Btrfs: add helpers for read-only compat bits
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
9ed0dea0 1319static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1320 struct btrfs_extent_inline_ref *iref)
15916de8 1321{
5d4f98a2
YZ
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1353#endif
5d4f98a2
YZ
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358}
15916de8 1359
5d4f98a2
YZ
1360static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1f3c79a2 1365{
5d4f98a2 1366 struct btrfs_key key;
1f3c79a2 1367 int ret;
1f3c79a2 1368
5d4f98a2
YZ
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1f3c79a2
LH
1376 }
1377
5d4f98a2
YZ
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
b3b4aa74 1383 btrfs_release_path(path);
5d4f98a2
YZ
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1f3c79a2 1389#endif
5d4f98a2 1390 return ret;
1f3c79a2
LH
1391}
1392
5d4f98a2
YZ
1393static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
31840ae1 1398{
5d4f98a2 1399 struct btrfs_key key;
31840ae1 1400 int ret;
31840ae1 1401
5d4f98a2
YZ
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1412 btrfs_release_path(path);
31840ae1
ZY
1413 return ret;
1414}
1415
5d4f98a2 1416static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1417{
5d4f98a2
YZ
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
31840ae1 1431}
56bec294 1432
2c47e605
YZ
1433static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
56bec294 1435
02217ed2 1436{
2c47e605 1437 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1438 if (!path->nodes[level])
1439 break;
5d4f98a2
YZ
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452}
037e6390 1453
5d4f98a2
YZ
1454/*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467static noinline_for_stack
1468int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475{
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
3173a18f
JB
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
26b8003f 1491
db94535d 1492 key.objectid = bytenr;
31840ae1 1493 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1494 key.offset = num_bytes;
31840ae1 1495
5d4f98a2
YZ
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1499 path->keep_locks = 1;
5d4f98a2
YZ
1500 } else
1501 extra_size = -1;
3173a18f
JB
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512again:
5d4f98a2 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1514 if (ret < 0) {
5d4f98a2
YZ
1515 err = ret;
1516 goto out;
1517 }
3173a18f
JB
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
9ce49a0b 1535 key.objectid = bytenr;
3173a18f
JB
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
79787eaa
JM
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
fae7f21c 1546 } else if (WARN_ON(ret)) {
492104c8 1547 err = -EIO;
492104c8 1548 goto out;
79787eaa 1549 }
5d4f98a2
YZ
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568#endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
5d4f98a2
YZ
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
3173a18f 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
5d4f98a2
YZ
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
2c47e605
YZ
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
85d4198e 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649out:
85d4198e 1650 if (insert) {
5d4f98a2
YZ
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655}
1656
1657/*
1658 * helper to add new inline back ref
1659 */
1660static noinline_for_stack
fd279fae 1661void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1667{
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
5d4f98a2
YZ
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
4b90c680 1684 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1719}
1720
1721static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727{
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
54aa1f4d 1734 return ret;
5d4f98a2 1735
b3b4aa74 1736 btrfs_release_path(path);
5d4f98a2
YZ
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
b9473439 1745 }
5d4f98a2
YZ
1746 return ret;
1747}
31840ae1 1748
5d4f98a2
YZ
1749/*
1750 * helper to update/remove inline back ref
1751 */
1752static noinline_for_stack
afe5fea7 1753void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
fcebe456
JB
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
5d4f98a2
YZ
1759{
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
5d4f98a2
YZ
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
56bec294 1791 }
31840ae1 1792
5d4f98a2
YZ
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
fcebe456 1802 *last_ref = 1;
5d4f98a2
YZ
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
afe5fea7 1811 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static noinline_for_stack
1817int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824{
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1833 update_inline_extent_backref(root, path, iref,
fcebe456 1834 refs_to_add, extent_op, NULL);
5d4f98a2 1835 } else if (ret == -ENOENT) {
fd279fae 1836 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
771ed689 1840 }
5d4f98a2
YZ
1841 return ret;
1842}
31840ae1 1843
5d4f98a2
YZ
1844static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849{
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861}
56bec294 1862
5d4f98a2
YZ
1863static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
fcebe456 1867 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1868{
143bede5 1869 int ret = 0;
b9473439 1870
5d4f98a2
YZ
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
afe5fea7 1873 update_inline_extent_backref(root, path, iref,
fcebe456 1874 -refs_to_drop, NULL, last_ref);
5d4f98a2 1875 } else if (is_data) {
fcebe456
JB
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
5d4f98a2 1878 } else {
fcebe456 1879 *last_ref = 1;
5d4f98a2
YZ
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883}
1884
86557861 1885#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1886static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
5d4f98a2 1888{
86557861
JM
1889 int j, ret = 0;
1890 u64 bytes_left, end;
4d89d377 1891 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1892
4d89d377
JM
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
d04c6b88 1898
4d89d377 1899 *discarded_bytes = 0;
86557861
JM
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1951 GFP_NOFS, 0);
1952 if (!ret)
86557861 1953 *discarded_bytes += bytes_left;
4d89d377 1954 }
d04c6b88 1955 return ret;
5d4f98a2 1956}
5d4f98a2 1957
1edb647b
FM
1958int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1960{
5d4f98a2 1961 int ret;
5378e607 1962 u64 discarded_bytes = 0;
a1d3c478 1963 struct btrfs_bio *bbio = NULL;
5d4f98a2 1964
e244a0ae 1965
5d4f98a2 1966 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1968 bytenr, &num_bytes, &bbio, 0);
79787eaa 1969 /* Error condition is -ENOMEM */
5d4f98a2 1970 if (!ret) {
a1d3c478 1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1972 int i;
1973
5d4f98a2 1974
a1d3c478 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1976 u64 bytes;
d5e2003c
JB
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
5378e607
LD
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
d04c6b88
JM
1982 stripe->length,
1983 &bytes);
5378e607 1984 if (!ret)
d04c6b88 1985 discarded_bytes += bytes;
5378e607 1986 else if (ret != -EOPNOTSUPP)
79787eaa 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
5d4f98a2 1995 }
6e9606d2 1996 btrfs_put_bbio(bbio);
5d4f98a2 1997 }
5378e607
LD
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
5d4f98a2 2002
53b381b3
DW
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
5d4f98a2 2005 return ret;
5d4f98a2
YZ
2006}
2007
79787eaa 2008/* Can return -ENOMEM */
5d4f98a2
YZ
2009int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
5d4f98a2
YZ
2014{
2015 int ret;
66d7e7f0
AJ
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
5d4f98a2
YZ
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
5d4f98a2 2024 parent, root_objectid, (int)owner,
fcebe456 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2026 } else {
66d7e7f0
AJ
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
5d4f98a2 2029 parent, root_objectid, owner, offset,
fcebe456 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2031 }
2032 return ret;
2033}
2034
2035static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
c682f9b3 2037 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041{
fcebe456 2042 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
fcebe456 2046 struct btrfs_key key;
c682f9b3
QW
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2049 u64 refs;
2050 int ret;
c682f9b3 2051 int no_quota = node->no_quota;
5d4f98a2
YZ
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
fcebe456
JB
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
5d4f98a2
YZ
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
5d4f98a2
YZ
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
0ed4792a 2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2068 goto out;
fcebe456
JB
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
5d4f98a2 2075 leaf = path->nodes[0];
fcebe456 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2082
5d4f98a2 2083 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2084 btrfs_release_path(path);
56bec294
CM
2085
2086 path->reada = 1;
b9473439 2087 path->leave_spinning = 1;
56bec294
CM
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
79787eaa
JM
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2094out:
56bec294 2095 btrfs_free_path(path);
30d133fc 2096 return ret;
56bec294
CM
2097}
2098
5d4f98a2
YZ
2099static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
56bec294 2104{
5d4f98a2
YZ
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
5d4f98a2
YZ
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
fcebe456 2121 ref_root = ref->root;
5d4f98a2
YZ
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2124 if (extent_op)
5d4f98a2 2125 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
5d4f98a2 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
c682f9b3 2134 extent_op);
5d4f98a2 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2136 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
c682f9b3 2139 extent_op);
5d4f98a2
YZ
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144}
2145
2146static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149{
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162}
2163
2164static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168{
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
56bec294 2174 int ret;
5d4f98a2 2175 int err = 0;
b1c79e09 2176 int metadata = !extent_op->is_data;
5d4f98a2 2177
79787eaa
JM
2178 if (trans->aborted)
2179 return 0;
2180
3173a18f
JB
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
5d4f98a2
YZ
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
5d4f98a2 2189
3173a18f 2190 if (metadata) {
3173a18f 2191 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2192 key.offset = extent_op->level;
3173a18f
JB
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198again:
5d4f98a2
YZ
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
3173a18f 2208 if (metadata) {
55994887
FDBM
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
3173a18f 2221
55994887
FDBM
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
3173a18f 2230 }
5d4f98a2
YZ
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246#endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2250
5d4f98a2
YZ
2251 btrfs_mark_buffer_dirty(leaf);
2252out:
2253 btrfs_free_path(path);
2254 return err;
56bec294
CM
2255}
2256
5d4f98a2
YZ
2257static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
56bec294
CM
2262{
2263 int ret = 0;
5d4f98a2
YZ
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
3173a18f
JB
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
56bec294 2270
5d4f98a2 2271 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
5d4f98a2
YZ
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
fcebe456 2276 ref_root = ref->root;
5d4f98a2 2277
3173a18f
JB
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
5d4f98a2
YZ
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2289 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
fcebe456
JB
2294 ref->level, &ins,
2295 node->no_quota);
5d4f98a2 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
fcebe456 2300 extent_op);
5d4f98a2 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2305 } else {
2306 BUG();
2307 }
56bec294
CM
2308 return ret;
2309}
2310
2311/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2312static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
56bec294 2317{
79787eaa
JM
2318 int ret = 0;
2319
857cc2fc
JB
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
79787eaa 2324 return 0;
857cc2fc 2325 }
79787eaa 2326
5d4f98a2 2327 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
5d4f98a2
YZ
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
56bec294 2339 if (insert_reserved) {
f0486c68
YZ
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
5d4f98a2
YZ
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
5d4f98a2 2346 }
56bec294 2347 }
79787eaa 2348 return ret;
56bec294
CM
2349 }
2350
5d4f98a2
YZ
2351 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2352 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2353 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2354 insert_reserved);
2355 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2356 node->type == BTRFS_SHARED_DATA_REF_KEY)
2357 ret = run_delayed_data_ref(trans, root, node, extent_op,
2358 insert_reserved);
2359 else
2360 BUG();
2361 return ret;
56bec294
CM
2362}
2363
c6fc2454 2364static inline struct btrfs_delayed_ref_node *
56bec294
CM
2365select_delayed_ref(struct btrfs_delayed_ref_head *head)
2366{
cffc3374
FM
2367 struct btrfs_delayed_ref_node *ref;
2368
c6fc2454
QW
2369 if (list_empty(&head->ref_list))
2370 return NULL;
d7df2c79 2371
cffc3374
FM
2372 /*
2373 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2374 * This is to prevent a ref count from going down to zero, which deletes
2375 * the extent item from the extent tree, when there still are references
2376 * to add, which would fail because they would not find the extent item.
2377 */
2378 list_for_each_entry(ref, &head->ref_list, list) {
2379 if (ref->action == BTRFS_ADD_DELAYED_REF)
2380 return ref;
2381 }
2382
c6fc2454
QW
2383 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2384 list);
56bec294
CM
2385}
2386
79787eaa
JM
2387/*
2388 * Returns 0 on success or if called with an already aborted transaction.
2389 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2390 */
d7df2c79
JB
2391static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 unsigned long nr)
56bec294 2394{
56bec294
CM
2395 struct btrfs_delayed_ref_root *delayed_refs;
2396 struct btrfs_delayed_ref_node *ref;
2397 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2398 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2399 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2400 ktime_t start = ktime_get();
56bec294 2401 int ret;
d7df2c79 2402 unsigned long count = 0;
0a2b2a84 2403 unsigned long actual_count = 0;
56bec294 2404 int must_insert_reserved = 0;
56bec294
CM
2405
2406 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2407 while (1) {
2408 if (!locked_ref) {
d7df2c79 2409 if (count >= nr)
56bec294 2410 break;
56bec294 2411
d7df2c79
JB
2412 spin_lock(&delayed_refs->lock);
2413 locked_ref = btrfs_select_ref_head(trans);
2414 if (!locked_ref) {
2415 spin_unlock(&delayed_refs->lock);
2416 break;
2417 }
c3e69d58
CM
2418
2419 /* grab the lock that says we are going to process
2420 * all the refs for this head */
2421 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2422 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2423 /*
2424 * we may have dropped the spin lock to get the head
2425 * mutex lock, and that might have given someone else
2426 * time to free the head. If that's true, it has been
2427 * removed from our list and we can move on.
2428 */
2429 if (ret == -EAGAIN) {
2430 locked_ref = NULL;
2431 count++;
2432 continue;
56bec294
CM
2433 }
2434 }
a28ec197 2435
d7df2c79 2436 spin_lock(&locked_ref->lock);
ae1e206b 2437
d1270cd9
AJ
2438 /*
2439 * locked_ref is the head node, so we have to go one
2440 * node back for any delayed ref updates
2441 */
2442 ref = select_delayed_ref(locked_ref);
2443
2444 if (ref && ref->seq &&
097b8a7c 2445 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2446 spin_unlock(&locked_ref->lock);
093486c4 2447 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2448 spin_lock(&delayed_refs->lock);
2449 locked_ref->processing = 0;
d1270cd9
AJ
2450 delayed_refs->num_heads_ready++;
2451 spin_unlock(&delayed_refs->lock);
d7df2c79 2452 locked_ref = NULL;
d1270cd9 2453 cond_resched();
27a377db 2454 count++;
d1270cd9
AJ
2455 continue;
2456 }
2457
56bec294
CM
2458 /*
2459 * record the must insert reserved flag before we
2460 * drop the spin lock.
2461 */
2462 must_insert_reserved = locked_ref->must_insert_reserved;
2463 locked_ref->must_insert_reserved = 0;
7bb86316 2464
5d4f98a2
YZ
2465 extent_op = locked_ref->extent_op;
2466 locked_ref->extent_op = NULL;
2467
56bec294 2468 if (!ref) {
d7df2c79
JB
2469
2470
56bec294
CM
2471 /* All delayed refs have been processed, Go ahead
2472 * and send the head node to run_one_delayed_ref,
2473 * so that any accounting fixes can happen
2474 */
2475 ref = &locked_ref->node;
5d4f98a2
YZ
2476
2477 if (extent_op && must_insert_reserved) {
78a6184a 2478 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2479 extent_op = NULL;
2480 }
2481
2482 if (extent_op) {
d7df2c79 2483 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2484 ret = run_delayed_extent_op(trans, root,
2485 ref, extent_op);
78a6184a 2486 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2487
79787eaa 2488 if (ret) {
857cc2fc
JB
2489 /*
2490 * Need to reset must_insert_reserved if
2491 * there was an error so the abort stuff
2492 * can cleanup the reserved space
2493 * properly.
2494 */
2495 if (must_insert_reserved)
2496 locked_ref->must_insert_reserved = 1;
d7df2c79 2497 locked_ref->processing = 0;
c2cf52eb 2498 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2499 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2500 return ret;
2501 }
d7df2c79 2502 continue;
5d4f98a2 2503 }
02217ed2 2504
d7df2c79
JB
2505 /*
2506 * Need to drop our head ref lock and re-aqcuire the
2507 * delayed ref lock and then re-check to make sure
2508 * nobody got added.
2509 */
2510 spin_unlock(&locked_ref->lock);
2511 spin_lock(&delayed_refs->lock);
2512 spin_lock(&locked_ref->lock);
c6fc2454 2513 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2514 locked_ref->extent_op) {
d7df2c79
JB
2515 spin_unlock(&locked_ref->lock);
2516 spin_unlock(&delayed_refs->lock);
2517 continue;
2518 }
2519 ref->in_tree = 0;
2520 delayed_refs->num_heads--;
c46effa6
LB
2521 rb_erase(&locked_ref->href_node,
2522 &delayed_refs->href_root);
d7df2c79
JB
2523 spin_unlock(&delayed_refs->lock);
2524 } else {
0a2b2a84 2525 actual_count++;
d7df2c79 2526 ref->in_tree = 0;
c6fc2454 2527 list_del(&ref->list);
c46effa6 2528 }
d7df2c79
JB
2529 atomic_dec(&delayed_refs->num_entries);
2530
093486c4 2531 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2532 /*
2533 * when we play the delayed ref, also correct the
2534 * ref_mod on head
2535 */
2536 switch (ref->action) {
2537 case BTRFS_ADD_DELAYED_REF:
2538 case BTRFS_ADD_DELAYED_EXTENT:
2539 locked_ref->node.ref_mod -= ref->ref_mod;
2540 break;
2541 case BTRFS_DROP_DELAYED_REF:
2542 locked_ref->node.ref_mod += ref->ref_mod;
2543 break;
2544 default:
2545 WARN_ON(1);
2546 }
2547 }
d7df2c79 2548 spin_unlock(&locked_ref->lock);
925baedd 2549
5d4f98a2 2550 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2551 must_insert_reserved);
eb099670 2552
78a6184a 2553 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2554 if (ret) {
d7df2c79 2555 locked_ref->processing = 0;
093486c4
MX
2556 btrfs_delayed_ref_unlock(locked_ref);
2557 btrfs_put_delayed_ref(ref);
c2cf52eb 2558 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2559 return ret;
2560 }
2561
093486c4
MX
2562 /*
2563 * If this node is a head, that means all the refs in this head
2564 * have been dealt with, and we will pick the next head to deal
2565 * with, so we must unlock the head and drop it from the cluster
2566 * list before we release it.
2567 */
2568 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2569 if (locked_ref->is_data &&
2570 locked_ref->total_ref_mod < 0) {
2571 spin_lock(&delayed_refs->lock);
2572 delayed_refs->pending_csums -= ref->num_bytes;
2573 spin_unlock(&delayed_refs->lock);
2574 }
093486c4
MX
2575 btrfs_delayed_ref_unlock(locked_ref);
2576 locked_ref = NULL;
2577 }
2578 btrfs_put_delayed_ref(ref);
2579 count++;
c3e69d58 2580 cond_resched();
c3e69d58 2581 }
0a2b2a84
JB
2582
2583 /*
2584 * We don't want to include ref heads since we can have empty ref heads
2585 * and those will drastically skew our runtime down since we just do
2586 * accounting, no actual extent tree updates.
2587 */
2588 if (actual_count > 0) {
2589 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2590 u64 avg;
2591
2592 /*
2593 * We weigh the current average higher than our current runtime
2594 * to avoid large swings in the average.
2595 */
2596 spin_lock(&delayed_refs->lock);
2597 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2598 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2599 spin_unlock(&delayed_refs->lock);
2600 }
d7df2c79 2601 return 0;
c3e69d58
CM
2602}
2603
709c0486
AJ
2604#ifdef SCRAMBLE_DELAYED_REFS
2605/*
2606 * Normally delayed refs get processed in ascending bytenr order. This
2607 * correlates in most cases to the order added. To expose dependencies on this
2608 * order, we start to process the tree in the middle instead of the beginning
2609 */
2610static u64 find_middle(struct rb_root *root)
2611{
2612 struct rb_node *n = root->rb_node;
2613 struct btrfs_delayed_ref_node *entry;
2614 int alt = 1;
2615 u64 middle;
2616 u64 first = 0, last = 0;
2617
2618 n = rb_first(root);
2619 if (n) {
2620 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2621 first = entry->bytenr;
2622 }
2623 n = rb_last(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 last = entry->bytenr;
2627 }
2628 n = root->rb_node;
2629
2630 while (n) {
2631 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2632 WARN_ON(!entry->in_tree);
2633
2634 middle = entry->bytenr;
2635
2636 if (alt)
2637 n = n->rb_left;
2638 else
2639 n = n->rb_right;
2640
2641 alt = 1 - alt;
2642 }
2643 return middle;
2644}
2645#endif
2646
1be41b78
JB
2647static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2648{
2649 u64 num_bytes;
2650
2651 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2652 sizeof(struct btrfs_extent_inline_ref));
2653 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2654 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2655
2656 /*
2657 * We don't ever fill up leaves all the way so multiply by 2 just to be
2658 * closer to what we're really going to want to ouse.
2659 */
f8c269d7 2660 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2661}
2662
1262133b
JB
2663/*
2664 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2665 * would require to store the csums for that many bytes.
2666 */
28f75a0e 2667u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2668{
2669 u64 csum_size;
2670 u64 num_csums_per_leaf;
2671 u64 num_csums;
2672
2673 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2674 num_csums_per_leaf = div64_u64(csum_size,
2675 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2676 num_csums = div64_u64(csum_bytes, root->sectorsize);
2677 num_csums += num_csums_per_leaf - 1;
2678 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2679 return num_csums;
2680}
2681
0a2b2a84 2682int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2683 struct btrfs_root *root)
2684{
2685 struct btrfs_block_rsv *global_rsv;
2686 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2687 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2688 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2689 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2690 int ret = 0;
2691
2692 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2693 num_heads = heads_to_leaves(root, num_heads);
2694 if (num_heads > 1)
707e8a07 2695 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2696 num_bytes <<= 1;
28f75a0e 2697 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2698 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2699 num_dirty_bgs);
1be41b78
JB
2700 global_rsv = &root->fs_info->global_block_rsv;
2701
2702 /*
2703 * If we can't allocate any more chunks lets make sure we have _lots_ of
2704 * wiggle room since running delayed refs can create more delayed refs.
2705 */
cb723e49
JB
2706 if (global_rsv->space_info->full) {
2707 num_dirty_bgs_bytes <<= 1;
1be41b78 2708 num_bytes <<= 1;
cb723e49 2709 }
1be41b78
JB
2710
2711 spin_lock(&global_rsv->lock);
cb723e49 2712 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2713 ret = 1;
2714 spin_unlock(&global_rsv->lock);
2715 return ret;
2716}
2717
0a2b2a84
JB
2718int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2719 struct btrfs_root *root)
2720{
2721 struct btrfs_fs_info *fs_info = root->fs_info;
2722 u64 num_entries =
2723 atomic_read(&trans->transaction->delayed_refs.num_entries);
2724 u64 avg_runtime;
a79b7d4b 2725 u64 val;
0a2b2a84
JB
2726
2727 smp_mb();
2728 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2729 val = num_entries * avg_runtime;
0a2b2a84
JB
2730 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2731 return 1;
a79b7d4b
CM
2732 if (val >= NSEC_PER_SEC / 2)
2733 return 2;
0a2b2a84
JB
2734
2735 return btrfs_check_space_for_delayed_refs(trans, root);
2736}
2737
a79b7d4b
CM
2738struct async_delayed_refs {
2739 struct btrfs_root *root;
2740 int count;
2741 int error;
2742 int sync;
2743 struct completion wait;
2744 struct btrfs_work work;
2745};
2746
2747static void delayed_ref_async_start(struct btrfs_work *work)
2748{
2749 struct async_delayed_refs *async;
2750 struct btrfs_trans_handle *trans;
2751 int ret;
2752
2753 async = container_of(work, struct async_delayed_refs, work);
2754
2755 trans = btrfs_join_transaction(async->root);
2756 if (IS_ERR(trans)) {
2757 async->error = PTR_ERR(trans);
2758 goto done;
2759 }
2760
2761 /*
2762 * trans->sync means that when we call end_transaciton, we won't
2763 * wait on delayed refs
2764 */
2765 trans->sync = true;
2766 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2767 if (ret)
2768 async->error = ret;
2769
2770 ret = btrfs_end_transaction(trans, async->root);
2771 if (ret && !async->error)
2772 async->error = ret;
2773done:
2774 if (async->sync)
2775 complete(&async->wait);
2776 else
2777 kfree(async);
2778}
2779
2780int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2781 unsigned long count, int wait)
2782{
2783 struct async_delayed_refs *async;
2784 int ret;
2785
2786 async = kmalloc(sizeof(*async), GFP_NOFS);
2787 if (!async)
2788 return -ENOMEM;
2789
2790 async->root = root->fs_info->tree_root;
2791 async->count = count;
2792 async->error = 0;
2793 if (wait)
2794 async->sync = 1;
2795 else
2796 async->sync = 0;
2797 init_completion(&async->wait);
2798
9e0af237
LB
2799 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2800 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2801
2802 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2803
2804 if (wait) {
2805 wait_for_completion(&async->wait);
2806 ret = async->error;
2807 kfree(async);
2808 return ret;
2809 }
2810 return 0;
2811}
2812
c3e69d58
CM
2813/*
2814 * this starts processing the delayed reference count updates and
2815 * extent insertions we have queued up so far. count can be
2816 * 0, which means to process everything in the tree at the start
2817 * of the run (but not newly added entries), or it can be some target
2818 * number you'd like to process.
79787eaa
JM
2819 *
2820 * Returns 0 on success or if called with an aborted transaction
2821 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2822 */
2823int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2824 struct btrfs_root *root, unsigned long count)
2825{
2826 struct rb_node *node;
2827 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2828 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2829 int ret;
2830 int run_all = count == (unsigned long)-1;
d9a0540a 2831 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2832
79787eaa
JM
2833 /* We'll clean this up in btrfs_cleanup_transaction */
2834 if (trans->aborted)
2835 return 0;
2836
c3e69d58
CM
2837 if (root == root->fs_info->extent_root)
2838 root = root->fs_info->tree_root;
2839
2840 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2841 if (count == 0)
d7df2c79 2842 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2843
c3e69d58 2844again:
709c0486
AJ
2845#ifdef SCRAMBLE_DELAYED_REFS
2846 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2847#endif
d9a0540a 2848 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2849 ret = __btrfs_run_delayed_refs(trans, root, count);
2850 if (ret < 0) {
2851 btrfs_abort_transaction(trans, root, ret);
2852 return ret;
eb099670 2853 }
c3e69d58 2854
56bec294 2855 if (run_all) {
d7df2c79 2856 if (!list_empty(&trans->new_bgs))
ea658bad 2857 btrfs_create_pending_block_groups(trans, root);
ea658bad 2858
d7df2c79 2859 spin_lock(&delayed_refs->lock);
c46effa6 2860 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2861 if (!node) {
2862 spin_unlock(&delayed_refs->lock);
56bec294 2863 goto out;
d7df2c79 2864 }
c3e69d58 2865 count = (unsigned long)-1;
e9d0b13b 2866
56bec294 2867 while (node) {
c46effa6
LB
2868 head = rb_entry(node, struct btrfs_delayed_ref_head,
2869 href_node);
2870 if (btrfs_delayed_ref_is_head(&head->node)) {
2871 struct btrfs_delayed_ref_node *ref;
5caf2a00 2872
c46effa6 2873 ref = &head->node;
56bec294
CM
2874 atomic_inc(&ref->refs);
2875
2876 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2877 /*
2878 * Mutex was contended, block until it's
2879 * released and try again
2880 */
56bec294
CM
2881 mutex_lock(&head->mutex);
2882 mutex_unlock(&head->mutex);
2883
2884 btrfs_put_delayed_ref(ref);
1887be66 2885 cond_resched();
56bec294 2886 goto again;
c46effa6
LB
2887 } else {
2888 WARN_ON(1);
56bec294
CM
2889 }
2890 node = rb_next(node);
2891 }
2892 spin_unlock(&delayed_refs->lock);
d7df2c79 2893 cond_resched();
56bec294 2894 goto again;
5f39d397 2895 }
54aa1f4d 2896out:
edf39272 2897 assert_qgroups_uptodate(trans);
d9a0540a 2898 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2899 return 0;
2900}
2901
5d4f98a2
YZ
2902int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root,
2904 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2905 int level, int is_data)
5d4f98a2
YZ
2906{
2907 struct btrfs_delayed_extent_op *extent_op;
2908 int ret;
2909
78a6184a 2910 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2911 if (!extent_op)
2912 return -ENOMEM;
2913
2914 extent_op->flags_to_set = flags;
2915 extent_op->update_flags = 1;
2916 extent_op->update_key = 0;
2917 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2918 extent_op->level = level;
5d4f98a2 2919
66d7e7f0
AJ
2920 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2921 num_bytes, extent_op);
5d4f98a2 2922 if (ret)
78a6184a 2923 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2924 return ret;
2925}
2926
2927static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2928 struct btrfs_root *root,
2929 struct btrfs_path *path,
2930 u64 objectid, u64 offset, u64 bytenr)
2931{
2932 struct btrfs_delayed_ref_head *head;
2933 struct btrfs_delayed_ref_node *ref;
2934 struct btrfs_delayed_data_ref *data_ref;
2935 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2936 int ret = 0;
2937
5d4f98a2
YZ
2938 delayed_refs = &trans->transaction->delayed_refs;
2939 spin_lock(&delayed_refs->lock);
2940 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2941 if (!head) {
2942 spin_unlock(&delayed_refs->lock);
2943 return 0;
2944 }
5d4f98a2
YZ
2945
2946 if (!mutex_trylock(&head->mutex)) {
2947 atomic_inc(&head->node.refs);
2948 spin_unlock(&delayed_refs->lock);
2949
b3b4aa74 2950 btrfs_release_path(path);
5d4f98a2 2951
8cc33e5c
DS
2952 /*
2953 * Mutex was contended, block until it's released and let
2954 * caller try again
2955 */
5d4f98a2
YZ
2956 mutex_lock(&head->mutex);
2957 mutex_unlock(&head->mutex);
2958 btrfs_put_delayed_ref(&head->node);
2959 return -EAGAIN;
2960 }
d7df2c79 2961 spin_unlock(&delayed_refs->lock);
5d4f98a2 2962
d7df2c79 2963 spin_lock(&head->lock);
c6fc2454 2964 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2965 /* If it's a shared ref we know a cross reference exists */
2966 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2967 ret = 1;
2968 break;
2969 }
5d4f98a2 2970
d7df2c79 2971 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2972
d7df2c79
JB
2973 /*
2974 * If our ref doesn't match the one we're currently looking at
2975 * then we have a cross reference.
2976 */
2977 if (data_ref->root != root->root_key.objectid ||
2978 data_ref->objectid != objectid ||
2979 data_ref->offset != offset) {
2980 ret = 1;
2981 break;
2982 }
5d4f98a2 2983 }
d7df2c79 2984 spin_unlock(&head->lock);
5d4f98a2 2985 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2986 return ret;
2987}
2988
2989static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2990 struct btrfs_root *root,
2991 struct btrfs_path *path,
2992 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2993{
2994 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2995 struct extent_buffer *leaf;
5d4f98a2
YZ
2996 struct btrfs_extent_data_ref *ref;
2997 struct btrfs_extent_inline_ref *iref;
2998 struct btrfs_extent_item *ei;
f321e491 2999 struct btrfs_key key;
5d4f98a2 3000 u32 item_size;
be20aa9d 3001 int ret;
925baedd 3002
be20aa9d 3003 key.objectid = bytenr;
31840ae1 3004 key.offset = (u64)-1;
f321e491 3005 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3006
be20aa9d
CM
3007 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3008 if (ret < 0)
3009 goto out;
79787eaa 3010 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3011
3012 ret = -ENOENT;
3013 if (path->slots[0] == 0)
31840ae1 3014 goto out;
be20aa9d 3015
31840ae1 3016 path->slots[0]--;
f321e491 3017 leaf = path->nodes[0];
5d4f98a2 3018 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3019
5d4f98a2 3020 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3021 goto out;
f321e491 3022
5d4f98a2
YZ
3023 ret = 1;
3024 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3025#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3026 if (item_size < sizeof(*ei)) {
3027 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3028 goto out;
3029 }
3030#endif
3031 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3032
5d4f98a2
YZ
3033 if (item_size != sizeof(*ei) +
3034 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3035 goto out;
be20aa9d 3036
5d4f98a2
YZ
3037 if (btrfs_extent_generation(leaf, ei) <=
3038 btrfs_root_last_snapshot(&root->root_item))
3039 goto out;
3040
3041 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3042 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3043 BTRFS_EXTENT_DATA_REF_KEY)
3044 goto out;
3045
3046 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3047 if (btrfs_extent_refs(leaf, ei) !=
3048 btrfs_extent_data_ref_count(leaf, ref) ||
3049 btrfs_extent_data_ref_root(leaf, ref) !=
3050 root->root_key.objectid ||
3051 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3052 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3053 goto out;
3054
3055 ret = 0;
3056out:
3057 return ret;
3058}
3059
3060int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3061 struct btrfs_root *root,
3062 u64 objectid, u64 offset, u64 bytenr)
3063{
3064 struct btrfs_path *path;
3065 int ret;
3066 int ret2;
3067
3068 path = btrfs_alloc_path();
3069 if (!path)
3070 return -ENOENT;
3071
3072 do {
3073 ret = check_committed_ref(trans, root, path, objectid,
3074 offset, bytenr);
3075 if (ret && ret != -ENOENT)
f321e491 3076 goto out;
80ff3856 3077
5d4f98a2
YZ
3078 ret2 = check_delayed_ref(trans, root, path, objectid,
3079 offset, bytenr);
3080 } while (ret2 == -EAGAIN);
3081
3082 if (ret2 && ret2 != -ENOENT) {
3083 ret = ret2;
3084 goto out;
f321e491 3085 }
5d4f98a2
YZ
3086
3087 if (ret != -ENOENT || ret2 != -ENOENT)
3088 ret = 0;
be20aa9d 3089out:
80ff3856 3090 btrfs_free_path(path);
f0486c68
YZ
3091 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3092 WARN_ON(ret > 0);
f321e491 3093 return ret;
be20aa9d 3094}
c5739bba 3095
5d4f98a2 3096static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3097 struct btrfs_root *root,
5d4f98a2 3098 struct extent_buffer *buf,
e339a6b0 3099 int full_backref, int inc)
31840ae1
ZY
3100{
3101 u64 bytenr;
5d4f98a2
YZ
3102 u64 num_bytes;
3103 u64 parent;
31840ae1 3104 u64 ref_root;
31840ae1 3105 u32 nritems;
31840ae1
ZY
3106 struct btrfs_key key;
3107 struct btrfs_file_extent_item *fi;
3108 int i;
3109 int level;
3110 int ret = 0;
31840ae1 3111 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3112 u64, u64, u64, u64, u64, u64, int);
31840ae1 3113
fccb84c9
DS
3114
3115 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3116 return 0;
fccb84c9 3117
31840ae1 3118 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3119 nritems = btrfs_header_nritems(buf);
3120 level = btrfs_header_level(buf);
3121
27cdeb70 3122 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3123 return 0;
31840ae1 3124
5d4f98a2
YZ
3125 if (inc)
3126 process_func = btrfs_inc_extent_ref;
3127 else
3128 process_func = btrfs_free_extent;
31840ae1 3129
5d4f98a2
YZ
3130 if (full_backref)
3131 parent = buf->start;
3132 else
3133 parent = 0;
3134
3135 for (i = 0; i < nritems; i++) {
31840ae1 3136 if (level == 0) {
5d4f98a2 3137 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3138 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3139 continue;
5d4f98a2 3140 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3141 struct btrfs_file_extent_item);
3142 if (btrfs_file_extent_type(buf, fi) ==
3143 BTRFS_FILE_EXTENT_INLINE)
3144 continue;
3145 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3146 if (bytenr == 0)
3147 continue;
5d4f98a2
YZ
3148
3149 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3150 key.offset -= btrfs_file_extent_offset(buf, fi);
3151 ret = process_func(trans, root, bytenr, num_bytes,
3152 parent, ref_root, key.objectid,
e339a6b0 3153 key.offset, 1);
31840ae1
ZY
3154 if (ret)
3155 goto fail;
3156 } else {
5d4f98a2 3157 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3158 num_bytes = root->nodesize;
5d4f98a2 3159 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3160 parent, ref_root, level - 1, 0,
e339a6b0 3161 1);
31840ae1
ZY
3162 if (ret)
3163 goto fail;
3164 }
3165 }
3166 return 0;
3167fail:
5d4f98a2
YZ
3168 return ret;
3169}
3170
3171int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3172 struct extent_buffer *buf, int full_backref)
5d4f98a2 3173{
e339a6b0 3174 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3175}
3176
3177int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3178 struct extent_buffer *buf, int full_backref)
5d4f98a2 3179{
e339a6b0 3180 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3181}
3182
9078a3e1
CM
3183static int write_one_cache_group(struct btrfs_trans_handle *trans,
3184 struct btrfs_root *root,
3185 struct btrfs_path *path,
3186 struct btrfs_block_group_cache *cache)
3187{
3188 int ret;
9078a3e1 3189 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3190 unsigned long bi;
3191 struct extent_buffer *leaf;
9078a3e1 3192
9078a3e1 3193 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3194 if (ret) {
3195 if (ret > 0)
3196 ret = -ENOENT;
54aa1f4d 3197 goto fail;
df95e7f0 3198 }
5f39d397
CM
3199
3200 leaf = path->nodes[0];
3201 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3202 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3203 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3204fail:
24b89d08 3205 btrfs_release_path(path);
df95e7f0 3206 return ret;
9078a3e1
CM
3207
3208}
3209
4a8c9a62
YZ
3210static struct btrfs_block_group_cache *
3211next_block_group(struct btrfs_root *root,
3212 struct btrfs_block_group_cache *cache)
3213{
3214 struct rb_node *node;
292cbd51 3215
4a8c9a62 3216 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3217
3218 /* If our block group was removed, we need a full search. */
3219 if (RB_EMPTY_NODE(&cache->cache_node)) {
3220 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3221
3222 spin_unlock(&root->fs_info->block_group_cache_lock);
3223 btrfs_put_block_group(cache);
3224 cache = btrfs_lookup_first_block_group(root->fs_info,
3225 next_bytenr);
3226 return cache;
3227 }
4a8c9a62
YZ
3228 node = rb_next(&cache->cache_node);
3229 btrfs_put_block_group(cache);
3230 if (node) {
3231 cache = rb_entry(node, struct btrfs_block_group_cache,
3232 cache_node);
11dfe35a 3233 btrfs_get_block_group(cache);
4a8c9a62
YZ
3234 } else
3235 cache = NULL;
3236 spin_unlock(&root->fs_info->block_group_cache_lock);
3237 return cache;
3238}
3239
0af3d00b
JB
3240static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3241 struct btrfs_trans_handle *trans,
3242 struct btrfs_path *path)
3243{
3244 struct btrfs_root *root = block_group->fs_info->tree_root;
3245 struct inode *inode = NULL;
3246 u64 alloc_hint = 0;
2b20982e 3247 int dcs = BTRFS_DC_ERROR;
f8c269d7 3248 u64 num_pages = 0;
0af3d00b
JB
3249 int retries = 0;
3250 int ret = 0;
3251
3252 /*
3253 * If this block group is smaller than 100 megs don't bother caching the
3254 * block group.
3255 */
3256 if (block_group->key.offset < (100 * 1024 * 1024)) {
3257 spin_lock(&block_group->lock);
3258 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3259 spin_unlock(&block_group->lock);
3260 return 0;
3261 }
3262
0c0ef4bc
JB
3263 if (trans->aborted)
3264 return 0;
0af3d00b
JB
3265again:
3266 inode = lookup_free_space_inode(root, block_group, path);
3267 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3268 ret = PTR_ERR(inode);
b3b4aa74 3269 btrfs_release_path(path);
0af3d00b
JB
3270 goto out;
3271 }
3272
3273 if (IS_ERR(inode)) {
3274 BUG_ON(retries);
3275 retries++;
3276
3277 if (block_group->ro)
3278 goto out_free;
3279
3280 ret = create_free_space_inode(root, trans, block_group, path);
3281 if (ret)
3282 goto out_free;
3283 goto again;
3284 }
3285
5b0e95bf
JB
3286 /* We've already setup this transaction, go ahead and exit */
3287 if (block_group->cache_generation == trans->transid &&
3288 i_size_read(inode)) {
3289 dcs = BTRFS_DC_SETUP;
3290 goto out_put;
3291 }
3292
0af3d00b
JB
3293 /*
3294 * We want to set the generation to 0, that way if anything goes wrong
3295 * from here on out we know not to trust this cache when we load up next
3296 * time.
3297 */
3298 BTRFS_I(inode)->generation = 0;
3299 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3300 if (ret) {
3301 /*
3302 * So theoretically we could recover from this, simply set the
3303 * super cache generation to 0 so we know to invalidate the
3304 * cache, but then we'd have to keep track of the block groups
3305 * that fail this way so we know we _have_ to reset this cache
3306 * before the next commit or risk reading stale cache. So to
3307 * limit our exposure to horrible edge cases lets just abort the
3308 * transaction, this only happens in really bad situations
3309 * anyway.
3310 */
3311 btrfs_abort_transaction(trans, root, ret);
3312 goto out_put;
3313 }
0af3d00b
JB
3314 WARN_ON(ret);
3315
3316 if (i_size_read(inode) > 0) {
7b61cd92
MX
3317 ret = btrfs_check_trunc_cache_free_space(root,
3318 &root->fs_info->global_block_rsv);
3319 if (ret)
3320 goto out_put;
3321
1bbc621e 3322 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3323 if (ret)
3324 goto out_put;
3325 }
3326
3327 spin_lock(&block_group->lock);
cf7c1ef6 3328 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3329 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3330 /*
3331 * don't bother trying to write stuff out _if_
3332 * a) we're not cached,
3333 * b) we're with nospace_cache mount option.
3334 */
2b20982e 3335 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3336 spin_unlock(&block_group->lock);
3337 goto out_put;
3338 }
3339 spin_unlock(&block_group->lock);
3340
6fc823b1
JB
3341 /*
3342 * Try to preallocate enough space based on how big the block group is.
3343 * Keep in mind this has to include any pinned space which could end up
3344 * taking up quite a bit since it's not folded into the other space
3345 * cache.
3346 */
f8c269d7 3347 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3348 if (!num_pages)
3349 num_pages = 1;
3350
0af3d00b
JB
3351 num_pages *= 16;
3352 num_pages *= PAGE_CACHE_SIZE;
3353
e2d1f923 3354 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3355 if (ret)
3356 goto out_put;
3357
3358 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3359 num_pages, num_pages,
3360 &alloc_hint);
2b20982e
JB
3361 if (!ret)
3362 dcs = BTRFS_DC_SETUP;
0af3d00b 3363 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3364
0af3d00b
JB
3365out_put:
3366 iput(inode);
3367out_free:
b3b4aa74 3368 btrfs_release_path(path);
0af3d00b
JB
3369out:
3370 spin_lock(&block_group->lock);
e65cbb94 3371 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3372 block_group->cache_generation = trans->transid;
2b20982e 3373 block_group->disk_cache_state = dcs;
0af3d00b
JB
3374 spin_unlock(&block_group->lock);
3375
3376 return ret;
3377}
3378
dcdf7f6d
JB
3379int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3380 struct btrfs_root *root)
3381{
3382 struct btrfs_block_group_cache *cache, *tmp;
3383 struct btrfs_transaction *cur_trans = trans->transaction;
3384 struct btrfs_path *path;
3385
3386 if (list_empty(&cur_trans->dirty_bgs) ||
3387 !btrfs_test_opt(root, SPACE_CACHE))
3388 return 0;
3389
3390 path = btrfs_alloc_path();
3391 if (!path)
3392 return -ENOMEM;
3393
3394 /* Could add new block groups, use _safe just in case */
3395 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3396 dirty_list) {
3397 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3398 cache_save_setup(cache, trans, path);
3399 }
3400
3401 btrfs_free_path(path);
3402 return 0;
3403}
3404
1bbc621e
CM
3405/*
3406 * transaction commit does final block group cache writeback during a
3407 * critical section where nothing is allowed to change the FS. This is
3408 * required in order for the cache to actually match the block group,
3409 * but can introduce a lot of latency into the commit.
3410 *
3411 * So, btrfs_start_dirty_block_groups is here to kick off block group
3412 * cache IO. There's a chance we'll have to redo some of it if the
3413 * block group changes again during the commit, but it greatly reduces
3414 * the commit latency by getting rid of the easy block groups while
3415 * we're still allowing others to join the commit.
3416 */
3417int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3418 struct btrfs_root *root)
9078a3e1 3419{
4a8c9a62 3420 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3421 struct btrfs_transaction *cur_trans = trans->transaction;
3422 int ret = 0;
c9dc4c65 3423 int should_put;
1bbc621e
CM
3424 struct btrfs_path *path = NULL;
3425 LIST_HEAD(dirty);
3426 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3427 int num_started = 0;
1bbc621e
CM
3428 int loops = 0;
3429
3430 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3431 if (list_empty(&cur_trans->dirty_bgs)) {
3432 spin_unlock(&cur_trans->dirty_bgs_lock);
3433 return 0;
1bbc621e 3434 }
b58d1a9e 3435 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3436 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3437
1bbc621e 3438again:
1bbc621e
CM
3439 /*
3440 * make sure all the block groups on our dirty list actually
3441 * exist
3442 */
3443 btrfs_create_pending_block_groups(trans, root);
3444
3445 if (!path) {
3446 path = btrfs_alloc_path();
3447 if (!path)
3448 return -ENOMEM;
3449 }
3450
b58d1a9e
FM
3451 /*
3452 * cache_write_mutex is here only to save us from balance or automatic
3453 * removal of empty block groups deleting this block group while we are
3454 * writing out the cache
3455 */
3456 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3457 while (!list_empty(&dirty)) {
3458 cache = list_first_entry(&dirty,
3459 struct btrfs_block_group_cache,
3460 dirty_list);
1bbc621e
CM
3461 /*
3462 * this can happen if something re-dirties a block
3463 * group that is already under IO. Just wait for it to
3464 * finish and then do it all again
3465 */
3466 if (!list_empty(&cache->io_list)) {
3467 list_del_init(&cache->io_list);
3468 btrfs_wait_cache_io(root, trans, cache,
3469 &cache->io_ctl, path,
3470 cache->key.objectid);
3471 btrfs_put_block_group(cache);
3472 }
3473
3474
3475 /*
3476 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3477 * if it should update the cache_state. Don't delete
3478 * until after we wait.
3479 *
3480 * Since we're not running in the commit critical section
3481 * we need the dirty_bgs_lock to protect from update_block_group
3482 */
3483 spin_lock(&cur_trans->dirty_bgs_lock);
3484 list_del_init(&cache->dirty_list);
3485 spin_unlock(&cur_trans->dirty_bgs_lock);
3486
3487 should_put = 1;
3488
3489 cache_save_setup(cache, trans, path);
3490
3491 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3492 cache->io_ctl.inode = NULL;
3493 ret = btrfs_write_out_cache(root, trans, cache, path);
3494 if (ret == 0 && cache->io_ctl.inode) {
3495 num_started++;
3496 should_put = 0;
3497
3498 /*
3499 * the cache_write_mutex is protecting
3500 * the io_list
3501 */
3502 list_add_tail(&cache->io_list, io);
3503 } else {
3504 /*
3505 * if we failed to write the cache, the
3506 * generation will be bad and life goes on
3507 */
3508 ret = 0;
3509 }
3510 }
ff1f8250 3511 if (!ret) {
1bbc621e 3512 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3513 /*
3514 * Our block group might still be attached to the list
3515 * of new block groups in the transaction handle of some
3516 * other task (struct btrfs_trans_handle->new_bgs). This
3517 * means its block group item isn't yet in the extent
3518 * tree. If this happens ignore the error, as we will
3519 * try again later in the critical section of the
3520 * transaction commit.
3521 */
3522 if (ret == -ENOENT) {
3523 ret = 0;
3524 spin_lock(&cur_trans->dirty_bgs_lock);
3525 if (list_empty(&cache->dirty_list)) {
3526 list_add_tail(&cache->dirty_list,
3527 &cur_trans->dirty_bgs);
3528 btrfs_get_block_group(cache);
3529 }
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531 } else if (ret) {
3532 btrfs_abort_transaction(trans, root, ret);
3533 }
3534 }
1bbc621e
CM
3535
3536 /* if its not on the io list, we need to put the block group */
3537 if (should_put)
3538 btrfs_put_block_group(cache);
3539
3540 if (ret)
3541 break;
b58d1a9e
FM
3542
3543 /*
3544 * Avoid blocking other tasks for too long. It might even save
3545 * us from writing caches for block groups that are going to be
3546 * removed.
3547 */
3548 mutex_unlock(&trans->transaction->cache_write_mutex);
3549 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3550 }
b58d1a9e 3551 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3552
3553 /*
3554 * go through delayed refs for all the stuff we've just kicked off
3555 * and then loop back (just once)
3556 */
3557 ret = btrfs_run_delayed_refs(trans, root, 0);
3558 if (!ret && loops == 0) {
3559 loops++;
3560 spin_lock(&cur_trans->dirty_bgs_lock);
3561 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3562 /*
3563 * dirty_bgs_lock protects us from concurrent block group
3564 * deletes too (not just cache_write_mutex).
3565 */
3566 if (!list_empty(&dirty)) {
3567 spin_unlock(&cur_trans->dirty_bgs_lock);
3568 goto again;
3569 }
1bbc621e 3570 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3571 }
3572
3573 btrfs_free_path(path);
3574 return ret;
3575}
3576
3577int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3578 struct btrfs_root *root)
3579{
3580 struct btrfs_block_group_cache *cache;
3581 struct btrfs_transaction *cur_trans = trans->transaction;
3582 int ret = 0;
3583 int should_put;
3584 struct btrfs_path *path;
3585 struct list_head *io = &cur_trans->io_bgs;
3586 int num_started = 0;
9078a3e1
CM
3587
3588 path = btrfs_alloc_path();
3589 if (!path)
3590 return -ENOMEM;
3591
ce93ec54
JB
3592 /*
3593 * We don't need the lock here since we are protected by the transaction
3594 * commit. We want to do the cache_save_setup first and then run the
3595 * delayed refs to make sure we have the best chance at doing this all
3596 * in one shot.
3597 */
3598 while (!list_empty(&cur_trans->dirty_bgs)) {
3599 cache = list_first_entry(&cur_trans->dirty_bgs,
3600 struct btrfs_block_group_cache,
3601 dirty_list);
c9dc4c65
CM
3602
3603 /*
3604 * this can happen if cache_save_setup re-dirties a block
3605 * group that is already under IO. Just wait for it to
3606 * finish and then do it all again
3607 */
3608 if (!list_empty(&cache->io_list)) {
3609 list_del_init(&cache->io_list);
3610 btrfs_wait_cache_io(root, trans, cache,
3611 &cache->io_ctl, path,
3612 cache->key.objectid);
3613 btrfs_put_block_group(cache);
c9dc4c65
CM
3614 }
3615
1bbc621e
CM
3616 /*
3617 * don't remove from the dirty list until after we've waited
3618 * on any pending IO
3619 */
ce93ec54 3620 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3621 should_put = 1;
3622
1bbc621e 3623 cache_save_setup(cache, trans, path);
c9dc4c65 3624
ce93ec54 3625 if (!ret)
c9dc4c65
CM
3626 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3627
3628 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3629 cache->io_ctl.inode = NULL;
3630 ret = btrfs_write_out_cache(root, trans, cache, path);
3631 if (ret == 0 && cache->io_ctl.inode) {
3632 num_started++;
3633 should_put = 0;
1bbc621e 3634 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3635 } else {
3636 /*
3637 * if we failed to write the cache, the
3638 * generation will be bad and life goes on
3639 */
3640 ret = 0;
3641 }
3642 }
ff1f8250 3643 if (!ret) {
ce93ec54 3644 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3645 if (ret)
3646 btrfs_abort_transaction(trans, root, ret);
3647 }
c9dc4c65
CM
3648
3649 /* if its not on the io list, we need to put the block group */
3650 if (should_put)
3651 btrfs_put_block_group(cache);
3652 }
3653
1bbc621e
CM
3654 while (!list_empty(io)) {
3655 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3656 io_list);
3657 list_del_init(&cache->io_list);
c9dc4c65
CM
3658 btrfs_wait_cache_io(root, trans, cache,
3659 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3660 btrfs_put_block_group(cache);
3661 }
3662
9078a3e1 3663 btrfs_free_path(path);
ce93ec54 3664 return ret;
9078a3e1
CM
3665}
3666
d2fb3437
YZ
3667int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3668{
3669 struct btrfs_block_group_cache *block_group;
3670 int readonly = 0;
3671
3672 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3673 if (!block_group || block_group->ro)
3674 readonly = 1;
3675 if (block_group)
fa9c0d79 3676 btrfs_put_block_group(block_group);
d2fb3437
YZ
3677 return readonly;
3678}
3679
6ab0a202
JM
3680static const char *alloc_name(u64 flags)
3681{
3682 switch (flags) {
3683 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3684 return "mixed";
3685 case BTRFS_BLOCK_GROUP_METADATA:
3686 return "metadata";
3687 case BTRFS_BLOCK_GROUP_DATA:
3688 return "data";
3689 case BTRFS_BLOCK_GROUP_SYSTEM:
3690 return "system";
3691 default:
3692 WARN_ON(1);
3693 return "invalid-combination";
3694 };
3695}
3696
593060d7
CM
3697static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3698 u64 total_bytes, u64 bytes_used,
3699 struct btrfs_space_info **space_info)
3700{
3701 struct btrfs_space_info *found;
b742bb82
YZ
3702 int i;
3703 int factor;
b150a4f1 3704 int ret;
b742bb82
YZ
3705
3706 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3707 BTRFS_BLOCK_GROUP_RAID10))
3708 factor = 2;
3709 else
3710 factor = 1;
593060d7
CM
3711
3712 found = __find_space_info(info, flags);
3713 if (found) {
25179201 3714 spin_lock(&found->lock);
593060d7 3715 found->total_bytes += total_bytes;
89a55897 3716 found->disk_total += total_bytes * factor;
593060d7 3717 found->bytes_used += bytes_used;
b742bb82 3718 found->disk_used += bytes_used * factor;
2e6e5183
FM
3719 if (total_bytes > 0)
3720 found->full = 0;
25179201 3721 spin_unlock(&found->lock);
593060d7
CM
3722 *space_info = found;
3723 return 0;
3724 }
c146afad 3725 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3726 if (!found)
3727 return -ENOMEM;
3728
908c7f19 3729 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3730 if (ret) {
3731 kfree(found);
3732 return ret;
3733 }
3734
c1895442 3735 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3736 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3737 init_rwsem(&found->groups_sem);
0f9dd46c 3738 spin_lock_init(&found->lock);
52ba6929 3739 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3740 found->total_bytes = total_bytes;
89a55897 3741 found->disk_total = total_bytes * factor;
593060d7 3742 found->bytes_used = bytes_used;
b742bb82 3743 found->disk_used = bytes_used * factor;
593060d7 3744 found->bytes_pinned = 0;
e8569813 3745 found->bytes_reserved = 0;
c146afad 3746 found->bytes_readonly = 0;
f0486c68 3747 found->bytes_may_use = 0;
6af3e3ad 3748 found->full = 0;
0e4f8f88 3749 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3750 found->chunk_alloc = 0;
fdb5effd
JB
3751 found->flush = 0;
3752 init_waitqueue_head(&found->wait);
633c0aad 3753 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3754
3755 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3756 info->space_info_kobj, "%s",
3757 alloc_name(found->flags));
3758 if (ret) {
3759 kfree(found);
3760 return ret;
3761 }
3762
593060d7 3763 *space_info = found;
4184ea7f 3764 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3765 if (flags & BTRFS_BLOCK_GROUP_DATA)
3766 info->data_sinfo = found;
6ab0a202
JM
3767
3768 return ret;
593060d7
CM
3769}
3770
8790d502
CM
3771static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3772{
899c81ea
ID
3773 u64 extra_flags = chunk_to_extended(flags) &
3774 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3775
de98ced9 3776 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3777 if (flags & BTRFS_BLOCK_GROUP_DATA)
3778 fs_info->avail_data_alloc_bits |= extra_flags;
3779 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3780 fs_info->avail_metadata_alloc_bits |= extra_flags;
3781 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3782 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3783 write_sequnlock(&fs_info->profiles_lock);
8790d502 3784}
593060d7 3785
fc67c450
ID
3786/*
3787 * returns target flags in extended format or 0 if restripe for this
3788 * chunk_type is not in progress
c6664b42
ID
3789 *
3790 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3791 */
3792static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3793{
3794 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3795 u64 target = 0;
3796
fc67c450
ID
3797 if (!bctl)
3798 return 0;
3799
3800 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3801 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3802 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3803 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3804 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3805 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3806 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3807 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3808 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3809 }
3810
3811 return target;
3812}
3813
a46d11a8
ID
3814/*
3815 * @flags: available profiles in extended format (see ctree.h)
3816 *
e4d8ec0f
ID
3817 * Returns reduced profile in chunk format. If profile changing is in
3818 * progress (either running or paused) picks the target profile (if it's
3819 * already available), otherwise falls back to plain reducing.
a46d11a8 3820 */
48a3b636 3821static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3822{
95669976 3823 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3824 u64 target;
53b381b3 3825 u64 tmp;
a061fc8d 3826
fc67c450
ID
3827 /*
3828 * see if restripe for this chunk_type is in progress, if so
3829 * try to reduce to the target profile
3830 */
e4d8ec0f 3831 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3832 target = get_restripe_target(root->fs_info, flags);
3833 if (target) {
3834 /* pick target profile only if it's already available */
3835 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3836 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3837 return extended_to_chunk(target);
e4d8ec0f
ID
3838 }
3839 }
3840 spin_unlock(&root->fs_info->balance_lock);
3841
53b381b3 3842 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3843 if (num_devices == 1)
53b381b3
DW
3844 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3845 BTRFS_BLOCK_GROUP_RAID5);
3846 if (num_devices < 3)
3847 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3848 if (num_devices < 4)
3849 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3850
53b381b3
DW
3851 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3852 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3853 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3854 flags &= ~tmp;
ec44a35c 3855
53b381b3
DW
3856 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3857 tmp = BTRFS_BLOCK_GROUP_RAID6;
3858 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3859 tmp = BTRFS_BLOCK_GROUP_RAID5;
3860 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3861 tmp = BTRFS_BLOCK_GROUP_RAID10;
3862 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3863 tmp = BTRFS_BLOCK_GROUP_RAID1;
3864 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3865 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3866
53b381b3 3867 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3868}
3869
f8213bdc 3870static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3871{
de98ced9 3872 unsigned seq;
f8213bdc 3873 u64 flags;
de98ced9
MX
3874
3875 do {
f8213bdc 3876 flags = orig_flags;
de98ced9
MX
3877 seq = read_seqbegin(&root->fs_info->profiles_lock);
3878
3879 if (flags & BTRFS_BLOCK_GROUP_DATA)
3880 flags |= root->fs_info->avail_data_alloc_bits;
3881 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3882 flags |= root->fs_info->avail_system_alloc_bits;
3883 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3884 flags |= root->fs_info->avail_metadata_alloc_bits;
3885 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3886
b742bb82 3887 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3888}
3889
6d07bcec 3890u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3891{
b742bb82 3892 u64 flags;
53b381b3 3893 u64 ret;
9ed74f2d 3894
b742bb82
YZ
3895 if (data)
3896 flags = BTRFS_BLOCK_GROUP_DATA;
3897 else if (root == root->fs_info->chunk_root)
3898 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3899 else
b742bb82 3900 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3901
53b381b3
DW
3902 ret = get_alloc_profile(root, flags);
3903 return ret;
6a63209f 3904}
9ed74f2d 3905
6a63209f 3906/*
6a63209f
JB
3907 * This will check the space that the inode allocates from to make sure we have
3908 * enough space for bytes.
6a63209f 3909 */
e2d1f923 3910int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3911{
6a63209f 3912 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3913 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3914 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3915 u64 used;
94b947b2 3916 int ret = 0;
c99f1b0c
ZL
3917 int need_commit = 2;
3918 int have_pinned_space;
6a63209f 3919
6a63209f 3920 /* make sure bytes are sectorsize aligned */
fda2832f 3921 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3922
9dced186 3923 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3924 need_commit = 0;
9dced186 3925 ASSERT(current->journal_info);
0af3d00b
JB
3926 }
3927
b4d7c3c9 3928 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3929 if (!data_sinfo)
3930 goto alloc;
9ed74f2d 3931
6a63209f
JB
3932again:
3933 /* make sure we have enough space to handle the data first */
3934 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3935 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3936 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3937 data_sinfo->bytes_may_use;
ab6e2410
JB
3938
3939 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3940 struct btrfs_trans_handle *trans;
9ed74f2d 3941
6a63209f
JB
3942 /*
3943 * if we don't have enough free bytes in this space then we need
3944 * to alloc a new chunk.
3945 */
b9fd47cd 3946 if (!data_sinfo->full) {
6a63209f 3947 u64 alloc_target;
9ed74f2d 3948
0e4f8f88 3949 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3950 spin_unlock(&data_sinfo->lock);
33b4d47f 3951alloc:
6a63209f 3952 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3953 /*
3954 * It is ugly that we don't call nolock join
3955 * transaction for the free space inode case here.
3956 * But it is safe because we only do the data space
3957 * reservation for the free space cache in the
3958 * transaction context, the common join transaction
3959 * just increase the counter of the current transaction
3960 * handler, doesn't try to acquire the trans_lock of
3961 * the fs.
3962 */
7a7eaa40 3963 trans = btrfs_join_transaction(root);
a22285a6
YZ
3964 if (IS_ERR(trans))
3965 return PTR_ERR(trans);
9ed74f2d 3966
6a63209f 3967 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3968 alloc_target,
3969 CHUNK_ALLOC_NO_FORCE);
6a63209f 3970 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3971 if (ret < 0) {
3972 if (ret != -ENOSPC)
3973 return ret;
c99f1b0c
ZL
3974 else {
3975 have_pinned_space = 1;
d52a5b5f 3976 goto commit_trans;
c99f1b0c 3977 }
d52a5b5f 3978 }
9ed74f2d 3979
b4d7c3c9
LZ
3980 if (!data_sinfo)
3981 data_sinfo = fs_info->data_sinfo;
3982
6a63209f
JB
3983 goto again;
3984 }
f2bb8f5c
JB
3985
3986 /*
b150a4f1 3987 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3988 * allocation, and no removed chunk in current transaction,
3989 * don't bother committing the transaction.
f2bb8f5c 3990 */
c99f1b0c
ZL
3991 have_pinned_space = percpu_counter_compare(
3992 &data_sinfo->total_bytes_pinned,
3993 used + bytes - data_sinfo->total_bytes);
6a63209f 3994 spin_unlock(&data_sinfo->lock);
6a63209f 3995
4e06bdd6 3996 /* commit the current transaction and try again */
d52a5b5f 3997commit_trans:
c99f1b0c 3998 if (need_commit &&
a4abeea4 3999 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4000 need_commit--;
b150a4f1 4001
9a4e7276
ZL
4002 if (need_commit > 0)
4003 btrfs_wait_ordered_roots(fs_info, -1);
4004
7a7eaa40 4005 trans = btrfs_join_transaction(root);
a22285a6
YZ
4006 if (IS_ERR(trans))
4007 return PTR_ERR(trans);
c99f1b0c
ZL
4008 if (have_pinned_space >= 0 ||
4009 trans->transaction->have_free_bgs ||
4010 need_commit > 0) {
94b947b2
ZL
4011 ret = btrfs_commit_transaction(trans, root);
4012 if (ret)
4013 return ret;
d7c15171
ZL
4014 /*
4015 * make sure that all running delayed iput are
4016 * done
4017 */
4018 down_write(&root->fs_info->delayed_iput_sem);
4019 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4020 goto again;
4021 } else {
4022 btrfs_end_transaction(trans, root);
4023 }
4e06bdd6 4024 }
9ed74f2d 4025
cab45e22
JM
4026 trace_btrfs_space_reservation(root->fs_info,
4027 "space_info:enospc",
4028 data_sinfo->flags, bytes, 1);
6a63209f
JB
4029 return -ENOSPC;
4030 }
e2d1f923 4031 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
4032 if (ret)
4033 goto out;
6a63209f 4034 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4035 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4036 data_sinfo->flags, bytes, 1);
237c0e9f 4037out:
6a63209f 4038 spin_unlock(&data_sinfo->lock);
6a63209f 4039
237c0e9f 4040 return ret;
9ed74f2d 4041}
6a63209f 4042
6a63209f 4043/*
fb25e914 4044 * Called if we need to clear a data reservation for this inode.
6a63209f 4045 */
0ca1f7ce 4046void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 4047{
0ca1f7ce 4048 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4049 struct btrfs_space_info *data_sinfo;
e3ccfa98 4050
6a63209f 4051 /* make sure bytes are sectorsize aligned */
fda2832f 4052 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4053
b4d7c3c9 4054 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4055 spin_lock(&data_sinfo->lock);
7ee9e440 4056 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4057 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4058 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4059 data_sinfo->flags, bytes, 0);
6a63209f 4060 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4061}
4062
97e728d4 4063static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4064{
97e728d4
JB
4065 struct list_head *head = &info->space_info;
4066 struct btrfs_space_info *found;
e3ccfa98 4067
97e728d4
JB
4068 rcu_read_lock();
4069 list_for_each_entry_rcu(found, head, list) {
4070 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4071 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4072 }
97e728d4 4073 rcu_read_unlock();
e3ccfa98
JB
4074}
4075
3c76cd84
MX
4076static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4077{
4078 return (global->size << 1);
4079}
4080
e5bc2458 4081static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4082 struct btrfs_space_info *sinfo, int force)
32c00aff 4083{
fb25e914 4084 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4085 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4086 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4087 u64 thresh;
e3ccfa98 4088
0e4f8f88
CM
4089 if (force == CHUNK_ALLOC_FORCE)
4090 return 1;
4091
fb25e914
JB
4092 /*
4093 * We need to take into account the global rsv because for all intents
4094 * and purposes it's used space. Don't worry about locking the
4095 * global_rsv, it doesn't change except when the transaction commits.
4096 */
54338b5c 4097 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4098 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4099
0e4f8f88
CM
4100 /*
4101 * in limited mode, we want to have some free space up to
4102 * about 1% of the FS size.
4103 */
4104 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4105 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4106 thresh = max_t(u64, 64 * 1024 * 1024,
4107 div_factor_fine(thresh, 1));
4108
4109 if (num_bytes - num_allocated < thresh)
4110 return 1;
4111 }
0e4f8f88 4112
698d0082 4113 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4114 return 0;
424499db 4115 return 1;
32c00aff
JB
4116}
4117
39c2d7fa 4118static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4119{
4120 u64 num_dev;
4121
53b381b3
DW
4122 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4123 BTRFS_BLOCK_GROUP_RAID0 |
4124 BTRFS_BLOCK_GROUP_RAID5 |
4125 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4126 num_dev = root->fs_info->fs_devices->rw_devices;
4127 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4128 num_dev = 2;
4129 else
4130 num_dev = 1; /* DUP or single */
4131
39c2d7fa 4132 return num_dev;
15d1ff81
LB
4133}
4134
39c2d7fa
FM
4135/*
4136 * If @is_allocation is true, reserve space in the system space info necessary
4137 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4138 * removing a chunk.
4139 */
4140void check_system_chunk(struct btrfs_trans_handle *trans,
4141 struct btrfs_root *root,
4617ea3a 4142 u64 type)
15d1ff81
LB
4143{
4144 struct btrfs_space_info *info;
4145 u64 left;
4146 u64 thresh;
4fbcdf66 4147 int ret = 0;
39c2d7fa 4148 u64 num_devs;
4fbcdf66
FM
4149
4150 /*
4151 * Needed because we can end up allocating a system chunk and for an
4152 * atomic and race free space reservation in the chunk block reserve.
4153 */
4154 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4155
4156 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4157 spin_lock(&info->lock);
4158 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4159 info->bytes_reserved - info->bytes_readonly -
4160 info->bytes_may_use;
15d1ff81
LB
4161 spin_unlock(&info->lock);
4162
39c2d7fa
FM
4163 num_devs = get_profile_num_devs(root, type);
4164
4165 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4166 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4167 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4168
15d1ff81 4169 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4170 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4171 left, thresh, type);
15d1ff81
LB
4172 dump_space_info(info, 0, 0);
4173 }
4174
4175 if (left < thresh) {
4176 u64 flags;
4177
4178 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4179 /*
4180 * Ignore failure to create system chunk. We might end up not
4181 * needing it, as we might not need to COW all nodes/leafs from
4182 * the paths we visit in the chunk tree (they were already COWed
4183 * or created in the current transaction for example).
4184 */
4185 ret = btrfs_alloc_chunk(trans, root, flags);
4186 }
4187
4188 if (!ret) {
4189 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4190 &root->fs_info->chunk_block_rsv,
4191 thresh, BTRFS_RESERVE_NO_FLUSH);
4192 if (!ret)
4193 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4194 }
4195}
4196
6324fbf3 4197static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4198 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4199{
6324fbf3 4200 struct btrfs_space_info *space_info;
97e728d4 4201 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4202 int wait_for_alloc = 0;
9ed74f2d 4203 int ret = 0;
9ed74f2d 4204
c6b305a8
JB
4205 /* Don't re-enter if we're already allocating a chunk */
4206 if (trans->allocating_chunk)
4207 return -ENOSPC;
4208
6324fbf3 4209 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4210 if (!space_info) {
4211 ret = update_space_info(extent_root->fs_info, flags,
4212 0, 0, &space_info);
79787eaa 4213 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4214 }
79787eaa 4215 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4216
6d74119f 4217again:
25179201 4218 spin_lock(&space_info->lock);
9e622d6b 4219 if (force < space_info->force_alloc)
0e4f8f88 4220 force = space_info->force_alloc;
25179201 4221 if (space_info->full) {
09fb99a6
FDBM
4222 if (should_alloc_chunk(extent_root, space_info, force))
4223 ret = -ENOSPC;
4224 else
4225 ret = 0;
25179201 4226 spin_unlock(&space_info->lock);
09fb99a6 4227 return ret;
9ed74f2d
JB
4228 }
4229
698d0082 4230 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4231 spin_unlock(&space_info->lock);
6d74119f
JB
4232 return 0;
4233 } else if (space_info->chunk_alloc) {
4234 wait_for_alloc = 1;
4235 } else {
4236 space_info->chunk_alloc = 1;
9ed74f2d 4237 }
0e4f8f88 4238
25179201 4239 spin_unlock(&space_info->lock);
9ed74f2d 4240
6d74119f
JB
4241 mutex_lock(&fs_info->chunk_mutex);
4242
4243 /*
4244 * The chunk_mutex is held throughout the entirety of a chunk
4245 * allocation, so once we've acquired the chunk_mutex we know that the
4246 * other guy is done and we need to recheck and see if we should
4247 * allocate.
4248 */
4249 if (wait_for_alloc) {
4250 mutex_unlock(&fs_info->chunk_mutex);
4251 wait_for_alloc = 0;
4252 goto again;
4253 }
4254
c6b305a8
JB
4255 trans->allocating_chunk = true;
4256
67377734
JB
4257 /*
4258 * If we have mixed data/metadata chunks we want to make sure we keep
4259 * allocating mixed chunks instead of individual chunks.
4260 */
4261 if (btrfs_mixed_space_info(space_info))
4262 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4263
97e728d4
JB
4264 /*
4265 * if we're doing a data chunk, go ahead and make sure that
4266 * we keep a reasonable number of metadata chunks allocated in the
4267 * FS as well.
4268 */
9ed74f2d 4269 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4270 fs_info->data_chunk_allocations++;
4271 if (!(fs_info->data_chunk_allocations %
4272 fs_info->metadata_ratio))
4273 force_metadata_allocation(fs_info);
9ed74f2d
JB
4274 }
4275
15d1ff81
LB
4276 /*
4277 * Check if we have enough space in SYSTEM chunk because we may need
4278 * to update devices.
4279 */
4617ea3a 4280 check_system_chunk(trans, extent_root, flags);
15d1ff81 4281
2b82032c 4282 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4283 trans->allocating_chunk = false;
92b8e897 4284
9ed74f2d 4285 spin_lock(&space_info->lock);
a81cb9a2
AO
4286 if (ret < 0 && ret != -ENOSPC)
4287 goto out;
9ed74f2d 4288 if (ret)
6324fbf3 4289 space_info->full = 1;
424499db
YZ
4290 else
4291 ret = 1;
6d74119f 4292
0e4f8f88 4293 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4294out:
6d74119f 4295 space_info->chunk_alloc = 0;
9ed74f2d 4296 spin_unlock(&space_info->lock);
a25c75d5 4297 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4298 /*
4299 * When we allocate a new chunk we reserve space in the chunk block
4300 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4301 * add new nodes/leafs to it if we end up needing to do it when
4302 * inserting the chunk item and updating device items as part of the
4303 * second phase of chunk allocation, performed by
4304 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4305 * large number of new block groups to create in our transaction
4306 * handle's new_bgs list to avoid exhausting the chunk block reserve
4307 * in extreme cases - like having a single transaction create many new
4308 * block groups when starting to write out the free space caches of all
4309 * the block groups that were made dirty during the lifetime of the
4310 * transaction.
4311 */
d9a0540a
FM
4312 if (trans->can_flush_pending_bgs &&
4313 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4314 btrfs_create_pending_block_groups(trans, trans->root);
4315 btrfs_trans_release_chunk_metadata(trans);
4316 }
0f9dd46c 4317 return ret;
6324fbf3 4318}
9ed74f2d 4319
a80c8dcf
JB
4320static int can_overcommit(struct btrfs_root *root,
4321 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4322 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4323{
96f1bb57 4324 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4325 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4326 u64 space_size;
a80c8dcf
JB
4327 u64 avail;
4328 u64 used;
4329
4330 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4331 space_info->bytes_pinned + space_info->bytes_readonly;
4332
96f1bb57
JB
4333 /*
4334 * We only want to allow over committing if we have lots of actual space
4335 * free, but if we don't have enough space to handle the global reserve
4336 * space then we could end up having a real enospc problem when trying
4337 * to allocate a chunk or some other such important allocation.
4338 */
3c76cd84
MX
4339 spin_lock(&global_rsv->lock);
4340 space_size = calc_global_rsv_need_space(global_rsv);
4341 spin_unlock(&global_rsv->lock);
4342 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4343 return 0;
4344
4345 used += space_info->bytes_may_use;
a80c8dcf
JB
4346
4347 spin_lock(&root->fs_info->free_chunk_lock);
4348 avail = root->fs_info->free_chunk_space;
4349 spin_unlock(&root->fs_info->free_chunk_lock);
4350
4351 /*
4352 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4353 * space is actually useable. For raid56, the space info used
4354 * doesn't include the parity drive, so we don't have to
4355 * change the math
a80c8dcf
JB
4356 */
4357 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4358 BTRFS_BLOCK_GROUP_RAID1 |
4359 BTRFS_BLOCK_GROUP_RAID10))
4360 avail >>= 1;
4361
4362 /*
561c294d
MX
4363 * If we aren't flushing all things, let us overcommit up to
4364 * 1/2th of the space. If we can flush, don't let us overcommit
4365 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4366 */
08e007d2 4367 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4368 avail >>= 3;
a80c8dcf 4369 else
14575aef 4370 avail >>= 1;
a80c8dcf 4371
14575aef 4372 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4373 return 1;
4374 return 0;
4375}
4376
48a3b636 4377static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4378 unsigned long nr_pages, int nr_items)
da633a42
MX
4379{
4380 struct super_block *sb = root->fs_info->sb;
da633a42 4381
925a6efb
JB
4382 if (down_read_trylock(&sb->s_umount)) {
4383 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4384 up_read(&sb->s_umount);
4385 } else {
da633a42
MX
4386 /*
4387 * We needn't worry the filesystem going from r/w to r/o though
4388 * we don't acquire ->s_umount mutex, because the filesystem
4389 * should guarantee the delalloc inodes list be empty after
4390 * the filesystem is readonly(all dirty pages are written to
4391 * the disk).
4392 */
6c255e67 4393 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4394 if (!current->journal_info)
6c255e67 4395 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4396 }
4397}
4398
18cd8ea6
MX
4399static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4400{
4401 u64 bytes;
4402 int nr;
4403
4404 bytes = btrfs_calc_trans_metadata_size(root, 1);
4405 nr = (int)div64_u64(to_reclaim, bytes);
4406 if (!nr)
4407 nr = 1;
4408 return nr;
4409}
4410
c61a16a7
MX
4411#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4412
9ed74f2d 4413/*
5da9d01b 4414 * shrink metadata reservation for delalloc
9ed74f2d 4415 */
f4c738c2
JB
4416static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4417 bool wait_ordered)
5da9d01b 4418{
0ca1f7ce 4419 struct btrfs_block_rsv *block_rsv;
0019f10d 4420 struct btrfs_space_info *space_info;
663350ac 4421 struct btrfs_trans_handle *trans;
f4c738c2 4422 u64 delalloc_bytes;
5da9d01b 4423 u64 max_reclaim;
b1953bce 4424 long time_left;
d3ee29e3
MX
4425 unsigned long nr_pages;
4426 int loops;
b0244199 4427 int items;
08e007d2 4428 enum btrfs_reserve_flush_enum flush;
5da9d01b 4429
c61a16a7 4430 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4431 items = calc_reclaim_items_nr(root, to_reclaim);
4432 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4433
663350ac 4434 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4435 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4436 space_info = block_rsv->space_info;
bf9022e0 4437
963d678b
MX
4438 delalloc_bytes = percpu_counter_sum_positive(
4439 &root->fs_info->delalloc_bytes);
f4c738c2 4440 if (delalloc_bytes == 0) {
fdb5effd 4441 if (trans)
f4c738c2 4442 return;
38c135af 4443 if (wait_ordered)
b0244199 4444 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4445 return;
fdb5effd
JB
4446 }
4447
d3ee29e3 4448 loops = 0;
f4c738c2
JB
4449 while (delalloc_bytes && loops < 3) {
4450 max_reclaim = min(delalloc_bytes, to_reclaim);
4451 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4452 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4453 /*
4454 * We need to wait for the async pages to actually start before
4455 * we do anything.
4456 */
9f3a074d
MX
4457 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4458 if (!max_reclaim)
4459 goto skip_async;
4460
4461 if (max_reclaim <= nr_pages)
4462 max_reclaim = 0;
4463 else
4464 max_reclaim -= nr_pages;
dea31f52 4465
9f3a074d
MX
4466 wait_event(root->fs_info->async_submit_wait,
4467 atomic_read(&root->fs_info->async_delalloc_pages) <=
4468 (int)max_reclaim);
4469skip_async:
08e007d2
MX
4470 if (!trans)
4471 flush = BTRFS_RESERVE_FLUSH_ALL;
4472 else
4473 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4474 spin_lock(&space_info->lock);
08e007d2 4475 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4476 spin_unlock(&space_info->lock);
4477 break;
4478 }
0019f10d 4479 spin_unlock(&space_info->lock);
5da9d01b 4480
36e39c40 4481 loops++;
f104d044 4482 if (wait_ordered && !trans) {
b0244199 4483 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4484 } else {
f4c738c2 4485 time_left = schedule_timeout_killable(1);
f104d044
JB
4486 if (time_left)
4487 break;
4488 }
963d678b
MX
4489 delalloc_bytes = percpu_counter_sum_positive(
4490 &root->fs_info->delalloc_bytes);
5da9d01b 4491 }
5da9d01b
YZ
4492}
4493
663350ac
JB
4494/**
4495 * maybe_commit_transaction - possibly commit the transaction if its ok to
4496 * @root - the root we're allocating for
4497 * @bytes - the number of bytes we want to reserve
4498 * @force - force the commit
8bb8ab2e 4499 *
663350ac
JB
4500 * This will check to make sure that committing the transaction will actually
4501 * get us somewhere and then commit the transaction if it does. Otherwise it
4502 * will return -ENOSPC.
8bb8ab2e 4503 */
663350ac
JB
4504static int may_commit_transaction(struct btrfs_root *root,
4505 struct btrfs_space_info *space_info,
4506 u64 bytes, int force)
4507{
4508 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4509 struct btrfs_trans_handle *trans;
4510
4511 trans = (struct btrfs_trans_handle *)current->journal_info;
4512 if (trans)
4513 return -EAGAIN;
4514
4515 if (force)
4516 goto commit;
4517
4518 /* See if there is enough pinned space to make this reservation */
b150a4f1 4519 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4520 bytes) >= 0)
663350ac 4521 goto commit;
663350ac
JB
4522
4523 /*
4524 * See if there is some space in the delayed insertion reservation for
4525 * this reservation.
4526 */
4527 if (space_info != delayed_rsv->space_info)
4528 return -ENOSPC;
4529
4530 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4531 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4532 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4533 spin_unlock(&delayed_rsv->lock);
4534 return -ENOSPC;
4535 }
4536 spin_unlock(&delayed_rsv->lock);
4537
4538commit:
4539 trans = btrfs_join_transaction(root);
4540 if (IS_ERR(trans))
4541 return -ENOSPC;
4542
4543 return btrfs_commit_transaction(trans, root);
4544}
4545
96c3f433 4546enum flush_state {
67b0fd63
JB
4547 FLUSH_DELAYED_ITEMS_NR = 1,
4548 FLUSH_DELAYED_ITEMS = 2,
4549 FLUSH_DELALLOC = 3,
4550 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4551 ALLOC_CHUNK = 5,
4552 COMMIT_TRANS = 6,
96c3f433
JB
4553};
4554
4555static int flush_space(struct btrfs_root *root,
4556 struct btrfs_space_info *space_info, u64 num_bytes,
4557 u64 orig_bytes, int state)
4558{
4559 struct btrfs_trans_handle *trans;
4560 int nr;
f4c738c2 4561 int ret = 0;
96c3f433
JB
4562
4563 switch (state) {
96c3f433
JB
4564 case FLUSH_DELAYED_ITEMS_NR:
4565 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4566 if (state == FLUSH_DELAYED_ITEMS_NR)
4567 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4568 else
96c3f433 4569 nr = -1;
18cd8ea6 4570
96c3f433
JB
4571 trans = btrfs_join_transaction(root);
4572 if (IS_ERR(trans)) {
4573 ret = PTR_ERR(trans);
4574 break;
4575 }
4576 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4577 btrfs_end_transaction(trans, root);
4578 break;
67b0fd63
JB
4579 case FLUSH_DELALLOC:
4580 case FLUSH_DELALLOC_WAIT:
24af7dd1 4581 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4582 state == FLUSH_DELALLOC_WAIT);
4583 break;
ea658bad
JB
4584 case ALLOC_CHUNK:
4585 trans = btrfs_join_transaction(root);
4586 if (IS_ERR(trans)) {
4587 ret = PTR_ERR(trans);
4588 break;
4589 }
4590 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4591 btrfs_get_alloc_profile(root, 0),
4592 CHUNK_ALLOC_NO_FORCE);
4593 btrfs_end_transaction(trans, root);
4594 if (ret == -ENOSPC)
4595 ret = 0;
4596 break;
96c3f433
JB
4597 case COMMIT_TRANS:
4598 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4599 break;
4600 default:
4601 ret = -ENOSPC;
4602 break;
4603 }
4604
4605 return ret;
4606}
21c7e756
MX
4607
4608static inline u64
4609btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4610 struct btrfs_space_info *space_info)
4611{
4612 u64 used;
4613 u64 expected;
4614 u64 to_reclaim;
4615
4616 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4617 16 * 1024 * 1024);
4618 spin_lock(&space_info->lock);
4619 if (can_overcommit(root, space_info, to_reclaim,
4620 BTRFS_RESERVE_FLUSH_ALL)) {
4621 to_reclaim = 0;
4622 goto out;
4623 }
4624
4625 used = space_info->bytes_used + space_info->bytes_reserved +
4626 space_info->bytes_pinned + space_info->bytes_readonly +
4627 space_info->bytes_may_use;
4628 if (can_overcommit(root, space_info, 1024 * 1024,
4629 BTRFS_RESERVE_FLUSH_ALL))
4630 expected = div_factor_fine(space_info->total_bytes, 95);
4631 else
4632 expected = div_factor_fine(space_info->total_bytes, 90);
4633
4634 if (used > expected)
4635 to_reclaim = used - expected;
4636 else
4637 to_reclaim = 0;
4638 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4639 space_info->bytes_reserved);
4640out:
4641 spin_unlock(&space_info->lock);
4642
4643 return to_reclaim;
4644}
4645
4646static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4647 struct btrfs_fs_info *fs_info, u64 used)
4648{
365c5313
JB
4649 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4650
4651 /* If we're just plain full then async reclaim just slows us down. */
4652 if (space_info->bytes_used >= thresh)
4653 return 0;
4654
4655 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4656 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4657}
4658
4659static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4660 struct btrfs_fs_info *fs_info,
4661 int flush_state)
21c7e756
MX
4662{
4663 u64 used;
4664
4665 spin_lock(&space_info->lock);
25ce459c
LB
4666 /*
4667 * We run out of space and have not got any free space via flush_space,
4668 * so don't bother doing async reclaim.
4669 */
4670 if (flush_state > COMMIT_TRANS && space_info->full) {
4671 spin_unlock(&space_info->lock);
4672 return 0;
4673 }
4674
21c7e756
MX
4675 used = space_info->bytes_used + space_info->bytes_reserved +
4676 space_info->bytes_pinned + space_info->bytes_readonly +
4677 space_info->bytes_may_use;
4678 if (need_do_async_reclaim(space_info, fs_info, used)) {
4679 spin_unlock(&space_info->lock);
4680 return 1;
4681 }
4682 spin_unlock(&space_info->lock);
4683
4684 return 0;
4685}
4686
4687static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4688{
4689 struct btrfs_fs_info *fs_info;
4690 struct btrfs_space_info *space_info;
4691 u64 to_reclaim;
4692 int flush_state;
4693
4694 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4695 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4696
4697 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4698 space_info);
4699 if (!to_reclaim)
4700 return;
4701
4702 flush_state = FLUSH_DELAYED_ITEMS_NR;
4703 do {
4704 flush_space(fs_info->fs_root, space_info, to_reclaim,
4705 to_reclaim, flush_state);
4706 flush_state++;
25ce459c
LB
4707 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4708 flush_state))
21c7e756 4709 return;
365c5313 4710 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4711}
4712
4713void btrfs_init_async_reclaim_work(struct work_struct *work)
4714{
4715 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4716}
4717
4a92b1b8
JB
4718/**
4719 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4720 * @root - the root we're allocating for
4721 * @block_rsv - the block_rsv we're allocating for
4722 * @orig_bytes - the number of bytes we want
48fc7f7e 4723 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4724 *
4a92b1b8
JB
4725 * This will reserve orgi_bytes number of bytes from the space info associated
4726 * with the block_rsv. If there is not enough space it will make an attempt to
4727 * flush out space to make room. It will do this by flushing delalloc if
4728 * possible or committing the transaction. If flush is 0 then no attempts to
4729 * regain reservations will be made and this will fail if there is not enough
4730 * space already.
8bb8ab2e 4731 */
4a92b1b8 4732static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4733 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4734 u64 orig_bytes,
4735 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4736{
f0486c68 4737 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4738 u64 used;
8bb8ab2e 4739 u64 num_bytes = orig_bytes;
67b0fd63 4740 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4741 int ret = 0;
fdb5effd 4742 bool flushing = false;
9ed74f2d 4743
8bb8ab2e 4744again:
fdb5effd 4745 ret = 0;
8bb8ab2e 4746 spin_lock(&space_info->lock);
fdb5effd 4747 /*
08e007d2
MX
4748 * We only want to wait if somebody other than us is flushing and we
4749 * are actually allowed to flush all things.
fdb5effd 4750 */
08e007d2
MX
4751 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4752 space_info->flush) {
fdb5effd
JB
4753 spin_unlock(&space_info->lock);
4754 /*
4755 * If we have a trans handle we can't wait because the flusher
4756 * may have to commit the transaction, which would mean we would
4757 * deadlock since we are waiting for the flusher to finish, but
4758 * hold the current transaction open.
4759 */
663350ac 4760 if (current->journal_info)
fdb5effd 4761 return -EAGAIN;
b9688bb8
AJ
4762 ret = wait_event_killable(space_info->wait, !space_info->flush);
4763 /* Must have been killed, return */
4764 if (ret)
fdb5effd
JB
4765 return -EINTR;
4766
4767 spin_lock(&space_info->lock);
4768 }
4769
4770 ret = -ENOSPC;
2bf64758
JB
4771 used = space_info->bytes_used + space_info->bytes_reserved +
4772 space_info->bytes_pinned + space_info->bytes_readonly +
4773 space_info->bytes_may_use;
9ed74f2d 4774
8bb8ab2e
JB
4775 /*
4776 * The idea here is that we've not already over-reserved the block group
4777 * then we can go ahead and save our reservation first and then start
4778 * flushing if we need to. Otherwise if we've already overcommitted
4779 * lets start flushing stuff first and then come back and try to make
4780 * our reservation.
4781 */
2bf64758
JB
4782 if (used <= space_info->total_bytes) {
4783 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4784 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4785 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4786 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4787 ret = 0;
4788 } else {
4789 /*
4790 * Ok set num_bytes to orig_bytes since we aren't
4791 * overocmmitted, this way we only try and reclaim what
4792 * we need.
4793 */
4794 num_bytes = orig_bytes;
4795 }
4796 } else {
4797 /*
4798 * Ok we're over committed, set num_bytes to the overcommitted
4799 * amount plus the amount of bytes that we need for this
4800 * reservation.
4801 */
2bf64758 4802 num_bytes = used - space_info->total_bytes +
96c3f433 4803 (orig_bytes * 2);
8bb8ab2e 4804 }
9ed74f2d 4805
44734ed1
JB
4806 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4807 space_info->bytes_may_use += orig_bytes;
4808 trace_btrfs_space_reservation(root->fs_info, "space_info",
4809 space_info->flags, orig_bytes,
4810 1);
4811 ret = 0;
2bf64758
JB
4812 }
4813
8bb8ab2e
JB
4814 /*
4815 * Couldn't make our reservation, save our place so while we're trying
4816 * to reclaim space we can actually use it instead of somebody else
4817 * stealing it from us.
08e007d2
MX
4818 *
4819 * We make the other tasks wait for the flush only when we can flush
4820 * all things.
8bb8ab2e 4821 */
72bcd99d 4822 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4823 flushing = true;
4824 space_info->flush = 1;
21c7e756
MX
4825 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4826 used += orig_bytes;
f6acfd50
JB
4827 /*
4828 * We will do the space reservation dance during log replay,
4829 * which means we won't have fs_info->fs_root set, so don't do
4830 * the async reclaim as we will panic.
4831 */
4832 if (!root->fs_info->log_root_recovering &&
4833 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4834 !work_busy(&root->fs_info->async_reclaim_work))
4835 queue_work(system_unbound_wq,
4836 &root->fs_info->async_reclaim_work);
8bb8ab2e 4837 }
f0486c68 4838 spin_unlock(&space_info->lock);
9ed74f2d 4839
08e007d2 4840 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4841 goto out;
f0486c68 4842
96c3f433
JB
4843 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4844 flush_state);
4845 flush_state++;
08e007d2
MX
4846
4847 /*
4848 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4849 * would happen. So skip delalloc flush.
4850 */
4851 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4852 (flush_state == FLUSH_DELALLOC ||
4853 flush_state == FLUSH_DELALLOC_WAIT))
4854 flush_state = ALLOC_CHUNK;
4855
96c3f433 4856 if (!ret)
8bb8ab2e 4857 goto again;
08e007d2
MX
4858 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4859 flush_state < COMMIT_TRANS)
4860 goto again;
4861 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4862 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4863 goto again;
4864
4865out:
5d80366e
JB
4866 if (ret == -ENOSPC &&
4867 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4868 struct btrfs_block_rsv *global_rsv =
4869 &root->fs_info->global_block_rsv;
4870
4871 if (block_rsv != global_rsv &&
4872 !block_rsv_use_bytes(global_rsv, orig_bytes))
4873 ret = 0;
4874 }
cab45e22
JM
4875 if (ret == -ENOSPC)
4876 trace_btrfs_space_reservation(root->fs_info,
4877 "space_info:enospc",
4878 space_info->flags, orig_bytes, 1);
fdb5effd 4879 if (flushing) {
8bb8ab2e 4880 spin_lock(&space_info->lock);
fdb5effd
JB
4881 space_info->flush = 0;
4882 wake_up_all(&space_info->wait);
8bb8ab2e 4883 spin_unlock(&space_info->lock);
f0486c68 4884 }
f0486c68
YZ
4885 return ret;
4886}
4887
79787eaa
JM
4888static struct btrfs_block_rsv *get_block_rsv(
4889 const struct btrfs_trans_handle *trans,
4890 const struct btrfs_root *root)
f0486c68 4891{
4c13d758
JB
4892 struct btrfs_block_rsv *block_rsv = NULL;
4893
27cdeb70 4894 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4895 block_rsv = trans->block_rsv;
4896
4897 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4898 block_rsv = trans->block_rsv;
4c13d758 4899
f7a81ea4
SB
4900 if (root == root->fs_info->uuid_root)
4901 block_rsv = trans->block_rsv;
4902
4c13d758 4903 if (!block_rsv)
f0486c68
YZ
4904 block_rsv = root->block_rsv;
4905
4906 if (!block_rsv)
4907 block_rsv = &root->fs_info->empty_block_rsv;
4908
4909 return block_rsv;
4910}
4911
4912static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4913 u64 num_bytes)
4914{
4915 int ret = -ENOSPC;
4916 spin_lock(&block_rsv->lock);
4917 if (block_rsv->reserved >= num_bytes) {
4918 block_rsv->reserved -= num_bytes;
4919 if (block_rsv->reserved < block_rsv->size)
4920 block_rsv->full = 0;
4921 ret = 0;
4922 }
4923 spin_unlock(&block_rsv->lock);
4924 return ret;
4925}
4926
4927static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4928 u64 num_bytes, int update_size)
4929{
4930 spin_lock(&block_rsv->lock);
4931 block_rsv->reserved += num_bytes;
4932 if (update_size)
4933 block_rsv->size += num_bytes;
4934 else if (block_rsv->reserved >= block_rsv->size)
4935 block_rsv->full = 1;
4936 spin_unlock(&block_rsv->lock);
4937}
4938
d52be818
JB
4939int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4940 struct btrfs_block_rsv *dest, u64 num_bytes,
4941 int min_factor)
4942{
4943 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4944 u64 min_bytes;
4945
4946 if (global_rsv->space_info != dest->space_info)
4947 return -ENOSPC;
4948
4949 spin_lock(&global_rsv->lock);
4950 min_bytes = div_factor(global_rsv->size, min_factor);
4951 if (global_rsv->reserved < min_bytes + num_bytes) {
4952 spin_unlock(&global_rsv->lock);
4953 return -ENOSPC;
4954 }
4955 global_rsv->reserved -= num_bytes;
4956 if (global_rsv->reserved < global_rsv->size)
4957 global_rsv->full = 0;
4958 spin_unlock(&global_rsv->lock);
4959
4960 block_rsv_add_bytes(dest, num_bytes, 1);
4961 return 0;
4962}
4963
8c2a3ca2
JB
4964static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4965 struct btrfs_block_rsv *block_rsv,
62a45b60 4966 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4967{
4968 struct btrfs_space_info *space_info = block_rsv->space_info;
4969
4970 spin_lock(&block_rsv->lock);
4971 if (num_bytes == (u64)-1)
4972 num_bytes = block_rsv->size;
4973 block_rsv->size -= num_bytes;
4974 if (block_rsv->reserved >= block_rsv->size) {
4975 num_bytes = block_rsv->reserved - block_rsv->size;
4976 block_rsv->reserved = block_rsv->size;
4977 block_rsv->full = 1;
4978 } else {
4979 num_bytes = 0;
4980 }
4981 spin_unlock(&block_rsv->lock);
4982
4983 if (num_bytes > 0) {
4984 if (dest) {
e9e22899
JB
4985 spin_lock(&dest->lock);
4986 if (!dest->full) {
4987 u64 bytes_to_add;
4988
4989 bytes_to_add = dest->size - dest->reserved;
4990 bytes_to_add = min(num_bytes, bytes_to_add);
4991 dest->reserved += bytes_to_add;
4992 if (dest->reserved >= dest->size)
4993 dest->full = 1;
4994 num_bytes -= bytes_to_add;
4995 }
4996 spin_unlock(&dest->lock);
4997 }
4998 if (num_bytes) {
f0486c68 4999 spin_lock(&space_info->lock);
fb25e914 5000 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5001 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5002 space_info->flags, num_bytes, 0);
f0486c68 5003 spin_unlock(&space_info->lock);
4e06bdd6 5004 }
9ed74f2d 5005 }
f0486c68 5006}
4e06bdd6 5007
f0486c68
YZ
5008static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5009 struct btrfs_block_rsv *dst, u64 num_bytes)
5010{
5011 int ret;
9ed74f2d 5012
f0486c68
YZ
5013 ret = block_rsv_use_bytes(src, num_bytes);
5014 if (ret)
5015 return ret;
9ed74f2d 5016
f0486c68 5017 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5018 return 0;
5019}
5020
66d8f3dd 5021void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5022{
f0486c68
YZ
5023 memset(rsv, 0, sizeof(*rsv));
5024 spin_lock_init(&rsv->lock);
66d8f3dd 5025 rsv->type = type;
f0486c68
YZ
5026}
5027
66d8f3dd
MX
5028struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5029 unsigned short type)
f0486c68
YZ
5030{
5031 struct btrfs_block_rsv *block_rsv;
5032 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5033
f0486c68
YZ
5034 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5035 if (!block_rsv)
5036 return NULL;
9ed74f2d 5037
66d8f3dd 5038 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5039 block_rsv->space_info = __find_space_info(fs_info,
5040 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5041 return block_rsv;
5042}
9ed74f2d 5043
f0486c68
YZ
5044void btrfs_free_block_rsv(struct btrfs_root *root,
5045 struct btrfs_block_rsv *rsv)
5046{
2aaa6655
JB
5047 if (!rsv)
5048 return;
dabdb640
JB
5049 btrfs_block_rsv_release(root, rsv, (u64)-1);
5050 kfree(rsv);
9ed74f2d
JB
5051}
5052
cdfb080e
CM
5053void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5054{
5055 kfree(rsv);
5056}
5057
08e007d2
MX
5058int btrfs_block_rsv_add(struct btrfs_root *root,
5059 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5060 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5061{
f0486c68 5062 int ret;
9ed74f2d 5063
f0486c68
YZ
5064 if (num_bytes == 0)
5065 return 0;
8bb8ab2e 5066
61b520a9 5067 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5068 if (!ret) {
5069 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5070 return 0;
5071 }
9ed74f2d 5072
f0486c68 5073 return ret;
f0486c68 5074}
9ed74f2d 5075
4a92b1b8 5076int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5077 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5078{
5079 u64 num_bytes = 0;
f0486c68 5080 int ret = -ENOSPC;
9ed74f2d 5081
f0486c68
YZ
5082 if (!block_rsv)
5083 return 0;
9ed74f2d 5084
f0486c68 5085 spin_lock(&block_rsv->lock);
36ba022a
JB
5086 num_bytes = div_factor(block_rsv->size, min_factor);
5087 if (block_rsv->reserved >= num_bytes)
5088 ret = 0;
5089 spin_unlock(&block_rsv->lock);
9ed74f2d 5090
36ba022a
JB
5091 return ret;
5092}
5093
08e007d2
MX
5094int btrfs_block_rsv_refill(struct btrfs_root *root,
5095 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5096 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5097{
5098 u64 num_bytes = 0;
5099 int ret = -ENOSPC;
5100
5101 if (!block_rsv)
5102 return 0;
5103
5104 spin_lock(&block_rsv->lock);
5105 num_bytes = min_reserved;
13553e52 5106 if (block_rsv->reserved >= num_bytes)
f0486c68 5107 ret = 0;
13553e52 5108 else
f0486c68 5109 num_bytes -= block_rsv->reserved;
f0486c68 5110 spin_unlock(&block_rsv->lock);
13553e52 5111
f0486c68
YZ
5112 if (!ret)
5113 return 0;
5114
aa38a711 5115 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5116 if (!ret) {
5117 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5118 return 0;
6a63209f 5119 }
9ed74f2d 5120
13553e52 5121 return ret;
f0486c68
YZ
5122}
5123
5124int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5125 struct btrfs_block_rsv *dst_rsv,
5126 u64 num_bytes)
5127{
5128 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5129}
5130
5131void btrfs_block_rsv_release(struct btrfs_root *root,
5132 struct btrfs_block_rsv *block_rsv,
5133 u64 num_bytes)
5134{
5135 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5136 if (global_rsv == block_rsv ||
f0486c68
YZ
5137 block_rsv->space_info != global_rsv->space_info)
5138 global_rsv = NULL;
8c2a3ca2
JB
5139 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5140 num_bytes);
6a63209f
JB
5141}
5142
5143/*
8929ecfa
YZ
5144 * helper to calculate size of global block reservation.
5145 * the desired value is sum of space used by extent tree,
5146 * checksum tree and root tree
6a63209f 5147 */
8929ecfa 5148static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5149{
8929ecfa
YZ
5150 struct btrfs_space_info *sinfo;
5151 u64 num_bytes;
5152 u64 meta_used;
5153 u64 data_used;
6c41761f 5154 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5155
8929ecfa
YZ
5156 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5157 spin_lock(&sinfo->lock);
5158 data_used = sinfo->bytes_used;
5159 spin_unlock(&sinfo->lock);
33b4d47f 5160
8929ecfa
YZ
5161 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5162 spin_lock(&sinfo->lock);
6d48755d
JB
5163 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5164 data_used = 0;
8929ecfa
YZ
5165 meta_used = sinfo->bytes_used;
5166 spin_unlock(&sinfo->lock);
ab6e2410 5167
8929ecfa
YZ
5168 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5169 csum_size * 2;
f8c269d7 5170 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5171
8929ecfa 5172 if (num_bytes * 3 > meta_used)
f8c269d7 5173 num_bytes = div_u64(meta_used, 3);
ab6e2410 5174
707e8a07 5175 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5176}
6a63209f 5177
8929ecfa
YZ
5178static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5179{
5180 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5181 struct btrfs_space_info *sinfo = block_rsv->space_info;
5182 u64 num_bytes;
6a63209f 5183
8929ecfa 5184 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5185
8929ecfa 5186 spin_lock(&sinfo->lock);
1f699d38 5187 spin_lock(&block_rsv->lock);
4e06bdd6 5188
fdf30d1c 5189 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5190
8929ecfa 5191 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5192 sinfo->bytes_reserved + sinfo->bytes_readonly +
5193 sinfo->bytes_may_use;
8929ecfa
YZ
5194
5195 if (sinfo->total_bytes > num_bytes) {
5196 num_bytes = sinfo->total_bytes - num_bytes;
5197 block_rsv->reserved += num_bytes;
fb25e914 5198 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5199 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5200 sinfo->flags, num_bytes, 1);
6a63209f 5201 }
6a63209f 5202
8929ecfa
YZ
5203 if (block_rsv->reserved >= block_rsv->size) {
5204 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5205 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5206 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5207 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5208 block_rsv->reserved = block_rsv->size;
5209 block_rsv->full = 1;
5210 }
182608c8 5211
8929ecfa 5212 spin_unlock(&block_rsv->lock);
1f699d38 5213 spin_unlock(&sinfo->lock);
6a63209f
JB
5214}
5215
f0486c68 5216static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5217{
f0486c68 5218 struct btrfs_space_info *space_info;
6a63209f 5219
f0486c68
YZ
5220 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5221 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5222
f0486c68 5223 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5224 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5225 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5226 fs_info->trans_block_rsv.space_info = space_info;
5227 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5228 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5229
8929ecfa
YZ
5230 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5231 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5232 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5233 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5234 if (fs_info->quota_root)
5235 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5236 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5237
8929ecfa 5238 update_global_block_rsv(fs_info);
6a63209f
JB
5239}
5240
8929ecfa 5241static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5242{
8c2a3ca2
JB
5243 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5244 (u64)-1);
8929ecfa
YZ
5245 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5246 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5247 WARN_ON(fs_info->trans_block_rsv.size > 0);
5248 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5249 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5250 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5251 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5252 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5253}
5254
a22285a6
YZ
5255void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5256 struct btrfs_root *root)
6a63209f 5257{
0e721106
JB
5258 if (!trans->block_rsv)
5259 return;
5260
a22285a6
YZ
5261 if (!trans->bytes_reserved)
5262 return;
6a63209f 5263
e77266e4 5264 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5265 trans->transid, trans->bytes_reserved, 0);
b24e03db 5266 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5267 trans->bytes_reserved = 0;
5268}
6a63209f 5269
4fbcdf66
FM
5270/*
5271 * To be called after all the new block groups attached to the transaction
5272 * handle have been created (btrfs_create_pending_block_groups()).
5273 */
5274void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5275{
5276 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5277
5278 if (!trans->chunk_bytes_reserved)
5279 return;
5280
5281 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5282
5283 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5284 trans->chunk_bytes_reserved);
5285 trans->chunk_bytes_reserved = 0;
5286}
5287
79787eaa 5288/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5289int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5290 struct inode *inode)
5291{
5292 struct btrfs_root *root = BTRFS_I(inode)->root;
5293 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5294 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5295
5296 /*
fcb80c2a
JB
5297 * We need to hold space in order to delete our orphan item once we've
5298 * added it, so this takes the reservation so we can release it later
5299 * when we are truly done with the orphan item.
d68fc57b 5300 */
ff5714cc 5301 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5302 trace_btrfs_space_reservation(root->fs_info, "orphan",
5303 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5304 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5305}
5306
d68fc57b 5307void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5308{
d68fc57b 5309 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5310 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5311 trace_btrfs_space_reservation(root->fs_info, "orphan",
5312 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5313 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5314}
97e728d4 5315
d5c12070
MX
5316/*
5317 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5318 * root: the root of the parent directory
5319 * rsv: block reservation
5320 * items: the number of items that we need do reservation
5321 * qgroup_reserved: used to return the reserved size in qgroup
5322 *
5323 * This function is used to reserve the space for snapshot/subvolume
5324 * creation and deletion. Those operations are different with the
5325 * common file/directory operations, they change two fs/file trees
5326 * and root tree, the number of items that the qgroup reserves is
5327 * different with the free space reservation. So we can not use
5328 * the space reseravtion mechanism in start_transaction().
5329 */
5330int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5331 struct btrfs_block_rsv *rsv,
5332 int items,
ee3441b4
JM
5333 u64 *qgroup_reserved,
5334 bool use_global_rsv)
a22285a6 5335{
d5c12070
MX
5336 u64 num_bytes;
5337 int ret;
ee3441b4 5338 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5339
5340 if (root->fs_info->quota_enabled) {
5341 /* One for parent inode, two for dir entries */
707e8a07 5342 num_bytes = 3 * root->nodesize;
d5c12070
MX
5343 ret = btrfs_qgroup_reserve(root, num_bytes);
5344 if (ret)
5345 return ret;
5346 } else {
5347 num_bytes = 0;
5348 }
5349
5350 *qgroup_reserved = num_bytes;
5351
5352 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5353 rsv->space_info = __find_space_info(root->fs_info,
5354 BTRFS_BLOCK_GROUP_METADATA);
5355 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5356 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5357
5358 if (ret == -ENOSPC && use_global_rsv)
5359 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5360
d5c12070
MX
5361 if (ret) {
5362 if (*qgroup_reserved)
5363 btrfs_qgroup_free(root, *qgroup_reserved);
5364 }
5365
5366 return ret;
5367}
5368
5369void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5370 struct btrfs_block_rsv *rsv,
5371 u64 qgroup_reserved)
5372{
5373 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5374}
5375
7709cde3
JB
5376/**
5377 * drop_outstanding_extent - drop an outstanding extent
5378 * @inode: the inode we're dropping the extent for
dcab6a3b 5379 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5380 *
5381 * This is called when we are freeing up an outstanding extent, either called
5382 * after an error or after an extent is written. This will return the number of
5383 * reserved extents that need to be freed. This must be called with
5384 * BTRFS_I(inode)->lock held.
5385 */
dcab6a3b 5386static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5387{
7fd2ae21 5388 unsigned drop_inode_space = 0;
9e0baf60 5389 unsigned dropped_extents = 0;
dcab6a3b 5390 unsigned num_extents = 0;
9e0baf60 5391
dcab6a3b
JB
5392 num_extents = (unsigned)div64_u64(num_bytes +
5393 BTRFS_MAX_EXTENT_SIZE - 1,
5394 BTRFS_MAX_EXTENT_SIZE);
5395 ASSERT(num_extents);
5396 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5397 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5398
7fd2ae21 5399 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5400 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5401 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5402 drop_inode_space = 1;
7fd2ae21 5403
9e0baf60
JB
5404 /*
5405 * If we have more or the same amount of outsanding extents than we have
5406 * reserved then we need to leave the reserved extents count alone.
5407 */
5408 if (BTRFS_I(inode)->outstanding_extents >=
5409 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5410 return drop_inode_space;
9e0baf60
JB
5411
5412 dropped_extents = BTRFS_I(inode)->reserved_extents -
5413 BTRFS_I(inode)->outstanding_extents;
5414 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5415 return dropped_extents + drop_inode_space;
9e0baf60
JB
5416}
5417
7709cde3
JB
5418/**
5419 * calc_csum_metadata_size - return the amount of metada space that must be
5420 * reserved/free'd for the given bytes.
5421 * @inode: the inode we're manipulating
5422 * @num_bytes: the number of bytes in question
5423 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5424 *
5425 * This adjusts the number of csum_bytes in the inode and then returns the
5426 * correct amount of metadata that must either be reserved or freed. We
5427 * calculate how many checksums we can fit into one leaf and then divide the
5428 * number of bytes that will need to be checksumed by this value to figure out
5429 * how many checksums will be required. If we are adding bytes then the number
5430 * may go up and we will return the number of additional bytes that must be
5431 * reserved. If it is going down we will return the number of bytes that must
5432 * be freed.
5433 *
5434 * This must be called with BTRFS_I(inode)->lock held.
5435 */
5436static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5437 int reserve)
6324fbf3 5438{
7709cde3 5439 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5440 u64 old_csums, num_csums;
7709cde3
JB
5441
5442 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5443 BTRFS_I(inode)->csum_bytes == 0)
5444 return 0;
5445
28f75a0e 5446 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5447 if (reserve)
5448 BTRFS_I(inode)->csum_bytes += num_bytes;
5449 else
5450 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5451 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5452
5453 /* No change, no need to reserve more */
5454 if (old_csums == num_csums)
5455 return 0;
5456
5457 if (reserve)
5458 return btrfs_calc_trans_metadata_size(root,
5459 num_csums - old_csums);
5460
5461 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5462}
c146afad 5463
0ca1f7ce
YZ
5464int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5465{
5466 struct btrfs_root *root = BTRFS_I(inode)->root;
5467 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5468 u64 to_reserve = 0;
660d3f6c 5469 u64 csum_bytes;
9e0baf60 5470 unsigned nr_extents = 0;
660d3f6c 5471 int extra_reserve = 0;
08e007d2 5472 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5473 int ret = 0;
c64c2bd8 5474 bool delalloc_lock = true;
88e081bf
WS
5475 u64 to_free = 0;
5476 unsigned dropped;
6324fbf3 5477
c64c2bd8
JB
5478 /* If we are a free space inode we need to not flush since we will be in
5479 * the middle of a transaction commit. We also don't need the delalloc
5480 * mutex since we won't race with anybody. We need this mostly to make
5481 * lockdep shut its filthy mouth.
5482 */
5483 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5484 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5485 delalloc_lock = false;
5486 }
c09544e0 5487
08e007d2
MX
5488 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5489 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5490 schedule_timeout(1);
ec44a35c 5491
c64c2bd8
JB
5492 if (delalloc_lock)
5493 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5494
0ca1f7ce 5495 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5496
9e0baf60 5497 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5498 nr_extents = (unsigned)div64_u64(num_bytes +
5499 BTRFS_MAX_EXTENT_SIZE - 1,
5500 BTRFS_MAX_EXTENT_SIZE);
5501 BTRFS_I(inode)->outstanding_extents += nr_extents;
5502 nr_extents = 0;
9e0baf60
JB
5503
5504 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5505 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5506 nr_extents = BTRFS_I(inode)->outstanding_extents -
5507 BTRFS_I(inode)->reserved_extents;
57a45ced 5508
7fd2ae21
JB
5509 /*
5510 * Add an item to reserve for updating the inode when we complete the
5511 * delalloc io.
5512 */
72ac3c0d
JB
5513 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5514 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5515 nr_extents++;
660d3f6c 5516 extra_reserve = 1;
593060d7 5517 }
7fd2ae21
JB
5518
5519 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5520 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5521 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5522 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5523
88e081bf 5524 if (root->fs_info->quota_enabled) {
237c0e9f 5525 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5526 if (ret)
5527 goto out_fail;
5528 }
c5567237 5529
88e081bf
WS
5530 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5531 if (unlikely(ret)) {
5532 if (root->fs_info->quota_enabled)
237c0e9f 5533 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5534 goto out_fail;
9e0baf60 5535 }
25179201 5536
660d3f6c
JB
5537 spin_lock(&BTRFS_I(inode)->lock);
5538 if (extra_reserve) {
72ac3c0d
JB
5539 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5540 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5541 nr_extents--;
5542 }
5543 BTRFS_I(inode)->reserved_extents += nr_extents;
5544 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5545
5546 if (delalloc_lock)
5547 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5548
8c2a3ca2 5549 if (to_reserve)
67871254 5550 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5551 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5552 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5553
0ca1f7ce 5554 return 0;
88e081bf
WS
5555
5556out_fail:
5557 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5558 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5559 /*
5560 * If the inodes csum_bytes is the same as the original
5561 * csum_bytes then we know we haven't raced with any free()ers
5562 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5563 */
f4881bc7 5564 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5565 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5566 } else {
5567 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5568 u64 bytes;
5569
5570 /*
5571 * This is tricky, but first we need to figure out how much we
5572 * free'd from any free-ers that occured during this
5573 * reservation, so we reset ->csum_bytes to the csum_bytes
5574 * before we dropped our lock, and then call the free for the
5575 * number of bytes that were freed while we were trying our
5576 * reservation.
5577 */
5578 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5579 BTRFS_I(inode)->csum_bytes = csum_bytes;
5580 to_free = calc_csum_metadata_size(inode, bytes, 0);
5581
5582
5583 /*
5584 * Now we need to see how much we would have freed had we not
5585 * been making this reservation and our ->csum_bytes were not
5586 * artificially inflated.
5587 */
5588 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5589 bytes = csum_bytes - orig_csum_bytes;
5590 bytes = calc_csum_metadata_size(inode, bytes, 0);
5591
5592 /*
5593 * Now reset ->csum_bytes to what it should be. If bytes is
5594 * more than to_free then we would have free'd more space had we
5595 * not had an artificially high ->csum_bytes, so we need to free
5596 * the remainder. If bytes is the same or less then we don't
5597 * need to do anything, the other free-ers did the correct
5598 * thing.
5599 */
5600 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5601 if (bytes > to_free)
5602 to_free = bytes - to_free;
5603 else
5604 to_free = 0;
5605 }
88e081bf 5606 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5607 if (dropped)
88e081bf
WS
5608 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5609
5610 if (to_free) {
5611 btrfs_block_rsv_release(root, block_rsv, to_free);
5612 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5613 btrfs_ino(inode), to_free, 0);
5614 }
5615 if (delalloc_lock)
5616 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5617 return ret;
0ca1f7ce
YZ
5618}
5619
7709cde3
JB
5620/**
5621 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5622 * @inode: the inode to release the reservation for
5623 * @num_bytes: the number of bytes we're releasing
5624 *
5625 * This will release the metadata reservation for an inode. This can be called
5626 * once we complete IO for a given set of bytes to release their metadata
5627 * reservations.
5628 */
0ca1f7ce
YZ
5629void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5630{
5631 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5632 u64 to_free = 0;
5633 unsigned dropped;
0ca1f7ce
YZ
5634
5635 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5636 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5637 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5638
0934856d
MX
5639 if (num_bytes)
5640 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5641 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5642 if (dropped > 0)
5643 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5644
6a3891c5
JB
5645 if (btrfs_test_is_dummy_root(root))
5646 return;
5647
8c2a3ca2
JB
5648 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5649 btrfs_ino(inode), to_free, 0);
c5567237 5650
0ca1f7ce
YZ
5651 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5652 to_free);
5653}
5654
7709cde3
JB
5655/**
5656 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5657 * @inode: inode we're writing to
5658 * @num_bytes: the number of bytes we want to allocate
5659 *
5660 * This will do the following things
5661 *
5662 * o reserve space in the data space info for num_bytes
5663 * o reserve space in the metadata space info based on number of outstanding
5664 * extents and how much csums will be needed
5665 * o add to the inodes ->delalloc_bytes
5666 * o add it to the fs_info's delalloc inodes list.
5667 *
5668 * This will return 0 for success and -ENOSPC if there is no space left.
5669 */
0ca1f7ce
YZ
5670int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5671{
5672 int ret;
5673
e2d1f923 5674 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5675 if (ret)
0ca1f7ce
YZ
5676 return ret;
5677
5678 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5679 if (ret) {
5680 btrfs_free_reserved_data_space(inode, num_bytes);
5681 return ret;
5682 }
5683
5684 return 0;
5685}
5686
7709cde3
JB
5687/**
5688 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5689 * @inode: inode we're releasing space for
5690 * @num_bytes: the number of bytes we want to free up
5691 *
5692 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5693 * called in the case that we don't need the metadata AND data reservations
5694 * anymore. So if there is an error or we insert an inline extent.
5695 *
5696 * This function will release the metadata space that was not used and will
5697 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5698 * list if there are no delalloc bytes left.
5699 */
0ca1f7ce
YZ
5700void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5701{
5702 btrfs_delalloc_release_metadata(inode, num_bytes);
5703 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5704}
5705
ce93ec54
JB
5706static int update_block_group(struct btrfs_trans_handle *trans,
5707 struct btrfs_root *root, u64 bytenr,
5708 u64 num_bytes, int alloc)
9078a3e1 5709{
0af3d00b 5710 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5711 struct btrfs_fs_info *info = root->fs_info;
db94535d 5712 u64 total = num_bytes;
9078a3e1 5713 u64 old_val;
db94535d 5714 u64 byte_in_group;
0af3d00b 5715 int factor;
3e1ad54f 5716
5d4f98a2 5717 /* block accounting for super block */
eb73c1b7 5718 spin_lock(&info->delalloc_root_lock);
6c41761f 5719 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5720 if (alloc)
5721 old_val += num_bytes;
5722 else
5723 old_val -= num_bytes;
6c41761f 5724 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5725 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5726
d397712b 5727 while (total) {
db94535d 5728 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5729 if (!cache)
79787eaa 5730 return -ENOENT;
b742bb82
YZ
5731 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5732 BTRFS_BLOCK_GROUP_RAID1 |
5733 BTRFS_BLOCK_GROUP_RAID10))
5734 factor = 2;
5735 else
5736 factor = 1;
9d66e233
JB
5737 /*
5738 * If this block group has free space cache written out, we
5739 * need to make sure to load it if we are removing space. This
5740 * is because we need the unpinning stage to actually add the
5741 * space back to the block group, otherwise we will leak space.
5742 */
5743 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5744 cache_block_group(cache, 1);
0af3d00b 5745
db94535d
CM
5746 byte_in_group = bytenr - cache->key.objectid;
5747 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5748
25179201 5749 spin_lock(&cache->space_info->lock);
c286ac48 5750 spin_lock(&cache->lock);
0af3d00b 5751
73bc1876 5752 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5753 cache->disk_cache_state < BTRFS_DC_CLEAR)
5754 cache->disk_cache_state = BTRFS_DC_CLEAR;
5755
9078a3e1 5756 old_val = btrfs_block_group_used(&cache->item);
db94535d 5757 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5758 if (alloc) {
db94535d 5759 old_val += num_bytes;
11833d66
YZ
5760 btrfs_set_block_group_used(&cache->item, old_val);
5761 cache->reserved -= num_bytes;
11833d66 5762 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5763 cache->space_info->bytes_used += num_bytes;
5764 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5765 spin_unlock(&cache->lock);
25179201 5766 spin_unlock(&cache->space_info->lock);
cd1bc465 5767 } else {
db94535d 5768 old_val -= num_bytes;
ae0ab003
FM
5769 btrfs_set_block_group_used(&cache->item, old_val);
5770 cache->pinned += num_bytes;
5771 cache->space_info->bytes_pinned += num_bytes;
5772 cache->space_info->bytes_used -= num_bytes;
5773 cache->space_info->disk_used -= num_bytes * factor;
5774 spin_unlock(&cache->lock);
5775 spin_unlock(&cache->space_info->lock);
47ab2a6c 5776
ae0ab003
FM
5777 set_extent_dirty(info->pinned_extents,
5778 bytenr, bytenr + num_bytes - 1,
5779 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5780 /*
5781 * No longer have used bytes in this block group, queue
5782 * it for deletion.
5783 */
5784 if (old_val == 0) {
5785 spin_lock(&info->unused_bgs_lock);
5786 if (list_empty(&cache->bg_list)) {
5787 btrfs_get_block_group(cache);
5788 list_add_tail(&cache->bg_list,
5789 &info->unused_bgs);
5790 }
5791 spin_unlock(&info->unused_bgs_lock);
5792 }
cd1bc465 5793 }
1bbc621e
CM
5794
5795 spin_lock(&trans->transaction->dirty_bgs_lock);
5796 if (list_empty(&cache->dirty_list)) {
5797 list_add_tail(&cache->dirty_list,
5798 &trans->transaction->dirty_bgs);
5799 trans->transaction->num_dirty_bgs++;
5800 btrfs_get_block_group(cache);
5801 }
5802 spin_unlock(&trans->transaction->dirty_bgs_lock);
5803
fa9c0d79 5804 btrfs_put_block_group(cache);
db94535d
CM
5805 total -= num_bytes;
5806 bytenr += num_bytes;
9078a3e1
CM
5807 }
5808 return 0;
5809}
6324fbf3 5810
a061fc8d
CM
5811static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5812{
0f9dd46c 5813 struct btrfs_block_group_cache *cache;
d2fb3437 5814 u64 bytenr;
0f9dd46c 5815
a1897fdd
LB
5816 spin_lock(&root->fs_info->block_group_cache_lock);
5817 bytenr = root->fs_info->first_logical_byte;
5818 spin_unlock(&root->fs_info->block_group_cache_lock);
5819
5820 if (bytenr < (u64)-1)
5821 return bytenr;
5822
0f9dd46c
JB
5823 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5824 if (!cache)
a061fc8d 5825 return 0;
0f9dd46c 5826
d2fb3437 5827 bytenr = cache->key.objectid;
fa9c0d79 5828 btrfs_put_block_group(cache);
d2fb3437
YZ
5829
5830 return bytenr;
a061fc8d
CM
5831}
5832
f0486c68
YZ
5833static int pin_down_extent(struct btrfs_root *root,
5834 struct btrfs_block_group_cache *cache,
5835 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5836{
11833d66
YZ
5837 spin_lock(&cache->space_info->lock);
5838 spin_lock(&cache->lock);
5839 cache->pinned += num_bytes;
5840 cache->space_info->bytes_pinned += num_bytes;
5841 if (reserved) {
5842 cache->reserved -= num_bytes;
5843 cache->space_info->bytes_reserved -= num_bytes;
5844 }
5845 spin_unlock(&cache->lock);
5846 spin_unlock(&cache->space_info->lock);
68b38550 5847
f0486c68
YZ
5848 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5849 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5850 if (reserved)
0be5dc67 5851 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5852 return 0;
5853}
68b38550 5854
f0486c68
YZ
5855/*
5856 * this function must be called within transaction
5857 */
5858int btrfs_pin_extent(struct btrfs_root *root,
5859 u64 bytenr, u64 num_bytes, int reserved)
5860{
5861 struct btrfs_block_group_cache *cache;
68b38550 5862
f0486c68 5863 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5864 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5865
5866 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5867
5868 btrfs_put_block_group(cache);
11833d66
YZ
5869 return 0;
5870}
5871
f0486c68 5872/*
e688b725
CM
5873 * this function must be called within transaction
5874 */
dcfac415 5875int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5876 u64 bytenr, u64 num_bytes)
5877{
5878 struct btrfs_block_group_cache *cache;
b50c6e25 5879 int ret;
e688b725
CM
5880
5881 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5882 if (!cache)
5883 return -EINVAL;
e688b725
CM
5884
5885 /*
5886 * pull in the free space cache (if any) so that our pin
5887 * removes the free space from the cache. We have load_only set
5888 * to one because the slow code to read in the free extents does check
5889 * the pinned extents.
5890 */
f6373bf3 5891 cache_block_group(cache, 1);
e688b725
CM
5892
5893 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5894
5895 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5896 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5897 btrfs_put_block_group(cache);
b50c6e25 5898 return ret;
e688b725
CM
5899}
5900
8c2a1a30
JB
5901static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5902{
5903 int ret;
5904 struct btrfs_block_group_cache *block_group;
5905 struct btrfs_caching_control *caching_ctl;
5906
5907 block_group = btrfs_lookup_block_group(root->fs_info, start);
5908 if (!block_group)
5909 return -EINVAL;
5910
5911 cache_block_group(block_group, 0);
5912 caching_ctl = get_caching_control(block_group);
5913
5914 if (!caching_ctl) {
5915 /* Logic error */
5916 BUG_ON(!block_group_cache_done(block_group));
5917 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5918 } else {
5919 mutex_lock(&caching_ctl->mutex);
5920
5921 if (start >= caching_ctl->progress) {
5922 ret = add_excluded_extent(root, start, num_bytes);
5923 } else if (start + num_bytes <= caching_ctl->progress) {
5924 ret = btrfs_remove_free_space(block_group,
5925 start, num_bytes);
5926 } else {
5927 num_bytes = caching_ctl->progress - start;
5928 ret = btrfs_remove_free_space(block_group,
5929 start, num_bytes);
5930 if (ret)
5931 goto out_lock;
5932
5933 num_bytes = (start + num_bytes) -
5934 caching_ctl->progress;
5935 start = caching_ctl->progress;
5936 ret = add_excluded_extent(root, start, num_bytes);
5937 }
5938out_lock:
5939 mutex_unlock(&caching_ctl->mutex);
5940 put_caching_control(caching_ctl);
5941 }
5942 btrfs_put_block_group(block_group);
5943 return ret;
5944}
5945
5946int btrfs_exclude_logged_extents(struct btrfs_root *log,
5947 struct extent_buffer *eb)
5948{
5949 struct btrfs_file_extent_item *item;
5950 struct btrfs_key key;
5951 int found_type;
5952 int i;
5953
5954 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5955 return 0;
5956
5957 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5958 btrfs_item_key_to_cpu(eb, &key, i);
5959 if (key.type != BTRFS_EXTENT_DATA_KEY)
5960 continue;
5961 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5962 found_type = btrfs_file_extent_type(eb, item);
5963 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5964 continue;
5965 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5966 continue;
5967 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5968 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5969 __exclude_logged_extent(log, key.objectid, key.offset);
5970 }
5971
5972 return 0;
5973}
5974
fb25e914
JB
5975/**
5976 * btrfs_update_reserved_bytes - update the block_group and space info counters
5977 * @cache: The cache we are manipulating
5978 * @num_bytes: The number of bytes in question
5979 * @reserve: One of the reservation enums
e570fd27 5980 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5981 *
5982 * This is called by the allocator when it reserves space, or by somebody who is
5983 * freeing space that was never actually used on disk. For example if you
5984 * reserve some space for a new leaf in transaction A and before transaction A
5985 * commits you free that leaf, you call this with reserve set to 0 in order to
5986 * clear the reservation.
5987 *
5988 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5989 * ENOSPC accounting. For data we handle the reservation through clearing the
5990 * delalloc bits in the io_tree. We have to do this since we could end up
5991 * allocating less disk space for the amount of data we have reserved in the
5992 * case of compression.
5993 *
5994 * If this is a reservation and the block group has become read only we cannot
5995 * make the reservation and return -EAGAIN, otherwise this function always
5996 * succeeds.
f0486c68 5997 */
fb25e914 5998static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5999 u64 num_bytes, int reserve, int delalloc)
11833d66 6000{
fb25e914 6001 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6002 int ret = 0;
79787eaa 6003
fb25e914
JB
6004 spin_lock(&space_info->lock);
6005 spin_lock(&cache->lock);
6006 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6007 if (cache->ro) {
6008 ret = -EAGAIN;
6009 } else {
fb25e914
JB
6010 cache->reserved += num_bytes;
6011 space_info->bytes_reserved += num_bytes;
6012 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6013 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6014 "space_info", space_info->flags,
6015 num_bytes, 0);
fb25e914
JB
6016 space_info->bytes_may_use -= num_bytes;
6017 }
e570fd27
MX
6018
6019 if (delalloc)
6020 cache->delalloc_bytes += num_bytes;
f0486c68 6021 }
fb25e914
JB
6022 } else {
6023 if (cache->ro)
6024 space_info->bytes_readonly += num_bytes;
6025 cache->reserved -= num_bytes;
6026 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6027
6028 if (delalloc)
6029 cache->delalloc_bytes -= num_bytes;
324ae4df 6030 }
fb25e914
JB
6031 spin_unlock(&cache->lock);
6032 spin_unlock(&space_info->lock);
f0486c68 6033 return ret;
324ae4df 6034}
9078a3e1 6035
143bede5 6036void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6037 struct btrfs_root *root)
e8569813 6038{
e8569813 6039 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6040 struct btrfs_caching_control *next;
6041 struct btrfs_caching_control *caching_ctl;
6042 struct btrfs_block_group_cache *cache;
e8569813 6043
9e351cc8 6044 down_write(&fs_info->commit_root_sem);
25179201 6045
11833d66
YZ
6046 list_for_each_entry_safe(caching_ctl, next,
6047 &fs_info->caching_block_groups, list) {
6048 cache = caching_ctl->block_group;
6049 if (block_group_cache_done(cache)) {
6050 cache->last_byte_to_unpin = (u64)-1;
6051 list_del_init(&caching_ctl->list);
6052 put_caching_control(caching_ctl);
e8569813 6053 } else {
11833d66 6054 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6055 }
e8569813 6056 }
11833d66
YZ
6057
6058 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6059 fs_info->pinned_extents = &fs_info->freed_extents[1];
6060 else
6061 fs_info->pinned_extents = &fs_info->freed_extents[0];
6062
9e351cc8 6063 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6064
6065 update_global_block_rsv(fs_info);
e8569813
ZY
6066}
6067
678886bd
FM
6068static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6069 const bool return_free_space)
ccd467d6 6070{
11833d66
YZ
6071 struct btrfs_fs_info *fs_info = root->fs_info;
6072 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6073 struct btrfs_space_info *space_info;
6074 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6075 u64 len;
7b398f8e 6076 bool readonly;
ccd467d6 6077
11833d66 6078 while (start <= end) {
7b398f8e 6079 readonly = false;
11833d66
YZ
6080 if (!cache ||
6081 start >= cache->key.objectid + cache->key.offset) {
6082 if (cache)
6083 btrfs_put_block_group(cache);
6084 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6085 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6086 }
6087
6088 len = cache->key.objectid + cache->key.offset - start;
6089 len = min(len, end + 1 - start);
6090
6091 if (start < cache->last_byte_to_unpin) {
6092 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6093 if (return_free_space)
6094 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6095 }
6096
f0486c68 6097 start += len;
7b398f8e 6098 space_info = cache->space_info;
f0486c68 6099
7b398f8e 6100 spin_lock(&space_info->lock);
11833d66
YZ
6101 spin_lock(&cache->lock);
6102 cache->pinned -= len;
7b398f8e 6103 space_info->bytes_pinned -= len;
d288db5d 6104 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6105 if (cache->ro) {
6106 space_info->bytes_readonly += len;
6107 readonly = true;
6108 }
11833d66 6109 spin_unlock(&cache->lock);
7b398f8e
JB
6110 if (!readonly && global_rsv->space_info == space_info) {
6111 spin_lock(&global_rsv->lock);
6112 if (!global_rsv->full) {
6113 len = min(len, global_rsv->size -
6114 global_rsv->reserved);
6115 global_rsv->reserved += len;
6116 space_info->bytes_may_use += len;
6117 if (global_rsv->reserved >= global_rsv->size)
6118 global_rsv->full = 1;
6119 }
6120 spin_unlock(&global_rsv->lock);
6121 }
6122 spin_unlock(&space_info->lock);
ccd467d6 6123 }
11833d66
YZ
6124
6125 if (cache)
6126 btrfs_put_block_group(cache);
ccd467d6
CM
6127 return 0;
6128}
6129
6130int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6131 struct btrfs_root *root)
a28ec197 6132{
11833d66 6133 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6134 struct btrfs_block_group_cache *block_group, *tmp;
6135 struct list_head *deleted_bgs;
11833d66 6136 struct extent_io_tree *unpin;
1a5bc167
CM
6137 u64 start;
6138 u64 end;
a28ec197 6139 int ret;
a28ec197 6140
11833d66
YZ
6141 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6142 unpin = &fs_info->freed_extents[1];
6143 else
6144 unpin = &fs_info->freed_extents[0];
6145
e33e17ee 6146 while (!trans->aborted) {
d4b450cd 6147 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6148 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6149 EXTENT_DIRTY, NULL);
d4b450cd
FM
6150 if (ret) {
6151 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6152 break;
d4b450cd 6153 }
1f3c79a2 6154
5378e607
LD
6155 if (btrfs_test_opt(root, DISCARD))
6156 ret = btrfs_discard_extent(root, start,
6157 end + 1 - start, NULL);
1f3c79a2 6158
1a5bc167 6159 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6160 unpin_extent_range(root, start, end, true);
d4b450cd 6161 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6162 cond_resched();
a28ec197 6163 }
817d52f8 6164
e33e17ee
JM
6165 /*
6166 * Transaction is finished. We don't need the lock anymore. We
6167 * do need to clean up the block groups in case of a transaction
6168 * abort.
6169 */
6170 deleted_bgs = &trans->transaction->deleted_bgs;
6171 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6172 u64 trimmed = 0;
6173
6174 ret = -EROFS;
6175 if (!trans->aborted)
6176 ret = btrfs_discard_extent(root,
6177 block_group->key.objectid,
6178 block_group->key.offset,
6179 &trimmed);
6180
6181 list_del_init(&block_group->bg_list);
6182 btrfs_put_block_group_trimming(block_group);
6183 btrfs_put_block_group(block_group);
6184
6185 if (ret) {
6186 const char *errstr = btrfs_decode_error(ret);
6187 btrfs_warn(fs_info,
6188 "Discard failed while removing blockgroup: errno=%d %s\n",
6189 ret, errstr);
6190 }
6191 }
6192
e20d96d6
CM
6193 return 0;
6194}
6195
b150a4f1
JB
6196static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6197 u64 owner, u64 root_objectid)
6198{
6199 struct btrfs_space_info *space_info;
6200 u64 flags;
6201
6202 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6203 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6204 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6205 else
6206 flags = BTRFS_BLOCK_GROUP_METADATA;
6207 } else {
6208 flags = BTRFS_BLOCK_GROUP_DATA;
6209 }
6210
6211 space_info = __find_space_info(fs_info, flags);
6212 BUG_ON(!space_info); /* Logic bug */
6213 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6214}
6215
6216
5d4f98a2
YZ
6217static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6218 struct btrfs_root *root,
c682f9b3 6219 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6220 u64 root_objectid, u64 owner_objectid,
6221 u64 owner_offset, int refs_to_drop,
c682f9b3 6222 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6223{
e2fa7227 6224 struct btrfs_key key;
5d4f98a2 6225 struct btrfs_path *path;
1261ec42
CM
6226 struct btrfs_fs_info *info = root->fs_info;
6227 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6228 struct extent_buffer *leaf;
5d4f98a2
YZ
6229 struct btrfs_extent_item *ei;
6230 struct btrfs_extent_inline_ref *iref;
a28ec197 6231 int ret;
5d4f98a2 6232 int is_data;
952fccac
CM
6233 int extent_slot = 0;
6234 int found_extent = 0;
6235 int num_to_del = 1;
c682f9b3 6236 int no_quota = node->no_quota;
5d4f98a2
YZ
6237 u32 item_size;
6238 u64 refs;
c682f9b3
QW
6239 u64 bytenr = node->bytenr;
6240 u64 num_bytes = node->num_bytes;
fcebe456 6241 int last_ref = 0;
3173a18f
JB
6242 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6243 SKINNY_METADATA);
037e6390 6244
fcebe456
JB
6245 if (!info->quota_enabled || !is_fstree(root_objectid))
6246 no_quota = 1;
6247
5caf2a00 6248 path = btrfs_alloc_path();
54aa1f4d
CM
6249 if (!path)
6250 return -ENOMEM;
5f26f772 6251
3c12ac72 6252 path->reada = 1;
b9473439 6253 path->leave_spinning = 1;
5d4f98a2
YZ
6254
6255 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6256 BUG_ON(!is_data && refs_to_drop != 1);
6257
3173a18f
JB
6258 if (is_data)
6259 skinny_metadata = 0;
6260
5d4f98a2
YZ
6261 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6262 bytenr, num_bytes, parent,
6263 root_objectid, owner_objectid,
6264 owner_offset);
7bb86316 6265 if (ret == 0) {
952fccac 6266 extent_slot = path->slots[0];
5d4f98a2
YZ
6267 while (extent_slot >= 0) {
6268 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6269 extent_slot);
5d4f98a2 6270 if (key.objectid != bytenr)
952fccac 6271 break;
5d4f98a2
YZ
6272 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6273 key.offset == num_bytes) {
952fccac
CM
6274 found_extent = 1;
6275 break;
6276 }
3173a18f
JB
6277 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6278 key.offset == owner_objectid) {
6279 found_extent = 1;
6280 break;
6281 }
952fccac
CM
6282 if (path->slots[0] - extent_slot > 5)
6283 break;
5d4f98a2 6284 extent_slot--;
952fccac 6285 }
5d4f98a2
YZ
6286#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6287 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6288 if (found_extent && item_size < sizeof(*ei))
6289 found_extent = 0;
6290#endif
31840ae1 6291 if (!found_extent) {
5d4f98a2 6292 BUG_ON(iref);
56bec294 6293 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6294 NULL, refs_to_drop,
fcebe456 6295 is_data, &last_ref);
005d6427
DS
6296 if (ret) {
6297 btrfs_abort_transaction(trans, extent_root, ret);
6298 goto out;
6299 }
b3b4aa74 6300 btrfs_release_path(path);
b9473439 6301 path->leave_spinning = 1;
5d4f98a2
YZ
6302
6303 key.objectid = bytenr;
6304 key.type = BTRFS_EXTENT_ITEM_KEY;
6305 key.offset = num_bytes;
6306
3173a18f
JB
6307 if (!is_data && skinny_metadata) {
6308 key.type = BTRFS_METADATA_ITEM_KEY;
6309 key.offset = owner_objectid;
6310 }
6311
31840ae1
ZY
6312 ret = btrfs_search_slot(trans, extent_root,
6313 &key, path, -1, 1);
3173a18f
JB
6314 if (ret > 0 && skinny_metadata && path->slots[0]) {
6315 /*
6316 * Couldn't find our skinny metadata item,
6317 * see if we have ye olde extent item.
6318 */
6319 path->slots[0]--;
6320 btrfs_item_key_to_cpu(path->nodes[0], &key,
6321 path->slots[0]);
6322 if (key.objectid == bytenr &&
6323 key.type == BTRFS_EXTENT_ITEM_KEY &&
6324 key.offset == num_bytes)
6325 ret = 0;
6326 }
6327
6328 if (ret > 0 && skinny_metadata) {
6329 skinny_metadata = false;
9ce49a0b 6330 key.objectid = bytenr;
3173a18f
JB
6331 key.type = BTRFS_EXTENT_ITEM_KEY;
6332 key.offset = num_bytes;
6333 btrfs_release_path(path);
6334 ret = btrfs_search_slot(trans, extent_root,
6335 &key, path, -1, 1);
6336 }
6337
f3465ca4 6338 if (ret) {
c2cf52eb 6339 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6340 ret, bytenr);
b783e62d
JB
6341 if (ret > 0)
6342 btrfs_print_leaf(extent_root,
6343 path->nodes[0]);
f3465ca4 6344 }
005d6427
DS
6345 if (ret < 0) {
6346 btrfs_abort_transaction(trans, extent_root, ret);
6347 goto out;
6348 }
31840ae1
ZY
6349 extent_slot = path->slots[0];
6350 }
fae7f21c 6351 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6352 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6353 btrfs_err(info,
6354 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6355 bytenr, parent, root_objectid, owner_objectid,
6356 owner_offset);
c4a050bb
JB
6357 btrfs_abort_transaction(trans, extent_root, ret);
6358 goto out;
79787eaa 6359 } else {
005d6427
DS
6360 btrfs_abort_transaction(trans, extent_root, ret);
6361 goto out;
7bb86316 6362 }
5f39d397
CM
6363
6364 leaf = path->nodes[0];
5d4f98a2
YZ
6365 item_size = btrfs_item_size_nr(leaf, extent_slot);
6366#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6367 if (item_size < sizeof(*ei)) {
6368 BUG_ON(found_extent || extent_slot != path->slots[0]);
6369 ret = convert_extent_item_v0(trans, extent_root, path,
6370 owner_objectid, 0);
005d6427
DS
6371 if (ret < 0) {
6372 btrfs_abort_transaction(trans, extent_root, ret);
6373 goto out;
6374 }
5d4f98a2 6375
b3b4aa74 6376 btrfs_release_path(path);
5d4f98a2
YZ
6377 path->leave_spinning = 1;
6378
6379 key.objectid = bytenr;
6380 key.type = BTRFS_EXTENT_ITEM_KEY;
6381 key.offset = num_bytes;
6382
6383 ret = btrfs_search_slot(trans, extent_root, &key, path,
6384 -1, 1);
6385 if (ret) {
c2cf52eb 6386 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6387 ret, bytenr);
5d4f98a2
YZ
6388 btrfs_print_leaf(extent_root, path->nodes[0]);
6389 }
005d6427
DS
6390 if (ret < 0) {
6391 btrfs_abort_transaction(trans, extent_root, ret);
6392 goto out;
6393 }
6394
5d4f98a2
YZ
6395 extent_slot = path->slots[0];
6396 leaf = path->nodes[0];
6397 item_size = btrfs_item_size_nr(leaf, extent_slot);
6398 }
6399#endif
6400 BUG_ON(item_size < sizeof(*ei));
952fccac 6401 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6402 struct btrfs_extent_item);
3173a18f
JB
6403 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6404 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6405 struct btrfs_tree_block_info *bi;
6406 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6407 bi = (struct btrfs_tree_block_info *)(ei + 1);
6408 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6409 }
56bec294 6410
5d4f98a2 6411 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6412 if (refs < refs_to_drop) {
6413 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6414 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6415 ret = -EINVAL;
6416 btrfs_abort_transaction(trans, extent_root, ret);
6417 goto out;
6418 }
56bec294 6419 refs -= refs_to_drop;
5f39d397 6420
5d4f98a2
YZ
6421 if (refs > 0) {
6422 if (extent_op)
6423 __run_delayed_extent_op(extent_op, leaf, ei);
6424 /*
6425 * In the case of inline back ref, reference count will
6426 * be updated by remove_extent_backref
952fccac 6427 */
5d4f98a2
YZ
6428 if (iref) {
6429 BUG_ON(!found_extent);
6430 } else {
6431 btrfs_set_extent_refs(leaf, ei, refs);
6432 btrfs_mark_buffer_dirty(leaf);
6433 }
6434 if (found_extent) {
6435 ret = remove_extent_backref(trans, extent_root, path,
6436 iref, refs_to_drop,
fcebe456 6437 is_data, &last_ref);
005d6427
DS
6438 if (ret) {
6439 btrfs_abort_transaction(trans, extent_root, ret);
6440 goto out;
6441 }
952fccac 6442 }
b150a4f1
JB
6443 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6444 root_objectid);
5d4f98a2 6445 } else {
5d4f98a2
YZ
6446 if (found_extent) {
6447 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6448 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6449 if (iref) {
6450 BUG_ON(path->slots[0] != extent_slot);
6451 } else {
6452 BUG_ON(path->slots[0] != extent_slot + 1);
6453 path->slots[0] = extent_slot;
6454 num_to_del = 2;
6455 }
78fae27e 6456 }
b9473439 6457
fcebe456 6458 last_ref = 1;
952fccac
CM
6459 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6460 num_to_del);
005d6427
DS
6461 if (ret) {
6462 btrfs_abort_transaction(trans, extent_root, ret);
6463 goto out;
6464 }
b3b4aa74 6465 btrfs_release_path(path);
21af804c 6466
5d4f98a2 6467 if (is_data) {
459931ec 6468 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6469 if (ret) {
6470 btrfs_abort_transaction(trans, extent_root, ret);
6471 goto out;
6472 }
459931ec
CM
6473 }
6474
ce93ec54 6475 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6476 if (ret) {
6477 btrfs_abort_transaction(trans, extent_root, ret);
6478 goto out;
6479 }
a28ec197 6480 }
fcebe456
JB
6481 btrfs_release_path(path);
6482
79787eaa 6483out:
5caf2a00 6484 btrfs_free_path(path);
a28ec197
CM
6485 return ret;
6486}
6487
1887be66 6488/*
f0486c68 6489 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6490 * delayed ref for that extent as well. This searches the delayed ref tree for
6491 * a given extent, and if there are no other delayed refs to be processed, it
6492 * removes it from the tree.
6493 */
6494static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6495 struct btrfs_root *root, u64 bytenr)
6496{
6497 struct btrfs_delayed_ref_head *head;
6498 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6499 int ret = 0;
1887be66
CM
6500
6501 delayed_refs = &trans->transaction->delayed_refs;
6502 spin_lock(&delayed_refs->lock);
6503 head = btrfs_find_delayed_ref_head(trans, bytenr);
6504 if (!head)
cf93da7b 6505 goto out_delayed_unlock;
1887be66 6506
d7df2c79 6507 spin_lock(&head->lock);
c6fc2454 6508 if (!list_empty(&head->ref_list))
1887be66
CM
6509 goto out;
6510
5d4f98a2
YZ
6511 if (head->extent_op) {
6512 if (!head->must_insert_reserved)
6513 goto out;
78a6184a 6514 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6515 head->extent_op = NULL;
6516 }
6517
1887be66
CM
6518 /*
6519 * waiting for the lock here would deadlock. If someone else has it
6520 * locked they are already in the process of dropping it anyway
6521 */
6522 if (!mutex_trylock(&head->mutex))
6523 goto out;
6524
6525 /*
6526 * at this point we have a head with no other entries. Go
6527 * ahead and process it.
6528 */
6529 head->node.in_tree = 0;
c46effa6 6530 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6531
d7df2c79 6532 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6533
6534 /*
6535 * we don't take a ref on the node because we're removing it from the
6536 * tree, so we just steal the ref the tree was holding.
6537 */
c3e69d58 6538 delayed_refs->num_heads--;
d7df2c79 6539 if (head->processing == 0)
c3e69d58 6540 delayed_refs->num_heads_ready--;
d7df2c79
JB
6541 head->processing = 0;
6542 spin_unlock(&head->lock);
1887be66
CM
6543 spin_unlock(&delayed_refs->lock);
6544
f0486c68
YZ
6545 BUG_ON(head->extent_op);
6546 if (head->must_insert_reserved)
6547 ret = 1;
6548
6549 mutex_unlock(&head->mutex);
1887be66 6550 btrfs_put_delayed_ref(&head->node);
f0486c68 6551 return ret;
1887be66 6552out:
d7df2c79 6553 spin_unlock(&head->lock);
cf93da7b
CM
6554
6555out_delayed_unlock:
1887be66
CM
6556 spin_unlock(&delayed_refs->lock);
6557 return 0;
6558}
6559
f0486c68
YZ
6560void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6561 struct btrfs_root *root,
6562 struct extent_buffer *buf,
5581a51a 6563 u64 parent, int last_ref)
f0486c68 6564{
b150a4f1 6565 int pin = 1;
f0486c68
YZ
6566 int ret;
6567
6568 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6569 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6570 buf->start, buf->len,
6571 parent, root->root_key.objectid,
6572 btrfs_header_level(buf),
5581a51a 6573 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6574 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6575 }
6576
6577 if (!last_ref)
6578 return;
6579
f0486c68 6580 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6581 struct btrfs_block_group_cache *cache;
6582
f0486c68
YZ
6583 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6584 ret = check_ref_cleanup(trans, root, buf->start);
6585 if (!ret)
37be25bc 6586 goto out;
f0486c68
YZ
6587 }
6588
6219872d
FM
6589 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6590
f0486c68
YZ
6591 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6592 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6593 btrfs_put_block_group(cache);
37be25bc 6594 goto out;
f0486c68
YZ
6595 }
6596
6597 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6598
6599 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6600 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6601 btrfs_put_block_group(cache);
0be5dc67 6602 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6603 pin = 0;
f0486c68
YZ
6604 }
6605out:
b150a4f1
JB
6606 if (pin)
6607 add_pinned_bytes(root->fs_info, buf->len,
6608 btrfs_header_level(buf),
6609 root->root_key.objectid);
6610
a826d6dc
JB
6611 /*
6612 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6613 * anymore.
6614 */
6615 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6616}
6617
79787eaa 6618/* Can return -ENOMEM */
66d7e7f0
AJ
6619int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6620 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6621 u64 owner, u64 offset, int no_quota)
925baedd
CM
6622{
6623 int ret;
66d7e7f0 6624 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6625
fccb84c9 6626 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6627 return 0;
fccb84c9 6628
b150a4f1
JB
6629 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6630
56bec294
CM
6631 /*
6632 * tree log blocks never actually go into the extent allocation
6633 * tree, just update pinning info and exit early.
56bec294 6634 */
5d4f98a2
YZ
6635 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6636 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6637 /* unlocks the pinned mutex */
11833d66 6638 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6639 ret = 0;
5d4f98a2 6640 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6641 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6642 num_bytes,
5d4f98a2 6643 parent, root_objectid, (int)owner,
fcebe456 6644 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6645 } else {
66d7e7f0
AJ
6646 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6647 num_bytes,
6648 parent, root_objectid, owner,
6649 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6650 NULL, no_quota);
56bec294 6651 }
925baedd
CM
6652 return ret;
6653}
6654
817d52f8
JB
6655/*
6656 * when we wait for progress in the block group caching, its because
6657 * our allocation attempt failed at least once. So, we must sleep
6658 * and let some progress happen before we try again.
6659 *
6660 * This function will sleep at least once waiting for new free space to
6661 * show up, and then it will check the block group free space numbers
6662 * for our min num_bytes. Another option is to have it go ahead
6663 * and look in the rbtree for a free extent of a given size, but this
6664 * is a good start.
36cce922
JB
6665 *
6666 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6667 * any of the information in this block group.
817d52f8 6668 */
36cce922 6669static noinline void
817d52f8
JB
6670wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6671 u64 num_bytes)
6672{
11833d66 6673 struct btrfs_caching_control *caching_ctl;
817d52f8 6674
11833d66
YZ
6675 caching_ctl = get_caching_control(cache);
6676 if (!caching_ctl)
36cce922 6677 return;
817d52f8 6678
11833d66 6679 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6680 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6681
6682 put_caching_control(caching_ctl);
11833d66
YZ
6683}
6684
6685static noinline int
6686wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6687{
6688 struct btrfs_caching_control *caching_ctl;
36cce922 6689 int ret = 0;
11833d66
YZ
6690
6691 caching_ctl = get_caching_control(cache);
6692 if (!caching_ctl)
36cce922 6693 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6694
6695 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6696 if (cache->cached == BTRFS_CACHE_ERROR)
6697 ret = -EIO;
11833d66 6698 put_caching_control(caching_ctl);
36cce922 6699 return ret;
817d52f8
JB
6700}
6701
31e50229 6702int __get_raid_index(u64 flags)
b742bb82 6703{
7738a53a 6704 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6705 return BTRFS_RAID_RAID10;
7738a53a 6706 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6707 return BTRFS_RAID_RAID1;
7738a53a 6708 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6709 return BTRFS_RAID_DUP;
7738a53a 6710 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6711 return BTRFS_RAID_RAID0;
53b381b3 6712 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6713 return BTRFS_RAID_RAID5;
53b381b3 6714 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6715 return BTRFS_RAID_RAID6;
7738a53a 6716
e942f883 6717 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6718}
6719
6ab0a202 6720int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6721{
31e50229 6722 return __get_raid_index(cache->flags);
7738a53a
ID
6723}
6724
6ab0a202
JM
6725static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6726 [BTRFS_RAID_RAID10] = "raid10",
6727 [BTRFS_RAID_RAID1] = "raid1",
6728 [BTRFS_RAID_DUP] = "dup",
6729 [BTRFS_RAID_RAID0] = "raid0",
6730 [BTRFS_RAID_SINGLE] = "single",
6731 [BTRFS_RAID_RAID5] = "raid5",
6732 [BTRFS_RAID_RAID6] = "raid6",
6733};
6734
1b8e5df6 6735static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6736{
6737 if (type >= BTRFS_NR_RAID_TYPES)
6738 return NULL;
6739
6740 return btrfs_raid_type_names[type];
6741}
6742
817d52f8 6743enum btrfs_loop_type {
285ff5af
JB
6744 LOOP_CACHING_NOWAIT = 0,
6745 LOOP_CACHING_WAIT = 1,
6746 LOOP_ALLOC_CHUNK = 2,
6747 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6748};
6749
e570fd27
MX
6750static inline void
6751btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6752 int delalloc)
6753{
6754 if (delalloc)
6755 down_read(&cache->data_rwsem);
6756}
6757
6758static inline void
6759btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6760 int delalloc)
6761{
6762 btrfs_get_block_group(cache);
6763 if (delalloc)
6764 down_read(&cache->data_rwsem);
6765}
6766
6767static struct btrfs_block_group_cache *
6768btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6769 struct btrfs_free_cluster *cluster,
6770 int delalloc)
6771{
6772 struct btrfs_block_group_cache *used_bg;
6773 bool locked = false;
6774again:
6775 spin_lock(&cluster->refill_lock);
6776 if (locked) {
6777 if (used_bg == cluster->block_group)
6778 return used_bg;
6779
6780 up_read(&used_bg->data_rwsem);
6781 btrfs_put_block_group(used_bg);
6782 }
6783
6784 used_bg = cluster->block_group;
6785 if (!used_bg)
6786 return NULL;
6787
6788 if (used_bg == block_group)
6789 return used_bg;
6790
6791 btrfs_get_block_group(used_bg);
6792
6793 if (!delalloc)
6794 return used_bg;
6795
6796 if (down_read_trylock(&used_bg->data_rwsem))
6797 return used_bg;
6798
6799 spin_unlock(&cluster->refill_lock);
6800 down_read(&used_bg->data_rwsem);
6801 locked = true;
6802 goto again;
6803}
6804
6805static inline void
6806btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6807 int delalloc)
6808{
6809 if (delalloc)
6810 up_read(&cache->data_rwsem);
6811 btrfs_put_block_group(cache);
6812}
6813
fec577fb
CM
6814/*
6815 * walks the btree of allocated extents and find a hole of a given size.
6816 * The key ins is changed to record the hole:
a4820398 6817 * ins->objectid == start position
62e2749e 6818 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6819 * ins->offset == the size of the hole.
fec577fb 6820 * Any available blocks before search_start are skipped.
a4820398
MX
6821 *
6822 * If there is no suitable free space, we will record the max size of
6823 * the free space extent currently.
fec577fb 6824 */
00361589 6825static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6826 u64 num_bytes, u64 empty_size,
98ed5174 6827 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6828 u64 flags, int delalloc)
fec577fb 6829{
80eb234a 6830 int ret = 0;
d397712b 6831 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6832 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6833 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6834 u64 search_start = 0;
a4820398 6835 u64 max_extent_size = 0;
239b14b3 6836 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6837 struct btrfs_space_info *space_info;
fa9c0d79 6838 int loop = 0;
b6919a58
DS
6839 int index = __get_raid_index(flags);
6840 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6841 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6842 bool failed_cluster_refill = false;
1cdda9b8 6843 bool failed_alloc = false;
67377734 6844 bool use_cluster = true;
60d2adbb 6845 bool have_caching_bg = false;
fec577fb 6846
db94535d 6847 WARN_ON(num_bytes < root->sectorsize);
962a298f 6848 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6849 ins->objectid = 0;
6850 ins->offset = 0;
b1a4d965 6851
b6919a58 6852 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6853
b6919a58 6854 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6855 if (!space_info) {
b6919a58 6856 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6857 return -ENOSPC;
6858 }
2552d17e 6859
67377734
JB
6860 /*
6861 * If the space info is for both data and metadata it means we have a
6862 * small filesystem and we can't use the clustering stuff.
6863 */
6864 if (btrfs_mixed_space_info(space_info))
6865 use_cluster = false;
6866
b6919a58 6867 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6868 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6869 if (!btrfs_test_opt(root, SSD))
6870 empty_cluster = 64 * 1024;
239b14b3
CM
6871 }
6872
b6919a58 6873 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6874 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6875 last_ptr = &root->fs_info->data_alloc_cluster;
6876 }
0f9dd46c 6877
239b14b3 6878 if (last_ptr) {
fa9c0d79
CM
6879 spin_lock(&last_ptr->lock);
6880 if (last_ptr->block_group)
6881 hint_byte = last_ptr->window_start;
6882 spin_unlock(&last_ptr->lock);
239b14b3 6883 }
fa9c0d79 6884
a061fc8d 6885 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6886 search_start = max(search_start, hint_byte);
0b86a832 6887
817d52f8 6888 if (!last_ptr)
fa9c0d79 6889 empty_cluster = 0;
fa9c0d79 6890
2552d17e 6891 if (search_start == hint_byte) {
2552d17e
JB
6892 block_group = btrfs_lookup_block_group(root->fs_info,
6893 search_start);
817d52f8
JB
6894 /*
6895 * we don't want to use the block group if it doesn't match our
6896 * allocation bits, or if its not cached.
ccf0e725
JB
6897 *
6898 * However if we are re-searching with an ideal block group
6899 * picked out then we don't care that the block group is cached.
817d52f8 6900 */
b6919a58 6901 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6902 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6903 down_read(&space_info->groups_sem);
44fb5511
CM
6904 if (list_empty(&block_group->list) ||
6905 block_group->ro) {
6906 /*
6907 * someone is removing this block group,
6908 * we can't jump into the have_block_group
6909 * target because our list pointers are not
6910 * valid
6911 */
6912 btrfs_put_block_group(block_group);
6913 up_read(&space_info->groups_sem);
ccf0e725 6914 } else {
b742bb82 6915 index = get_block_group_index(block_group);
e570fd27 6916 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6917 goto have_block_group;
ccf0e725 6918 }
2552d17e 6919 } else if (block_group) {
fa9c0d79 6920 btrfs_put_block_group(block_group);
2552d17e 6921 }
42e70e7a 6922 }
2552d17e 6923search:
60d2adbb 6924 have_caching_bg = false;
80eb234a 6925 down_read(&space_info->groups_sem);
b742bb82
YZ
6926 list_for_each_entry(block_group, &space_info->block_groups[index],
6927 list) {
6226cb0a 6928 u64 offset;
817d52f8 6929 int cached;
8a1413a2 6930
e570fd27 6931 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6932 search_start = block_group->key.objectid;
42e70e7a 6933
83a50de9
CM
6934 /*
6935 * this can happen if we end up cycling through all the
6936 * raid types, but we want to make sure we only allocate
6937 * for the proper type.
6938 */
b6919a58 6939 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6940 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6941 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6942 BTRFS_BLOCK_GROUP_RAID5 |
6943 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6944 BTRFS_BLOCK_GROUP_RAID10;
6945
6946 /*
6947 * if they asked for extra copies and this block group
6948 * doesn't provide them, bail. This does allow us to
6949 * fill raid0 from raid1.
6950 */
b6919a58 6951 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6952 goto loop;
6953 }
6954
2552d17e 6955have_block_group:
291c7d2f
JB
6956 cached = block_group_cache_done(block_group);
6957 if (unlikely(!cached)) {
f6373bf3 6958 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6959 BUG_ON(ret < 0);
6960 ret = 0;
817d52f8
JB
6961 }
6962
36cce922
JB
6963 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6964 goto loop;
ea6a478e 6965 if (unlikely(block_group->ro))
2552d17e 6966 goto loop;
0f9dd46c 6967
0a24325e 6968 /*
062c05c4
AO
6969 * Ok we want to try and use the cluster allocator, so
6970 * lets look there
0a24325e 6971 */
062c05c4 6972 if (last_ptr) {
215a63d1 6973 struct btrfs_block_group_cache *used_block_group;
8de972b4 6974 unsigned long aligned_cluster;
fa9c0d79
CM
6975 /*
6976 * the refill lock keeps out other
6977 * people trying to start a new cluster
6978 */
e570fd27
MX
6979 used_block_group = btrfs_lock_cluster(block_group,
6980 last_ptr,
6981 delalloc);
6982 if (!used_block_group)
44fb5511 6983 goto refill_cluster;
274bd4fb 6984
e570fd27
MX
6985 if (used_block_group != block_group &&
6986 (used_block_group->ro ||
6987 !block_group_bits(used_block_group, flags)))
6988 goto release_cluster;
44fb5511 6989
274bd4fb 6990 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6991 last_ptr,
6992 num_bytes,
6993 used_block_group->key.objectid,
6994 &max_extent_size);
fa9c0d79
CM
6995 if (offset) {
6996 /* we have a block, we're done */
6997 spin_unlock(&last_ptr->refill_lock);
3f7de037 6998 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6999 used_block_group,
7000 search_start, num_bytes);
215a63d1 7001 if (used_block_group != block_group) {
e570fd27
MX
7002 btrfs_release_block_group(block_group,
7003 delalloc);
215a63d1
MX
7004 block_group = used_block_group;
7005 }
fa9c0d79
CM
7006 goto checks;
7007 }
7008
274bd4fb 7009 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7010release_cluster:
062c05c4
AO
7011 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7012 * set up a new clusters, so lets just skip it
7013 * and let the allocator find whatever block
7014 * it can find. If we reach this point, we
7015 * will have tried the cluster allocator
7016 * plenty of times and not have found
7017 * anything, so we are likely way too
7018 * fragmented for the clustering stuff to find
a5f6f719
AO
7019 * anything.
7020 *
7021 * However, if the cluster is taken from the
7022 * current block group, release the cluster
7023 * first, so that we stand a better chance of
7024 * succeeding in the unclustered
7025 * allocation. */
7026 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7027 used_block_group != block_group) {
062c05c4 7028 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7029 btrfs_release_block_group(used_block_group,
7030 delalloc);
062c05c4
AO
7031 goto unclustered_alloc;
7032 }
7033
fa9c0d79
CM
7034 /*
7035 * this cluster didn't work out, free it and
7036 * start over
7037 */
7038 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7039
e570fd27
MX
7040 if (used_block_group != block_group)
7041 btrfs_release_block_group(used_block_group,
7042 delalloc);
7043refill_cluster:
a5f6f719
AO
7044 if (loop >= LOOP_NO_EMPTY_SIZE) {
7045 spin_unlock(&last_ptr->refill_lock);
7046 goto unclustered_alloc;
7047 }
7048
8de972b4
CM
7049 aligned_cluster = max_t(unsigned long,
7050 empty_cluster + empty_size,
7051 block_group->full_stripe_len);
7052
fa9c0d79 7053 /* allocate a cluster in this block group */
00361589
JB
7054 ret = btrfs_find_space_cluster(root, block_group,
7055 last_ptr, search_start,
7056 num_bytes,
7057 aligned_cluster);
fa9c0d79
CM
7058 if (ret == 0) {
7059 /*
7060 * now pull our allocation out of this
7061 * cluster
7062 */
7063 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7064 last_ptr,
7065 num_bytes,
7066 search_start,
7067 &max_extent_size);
fa9c0d79
CM
7068 if (offset) {
7069 /* we found one, proceed */
7070 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7071 trace_btrfs_reserve_extent_cluster(root,
7072 block_group, search_start,
7073 num_bytes);
fa9c0d79
CM
7074 goto checks;
7075 }
0a24325e
JB
7076 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7077 && !failed_cluster_refill) {
817d52f8
JB
7078 spin_unlock(&last_ptr->refill_lock);
7079
0a24325e 7080 failed_cluster_refill = true;
817d52f8
JB
7081 wait_block_group_cache_progress(block_group,
7082 num_bytes + empty_cluster + empty_size);
7083 goto have_block_group;
fa9c0d79 7084 }
817d52f8 7085
fa9c0d79
CM
7086 /*
7087 * at this point we either didn't find a cluster
7088 * or we weren't able to allocate a block from our
7089 * cluster. Free the cluster we've been trying
7090 * to use, and go to the next block group
7091 */
0a24325e 7092 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7093 spin_unlock(&last_ptr->refill_lock);
0a24325e 7094 goto loop;
fa9c0d79
CM
7095 }
7096
062c05c4 7097unclustered_alloc:
a5f6f719
AO
7098 spin_lock(&block_group->free_space_ctl->tree_lock);
7099 if (cached &&
7100 block_group->free_space_ctl->free_space <
7101 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7102 if (block_group->free_space_ctl->free_space >
7103 max_extent_size)
7104 max_extent_size =
7105 block_group->free_space_ctl->free_space;
a5f6f719
AO
7106 spin_unlock(&block_group->free_space_ctl->tree_lock);
7107 goto loop;
7108 }
7109 spin_unlock(&block_group->free_space_ctl->tree_lock);
7110
6226cb0a 7111 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7112 num_bytes, empty_size,
7113 &max_extent_size);
1cdda9b8
JB
7114 /*
7115 * If we didn't find a chunk, and we haven't failed on this
7116 * block group before, and this block group is in the middle of
7117 * caching and we are ok with waiting, then go ahead and wait
7118 * for progress to be made, and set failed_alloc to true.
7119 *
7120 * If failed_alloc is true then we've already waited on this
7121 * block group once and should move on to the next block group.
7122 */
7123 if (!offset && !failed_alloc && !cached &&
7124 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7125 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7126 num_bytes + empty_size);
7127 failed_alloc = true;
817d52f8 7128 goto have_block_group;
1cdda9b8 7129 } else if (!offset) {
60d2adbb
MX
7130 if (!cached)
7131 have_caching_bg = true;
1cdda9b8 7132 goto loop;
817d52f8 7133 }
fa9c0d79 7134checks:
4e54b17a 7135 search_start = ALIGN(offset, root->stripesize);
25179201 7136
2552d17e
JB
7137 /* move on to the next group */
7138 if (search_start + num_bytes >
215a63d1
MX
7139 block_group->key.objectid + block_group->key.offset) {
7140 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7141 goto loop;
6226cb0a 7142 }
f5a31e16 7143
f0486c68 7144 if (offset < search_start)
215a63d1 7145 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7146 search_start - offset);
7147 BUG_ON(offset > search_start);
2552d17e 7148
215a63d1 7149 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7150 alloc_type, delalloc);
f0486c68 7151 if (ret == -EAGAIN) {
215a63d1 7152 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7153 goto loop;
0f9dd46c 7154 }
0b86a832 7155
f0486c68 7156 /* we are all good, lets return */
2552d17e
JB
7157 ins->objectid = search_start;
7158 ins->offset = num_bytes;
d2fb3437 7159
3f7de037
JB
7160 trace_btrfs_reserve_extent(orig_root, block_group,
7161 search_start, num_bytes);
e570fd27 7162 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7163 break;
7164loop:
0a24325e 7165 failed_cluster_refill = false;
1cdda9b8 7166 failed_alloc = false;
b742bb82 7167 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7168 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7169 }
7170 up_read(&space_info->groups_sem);
7171
60d2adbb
MX
7172 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7173 goto search;
7174
b742bb82
YZ
7175 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7176 goto search;
7177
285ff5af 7178 /*
ccf0e725
JB
7179 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7180 * caching kthreads as we move along
817d52f8
JB
7181 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7182 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7183 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7184 * again
fa9c0d79 7185 */
723bda20 7186 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7187 index = 0;
723bda20 7188 loop++;
817d52f8 7189 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7190 struct btrfs_trans_handle *trans;
f017f15f
WS
7191 int exist = 0;
7192
7193 trans = current->journal_info;
7194 if (trans)
7195 exist = 1;
7196 else
7197 trans = btrfs_join_transaction(root);
00361589 7198
00361589
JB
7199 if (IS_ERR(trans)) {
7200 ret = PTR_ERR(trans);
7201 goto out;
7202 }
7203
b6919a58 7204 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7205 CHUNK_ALLOC_FORCE);
7206 /*
7207 * Do not bail out on ENOSPC since we
7208 * can do more things.
7209 */
00361589 7210 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7211 btrfs_abort_transaction(trans,
7212 root, ret);
00361589
JB
7213 else
7214 ret = 0;
f017f15f
WS
7215 if (!exist)
7216 btrfs_end_transaction(trans, root);
00361589 7217 if (ret)
ea658bad 7218 goto out;
2552d17e
JB
7219 }
7220
723bda20
JB
7221 if (loop == LOOP_NO_EMPTY_SIZE) {
7222 empty_size = 0;
7223 empty_cluster = 0;
fa9c0d79 7224 }
723bda20
JB
7225
7226 goto search;
2552d17e
JB
7227 } else if (!ins->objectid) {
7228 ret = -ENOSPC;
d82a6f1d 7229 } else if (ins->objectid) {
80eb234a 7230 ret = 0;
be744175 7231 }
79787eaa 7232out:
a4820398
MX
7233 if (ret == -ENOSPC)
7234 ins->offset = max_extent_size;
0f70abe2 7235 return ret;
fec577fb 7236}
ec44a35c 7237
9ed74f2d
JB
7238static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7239 int dump_block_groups)
0f9dd46c
JB
7240{
7241 struct btrfs_block_group_cache *cache;
b742bb82 7242 int index = 0;
0f9dd46c 7243
9ed74f2d 7244 spin_lock(&info->lock);
efe120a0 7245 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7246 info->flags,
7247 info->total_bytes - info->bytes_used - info->bytes_pinned -
7248 info->bytes_reserved - info->bytes_readonly,
d397712b 7249 (info->full) ? "" : "not ");
efe120a0 7250 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7251 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7252 info->total_bytes, info->bytes_used, info->bytes_pinned,
7253 info->bytes_reserved, info->bytes_may_use,
7254 info->bytes_readonly);
9ed74f2d
JB
7255 spin_unlock(&info->lock);
7256
7257 if (!dump_block_groups)
7258 return;
0f9dd46c 7259
80eb234a 7260 down_read(&info->groups_sem);
b742bb82
YZ
7261again:
7262 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7263 spin_lock(&cache->lock);
efe120a0
FH
7264 printk(KERN_INFO "BTRFS: "
7265 "block group %llu has %llu bytes, "
7266 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7267 cache->key.objectid, cache->key.offset,
7268 btrfs_block_group_used(&cache->item), cache->pinned,
7269 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7270 btrfs_dump_free_space(cache, bytes);
7271 spin_unlock(&cache->lock);
7272 }
b742bb82
YZ
7273 if (++index < BTRFS_NR_RAID_TYPES)
7274 goto again;
80eb234a 7275 up_read(&info->groups_sem);
0f9dd46c 7276}
e8569813 7277
00361589 7278int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7279 u64 num_bytes, u64 min_alloc_size,
7280 u64 empty_size, u64 hint_byte,
e570fd27 7281 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7282{
9e622d6b 7283 bool final_tried = false;
b6919a58 7284 u64 flags;
fec577fb 7285 int ret;
925baedd 7286
b6919a58 7287 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7288again:
db94535d 7289 WARN_ON(num_bytes < root->sectorsize);
00361589 7290 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7291 flags, delalloc);
3b951516 7292
9e622d6b 7293 if (ret == -ENOSPC) {
a4820398
MX
7294 if (!final_tried && ins->offset) {
7295 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7296 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7297 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7298 if (num_bytes == min_alloc_size)
7299 final_tried = true;
7300 goto again;
7301 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7302 struct btrfs_space_info *sinfo;
7303
b6919a58 7304 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7305 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7306 flags, num_bytes);
53804280
JM
7307 if (sinfo)
7308 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7309 }
925baedd 7310 }
0f9dd46c
JB
7311
7312 return ret;
e6dcd2dc
CM
7313}
7314
e688b725 7315static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7316 u64 start, u64 len,
7317 int pin, int delalloc)
65b51a00 7318{
0f9dd46c 7319 struct btrfs_block_group_cache *cache;
1f3c79a2 7320 int ret = 0;
0f9dd46c 7321
0f9dd46c
JB
7322 cache = btrfs_lookup_block_group(root->fs_info, start);
7323 if (!cache) {
c2cf52eb 7324 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7325 start);
0f9dd46c
JB
7326 return -ENOSPC;
7327 }
1f3c79a2 7328
e688b725
CM
7329 if (pin)
7330 pin_down_extent(root, cache, start, len, 1);
7331 else {
dcc82f47
FM
7332 if (btrfs_test_opt(root, DISCARD))
7333 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7334 btrfs_add_free_space(cache, start, len);
e570fd27 7335 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7336 }
31193213 7337
fa9c0d79 7338 btrfs_put_block_group(cache);
817d52f8 7339
1abe9b8a 7340 trace_btrfs_reserved_extent_free(root, start, len);
7341
e6dcd2dc
CM
7342 return ret;
7343}
7344
e688b725 7345int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7346 u64 start, u64 len, int delalloc)
e688b725 7347{
e570fd27 7348 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7349}
7350
7351int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7352 u64 start, u64 len)
7353{
e570fd27 7354 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7355}
7356
5d4f98a2
YZ
7357static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7358 struct btrfs_root *root,
7359 u64 parent, u64 root_objectid,
7360 u64 flags, u64 owner, u64 offset,
7361 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7362{
7363 int ret;
5d4f98a2 7364 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7365 struct btrfs_extent_item *extent_item;
5d4f98a2 7366 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7367 struct btrfs_path *path;
5d4f98a2
YZ
7368 struct extent_buffer *leaf;
7369 int type;
7370 u32 size;
26b8003f 7371
5d4f98a2
YZ
7372 if (parent > 0)
7373 type = BTRFS_SHARED_DATA_REF_KEY;
7374 else
7375 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7376
5d4f98a2 7377 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7378
7379 path = btrfs_alloc_path();
db5b493a
TI
7380 if (!path)
7381 return -ENOMEM;
47e4bb98 7382
b9473439 7383 path->leave_spinning = 1;
5d4f98a2
YZ
7384 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7385 ins, size);
79787eaa
JM
7386 if (ret) {
7387 btrfs_free_path(path);
7388 return ret;
7389 }
0f9dd46c 7390
5d4f98a2
YZ
7391 leaf = path->nodes[0];
7392 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7393 struct btrfs_extent_item);
5d4f98a2
YZ
7394 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7395 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7396 btrfs_set_extent_flags(leaf, extent_item,
7397 flags | BTRFS_EXTENT_FLAG_DATA);
7398
7399 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7400 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7401 if (parent > 0) {
7402 struct btrfs_shared_data_ref *ref;
7403 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7404 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7405 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7406 } else {
7407 struct btrfs_extent_data_ref *ref;
7408 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7409 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7410 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7411 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7412 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7413 }
47e4bb98
CM
7414
7415 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7416 btrfs_free_path(path);
f510cfec 7417
ce93ec54 7418 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7419 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7420 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7421 ins->objectid, ins->offset);
f5947066
CM
7422 BUG();
7423 }
0be5dc67 7424 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7425 return ret;
7426}
7427
5d4f98a2
YZ
7428static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7429 struct btrfs_root *root,
7430 u64 parent, u64 root_objectid,
7431 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7432 int level, struct btrfs_key *ins,
7433 int no_quota)
e6dcd2dc
CM
7434{
7435 int ret;
5d4f98a2
YZ
7436 struct btrfs_fs_info *fs_info = root->fs_info;
7437 struct btrfs_extent_item *extent_item;
7438 struct btrfs_tree_block_info *block_info;
7439 struct btrfs_extent_inline_ref *iref;
7440 struct btrfs_path *path;
7441 struct extent_buffer *leaf;
3173a18f 7442 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7443 u64 num_bytes = ins->offset;
3173a18f
JB
7444 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7445 SKINNY_METADATA);
7446
7447 if (!skinny_metadata)
7448 size += sizeof(*block_info);
1c2308f8 7449
5d4f98a2 7450 path = btrfs_alloc_path();
857cc2fc
JB
7451 if (!path) {
7452 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7453 root->nodesize);
d8926bb3 7454 return -ENOMEM;
857cc2fc 7455 }
56bec294 7456
5d4f98a2
YZ
7457 path->leave_spinning = 1;
7458 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7459 ins, size);
79787eaa 7460 if (ret) {
dd825259 7461 btrfs_free_path(path);
857cc2fc 7462 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7463 root->nodesize);
79787eaa
JM
7464 return ret;
7465 }
5d4f98a2
YZ
7466
7467 leaf = path->nodes[0];
7468 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7469 struct btrfs_extent_item);
7470 btrfs_set_extent_refs(leaf, extent_item, 1);
7471 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7472 btrfs_set_extent_flags(leaf, extent_item,
7473 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7474
3173a18f
JB
7475 if (skinny_metadata) {
7476 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7477 num_bytes = root->nodesize;
3173a18f
JB
7478 } else {
7479 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7480 btrfs_set_tree_block_key(leaf, block_info, key);
7481 btrfs_set_tree_block_level(leaf, block_info, level);
7482 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7483 }
5d4f98a2 7484
5d4f98a2
YZ
7485 if (parent > 0) {
7486 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7487 btrfs_set_extent_inline_ref_type(leaf, iref,
7488 BTRFS_SHARED_BLOCK_REF_KEY);
7489 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7490 } else {
7491 btrfs_set_extent_inline_ref_type(leaf, iref,
7492 BTRFS_TREE_BLOCK_REF_KEY);
7493 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7494 }
7495
7496 btrfs_mark_buffer_dirty(leaf);
7497 btrfs_free_path(path);
7498
ce93ec54
JB
7499 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7500 1);
79787eaa 7501 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7502 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7503 ins->objectid, ins->offset);
5d4f98a2
YZ
7504 BUG();
7505 }
0be5dc67 7506
707e8a07 7507 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7508 return ret;
7509}
7510
7511int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7512 struct btrfs_root *root,
7513 u64 root_objectid, u64 owner,
7514 u64 offset, struct btrfs_key *ins)
7515{
7516 int ret;
7517
7518 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7519
66d7e7f0
AJ
7520 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7521 ins->offset, 0,
7522 root_objectid, owner, offset,
7523 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7524 return ret;
7525}
e02119d5
CM
7526
7527/*
7528 * this is used by the tree logging recovery code. It records that
7529 * an extent has been allocated and makes sure to clear the free
7530 * space cache bits as well
7531 */
5d4f98a2
YZ
7532int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7533 struct btrfs_root *root,
7534 u64 root_objectid, u64 owner, u64 offset,
7535 struct btrfs_key *ins)
e02119d5
CM
7536{
7537 int ret;
7538 struct btrfs_block_group_cache *block_group;
11833d66 7539
8c2a1a30
JB
7540 /*
7541 * Mixed block groups will exclude before processing the log so we only
7542 * need to do the exlude dance if this fs isn't mixed.
7543 */
7544 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7545 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7546 if (ret)
8c2a1a30 7547 return ret;
11833d66
YZ
7548 }
7549
8c2a1a30
JB
7550 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7551 if (!block_group)
7552 return -EINVAL;
7553
fb25e914 7554 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7555 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7556 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7557 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7558 0, owner, offset, ins, 1);
b50c6e25 7559 btrfs_put_block_group(block_group);
e02119d5
CM
7560 return ret;
7561}
7562
48a3b636
ES
7563static struct extent_buffer *
7564btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7565 u64 bytenr, int level)
65b51a00
CM
7566{
7567 struct extent_buffer *buf;
7568
a83fffb7 7569 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7570 if (!buf)
7571 return ERR_PTR(-ENOMEM);
7572 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7573 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7574 btrfs_tree_lock(buf);
01d58472 7575 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7576 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7577
7578 btrfs_set_lock_blocking(buf);
65b51a00 7579 btrfs_set_buffer_uptodate(buf);
b4ce94de 7580
d0c803c4 7581 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7582 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7583 /*
7584 * we allow two log transactions at a time, use different
7585 * EXENT bit to differentiate dirty pages.
7586 */
656f30db 7587 if (buf->log_index == 0)
8cef4e16
YZ
7588 set_extent_dirty(&root->dirty_log_pages, buf->start,
7589 buf->start + buf->len - 1, GFP_NOFS);
7590 else
7591 set_extent_new(&root->dirty_log_pages, buf->start,
7592 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7593 } else {
656f30db 7594 buf->log_index = -1;
d0c803c4 7595 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7596 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7597 }
65b51a00 7598 trans->blocks_used++;
b4ce94de 7599 /* this returns a buffer locked for blocking */
65b51a00
CM
7600 return buf;
7601}
7602
f0486c68
YZ
7603static struct btrfs_block_rsv *
7604use_block_rsv(struct btrfs_trans_handle *trans,
7605 struct btrfs_root *root, u32 blocksize)
7606{
7607 struct btrfs_block_rsv *block_rsv;
68a82277 7608 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7609 int ret;
d88033db 7610 bool global_updated = false;
f0486c68
YZ
7611
7612 block_rsv = get_block_rsv(trans, root);
7613
b586b323
MX
7614 if (unlikely(block_rsv->size == 0))
7615 goto try_reserve;
d88033db 7616again:
f0486c68
YZ
7617 ret = block_rsv_use_bytes(block_rsv, blocksize);
7618 if (!ret)
7619 return block_rsv;
7620
b586b323
MX
7621 if (block_rsv->failfast)
7622 return ERR_PTR(ret);
7623
d88033db
MX
7624 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7625 global_updated = true;
7626 update_global_block_rsv(root->fs_info);
7627 goto again;
7628 }
7629
b586b323
MX
7630 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7631 static DEFINE_RATELIMIT_STATE(_rs,
7632 DEFAULT_RATELIMIT_INTERVAL * 10,
7633 /*DEFAULT_RATELIMIT_BURST*/ 1);
7634 if (__ratelimit(&_rs))
7635 WARN(1, KERN_DEBUG
efe120a0 7636 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7637 }
7638try_reserve:
7639 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7640 BTRFS_RESERVE_NO_FLUSH);
7641 if (!ret)
7642 return block_rsv;
7643 /*
7644 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7645 * the global reserve if its space type is the same as the global
7646 * reservation.
b586b323 7647 */
5881cfc9
MX
7648 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7649 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7650 ret = block_rsv_use_bytes(global_rsv, blocksize);
7651 if (!ret)
7652 return global_rsv;
7653 }
7654 return ERR_PTR(ret);
f0486c68
YZ
7655}
7656
8c2a3ca2
JB
7657static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7658 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7659{
7660 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7661 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7662}
7663
fec577fb 7664/*
f0486c68 7665 * finds a free extent and does all the dirty work required for allocation
67b7859e 7666 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7667 */
4d75f8a9
DS
7668struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7669 struct btrfs_root *root,
5d4f98a2
YZ
7670 u64 parent, u64 root_objectid,
7671 struct btrfs_disk_key *key, int level,
5581a51a 7672 u64 hint, u64 empty_size)
fec577fb 7673{
e2fa7227 7674 struct btrfs_key ins;
f0486c68 7675 struct btrfs_block_rsv *block_rsv;
5f39d397 7676 struct extent_buffer *buf;
67b7859e 7677 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7678 u64 flags = 0;
7679 int ret;
4d75f8a9 7680 u32 blocksize = root->nodesize;
3173a18f
JB
7681 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7682 SKINNY_METADATA);
fec577fb 7683
fccb84c9 7684 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7685 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7686 level);
faa2dbf0
JB
7687 if (!IS_ERR(buf))
7688 root->alloc_bytenr += blocksize;
7689 return buf;
7690 }
fccb84c9 7691
f0486c68
YZ
7692 block_rsv = use_block_rsv(trans, root, blocksize);
7693 if (IS_ERR(block_rsv))
7694 return ERR_CAST(block_rsv);
7695
00361589 7696 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7697 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7698 if (ret)
7699 goto out_unuse;
55c69072 7700
fe864576 7701 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7702 if (IS_ERR(buf)) {
7703 ret = PTR_ERR(buf);
7704 goto out_free_reserved;
7705 }
f0486c68
YZ
7706
7707 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7708 if (parent == 0)
7709 parent = ins.objectid;
7710 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7711 } else
7712 BUG_ON(parent > 0);
7713
7714 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7715 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7716 if (!extent_op) {
7717 ret = -ENOMEM;
7718 goto out_free_buf;
7719 }
f0486c68
YZ
7720 if (key)
7721 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7722 else
7723 memset(&extent_op->key, 0, sizeof(extent_op->key));
7724 extent_op->flags_to_set = flags;
3173a18f
JB
7725 if (skinny_metadata)
7726 extent_op->update_key = 0;
7727 else
7728 extent_op->update_key = 1;
f0486c68
YZ
7729 extent_op->update_flags = 1;
7730 extent_op->is_data = 0;
b1c79e09 7731 extent_op->level = level;
f0486c68 7732
66d7e7f0 7733 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7734 ins.objectid, ins.offset,
7735 parent, root_objectid, level,
7736 BTRFS_ADD_DELAYED_EXTENT,
7737 extent_op, 0);
7738 if (ret)
7739 goto out_free_delayed;
f0486c68 7740 }
fec577fb 7741 return buf;
67b7859e
OS
7742
7743out_free_delayed:
7744 btrfs_free_delayed_extent_op(extent_op);
7745out_free_buf:
7746 free_extent_buffer(buf);
7747out_free_reserved:
7748 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7749out_unuse:
7750 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7751 return ERR_PTR(ret);
fec577fb 7752}
a28ec197 7753
2c47e605
YZ
7754struct walk_control {
7755 u64 refs[BTRFS_MAX_LEVEL];
7756 u64 flags[BTRFS_MAX_LEVEL];
7757 struct btrfs_key update_progress;
7758 int stage;
7759 int level;
7760 int shared_level;
7761 int update_ref;
7762 int keep_locks;
1c4850e2
YZ
7763 int reada_slot;
7764 int reada_count;
66d7e7f0 7765 int for_reloc;
2c47e605
YZ
7766};
7767
7768#define DROP_REFERENCE 1
7769#define UPDATE_BACKREF 2
7770
1c4850e2
YZ
7771static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7772 struct btrfs_root *root,
7773 struct walk_control *wc,
7774 struct btrfs_path *path)
6407bf6d 7775{
1c4850e2
YZ
7776 u64 bytenr;
7777 u64 generation;
7778 u64 refs;
94fcca9f 7779 u64 flags;
5d4f98a2 7780 u32 nritems;
1c4850e2
YZ
7781 u32 blocksize;
7782 struct btrfs_key key;
7783 struct extent_buffer *eb;
6407bf6d 7784 int ret;
1c4850e2
YZ
7785 int slot;
7786 int nread = 0;
6407bf6d 7787
1c4850e2
YZ
7788 if (path->slots[wc->level] < wc->reada_slot) {
7789 wc->reada_count = wc->reada_count * 2 / 3;
7790 wc->reada_count = max(wc->reada_count, 2);
7791 } else {
7792 wc->reada_count = wc->reada_count * 3 / 2;
7793 wc->reada_count = min_t(int, wc->reada_count,
7794 BTRFS_NODEPTRS_PER_BLOCK(root));
7795 }
7bb86316 7796
1c4850e2
YZ
7797 eb = path->nodes[wc->level];
7798 nritems = btrfs_header_nritems(eb);
707e8a07 7799 blocksize = root->nodesize;
bd56b302 7800
1c4850e2
YZ
7801 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7802 if (nread >= wc->reada_count)
7803 break;
bd56b302 7804
2dd3e67b 7805 cond_resched();
1c4850e2
YZ
7806 bytenr = btrfs_node_blockptr(eb, slot);
7807 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7808
1c4850e2
YZ
7809 if (slot == path->slots[wc->level])
7810 goto reada;
5d4f98a2 7811
1c4850e2
YZ
7812 if (wc->stage == UPDATE_BACKREF &&
7813 generation <= root->root_key.offset)
bd56b302
CM
7814 continue;
7815
94fcca9f 7816 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7817 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7818 wc->level - 1, 1, &refs,
7819 &flags);
79787eaa
JM
7820 /* We don't care about errors in readahead. */
7821 if (ret < 0)
7822 continue;
94fcca9f
YZ
7823 BUG_ON(refs == 0);
7824
1c4850e2 7825 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7826 if (refs == 1)
7827 goto reada;
bd56b302 7828
94fcca9f
YZ
7829 if (wc->level == 1 &&
7830 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7831 continue;
1c4850e2
YZ
7832 if (!wc->update_ref ||
7833 generation <= root->root_key.offset)
7834 continue;
7835 btrfs_node_key_to_cpu(eb, &key, slot);
7836 ret = btrfs_comp_cpu_keys(&key,
7837 &wc->update_progress);
7838 if (ret < 0)
7839 continue;
94fcca9f
YZ
7840 } else {
7841 if (wc->level == 1 &&
7842 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7843 continue;
6407bf6d 7844 }
1c4850e2 7845reada:
d3e46fea 7846 readahead_tree_block(root, bytenr);
1c4850e2 7847 nread++;
20524f02 7848 }
1c4850e2 7849 wc->reada_slot = slot;
20524f02 7850}
2c47e605 7851
0ed4792a
QW
7852/*
7853 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7854 * for later qgroup accounting.
7855 *
7856 * Current, this function does nothing.
7857 */
1152651a
MF
7858static int account_leaf_items(struct btrfs_trans_handle *trans,
7859 struct btrfs_root *root,
7860 struct extent_buffer *eb)
7861{
7862 int nr = btrfs_header_nritems(eb);
0ed4792a 7863 int i, extent_type;
1152651a
MF
7864 struct btrfs_key key;
7865 struct btrfs_file_extent_item *fi;
7866 u64 bytenr, num_bytes;
7867
7868 for (i = 0; i < nr; i++) {
7869 btrfs_item_key_to_cpu(eb, &key, i);
7870
7871 if (key.type != BTRFS_EXTENT_DATA_KEY)
7872 continue;
7873
7874 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7875 /* filter out non qgroup-accountable extents */
7876 extent_type = btrfs_file_extent_type(eb, fi);
7877
7878 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7879 continue;
7880
7881 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7882 if (!bytenr)
7883 continue;
7884
7885 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7886 }
7887 return 0;
7888}
7889
7890/*
7891 * Walk up the tree from the bottom, freeing leaves and any interior
7892 * nodes which have had all slots visited. If a node (leaf or
7893 * interior) is freed, the node above it will have it's slot
7894 * incremented. The root node will never be freed.
7895 *
7896 * At the end of this function, we should have a path which has all
7897 * slots incremented to the next position for a search. If we need to
7898 * read a new node it will be NULL and the node above it will have the
7899 * correct slot selected for a later read.
7900 *
7901 * If we increment the root nodes slot counter past the number of
7902 * elements, 1 is returned to signal completion of the search.
7903 */
7904static int adjust_slots_upwards(struct btrfs_root *root,
7905 struct btrfs_path *path, int root_level)
7906{
7907 int level = 0;
7908 int nr, slot;
7909 struct extent_buffer *eb;
7910
7911 if (root_level == 0)
7912 return 1;
7913
7914 while (level <= root_level) {
7915 eb = path->nodes[level];
7916 nr = btrfs_header_nritems(eb);
7917 path->slots[level]++;
7918 slot = path->slots[level];
7919 if (slot >= nr || level == 0) {
7920 /*
7921 * Don't free the root - we will detect this
7922 * condition after our loop and return a
7923 * positive value for caller to stop walking the tree.
7924 */
7925 if (level != root_level) {
7926 btrfs_tree_unlock_rw(eb, path->locks[level]);
7927 path->locks[level] = 0;
7928
7929 free_extent_buffer(eb);
7930 path->nodes[level] = NULL;
7931 path->slots[level] = 0;
7932 }
7933 } else {
7934 /*
7935 * We have a valid slot to walk back down
7936 * from. Stop here so caller can process these
7937 * new nodes.
7938 */
7939 break;
7940 }
7941
7942 level++;
7943 }
7944
7945 eb = path->nodes[root_level];
7946 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7947 return 1;
7948
7949 return 0;
7950}
7951
7952/*
7953 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7954 * TODO: Modify this function to mark all (including complete shared node)
7955 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7956 */
7957static int account_shared_subtree(struct btrfs_trans_handle *trans,
7958 struct btrfs_root *root,
7959 struct extent_buffer *root_eb,
7960 u64 root_gen,
7961 int root_level)
7962{
7963 int ret = 0;
7964 int level;
7965 struct extent_buffer *eb = root_eb;
7966 struct btrfs_path *path = NULL;
7967
7968 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7969 BUG_ON(root_eb == NULL);
7970
7971 if (!root->fs_info->quota_enabled)
7972 return 0;
7973
7974 if (!extent_buffer_uptodate(root_eb)) {
7975 ret = btrfs_read_buffer(root_eb, root_gen);
7976 if (ret)
7977 goto out;
7978 }
7979
7980 if (root_level == 0) {
7981 ret = account_leaf_items(trans, root, root_eb);
7982 goto out;
7983 }
7984
7985 path = btrfs_alloc_path();
7986 if (!path)
7987 return -ENOMEM;
7988
7989 /*
7990 * Walk down the tree. Missing extent blocks are filled in as
7991 * we go. Metadata is accounted every time we read a new
7992 * extent block.
7993 *
7994 * When we reach a leaf, we account for file extent items in it,
7995 * walk back up the tree (adjusting slot pointers as we go)
7996 * and restart the search process.
7997 */
7998 extent_buffer_get(root_eb); /* For path */
7999 path->nodes[root_level] = root_eb;
8000 path->slots[root_level] = 0;
8001 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8002walk_down:
8003 level = root_level;
8004 while (level >= 0) {
8005 if (path->nodes[level] == NULL) {
1152651a
MF
8006 int parent_slot;
8007 u64 child_gen;
8008 u64 child_bytenr;
8009
8010 /* We need to get child blockptr/gen from
8011 * parent before we can read it. */
8012 eb = path->nodes[level + 1];
8013 parent_slot = path->slots[level + 1];
8014 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8015 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8016
ce86cd59 8017 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8018 if (IS_ERR(eb)) {
8019 ret = PTR_ERR(eb);
8020 goto out;
8021 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8022 free_extent_buffer(eb);
64c043de 8023 ret = -EIO;
1152651a
MF
8024 goto out;
8025 }
8026
8027 path->nodes[level] = eb;
8028 path->slots[level] = 0;
8029
8030 btrfs_tree_read_lock(eb);
8031 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8032 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8033 }
8034
8035 if (level == 0) {
8036 ret = account_leaf_items(trans, root, path->nodes[level]);
8037 if (ret)
8038 goto out;
8039
8040 /* Nonzero return here means we completed our search */
8041 ret = adjust_slots_upwards(root, path, root_level);
8042 if (ret)
8043 break;
8044
8045 /* Restart search with new slots */
8046 goto walk_down;
8047 }
8048
8049 level--;
8050 }
8051
8052 ret = 0;
8053out:
8054 btrfs_free_path(path);
8055
8056 return ret;
8057}
8058
f82d02d9 8059/*
2c016dc2 8060 * helper to process tree block while walking down the tree.
2c47e605 8061 *
2c47e605
YZ
8062 * when wc->stage == UPDATE_BACKREF, this function updates
8063 * back refs for pointers in the block.
8064 *
8065 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8066 */
2c47e605 8067static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8068 struct btrfs_root *root,
2c47e605 8069 struct btrfs_path *path,
94fcca9f 8070 struct walk_control *wc, int lookup_info)
f82d02d9 8071{
2c47e605
YZ
8072 int level = wc->level;
8073 struct extent_buffer *eb = path->nodes[level];
2c47e605 8074 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8075 int ret;
8076
2c47e605
YZ
8077 if (wc->stage == UPDATE_BACKREF &&
8078 btrfs_header_owner(eb) != root->root_key.objectid)
8079 return 1;
f82d02d9 8080
2c47e605
YZ
8081 /*
8082 * when reference count of tree block is 1, it won't increase
8083 * again. once full backref flag is set, we never clear it.
8084 */
94fcca9f
YZ
8085 if (lookup_info &&
8086 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8087 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8088 BUG_ON(!path->locks[level]);
8089 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8090 eb->start, level, 1,
2c47e605
YZ
8091 &wc->refs[level],
8092 &wc->flags[level]);
79787eaa
JM
8093 BUG_ON(ret == -ENOMEM);
8094 if (ret)
8095 return ret;
2c47e605
YZ
8096 BUG_ON(wc->refs[level] == 0);
8097 }
5d4f98a2 8098
2c47e605
YZ
8099 if (wc->stage == DROP_REFERENCE) {
8100 if (wc->refs[level] > 1)
8101 return 1;
f82d02d9 8102
2c47e605 8103 if (path->locks[level] && !wc->keep_locks) {
bd681513 8104 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8105 path->locks[level] = 0;
8106 }
8107 return 0;
8108 }
f82d02d9 8109
2c47e605
YZ
8110 /* wc->stage == UPDATE_BACKREF */
8111 if (!(wc->flags[level] & flag)) {
8112 BUG_ON(!path->locks[level]);
e339a6b0 8113 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8114 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8115 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8116 BUG_ON(ret); /* -ENOMEM */
2c47e605 8117 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8118 eb->len, flag,
8119 btrfs_header_level(eb), 0);
79787eaa 8120 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8121 wc->flags[level] |= flag;
8122 }
8123
8124 /*
8125 * the block is shared by multiple trees, so it's not good to
8126 * keep the tree lock
8127 */
8128 if (path->locks[level] && level > 0) {
bd681513 8129 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8130 path->locks[level] = 0;
8131 }
8132 return 0;
8133}
8134
1c4850e2 8135/*
2c016dc2 8136 * helper to process tree block pointer.
1c4850e2
YZ
8137 *
8138 * when wc->stage == DROP_REFERENCE, this function checks
8139 * reference count of the block pointed to. if the block
8140 * is shared and we need update back refs for the subtree
8141 * rooted at the block, this function changes wc->stage to
8142 * UPDATE_BACKREF. if the block is shared and there is no
8143 * need to update back, this function drops the reference
8144 * to the block.
8145 *
8146 * NOTE: return value 1 means we should stop walking down.
8147 */
8148static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8149 struct btrfs_root *root,
8150 struct btrfs_path *path,
94fcca9f 8151 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8152{
8153 u64 bytenr;
8154 u64 generation;
8155 u64 parent;
8156 u32 blocksize;
8157 struct btrfs_key key;
8158 struct extent_buffer *next;
8159 int level = wc->level;
8160 int reada = 0;
8161 int ret = 0;
1152651a 8162 bool need_account = false;
1c4850e2
YZ
8163
8164 generation = btrfs_node_ptr_generation(path->nodes[level],
8165 path->slots[level]);
8166 /*
8167 * if the lower level block was created before the snapshot
8168 * was created, we know there is no need to update back refs
8169 * for the subtree
8170 */
8171 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8172 generation <= root->root_key.offset) {
8173 *lookup_info = 1;
1c4850e2 8174 return 1;
94fcca9f 8175 }
1c4850e2
YZ
8176
8177 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8178 blocksize = root->nodesize;
1c4850e2 8179
01d58472 8180 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8181 if (!next) {
a83fffb7 8182 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8183 if (!next)
8184 return -ENOMEM;
b2aaaa3b
JB
8185 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8186 level - 1);
1c4850e2
YZ
8187 reada = 1;
8188 }
8189 btrfs_tree_lock(next);
8190 btrfs_set_lock_blocking(next);
8191
3173a18f 8192 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8193 &wc->refs[level - 1],
8194 &wc->flags[level - 1]);
79787eaa
JM
8195 if (ret < 0) {
8196 btrfs_tree_unlock(next);
8197 return ret;
8198 }
8199
c2cf52eb
SK
8200 if (unlikely(wc->refs[level - 1] == 0)) {
8201 btrfs_err(root->fs_info, "Missing references.");
8202 BUG();
8203 }
94fcca9f 8204 *lookup_info = 0;
1c4850e2 8205
94fcca9f 8206 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8207 if (wc->refs[level - 1] > 1) {
1152651a 8208 need_account = true;
94fcca9f
YZ
8209 if (level == 1 &&
8210 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8211 goto skip;
8212
1c4850e2
YZ
8213 if (!wc->update_ref ||
8214 generation <= root->root_key.offset)
8215 goto skip;
8216
8217 btrfs_node_key_to_cpu(path->nodes[level], &key,
8218 path->slots[level]);
8219 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8220 if (ret < 0)
8221 goto skip;
8222
8223 wc->stage = UPDATE_BACKREF;
8224 wc->shared_level = level - 1;
8225 }
94fcca9f
YZ
8226 } else {
8227 if (level == 1 &&
8228 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8229 goto skip;
1c4850e2
YZ
8230 }
8231
b9fab919 8232 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8233 btrfs_tree_unlock(next);
8234 free_extent_buffer(next);
8235 next = NULL;
94fcca9f 8236 *lookup_info = 1;
1c4850e2
YZ
8237 }
8238
8239 if (!next) {
8240 if (reada && level == 1)
8241 reada_walk_down(trans, root, wc, path);
ce86cd59 8242 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8243 if (IS_ERR(next)) {
8244 return PTR_ERR(next);
8245 } else if (!extent_buffer_uptodate(next)) {
416bc658 8246 free_extent_buffer(next);
97d9a8a4 8247 return -EIO;
416bc658 8248 }
1c4850e2
YZ
8249 btrfs_tree_lock(next);
8250 btrfs_set_lock_blocking(next);
8251 }
8252
8253 level--;
8254 BUG_ON(level != btrfs_header_level(next));
8255 path->nodes[level] = next;
8256 path->slots[level] = 0;
bd681513 8257 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8258 wc->level = level;
8259 if (wc->level == 1)
8260 wc->reada_slot = 0;
8261 return 0;
8262skip:
8263 wc->refs[level - 1] = 0;
8264 wc->flags[level - 1] = 0;
94fcca9f
YZ
8265 if (wc->stage == DROP_REFERENCE) {
8266 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8267 parent = path->nodes[level]->start;
8268 } else {
8269 BUG_ON(root->root_key.objectid !=
8270 btrfs_header_owner(path->nodes[level]));
8271 parent = 0;
8272 }
1c4850e2 8273
1152651a
MF
8274 if (need_account) {
8275 ret = account_shared_subtree(trans, root, next,
8276 generation, level - 1);
8277 if (ret) {
8278 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8279 "%d accounting shared subtree. Quota "
8280 "is out of sync, rescan required.\n",
8281 root->fs_info->sb->s_id, ret);
8282 }
8283 }
94fcca9f 8284 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8285 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8286 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8287 }
1c4850e2
YZ
8288 btrfs_tree_unlock(next);
8289 free_extent_buffer(next);
94fcca9f 8290 *lookup_info = 1;
1c4850e2
YZ
8291 return 1;
8292}
8293
2c47e605 8294/*
2c016dc2 8295 * helper to process tree block while walking up the tree.
2c47e605
YZ
8296 *
8297 * when wc->stage == DROP_REFERENCE, this function drops
8298 * reference count on the block.
8299 *
8300 * when wc->stage == UPDATE_BACKREF, this function changes
8301 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8302 * to UPDATE_BACKREF previously while processing the block.
8303 *
8304 * NOTE: return value 1 means we should stop walking up.
8305 */
8306static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8307 struct btrfs_root *root,
8308 struct btrfs_path *path,
8309 struct walk_control *wc)
8310{
f0486c68 8311 int ret;
2c47e605
YZ
8312 int level = wc->level;
8313 struct extent_buffer *eb = path->nodes[level];
8314 u64 parent = 0;
8315
8316 if (wc->stage == UPDATE_BACKREF) {
8317 BUG_ON(wc->shared_level < level);
8318 if (level < wc->shared_level)
8319 goto out;
8320
2c47e605
YZ
8321 ret = find_next_key(path, level + 1, &wc->update_progress);
8322 if (ret > 0)
8323 wc->update_ref = 0;
8324
8325 wc->stage = DROP_REFERENCE;
8326 wc->shared_level = -1;
8327 path->slots[level] = 0;
8328
8329 /*
8330 * check reference count again if the block isn't locked.
8331 * we should start walking down the tree again if reference
8332 * count is one.
8333 */
8334 if (!path->locks[level]) {
8335 BUG_ON(level == 0);
8336 btrfs_tree_lock(eb);
8337 btrfs_set_lock_blocking(eb);
bd681513 8338 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8339
8340 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8341 eb->start, level, 1,
2c47e605
YZ
8342 &wc->refs[level],
8343 &wc->flags[level]);
79787eaa
JM
8344 if (ret < 0) {
8345 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8346 path->locks[level] = 0;
79787eaa
JM
8347 return ret;
8348 }
2c47e605
YZ
8349 BUG_ON(wc->refs[level] == 0);
8350 if (wc->refs[level] == 1) {
bd681513 8351 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8352 path->locks[level] = 0;
2c47e605
YZ
8353 return 1;
8354 }
f82d02d9 8355 }
2c47e605 8356 }
f82d02d9 8357
2c47e605
YZ
8358 /* wc->stage == DROP_REFERENCE */
8359 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8360
2c47e605
YZ
8361 if (wc->refs[level] == 1) {
8362 if (level == 0) {
8363 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8364 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8365 else
e339a6b0 8366 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8367 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8368 ret = account_leaf_items(trans, root, eb);
8369 if (ret) {
8370 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8371 "%d accounting leaf items. Quota "
8372 "is out of sync, rescan required.\n",
8373 root->fs_info->sb->s_id, ret);
8374 }
2c47e605
YZ
8375 }
8376 /* make block locked assertion in clean_tree_block happy */
8377 if (!path->locks[level] &&
8378 btrfs_header_generation(eb) == trans->transid) {
8379 btrfs_tree_lock(eb);
8380 btrfs_set_lock_blocking(eb);
bd681513 8381 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8382 }
01d58472 8383 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8384 }
8385
8386 if (eb == root->node) {
8387 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8388 parent = eb->start;
8389 else
8390 BUG_ON(root->root_key.objectid !=
8391 btrfs_header_owner(eb));
8392 } else {
8393 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8394 parent = path->nodes[level + 1]->start;
8395 else
8396 BUG_ON(root->root_key.objectid !=
8397 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8398 }
f82d02d9 8399
5581a51a 8400 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8401out:
8402 wc->refs[level] = 0;
8403 wc->flags[level] = 0;
f0486c68 8404 return 0;
2c47e605
YZ
8405}
8406
8407static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8408 struct btrfs_root *root,
8409 struct btrfs_path *path,
8410 struct walk_control *wc)
8411{
2c47e605 8412 int level = wc->level;
94fcca9f 8413 int lookup_info = 1;
2c47e605
YZ
8414 int ret;
8415
8416 while (level >= 0) {
94fcca9f 8417 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8418 if (ret > 0)
8419 break;
8420
8421 if (level == 0)
8422 break;
8423
7a7965f8
YZ
8424 if (path->slots[level] >=
8425 btrfs_header_nritems(path->nodes[level]))
8426 break;
8427
94fcca9f 8428 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8429 if (ret > 0) {
8430 path->slots[level]++;
8431 continue;
90d2c51d
MX
8432 } else if (ret < 0)
8433 return ret;
1c4850e2 8434 level = wc->level;
f82d02d9 8435 }
f82d02d9
YZ
8436 return 0;
8437}
8438
d397712b 8439static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8440 struct btrfs_root *root,
f82d02d9 8441 struct btrfs_path *path,
2c47e605 8442 struct walk_control *wc, int max_level)
20524f02 8443{
2c47e605 8444 int level = wc->level;
20524f02 8445 int ret;
9f3a7427 8446
2c47e605
YZ
8447 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8448 while (level < max_level && path->nodes[level]) {
8449 wc->level = level;
8450 if (path->slots[level] + 1 <
8451 btrfs_header_nritems(path->nodes[level])) {
8452 path->slots[level]++;
20524f02
CM
8453 return 0;
8454 } else {
2c47e605
YZ
8455 ret = walk_up_proc(trans, root, path, wc);
8456 if (ret > 0)
8457 return 0;
bd56b302 8458
2c47e605 8459 if (path->locks[level]) {
bd681513
CM
8460 btrfs_tree_unlock_rw(path->nodes[level],
8461 path->locks[level]);
2c47e605 8462 path->locks[level] = 0;
f82d02d9 8463 }
2c47e605
YZ
8464 free_extent_buffer(path->nodes[level]);
8465 path->nodes[level] = NULL;
8466 level++;
20524f02
CM
8467 }
8468 }
8469 return 1;
8470}
8471
9aca1d51 8472/*
2c47e605
YZ
8473 * drop a subvolume tree.
8474 *
8475 * this function traverses the tree freeing any blocks that only
8476 * referenced by the tree.
8477 *
8478 * when a shared tree block is found. this function decreases its
8479 * reference count by one. if update_ref is true, this function
8480 * also make sure backrefs for the shared block and all lower level
8481 * blocks are properly updated.
9d1a2a3a
DS
8482 *
8483 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8484 */
2c536799 8485int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8486 struct btrfs_block_rsv *block_rsv, int update_ref,
8487 int for_reloc)
20524f02 8488{
5caf2a00 8489 struct btrfs_path *path;
2c47e605
YZ
8490 struct btrfs_trans_handle *trans;
8491 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8492 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8493 struct walk_control *wc;
8494 struct btrfs_key key;
8495 int err = 0;
8496 int ret;
8497 int level;
d29a9f62 8498 bool root_dropped = false;
20524f02 8499
1152651a
MF
8500 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8501
5caf2a00 8502 path = btrfs_alloc_path();
cb1b69f4
TI
8503 if (!path) {
8504 err = -ENOMEM;
8505 goto out;
8506 }
20524f02 8507
2c47e605 8508 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8509 if (!wc) {
8510 btrfs_free_path(path);
cb1b69f4
TI
8511 err = -ENOMEM;
8512 goto out;
38a1a919 8513 }
2c47e605 8514
a22285a6 8515 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8516 if (IS_ERR(trans)) {
8517 err = PTR_ERR(trans);
8518 goto out_free;
8519 }
98d5dc13 8520
3fd0a558
YZ
8521 if (block_rsv)
8522 trans->block_rsv = block_rsv;
2c47e605 8523
9f3a7427 8524 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8525 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8526 path->nodes[level] = btrfs_lock_root_node(root);
8527 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8528 path->slots[level] = 0;
bd681513 8529 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8530 memset(&wc->update_progress, 0,
8531 sizeof(wc->update_progress));
9f3a7427 8532 } else {
9f3a7427 8533 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8534 memcpy(&wc->update_progress, &key,
8535 sizeof(wc->update_progress));
8536
6702ed49 8537 level = root_item->drop_level;
2c47e605 8538 BUG_ON(level == 0);
6702ed49 8539 path->lowest_level = level;
2c47e605
YZ
8540 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8541 path->lowest_level = 0;
8542 if (ret < 0) {
8543 err = ret;
79787eaa 8544 goto out_end_trans;
9f3a7427 8545 }
1c4850e2 8546 WARN_ON(ret > 0);
2c47e605 8547
7d9eb12c
CM
8548 /*
8549 * unlock our path, this is safe because only this
8550 * function is allowed to delete this snapshot
8551 */
5d4f98a2 8552 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8553
8554 level = btrfs_header_level(root->node);
8555 while (1) {
8556 btrfs_tree_lock(path->nodes[level]);
8557 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8558 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8559
8560 ret = btrfs_lookup_extent_info(trans, root,
8561 path->nodes[level]->start,
3173a18f 8562 level, 1, &wc->refs[level],
2c47e605 8563 &wc->flags[level]);
79787eaa
JM
8564 if (ret < 0) {
8565 err = ret;
8566 goto out_end_trans;
8567 }
2c47e605
YZ
8568 BUG_ON(wc->refs[level] == 0);
8569
8570 if (level == root_item->drop_level)
8571 break;
8572
8573 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8574 path->locks[level] = 0;
2c47e605
YZ
8575 WARN_ON(wc->refs[level] != 1);
8576 level--;
8577 }
9f3a7427 8578 }
2c47e605
YZ
8579
8580 wc->level = level;
8581 wc->shared_level = -1;
8582 wc->stage = DROP_REFERENCE;
8583 wc->update_ref = update_ref;
8584 wc->keep_locks = 0;
66d7e7f0 8585 wc->for_reloc = for_reloc;
1c4850e2 8586 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8587
d397712b 8588 while (1) {
9d1a2a3a 8589
2c47e605
YZ
8590 ret = walk_down_tree(trans, root, path, wc);
8591 if (ret < 0) {
8592 err = ret;
20524f02 8593 break;
2c47e605 8594 }
9aca1d51 8595
2c47e605
YZ
8596 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8597 if (ret < 0) {
8598 err = ret;
20524f02 8599 break;
2c47e605
YZ
8600 }
8601
8602 if (ret > 0) {
8603 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8604 break;
8605 }
2c47e605
YZ
8606
8607 if (wc->stage == DROP_REFERENCE) {
8608 level = wc->level;
8609 btrfs_node_key(path->nodes[level],
8610 &root_item->drop_progress,
8611 path->slots[level]);
8612 root_item->drop_level = level;
8613 }
8614
8615 BUG_ON(wc->level == 0);
3c8f2422
JB
8616 if (btrfs_should_end_transaction(trans, tree_root) ||
8617 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8618 ret = btrfs_update_root(trans, tree_root,
8619 &root->root_key,
8620 root_item);
79787eaa
JM
8621 if (ret) {
8622 btrfs_abort_transaction(trans, tree_root, ret);
8623 err = ret;
8624 goto out_end_trans;
8625 }
2c47e605 8626
3fd0a558 8627 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8628 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8629 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8630 err = -EAGAIN;
8631 goto out_free;
8632 }
8633
a22285a6 8634 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8635 if (IS_ERR(trans)) {
8636 err = PTR_ERR(trans);
8637 goto out_free;
8638 }
3fd0a558
YZ
8639 if (block_rsv)
8640 trans->block_rsv = block_rsv;
c3e69d58 8641 }
20524f02 8642 }
b3b4aa74 8643 btrfs_release_path(path);
79787eaa
JM
8644 if (err)
8645 goto out_end_trans;
2c47e605
YZ
8646
8647 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8648 if (ret) {
8649 btrfs_abort_transaction(trans, tree_root, ret);
8650 goto out_end_trans;
8651 }
2c47e605 8652
76dda93c 8653 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8654 ret = btrfs_find_root(tree_root, &root->root_key, path,
8655 NULL, NULL);
79787eaa
JM
8656 if (ret < 0) {
8657 btrfs_abort_transaction(trans, tree_root, ret);
8658 err = ret;
8659 goto out_end_trans;
8660 } else if (ret > 0) {
84cd948c
JB
8661 /* if we fail to delete the orphan item this time
8662 * around, it'll get picked up the next time.
8663 *
8664 * The most common failure here is just -ENOENT.
8665 */
8666 btrfs_del_orphan_item(trans, tree_root,
8667 root->root_key.objectid);
76dda93c
YZ
8668 }
8669 }
8670
27cdeb70 8671 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8672 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8673 } else {
8674 free_extent_buffer(root->node);
8675 free_extent_buffer(root->commit_root);
b0feb9d9 8676 btrfs_put_fs_root(root);
76dda93c 8677 }
d29a9f62 8678 root_dropped = true;
79787eaa 8679out_end_trans:
3fd0a558 8680 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8681out_free:
2c47e605 8682 kfree(wc);
5caf2a00 8683 btrfs_free_path(path);
cb1b69f4 8684out:
d29a9f62
JB
8685 /*
8686 * So if we need to stop dropping the snapshot for whatever reason we
8687 * need to make sure to add it back to the dead root list so that we
8688 * keep trying to do the work later. This also cleans up roots if we
8689 * don't have it in the radix (like when we recover after a power fail
8690 * or unmount) so we don't leak memory.
8691 */
b37b39cd 8692 if (!for_reloc && root_dropped == false)
d29a9f62 8693 btrfs_add_dead_root(root);
90515e7f 8694 if (err && err != -EAGAIN)
cb1b69f4 8695 btrfs_std_error(root->fs_info, err);
2c536799 8696 return err;
20524f02 8697}
9078a3e1 8698
2c47e605
YZ
8699/*
8700 * drop subtree rooted at tree block 'node'.
8701 *
8702 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8703 * only used by relocation code
2c47e605 8704 */
f82d02d9
YZ
8705int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8706 struct btrfs_root *root,
8707 struct extent_buffer *node,
8708 struct extent_buffer *parent)
8709{
8710 struct btrfs_path *path;
2c47e605 8711 struct walk_control *wc;
f82d02d9
YZ
8712 int level;
8713 int parent_level;
8714 int ret = 0;
8715 int wret;
8716
2c47e605
YZ
8717 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8718
f82d02d9 8719 path = btrfs_alloc_path();
db5b493a
TI
8720 if (!path)
8721 return -ENOMEM;
f82d02d9 8722
2c47e605 8723 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8724 if (!wc) {
8725 btrfs_free_path(path);
8726 return -ENOMEM;
8727 }
2c47e605 8728
b9447ef8 8729 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8730 parent_level = btrfs_header_level(parent);
8731 extent_buffer_get(parent);
8732 path->nodes[parent_level] = parent;
8733 path->slots[parent_level] = btrfs_header_nritems(parent);
8734
b9447ef8 8735 btrfs_assert_tree_locked(node);
f82d02d9 8736 level = btrfs_header_level(node);
f82d02d9
YZ
8737 path->nodes[level] = node;
8738 path->slots[level] = 0;
bd681513 8739 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8740
8741 wc->refs[parent_level] = 1;
8742 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8743 wc->level = level;
8744 wc->shared_level = -1;
8745 wc->stage = DROP_REFERENCE;
8746 wc->update_ref = 0;
8747 wc->keep_locks = 1;
66d7e7f0 8748 wc->for_reloc = 1;
1c4850e2 8749 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8750
8751 while (1) {
2c47e605
YZ
8752 wret = walk_down_tree(trans, root, path, wc);
8753 if (wret < 0) {
f82d02d9 8754 ret = wret;
f82d02d9 8755 break;
2c47e605 8756 }
f82d02d9 8757
2c47e605 8758 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8759 if (wret < 0)
8760 ret = wret;
8761 if (wret != 0)
8762 break;
8763 }
8764
2c47e605 8765 kfree(wc);
f82d02d9
YZ
8766 btrfs_free_path(path);
8767 return ret;
8768}
8769
ec44a35c
CM
8770static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8771{
8772 u64 num_devices;
fc67c450 8773 u64 stripped;
e4d8ec0f 8774
fc67c450
ID
8775 /*
8776 * if restripe for this chunk_type is on pick target profile and
8777 * return, otherwise do the usual balance
8778 */
8779 stripped = get_restripe_target(root->fs_info, flags);
8780 if (stripped)
8781 return extended_to_chunk(stripped);
e4d8ec0f 8782
95669976 8783 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8784
fc67c450 8785 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8786 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8787 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8788
ec44a35c
CM
8789 if (num_devices == 1) {
8790 stripped |= BTRFS_BLOCK_GROUP_DUP;
8791 stripped = flags & ~stripped;
8792
8793 /* turn raid0 into single device chunks */
8794 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8795 return stripped;
8796
8797 /* turn mirroring into duplication */
8798 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8799 BTRFS_BLOCK_GROUP_RAID10))
8800 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8801 } else {
8802 /* they already had raid on here, just return */
ec44a35c
CM
8803 if (flags & stripped)
8804 return flags;
8805
8806 stripped |= BTRFS_BLOCK_GROUP_DUP;
8807 stripped = flags & ~stripped;
8808
8809 /* switch duplicated blocks with raid1 */
8810 if (flags & BTRFS_BLOCK_GROUP_DUP)
8811 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8812
e3176ca2 8813 /* this is drive concat, leave it alone */
ec44a35c 8814 }
e3176ca2 8815
ec44a35c
CM
8816 return flags;
8817}
8818
868f401a 8819static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8820{
f0486c68
YZ
8821 struct btrfs_space_info *sinfo = cache->space_info;
8822 u64 num_bytes;
199c36ea 8823 u64 min_allocable_bytes;
f0486c68 8824 int ret = -ENOSPC;
0ef3e66b 8825
199c36ea
MX
8826 /*
8827 * We need some metadata space and system metadata space for
8828 * allocating chunks in some corner cases until we force to set
8829 * it to be readonly.
8830 */
8831 if ((sinfo->flags &
8832 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8833 !force)
8834 min_allocable_bytes = 1 * 1024 * 1024;
8835 else
8836 min_allocable_bytes = 0;
8837
f0486c68
YZ
8838 spin_lock(&sinfo->lock);
8839 spin_lock(&cache->lock);
61cfea9b
W
8840
8841 if (cache->ro) {
868f401a 8842 cache->ro++;
61cfea9b
W
8843 ret = 0;
8844 goto out;
8845 }
8846
f0486c68
YZ
8847 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8848 cache->bytes_super - btrfs_block_group_used(&cache->item);
8849
8850 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8851 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8852 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8853 sinfo->bytes_readonly += num_bytes;
868f401a 8854 cache->ro++;
633c0aad 8855 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8856 ret = 0;
8857 }
61cfea9b 8858out:
f0486c68
YZ
8859 spin_unlock(&cache->lock);
8860 spin_unlock(&sinfo->lock);
8861 return ret;
8862}
7d9eb12c 8863
868f401a 8864int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 8865 struct btrfs_block_group_cache *cache)
c286ac48 8866
f0486c68
YZ
8867{
8868 struct btrfs_trans_handle *trans;
8869 u64 alloc_flags;
8870 int ret;
7d9eb12c 8871
1bbc621e 8872again:
ff5714cc 8873 trans = btrfs_join_transaction(root);
79787eaa
JM
8874 if (IS_ERR(trans))
8875 return PTR_ERR(trans);
5d4f98a2 8876
1bbc621e
CM
8877 /*
8878 * we're not allowed to set block groups readonly after the dirty
8879 * block groups cache has started writing. If it already started,
8880 * back off and let this transaction commit
8881 */
8882 mutex_lock(&root->fs_info->ro_block_group_mutex);
8883 if (trans->transaction->dirty_bg_run) {
8884 u64 transid = trans->transid;
8885
8886 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8887 btrfs_end_transaction(trans, root);
8888
8889 ret = btrfs_wait_for_commit(root, transid);
8890 if (ret)
8891 return ret;
8892 goto again;
8893 }
8894
153c35b6
CM
8895 /*
8896 * if we are changing raid levels, try to allocate a corresponding
8897 * block group with the new raid level.
8898 */
8899 alloc_flags = update_block_group_flags(root, cache->flags);
8900 if (alloc_flags != cache->flags) {
8901 ret = do_chunk_alloc(trans, root, alloc_flags,
8902 CHUNK_ALLOC_FORCE);
8903 /*
8904 * ENOSPC is allowed here, we may have enough space
8905 * already allocated at the new raid level to
8906 * carry on
8907 */
8908 if (ret == -ENOSPC)
8909 ret = 0;
8910 if (ret < 0)
8911 goto out;
8912 }
1bbc621e 8913
868f401a 8914 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
8915 if (!ret)
8916 goto out;
8917 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8918 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8919 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8920 if (ret < 0)
8921 goto out;
868f401a 8922 ret = inc_block_group_ro(cache, 0);
f0486c68 8923out:
2f081088
SL
8924 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8925 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8926 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8927 check_system_chunk(trans, root, alloc_flags);
a9629596 8928 unlock_chunks(root->fs_info->chunk_root);
2f081088 8929 }
1bbc621e 8930 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8931
f0486c68
YZ
8932 btrfs_end_transaction(trans, root);
8933 return ret;
8934}
5d4f98a2 8935
c87f08ca
CM
8936int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8937 struct btrfs_root *root, u64 type)
8938{
8939 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8940 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8941 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8942}
8943
6d07bcec
MX
8944/*
8945 * helper to account the unused space of all the readonly block group in the
633c0aad 8946 * space_info. takes mirrors into account.
6d07bcec 8947 */
633c0aad 8948u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8949{
8950 struct btrfs_block_group_cache *block_group;
8951 u64 free_bytes = 0;
8952 int factor;
8953
633c0aad
JB
8954 /* It's df, we don't care if it's racey */
8955 if (list_empty(&sinfo->ro_bgs))
8956 return 0;
8957
8958 spin_lock(&sinfo->lock);
8959 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8960 spin_lock(&block_group->lock);
8961
8962 if (!block_group->ro) {
8963 spin_unlock(&block_group->lock);
8964 continue;
8965 }
8966
8967 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8968 BTRFS_BLOCK_GROUP_RAID10 |
8969 BTRFS_BLOCK_GROUP_DUP))
8970 factor = 2;
8971 else
8972 factor = 1;
8973
8974 free_bytes += (block_group->key.offset -
8975 btrfs_block_group_used(&block_group->item)) *
8976 factor;
8977
8978 spin_unlock(&block_group->lock);
8979 }
6d07bcec
MX
8980 spin_unlock(&sinfo->lock);
8981
8982 return free_bytes;
8983}
8984
868f401a 8985void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 8986 struct btrfs_block_group_cache *cache)
5d4f98a2 8987{
f0486c68
YZ
8988 struct btrfs_space_info *sinfo = cache->space_info;
8989 u64 num_bytes;
8990
8991 BUG_ON(!cache->ro);
8992
8993 spin_lock(&sinfo->lock);
8994 spin_lock(&cache->lock);
868f401a
Z
8995 if (!--cache->ro) {
8996 num_bytes = cache->key.offset - cache->reserved -
8997 cache->pinned - cache->bytes_super -
8998 btrfs_block_group_used(&cache->item);
8999 sinfo->bytes_readonly -= num_bytes;
9000 list_del_init(&cache->ro_list);
9001 }
f0486c68
YZ
9002 spin_unlock(&cache->lock);
9003 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9004}
9005
ba1bf481
JB
9006/*
9007 * checks to see if its even possible to relocate this block group.
9008 *
9009 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9010 * ok to go ahead and try.
9011 */
9012int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9013{
ba1bf481
JB
9014 struct btrfs_block_group_cache *block_group;
9015 struct btrfs_space_info *space_info;
9016 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9017 struct btrfs_device *device;
6df9a95e 9018 struct btrfs_trans_handle *trans;
cdcb725c 9019 u64 min_free;
6719db6a
JB
9020 u64 dev_min = 1;
9021 u64 dev_nr = 0;
4a5e98f5 9022 u64 target;
cdcb725c 9023 int index;
ba1bf481
JB
9024 int full = 0;
9025 int ret = 0;
1a40e23b 9026
ba1bf481 9027 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9028
ba1bf481
JB
9029 /* odd, couldn't find the block group, leave it alone */
9030 if (!block_group)
9031 return -1;
1a40e23b 9032
cdcb725c 9033 min_free = btrfs_block_group_used(&block_group->item);
9034
ba1bf481 9035 /* no bytes used, we're good */
cdcb725c 9036 if (!min_free)
1a40e23b
ZY
9037 goto out;
9038
ba1bf481
JB
9039 space_info = block_group->space_info;
9040 spin_lock(&space_info->lock);
17d217fe 9041
ba1bf481 9042 full = space_info->full;
17d217fe 9043
ba1bf481
JB
9044 /*
9045 * if this is the last block group we have in this space, we can't
7ce618db
CM
9046 * relocate it unless we're able to allocate a new chunk below.
9047 *
9048 * Otherwise, we need to make sure we have room in the space to handle
9049 * all of the extents from this block group. If we can, we're good
ba1bf481 9050 */
7ce618db 9051 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9052 (space_info->bytes_used + space_info->bytes_reserved +
9053 space_info->bytes_pinned + space_info->bytes_readonly +
9054 min_free < space_info->total_bytes)) {
ba1bf481
JB
9055 spin_unlock(&space_info->lock);
9056 goto out;
17d217fe 9057 }
ba1bf481 9058 spin_unlock(&space_info->lock);
ea8c2819 9059
ba1bf481
JB
9060 /*
9061 * ok we don't have enough space, but maybe we have free space on our
9062 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9063 * alloc devices and guess if we have enough space. if this block
9064 * group is going to be restriped, run checks against the target
9065 * profile instead of the current one.
ba1bf481
JB
9066 */
9067 ret = -1;
ea8c2819 9068
cdcb725c 9069 /*
9070 * index:
9071 * 0: raid10
9072 * 1: raid1
9073 * 2: dup
9074 * 3: raid0
9075 * 4: single
9076 */
4a5e98f5
ID
9077 target = get_restripe_target(root->fs_info, block_group->flags);
9078 if (target) {
31e50229 9079 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9080 } else {
9081 /*
9082 * this is just a balance, so if we were marked as full
9083 * we know there is no space for a new chunk
9084 */
9085 if (full)
9086 goto out;
9087
9088 index = get_block_group_index(block_group);
9089 }
9090
e6ec716f 9091 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9092 dev_min = 4;
6719db6a
JB
9093 /* Divide by 2 */
9094 min_free >>= 1;
e6ec716f 9095 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9096 dev_min = 2;
e6ec716f 9097 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9098 /* Multiply by 2 */
9099 min_free <<= 1;
e6ec716f 9100 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9101 dev_min = fs_devices->rw_devices;
47c5713f 9102 min_free = div64_u64(min_free, dev_min);
cdcb725c 9103 }
9104
6df9a95e
JB
9105 /* We need to do this so that we can look at pending chunks */
9106 trans = btrfs_join_transaction(root);
9107 if (IS_ERR(trans)) {
9108 ret = PTR_ERR(trans);
9109 goto out;
9110 }
9111
ba1bf481
JB
9112 mutex_lock(&root->fs_info->chunk_mutex);
9113 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9114 u64 dev_offset;
56bec294 9115
ba1bf481
JB
9116 /*
9117 * check to make sure we can actually find a chunk with enough
9118 * space to fit our block group in.
9119 */
63a212ab
SB
9120 if (device->total_bytes > device->bytes_used + min_free &&
9121 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9122 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9123 &dev_offset, NULL);
ba1bf481 9124 if (!ret)
cdcb725c 9125 dev_nr++;
9126
9127 if (dev_nr >= dev_min)
73e48b27 9128 break;
cdcb725c 9129
ba1bf481 9130 ret = -1;
725c8463 9131 }
edbd8d4e 9132 }
ba1bf481 9133 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9134 btrfs_end_transaction(trans, root);
edbd8d4e 9135out:
ba1bf481 9136 btrfs_put_block_group(block_group);
edbd8d4e
CM
9137 return ret;
9138}
9139
b2950863
CH
9140static int find_first_block_group(struct btrfs_root *root,
9141 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9142{
925baedd 9143 int ret = 0;
0b86a832
CM
9144 struct btrfs_key found_key;
9145 struct extent_buffer *leaf;
9146 int slot;
edbd8d4e 9147
0b86a832
CM
9148 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9149 if (ret < 0)
925baedd
CM
9150 goto out;
9151
d397712b 9152 while (1) {
0b86a832 9153 slot = path->slots[0];
edbd8d4e 9154 leaf = path->nodes[0];
0b86a832
CM
9155 if (slot >= btrfs_header_nritems(leaf)) {
9156 ret = btrfs_next_leaf(root, path);
9157 if (ret == 0)
9158 continue;
9159 if (ret < 0)
925baedd 9160 goto out;
0b86a832 9161 break;
edbd8d4e 9162 }
0b86a832 9163 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9164
0b86a832 9165 if (found_key.objectid >= key->objectid &&
925baedd
CM
9166 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9167 ret = 0;
9168 goto out;
9169 }
0b86a832 9170 path->slots[0]++;
edbd8d4e 9171 }
925baedd 9172out:
0b86a832 9173 return ret;
edbd8d4e
CM
9174}
9175
0af3d00b
JB
9176void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9177{
9178 struct btrfs_block_group_cache *block_group;
9179 u64 last = 0;
9180
9181 while (1) {
9182 struct inode *inode;
9183
9184 block_group = btrfs_lookup_first_block_group(info, last);
9185 while (block_group) {
9186 spin_lock(&block_group->lock);
9187 if (block_group->iref)
9188 break;
9189 spin_unlock(&block_group->lock);
9190 block_group = next_block_group(info->tree_root,
9191 block_group);
9192 }
9193 if (!block_group) {
9194 if (last == 0)
9195 break;
9196 last = 0;
9197 continue;
9198 }
9199
9200 inode = block_group->inode;
9201 block_group->iref = 0;
9202 block_group->inode = NULL;
9203 spin_unlock(&block_group->lock);
9204 iput(inode);
9205 last = block_group->key.objectid + block_group->key.offset;
9206 btrfs_put_block_group(block_group);
9207 }
9208}
9209
1a40e23b
ZY
9210int btrfs_free_block_groups(struct btrfs_fs_info *info)
9211{
9212 struct btrfs_block_group_cache *block_group;
4184ea7f 9213 struct btrfs_space_info *space_info;
11833d66 9214 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9215 struct rb_node *n;
9216
9e351cc8 9217 down_write(&info->commit_root_sem);
11833d66
YZ
9218 while (!list_empty(&info->caching_block_groups)) {
9219 caching_ctl = list_entry(info->caching_block_groups.next,
9220 struct btrfs_caching_control, list);
9221 list_del(&caching_ctl->list);
9222 put_caching_control(caching_ctl);
9223 }
9e351cc8 9224 up_write(&info->commit_root_sem);
11833d66 9225
47ab2a6c
JB
9226 spin_lock(&info->unused_bgs_lock);
9227 while (!list_empty(&info->unused_bgs)) {
9228 block_group = list_first_entry(&info->unused_bgs,
9229 struct btrfs_block_group_cache,
9230 bg_list);
9231 list_del_init(&block_group->bg_list);
9232 btrfs_put_block_group(block_group);
9233 }
9234 spin_unlock(&info->unused_bgs_lock);
9235
1a40e23b
ZY
9236 spin_lock(&info->block_group_cache_lock);
9237 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9238 block_group = rb_entry(n, struct btrfs_block_group_cache,
9239 cache_node);
1a40e23b
ZY
9240 rb_erase(&block_group->cache_node,
9241 &info->block_group_cache_tree);
01eacb27 9242 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9243 spin_unlock(&info->block_group_cache_lock);
9244
80eb234a 9245 down_write(&block_group->space_info->groups_sem);
1a40e23b 9246 list_del(&block_group->list);
80eb234a 9247 up_write(&block_group->space_info->groups_sem);
d2fb3437 9248
817d52f8 9249 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9250 wait_block_group_cache_done(block_group);
817d52f8 9251
3c14874a
JB
9252 /*
9253 * We haven't cached this block group, which means we could
9254 * possibly have excluded extents on this block group.
9255 */
36cce922
JB
9256 if (block_group->cached == BTRFS_CACHE_NO ||
9257 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9258 free_excluded_extents(info->extent_root, block_group);
9259
817d52f8 9260 btrfs_remove_free_space_cache(block_group);
11dfe35a 9261 btrfs_put_block_group(block_group);
d899e052
YZ
9262
9263 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9264 }
9265 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9266
9267 /* now that all the block groups are freed, go through and
9268 * free all the space_info structs. This is only called during
9269 * the final stages of unmount, and so we know nobody is
9270 * using them. We call synchronize_rcu() once before we start,
9271 * just to be on the safe side.
9272 */
9273 synchronize_rcu();
9274
8929ecfa
YZ
9275 release_global_block_rsv(info);
9276
67871254 9277 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9278 int i;
9279
4184ea7f
CM
9280 space_info = list_entry(info->space_info.next,
9281 struct btrfs_space_info,
9282 list);
b069e0c3 9283 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9284 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9285 space_info->bytes_reserved > 0 ||
fae7f21c 9286 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9287 dump_space_info(space_info, 0, 0);
9288 }
f0486c68 9289 }
4184ea7f 9290 list_del(&space_info->list);
6ab0a202
JM
9291 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9292 struct kobject *kobj;
c1895442
JM
9293 kobj = space_info->block_group_kobjs[i];
9294 space_info->block_group_kobjs[i] = NULL;
9295 if (kobj) {
6ab0a202
JM
9296 kobject_del(kobj);
9297 kobject_put(kobj);
9298 }
9299 }
9300 kobject_del(&space_info->kobj);
9301 kobject_put(&space_info->kobj);
4184ea7f 9302 }
1a40e23b
ZY
9303 return 0;
9304}
9305
b742bb82
YZ
9306static void __link_block_group(struct btrfs_space_info *space_info,
9307 struct btrfs_block_group_cache *cache)
9308{
9309 int index = get_block_group_index(cache);
ed55b6ac 9310 bool first = false;
b742bb82
YZ
9311
9312 down_write(&space_info->groups_sem);
ed55b6ac
JM
9313 if (list_empty(&space_info->block_groups[index]))
9314 first = true;
9315 list_add_tail(&cache->list, &space_info->block_groups[index]);
9316 up_write(&space_info->groups_sem);
9317
9318 if (first) {
c1895442 9319 struct raid_kobject *rkobj;
6ab0a202
JM
9320 int ret;
9321
c1895442
JM
9322 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9323 if (!rkobj)
9324 goto out_err;
9325 rkobj->raid_type = index;
9326 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9327 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9328 "%s", get_raid_name(index));
6ab0a202 9329 if (ret) {
c1895442
JM
9330 kobject_put(&rkobj->kobj);
9331 goto out_err;
6ab0a202 9332 }
c1895442 9333 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9334 }
c1895442
JM
9335
9336 return;
9337out_err:
9338 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9339}
9340
920e4a58
MX
9341static struct btrfs_block_group_cache *
9342btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9343{
9344 struct btrfs_block_group_cache *cache;
9345
9346 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9347 if (!cache)
9348 return NULL;
9349
9350 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9351 GFP_NOFS);
9352 if (!cache->free_space_ctl) {
9353 kfree(cache);
9354 return NULL;
9355 }
9356
9357 cache->key.objectid = start;
9358 cache->key.offset = size;
9359 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9360
9361 cache->sectorsize = root->sectorsize;
9362 cache->fs_info = root->fs_info;
9363 cache->full_stripe_len = btrfs_full_stripe_len(root,
9364 &root->fs_info->mapping_tree,
9365 start);
9366 atomic_set(&cache->count, 1);
9367 spin_lock_init(&cache->lock);
e570fd27 9368 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9369 INIT_LIST_HEAD(&cache->list);
9370 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9371 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9372 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9373 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9374 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9375 btrfs_init_free_space_ctl(cache);
04216820 9376 atomic_set(&cache->trimming, 0);
920e4a58
MX
9377
9378 return cache;
9379}
9380
9078a3e1
CM
9381int btrfs_read_block_groups(struct btrfs_root *root)
9382{
9383 struct btrfs_path *path;
9384 int ret;
9078a3e1 9385 struct btrfs_block_group_cache *cache;
be744175 9386 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9387 struct btrfs_space_info *space_info;
9078a3e1
CM
9388 struct btrfs_key key;
9389 struct btrfs_key found_key;
5f39d397 9390 struct extent_buffer *leaf;
0af3d00b
JB
9391 int need_clear = 0;
9392 u64 cache_gen;
96b5179d 9393
be744175 9394 root = info->extent_root;
9078a3e1 9395 key.objectid = 0;
0b86a832 9396 key.offset = 0;
962a298f 9397 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9398 path = btrfs_alloc_path();
9399 if (!path)
9400 return -ENOMEM;
026fd317 9401 path->reada = 1;
9078a3e1 9402
6c41761f 9403 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9404 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9405 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9406 need_clear = 1;
88c2ba3b
JB
9407 if (btrfs_test_opt(root, CLEAR_CACHE))
9408 need_clear = 1;
0af3d00b 9409
d397712b 9410 while (1) {
0b86a832 9411 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9412 if (ret > 0)
9413 break;
0b86a832
CM
9414 if (ret != 0)
9415 goto error;
920e4a58 9416
5f39d397
CM
9417 leaf = path->nodes[0];
9418 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9419
9420 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9421 found_key.offset);
9078a3e1 9422 if (!cache) {
0b86a832 9423 ret = -ENOMEM;
f0486c68 9424 goto error;
9078a3e1 9425 }
96303081 9426
cf7c1ef6
LB
9427 if (need_clear) {
9428 /*
9429 * When we mount with old space cache, we need to
9430 * set BTRFS_DC_CLEAR and set dirty flag.
9431 *
9432 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9433 * truncate the old free space cache inode and
9434 * setup a new one.
9435 * b) Setting 'dirty flag' makes sure that we flush
9436 * the new space cache info onto disk.
9437 */
cf7c1ef6 9438 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9439 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9440 }
0af3d00b 9441
5f39d397
CM
9442 read_extent_buffer(leaf, &cache->item,
9443 btrfs_item_ptr_offset(leaf, path->slots[0]),
9444 sizeof(cache->item));
920e4a58 9445 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9446
9078a3e1 9447 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9448 btrfs_release_path(path);
34d52cb6 9449
3c14874a
JB
9450 /*
9451 * We need to exclude the super stripes now so that the space
9452 * info has super bytes accounted for, otherwise we'll think
9453 * we have more space than we actually do.
9454 */
835d974f
JB
9455 ret = exclude_super_stripes(root, cache);
9456 if (ret) {
9457 /*
9458 * We may have excluded something, so call this just in
9459 * case.
9460 */
9461 free_excluded_extents(root, cache);
920e4a58 9462 btrfs_put_block_group(cache);
835d974f
JB
9463 goto error;
9464 }
3c14874a 9465
817d52f8
JB
9466 /*
9467 * check for two cases, either we are full, and therefore
9468 * don't need to bother with the caching work since we won't
9469 * find any space, or we are empty, and we can just add all
9470 * the space in and be done with it. This saves us _alot_ of
9471 * time, particularly in the full case.
9472 */
9473 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9474 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9475 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9476 free_excluded_extents(root, cache);
817d52f8 9477 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9478 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9479 cache->cached = BTRFS_CACHE_FINISHED;
9480 add_new_free_space(cache, root->fs_info,
9481 found_key.objectid,
9482 found_key.objectid +
9483 found_key.offset);
11833d66 9484 free_excluded_extents(root, cache);
817d52f8 9485 }
96b5179d 9486
8c579fe7
JB
9487 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9488 if (ret) {
9489 btrfs_remove_free_space_cache(cache);
9490 btrfs_put_block_group(cache);
9491 goto error;
9492 }
9493
6324fbf3
CM
9494 ret = update_space_info(info, cache->flags, found_key.offset,
9495 btrfs_block_group_used(&cache->item),
9496 &space_info);
8c579fe7
JB
9497 if (ret) {
9498 btrfs_remove_free_space_cache(cache);
9499 spin_lock(&info->block_group_cache_lock);
9500 rb_erase(&cache->cache_node,
9501 &info->block_group_cache_tree);
01eacb27 9502 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9503 spin_unlock(&info->block_group_cache_lock);
9504 btrfs_put_block_group(cache);
9505 goto error;
9506 }
9507
6324fbf3 9508 cache->space_info = space_info;
1b2da372 9509 spin_lock(&cache->space_info->lock);
f0486c68 9510 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9511 spin_unlock(&cache->space_info->lock);
9512
b742bb82 9513 __link_block_group(space_info, cache);
0f9dd46c 9514
75ccf47d 9515 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9516 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9517 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9518 } else if (btrfs_block_group_used(&cache->item) == 0) {
9519 spin_lock(&info->unused_bgs_lock);
9520 /* Should always be true but just in case. */
9521 if (list_empty(&cache->bg_list)) {
9522 btrfs_get_block_group(cache);
9523 list_add_tail(&cache->bg_list,
9524 &info->unused_bgs);
9525 }
9526 spin_unlock(&info->unused_bgs_lock);
9527 }
9078a3e1 9528 }
b742bb82
YZ
9529
9530 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9531 if (!(get_alloc_profile(root, space_info->flags) &
9532 (BTRFS_BLOCK_GROUP_RAID10 |
9533 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9534 BTRFS_BLOCK_GROUP_RAID5 |
9535 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9536 BTRFS_BLOCK_GROUP_DUP)))
9537 continue;
9538 /*
9539 * avoid allocating from un-mirrored block group if there are
9540 * mirrored block groups.
9541 */
1095cc0d 9542 list_for_each_entry(cache,
9543 &space_info->block_groups[BTRFS_RAID_RAID0],
9544 list)
868f401a 9545 inc_block_group_ro(cache, 1);
1095cc0d 9546 list_for_each_entry(cache,
9547 &space_info->block_groups[BTRFS_RAID_SINGLE],
9548 list)
868f401a 9549 inc_block_group_ro(cache, 1);
9078a3e1 9550 }
f0486c68
YZ
9551
9552 init_global_block_rsv(info);
0b86a832
CM
9553 ret = 0;
9554error:
9078a3e1 9555 btrfs_free_path(path);
0b86a832 9556 return ret;
9078a3e1 9557}
6324fbf3 9558
ea658bad
JB
9559void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9560 struct btrfs_root *root)
9561{
9562 struct btrfs_block_group_cache *block_group, *tmp;
9563 struct btrfs_root *extent_root = root->fs_info->extent_root;
9564 struct btrfs_block_group_item item;
9565 struct btrfs_key key;
9566 int ret = 0;
d9a0540a 9567 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9568
d9a0540a 9569 trans->can_flush_pending_bgs = false;
47ab2a6c 9570 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9571 if (ret)
c92f6be3 9572 goto next;
ea658bad
JB
9573
9574 spin_lock(&block_group->lock);
9575 memcpy(&item, &block_group->item, sizeof(item));
9576 memcpy(&key, &block_group->key, sizeof(key));
9577 spin_unlock(&block_group->lock);
9578
9579 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9580 sizeof(item));
9581 if (ret)
9582 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9583 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9584 key.objectid, key.offset);
9585 if (ret)
9586 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9587next:
9588 list_del_init(&block_group->bg_list);
ea658bad 9589 }
d9a0540a 9590 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9591}
9592
6324fbf3
CM
9593int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9594 struct btrfs_root *root, u64 bytes_used,
e17cade2 9595 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9596 u64 size)
9597{
9598 int ret;
6324fbf3
CM
9599 struct btrfs_root *extent_root;
9600 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9601
9602 extent_root = root->fs_info->extent_root;
6324fbf3 9603
995946dd 9604 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9605
920e4a58 9606 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9607 if (!cache)
9608 return -ENOMEM;
34d52cb6 9609
6324fbf3 9610 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9611 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9612 btrfs_set_block_group_flags(&cache->item, type);
9613
920e4a58 9614 cache->flags = type;
11833d66 9615 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9616 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9617 ret = exclude_super_stripes(root, cache);
9618 if (ret) {
9619 /*
9620 * We may have excluded something, so call this just in
9621 * case.
9622 */
9623 free_excluded_extents(root, cache);
920e4a58 9624 btrfs_put_block_group(cache);
835d974f
JB
9625 return ret;
9626 }
96303081 9627
817d52f8
JB
9628 add_new_free_space(cache, root->fs_info, chunk_offset,
9629 chunk_offset + size);
9630
11833d66
YZ
9631 free_excluded_extents(root, cache);
9632
2e6e5183
FM
9633 /*
9634 * Call to ensure the corresponding space_info object is created and
9635 * assigned to our block group, but don't update its counters just yet.
9636 * We want our bg to be added to the rbtree with its ->space_info set.
9637 */
9638 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9639 &cache->space_info);
9640 if (ret) {
9641 btrfs_remove_free_space_cache(cache);
9642 btrfs_put_block_group(cache);
9643 return ret;
9644 }
9645
8c579fe7
JB
9646 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9647 if (ret) {
9648 btrfs_remove_free_space_cache(cache);
9649 btrfs_put_block_group(cache);
9650 return ret;
9651 }
9652
2e6e5183
FM
9653 /*
9654 * Now that our block group has its ->space_info set and is inserted in
9655 * the rbtree, update the space info's counters.
9656 */
6324fbf3
CM
9657 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9658 &cache->space_info);
8c579fe7
JB
9659 if (ret) {
9660 btrfs_remove_free_space_cache(cache);
9661 spin_lock(&root->fs_info->block_group_cache_lock);
9662 rb_erase(&cache->cache_node,
9663 &root->fs_info->block_group_cache_tree);
01eacb27 9664 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9665 spin_unlock(&root->fs_info->block_group_cache_lock);
9666 btrfs_put_block_group(cache);
9667 return ret;
9668 }
c7c144db 9669 update_global_block_rsv(root->fs_info);
1b2da372
JB
9670
9671 spin_lock(&cache->space_info->lock);
f0486c68 9672 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9673 spin_unlock(&cache->space_info->lock);
9674
b742bb82 9675 __link_block_group(cache->space_info, cache);
6324fbf3 9676
47ab2a6c 9677 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9678
d18a2c44 9679 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9680
6324fbf3
CM
9681 return 0;
9682}
1a40e23b 9683
10ea00f5
ID
9684static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9685{
899c81ea
ID
9686 u64 extra_flags = chunk_to_extended(flags) &
9687 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9688
de98ced9 9689 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9690 if (flags & BTRFS_BLOCK_GROUP_DATA)
9691 fs_info->avail_data_alloc_bits &= ~extra_flags;
9692 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9693 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9694 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9695 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9696 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9697}
9698
1a40e23b 9699int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9700 struct btrfs_root *root, u64 group_start,
9701 struct extent_map *em)
1a40e23b
ZY
9702{
9703 struct btrfs_path *path;
9704 struct btrfs_block_group_cache *block_group;
44fb5511 9705 struct btrfs_free_cluster *cluster;
0af3d00b 9706 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9707 struct btrfs_key key;
0af3d00b 9708 struct inode *inode;
c1895442 9709 struct kobject *kobj = NULL;
1a40e23b 9710 int ret;
10ea00f5 9711 int index;
89a55897 9712 int factor;
4f69cb98 9713 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9714 bool remove_em;
1a40e23b 9715
1a40e23b
ZY
9716 root = root->fs_info->extent_root;
9717
9718 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9719 BUG_ON(!block_group);
c146afad 9720 BUG_ON(!block_group->ro);
1a40e23b 9721
9f7c43c9 9722 /*
9723 * Free the reserved super bytes from this block group before
9724 * remove it.
9725 */
9726 free_excluded_extents(root, block_group);
9727
1a40e23b 9728 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9729 index = get_block_group_index(block_group);
89a55897
JB
9730 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9731 BTRFS_BLOCK_GROUP_RAID1 |
9732 BTRFS_BLOCK_GROUP_RAID10))
9733 factor = 2;
9734 else
9735 factor = 1;
1a40e23b 9736
44fb5511
CM
9737 /* make sure this block group isn't part of an allocation cluster */
9738 cluster = &root->fs_info->data_alloc_cluster;
9739 spin_lock(&cluster->refill_lock);
9740 btrfs_return_cluster_to_free_space(block_group, cluster);
9741 spin_unlock(&cluster->refill_lock);
9742
9743 /*
9744 * make sure this block group isn't part of a metadata
9745 * allocation cluster
9746 */
9747 cluster = &root->fs_info->meta_alloc_cluster;
9748 spin_lock(&cluster->refill_lock);
9749 btrfs_return_cluster_to_free_space(block_group, cluster);
9750 spin_unlock(&cluster->refill_lock);
9751
1a40e23b 9752 path = btrfs_alloc_path();
d8926bb3
MF
9753 if (!path) {
9754 ret = -ENOMEM;
9755 goto out;
9756 }
1a40e23b 9757
1bbc621e
CM
9758 /*
9759 * get the inode first so any iput calls done for the io_list
9760 * aren't the final iput (no unlinks allowed now)
9761 */
10b2f34d 9762 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9763
9764 mutex_lock(&trans->transaction->cache_write_mutex);
9765 /*
9766 * make sure our free spache cache IO is done before remove the
9767 * free space inode
9768 */
9769 spin_lock(&trans->transaction->dirty_bgs_lock);
9770 if (!list_empty(&block_group->io_list)) {
9771 list_del_init(&block_group->io_list);
9772
9773 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9774
9775 spin_unlock(&trans->transaction->dirty_bgs_lock);
9776 btrfs_wait_cache_io(root, trans, block_group,
9777 &block_group->io_ctl, path,
9778 block_group->key.objectid);
9779 btrfs_put_block_group(block_group);
9780 spin_lock(&trans->transaction->dirty_bgs_lock);
9781 }
9782
9783 if (!list_empty(&block_group->dirty_list)) {
9784 list_del_init(&block_group->dirty_list);
9785 btrfs_put_block_group(block_group);
9786 }
9787 spin_unlock(&trans->transaction->dirty_bgs_lock);
9788 mutex_unlock(&trans->transaction->cache_write_mutex);
9789
0af3d00b 9790 if (!IS_ERR(inode)) {
b532402e 9791 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9792 if (ret) {
9793 btrfs_add_delayed_iput(inode);
9794 goto out;
9795 }
0af3d00b
JB
9796 clear_nlink(inode);
9797 /* One for the block groups ref */
9798 spin_lock(&block_group->lock);
9799 if (block_group->iref) {
9800 block_group->iref = 0;
9801 block_group->inode = NULL;
9802 spin_unlock(&block_group->lock);
9803 iput(inode);
9804 } else {
9805 spin_unlock(&block_group->lock);
9806 }
9807 /* One for our lookup ref */
455757c3 9808 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9809 }
9810
9811 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9812 key.offset = block_group->key.objectid;
9813 key.type = 0;
9814
9815 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9816 if (ret < 0)
9817 goto out;
9818 if (ret > 0)
b3b4aa74 9819 btrfs_release_path(path);
0af3d00b
JB
9820 if (ret == 0) {
9821 ret = btrfs_del_item(trans, tree_root, path);
9822 if (ret)
9823 goto out;
b3b4aa74 9824 btrfs_release_path(path);
0af3d00b
JB
9825 }
9826
3dfdb934 9827 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9828 rb_erase(&block_group->cache_node,
9829 &root->fs_info->block_group_cache_tree);
292cbd51 9830 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9831
9832 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9833 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9834 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9835
80eb234a 9836 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9837 /*
9838 * we must use list_del_init so people can check to see if they
9839 * are still on the list after taking the semaphore
9840 */
9841 list_del_init(&block_group->list);
6ab0a202 9842 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9843 kobj = block_group->space_info->block_group_kobjs[index];
9844 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9845 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9846 }
80eb234a 9847 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9848 if (kobj) {
9849 kobject_del(kobj);
9850 kobject_put(kobj);
9851 }
1a40e23b 9852
4f69cb98
FM
9853 if (block_group->has_caching_ctl)
9854 caching_ctl = get_caching_control(block_group);
817d52f8 9855 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9856 wait_block_group_cache_done(block_group);
4f69cb98
FM
9857 if (block_group->has_caching_ctl) {
9858 down_write(&root->fs_info->commit_root_sem);
9859 if (!caching_ctl) {
9860 struct btrfs_caching_control *ctl;
9861
9862 list_for_each_entry(ctl,
9863 &root->fs_info->caching_block_groups, list)
9864 if (ctl->block_group == block_group) {
9865 caching_ctl = ctl;
9866 atomic_inc(&caching_ctl->count);
9867 break;
9868 }
9869 }
9870 if (caching_ctl)
9871 list_del_init(&caching_ctl->list);
9872 up_write(&root->fs_info->commit_root_sem);
9873 if (caching_ctl) {
9874 /* Once for the caching bgs list and once for us. */
9875 put_caching_control(caching_ctl);
9876 put_caching_control(caching_ctl);
9877 }
9878 }
817d52f8 9879
ce93ec54
JB
9880 spin_lock(&trans->transaction->dirty_bgs_lock);
9881 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9882 WARN_ON(1);
9883 }
9884 if (!list_empty(&block_group->io_list)) {
9885 WARN_ON(1);
ce93ec54
JB
9886 }
9887 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9888 btrfs_remove_free_space_cache(block_group);
9889
c146afad 9890 spin_lock(&block_group->space_info->lock);
75c68e9f 9891 list_del_init(&block_group->ro_list);
18d018ad
ZL
9892
9893 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9894 WARN_ON(block_group->space_info->total_bytes
9895 < block_group->key.offset);
9896 WARN_ON(block_group->space_info->bytes_readonly
9897 < block_group->key.offset);
9898 WARN_ON(block_group->space_info->disk_total
9899 < block_group->key.offset * factor);
9900 }
c146afad
YZ
9901 block_group->space_info->total_bytes -= block_group->key.offset;
9902 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9903 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9904
c146afad 9905 spin_unlock(&block_group->space_info->lock);
283bb197 9906
0af3d00b
JB
9907 memcpy(&key, &block_group->key, sizeof(key));
9908
04216820 9909 lock_chunks(root);
495e64f4
FM
9910 if (!list_empty(&em->list)) {
9911 /* We're in the transaction->pending_chunks list. */
9912 free_extent_map(em);
9913 }
04216820
FM
9914 spin_lock(&block_group->lock);
9915 block_group->removed = 1;
9916 /*
9917 * At this point trimming can't start on this block group, because we
9918 * removed the block group from the tree fs_info->block_group_cache_tree
9919 * so no one can't find it anymore and even if someone already got this
9920 * block group before we removed it from the rbtree, they have already
9921 * incremented block_group->trimming - if they didn't, they won't find
9922 * any free space entries because we already removed them all when we
9923 * called btrfs_remove_free_space_cache().
9924 *
9925 * And we must not remove the extent map from the fs_info->mapping_tree
9926 * to prevent the same logical address range and physical device space
9927 * ranges from being reused for a new block group. This is because our
9928 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9929 * completely transactionless, so while it is trimming a range the
9930 * currently running transaction might finish and a new one start,
9931 * allowing for new block groups to be created that can reuse the same
9932 * physical device locations unless we take this special care.
e33e17ee
JM
9933 *
9934 * There may also be an implicit trim operation if the file system
9935 * is mounted with -odiscard. The same protections must remain
9936 * in place until the extents have been discarded completely when
9937 * the transaction commit has completed.
04216820
FM
9938 */
9939 remove_em = (atomic_read(&block_group->trimming) == 0);
9940 /*
9941 * Make sure a trimmer task always sees the em in the pinned_chunks list
9942 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9943 * before checking block_group->removed).
9944 */
9945 if (!remove_em) {
9946 /*
9947 * Our em might be in trans->transaction->pending_chunks which
9948 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9949 * and so is the fs_info->pinned_chunks list.
9950 *
9951 * So at this point we must be holding the chunk_mutex to avoid
9952 * any races with chunk allocation (more specifically at
9953 * volumes.c:contains_pending_extent()), to ensure it always
9954 * sees the em, either in the pending_chunks list or in the
9955 * pinned_chunks list.
9956 */
9957 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9958 }
9959 spin_unlock(&block_group->lock);
04216820
FM
9960
9961 if (remove_em) {
9962 struct extent_map_tree *em_tree;
9963
9964 em_tree = &root->fs_info->mapping_tree.map_tree;
9965 write_lock(&em_tree->lock);
8dbcd10f
FM
9966 /*
9967 * The em might be in the pending_chunks list, so make sure the
9968 * chunk mutex is locked, since remove_extent_mapping() will
9969 * delete us from that list.
9970 */
04216820
FM
9971 remove_extent_mapping(em_tree, em);
9972 write_unlock(&em_tree->lock);
9973 /* once for the tree */
9974 free_extent_map(em);
9975 }
9976
8dbcd10f
FM
9977 unlock_chunks(root);
9978
fa9c0d79
CM
9979 btrfs_put_block_group(block_group);
9980 btrfs_put_block_group(block_group);
1a40e23b
ZY
9981
9982 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9983 if (ret > 0)
9984 ret = -EIO;
9985 if (ret < 0)
9986 goto out;
9987
9988 ret = btrfs_del_item(trans, root, path);
9989out:
9990 btrfs_free_path(path);
9991 return ret;
9992}
acce952b 9993
47ab2a6c
JB
9994/*
9995 * Process the unused_bgs list and remove any that don't have any allocated
9996 * space inside of them.
9997 */
9998void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9999{
10000 struct btrfs_block_group_cache *block_group;
10001 struct btrfs_space_info *space_info;
10002 struct btrfs_root *root = fs_info->extent_root;
10003 struct btrfs_trans_handle *trans;
10004 int ret = 0;
10005
10006 if (!fs_info->open)
10007 return;
10008
10009 spin_lock(&fs_info->unused_bgs_lock);
10010 while (!list_empty(&fs_info->unused_bgs)) {
10011 u64 start, end;
e33e17ee 10012 int trimming;
47ab2a6c
JB
10013
10014 block_group = list_first_entry(&fs_info->unused_bgs,
10015 struct btrfs_block_group_cache,
10016 bg_list);
10017 space_info = block_group->space_info;
10018 list_del_init(&block_group->bg_list);
10019 if (ret || btrfs_mixed_space_info(space_info)) {
10020 btrfs_put_block_group(block_group);
10021 continue;
10022 }
10023 spin_unlock(&fs_info->unused_bgs_lock);
10024
67c5e7d4
FM
10025 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10026
47ab2a6c
JB
10027 /* Don't want to race with allocators so take the groups_sem */
10028 down_write(&space_info->groups_sem);
10029 spin_lock(&block_group->lock);
10030 if (block_group->reserved ||
10031 btrfs_block_group_used(&block_group->item) ||
10032 block_group->ro) {
10033 /*
10034 * We want to bail if we made new allocations or have
10035 * outstanding allocations in this block group. We do
10036 * the ro check in case balance is currently acting on
10037 * this block group.
10038 */
10039 spin_unlock(&block_group->lock);
10040 up_write(&space_info->groups_sem);
10041 goto next;
10042 }
10043 spin_unlock(&block_group->lock);
10044
10045 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10046 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10047 up_write(&space_info->groups_sem);
10048 if (ret < 0) {
10049 ret = 0;
10050 goto next;
10051 }
10052
10053 /*
10054 * Want to do this before we do anything else so we can recover
10055 * properly if we fail to join the transaction.
10056 */
3d84be79
FL
10057 /* 1 for btrfs_orphan_reserve_metadata() */
10058 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10059 if (IS_ERR(trans)) {
868f401a 10060 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10061 ret = PTR_ERR(trans);
10062 goto next;
10063 }
10064
10065 /*
10066 * We could have pending pinned extents for this block group,
10067 * just delete them, we don't care about them anymore.
10068 */
10069 start = block_group->key.objectid;
10070 end = start + block_group->key.offset - 1;
d4b450cd
FM
10071 /*
10072 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10073 * btrfs_finish_extent_commit(). If we are at transaction N,
10074 * another task might be running finish_extent_commit() for the
10075 * previous transaction N - 1, and have seen a range belonging
10076 * to the block group in freed_extents[] before we were able to
10077 * clear the whole block group range from freed_extents[]. This
10078 * means that task can lookup for the block group after we
10079 * unpinned it from freed_extents[] and removed it, leading to
10080 * a BUG_ON() at btrfs_unpin_extent_range().
10081 */
10082 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10083 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10084 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10085 if (ret) {
d4b450cd 10086 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10087 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10088 goto end_trans;
10089 }
10090 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10091 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10092 if (ret) {
d4b450cd 10093 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10094 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10095 goto end_trans;
10096 }
d4b450cd 10097 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10098
10099 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10100 spin_lock(&space_info->lock);
10101 spin_lock(&block_group->lock);
10102
10103 space_info->bytes_pinned -= block_group->pinned;
10104 space_info->bytes_readonly += block_group->pinned;
10105 percpu_counter_add(&space_info->total_bytes_pinned,
10106 -block_group->pinned);
47ab2a6c
JB
10107 block_group->pinned = 0;
10108
c30666d4
ZL
10109 spin_unlock(&block_group->lock);
10110 spin_unlock(&space_info->lock);
10111
e33e17ee
JM
10112 /* DISCARD can flip during remount */
10113 trimming = btrfs_test_opt(root, DISCARD);
10114
10115 /* Implicit trim during transaction commit. */
10116 if (trimming)
10117 btrfs_get_block_group_trimming(block_group);
10118
47ab2a6c
JB
10119 /*
10120 * Btrfs_remove_chunk will abort the transaction if things go
10121 * horribly wrong.
10122 */
10123 ret = btrfs_remove_chunk(trans, root,
10124 block_group->key.objectid);
e33e17ee
JM
10125
10126 if (ret) {
10127 if (trimming)
10128 btrfs_put_block_group_trimming(block_group);
10129 goto end_trans;
10130 }
10131
10132 /*
10133 * If we're not mounted with -odiscard, we can just forget
10134 * about this block group. Otherwise we'll need to wait
10135 * until transaction commit to do the actual discard.
10136 */
10137 if (trimming) {
10138 WARN_ON(!list_empty(&block_group->bg_list));
10139 spin_lock(&trans->transaction->deleted_bgs_lock);
10140 list_move(&block_group->bg_list,
10141 &trans->transaction->deleted_bgs);
10142 spin_unlock(&trans->transaction->deleted_bgs_lock);
10143 btrfs_get_block_group(block_group);
10144 }
758eb51e 10145end_trans:
47ab2a6c
JB
10146 btrfs_end_transaction(trans, root);
10147next:
67c5e7d4 10148 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10149 btrfs_put_block_group(block_group);
10150 spin_lock(&fs_info->unused_bgs_lock);
10151 }
10152 spin_unlock(&fs_info->unused_bgs_lock);
10153}
10154
c59021f8 10155int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10156{
10157 struct btrfs_space_info *space_info;
1aba86d6 10158 struct btrfs_super_block *disk_super;
10159 u64 features;
10160 u64 flags;
10161 int mixed = 0;
c59021f8 10162 int ret;
10163
6c41761f 10164 disk_super = fs_info->super_copy;
1aba86d6 10165 if (!btrfs_super_root(disk_super))
10166 return 1;
c59021f8 10167
1aba86d6 10168 features = btrfs_super_incompat_flags(disk_super);
10169 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10170 mixed = 1;
c59021f8 10171
1aba86d6 10172 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10173 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10174 if (ret)
1aba86d6 10175 goto out;
c59021f8 10176
1aba86d6 10177 if (mixed) {
10178 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10179 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10180 } else {
10181 flags = BTRFS_BLOCK_GROUP_METADATA;
10182 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10183 if (ret)
10184 goto out;
10185
10186 flags = BTRFS_BLOCK_GROUP_DATA;
10187 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10188 }
10189out:
c59021f8 10190 return ret;
10191}
10192
acce952b 10193int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10194{
678886bd 10195 return unpin_extent_range(root, start, end, false);
acce952b 10196}
10197
499f377f
JM
10198/*
10199 * It used to be that old block groups would be left around forever.
10200 * Iterating over them would be enough to trim unused space. Since we
10201 * now automatically remove them, we also need to iterate over unallocated
10202 * space.
10203 *
10204 * We don't want a transaction for this since the discard may take a
10205 * substantial amount of time. We don't require that a transaction be
10206 * running, but we do need to take a running transaction into account
10207 * to ensure that we're not discarding chunks that were released in
10208 * the current transaction.
10209 *
10210 * Holding the chunks lock will prevent other threads from allocating
10211 * or releasing chunks, but it won't prevent a running transaction
10212 * from committing and releasing the memory that the pending chunks
10213 * list head uses. For that, we need to take a reference to the
10214 * transaction.
10215 */
10216static int btrfs_trim_free_extents(struct btrfs_device *device,
10217 u64 minlen, u64 *trimmed)
10218{
10219 u64 start = 0, len = 0;
10220 int ret;
10221
10222 *trimmed = 0;
10223
10224 /* Not writeable = nothing to do. */
10225 if (!device->writeable)
10226 return 0;
10227
10228 /* No free space = nothing to do. */
10229 if (device->total_bytes <= device->bytes_used)
10230 return 0;
10231
10232 ret = 0;
10233
10234 while (1) {
10235 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10236 struct btrfs_transaction *trans;
10237 u64 bytes;
10238
10239 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10240 if (ret)
10241 return ret;
10242
10243 down_read(&fs_info->commit_root_sem);
10244
10245 spin_lock(&fs_info->trans_lock);
10246 trans = fs_info->running_transaction;
10247 if (trans)
10248 atomic_inc(&trans->use_count);
10249 spin_unlock(&fs_info->trans_lock);
10250
10251 ret = find_free_dev_extent_start(trans, device, minlen, start,
10252 &start, &len);
10253 if (trans)
10254 btrfs_put_transaction(trans);
10255
10256 if (ret) {
10257 up_read(&fs_info->commit_root_sem);
10258 mutex_unlock(&fs_info->chunk_mutex);
10259 if (ret == -ENOSPC)
10260 ret = 0;
10261 break;
10262 }
10263
10264 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10265 up_read(&fs_info->commit_root_sem);
10266 mutex_unlock(&fs_info->chunk_mutex);
10267
10268 if (ret)
10269 break;
10270
10271 start += len;
10272 *trimmed += bytes;
10273
10274 if (fatal_signal_pending(current)) {
10275 ret = -ERESTARTSYS;
10276 break;
10277 }
10278
10279 cond_resched();
10280 }
10281
10282 return ret;
10283}
10284
f7039b1d
LD
10285int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10286{
10287 struct btrfs_fs_info *fs_info = root->fs_info;
10288 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10289 struct btrfs_device *device;
10290 struct list_head *devices;
f7039b1d
LD
10291 u64 group_trimmed;
10292 u64 start;
10293 u64 end;
10294 u64 trimmed = 0;
2cac13e4 10295 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10296 int ret = 0;
10297
2cac13e4
LB
10298 /*
10299 * try to trim all FS space, our block group may start from non-zero.
10300 */
10301 if (range->len == total_bytes)
10302 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10303 else
10304 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10305
10306 while (cache) {
10307 if (cache->key.objectid >= (range->start + range->len)) {
10308 btrfs_put_block_group(cache);
10309 break;
10310 }
10311
10312 start = max(range->start, cache->key.objectid);
10313 end = min(range->start + range->len,
10314 cache->key.objectid + cache->key.offset);
10315
10316 if (end - start >= range->minlen) {
10317 if (!block_group_cache_done(cache)) {
f6373bf3 10318 ret = cache_block_group(cache, 0);
1be41b78
JB
10319 if (ret) {
10320 btrfs_put_block_group(cache);
10321 break;
10322 }
10323 ret = wait_block_group_cache_done(cache);
10324 if (ret) {
10325 btrfs_put_block_group(cache);
10326 break;
10327 }
f7039b1d
LD
10328 }
10329 ret = btrfs_trim_block_group(cache,
10330 &group_trimmed,
10331 start,
10332 end,
10333 range->minlen);
10334
10335 trimmed += group_trimmed;
10336 if (ret) {
10337 btrfs_put_block_group(cache);
10338 break;
10339 }
10340 }
10341
10342 cache = next_block_group(fs_info->tree_root, cache);
10343 }
10344
499f377f
JM
10345 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10346 devices = &root->fs_info->fs_devices->alloc_list;
10347 list_for_each_entry(device, devices, dev_alloc_list) {
10348 ret = btrfs_trim_free_extents(device, range->minlen,
10349 &group_trimmed);
10350 if (ret)
10351 break;
10352
10353 trimmed += group_trimmed;
10354 }
10355 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10356
f7039b1d
LD
10357 range->len = trimmed;
10358 return ret;
10359}
8257b2dc
MX
10360
10361/*
9ea24bbe
FM
10362 * btrfs_{start,end}_write_no_snapshoting() are similar to
10363 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10364 * data into the page cache through nocow before the subvolume is snapshoted,
10365 * but flush the data into disk after the snapshot creation, or to prevent
10366 * operations while snapshoting is ongoing and that cause the snapshot to be
10367 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10368 */
9ea24bbe 10369void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10370{
10371 percpu_counter_dec(&root->subv_writers->counter);
10372 /*
10373 * Make sure counter is updated before we wake up
10374 * waiters.
10375 */
10376 smp_mb();
10377 if (waitqueue_active(&root->subv_writers->wait))
10378 wake_up(&root->subv_writers->wait);
10379}
10380
9ea24bbe 10381int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10382{
ee39b432 10383 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10384 return 0;
10385
10386 percpu_counter_inc(&root->subv_writers->counter);
10387 /*
10388 * Make sure counter is updated before we check for snapshot creation.
10389 */
10390 smp_mb();
ee39b432 10391 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10392 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10393 return 0;
10394 }
10395 return 1;
10396}
This page took 2.026319 seconds and 5 git commands to generate.