)
4112 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4113 else
b742bb82 4114 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4115
53b381b3
DW
4116 ret = get_alloc_profile(root, flags);
4117 return ret;
6a63209f 4118}
9ed74f2d 4119
4ceff079 4120int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4121{
6a63209f 4122 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4123 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4124 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4125 u64 used;
94b947b2 4126 int ret = 0;
c99f1b0c
ZL
4127 int need_commit = 2;
4128 int have_pinned_space;
6a63209f 4129
6a63209f 4130 /* make sure bytes are sectorsize aligned */
fda2832f 4131 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4132
9dced186 4133 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4134 need_commit = 0;
9dced186 4135 ASSERT(current->journal_info);
0af3d00b
JB
4136 }
4137
b4d7c3c9 4138 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4139 if (!data_sinfo)
4140 goto alloc;
9ed74f2d 4141
6a63209f
JB
4142again:
4143 /* make sure we have enough space to handle the data first */
4144 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4145 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4146 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4147 data_sinfo->bytes_may_use;
ab6e2410
JB
4148
4149 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4150 struct btrfs_trans_handle *trans;
9ed74f2d 4151
6a63209f
JB
4152 /*
4153 * if we don't have enough free bytes in this space then we need
4154 * to alloc a new chunk.
4155 */
b9fd47cd 4156 if (!data_sinfo->full) {
6a63209f 4157 u64 alloc_target;
9ed74f2d 4158
0e4f8f88 4159 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4160 spin_unlock(&data_sinfo->lock);
33b4d47f 4161alloc:
6a63209f 4162 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4163 /*
4164 * It is ugly that we don't call nolock join
4165 * transaction for the free space inode case here.
4166 * But it is safe because we only do the data space
4167 * reservation for the free space cache in the
4168 * transaction context, the common join transaction
4169 * just increase the counter of the current transaction
4170 * handler, doesn't try to acquire the trans_lock of
4171 * the fs.
4172 */
7a7eaa40 4173 trans = btrfs_join_transaction(root);
a22285a6
YZ
4174 if (IS_ERR(trans))
4175 return PTR_ERR(trans);
9ed74f2d 4176
6a63209f 4177 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4178 alloc_target,
4179 CHUNK_ALLOC_NO_FORCE);
6a63209f 4180 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4181 if (ret < 0) {
4182 if (ret != -ENOSPC)
4183 return ret;
c99f1b0c
ZL
4184 else {
4185 have_pinned_space = 1;
d52a5b5f 4186 goto commit_trans;
c99f1b0c 4187 }
d52a5b5f 4188 }
9ed74f2d 4189
b4d7c3c9
LZ
4190 if (!data_sinfo)
4191 data_sinfo = fs_info->data_sinfo;
4192
6a63209f
JB
4193 goto again;
4194 }
f2bb8f5c
JB
4195
4196 /*
b150a4f1 4197 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4198 * allocation, and no removed chunk in current transaction,
4199 * don't bother committing the transaction.
f2bb8f5c 4200 */
c99f1b0c
ZL
4201 have_pinned_space = percpu_counter_compare(
4202 &data_sinfo->total_bytes_pinned,
4203 used + bytes - data_sinfo->total_bytes);
6a63209f 4204 spin_unlock(&data_sinfo->lock);
6a63209f 4205
4e06bdd6 4206 /* commit the current transaction and try again */
d52a5b5f 4207commit_trans:
c99f1b0c 4208 if (need_commit &&
a4abeea4 4209 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4210 need_commit--;
b150a4f1 4211
e1746e83
ZL
4212 if (need_commit > 0) {
4213 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4214 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4215 }
9a4e7276 4216
7a7eaa40 4217 trans = btrfs_join_transaction(root);
a22285a6
YZ
4218 if (IS_ERR(trans))
4219 return PTR_ERR(trans);
c99f1b0c 4220 if (have_pinned_space >= 0 ||
3204d33c
JB
4221 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4222 &trans->transaction->flags) ||
c99f1b0c 4223 need_commit > 0) {
94b947b2
ZL
4224 ret = btrfs_commit_transaction(trans, root);
4225 if (ret)
4226 return ret;
d7c15171 4227 /*
c2d6cb16
FM
4228 * The cleaner kthread might still be doing iput
4229 * operations. Wait for it to finish so that
4230 * more space is released.
d7c15171 4231 */
c2d6cb16
FM
4232 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4233 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4234 goto again;
4235 } else {
4236 btrfs_end_transaction(trans, root);
4237 }
4e06bdd6 4238 }
9ed74f2d 4239
cab45e22
JM
4240 trace_btrfs_space_reservation(root->fs_info,
4241 "space_info:enospc",
4242 data_sinfo->flags, bytes, 1);
6a63209f
JB
4243 return -ENOSPC;
4244 }
4245 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4246 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4247 data_sinfo->flags, bytes, 1);
6a63209f 4248 spin_unlock(&data_sinfo->lock);
6a63209f 4249
237c0e9f 4250 return ret;
9ed74f2d 4251}
6a63209f 4252
4ceff079
QW
4253/*
4254 * New check_data_free_space() with ability for precious data reservation
4255 * Will replace old btrfs_check_data_free_space(), but for patch split,
4256 * add a new function first and then replace it.
4257 */
7cf5b976 4258int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4259{
4260 struct btrfs_root *root = BTRFS_I(inode)->root;
4261 int ret;
4262
4263 /* align the range */
4264 len = round_up(start + len, root->sectorsize) -
4265 round_down(start, root->sectorsize);
4266 start = round_down(start, root->sectorsize);
4267
4268 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4269 if (ret < 0)
4270 return ret;
4271
94ed938a
QW
4272 /*
4273 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4274 *
4275 * TODO: Find a good method to avoid reserve data space for NOCOW
4276 * range, but don't impact performance on quota disable case.
4277 */
4ceff079
QW
4278 ret = btrfs_qgroup_reserve_data(inode, start, len);
4279 return ret;
4280}
4281
4ceff079
QW
4282/*
4283 * Called if we need to clear a data reservation for this inode
4284 * Normally in a error case.
4285 *
51773bec
QW
4286 * This one will *NOT* use accurate qgroup reserved space API, just for case
4287 * which we can't sleep and is sure it won't affect qgroup reserved space.
4288 * Like clear_bit_hook().
4ceff079 4289 */
51773bec
QW
4290void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4291 u64 len)
4ceff079
QW
4292{
4293 struct btrfs_root *root = BTRFS_I(inode)->root;
4294 struct btrfs_space_info *data_sinfo;
4295
4296 /* Make sure the range is aligned to sectorsize */
4297 len = round_up(start + len, root->sectorsize) -
4298 round_down(start, root->sectorsize);
4299 start = round_down(start, root->sectorsize);
4300
4ceff079
QW
4301 data_sinfo = root->fs_info->data_sinfo;
4302 spin_lock(&data_sinfo->lock);
4303 if (WARN_ON(data_sinfo->bytes_may_use < len))
4304 data_sinfo->bytes_may_use = 0;
4305 else
4306 data_sinfo->bytes_may_use -= len;
4307 trace_btrfs_space_reservation(root->fs_info, "space_info",
4308 data_sinfo->flags, len, 0);
4309 spin_unlock(&data_sinfo->lock);
4310}
4311
51773bec
QW
4312/*
4313 * Called if we need to clear a data reservation for this inode
4314 * Normally in a error case.
4315 *
01327610 4316 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4317 * space framework.
4318 */
4319void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4320{
4321 btrfs_free_reserved_data_space_noquota(inode, start, len);
4322 btrfs_qgroup_free_data(inode, start, len);
4323}
4324
97e728d4 4325static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4326{
97e728d4
JB
4327 struct list_head *head = &info->space_info;
4328 struct btrfs_space_info *found;
e3ccfa98 4329
97e728d4
JB
4330 rcu_read_lock();
4331 list_for_each_entry_rcu(found, head, list) {
4332 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4333 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4334 }
97e728d4 4335 rcu_read_unlock();
e3ccfa98
JB
4336}
4337
3c76cd84
MX
4338static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4339{
4340 return (global->size << 1);
4341}
4342
e5bc2458 4343static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4344 struct btrfs_space_info *sinfo, int force)
32c00aff 4345{
fb25e914 4346 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4347 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4348 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4349 u64 thresh;
e3ccfa98 4350
0e4f8f88
CM
4351 if (force == CHUNK_ALLOC_FORCE)
4352 return 1;
4353
fb25e914
JB
4354 /*
4355 * We need to take into account the global rsv because for all intents
4356 * and purposes it's used space. Don't worry about locking the
4357 * global_rsv, it doesn't change except when the transaction commits.
4358 */
54338b5c 4359 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4360 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4361
0e4f8f88
CM
4362 /*
4363 * in limited mode, we want to have some free space up to
4364 * about 1% of the FS size.
4365 */
4366 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4367 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4368 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4369
4370 if (num_bytes - num_allocated < thresh)
4371 return 1;
4372 }
0e4f8f88 4373
ee22184b 4374 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4375 return 0;
424499db 4376 return 1;
32c00aff
JB
4377}
4378
39c2d7fa 4379static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4380{
4381 u64 num_dev;
4382
53b381b3
DW
4383 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4384 BTRFS_BLOCK_GROUP_RAID0 |
4385 BTRFS_BLOCK_GROUP_RAID5 |
4386 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4387 num_dev = root->fs_info->fs_devices->rw_devices;
4388 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4389 num_dev = 2;
4390 else
4391 num_dev = 1; /* DUP or single */
4392
39c2d7fa 4393 return num_dev;
15d1ff81
LB
4394}
4395
39c2d7fa
FM
4396/*
4397 * If @is_allocation is true, reserve space in the system space info necessary
4398 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4399 * removing a chunk.
4400 */
4401void check_system_chunk(struct btrfs_trans_handle *trans,
4402 struct btrfs_root *root,
4617ea3a 4403 u64 type)
15d1ff81
LB
4404{
4405 struct btrfs_space_info *info;
4406 u64 left;
4407 u64 thresh;
4fbcdf66 4408 int ret = 0;
39c2d7fa 4409 u64 num_devs;
4fbcdf66
FM
4410
4411 /*
4412 * Needed because we can end up allocating a system chunk and for an
4413 * atomic and race free space reservation in the chunk block reserve.
4414 */
4415 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4416
4417 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4418 spin_lock(&info->lock);
4419 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4420 info->bytes_reserved - info->bytes_readonly -
4421 info->bytes_may_use;
15d1ff81
LB
4422 spin_unlock(&info->lock);
4423
39c2d7fa
FM
4424 num_devs = get_profile_num_devs(root, type);
4425
4426 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4427 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4428 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4429
15d1ff81 4430 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4431 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4432 left, thresh, type);
15d1ff81
LB
4433 dump_space_info(info, 0, 0);
4434 }
4435
4436 if (left < thresh) {
4437 u64 flags;
4438
4439 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4440 /*
4441 * Ignore failure to create system chunk. We might end up not
4442 * needing it, as we might not need to COW all nodes/leafs from
4443 * the paths we visit in the chunk tree (they were already COWed
4444 * or created in the current transaction for example).
4445 */
4446 ret = btrfs_alloc_chunk(trans, root, flags);
4447 }
4448
4449 if (!ret) {
4450 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4451 &root->fs_info->chunk_block_rsv,
4452 thresh, BTRFS_RESERVE_NO_FLUSH);
4453 if (!ret)
4454 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4455 }
4456}
4457
6324fbf3 4458static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4459 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4460{
6324fbf3 4461 struct btrfs_space_info *space_info;
97e728d4 4462 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4463 int wait_for_alloc = 0;
9ed74f2d 4464 int ret = 0;
9ed74f2d 4465
c6b305a8
JB
4466 /* Don't re-enter if we're already allocating a chunk */
4467 if (trans->allocating_chunk)
4468 return -ENOSPC;
4469
6324fbf3 4470 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4471 if (!space_info) {
4472 ret = update_space_info(extent_root->fs_info, flags,
4473 0, 0, &space_info);
79787eaa 4474 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4475 }
79787eaa 4476 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4477
6d74119f 4478again:
25179201 4479 spin_lock(&space_info->lock);
9e622d6b 4480 if (force < space_info->force_alloc)
0e4f8f88 4481 force = space_info->force_alloc;
25179201 4482 if (space_info->full) {
09fb99a6
FDBM
4483 if (should_alloc_chunk(extent_root, space_info, force))
4484 ret = -ENOSPC;
4485 else
4486 ret = 0;
25179201 4487 spin_unlock(&space_info->lock);
09fb99a6 4488 return ret;
9ed74f2d
JB
4489 }
4490
698d0082 4491 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4492 spin_unlock(&space_info->lock);
6d74119f
JB
4493 return 0;
4494 } else if (space_info->chunk_alloc) {
4495 wait_for_alloc = 1;
4496 } else {
4497 space_info->chunk_alloc = 1;
9ed74f2d 4498 }
0e4f8f88 4499
25179201 4500 spin_unlock(&space_info->lock);
9ed74f2d 4501
6d74119f
JB
4502 mutex_lock(&fs_info->chunk_mutex);
4503
4504 /*
4505 * The chunk_mutex is held throughout the entirety of a chunk
4506 * allocation, so once we've acquired the chunk_mutex we know that the
4507 * other guy is done and we need to recheck and see if we should
4508 * allocate.
4509 */
4510 if (wait_for_alloc) {
4511 mutex_unlock(&fs_info->chunk_mutex);
4512 wait_for_alloc = 0;
4513 goto again;
4514 }
4515
c6b305a8
JB
4516 trans->allocating_chunk = true;
4517
67377734
JB
4518 /*
4519 * If we have mixed data/metadata chunks we want to make sure we keep
4520 * allocating mixed chunks instead of individual chunks.
4521 */
4522 if (btrfs_mixed_space_info(space_info))
4523 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4524
97e728d4
JB
4525 /*
4526 * if we're doing a data chunk, go ahead and make sure that
4527 * we keep a reasonable number of metadata chunks allocated in the
4528 * FS as well.
4529 */
9ed74f2d 4530 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4531 fs_info->data_chunk_allocations++;
4532 if (!(fs_info->data_chunk_allocations %
4533 fs_info->metadata_ratio))
4534 force_metadata_allocation(fs_info);
9ed74f2d
JB
4535 }
4536
15d1ff81
LB
4537 /*
4538 * Check if we have enough space in SYSTEM chunk because we may need
4539 * to update devices.
4540 */
4617ea3a 4541 check_system_chunk(trans, extent_root, flags);
15d1ff81 4542
2b82032c 4543 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4544 trans->allocating_chunk = false;
92b8e897 4545
9ed74f2d 4546 spin_lock(&space_info->lock);
a81cb9a2
AO
4547 if (ret < 0 && ret != -ENOSPC)
4548 goto out;
9ed74f2d 4549 if (ret)
6324fbf3 4550 space_info->full = 1;
424499db
YZ
4551 else
4552 ret = 1;
6d74119f 4553
0e4f8f88 4554 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4555out:
6d74119f 4556 space_info->chunk_alloc = 0;
9ed74f2d 4557 spin_unlock(&space_info->lock);
a25c75d5 4558 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4559 /*
4560 * When we allocate a new chunk we reserve space in the chunk block
4561 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4562 * add new nodes/leafs to it if we end up needing to do it when
4563 * inserting the chunk item and updating device items as part of the
4564 * second phase of chunk allocation, performed by
4565 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4566 * large number of new block groups to create in our transaction
4567 * handle's new_bgs list to avoid exhausting the chunk block reserve
4568 * in extreme cases - like having a single transaction create many new
4569 * block groups when starting to write out the free space caches of all
4570 * the block groups that were made dirty during the lifetime of the
4571 * transaction.
4572 */
d9a0540a 4573 if (trans->can_flush_pending_bgs &&
ee22184b 4574 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
00d80e34
FM
4575 btrfs_create_pending_block_groups(trans, trans->root);
4576 btrfs_trans_release_chunk_metadata(trans);
4577 }
0f9dd46c 4578 return ret;
6324fbf3 4579}
9ed74f2d 4580
a80c8dcf
JB
4581static int can_overcommit(struct btrfs_root *root,
4582 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4583 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4584{
96f1bb57 4585 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4586 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4587 u64 space_size;
a80c8dcf
JB
4588 u64 avail;
4589 u64 used;
4590
4591 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4592 space_info->bytes_pinned + space_info->bytes_readonly;
4593
96f1bb57
JB
4594 /*
4595 * We only want to allow over committing if we have lots of actual space
4596 * free, but if we don't have enough space to handle the global reserve
4597 * space then we could end up having a real enospc problem when trying
4598 * to allocate a chunk or some other such important allocation.
4599 */
3c76cd84
MX
4600 spin_lock(&global_rsv->lock);
4601 space_size = calc_global_rsv_need_space(global_rsv);
4602 spin_unlock(&global_rsv->lock);
4603 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4604 return 0;
4605
4606 used += space_info->bytes_may_use;
a80c8dcf
JB
4607
4608 spin_lock(&root->fs_info->free_chunk_lock);
4609 avail = root->fs_info->free_chunk_space;
4610 spin_unlock(&root->fs_info->free_chunk_lock);
4611
4612 /*
4613 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4614 * space is actually useable. For raid56, the space info used
4615 * doesn't include the parity drive, so we don't have to
4616 * change the math
a80c8dcf
JB
4617 */
4618 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4619 BTRFS_BLOCK_GROUP_RAID1 |
4620 BTRFS_BLOCK_GROUP_RAID10))
4621 avail >>= 1;
4622
4623 /*
561c294d
MX
4624 * If we aren't flushing all things, let us overcommit up to
4625 * 1/2th of the space. If we can flush, don't let us overcommit
4626 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4627 */
08e007d2 4628 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4629 avail >>= 3;
a80c8dcf 4630 else
14575aef 4631 avail >>= 1;
a80c8dcf 4632
14575aef 4633 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4634 return 1;
4635 return 0;
4636}
4637
48a3b636 4638static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4639 unsigned long nr_pages, int nr_items)
da633a42
MX
4640{
4641 struct super_block *sb = root->fs_info->sb;
da633a42 4642
925a6efb
JB
4643 if (down_read_trylock(&sb->s_umount)) {
4644 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4645 up_read(&sb->s_umount);
4646 } else {
da633a42
MX
4647 /*
4648 * We needn't worry the filesystem going from r/w to r/o though
4649 * we don't acquire ->s_umount mutex, because the filesystem
4650 * should guarantee the delalloc inodes list be empty after
4651 * the filesystem is readonly(all dirty pages are written to
4652 * the disk).
4653 */
6c255e67 4654 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4655 if (!current->journal_info)
578def7c
FM
4656 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4657 0, (u64)-1);
da633a42
MX
4658 }
4659}
4660
18cd8ea6
MX
4661static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4662{
4663 u64 bytes;
4664 int nr;
4665
4666 bytes = btrfs_calc_trans_metadata_size(root, 1);
4667 nr = (int)div64_u64(to_reclaim, bytes);
4668 if (!nr)
4669 nr = 1;
4670 return nr;
4671}
4672
ee22184b 4673#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4674
9ed74f2d 4675/*
5da9d01b 4676 * shrink metadata reservation for delalloc
9ed74f2d 4677 */
f4c738c2
JB
4678static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4679 bool wait_ordered)
5da9d01b 4680{
0ca1f7ce 4681 struct btrfs_block_rsv *block_rsv;
0019f10d 4682 struct btrfs_space_info *space_info;
663350ac 4683 struct btrfs_trans_handle *trans;
f4c738c2 4684 u64 delalloc_bytes;
5da9d01b 4685 u64 max_reclaim;
b1953bce 4686 long time_left;
d3ee29e3
MX
4687 unsigned long nr_pages;
4688 int loops;
b0244199 4689 int items;
08e007d2 4690 enum btrfs_reserve_flush_enum flush;
5da9d01b 4691
c61a16a7 4692 /* Calc the number of the pages we need flush for space reservation */
b0244199 4693 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4694 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4695
663350ac 4696 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4697 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4698 space_info = block_rsv->space_info;
bf9022e0 4699
963d678b
MX
4700 delalloc_bytes = percpu_counter_sum_positive(
4701 &root->fs_info->delalloc_bytes);
f4c738c2 4702 if (delalloc_bytes == 0) {
fdb5effd 4703 if (trans)
f4c738c2 4704 return;
38c135af 4705 if (wait_ordered)
578def7c
FM
4706 btrfs_wait_ordered_roots(root->fs_info, items,
4707 0, (u64)-1);
f4c738c2 4708 return;
fdb5effd
JB
4709 }
4710
d3ee29e3 4711 loops = 0;
f4c738c2
JB
4712 while (delalloc_bytes && loops < 3) {
4713 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4714 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4715 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4716 /*
4717 * We need to wait for the async pages to actually start before
4718 * we do anything.
4719 */
9f3a074d
MX
4720 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4721 if (!max_reclaim)
4722 goto skip_async;
4723
4724 if (max_reclaim <= nr_pages)
4725 max_reclaim = 0;
4726 else
4727 max_reclaim -= nr_pages;
dea31f52 4728
9f3a074d
MX
4729 wait_event(root->fs_info->async_submit_wait,
4730 atomic_read(&root->fs_info->async_delalloc_pages) <=
4731 (int)max_reclaim);
4732skip_async:
08e007d2
MX
4733 if (!trans)
4734 flush = BTRFS_RESERVE_FLUSH_ALL;
4735 else
4736 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4737 spin_lock(&space_info->lock);
08e007d2 4738 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4739 spin_unlock(&space_info->lock);
4740 break;
4741 }
0019f10d 4742 spin_unlock(&space_info->lock);
5da9d01b 4743
36e39c40 4744 loops++;
f104d044 4745 if (wait_ordered && !trans) {
578def7c
FM
4746 btrfs_wait_ordered_roots(root->fs_info, items,
4747 0, (u64)-1);
f104d044 4748 } else {
f4c738c2 4749 time_left = schedule_timeout_killable(1);
f104d044
JB
4750 if (time_left)
4751 break;
4752 }
963d678b
MX
4753 delalloc_bytes = percpu_counter_sum_positive(
4754 &root->fs_info->delalloc_bytes);
5da9d01b 4755 }
5da9d01b
YZ
4756}
4757
663350ac
JB
4758/**
4759 * maybe_commit_transaction - possibly commit the transaction if its ok to
4760 * @root - the root we're allocating for
4761 * @bytes - the number of bytes we want to reserve
4762 * @force - force the commit
8bb8ab2e 4763 *
663350ac
JB
4764 * This will check to make sure that committing the transaction will actually
4765 * get us somewhere and then commit the transaction if it does. Otherwise it
4766 * will return -ENOSPC.
8bb8ab2e 4767 */
663350ac
JB
4768static int may_commit_transaction(struct btrfs_root *root,
4769 struct btrfs_space_info *space_info,
4770 u64 bytes, int force)
4771{
4772 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4773 struct btrfs_trans_handle *trans;
4774
4775 trans = (struct btrfs_trans_handle *)current->journal_info;
4776 if (trans)
4777 return -EAGAIN;
4778
4779 if (force)
4780 goto commit;
4781
4782 /* See if there is enough pinned space to make this reservation */
b150a4f1 4783 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4784 bytes) >= 0)
663350ac 4785 goto commit;
663350ac
JB
4786
4787 /*
4788 * See if there is some space in the delayed insertion reservation for
4789 * this reservation.
4790 */
4791 if (space_info != delayed_rsv->space_info)
4792 return -ENOSPC;
4793
4794 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4795 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4796 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4797 spin_unlock(&delayed_rsv->lock);
4798 return -ENOSPC;
4799 }
4800 spin_unlock(&delayed_rsv->lock);
4801
4802commit:
4803 trans = btrfs_join_transaction(root);
4804 if (IS_ERR(trans))
4805 return -ENOSPC;
4806
4807 return btrfs_commit_transaction(trans, root);
4808}
4809
96c3f433 4810enum flush_state {
67b0fd63
JB
4811 FLUSH_DELAYED_ITEMS_NR = 1,
4812 FLUSH_DELAYED_ITEMS = 2,
4813 FLUSH_DELALLOC = 3,
4814 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4815 ALLOC_CHUNK = 5,
4816 COMMIT_TRANS = 6,
96c3f433
JB
4817};
4818
4819static int flush_space(struct btrfs_root *root,
4820 struct btrfs_space_info *space_info, u64 num_bytes,
4821 u64 orig_bytes, int state)
4822{
4823 struct btrfs_trans_handle *trans;
4824 int nr;
f4c738c2 4825 int ret = 0;
96c3f433
JB
4826
4827 switch (state) {
96c3f433
JB
4828 case FLUSH_DELAYED_ITEMS_NR:
4829 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4830 if (state == FLUSH_DELAYED_ITEMS_NR)
4831 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4832 else
96c3f433 4833 nr = -1;
18cd8ea6 4834
96c3f433
JB
4835 trans = btrfs_join_transaction(root);
4836 if (IS_ERR(trans)) {
4837 ret = PTR_ERR(trans);
4838 break;
4839 }
4840 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4841 btrfs_end_transaction(trans, root);
4842 break;
67b0fd63
JB
4843 case FLUSH_DELALLOC:
4844 case FLUSH_DELALLOC_WAIT:
24af7dd1 4845 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4846 state == FLUSH_DELALLOC_WAIT);
4847 break;
ea658bad
JB
4848 case ALLOC_CHUNK:
4849 trans = btrfs_join_transaction(root);
4850 if (IS_ERR(trans)) {
4851 ret = PTR_ERR(trans);
4852 break;
4853 }
4854 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4855 btrfs_get_alloc_profile(root, 0),
4856 CHUNK_ALLOC_NO_FORCE);
4857 btrfs_end_transaction(trans, root);
4858 if (ret == -ENOSPC)
4859 ret = 0;
4860 break;
96c3f433
JB
4861 case COMMIT_TRANS:
4862 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4863 break;
4864 default:
4865 ret = -ENOSPC;
4866 break;
4867 }
4868
4869 return ret;
4870}
21c7e756
MX
4871
4872static inline u64
4873btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4874 struct btrfs_space_info *space_info)
4875{
4876 u64 used;
4877 u64 expected;
4878 u64 to_reclaim;
4879
ee22184b 4880 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
21c7e756
MX
4881 spin_lock(&space_info->lock);
4882 if (can_overcommit(root, space_info, to_reclaim,
4883 BTRFS_RESERVE_FLUSH_ALL)) {
4884 to_reclaim = 0;
4885 goto out;
4886 }
4887
4888 used = space_info->bytes_used + space_info->bytes_reserved +
4889 space_info->bytes_pinned + space_info->bytes_readonly +
4890 space_info->bytes_may_use;
ee22184b 4891 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4892 expected = div_factor_fine(space_info->total_bytes, 95);
4893 else
4894 expected = div_factor_fine(space_info->total_bytes, 90);
4895
4896 if (used > expected)
4897 to_reclaim = used - expected;
4898 else
4899 to_reclaim = 0;
4900 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4901 space_info->bytes_reserved);
4902out:
4903 spin_unlock(&space_info->lock);
4904
4905 return to_reclaim;
4906}
4907
4908static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4909 struct btrfs_fs_info *fs_info, u64 used)
4910{
365c5313
JB
4911 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4912
4913 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4914 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4915 return 0;
4916
4917 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4918 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4919}
4920
4921static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4922 struct btrfs_fs_info *fs_info,
4923 int flush_state)
21c7e756
MX
4924{
4925 u64 used;
4926
4927 spin_lock(&space_info->lock);
25ce459c
LB
4928 /*
4929 * We run out of space and have not got any free space via flush_space,
4930 * so don't bother doing async reclaim.
4931 */
4932 if (flush_state > COMMIT_TRANS && space_info->full) {
4933 spin_unlock(&space_info->lock);
4934 return 0;
4935 }
4936
21c7e756
MX
4937 used = space_info->bytes_used + space_info->bytes_reserved +
4938 space_info->bytes_pinned + space_info->bytes_readonly +
4939 space_info->bytes_may_use;
4940 if (need_do_async_reclaim(space_info, fs_info, used)) {
4941 spin_unlock(&space_info->lock);
4942 return 1;
4943 }
4944 spin_unlock(&space_info->lock);
4945
4946 return 0;
4947}
4948
4949static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4950{
4951 struct btrfs_fs_info *fs_info;
4952 struct btrfs_space_info *space_info;
4953 u64 to_reclaim;
4954 int flush_state;
4955
4956 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4957 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4958
4959 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4960 space_info);
4961 if (!to_reclaim)
4962 return;
4963
4964 flush_state = FLUSH_DELAYED_ITEMS_NR;
4965 do {
4966 flush_space(fs_info->fs_root, space_info, to_reclaim,
4967 to_reclaim, flush_state);
4968 flush_state++;
25ce459c
LB
4969 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4970 flush_state))
21c7e756 4971 return;
365c5313 4972 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4973}
4974
4975void btrfs_init_async_reclaim_work(struct work_struct *work)
4976{
4977 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4978}
4979
4a92b1b8
JB
4980/**
4981 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4982 * @root - the root we're allocating for
4983 * @block_rsv - the block_rsv we're allocating for
4984 * @orig_bytes - the number of bytes we want
48fc7f7e 4985 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4986 *
01327610 4987 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
4988 * with the block_rsv. If there is not enough space it will make an attempt to
4989 * flush out space to make room. It will do this by flushing delalloc if
4990 * possible or committing the transaction. If flush is 0 then no attempts to
4991 * regain reservations will be made and this will fail if there is not enough
4992 * space already.
8bb8ab2e 4993 */
4a92b1b8 4994static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4995 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4996 u64 orig_bytes,
4997 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4998{
f0486c68 4999 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 5000 u64 used;
8bb8ab2e 5001 u64 num_bytes = orig_bytes;
67b0fd63 5002 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 5003 int ret = 0;
fdb5effd 5004 bool flushing = false;
9ed74f2d 5005
8bb8ab2e 5006again:
fdb5effd 5007 ret = 0;
8bb8ab2e 5008 spin_lock(&space_info->lock);
fdb5effd 5009 /*
08e007d2
MX
5010 * We only want to wait if somebody other than us is flushing and we
5011 * are actually allowed to flush all things.
fdb5effd 5012 */
08e007d2
MX
5013 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5014 space_info->flush) {
fdb5effd
JB
5015 spin_unlock(&space_info->lock);
5016 /*
5017 * If we have a trans handle we can't wait because the flusher
5018 * may have to commit the transaction, which would mean we would
5019 * deadlock since we are waiting for the flusher to finish, but
5020 * hold the current transaction open.
5021 */
663350ac 5022 if (current->journal_info)
fdb5effd 5023 return -EAGAIN;
b9688bb8
AJ
5024 ret = wait_event_killable(space_info->wait, !space_info->flush);
5025 /* Must have been killed, return */
5026 if (ret)
fdb5effd
JB
5027 return -EINTR;
5028
5029 spin_lock(&space_info->lock);
5030 }
5031
5032 ret = -ENOSPC;
2bf64758
JB
5033 used = space_info->bytes_used + space_info->bytes_reserved +
5034 space_info->bytes_pinned + space_info->bytes_readonly +
5035 space_info->bytes_may_use;
9ed74f2d 5036
8bb8ab2e
JB
5037 /*
5038 * The idea here is that we've not already over-reserved the block group
5039 * then we can go ahead and save our reservation first and then start
5040 * flushing if we need to. Otherwise if we've already overcommitted
5041 * lets start flushing stuff first and then come back and try to make
5042 * our reservation.
5043 */
2bf64758
JB
5044 if (used <= space_info->total_bytes) {
5045 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 5046 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 5047 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 5048 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
5049 ret = 0;
5050 } else {
5051 /*
5052 * Ok set num_bytes to orig_bytes since we aren't
5053 * overocmmitted, this way we only try and reclaim what
5054 * we need.
5055 */
5056 num_bytes = orig_bytes;
5057 }
5058 } else {
5059 /*
5060 * Ok we're over committed, set num_bytes to the overcommitted
5061 * amount plus the amount of bytes that we need for this
5062 * reservation.
5063 */
2bf64758 5064 num_bytes = used - space_info->total_bytes +
96c3f433 5065 (orig_bytes * 2);
8bb8ab2e 5066 }
9ed74f2d 5067
44734ed1
JB
5068 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5069 space_info->bytes_may_use += orig_bytes;
5070 trace_btrfs_space_reservation(root->fs_info, "space_info",
5071 space_info->flags, orig_bytes,
5072 1);
5073 ret = 0;
2bf64758
JB
5074 }
5075
8bb8ab2e
JB
5076 /*
5077 * Couldn't make our reservation, save our place so while we're trying
5078 * to reclaim space we can actually use it instead of somebody else
5079 * stealing it from us.
08e007d2
MX
5080 *
5081 * We make the other tasks wait for the flush only when we can flush
5082 * all things.
8bb8ab2e 5083 */
72bcd99d 5084 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
5085 flushing = true;
5086 space_info->flush = 1;
21c7e756
MX
5087 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5088 used += orig_bytes;
f6acfd50
JB
5089 /*
5090 * We will do the space reservation dance during log replay,
5091 * which means we won't have fs_info->fs_root set, so don't do
5092 * the async reclaim as we will panic.
5093 */
5094 if (!root->fs_info->log_root_recovering &&
5095 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
5096 !work_busy(&root->fs_info->async_reclaim_work))
5097 queue_work(system_unbound_wq,
5098 &root->fs_info->async_reclaim_work);
8bb8ab2e 5099 }
f0486c68 5100 spin_unlock(&space_info->lock);
9ed74f2d 5101
08e007d2 5102 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 5103 goto out;
f0486c68 5104
96c3f433
JB
5105 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5106 flush_state);
5107 flush_state++;
08e007d2
MX
5108
5109 /*
5110 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5111 * would happen. So skip delalloc flush.
5112 */
5113 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5114 (flush_state == FLUSH_DELALLOC ||
5115 flush_state == FLUSH_DELALLOC_WAIT))
5116 flush_state = ALLOC_CHUNK;
5117
96c3f433 5118 if (!ret)
8bb8ab2e 5119 goto again;
08e007d2
MX
5120 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5121 flush_state < COMMIT_TRANS)
5122 goto again;
5123 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5124 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
5125 goto again;
5126
5127out:
5d80366e
JB
5128 if (ret == -ENOSPC &&
5129 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5130 struct btrfs_block_rsv *global_rsv =
5131 &root->fs_info->global_block_rsv;
5132
5133 if (block_rsv != global_rsv &&
5134 !block_rsv_use_bytes(global_rsv, orig_bytes))
5135 ret = 0;
5136 }
cab45e22
JM
5137 if (ret == -ENOSPC)
5138 trace_btrfs_space_reservation(root->fs_info,
5139 "space_info:enospc",
5140 space_info->flags, orig_bytes, 1);
fdb5effd 5141 if (flushing) {
8bb8ab2e 5142 spin_lock(&space_info->lock);
fdb5effd
JB
5143 space_info->flush = 0;
5144 wake_up_all(&space_info->wait);
8bb8ab2e 5145 spin_unlock(&space_info->lock);
f0486c68 5146 }
f0486c68
YZ
5147 return ret;
5148}
5149
79787eaa
JM
5150static struct btrfs_block_rsv *get_block_rsv(
5151 const struct btrfs_trans_handle *trans,
5152 const struct btrfs_root *root)
f0486c68 5153{
4c13d758
JB
5154 struct btrfs_block_rsv *block_rsv = NULL;
5155
e9cf439f
AM
5156 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5157 (root == root->fs_info->csum_root && trans->adding_csums) ||
5158 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5159 block_rsv = trans->block_rsv;
5160
4c13d758 5161 if (!block_rsv)
f0486c68
YZ
5162 block_rsv = root->block_rsv;
5163
5164 if (!block_rsv)
5165 block_rsv = &root->fs_info->empty_block_rsv;
5166
5167 return block_rsv;
5168}
5169
5170static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5171 u64 num_bytes)
5172{
5173 int ret = -ENOSPC;
5174 spin_lock(&block_rsv->lock);
5175 if (block_rsv->reserved >= num_bytes) {
5176 block_rsv->reserved -= num_bytes;
5177 if (block_rsv->reserved < block_rsv->size)
5178 block_rsv->full = 0;
5179 ret = 0;
5180 }
5181 spin_unlock(&block_rsv->lock);
5182 return ret;
5183}
5184
5185static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5186 u64 num_bytes, int update_size)
5187{
5188 spin_lock(&block_rsv->lock);
5189 block_rsv->reserved += num_bytes;
5190 if (update_size)
5191 block_rsv->size += num_bytes;
5192 else if (block_rsv->reserved >= block_rsv->size)
5193 block_rsv->full = 1;
5194 spin_unlock(&block_rsv->lock);
5195}
5196
d52be818
JB
5197int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5198 struct btrfs_block_rsv *dest, u64 num_bytes,
5199 int min_factor)
5200{
5201 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5202 u64 min_bytes;
5203
5204 if (global_rsv->space_info != dest->space_info)
5205 return -ENOSPC;
5206
5207 spin_lock(&global_rsv->lock);
5208 min_bytes = div_factor(global_rsv->size, min_factor);
5209 if (global_rsv->reserved < min_bytes + num_bytes) {
5210 spin_unlock(&global_rsv->lock);
5211 return -ENOSPC;
5212 }
5213 global_rsv->reserved -= num_bytes;
5214 if (global_rsv->reserved < global_rsv->size)
5215 global_rsv->full = 0;
5216 spin_unlock(&global_rsv->lock);
5217
5218 block_rsv_add_bytes(dest, num_bytes, 1);
5219 return 0;
5220}
5221
8c2a3ca2
JB
5222static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5223 struct btrfs_block_rsv *block_rsv,
62a45b60 5224 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5225{
5226 struct btrfs_space_info *space_info = block_rsv->space_info;
5227
5228 spin_lock(&block_rsv->lock);
5229 if (num_bytes == (u64)-1)
5230 num_bytes = block_rsv->size;
5231 block_rsv->size -= num_bytes;
5232 if (block_rsv->reserved >= block_rsv->size) {
5233 num_bytes = block_rsv->reserved - block_rsv->size;
5234 block_rsv->reserved = block_rsv->size;
5235 block_rsv->full = 1;
5236 } else {
5237 num_bytes = 0;
5238 }
5239 spin_unlock(&block_rsv->lock);
5240
5241 if (num_bytes > 0) {
5242 if (dest) {
e9e22899
JB
5243 spin_lock(&dest->lock);
5244 if (!dest->full) {
5245 u64 bytes_to_add;
5246
5247 bytes_to_add = dest->size - dest->reserved;
5248 bytes_to_add = min(num_bytes, bytes_to_add);
5249 dest->reserved += bytes_to_add;
5250 if (dest->reserved >= dest->size)
5251 dest->full = 1;
5252 num_bytes -= bytes_to_add;
5253 }
5254 spin_unlock(&dest->lock);
5255 }
5256 if (num_bytes) {
f0486c68 5257 spin_lock(&space_info->lock);
fb25e914 5258 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5259 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5260 space_info->flags, num_bytes, 0);
f0486c68 5261 spin_unlock(&space_info->lock);
4e06bdd6 5262 }
9ed74f2d 5263 }
f0486c68 5264}
4e06bdd6 5265
f0486c68
YZ
5266static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5267 struct btrfs_block_rsv *dst, u64 num_bytes)
5268{
5269 int ret;
9ed74f2d 5270
f0486c68
YZ
5271 ret = block_rsv_use_bytes(src, num_bytes);
5272 if (ret)
5273 return ret;
9ed74f2d 5274
f0486c68 5275 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5276 return 0;
5277}
5278
66d8f3dd 5279void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5280{
f0486c68
YZ
5281 memset(rsv, 0, sizeof(*rsv));
5282 spin_lock_init(&rsv->lock);
66d8f3dd 5283 rsv->type = type;
f0486c68
YZ
5284}
5285
66d8f3dd
MX
5286struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5287 unsigned short type)
f0486c68
YZ
5288{
5289 struct btrfs_block_rsv *block_rsv;
5290 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5291
f0486c68
YZ
5292 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5293 if (!block_rsv)
5294 return NULL;
9ed74f2d 5295
66d8f3dd 5296 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5297 block_rsv->space_info = __find_space_info(fs_info,
5298 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5299 return block_rsv;
5300}
9ed74f2d 5301
f0486c68
YZ
5302void btrfs_free_block_rsv(struct btrfs_root *root,
5303 struct btrfs_block_rsv *rsv)
5304{
2aaa6655
JB
5305 if (!rsv)
5306 return;
dabdb640
JB
5307 btrfs_block_rsv_release(root, rsv, (u64)-1);
5308 kfree(rsv);
9ed74f2d
JB
5309}
5310
cdfb080e
CM
5311void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5312{
5313 kfree(rsv);
5314}
5315
08e007d2
MX
5316int btrfs_block_rsv_add(struct btrfs_root *root,
5317 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5318 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5319{
f0486c68 5320 int ret;
9ed74f2d 5321
f0486c68
YZ
5322 if (num_bytes == 0)
5323 return 0;
8bb8ab2e 5324
61b520a9 5325 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5326 if (!ret) {
5327 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5328 return 0;
5329 }
9ed74f2d 5330
f0486c68 5331 return ret;
f0486c68 5332}
9ed74f2d 5333
4a92b1b8 5334int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5335 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5336{
5337 u64 num_bytes = 0;
f0486c68 5338 int ret = -ENOSPC;
9ed74f2d 5339
f0486c68
YZ
5340 if (!block_rsv)
5341 return 0;
9ed74f2d 5342
f0486c68 5343 spin_lock(&block_rsv->lock);
36ba022a
JB
5344 num_bytes = div_factor(block_rsv->size, min_factor);
5345 if (block_rsv->reserved >= num_bytes)
5346 ret = 0;
5347 spin_unlock(&block_rsv->lock);
9ed74f2d 5348
36ba022a
JB
5349 return ret;
5350}
5351
08e007d2
MX
5352int btrfs_block_rsv_refill(struct btrfs_root *root,
5353 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5354 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5355{
5356 u64 num_bytes = 0;
5357 int ret = -ENOSPC;
5358
5359 if (!block_rsv)
5360 return 0;
5361
5362 spin_lock(&block_rsv->lock);
5363 num_bytes = min_reserved;
13553e52 5364 if (block_rsv->reserved >= num_bytes)
f0486c68 5365 ret = 0;
13553e52 5366 else
f0486c68 5367 num_bytes -= block_rsv->reserved;
f0486c68 5368 spin_unlock(&block_rsv->lock);
13553e52 5369
f0486c68
YZ
5370 if (!ret)
5371 return 0;
5372
aa38a711 5373 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5374 if (!ret) {
5375 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5376 return 0;
6a63209f 5377 }
9ed74f2d 5378
13553e52 5379 return ret;
f0486c68
YZ
5380}
5381
5382int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5383 struct btrfs_block_rsv *dst_rsv,
5384 u64 num_bytes)
5385{
5386 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5387}
5388
5389void btrfs_block_rsv_release(struct btrfs_root *root,
5390 struct btrfs_block_rsv *block_rsv,
5391 u64 num_bytes)
5392{
5393 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5394 if (global_rsv == block_rsv ||
f0486c68
YZ
5395 block_rsv->space_info != global_rsv->space_info)
5396 global_rsv = NULL;
8c2a3ca2
JB
5397 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5398 num_bytes);
6a63209f
JB
5399}
5400
5401/*
8929ecfa
YZ
5402 * helper to calculate size of global block reservation.
5403 * the desired value is sum of space used by extent tree,
5404 * checksum tree and root tree
6a63209f 5405 */
8929ecfa 5406static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5407{
8929ecfa
YZ
5408 struct btrfs_space_info *sinfo;
5409 u64 num_bytes;
5410 u64 meta_used;
5411 u64 data_used;
6c41761f 5412 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5413
8929ecfa
YZ
5414 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5415 spin_lock(&sinfo->lock);
5416 data_used = sinfo->bytes_used;
5417 spin_unlock(&sinfo->lock);
33b4d47f 5418
8929ecfa
YZ
5419 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5420 spin_lock(&sinfo->lock);
6d48755d
JB
5421 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5422 data_used = 0;
8929ecfa
YZ
5423 meta_used = sinfo->bytes_used;
5424 spin_unlock(&sinfo->lock);
ab6e2410 5425
8929ecfa
YZ
5426 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5427 csum_size * 2;
f8c269d7 5428 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5429
8929ecfa 5430 if (num_bytes * 3 > meta_used)
f8c269d7 5431 num_bytes = div_u64(meta_used, 3);
ab6e2410 5432
707e8a07 5433 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5434}
6a63209f 5435
8929ecfa
YZ
5436static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5437{
5438 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5439 struct btrfs_space_info *sinfo = block_rsv->space_info;
5440 u64 num_bytes;
6a63209f 5441
8929ecfa 5442 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5443
8929ecfa 5444 spin_lock(&sinfo->lock);
1f699d38 5445 spin_lock(&block_rsv->lock);
4e06bdd6 5446
ee22184b 5447 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5448
fb4b10e5
JB
5449 if (block_rsv->reserved < block_rsv->size) {
5450 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5451 sinfo->bytes_reserved + sinfo->bytes_readonly +
5452 sinfo->bytes_may_use;
5453 if (sinfo->total_bytes > num_bytes) {
5454 num_bytes = sinfo->total_bytes - num_bytes;
5455 num_bytes = min(num_bytes,
5456 block_rsv->size - block_rsv->reserved);
5457 block_rsv->reserved += num_bytes;
5458 sinfo->bytes_may_use += num_bytes;
5459 trace_btrfs_space_reservation(fs_info, "space_info",
5460 sinfo->flags, num_bytes,
5461 1);
5462 }
5463 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5464 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5465 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5466 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5467 sinfo->flags, num_bytes, 0);
8929ecfa 5468 block_rsv->reserved = block_rsv->size;
8929ecfa 5469 }
182608c8 5470
fb4b10e5
JB
5471 if (block_rsv->reserved == block_rsv->size)
5472 block_rsv->full = 1;
5473 else
5474 block_rsv->full = 0;
5475
8929ecfa 5476 spin_unlock(&block_rsv->lock);
1f699d38 5477 spin_unlock(&sinfo->lock);
6a63209f
JB
5478}
5479
f0486c68 5480static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5481{
f0486c68 5482 struct btrfs_space_info *space_info;
6a63209f 5483
f0486c68
YZ
5484 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5485 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5486
f0486c68 5487 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5488 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5489 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5490 fs_info->trans_block_rsv.space_info = space_info;
5491 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5492 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5493
8929ecfa
YZ
5494 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5495 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5496 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5497 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5498 if (fs_info->quota_root)
5499 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5500 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5501
8929ecfa 5502 update_global_block_rsv(fs_info);
6a63209f
JB
5503}
5504
8929ecfa 5505static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5506{
8c2a3ca2
JB
5507 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5508 (u64)-1);
8929ecfa
YZ
5509 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5510 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5511 WARN_ON(fs_info->trans_block_rsv.size > 0);
5512 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5513 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5514 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5515 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5516 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5517}
5518
a22285a6
YZ
5519void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5520 struct btrfs_root *root)
6a63209f 5521{
0e721106
JB
5522 if (!trans->block_rsv)
5523 return;
5524
a22285a6
YZ
5525 if (!trans->bytes_reserved)
5526 return;
6a63209f 5527
e77266e4 5528 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5529 trans->transid, trans->bytes_reserved, 0);
b24e03db 5530 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5531 trans->bytes_reserved = 0;
5532}
6a63209f 5533
4fbcdf66
FM
5534/*
5535 * To be called after all the new block groups attached to the transaction
5536 * handle have been created (btrfs_create_pending_block_groups()).
5537 */
5538void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5539{
5540 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5541
5542 if (!trans->chunk_bytes_reserved)
5543 return;
5544
5545 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5546
5547 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5548 trans->chunk_bytes_reserved);
5549 trans->chunk_bytes_reserved = 0;
5550}
5551
79787eaa 5552/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5553int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5554 struct inode *inode)
5555{
5556 struct btrfs_root *root = BTRFS_I(inode)->root;
5557 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5558 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5559
5560 /*
fcb80c2a
JB
5561 * We need to hold space in order to delete our orphan item once we've
5562 * added it, so this takes the reservation so we can release it later
5563 * when we are truly done with the orphan item.
d68fc57b 5564 */
ff5714cc 5565 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5566 trace_btrfs_space_reservation(root->fs_info, "orphan",
5567 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5568 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5569}
5570
d68fc57b 5571void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5572{
d68fc57b 5573 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5574 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5575 trace_btrfs_space_reservation(root->fs_info, "orphan",
5576 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5577 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5578}
97e728d4 5579
d5c12070
MX
5580/*
5581 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5582 * root: the root of the parent directory
5583 * rsv: block reservation
5584 * items: the number of items that we need do reservation
5585 * qgroup_reserved: used to return the reserved size in qgroup
5586 *
5587 * This function is used to reserve the space for snapshot/subvolume
5588 * creation and deletion. Those operations are different with the
5589 * common file/directory operations, they change two fs/file trees
5590 * and root tree, the number of items that the qgroup reserves is
5591 * different with the free space reservation. So we can not use
01327610 5592 * the space reservation mechanism in start_transaction().
d5c12070
MX
5593 */
5594int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5595 struct btrfs_block_rsv *rsv,
5596 int items,
ee3441b4
JM
5597 u64 *qgroup_reserved,
5598 bool use_global_rsv)
a22285a6 5599{
d5c12070
MX
5600 u64 num_bytes;
5601 int ret;
ee3441b4 5602 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5603
5604 if (root->fs_info->quota_enabled) {
5605 /* One for parent inode, two for dir entries */
707e8a07 5606 num_bytes = 3 * root->nodesize;
7174109c 5607 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5608 if (ret)
5609 return ret;
5610 } else {
5611 num_bytes = 0;
5612 }
5613
5614 *qgroup_reserved = num_bytes;
5615
5616 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5617 rsv->space_info = __find_space_info(root->fs_info,
5618 BTRFS_BLOCK_GROUP_METADATA);
5619 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5620 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5621
5622 if (ret == -ENOSPC && use_global_rsv)
5623 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5624
7174109c
QW
5625 if (ret && *qgroup_reserved)
5626 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5627
5628 return ret;
5629}
5630
5631void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5632 struct btrfs_block_rsv *rsv,
5633 u64 qgroup_reserved)
5634{
5635 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5636}
5637
7709cde3
JB
5638/**
5639 * drop_outstanding_extent - drop an outstanding extent
5640 * @inode: the inode we're dropping the extent for
01327610 5641 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5642 *
5643 * This is called when we are freeing up an outstanding extent, either called
5644 * after an error or after an extent is written. This will return the number of
5645 * reserved extents that need to be freed. This must be called with
5646 * BTRFS_I(inode)->lock held.
5647 */
dcab6a3b 5648static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5649{
7fd2ae21 5650 unsigned drop_inode_space = 0;
9e0baf60 5651 unsigned dropped_extents = 0;
dcab6a3b 5652 unsigned num_extents = 0;
9e0baf60 5653
dcab6a3b
JB
5654 num_extents = (unsigned)div64_u64(num_bytes +
5655 BTRFS_MAX_EXTENT_SIZE - 1,
5656 BTRFS_MAX_EXTENT_SIZE);
5657 ASSERT(num_extents);
5658 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5659 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5660
7fd2ae21 5661 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5662 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5663 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5664 drop_inode_space = 1;
7fd2ae21 5665
9e0baf60 5666 /*
01327610 5667 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5668 * reserved then we need to leave the reserved extents count alone.
5669 */
5670 if (BTRFS_I(inode)->outstanding_extents >=
5671 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5672 return drop_inode_space;
9e0baf60
JB
5673
5674 dropped_extents = BTRFS_I(inode)->reserved_extents -
5675 BTRFS_I(inode)->outstanding_extents;
5676 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5677 return dropped_extents + drop_inode_space;
9e0baf60
JB
5678}
5679
7709cde3 5680/**
01327610
NS
5681 * calc_csum_metadata_size - return the amount of metadata space that must be
5682 * reserved/freed for the given bytes.
7709cde3
JB
5683 * @inode: the inode we're manipulating
5684 * @num_bytes: the number of bytes in question
5685 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5686 *
5687 * This adjusts the number of csum_bytes in the inode and then returns the
5688 * correct amount of metadata that must either be reserved or freed. We
5689 * calculate how many checksums we can fit into one leaf and then divide the
5690 * number of bytes that will need to be checksumed by this value to figure out
5691 * how many checksums will be required. If we are adding bytes then the number
5692 * may go up and we will return the number of additional bytes that must be
5693 * reserved. If it is going down we will return the number of bytes that must
5694 * be freed.
5695 *
5696 * This must be called with BTRFS_I(inode)->lock held.
5697 */
5698static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5699 int reserve)
6324fbf3 5700{
7709cde3 5701 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5702 u64 old_csums, num_csums;
7709cde3
JB
5703
5704 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5705 BTRFS_I(inode)->csum_bytes == 0)
5706 return 0;
5707
28f75a0e 5708 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5709 if (reserve)
5710 BTRFS_I(inode)->csum_bytes += num_bytes;
5711 else
5712 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5713 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5714
5715 /* No change, no need to reserve more */
5716 if (old_csums == num_csums)
5717 return 0;
5718
5719 if (reserve)
5720 return btrfs_calc_trans_metadata_size(root,
5721 num_csums - old_csums);
5722
5723 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5724}
c146afad 5725
0ca1f7ce
YZ
5726int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5727{
5728 struct btrfs_root *root = BTRFS_I(inode)->root;
5729 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5730 u64 to_reserve = 0;
660d3f6c 5731 u64 csum_bytes;
9e0baf60 5732 unsigned nr_extents = 0;
660d3f6c 5733 int extra_reserve = 0;
08e007d2 5734 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5735 int ret = 0;
c64c2bd8 5736 bool delalloc_lock = true;
88e081bf
WS
5737 u64 to_free = 0;
5738 unsigned dropped;
6324fbf3 5739
c64c2bd8
JB
5740 /* If we are a free space inode we need to not flush since we will be in
5741 * the middle of a transaction commit. We also don't need the delalloc
5742 * mutex since we won't race with anybody. We need this mostly to make
5743 * lockdep shut its filthy mouth.
5744 */
5745 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5746 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5747 delalloc_lock = false;
5748 }
c09544e0 5749
08e007d2
MX
5750 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5751 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5752 schedule_timeout(1);
ec44a35c 5753
c64c2bd8
JB
5754 if (delalloc_lock)
5755 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5756
0ca1f7ce 5757 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5758
9e0baf60 5759 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5760 nr_extents = (unsigned)div64_u64(num_bytes +
5761 BTRFS_MAX_EXTENT_SIZE - 1,
5762 BTRFS_MAX_EXTENT_SIZE);
5763 BTRFS_I(inode)->outstanding_extents += nr_extents;
5764 nr_extents = 0;
9e0baf60
JB
5765
5766 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5767 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5768 nr_extents = BTRFS_I(inode)->outstanding_extents -
5769 BTRFS_I(inode)->reserved_extents;
57a45ced 5770
7fd2ae21
JB
5771 /*
5772 * Add an item to reserve for updating the inode when we complete the
5773 * delalloc io.
5774 */
72ac3c0d
JB
5775 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5776 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5777 nr_extents++;
660d3f6c 5778 extra_reserve = 1;
593060d7 5779 }
7fd2ae21
JB
5780
5781 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5782 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5783 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5784 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5785
88e081bf 5786 if (root->fs_info->quota_enabled) {
7174109c
QW
5787 ret = btrfs_qgroup_reserve_meta(root,
5788 nr_extents * root->nodesize);
88e081bf
WS
5789 if (ret)
5790 goto out_fail;
5791 }
c5567237 5792
88e081bf
WS
5793 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5794 if (unlikely(ret)) {
7174109c 5795 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5796 goto out_fail;
9e0baf60 5797 }
25179201 5798
660d3f6c
JB
5799 spin_lock(&BTRFS_I(inode)->lock);
5800 if (extra_reserve) {
72ac3c0d
JB
5801 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5802 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5803 nr_extents--;
5804 }
5805 BTRFS_I(inode)->reserved_extents += nr_extents;
5806 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5807
5808 if (delalloc_lock)
5809 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5810
8c2a3ca2 5811 if (to_reserve)
67871254 5812 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5813 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5814 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5815
0ca1f7ce 5816 return 0;
88e081bf
WS
5817
5818out_fail:
5819 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5820 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5821 /*
5822 * If the inodes csum_bytes is the same as the original
5823 * csum_bytes then we know we haven't raced with any free()ers
5824 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5825 */
f4881bc7 5826 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5827 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5828 } else {
5829 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5830 u64 bytes;
5831
5832 /*
5833 * This is tricky, but first we need to figure out how much we
01327610 5834 * freed from any free-ers that occurred during this
f4881bc7
JB
5835 * reservation, so we reset ->csum_bytes to the csum_bytes
5836 * before we dropped our lock, and then call the free for the
5837 * number of bytes that were freed while we were trying our
5838 * reservation.
5839 */
5840 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5841 BTRFS_I(inode)->csum_bytes = csum_bytes;
5842 to_free = calc_csum_metadata_size(inode, bytes, 0);
5843
5844
5845 /*
5846 * Now we need to see how much we would have freed had we not
5847 * been making this reservation and our ->csum_bytes were not
5848 * artificially inflated.
5849 */
5850 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5851 bytes = csum_bytes - orig_csum_bytes;
5852 bytes = calc_csum_metadata_size(inode, bytes, 0);
5853
5854 /*
5855 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 5856 * more than to_free then we would have freed more space had we
f4881bc7
JB
5857 * not had an artificially high ->csum_bytes, so we need to free
5858 * the remainder. If bytes is the same or less then we don't
5859 * need to do anything, the other free-ers did the correct
5860 * thing.
5861 */
5862 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5863 if (bytes > to_free)
5864 to_free = bytes - to_free;
5865 else
5866 to_free = 0;
5867 }
88e081bf 5868 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5869 if (dropped)
88e081bf
WS
5870 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5871
5872 if (to_free) {
5873 btrfs_block_rsv_release(root, block_rsv, to_free);
5874 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5875 btrfs_ino(inode), to_free, 0);
5876 }
5877 if (delalloc_lock)
5878 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5879 return ret;
0ca1f7ce
YZ
5880}
5881
7709cde3
JB
5882/**
5883 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5884 * @inode: the inode to release the reservation for
5885 * @num_bytes: the number of bytes we're releasing
5886 *
5887 * This will release the metadata reservation for an inode. This can be called
5888 * once we complete IO for a given set of bytes to release their metadata
5889 * reservations.
5890 */
0ca1f7ce
YZ
5891void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5892{
5893 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5894 u64 to_free = 0;
5895 unsigned dropped;
0ca1f7ce
YZ
5896
5897 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5898 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5899 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5900
0934856d
MX
5901 if (num_bytes)
5902 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5903 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5904 if (dropped > 0)
5905 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5906
6a3891c5
JB
5907 if (btrfs_test_is_dummy_root(root))
5908 return;
5909
8c2a3ca2
JB
5910 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5911 btrfs_ino(inode), to_free, 0);
c5567237 5912
0ca1f7ce
YZ
5913 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5914 to_free);
5915}
5916
1ada3a62 5917/**
7cf5b976 5918 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5919 * delalloc
5920 * @inode: inode we're writing to
5921 * @start: start range we are writing to
5922 * @len: how long the range we are writing to
5923 *
5924 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5925 *
5926 * This will do the following things
5927 *
5928 * o reserve space in data space info for num bytes
5929 * and reserve precious corresponding qgroup space
5930 * (Done in check_data_free_space)
5931 *
5932 * o reserve space for metadata space, based on the number of outstanding
5933 * extents and how much csums will be needed
5934 * also reserve metadata space in a per root over-reserve method.
5935 * o add to the inodes->delalloc_bytes
5936 * o add it to the fs_info's delalloc inodes list.
5937 * (Above 3 all done in delalloc_reserve_metadata)
5938 *
5939 * Return 0 for success
5940 * Return <0 for error(-ENOSPC or -EQUOT)
5941 */
7cf5b976 5942int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5943{
5944 int ret;
5945
7cf5b976 5946 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
5947 if (ret < 0)
5948 return ret;
5949 ret = btrfs_delalloc_reserve_metadata(inode, len);
5950 if (ret < 0)
7cf5b976 5951 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
5952 return ret;
5953}
5954
7709cde3 5955/**
7cf5b976 5956 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
5957 * @inode: inode we're releasing space for
5958 * @start: start position of the space already reserved
5959 * @len: the len of the space already reserved
5960 *
5961 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5962 * called in the case that we don't need the metadata AND data reservations
5963 * anymore. So if there is an error or we insert an inline extent.
5964 *
5965 * This function will release the metadata space that was not used and will
5966 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5967 * list if there are no delalloc bytes left.
5968 * Also it will handle the qgroup reserved space.
5969 */
7cf5b976 5970void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5971{
5972 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 5973 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
5974}
5975
ce93ec54
JB
5976static int update_block_group(struct btrfs_trans_handle *trans,
5977 struct btrfs_root *root, u64 bytenr,
5978 u64 num_bytes, int alloc)
9078a3e1 5979{
0af3d00b 5980 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5981 struct btrfs_fs_info *info = root->fs_info;
db94535d 5982 u64 total = num_bytes;
9078a3e1 5983 u64 old_val;
db94535d 5984 u64 byte_in_group;
0af3d00b 5985 int factor;
3e1ad54f 5986
5d4f98a2 5987 /* block accounting for super block */
eb73c1b7 5988 spin_lock(&info->delalloc_root_lock);
6c41761f 5989 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5990 if (alloc)
5991 old_val += num_bytes;
5992 else
5993 old_val -= num_bytes;
6c41761f 5994 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5995 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5996
d397712b 5997 while (total) {
db94535d 5998 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5999 if (!cache)
79787eaa 6000 return -ENOENT;
b742bb82
YZ
6001 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6002 BTRFS_BLOCK_GROUP_RAID1 |
6003 BTRFS_BLOCK_GROUP_RAID10))
6004 factor = 2;
6005 else
6006 factor = 1;
9d66e233
JB
6007 /*
6008 * If this block group has free space cache written out, we
6009 * need to make sure to load it if we are removing space. This
6010 * is because we need the unpinning stage to actually add the
6011 * space back to the block group, otherwise we will leak space.
6012 */
6013 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6014 cache_block_group(cache, 1);
0af3d00b 6015
db94535d
CM
6016 byte_in_group = bytenr - cache->key.objectid;
6017 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6018
25179201 6019 spin_lock(&cache->space_info->lock);
c286ac48 6020 spin_lock(&cache->lock);
0af3d00b 6021
73bc1876 6022 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
6023 cache->disk_cache_state < BTRFS_DC_CLEAR)
6024 cache->disk_cache_state = BTRFS_DC_CLEAR;
6025
9078a3e1 6026 old_val = btrfs_block_group_used(&cache->item);
db94535d 6027 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6028 if (alloc) {
db94535d 6029 old_val += num_bytes;
11833d66
YZ
6030 btrfs_set_block_group_used(&cache->item, old_val);
6031 cache->reserved -= num_bytes;
11833d66 6032 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6033 cache->space_info->bytes_used += num_bytes;
6034 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6035 spin_unlock(&cache->lock);
25179201 6036 spin_unlock(&cache->space_info->lock);
cd1bc465 6037 } else {
db94535d 6038 old_val -= num_bytes;
ae0ab003
FM
6039 btrfs_set_block_group_used(&cache->item, old_val);
6040 cache->pinned += num_bytes;
6041 cache->space_info->bytes_pinned += num_bytes;
6042 cache->space_info->bytes_used -= num_bytes;
6043 cache->space_info->disk_used -= num_bytes * factor;
6044 spin_unlock(&cache->lock);
6045 spin_unlock(&cache->space_info->lock);
47ab2a6c 6046
ae0ab003
FM
6047 set_extent_dirty(info->pinned_extents,
6048 bytenr, bytenr + num_bytes - 1,
6049 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6050 }
1bbc621e
CM
6051
6052 spin_lock(&trans->transaction->dirty_bgs_lock);
6053 if (list_empty(&cache->dirty_list)) {
6054 list_add_tail(&cache->dirty_list,
6055 &trans->transaction->dirty_bgs);
6056 trans->transaction->num_dirty_bgs++;
6057 btrfs_get_block_group(cache);
6058 }
6059 spin_unlock(&trans->transaction->dirty_bgs_lock);
6060
036a9348
FM
6061 /*
6062 * No longer have used bytes in this block group, queue it for
6063 * deletion. We do this after adding the block group to the
6064 * dirty list to avoid races between cleaner kthread and space
6065 * cache writeout.
6066 */
6067 if (!alloc && old_val == 0) {
6068 spin_lock(&info->unused_bgs_lock);
6069 if (list_empty(&cache->bg_list)) {
6070 btrfs_get_block_group(cache);
6071 list_add_tail(&cache->bg_list,
6072 &info->unused_bgs);
6073 }
6074 spin_unlock(&info->unused_bgs_lock);
6075 }
6076
fa9c0d79 6077 btrfs_put_block_group(cache);
db94535d
CM
6078 total -= num_bytes;
6079 bytenr += num_bytes;
9078a3e1
CM
6080 }
6081 return 0;
6082}
6324fbf3 6083
a061fc8d
CM
6084static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6085{
0f9dd46c 6086 struct btrfs_block_group_cache *cache;
d2fb3437 6087 u64 bytenr;
0f9dd46c 6088
a1897fdd
LB
6089 spin_lock(&root->fs_info->block_group_cache_lock);
6090 bytenr = root->fs_info->first_logical_byte;
6091 spin_unlock(&root->fs_info->block_group_cache_lock);
6092
6093 if (bytenr < (u64)-1)
6094 return bytenr;
6095
0f9dd46c
JB
6096 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6097 if (!cache)
a061fc8d 6098 return 0;
0f9dd46c 6099
d2fb3437 6100 bytenr = cache->key.objectid;
fa9c0d79 6101 btrfs_put_block_group(cache);
d2fb3437
YZ
6102
6103 return bytenr;
a061fc8d
CM
6104}
6105
f0486c68
YZ
6106static int pin_down_extent(struct btrfs_root *root,
6107 struct btrfs_block_group_cache *cache,
6108 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6109{
11833d66
YZ
6110 spin_lock(&cache->space_info->lock);
6111 spin_lock(&cache->lock);
6112 cache->pinned += num_bytes;
6113 cache->space_info->bytes_pinned += num_bytes;
6114 if (reserved) {
6115 cache->reserved -= num_bytes;
6116 cache->space_info->bytes_reserved -= num_bytes;
6117 }
6118 spin_unlock(&cache->lock);
6119 spin_unlock(&cache->space_info->lock);
68b38550 6120
f0486c68
YZ
6121 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6122 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 6123 if (reserved)
0be5dc67 6124 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
6125 return 0;
6126}
68b38550 6127
f0486c68
YZ
6128/*
6129 * this function must be called within transaction
6130 */
6131int btrfs_pin_extent(struct btrfs_root *root,
6132 u64 bytenr, u64 num_bytes, int reserved)
6133{
6134 struct btrfs_block_group_cache *cache;
68b38550 6135
f0486c68 6136 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6137 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6138
6139 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6140
6141 btrfs_put_block_group(cache);
11833d66
YZ
6142 return 0;
6143}
6144
f0486c68 6145/*
e688b725
CM
6146 * this function must be called within transaction
6147 */
dcfac415 6148int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6149 u64 bytenr, u64 num_bytes)
6150{
6151 struct btrfs_block_group_cache *cache;
b50c6e25 6152 int ret;
e688b725
CM
6153
6154 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6155 if (!cache)
6156 return -EINVAL;
e688b725
CM
6157
6158 /*
6159 * pull in the free space cache (if any) so that our pin
6160 * removes the free space from the cache. We have load_only set
6161 * to one because the slow code to read in the free extents does check
6162 * the pinned extents.
6163 */
f6373bf3 6164 cache_block_group(cache, 1);
e688b725
CM
6165
6166 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6167
6168 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6169 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6170 btrfs_put_block_group(cache);
b50c6e25 6171 return ret;
e688b725
CM
6172}
6173
8c2a1a30
JB
6174static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6175{
6176 int ret;
6177 struct btrfs_block_group_cache *block_group;
6178 struct btrfs_caching_control *caching_ctl;
6179
6180 block_group = btrfs_lookup_block_group(root->fs_info, start);
6181 if (!block_group)
6182 return -EINVAL;
6183
6184 cache_block_group(block_group, 0);
6185 caching_ctl = get_caching_control(block_group);
6186
6187 if (!caching_ctl) {
6188 /* Logic error */
6189 BUG_ON(!block_group_cache_done(block_group));
6190 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6191 } else {
6192 mutex_lock(&caching_ctl->mutex);
6193
6194 if (start >= caching_ctl->progress) {
6195 ret = add_excluded_extent(root, start, num_bytes);
6196 } else if (start + num_bytes <= caching_ctl->progress) {
6197 ret = btrfs_remove_free_space(block_group,
6198 start, num_bytes);
6199 } else {
6200 num_bytes = caching_ctl->progress - start;
6201 ret = btrfs_remove_free_space(block_group,
6202 start, num_bytes);
6203 if (ret)
6204 goto out_lock;
6205
6206 num_bytes = (start + num_bytes) -
6207 caching_ctl->progress;
6208 start = caching_ctl->progress;
6209 ret = add_excluded_extent(root, start, num_bytes);
6210 }
6211out_lock:
6212 mutex_unlock(&caching_ctl->mutex);
6213 put_caching_control(caching_ctl);
6214 }
6215 btrfs_put_block_group(block_group);
6216 return ret;
6217}
6218
6219int btrfs_exclude_logged_extents(struct btrfs_root *log,
6220 struct extent_buffer *eb)
6221{
6222 struct btrfs_file_extent_item *item;
6223 struct btrfs_key key;
6224 int found_type;
6225 int i;
6226
6227 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6228 return 0;
6229
6230 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6231 btrfs_item_key_to_cpu(eb, &key, i);
6232 if (key.type != BTRFS_EXTENT_DATA_KEY)
6233 continue;
6234 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6235 found_type = btrfs_file_extent_type(eb, item);
6236 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6237 continue;
6238 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6239 continue;
6240 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6241 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6242 __exclude_logged_extent(log, key.objectid, key.offset);
6243 }
6244
6245 return 0;
6246}
6247
9cfa3e34
FM
6248static void
6249btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6250{
6251 atomic_inc(&bg->reservations);
6252}
6253
6254void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6255 const u64 start)
6256{
6257 struct btrfs_block_group_cache *bg;
6258
6259 bg = btrfs_lookup_block_group(fs_info, start);
6260 ASSERT(bg);
6261 if (atomic_dec_and_test(&bg->reservations))
6262 wake_up_atomic_t(&bg->reservations);
6263 btrfs_put_block_group(bg);
6264}
6265
6266static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6267{
6268 schedule();
6269 return 0;
6270}
6271
6272void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6273{
6274 struct btrfs_space_info *space_info = bg->space_info;
6275
6276 ASSERT(bg->ro);
6277
6278 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6279 return;
6280
6281 /*
6282 * Our block group is read only but before we set it to read only,
6283 * some task might have had allocated an extent from it already, but it
6284 * has not yet created a respective ordered extent (and added it to a
6285 * root's list of ordered extents).
6286 * Therefore wait for any task currently allocating extents, since the
6287 * block group's reservations counter is incremented while a read lock
6288 * on the groups' semaphore is held and decremented after releasing
6289 * the read access on that semaphore and creating the ordered extent.
6290 */
6291 down_write(&space_info->groups_sem);
6292 up_write(&space_info->groups_sem);
6293
6294 wait_on_atomic_t(&bg->reservations,
6295 btrfs_wait_bg_reservations_atomic_t,
6296 TASK_UNINTERRUPTIBLE);
6297}
6298
fb25e914
JB
6299/**
6300 * btrfs_update_reserved_bytes - update the block_group and space info counters
6301 * @cache: The cache we are manipulating
6302 * @num_bytes: The number of bytes in question
6303 * @reserve: One of the reservation enums
e570fd27 6304 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6305 *
6306 * This is called by the allocator when it reserves space, or by somebody who is
6307 * freeing space that was never actually used on disk. For example if you
6308 * reserve some space for a new leaf in transaction A and before transaction A
6309 * commits you free that leaf, you call this with reserve set to 0 in order to
6310 * clear the reservation.
6311 *
6312 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6313 * ENOSPC accounting. For data we handle the reservation through clearing the
6314 * delalloc bits in the io_tree. We have to do this since we could end up
6315 * allocating less disk space for the amount of data we have reserved in the
6316 * case of compression.
6317 *
6318 * If this is a reservation and the block group has become read only we cannot
6319 * make the reservation and return -EAGAIN, otherwise this function always
6320 * succeeds.
f0486c68 6321 */
fb25e914 6322static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6323 u64 num_bytes, int reserve, int delalloc)
11833d66 6324{
fb25e914 6325 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6326 int ret = 0;
79787eaa 6327
fb25e914
JB
6328 spin_lock(&space_info->lock);
6329 spin_lock(&cache->lock);
6330 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6331 if (cache->ro) {
6332 ret = -EAGAIN;
6333 } else {
fb25e914
JB
6334 cache->reserved += num_bytes;
6335 space_info->bytes_reserved += num_bytes;
6336 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6337 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6338 "space_info", space_info->flags,
6339 num_bytes, 0);
fb25e914
JB
6340 space_info->bytes_may_use -= num_bytes;
6341 }
e570fd27
MX
6342
6343 if (delalloc)
6344 cache->delalloc_bytes += num_bytes;
f0486c68 6345 }
fb25e914
JB
6346 } else {
6347 if (cache->ro)
6348 space_info->bytes_readonly += num_bytes;
6349 cache->reserved -= num_bytes;
6350 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6351
6352 if (delalloc)
6353 cache->delalloc_bytes -= num_bytes;
324ae4df 6354 }
fb25e914
JB
6355 spin_unlock(&cache->lock);
6356 spin_unlock(&space_info->lock);
f0486c68 6357 return ret;
324ae4df 6358}
9078a3e1 6359
143bede5 6360void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6361 struct btrfs_root *root)
e8569813 6362{
e8569813 6363 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6364 struct btrfs_caching_control *next;
6365 struct btrfs_caching_control *caching_ctl;
6366 struct btrfs_block_group_cache *cache;
e8569813 6367
9e351cc8 6368 down_write(&fs_info->commit_root_sem);
25179201 6369
11833d66
YZ
6370 list_for_each_entry_safe(caching_ctl, next,
6371 &fs_info->caching_block_groups, list) {
6372 cache = caching_ctl->block_group;
6373 if (block_group_cache_done(cache)) {
6374 cache->last_byte_to_unpin = (u64)-1;
6375 list_del_init(&caching_ctl->list);
6376 put_caching_control(caching_ctl);
e8569813 6377 } else {
11833d66 6378 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6379 }
e8569813 6380 }
11833d66
YZ
6381
6382 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6383 fs_info->pinned_extents = &fs_info->freed_extents[1];
6384 else
6385 fs_info->pinned_extents = &fs_info->freed_extents[0];
6386
9e351cc8 6387 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6388
6389 update_global_block_rsv(fs_info);
e8569813
ZY
6390}
6391
c759c4e1
JB
6392/*
6393 * Returns the free cluster for the given space info and sets empty_cluster to
6394 * what it should be based on the mount options.
6395 */
6396static struct btrfs_free_cluster *
6397fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6398 u64 *empty_cluster)
6399{
6400 struct btrfs_free_cluster *ret = NULL;
6401 bool ssd = btrfs_test_opt(root, SSD);
6402
6403 *empty_cluster = 0;
6404 if (btrfs_mixed_space_info(space_info))
6405 return ret;
6406
6407 if (ssd)
ee22184b 6408 *empty_cluster = SZ_2M;
c759c4e1
JB
6409 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6410 ret = &root->fs_info->meta_alloc_cluster;
6411 if (!ssd)
ee22184b 6412 *empty_cluster = SZ_64K;
c759c4e1
JB
6413 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6414 ret = &root->fs_info->data_alloc_cluster;
6415 }
6416
6417 return ret;
6418}
6419
678886bd
FM
6420static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6421 const bool return_free_space)
ccd467d6 6422{
11833d66
YZ
6423 struct btrfs_fs_info *fs_info = root->fs_info;
6424 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6425 struct btrfs_space_info *space_info;
6426 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6427 struct btrfs_free_cluster *cluster = NULL;
11833d66 6428 u64 len;
c759c4e1
JB
6429 u64 total_unpinned = 0;
6430 u64 empty_cluster = 0;
7b398f8e 6431 bool readonly;
ccd467d6 6432
11833d66 6433 while (start <= end) {
7b398f8e 6434 readonly = false;
11833d66
YZ
6435 if (!cache ||
6436 start >= cache->key.objectid + cache->key.offset) {
6437 if (cache)
6438 btrfs_put_block_group(cache);
c759c4e1 6439 total_unpinned = 0;
11833d66 6440 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6441 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6442
6443 cluster = fetch_cluster_info(root,
6444 cache->space_info,
6445 &empty_cluster);
6446 empty_cluster <<= 1;
11833d66
YZ
6447 }
6448
6449 len = cache->key.objectid + cache->key.offset - start;
6450 len = min(len, end + 1 - start);
6451
6452 if (start < cache->last_byte_to_unpin) {
6453 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6454 if (return_free_space)
6455 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6456 }
6457
f0486c68 6458 start += len;
c759c4e1 6459 total_unpinned += len;
7b398f8e 6460 space_info = cache->space_info;
f0486c68 6461
c759c4e1
JB
6462 /*
6463 * If this space cluster has been marked as fragmented and we've
6464 * unpinned enough in this block group to potentially allow a
6465 * cluster to be created inside of it go ahead and clear the
6466 * fragmented check.
6467 */
6468 if (cluster && cluster->fragmented &&
6469 total_unpinned > empty_cluster) {
6470 spin_lock(&cluster->lock);
6471 cluster->fragmented = 0;
6472 spin_unlock(&cluster->lock);
6473 }
6474
7b398f8e 6475 spin_lock(&space_info->lock);
11833d66
YZ
6476 spin_lock(&cache->lock);
6477 cache->pinned -= len;
7b398f8e 6478 space_info->bytes_pinned -= len;
4f4db217 6479 space_info->max_extent_size = 0;
d288db5d 6480 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6481 if (cache->ro) {
6482 space_info->bytes_readonly += len;
6483 readonly = true;
6484 }
11833d66 6485 spin_unlock(&cache->lock);
7b398f8e
JB
6486 if (!readonly && global_rsv->space_info == space_info) {
6487 spin_lock(&global_rsv->lock);
6488 if (!global_rsv->full) {
6489 len = min(len, global_rsv->size -
6490 global_rsv->reserved);
6491 global_rsv->reserved += len;
6492 space_info->bytes_may_use += len;
6493 if (global_rsv->reserved >= global_rsv->size)
6494 global_rsv->full = 1;
6495 }
6496 spin_unlock(&global_rsv->lock);
6497 }
6498 spin_unlock(&space_info->lock);
ccd467d6 6499 }
11833d66
YZ
6500
6501 if (cache)
6502 btrfs_put_block_group(cache);
ccd467d6
CM
6503 return 0;
6504}
6505
6506int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6507 struct btrfs_root *root)
a28ec197 6508{
11833d66 6509 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6510 struct btrfs_block_group_cache *block_group, *tmp;
6511 struct list_head *deleted_bgs;
11833d66 6512 struct extent_io_tree *unpin;
1a5bc167
CM
6513 u64 start;
6514 u64 end;
a28ec197 6515 int ret;
a28ec197 6516
11833d66
YZ
6517 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6518 unpin = &fs_info->freed_extents[1];
6519 else
6520 unpin = &fs_info->freed_extents[0];
6521
e33e17ee 6522 while (!trans->aborted) {
d4b450cd 6523 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6524 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6525 EXTENT_DIRTY, NULL);
d4b450cd
FM
6526 if (ret) {
6527 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6528 break;
d4b450cd 6529 }
1f3c79a2 6530
5378e607
LD
6531 if (btrfs_test_opt(root, DISCARD))
6532 ret = btrfs_discard_extent(root, start,
6533 end + 1 - start, NULL);
1f3c79a2 6534
af6f8f60 6535 clear_extent_dirty(unpin, start, end);
678886bd 6536 unpin_extent_range(root, start, end, true);
d4b450cd 6537 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6538 cond_resched();
a28ec197 6539 }
817d52f8 6540
e33e17ee
JM
6541 /*
6542 * Transaction is finished. We don't need the lock anymore. We
6543 * do need to clean up the block groups in case of a transaction
6544 * abort.
6545 */
6546 deleted_bgs = &trans->transaction->deleted_bgs;
6547 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6548 u64 trimmed = 0;
6549
6550 ret = -EROFS;
6551 if (!trans->aborted)
6552 ret = btrfs_discard_extent(root,
6553 block_group->key.objectid,
6554 block_group->key.offset,
6555 &trimmed);
6556
6557 list_del_init(&block_group->bg_list);
6558 btrfs_put_block_group_trimming(block_group);
6559 btrfs_put_block_group(block_group);
6560
6561 if (ret) {
6562 const char *errstr = btrfs_decode_error(ret);
6563 btrfs_warn(fs_info,
6564 "Discard failed while removing blockgroup: errno=%d %s\n",
6565 ret, errstr);
6566 }
6567 }
6568
e20d96d6
CM
6569 return 0;
6570}
6571
b150a4f1
JB
6572static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6573 u64 owner, u64 root_objectid)
6574{
6575 struct btrfs_space_info *space_info;
6576 u64 flags;
6577
6578 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6579 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6580 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6581 else
6582 flags = BTRFS_BLOCK_GROUP_METADATA;
6583 } else {
6584 flags = BTRFS_BLOCK_GROUP_DATA;
6585 }
6586
6587 space_info = __find_space_info(fs_info, flags);
6588 BUG_ON(!space_info); /* Logic bug */
6589 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6590}
6591
6592
5d4f98a2
YZ
6593static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6594 struct btrfs_root *root,
c682f9b3 6595 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6596 u64 root_objectid, u64 owner_objectid,
6597 u64 owner_offset, int refs_to_drop,
c682f9b3 6598 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6599{
e2fa7227 6600 struct btrfs_key key;
5d4f98a2 6601 struct btrfs_path *path;
1261ec42
CM
6602 struct btrfs_fs_info *info = root->fs_info;
6603 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6604 struct extent_buffer *leaf;
5d4f98a2
YZ
6605 struct btrfs_extent_item *ei;
6606 struct btrfs_extent_inline_ref *iref;
a28ec197 6607 int ret;
5d4f98a2 6608 int is_data;
952fccac
CM
6609 int extent_slot = 0;
6610 int found_extent = 0;
6611 int num_to_del = 1;
5d4f98a2
YZ
6612 u32 item_size;
6613 u64 refs;
c682f9b3
QW
6614 u64 bytenr = node->bytenr;
6615 u64 num_bytes = node->num_bytes;
fcebe456 6616 int last_ref = 0;
3173a18f
JB
6617 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6618 SKINNY_METADATA);
037e6390 6619
5caf2a00 6620 path = btrfs_alloc_path();
54aa1f4d
CM
6621 if (!path)
6622 return -ENOMEM;
5f26f772 6623
e4058b54 6624 path->reada = READA_FORWARD;
b9473439 6625 path->leave_spinning = 1;
5d4f98a2
YZ
6626
6627 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6628 BUG_ON(!is_data && refs_to_drop != 1);
6629
3173a18f
JB
6630 if (is_data)
6631 skinny_metadata = 0;
6632
5d4f98a2
YZ
6633 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6634 bytenr, num_bytes, parent,
6635 root_objectid, owner_objectid,
6636 owner_offset);
7bb86316 6637 if (ret == 0) {
952fccac 6638 extent_slot = path->slots[0];
5d4f98a2
YZ
6639 while (extent_slot >= 0) {
6640 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6641 extent_slot);
5d4f98a2 6642 if (key.objectid != bytenr)
952fccac 6643 break;
5d4f98a2
YZ
6644 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6645 key.offset == num_bytes) {
952fccac
CM
6646 found_extent = 1;
6647 break;
6648 }
3173a18f
JB
6649 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6650 key.offset == owner_objectid) {
6651 found_extent = 1;
6652 break;
6653 }
952fccac
CM
6654 if (path->slots[0] - extent_slot > 5)
6655 break;
5d4f98a2 6656 extent_slot--;
952fccac 6657 }
5d4f98a2
YZ
6658#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6659 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6660 if (found_extent && item_size < sizeof(*ei))
6661 found_extent = 0;
6662#endif
31840ae1 6663 if (!found_extent) {
5d4f98a2 6664 BUG_ON(iref);
56bec294 6665 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6666 NULL, refs_to_drop,
fcebe456 6667 is_data, &last_ref);
005d6427
DS
6668 if (ret) {
6669 btrfs_abort_transaction(trans, extent_root, ret);
6670 goto out;
6671 }
b3b4aa74 6672 btrfs_release_path(path);
b9473439 6673 path->leave_spinning = 1;
5d4f98a2
YZ
6674
6675 key.objectid = bytenr;
6676 key.type = BTRFS_EXTENT_ITEM_KEY;
6677 key.offset = num_bytes;
6678
3173a18f
JB
6679 if (!is_data && skinny_metadata) {
6680 key.type = BTRFS_METADATA_ITEM_KEY;
6681 key.offset = owner_objectid;
6682 }
6683
31840ae1
ZY
6684 ret = btrfs_search_slot(trans, extent_root,
6685 &key, path, -1, 1);
3173a18f
JB
6686 if (ret > 0 && skinny_metadata && path->slots[0]) {
6687 /*
6688 * Couldn't find our skinny metadata item,
6689 * see if we have ye olde extent item.
6690 */
6691 path->slots[0]--;
6692 btrfs_item_key_to_cpu(path->nodes[0], &key,
6693 path->slots[0]);
6694 if (key.objectid == bytenr &&
6695 key.type == BTRFS_EXTENT_ITEM_KEY &&
6696 key.offset == num_bytes)
6697 ret = 0;
6698 }
6699
6700 if (ret > 0 && skinny_metadata) {
6701 skinny_metadata = false;
9ce49a0b 6702 key.objectid = bytenr;
3173a18f
JB
6703 key.type = BTRFS_EXTENT_ITEM_KEY;
6704 key.offset = num_bytes;
6705 btrfs_release_path(path);
6706 ret = btrfs_search_slot(trans, extent_root,
6707 &key, path, -1, 1);
6708 }
6709
f3465ca4 6710 if (ret) {
c2cf52eb 6711 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6712 ret, bytenr);
b783e62d
JB
6713 if (ret > 0)
6714 btrfs_print_leaf(extent_root,
6715 path->nodes[0]);
f3465ca4 6716 }
005d6427
DS
6717 if (ret < 0) {
6718 btrfs_abort_transaction(trans, extent_root, ret);
6719 goto out;
6720 }
31840ae1
ZY
6721 extent_slot = path->slots[0];
6722 }
fae7f21c 6723 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6724 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6725 btrfs_err(info,
6726 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6727 bytenr, parent, root_objectid, owner_objectid,
6728 owner_offset);
c4a050bb
JB
6729 btrfs_abort_transaction(trans, extent_root, ret);
6730 goto out;
79787eaa 6731 } else {
005d6427
DS
6732 btrfs_abort_transaction(trans, extent_root, ret);
6733 goto out;
7bb86316 6734 }
5f39d397
CM
6735
6736 leaf = path->nodes[0];
5d4f98a2
YZ
6737 item_size = btrfs_item_size_nr(leaf, extent_slot);
6738#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6739 if (item_size < sizeof(*ei)) {
6740 BUG_ON(found_extent || extent_slot != path->slots[0]);
6741 ret = convert_extent_item_v0(trans, extent_root, path,
6742 owner_objectid, 0);
005d6427
DS
6743 if (ret < 0) {
6744 btrfs_abort_transaction(trans, extent_root, ret);
6745 goto out;
6746 }
5d4f98a2 6747
b3b4aa74 6748 btrfs_release_path(path);
5d4f98a2
YZ
6749 path->leave_spinning = 1;
6750
6751 key.objectid = bytenr;
6752 key.type = BTRFS_EXTENT_ITEM_KEY;
6753 key.offset = num_bytes;
6754
6755 ret = btrfs_search_slot(trans, extent_root, &key, path,
6756 -1, 1);
6757 if (ret) {
c2cf52eb 6758 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6759 ret, bytenr);
5d4f98a2
YZ
6760 btrfs_print_leaf(extent_root, path->nodes[0]);
6761 }
005d6427
DS
6762 if (ret < 0) {
6763 btrfs_abort_transaction(trans, extent_root, ret);
6764 goto out;
6765 }
6766
5d4f98a2
YZ
6767 extent_slot = path->slots[0];
6768 leaf = path->nodes[0];
6769 item_size = btrfs_item_size_nr(leaf, extent_slot);
6770 }
6771#endif
6772 BUG_ON(item_size < sizeof(*ei));
952fccac 6773 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6774 struct btrfs_extent_item);
3173a18f
JB
6775 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6776 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6777 struct btrfs_tree_block_info *bi;
6778 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6779 bi = (struct btrfs_tree_block_info *)(ei + 1);
6780 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6781 }
56bec294 6782
5d4f98a2 6783 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6784 if (refs < refs_to_drop) {
6785 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6786 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6787 ret = -EINVAL;
6788 btrfs_abort_transaction(trans, extent_root, ret);
6789 goto out;
6790 }
56bec294 6791 refs -= refs_to_drop;
5f39d397 6792
5d4f98a2
YZ
6793 if (refs > 0) {
6794 if (extent_op)
6795 __run_delayed_extent_op(extent_op, leaf, ei);
6796 /*
6797 * In the case of inline back ref, reference count will
6798 * be updated by remove_extent_backref
952fccac 6799 */
5d4f98a2
YZ
6800 if (iref) {
6801 BUG_ON(!found_extent);
6802 } else {
6803 btrfs_set_extent_refs(leaf, ei, refs);
6804 btrfs_mark_buffer_dirty(leaf);
6805 }
6806 if (found_extent) {
6807 ret = remove_extent_backref(trans, extent_root, path,
6808 iref, refs_to_drop,
fcebe456 6809 is_data, &last_ref);
005d6427
DS
6810 if (ret) {
6811 btrfs_abort_transaction(trans, extent_root, ret);
6812 goto out;
6813 }
952fccac 6814 }
b150a4f1
JB
6815 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6816 root_objectid);
5d4f98a2 6817 } else {
5d4f98a2
YZ
6818 if (found_extent) {
6819 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6820 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6821 if (iref) {
6822 BUG_ON(path->slots[0] != extent_slot);
6823 } else {
6824 BUG_ON(path->slots[0] != extent_slot + 1);
6825 path->slots[0] = extent_slot;
6826 num_to_del = 2;
6827 }
78fae27e 6828 }
b9473439 6829
fcebe456 6830 last_ref = 1;
952fccac
CM
6831 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6832 num_to_del);
005d6427
DS
6833 if (ret) {
6834 btrfs_abort_transaction(trans, extent_root, ret);
6835 goto out;
6836 }
b3b4aa74 6837 btrfs_release_path(path);
21af804c 6838
5d4f98a2 6839 if (is_data) {
459931ec 6840 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6841 if (ret) {
6842 btrfs_abort_transaction(trans, extent_root, ret);
6843 goto out;
6844 }
459931ec
CM
6845 }
6846
1e144fb8
OS
6847 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6848 num_bytes);
6849 if (ret) {
6850 btrfs_abort_transaction(trans, extent_root, ret);
6851 goto out;
6852 }
6853
ce93ec54 6854 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6855 if (ret) {
6856 btrfs_abort_transaction(trans, extent_root, ret);
6857 goto out;
6858 }
a28ec197 6859 }
fcebe456
JB
6860 btrfs_release_path(path);
6861
79787eaa 6862out:
5caf2a00 6863 btrfs_free_path(path);
a28ec197
CM
6864 return ret;
6865}
6866
1887be66 6867/*
f0486c68 6868 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6869 * delayed ref for that extent as well. This searches the delayed ref tree for
6870 * a given extent, and if there are no other delayed refs to be processed, it
6871 * removes it from the tree.
6872 */
6873static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6874 struct btrfs_root *root, u64 bytenr)
6875{
6876 struct btrfs_delayed_ref_head *head;
6877 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6878 int ret = 0;
1887be66
CM
6879
6880 delayed_refs = &trans->transaction->delayed_refs;
6881 spin_lock(&delayed_refs->lock);
6882 head = btrfs_find_delayed_ref_head(trans, bytenr);
6883 if (!head)
cf93da7b 6884 goto out_delayed_unlock;
1887be66 6885
d7df2c79 6886 spin_lock(&head->lock);
c6fc2454 6887 if (!list_empty(&head->ref_list))
1887be66
CM
6888 goto out;
6889
5d4f98a2
YZ
6890 if (head->extent_op) {
6891 if (!head->must_insert_reserved)
6892 goto out;
78a6184a 6893 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6894 head->extent_op = NULL;
6895 }
6896
1887be66
CM
6897 /*
6898 * waiting for the lock here would deadlock. If someone else has it
6899 * locked they are already in the process of dropping it anyway
6900 */
6901 if (!mutex_trylock(&head->mutex))
6902 goto out;
6903
6904 /*
6905 * at this point we have a head with no other entries. Go
6906 * ahead and process it.
6907 */
6908 head->node.in_tree = 0;
c46effa6 6909 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6910
d7df2c79 6911 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6912
6913 /*
6914 * we don't take a ref on the node because we're removing it from the
6915 * tree, so we just steal the ref the tree was holding.
6916 */
c3e69d58 6917 delayed_refs->num_heads--;
d7df2c79 6918 if (head->processing == 0)
c3e69d58 6919 delayed_refs->num_heads_ready--;
d7df2c79
JB
6920 head->processing = 0;
6921 spin_unlock(&head->lock);
1887be66
CM
6922 spin_unlock(&delayed_refs->lock);
6923
f0486c68
YZ
6924 BUG_ON(head->extent_op);
6925 if (head->must_insert_reserved)
6926 ret = 1;
6927
6928 mutex_unlock(&head->mutex);
1887be66 6929 btrfs_put_delayed_ref(&head->node);
f0486c68 6930 return ret;
1887be66 6931out:
d7df2c79 6932 spin_unlock(&head->lock);
cf93da7b
CM
6933
6934out_delayed_unlock:
1887be66
CM
6935 spin_unlock(&delayed_refs->lock);
6936 return 0;
6937}
6938
f0486c68
YZ
6939void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6940 struct btrfs_root *root,
6941 struct extent_buffer *buf,
5581a51a 6942 u64 parent, int last_ref)
f0486c68 6943{
b150a4f1 6944 int pin = 1;
f0486c68
YZ
6945 int ret;
6946
6947 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6948 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6949 buf->start, buf->len,
6950 parent, root->root_key.objectid,
6951 btrfs_header_level(buf),
b06c4bf5 6952 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 6953 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6954 }
6955
6956 if (!last_ref)
6957 return;
6958
f0486c68 6959 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6960 struct btrfs_block_group_cache *cache;
6961
f0486c68
YZ
6962 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6963 ret = check_ref_cleanup(trans, root, buf->start);
6964 if (!ret)
37be25bc 6965 goto out;
f0486c68
YZ
6966 }
6967
6219872d
FM
6968 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6969
f0486c68
YZ
6970 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6971 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6972 btrfs_put_block_group(cache);
37be25bc 6973 goto out;
f0486c68
YZ
6974 }
6975
6976 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6977
6978 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6979 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6980 btrfs_put_block_group(cache);
0be5dc67 6981 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6982 pin = 0;
f0486c68
YZ
6983 }
6984out:
b150a4f1
JB
6985 if (pin)
6986 add_pinned_bytes(root->fs_info, buf->len,
6987 btrfs_header_level(buf),
6988 root->root_key.objectid);
6989
a826d6dc
JB
6990 /*
6991 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6992 * anymore.
6993 */
6994 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6995}
6996
79787eaa 6997/* Can return -ENOMEM */
66d7e7f0
AJ
6998int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6999 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7000 u64 owner, u64 offset)
925baedd
CM
7001{
7002 int ret;
66d7e7f0 7003 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 7004
fccb84c9 7005 if (btrfs_test_is_dummy_root(root))
faa2dbf0 7006 return 0;
fccb84c9 7007
b150a4f1
JB
7008 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7009
56bec294
CM
7010 /*
7011 * tree log blocks never actually go into the extent allocation
7012 * tree, just update pinning info and exit early.
56bec294 7013 */
5d4f98a2
YZ
7014 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7015 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7016 /* unlocks the pinned mutex */
11833d66 7017 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7018 ret = 0;
5d4f98a2 7019 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7020 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7021 num_bytes,
5d4f98a2 7022 parent, root_objectid, (int)owner,
b06c4bf5 7023 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7024 } else {
66d7e7f0
AJ
7025 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7026 num_bytes,
7027 parent, root_objectid, owner,
5846a3c2
QW
7028 offset, 0,
7029 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7030 }
925baedd
CM
7031 return ret;
7032}
7033
817d52f8
JB
7034/*
7035 * when we wait for progress in the block group caching, its because
7036 * our allocation attempt failed at least once. So, we must sleep
7037 * and let some progress happen before we try again.
7038 *
7039 * This function will sleep at least once waiting for new free space to
7040 * show up, and then it will check the block group free space numbers
7041 * for our min num_bytes. Another option is to have it go ahead
7042 * and look in the rbtree for a free extent of a given size, but this
7043 * is a good start.
36cce922
JB
7044 *
7045 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7046 * any of the information in this block group.
817d52f8 7047 */
36cce922 7048static noinline void
817d52f8
JB
7049wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7050 u64 num_bytes)
7051{
11833d66 7052 struct btrfs_caching_control *caching_ctl;
817d52f8 7053
11833d66
YZ
7054 caching_ctl = get_caching_control(cache);
7055 if (!caching_ctl)
36cce922 7056 return;
817d52f8 7057
11833d66 7058 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7059 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7060
7061 put_caching_control(caching_ctl);
11833d66
YZ
7062}
7063
7064static noinline int
7065wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7066{
7067 struct btrfs_caching_control *caching_ctl;
36cce922 7068 int ret = 0;
11833d66
YZ
7069
7070 caching_ctl = get_caching_control(cache);
7071 if (!caching_ctl)
36cce922 7072 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7073
7074 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7075 if (cache->cached == BTRFS_CACHE_ERROR)
7076 ret = -EIO;
11833d66 7077 put_caching_control(caching_ctl);
36cce922 7078 return ret;
817d52f8
JB
7079}
7080
31e50229 7081int __get_raid_index(u64 flags)
b742bb82 7082{
7738a53a 7083 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7084 return BTRFS_RAID_RAID10;
7738a53a 7085 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7086 return BTRFS_RAID_RAID1;
7738a53a 7087 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7088 return BTRFS_RAID_DUP;
7738a53a 7089 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7090 return BTRFS_RAID_RAID0;
53b381b3 7091 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7092 return BTRFS_RAID_RAID5;
53b381b3 7093 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7094 return BTRFS_RAID_RAID6;
7738a53a 7095
e942f883 7096 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7097}
7098
6ab0a202 7099int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7100{
31e50229 7101 return __get_raid_index(cache->flags);
7738a53a
ID
7102}
7103
6ab0a202
JM
7104static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7105 [BTRFS_RAID_RAID10] = "raid10",
7106 [BTRFS_RAID_RAID1] = "raid1",
7107 [BTRFS_RAID_DUP] = "dup",
7108 [BTRFS_RAID_RAID0] = "raid0",
7109 [BTRFS_RAID_SINGLE] = "single",
7110 [BTRFS_RAID_RAID5] = "raid5",
7111 [BTRFS_RAID_RAID6] = "raid6",
7112};
7113
1b8e5df6 7114static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7115{
7116 if (type >= BTRFS_NR_RAID_TYPES)
7117 return NULL;
7118
7119 return btrfs_raid_type_names[type];
7120}
7121
817d52f8 7122enum btrfs_loop_type {
285ff5af
JB
7123 LOOP_CACHING_NOWAIT = 0,
7124 LOOP_CACHING_WAIT = 1,
7125 LOOP_ALLOC_CHUNK = 2,
7126 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7127};
7128
e570fd27
MX
7129static inline void
7130btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7131 int delalloc)
7132{
7133 if (delalloc)
7134 down_read(&cache->data_rwsem);
7135}
7136
7137static inline void
7138btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7139 int delalloc)
7140{
7141 btrfs_get_block_group(cache);
7142 if (delalloc)
7143 down_read(&cache->data_rwsem);
7144}
7145
7146static struct btrfs_block_group_cache *
7147btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7148 struct btrfs_free_cluster *cluster,
7149 int delalloc)
7150{
89771cc9 7151 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7152
e570fd27 7153 spin_lock(&cluster->refill_lock);
6719afdc
GU
7154 while (1) {
7155 used_bg = cluster->block_group;
7156 if (!used_bg)
7157 return NULL;
7158
7159 if (used_bg == block_group)
e570fd27
MX
7160 return used_bg;
7161
6719afdc 7162 btrfs_get_block_group(used_bg);
e570fd27 7163
6719afdc
GU
7164 if (!delalloc)
7165 return used_bg;
e570fd27 7166
6719afdc
GU
7167 if (down_read_trylock(&used_bg->data_rwsem))
7168 return used_bg;
e570fd27 7169
6719afdc 7170 spin_unlock(&cluster->refill_lock);
e570fd27 7171
6719afdc 7172 down_read(&used_bg->data_rwsem);
e570fd27 7173
6719afdc
GU
7174 spin_lock(&cluster->refill_lock);
7175 if (used_bg == cluster->block_group)
7176 return used_bg;
e570fd27 7177
6719afdc
GU
7178 up_read(&used_bg->data_rwsem);
7179 btrfs_put_block_group(used_bg);
7180 }
e570fd27
MX
7181}
7182
7183static inline void
7184btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7185 int delalloc)
7186{
7187 if (delalloc)
7188 up_read(&cache->data_rwsem);
7189 btrfs_put_block_group(cache);
7190}
7191
fec577fb
CM
7192/*
7193 * walks the btree of allocated extents and find a hole of a given size.
7194 * The key ins is changed to record the hole:
a4820398 7195 * ins->objectid == start position
62e2749e 7196 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7197 * ins->offset == the size of the hole.
fec577fb 7198 * Any available blocks before search_start are skipped.
a4820398
MX
7199 *
7200 * If there is no suitable free space, we will record the max size of
7201 * the free space extent currently.
fec577fb 7202 */
00361589 7203static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7204 u64 num_bytes, u64 empty_size,
98ed5174 7205 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7206 u64 flags, int delalloc)
fec577fb 7207{
80eb234a 7208 int ret = 0;
d397712b 7209 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7210 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7211 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7212 u64 search_start = 0;
a4820398 7213 u64 max_extent_size = 0;
c759c4e1 7214 u64 empty_cluster = 0;
80eb234a 7215 struct btrfs_space_info *space_info;
fa9c0d79 7216 int loop = 0;
b6919a58
DS
7217 int index = __get_raid_index(flags);
7218 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7219 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7220 bool failed_cluster_refill = false;
1cdda9b8 7221 bool failed_alloc = false;
67377734 7222 bool use_cluster = true;
60d2adbb 7223 bool have_caching_bg = false;
13a0db5a 7224 bool orig_have_caching_bg = false;
a5e681d9 7225 bool full_search = false;
fec577fb 7226
db94535d 7227 WARN_ON(num_bytes < root->sectorsize);
962a298f 7228 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7229 ins->objectid = 0;
7230 ins->offset = 0;
b1a4d965 7231
b6919a58 7232 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7233
b6919a58 7234 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7235 if (!space_info) {
b6919a58 7236 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7237 return -ENOSPC;
7238 }
2552d17e 7239
67377734 7240 /*
4f4db217
JB
7241 * If our free space is heavily fragmented we may not be able to make
7242 * big contiguous allocations, so instead of doing the expensive search
7243 * for free space, simply return ENOSPC with our max_extent_size so we
7244 * can go ahead and search for a more manageable chunk.
7245 *
7246 * If our max_extent_size is large enough for our allocation simply
7247 * disable clustering since we will likely not be able to find enough
7248 * space to create a cluster and induce latency trying.
67377734 7249 */
4f4db217
JB
7250 if (unlikely(space_info->max_extent_size)) {
7251 spin_lock(&space_info->lock);
7252 if (space_info->max_extent_size &&
7253 num_bytes > space_info->max_extent_size) {
7254 ins->offset = space_info->max_extent_size;
7255 spin_unlock(&space_info->lock);
7256 return -ENOSPC;
7257 } else if (space_info->max_extent_size) {
7258 use_cluster = false;
7259 }
7260 spin_unlock(&space_info->lock);
fa9c0d79 7261 }
0f9dd46c 7262
c759c4e1 7263 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7264 if (last_ptr) {
fa9c0d79
CM
7265 spin_lock(&last_ptr->lock);
7266 if (last_ptr->block_group)
7267 hint_byte = last_ptr->window_start;
c759c4e1
JB
7268 if (last_ptr->fragmented) {
7269 /*
7270 * We still set window_start so we can keep track of the
7271 * last place we found an allocation to try and save
7272 * some time.
7273 */
7274 hint_byte = last_ptr->window_start;
7275 use_cluster = false;
7276 }
fa9c0d79 7277 spin_unlock(&last_ptr->lock);
239b14b3 7278 }
fa9c0d79 7279
a061fc8d 7280 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7281 search_start = max(search_start, hint_byte);
2552d17e 7282 if (search_start == hint_byte) {
2552d17e
JB
7283 block_group = btrfs_lookup_block_group(root->fs_info,
7284 search_start);
817d52f8
JB
7285 /*
7286 * we don't want to use the block group if it doesn't match our
7287 * allocation bits, or if its not cached.
ccf0e725
JB
7288 *
7289 * However if we are re-searching with an ideal block group
7290 * picked out then we don't care that the block group is cached.
817d52f8 7291 */
b6919a58 7292 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7293 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7294 down_read(&space_info->groups_sem);
44fb5511
CM
7295 if (list_empty(&block_group->list) ||
7296 block_group->ro) {
7297 /*
7298 * someone is removing this block group,
7299 * we can't jump into the have_block_group
7300 * target because our list pointers are not
7301 * valid
7302 */
7303 btrfs_put_block_group(block_group);
7304 up_read(&space_info->groups_sem);
ccf0e725 7305 } else {
b742bb82 7306 index = get_block_group_index(block_group);
e570fd27 7307 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7308 goto have_block_group;
ccf0e725 7309 }
2552d17e 7310 } else if (block_group) {
fa9c0d79 7311 btrfs_put_block_group(block_group);
2552d17e 7312 }
42e70e7a 7313 }
2552d17e 7314search:
60d2adbb 7315 have_caching_bg = false;
a5e681d9
JB
7316 if (index == 0 || index == __get_raid_index(flags))
7317 full_search = true;
80eb234a 7318 down_read(&space_info->groups_sem);
b742bb82
YZ
7319 list_for_each_entry(block_group, &space_info->block_groups[index],
7320 list) {
6226cb0a 7321 u64 offset;
817d52f8 7322 int cached;
8a1413a2 7323
e570fd27 7324 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7325 search_start = block_group->key.objectid;
42e70e7a 7326
83a50de9
CM
7327 /*
7328 * this can happen if we end up cycling through all the
7329 * raid types, but we want to make sure we only allocate
7330 * for the proper type.
7331 */
b6919a58 7332 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7333 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7334 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7335 BTRFS_BLOCK_GROUP_RAID5 |
7336 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7337 BTRFS_BLOCK_GROUP_RAID10;
7338
7339 /*
7340 * if they asked for extra copies and this block group
7341 * doesn't provide them, bail. This does allow us to
7342 * fill raid0 from raid1.
7343 */
b6919a58 7344 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7345 goto loop;
7346 }
7347
2552d17e 7348have_block_group:
291c7d2f
JB
7349 cached = block_group_cache_done(block_group);
7350 if (unlikely(!cached)) {
a5e681d9 7351 have_caching_bg = true;
f6373bf3 7352 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7353 BUG_ON(ret < 0);
7354 ret = 0;
817d52f8
JB
7355 }
7356
36cce922
JB
7357 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7358 goto loop;
ea6a478e 7359 if (unlikely(block_group->ro))
2552d17e 7360 goto loop;
0f9dd46c 7361
0a24325e 7362 /*
062c05c4
AO
7363 * Ok we want to try and use the cluster allocator, so
7364 * lets look there
0a24325e 7365 */
c759c4e1 7366 if (last_ptr && use_cluster) {
215a63d1 7367 struct btrfs_block_group_cache *used_block_group;
8de972b4 7368 unsigned long aligned_cluster;
fa9c0d79
CM
7369 /*
7370 * the refill lock keeps out other
7371 * people trying to start a new cluster
7372 */
e570fd27
MX
7373 used_block_group = btrfs_lock_cluster(block_group,
7374 last_ptr,
7375 delalloc);
7376 if (!used_block_group)
44fb5511 7377 goto refill_cluster;
274bd4fb 7378
e570fd27
MX
7379 if (used_block_group != block_group &&
7380 (used_block_group->ro ||
7381 !block_group_bits(used_block_group, flags)))
7382 goto release_cluster;
44fb5511 7383
274bd4fb 7384 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7385 last_ptr,
7386 num_bytes,
7387 used_block_group->key.objectid,
7388 &max_extent_size);
fa9c0d79
CM
7389 if (offset) {
7390 /* we have a block, we're done */
7391 spin_unlock(&last_ptr->refill_lock);
3f7de037 7392 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7393 used_block_group,
7394 search_start, num_bytes);
215a63d1 7395 if (used_block_group != block_group) {
e570fd27
MX
7396 btrfs_release_block_group(block_group,
7397 delalloc);
215a63d1
MX
7398 block_group = used_block_group;
7399 }
fa9c0d79
CM
7400 goto checks;
7401 }
7402
274bd4fb 7403 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7404release_cluster:
062c05c4
AO
7405 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7406 * set up a new clusters, so lets just skip it
7407 * and let the allocator find whatever block
7408 * it can find. If we reach this point, we
7409 * will have tried the cluster allocator
7410 * plenty of times and not have found
7411 * anything, so we are likely way too
7412 * fragmented for the clustering stuff to find
a5f6f719
AO
7413 * anything.
7414 *
7415 * However, if the cluster is taken from the
7416 * current block group, release the cluster
7417 * first, so that we stand a better chance of
7418 * succeeding in the unclustered
7419 * allocation. */
7420 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7421 used_block_group != block_group) {
062c05c4 7422 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7423 btrfs_release_block_group(used_block_group,
7424 delalloc);
062c05c4
AO
7425 goto unclustered_alloc;
7426 }
7427
fa9c0d79
CM
7428 /*
7429 * this cluster didn't work out, free it and
7430 * start over
7431 */
7432 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7433
e570fd27
MX
7434 if (used_block_group != block_group)
7435 btrfs_release_block_group(used_block_group,
7436 delalloc);
7437refill_cluster:
a5f6f719
AO
7438 if (loop >= LOOP_NO_EMPTY_SIZE) {
7439 spin_unlock(&last_ptr->refill_lock);
7440 goto unclustered_alloc;
7441 }
7442
8de972b4
CM
7443 aligned_cluster = max_t(unsigned long,
7444 empty_cluster + empty_size,
7445 block_group->full_stripe_len);
7446
fa9c0d79 7447 /* allocate a cluster in this block group */
00361589
JB
7448 ret = btrfs_find_space_cluster(root, block_group,
7449 last_ptr, search_start,
7450 num_bytes,
7451 aligned_cluster);
fa9c0d79
CM
7452 if (ret == 0) {
7453 /*
7454 * now pull our allocation out of this
7455 * cluster
7456 */
7457 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7458 last_ptr,
7459 num_bytes,
7460 search_start,
7461 &max_extent_size);
fa9c0d79
CM
7462 if (offset) {
7463 /* we found one, proceed */
7464 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7465 trace_btrfs_reserve_extent_cluster(root,
7466 block_group, search_start,
7467 num_bytes);
fa9c0d79
CM
7468 goto checks;
7469 }
0a24325e
JB
7470 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7471 && !failed_cluster_refill) {
817d52f8
JB
7472 spin_unlock(&last_ptr->refill_lock);
7473
0a24325e 7474 failed_cluster_refill = true;
817d52f8
JB
7475 wait_block_group_cache_progress(block_group,
7476 num_bytes + empty_cluster + empty_size);
7477 goto have_block_group;
fa9c0d79 7478 }
817d52f8 7479
fa9c0d79
CM
7480 /*
7481 * at this point we either didn't find a cluster
7482 * or we weren't able to allocate a block from our
7483 * cluster. Free the cluster we've been trying
7484 * to use, and go to the next block group
7485 */
0a24325e 7486 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7487 spin_unlock(&last_ptr->refill_lock);
0a24325e 7488 goto loop;
fa9c0d79
CM
7489 }
7490
062c05c4 7491unclustered_alloc:
c759c4e1
JB
7492 /*
7493 * We are doing an unclustered alloc, set the fragmented flag so
7494 * we don't bother trying to setup a cluster again until we get
7495 * more space.
7496 */
7497 if (unlikely(last_ptr)) {
7498 spin_lock(&last_ptr->lock);
7499 last_ptr->fragmented = 1;
7500 spin_unlock(&last_ptr->lock);
7501 }
a5f6f719
AO
7502 spin_lock(&block_group->free_space_ctl->tree_lock);
7503 if (cached &&
7504 block_group->free_space_ctl->free_space <
7505 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7506 if (block_group->free_space_ctl->free_space >
7507 max_extent_size)
7508 max_extent_size =
7509 block_group->free_space_ctl->free_space;
a5f6f719
AO
7510 spin_unlock(&block_group->free_space_ctl->tree_lock);
7511 goto loop;
7512 }
7513 spin_unlock(&block_group->free_space_ctl->tree_lock);
7514
6226cb0a 7515 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7516 num_bytes, empty_size,
7517 &max_extent_size);
1cdda9b8
JB
7518 /*
7519 * If we didn't find a chunk, and we haven't failed on this
7520 * block group before, and this block group is in the middle of
7521 * caching and we are ok with waiting, then go ahead and wait
7522 * for progress to be made, and set failed_alloc to true.
7523 *
7524 * If failed_alloc is true then we've already waited on this
7525 * block group once and should move on to the next block group.
7526 */
7527 if (!offset && !failed_alloc && !cached &&
7528 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7529 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7530 num_bytes + empty_size);
7531 failed_alloc = true;
817d52f8 7532 goto have_block_group;
1cdda9b8
JB
7533 } else if (!offset) {
7534 goto loop;
817d52f8 7535 }
fa9c0d79 7536checks:
4e54b17a 7537 search_start = ALIGN(offset, root->stripesize);
25179201 7538
2552d17e
JB
7539 /* move on to the next group */
7540 if (search_start + num_bytes >
215a63d1
MX
7541 block_group->key.objectid + block_group->key.offset) {
7542 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7543 goto loop;
6226cb0a 7544 }
f5a31e16 7545
f0486c68 7546 if (offset < search_start)
215a63d1 7547 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7548 search_start - offset);
7549 BUG_ON(offset > search_start);
2552d17e 7550
215a63d1 7551 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7552 alloc_type, delalloc);
f0486c68 7553 if (ret == -EAGAIN) {
215a63d1 7554 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7555 goto loop;
0f9dd46c 7556 }
9cfa3e34 7557 btrfs_inc_block_group_reservations(block_group);
0b86a832 7558
f0486c68 7559 /* we are all good, lets return */
2552d17e
JB
7560 ins->objectid = search_start;
7561 ins->offset = num_bytes;
d2fb3437 7562
3f7de037
JB
7563 trace_btrfs_reserve_extent(orig_root, block_group,
7564 search_start, num_bytes);
e570fd27 7565 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7566 break;
7567loop:
0a24325e 7568 failed_cluster_refill = false;
1cdda9b8 7569 failed_alloc = false;
b742bb82 7570 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7571 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7572 }
7573 up_read(&space_info->groups_sem);
7574
13a0db5a 7575 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7576 && !orig_have_caching_bg)
7577 orig_have_caching_bg = true;
7578
60d2adbb
MX
7579 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7580 goto search;
7581
b742bb82
YZ
7582 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7583 goto search;
7584
285ff5af 7585 /*
ccf0e725
JB
7586 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7587 * caching kthreads as we move along
817d52f8
JB
7588 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7589 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7590 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7591 * again
fa9c0d79 7592 */
723bda20 7593 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7594 index = 0;
a5e681d9
JB
7595 if (loop == LOOP_CACHING_NOWAIT) {
7596 /*
7597 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7598 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7599 * full search through.
7600 */
13a0db5a 7601 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7602 loop = LOOP_CACHING_WAIT;
7603 else
7604 loop = LOOP_ALLOC_CHUNK;
7605 } else {
7606 loop++;
7607 }
7608
817d52f8 7609 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7610 struct btrfs_trans_handle *trans;
f017f15f
WS
7611 int exist = 0;
7612
7613 trans = current->journal_info;
7614 if (trans)
7615 exist = 1;
7616 else
7617 trans = btrfs_join_transaction(root);
00361589 7618
00361589
JB
7619 if (IS_ERR(trans)) {
7620 ret = PTR_ERR(trans);
7621 goto out;
7622 }
7623
b6919a58 7624 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7625 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7626
7627 /*
7628 * If we can't allocate a new chunk we've already looped
7629 * through at least once, move on to the NO_EMPTY_SIZE
7630 * case.
7631 */
7632 if (ret == -ENOSPC)
7633 loop = LOOP_NO_EMPTY_SIZE;
7634
ea658bad
JB
7635 /*
7636 * Do not bail out on ENOSPC since we
7637 * can do more things.
7638 */
00361589 7639 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7640 btrfs_abort_transaction(trans,
7641 root, ret);
00361589
JB
7642 else
7643 ret = 0;
f017f15f
WS
7644 if (!exist)
7645 btrfs_end_transaction(trans, root);
00361589 7646 if (ret)
ea658bad 7647 goto out;
2552d17e
JB
7648 }
7649
723bda20 7650 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7651 /*
7652 * Don't loop again if we already have no empty_size and
7653 * no empty_cluster.
7654 */
7655 if (empty_size == 0 &&
7656 empty_cluster == 0) {
7657 ret = -ENOSPC;
7658 goto out;
7659 }
723bda20
JB
7660 empty_size = 0;
7661 empty_cluster = 0;
fa9c0d79 7662 }
723bda20
JB
7663
7664 goto search;
2552d17e
JB
7665 } else if (!ins->objectid) {
7666 ret = -ENOSPC;
d82a6f1d 7667 } else if (ins->objectid) {
c759c4e1
JB
7668 if (!use_cluster && last_ptr) {
7669 spin_lock(&last_ptr->lock);
7670 last_ptr->window_start = ins->objectid;
7671 spin_unlock(&last_ptr->lock);
7672 }
80eb234a 7673 ret = 0;
be744175 7674 }
79787eaa 7675out:
4f4db217
JB
7676 if (ret == -ENOSPC) {
7677 spin_lock(&space_info->lock);
7678 space_info->max_extent_size = max_extent_size;
7679 spin_unlock(&space_info->lock);
a4820398 7680 ins->offset = max_extent_size;
4f4db217 7681 }
0f70abe2 7682 return ret;
fec577fb 7683}
ec44a35c 7684
9ed74f2d
JB
7685static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7686 int dump_block_groups)
0f9dd46c
JB
7687{
7688 struct btrfs_block_group_cache *cache;
b742bb82 7689 int index = 0;
0f9dd46c 7690
9ed74f2d 7691 spin_lock(&info->lock);
efe120a0 7692 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7693 info->flags,
7694 info->total_bytes - info->bytes_used - info->bytes_pinned -
7695 info->bytes_reserved - info->bytes_readonly,
d397712b 7696 (info->full) ? "" : "not ");
efe120a0 7697 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7698 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7699 info->total_bytes, info->bytes_used, info->bytes_pinned,
7700 info->bytes_reserved, info->bytes_may_use,
7701 info->bytes_readonly);
9ed74f2d
JB
7702 spin_unlock(&info->lock);
7703
7704 if (!dump_block_groups)
7705 return;
0f9dd46c 7706
80eb234a 7707 down_read(&info->groups_sem);
b742bb82
YZ
7708again:
7709 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7710 spin_lock(&cache->lock);
efe120a0
FH
7711 printk(KERN_INFO "BTRFS: "
7712 "block group %llu has %llu bytes, "
7713 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7714 cache->key.objectid, cache->key.offset,
7715 btrfs_block_group_used(&cache->item), cache->pinned,
7716 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7717 btrfs_dump_free_space(cache, bytes);
7718 spin_unlock(&cache->lock);
7719 }
b742bb82
YZ
7720 if (++index < BTRFS_NR_RAID_TYPES)
7721 goto again;
80eb234a 7722 up_read(&info->groups_sem);
0f9dd46c 7723}
e8569813 7724
00361589 7725int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7726 u64 num_bytes, u64 min_alloc_size,
7727 u64 empty_size, u64 hint_byte,
e570fd27 7728 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7729{
36af4e07 7730 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7731 u64 flags;
fec577fb 7732 int ret;
925baedd 7733
b6919a58 7734 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7735again:
db94535d 7736 WARN_ON(num_bytes < root->sectorsize);
00361589 7737 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7738 flags, delalloc);
9cfa3e34
FM
7739 if (!ret && !is_data) {
7740 btrfs_dec_block_group_reservations(root->fs_info,
7741 ins->objectid);
7742 } else if (ret == -ENOSPC) {
a4820398
MX
7743 if (!final_tried && ins->offset) {
7744 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7745 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7746 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7747 if (num_bytes == min_alloc_size)
7748 final_tried = true;
7749 goto again;
7750 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7751 struct btrfs_space_info *sinfo;
7752
b6919a58 7753 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7754 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7755 flags, num_bytes);
53804280
JM
7756 if (sinfo)
7757 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7758 }
925baedd 7759 }
0f9dd46c
JB
7760
7761 return ret;
e6dcd2dc
CM
7762}
7763
e688b725 7764static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7765 u64 start, u64 len,
7766 int pin, int delalloc)
65b51a00 7767{
0f9dd46c 7768 struct btrfs_block_group_cache *cache;
1f3c79a2 7769 int ret = 0;
0f9dd46c 7770
0f9dd46c
JB
7771 cache = btrfs_lookup_block_group(root->fs_info, start);
7772 if (!cache) {
c2cf52eb 7773 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7774 start);
0f9dd46c
JB
7775 return -ENOSPC;
7776 }
1f3c79a2 7777
e688b725
CM
7778 if (pin)
7779 pin_down_extent(root, cache, start, len, 1);
7780 else {
dcc82f47
FM
7781 if (btrfs_test_opt(root, DISCARD))
7782 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7783 btrfs_add_free_space(cache, start, len);
e570fd27 7784 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7785 }
31193213 7786
fa9c0d79 7787 btrfs_put_block_group(cache);
817d52f8 7788
1abe9b8a 7789 trace_btrfs_reserved_extent_free(root, start, len);
7790
e6dcd2dc
CM
7791 return ret;
7792}
7793
e688b725 7794int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7795 u64 start, u64 len, int delalloc)
e688b725 7796{
e570fd27 7797 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7798}
7799
7800int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7801 u64 start, u64 len)
7802{
e570fd27 7803 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7804}
7805
5d4f98a2
YZ
7806static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7807 struct btrfs_root *root,
7808 u64 parent, u64 root_objectid,
7809 u64 flags, u64 owner, u64 offset,
7810 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7811{
7812 int ret;
5d4f98a2 7813 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7814 struct btrfs_extent_item *extent_item;
5d4f98a2 7815 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7816 struct btrfs_path *path;
5d4f98a2
YZ
7817 struct extent_buffer *leaf;
7818 int type;
7819 u32 size;
26b8003f 7820
5d4f98a2
YZ
7821 if (parent > 0)
7822 type = BTRFS_SHARED_DATA_REF_KEY;
7823 else
7824 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7825
5d4f98a2 7826 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7827
7828 path = btrfs_alloc_path();
db5b493a
TI
7829 if (!path)
7830 return -ENOMEM;
47e4bb98 7831
b9473439 7832 path->leave_spinning = 1;
5d4f98a2
YZ
7833 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7834 ins, size);
79787eaa
JM
7835 if (ret) {
7836 btrfs_free_path(path);
7837 return ret;
7838 }
0f9dd46c 7839
5d4f98a2
YZ
7840 leaf = path->nodes[0];
7841 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7842 struct btrfs_extent_item);
5d4f98a2
YZ
7843 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7844 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7845 btrfs_set_extent_flags(leaf, extent_item,
7846 flags | BTRFS_EXTENT_FLAG_DATA);
7847
7848 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7849 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7850 if (parent > 0) {
7851 struct btrfs_shared_data_ref *ref;
7852 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7853 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7854 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7855 } else {
7856 struct btrfs_extent_data_ref *ref;
7857 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7858 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7859 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7860 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7861 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7862 }
47e4bb98
CM
7863
7864 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7865 btrfs_free_path(path);
f510cfec 7866
1e144fb8
OS
7867 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7868 ins->offset);
7869 if (ret)
7870 return ret;
7871
ce93ec54 7872 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7873 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7874 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7875 ins->objectid, ins->offset);
f5947066
CM
7876 BUG();
7877 }
0be5dc67 7878 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7879 return ret;
7880}
7881
5d4f98a2
YZ
7882static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7883 struct btrfs_root *root,
7884 u64 parent, u64 root_objectid,
7885 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 7886 int level, struct btrfs_key *ins)
e6dcd2dc
CM
7887{
7888 int ret;
5d4f98a2
YZ
7889 struct btrfs_fs_info *fs_info = root->fs_info;
7890 struct btrfs_extent_item *extent_item;
7891 struct btrfs_tree_block_info *block_info;
7892 struct btrfs_extent_inline_ref *iref;
7893 struct btrfs_path *path;
7894 struct extent_buffer *leaf;
3173a18f 7895 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7896 u64 num_bytes = ins->offset;
3173a18f
JB
7897 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7898 SKINNY_METADATA);
7899
7900 if (!skinny_metadata)
7901 size += sizeof(*block_info);
1c2308f8 7902
5d4f98a2 7903 path = btrfs_alloc_path();
857cc2fc
JB
7904 if (!path) {
7905 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7906 root->nodesize);
d8926bb3 7907 return -ENOMEM;
857cc2fc 7908 }
56bec294 7909
5d4f98a2
YZ
7910 path->leave_spinning = 1;
7911 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7912 ins, size);
79787eaa 7913 if (ret) {
dd825259 7914 btrfs_free_path(path);
857cc2fc 7915 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7916 root->nodesize);
79787eaa
JM
7917 return ret;
7918 }
5d4f98a2
YZ
7919
7920 leaf = path->nodes[0];
7921 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7922 struct btrfs_extent_item);
7923 btrfs_set_extent_refs(leaf, extent_item, 1);
7924 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7925 btrfs_set_extent_flags(leaf, extent_item,
7926 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7927
3173a18f
JB
7928 if (skinny_metadata) {
7929 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7930 num_bytes = root->nodesize;
3173a18f
JB
7931 } else {
7932 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7933 btrfs_set_tree_block_key(leaf, block_info, key);
7934 btrfs_set_tree_block_level(leaf, block_info, level);
7935 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7936 }
5d4f98a2 7937
5d4f98a2
YZ
7938 if (parent > 0) {
7939 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7940 btrfs_set_extent_inline_ref_type(leaf, iref,
7941 BTRFS_SHARED_BLOCK_REF_KEY);
7942 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7943 } else {
7944 btrfs_set_extent_inline_ref_type(leaf, iref,
7945 BTRFS_TREE_BLOCK_REF_KEY);
7946 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7947 }
7948
7949 btrfs_mark_buffer_dirty(leaf);
7950 btrfs_free_path(path);
7951
1e144fb8
OS
7952 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7953 num_bytes);
7954 if (ret)
7955 return ret;
7956
ce93ec54
JB
7957 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7958 1);
79787eaa 7959 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7960 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7961 ins->objectid, ins->offset);
5d4f98a2
YZ
7962 BUG();
7963 }
0be5dc67 7964
707e8a07 7965 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7966 return ret;
7967}
7968
7969int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7970 struct btrfs_root *root,
7971 u64 root_objectid, u64 owner,
5846a3c2
QW
7972 u64 offset, u64 ram_bytes,
7973 struct btrfs_key *ins)
5d4f98a2
YZ
7974{
7975 int ret;
7976
7977 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7978
66d7e7f0
AJ
7979 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7980 ins->offset, 0,
7981 root_objectid, owner, offset,
5846a3c2
QW
7982 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7983 NULL);
e6dcd2dc
CM
7984 return ret;
7985}
e02119d5
CM
7986
7987/*
7988 * this is used by the tree logging recovery code. It records that
7989 * an extent has been allocated and makes sure to clear the free
7990 * space cache bits as well
7991 */
5d4f98a2
YZ
7992int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7993 struct btrfs_root *root,
7994 u64 root_objectid, u64 owner, u64 offset,
7995 struct btrfs_key *ins)
e02119d5
CM
7996{
7997 int ret;
7998 struct btrfs_block_group_cache *block_group;
11833d66 7999
8c2a1a30
JB
8000 /*
8001 * Mixed block groups will exclude before processing the log so we only
01327610 8002 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
8003 */
8004 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8005 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 8006 if (ret)
8c2a1a30 8007 return ret;
11833d66
YZ
8008 }
8009
8c2a1a30
JB
8010 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8011 if (!block_group)
8012 return -EINVAL;
8013
fb25e914 8014 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 8015 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 8016 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
8017 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8018 0, owner, offset, ins, 1);
b50c6e25 8019 btrfs_put_block_group(block_group);
e02119d5
CM
8020 return ret;
8021}
8022
48a3b636
ES
8023static struct extent_buffer *
8024btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8025 u64 bytenr, int level)
65b51a00
CM
8026{
8027 struct extent_buffer *buf;
8028
a83fffb7 8029 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8030 if (IS_ERR(buf))
8031 return buf;
8032
65b51a00 8033 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8034 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8035 btrfs_tree_lock(buf);
01d58472 8036 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8037 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8038
8039 btrfs_set_lock_blocking(buf);
4db8c528 8040 set_extent_buffer_uptodate(buf);
b4ce94de 8041
d0c803c4 8042 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8043 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8044 /*
8045 * we allow two log transactions at a time, use different
8046 * EXENT bit to differentiate dirty pages.
8047 */
656f30db 8048 if (buf->log_index == 0)
8cef4e16
YZ
8049 set_extent_dirty(&root->dirty_log_pages, buf->start,
8050 buf->start + buf->len - 1, GFP_NOFS);
8051 else
8052 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8053 buf->start + buf->len - 1);
d0c803c4 8054 } else {
656f30db 8055 buf->log_index = -1;
d0c803c4 8056 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8057 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8058 }
64c12921 8059 trans->dirty = true;
b4ce94de 8060 /* this returns a buffer locked for blocking */
65b51a00
CM
8061 return buf;
8062}
8063
f0486c68
YZ
8064static struct btrfs_block_rsv *
8065use_block_rsv(struct btrfs_trans_handle *trans,
8066 struct btrfs_root *root, u32 blocksize)
8067{
8068 struct btrfs_block_rsv *block_rsv;
68a82277 8069 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8070 int ret;
d88033db 8071 bool global_updated = false;
f0486c68
YZ
8072
8073 block_rsv = get_block_rsv(trans, root);
8074
b586b323
MX
8075 if (unlikely(block_rsv->size == 0))
8076 goto try_reserve;
d88033db 8077again:
f0486c68
YZ
8078 ret = block_rsv_use_bytes(block_rsv, blocksize);
8079 if (!ret)
8080 return block_rsv;
8081
b586b323
MX
8082 if (block_rsv->failfast)
8083 return ERR_PTR(ret);
8084
d88033db
MX
8085 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8086 global_updated = true;
8087 update_global_block_rsv(root->fs_info);
8088 goto again;
8089 }
8090
b586b323
MX
8091 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8092 static DEFINE_RATELIMIT_STATE(_rs,
8093 DEFAULT_RATELIMIT_INTERVAL * 10,
8094 /*DEFAULT_RATELIMIT_BURST*/ 1);
8095 if (__ratelimit(&_rs))
8096 WARN(1, KERN_DEBUG
efe120a0 8097 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8098 }
8099try_reserve:
8100 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8101 BTRFS_RESERVE_NO_FLUSH);
8102 if (!ret)
8103 return block_rsv;
8104 /*
8105 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8106 * the global reserve if its space type is the same as the global
8107 * reservation.
b586b323 8108 */
5881cfc9
MX
8109 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8110 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8111 ret = block_rsv_use_bytes(global_rsv, blocksize);
8112 if (!ret)
8113 return global_rsv;
8114 }
8115 return ERR_PTR(ret);
f0486c68
YZ
8116}
8117
8c2a3ca2
JB
8118static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8119 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8120{
8121 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8122 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8123}
8124
fec577fb 8125/*
f0486c68 8126 * finds a free extent and does all the dirty work required for allocation
67b7859e 8127 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8128 */
4d75f8a9
DS
8129struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8130 struct btrfs_root *root,
5d4f98a2
YZ
8131 u64 parent, u64 root_objectid,
8132 struct btrfs_disk_key *key, int level,
5581a51a 8133 u64 hint, u64 empty_size)
fec577fb 8134{
e2fa7227 8135 struct btrfs_key ins;
f0486c68 8136 struct btrfs_block_rsv *block_rsv;
5f39d397 8137 struct extent_buffer *buf;
67b7859e 8138 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8139 u64 flags = 0;
8140 int ret;
4d75f8a9 8141 u32 blocksize = root->nodesize;
3173a18f
JB
8142 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8143 SKINNY_METADATA);
fec577fb 8144
fccb84c9 8145 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 8146 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8147 level);
faa2dbf0
JB
8148 if (!IS_ERR(buf))
8149 root->alloc_bytenr += blocksize;
8150 return buf;
8151 }
fccb84c9 8152
f0486c68
YZ
8153 block_rsv = use_block_rsv(trans, root, blocksize);
8154 if (IS_ERR(block_rsv))
8155 return ERR_CAST(block_rsv);
8156
00361589 8157 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 8158 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8159 if (ret)
8160 goto out_unuse;
55c69072 8161
fe864576 8162 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8163 if (IS_ERR(buf)) {
8164 ret = PTR_ERR(buf);
8165 goto out_free_reserved;
8166 }
f0486c68
YZ
8167
8168 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8169 if (parent == 0)
8170 parent = ins.objectid;
8171 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8172 } else
8173 BUG_ON(parent > 0);
8174
8175 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8176 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8177 if (!extent_op) {
8178 ret = -ENOMEM;
8179 goto out_free_buf;
8180 }
f0486c68
YZ
8181 if (key)
8182 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8183 else
8184 memset(&extent_op->key, 0, sizeof(extent_op->key));
8185 extent_op->flags_to_set = flags;
35b3ad50
DS
8186 extent_op->update_key = skinny_metadata ? false : true;
8187 extent_op->update_flags = true;
8188 extent_op->is_data = false;
b1c79e09 8189 extent_op->level = level;
f0486c68 8190
66d7e7f0 8191 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8192 ins.objectid, ins.offset,
8193 parent, root_objectid, level,
8194 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8195 extent_op);
67b7859e
OS
8196 if (ret)
8197 goto out_free_delayed;
f0486c68 8198 }
fec577fb 8199 return buf;
67b7859e
OS
8200
8201out_free_delayed:
8202 btrfs_free_delayed_extent_op(extent_op);
8203out_free_buf:
8204 free_extent_buffer(buf);
8205out_free_reserved:
8206 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8207out_unuse:
8208 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8209 return ERR_PTR(ret);
fec577fb 8210}
a28ec197 8211
2c47e605
YZ
8212struct walk_control {
8213 u64 refs[BTRFS_MAX_LEVEL];
8214 u64 flags[BTRFS_MAX_LEVEL];
8215 struct btrfs_key update_progress;
8216 int stage;
8217 int level;
8218 int shared_level;
8219 int update_ref;
8220 int keep_locks;
1c4850e2
YZ
8221 int reada_slot;
8222 int reada_count;
66d7e7f0 8223 int for_reloc;
2c47e605
YZ
8224};
8225
8226#define DROP_REFERENCE 1
8227#define UPDATE_BACKREF 2
8228
1c4850e2
YZ
8229static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8230 struct btrfs_root *root,
8231 struct walk_control *wc,
8232 struct btrfs_path *path)
6407bf6d 8233{
1c4850e2
YZ
8234 u64 bytenr;
8235 u64 generation;
8236 u64 refs;
94fcca9f 8237 u64 flags;
5d4f98a2 8238 u32 nritems;
1c4850e2
YZ
8239 u32 blocksize;
8240 struct btrfs_key key;
8241 struct extent_buffer *eb;
6407bf6d 8242 int ret;
1c4850e2
YZ
8243 int slot;
8244 int nread = 0;
6407bf6d 8245
1c4850e2
YZ
8246 if (path->slots[wc->level] < wc->reada_slot) {
8247 wc->reada_count = wc->reada_count * 2 / 3;
8248 wc->reada_count = max(wc->reada_count, 2);
8249 } else {
8250 wc->reada_count = wc->reada_count * 3 / 2;
8251 wc->reada_count = min_t(int, wc->reada_count,
8252 BTRFS_NODEPTRS_PER_BLOCK(root));
8253 }
7bb86316 8254
1c4850e2
YZ
8255 eb = path->nodes[wc->level];
8256 nritems = btrfs_header_nritems(eb);
707e8a07 8257 blocksize = root->nodesize;
bd56b302 8258
1c4850e2
YZ
8259 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8260 if (nread >= wc->reada_count)
8261 break;
bd56b302 8262
2dd3e67b 8263 cond_resched();
1c4850e2
YZ
8264 bytenr = btrfs_node_blockptr(eb, slot);
8265 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8266
1c4850e2
YZ
8267 if (slot == path->slots[wc->level])
8268 goto reada;
5d4f98a2 8269
1c4850e2
YZ
8270 if (wc->stage == UPDATE_BACKREF &&
8271 generation <= root->root_key.offset)
bd56b302
CM
8272 continue;
8273
94fcca9f 8274 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8275 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8276 wc->level - 1, 1, &refs,
8277 &flags);
79787eaa
JM
8278 /* We don't care about errors in readahead. */
8279 if (ret < 0)
8280 continue;
94fcca9f
YZ
8281 BUG_ON(refs == 0);
8282
1c4850e2 8283 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8284 if (refs == 1)
8285 goto reada;
bd56b302 8286
94fcca9f
YZ
8287 if (wc->level == 1 &&
8288 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8289 continue;
1c4850e2
YZ
8290 if (!wc->update_ref ||
8291 generation <= root->root_key.offset)
8292 continue;
8293 btrfs_node_key_to_cpu(eb, &key, slot);
8294 ret = btrfs_comp_cpu_keys(&key,
8295 &wc->update_progress);
8296 if (ret < 0)
8297 continue;
94fcca9f
YZ
8298 } else {
8299 if (wc->level == 1 &&
8300 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8301 continue;
6407bf6d 8302 }
1c4850e2 8303reada:
d3e46fea 8304 readahead_tree_block(root, bytenr);
1c4850e2 8305 nread++;
20524f02 8306 }
1c4850e2 8307 wc->reada_slot = slot;
20524f02 8308}
2c47e605 8309
0ed4792a 8310/*
82bd101b
MF
8311 * These may not be seen by the usual inc/dec ref code so we have to
8312 * add them here.
0ed4792a 8313 */
82bd101b
MF
8314static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8315 struct btrfs_root *root, u64 bytenr,
8316 u64 num_bytes)
8317{
8318 struct btrfs_qgroup_extent_record *qrecord;
8319 struct btrfs_delayed_ref_root *delayed_refs;
8320
8321 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8322 if (!qrecord)
8323 return -ENOMEM;
8324
8325 qrecord->bytenr = bytenr;
8326 qrecord->num_bytes = num_bytes;
8327 qrecord->old_roots = NULL;
8328
8329 delayed_refs = &trans->transaction->delayed_refs;
8330 spin_lock(&delayed_refs->lock);
8331 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8332 kfree(qrecord);
8333 spin_unlock(&delayed_refs->lock);
8334
8335 return 0;
8336}
8337
1152651a
MF
8338static int account_leaf_items(struct btrfs_trans_handle *trans,
8339 struct btrfs_root *root,
8340 struct extent_buffer *eb)
8341{
8342 int nr = btrfs_header_nritems(eb);
82bd101b 8343 int i, extent_type, ret;
1152651a
MF
8344 struct btrfs_key key;
8345 struct btrfs_file_extent_item *fi;
8346 u64 bytenr, num_bytes;
8347
82bd101b
MF
8348 /* We can be called directly from walk_up_proc() */
8349 if (!root->fs_info->quota_enabled)
8350 return 0;
8351
1152651a
MF
8352 for (i = 0; i < nr; i++) {
8353 btrfs_item_key_to_cpu(eb, &key, i);
8354
8355 if (key.type != BTRFS_EXTENT_DATA_KEY)
8356 continue;
8357
8358 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8359 /* filter out non qgroup-accountable extents */
8360 extent_type = btrfs_file_extent_type(eb, fi);
8361
8362 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8363 continue;
8364
8365 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8366 if (!bytenr)
8367 continue;
8368
8369 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b
MF
8370
8371 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8372 if (ret)
8373 return ret;
1152651a
MF
8374 }
8375 return 0;
8376}
8377
8378/*
8379 * Walk up the tree from the bottom, freeing leaves and any interior
8380 * nodes which have had all slots visited. If a node (leaf or
8381 * interior) is freed, the node above it will have it's slot
8382 * incremented. The root node will never be freed.
8383 *
8384 * At the end of this function, we should have a path which has all
8385 * slots incremented to the next position for a search. If we need to
8386 * read a new node it will be NULL and the node above it will have the
8387 * correct slot selected for a later read.
8388 *
8389 * If we increment the root nodes slot counter past the number of
8390 * elements, 1 is returned to signal completion of the search.
8391 */
8392static int adjust_slots_upwards(struct btrfs_root *root,
8393 struct btrfs_path *path, int root_level)
8394{
8395 int level = 0;
8396 int nr, slot;
8397 struct extent_buffer *eb;
8398
8399 if (root_level == 0)
8400 return 1;
8401
8402 while (level <= root_level) {
8403 eb = path->nodes[level];
8404 nr = btrfs_header_nritems(eb);
8405 path->slots[level]++;
8406 slot = path->slots[level];
8407 if (slot >= nr || level == 0) {
8408 /*
8409 * Don't free the root - we will detect this
8410 * condition after our loop and return a
8411 * positive value for caller to stop walking the tree.
8412 */
8413 if (level != root_level) {
8414 btrfs_tree_unlock_rw(eb, path->locks[level]);
8415 path->locks[level] = 0;
8416
8417 free_extent_buffer(eb);
8418 path->nodes[level] = NULL;
8419 path->slots[level] = 0;
8420 }
8421 } else {
8422 /*
8423 * We have a valid slot to walk back down
8424 * from. Stop here so caller can process these
8425 * new nodes.
8426 */
8427 break;
8428 }
8429
8430 level++;
8431 }
8432
8433 eb = path->nodes[root_level];
8434 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8435 return 1;
8436
8437 return 0;
8438}
8439
8440/*
8441 * root_eb is the subtree root and is locked before this function is called.
8442 */
8443static int account_shared_subtree(struct btrfs_trans_handle *trans,
8444 struct btrfs_root *root,
8445 struct extent_buffer *root_eb,
8446 u64 root_gen,
8447 int root_level)
8448{
8449 int ret = 0;
8450 int level;
8451 struct extent_buffer *eb = root_eb;
8452 struct btrfs_path *path = NULL;
8453
8454 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8455 BUG_ON(root_eb == NULL);
8456
8457 if (!root->fs_info->quota_enabled)
8458 return 0;
8459
8460 if (!extent_buffer_uptodate(root_eb)) {
8461 ret = btrfs_read_buffer(root_eb, root_gen);
8462 if (ret)
8463 goto out;
8464 }
8465
8466 if (root_level == 0) {
8467 ret = account_leaf_items(trans, root, root_eb);
8468 goto out;
8469 }
8470
8471 path = btrfs_alloc_path();
8472 if (!path)
8473 return -ENOMEM;
8474
8475 /*
8476 * Walk down the tree. Missing extent blocks are filled in as
8477 * we go. Metadata is accounted every time we read a new
8478 * extent block.
8479 *
8480 * When we reach a leaf, we account for file extent items in it,
8481 * walk back up the tree (adjusting slot pointers as we go)
8482 * and restart the search process.
8483 */
8484 extent_buffer_get(root_eb); /* For path */
8485 path->nodes[root_level] = root_eb;
8486 path->slots[root_level] = 0;
8487 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8488walk_down:
8489 level = root_level;
8490 while (level >= 0) {
8491 if (path->nodes[level] == NULL) {
1152651a
MF
8492 int parent_slot;
8493 u64 child_gen;
8494 u64 child_bytenr;
8495
8496 /* We need to get child blockptr/gen from
8497 * parent before we can read it. */
8498 eb = path->nodes[level + 1];
8499 parent_slot = path->slots[level + 1];
8500 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8501 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8502
ce86cd59 8503 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8504 if (IS_ERR(eb)) {
8505 ret = PTR_ERR(eb);
8506 goto out;
8507 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8508 free_extent_buffer(eb);
64c043de 8509 ret = -EIO;
1152651a
MF
8510 goto out;
8511 }
8512
8513 path->nodes[level] = eb;
8514 path->slots[level] = 0;
8515
8516 btrfs_tree_read_lock(eb);
8517 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8518 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b
MF
8519
8520 ret = record_one_subtree_extent(trans, root, child_bytenr,
8521 root->nodesize);
8522 if (ret)
8523 goto out;
1152651a
MF
8524 }
8525
8526 if (level == 0) {
8527 ret = account_leaf_items(trans, root, path->nodes[level]);
8528 if (ret)
8529 goto out;
8530
8531 /* Nonzero return here means we completed our search */
8532 ret = adjust_slots_upwards(root, path, root_level);
8533 if (ret)
8534 break;
8535
8536 /* Restart search with new slots */
8537 goto walk_down;
8538 }
8539
8540 level--;
8541 }
8542
8543 ret = 0;
8544out:
8545 btrfs_free_path(path);
8546
8547 return ret;
8548}
8549
f82d02d9 8550/*
2c016dc2 8551 * helper to process tree block while walking down the tree.
2c47e605 8552 *
2c47e605
YZ
8553 * when wc->stage == UPDATE_BACKREF, this function updates
8554 * back refs for pointers in the block.
8555 *
8556 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8557 */
2c47e605 8558static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8559 struct btrfs_root *root,
2c47e605 8560 struct btrfs_path *path,
94fcca9f 8561 struct walk_control *wc, int lookup_info)
f82d02d9 8562{
2c47e605
YZ
8563 int level = wc->level;
8564 struct extent_buffer *eb = path->nodes[level];
2c47e605 8565 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8566 int ret;
8567
2c47e605
YZ
8568 if (wc->stage == UPDATE_BACKREF &&
8569 btrfs_header_owner(eb) != root->root_key.objectid)
8570 return 1;
f82d02d9 8571
2c47e605
YZ
8572 /*
8573 * when reference count of tree block is 1, it won't increase
8574 * again. once full backref flag is set, we never clear it.
8575 */
94fcca9f
YZ
8576 if (lookup_info &&
8577 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8578 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8579 BUG_ON(!path->locks[level]);
8580 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8581 eb->start, level, 1,
2c47e605
YZ
8582 &wc->refs[level],
8583 &wc->flags[level]);
79787eaa
JM
8584 BUG_ON(ret == -ENOMEM);
8585 if (ret)
8586 return ret;
2c47e605
YZ
8587 BUG_ON(wc->refs[level] == 0);
8588 }
5d4f98a2 8589
2c47e605
YZ
8590 if (wc->stage == DROP_REFERENCE) {
8591 if (wc->refs[level] > 1)
8592 return 1;
f82d02d9 8593
2c47e605 8594 if (path->locks[level] && !wc->keep_locks) {
bd681513 8595 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8596 path->locks[level] = 0;
8597 }
8598 return 0;
8599 }
f82d02d9 8600
2c47e605
YZ
8601 /* wc->stage == UPDATE_BACKREF */
8602 if (!(wc->flags[level] & flag)) {
8603 BUG_ON(!path->locks[level]);
e339a6b0 8604 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8605 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8606 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8607 BUG_ON(ret); /* -ENOMEM */
2c47e605 8608 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8609 eb->len, flag,
8610 btrfs_header_level(eb), 0);
79787eaa 8611 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8612 wc->flags[level] |= flag;
8613 }
8614
8615 /*
8616 * the block is shared by multiple trees, so it's not good to
8617 * keep the tree lock
8618 */
8619 if (path->locks[level] && level > 0) {
bd681513 8620 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8621 path->locks[level] = 0;
8622 }
8623 return 0;
8624}
8625
1c4850e2 8626/*
2c016dc2 8627 * helper to process tree block pointer.
1c4850e2
YZ
8628 *
8629 * when wc->stage == DROP_REFERENCE, this function checks
8630 * reference count of the block pointed to. if the block
8631 * is shared and we need update back refs for the subtree
8632 * rooted at the block, this function changes wc->stage to
8633 * UPDATE_BACKREF. if the block is shared and there is no
8634 * need to update back, this function drops the reference
8635 * to the block.
8636 *
8637 * NOTE: return value 1 means we should stop walking down.
8638 */
8639static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8640 struct btrfs_root *root,
8641 struct btrfs_path *path,
94fcca9f 8642 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8643{
8644 u64 bytenr;
8645 u64 generation;
8646 u64 parent;
8647 u32 blocksize;
8648 struct btrfs_key key;
8649 struct extent_buffer *next;
8650 int level = wc->level;
8651 int reada = 0;
8652 int ret = 0;
1152651a 8653 bool need_account = false;
1c4850e2
YZ
8654
8655 generation = btrfs_node_ptr_generation(path->nodes[level],
8656 path->slots[level]);
8657 /*
8658 * if the lower level block was created before the snapshot
8659 * was created, we know there is no need to update back refs
8660 * for the subtree
8661 */
8662 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8663 generation <= root->root_key.offset) {
8664 *lookup_info = 1;
1c4850e2 8665 return 1;
94fcca9f 8666 }
1c4850e2
YZ
8667
8668 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8669 blocksize = root->nodesize;
1c4850e2 8670
01d58472 8671 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8672 if (!next) {
a83fffb7 8673 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8674 if (IS_ERR(next))
8675 return PTR_ERR(next);
8676
b2aaaa3b
JB
8677 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8678 level - 1);
1c4850e2
YZ
8679 reada = 1;
8680 }
8681 btrfs_tree_lock(next);
8682 btrfs_set_lock_blocking(next);
8683
3173a18f 8684 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8685 &wc->refs[level - 1],
8686 &wc->flags[level - 1]);
79787eaa
JM
8687 if (ret < 0) {
8688 btrfs_tree_unlock(next);
8689 return ret;
8690 }
8691
c2cf52eb
SK
8692 if (unlikely(wc->refs[level - 1] == 0)) {
8693 btrfs_err(root->fs_info, "Missing references.");
8694 BUG();
8695 }
94fcca9f 8696 *lookup_info = 0;
1c4850e2 8697
94fcca9f 8698 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8699 if (wc->refs[level - 1] > 1) {
1152651a 8700 need_account = true;
94fcca9f
YZ
8701 if (level == 1 &&
8702 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8703 goto skip;
8704
1c4850e2
YZ
8705 if (!wc->update_ref ||
8706 generation <= root->root_key.offset)
8707 goto skip;
8708
8709 btrfs_node_key_to_cpu(path->nodes[level], &key,
8710 path->slots[level]);
8711 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8712 if (ret < 0)
8713 goto skip;
8714
8715 wc->stage = UPDATE_BACKREF;
8716 wc->shared_level = level - 1;
8717 }
94fcca9f
YZ
8718 } else {
8719 if (level == 1 &&
8720 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8721 goto skip;
1c4850e2
YZ
8722 }
8723
b9fab919 8724 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8725 btrfs_tree_unlock(next);
8726 free_extent_buffer(next);
8727 next = NULL;
94fcca9f 8728 *lookup_info = 1;
1c4850e2
YZ
8729 }
8730
8731 if (!next) {
8732 if (reada && level == 1)
8733 reada_walk_down(trans, root, wc, path);
ce86cd59 8734 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8735 if (IS_ERR(next)) {
8736 return PTR_ERR(next);
8737 } else if (!extent_buffer_uptodate(next)) {
416bc658 8738 free_extent_buffer(next);
97d9a8a4 8739 return -EIO;
416bc658 8740 }
1c4850e2
YZ
8741 btrfs_tree_lock(next);
8742 btrfs_set_lock_blocking(next);
8743 }
8744
8745 level--;
8746 BUG_ON(level != btrfs_header_level(next));
8747 path->nodes[level] = next;
8748 path->slots[level] = 0;
bd681513 8749 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8750 wc->level = level;
8751 if (wc->level == 1)
8752 wc->reada_slot = 0;
8753 return 0;
8754skip:
8755 wc->refs[level - 1] = 0;
8756 wc->flags[level - 1] = 0;
94fcca9f
YZ
8757 if (wc->stage == DROP_REFERENCE) {
8758 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8759 parent = path->nodes[level]->start;
8760 } else {
8761 BUG_ON(root->root_key.objectid !=
8762 btrfs_header_owner(path->nodes[level]));
8763 parent = 0;
8764 }
1c4850e2 8765
1152651a
MF
8766 if (need_account) {
8767 ret = account_shared_subtree(trans, root, next,
8768 generation, level - 1);
8769 if (ret) {
94647322
DS
8770 btrfs_err_rl(root->fs_info,
8771 "Error "
1152651a 8772 "%d accounting shared subtree. Quota "
94647322
DS
8773 "is out of sync, rescan required.",
8774 ret);
1152651a
MF
8775 }
8776 }
94fcca9f 8777 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8778 root->root_key.objectid, level - 1, 0);
79787eaa 8779 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8780 }
1c4850e2
YZ
8781 btrfs_tree_unlock(next);
8782 free_extent_buffer(next);
94fcca9f 8783 *lookup_info = 1;
1c4850e2
YZ
8784 return 1;
8785}
8786
2c47e605 8787/*
2c016dc2 8788 * helper to process tree block while walking up the tree.
2c47e605
YZ
8789 *
8790 * when wc->stage == DROP_REFERENCE, this function drops
8791 * reference count on the block.
8792 *
8793 * when wc->stage == UPDATE_BACKREF, this function changes
8794 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8795 * to UPDATE_BACKREF previously while processing the block.
8796 *
8797 * NOTE: return value 1 means we should stop walking up.
8798 */
8799static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8800 struct btrfs_root *root,
8801 struct btrfs_path *path,
8802 struct walk_control *wc)
8803{
f0486c68 8804 int ret;
2c47e605
YZ
8805 int level = wc->level;
8806 struct extent_buffer *eb = path->nodes[level];
8807 u64 parent = 0;
8808
8809 if (wc->stage == UPDATE_BACKREF) {
8810 BUG_ON(wc->shared_level < level);
8811 if (level < wc->shared_level)
8812 goto out;
8813
2c47e605
YZ
8814 ret = find_next_key(path, level + 1, &wc->update_progress);
8815 if (ret > 0)
8816 wc->update_ref = 0;
8817
8818 wc->stage = DROP_REFERENCE;
8819 wc->shared_level = -1;
8820 path->slots[level] = 0;
8821
8822 /*
8823 * check reference count again if the block isn't locked.
8824 * we should start walking down the tree again if reference
8825 * count is one.
8826 */
8827 if (!path->locks[level]) {
8828 BUG_ON(level == 0);
8829 btrfs_tree_lock(eb);
8830 btrfs_set_lock_blocking(eb);
bd681513 8831 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8832
8833 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8834 eb->start, level, 1,
2c47e605
YZ
8835 &wc->refs[level],
8836 &wc->flags[level]);
79787eaa
JM
8837 if (ret < 0) {
8838 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8839 path->locks[level] = 0;
79787eaa
JM
8840 return ret;
8841 }
2c47e605
YZ
8842 BUG_ON(wc->refs[level] == 0);
8843 if (wc->refs[level] == 1) {
bd681513 8844 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8845 path->locks[level] = 0;
2c47e605
YZ
8846 return 1;
8847 }
f82d02d9 8848 }
2c47e605 8849 }
f82d02d9 8850
2c47e605
YZ
8851 /* wc->stage == DROP_REFERENCE */
8852 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8853
2c47e605
YZ
8854 if (wc->refs[level] == 1) {
8855 if (level == 0) {
8856 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8857 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8858 else
e339a6b0 8859 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8860 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8861 ret = account_leaf_items(trans, root, eb);
8862 if (ret) {
94647322
DS
8863 btrfs_err_rl(root->fs_info,
8864 "error "
1152651a 8865 "%d accounting leaf items. Quota "
94647322
DS
8866 "is out of sync, rescan required.",
8867 ret);
1152651a 8868 }
2c47e605
YZ
8869 }
8870 /* make block locked assertion in clean_tree_block happy */
8871 if (!path->locks[level] &&
8872 btrfs_header_generation(eb) == trans->transid) {
8873 btrfs_tree_lock(eb);
8874 btrfs_set_lock_blocking(eb);
bd681513 8875 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8876 }
01d58472 8877 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8878 }
8879
8880 if (eb == root->node) {
8881 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8882 parent = eb->start;
8883 else
8884 BUG_ON(root->root_key.objectid !=
8885 btrfs_header_owner(eb));
8886 } else {
8887 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8888 parent = path->nodes[level + 1]->start;
8889 else
8890 BUG_ON(root->root_key.objectid !=
8891 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8892 }
f82d02d9 8893
5581a51a 8894 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8895out:
8896 wc->refs[level] = 0;
8897 wc->flags[level] = 0;
f0486c68 8898 return 0;
2c47e605
YZ
8899}
8900
8901static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8902 struct btrfs_root *root,
8903 struct btrfs_path *path,
8904 struct walk_control *wc)
8905{
2c47e605 8906 int level = wc->level;
94fcca9f 8907 int lookup_info = 1;
2c47e605
YZ
8908 int ret;
8909
8910 while (level >= 0) {
94fcca9f 8911 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8912 if (ret > 0)
8913 break;
8914
8915 if (level == 0)
8916 break;
8917
7a7965f8
YZ
8918 if (path->slots[level] >=
8919 btrfs_header_nritems(path->nodes[level]))
8920 break;
8921
94fcca9f 8922 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8923 if (ret > 0) {
8924 path->slots[level]++;
8925 continue;
90d2c51d
MX
8926 } else if (ret < 0)
8927 return ret;
1c4850e2 8928 level = wc->level;
f82d02d9 8929 }
f82d02d9
YZ
8930 return 0;
8931}
8932
d397712b 8933static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8934 struct btrfs_root *root,
f82d02d9 8935 struct btrfs_path *path,
2c47e605 8936 struct walk_control *wc, int max_level)
20524f02 8937{
2c47e605 8938 int level = wc->level;
20524f02 8939 int ret;
9f3a7427 8940
2c47e605
YZ
8941 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8942 while (level < max_level && path->nodes[level]) {
8943 wc->level = level;
8944 if (path->slots[level] + 1 <
8945 btrfs_header_nritems(path->nodes[level])) {
8946 path->slots[level]++;
20524f02
CM
8947 return 0;
8948 } else {
2c47e605
YZ
8949 ret = walk_up_proc(trans, root, path, wc);
8950 if (ret > 0)
8951 return 0;
bd56b302 8952
2c47e605 8953 if (path->locks[level]) {
bd681513
CM
8954 btrfs_tree_unlock_rw(path->nodes[level],
8955 path->locks[level]);
2c47e605 8956 path->locks[level] = 0;
f82d02d9 8957 }
2c47e605
YZ
8958 free_extent_buffer(path->nodes[level]);
8959 path->nodes[level] = NULL;
8960 level++;
20524f02
CM
8961 }
8962 }
8963 return 1;
8964}
8965
9aca1d51 8966/*
2c47e605
YZ
8967 * drop a subvolume tree.
8968 *
8969 * this function traverses the tree freeing any blocks that only
8970 * referenced by the tree.
8971 *
8972 * when a shared tree block is found. this function decreases its
8973 * reference count by one. if update_ref is true, this function
8974 * also make sure backrefs for the shared block and all lower level
8975 * blocks are properly updated.
9d1a2a3a
DS
8976 *
8977 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8978 */
2c536799 8979int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8980 struct btrfs_block_rsv *block_rsv, int update_ref,
8981 int for_reloc)
20524f02 8982{
5caf2a00 8983 struct btrfs_path *path;
2c47e605
YZ
8984 struct btrfs_trans_handle *trans;
8985 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8986 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8987 struct walk_control *wc;
8988 struct btrfs_key key;
8989 int err = 0;
8990 int ret;
8991 int level;
d29a9f62 8992 bool root_dropped = false;
20524f02 8993
1152651a
MF
8994 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8995
5caf2a00 8996 path = btrfs_alloc_path();
cb1b69f4
TI
8997 if (!path) {
8998 err = -ENOMEM;
8999 goto out;
9000 }
20524f02 9001
2c47e605 9002 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9003 if (!wc) {
9004 btrfs_free_path(path);
cb1b69f4
TI
9005 err = -ENOMEM;
9006 goto out;
38a1a919 9007 }
2c47e605 9008
a22285a6 9009 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9010 if (IS_ERR(trans)) {
9011 err = PTR_ERR(trans);
9012 goto out_free;
9013 }
98d5dc13 9014
3fd0a558
YZ
9015 if (block_rsv)
9016 trans->block_rsv = block_rsv;
2c47e605 9017
9f3a7427 9018 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9019 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9020 path->nodes[level] = btrfs_lock_root_node(root);
9021 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9022 path->slots[level] = 0;
bd681513 9023 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9024 memset(&wc->update_progress, 0,
9025 sizeof(wc->update_progress));
9f3a7427 9026 } else {
9f3a7427 9027 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9028 memcpy(&wc->update_progress, &key,
9029 sizeof(wc->update_progress));
9030
6702ed49 9031 level = root_item->drop_level;
2c47e605 9032 BUG_ON(level == 0);
6702ed49 9033 path->lowest_level = level;
2c47e605
YZ
9034 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9035 path->lowest_level = 0;
9036 if (ret < 0) {
9037 err = ret;
79787eaa 9038 goto out_end_trans;
9f3a7427 9039 }
1c4850e2 9040 WARN_ON(ret > 0);
2c47e605 9041
7d9eb12c
CM
9042 /*
9043 * unlock our path, this is safe because only this
9044 * function is allowed to delete this snapshot
9045 */
5d4f98a2 9046 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9047
9048 level = btrfs_header_level(root->node);
9049 while (1) {
9050 btrfs_tree_lock(path->nodes[level]);
9051 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9052 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9053
9054 ret = btrfs_lookup_extent_info(trans, root,
9055 path->nodes[level]->start,
3173a18f 9056 level, 1, &wc->refs[level],
2c47e605 9057 &wc->flags[level]);
79787eaa
JM
9058 if (ret < 0) {
9059 err = ret;
9060 goto out_end_trans;
9061 }
2c47e605
YZ
9062 BUG_ON(wc->refs[level] == 0);
9063
9064 if (level == root_item->drop_level)
9065 break;
9066
9067 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9068 path->locks[level] = 0;
2c47e605
YZ
9069 WARN_ON(wc->refs[level] != 1);
9070 level--;
9071 }
9f3a7427 9072 }
2c47e605
YZ
9073
9074 wc->level = level;
9075 wc->shared_level = -1;
9076 wc->stage = DROP_REFERENCE;
9077 wc->update_ref = update_ref;
9078 wc->keep_locks = 0;
66d7e7f0 9079 wc->for_reloc = for_reloc;
1c4850e2 9080 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9081
d397712b 9082 while (1) {
9d1a2a3a 9083
2c47e605
YZ
9084 ret = walk_down_tree(trans, root, path, wc);
9085 if (ret < 0) {
9086 err = ret;
20524f02 9087 break;
2c47e605 9088 }
9aca1d51 9089
2c47e605
YZ
9090 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9091 if (ret < 0) {
9092 err = ret;
20524f02 9093 break;
2c47e605
YZ
9094 }
9095
9096 if (ret > 0) {
9097 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9098 break;
9099 }
2c47e605
YZ
9100
9101 if (wc->stage == DROP_REFERENCE) {
9102 level = wc->level;
9103 btrfs_node_key(path->nodes[level],
9104 &root_item->drop_progress,
9105 path->slots[level]);
9106 root_item->drop_level = level;
9107 }
9108
9109 BUG_ON(wc->level == 0);
3c8f2422
JB
9110 if (btrfs_should_end_transaction(trans, tree_root) ||
9111 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9112 ret = btrfs_update_root(trans, tree_root,
9113 &root->root_key,
9114 root_item);
79787eaa
JM
9115 if (ret) {
9116 btrfs_abort_transaction(trans, tree_root, ret);
9117 err = ret;
9118 goto out_end_trans;
9119 }
2c47e605 9120
3fd0a558 9121 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9122 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 9123 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
9124 err = -EAGAIN;
9125 goto out_free;
9126 }
9127
a22285a6 9128 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9129 if (IS_ERR(trans)) {
9130 err = PTR_ERR(trans);
9131 goto out_free;
9132 }
3fd0a558
YZ
9133 if (block_rsv)
9134 trans->block_rsv = block_rsv;
c3e69d58 9135 }
20524f02 9136 }
b3b4aa74 9137 btrfs_release_path(path);
79787eaa
JM
9138 if (err)
9139 goto out_end_trans;
2c47e605
YZ
9140
9141 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
9142 if (ret) {
9143 btrfs_abort_transaction(trans, tree_root, ret);
9144 goto out_end_trans;
9145 }
2c47e605 9146
76dda93c 9147 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9148 ret = btrfs_find_root(tree_root, &root->root_key, path,
9149 NULL, NULL);
79787eaa
JM
9150 if (ret < 0) {
9151 btrfs_abort_transaction(trans, tree_root, ret);
9152 err = ret;
9153 goto out_end_trans;
9154 } else if (ret > 0) {
84cd948c
JB
9155 /* if we fail to delete the orphan item this time
9156 * around, it'll get picked up the next time.
9157 *
9158 * The most common failure here is just -ENOENT.
9159 */
9160 btrfs_del_orphan_item(trans, tree_root,
9161 root->root_key.objectid);
76dda93c
YZ
9162 }
9163 }
9164
27cdeb70 9165 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9166 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9167 } else {
9168 free_extent_buffer(root->node);
9169 free_extent_buffer(root->commit_root);
b0feb9d9 9170 btrfs_put_fs_root(root);
76dda93c 9171 }
d29a9f62 9172 root_dropped = true;
79787eaa 9173out_end_trans:
3fd0a558 9174 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9175out_free:
2c47e605 9176 kfree(wc);
5caf2a00 9177 btrfs_free_path(path);
cb1b69f4 9178out:
d29a9f62
JB
9179 /*
9180 * So if we need to stop dropping the snapshot for whatever reason we
9181 * need to make sure to add it back to the dead root list so that we
9182 * keep trying to do the work later. This also cleans up roots if we
9183 * don't have it in the radix (like when we recover after a power fail
9184 * or unmount) so we don't leak memory.
9185 */
b37b39cd 9186 if (!for_reloc && root_dropped == false)
d29a9f62 9187 btrfs_add_dead_root(root);
90515e7f 9188 if (err && err != -EAGAIN)
34d97007 9189 btrfs_handle_fs_error(root->fs_info, err, NULL);
2c536799 9190 return err;
20524f02 9191}
9078a3e1 9192
2c47e605
YZ
9193/*
9194 * drop subtree rooted at tree block 'node'.
9195 *
9196 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9197 * only used by relocation code
2c47e605 9198 */
f82d02d9
YZ
9199int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9200 struct btrfs_root *root,
9201 struct extent_buffer *node,
9202 struct extent_buffer *parent)
9203{
9204 struct btrfs_path *path;
2c47e605 9205 struct walk_control *wc;
f82d02d9
YZ
9206 int level;
9207 int parent_level;
9208 int ret = 0;
9209 int wret;
9210
2c47e605
YZ
9211 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9212
f82d02d9 9213 path = btrfs_alloc_path();
db5b493a
TI
9214 if (!path)
9215 return -ENOMEM;
f82d02d9 9216
2c47e605 9217 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9218 if (!wc) {
9219 btrfs_free_path(path);
9220 return -ENOMEM;
9221 }
2c47e605 9222
b9447ef8 9223 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9224 parent_level = btrfs_header_level(parent);
9225 extent_buffer_get(parent);
9226 path->nodes[parent_level] = parent;
9227 path->slots[parent_level] = btrfs_header_nritems(parent);
9228
b9447ef8 9229 btrfs_assert_tree_locked(node);
f82d02d9 9230 level = btrfs_header_level(node);
f82d02d9
YZ
9231 path->nodes[level] = node;
9232 path->slots[level] = 0;
bd681513 9233 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9234
9235 wc->refs[parent_level] = 1;
9236 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9237 wc->level = level;
9238 wc->shared_level = -1;
9239 wc->stage = DROP_REFERENCE;
9240 wc->update_ref = 0;
9241 wc->keep_locks = 1;
66d7e7f0 9242 wc->for_reloc = 1;
1c4850e2 9243 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9244
9245 while (1) {
2c47e605
YZ
9246 wret = walk_down_tree(trans, root, path, wc);
9247 if (wret < 0) {
f82d02d9 9248 ret = wret;
f82d02d9 9249 break;
2c47e605 9250 }
f82d02d9 9251
2c47e605 9252 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9253 if (wret < 0)
9254 ret = wret;
9255 if (wret != 0)
9256 break;
9257 }
9258
2c47e605 9259 kfree(wc);
f82d02d9
YZ
9260 btrfs_free_path(path);
9261 return ret;
9262}
9263
ec44a35c
CM
9264static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9265{
9266 u64 num_devices;
fc67c450 9267 u64 stripped;
e4d8ec0f 9268
fc67c450
ID
9269 /*
9270 * if restripe for this chunk_type is on pick target profile and
9271 * return, otherwise do the usual balance
9272 */
9273 stripped = get_restripe_target(root->fs_info, flags);
9274 if (stripped)
9275 return extended_to_chunk(stripped);
e4d8ec0f 9276
95669976 9277 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9278
fc67c450 9279 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9280 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9281 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9282
ec44a35c
CM
9283 if (num_devices == 1) {
9284 stripped |= BTRFS_BLOCK_GROUP_DUP;
9285 stripped = flags & ~stripped;
9286
9287 /* turn raid0 into single device chunks */
9288 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9289 return stripped;
9290
9291 /* turn mirroring into duplication */
9292 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9293 BTRFS_BLOCK_GROUP_RAID10))
9294 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9295 } else {
9296 /* they already had raid on here, just return */
ec44a35c
CM
9297 if (flags & stripped)
9298 return flags;
9299
9300 stripped |= BTRFS_BLOCK_GROUP_DUP;
9301 stripped = flags & ~stripped;
9302
9303 /* switch duplicated blocks with raid1 */
9304 if (flags & BTRFS_BLOCK_GROUP_DUP)
9305 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9306
e3176ca2 9307 /* this is drive concat, leave it alone */
ec44a35c 9308 }
e3176ca2 9309
ec44a35c
CM
9310 return flags;
9311}
9312
868f401a 9313static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9314{
f0486c68
YZ
9315 struct btrfs_space_info *sinfo = cache->space_info;
9316 u64 num_bytes;
199c36ea 9317 u64 min_allocable_bytes;
f0486c68 9318 int ret = -ENOSPC;
0ef3e66b 9319
199c36ea
MX
9320 /*
9321 * We need some metadata space and system metadata space for
9322 * allocating chunks in some corner cases until we force to set
9323 * it to be readonly.
9324 */
9325 if ((sinfo->flags &
9326 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9327 !force)
ee22184b 9328 min_allocable_bytes = SZ_1M;
199c36ea
MX
9329 else
9330 min_allocable_bytes = 0;
9331
f0486c68
YZ
9332 spin_lock(&sinfo->lock);
9333 spin_lock(&cache->lock);
61cfea9b
W
9334
9335 if (cache->ro) {
868f401a 9336 cache->ro++;
61cfea9b
W
9337 ret = 0;
9338 goto out;
9339 }
9340
f0486c68
YZ
9341 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9342 cache->bytes_super - btrfs_block_group_used(&cache->item);
9343
9344 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9345 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9346 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9347 sinfo->bytes_readonly += num_bytes;
868f401a 9348 cache->ro++;
633c0aad 9349 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9350 ret = 0;
9351 }
61cfea9b 9352out:
f0486c68
YZ
9353 spin_unlock(&cache->lock);
9354 spin_unlock(&sinfo->lock);
9355 return ret;
9356}
7d9eb12c 9357
868f401a 9358int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9359 struct btrfs_block_group_cache *cache)
c286ac48 9360
f0486c68
YZ
9361{
9362 struct btrfs_trans_handle *trans;
9363 u64 alloc_flags;
9364 int ret;
7d9eb12c 9365
1bbc621e 9366again:
ff5714cc 9367 trans = btrfs_join_transaction(root);
79787eaa
JM
9368 if (IS_ERR(trans))
9369 return PTR_ERR(trans);
5d4f98a2 9370
1bbc621e
CM
9371 /*
9372 * we're not allowed to set block groups readonly after the dirty
9373 * block groups cache has started writing. If it already started,
9374 * back off and let this transaction commit
9375 */
9376 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9377 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9378 u64 transid = trans->transid;
9379
9380 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9381 btrfs_end_transaction(trans, root);
9382
9383 ret = btrfs_wait_for_commit(root, transid);
9384 if (ret)
9385 return ret;
9386 goto again;
9387 }
9388
153c35b6
CM
9389 /*
9390 * if we are changing raid levels, try to allocate a corresponding
9391 * block group with the new raid level.
9392 */
9393 alloc_flags = update_block_group_flags(root, cache->flags);
9394 if (alloc_flags != cache->flags) {
9395 ret = do_chunk_alloc(trans, root, alloc_flags,
9396 CHUNK_ALLOC_FORCE);
9397 /*
9398 * ENOSPC is allowed here, we may have enough space
9399 * already allocated at the new raid level to
9400 * carry on
9401 */
9402 if (ret == -ENOSPC)
9403 ret = 0;
9404 if (ret < 0)
9405 goto out;
9406 }
1bbc621e 9407
868f401a 9408 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9409 if (!ret)
9410 goto out;
9411 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9412 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9413 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9414 if (ret < 0)
9415 goto out;
868f401a 9416 ret = inc_block_group_ro(cache, 0);
f0486c68 9417out:
2f081088
SL
9418 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9419 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9420 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9421 check_system_chunk(trans, root, alloc_flags);
a9629596 9422 unlock_chunks(root->fs_info->chunk_root);
2f081088 9423 }
1bbc621e 9424 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9425
f0486c68
YZ
9426 btrfs_end_transaction(trans, root);
9427 return ret;
9428}
5d4f98a2 9429
c87f08ca
CM
9430int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9431 struct btrfs_root *root, u64 type)
9432{
9433 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9434 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9435 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9436}
9437
6d07bcec
MX
9438/*
9439 * helper to account the unused space of all the readonly block group in the
633c0aad 9440 * space_info. takes mirrors into account.
6d07bcec 9441 */
633c0aad 9442u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9443{
9444 struct btrfs_block_group_cache *block_group;
9445 u64 free_bytes = 0;
9446 int factor;
9447
01327610 9448 /* It's df, we don't care if it's racy */
633c0aad
JB
9449 if (list_empty(&sinfo->ro_bgs))
9450 return 0;
9451
9452 spin_lock(&sinfo->lock);
9453 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9454 spin_lock(&block_group->lock);
9455
9456 if (!block_group->ro) {
9457 spin_unlock(&block_group->lock);
9458 continue;
9459 }
9460
9461 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9462 BTRFS_BLOCK_GROUP_RAID10 |
9463 BTRFS_BLOCK_GROUP_DUP))
9464 factor = 2;
9465 else
9466 factor = 1;
9467
9468 free_bytes += (block_group->key.offset -
9469 btrfs_block_group_used(&block_group->item)) *
9470 factor;
9471
9472 spin_unlock(&block_group->lock);
9473 }
6d07bcec
MX
9474 spin_unlock(&sinfo->lock);
9475
9476 return free_bytes;
9477}
9478
868f401a 9479void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9480 struct btrfs_block_group_cache *cache)
5d4f98a2 9481{
f0486c68
YZ
9482 struct btrfs_space_info *sinfo = cache->space_info;
9483 u64 num_bytes;
9484
9485 BUG_ON(!cache->ro);
9486
9487 spin_lock(&sinfo->lock);
9488 spin_lock(&cache->lock);
868f401a
Z
9489 if (!--cache->ro) {
9490 num_bytes = cache->key.offset - cache->reserved -
9491 cache->pinned - cache->bytes_super -
9492 btrfs_block_group_used(&cache->item);
9493 sinfo->bytes_readonly -= num_bytes;
9494 list_del_init(&cache->ro_list);
9495 }
f0486c68
YZ
9496 spin_unlock(&cache->lock);
9497 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9498}
9499
ba1bf481
JB
9500/*
9501 * checks to see if its even possible to relocate this block group.
9502 *
9503 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9504 * ok to go ahead and try.
9505 */
9506int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9507{
ba1bf481
JB
9508 struct btrfs_block_group_cache *block_group;
9509 struct btrfs_space_info *space_info;
9510 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9511 struct btrfs_device *device;
6df9a95e 9512 struct btrfs_trans_handle *trans;
cdcb725c 9513 u64 min_free;
6719db6a
JB
9514 u64 dev_min = 1;
9515 u64 dev_nr = 0;
4a5e98f5 9516 u64 target;
0305bc27 9517 int debug;
cdcb725c 9518 int index;
ba1bf481
JB
9519 int full = 0;
9520 int ret = 0;
1a40e23b 9521
0305bc27
QW
9522 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9523
ba1bf481 9524 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9525
ba1bf481 9526 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9527 if (!block_group) {
9528 if (debug)
9529 btrfs_warn(root->fs_info,
9530 "can't find block group for bytenr %llu",
9531 bytenr);
ba1bf481 9532 return -1;
0305bc27 9533 }
1a40e23b 9534
cdcb725c 9535 min_free = btrfs_block_group_used(&block_group->item);
9536
ba1bf481 9537 /* no bytes used, we're good */
cdcb725c 9538 if (!min_free)
1a40e23b
ZY
9539 goto out;
9540
ba1bf481
JB
9541 space_info = block_group->space_info;
9542 spin_lock(&space_info->lock);
17d217fe 9543
ba1bf481 9544 full = space_info->full;
17d217fe 9545
ba1bf481
JB
9546 /*
9547 * if this is the last block group we have in this space, we can't
7ce618db
CM
9548 * relocate it unless we're able to allocate a new chunk below.
9549 *
9550 * Otherwise, we need to make sure we have room in the space to handle
9551 * all of the extents from this block group. If we can, we're good
ba1bf481 9552 */
7ce618db 9553 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9554 (space_info->bytes_used + space_info->bytes_reserved +
9555 space_info->bytes_pinned + space_info->bytes_readonly +
9556 min_free < space_info->total_bytes)) {
ba1bf481
JB
9557 spin_unlock(&space_info->lock);
9558 goto out;
17d217fe 9559 }
ba1bf481 9560 spin_unlock(&space_info->lock);
ea8c2819 9561
ba1bf481
JB
9562 /*
9563 * ok we don't have enough space, but maybe we have free space on our
9564 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9565 * alloc devices and guess if we have enough space. if this block
9566 * group is going to be restriped, run checks against the target
9567 * profile instead of the current one.
ba1bf481
JB
9568 */
9569 ret = -1;
ea8c2819 9570
cdcb725c 9571 /*
9572 * index:
9573 * 0: raid10
9574 * 1: raid1
9575 * 2: dup
9576 * 3: raid0
9577 * 4: single
9578 */
4a5e98f5
ID
9579 target = get_restripe_target(root->fs_info, block_group->flags);
9580 if (target) {
31e50229 9581 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9582 } else {
9583 /*
9584 * this is just a balance, so if we were marked as full
9585 * we know there is no space for a new chunk
9586 */
0305bc27
QW
9587 if (full) {
9588 if (debug)
9589 btrfs_warn(root->fs_info,
9590 "no space to alloc new chunk for block group %llu",
9591 block_group->key.objectid);
4a5e98f5 9592 goto out;
0305bc27 9593 }
4a5e98f5
ID
9594
9595 index = get_block_group_index(block_group);
9596 }
9597
e6ec716f 9598 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9599 dev_min = 4;
6719db6a
JB
9600 /* Divide by 2 */
9601 min_free >>= 1;
e6ec716f 9602 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9603 dev_min = 2;
e6ec716f 9604 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9605 /* Multiply by 2 */
9606 min_free <<= 1;
e6ec716f 9607 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9608 dev_min = fs_devices->rw_devices;
47c5713f 9609 min_free = div64_u64(min_free, dev_min);
cdcb725c 9610 }
9611
6df9a95e
JB
9612 /* We need to do this so that we can look at pending chunks */
9613 trans = btrfs_join_transaction(root);
9614 if (IS_ERR(trans)) {
9615 ret = PTR_ERR(trans);
9616 goto out;
9617 }
9618
ba1bf481
JB
9619 mutex_lock(&root->fs_info->chunk_mutex);
9620 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9621 u64 dev_offset;
56bec294 9622
ba1bf481
JB
9623 /*
9624 * check to make sure we can actually find a chunk with enough
9625 * space to fit our block group in.
9626 */
63a212ab
SB
9627 if (device->total_bytes > device->bytes_used + min_free &&
9628 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9629 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9630 &dev_offset, NULL);
ba1bf481 9631 if (!ret)
cdcb725c 9632 dev_nr++;
9633
9634 if (dev_nr >= dev_min)
73e48b27 9635 break;
cdcb725c 9636
ba1bf481 9637 ret = -1;
725c8463 9638 }
edbd8d4e 9639 }
0305bc27
QW
9640 if (debug && ret == -1)
9641 btrfs_warn(root->fs_info,
9642 "no space to allocate a new chunk for block group %llu",
9643 block_group->key.objectid);
ba1bf481 9644 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9645 btrfs_end_transaction(trans, root);
edbd8d4e 9646out:
ba1bf481 9647 btrfs_put_block_group(block_group);
edbd8d4e
CM
9648 return ret;
9649}
9650
b2950863
CH
9651static int find_first_block_group(struct btrfs_root *root,
9652 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9653{
925baedd 9654 int ret = 0;
0b86a832
CM
9655 struct btrfs_key found_key;
9656 struct extent_buffer *leaf;
9657 int slot;
edbd8d4e 9658
0b86a832
CM
9659 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9660 if (ret < 0)
925baedd
CM
9661 goto out;
9662
d397712b 9663 while (1) {
0b86a832 9664 slot = path->slots[0];
edbd8d4e 9665 leaf = path->nodes[0];
0b86a832
CM
9666 if (slot >= btrfs_header_nritems(leaf)) {
9667 ret = btrfs_next_leaf(root, path);
9668 if (ret == 0)
9669 continue;
9670 if (ret < 0)
925baedd 9671 goto out;
0b86a832 9672 break;
edbd8d4e 9673 }
0b86a832 9674 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9675
0b86a832 9676 if (found_key.objectid >= key->objectid &&
925baedd
CM
9677 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9678 ret = 0;
9679 goto out;
9680 }
0b86a832 9681 path->slots[0]++;
edbd8d4e 9682 }
925baedd 9683out:
0b86a832 9684 return ret;
edbd8d4e
CM
9685}
9686
0af3d00b
JB
9687void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9688{
9689 struct btrfs_block_group_cache *block_group;
9690 u64 last = 0;
9691
9692 while (1) {
9693 struct inode *inode;
9694
9695 block_group = btrfs_lookup_first_block_group(info, last);
9696 while (block_group) {
9697 spin_lock(&block_group->lock);
9698 if (block_group->iref)
9699 break;
9700 spin_unlock(&block_group->lock);
9701 block_group = next_block_group(info->tree_root,
9702 block_group);
9703 }
9704 if (!block_group) {
9705 if (last == 0)
9706 break;
9707 last = 0;
9708 continue;
9709 }
9710
9711 inode = block_group->inode;
9712 block_group->iref = 0;
9713 block_group->inode = NULL;
9714 spin_unlock(&block_group->lock);
9715 iput(inode);
9716 last = block_group->key.objectid + block_group->key.offset;
9717 btrfs_put_block_group(block_group);
9718 }
9719}
9720
1a40e23b
ZY
9721int btrfs_free_block_groups(struct btrfs_fs_info *info)
9722{
9723 struct btrfs_block_group_cache *block_group;
4184ea7f 9724 struct btrfs_space_info *space_info;
11833d66 9725 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9726 struct rb_node *n;
9727
9e351cc8 9728 down_write(&info->commit_root_sem);
11833d66
YZ
9729 while (!list_empty(&info->caching_block_groups)) {
9730 caching_ctl = list_entry(info->caching_block_groups.next,
9731 struct btrfs_caching_control, list);
9732 list_del(&caching_ctl->list);
9733 put_caching_control(caching_ctl);
9734 }
9e351cc8 9735 up_write(&info->commit_root_sem);
11833d66 9736
47ab2a6c
JB
9737 spin_lock(&info->unused_bgs_lock);
9738 while (!list_empty(&info->unused_bgs)) {
9739 block_group = list_first_entry(&info->unused_bgs,
9740 struct btrfs_block_group_cache,
9741 bg_list);
9742 list_del_init(&block_group->bg_list);
9743 btrfs_put_block_group(block_group);
9744 }
9745 spin_unlock(&info->unused_bgs_lock);
9746
1a40e23b
ZY
9747 spin_lock(&info->block_group_cache_lock);
9748 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9749 block_group = rb_entry(n, struct btrfs_block_group_cache,
9750 cache_node);
1a40e23b
ZY
9751 rb_erase(&block_group->cache_node,
9752 &info->block_group_cache_tree);
01eacb27 9753 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9754 spin_unlock(&info->block_group_cache_lock);
9755
80eb234a 9756 down_write(&block_group->space_info->groups_sem);
1a40e23b 9757 list_del(&block_group->list);
80eb234a 9758 up_write(&block_group->space_info->groups_sem);
d2fb3437 9759
817d52f8 9760 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9761 wait_block_group_cache_done(block_group);
817d52f8 9762
3c14874a
JB
9763 /*
9764 * We haven't cached this block group, which means we could
9765 * possibly have excluded extents on this block group.
9766 */
36cce922
JB
9767 if (block_group->cached == BTRFS_CACHE_NO ||
9768 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9769 free_excluded_extents(info->extent_root, block_group);
9770
817d52f8 9771 btrfs_remove_free_space_cache(block_group);
11dfe35a 9772 btrfs_put_block_group(block_group);
d899e052
YZ
9773
9774 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9775 }
9776 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9777
9778 /* now that all the block groups are freed, go through and
9779 * free all the space_info structs. This is only called during
9780 * the final stages of unmount, and so we know nobody is
9781 * using them. We call synchronize_rcu() once before we start,
9782 * just to be on the safe side.
9783 */
9784 synchronize_rcu();
9785
8929ecfa
YZ
9786 release_global_block_rsv(info);
9787
67871254 9788 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9789 int i;
9790
4184ea7f
CM
9791 space_info = list_entry(info->space_info.next,
9792 struct btrfs_space_info,
9793 list);
b069e0c3 9794 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9795 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9796 space_info->bytes_reserved > 0 ||
fae7f21c 9797 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9798 dump_space_info(space_info, 0, 0);
9799 }
f0486c68 9800 }
4184ea7f 9801 list_del(&space_info->list);
6ab0a202
JM
9802 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9803 struct kobject *kobj;
c1895442
JM
9804 kobj = space_info->block_group_kobjs[i];
9805 space_info->block_group_kobjs[i] = NULL;
9806 if (kobj) {
6ab0a202
JM
9807 kobject_del(kobj);
9808 kobject_put(kobj);
9809 }
9810 }
9811 kobject_del(&space_info->kobj);
9812 kobject_put(&space_info->kobj);
4184ea7f 9813 }
1a40e23b
ZY
9814 return 0;
9815}
9816
b742bb82
YZ
9817static void __link_block_group(struct btrfs_space_info *space_info,
9818 struct btrfs_block_group_cache *cache)
9819{
9820 int index = get_block_group_index(cache);
ed55b6ac 9821 bool first = false;
b742bb82
YZ
9822
9823 down_write(&space_info->groups_sem);
ed55b6ac
JM
9824 if (list_empty(&space_info->block_groups[index]))
9825 first = true;
9826 list_add_tail(&cache->list, &space_info->block_groups[index]);
9827 up_write(&space_info->groups_sem);
9828
9829 if (first) {
c1895442 9830 struct raid_kobject *rkobj;
6ab0a202
JM
9831 int ret;
9832
c1895442
JM
9833 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9834 if (!rkobj)
9835 goto out_err;
9836 rkobj->raid_type = index;
9837 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9838 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9839 "%s", get_raid_name(index));
6ab0a202 9840 if (ret) {
c1895442
JM
9841 kobject_put(&rkobj->kobj);
9842 goto out_err;
6ab0a202 9843 }
c1895442 9844 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9845 }
c1895442
JM
9846
9847 return;
9848out_err:
9849 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9850}
9851
920e4a58
MX
9852static struct btrfs_block_group_cache *
9853btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9854{
9855 struct btrfs_block_group_cache *cache;
9856
9857 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9858 if (!cache)
9859 return NULL;
9860
9861 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9862 GFP_NOFS);
9863 if (!cache->free_space_ctl) {
9864 kfree(cache);
9865 return NULL;
9866 }
9867
9868 cache->key.objectid = start;
9869 cache->key.offset = size;
9870 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9871
9872 cache->sectorsize = root->sectorsize;
9873 cache->fs_info = root->fs_info;
9874 cache->full_stripe_len = btrfs_full_stripe_len(root,
9875 &root->fs_info->mapping_tree,
9876 start);
1e144fb8
OS
9877 set_free_space_tree_thresholds(cache);
9878
920e4a58
MX
9879 atomic_set(&cache->count, 1);
9880 spin_lock_init(&cache->lock);
e570fd27 9881 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9882 INIT_LIST_HEAD(&cache->list);
9883 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9884 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9885 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9886 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9887 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9888 btrfs_init_free_space_ctl(cache);
04216820 9889 atomic_set(&cache->trimming, 0);
a5ed9182 9890 mutex_init(&cache->free_space_lock);
920e4a58
MX
9891
9892 return cache;
9893}
9894
9078a3e1
CM
9895int btrfs_read_block_groups(struct btrfs_root *root)
9896{
9897 struct btrfs_path *path;
9898 int ret;
9078a3e1 9899 struct btrfs_block_group_cache *cache;
be744175 9900 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9901 struct btrfs_space_info *space_info;
9078a3e1
CM
9902 struct btrfs_key key;
9903 struct btrfs_key found_key;
5f39d397 9904 struct extent_buffer *leaf;
0af3d00b
JB
9905 int need_clear = 0;
9906 u64 cache_gen;
96b5179d 9907
be744175 9908 root = info->extent_root;
9078a3e1 9909 key.objectid = 0;
0b86a832 9910 key.offset = 0;
962a298f 9911 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9912 path = btrfs_alloc_path();
9913 if (!path)
9914 return -ENOMEM;
e4058b54 9915 path->reada = READA_FORWARD;
9078a3e1 9916
6c41761f 9917 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9918 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9919 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9920 need_clear = 1;
88c2ba3b
JB
9921 if (btrfs_test_opt(root, CLEAR_CACHE))
9922 need_clear = 1;
0af3d00b 9923
d397712b 9924 while (1) {
0b86a832 9925 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9926 if (ret > 0)
9927 break;
0b86a832
CM
9928 if (ret != 0)
9929 goto error;
920e4a58 9930
5f39d397
CM
9931 leaf = path->nodes[0];
9932 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9933
9934 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9935 found_key.offset);
9078a3e1 9936 if (!cache) {
0b86a832 9937 ret = -ENOMEM;
f0486c68 9938 goto error;
9078a3e1 9939 }
96303081 9940
cf7c1ef6
LB
9941 if (need_clear) {
9942 /*
9943 * When we mount with old space cache, we need to
9944 * set BTRFS_DC_CLEAR and set dirty flag.
9945 *
9946 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9947 * truncate the old free space cache inode and
9948 * setup a new one.
9949 * b) Setting 'dirty flag' makes sure that we flush
9950 * the new space cache info onto disk.
9951 */
cf7c1ef6 9952 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9953 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9954 }
0af3d00b 9955
5f39d397
CM
9956 read_extent_buffer(leaf, &cache->item,
9957 btrfs_item_ptr_offset(leaf, path->slots[0]),
9958 sizeof(cache->item));
920e4a58 9959 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9960
9078a3e1 9961 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9962 btrfs_release_path(path);
34d52cb6 9963
3c14874a
JB
9964 /*
9965 * We need to exclude the super stripes now so that the space
9966 * info has super bytes accounted for, otherwise we'll think
9967 * we have more space than we actually do.
9968 */
835d974f
JB
9969 ret = exclude_super_stripes(root, cache);
9970 if (ret) {
9971 /*
9972 * We may have excluded something, so call this just in
9973 * case.
9974 */
9975 free_excluded_extents(root, cache);
920e4a58 9976 btrfs_put_block_group(cache);
835d974f
JB
9977 goto error;
9978 }
3c14874a 9979
817d52f8
JB
9980 /*
9981 * check for two cases, either we are full, and therefore
9982 * don't need to bother with the caching work since we won't
9983 * find any space, or we are empty, and we can just add all
9984 * the space in and be done with it. This saves us _alot_ of
9985 * time, particularly in the full case.
9986 */
9987 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9988 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9989 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9990 free_excluded_extents(root, cache);
817d52f8 9991 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9992 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9993 cache->cached = BTRFS_CACHE_FINISHED;
9994 add_new_free_space(cache, root->fs_info,
9995 found_key.objectid,
9996 found_key.objectid +
9997 found_key.offset);
11833d66 9998 free_excluded_extents(root, cache);
817d52f8 9999 }
96b5179d 10000
8c579fe7
JB
10001 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10002 if (ret) {
10003 btrfs_remove_free_space_cache(cache);
10004 btrfs_put_block_group(cache);
10005 goto error;
10006 }
10007
6324fbf3
CM
10008 ret = update_space_info(info, cache->flags, found_key.offset,
10009 btrfs_block_group_used(&cache->item),
10010 &space_info);
8c579fe7
JB
10011 if (ret) {
10012 btrfs_remove_free_space_cache(cache);
10013 spin_lock(&info->block_group_cache_lock);
10014 rb_erase(&cache->cache_node,
10015 &info->block_group_cache_tree);
01eacb27 10016 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10017 spin_unlock(&info->block_group_cache_lock);
10018 btrfs_put_block_group(cache);
10019 goto error;
10020 }
10021
6324fbf3 10022 cache->space_info = space_info;
1b2da372 10023 spin_lock(&cache->space_info->lock);
f0486c68 10024 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
10025 spin_unlock(&cache->space_info->lock);
10026
b742bb82 10027 __link_block_group(space_info, cache);
0f9dd46c 10028
75ccf47d 10029 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10030 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10031 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10032 } else if (btrfs_block_group_used(&cache->item) == 0) {
10033 spin_lock(&info->unused_bgs_lock);
10034 /* Should always be true but just in case. */
10035 if (list_empty(&cache->bg_list)) {
10036 btrfs_get_block_group(cache);
10037 list_add_tail(&cache->bg_list,
10038 &info->unused_bgs);
10039 }
10040 spin_unlock(&info->unused_bgs_lock);
10041 }
9078a3e1 10042 }
b742bb82
YZ
10043
10044 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10045 if (!(get_alloc_profile(root, space_info->flags) &
10046 (BTRFS_BLOCK_GROUP_RAID10 |
10047 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10048 BTRFS_BLOCK_GROUP_RAID5 |
10049 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10050 BTRFS_BLOCK_GROUP_DUP)))
10051 continue;
10052 /*
10053 * avoid allocating from un-mirrored block group if there are
10054 * mirrored block groups.
10055 */
1095cc0d 10056 list_for_each_entry(cache,
10057 &space_info->block_groups[BTRFS_RAID_RAID0],
10058 list)
868f401a 10059 inc_block_group_ro(cache, 1);
1095cc0d 10060 list_for_each_entry(cache,
10061 &space_info->block_groups[BTRFS_RAID_SINGLE],
10062 list)
868f401a 10063 inc_block_group_ro(cache, 1);
9078a3e1 10064 }
f0486c68
YZ
10065
10066 init_global_block_rsv(info);
0b86a832
CM
10067 ret = 0;
10068error:
9078a3e1 10069 btrfs_free_path(path);
0b86a832 10070 return ret;
9078a3e1 10071}
6324fbf3 10072
ea658bad
JB
10073void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10074 struct btrfs_root *root)
10075{
10076 struct btrfs_block_group_cache *block_group, *tmp;
10077 struct btrfs_root *extent_root = root->fs_info->extent_root;
10078 struct btrfs_block_group_item item;
10079 struct btrfs_key key;
10080 int ret = 0;
d9a0540a 10081 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10082
d9a0540a 10083 trans->can_flush_pending_bgs = false;
47ab2a6c 10084 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10085 if (ret)
c92f6be3 10086 goto next;
ea658bad
JB
10087
10088 spin_lock(&block_group->lock);
10089 memcpy(&item, &block_group->item, sizeof(item));
10090 memcpy(&key, &block_group->key, sizeof(key));
10091 spin_unlock(&block_group->lock);
10092
10093 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10094 sizeof(item));
10095 if (ret)
10096 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
10097 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10098 key.objectid, key.offset);
10099 if (ret)
10100 btrfs_abort_transaction(trans, extent_root, ret);
1e144fb8
OS
10101 add_block_group_free_space(trans, root->fs_info, block_group);
10102 /* already aborted the transaction if it failed. */
c92f6be3
FM
10103next:
10104 list_del_init(&block_group->bg_list);
ea658bad 10105 }
d9a0540a 10106 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10107}
10108
6324fbf3
CM
10109int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10110 struct btrfs_root *root, u64 bytes_used,
e17cade2 10111 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10112 u64 size)
10113{
10114 int ret;
6324fbf3
CM
10115 struct btrfs_root *extent_root;
10116 struct btrfs_block_group_cache *cache;
6324fbf3
CM
10117
10118 extent_root = root->fs_info->extent_root;
6324fbf3 10119
995946dd 10120 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10121
920e4a58 10122 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10123 if (!cache)
10124 return -ENOMEM;
34d52cb6 10125
6324fbf3 10126 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10127 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10128 btrfs_set_block_group_flags(&cache->item, type);
10129
920e4a58 10130 cache->flags = type;
11833d66 10131 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10132 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10133 cache->needs_free_space = 1;
835d974f
JB
10134 ret = exclude_super_stripes(root, cache);
10135 if (ret) {
10136 /*
10137 * We may have excluded something, so call this just in
10138 * case.
10139 */
10140 free_excluded_extents(root, cache);
920e4a58 10141 btrfs_put_block_group(cache);
835d974f
JB
10142 return ret;
10143 }
96303081 10144
817d52f8
JB
10145 add_new_free_space(cache, root->fs_info, chunk_offset,
10146 chunk_offset + size);
10147
11833d66
YZ
10148 free_excluded_extents(root, cache);
10149
d0bd4560
JB
10150#ifdef CONFIG_BTRFS_DEBUG
10151 if (btrfs_should_fragment_free_space(root, cache)) {
10152 u64 new_bytes_used = size - bytes_used;
10153
10154 bytes_used += new_bytes_used >> 1;
10155 fragment_free_space(root, cache);
10156 }
10157#endif
2e6e5183
FM
10158 /*
10159 * Call to ensure the corresponding space_info object is created and
10160 * assigned to our block group, but don't update its counters just yet.
10161 * We want our bg to be added to the rbtree with its ->space_info set.
10162 */
10163 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10164 &cache->space_info);
10165 if (ret) {
10166 btrfs_remove_free_space_cache(cache);
10167 btrfs_put_block_group(cache);
10168 return ret;
10169 }
10170
8c579fe7
JB
10171 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10172 if (ret) {
10173 btrfs_remove_free_space_cache(cache);
10174 btrfs_put_block_group(cache);
10175 return ret;
10176 }
10177
2e6e5183
FM
10178 /*
10179 * Now that our block group has its ->space_info set and is inserted in
10180 * the rbtree, update the space info's counters.
10181 */
6324fbf3
CM
10182 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10183 &cache->space_info);
8c579fe7
JB
10184 if (ret) {
10185 btrfs_remove_free_space_cache(cache);
10186 spin_lock(&root->fs_info->block_group_cache_lock);
10187 rb_erase(&cache->cache_node,
10188 &root->fs_info->block_group_cache_tree);
01eacb27 10189 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10190 spin_unlock(&root->fs_info->block_group_cache_lock);
10191 btrfs_put_block_group(cache);
10192 return ret;
10193 }
c7c144db 10194 update_global_block_rsv(root->fs_info);
1b2da372
JB
10195
10196 spin_lock(&cache->space_info->lock);
f0486c68 10197 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
10198 spin_unlock(&cache->space_info->lock);
10199
b742bb82 10200 __link_block_group(cache->space_info, cache);
6324fbf3 10201
47ab2a6c 10202 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10203
d18a2c44 10204 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 10205
6324fbf3
CM
10206 return 0;
10207}
1a40e23b 10208
10ea00f5
ID
10209static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10210{
899c81ea
ID
10211 u64 extra_flags = chunk_to_extended(flags) &
10212 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10213
de98ced9 10214 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10215 if (flags & BTRFS_BLOCK_GROUP_DATA)
10216 fs_info->avail_data_alloc_bits &= ~extra_flags;
10217 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10218 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10219 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10220 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10221 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10222}
10223
1a40e23b 10224int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10225 struct btrfs_root *root, u64 group_start,
10226 struct extent_map *em)
1a40e23b
ZY
10227{
10228 struct btrfs_path *path;
10229 struct btrfs_block_group_cache *block_group;
44fb5511 10230 struct btrfs_free_cluster *cluster;
0af3d00b 10231 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10232 struct btrfs_key key;
0af3d00b 10233 struct inode *inode;
c1895442 10234 struct kobject *kobj = NULL;
1a40e23b 10235 int ret;
10ea00f5 10236 int index;
89a55897 10237 int factor;
4f69cb98 10238 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10239 bool remove_em;
1a40e23b 10240
1a40e23b
ZY
10241 root = root->fs_info->extent_root;
10242
10243 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10244 BUG_ON(!block_group);
c146afad 10245 BUG_ON(!block_group->ro);
1a40e23b 10246
9f7c43c9 10247 /*
10248 * Free the reserved super bytes from this block group before
10249 * remove it.
10250 */
10251 free_excluded_extents(root, block_group);
10252
1a40e23b 10253 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10254 index = get_block_group_index(block_group);
89a55897
JB
10255 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10256 BTRFS_BLOCK_GROUP_RAID1 |
10257 BTRFS_BLOCK_GROUP_RAID10))
10258 factor = 2;
10259 else
10260 factor = 1;
1a40e23b 10261
44fb5511
CM
10262 /* make sure this block group isn't part of an allocation cluster */
10263 cluster = &root->fs_info->data_alloc_cluster;
10264 spin_lock(&cluster->refill_lock);
10265 btrfs_return_cluster_to_free_space(block_group, cluster);
10266 spin_unlock(&cluster->refill_lock);
10267
10268 /*
10269 * make sure this block group isn't part of a metadata
10270 * allocation cluster
10271 */
10272 cluster = &root->fs_info->meta_alloc_cluster;
10273 spin_lock(&cluster->refill_lock);
10274 btrfs_return_cluster_to_free_space(block_group, cluster);
10275 spin_unlock(&cluster->refill_lock);
10276
1a40e23b 10277 path = btrfs_alloc_path();
d8926bb3
MF
10278 if (!path) {
10279 ret = -ENOMEM;
10280 goto out;
10281 }
1a40e23b 10282
1bbc621e
CM
10283 /*
10284 * get the inode first so any iput calls done for the io_list
10285 * aren't the final iput (no unlinks allowed now)
10286 */
10b2f34d 10287 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10288
10289 mutex_lock(&trans->transaction->cache_write_mutex);
10290 /*
10291 * make sure our free spache cache IO is done before remove the
10292 * free space inode
10293 */
10294 spin_lock(&trans->transaction->dirty_bgs_lock);
10295 if (!list_empty(&block_group->io_list)) {
10296 list_del_init(&block_group->io_list);
10297
10298 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10299
10300 spin_unlock(&trans->transaction->dirty_bgs_lock);
10301 btrfs_wait_cache_io(root, trans, block_group,
10302 &block_group->io_ctl, path,
10303 block_group->key.objectid);
10304 btrfs_put_block_group(block_group);
10305 spin_lock(&trans->transaction->dirty_bgs_lock);
10306 }
10307
10308 if (!list_empty(&block_group->dirty_list)) {
10309 list_del_init(&block_group->dirty_list);
10310 btrfs_put_block_group(block_group);
10311 }
10312 spin_unlock(&trans->transaction->dirty_bgs_lock);
10313 mutex_unlock(&trans->transaction->cache_write_mutex);
10314
0af3d00b 10315 if (!IS_ERR(inode)) {
b532402e 10316 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10317 if (ret) {
10318 btrfs_add_delayed_iput(inode);
10319 goto out;
10320 }
0af3d00b
JB
10321 clear_nlink(inode);
10322 /* One for the block groups ref */
10323 spin_lock(&block_group->lock);
10324 if (block_group->iref) {
10325 block_group->iref = 0;
10326 block_group->inode = NULL;
10327 spin_unlock(&block_group->lock);
10328 iput(inode);
10329 } else {
10330 spin_unlock(&block_group->lock);
10331 }
10332 /* One for our lookup ref */
455757c3 10333 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10334 }
10335
10336 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10337 key.offset = block_group->key.objectid;
10338 key.type = 0;
10339
10340 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10341 if (ret < 0)
10342 goto out;
10343 if (ret > 0)
b3b4aa74 10344 btrfs_release_path(path);
0af3d00b
JB
10345 if (ret == 0) {
10346 ret = btrfs_del_item(trans, tree_root, path);
10347 if (ret)
10348 goto out;
b3b4aa74 10349 btrfs_release_path(path);
0af3d00b
JB
10350 }
10351
3dfdb934 10352 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10353 rb_erase(&block_group->cache_node,
10354 &root->fs_info->block_group_cache_tree);
292cbd51 10355 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10356
10357 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10358 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10359 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10360
80eb234a 10361 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10362 /*
10363 * we must use list_del_init so people can check to see if they
10364 * are still on the list after taking the semaphore
10365 */
10366 list_del_init(&block_group->list);
6ab0a202 10367 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10368 kobj = block_group->space_info->block_group_kobjs[index];
10369 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10370 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10371 }
80eb234a 10372 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10373 if (kobj) {
10374 kobject_del(kobj);
10375 kobject_put(kobj);
10376 }
1a40e23b 10377
4f69cb98
FM
10378 if (block_group->has_caching_ctl)
10379 caching_ctl = get_caching_control(block_group);
817d52f8 10380 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10381 wait_block_group_cache_done(block_group);
4f69cb98
FM
10382 if (block_group->has_caching_ctl) {
10383 down_write(&root->fs_info->commit_root_sem);
10384 if (!caching_ctl) {
10385 struct btrfs_caching_control *ctl;
10386
10387 list_for_each_entry(ctl,
10388 &root->fs_info->caching_block_groups, list)
10389 if (ctl->block_group == block_group) {
10390 caching_ctl = ctl;
10391 atomic_inc(&caching_ctl->count);
10392 break;
10393 }
10394 }
10395 if (caching_ctl)
10396 list_del_init(&caching_ctl->list);
10397 up_write(&root->fs_info->commit_root_sem);
10398 if (caching_ctl) {
10399 /* Once for the caching bgs list and once for us. */
10400 put_caching_control(caching_ctl);
10401 put_caching_control(caching_ctl);
10402 }
10403 }
817d52f8 10404
ce93ec54
JB
10405 spin_lock(&trans->transaction->dirty_bgs_lock);
10406 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10407 WARN_ON(1);
10408 }
10409 if (!list_empty(&block_group->io_list)) {
10410 WARN_ON(1);
ce93ec54
JB
10411 }
10412 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10413 btrfs_remove_free_space_cache(block_group);
10414
c146afad 10415 spin_lock(&block_group->space_info->lock);
75c68e9f 10416 list_del_init(&block_group->ro_list);
18d018ad
ZL
10417
10418 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10419 WARN_ON(block_group->space_info->total_bytes
10420 < block_group->key.offset);
10421 WARN_ON(block_group->space_info->bytes_readonly
10422 < block_group->key.offset);
10423 WARN_ON(block_group->space_info->disk_total
10424 < block_group->key.offset * factor);
10425 }
c146afad
YZ
10426 block_group->space_info->total_bytes -= block_group->key.offset;
10427 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10428 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10429
c146afad 10430 spin_unlock(&block_group->space_info->lock);
283bb197 10431
0af3d00b
JB
10432 memcpy(&key, &block_group->key, sizeof(key));
10433
04216820 10434 lock_chunks(root);
495e64f4
FM
10435 if (!list_empty(&em->list)) {
10436 /* We're in the transaction->pending_chunks list. */
10437 free_extent_map(em);
10438 }
04216820
FM
10439 spin_lock(&block_group->lock);
10440 block_group->removed = 1;
10441 /*
10442 * At this point trimming can't start on this block group, because we
10443 * removed the block group from the tree fs_info->block_group_cache_tree
10444 * so no one can't find it anymore and even if someone already got this
10445 * block group before we removed it from the rbtree, they have already
10446 * incremented block_group->trimming - if they didn't, they won't find
10447 * any free space entries because we already removed them all when we
10448 * called btrfs_remove_free_space_cache().
10449 *
10450 * And we must not remove the extent map from the fs_info->mapping_tree
10451 * to prevent the same logical address range and physical device space
10452 * ranges from being reused for a new block group. This is because our
10453 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10454 * completely transactionless, so while it is trimming a range the
10455 * currently running transaction might finish and a new one start,
10456 * allowing for new block groups to be created that can reuse the same
10457 * physical device locations unless we take this special care.
e33e17ee
JM
10458 *
10459 * There may also be an implicit trim operation if the file system
10460 * is mounted with -odiscard. The same protections must remain
10461 * in place until the extents have been discarded completely when
10462 * the transaction commit has completed.
04216820
FM
10463 */
10464 remove_em = (atomic_read(&block_group->trimming) == 0);
10465 /*
10466 * Make sure a trimmer task always sees the em in the pinned_chunks list
10467 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10468 * before checking block_group->removed).
10469 */
10470 if (!remove_em) {
10471 /*
10472 * Our em might be in trans->transaction->pending_chunks which
10473 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10474 * and so is the fs_info->pinned_chunks list.
10475 *
10476 * So at this point we must be holding the chunk_mutex to avoid
10477 * any races with chunk allocation (more specifically at
10478 * volumes.c:contains_pending_extent()), to ensure it always
10479 * sees the em, either in the pending_chunks list or in the
10480 * pinned_chunks list.
10481 */
10482 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10483 }
10484 spin_unlock(&block_group->lock);
04216820
FM
10485
10486 if (remove_em) {
10487 struct extent_map_tree *em_tree;
10488
10489 em_tree = &root->fs_info->mapping_tree.map_tree;
10490 write_lock(&em_tree->lock);
8dbcd10f
FM
10491 /*
10492 * The em might be in the pending_chunks list, so make sure the
10493 * chunk mutex is locked, since remove_extent_mapping() will
10494 * delete us from that list.
10495 */
04216820
FM
10496 remove_extent_mapping(em_tree, em);
10497 write_unlock(&em_tree->lock);
10498 /* once for the tree */
10499 free_extent_map(em);
10500 }
10501
8dbcd10f
FM
10502 unlock_chunks(root);
10503
1e144fb8
OS
10504 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10505 if (ret)
10506 goto out;
10507
fa9c0d79
CM
10508 btrfs_put_block_group(block_group);
10509 btrfs_put_block_group(block_group);
1a40e23b
ZY
10510
10511 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10512 if (ret > 0)
10513 ret = -EIO;
10514 if (ret < 0)
10515 goto out;
10516
10517 ret = btrfs_del_item(trans, root, path);
10518out:
10519 btrfs_free_path(path);
10520 return ret;
10521}
acce952b 10522
8eab77ff 10523struct btrfs_trans_handle *
7fd01182
FM
10524btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10525 const u64 chunk_offset)
8eab77ff 10526{
7fd01182
FM
10527 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10528 struct extent_map *em;
10529 struct map_lookup *map;
10530 unsigned int num_items;
10531
10532 read_lock(&em_tree->lock);
10533 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10534 read_unlock(&em_tree->lock);
10535 ASSERT(em && em->start == chunk_offset);
10536
8eab77ff 10537 /*
7fd01182
FM
10538 * We need to reserve 3 + N units from the metadata space info in order
10539 * to remove a block group (done at btrfs_remove_chunk() and at
10540 * btrfs_remove_block_group()), which are used for:
10541 *
8eab77ff
FM
10542 * 1 unit for adding the free space inode's orphan (located in the tree
10543 * of tree roots).
7fd01182
FM
10544 * 1 unit for deleting the block group item (located in the extent
10545 * tree).
10546 * 1 unit for deleting the free space item (located in tree of tree
10547 * roots).
10548 * N units for deleting N device extent items corresponding to each
10549 * stripe (located in the device tree).
10550 *
10551 * In order to remove a block group we also need to reserve units in the
10552 * system space info in order to update the chunk tree (update one or
10553 * more device items and remove one chunk item), but this is done at
10554 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10555 */
95617d69 10556 map = em->map_lookup;
7fd01182
FM
10557 num_items = 3 + map->num_stripes;
10558 free_extent_map(em);
10559
8eab77ff 10560 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10561 num_items, 1);
8eab77ff
FM
10562}
10563
47ab2a6c
JB
10564/*
10565 * Process the unused_bgs list and remove any that don't have any allocated
10566 * space inside of them.
10567 */
10568void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10569{
10570 struct btrfs_block_group_cache *block_group;
10571 struct btrfs_space_info *space_info;
10572 struct btrfs_root *root = fs_info->extent_root;
10573 struct btrfs_trans_handle *trans;
10574 int ret = 0;
10575
10576 if (!fs_info->open)
10577 return;
10578
10579 spin_lock(&fs_info->unused_bgs_lock);
10580 while (!list_empty(&fs_info->unused_bgs)) {
10581 u64 start, end;
e33e17ee 10582 int trimming;
47ab2a6c
JB
10583
10584 block_group = list_first_entry(&fs_info->unused_bgs,
10585 struct btrfs_block_group_cache,
10586 bg_list);
47ab2a6c 10587 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10588
10589 space_info = block_group->space_info;
10590
47ab2a6c
JB
10591 if (ret || btrfs_mixed_space_info(space_info)) {
10592 btrfs_put_block_group(block_group);
10593 continue;
10594 }
10595 spin_unlock(&fs_info->unused_bgs_lock);
10596
d5f2e33b 10597 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10598
47ab2a6c
JB
10599 /* Don't want to race with allocators so take the groups_sem */
10600 down_write(&space_info->groups_sem);
10601 spin_lock(&block_group->lock);
10602 if (block_group->reserved ||
10603 btrfs_block_group_used(&block_group->item) ||
aefbe9a6
ZL
10604 block_group->ro ||
10605 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10606 /*
10607 * We want to bail if we made new allocations or have
10608 * outstanding allocations in this block group. We do
10609 * the ro check in case balance is currently acting on
10610 * this block group.
10611 */
10612 spin_unlock(&block_group->lock);
10613 up_write(&space_info->groups_sem);
10614 goto next;
10615 }
10616 spin_unlock(&block_group->lock);
10617
10618 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10619 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10620 up_write(&space_info->groups_sem);
10621 if (ret < 0) {
10622 ret = 0;
10623 goto next;
10624 }
10625
10626 /*
10627 * Want to do this before we do anything else so we can recover
10628 * properly if we fail to join the transaction.
10629 */
7fd01182
FM
10630 trans = btrfs_start_trans_remove_block_group(fs_info,
10631 block_group->key.objectid);
47ab2a6c 10632 if (IS_ERR(trans)) {
868f401a 10633 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10634 ret = PTR_ERR(trans);
10635 goto next;
10636 }
10637
10638 /*
10639 * We could have pending pinned extents for this block group,
10640 * just delete them, we don't care about them anymore.
10641 */
10642 start = block_group->key.objectid;
10643 end = start + block_group->key.offset - 1;
d4b450cd
FM
10644 /*
10645 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10646 * btrfs_finish_extent_commit(). If we are at transaction N,
10647 * another task might be running finish_extent_commit() for the
10648 * previous transaction N - 1, and have seen a range belonging
10649 * to the block group in freed_extents[] before we were able to
10650 * clear the whole block group range from freed_extents[]. This
10651 * means that task can lookup for the block group after we
10652 * unpinned it from freed_extents[] and removed it, leading to
10653 * a BUG_ON() at btrfs_unpin_extent_range().
10654 */
10655 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10656 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10657 EXTENT_DIRTY);
758eb51e 10658 if (ret) {
d4b450cd 10659 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10660 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10661 goto end_trans;
10662 }
10663 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10664 EXTENT_DIRTY);
758eb51e 10665 if (ret) {
d4b450cd 10666 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10667 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10668 goto end_trans;
10669 }
d4b450cd 10670 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10671
10672 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10673 spin_lock(&space_info->lock);
10674 spin_lock(&block_group->lock);
10675
10676 space_info->bytes_pinned -= block_group->pinned;
10677 space_info->bytes_readonly += block_group->pinned;
10678 percpu_counter_add(&space_info->total_bytes_pinned,
10679 -block_group->pinned);
47ab2a6c
JB
10680 block_group->pinned = 0;
10681
c30666d4
ZL
10682 spin_unlock(&block_group->lock);
10683 spin_unlock(&space_info->lock);
10684
e33e17ee
JM
10685 /* DISCARD can flip during remount */
10686 trimming = btrfs_test_opt(root, DISCARD);
10687
10688 /* Implicit trim during transaction commit. */
10689 if (trimming)
10690 btrfs_get_block_group_trimming(block_group);
10691
47ab2a6c
JB
10692 /*
10693 * Btrfs_remove_chunk will abort the transaction if things go
10694 * horribly wrong.
10695 */
10696 ret = btrfs_remove_chunk(trans, root,
10697 block_group->key.objectid);
e33e17ee
JM
10698
10699 if (ret) {
10700 if (trimming)
10701 btrfs_put_block_group_trimming(block_group);
10702 goto end_trans;
10703 }
10704
10705 /*
10706 * If we're not mounted with -odiscard, we can just forget
10707 * about this block group. Otherwise we'll need to wait
10708 * until transaction commit to do the actual discard.
10709 */
10710 if (trimming) {
348a0013
FM
10711 spin_lock(&fs_info->unused_bgs_lock);
10712 /*
10713 * A concurrent scrub might have added us to the list
10714 * fs_info->unused_bgs, so use a list_move operation
10715 * to add the block group to the deleted_bgs list.
10716 */
e33e17ee
JM
10717 list_move(&block_group->bg_list,
10718 &trans->transaction->deleted_bgs);
348a0013 10719 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10720 btrfs_get_block_group(block_group);
10721 }
758eb51e 10722end_trans:
47ab2a6c
JB
10723 btrfs_end_transaction(trans, root);
10724next:
d5f2e33b 10725 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10726 btrfs_put_block_group(block_group);
10727 spin_lock(&fs_info->unused_bgs_lock);
10728 }
10729 spin_unlock(&fs_info->unused_bgs_lock);
10730}
10731
c59021f8 10732int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10733{
10734 struct btrfs_space_info *space_info;
1aba86d6 10735 struct btrfs_super_block *disk_super;
10736 u64 features;
10737 u64 flags;
10738 int mixed = 0;
c59021f8 10739 int ret;
10740
6c41761f 10741 disk_super = fs_info->super_copy;
1aba86d6 10742 if (!btrfs_super_root(disk_super))
0dc924c5 10743 return -EINVAL;
c59021f8 10744
1aba86d6 10745 features = btrfs_super_incompat_flags(disk_super);
10746 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10747 mixed = 1;
c59021f8 10748
1aba86d6 10749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10750 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10751 if (ret)
1aba86d6 10752 goto out;
c59021f8 10753
1aba86d6 10754 if (mixed) {
10755 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10756 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10757 } else {
10758 flags = BTRFS_BLOCK_GROUP_METADATA;
10759 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10760 if (ret)
10761 goto out;
10762
10763 flags = BTRFS_BLOCK_GROUP_DATA;
10764 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10765 }
10766out:
c59021f8 10767 return ret;
10768}
10769
acce952b 10770int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10771{
678886bd 10772 return unpin_extent_range(root, start, end, false);
acce952b 10773}
10774
499f377f
JM
10775/*
10776 * It used to be that old block groups would be left around forever.
10777 * Iterating over them would be enough to trim unused space. Since we
10778 * now automatically remove them, we also need to iterate over unallocated
10779 * space.
10780 *
10781 * We don't want a transaction for this since the discard may take a
10782 * substantial amount of time. We don't require that a transaction be
10783 * running, but we do need to take a running transaction into account
10784 * to ensure that we're not discarding chunks that were released in
10785 * the current transaction.
10786 *
10787 * Holding the chunks lock will prevent other threads from allocating
10788 * or releasing chunks, but it won't prevent a running transaction
10789 * from committing and releasing the memory that the pending chunks
10790 * list head uses. For that, we need to take a reference to the
10791 * transaction.
10792 */
10793static int btrfs_trim_free_extents(struct btrfs_device *device,
10794 u64 minlen, u64 *trimmed)
10795{
10796 u64 start = 0, len = 0;
10797 int ret;
10798
10799 *trimmed = 0;
10800
10801 /* Not writeable = nothing to do. */
10802 if (!device->writeable)
10803 return 0;
10804
10805 /* No free space = nothing to do. */
10806 if (device->total_bytes <= device->bytes_used)
10807 return 0;
10808
10809 ret = 0;
10810
10811 while (1) {
10812 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10813 struct btrfs_transaction *trans;
10814 u64 bytes;
10815
10816 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10817 if (ret)
10818 return ret;
10819
10820 down_read(&fs_info->commit_root_sem);
10821
10822 spin_lock(&fs_info->trans_lock);
10823 trans = fs_info->running_transaction;
10824 if (trans)
10825 atomic_inc(&trans->use_count);
10826 spin_unlock(&fs_info->trans_lock);
10827
10828 ret = find_free_dev_extent_start(trans, device, minlen, start,
10829 &start, &len);
10830 if (trans)
10831 btrfs_put_transaction(trans);
10832
10833 if (ret) {
10834 up_read(&fs_info->commit_root_sem);
10835 mutex_unlock(&fs_info->chunk_mutex);
10836 if (ret == -ENOSPC)
10837 ret = 0;
10838 break;
10839 }
10840
10841 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10842 up_read(&fs_info->commit_root_sem);
10843 mutex_unlock(&fs_info->chunk_mutex);
10844
10845 if (ret)
10846 break;
10847
10848 start += len;
10849 *trimmed += bytes;
10850
10851 if (fatal_signal_pending(current)) {
10852 ret = -ERESTARTSYS;
10853 break;
10854 }
10855
10856 cond_resched();
10857 }
10858
10859 return ret;
10860}
10861
f7039b1d
LD
10862int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10863{
10864 struct btrfs_fs_info *fs_info = root->fs_info;
10865 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10866 struct btrfs_device *device;
10867 struct list_head *devices;
f7039b1d
LD
10868 u64 group_trimmed;
10869 u64 start;
10870 u64 end;
10871 u64 trimmed = 0;
2cac13e4 10872 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10873 int ret = 0;
10874
2cac13e4
LB
10875 /*
10876 * try to trim all FS space, our block group may start from non-zero.
10877 */
10878 if (range->len == total_bytes)
10879 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10880 else
10881 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10882
10883 while (cache) {
10884 if (cache->key.objectid >= (range->start + range->len)) {
10885 btrfs_put_block_group(cache);
10886 break;
10887 }
10888
10889 start = max(range->start, cache->key.objectid);
10890 end = min(range->start + range->len,
10891 cache->key.objectid + cache->key.offset);
10892
10893 if (end - start >= range->minlen) {
10894 if (!block_group_cache_done(cache)) {
f6373bf3 10895 ret = cache_block_group(cache, 0);
1be41b78
JB
10896 if (ret) {
10897 btrfs_put_block_group(cache);
10898 break;
10899 }
10900 ret = wait_block_group_cache_done(cache);
10901 if (ret) {
10902 btrfs_put_block_group(cache);
10903 break;
10904 }
f7039b1d
LD
10905 }
10906 ret = btrfs_trim_block_group(cache,
10907 &group_trimmed,
10908 start,
10909 end,
10910 range->minlen);
10911
10912 trimmed += group_trimmed;
10913 if (ret) {
10914 btrfs_put_block_group(cache);
10915 break;
10916 }
10917 }
10918
10919 cache = next_block_group(fs_info->tree_root, cache);
10920 }
10921
499f377f
JM
10922 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10923 devices = &root->fs_info->fs_devices->alloc_list;
10924 list_for_each_entry(device, devices, dev_alloc_list) {
10925 ret = btrfs_trim_free_extents(device, range->minlen,
10926 &group_trimmed);
10927 if (ret)
10928 break;
10929
10930 trimmed += group_trimmed;
10931 }
10932 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10933
f7039b1d
LD
10934 range->len = trimmed;
10935 return ret;
10936}
8257b2dc
MX
10937
10938/*
9ea24bbe
FM
10939 * btrfs_{start,end}_write_no_snapshoting() are similar to
10940 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10941 * data into the page cache through nocow before the subvolume is snapshoted,
10942 * but flush the data into disk after the snapshot creation, or to prevent
10943 * operations while snapshoting is ongoing and that cause the snapshot to be
10944 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10945 */
9ea24bbe 10946void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10947{
10948 percpu_counter_dec(&root->subv_writers->counter);
10949 /*
a83342aa 10950 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10951 */
10952 smp_mb();
10953 if (waitqueue_active(&root->subv_writers->wait))
10954 wake_up(&root->subv_writers->wait);
10955}
10956
9ea24bbe 10957int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10958{
ee39b432 10959 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10960 return 0;
10961
10962 percpu_counter_inc(&root->subv_writers->counter);
10963 /*
10964 * Make sure counter is updated before we check for snapshot creation.
10965 */
10966 smp_mb();
ee39b432 10967 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10968 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10969 return 0;
10970 }
10971 return 1;
10972}
0bc19f90
ZL
10973
10974static int wait_snapshoting_atomic_t(atomic_t *a)
10975{
10976 schedule();
10977 return 0;
10978}
10979
10980void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10981{
10982 while (true) {
10983 int ret;
10984
10985 ret = btrfs_start_write_no_snapshoting(root);
10986 if (ret)
10987 break;
10988 wait_on_atomic_t(&root->will_be_snapshoted,
10989 wait_snapshoting_atomic_t,
10990 TASK_UNINTERRUPTIBLE);
10991 }
10992}
This page took 1.492453 seconds and 5 git commands to generate.