btrfs: introduce ratelimited variants of message printing functions
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
9ed0dea0 1319static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1320 struct btrfs_extent_inline_ref *iref)
15916de8 1321{
5d4f98a2
YZ
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1353#endif
5d4f98a2
YZ
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358}
15916de8 1359
5d4f98a2
YZ
1360static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1f3c79a2 1365{
5d4f98a2 1366 struct btrfs_key key;
1f3c79a2 1367 int ret;
1f3c79a2 1368
5d4f98a2
YZ
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1f3c79a2
LH
1376 }
1377
5d4f98a2
YZ
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
b3b4aa74 1383 btrfs_release_path(path);
5d4f98a2
YZ
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1f3c79a2 1389#endif
5d4f98a2 1390 return ret;
1f3c79a2
LH
1391}
1392
5d4f98a2
YZ
1393static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
31840ae1 1398{
5d4f98a2 1399 struct btrfs_key key;
31840ae1 1400 int ret;
31840ae1 1401
5d4f98a2
YZ
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1412 btrfs_release_path(path);
31840ae1
ZY
1413 return ret;
1414}
1415
5d4f98a2 1416static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1417{
5d4f98a2
YZ
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
31840ae1 1431}
56bec294 1432
2c47e605
YZ
1433static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
56bec294 1435
02217ed2 1436{
2c47e605 1437 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1438 if (!path->nodes[level])
1439 break;
5d4f98a2
YZ
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452}
037e6390 1453
5d4f98a2
YZ
1454/*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467static noinline_for_stack
1468int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475{
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
3173a18f
JB
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
26b8003f 1491
db94535d 1492 key.objectid = bytenr;
31840ae1 1493 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1494 key.offset = num_bytes;
31840ae1 1495
5d4f98a2
YZ
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1499 path->keep_locks = 1;
5d4f98a2
YZ
1500 } else
1501 extra_size = -1;
3173a18f
JB
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512again:
5d4f98a2 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1514 if (ret < 0) {
5d4f98a2
YZ
1515 err = ret;
1516 goto out;
1517 }
3173a18f
JB
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
9ce49a0b 1535 key.objectid = bytenr;
3173a18f
JB
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
79787eaa
JM
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
fae7f21c 1546 } else if (WARN_ON(ret)) {
492104c8 1547 err = -EIO;
492104c8 1548 goto out;
79787eaa 1549 }
5d4f98a2
YZ
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568#endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
5d4f98a2
YZ
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
3173a18f 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
5d4f98a2
YZ
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
2c47e605
YZ
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
85d4198e 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649out:
85d4198e 1650 if (insert) {
5d4f98a2
YZ
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655}
1656
1657/*
1658 * helper to add new inline back ref
1659 */
1660static noinline_for_stack
fd279fae 1661void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1667{
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
5d4f98a2
YZ
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
4b90c680 1684 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1719}
1720
1721static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727{
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
54aa1f4d 1734 return ret;
5d4f98a2 1735
b3b4aa74 1736 btrfs_release_path(path);
5d4f98a2
YZ
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
b9473439 1745 }
5d4f98a2
YZ
1746 return ret;
1747}
31840ae1 1748
5d4f98a2
YZ
1749/*
1750 * helper to update/remove inline back ref
1751 */
1752static noinline_for_stack
afe5fea7 1753void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
fcebe456
JB
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
5d4f98a2
YZ
1759{
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
5d4f98a2
YZ
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
56bec294 1791 }
31840ae1 1792
5d4f98a2
YZ
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
fcebe456 1802 *last_ref = 1;
5d4f98a2
YZ
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
afe5fea7 1811 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static noinline_for_stack
1817int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824{
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1833 update_inline_extent_backref(root, path, iref,
fcebe456 1834 refs_to_add, extent_op, NULL);
5d4f98a2 1835 } else if (ret == -ENOENT) {
fd279fae 1836 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
771ed689 1840 }
5d4f98a2
YZ
1841 return ret;
1842}
31840ae1 1843
5d4f98a2
YZ
1844static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849{
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861}
56bec294 1862
5d4f98a2
YZ
1863static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
fcebe456 1867 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1868{
143bede5 1869 int ret = 0;
b9473439 1870
5d4f98a2
YZ
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
afe5fea7 1873 update_inline_extent_backref(root, path, iref,
fcebe456 1874 -refs_to_drop, NULL, last_ref);
5d4f98a2 1875 } else if (is_data) {
fcebe456
JB
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
5d4f98a2 1878 } else {
fcebe456 1879 *last_ref = 1;
5d4f98a2
YZ
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883}
1884
86557861 1885#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1886static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
5d4f98a2 1888{
86557861
JM
1889 int j, ret = 0;
1890 u64 bytes_left, end;
4d89d377 1891 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1892
4d89d377
JM
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
d04c6b88 1898
4d89d377 1899 *discarded_bytes = 0;
86557861
JM
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1951 GFP_NOFS, 0);
1952 if (!ret)
86557861 1953 *discarded_bytes += bytes_left;
4d89d377 1954 }
d04c6b88 1955 return ret;
5d4f98a2 1956}
5d4f98a2 1957
1edb647b
FM
1958int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1960{
5d4f98a2 1961 int ret;
5378e607 1962 u64 discarded_bytes = 0;
a1d3c478 1963 struct btrfs_bio *bbio = NULL;
5d4f98a2 1964
e244a0ae 1965
5d4f98a2 1966 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1968 bytenr, &num_bytes, &bbio, 0);
79787eaa 1969 /* Error condition is -ENOMEM */
5d4f98a2 1970 if (!ret) {
a1d3c478 1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1972 int i;
1973
5d4f98a2 1974
a1d3c478 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1976 u64 bytes;
d5e2003c
JB
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
5378e607
LD
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
d04c6b88
JM
1982 stripe->length,
1983 &bytes);
5378e607 1984 if (!ret)
d04c6b88 1985 discarded_bytes += bytes;
5378e607 1986 else if (ret != -EOPNOTSUPP)
79787eaa 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
5d4f98a2 1995 }
6e9606d2 1996 btrfs_put_bbio(bbio);
5d4f98a2 1997 }
5378e607
LD
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
5d4f98a2 2002
53b381b3
DW
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
5d4f98a2 2005 return ret;
5d4f98a2
YZ
2006}
2007
79787eaa 2008/* Can return -ENOMEM */
5d4f98a2
YZ
2009int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
5d4f98a2
YZ
2014{
2015 int ret;
66d7e7f0
AJ
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
5d4f98a2
YZ
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
5d4f98a2 2024 parent, root_objectid, (int)owner,
fcebe456 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2026 } else {
66d7e7f0
AJ
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
5d4f98a2 2029 parent, root_objectid, owner, offset,
fcebe456 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2031 }
2032 return ret;
2033}
2034
2035static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
c682f9b3 2037 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041{
fcebe456 2042 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
fcebe456 2046 struct btrfs_key key;
c682f9b3
QW
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2049 u64 refs;
2050 int ret;
c682f9b3 2051 int no_quota = node->no_quota;
5d4f98a2
YZ
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
fcebe456
JB
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
5d4f98a2
YZ
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
5d4f98a2
YZ
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
0ed4792a 2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2068 goto out;
fcebe456
JB
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
5d4f98a2 2075 leaf = path->nodes[0];
fcebe456 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2082
5d4f98a2 2083 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2084 btrfs_release_path(path);
56bec294
CM
2085
2086 path->reada = 1;
b9473439 2087 path->leave_spinning = 1;
56bec294
CM
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
79787eaa
JM
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2094out:
56bec294 2095 btrfs_free_path(path);
30d133fc 2096 return ret;
56bec294
CM
2097}
2098
5d4f98a2
YZ
2099static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
56bec294 2104{
5d4f98a2
YZ
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
5d4f98a2
YZ
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
fcebe456 2121 ref_root = ref->root;
5d4f98a2
YZ
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2124 if (extent_op)
5d4f98a2 2125 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
5d4f98a2 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
c682f9b3 2134 extent_op);
5d4f98a2 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2136 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
c682f9b3 2139 extent_op);
5d4f98a2
YZ
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144}
2145
2146static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149{
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162}
2163
2164static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168{
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
56bec294 2174 int ret;
5d4f98a2 2175 int err = 0;
b1c79e09 2176 int metadata = !extent_op->is_data;
5d4f98a2 2177
79787eaa
JM
2178 if (trans->aborted)
2179 return 0;
2180
3173a18f
JB
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
5d4f98a2
YZ
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
5d4f98a2 2189
3173a18f 2190 if (metadata) {
3173a18f 2191 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2192 key.offset = extent_op->level;
3173a18f
JB
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198again:
5d4f98a2
YZ
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
3173a18f 2208 if (metadata) {
55994887
FDBM
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
3173a18f 2221
55994887
FDBM
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
3173a18f 2230 }
5d4f98a2
YZ
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246#endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2250
5d4f98a2
YZ
2251 btrfs_mark_buffer_dirty(leaf);
2252out:
2253 btrfs_free_path(path);
2254 return err;
56bec294
CM
2255}
2256
5d4f98a2
YZ
2257static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
56bec294
CM
2262{
2263 int ret = 0;
5d4f98a2
YZ
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
3173a18f
JB
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
56bec294 2270
5d4f98a2 2271 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
5d4f98a2
YZ
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
fcebe456 2276 ref_root = ref->root;
5d4f98a2 2277
3173a18f
JB
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
5d4f98a2
YZ
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2289 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
fcebe456
JB
2294 ref->level, &ins,
2295 node->no_quota);
5d4f98a2 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
fcebe456 2300 extent_op);
5d4f98a2 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2305 } else {
2306 BUG();
2307 }
56bec294
CM
2308 return ret;
2309}
2310
2311/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2312static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
56bec294 2317{
79787eaa
JM
2318 int ret = 0;
2319
857cc2fc
JB
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
79787eaa 2324 return 0;
857cc2fc 2325 }
79787eaa 2326
5d4f98a2 2327 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
5d4f98a2
YZ
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
56bec294 2339 if (insert_reserved) {
f0486c68
YZ
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
5d4f98a2
YZ
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
5d4f98a2 2346 }
56bec294 2347 }
79787eaa 2348 return ret;
56bec294
CM
2349 }
2350
5d4f98a2
YZ
2351 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2352 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2353 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2354 insert_reserved);
2355 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2356 node->type == BTRFS_SHARED_DATA_REF_KEY)
2357 ret = run_delayed_data_ref(trans, root, node, extent_op,
2358 insert_reserved);
2359 else
2360 BUG();
2361 return ret;
56bec294
CM
2362}
2363
c6fc2454 2364static inline struct btrfs_delayed_ref_node *
56bec294
CM
2365select_delayed_ref(struct btrfs_delayed_ref_head *head)
2366{
cffc3374
FM
2367 struct btrfs_delayed_ref_node *ref;
2368
c6fc2454
QW
2369 if (list_empty(&head->ref_list))
2370 return NULL;
d7df2c79 2371
cffc3374
FM
2372 /*
2373 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2374 * This is to prevent a ref count from going down to zero, which deletes
2375 * the extent item from the extent tree, when there still are references
2376 * to add, which would fail because they would not find the extent item.
2377 */
2378 list_for_each_entry(ref, &head->ref_list, list) {
2379 if (ref->action == BTRFS_ADD_DELAYED_REF)
2380 return ref;
2381 }
2382
c6fc2454
QW
2383 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2384 list);
56bec294
CM
2385}
2386
79787eaa
JM
2387/*
2388 * Returns 0 on success or if called with an already aborted transaction.
2389 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2390 */
d7df2c79
JB
2391static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 unsigned long nr)
56bec294 2394{
56bec294
CM
2395 struct btrfs_delayed_ref_root *delayed_refs;
2396 struct btrfs_delayed_ref_node *ref;
2397 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2398 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2399 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2400 ktime_t start = ktime_get();
56bec294 2401 int ret;
d7df2c79 2402 unsigned long count = 0;
0a2b2a84 2403 unsigned long actual_count = 0;
56bec294 2404 int must_insert_reserved = 0;
56bec294
CM
2405
2406 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2407 while (1) {
2408 if (!locked_ref) {
d7df2c79 2409 if (count >= nr)
56bec294 2410 break;
56bec294 2411
d7df2c79
JB
2412 spin_lock(&delayed_refs->lock);
2413 locked_ref = btrfs_select_ref_head(trans);
2414 if (!locked_ref) {
2415 spin_unlock(&delayed_refs->lock);
2416 break;
2417 }
c3e69d58
CM
2418
2419 /* grab the lock that says we are going to process
2420 * all the refs for this head */
2421 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2422 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2423 /*
2424 * we may have dropped the spin lock to get the head
2425 * mutex lock, and that might have given someone else
2426 * time to free the head. If that's true, it has been
2427 * removed from our list and we can move on.
2428 */
2429 if (ret == -EAGAIN) {
2430 locked_ref = NULL;
2431 count++;
2432 continue;
56bec294
CM
2433 }
2434 }
a28ec197 2435
d7df2c79 2436 spin_lock(&locked_ref->lock);
ae1e206b 2437
d1270cd9
AJ
2438 /*
2439 * locked_ref is the head node, so we have to go one
2440 * node back for any delayed ref updates
2441 */
2442 ref = select_delayed_ref(locked_ref);
2443
2444 if (ref && ref->seq &&
097b8a7c 2445 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2446 spin_unlock(&locked_ref->lock);
093486c4 2447 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2448 spin_lock(&delayed_refs->lock);
2449 locked_ref->processing = 0;
d1270cd9
AJ
2450 delayed_refs->num_heads_ready++;
2451 spin_unlock(&delayed_refs->lock);
d7df2c79 2452 locked_ref = NULL;
d1270cd9 2453 cond_resched();
27a377db 2454 count++;
d1270cd9
AJ
2455 continue;
2456 }
2457
56bec294
CM
2458 /*
2459 * record the must insert reserved flag before we
2460 * drop the spin lock.
2461 */
2462 must_insert_reserved = locked_ref->must_insert_reserved;
2463 locked_ref->must_insert_reserved = 0;
7bb86316 2464
5d4f98a2
YZ
2465 extent_op = locked_ref->extent_op;
2466 locked_ref->extent_op = NULL;
2467
56bec294 2468 if (!ref) {
d7df2c79
JB
2469
2470
56bec294
CM
2471 /* All delayed refs have been processed, Go ahead
2472 * and send the head node to run_one_delayed_ref,
2473 * so that any accounting fixes can happen
2474 */
2475 ref = &locked_ref->node;
5d4f98a2
YZ
2476
2477 if (extent_op && must_insert_reserved) {
78a6184a 2478 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2479 extent_op = NULL;
2480 }
2481
2482 if (extent_op) {
d7df2c79 2483 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2484 ret = run_delayed_extent_op(trans, root,
2485 ref, extent_op);
78a6184a 2486 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2487
79787eaa 2488 if (ret) {
857cc2fc
JB
2489 /*
2490 * Need to reset must_insert_reserved if
2491 * there was an error so the abort stuff
2492 * can cleanup the reserved space
2493 * properly.
2494 */
2495 if (must_insert_reserved)
2496 locked_ref->must_insert_reserved = 1;
d7df2c79 2497 locked_ref->processing = 0;
c2cf52eb 2498 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2499 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2500 return ret;
2501 }
d7df2c79 2502 continue;
5d4f98a2 2503 }
02217ed2 2504
d7df2c79
JB
2505 /*
2506 * Need to drop our head ref lock and re-aqcuire the
2507 * delayed ref lock and then re-check to make sure
2508 * nobody got added.
2509 */
2510 spin_unlock(&locked_ref->lock);
2511 spin_lock(&delayed_refs->lock);
2512 spin_lock(&locked_ref->lock);
c6fc2454 2513 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2514 locked_ref->extent_op) {
d7df2c79
JB
2515 spin_unlock(&locked_ref->lock);
2516 spin_unlock(&delayed_refs->lock);
2517 continue;
2518 }
2519 ref->in_tree = 0;
2520 delayed_refs->num_heads--;
c46effa6
LB
2521 rb_erase(&locked_ref->href_node,
2522 &delayed_refs->href_root);
d7df2c79
JB
2523 spin_unlock(&delayed_refs->lock);
2524 } else {
0a2b2a84 2525 actual_count++;
d7df2c79 2526 ref->in_tree = 0;
c6fc2454 2527 list_del(&ref->list);
c46effa6 2528 }
d7df2c79
JB
2529 atomic_dec(&delayed_refs->num_entries);
2530
093486c4 2531 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2532 /*
2533 * when we play the delayed ref, also correct the
2534 * ref_mod on head
2535 */
2536 switch (ref->action) {
2537 case BTRFS_ADD_DELAYED_REF:
2538 case BTRFS_ADD_DELAYED_EXTENT:
2539 locked_ref->node.ref_mod -= ref->ref_mod;
2540 break;
2541 case BTRFS_DROP_DELAYED_REF:
2542 locked_ref->node.ref_mod += ref->ref_mod;
2543 break;
2544 default:
2545 WARN_ON(1);
2546 }
2547 }
d7df2c79 2548 spin_unlock(&locked_ref->lock);
925baedd 2549
5d4f98a2 2550 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2551 must_insert_reserved);
eb099670 2552
78a6184a 2553 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2554 if (ret) {
d7df2c79 2555 locked_ref->processing = 0;
093486c4
MX
2556 btrfs_delayed_ref_unlock(locked_ref);
2557 btrfs_put_delayed_ref(ref);
c2cf52eb 2558 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2559 return ret;
2560 }
2561
093486c4
MX
2562 /*
2563 * If this node is a head, that means all the refs in this head
2564 * have been dealt with, and we will pick the next head to deal
2565 * with, so we must unlock the head and drop it from the cluster
2566 * list before we release it.
2567 */
2568 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2569 if (locked_ref->is_data &&
2570 locked_ref->total_ref_mod < 0) {
2571 spin_lock(&delayed_refs->lock);
2572 delayed_refs->pending_csums -= ref->num_bytes;
2573 spin_unlock(&delayed_refs->lock);
2574 }
093486c4
MX
2575 btrfs_delayed_ref_unlock(locked_ref);
2576 locked_ref = NULL;
2577 }
2578 btrfs_put_delayed_ref(ref);
2579 count++;
c3e69d58 2580 cond_resched();
c3e69d58 2581 }
0a2b2a84
JB
2582
2583 /*
2584 * We don't want to include ref heads since we can have empty ref heads
2585 * and those will drastically skew our runtime down since we just do
2586 * accounting, no actual extent tree updates.
2587 */
2588 if (actual_count > 0) {
2589 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2590 u64 avg;
2591
2592 /*
2593 * We weigh the current average higher than our current runtime
2594 * to avoid large swings in the average.
2595 */
2596 spin_lock(&delayed_refs->lock);
2597 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2598 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2599 spin_unlock(&delayed_refs->lock);
2600 }
d7df2c79 2601 return 0;
c3e69d58
CM
2602}
2603
709c0486
AJ
2604#ifdef SCRAMBLE_DELAYED_REFS
2605/*
2606 * Normally delayed refs get processed in ascending bytenr order. This
2607 * correlates in most cases to the order added. To expose dependencies on this
2608 * order, we start to process the tree in the middle instead of the beginning
2609 */
2610static u64 find_middle(struct rb_root *root)
2611{
2612 struct rb_node *n = root->rb_node;
2613 struct btrfs_delayed_ref_node *entry;
2614 int alt = 1;
2615 u64 middle;
2616 u64 first = 0, last = 0;
2617
2618 n = rb_first(root);
2619 if (n) {
2620 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2621 first = entry->bytenr;
2622 }
2623 n = rb_last(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 last = entry->bytenr;
2627 }
2628 n = root->rb_node;
2629
2630 while (n) {
2631 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2632 WARN_ON(!entry->in_tree);
2633
2634 middle = entry->bytenr;
2635
2636 if (alt)
2637 n = n->rb_left;
2638 else
2639 n = n->rb_right;
2640
2641 alt = 1 - alt;
2642 }
2643 return middle;
2644}
2645#endif
2646
1be41b78
JB
2647static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2648{
2649 u64 num_bytes;
2650
2651 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2652 sizeof(struct btrfs_extent_inline_ref));
2653 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2654 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2655
2656 /*
2657 * We don't ever fill up leaves all the way so multiply by 2 just to be
2658 * closer to what we're really going to want to ouse.
2659 */
f8c269d7 2660 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2661}
2662
1262133b
JB
2663/*
2664 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2665 * would require to store the csums for that many bytes.
2666 */
28f75a0e 2667u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2668{
2669 u64 csum_size;
2670 u64 num_csums_per_leaf;
2671 u64 num_csums;
2672
2673 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2674 num_csums_per_leaf = div64_u64(csum_size,
2675 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2676 num_csums = div64_u64(csum_bytes, root->sectorsize);
2677 num_csums += num_csums_per_leaf - 1;
2678 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2679 return num_csums;
2680}
2681
0a2b2a84 2682int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2683 struct btrfs_root *root)
2684{
2685 struct btrfs_block_rsv *global_rsv;
2686 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2687 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2688 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2689 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2690 int ret = 0;
2691
2692 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2693 num_heads = heads_to_leaves(root, num_heads);
2694 if (num_heads > 1)
707e8a07 2695 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2696 num_bytes <<= 1;
28f75a0e 2697 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2698 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2699 num_dirty_bgs);
1be41b78
JB
2700 global_rsv = &root->fs_info->global_block_rsv;
2701
2702 /*
2703 * If we can't allocate any more chunks lets make sure we have _lots_ of
2704 * wiggle room since running delayed refs can create more delayed refs.
2705 */
cb723e49
JB
2706 if (global_rsv->space_info->full) {
2707 num_dirty_bgs_bytes <<= 1;
1be41b78 2708 num_bytes <<= 1;
cb723e49 2709 }
1be41b78
JB
2710
2711 spin_lock(&global_rsv->lock);
cb723e49 2712 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2713 ret = 1;
2714 spin_unlock(&global_rsv->lock);
2715 return ret;
2716}
2717
0a2b2a84
JB
2718int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2719 struct btrfs_root *root)
2720{
2721 struct btrfs_fs_info *fs_info = root->fs_info;
2722 u64 num_entries =
2723 atomic_read(&trans->transaction->delayed_refs.num_entries);
2724 u64 avg_runtime;
a79b7d4b 2725 u64 val;
0a2b2a84
JB
2726
2727 smp_mb();
2728 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2729 val = num_entries * avg_runtime;
0a2b2a84
JB
2730 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2731 return 1;
a79b7d4b
CM
2732 if (val >= NSEC_PER_SEC / 2)
2733 return 2;
0a2b2a84
JB
2734
2735 return btrfs_check_space_for_delayed_refs(trans, root);
2736}
2737
a79b7d4b
CM
2738struct async_delayed_refs {
2739 struct btrfs_root *root;
2740 int count;
2741 int error;
2742 int sync;
2743 struct completion wait;
2744 struct btrfs_work work;
2745};
2746
2747static void delayed_ref_async_start(struct btrfs_work *work)
2748{
2749 struct async_delayed_refs *async;
2750 struct btrfs_trans_handle *trans;
2751 int ret;
2752
2753 async = container_of(work, struct async_delayed_refs, work);
2754
2755 trans = btrfs_join_transaction(async->root);
2756 if (IS_ERR(trans)) {
2757 async->error = PTR_ERR(trans);
2758 goto done;
2759 }
2760
2761 /*
2762 * trans->sync means that when we call end_transaciton, we won't
2763 * wait on delayed refs
2764 */
2765 trans->sync = true;
2766 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2767 if (ret)
2768 async->error = ret;
2769
2770 ret = btrfs_end_transaction(trans, async->root);
2771 if (ret && !async->error)
2772 async->error = ret;
2773done:
2774 if (async->sync)
2775 complete(&async->wait);
2776 else
2777 kfree(async);
2778}
2779
2780int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2781 unsigned long count, int wait)
2782{
2783 struct async_delayed_refs *async;
2784 int ret;
2785
2786 async = kmalloc(sizeof(*async), GFP_NOFS);
2787 if (!async)
2788 return -ENOMEM;
2789
2790 async->root = root->fs_info->tree_root;
2791 async->count = count;
2792 async->error = 0;
2793 if (wait)
2794 async->sync = 1;
2795 else
2796 async->sync = 0;
2797 init_completion(&async->wait);
2798
9e0af237
LB
2799 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2800 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2801
2802 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2803
2804 if (wait) {
2805 wait_for_completion(&async->wait);
2806 ret = async->error;
2807 kfree(async);
2808 return ret;
2809 }
2810 return 0;
2811}
2812
c3e69d58
CM
2813/*
2814 * this starts processing the delayed reference count updates and
2815 * extent insertions we have queued up so far. count can be
2816 * 0, which means to process everything in the tree at the start
2817 * of the run (but not newly added entries), or it can be some target
2818 * number you'd like to process.
79787eaa
JM
2819 *
2820 * Returns 0 on success or if called with an aborted transaction
2821 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2822 */
2823int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2824 struct btrfs_root *root, unsigned long count)
2825{
2826 struct rb_node *node;
2827 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2828 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2829 int ret;
2830 int run_all = count == (unsigned long)-1;
c3e69d58 2831
79787eaa
JM
2832 /* We'll clean this up in btrfs_cleanup_transaction */
2833 if (trans->aborted)
2834 return 0;
2835
c3e69d58
CM
2836 if (root == root->fs_info->extent_root)
2837 root = root->fs_info->tree_root;
2838
2839 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2840 if (count == 0)
d7df2c79 2841 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2842
c3e69d58 2843again:
709c0486
AJ
2844#ifdef SCRAMBLE_DELAYED_REFS
2845 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2846#endif
d7df2c79
JB
2847 ret = __btrfs_run_delayed_refs(trans, root, count);
2848 if (ret < 0) {
2849 btrfs_abort_transaction(trans, root, ret);
2850 return ret;
eb099670 2851 }
c3e69d58 2852
56bec294 2853 if (run_all) {
d7df2c79 2854 if (!list_empty(&trans->new_bgs))
ea658bad 2855 btrfs_create_pending_block_groups(trans, root);
ea658bad 2856
d7df2c79 2857 spin_lock(&delayed_refs->lock);
c46effa6 2858 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2859 if (!node) {
2860 spin_unlock(&delayed_refs->lock);
56bec294 2861 goto out;
d7df2c79 2862 }
c3e69d58 2863 count = (unsigned long)-1;
e9d0b13b 2864
56bec294 2865 while (node) {
c46effa6
LB
2866 head = rb_entry(node, struct btrfs_delayed_ref_head,
2867 href_node);
2868 if (btrfs_delayed_ref_is_head(&head->node)) {
2869 struct btrfs_delayed_ref_node *ref;
5caf2a00 2870
c46effa6 2871 ref = &head->node;
56bec294
CM
2872 atomic_inc(&ref->refs);
2873
2874 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2875 /*
2876 * Mutex was contended, block until it's
2877 * released and try again
2878 */
56bec294
CM
2879 mutex_lock(&head->mutex);
2880 mutex_unlock(&head->mutex);
2881
2882 btrfs_put_delayed_ref(ref);
1887be66 2883 cond_resched();
56bec294 2884 goto again;
c46effa6
LB
2885 } else {
2886 WARN_ON(1);
56bec294
CM
2887 }
2888 node = rb_next(node);
2889 }
2890 spin_unlock(&delayed_refs->lock);
d7df2c79 2891 cond_resched();
56bec294 2892 goto again;
5f39d397 2893 }
54aa1f4d 2894out:
edf39272 2895 assert_qgroups_uptodate(trans);
a28ec197
CM
2896 return 0;
2897}
2898
5d4f98a2
YZ
2899int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2902 int level, int is_data)
5d4f98a2
YZ
2903{
2904 struct btrfs_delayed_extent_op *extent_op;
2905 int ret;
2906
78a6184a 2907 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2908 if (!extent_op)
2909 return -ENOMEM;
2910
2911 extent_op->flags_to_set = flags;
2912 extent_op->update_flags = 1;
2913 extent_op->update_key = 0;
2914 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2915 extent_op->level = level;
5d4f98a2 2916
66d7e7f0
AJ
2917 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2918 num_bytes, extent_op);
5d4f98a2 2919 if (ret)
78a6184a 2920 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2921 return ret;
2922}
2923
2924static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root,
2926 struct btrfs_path *path,
2927 u64 objectid, u64 offset, u64 bytenr)
2928{
2929 struct btrfs_delayed_ref_head *head;
2930 struct btrfs_delayed_ref_node *ref;
2931 struct btrfs_delayed_data_ref *data_ref;
2932 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2933 int ret = 0;
2934
5d4f98a2
YZ
2935 delayed_refs = &trans->transaction->delayed_refs;
2936 spin_lock(&delayed_refs->lock);
2937 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2938 if (!head) {
2939 spin_unlock(&delayed_refs->lock);
2940 return 0;
2941 }
5d4f98a2
YZ
2942
2943 if (!mutex_trylock(&head->mutex)) {
2944 atomic_inc(&head->node.refs);
2945 spin_unlock(&delayed_refs->lock);
2946
b3b4aa74 2947 btrfs_release_path(path);
5d4f98a2 2948
8cc33e5c
DS
2949 /*
2950 * Mutex was contended, block until it's released and let
2951 * caller try again
2952 */
5d4f98a2
YZ
2953 mutex_lock(&head->mutex);
2954 mutex_unlock(&head->mutex);
2955 btrfs_put_delayed_ref(&head->node);
2956 return -EAGAIN;
2957 }
d7df2c79 2958 spin_unlock(&delayed_refs->lock);
5d4f98a2 2959
d7df2c79 2960 spin_lock(&head->lock);
c6fc2454 2961 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2962 /* If it's a shared ref we know a cross reference exists */
2963 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2964 ret = 1;
2965 break;
2966 }
5d4f98a2 2967
d7df2c79 2968 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2969
d7df2c79
JB
2970 /*
2971 * If our ref doesn't match the one we're currently looking at
2972 * then we have a cross reference.
2973 */
2974 if (data_ref->root != root->root_key.objectid ||
2975 data_ref->objectid != objectid ||
2976 data_ref->offset != offset) {
2977 ret = 1;
2978 break;
2979 }
5d4f98a2 2980 }
d7df2c79 2981 spin_unlock(&head->lock);
5d4f98a2 2982 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2983 return ret;
2984}
2985
2986static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2987 struct btrfs_root *root,
2988 struct btrfs_path *path,
2989 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2990{
2991 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2992 struct extent_buffer *leaf;
5d4f98a2
YZ
2993 struct btrfs_extent_data_ref *ref;
2994 struct btrfs_extent_inline_ref *iref;
2995 struct btrfs_extent_item *ei;
f321e491 2996 struct btrfs_key key;
5d4f98a2 2997 u32 item_size;
be20aa9d 2998 int ret;
925baedd 2999
be20aa9d 3000 key.objectid = bytenr;
31840ae1 3001 key.offset = (u64)-1;
f321e491 3002 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3003
be20aa9d
CM
3004 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3005 if (ret < 0)
3006 goto out;
79787eaa 3007 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3008
3009 ret = -ENOENT;
3010 if (path->slots[0] == 0)
31840ae1 3011 goto out;
be20aa9d 3012
31840ae1 3013 path->slots[0]--;
f321e491 3014 leaf = path->nodes[0];
5d4f98a2 3015 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3016
5d4f98a2 3017 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3018 goto out;
f321e491 3019
5d4f98a2
YZ
3020 ret = 1;
3021 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3022#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3023 if (item_size < sizeof(*ei)) {
3024 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3025 goto out;
3026 }
3027#endif
3028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3029
5d4f98a2
YZ
3030 if (item_size != sizeof(*ei) +
3031 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3032 goto out;
be20aa9d 3033
5d4f98a2
YZ
3034 if (btrfs_extent_generation(leaf, ei) <=
3035 btrfs_root_last_snapshot(&root->root_item))
3036 goto out;
3037
3038 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3039 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3040 BTRFS_EXTENT_DATA_REF_KEY)
3041 goto out;
3042
3043 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3044 if (btrfs_extent_refs(leaf, ei) !=
3045 btrfs_extent_data_ref_count(leaf, ref) ||
3046 btrfs_extent_data_ref_root(leaf, ref) !=
3047 root->root_key.objectid ||
3048 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3049 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3050 goto out;
3051
3052 ret = 0;
3053out:
3054 return ret;
3055}
3056
3057int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3058 struct btrfs_root *root,
3059 u64 objectid, u64 offset, u64 bytenr)
3060{
3061 struct btrfs_path *path;
3062 int ret;
3063 int ret2;
3064
3065 path = btrfs_alloc_path();
3066 if (!path)
3067 return -ENOENT;
3068
3069 do {
3070 ret = check_committed_ref(trans, root, path, objectid,
3071 offset, bytenr);
3072 if (ret && ret != -ENOENT)
f321e491 3073 goto out;
80ff3856 3074
5d4f98a2
YZ
3075 ret2 = check_delayed_ref(trans, root, path, objectid,
3076 offset, bytenr);
3077 } while (ret2 == -EAGAIN);
3078
3079 if (ret2 && ret2 != -ENOENT) {
3080 ret = ret2;
3081 goto out;
f321e491 3082 }
5d4f98a2
YZ
3083
3084 if (ret != -ENOENT || ret2 != -ENOENT)
3085 ret = 0;
be20aa9d 3086out:
80ff3856 3087 btrfs_free_path(path);
f0486c68
YZ
3088 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3089 WARN_ON(ret > 0);
f321e491 3090 return ret;
be20aa9d 3091}
c5739bba 3092
5d4f98a2 3093static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3094 struct btrfs_root *root,
5d4f98a2 3095 struct extent_buffer *buf,
e339a6b0 3096 int full_backref, int inc)
31840ae1
ZY
3097{
3098 u64 bytenr;
5d4f98a2
YZ
3099 u64 num_bytes;
3100 u64 parent;
31840ae1 3101 u64 ref_root;
31840ae1 3102 u32 nritems;
31840ae1
ZY
3103 struct btrfs_key key;
3104 struct btrfs_file_extent_item *fi;
3105 int i;
3106 int level;
3107 int ret = 0;
31840ae1 3108 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3109 u64, u64, u64, u64, u64, u64, int);
31840ae1 3110
fccb84c9
DS
3111
3112 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3113 return 0;
fccb84c9 3114
31840ae1 3115 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3116 nritems = btrfs_header_nritems(buf);
3117 level = btrfs_header_level(buf);
3118
27cdeb70 3119 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3120 return 0;
31840ae1 3121
5d4f98a2
YZ
3122 if (inc)
3123 process_func = btrfs_inc_extent_ref;
3124 else
3125 process_func = btrfs_free_extent;
31840ae1 3126
5d4f98a2
YZ
3127 if (full_backref)
3128 parent = buf->start;
3129 else
3130 parent = 0;
3131
3132 for (i = 0; i < nritems; i++) {
31840ae1 3133 if (level == 0) {
5d4f98a2 3134 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3135 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3136 continue;
5d4f98a2 3137 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3138 struct btrfs_file_extent_item);
3139 if (btrfs_file_extent_type(buf, fi) ==
3140 BTRFS_FILE_EXTENT_INLINE)
3141 continue;
3142 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3143 if (bytenr == 0)
3144 continue;
5d4f98a2
YZ
3145
3146 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3147 key.offset -= btrfs_file_extent_offset(buf, fi);
3148 ret = process_func(trans, root, bytenr, num_bytes,
3149 parent, ref_root, key.objectid,
e339a6b0 3150 key.offset, 1);
31840ae1
ZY
3151 if (ret)
3152 goto fail;
3153 } else {
5d4f98a2 3154 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3155 num_bytes = root->nodesize;
5d4f98a2 3156 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3157 parent, ref_root, level - 1, 0,
e339a6b0 3158 1);
31840ae1
ZY
3159 if (ret)
3160 goto fail;
3161 }
3162 }
3163 return 0;
3164fail:
5d4f98a2
YZ
3165 return ret;
3166}
3167
3168int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3169 struct extent_buffer *buf, int full_backref)
5d4f98a2 3170{
e339a6b0 3171 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3172}
3173
3174int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3175 struct extent_buffer *buf, int full_backref)
5d4f98a2 3176{
e339a6b0 3177 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3178}
3179
9078a3e1
CM
3180static int write_one_cache_group(struct btrfs_trans_handle *trans,
3181 struct btrfs_root *root,
3182 struct btrfs_path *path,
3183 struct btrfs_block_group_cache *cache)
3184{
3185 int ret;
9078a3e1 3186 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3187 unsigned long bi;
3188 struct extent_buffer *leaf;
9078a3e1 3189
9078a3e1 3190 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3191 if (ret) {
3192 if (ret > 0)
3193 ret = -ENOENT;
54aa1f4d 3194 goto fail;
df95e7f0 3195 }
5f39d397
CM
3196
3197 leaf = path->nodes[0];
3198 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3199 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3200 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3201fail:
24b89d08 3202 btrfs_release_path(path);
df95e7f0 3203 return ret;
9078a3e1
CM
3204
3205}
3206
4a8c9a62
YZ
3207static struct btrfs_block_group_cache *
3208next_block_group(struct btrfs_root *root,
3209 struct btrfs_block_group_cache *cache)
3210{
3211 struct rb_node *node;
292cbd51 3212
4a8c9a62 3213 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3214
3215 /* If our block group was removed, we need a full search. */
3216 if (RB_EMPTY_NODE(&cache->cache_node)) {
3217 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3218
3219 spin_unlock(&root->fs_info->block_group_cache_lock);
3220 btrfs_put_block_group(cache);
3221 cache = btrfs_lookup_first_block_group(root->fs_info,
3222 next_bytenr);
3223 return cache;
3224 }
4a8c9a62
YZ
3225 node = rb_next(&cache->cache_node);
3226 btrfs_put_block_group(cache);
3227 if (node) {
3228 cache = rb_entry(node, struct btrfs_block_group_cache,
3229 cache_node);
11dfe35a 3230 btrfs_get_block_group(cache);
4a8c9a62
YZ
3231 } else
3232 cache = NULL;
3233 spin_unlock(&root->fs_info->block_group_cache_lock);
3234 return cache;
3235}
3236
0af3d00b
JB
3237static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3238 struct btrfs_trans_handle *trans,
3239 struct btrfs_path *path)
3240{
3241 struct btrfs_root *root = block_group->fs_info->tree_root;
3242 struct inode *inode = NULL;
3243 u64 alloc_hint = 0;
2b20982e 3244 int dcs = BTRFS_DC_ERROR;
f8c269d7 3245 u64 num_pages = 0;
0af3d00b
JB
3246 int retries = 0;
3247 int ret = 0;
3248
3249 /*
3250 * If this block group is smaller than 100 megs don't bother caching the
3251 * block group.
3252 */
3253 if (block_group->key.offset < (100 * 1024 * 1024)) {
3254 spin_lock(&block_group->lock);
3255 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3256 spin_unlock(&block_group->lock);
3257 return 0;
3258 }
3259
0c0ef4bc
JB
3260 if (trans->aborted)
3261 return 0;
0af3d00b
JB
3262again:
3263 inode = lookup_free_space_inode(root, block_group, path);
3264 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3265 ret = PTR_ERR(inode);
b3b4aa74 3266 btrfs_release_path(path);
0af3d00b
JB
3267 goto out;
3268 }
3269
3270 if (IS_ERR(inode)) {
3271 BUG_ON(retries);
3272 retries++;
3273
3274 if (block_group->ro)
3275 goto out_free;
3276
3277 ret = create_free_space_inode(root, trans, block_group, path);
3278 if (ret)
3279 goto out_free;
3280 goto again;
3281 }
3282
5b0e95bf
JB
3283 /* We've already setup this transaction, go ahead and exit */
3284 if (block_group->cache_generation == trans->transid &&
3285 i_size_read(inode)) {
3286 dcs = BTRFS_DC_SETUP;
3287 goto out_put;
3288 }
3289
0af3d00b
JB
3290 /*
3291 * We want to set the generation to 0, that way if anything goes wrong
3292 * from here on out we know not to trust this cache when we load up next
3293 * time.
3294 */
3295 BTRFS_I(inode)->generation = 0;
3296 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3297 if (ret) {
3298 /*
3299 * So theoretically we could recover from this, simply set the
3300 * super cache generation to 0 so we know to invalidate the
3301 * cache, but then we'd have to keep track of the block groups
3302 * that fail this way so we know we _have_ to reset this cache
3303 * before the next commit or risk reading stale cache. So to
3304 * limit our exposure to horrible edge cases lets just abort the
3305 * transaction, this only happens in really bad situations
3306 * anyway.
3307 */
3308 btrfs_abort_transaction(trans, root, ret);
3309 goto out_put;
3310 }
0af3d00b
JB
3311 WARN_ON(ret);
3312
3313 if (i_size_read(inode) > 0) {
7b61cd92
MX
3314 ret = btrfs_check_trunc_cache_free_space(root,
3315 &root->fs_info->global_block_rsv);
3316 if (ret)
3317 goto out_put;
3318
1bbc621e 3319 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3320 if (ret)
3321 goto out_put;
3322 }
3323
3324 spin_lock(&block_group->lock);
cf7c1ef6 3325 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3326 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3327 /*
3328 * don't bother trying to write stuff out _if_
3329 * a) we're not cached,
3330 * b) we're with nospace_cache mount option.
3331 */
2b20982e 3332 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3333 spin_unlock(&block_group->lock);
3334 goto out_put;
3335 }
3336 spin_unlock(&block_group->lock);
3337
6fc823b1
JB
3338 /*
3339 * Try to preallocate enough space based on how big the block group is.
3340 * Keep in mind this has to include any pinned space which could end up
3341 * taking up quite a bit since it's not folded into the other space
3342 * cache.
3343 */
f8c269d7 3344 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3345 if (!num_pages)
3346 num_pages = 1;
3347
0af3d00b
JB
3348 num_pages *= 16;
3349 num_pages *= PAGE_CACHE_SIZE;
3350
e2d1f923 3351 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3352 if (ret)
3353 goto out_put;
3354
3355 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3356 num_pages, num_pages,
3357 &alloc_hint);
2b20982e
JB
3358 if (!ret)
3359 dcs = BTRFS_DC_SETUP;
0af3d00b 3360 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3361
0af3d00b
JB
3362out_put:
3363 iput(inode);
3364out_free:
b3b4aa74 3365 btrfs_release_path(path);
0af3d00b
JB
3366out:
3367 spin_lock(&block_group->lock);
e65cbb94 3368 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3369 block_group->cache_generation = trans->transid;
2b20982e 3370 block_group->disk_cache_state = dcs;
0af3d00b
JB
3371 spin_unlock(&block_group->lock);
3372
3373 return ret;
3374}
3375
dcdf7f6d
JB
3376int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3377 struct btrfs_root *root)
3378{
3379 struct btrfs_block_group_cache *cache, *tmp;
3380 struct btrfs_transaction *cur_trans = trans->transaction;
3381 struct btrfs_path *path;
3382
3383 if (list_empty(&cur_trans->dirty_bgs) ||
3384 !btrfs_test_opt(root, SPACE_CACHE))
3385 return 0;
3386
3387 path = btrfs_alloc_path();
3388 if (!path)
3389 return -ENOMEM;
3390
3391 /* Could add new block groups, use _safe just in case */
3392 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3393 dirty_list) {
3394 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3395 cache_save_setup(cache, trans, path);
3396 }
3397
3398 btrfs_free_path(path);
3399 return 0;
3400}
3401
1bbc621e
CM
3402/*
3403 * transaction commit does final block group cache writeback during a
3404 * critical section where nothing is allowed to change the FS. This is
3405 * required in order for the cache to actually match the block group,
3406 * but can introduce a lot of latency into the commit.
3407 *
3408 * So, btrfs_start_dirty_block_groups is here to kick off block group
3409 * cache IO. There's a chance we'll have to redo some of it if the
3410 * block group changes again during the commit, but it greatly reduces
3411 * the commit latency by getting rid of the easy block groups while
3412 * we're still allowing others to join the commit.
3413 */
3414int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3415 struct btrfs_root *root)
9078a3e1 3416{
4a8c9a62 3417 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3418 struct btrfs_transaction *cur_trans = trans->transaction;
3419 int ret = 0;
c9dc4c65 3420 int should_put;
1bbc621e
CM
3421 struct btrfs_path *path = NULL;
3422 LIST_HEAD(dirty);
3423 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3424 int num_started = 0;
1bbc621e
CM
3425 int loops = 0;
3426
3427 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3428 if (list_empty(&cur_trans->dirty_bgs)) {
3429 spin_unlock(&cur_trans->dirty_bgs_lock);
3430 return 0;
1bbc621e 3431 }
b58d1a9e 3432 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3433 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3434
1bbc621e 3435again:
1bbc621e
CM
3436 /*
3437 * make sure all the block groups on our dirty list actually
3438 * exist
3439 */
3440 btrfs_create_pending_block_groups(trans, root);
3441
3442 if (!path) {
3443 path = btrfs_alloc_path();
3444 if (!path)
3445 return -ENOMEM;
3446 }
3447
b58d1a9e
FM
3448 /*
3449 * cache_write_mutex is here only to save us from balance or automatic
3450 * removal of empty block groups deleting this block group while we are
3451 * writing out the cache
3452 */
3453 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3454 while (!list_empty(&dirty)) {
3455 cache = list_first_entry(&dirty,
3456 struct btrfs_block_group_cache,
3457 dirty_list);
1bbc621e
CM
3458 /*
3459 * this can happen if something re-dirties a block
3460 * group that is already under IO. Just wait for it to
3461 * finish and then do it all again
3462 */
3463 if (!list_empty(&cache->io_list)) {
3464 list_del_init(&cache->io_list);
3465 btrfs_wait_cache_io(root, trans, cache,
3466 &cache->io_ctl, path,
3467 cache->key.objectid);
3468 btrfs_put_block_group(cache);
3469 }
3470
3471
3472 /*
3473 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3474 * if it should update the cache_state. Don't delete
3475 * until after we wait.
3476 *
3477 * Since we're not running in the commit critical section
3478 * we need the dirty_bgs_lock to protect from update_block_group
3479 */
3480 spin_lock(&cur_trans->dirty_bgs_lock);
3481 list_del_init(&cache->dirty_list);
3482 spin_unlock(&cur_trans->dirty_bgs_lock);
3483
3484 should_put = 1;
3485
3486 cache_save_setup(cache, trans, path);
3487
3488 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3489 cache->io_ctl.inode = NULL;
3490 ret = btrfs_write_out_cache(root, trans, cache, path);
3491 if (ret == 0 && cache->io_ctl.inode) {
3492 num_started++;
3493 should_put = 0;
3494
3495 /*
3496 * the cache_write_mutex is protecting
3497 * the io_list
3498 */
3499 list_add_tail(&cache->io_list, io);
3500 } else {
3501 /*
3502 * if we failed to write the cache, the
3503 * generation will be bad and life goes on
3504 */
3505 ret = 0;
3506 }
3507 }
ff1f8250 3508 if (!ret) {
1bbc621e 3509 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3510 /*
3511 * Our block group might still be attached to the list
3512 * of new block groups in the transaction handle of some
3513 * other task (struct btrfs_trans_handle->new_bgs). This
3514 * means its block group item isn't yet in the extent
3515 * tree. If this happens ignore the error, as we will
3516 * try again later in the critical section of the
3517 * transaction commit.
3518 */
3519 if (ret == -ENOENT) {
3520 ret = 0;
3521 spin_lock(&cur_trans->dirty_bgs_lock);
3522 if (list_empty(&cache->dirty_list)) {
3523 list_add_tail(&cache->dirty_list,
3524 &cur_trans->dirty_bgs);
3525 btrfs_get_block_group(cache);
3526 }
3527 spin_unlock(&cur_trans->dirty_bgs_lock);
3528 } else if (ret) {
3529 btrfs_abort_transaction(trans, root, ret);
3530 }
3531 }
1bbc621e
CM
3532
3533 /* if its not on the io list, we need to put the block group */
3534 if (should_put)
3535 btrfs_put_block_group(cache);
3536
3537 if (ret)
3538 break;
b58d1a9e
FM
3539
3540 /*
3541 * Avoid blocking other tasks for too long. It might even save
3542 * us from writing caches for block groups that are going to be
3543 * removed.
3544 */
3545 mutex_unlock(&trans->transaction->cache_write_mutex);
3546 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3547 }
b58d1a9e 3548 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3549
3550 /*
3551 * go through delayed refs for all the stuff we've just kicked off
3552 * and then loop back (just once)
3553 */
3554 ret = btrfs_run_delayed_refs(trans, root, 0);
3555 if (!ret && loops == 0) {
3556 loops++;
3557 spin_lock(&cur_trans->dirty_bgs_lock);
3558 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3559 /*
3560 * dirty_bgs_lock protects us from concurrent block group
3561 * deletes too (not just cache_write_mutex).
3562 */
3563 if (!list_empty(&dirty)) {
3564 spin_unlock(&cur_trans->dirty_bgs_lock);
3565 goto again;
3566 }
1bbc621e 3567 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3568 }
3569
3570 btrfs_free_path(path);
3571 return ret;
3572}
3573
3574int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3575 struct btrfs_root *root)
3576{
3577 struct btrfs_block_group_cache *cache;
3578 struct btrfs_transaction *cur_trans = trans->transaction;
3579 int ret = 0;
3580 int should_put;
3581 struct btrfs_path *path;
3582 struct list_head *io = &cur_trans->io_bgs;
3583 int num_started = 0;
9078a3e1
CM
3584
3585 path = btrfs_alloc_path();
3586 if (!path)
3587 return -ENOMEM;
3588
ce93ec54
JB
3589 /*
3590 * We don't need the lock here since we are protected by the transaction
3591 * commit. We want to do the cache_save_setup first and then run the
3592 * delayed refs to make sure we have the best chance at doing this all
3593 * in one shot.
3594 */
3595 while (!list_empty(&cur_trans->dirty_bgs)) {
3596 cache = list_first_entry(&cur_trans->dirty_bgs,
3597 struct btrfs_block_group_cache,
3598 dirty_list);
c9dc4c65
CM
3599
3600 /*
3601 * this can happen if cache_save_setup re-dirties a block
3602 * group that is already under IO. Just wait for it to
3603 * finish and then do it all again
3604 */
3605 if (!list_empty(&cache->io_list)) {
3606 list_del_init(&cache->io_list);
3607 btrfs_wait_cache_io(root, trans, cache,
3608 &cache->io_ctl, path,
3609 cache->key.objectid);
3610 btrfs_put_block_group(cache);
c9dc4c65
CM
3611 }
3612
1bbc621e
CM
3613 /*
3614 * don't remove from the dirty list until after we've waited
3615 * on any pending IO
3616 */
ce93ec54 3617 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3618 should_put = 1;
3619
1bbc621e 3620 cache_save_setup(cache, trans, path);
c9dc4c65 3621
ce93ec54 3622 if (!ret)
c9dc4c65
CM
3623 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3624
3625 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3626 cache->io_ctl.inode = NULL;
3627 ret = btrfs_write_out_cache(root, trans, cache, path);
3628 if (ret == 0 && cache->io_ctl.inode) {
3629 num_started++;
3630 should_put = 0;
1bbc621e 3631 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3632 } else {
3633 /*
3634 * if we failed to write the cache, the
3635 * generation will be bad and life goes on
3636 */
3637 ret = 0;
3638 }
3639 }
ff1f8250 3640 if (!ret) {
ce93ec54 3641 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3642 if (ret)
3643 btrfs_abort_transaction(trans, root, ret);
3644 }
c9dc4c65
CM
3645
3646 /* if its not on the io list, we need to put the block group */
3647 if (should_put)
3648 btrfs_put_block_group(cache);
3649 }
3650
1bbc621e
CM
3651 while (!list_empty(io)) {
3652 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3653 io_list);
3654 list_del_init(&cache->io_list);
c9dc4c65
CM
3655 btrfs_wait_cache_io(root, trans, cache,
3656 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3657 btrfs_put_block_group(cache);
3658 }
3659
9078a3e1 3660 btrfs_free_path(path);
ce93ec54 3661 return ret;
9078a3e1
CM
3662}
3663
d2fb3437
YZ
3664int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3665{
3666 struct btrfs_block_group_cache *block_group;
3667 int readonly = 0;
3668
3669 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3670 if (!block_group || block_group->ro)
3671 readonly = 1;
3672 if (block_group)
fa9c0d79 3673 btrfs_put_block_group(block_group);
d2fb3437
YZ
3674 return readonly;
3675}
3676
6ab0a202
JM
3677static const char *alloc_name(u64 flags)
3678{
3679 switch (flags) {
3680 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3681 return "mixed";
3682 case BTRFS_BLOCK_GROUP_METADATA:
3683 return "metadata";
3684 case BTRFS_BLOCK_GROUP_DATA:
3685 return "data";
3686 case BTRFS_BLOCK_GROUP_SYSTEM:
3687 return "system";
3688 default:
3689 WARN_ON(1);
3690 return "invalid-combination";
3691 };
3692}
3693
593060d7
CM
3694static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3695 u64 total_bytes, u64 bytes_used,
3696 struct btrfs_space_info **space_info)
3697{
3698 struct btrfs_space_info *found;
b742bb82
YZ
3699 int i;
3700 int factor;
b150a4f1 3701 int ret;
b742bb82
YZ
3702
3703 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3704 BTRFS_BLOCK_GROUP_RAID10))
3705 factor = 2;
3706 else
3707 factor = 1;
593060d7
CM
3708
3709 found = __find_space_info(info, flags);
3710 if (found) {
25179201 3711 spin_lock(&found->lock);
593060d7 3712 found->total_bytes += total_bytes;
89a55897 3713 found->disk_total += total_bytes * factor;
593060d7 3714 found->bytes_used += bytes_used;
b742bb82 3715 found->disk_used += bytes_used * factor;
2e6e5183
FM
3716 if (total_bytes > 0)
3717 found->full = 0;
25179201 3718 spin_unlock(&found->lock);
593060d7
CM
3719 *space_info = found;
3720 return 0;
3721 }
c146afad 3722 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3723 if (!found)
3724 return -ENOMEM;
3725
908c7f19 3726 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3727 if (ret) {
3728 kfree(found);
3729 return ret;
3730 }
3731
c1895442 3732 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3733 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3734 init_rwsem(&found->groups_sem);
0f9dd46c 3735 spin_lock_init(&found->lock);
52ba6929 3736 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3737 found->total_bytes = total_bytes;
89a55897 3738 found->disk_total = total_bytes * factor;
593060d7 3739 found->bytes_used = bytes_used;
b742bb82 3740 found->disk_used = bytes_used * factor;
593060d7 3741 found->bytes_pinned = 0;
e8569813 3742 found->bytes_reserved = 0;
c146afad 3743 found->bytes_readonly = 0;
f0486c68 3744 found->bytes_may_use = 0;
6af3e3ad 3745 found->full = 0;
0e4f8f88 3746 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3747 found->chunk_alloc = 0;
fdb5effd
JB
3748 found->flush = 0;
3749 init_waitqueue_head(&found->wait);
633c0aad 3750 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3751
3752 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3753 info->space_info_kobj, "%s",
3754 alloc_name(found->flags));
3755 if (ret) {
3756 kfree(found);
3757 return ret;
3758 }
3759
593060d7 3760 *space_info = found;
4184ea7f 3761 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3762 if (flags & BTRFS_BLOCK_GROUP_DATA)
3763 info->data_sinfo = found;
6ab0a202
JM
3764
3765 return ret;
593060d7
CM
3766}
3767
8790d502
CM
3768static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3769{
899c81ea
ID
3770 u64 extra_flags = chunk_to_extended(flags) &
3771 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3772
de98ced9 3773 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3774 if (flags & BTRFS_BLOCK_GROUP_DATA)
3775 fs_info->avail_data_alloc_bits |= extra_flags;
3776 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3777 fs_info->avail_metadata_alloc_bits |= extra_flags;
3778 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3779 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3780 write_sequnlock(&fs_info->profiles_lock);
8790d502 3781}
593060d7 3782
fc67c450
ID
3783/*
3784 * returns target flags in extended format or 0 if restripe for this
3785 * chunk_type is not in progress
c6664b42
ID
3786 *
3787 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3788 */
3789static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3790{
3791 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3792 u64 target = 0;
3793
fc67c450
ID
3794 if (!bctl)
3795 return 0;
3796
3797 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3798 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3799 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3800 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3801 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3802 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3803 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3804 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3805 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3806 }
3807
3808 return target;
3809}
3810
a46d11a8
ID
3811/*
3812 * @flags: available profiles in extended format (see ctree.h)
3813 *
e4d8ec0f
ID
3814 * Returns reduced profile in chunk format. If profile changing is in
3815 * progress (either running or paused) picks the target profile (if it's
3816 * already available), otherwise falls back to plain reducing.
a46d11a8 3817 */
48a3b636 3818static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3819{
95669976 3820 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3821 u64 target;
53b381b3 3822 u64 tmp;
a061fc8d 3823
fc67c450
ID
3824 /*
3825 * see if restripe for this chunk_type is in progress, if so
3826 * try to reduce to the target profile
3827 */
e4d8ec0f 3828 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3829 target = get_restripe_target(root->fs_info, flags);
3830 if (target) {
3831 /* pick target profile only if it's already available */
3832 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3833 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3834 return extended_to_chunk(target);
e4d8ec0f
ID
3835 }
3836 }
3837 spin_unlock(&root->fs_info->balance_lock);
3838
53b381b3 3839 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3840 if (num_devices == 1)
53b381b3
DW
3841 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3842 BTRFS_BLOCK_GROUP_RAID5);
3843 if (num_devices < 3)
3844 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3845 if (num_devices < 4)
3846 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3847
53b381b3
DW
3848 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3849 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3850 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3851 flags &= ~tmp;
ec44a35c 3852
53b381b3
DW
3853 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3854 tmp = BTRFS_BLOCK_GROUP_RAID6;
3855 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3856 tmp = BTRFS_BLOCK_GROUP_RAID5;
3857 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3858 tmp = BTRFS_BLOCK_GROUP_RAID10;
3859 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3860 tmp = BTRFS_BLOCK_GROUP_RAID1;
3861 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3862 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3863
53b381b3 3864 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3865}
3866
f8213bdc 3867static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3868{
de98ced9 3869 unsigned seq;
f8213bdc 3870 u64 flags;
de98ced9
MX
3871
3872 do {
f8213bdc 3873 flags = orig_flags;
de98ced9
MX
3874 seq = read_seqbegin(&root->fs_info->profiles_lock);
3875
3876 if (flags & BTRFS_BLOCK_GROUP_DATA)
3877 flags |= root->fs_info->avail_data_alloc_bits;
3878 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3879 flags |= root->fs_info->avail_system_alloc_bits;
3880 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3881 flags |= root->fs_info->avail_metadata_alloc_bits;
3882 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3883
b742bb82 3884 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3885}
3886
6d07bcec 3887u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3888{
b742bb82 3889 u64 flags;
53b381b3 3890 u64 ret;
9ed74f2d 3891
b742bb82
YZ
3892 if (data)
3893 flags = BTRFS_BLOCK_GROUP_DATA;
3894 else if (root == root->fs_info->chunk_root)
3895 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3896 else
b742bb82 3897 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3898
53b381b3
DW
3899 ret = get_alloc_profile(root, flags);
3900 return ret;
6a63209f 3901}
9ed74f2d 3902
6a63209f 3903/*
6a63209f
JB
3904 * This will check the space that the inode allocates from to make sure we have
3905 * enough space for bytes.
6a63209f 3906 */
e2d1f923 3907int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3908{
6a63209f 3909 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3910 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3911 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3912 u64 used;
94b947b2 3913 int ret = 0;
c99f1b0c
ZL
3914 int need_commit = 2;
3915 int have_pinned_space;
6a63209f 3916
6a63209f 3917 /* make sure bytes are sectorsize aligned */
fda2832f 3918 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3919
9dced186 3920 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3921 need_commit = 0;
9dced186 3922 ASSERT(current->journal_info);
0af3d00b
JB
3923 }
3924
b4d7c3c9 3925 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3926 if (!data_sinfo)
3927 goto alloc;
9ed74f2d 3928
6a63209f
JB
3929again:
3930 /* make sure we have enough space to handle the data first */
3931 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3932 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3933 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3934 data_sinfo->bytes_may_use;
ab6e2410
JB
3935
3936 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3937 struct btrfs_trans_handle *trans;
9ed74f2d 3938
6a63209f
JB
3939 /*
3940 * if we don't have enough free bytes in this space then we need
3941 * to alloc a new chunk.
3942 */
b9fd47cd 3943 if (!data_sinfo->full) {
6a63209f 3944 u64 alloc_target;
9ed74f2d 3945
0e4f8f88 3946 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3947 spin_unlock(&data_sinfo->lock);
33b4d47f 3948alloc:
6a63209f 3949 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3950 /*
3951 * It is ugly that we don't call nolock join
3952 * transaction for the free space inode case here.
3953 * But it is safe because we only do the data space
3954 * reservation for the free space cache in the
3955 * transaction context, the common join transaction
3956 * just increase the counter of the current transaction
3957 * handler, doesn't try to acquire the trans_lock of
3958 * the fs.
3959 */
7a7eaa40 3960 trans = btrfs_join_transaction(root);
a22285a6
YZ
3961 if (IS_ERR(trans))
3962 return PTR_ERR(trans);
9ed74f2d 3963
6a63209f 3964 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3965 alloc_target,
3966 CHUNK_ALLOC_NO_FORCE);
6a63209f 3967 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3968 if (ret < 0) {
3969 if (ret != -ENOSPC)
3970 return ret;
c99f1b0c
ZL
3971 else {
3972 have_pinned_space = 1;
d52a5b5f 3973 goto commit_trans;
c99f1b0c 3974 }
d52a5b5f 3975 }
9ed74f2d 3976
b4d7c3c9
LZ
3977 if (!data_sinfo)
3978 data_sinfo = fs_info->data_sinfo;
3979
6a63209f
JB
3980 goto again;
3981 }
f2bb8f5c
JB
3982
3983 /*
b150a4f1 3984 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3985 * allocation, and no removed chunk in current transaction,
3986 * don't bother committing the transaction.
f2bb8f5c 3987 */
c99f1b0c
ZL
3988 have_pinned_space = percpu_counter_compare(
3989 &data_sinfo->total_bytes_pinned,
3990 used + bytes - data_sinfo->total_bytes);
6a63209f 3991 spin_unlock(&data_sinfo->lock);
6a63209f 3992
4e06bdd6 3993 /* commit the current transaction and try again */
d52a5b5f 3994commit_trans:
c99f1b0c 3995 if (need_commit &&
a4abeea4 3996 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3997 need_commit--;
b150a4f1 3998
9a4e7276
ZL
3999 if (need_commit > 0)
4000 btrfs_wait_ordered_roots(fs_info, -1);
4001
7a7eaa40 4002 trans = btrfs_join_transaction(root);
a22285a6
YZ
4003 if (IS_ERR(trans))
4004 return PTR_ERR(trans);
c99f1b0c
ZL
4005 if (have_pinned_space >= 0 ||
4006 trans->transaction->have_free_bgs ||
4007 need_commit > 0) {
94b947b2
ZL
4008 ret = btrfs_commit_transaction(trans, root);
4009 if (ret)
4010 return ret;
d7c15171
ZL
4011 /*
4012 * make sure that all running delayed iput are
4013 * done
4014 */
4015 down_write(&root->fs_info->delayed_iput_sem);
4016 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4017 goto again;
4018 } else {
4019 btrfs_end_transaction(trans, root);
4020 }
4e06bdd6 4021 }
9ed74f2d 4022
cab45e22
JM
4023 trace_btrfs_space_reservation(root->fs_info,
4024 "space_info:enospc",
4025 data_sinfo->flags, bytes, 1);
6a63209f
JB
4026 return -ENOSPC;
4027 }
e2d1f923 4028 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
4029 if (ret)
4030 goto out;
6a63209f 4031 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4032 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4033 data_sinfo->flags, bytes, 1);
237c0e9f 4034out:
6a63209f 4035 spin_unlock(&data_sinfo->lock);
6a63209f 4036
237c0e9f 4037 return ret;
9ed74f2d 4038}
6a63209f 4039
6a63209f 4040/*
fb25e914 4041 * Called if we need to clear a data reservation for this inode.
6a63209f 4042 */
0ca1f7ce 4043void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 4044{
0ca1f7ce 4045 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4046 struct btrfs_space_info *data_sinfo;
e3ccfa98 4047
6a63209f 4048 /* make sure bytes are sectorsize aligned */
fda2832f 4049 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4050
b4d7c3c9 4051 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4052 spin_lock(&data_sinfo->lock);
7ee9e440 4053 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4054 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4055 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4056 data_sinfo->flags, bytes, 0);
6a63209f 4057 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4058}
4059
97e728d4 4060static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4061{
97e728d4
JB
4062 struct list_head *head = &info->space_info;
4063 struct btrfs_space_info *found;
e3ccfa98 4064
97e728d4
JB
4065 rcu_read_lock();
4066 list_for_each_entry_rcu(found, head, list) {
4067 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4068 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4069 }
97e728d4 4070 rcu_read_unlock();
e3ccfa98
JB
4071}
4072
3c76cd84
MX
4073static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4074{
4075 return (global->size << 1);
4076}
4077
e5bc2458 4078static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4079 struct btrfs_space_info *sinfo, int force)
32c00aff 4080{
fb25e914 4081 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4082 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4083 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4084 u64 thresh;
e3ccfa98 4085
0e4f8f88
CM
4086 if (force == CHUNK_ALLOC_FORCE)
4087 return 1;
4088
fb25e914
JB
4089 /*
4090 * We need to take into account the global rsv because for all intents
4091 * and purposes it's used space. Don't worry about locking the
4092 * global_rsv, it doesn't change except when the transaction commits.
4093 */
54338b5c 4094 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4095 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4096
0e4f8f88
CM
4097 /*
4098 * in limited mode, we want to have some free space up to
4099 * about 1% of the FS size.
4100 */
4101 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4102 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4103 thresh = max_t(u64, 64 * 1024 * 1024,
4104 div_factor_fine(thresh, 1));
4105
4106 if (num_bytes - num_allocated < thresh)
4107 return 1;
4108 }
0e4f8f88 4109
698d0082 4110 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4111 return 0;
424499db 4112 return 1;
32c00aff
JB
4113}
4114
39c2d7fa 4115static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4116{
4117 u64 num_dev;
4118
53b381b3
DW
4119 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4120 BTRFS_BLOCK_GROUP_RAID0 |
4121 BTRFS_BLOCK_GROUP_RAID5 |
4122 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4123 num_dev = root->fs_info->fs_devices->rw_devices;
4124 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4125 num_dev = 2;
4126 else
4127 num_dev = 1; /* DUP or single */
4128
39c2d7fa 4129 return num_dev;
15d1ff81
LB
4130}
4131
39c2d7fa
FM
4132/*
4133 * If @is_allocation is true, reserve space in the system space info necessary
4134 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4135 * removing a chunk.
4136 */
4137void check_system_chunk(struct btrfs_trans_handle *trans,
4138 struct btrfs_root *root,
4617ea3a 4139 u64 type)
15d1ff81
LB
4140{
4141 struct btrfs_space_info *info;
4142 u64 left;
4143 u64 thresh;
4fbcdf66 4144 int ret = 0;
39c2d7fa 4145 u64 num_devs;
4fbcdf66
FM
4146
4147 /*
4148 * Needed because we can end up allocating a system chunk and for an
4149 * atomic and race free space reservation in the chunk block reserve.
4150 */
4151 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4152
4153 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4154 spin_lock(&info->lock);
4155 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4156 info->bytes_reserved - info->bytes_readonly -
4157 info->bytes_may_use;
15d1ff81
LB
4158 spin_unlock(&info->lock);
4159
39c2d7fa
FM
4160 num_devs = get_profile_num_devs(root, type);
4161
4162 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4163 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4164 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4165
15d1ff81 4166 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4167 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4168 left, thresh, type);
15d1ff81
LB
4169 dump_space_info(info, 0, 0);
4170 }
4171
4172 if (left < thresh) {
4173 u64 flags;
4174
4175 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4176 /*
4177 * Ignore failure to create system chunk. We might end up not
4178 * needing it, as we might not need to COW all nodes/leafs from
4179 * the paths we visit in the chunk tree (they were already COWed
4180 * or created in the current transaction for example).
4181 */
4182 ret = btrfs_alloc_chunk(trans, root, flags);
4183 }
4184
4185 if (!ret) {
4186 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4187 &root->fs_info->chunk_block_rsv,
4188 thresh, BTRFS_RESERVE_NO_FLUSH);
4189 if (!ret)
4190 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4191 }
4192}
4193
6324fbf3 4194static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4195 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4196{
6324fbf3 4197 struct btrfs_space_info *space_info;
97e728d4 4198 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4199 int wait_for_alloc = 0;
9ed74f2d 4200 int ret = 0;
9ed74f2d 4201
c6b305a8
JB
4202 /* Don't re-enter if we're already allocating a chunk */
4203 if (trans->allocating_chunk)
4204 return -ENOSPC;
4205
6324fbf3 4206 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4207 if (!space_info) {
4208 ret = update_space_info(extent_root->fs_info, flags,
4209 0, 0, &space_info);
79787eaa 4210 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4211 }
79787eaa 4212 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4213
6d74119f 4214again:
25179201 4215 spin_lock(&space_info->lock);
9e622d6b 4216 if (force < space_info->force_alloc)
0e4f8f88 4217 force = space_info->force_alloc;
25179201 4218 if (space_info->full) {
09fb99a6
FDBM
4219 if (should_alloc_chunk(extent_root, space_info, force))
4220 ret = -ENOSPC;
4221 else
4222 ret = 0;
25179201 4223 spin_unlock(&space_info->lock);
09fb99a6 4224 return ret;
9ed74f2d
JB
4225 }
4226
698d0082 4227 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4228 spin_unlock(&space_info->lock);
6d74119f
JB
4229 return 0;
4230 } else if (space_info->chunk_alloc) {
4231 wait_for_alloc = 1;
4232 } else {
4233 space_info->chunk_alloc = 1;
9ed74f2d 4234 }
0e4f8f88 4235
25179201 4236 spin_unlock(&space_info->lock);
9ed74f2d 4237
6d74119f
JB
4238 mutex_lock(&fs_info->chunk_mutex);
4239
4240 /*
4241 * The chunk_mutex is held throughout the entirety of a chunk
4242 * allocation, so once we've acquired the chunk_mutex we know that the
4243 * other guy is done and we need to recheck and see if we should
4244 * allocate.
4245 */
4246 if (wait_for_alloc) {
4247 mutex_unlock(&fs_info->chunk_mutex);
4248 wait_for_alloc = 0;
4249 goto again;
4250 }
4251
c6b305a8
JB
4252 trans->allocating_chunk = true;
4253
67377734
JB
4254 /*
4255 * If we have mixed data/metadata chunks we want to make sure we keep
4256 * allocating mixed chunks instead of individual chunks.
4257 */
4258 if (btrfs_mixed_space_info(space_info))
4259 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4260
97e728d4
JB
4261 /*
4262 * if we're doing a data chunk, go ahead and make sure that
4263 * we keep a reasonable number of metadata chunks allocated in the
4264 * FS as well.
4265 */
9ed74f2d 4266 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4267 fs_info->data_chunk_allocations++;
4268 if (!(fs_info->data_chunk_allocations %
4269 fs_info->metadata_ratio))
4270 force_metadata_allocation(fs_info);
9ed74f2d
JB
4271 }
4272
15d1ff81
LB
4273 /*
4274 * Check if we have enough space in SYSTEM chunk because we may need
4275 * to update devices.
4276 */
4617ea3a 4277 check_system_chunk(trans, extent_root, flags);
15d1ff81 4278
2b82032c 4279 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4280 trans->allocating_chunk = false;
92b8e897 4281
9ed74f2d 4282 spin_lock(&space_info->lock);
a81cb9a2
AO
4283 if (ret < 0 && ret != -ENOSPC)
4284 goto out;
9ed74f2d 4285 if (ret)
6324fbf3 4286 space_info->full = 1;
424499db
YZ
4287 else
4288 ret = 1;
6d74119f 4289
0e4f8f88 4290 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4291out:
6d74119f 4292 space_info->chunk_alloc = 0;
9ed74f2d 4293 spin_unlock(&space_info->lock);
a25c75d5 4294 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4295 /*
4296 * When we allocate a new chunk we reserve space in the chunk block
4297 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4298 * add new nodes/leafs to it if we end up needing to do it when
4299 * inserting the chunk item and updating device items as part of the
4300 * second phase of chunk allocation, performed by
4301 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4302 * large number of new block groups to create in our transaction
4303 * handle's new_bgs list to avoid exhausting the chunk block reserve
4304 * in extreme cases - like having a single transaction create many new
4305 * block groups when starting to write out the free space caches of all
4306 * the block groups that were made dirty during the lifetime of the
4307 * transaction.
4308 */
4309 if (trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4310 btrfs_create_pending_block_groups(trans, trans->root);
4311 btrfs_trans_release_chunk_metadata(trans);
4312 }
0f9dd46c 4313 return ret;
6324fbf3 4314}
9ed74f2d 4315
a80c8dcf
JB
4316static int can_overcommit(struct btrfs_root *root,
4317 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4318 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4319{
96f1bb57 4320 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4321 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4322 u64 space_size;
a80c8dcf
JB
4323 u64 avail;
4324 u64 used;
4325
4326 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4327 space_info->bytes_pinned + space_info->bytes_readonly;
4328
96f1bb57
JB
4329 /*
4330 * We only want to allow over committing if we have lots of actual space
4331 * free, but if we don't have enough space to handle the global reserve
4332 * space then we could end up having a real enospc problem when trying
4333 * to allocate a chunk or some other such important allocation.
4334 */
3c76cd84
MX
4335 spin_lock(&global_rsv->lock);
4336 space_size = calc_global_rsv_need_space(global_rsv);
4337 spin_unlock(&global_rsv->lock);
4338 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4339 return 0;
4340
4341 used += space_info->bytes_may_use;
a80c8dcf
JB
4342
4343 spin_lock(&root->fs_info->free_chunk_lock);
4344 avail = root->fs_info->free_chunk_space;
4345 spin_unlock(&root->fs_info->free_chunk_lock);
4346
4347 /*
4348 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4349 * space is actually useable. For raid56, the space info used
4350 * doesn't include the parity drive, so we don't have to
4351 * change the math
a80c8dcf
JB
4352 */
4353 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4354 BTRFS_BLOCK_GROUP_RAID1 |
4355 BTRFS_BLOCK_GROUP_RAID10))
4356 avail >>= 1;
4357
4358 /*
561c294d
MX
4359 * If we aren't flushing all things, let us overcommit up to
4360 * 1/2th of the space. If we can flush, don't let us overcommit
4361 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4362 */
08e007d2 4363 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4364 avail >>= 3;
a80c8dcf 4365 else
14575aef 4366 avail >>= 1;
a80c8dcf 4367
14575aef 4368 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4369 return 1;
4370 return 0;
4371}
4372
48a3b636 4373static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4374 unsigned long nr_pages, int nr_items)
da633a42
MX
4375{
4376 struct super_block *sb = root->fs_info->sb;
da633a42 4377
925a6efb
JB
4378 if (down_read_trylock(&sb->s_umount)) {
4379 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4380 up_read(&sb->s_umount);
4381 } else {
da633a42
MX
4382 /*
4383 * We needn't worry the filesystem going from r/w to r/o though
4384 * we don't acquire ->s_umount mutex, because the filesystem
4385 * should guarantee the delalloc inodes list be empty after
4386 * the filesystem is readonly(all dirty pages are written to
4387 * the disk).
4388 */
6c255e67 4389 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4390 if (!current->journal_info)
6c255e67 4391 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4392 }
4393}
4394
18cd8ea6
MX
4395static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4396{
4397 u64 bytes;
4398 int nr;
4399
4400 bytes = btrfs_calc_trans_metadata_size(root, 1);
4401 nr = (int)div64_u64(to_reclaim, bytes);
4402 if (!nr)
4403 nr = 1;
4404 return nr;
4405}
4406
c61a16a7
MX
4407#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4408
9ed74f2d 4409/*
5da9d01b 4410 * shrink metadata reservation for delalloc
9ed74f2d 4411 */
f4c738c2
JB
4412static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4413 bool wait_ordered)
5da9d01b 4414{
0ca1f7ce 4415 struct btrfs_block_rsv *block_rsv;
0019f10d 4416 struct btrfs_space_info *space_info;
663350ac 4417 struct btrfs_trans_handle *trans;
f4c738c2 4418 u64 delalloc_bytes;
5da9d01b 4419 u64 max_reclaim;
b1953bce 4420 long time_left;
d3ee29e3
MX
4421 unsigned long nr_pages;
4422 int loops;
b0244199 4423 int items;
08e007d2 4424 enum btrfs_reserve_flush_enum flush;
5da9d01b 4425
c61a16a7 4426 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4427 items = calc_reclaim_items_nr(root, to_reclaim);
4428 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4429
663350ac 4430 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4431 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4432 space_info = block_rsv->space_info;
bf9022e0 4433
963d678b
MX
4434 delalloc_bytes = percpu_counter_sum_positive(
4435 &root->fs_info->delalloc_bytes);
f4c738c2 4436 if (delalloc_bytes == 0) {
fdb5effd 4437 if (trans)
f4c738c2 4438 return;
38c135af 4439 if (wait_ordered)
b0244199 4440 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4441 return;
fdb5effd
JB
4442 }
4443
d3ee29e3 4444 loops = 0;
f4c738c2
JB
4445 while (delalloc_bytes && loops < 3) {
4446 max_reclaim = min(delalloc_bytes, to_reclaim);
4447 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4448 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4449 /*
4450 * We need to wait for the async pages to actually start before
4451 * we do anything.
4452 */
9f3a074d
MX
4453 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4454 if (!max_reclaim)
4455 goto skip_async;
4456
4457 if (max_reclaim <= nr_pages)
4458 max_reclaim = 0;
4459 else
4460 max_reclaim -= nr_pages;
dea31f52 4461
9f3a074d
MX
4462 wait_event(root->fs_info->async_submit_wait,
4463 atomic_read(&root->fs_info->async_delalloc_pages) <=
4464 (int)max_reclaim);
4465skip_async:
08e007d2
MX
4466 if (!trans)
4467 flush = BTRFS_RESERVE_FLUSH_ALL;
4468 else
4469 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4470 spin_lock(&space_info->lock);
08e007d2 4471 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4472 spin_unlock(&space_info->lock);
4473 break;
4474 }
0019f10d 4475 spin_unlock(&space_info->lock);
5da9d01b 4476
36e39c40 4477 loops++;
f104d044 4478 if (wait_ordered && !trans) {
b0244199 4479 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4480 } else {
f4c738c2 4481 time_left = schedule_timeout_killable(1);
f104d044
JB
4482 if (time_left)
4483 break;
4484 }
963d678b
MX
4485 delalloc_bytes = percpu_counter_sum_positive(
4486 &root->fs_info->delalloc_bytes);
5da9d01b 4487 }
5da9d01b
YZ
4488}
4489
663350ac
JB
4490/**
4491 * maybe_commit_transaction - possibly commit the transaction if its ok to
4492 * @root - the root we're allocating for
4493 * @bytes - the number of bytes we want to reserve
4494 * @force - force the commit
8bb8ab2e 4495 *
663350ac
JB
4496 * This will check to make sure that committing the transaction will actually
4497 * get us somewhere and then commit the transaction if it does. Otherwise it
4498 * will return -ENOSPC.
8bb8ab2e 4499 */
663350ac
JB
4500static int may_commit_transaction(struct btrfs_root *root,
4501 struct btrfs_space_info *space_info,
4502 u64 bytes, int force)
4503{
4504 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4505 struct btrfs_trans_handle *trans;
4506
4507 trans = (struct btrfs_trans_handle *)current->journal_info;
4508 if (trans)
4509 return -EAGAIN;
4510
4511 if (force)
4512 goto commit;
4513
4514 /* See if there is enough pinned space to make this reservation */
b150a4f1 4515 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4516 bytes) >= 0)
663350ac 4517 goto commit;
663350ac
JB
4518
4519 /*
4520 * See if there is some space in the delayed insertion reservation for
4521 * this reservation.
4522 */
4523 if (space_info != delayed_rsv->space_info)
4524 return -ENOSPC;
4525
4526 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4527 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4528 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4529 spin_unlock(&delayed_rsv->lock);
4530 return -ENOSPC;
4531 }
4532 spin_unlock(&delayed_rsv->lock);
4533
4534commit:
4535 trans = btrfs_join_transaction(root);
4536 if (IS_ERR(trans))
4537 return -ENOSPC;
4538
4539 return btrfs_commit_transaction(trans, root);
4540}
4541
96c3f433 4542enum flush_state {
67b0fd63
JB
4543 FLUSH_DELAYED_ITEMS_NR = 1,
4544 FLUSH_DELAYED_ITEMS = 2,
4545 FLUSH_DELALLOC = 3,
4546 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4547 ALLOC_CHUNK = 5,
4548 COMMIT_TRANS = 6,
96c3f433
JB
4549};
4550
4551static int flush_space(struct btrfs_root *root,
4552 struct btrfs_space_info *space_info, u64 num_bytes,
4553 u64 orig_bytes, int state)
4554{
4555 struct btrfs_trans_handle *trans;
4556 int nr;
f4c738c2 4557 int ret = 0;
96c3f433
JB
4558
4559 switch (state) {
96c3f433
JB
4560 case FLUSH_DELAYED_ITEMS_NR:
4561 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4562 if (state == FLUSH_DELAYED_ITEMS_NR)
4563 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4564 else
96c3f433 4565 nr = -1;
18cd8ea6 4566
96c3f433
JB
4567 trans = btrfs_join_transaction(root);
4568 if (IS_ERR(trans)) {
4569 ret = PTR_ERR(trans);
4570 break;
4571 }
4572 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4573 btrfs_end_transaction(trans, root);
4574 break;
67b0fd63
JB
4575 case FLUSH_DELALLOC:
4576 case FLUSH_DELALLOC_WAIT:
24af7dd1 4577 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4578 state == FLUSH_DELALLOC_WAIT);
4579 break;
ea658bad
JB
4580 case ALLOC_CHUNK:
4581 trans = btrfs_join_transaction(root);
4582 if (IS_ERR(trans)) {
4583 ret = PTR_ERR(trans);
4584 break;
4585 }
4586 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4587 btrfs_get_alloc_profile(root, 0),
4588 CHUNK_ALLOC_NO_FORCE);
4589 btrfs_end_transaction(trans, root);
4590 if (ret == -ENOSPC)
4591 ret = 0;
4592 break;
96c3f433
JB
4593 case COMMIT_TRANS:
4594 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4595 break;
4596 default:
4597 ret = -ENOSPC;
4598 break;
4599 }
4600
4601 return ret;
4602}
21c7e756
MX
4603
4604static inline u64
4605btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4606 struct btrfs_space_info *space_info)
4607{
4608 u64 used;
4609 u64 expected;
4610 u64 to_reclaim;
4611
4612 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4613 16 * 1024 * 1024);
4614 spin_lock(&space_info->lock);
4615 if (can_overcommit(root, space_info, to_reclaim,
4616 BTRFS_RESERVE_FLUSH_ALL)) {
4617 to_reclaim = 0;
4618 goto out;
4619 }
4620
4621 used = space_info->bytes_used + space_info->bytes_reserved +
4622 space_info->bytes_pinned + space_info->bytes_readonly +
4623 space_info->bytes_may_use;
4624 if (can_overcommit(root, space_info, 1024 * 1024,
4625 BTRFS_RESERVE_FLUSH_ALL))
4626 expected = div_factor_fine(space_info->total_bytes, 95);
4627 else
4628 expected = div_factor_fine(space_info->total_bytes, 90);
4629
4630 if (used > expected)
4631 to_reclaim = used - expected;
4632 else
4633 to_reclaim = 0;
4634 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4635 space_info->bytes_reserved);
4636out:
4637 spin_unlock(&space_info->lock);
4638
4639 return to_reclaim;
4640}
4641
4642static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4643 struct btrfs_fs_info *fs_info, u64 used)
4644{
365c5313
JB
4645 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4646
4647 /* If we're just plain full then async reclaim just slows us down. */
4648 if (space_info->bytes_used >= thresh)
4649 return 0;
4650
4651 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4652 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4653}
4654
4655static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4656 struct btrfs_fs_info *fs_info,
4657 int flush_state)
21c7e756
MX
4658{
4659 u64 used;
4660
4661 spin_lock(&space_info->lock);
25ce459c
LB
4662 /*
4663 * We run out of space and have not got any free space via flush_space,
4664 * so don't bother doing async reclaim.
4665 */
4666 if (flush_state > COMMIT_TRANS && space_info->full) {
4667 spin_unlock(&space_info->lock);
4668 return 0;
4669 }
4670
21c7e756
MX
4671 used = space_info->bytes_used + space_info->bytes_reserved +
4672 space_info->bytes_pinned + space_info->bytes_readonly +
4673 space_info->bytes_may_use;
4674 if (need_do_async_reclaim(space_info, fs_info, used)) {
4675 spin_unlock(&space_info->lock);
4676 return 1;
4677 }
4678 spin_unlock(&space_info->lock);
4679
4680 return 0;
4681}
4682
4683static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4684{
4685 struct btrfs_fs_info *fs_info;
4686 struct btrfs_space_info *space_info;
4687 u64 to_reclaim;
4688 int flush_state;
4689
4690 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4691 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4692
4693 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4694 space_info);
4695 if (!to_reclaim)
4696 return;
4697
4698 flush_state = FLUSH_DELAYED_ITEMS_NR;
4699 do {
4700 flush_space(fs_info->fs_root, space_info, to_reclaim,
4701 to_reclaim, flush_state);
4702 flush_state++;
25ce459c
LB
4703 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4704 flush_state))
21c7e756 4705 return;
365c5313 4706 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4707}
4708
4709void btrfs_init_async_reclaim_work(struct work_struct *work)
4710{
4711 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4712}
4713
4a92b1b8
JB
4714/**
4715 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4716 * @root - the root we're allocating for
4717 * @block_rsv - the block_rsv we're allocating for
4718 * @orig_bytes - the number of bytes we want
48fc7f7e 4719 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4720 *
4a92b1b8
JB
4721 * This will reserve orgi_bytes number of bytes from the space info associated
4722 * with the block_rsv. If there is not enough space it will make an attempt to
4723 * flush out space to make room. It will do this by flushing delalloc if
4724 * possible or committing the transaction. If flush is 0 then no attempts to
4725 * regain reservations will be made and this will fail if there is not enough
4726 * space already.
8bb8ab2e 4727 */
4a92b1b8 4728static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4729 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4730 u64 orig_bytes,
4731 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4732{
f0486c68 4733 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4734 u64 used;
8bb8ab2e 4735 u64 num_bytes = orig_bytes;
67b0fd63 4736 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4737 int ret = 0;
fdb5effd 4738 bool flushing = false;
9ed74f2d 4739
8bb8ab2e 4740again:
fdb5effd 4741 ret = 0;
8bb8ab2e 4742 spin_lock(&space_info->lock);
fdb5effd 4743 /*
08e007d2
MX
4744 * We only want to wait if somebody other than us is flushing and we
4745 * are actually allowed to flush all things.
fdb5effd 4746 */
08e007d2
MX
4747 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4748 space_info->flush) {
fdb5effd
JB
4749 spin_unlock(&space_info->lock);
4750 /*
4751 * If we have a trans handle we can't wait because the flusher
4752 * may have to commit the transaction, which would mean we would
4753 * deadlock since we are waiting for the flusher to finish, but
4754 * hold the current transaction open.
4755 */
663350ac 4756 if (current->journal_info)
fdb5effd 4757 return -EAGAIN;
b9688bb8
AJ
4758 ret = wait_event_killable(space_info->wait, !space_info->flush);
4759 /* Must have been killed, return */
4760 if (ret)
fdb5effd
JB
4761 return -EINTR;
4762
4763 spin_lock(&space_info->lock);
4764 }
4765
4766 ret = -ENOSPC;
2bf64758
JB
4767 used = space_info->bytes_used + space_info->bytes_reserved +
4768 space_info->bytes_pinned + space_info->bytes_readonly +
4769 space_info->bytes_may_use;
9ed74f2d 4770
8bb8ab2e
JB
4771 /*
4772 * The idea here is that we've not already over-reserved the block group
4773 * then we can go ahead and save our reservation first and then start
4774 * flushing if we need to. Otherwise if we've already overcommitted
4775 * lets start flushing stuff first and then come back and try to make
4776 * our reservation.
4777 */
2bf64758
JB
4778 if (used <= space_info->total_bytes) {
4779 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4780 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4781 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4782 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4783 ret = 0;
4784 } else {
4785 /*
4786 * Ok set num_bytes to orig_bytes since we aren't
4787 * overocmmitted, this way we only try and reclaim what
4788 * we need.
4789 */
4790 num_bytes = orig_bytes;
4791 }
4792 } else {
4793 /*
4794 * Ok we're over committed, set num_bytes to the overcommitted
4795 * amount plus the amount of bytes that we need for this
4796 * reservation.
4797 */
2bf64758 4798 num_bytes = used - space_info->total_bytes +
96c3f433 4799 (orig_bytes * 2);
8bb8ab2e 4800 }
9ed74f2d 4801
44734ed1
JB
4802 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4803 space_info->bytes_may_use += orig_bytes;
4804 trace_btrfs_space_reservation(root->fs_info, "space_info",
4805 space_info->flags, orig_bytes,
4806 1);
4807 ret = 0;
2bf64758
JB
4808 }
4809
8bb8ab2e
JB
4810 /*
4811 * Couldn't make our reservation, save our place so while we're trying
4812 * to reclaim space we can actually use it instead of somebody else
4813 * stealing it from us.
08e007d2
MX
4814 *
4815 * We make the other tasks wait for the flush only when we can flush
4816 * all things.
8bb8ab2e 4817 */
72bcd99d 4818 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4819 flushing = true;
4820 space_info->flush = 1;
21c7e756
MX
4821 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4822 used += orig_bytes;
f6acfd50
JB
4823 /*
4824 * We will do the space reservation dance during log replay,
4825 * which means we won't have fs_info->fs_root set, so don't do
4826 * the async reclaim as we will panic.
4827 */
4828 if (!root->fs_info->log_root_recovering &&
4829 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4830 !work_busy(&root->fs_info->async_reclaim_work))
4831 queue_work(system_unbound_wq,
4832 &root->fs_info->async_reclaim_work);
8bb8ab2e 4833 }
f0486c68 4834 spin_unlock(&space_info->lock);
9ed74f2d 4835
08e007d2 4836 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4837 goto out;
f0486c68 4838
96c3f433
JB
4839 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4840 flush_state);
4841 flush_state++;
08e007d2
MX
4842
4843 /*
4844 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4845 * would happen. So skip delalloc flush.
4846 */
4847 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4848 (flush_state == FLUSH_DELALLOC ||
4849 flush_state == FLUSH_DELALLOC_WAIT))
4850 flush_state = ALLOC_CHUNK;
4851
96c3f433 4852 if (!ret)
8bb8ab2e 4853 goto again;
08e007d2
MX
4854 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4855 flush_state < COMMIT_TRANS)
4856 goto again;
4857 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4858 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4859 goto again;
4860
4861out:
5d80366e
JB
4862 if (ret == -ENOSPC &&
4863 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4864 struct btrfs_block_rsv *global_rsv =
4865 &root->fs_info->global_block_rsv;
4866
4867 if (block_rsv != global_rsv &&
4868 !block_rsv_use_bytes(global_rsv, orig_bytes))
4869 ret = 0;
4870 }
cab45e22
JM
4871 if (ret == -ENOSPC)
4872 trace_btrfs_space_reservation(root->fs_info,
4873 "space_info:enospc",
4874 space_info->flags, orig_bytes, 1);
fdb5effd 4875 if (flushing) {
8bb8ab2e 4876 spin_lock(&space_info->lock);
fdb5effd
JB
4877 space_info->flush = 0;
4878 wake_up_all(&space_info->wait);
8bb8ab2e 4879 spin_unlock(&space_info->lock);
f0486c68 4880 }
f0486c68
YZ
4881 return ret;
4882}
4883
79787eaa
JM
4884static struct btrfs_block_rsv *get_block_rsv(
4885 const struct btrfs_trans_handle *trans,
4886 const struct btrfs_root *root)
f0486c68 4887{
4c13d758
JB
4888 struct btrfs_block_rsv *block_rsv = NULL;
4889
27cdeb70 4890 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4891 block_rsv = trans->block_rsv;
4892
4893 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4894 block_rsv = trans->block_rsv;
4c13d758 4895
f7a81ea4
SB
4896 if (root == root->fs_info->uuid_root)
4897 block_rsv = trans->block_rsv;
4898
4c13d758 4899 if (!block_rsv)
f0486c68
YZ
4900 block_rsv = root->block_rsv;
4901
4902 if (!block_rsv)
4903 block_rsv = &root->fs_info->empty_block_rsv;
4904
4905 return block_rsv;
4906}
4907
4908static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4909 u64 num_bytes)
4910{
4911 int ret = -ENOSPC;
4912 spin_lock(&block_rsv->lock);
4913 if (block_rsv->reserved >= num_bytes) {
4914 block_rsv->reserved -= num_bytes;
4915 if (block_rsv->reserved < block_rsv->size)
4916 block_rsv->full = 0;
4917 ret = 0;
4918 }
4919 spin_unlock(&block_rsv->lock);
4920 return ret;
4921}
4922
4923static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4924 u64 num_bytes, int update_size)
4925{
4926 spin_lock(&block_rsv->lock);
4927 block_rsv->reserved += num_bytes;
4928 if (update_size)
4929 block_rsv->size += num_bytes;
4930 else if (block_rsv->reserved >= block_rsv->size)
4931 block_rsv->full = 1;
4932 spin_unlock(&block_rsv->lock);
4933}
4934
d52be818
JB
4935int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4936 struct btrfs_block_rsv *dest, u64 num_bytes,
4937 int min_factor)
4938{
4939 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4940 u64 min_bytes;
4941
4942 if (global_rsv->space_info != dest->space_info)
4943 return -ENOSPC;
4944
4945 spin_lock(&global_rsv->lock);
4946 min_bytes = div_factor(global_rsv->size, min_factor);
4947 if (global_rsv->reserved < min_bytes + num_bytes) {
4948 spin_unlock(&global_rsv->lock);
4949 return -ENOSPC;
4950 }
4951 global_rsv->reserved -= num_bytes;
4952 if (global_rsv->reserved < global_rsv->size)
4953 global_rsv->full = 0;
4954 spin_unlock(&global_rsv->lock);
4955
4956 block_rsv_add_bytes(dest, num_bytes, 1);
4957 return 0;
4958}
4959
8c2a3ca2
JB
4960static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4961 struct btrfs_block_rsv *block_rsv,
62a45b60 4962 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4963{
4964 struct btrfs_space_info *space_info = block_rsv->space_info;
4965
4966 spin_lock(&block_rsv->lock);
4967 if (num_bytes == (u64)-1)
4968 num_bytes = block_rsv->size;
4969 block_rsv->size -= num_bytes;
4970 if (block_rsv->reserved >= block_rsv->size) {
4971 num_bytes = block_rsv->reserved - block_rsv->size;
4972 block_rsv->reserved = block_rsv->size;
4973 block_rsv->full = 1;
4974 } else {
4975 num_bytes = 0;
4976 }
4977 spin_unlock(&block_rsv->lock);
4978
4979 if (num_bytes > 0) {
4980 if (dest) {
e9e22899
JB
4981 spin_lock(&dest->lock);
4982 if (!dest->full) {
4983 u64 bytes_to_add;
4984
4985 bytes_to_add = dest->size - dest->reserved;
4986 bytes_to_add = min(num_bytes, bytes_to_add);
4987 dest->reserved += bytes_to_add;
4988 if (dest->reserved >= dest->size)
4989 dest->full = 1;
4990 num_bytes -= bytes_to_add;
4991 }
4992 spin_unlock(&dest->lock);
4993 }
4994 if (num_bytes) {
f0486c68 4995 spin_lock(&space_info->lock);
fb25e914 4996 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4997 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4998 space_info->flags, num_bytes, 0);
f0486c68 4999 spin_unlock(&space_info->lock);
4e06bdd6 5000 }
9ed74f2d 5001 }
f0486c68 5002}
4e06bdd6 5003
f0486c68
YZ
5004static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5005 struct btrfs_block_rsv *dst, u64 num_bytes)
5006{
5007 int ret;
9ed74f2d 5008
f0486c68
YZ
5009 ret = block_rsv_use_bytes(src, num_bytes);
5010 if (ret)
5011 return ret;
9ed74f2d 5012
f0486c68 5013 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5014 return 0;
5015}
5016
66d8f3dd 5017void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5018{
f0486c68
YZ
5019 memset(rsv, 0, sizeof(*rsv));
5020 spin_lock_init(&rsv->lock);
66d8f3dd 5021 rsv->type = type;
f0486c68
YZ
5022}
5023
66d8f3dd
MX
5024struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5025 unsigned short type)
f0486c68
YZ
5026{
5027 struct btrfs_block_rsv *block_rsv;
5028 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5029
f0486c68
YZ
5030 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5031 if (!block_rsv)
5032 return NULL;
9ed74f2d 5033
66d8f3dd 5034 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5035 block_rsv->space_info = __find_space_info(fs_info,
5036 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5037 return block_rsv;
5038}
9ed74f2d 5039
f0486c68
YZ
5040void btrfs_free_block_rsv(struct btrfs_root *root,
5041 struct btrfs_block_rsv *rsv)
5042{
2aaa6655
JB
5043 if (!rsv)
5044 return;
dabdb640
JB
5045 btrfs_block_rsv_release(root, rsv, (u64)-1);
5046 kfree(rsv);
9ed74f2d
JB
5047}
5048
cdfb080e
CM
5049void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5050{
5051 kfree(rsv);
5052}
5053
08e007d2
MX
5054int btrfs_block_rsv_add(struct btrfs_root *root,
5055 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5056 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5057{
f0486c68 5058 int ret;
9ed74f2d 5059
f0486c68
YZ
5060 if (num_bytes == 0)
5061 return 0;
8bb8ab2e 5062
61b520a9 5063 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5064 if (!ret) {
5065 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5066 return 0;
5067 }
9ed74f2d 5068
f0486c68 5069 return ret;
f0486c68 5070}
9ed74f2d 5071
4a92b1b8 5072int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5073 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5074{
5075 u64 num_bytes = 0;
f0486c68 5076 int ret = -ENOSPC;
9ed74f2d 5077
f0486c68
YZ
5078 if (!block_rsv)
5079 return 0;
9ed74f2d 5080
f0486c68 5081 spin_lock(&block_rsv->lock);
36ba022a
JB
5082 num_bytes = div_factor(block_rsv->size, min_factor);
5083 if (block_rsv->reserved >= num_bytes)
5084 ret = 0;
5085 spin_unlock(&block_rsv->lock);
9ed74f2d 5086
36ba022a
JB
5087 return ret;
5088}
5089
08e007d2
MX
5090int btrfs_block_rsv_refill(struct btrfs_root *root,
5091 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5092 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5093{
5094 u64 num_bytes = 0;
5095 int ret = -ENOSPC;
5096
5097 if (!block_rsv)
5098 return 0;
5099
5100 spin_lock(&block_rsv->lock);
5101 num_bytes = min_reserved;
13553e52 5102 if (block_rsv->reserved >= num_bytes)
f0486c68 5103 ret = 0;
13553e52 5104 else
f0486c68 5105 num_bytes -= block_rsv->reserved;
f0486c68 5106 spin_unlock(&block_rsv->lock);
13553e52 5107
f0486c68
YZ
5108 if (!ret)
5109 return 0;
5110
aa38a711 5111 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5112 if (!ret) {
5113 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5114 return 0;
6a63209f 5115 }
9ed74f2d 5116
13553e52 5117 return ret;
f0486c68
YZ
5118}
5119
5120int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5121 struct btrfs_block_rsv *dst_rsv,
5122 u64 num_bytes)
5123{
5124 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5125}
5126
5127void btrfs_block_rsv_release(struct btrfs_root *root,
5128 struct btrfs_block_rsv *block_rsv,
5129 u64 num_bytes)
5130{
5131 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5132 if (global_rsv == block_rsv ||
f0486c68
YZ
5133 block_rsv->space_info != global_rsv->space_info)
5134 global_rsv = NULL;
8c2a3ca2
JB
5135 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5136 num_bytes);
6a63209f
JB
5137}
5138
5139/*
8929ecfa
YZ
5140 * helper to calculate size of global block reservation.
5141 * the desired value is sum of space used by extent tree,
5142 * checksum tree and root tree
6a63209f 5143 */
8929ecfa 5144static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5145{
8929ecfa
YZ
5146 struct btrfs_space_info *sinfo;
5147 u64 num_bytes;
5148 u64 meta_used;
5149 u64 data_used;
6c41761f 5150 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5151
8929ecfa
YZ
5152 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5153 spin_lock(&sinfo->lock);
5154 data_used = sinfo->bytes_used;
5155 spin_unlock(&sinfo->lock);
33b4d47f 5156
8929ecfa
YZ
5157 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5158 spin_lock(&sinfo->lock);
6d48755d
JB
5159 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5160 data_used = 0;
8929ecfa
YZ
5161 meta_used = sinfo->bytes_used;
5162 spin_unlock(&sinfo->lock);
ab6e2410 5163
8929ecfa
YZ
5164 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5165 csum_size * 2;
f8c269d7 5166 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5167
8929ecfa 5168 if (num_bytes * 3 > meta_used)
f8c269d7 5169 num_bytes = div_u64(meta_used, 3);
ab6e2410 5170
707e8a07 5171 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5172}
6a63209f 5173
8929ecfa
YZ
5174static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5175{
5176 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5177 struct btrfs_space_info *sinfo = block_rsv->space_info;
5178 u64 num_bytes;
6a63209f 5179
8929ecfa 5180 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5181
8929ecfa 5182 spin_lock(&sinfo->lock);
1f699d38 5183 spin_lock(&block_rsv->lock);
4e06bdd6 5184
fdf30d1c 5185 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5186
8929ecfa 5187 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5188 sinfo->bytes_reserved + sinfo->bytes_readonly +
5189 sinfo->bytes_may_use;
8929ecfa
YZ
5190
5191 if (sinfo->total_bytes > num_bytes) {
5192 num_bytes = sinfo->total_bytes - num_bytes;
5193 block_rsv->reserved += num_bytes;
fb25e914 5194 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5195 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5196 sinfo->flags, num_bytes, 1);
6a63209f 5197 }
6a63209f 5198
8929ecfa
YZ
5199 if (block_rsv->reserved >= block_rsv->size) {
5200 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5201 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5202 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5203 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5204 block_rsv->reserved = block_rsv->size;
5205 block_rsv->full = 1;
5206 }
182608c8 5207
8929ecfa 5208 spin_unlock(&block_rsv->lock);
1f699d38 5209 spin_unlock(&sinfo->lock);
6a63209f
JB
5210}
5211
f0486c68 5212static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5213{
f0486c68 5214 struct btrfs_space_info *space_info;
6a63209f 5215
f0486c68
YZ
5216 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5217 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5218
f0486c68 5219 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5220 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5221 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5222 fs_info->trans_block_rsv.space_info = space_info;
5223 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5224 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5225
8929ecfa
YZ
5226 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5227 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5228 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5229 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5230 if (fs_info->quota_root)
5231 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5232 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5233
8929ecfa 5234 update_global_block_rsv(fs_info);
6a63209f
JB
5235}
5236
8929ecfa 5237static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5238{
8c2a3ca2
JB
5239 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5240 (u64)-1);
8929ecfa
YZ
5241 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5242 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5243 WARN_ON(fs_info->trans_block_rsv.size > 0);
5244 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5245 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5246 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5247 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5248 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5249}
5250
a22285a6
YZ
5251void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5252 struct btrfs_root *root)
6a63209f 5253{
0e721106
JB
5254 if (!trans->block_rsv)
5255 return;
5256
a22285a6
YZ
5257 if (!trans->bytes_reserved)
5258 return;
6a63209f 5259
e77266e4 5260 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5261 trans->transid, trans->bytes_reserved, 0);
b24e03db 5262 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5263 trans->bytes_reserved = 0;
5264}
6a63209f 5265
4fbcdf66
FM
5266/*
5267 * To be called after all the new block groups attached to the transaction
5268 * handle have been created (btrfs_create_pending_block_groups()).
5269 */
5270void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5271{
5272 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5273
5274 if (!trans->chunk_bytes_reserved)
5275 return;
5276
5277 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5278
5279 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5280 trans->chunk_bytes_reserved);
5281 trans->chunk_bytes_reserved = 0;
5282}
5283
79787eaa 5284/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5285int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5286 struct inode *inode)
5287{
5288 struct btrfs_root *root = BTRFS_I(inode)->root;
5289 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5290 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5291
5292 /*
fcb80c2a
JB
5293 * We need to hold space in order to delete our orphan item once we've
5294 * added it, so this takes the reservation so we can release it later
5295 * when we are truly done with the orphan item.
d68fc57b 5296 */
ff5714cc 5297 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5298 trace_btrfs_space_reservation(root->fs_info, "orphan",
5299 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5300 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5301}
5302
d68fc57b 5303void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5304{
d68fc57b 5305 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5306 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5307 trace_btrfs_space_reservation(root->fs_info, "orphan",
5308 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5309 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5310}
97e728d4 5311
d5c12070
MX
5312/*
5313 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5314 * root: the root of the parent directory
5315 * rsv: block reservation
5316 * items: the number of items that we need do reservation
5317 * qgroup_reserved: used to return the reserved size in qgroup
5318 *
5319 * This function is used to reserve the space for snapshot/subvolume
5320 * creation and deletion. Those operations are different with the
5321 * common file/directory operations, they change two fs/file trees
5322 * and root tree, the number of items that the qgroup reserves is
5323 * different with the free space reservation. So we can not use
5324 * the space reseravtion mechanism in start_transaction().
5325 */
5326int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5327 struct btrfs_block_rsv *rsv,
5328 int items,
ee3441b4
JM
5329 u64 *qgroup_reserved,
5330 bool use_global_rsv)
a22285a6 5331{
d5c12070
MX
5332 u64 num_bytes;
5333 int ret;
ee3441b4 5334 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5335
5336 if (root->fs_info->quota_enabled) {
5337 /* One for parent inode, two for dir entries */
707e8a07 5338 num_bytes = 3 * root->nodesize;
d5c12070
MX
5339 ret = btrfs_qgroup_reserve(root, num_bytes);
5340 if (ret)
5341 return ret;
5342 } else {
5343 num_bytes = 0;
5344 }
5345
5346 *qgroup_reserved = num_bytes;
5347
5348 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5349 rsv->space_info = __find_space_info(root->fs_info,
5350 BTRFS_BLOCK_GROUP_METADATA);
5351 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5352 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5353
5354 if (ret == -ENOSPC && use_global_rsv)
5355 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5356
d5c12070
MX
5357 if (ret) {
5358 if (*qgroup_reserved)
5359 btrfs_qgroup_free(root, *qgroup_reserved);
5360 }
5361
5362 return ret;
5363}
5364
5365void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5366 struct btrfs_block_rsv *rsv,
5367 u64 qgroup_reserved)
5368{
5369 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5370}
5371
7709cde3
JB
5372/**
5373 * drop_outstanding_extent - drop an outstanding extent
5374 * @inode: the inode we're dropping the extent for
dcab6a3b 5375 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5376 *
5377 * This is called when we are freeing up an outstanding extent, either called
5378 * after an error or after an extent is written. This will return the number of
5379 * reserved extents that need to be freed. This must be called with
5380 * BTRFS_I(inode)->lock held.
5381 */
dcab6a3b 5382static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5383{
7fd2ae21 5384 unsigned drop_inode_space = 0;
9e0baf60 5385 unsigned dropped_extents = 0;
dcab6a3b 5386 unsigned num_extents = 0;
9e0baf60 5387
dcab6a3b
JB
5388 num_extents = (unsigned)div64_u64(num_bytes +
5389 BTRFS_MAX_EXTENT_SIZE - 1,
5390 BTRFS_MAX_EXTENT_SIZE);
5391 ASSERT(num_extents);
5392 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5393 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5394
7fd2ae21 5395 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5396 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5397 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5398 drop_inode_space = 1;
7fd2ae21 5399
9e0baf60
JB
5400 /*
5401 * If we have more or the same amount of outsanding extents than we have
5402 * reserved then we need to leave the reserved extents count alone.
5403 */
5404 if (BTRFS_I(inode)->outstanding_extents >=
5405 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5406 return drop_inode_space;
9e0baf60
JB
5407
5408 dropped_extents = BTRFS_I(inode)->reserved_extents -
5409 BTRFS_I(inode)->outstanding_extents;
5410 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5411 return dropped_extents + drop_inode_space;
9e0baf60
JB
5412}
5413
7709cde3
JB
5414/**
5415 * calc_csum_metadata_size - return the amount of metada space that must be
5416 * reserved/free'd for the given bytes.
5417 * @inode: the inode we're manipulating
5418 * @num_bytes: the number of bytes in question
5419 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5420 *
5421 * This adjusts the number of csum_bytes in the inode and then returns the
5422 * correct amount of metadata that must either be reserved or freed. We
5423 * calculate how many checksums we can fit into one leaf and then divide the
5424 * number of bytes that will need to be checksumed by this value to figure out
5425 * how many checksums will be required. If we are adding bytes then the number
5426 * may go up and we will return the number of additional bytes that must be
5427 * reserved. If it is going down we will return the number of bytes that must
5428 * be freed.
5429 *
5430 * This must be called with BTRFS_I(inode)->lock held.
5431 */
5432static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5433 int reserve)
6324fbf3 5434{
7709cde3 5435 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5436 u64 old_csums, num_csums;
7709cde3
JB
5437
5438 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5439 BTRFS_I(inode)->csum_bytes == 0)
5440 return 0;
5441
28f75a0e 5442 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5443 if (reserve)
5444 BTRFS_I(inode)->csum_bytes += num_bytes;
5445 else
5446 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5447 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5448
5449 /* No change, no need to reserve more */
5450 if (old_csums == num_csums)
5451 return 0;
5452
5453 if (reserve)
5454 return btrfs_calc_trans_metadata_size(root,
5455 num_csums - old_csums);
5456
5457 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5458}
c146afad 5459
0ca1f7ce
YZ
5460int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5461{
5462 struct btrfs_root *root = BTRFS_I(inode)->root;
5463 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5464 u64 to_reserve = 0;
660d3f6c 5465 u64 csum_bytes;
9e0baf60 5466 unsigned nr_extents = 0;
660d3f6c 5467 int extra_reserve = 0;
08e007d2 5468 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5469 int ret = 0;
c64c2bd8 5470 bool delalloc_lock = true;
88e081bf
WS
5471 u64 to_free = 0;
5472 unsigned dropped;
6324fbf3 5473
c64c2bd8
JB
5474 /* If we are a free space inode we need to not flush since we will be in
5475 * the middle of a transaction commit. We also don't need the delalloc
5476 * mutex since we won't race with anybody. We need this mostly to make
5477 * lockdep shut its filthy mouth.
5478 */
5479 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5480 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5481 delalloc_lock = false;
5482 }
c09544e0 5483
08e007d2
MX
5484 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5485 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5486 schedule_timeout(1);
ec44a35c 5487
c64c2bd8
JB
5488 if (delalloc_lock)
5489 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5490
0ca1f7ce 5491 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5492
9e0baf60 5493 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5494 nr_extents = (unsigned)div64_u64(num_bytes +
5495 BTRFS_MAX_EXTENT_SIZE - 1,
5496 BTRFS_MAX_EXTENT_SIZE);
5497 BTRFS_I(inode)->outstanding_extents += nr_extents;
5498 nr_extents = 0;
9e0baf60
JB
5499
5500 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5501 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5502 nr_extents = BTRFS_I(inode)->outstanding_extents -
5503 BTRFS_I(inode)->reserved_extents;
57a45ced 5504
7fd2ae21
JB
5505 /*
5506 * Add an item to reserve for updating the inode when we complete the
5507 * delalloc io.
5508 */
72ac3c0d
JB
5509 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5510 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5511 nr_extents++;
660d3f6c 5512 extra_reserve = 1;
593060d7 5513 }
7fd2ae21
JB
5514
5515 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5516 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5517 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5518 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5519
88e081bf 5520 if (root->fs_info->quota_enabled) {
237c0e9f 5521 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5522 if (ret)
5523 goto out_fail;
5524 }
c5567237 5525
88e081bf
WS
5526 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5527 if (unlikely(ret)) {
5528 if (root->fs_info->quota_enabled)
237c0e9f 5529 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5530 goto out_fail;
9e0baf60 5531 }
25179201 5532
660d3f6c
JB
5533 spin_lock(&BTRFS_I(inode)->lock);
5534 if (extra_reserve) {
72ac3c0d
JB
5535 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5536 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5537 nr_extents--;
5538 }
5539 BTRFS_I(inode)->reserved_extents += nr_extents;
5540 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5541
5542 if (delalloc_lock)
5543 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5544
8c2a3ca2 5545 if (to_reserve)
67871254 5546 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5547 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5548 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5549
0ca1f7ce 5550 return 0;
88e081bf
WS
5551
5552out_fail:
5553 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5554 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5555 /*
5556 * If the inodes csum_bytes is the same as the original
5557 * csum_bytes then we know we haven't raced with any free()ers
5558 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5559 */
f4881bc7 5560 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5561 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5562 } else {
5563 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5564 u64 bytes;
5565
5566 /*
5567 * This is tricky, but first we need to figure out how much we
5568 * free'd from any free-ers that occured during this
5569 * reservation, so we reset ->csum_bytes to the csum_bytes
5570 * before we dropped our lock, and then call the free for the
5571 * number of bytes that were freed while we were trying our
5572 * reservation.
5573 */
5574 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5575 BTRFS_I(inode)->csum_bytes = csum_bytes;
5576 to_free = calc_csum_metadata_size(inode, bytes, 0);
5577
5578
5579 /*
5580 * Now we need to see how much we would have freed had we not
5581 * been making this reservation and our ->csum_bytes were not
5582 * artificially inflated.
5583 */
5584 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5585 bytes = csum_bytes - orig_csum_bytes;
5586 bytes = calc_csum_metadata_size(inode, bytes, 0);
5587
5588 /*
5589 * Now reset ->csum_bytes to what it should be. If bytes is
5590 * more than to_free then we would have free'd more space had we
5591 * not had an artificially high ->csum_bytes, so we need to free
5592 * the remainder. If bytes is the same or less then we don't
5593 * need to do anything, the other free-ers did the correct
5594 * thing.
5595 */
5596 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5597 if (bytes > to_free)
5598 to_free = bytes - to_free;
5599 else
5600 to_free = 0;
5601 }
88e081bf 5602 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5603 if (dropped)
88e081bf
WS
5604 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5605
5606 if (to_free) {
5607 btrfs_block_rsv_release(root, block_rsv, to_free);
5608 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5609 btrfs_ino(inode), to_free, 0);
5610 }
5611 if (delalloc_lock)
5612 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5613 return ret;
0ca1f7ce
YZ
5614}
5615
7709cde3
JB
5616/**
5617 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5618 * @inode: the inode to release the reservation for
5619 * @num_bytes: the number of bytes we're releasing
5620 *
5621 * This will release the metadata reservation for an inode. This can be called
5622 * once we complete IO for a given set of bytes to release their metadata
5623 * reservations.
5624 */
0ca1f7ce
YZ
5625void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5626{
5627 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5628 u64 to_free = 0;
5629 unsigned dropped;
0ca1f7ce
YZ
5630
5631 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5632 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5633 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5634
0934856d
MX
5635 if (num_bytes)
5636 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5637 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5638 if (dropped > 0)
5639 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5640
6a3891c5
JB
5641 if (btrfs_test_is_dummy_root(root))
5642 return;
5643
8c2a3ca2
JB
5644 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5645 btrfs_ino(inode), to_free, 0);
c5567237 5646
0ca1f7ce
YZ
5647 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5648 to_free);
5649}
5650
7709cde3
JB
5651/**
5652 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5653 * @inode: inode we're writing to
5654 * @num_bytes: the number of bytes we want to allocate
5655 *
5656 * This will do the following things
5657 *
5658 * o reserve space in the data space info for num_bytes
5659 * o reserve space in the metadata space info based on number of outstanding
5660 * extents and how much csums will be needed
5661 * o add to the inodes ->delalloc_bytes
5662 * o add it to the fs_info's delalloc inodes list.
5663 *
5664 * This will return 0 for success and -ENOSPC if there is no space left.
5665 */
0ca1f7ce
YZ
5666int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5667{
5668 int ret;
5669
e2d1f923 5670 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5671 if (ret)
0ca1f7ce
YZ
5672 return ret;
5673
5674 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5675 if (ret) {
5676 btrfs_free_reserved_data_space(inode, num_bytes);
5677 return ret;
5678 }
5679
5680 return 0;
5681}
5682
7709cde3
JB
5683/**
5684 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5685 * @inode: inode we're releasing space for
5686 * @num_bytes: the number of bytes we want to free up
5687 *
5688 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5689 * called in the case that we don't need the metadata AND data reservations
5690 * anymore. So if there is an error or we insert an inline extent.
5691 *
5692 * This function will release the metadata space that was not used and will
5693 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5694 * list if there are no delalloc bytes left.
5695 */
0ca1f7ce
YZ
5696void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5697{
5698 btrfs_delalloc_release_metadata(inode, num_bytes);
5699 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5700}
5701
ce93ec54
JB
5702static int update_block_group(struct btrfs_trans_handle *trans,
5703 struct btrfs_root *root, u64 bytenr,
5704 u64 num_bytes, int alloc)
9078a3e1 5705{
0af3d00b 5706 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5707 struct btrfs_fs_info *info = root->fs_info;
db94535d 5708 u64 total = num_bytes;
9078a3e1 5709 u64 old_val;
db94535d 5710 u64 byte_in_group;
0af3d00b 5711 int factor;
3e1ad54f 5712
5d4f98a2 5713 /* block accounting for super block */
eb73c1b7 5714 spin_lock(&info->delalloc_root_lock);
6c41761f 5715 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5716 if (alloc)
5717 old_val += num_bytes;
5718 else
5719 old_val -= num_bytes;
6c41761f 5720 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5721 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5722
d397712b 5723 while (total) {
db94535d 5724 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5725 if (!cache)
79787eaa 5726 return -ENOENT;
b742bb82
YZ
5727 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5728 BTRFS_BLOCK_GROUP_RAID1 |
5729 BTRFS_BLOCK_GROUP_RAID10))
5730 factor = 2;
5731 else
5732 factor = 1;
9d66e233
JB
5733 /*
5734 * If this block group has free space cache written out, we
5735 * need to make sure to load it if we are removing space. This
5736 * is because we need the unpinning stage to actually add the
5737 * space back to the block group, otherwise we will leak space.
5738 */
5739 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5740 cache_block_group(cache, 1);
0af3d00b 5741
db94535d
CM
5742 byte_in_group = bytenr - cache->key.objectid;
5743 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5744
25179201 5745 spin_lock(&cache->space_info->lock);
c286ac48 5746 spin_lock(&cache->lock);
0af3d00b 5747
73bc1876 5748 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5749 cache->disk_cache_state < BTRFS_DC_CLEAR)
5750 cache->disk_cache_state = BTRFS_DC_CLEAR;
5751
9078a3e1 5752 old_val = btrfs_block_group_used(&cache->item);
db94535d 5753 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5754 if (alloc) {
db94535d 5755 old_val += num_bytes;
11833d66
YZ
5756 btrfs_set_block_group_used(&cache->item, old_val);
5757 cache->reserved -= num_bytes;
11833d66 5758 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5759 cache->space_info->bytes_used += num_bytes;
5760 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5761 spin_unlock(&cache->lock);
25179201 5762 spin_unlock(&cache->space_info->lock);
cd1bc465 5763 } else {
db94535d 5764 old_val -= num_bytes;
ae0ab003
FM
5765 btrfs_set_block_group_used(&cache->item, old_val);
5766 cache->pinned += num_bytes;
5767 cache->space_info->bytes_pinned += num_bytes;
5768 cache->space_info->bytes_used -= num_bytes;
5769 cache->space_info->disk_used -= num_bytes * factor;
5770 spin_unlock(&cache->lock);
5771 spin_unlock(&cache->space_info->lock);
47ab2a6c 5772
ae0ab003
FM
5773 set_extent_dirty(info->pinned_extents,
5774 bytenr, bytenr + num_bytes - 1,
5775 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5776 /*
5777 * No longer have used bytes in this block group, queue
5778 * it for deletion.
5779 */
5780 if (old_val == 0) {
5781 spin_lock(&info->unused_bgs_lock);
5782 if (list_empty(&cache->bg_list)) {
5783 btrfs_get_block_group(cache);
5784 list_add_tail(&cache->bg_list,
5785 &info->unused_bgs);
5786 }
5787 spin_unlock(&info->unused_bgs_lock);
5788 }
cd1bc465 5789 }
1bbc621e
CM
5790
5791 spin_lock(&trans->transaction->dirty_bgs_lock);
5792 if (list_empty(&cache->dirty_list)) {
5793 list_add_tail(&cache->dirty_list,
5794 &trans->transaction->dirty_bgs);
5795 trans->transaction->num_dirty_bgs++;
5796 btrfs_get_block_group(cache);
5797 }
5798 spin_unlock(&trans->transaction->dirty_bgs_lock);
5799
fa9c0d79 5800 btrfs_put_block_group(cache);
db94535d
CM
5801 total -= num_bytes;
5802 bytenr += num_bytes;
9078a3e1
CM
5803 }
5804 return 0;
5805}
6324fbf3 5806
a061fc8d
CM
5807static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5808{
0f9dd46c 5809 struct btrfs_block_group_cache *cache;
d2fb3437 5810 u64 bytenr;
0f9dd46c 5811
a1897fdd
LB
5812 spin_lock(&root->fs_info->block_group_cache_lock);
5813 bytenr = root->fs_info->first_logical_byte;
5814 spin_unlock(&root->fs_info->block_group_cache_lock);
5815
5816 if (bytenr < (u64)-1)
5817 return bytenr;
5818
0f9dd46c
JB
5819 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5820 if (!cache)
a061fc8d 5821 return 0;
0f9dd46c 5822
d2fb3437 5823 bytenr = cache->key.objectid;
fa9c0d79 5824 btrfs_put_block_group(cache);
d2fb3437
YZ
5825
5826 return bytenr;
a061fc8d
CM
5827}
5828
f0486c68
YZ
5829static int pin_down_extent(struct btrfs_root *root,
5830 struct btrfs_block_group_cache *cache,
5831 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5832{
11833d66
YZ
5833 spin_lock(&cache->space_info->lock);
5834 spin_lock(&cache->lock);
5835 cache->pinned += num_bytes;
5836 cache->space_info->bytes_pinned += num_bytes;
5837 if (reserved) {
5838 cache->reserved -= num_bytes;
5839 cache->space_info->bytes_reserved -= num_bytes;
5840 }
5841 spin_unlock(&cache->lock);
5842 spin_unlock(&cache->space_info->lock);
68b38550 5843
f0486c68
YZ
5844 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5845 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5846 if (reserved)
0be5dc67 5847 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5848 return 0;
5849}
68b38550 5850
f0486c68
YZ
5851/*
5852 * this function must be called within transaction
5853 */
5854int btrfs_pin_extent(struct btrfs_root *root,
5855 u64 bytenr, u64 num_bytes, int reserved)
5856{
5857 struct btrfs_block_group_cache *cache;
68b38550 5858
f0486c68 5859 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5860 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5861
5862 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5863
5864 btrfs_put_block_group(cache);
11833d66
YZ
5865 return 0;
5866}
5867
f0486c68 5868/*
e688b725
CM
5869 * this function must be called within transaction
5870 */
dcfac415 5871int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5872 u64 bytenr, u64 num_bytes)
5873{
5874 struct btrfs_block_group_cache *cache;
b50c6e25 5875 int ret;
e688b725
CM
5876
5877 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5878 if (!cache)
5879 return -EINVAL;
e688b725
CM
5880
5881 /*
5882 * pull in the free space cache (if any) so that our pin
5883 * removes the free space from the cache. We have load_only set
5884 * to one because the slow code to read in the free extents does check
5885 * the pinned extents.
5886 */
f6373bf3 5887 cache_block_group(cache, 1);
e688b725
CM
5888
5889 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5890
5891 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5892 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5893 btrfs_put_block_group(cache);
b50c6e25 5894 return ret;
e688b725
CM
5895}
5896
8c2a1a30
JB
5897static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5898{
5899 int ret;
5900 struct btrfs_block_group_cache *block_group;
5901 struct btrfs_caching_control *caching_ctl;
5902
5903 block_group = btrfs_lookup_block_group(root->fs_info, start);
5904 if (!block_group)
5905 return -EINVAL;
5906
5907 cache_block_group(block_group, 0);
5908 caching_ctl = get_caching_control(block_group);
5909
5910 if (!caching_ctl) {
5911 /* Logic error */
5912 BUG_ON(!block_group_cache_done(block_group));
5913 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5914 } else {
5915 mutex_lock(&caching_ctl->mutex);
5916
5917 if (start >= caching_ctl->progress) {
5918 ret = add_excluded_extent(root, start, num_bytes);
5919 } else if (start + num_bytes <= caching_ctl->progress) {
5920 ret = btrfs_remove_free_space(block_group,
5921 start, num_bytes);
5922 } else {
5923 num_bytes = caching_ctl->progress - start;
5924 ret = btrfs_remove_free_space(block_group,
5925 start, num_bytes);
5926 if (ret)
5927 goto out_lock;
5928
5929 num_bytes = (start + num_bytes) -
5930 caching_ctl->progress;
5931 start = caching_ctl->progress;
5932 ret = add_excluded_extent(root, start, num_bytes);
5933 }
5934out_lock:
5935 mutex_unlock(&caching_ctl->mutex);
5936 put_caching_control(caching_ctl);
5937 }
5938 btrfs_put_block_group(block_group);
5939 return ret;
5940}
5941
5942int btrfs_exclude_logged_extents(struct btrfs_root *log,
5943 struct extent_buffer *eb)
5944{
5945 struct btrfs_file_extent_item *item;
5946 struct btrfs_key key;
5947 int found_type;
5948 int i;
5949
5950 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5951 return 0;
5952
5953 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5954 btrfs_item_key_to_cpu(eb, &key, i);
5955 if (key.type != BTRFS_EXTENT_DATA_KEY)
5956 continue;
5957 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5958 found_type = btrfs_file_extent_type(eb, item);
5959 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5960 continue;
5961 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5962 continue;
5963 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5964 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5965 __exclude_logged_extent(log, key.objectid, key.offset);
5966 }
5967
5968 return 0;
5969}
5970
fb25e914
JB
5971/**
5972 * btrfs_update_reserved_bytes - update the block_group and space info counters
5973 * @cache: The cache we are manipulating
5974 * @num_bytes: The number of bytes in question
5975 * @reserve: One of the reservation enums
e570fd27 5976 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5977 *
5978 * This is called by the allocator when it reserves space, or by somebody who is
5979 * freeing space that was never actually used on disk. For example if you
5980 * reserve some space for a new leaf in transaction A and before transaction A
5981 * commits you free that leaf, you call this with reserve set to 0 in order to
5982 * clear the reservation.
5983 *
5984 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5985 * ENOSPC accounting. For data we handle the reservation through clearing the
5986 * delalloc bits in the io_tree. We have to do this since we could end up
5987 * allocating less disk space for the amount of data we have reserved in the
5988 * case of compression.
5989 *
5990 * If this is a reservation and the block group has become read only we cannot
5991 * make the reservation and return -EAGAIN, otherwise this function always
5992 * succeeds.
f0486c68 5993 */
fb25e914 5994static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5995 u64 num_bytes, int reserve, int delalloc)
11833d66 5996{
fb25e914 5997 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5998 int ret = 0;
79787eaa 5999
fb25e914
JB
6000 spin_lock(&space_info->lock);
6001 spin_lock(&cache->lock);
6002 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6003 if (cache->ro) {
6004 ret = -EAGAIN;
6005 } else {
fb25e914
JB
6006 cache->reserved += num_bytes;
6007 space_info->bytes_reserved += num_bytes;
6008 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6009 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6010 "space_info", space_info->flags,
6011 num_bytes, 0);
fb25e914
JB
6012 space_info->bytes_may_use -= num_bytes;
6013 }
e570fd27
MX
6014
6015 if (delalloc)
6016 cache->delalloc_bytes += num_bytes;
f0486c68 6017 }
fb25e914
JB
6018 } else {
6019 if (cache->ro)
6020 space_info->bytes_readonly += num_bytes;
6021 cache->reserved -= num_bytes;
6022 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6023
6024 if (delalloc)
6025 cache->delalloc_bytes -= num_bytes;
324ae4df 6026 }
fb25e914
JB
6027 spin_unlock(&cache->lock);
6028 spin_unlock(&space_info->lock);
f0486c68 6029 return ret;
324ae4df 6030}
9078a3e1 6031
143bede5 6032void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6033 struct btrfs_root *root)
e8569813 6034{
e8569813 6035 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6036 struct btrfs_caching_control *next;
6037 struct btrfs_caching_control *caching_ctl;
6038 struct btrfs_block_group_cache *cache;
e8569813 6039
9e351cc8 6040 down_write(&fs_info->commit_root_sem);
25179201 6041
11833d66
YZ
6042 list_for_each_entry_safe(caching_ctl, next,
6043 &fs_info->caching_block_groups, list) {
6044 cache = caching_ctl->block_group;
6045 if (block_group_cache_done(cache)) {
6046 cache->last_byte_to_unpin = (u64)-1;
6047 list_del_init(&caching_ctl->list);
6048 put_caching_control(caching_ctl);
e8569813 6049 } else {
11833d66 6050 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6051 }
e8569813 6052 }
11833d66
YZ
6053
6054 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6055 fs_info->pinned_extents = &fs_info->freed_extents[1];
6056 else
6057 fs_info->pinned_extents = &fs_info->freed_extents[0];
6058
9e351cc8 6059 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6060
6061 update_global_block_rsv(fs_info);
e8569813
ZY
6062}
6063
678886bd
FM
6064static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6065 const bool return_free_space)
ccd467d6 6066{
11833d66
YZ
6067 struct btrfs_fs_info *fs_info = root->fs_info;
6068 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6069 struct btrfs_space_info *space_info;
6070 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6071 u64 len;
7b398f8e 6072 bool readonly;
ccd467d6 6073
11833d66 6074 while (start <= end) {
7b398f8e 6075 readonly = false;
11833d66
YZ
6076 if (!cache ||
6077 start >= cache->key.objectid + cache->key.offset) {
6078 if (cache)
6079 btrfs_put_block_group(cache);
6080 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6081 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6082 }
6083
6084 len = cache->key.objectid + cache->key.offset - start;
6085 len = min(len, end + 1 - start);
6086
6087 if (start < cache->last_byte_to_unpin) {
6088 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6089 if (return_free_space)
6090 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6091 }
6092
f0486c68 6093 start += len;
7b398f8e 6094 space_info = cache->space_info;
f0486c68 6095
7b398f8e 6096 spin_lock(&space_info->lock);
11833d66
YZ
6097 spin_lock(&cache->lock);
6098 cache->pinned -= len;
7b398f8e 6099 space_info->bytes_pinned -= len;
d288db5d 6100 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6101 if (cache->ro) {
6102 space_info->bytes_readonly += len;
6103 readonly = true;
6104 }
11833d66 6105 spin_unlock(&cache->lock);
7b398f8e
JB
6106 if (!readonly && global_rsv->space_info == space_info) {
6107 spin_lock(&global_rsv->lock);
6108 if (!global_rsv->full) {
6109 len = min(len, global_rsv->size -
6110 global_rsv->reserved);
6111 global_rsv->reserved += len;
6112 space_info->bytes_may_use += len;
6113 if (global_rsv->reserved >= global_rsv->size)
6114 global_rsv->full = 1;
6115 }
6116 spin_unlock(&global_rsv->lock);
6117 }
6118 spin_unlock(&space_info->lock);
ccd467d6 6119 }
11833d66
YZ
6120
6121 if (cache)
6122 btrfs_put_block_group(cache);
ccd467d6
CM
6123 return 0;
6124}
6125
6126int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6127 struct btrfs_root *root)
a28ec197 6128{
11833d66 6129 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6130 struct btrfs_block_group_cache *block_group, *tmp;
6131 struct list_head *deleted_bgs;
11833d66 6132 struct extent_io_tree *unpin;
1a5bc167
CM
6133 u64 start;
6134 u64 end;
a28ec197 6135 int ret;
a28ec197 6136
11833d66
YZ
6137 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6138 unpin = &fs_info->freed_extents[1];
6139 else
6140 unpin = &fs_info->freed_extents[0];
6141
e33e17ee 6142 while (!trans->aborted) {
d4b450cd 6143 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6144 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6145 EXTENT_DIRTY, NULL);
d4b450cd
FM
6146 if (ret) {
6147 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6148 break;
d4b450cd 6149 }
1f3c79a2 6150
5378e607
LD
6151 if (btrfs_test_opt(root, DISCARD))
6152 ret = btrfs_discard_extent(root, start,
6153 end + 1 - start, NULL);
1f3c79a2 6154
1a5bc167 6155 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6156 unpin_extent_range(root, start, end, true);
d4b450cd 6157 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6158 cond_resched();
a28ec197 6159 }
817d52f8 6160
e33e17ee
JM
6161 /*
6162 * Transaction is finished. We don't need the lock anymore. We
6163 * do need to clean up the block groups in case of a transaction
6164 * abort.
6165 */
6166 deleted_bgs = &trans->transaction->deleted_bgs;
6167 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6168 u64 trimmed = 0;
6169
6170 ret = -EROFS;
6171 if (!trans->aborted)
6172 ret = btrfs_discard_extent(root,
6173 block_group->key.objectid,
6174 block_group->key.offset,
6175 &trimmed);
6176
6177 list_del_init(&block_group->bg_list);
6178 btrfs_put_block_group_trimming(block_group);
6179 btrfs_put_block_group(block_group);
6180
6181 if (ret) {
6182 const char *errstr = btrfs_decode_error(ret);
6183 btrfs_warn(fs_info,
6184 "Discard failed while removing blockgroup: errno=%d %s\n",
6185 ret, errstr);
6186 }
6187 }
6188
e20d96d6
CM
6189 return 0;
6190}
6191
b150a4f1
JB
6192static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6193 u64 owner, u64 root_objectid)
6194{
6195 struct btrfs_space_info *space_info;
6196 u64 flags;
6197
6198 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6199 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6200 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6201 else
6202 flags = BTRFS_BLOCK_GROUP_METADATA;
6203 } else {
6204 flags = BTRFS_BLOCK_GROUP_DATA;
6205 }
6206
6207 space_info = __find_space_info(fs_info, flags);
6208 BUG_ON(!space_info); /* Logic bug */
6209 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6210}
6211
6212
5d4f98a2
YZ
6213static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6214 struct btrfs_root *root,
c682f9b3 6215 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6216 u64 root_objectid, u64 owner_objectid,
6217 u64 owner_offset, int refs_to_drop,
c682f9b3 6218 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6219{
e2fa7227 6220 struct btrfs_key key;
5d4f98a2 6221 struct btrfs_path *path;
1261ec42
CM
6222 struct btrfs_fs_info *info = root->fs_info;
6223 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6224 struct extent_buffer *leaf;
5d4f98a2
YZ
6225 struct btrfs_extent_item *ei;
6226 struct btrfs_extent_inline_ref *iref;
a28ec197 6227 int ret;
5d4f98a2 6228 int is_data;
952fccac
CM
6229 int extent_slot = 0;
6230 int found_extent = 0;
6231 int num_to_del = 1;
c682f9b3 6232 int no_quota = node->no_quota;
5d4f98a2
YZ
6233 u32 item_size;
6234 u64 refs;
c682f9b3
QW
6235 u64 bytenr = node->bytenr;
6236 u64 num_bytes = node->num_bytes;
fcebe456 6237 int last_ref = 0;
3173a18f
JB
6238 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6239 SKINNY_METADATA);
037e6390 6240
fcebe456
JB
6241 if (!info->quota_enabled || !is_fstree(root_objectid))
6242 no_quota = 1;
6243
5caf2a00 6244 path = btrfs_alloc_path();
54aa1f4d
CM
6245 if (!path)
6246 return -ENOMEM;
5f26f772 6247
3c12ac72 6248 path->reada = 1;
b9473439 6249 path->leave_spinning = 1;
5d4f98a2
YZ
6250
6251 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6252 BUG_ON(!is_data && refs_to_drop != 1);
6253
3173a18f
JB
6254 if (is_data)
6255 skinny_metadata = 0;
6256
5d4f98a2
YZ
6257 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6258 bytenr, num_bytes, parent,
6259 root_objectid, owner_objectid,
6260 owner_offset);
7bb86316 6261 if (ret == 0) {
952fccac 6262 extent_slot = path->slots[0];
5d4f98a2
YZ
6263 while (extent_slot >= 0) {
6264 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6265 extent_slot);
5d4f98a2 6266 if (key.objectid != bytenr)
952fccac 6267 break;
5d4f98a2
YZ
6268 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6269 key.offset == num_bytes) {
952fccac
CM
6270 found_extent = 1;
6271 break;
6272 }
3173a18f
JB
6273 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6274 key.offset == owner_objectid) {
6275 found_extent = 1;
6276 break;
6277 }
952fccac
CM
6278 if (path->slots[0] - extent_slot > 5)
6279 break;
5d4f98a2 6280 extent_slot--;
952fccac 6281 }
5d4f98a2
YZ
6282#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6283 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6284 if (found_extent && item_size < sizeof(*ei))
6285 found_extent = 0;
6286#endif
31840ae1 6287 if (!found_extent) {
5d4f98a2 6288 BUG_ON(iref);
56bec294 6289 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6290 NULL, refs_to_drop,
fcebe456 6291 is_data, &last_ref);
005d6427
DS
6292 if (ret) {
6293 btrfs_abort_transaction(trans, extent_root, ret);
6294 goto out;
6295 }
b3b4aa74 6296 btrfs_release_path(path);
b9473439 6297 path->leave_spinning = 1;
5d4f98a2
YZ
6298
6299 key.objectid = bytenr;
6300 key.type = BTRFS_EXTENT_ITEM_KEY;
6301 key.offset = num_bytes;
6302
3173a18f
JB
6303 if (!is_data && skinny_metadata) {
6304 key.type = BTRFS_METADATA_ITEM_KEY;
6305 key.offset = owner_objectid;
6306 }
6307
31840ae1
ZY
6308 ret = btrfs_search_slot(trans, extent_root,
6309 &key, path, -1, 1);
3173a18f
JB
6310 if (ret > 0 && skinny_metadata && path->slots[0]) {
6311 /*
6312 * Couldn't find our skinny metadata item,
6313 * see if we have ye olde extent item.
6314 */
6315 path->slots[0]--;
6316 btrfs_item_key_to_cpu(path->nodes[0], &key,
6317 path->slots[0]);
6318 if (key.objectid == bytenr &&
6319 key.type == BTRFS_EXTENT_ITEM_KEY &&
6320 key.offset == num_bytes)
6321 ret = 0;
6322 }
6323
6324 if (ret > 0 && skinny_metadata) {
6325 skinny_metadata = false;
9ce49a0b 6326 key.objectid = bytenr;
3173a18f
JB
6327 key.type = BTRFS_EXTENT_ITEM_KEY;
6328 key.offset = num_bytes;
6329 btrfs_release_path(path);
6330 ret = btrfs_search_slot(trans, extent_root,
6331 &key, path, -1, 1);
6332 }
6333
f3465ca4 6334 if (ret) {
c2cf52eb 6335 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6336 ret, bytenr);
b783e62d
JB
6337 if (ret > 0)
6338 btrfs_print_leaf(extent_root,
6339 path->nodes[0]);
f3465ca4 6340 }
005d6427
DS
6341 if (ret < 0) {
6342 btrfs_abort_transaction(trans, extent_root, ret);
6343 goto out;
6344 }
31840ae1
ZY
6345 extent_slot = path->slots[0];
6346 }
fae7f21c 6347 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6348 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6349 btrfs_err(info,
6350 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6351 bytenr, parent, root_objectid, owner_objectid,
6352 owner_offset);
c4a050bb
JB
6353 btrfs_abort_transaction(trans, extent_root, ret);
6354 goto out;
79787eaa 6355 } else {
005d6427
DS
6356 btrfs_abort_transaction(trans, extent_root, ret);
6357 goto out;
7bb86316 6358 }
5f39d397
CM
6359
6360 leaf = path->nodes[0];
5d4f98a2
YZ
6361 item_size = btrfs_item_size_nr(leaf, extent_slot);
6362#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6363 if (item_size < sizeof(*ei)) {
6364 BUG_ON(found_extent || extent_slot != path->slots[0]);
6365 ret = convert_extent_item_v0(trans, extent_root, path,
6366 owner_objectid, 0);
005d6427
DS
6367 if (ret < 0) {
6368 btrfs_abort_transaction(trans, extent_root, ret);
6369 goto out;
6370 }
5d4f98a2 6371
b3b4aa74 6372 btrfs_release_path(path);
5d4f98a2
YZ
6373 path->leave_spinning = 1;
6374
6375 key.objectid = bytenr;
6376 key.type = BTRFS_EXTENT_ITEM_KEY;
6377 key.offset = num_bytes;
6378
6379 ret = btrfs_search_slot(trans, extent_root, &key, path,
6380 -1, 1);
6381 if (ret) {
c2cf52eb 6382 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6383 ret, bytenr);
5d4f98a2
YZ
6384 btrfs_print_leaf(extent_root, path->nodes[0]);
6385 }
005d6427
DS
6386 if (ret < 0) {
6387 btrfs_abort_transaction(trans, extent_root, ret);
6388 goto out;
6389 }
6390
5d4f98a2
YZ
6391 extent_slot = path->slots[0];
6392 leaf = path->nodes[0];
6393 item_size = btrfs_item_size_nr(leaf, extent_slot);
6394 }
6395#endif
6396 BUG_ON(item_size < sizeof(*ei));
952fccac 6397 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6398 struct btrfs_extent_item);
3173a18f
JB
6399 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6400 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6401 struct btrfs_tree_block_info *bi;
6402 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6403 bi = (struct btrfs_tree_block_info *)(ei + 1);
6404 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6405 }
56bec294 6406
5d4f98a2 6407 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6408 if (refs < refs_to_drop) {
6409 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6410 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6411 ret = -EINVAL;
6412 btrfs_abort_transaction(trans, extent_root, ret);
6413 goto out;
6414 }
56bec294 6415 refs -= refs_to_drop;
5f39d397 6416
5d4f98a2
YZ
6417 if (refs > 0) {
6418 if (extent_op)
6419 __run_delayed_extent_op(extent_op, leaf, ei);
6420 /*
6421 * In the case of inline back ref, reference count will
6422 * be updated by remove_extent_backref
952fccac 6423 */
5d4f98a2
YZ
6424 if (iref) {
6425 BUG_ON(!found_extent);
6426 } else {
6427 btrfs_set_extent_refs(leaf, ei, refs);
6428 btrfs_mark_buffer_dirty(leaf);
6429 }
6430 if (found_extent) {
6431 ret = remove_extent_backref(trans, extent_root, path,
6432 iref, refs_to_drop,
fcebe456 6433 is_data, &last_ref);
005d6427
DS
6434 if (ret) {
6435 btrfs_abort_transaction(trans, extent_root, ret);
6436 goto out;
6437 }
952fccac 6438 }
b150a4f1
JB
6439 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6440 root_objectid);
5d4f98a2 6441 } else {
5d4f98a2
YZ
6442 if (found_extent) {
6443 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6444 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6445 if (iref) {
6446 BUG_ON(path->slots[0] != extent_slot);
6447 } else {
6448 BUG_ON(path->slots[0] != extent_slot + 1);
6449 path->slots[0] = extent_slot;
6450 num_to_del = 2;
6451 }
78fae27e 6452 }
b9473439 6453
fcebe456 6454 last_ref = 1;
952fccac
CM
6455 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6456 num_to_del);
005d6427
DS
6457 if (ret) {
6458 btrfs_abort_transaction(trans, extent_root, ret);
6459 goto out;
6460 }
b3b4aa74 6461 btrfs_release_path(path);
21af804c 6462
5d4f98a2 6463 if (is_data) {
459931ec 6464 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6465 if (ret) {
6466 btrfs_abort_transaction(trans, extent_root, ret);
6467 goto out;
6468 }
459931ec
CM
6469 }
6470
ce93ec54 6471 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6472 if (ret) {
6473 btrfs_abort_transaction(trans, extent_root, ret);
6474 goto out;
6475 }
a28ec197 6476 }
fcebe456
JB
6477 btrfs_release_path(path);
6478
79787eaa 6479out:
5caf2a00 6480 btrfs_free_path(path);
a28ec197
CM
6481 return ret;
6482}
6483
1887be66 6484/*
f0486c68 6485 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6486 * delayed ref for that extent as well. This searches the delayed ref tree for
6487 * a given extent, and if there are no other delayed refs to be processed, it
6488 * removes it from the tree.
6489 */
6490static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6491 struct btrfs_root *root, u64 bytenr)
6492{
6493 struct btrfs_delayed_ref_head *head;
6494 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6495 int ret = 0;
1887be66
CM
6496
6497 delayed_refs = &trans->transaction->delayed_refs;
6498 spin_lock(&delayed_refs->lock);
6499 head = btrfs_find_delayed_ref_head(trans, bytenr);
6500 if (!head)
cf93da7b 6501 goto out_delayed_unlock;
1887be66 6502
d7df2c79 6503 spin_lock(&head->lock);
c6fc2454 6504 if (!list_empty(&head->ref_list))
1887be66
CM
6505 goto out;
6506
5d4f98a2
YZ
6507 if (head->extent_op) {
6508 if (!head->must_insert_reserved)
6509 goto out;
78a6184a 6510 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6511 head->extent_op = NULL;
6512 }
6513
1887be66
CM
6514 /*
6515 * waiting for the lock here would deadlock. If someone else has it
6516 * locked they are already in the process of dropping it anyway
6517 */
6518 if (!mutex_trylock(&head->mutex))
6519 goto out;
6520
6521 /*
6522 * at this point we have a head with no other entries. Go
6523 * ahead and process it.
6524 */
6525 head->node.in_tree = 0;
c46effa6 6526 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6527
d7df2c79 6528 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6529
6530 /*
6531 * we don't take a ref on the node because we're removing it from the
6532 * tree, so we just steal the ref the tree was holding.
6533 */
c3e69d58 6534 delayed_refs->num_heads--;
d7df2c79 6535 if (head->processing == 0)
c3e69d58 6536 delayed_refs->num_heads_ready--;
d7df2c79
JB
6537 head->processing = 0;
6538 spin_unlock(&head->lock);
1887be66
CM
6539 spin_unlock(&delayed_refs->lock);
6540
f0486c68
YZ
6541 BUG_ON(head->extent_op);
6542 if (head->must_insert_reserved)
6543 ret = 1;
6544
6545 mutex_unlock(&head->mutex);
1887be66 6546 btrfs_put_delayed_ref(&head->node);
f0486c68 6547 return ret;
1887be66 6548out:
d7df2c79 6549 spin_unlock(&head->lock);
cf93da7b
CM
6550
6551out_delayed_unlock:
1887be66
CM
6552 spin_unlock(&delayed_refs->lock);
6553 return 0;
6554}
6555
f0486c68
YZ
6556void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6557 struct btrfs_root *root,
6558 struct extent_buffer *buf,
5581a51a 6559 u64 parent, int last_ref)
f0486c68 6560{
b150a4f1 6561 int pin = 1;
f0486c68
YZ
6562 int ret;
6563
6564 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6565 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6566 buf->start, buf->len,
6567 parent, root->root_key.objectid,
6568 btrfs_header_level(buf),
5581a51a 6569 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6570 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6571 }
6572
6573 if (!last_ref)
6574 return;
6575
f0486c68 6576 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6577 struct btrfs_block_group_cache *cache;
6578
f0486c68
YZ
6579 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6580 ret = check_ref_cleanup(trans, root, buf->start);
6581 if (!ret)
37be25bc 6582 goto out;
f0486c68
YZ
6583 }
6584
6219872d
FM
6585 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6586
f0486c68
YZ
6587 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6588 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6589 btrfs_put_block_group(cache);
37be25bc 6590 goto out;
f0486c68
YZ
6591 }
6592
6593 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6594
6595 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6596 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6597 btrfs_put_block_group(cache);
0be5dc67 6598 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6599 pin = 0;
f0486c68
YZ
6600 }
6601out:
b150a4f1
JB
6602 if (pin)
6603 add_pinned_bytes(root->fs_info, buf->len,
6604 btrfs_header_level(buf),
6605 root->root_key.objectid);
6606
a826d6dc
JB
6607 /*
6608 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6609 * anymore.
6610 */
6611 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6612}
6613
79787eaa 6614/* Can return -ENOMEM */
66d7e7f0
AJ
6615int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6616 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6617 u64 owner, u64 offset, int no_quota)
925baedd
CM
6618{
6619 int ret;
66d7e7f0 6620 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6621
fccb84c9 6622 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6623 return 0;
fccb84c9 6624
b150a4f1
JB
6625 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6626
56bec294
CM
6627 /*
6628 * tree log blocks never actually go into the extent allocation
6629 * tree, just update pinning info and exit early.
56bec294 6630 */
5d4f98a2
YZ
6631 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6632 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6633 /* unlocks the pinned mutex */
11833d66 6634 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6635 ret = 0;
5d4f98a2 6636 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6637 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6638 num_bytes,
5d4f98a2 6639 parent, root_objectid, (int)owner,
fcebe456 6640 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6641 } else {
66d7e7f0
AJ
6642 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6643 num_bytes,
6644 parent, root_objectid, owner,
6645 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6646 NULL, no_quota);
56bec294 6647 }
925baedd
CM
6648 return ret;
6649}
6650
817d52f8
JB
6651/*
6652 * when we wait for progress in the block group caching, its because
6653 * our allocation attempt failed at least once. So, we must sleep
6654 * and let some progress happen before we try again.
6655 *
6656 * This function will sleep at least once waiting for new free space to
6657 * show up, and then it will check the block group free space numbers
6658 * for our min num_bytes. Another option is to have it go ahead
6659 * and look in the rbtree for a free extent of a given size, but this
6660 * is a good start.
36cce922
JB
6661 *
6662 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6663 * any of the information in this block group.
817d52f8 6664 */
36cce922 6665static noinline void
817d52f8
JB
6666wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6667 u64 num_bytes)
6668{
11833d66 6669 struct btrfs_caching_control *caching_ctl;
817d52f8 6670
11833d66
YZ
6671 caching_ctl = get_caching_control(cache);
6672 if (!caching_ctl)
36cce922 6673 return;
817d52f8 6674
11833d66 6675 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6676 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6677
6678 put_caching_control(caching_ctl);
11833d66
YZ
6679}
6680
6681static noinline int
6682wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6683{
6684 struct btrfs_caching_control *caching_ctl;
36cce922 6685 int ret = 0;
11833d66
YZ
6686
6687 caching_ctl = get_caching_control(cache);
6688 if (!caching_ctl)
36cce922 6689 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6690
6691 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6692 if (cache->cached == BTRFS_CACHE_ERROR)
6693 ret = -EIO;
11833d66 6694 put_caching_control(caching_ctl);
36cce922 6695 return ret;
817d52f8
JB
6696}
6697
31e50229 6698int __get_raid_index(u64 flags)
b742bb82 6699{
7738a53a 6700 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6701 return BTRFS_RAID_RAID10;
7738a53a 6702 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6703 return BTRFS_RAID_RAID1;
7738a53a 6704 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6705 return BTRFS_RAID_DUP;
7738a53a 6706 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6707 return BTRFS_RAID_RAID0;
53b381b3 6708 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6709 return BTRFS_RAID_RAID5;
53b381b3 6710 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6711 return BTRFS_RAID_RAID6;
7738a53a 6712
e942f883 6713 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6714}
6715
6ab0a202 6716int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6717{
31e50229 6718 return __get_raid_index(cache->flags);
7738a53a
ID
6719}
6720
6ab0a202
JM
6721static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6722 [BTRFS_RAID_RAID10] = "raid10",
6723 [BTRFS_RAID_RAID1] = "raid1",
6724 [BTRFS_RAID_DUP] = "dup",
6725 [BTRFS_RAID_RAID0] = "raid0",
6726 [BTRFS_RAID_SINGLE] = "single",
6727 [BTRFS_RAID_RAID5] = "raid5",
6728 [BTRFS_RAID_RAID6] = "raid6",
6729};
6730
1b8e5df6 6731static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6732{
6733 if (type >= BTRFS_NR_RAID_TYPES)
6734 return NULL;
6735
6736 return btrfs_raid_type_names[type];
6737}
6738
817d52f8 6739enum btrfs_loop_type {
285ff5af
JB
6740 LOOP_CACHING_NOWAIT = 0,
6741 LOOP_CACHING_WAIT = 1,
6742 LOOP_ALLOC_CHUNK = 2,
6743 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6744};
6745
e570fd27
MX
6746static inline void
6747btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6748 int delalloc)
6749{
6750 if (delalloc)
6751 down_read(&cache->data_rwsem);
6752}
6753
6754static inline void
6755btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6756 int delalloc)
6757{
6758 btrfs_get_block_group(cache);
6759 if (delalloc)
6760 down_read(&cache->data_rwsem);
6761}
6762
6763static struct btrfs_block_group_cache *
6764btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6765 struct btrfs_free_cluster *cluster,
6766 int delalloc)
6767{
6768 struct btrfs_block_group_cache *used_bg;
6769 bool locked = false;
6770again:
6771 spin_lock(&cluster->refill_lock);
6772 if (locked) {
6773 if (used_bg == cluster->block_group)
6774 return used_bg;
6775
6776 up_read(&used_bg->data_rwsem);
6777 btrfs_put_block_group(used_bg);
6778 }
6779
6780 used_bg = cluster->block_group;
6781 if (!used_bg)
6782 return NULL;
6783
6784 if (used_bg == block_group)
6785 return used_bg;
6786
6787 btrfs_get_block_group(used_bg);
6788
6789 if (!delalloc)
6790 return used_bg;
6791
6792 if (down_read_trylock(&used_bg->data_rwsem))
6793 return used_bg;
6794
6795 spin_unlock(&cluster->refill_lock);
6796 down_read(&used_bg->data_rwsem);
6797 locked = true;
6798 goto again;
6799}
6800
6801static inline void
6802btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6803 int delalloc)
6804{
6805 if (delalloc)
6806 up_read(&cache->data_rwsem);
6807 btrfs_put_block_group(cache);
6808}
6809
fec577fb
CM
6810/*
6811 * walks the btree of allocated extents and find a hole of a given size.
6812 * The key ins is changed to record the hole:
a4820398 6813 * ins->objectid == start position
62e2749e 6814 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6815 * ins->offset == the size of the hole.
fec577fb 6816 * Any available blocks before search_start are skipped.
a4820398
MX
6817 *
6818 * If there is no suitable free space, we will record the max size of
6819 * the free space extent currently.
fec577fb 6820 */
00361589 6821static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6822 u64 num_bytes, u64 empty_size,
98ed5174 6823 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6824 u64 flags, int delalloc)
fec577fb 6825{
80eb234a 6826 int ret = 0;
d397712b 6827 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6828 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6829 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6830 u64 search_start = 0;
a4820398 6831 u64 max_extent_size = 0;
239b14b3 6832 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6833 struct btrfs_space_info *space_info;
fa9c0d79 6834 int loop = 0;
b6919a58
DS
6835 int index = __get_raid_index(flags);
6836 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6837 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6838 bool failed_cluster_refill = false;
1cdda9b8 6839 bool failed_alloc = false;
67377734 6840 bool use_cluster = true;
60d2adbb 6841 bool have_caching_bg = false;
fec577fb 6842
db94535d 6843 WARN_ON(num_bytes < root->sectorsize);
962a298f 6844 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6845 ins->objectid = 0;
6846 ins->offset = 0;
b1a4d965 6847
b6919a58 6848 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6849
b6919a58 6850 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6851 if (!space_info) {
b6919a58 6852 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6853 return -ENOSPC;
6854 }
2552d17e 6855
67377734
JB
6856 /*
6857 * If the space info is for both data and metadata it means we have a
6858 * small filesystem and we can't use the clustering stuff.
6859 */
6860 if (btrfs_mixed_space_info(space_info))
6861 use_cluster = false;
6862
b6919a58 6863 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6864 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6865 if (!btrfs_test_opt(root, SSD))
6866 empty_cluster = 64 * 1024;
239b14b3
CM
6867 }
6868
b6919a58 6869 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6870 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6871 last_ptr = &root->fs_info->data_alloc_cluster;
6872 }
0f9dd46c 6873
239b14b3 6874 if (last_ptr) {
fa9c0d79
CM
6875 spin_lock(&last_ptr->lock);
6876 if (last_ptr->block_group)
6877 hint_byte = last_ptr->window_start;
6878 spin_unlock(&last_ptr->lock);
239b14b3 6879 }
fa9c0d79 6880
a061fc8d 6881 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6882 search_start = max(search_start, hint_byte);
0b86a832 6883
817d52f8 6884 if (!last_ptr)
fa9c0d79 6885 empty_cluster = 0;
fa9c0d79 6886
2552d17e 6887 if (search_start == hint_byte) {
2552d17e
JB
6888 block_group = btrfs_lookup_block_group(root->fs_info,
6889 search_start);
817d52f8
JB
6890 /*
6891 * we don't want to use the block group if it doesn't match our
6892 * allocation bits, or if its not cached.
ccf0e725
JB
6893 *
6894 * However if we are re-searching with an ideal block group
6895 * picked out then we don't care that the block group is cached.
817d52f8 6896 */
b6919a58 6897 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6898 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6899 down_read(&space_info->groups_sem);
44fb5511
CM
6900 if (list_empty(&block_group->list) ||
6901 block_group->ro) {
6902 /*
6903 * someone is removing this block group,
6904 * we can't jump into the have_block_group
6905 * target because our list pointers are not
6906 * valid
6907 */
6908 btrfs_put_block_group(block_group);
6909 up_read(&space_info->groups_sem);
ccf0e725 6910 } else {
b742bb82 6911 index = get_block_group_index(block_group);
e570fd27 6912 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6913 goto have_block_group;
ccf0e725 6914 }
2552d17e 6915 } else if (block_group) {
fa9c0d79 6916 btrfs_put_block_group(block_group);
2552d17e 6917 }
42e70e7a 6918 }
2552d17e 6919search:
60d2adbb 6920 have_caching_bg = false;
80eb234a 6921 down_read(&space_info->groups_sem);
b742bb82
YZ
6922 list_for_each_entry(block_group, &space_info->block_groups[index],
6923 list) {
6226cb0a 6924 u64 offset;
817d52f8 6925 int cached;
8a1413a2 6926
e570fd27 6927 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6928 search_start = block_group->key.objectid;
42e70e7a 6929
83a50de9
CM
6930 /*
6931 * this can happen if we end up cycling through all the
6932 * raid types, but we want to make sure we only allocate
6933 * for the proper type.
6934 */
b6919a58 6935 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6936 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6937 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6938 BTRFS_BLOCK_GROUP_RAID5 |
6939 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6940 BTRFS_BLOCK_GROUP_RAID10;
6941
6942 /*
6943 * if they asked for extra copies and this block group
6944 * doesn't provide them, bail. This does allow us to
6945 * fill raid0 from raid1.
6946 */
b6919a58 6947 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6948 goto loop;
6949 }
6950
2552d17e 6951have_block_group:
291c7d2f
JB
6952 cached = block_group_cache_done(block_group);
6953 if (unlikely(!cached)) {
f6373bf3 6954 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6955 BUG_ON(ret < 0);
6956 ret = 0;
817d52f8
JB
6957 }
6958
36cce922
JB
6959 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6960 goto loop;
ea6a478e 6961 if (unlikely(block_group->ro))
2552d17e 6962 goto loop;
0f9dd46c 6963
0a24325e 6964 /*
062c05c4
AO
6965 * Ok we want to try and use the cluster allocator, so
6966 * lets look there
0a24325e 6967 */
062c05c4 6968 if (last_ptr) {
215a63d1 6969 struct btrfs_block_group_cache *used_block_group;
8de972b4 6970 unsigned long aligned_cluster;
fa9c0d79
CM
6971 /*
6972 * the refill lock keeps out other
6973 * people trying to start a new cluster
6974 */
e570fd27
MX
6975 used_block_group = btrfs_lock_cluster(block_group,
6976 last_ptr,
6977 delalloc);
6978 if (!used_block_group)
44fb5511 6979 goto refill_cluster;
274bd4fb 6980
e570fd27
MX
6981 if (used_block_group != block_group &&
6982 (used_block_group->ro ||
6983 !block_group_bits(used_block_group, flags)))
6984 goto release_cluster;
44fb5511 6985
274bd4fb 6986 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6987 last_ptr,
6988 num_bytes,
6989 used_block_group->key.objectid,
6990 &max_extent_size);
fa9c0d79
CM
6991 if (offset) {
6992 /* we have a block, we're done */
6993 spin_unlock(&last_ptr->refill_lock);
3f7de037 6994 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6995 used_block_group,
6996 search_start, num_bytes);
215a63d1 6997 if (used_block_group != block_group) {
e570fd27
MX
6998 btrfs_release_block_group(block_group,
6999 delalloc);
215a63d1
MX
7000 block_group = used_block_group;
7001 }
fa9c0d79
CM
7002 goto checks;
7003 }
7004
274bd4fb 7005 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7006release_cluster:
062c05c4
AO
7007 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7008 * set up a new clusters, so lets just skip it
7009 * and let the allocator find whatever block
7010 * it can find. If we reach this point, we
7011 * will have tried the cluster allocator
7012 * plenty of times and not have found
7013 * anything, so we are likely way too
7014 * fragmented for the clustering stuff to find
a5f6f719
AO
7015 * anything.
7016 *
7017 * However, if the cluster is taken from the
7018 * current block group, release the cluster
7019 * first, so that we stand a better chance of
7020 * succeeding in the unclustered
7021 * allocation. */
7022 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7023 used_block_group != block_group) {
062c05c4 7024 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7025 btrfs_release_block_group(used_block_group,
7026 delalloc);
062c05c4
AO
7027 goto unclustered_alloc;
7028 }
7029
fa9c0d79
CM
7030 /*
7031 * this cluster didn't work out, free it and
7032 * start over
7033 */
7034 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7035
e570fd27
MX
7036 if (used_block_group != block_group)
7037 btrfs_release_block_group(used_block_group,
7038 delalloc);
7039refill_cluster:
a5f6f719
AO
7040 if (loop >= LOOP_NO_EMPTY_SIZE) {
7041 spin_unlock(&last_ptr->refill_lock);
7042 goto unclustered_alloc;
7043 }
7044
8de972b4
CM
7045 aligned_cluster = max_t(unsigned long,
7046 empty_cluster + empty_size,
7047 block_group->full_stripe_len);
7048
fa9c0d79 7049 /* allocate a cluster in this block group */
00361589
JB
7050 ret = btrfs_find_space_cluster(root, block_group,
7051 last_ptr, search_start,
7052 num_bytes,
7053 aligned_cluster);
fa9c0d79
CM
7054 if (ret == 0) {
7055 /*
7056 * now pull our allocation out of this
7057 * cluster
7058 */
7059 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7060 last_ptr,
7061 num_bytes,
7062 search_start,
7063 &max_extent_size);
fa9c0d79
CM
7064 if (offset) {
7065 /* we found one, proceed */
7066 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7067 trace_btrfs_reserve_extent_cluster(root,
7068 block_group, search_start,
7069 num_bytes);
fa9c0d79
CM
7070 goto checks;
7071 }
0a24325e
JB
7072 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7073 && !failed_cluster_refill) {
817d52f8
JB
7074 spin_unlock(&last_ptr->refill_lock);
7075
0a24325e 7076 failed_cluster_refill = true;
817d52f8
JB
7077 wait_block_group_cache_progress(block_group,
7078 num_bytes + empty_cluster + empty_size);
7079 goto have_block_group;
fa9c0d79 7080 }
817d52f8 7081
fa9c0d79
CM
7082 /*
7083 * at this point we either didn't find a cluster
7084 * or we weren't able to allocate a block from our
7085 * cluster. Free the cluster we've been trying
7086 * to use, and go to the next block group
7087 */
0a24325e 7088 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7089 spin_unlock(&last_ptr->refill_lock);
0a24325e 7090 goto loop;
fa9c0d79
CM
7091 }
7092
062c05c4 7093unclustered_alloc:
a5f6f719
AO
7094 spin_lock(&block_group->free_space_ctl->tree_lock);
7095 if (cached &&
7096 block_group->free_space_ctl->free_space <
7097 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7098 if (block_group->free_space_ctl->free_space >
7099 max_extent_size)
7100 max_extent_size =
7101 block_group->free_space_ctl->free_space;
a5f6f719
AO
7102 spin_unlock(&block_group->free_space_ctl->tree_lock);
7103 goto loop;
7104 }
7105 spin_unlock(&block_group->free_space_ctl->tree_lock);
7106
6226cb0a 7107 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7108 num_bytes, empty_size,
7109 &max_extent_size);
1cdda9b8
JB
7110 /*
7111 * If we didn't find a chunk, and we haven't failed on this
7112 * block group before, and this block group is in the middle of
7113 * caching and we are ok with waiting, then go ahead and wait
7114 * for progress to be made, and set failed_alloc to true.
7115 *
7116 * If failed_alloc is true then we've already waited on this
7117 * block group once and should move on to the next block group.
7118 */
7119 if (!offset && !failed_alloc && !cached &&
7120 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7121 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7122 num_bytes + empty_size);
7123 failed_alloc = true;
817d52f8 7124 goto have_block_group;
1cdda9b8 7125 } else if (!offset) {
60d2adbb
MX
7126 if (!cached)
7127 have_caching_bg = true;
1cdda9b8 7128 goto loop;
817d52f8 7129 }
fa9c0d79 7130checks:
4e54b17a 7131 search_start = ALIGN(offset, root->stripesize);
25179201 7132
2552d17e
JB
7133 /* move on to the next group */
7134 if (search_start + num_bytes >
215a63d1
MX
7135 block_group->key.objectid + block_group->key.offset) {
7136 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7137 goto loop;
6226cb0a 7138 }
f5a31e16 7139
f0486c68 7140 if (offset < search_start)
215a63d1 7141 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7142 search_start - offset);
7143 BUG_ON(offset > search_start);
2552d17e 7144
215a63d1 7145 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7146 alloc_type, delalloc);
f0486c68 7147 if (ret == -EAGAIN) {
215a63d1 7148 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7149 goto loop;
0f9dd46c 7150 }
0b86a832 7151
f0486c68 7152 /* we are all good, lets return */
2552d17e
JB
7153 ins->objectid = search_start;
7154 ins->offset = num_bytes;
d2fb3437 7155
3f7de037
JB
7156 trace_btrfs_reserve_extent(orig_root, block_group,
7157 search_start, num_bytes);
e570fd27 7158 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7159 break;
7160loop:
0a24325e 7161 failed_cluster_refill = false;
1cdda9b8 7162 failed_alloc = false;
b742bb82 7163 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7164 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7165 }
7166 up_read(&space_info->groups_sem);
7167
60d2adbb
MX
7168 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7169 goto search;
7170
b742bb82
YZ
7171 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7172 goto search;
7173
285ff5af 7174 /*
ccf0e725
JB
7175 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7176 * caching kthreads as we move along
817d52f8
JB
7177 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7178 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7179 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7180 * again
fa9c0d79 7181 */
723bda20 7182 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7183 index = 0;
723bda20 7184 loop++;
817d52f8 7185 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7186 struct btrfs_trans_handle *trans;
f017f15f
WS
7187 int exist = 0;
7188
7189 trans = current->journal_info;
7190 if (trans)
7191 exist = 1;
7192 else
7193 trans = btrfs_join_transaction(root);
00361589 7194
00361589
JB
7195 if (IS_ERR(trans)) {
7196 ret = PTR_ERR(trans);
7197 goto out;
7198 }
7199
b6919a58 7200 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7201 CHUNK_ALLOC_FORCE);
7202 /*
7203 * Do not bail out on ENOSPC since we
7204 * can do more things.
7205 */
00361589 7206 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7207 btrfs_abort_transaction(trans,
7208 root, ret);
00361589
JB
7209 else
7210 ret = 0;
f017f15f
WS
7211 if (!exist)
7212 btrfs_end_transaction(trans, root);
00361589 7213 if (ret)
ea658bad 7214 goto out;
2552d17e
JB
7215 }
7216
723bda20
JB
7217 if (loop == LOOP_NO_EMPTY_SIZE) {
7218 empty_size = 0;
7219 empty_cluster = 0;
fa9c0d79 7220 }
723bda20
JB
7221
7222 goto search;
2552d17e
JB
7223 } else if (!ins->objectid) {
7224 ret = -ENOSPC;
d82a6f1d 7225 } else if (ins->objectid) {
80eb234a 7226 ret = 0;
be744175 7227 }
79787eaa 7228out:
a4820398
MX
7229 if (ret == -ENOSPC)
7230 ins->offset = max_extent_size;
0f70abe2 7231 return ret;
fec577fb 7232}
ec44a35c 7233
9ed74f2d
JB
7234static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7235 int dump_block_groups)
0f9dd46c
JB
7236{
7237 struct btrfs_block_group_cache *cache;
b742bb82 7238 int index = 0;
0f9dd46c 7239
9ed74f2d 7240 spin_lock(&info->lock);
efe120a0 7241 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7242 info->flags,
7243 info->total_bytes - info->bytes_used - info->bytes_pinned -
7244 info->bytes_reserved - info->bytes_readonly,
d397712b 7245 (info->full) ? "" : "not ");
efe120a0 7246 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7247 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7248 info->total_bytes, info->bytes_used, info->bytes_pinned,
7249 info->bytes_reserved, info->bytes_may_use,
7250 info->bytes_readonly);
9ed74f2d
JB
7251 spin_unlock(&info->lock);
7252
7253 if (!dump_block_groups)
7254 return;
0f9dd46c 7255
80eb234a 7256 down_read(&info->groups_sem);
b742bb82
YZ
7257again:
7258 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7259 spin_lock(&cache->lock);
efe120a0
FH
7260 printk(KERN_INFO "BTRFS: "
7261 "block group %llu has %llu bytes, "
7262 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7263 cache->key.objectid, cache->key.offset,
7264 btrfs_block_group_used(&cache->item), cache->pinned,
7265 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7266 btrfs_dump_free_space(cache, bytes);
7267 spin_unlock(&cache->lock);
7268 }
b742bb82
YZ
7269 if (++index < BTRFS_NR_RAID_TYPES)
7270 goto again;
80eb234a 7271 up_read(&info->groups_sem);
0f9dd46c 7272}
e8569813 7273
00361589 7274int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7275 u64 num_bytes, u64 min_alloc_size,
7276 u64 empty_size, u64 hint_byte,
e570fd27 7277 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7278{
9e622d6b 7279 bool final_tried = false;
b6919a58 7280 u64 flags;
fec577fb 7281 int ret;
925baedd 7282
b6919a58 7283 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7284again:
db94535d 7285 WARN_ON(num_bytes < root->sectorsize);
00361589 7286 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7287 flags, delalloc);
3b951516 7288
9e622d6b 7289 if (ret == -ENOSPC) {
a4820398
MX
7290 if (!final_tried && ins->offset) {
7291 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7292 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7293 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7294 if (num_bytes == min_alloc_size)
7295 final_tried = true;
7296 goto again;
7297 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7298 struct btrfs_space_info *sinfo;
7299
b6919a58 7300 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7301 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7302 flags, num_bytes);
53804280
JM
7303 if (sinfo)
7304 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7305 }
925baedd 7306 }
0f9dd46c
JB
7307
7308 return ret;
e6dcd2dc
CM
7309}
7310
e688b725 7311static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7312 u64 start, u64 len,
7313 int pin, int delalloc)
65b51a00 7314{
0f9dd46c 7315 struct btrfs_block_group_cache *cache;
1f3c79a2 7316 int ret = 0;
0f9dd46c 7317
0f9dd46c
JB
7318 cache = btrfs_lookup_block_group(root->fs_info, start);
7319 if (!cache) {
c2cf52eb 7320 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7321 start);
0f9dd46c
JB
7322 return -ENOSPC;
7323 }
1f3c79a2 7324
e688b725
CM
7325 if (pin)
7326 pin_down_extent(root, cache, start, len, 1);
7327 else {
dcc82f47
FM
7328 if (btrfs_test_opt(root, DISCARD))
7329 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7330 btrfs_add_free_space(cache, start, len);
e570fd27 7331 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7332 }
31193213 7333
fa9c0d79 7334 btrfs_put_block_group(cache);
817d52f8 7335
1abe9b8a 7336 trace_btrfs_reserved_extent_free(root, start, len);
7337
e6dcd2dc
CM
7338 return ret;
7339}
7340
e688b725 7341int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7342 u64 start, u64 len, int delalloc)
e688b725 7343{
e570fd27 7344 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7345}
7346
7347int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7348 u64 start, u64 len)
7349{
e570fd27 7350 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7351}
7352
5d4f98a2
YZ
7353static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7354 struct btrfs_root *root,
7355 u64 parent, u64 root_objectid,
7356 u64 flags, u64 owner, u64 offset,
7357 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7358{
7359 int ret;
5d4f98a2 7360 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7361 struct btrfs_extent_item *extent_item;
5d4f98a2 7362 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7363 struct btrfs_path *path;
5d4f98a2
YZ
7364 struct extent_buffer *leaf;
7365 int type;
7366 u32 size;
26b8003f 7367
5d4f98a2
YZ
7368 if (parent > 0)
7369 type = BTRFS_SHARED_DATA_REF_KEY;
7370 else
7371 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7372
5d4f98a2 7373 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7374
7375 path = btrfs_alloc_path();
db5b493a
TI
7376 if (!path)
7377 return -ENOMEM;
47e4bb98 7378
b9473439 7379 path->leave_spinning = 1;
5d4f98a2
YZ
7380 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7381 ins, size);
79787eaa
JM
7382 if (ret) {
7383 btrfs_free_path(path);
7384 return ret;
7385 }
0f9dd46c 7386
5d4f98a2
YZ
7387 leaf = path->nodes[0];
7388 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7389 struct btrfs_extent_item);
5d4f98a2
YZ
7390 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7391 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7392 btrfs_set_extent_flags(leaf, extent_item,
7393 flags | BTRFS_EXTENT_FLAG_DATA);
7394
7395 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7396 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7397 if (parent > 0) {
7398 struct btrfs_shared_data_ref *ref;
7399 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7400 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7401 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7402 } else {
7403 struct btrfs_extent_data_ref *ref;
7404 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7405 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7406 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7407 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7408 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7409 }
47e4bb98
CM
7410
7411 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7412 btrfs_free_path(path);
f510cfec 7413
ce93ec54 7414 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7415 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7416 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7417 ins->objectid, ins->offset);
f5947066
CM
7418 BUG();
7419 }
0be5dc67 7420 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7421 return ret;
7422}
7423
5d4f98a2
YZ
7424static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7425 struct btrfs_root *root,
7426 u64 parent, u64 root_objectid,
7427 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7428 int level, struct btrfs_key *ins,
7429 int no_quota)
e6dcd2dc
CM
7430{
7431 int ret;
5d4f98a2
YZ
7432 struct btrfs_fs_info *fs_info = root->fs_info;
7433 struct btrfs_extent_item *extent_item;
7434 struct btrfs_tree_block_info *block_info;
7435 struct btrfs_extent_inline_ref *iref;
7436 struct btrfs_path *path;
7437 struct extent_buffer *leaf;
3173a18f 7438 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7439 u64 num_bytes = ins->offset;
3173a18f
JB
7440 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7441 SKINNY_METADATA);
7442
7443 if (!skinny_metadata)
7444 size += sizeof(*block_info);
1c2308f8 7445
5d4f98a2 7446 path = btrfs_alloc_path();
857cc2fc
JB
7447 if (!path) {
7448 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7449 root->nodesize);
d8926bb3 7450 return -ENOMEM;
857cc2fc 7451 }
56bec294 7452
5d4f98a2
YZ
7453 path->leave_spinning = 1;
7454 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7455 ins, size);
79787eaa 7456 if (ret) {
dd825259 7457 btrfs_free_path(path);
857cc2fc 7458 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7459 root->nodesize);
79787eaa
JM
7460 return ret;
7461 }
5d4f98a2
YZ
7462
7463 leaf = path->nodes[0];
7464 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7465 struct btrfs_extent_item);
7466 btrfs_set_extent_refs(leaf, extent_item, 1);
7467 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7468 btrfs_set_extent_flags(leaf, extent_item,
7469 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7470
3173a18f
JB
7471 if (skinny_metadata) {
7472 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7473 num_bytes = root->nodesize;
3173a18f
JB
7474 } else {
7475 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7476 btrfs_set_tree_block_key(leaf, block_info, key);
7477 btrfs_set_tree_block_level(leaf, block_info, level);
7478 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7479 }
5d4f98a2 7480
5d4f98a2
YZ
7481 if (parent > 0) {
7482 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7483 btrfs_set_extent_inline_ref_type(leaf, iref,
7484 BTRFS_SHARED_BLOCK_REF_KEY);
7485 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7486 } else {
7487 btrfs_set_extent_inline_ref_type(leaf, iref,
7488 BTRFS_TREE_BLOCK_REF_KEY);
7489 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7490 }
7491
7492 btrfs_mark_buffer_dirty(leaf);
7493 btrfs_free_path(path);
7494
ce93ec54
JB
7495 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7496 1);
79787eaa 7497 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7498 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7499 ins->objectid, ins->offset);
5d4f98a2
YZ
7500 BUG();
7501 }
0be5dc67 7502
707e8a07 7503 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7504 return ret;
7505}
7506
7507int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7508 struct btrfs_root *root,
7509 u64 root_objectid, u64 owner,
7510 u64 offset, struct btrfs_key *ins)
7511{
7512 int ret;
7513
7514 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7515
66d7e7f0
AJ
7516 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7517 ins->offset, 0,
7518 root_objectid, owner, offset,
7519 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7520 return ret;
7521}
e02119d5
CM
7522
7523/*
7524 * this is used by the tree logging recovery code. It records that
7525 * an extent has been allocated and makes sure to clear the free
7526 * space cache bits as well
7527 */
5d4f98a2
YZ
7528int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7529 struct btrfs_root *root,
7530 u64 root_objectid, u64 owner, u64 offset,
7531 struct btrfs_key *ins)
e02119d5
CM
7532{
7533 int ret;
7534 struct btrfs_block_group_cache *block_group;
11833d66 7535
8c2a1a30
JB
7536 /*
7537 * Mixed block groups will exclude before processing the log so we only
7538 * need to do the exlude dance if this fs isn't mixed.
7539 */
7540 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7541 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7542 if (ret)
8c2a1a30 7543 return ret;
11833d66
YZ
7544 }
7545
8c2a1a30
JB
7546 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7547 if (!block_group)
7548 return -EINVAL;
7549
fb25e914 7550 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7551 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7552 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7553 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7554 0, owner, offset, ins, 1);
b50c6e25 7555 btrfs_put_block_group(block_group);
e02119d5
CM
7556 return ret;
7557}
7558
48a3b636
ES
7559static struct extent_buffer *
7560btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7561 u64 bytenr, int level)
65b51a00
CM
7562{
7563 struct extent_buffer *buf;
7564
a83fffb7 7565 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7566 if (!buf)
7567 return ERR_PTR(-ENOMEM);
7568 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7569 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7570 btrfs_tree_lock(buf);
01d58472 7571 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7572 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7573
7574 btrfs_set_lock_blocking(buf);
65b51a00 7575 btrfs_set_buffer_uptodate(buf);
b4ce94de 7576
d0c803c4 7577 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7578 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7579 /*
7580 * we allow two log transactions at a time, use different
7581 * EXENT bit to differentiate dirty pages.
7582 */
656f30db 7583 if (buf->log_index == 0)
8cef4e16
YZ
7584 set_extent_dirty(&root->dirty_log_pages, buf->start,
7585 buf->start + buf->len - 1, GFP_NOFS);
7586 else
7587 set_extent_new(&root->dirty_log_pages, buf->start,
7588 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7589 } else {
656f30db 7590 buf->log_index = -1;
d0c803c4 7591 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7592 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7593 }
65b51a00 7594 trans->blocks_used++;
b4ce94de 7595 /* this returns a buffer locked for blocking */
65b51a00
CM
7596 return buf;
7597}
7598
f0486c68
YZ
7599static struct btrfs_block_rsv *
7600use_block_rsv(struct btrfs_trans_handle *trans,
7601 struct btrfs_root *root, u32 blocksize)
7602{
7603 struct btrfs_block_rsv *block_rsv;
68a82277 7604 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7605 int ret;
d88033db 7606 bool global_updated = false;
f0486c68
YZ
7607
7608 block_rsv = get_block_rsv(trans, root);
7609
b586b323
MX
7610 if (unlikely(block_rsv->size == 0))
7611 goto try_reserve;
d88033db 7612again:
f0486c68
YZ
7613 ret = block_rsv_use_bytes(block_rsv, blocksize);
7614 if (!ret)
7615 return block_rsv;
7616
b586b323
MX
7617 if (block_rsv->failfast)
7618 return ERR_PTR(ret);
7619
d88033db
MX
7620 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7621 global_updated = true;
7622 update_global_block_rsv(root->fs_info);
7623 goto again;
7624 }
7625
b586b323
MX
7626 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7627 static DEFINE_RATELIMIT_STATE(_rs,
7628 DEFAULT_RATELIMIT_INTERVAL * 10,
7629 /*DEFAULT_RATELIMIT_BURST*/ 1);
7630 if (__ratelimit(&_rs))
7631 WARN(1, KERN_DEBUG
efe120a0 7632 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7633 }
7634try_reserve:
7635 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7636 BTRFS_RESERVE_NO_FLUSH);
7637 if (!ret)
7638 return block_rsv;
7639 /*
7640 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7641 * the global reserve if its space type is the same as the global
7642 * reservation.
b586b323 7643 */
5881cfc9
MX
7644 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7645 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7646 ret = block_rsv_use_bytes(global_rsv, blocksize);
7647 if (!ret)
7648 return global_rsv;
7649 }
7650 return ERR_PTR(ret);
f0486c68
YZ
7651}
7652
8c2a3ca2
JB
7653static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7654 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7655{
7656 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7657 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7658}
7659
fec577fb 7660/*
f0486c68 7661 * finds a free extent and does all the dirty work required for allocation
67b7859e 7662 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7663 */
4d75f8a9
DS
7664struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7665 struct btrfs_root *root,
5d4f98a2
YZ
7666 u64 parent, u64 root_objectid,
7667 struct btrfs_disk_key *key, int level,
5581a51a 7668 u64 hint, u64 empty_size)
fec577fb 7669{
e2fa7227 7670 struct btrfs_key ins;
f0486c68 7671 struct btrfs_block_rsv *block_rsv;
5f39d397 7672 struct extent_buffer *buf;
67b7859e 7673 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7674 u64 flags = 0;
7675 int ret;
4d75f8a9 7676 u32 blocksize = root->nodesize;
3173a18f
JB
7677 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7678 SKINNY_METADATA);
fec577fb 7679
fccb84c9 7680 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7681 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7682 level);
faa2dbf0
JB
7683 if (!IS_ERR(buf))
7684 root->alloc_bytenr += blocksize;
7685 return buf;
7686 }
fccb84c9 7687
f0486c68
YZ
7688 block_rsv = use_block_rsv(trans, root, blocksize);
7689 if (IS_ERR(block_rsv))
7690 return ERR_CAST(block_rsv);
7691
00361589 7692 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7693 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7694 if (ret)
7695 goto out_unuse;
55c69072 7696
fe864576 7697 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7698 if (IS_ERR(buf)) {
7699 ret = PTR_ERR(buf);
7700 goto out_free_reserved;
7701 }
f0486c68
YZ
7702
7703 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7704 if (parent == 0)
7705 parent = ins.objectid;
7706 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7707 } else
7708 BUG_ON(parent > 0);
7709
7710 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7711 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7712 if (!extent_op) {
7713 ret = -ENOMEM;
7714 goto out_free_buf;
7715 }
f0486c68
YZ
7716 if (key)
7717 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7718 else
7719 memset(&extent_op->key, 0, sizeof(extent_op->key));
7720 extent_op->flags_to_set = flags;
3173a18f
JB
7721 if (skinny_metadata)
7722 extent_op->update_key = 0;
7723 else
7724 extent_op->update_key = 1;
f0486c68
YZ
7725 extent_op->update_flags = 1;
7726 extent_op->is_data = 0;
b1c79e09 7727 extent_op->level = level;
f0486c68 7728
66d7e7f0 7729 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7730 ins.objectid, ins.offset,
7731 parent, root_objectid, level,
7732 BTRFS_ADD_DELAYED_EXTENT,
7733 extent_op, 0);
7734 if (ret)
7735 goto out_free_delayed;
f0486c68 7736 }
fec577fb 7737 return buf;
67b7859e
OS
7738
7739out_free_delayed:
7740 btrfs_free_delayed_extent_op(extent_op);
7741out_free_buf:
7742 free_extent_buffer(buf);
7743out_free_reserved:
7744 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7745out_unuse:
7746 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7747 return ERR_PTR(ret);
fec577fb 7748}
a28ec197 7749
2c47e605
YZ
7750struct walk_control {
7751 u64 refs[BTRFS_MAX_LEVEL];
7752 u64 flags[BTRFS_MAX_LEVEL];
7753 struct btrfs_key update_progress;
7754 int stage;
7755 int level;
7756 int shared_level;
7757 int update_ref;
7758 int keep_locks;
1c4850e2
YZ
7759 int reada_slot;
7760 int reada_count;
66d7e7f0 7761 int for_reloc;
2c47e605
YZ
7762};
7763
7764#define DROP_REFERENCE 1
7765#define UPDATE_BACKREF 2
7766
1c4850e2
YZ
7767static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7768 struct btrfs_root *root,
7769 struct walk_control *wc,
7770 struct btrfs_path *path)
6407bf6d 7771{
1c4850e2
YZ
7772 u64 bytenr;
7773 u64 generation;
7774 u64 refs;
94fcca9f 7775 u64 flags;
5d4f98a2 7776 u32 nritems;
1c4850e2
YZ
7777 u32 blocksize;
7778 struct btrfs_key key;
7779 struct extent_buffer *eb;
6407bf6d 7780 int ret;
1c4850e2
YZ
7781 int slot;
7782 int nread = 0;
6407bf6d 7783
1c4850e2
YZ
7784 if (path->slots[wc->level] < wc->reada_slot) {
7785 wc->reada_count = wc->reada_count * 2 / 3;
7786 wc->reada_count = max(wc->reada_count, 2);
7787 } else {
7788 wc->reada_count = wc->reada_count * 3 / 2;
7789 wc->reada_count = min_t(int, wc->reada_count,
7790 BTRFS_NODEPTRS_PER_BLOCK(root));
7791 }
7bb86316 7792
1c4850e2
YZ
7793 eb = path->nodes[wc->level];
7794 nritems = btrfs_header_nritems(eb);
707e8a07 7795 blocksize = root->nodesize;
bd56b302 7796
1c4850e2
YZ
7797 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7798 if (nread >= wc->reada_count)
7799 break;
bd56b302 7800
2dd3e67b 7801 cond_resched();
1c4850e2
YZ
7802 bytenr = btrfs_node_blockptr(eb, slot);
7803 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7804
1c4850e2
YZ
7805 if (slot == path->slots[wc->level])
7806 goto reada;
5d4f98a2 7807
1c4850e2
YZ
7808 if (wc->stage == UPDATE_BACKREF &&
7809 generation <= root->root_key.offset)
bd56b302
CM
7810 continue;
7811
94fcca9f 7812 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7813 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7814 wc->level - 1, 1, &refs,
7815 &flags);
79787eaa
JM
7816 /* We don't care about errors in readahead. */
7817 if (ret < 0)
7818 continue;
94fcca9f
YZ
7819 BUG_ON(refs == 0);
7820
1c4850e2 7821 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7822 if (refs == 1)
7823 goto reada;
bd56b302 7824
94fcca9f
YZ
7825 if (wc->level == 1 &&
7826 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7827 continue;
1c4850e2
YZ
7828 if (!wc->update_ref ||
7829 generation <= root->root_key.offset)
7830 continue;
7831 btrfs_node_key_to_cpu(eb, &key, slot);
7832 ret = btrfs_comp_cpu_keys(&key,
7833 &wc->update_progress);
7834 if (ret < 0)
7835 continue;
94fcca9f
YZ
7836 } else {
7837 if (wc->level == 1 &&
7838 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7839 continue;
6407bf6d 7840 }
1c4850e2 7841reada:
d3e46fea 7842 readahead_tree_block(root, bytenr);
1c4850e2 7843 nread++;
20524f02 7844 }
1c4850e2 7845 wc->reada_slot = slot;
20524f02 7846}
2c47e605 7847
0ed4792a
QW
7848/*
7849 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7850 * for later qgroup accounting.
7851 *
7852 * Current, this function does nothing.
7853 */
1152651a
MF
7854static int account_leaf_items(struct btrfs_trans_handle *trans,
7855 struct btrfs_root *root,
7856 struct extent_buffer *eb)
7857{
7858 int nr = btrfs_header_nritems(eb);
0ed4792a 7859 int i, extent_type;
1152651a
MF
7860 struct btrfs_key key;
7861 struct btrfs_file_extent_item *fi;
7862 u64 bytenr, num_bytes;
7863
7864 for (i = 0; i < nr; i++) {
7865 btrfs_item_key_to_cpu(eb, &key, i);
7866
7867 if (key.type != BTRFS_EXTENT_DATA_KEY)
7868 continue;
7869
7870 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7871 /* filter out non qgroup-accountable extents */
7872 extent_type = btrfs_file_extent_type(eb, fi);
7873
7874 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7875 continue;
7876
7877 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7878 if (!bytenr)
7879 continue;
7880
7881 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7882 }
7883 return 0;
7884}
7885
7886/*
7887 * Walk up the tree from the bottom, freeing leaves and any interior
7888 * nodes which have had all slots visited. If a node (leaf or
7889 * interior) is freed, the node above it will have it's slot
7890 * incremented. The root node will never be freed.
7891 *
7892 * At the end of this function, we should have a path which has all
7893 * slots incremented to the next position for a search. If we need to
7894 * read a new node it will be NULL and the node above it will have the
7895 * correct slot selected for a later read.
7896 *
7897 * If we increment the root nodes slot counter past the number of
7898 * elements, 1 is returned to signal completion of the search.
7899 */
7900static int adjust_slots_upwards(struct btrfs_root *root,
7901 struct btrfs_path *path, int root_level)
7902{
7903 int level = 0;
7904 int nr, slot;
7905 struct extent_buffer *eb;
7906
7907 if (root_level == 0)
7908 return 1;
7909
7910 while (level <= root_level) {
7911 eb = path->nodes[level];
7912 nr = btrfs_header_nritems(eb);
7913 path->slots[level]++;
7914 slot = path->slots[level];
7915 if (slot >= nr || level == 0) {
7916 /*
7917 * Don't free the root - we will detect this
7918 * condition after our loop and return a
7919 * positive value for caller to stop walking the tree.
7920 */
7921 if (level != root_level) {
7922 btrfs_tree_unlock_rw(eb, path->locks[level]);
7923 path->locks[level] = 0;
7924
7925 free_extent_buffer(eb);
7926 path->nodes[level] = NULL;
7927 path->slots[level] = 0;
7928 }
7929 } else {
7930 /*
7931 * We have a valid slot to walk back down
7932 * from. Stop here so caller can process these
7933 * new nodes.
7934 */
7935 break;
7936 }
7937
7938 level++;
7939 }
7940
7941 eb = path->nodes[root_level];
7942 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7943 return 1;
7944
7945 return 0;
7946}
7947
7948/*
7949 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7950 * TODO: Modify this function to mark all (including complete shared node)
7951 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7952 */
7953static int account_shared_subtree(struct btrfs_trans_handle *trans,
7954 struct btrfs_root *root,
7955 struct extent_buffer *root_eb,
7956 u64 root_gen,
7957 int root_level)
7958{
7959 int ret = 0;
7960 int level;
7961 struct extent_buffer *eb = root_eb;
7962 struct btrfs_path *path = NULL;
7963
7964 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7965 BUG_ON(root_eb == NULL);
7966
7967 if (!root->fs_info->quota_enabled)
7968 return 0;
7969
7970 if (!extent_buffer_uptodate(root_eb)) {
7971 ret = btrfs_read_buffer(root_eb, root_gen);
7972 if (ret)
7973 goto out;
7974 }
7975
7976 if (root_level == 0) {
7977 ret = account_leaf_items(trans, root, root_eb);
7978 goto out;
7979 }
7980
7981 path = btrfs_alloc_path();
7982 if (!path)
7983 return -ENOMEM;
7984
7985 /*
7986 * Walk down the tree. Missing extent blocks are filled in as
7987 * we go. Metadata is accounted every time we read a new
7988 * extent block.
7989 *
7990 * When we reach a leaf, we account for file extent items in it,
7991 * walk back up the tree (adjusting slot pointers as we go)
7992 * and restart the search process.
7993 */
7994 extent_buffer_get(root_eb); /* For path */
7995 path->nodes[root_level] = root_eb;
7996 path->slots[root_level] = 0;
7997 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7998walk_down:
7999 level = root_level;
8000 while (level >= 0) {
8001 if (path->nodes[level] == NULL) {
1152651a
MF
8002 int parent_slot;
8003 u64 child_gen;
8004 u64 child_bytenr;
8005
8006 /* We need to get child blockptr/gen from
8007 * parent before we can read it. */
8008 eb = path->nodes[level + 1];
8009 parent_slot = path->slots[level + 1];
8010 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8011 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8012
ce86cd59 8013 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8014 if (IS_ERR(eb)) {
8015 ret = PTR_ERR(eb);
8016 goto out;
8017 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8018 free_extent_buffer(eb);
64c043de 8019 ret = -EIO;
1152651a
MF
8020 goto out;
8021 }
8022
8023 path->nodes[level] = eb;
8024 path->slots[level] = 0;
8025
8026 btrfs_tree_read_lock(eb);
8027 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8028 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8029 }
8030
8031 if (level == 0) {
8032 ret = account_leaf_items(trans, root, path->nodes[level]);
8033 if (ret)
8034 goto out;
8035
8036 /* Nonzero return here means we completed our search */
8037 ret = adjust_slots_upwards(root, path, root_level);
8038 if (ret)
8039 break;
8040
8041 /* Restart search with new slots */
8042 goto walk_down;
8043 }
8044
8045 level--;
8046 }
8047
8048 ret = 0;
8049out:
8050 btrfs_free_path(path);
8051
8052 return ret;
8053}
8054
f82d02d9 8055/*
2c016dc2 8056 * helper to process tree block while walking down the tree.
2c47e605 8057 *
2c47e605
YZ
8058 * when wc->stage == UPDATE_BACKREF, this function updates
8059 * back refs for pointers in the block.
8060 *
8061 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8062 */
2c47e605 8063static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8064 struct btrfs_root *root,
2c47e605 8065 struct btrfs_path *path,
94fcca9f 8066 struct walk_control *wc, int lookup_info)
f82d02d9 8067{
2c47e605
YZ
8068 int level = wc->level;
8069 struct extent_buffer *eb = path->nodes[level];
2c47e605 8070 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8071 int ret;
8072
2c47e605
YZ
8073 if (wc->stage == UPDATE_BACKREF &&
8074 btrfs_header_owner(eb) != root->root_key.objectid)
8075 return 1;
f82d02d9 8076
2c47e605
YZ
8077 /*
8078 * when reference count of tree block is 1, it won't increase
8079 * again. once full backref flag is set, we never clear it.
8080 */
94fcca9f
YZ
8081 if (lookup_info &&
8082 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8083 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8084 BUG_ON(!path->locks[level]);
8085 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8086 eb->start, level, 1,
2c47e605
YZ
8087 &wc->refs[level],
8088 &wc->flags[level]);
79787eaa
JM
8089 BUG_ON(ret == -ENOMEM);
8090 if (ret)
8091 return ret;
2c47e605
YZ
8092 BUG_ON(wc->refs[level] == 0);
8093 }
5d4f98a2 8094
2c47e605
YZ
8095 if (wc->stage == DROP_REFERENCE) {
8096 if (wc->refs[level] > 1)
8097 return 1;
f82d02d9 8098
2c47e605 8099 if (path->locks[level] && !wc->keep_locks) {
bd681513 8100 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8101 path->locks[level] = 0;
8102 }
8103 return 0;
8104 }
f82d02d9 8105
2c47e605
YZ
8106 /* wc->stage == UPDATE_BACKREF */
8107 if (!(wc->flags[level] & flag)) {
8108 BUG_ON(!path->locks[level]);
e339a6b0 8109 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8110 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8111 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8112 BUG_ON(ret); /* -ENOMEM */
2c47e605 8113 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8114 eb->len, flag,
8115 btrfs_header_level(eb), 0);
79787eaa 8116 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8117 wc->flags[level] |= flag;
8118 }
8119
8120 /*
8121 * the block is shared by multiple trees, so it's not good to
8122 * keep the tree lock
8123 */
8124 if (path->locks[level] && level > 0) {
bd681513 8125 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8126 path->locks[level] = 0;
8127 }
8128 return 0;
8129}
8130
1c4850e2 8131/*
2c016dc2 8132 * helper to process tree block pointer.
1c4850e2
YZ
8133 *
8134 * when wc->stage == DROP_REFERENCE, this function checks
8135 * reference count of the block pointed to. if the block
8136 * is shared and we need update back refs for the subtree
8137 * rooted at the block, this function changes wc->stage to
8138 * UPDATE_BACKREF. if the block is shared and there is no
8139 * need to update back, this function drops the reference
8140 * to the block.
8141 *
8142 * NOTE: return value 1 means we should stop walking down.
8143 */
8144static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8145 struct btrfs_root *root,
8146 struct btrfs_path *path,
94fcca9f 8147 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8148{
8149 u64 bytenr;
8150 u64 generation;
8151 u64 parent;
8152 u32 blocksize;
8153 struct btrfs_key key;
8154 struct extent_buffer *next;
8155 int level = wc->level;
8156 int reada = 0;
8157 int ret = 0;
1152651a 8158 bool need_account = false;
1c4850e2
YZ
8159
8160 generation = btrfs_node_ptr_generation(path->nodes[level],
8161 path->slots[level]);
8162 /*
8163 * if the lower level block was created before the snapshot
8164 * was created, we know there is no need to update back refs
8165 * for the subtree
8166 */
8167 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8168 generation <= root->root_key.offset) {
8169 *lookup_info = 1;
1c4850e2 8170 return 1;
94fcca9f 8171 }
1c4850e2
YZ
8172
8173 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8174 blocksize = root->nodesize;
1c4850e2 8175
01d58472 8176 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8177 if (!next) {
a83fffb7 8178 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8179 if (!next)
8180 return -ENOMEM;
b2aaaa3b
JB
8181 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8182 level - 1);
1c4850e2
YZ
8183 reada = 1;
8184 }
8185 btrfs_tree_lock(next);
8186 btrfs_set_lock_blocking(next);
8187
3173a18f 8188 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8189 &wc->refs[level - 1],
8190 &wc->flags[level - 1]);
79787eaa
JM
8191 if (ret < 0) {
8192 btrfs_tree_unlock(next);
8193 return ret;
8194 }
8195
c2cf52eb
SK
8196 if (unlikely(wc->refs[level - 1] == 0)) {
8197 btrfs_err(root->fs_info, "Missing references.");
8198 BUG();
8199 }
94fcca9f 8200 *lookup_info = 0;
1c4850e2 8201
94fcca9f 8202 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8203 if (wc->refs[level - 1] > 1) {
1152651a 8204 need_account = true;
94fcca9f
YZ
8205 if (level == 1 &&
8206 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8207 goto skip;
8208
1c4850e2
YZ
8209 if (!wc->update_ref ||
8210 generation <= root->root_key.offset)
8211 goto skip;
8212
8213 btrfs_node_key_to_cpu(path->nodes[level], &key,
8214 path->slots[level]);
8215 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8216 if (ret < 0)
8217 goto skip;
8218
8219 wc->stage = UPDATE_BACKREF;
8220 wc->shared_level = level - 1;
8221 }
94fcca9f
YZ
8222 } else {
8223 if (level == 1 &&
8224 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8225 goto skip;
1c4850e2
YZ
8226 }
8227
b9fab919 8228 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8229 btrfs_tree_unlock(next);
8230 free_extent_buffer(next);
8231 next = NULL;
94fcca9f 8232 *lookup_info = 1;
1c4850e2
YZ
8233 }
8234
8235 if (!next) {
8236 if (reada && level == 1)
8237 reada_walk_down(trans, root, wc, path);
ce86cd59 8238 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8239 if (IS_ERR(next)) {
8240 return PTR_ERR(next);
8241 } else if (!extent_buffer_uptodate(next)) {
416bc658 8242 free_extent_buffer(next);
97d9a8a4 8243 return -EIO;
416bc658 8244 }
1c4850e2
YZ
8245 btrfs_tree_lock(next);
8246 btrfs_set_lock_blocking(next);
8247 }
8248
8249 level--;
8250 BUG_ON(level != btrfs_header_level(next));
8251 path->nodes[level] = next;
8252 path->slots[level] = 0;
bd681513 8253 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8254 wc->level = level;
8255 if (wc->level == 1)
8256 wc->reada_slot = 0;
8257 return 0;
8258skip:
8259 wc->refs[level - 1] = 0;
8260 wc->flags[level - 1] = 0;
94fcca9f
YZ
8261 if (wc->stage == DROP_REFERENCE) {
8262 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8263 parent = path->nodes[level]->start;
8264 } else {
8265 BUG_ON(root->root_key.objectid !=
8266 btrfs_header_owner(path->nodes[level]));
8267 parent = 0;
8268 }
1c4850e2 8269
1152651a
MF
8270 if (need_account) {
8271 ret = account_shared_subtree(trans, root, next,
8272 generation, level - 1);
8273 if (ret) {
8274 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8275 "%d accounting shared subtree. Quota "
8276 "is out of sync, rescan required.\n",
8277 root->fs_info->sb->s_id, ret);
8278 }
8279 }
94fcca9f 8280 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8281 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8282 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8283 }
1c4850e2
YZ
8284 btrfs_tree_unlock(next);
8285 free_extent_buffer(next);
94fcca9f 8286 *lookup_info = 1;
1c4850e2
YZ
8287 return 1;
8288}
8289
2c47e605 8290/*
2c016dc2 8291 * helper to process tree block while walking up the tree.
2c47e605
YZ
8292 *
8293 * when wc->stage == DROP_REFERENCE, this function drops
8294 * reference count on the block.
8295 *
8296 * when wc->stage == UPDATE_BACKREF, this function changes
8297 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8298 * to UPDATE_BACKREF previously while processing the block.
8299 *
8300 * NOTE: return value 1 means we should stop walking up.
8301 */
8302static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8303 struct btrfs_root *root,
8304 struct btrfs_path *path,
8305 struct walk_control *wc)
8306{
f0486c68 8307 int ret;
2c47e605
YZ
8308 int level = wc->level;
8309 struct extent_buffer *eb = path->nodes[level];
8310 u64 parent = 0;
8311
8312 if (wc->stage == UPDATE_BACKREF) {
8313 BUG_ON(wc->shared_level < level);
8314 if (level < wc->shared_level)
8315 goto out;
8316
2c47e605
YZ
8317 ret = find_next_key(path, level + 1, &wc->update_progress);
8318 if (ret > 0)
8319 wc->update_ref = 0;
8320
8321 wc->stage = DROP_REFERENCE;
8322 wc->shared_level = -1;
8323 path->slots[level] = 0;
8324
8325 /*
8326 * check reference count again if the block isn't locked.
8327 * we should start walking down the tree again if reference
8328 * count is one.
8329 */
8330 if (!path->locks[level]) {
8331 BUG_ON(level == 0);
8332 btrfs_tree_lock(eb);
8333 btrfs_set_lock_blocking(eb);
bd681513 8334 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8335
8336 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8337 eb->start, level, 1,
2c47e605
YZ
8338 &wc->refs[level],
8339 &wc->flags[level]);
79787eaa
JM
8340 if (ret < 0) {
8341 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8342 path->locks[level] = 0;
79787eaa
JM
8343 return ret;
8344 }
2c47e605
YZ
8345 BUG_ON(wc->refs[level] == 0);
8346 if (wc->refs[level] == 1) {
bd681513 8347 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8348 path->locks[level] = 0;
2c47e605
YZ
8349 return 1;
8350 }
f82d02d9 8351 }
2c47e605 8352 }
f82d02d9 8353
2c47e605
YZ
8354 /* wc->stage == DROP_REFERENCE */
8355 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8356
2c47e605
YZ
8357 if (wc->refs[level] == 1) {
8358 if (level == 0) {
8359 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8360 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8361 else
e339a6b0 8362 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8363 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8364 ret = account_leaf_items(trans, root, eb);
8365 if (ret) {
8366 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8367 "%d accounting leaf items. Quota "
8368 "is out of sync, rescan required.\n",
8369 root->fs_info->sb->s_id, ret);
8370 }
2c47e605
YZ
8371 }
8372 /* make block locked assertion in clean_tree_block happy */
8373 if (!path->locks[level] &&
8374 btrfs_header_generation(eb) == trans->transid) {
8375 btrfs_tree_lock(eb);
8376 btrfs_set_lock_blocking(eb);
bd681513 8377 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8378 }
01d58472 8379 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8380 }
8381
8382 if (eb == root->node) {
8383 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8384 parent = eb->start;
8385 else
8386 BUG_ON(root->root_key.objectid !=
8387 btrfs_header_owner(eb));
8388 } else {
8389 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8390 parent = path->nodes[level + 1]->start;
8391 else
8392 BUG_ON(root->root_key.objectid !=
8393 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8394 }
f82d02d9 8395
5581a51a 8396 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8397out:
8398 wc->refs[level] = 0;
8399 wc->flags[level] = 0;
f0486c68 8400 return 0;
2c47e605
YZ
8401}
8402
8403static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8404 struct btrfs_root *root,
8405 struct btrfs_path *path,
8406 struct walk_control *wc)
8407{
2c47e605 8408 int level = wc->level;
94fcca9f 8409 int lookup_info = 1;
2c47e605
YZ
8410 int ret;
8411
8412 while (level >= 0) {
94fcca9f 8413 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8414 if (ret > 0)
8415 break;
8416
8417 if (level == 0)
8418 break;
8419
7a7965f8
YZ
8420 if (path->slots[level] >=
8421 btrfs_header_nritems(path->nodes[level]))
8422 break;
8423
94fcca9f 8424 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8425 if (ret > 0) {
8426 path->slots[level]++;
8427 continue;
90d2c51d
MX
8428 } else if (ret < 0)
8429 return ret;
1c4850e2 8430 level = wc->level;
f82d02d9 8431 }
f82d02d9
YZ
8432 return 0;
8433}
8434
d397712b 8435static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8436 struct btrfs_root *root,
f82d02d9 8437 struct btrfs_path *path,
2c47e605 8438 struct walk_control *wc, int max_level)
20524f02 8439{
2c47e605 8440 int level = wc->level;
20524f02 8441 int ret;
9f3a7427 8442
2c47e605
YZ
8443 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8444 while (level < max_level && path->nodes[level]) {
8445 wc->level = level;
8446 if (path->slots[level] + 1 <
8447 btrfs_header_nritems(path->nodes[level])) {
8448 path->slots[level]++;
20524f02
CM
8449 return 0;
8450 } else {
2c47e605
YZ
8451 ret = walk_up_proc(trans, root, path, wc);
8452 if (ret > 0)
8453 return 0;
bd56b302 8454
2c47e605 8455 if (path->locks[level]) {
bd681513
CM
8456 btrfs_tree_unlock_rw(path->nodes[level],
8457 path->locks[level]);
2c47e605 8458 path->locks[level] = 0;
f82d02d9 8459 }
2c47e605
YZ
8460 free_extent_buffer(path->nodes[level]);
8461 path->nodes[level] = NULL;
8462 level++;
20524f02
CM
8463 }
8464 }
8465 return 1;
8466}
8467
9aca1d51 8468/*
2c47e605
YZ
8469 * drop a subvolume tree.
8470 *
8471 * this function traverses the tree freeing any blocks that only
8472 * referenced by the tree.
8473 *
8474 * when a shared tree block is found. this function decreases its
8475 * reference count by one. if update_ref is true, this function
8476 * also make sure backrefs for the shared block and all lower level
8477 * blocks are properly updated.
9d1a2a3a
DS
8478 *
8479 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8480 */
2c536799 8481int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8482 struct btrfs_block_rsv *block_rsv, int update_ref,
8483 int for_reloc)
20524f02 8484{
5caf2a00 8485 struct btrfs_path *path;
2c47e605
YZ
8486 struct btrfs_trans_handle *trans;
8487 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8488 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8489 struct walk_control *wc;
8490 struct btrfs_key key;
8491 int err = 0;
8492 int ret;
8493 int level;
d29a9f62 8494 bool root_dropped = false;
20524f02 8495
1152651a
MF
8496 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8497
5caf2a00 8498 path = btrfs_alloc_path();
cb1b69f4
TI
8499 if (!path) {
8500 err = -ENOMEM;
8501 goto out;
8502 }
20524f02 8503
2c47e605 8504 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8505 if (!wc) {
8506 btrfs_free_path(path);
cb1b69f4
TI
8507 err = -ENOMEM;
8508 goto out;
38a1a919 8509 }
2c47e605 8510
a22285a6 8511 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8512 if (IS_ERR(trans)) {
8513 err = PTR_ERR(trans);
8514 goto out_free;
8515 }
98d5dc13 8516
3fd0a558
YZ
8517 if (block_rsv)
8518 trans->block_rsv = block_rsv;
2c47e605 8519
9f3a7427 8520 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8521 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8522 path->nodes[level] = btrfs_lock_root_node(root);
8523 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8524 path->slots[level] = 0;
bd681513 8525 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8526 memset(&wc->update_progress, 0,
8527 sizeof(wc->update_progress));
9f3a7427 8528 } else {
9f3a7427 8529 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8530 memcpy(&wc->update_progress, &key,
8531 sizeof(wc->update_progress));
8532
6702ed49 8533 level = root_item->drop_level;
2c47e605 8534 BUG_ON(level == 0);
6702ed49 8535 path->lowest_level = level;
2c47e605
YZ
8536 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8537 path->lowest_level = 0;
8538 if (ret < 0) {
8539 err = ret;
79787eaa 8540 goto out_end_trans;
9f3a7427 8541 }
1c4850e2 8542 WARN_ON(ret > 0);
2c47e605 8543
7d9eb12c
CM
8544 /*
8545 * unlock our path, this is safe because only this
8546 * function is allowed to delete this snapshot
8547 */
5d4f98a2 8548 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8549
8550 level = btrfs_header_level(root->node);
8551 while (1) {
8552 btrfs_tree_lock(path->nodes[level]);
8553 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8554 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8555
8556 ret = btrfs_lookup_extent_info(trans, root,
8557 path->nodes[level]->start,
3173a18f 8558 level, 1, &wc->refs[level],
2c47e605 8559 &wc->flags[level]);
79787eaa
JM
8560 if (ret < 0) {
8561 err = ret;
8562 goto out_end_trans;
8563 }
2c47e605
YZ
8564 BUG_ON(wc->refs[level] == 0);
8565
8566 if (level == root_item->drop_level)
8567 break;
8568
8569 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8570 path->locks[level] = 0;
2c47e605
YZ
8571 WARN_ON(wc->refs[level] != 1);
8572 level--;
8573 }
9f3a7427 8574 }
2c47e605
YZ
8575
8576 wc->level = level;
8577 wc->shared_level = -1;
8578 wc->stage = DROP_REFERENCE;
8579 wc->update_ref = update_ref;
8580 wc->keep_locks = 0;
66d7e7f0 8581 wc->for_reloc = for_reloc;
1c4850e2 8582 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8583
d397712b 8584 while (1) {
9d1a2a3a 8585
2c47e605
YZ
8586 ret = walk_down_tree(trans, root, path, wc);
8587 if (ret < 0) {
8588 err = ret;
20524f02 8589 break;
2c47e605 8590 }
9aca1d51 8591
2c47e605
YZ
8592 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8593 if (ret < 0) {
8594 err = ret;
20524f02 8595 break;
2c47e605
YZ
8596 }
8597
8598 if (ret > 0) {
8599 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8600 break;
8601 }
2c47e605
YZ
8602
8603 if (wc->stage == DROP_REFERENCE) {
8604 level = wc->level;
8605 btrfs_node_key(path->nodes[level],
8606 &root_item->drop_progress,
8607 path->slots[level]);
8608 root_item->drop_level = level;
8609 }
8610
8611 BUG_ON(wc->level == 0);
3c8f2422
JB
8612 if (btrfs_should_end_transaction(trans, tree_root) ||
8613 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8614 ret = btrfs_update_root(trans, tree_root,
8615 &root->root_key,
8616 root_item);
79787eaa
JM
8617 if (ret) {
8618 btrfs_abort_transaction(trans, tree_root, ret);
8619 err = ret;
8620 goto out_end_trans;
8621 }
2c47e605 8622
3fd0a558 8623 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8624 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8625 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8626 err = -EAGAIN;
8627 goto out_free;
8628 }
8629
a22285a6 8630 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8631 if (IS_ERR(trans)) {
8632 err = PTR_ERR(trans);
8633 goto out_free;
8634 }
3fd0a558
YZ
8635 if (block_rsv)
8636 trans->block_rsv = block_rsv;
c3e69d58 8637 }
20524f02 8638 }
b3b4aa74 8639 btrfs_release_path(path);
79787eaa
JM
8640 if (err)
8641 goto out_end_trans;
2c47e605
YZ
8642
8643 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8644 if (ret) {
8645 btrfs_abort_transaction(trans, tree_root, ret);
8646 goto out_end_trans;
8647 }
2c47e605 8648
76dda93c 8649 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8650 ret = btrfs_find_root(tree_root, &root->root_key, path,
8651 NULL, NULL);
79787eaa
JM
8652 if (ret < 0) {
8653 btrfs_abort_transaction(trans, tree_root, ret);
8654 err = ret;
8655 goto out_end_trans;
8656 } else if (ret > 0) {
84cd948c
JB
8657 /* if we fail to delete the orphan item this time
8658 * around, it'll get picked up the next time.
8659 *
8660 * The most common failure here is just -ENOENT.
8661 */
8662 btrfs_del_orphan_item(trans, tree_root,
8663 root->root_key.objectid);
76dda93c
YZ
8664 }
8665 }
8666
27cdeb70 8667 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8668 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8669 } else {
8670 free_extent_buffer(root->node);
8671 free_extent_buffer(root->commit_root);
b0feb9d9 8672 btrfs_put_fs_root(root);
76dda93c 8673 }
d29a9f62 8674 root_dropped = true;
79787eaa 8675out_end_trans:
3fd0a558 8676 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8677out_free:
2c47e605 8678 kfree(wc);
5caf2a00 8679 btrfs_free_path(path);
cb1b69f4 8680out:
d29a9f62
JB
8681 /*
8682 * So if we need to stop dropping the snapshot for whatever reason we
8683 * need to make sure to add it back to the dead root list so that we
8684 * keep trying to do the work later. This also cleans up roots if we
8685 * don't have it in the radix (like when we recover after a power fail
8686 * or unmount) so we don't leak memory.
8687 */
b37b39cd 8688 if (!for_reloc && root_dropped == false)
d29a9f62 8689 btrfs_add_dead_root(root);
90515e7f 8690 if (err && err != -EAGAIN)
cb1b69f4 8691 btrfs_std_error(root->fs_info, err);
2c536799 8692 return err;
20524f02 8693}
9078a3e1 8694
2c47e605
YZ
8695/*
8696 * drop subtree rooted at tree block 'node'.
8697 *
8698 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8699 * only used by relocation code
2c47e605 8700 */
f82d02d9
YZ
8701int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8702 struct btrfs_root *root,
8703 struct extent_buffer *node,
8704 struct extent_buffer *parent)
8705{
8706 struct btrfs_path *path;
2c47e605 8707 struct walk_control *wc;
f82d02d9
YZ
8708 int level;
8709 int parent_level;
8710 int ret = 0;
8711 int wret;
8712
2c47e605
YZ
8713 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8714
f82d02d9 8715 path = btrfs_alloc_path();
db5b493a
TI
8716 if (!path)
8717 return -ENOMEM;
f82d02d9 8718
2c47e605 8719 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8720 if (!wc) {
8721 btrfs_free_path(path);
8722 return -ENOMEM;
8723 }
2c47e605 8724
b9447ef8 8725 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8726 parent_level = btrfs_header_level(parent);
8727 extent_buffer_get(parent);
8728 path->nodes[parent_level] = parent;
8729 path->slots[parent_level] = btrfs_header_nritems(parent);
8730
b9447ef8 8731 btrfs_assert_tree_locked(node);
f82d02d9 8732 level = btrfs_header_level(node);
f82d02d9
YZ
8733 path->nodes[level] = node;
8734 path->slots[level] = 0;
bd681513 8735 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8736
8737 wc->refs[parent_level] = 1;
8738 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8739 wc->level = level;
8740 wc->shared_level = -1;
8741 wc->stage = DROP_REFERENCE;
8742 wc->update_ref = 0;
8743 wc->keep_locks = 1;
66d7e7f0 8744 wc->for_reloc = 1;
1c4850e2 8745 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8746
8747 while (1) {
2c47e605
YZ
8748 wret = walk_down_tree(trans, root, path, wc);
8749 if (wret < 0) {
f82d02d9 8750 ret = wret;
f82d02d9 8751 break;
2c47e605 8752 }
f82d02d9 8753
2c47e605 8754 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8755 if (wret < 0)
8756 ret = wret;
8757 if (wret != 0)
8758 break;
8759 }
8760
2c47e605 8761 kfree(wc);
f82d02d9
YZ
8762 btrfs_free_path(path);
8763 return ret;
8764}
8765
ec44a35c
CM
8766static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8767{
8768 u64 num_devices;
fc67c450 8769 u64 stripped;
e4d8ec0f 8770
fc67c450
ID
8771 /*
8772 * if restripe for this chunk_type is on pick target profile and
8773 * return, otherwise do the usual balance
8774 */
8775 stripped = get_restripe_target(root->fs_info, flags);
8776 if (stripped)
8777 return extended_to_chunk(stripped);
e4d8ec0f 8778
95669976 8779 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8780
fc67c450 8781 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8782 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8783 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8784
ec44a35c
CM
8785 if (num_devices == 1) {
8786 stripped |= BTRFS_BLOCK_GROUP_DUP;
8787 stripped = flags & ~stripped;
8788
8789 /* turn raid0 into single device chunks */
8790 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8791 return stripped;
8792
8793 /* turn mirroring into duplication */
8794 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8795 BTRFS_BLOCK_GROUP_RAID10))
8796 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8797 } else {
8798 /* they already had raid on here, just return */
ec44a35c
CM
8799 if (flags & stripped)
8800 return flags;
8801
8802 stripped |= BTRFS_BLOCK_GROUP_DUP;
8803 stripped = flags & ~stripped;
8804
8805 /* switch duplicated blocks with raid1 */
8806 if (flags & BTRFS_BLOCK_GROUP_DUP)
8807 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8808
e3176ca2 8809 /* this is drive concat, leave it alone */
ec44a35c 8810 }
e3176ca2 8811
ec44a35c
CM
8812 return flags;
8813}
8814
868f401a 8815static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8816{
f0486c68
YZ
8817 struct btrfs_space_info *sinfo = cache->space_info;
8818 u64 num_bytes;
199c36ea 8819 u64 min_allocable_bytes;
f0486c68 8820 int ret = -ENOSPC;
0ef3e66b 8821
199c36ea
MX
8822 /*
8823 * We need some metadata space and system metadata space for
8824 * allocating chunks in some corner cases until we force to set
8825 * it to be readonly.
8826 */
8827 if ((sinfo->flags &
8828 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8829 !force)
8830 min_allocable_bytes = 1 * 1024 * 1024;
8831 else
8832 min_allocable_bytes = 0;
8833
f0486c68
YZ
8834 spin_lock(&sinfo->lock);
8835 spin_lock(&cache->lock);
61cfea9b
W
8836
8837 if (cache->ro) {
868f401a 8838 cache->ro++;
61cfea9b
W
8839 ret = 0;
8840 goto out;
8841 }
8842
f0486c68
YZ
8843 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8844 cache->bytes_super - btrfs_block_group_used(&cache->item);
8845
8846 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8847 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8848 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8849 sinfo->bytes_readonly += num_bytes;
868f401a 8850 cache->ro++;
633c0aad 8851 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8852 ret = 0;
8853 }
61cfea9b 8854out:
f0486c68
YZ
8855 spin_unlock(&cache->lock);
8856 spin_unlock(&sinfo->lock);
8857 return ret;
8858}
7d9eb12c 8859
868f401a 8860int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 8861 struct btrfs_block_group_cache *cache)
c286ac48 8862
f0486c68
YZ
8863{
8864 struct btrfs_trans_handle *trans;
8865 u64 alloc_flags;
8866 int ret;
7d9eb12c 8867
1bbc621e 8868again:
ff5714cc 8869 trans = btrfs_join_transaction(root);
79787eaa
JM
8870 if (IS_ERR(trans))
8871 return PTR_ERR(trans);
5d4f98a2 8872
1bbc621e
CM
8873 /*
8874 * we're not allowed to set block groups readonly after the dirty
8875 * block groups cache has started writing. If it already started,
8876 * back off and let this transaction commit
8877 */
8878 mutex_lock(&root->fs_info->ro_block_group_mutex);
8879 if (trans->transaction->dirty_bg_run) {
8880 u64 transid = trans->transid;
8881
8882 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8883 btrfs_end_transaction(trans, root);
8884
8885 ret = btrfs_wait_for_commit(root, transid);
8886 if (ret)
8887 return ret;
8888 goto again;
8889 }
8890
153c35b6
CM
8891 /*
8892 * if we are changing raid levels, try to allocate a corresponding
8893 * block group with the new raid level.
8894 */
8895 alloc_flags = update_block_group_flags(root, cache->flags);
8896 if (alloc_flags != cache->flags) {
8897 ret = do_chunk_alloc(trans, root, alloc_flags,
8898 CHUNK_ALLOC_FORCE);
8899 /*
8900 * ENOSPC is allowed here, we may have enough space
8901 * already allocated at the new raid level to
8902 * carry on
8903 */
8904 if (ret == -ENOSPC)
8905 ret = 0;
8906 if (ret < 0)
8907 goto out;
8908 }
1bbc621e 8909
868f401a 8910 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
8911 if (!ret)
8912 goto out;
8913 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8914 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8915 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8916 if (ret < 0)
8917 goto out;
868f401a 8918 ret = inc_block_group_ro(cache, 0);
f0486c68 8919out:
2f081088
SL
8920 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8921 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8922 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8923 check_system_chunk(trans, root, alloc_flags);
a9629596 8924 unlock_chunks(root->fs_info->chunk_root);
2f081088 8925 }
1bbc621e 8926 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8927
f0486c68
YZ
8928 btrfs_end_transaction(trans, root);
8929 return ret;
8930}
5d4f98a2 8931
c87f08ca
CM
8932int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8933 struct btrfs_root *root, u64 type)
8934{
8935 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8936 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8937 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8938}
8939
6d07bcec
MX
8940/*
8941 * helper to account the unused space of all the readonly block group in the
633c0aad 8942 * space_info. takes mirrors into account.
6d07bcec 8943 */
633c0aad 8944u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8945{
8946 struct btrfs_block_group_cache *block_group;
8947 u64 free_bytes = 0;
8948 int factor;
8949
633c0aad
JB
8950 /* It's df, we don't care if it's racey */
8951 if (list_empty(&sinfo->ro_bgs))
8952 return 0;
8953
8954 spin_lock(&sinfo->lock);
8955 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8956 spin_lock(&block_group->lock);
8957
8958 if (!block_group->ro) {
8959 spin_unlock(&block_group->lock);
8960 continue;
8961 }
8962
8963 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8964 BTRFS_BLOCK_GROUP_RAID10 |
8965 BTRFS_BLOCK_GROUP_DUP))
8966 factor = 2;
8967 else
8968 factor = 1;
8969
8970 free_bytes += (block_group->key.offset -
8971 btrfs_block_group_used(&block_group->item)) *
8972 factor;
8973
8974 spin_unlock(&block_group->lock);
8975 }
6d07bcec
MX
8976 spin_unlock(&sinfo->lock);
8977
8978 return free_bytes;
8979}
8980
868f401a 8981void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 8982 struct btrfs_block_group_cache *cache)
5d4f98a2 8983{
f0486c68
YZ
8984 struct btrfs_space_info *sinfo = cache->space_info;
8985 u64 num_bytes;
8986
8987 BUG_ON(!cache->ro);
8988
8989 spin_lock(&sinfo->lock);
8990 spin_lock(&cache->lock);
868f401a
Z
8991 if (!--cache->ro) {
8992 num_bytes = cache->key.offset - cache->reserved -
8993 cache->pinned - cache->bytes_super -
8994 btrfs_block_group_used(&cache->item);
8995 sinfo->bytes_readonly -= num_bytes;
8996 list_del_init(&cache->ro_list);
8997 }
f0486c68
YZ
8998 spin_unlock(&cache->lock);
8999 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9000}
9001
ba1bf481
JB
9002/*
9003 * checks to see if its even possible to relocate this block group.
9004 *
9005 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9006 * ok to go ahead and try.
9007 */
9008int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9009{
ba1bf481
JB
9010 struct btrfs_block_group_cache *block_group;
9011 struct btrfs_space_info *space_info;
9012 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9013 struct btrfs_device *device;
6df9a95e 9014 struct btrfs_trans_handle *trans;
cdcb725c 9015 u64 min_free;
6719db6a
JB
9016 u64 dev_min = 1;
9017 u64 dev_nr = 0;
4a5e98f5 9018 u64 target;
cdcb725c 9019 int index;
ba1bf481
JB
9020 int full = 0;
9021 int ret = 0;
1a40e23b 9022
ba1bf481 9023 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9024
ba1bf481
JB
9025 /* odd, couldn't find the block group, leave it alone */
9026 if (!block_group)
9027 return -1;
1a40e23b 9028
cdcb725c 9029 min_free = btrfs_block_group_used(&block_group->item);
9030
ba1bf481 9031 /* no bytes used, we're good */
cdcb725c 9032 if (!min_free)
1a40e23b
ZY
9033 goto out;
9034
ba1bf481
JB
9035 space_info = block_group->space_info;
9036 spin_lock(&space_info->lock);
17d217fe 9037
ba1bf481 9038 full = space_info->full;
17d217fe 9039
ba1bf481
JB
9040 /*
9041 * if this is the last block group we have in this space, we can't
7ce618db
CM
9042 * relocate it unless we're able to allocate a new chunk below.
9043 *
9044 * Otherwise, we need to make sure we have room in the space to handle
9045 * all of the extents from this block group. If we can, we're good
ba1bf481 9046 */
7ce618db 9047 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9048 (space_info->bytes_used + space_info->bytes_reserved +
9049 space_info->bytes_pinned + space_info->bytes_readonly +
9050 min_free < space_info->total_bytes)) {
ba1bf481
JB
9051 spin_unlock(&space_info->lock);
9052 goto out;
17d217fe 9053 }
ba1bf481 9054 spin_unlock(&space_info->lock);
ea8c2819 9055
ba1bf481
JB
9056 /*
9057 * ok we don't have enough space, but maybe we have free space on our
9058 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9059 * alloc devices and guess if we have enough space. if this block
9060 * group is going to be restriped, run checks against the target
9061 * profile instead of the current one.
ba1bf481
JB
9062 */
9063 ret = -1;
ea8c2819 9064
cdcb725c 9065 /*
9066 * index:
9067 * 0: raid10
9068 * 1: raid1
9069 * 2: dup
9070 * 3: raid0
9071 * 4: single
9072 */
4a5e98f5
ID
9073 target = get_restripe_target(root->fs_info, block_group->flags);
9074 if (target) {
31e50229 9075 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9076 } else {
9077 /*
9078 * this is just a balance, so if we were marked as full
9079 * we know there is no space for a new chunk
9080 */
9081 if (full)
9082 goto out;
9083
9084 index = get_block_group_index(block_group);
9085 }
9086
e6ec716f 9087 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9088 dev_min = 4;
6719db6a
JB
9089 /* Divide by 2 */
9090 min_free >>= 1;
e6ec716f 9091 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9092 dev_min = 2;
e6ec716f 9093 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9094 /* Multiply by 2 */
9095 min_free <<= 1;
e6ec716f 9096 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9097 dev_min = fs_devices->rw_devices;
47c5713f 9098 min_free = div64_u64(min_free, dev_min);
cdcb725c 9099 }
9100
6df9a95e
JB
9101 /* We need to do this so that we can look at pending chunks */
9102 trans = btrfs_join_transaction(root);
9103 if (IS_ERR(trans)) {
9104 ret = PTR_ERR(trans);
9105 goto out;
9106 }
9107
ba1bf481
JB
9108 mutex_lock(&root->fs_info->chunk_mutex);
9109 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9110 u64 dev_offset;
56bec294 9111
ba1bf481
JB
9112 /*
9113 * check to make sure we can actually find a chunk with enough
9114 * space to fit our block group in.
9115 */
63a212ab
SB
9116 if (device->total_bytes > device->bytes_used + min_free &&
9117 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9118 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9119 &dev_offset, NULL);
ba1bf481 9120 if (!ret)
cdcb725c 9121 dev_nr++;
9122
9123 if (dev_nr >= dev_min)
73e48b27 9124 break;
cdcb725c 9125
ba1bf481 9126 ret = -1;
725c8463 9127 }
edbd8d4e 9128 }
ba1bf481 9129 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9130 btrfs_end_transaction(trans, root);
edbd8d4e 9131out:
ba1bf481 9132 btrfs_put_block_group(block_group);
edbd8d4e
CM
9133 return ret;
9134}
9135
b2950863
CH
9136static int find_first_block_group(struct btrfs_root *root,
9137 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9138{
925baedd 9139 int ret = 0;
0b86a832
CM
9140 struct btrfs_key found_key;
9141 struct extent_buffer *leaf;
9142 int slot;
edbd8d4e 9143
0b86a832
CM
9144 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9145 if (ret < 0)
925baedd
CM
9146 goto out;
9147
d397712b 9148 while (1) {
0b86a832 9149 slot = path->slots[0];
edbd8d4e 9150 leaf = path->nodes[0];
0b86a832
CM
9151 if (slot >= btrfs_header_nritems(leaf)) {
9152 ret = btrfs_next_leaf(root, path);
9153 if (ret == 0)
9154 continue;
9155 if (ret < 0)
925baedd 9156 goto out;
0b86a832 9157 break;
edbd8d4e 9158 }
0b86a832 9159 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9160
0b86a832 9161 if (found_key.objectid >= key->objectid &&
925baedd
CM
9162 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9163 ret = 0;
9164 goto out;
9165 }
0b86a832 9166 path->slots[0]++;
edbd8d4e 9167 }
925baedd 9168out:
0b86a832 9169 return ret;
edbd8d4e
CM
9170}
9171
0af3d00b
JB
9172void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9173{
9174 struct btrfs_block_group_cache *block_group;
9175 u64 last = 0;
9176
9177 while (1) {
9178 struct inode *inode;
9179
9180 block_group = btrfs_lookup_first_block_group(info, last);
9181 while (block_group) {
9182 spin_lock(&block_group->lock);
9183 if (block_group->iref)
9184 break;
9185 spin_unlock(&block_group->lock);
9186 block_group = next_block_group(info->tree_root,
9187 block_group);
9188 }
9189 if (!block_group) {
9190 if (last == 0)
9191 break;
9192 last = 0;
9193 continue;
9194 }
9195
9196 inode = block_group->inode;
9197 block_group->iref = 0;
9198 block_group->inode = NULL;
9199 spin_unlock(&block_group->lock);
9200 iput(inode);
9201 last = block_group->key.objectid + block_group->key.offset;
9202 btrfs_put_block_group(block_group);
9203 }
9204}
9205
1a40e23b
ZY
9206int btrfs_free_block_groups(struct btrfs_fs_info *info)
9207{
9208 struct btrfs_block_group_cache *block_group;
4184ea7f 9209 struct btrfs_space_info *space_info;
11833d66 9210 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9211 struct rb_node *n;
9212
9e351cc8 9213 down_write(&info->commit_root_sem);
11833d66
YZ
9214 while (!list_empty(&info->caching_block_groups)) {
9215 caching_ctl = list_entry(info->caching_block_groups.next,
9216 struct btrfs_caching_control, list);
9217 list_del(&caching_ctl->list);
9218 put_caching_control(caching_ctl);
9219 }
9e351cc8 9220 up_write(&info->commit_root_sem);
11833d66 9221
47ab2a6c
JB
9222 spin_lock(&info->unused_bgs_lock);
9223 while (!list_empty(&info->unused_bgs)) {
9224 block_group = list_first_entry(&info->unused_bgs,
9225 struct btrfs_block_group_cache,
9226 bg_list);
9227 list_del_init(&block_group->bg_list);
9228 btrfs_put_block_group(block_group);
9229 }
9230 spin_unlock(&info->unused_bgs_lock);
9231
1a40e23b
ZY
9232 spin_lock(&info->block_group_cache_lock);
9233 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9234 block_group = rb_entry(n, struct btrfs_block_group_cache,
9235 cache_node);
1a40e23b
ZY
9236 rb_erase(&block_group->cache_node,
9237 &info->block_group_cache_tree);
01eacb27 9238 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9239 spin_unlock(&info->block_group_cache_lock);
9240
80eb234a 9241 down_write(&block_group->space_info->groups_sem);
1a40e23b 9242 list_del(&block_group->list);
80eb234a 9243 up_write(&block_group->space_info->groups_sem);
d2fb3437 9244
817d52f8 9245 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9246 wait_block_group_cache_done(block_group);
817d52f8 9247
3c14874a
JB
9248 /*
9249 * We haven't cached this block group, which means we could
9250 * possibly have excluded extents on this block group.
9251 */
36cce922
JB
9252 if (block_group->cached == BTRFS_CACHE_NO ||
9253 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9254 free_excluded_extents(info->extent_root, block_group);
9255
817d52f8 9256 btrfs_remove_free_space_cache(block_group);
11dfe35a 9257 btrfs_put_block_group(block_group);
d899e052
YZ
9258
9259 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9260 }
9261 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9262
9263 /* now that all the block groups are freed, go through and
9264 * free all the space_info structs. This is only called during
9265 * the final stages of unmount, and so we know nobody is
9266 * using them. We call synchronize_rcu() once before we start,
9267 * just to be on the safe side.
9268 */
9269 synchronize_rcu();
9270
8929ecfa
YZ
9271 release_global_block_rsv(info);
9272
67871254 9273 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9274 int i;
9275
4184ea7f
CM
9276 space_info = list_entry(info->space_info.next,
9277 struct btrfs_space_info,
9278 list);
b069e0c3 9279 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9280 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9281 space_info->bytes_reserved > 0 ||
fae7f21c 9282 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9283 dump_space_info(space_info, 0, 0);
9284 }
f0486c68 9285 }
4184ea7f 9286 list_del(&space_info->list);
6ab0a202
JM
9287 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9288 struct kobject *kobj;
c1895442
JM
9289 kobj = space_info->block_group_kobjs[i];
9290 space_info->block_group_kobjs[i] = NULL;
9291 if (kobj) {
6ab0a202
JM
9292 kobject_del(kobj);
9293 kobject_put(kobj);
9294 }
9295 }
9296 kobject_del(&space_info->kobj);
9297 kobject_put(&space_info->kobj);
4184ea7f 9298 }
1a40e23b
ZY
9299 return 0;
9300}
9301
b742bb82
YZ
9302static void __link_block_group(struct btrfs_space_info *space_info,
9303 struct btrfs_block_group_cache *cache)
9304{
9305 int index = get_block_group_index(cache);
ed55b6ac 9306 bool first = false;
b742bb82
YZ
9307
9308 down_write(&space_info->groups_sem);
ed55b6ac
JM
9309 if (list_empty(&space_info->block_groups[index]))
9310 first = true;
9311 list_add_tail(&cache->list, &space_info->block_groups[index]);
9312 up_write(&space_info->groups_sem);
9313
9314 if (first) {
c1895442 9315 struct raid_kobject *rkobj;
6ab0a202
JM
9316 int ret;
9317
c1895442
JM
9318 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9319 if (!rkobj)
9320 goto out_err;
9321 rkobj->raid_type = index;
9322 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9323 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9324 "%s", get_raid_name(index));
6ab0a202 9325 if (ret) {
c1895442
JM
9326 kobject_put(&rkobj->kobj);
9327 goto out_err;
6ab0a202 9328 }
c1895442 9329 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9330 }
c1895442
JM
9331
9332 return;
9333out_err:
9334 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9335}
9336
920e4a58
MX
9337static struct btrfs_block_group_cache *
9338btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9339{
9340 struct btrfs_block_group_cache *cache;
9341
9342 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9343 if (!cache)
9344 return NULL;
9345
9346 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9347 GFP_NOFS);
9348 if (!cache->free_space_ctl) {
9349 kfree(cache);
9350 return NULL;
9351 }
9352
9353 cache->key.objectid = start;
9354 cache->key.offset = size;
9355 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9356
9357 cache->sectorsize = root->sectorsize;
9358 cache->fs_info = root->fs_info;
9359 cache->full_stripe_len = btrfs_full_stripe_len(root,
9360 &root->fs_info->mapping_tree,
9361 start);
9362 atomic_set(&cache->count, 1);
9363 spin_lock_init(&cache->lock);
e570fd27 9364 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9365 INIT_LIST_HEAD(&cache->list);
9366 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9367 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9368 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9369 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9370 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9371 btrfs_init_free_space_ctl(cache);
04216820 9372 atomic_set(&cache->trimming, 0);
920e4a58
MX
9373
9374 return cache;
9375}
9376
9078a3e1
CM
9377int btrfs_read_block_groups(struct btrfs_root *root)
9378{
9379 struct btrfs_path *path;
9380 int ret;
9078a3e1 9381 struct btrfs_block_group_cache *cache;
be744175 9382 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9383 struct btrfs_space_info *space_info;
9078a3e1
CM
9384 struct btrfs_key key;
9385 struct btrfs_key found_key;
5f39d397 9386 struct extent_buffer *leaf;
0af3d00b
JB
9387 int need_clear = 0;
9388 u64 cache_gen;
96b5179d 9389
be744175 9390 root = info->extent_root;
9078a3e1 9391 key.objectid = 0;
0b86a832 9392 key.offset = 0;
962a298f 9393 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9394 path = btrfs_alloc_path();
9395 if (!path)
9396 return -ENOMEM;
026fd317 9397 path->reada = 1;
9078a3e1 9398
6c41761f 9399 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9400 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9401 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9402 need_clear = 1;
88c2ba3b
JB
9403 if (btrfs_test_opt(root, CLEAR_CACHE))
9404 need_clear = 1;
0af3d00b 9405
d397712b 9406 while (1) {
0b86a832 9407 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9408 if (ret > 0)
9409 break;
0b86a832
CM
9410 if (ret != 0)
9411 goto error;
920e4a58 9412
5f39d397
CM
9413 leaf = path->nodes[0];
9414 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9415
9416 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9417 found_key.offset);
9078a3e1 9418 if (!cache) {
0b86a832 9419 ret = -ENOMEM;
f0486c68 9420 goto error;
9078a3e1 9421 }
96303081 9422
cf7c1ef6
LB
9423 if (need_clear) {
9424 /*
9425 * When we mount with old space cache, we need to
9426 * set BTRFS_DC_CLEAR and set dirty flag.
9427 *
9428 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9429 * truncate the old free space cache inode and
9430 * setup a new one.
9431 * b) Setting 'dirty flag' makes sure that we flush
9432 * the new space cache info onto disk.
9433 */
cf7c1ef6 9434 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9435 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9436 }
0af3d00b 9437
5f39d397
CM
9438 read_extent_buffer(leaf, &cache->item,
9439 btrfs_item_ptr_offset(leaf, path->slots[0]),
9440 sizeof(cache->item));
920e4a58 9441 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9442
9078a3e1 9443 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9444 btrfs_release_path(path);
34d52cb6 9445
3c14874a
JB
9446 /*
9447 * We need to exclude the super stripes now so that the space
9448 * info has super bytes accounted for, otherwise we'll think
9449 * we have more space than we actually do.
9450 */
835d974f
JB
9451 ret = exclude_super_stripes(root, cache);
9452 if (ret) {
9453 /*
9454 * We may have excluded something, so call this just in
9455 * case.
9456 */
9457 free_excluded_extents(root, cache);
920e4a58 9458 btrfs_put_block_group(cache);
835d974f
JB
9459 goto error;
9460 }
3c14874a 9461
817d52f8
JB
9462 /*
9463 * check for two cases, either we are full, and therefore
9464 * don't need to bother with the caching work since we won't
9465 * find any space, or we are empty, and we can just add all
9466 * the space in and be done with it. This saves us _alot_ of
9467 * time, particularly in the full case.
9468 */
9469 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9470 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9471 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9472 free_excluded_extents(root, cache);
817d52f8 9473 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9474 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9475 cache->cached = BTRFS_CACHE_FINISHED;
9476 add_new_free_space(cache, root->fs_info,
9477 found_key.objectid,
9478 found_key.objectid +
9479 found_key.offset);
11833d66 9480 free_excluded_extents(root, cache);
817d52f8 9481 }
96b5179d 9482
8c579fe7
JB
9483 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9484 if (ret) {
9485 btrfs_remove_free_space_cache(cache);
9486 btrfs_put_block_group(cache);
9487 goto error;
9488 }
9489
6324fbf3
CM
9490 ret = update_space_info(info, cache->flags, found_key.offset,
9491 btrfs_block_group_used(&cache->item),
9492 &space_info);
8c579fe7
JB
9493 if (ret) {
9494 btrfs_remove_free_space_cache(cache);
9495 spin_lock(&info->block_group_cache_lock);
9496 rb_erase(&cache->cache_node,
9497 &info->block_group_cache_tree);
01eacb27 9498 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9499 spin_unlock(&info->block_group_cache_lock);
9500 btrfs_put_block_group(cache);
9501 goto error;
9502 }
9503
6324fbf3 9504 cache->space_info = space_info;
1b2da372 9505 spin_lock(&cache->space_info->lock);
f0486c68 9506 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9507 spin_unlock(&cache->space_info->lock);
9508
b742bb82 9509 __link_block_group(space_info, cache);
0f9dd46c 9510
75ccf47d 9511 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9512 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9513 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9514 } else if (btrfs_block_group_used(&cache->item) == 0) {
9515 spin_lock(&info->unused_bgs_lock);
9516 /* Should always be true but just in case. */
9517 if (list_empty(&cache->bg_list)) {
9518 btrfs_get_block_group(cache);
9519 list_add_tail(&cache->bg_list,
9520 &info->unused_bgs);
9521 }
9522 spin_unlock(&info->unused_bgs_lock);
9523 }
9078a3e1 9524 }
b742bb82
YZ
9525
9526 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9527 if (!(get_alloc_profile(root, space_info->flags) &
9528 (BTRFS_BLOCK_GROUP_RAID10 |
9529 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9530 BTRFS_BLOCK_GROUP_RAID5 |
9531 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9532 BTRFS_BLOCK_GROUP_DUP)))
9533 continue;
9534 /*
9535 * avoid allocating from un-mirrored block group if there are
9536 * mirrored block groups.
9537 */
1095cc0d 9538 list_for_each_entry(cache,
9539 &space_info->block_groups[BTRFS_RAID_RAID0],
9540 list)
868f401a 9541 inc_block_group_ro(cache, 1);
1095cc0d 9542 list_for_each_entry(cache,
9543 &space_info->block_groups[BTRFS_RAID_SINGLE],
9544 list)
868f401a 9545 inc_block_group_ro(cache, 1);
9078a3e1 9546 }
f0486c68
YZ
9547
9548 init_global_block_rsv(info);
0b86a832
CM
9549 ret = 0;
9550error:
9078a3e1 9551 btrfs_free_path(path);
0b86a832 9552 return ret;
9078a3e1 9553}
6324fbf3 9554
ea658bad
JB
9555void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9556 struct btrfs_root *root)
9557{
9558 struct btrfs_block_group_cache *block_group, *tmp;
9559 struct btrfs_root *extent_root = root->fs_info->extent_root;
9560 struct btrfs_block_group_item item;
9561 struct btrfs_key key;
9562 int ret = 0;
9563
47ab2a6c 9564 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9565 if (ret)
c92f6be3 9566 goto next;
ea658bad
JB
9567
9568 spin_lock(&block_group->lock);
9569 memcpy(&item, &block_group->item, sizeof(item));
9570 memcpy(&key, &block_group->key, sizeof(key));
9571 spin_unlock(&block_group->lock);
9572
9573 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9574 sizeof(item));
9575 if (ret)
9576 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9577 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9578 key.objectid, key.offset);
9579 if (ret)
9580 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9581next:
9582 list_del_init(&block_group->bg_list);
ea658bad
JB
9583 }
9584}
9585
6324fbf3
CM
9586int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9587 struct btrfs_root *root, u64 bytes_used,
e17cade2 9588 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9589 u64 size)
9590{
9591 int ret;
6324fbf3
CM
9592 struct btrfs_root *extent_root;
9593 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9594
9595 extent_root = root->fs_info->extent_root;
6324fbf3 9596
995946dd 9597 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9598
920e4a58 9599 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9600 if (!cache)
9601 return -ENOMEM;
34d52cb6 9602
6324fbf3 9603 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9604 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9605 btrfs_set_block_group_flags(&cache->item, type);
9606
920e4a58 9607 cache->flags = type;
11833d66 9608 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9609 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9610 ret = exclude_super_stripes(root, cache);
9611 if (ret) {
9612 /*
9613 * We may have excluded something, so call this just in
9614 * case.
9615 */
9616 free_excluded_extents(root, cache);
920e4a58 9617 btrfs_put_block_group(cache);
835d974f
JB
9618 return ret;
9619 }
96303081 9620
817d52f8
JB
9621 add_new_free_space(cache, root->fs_info, chunk_offset,
9622 chunk_offset + size);
9623
11833d66
YZ
9624 free_excluded_extents(root, cache);
9625
2e6e5183
FM
9626 /*
9627 * Call to ensure the corresponding space_info object is created and
9628 * assigned to our block group, but don't update its counters just yet.
9629 * We want our bg to be added to the rbtree with its ->space_info set.
9630 */
9631 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9632 &cache->space_info);
9633 if (ret) {
9634 btrfs_remove_free_space_cache(cache);
9635 btrfs_put_block_group(cache);
9636 return ret;
9637 }
9638
8c579fe7
JB
9639 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9640 if (ret) {
9641 btrfs_remove_free_space_cache(cache);
9642 btrfs_put_block_group(cache);
9643 return ret;
9644 }
9645
2e6e5183
FM
9646 /*
9647 * Now that our block group has its ->space_info set and is inserted in
9648 * the rbtree, update the space info's counters.
9649 */
6324fbf3
CM
9650 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9651 &cache->space_info);
8c579fe7
JB
9652 if (ret) {
9653 btrfs_remove_free_space_cache(cache);
9654 spin_lock(&root->fs_info->block_group_cache_lock);
9655 rb_erase(&cache->cache_node,
9656 &root->fs_info->block_group_cache_tree);
01eacb27 9657 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9658 spin_unlock(&root->fs_info->block_group_cache_lock);
9659 btrfs_put_block_group(cache);
9660 return ret;
9661 }
c7c144db 9662 update_global_block_rsv(root->fs_info);
1b2da372
JB
9663
9664 spin_lock(&cache->space_info->lock);
f0486c68 9665 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9666 spin_unlock(&cache->space_info->lock);
9667
b742bb82 9668 __link_block_group(cache->space_info, cache);
6324fbf3 9669
47ab2a6c 9670 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9671
d18a2c44 9672 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9673
6324fbf3
CM
9674 return 0;
9675}
1a40e23b 9676
10ea00f5
ID
9677static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9678{
899c81ea
ID
9679 u64 extra_flags = chunk_to_extended(flags) &
9680 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9681
de98ced9 9682 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9683 if (flags & BTRFS_BLOCK_GROUP_DATA)
9684 fs_info->avail_data_alloc_bits &= ~extra_flags;
9685 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9686 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9687 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9688 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9689 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9690}
9691
1a40e23b 9692int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9693 struct btrfs_root *root, u64 group_start,
9694 struct extent_map *em)
1a40e23b
ZY
9695{
9696 struct btrfs_path *path;
9697 struct btrfs_block_group_cache *block_group;
44fb5511 9698 struct btrfs_free_cluster *cluster;
0af3d00b 9699 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9700 struct btrfs_key key;
0af3d00b 9701 struct inode *inode;
c1895442 9702 struct kobject *kobj = NULL;
1a40e23b 9703 int ret;
10ea00f5 9704 int index;
89a55897 9705 int factor;
4f69cb98 9706 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9707 bool remove_em;
1a40e23b 9708
1a40e23b
ZY
9709 root = root->fs_info->extent_root;
9710
9711 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9712 BUG_ON(!block_group);
c146afad 9713 BUG_ON(!block_group->ro);
1a40e23b 9714
9f7c43c9 9715 /*
9716 * Free the reserved super bytes from this block group before
9717 * remove it.
9718 */
9719 free_excluded_extents(root, block_group);
9720
1a40e23b 9721 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9722 index = get_block_group_index(block_group);
89a55897
JB
9723 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9724 BTRFS_BLOCK_GROUP_RAID1 |
9725 BTRFS_BLOCK_GROUP_RAID10))
9726 factor = 2;
9727 else
9728 factor = 1;
1a40e23b 9729
44fb5511
CM
9730 /* make sure this block group isn't part of an allocation cluster */
9731 cluster = &root->fs_info->data_alloc_cluster;
9732 spin_lock(&cluster->refill_lock);
9733 btrfs_return_cluster_to_free_space(block_group, cluster);
9734 spin_unlock(&cluster->refill_lock);
9735
9736 /*
9737 * make sure this block group isn't part of a metadata
9738 * allocation cluster
9739 */
9740 cluster = &root->fs_info->meta_alloc_cluster;
9741 spin_lock(&cluster->refill_lock);
9742 btrfs_return_cluster_to_free_space(block_group, cluster);
9743 spin_unlock(&cluster->refill_lock);
9744
1a40e23b 9745 path = btrfs_alloc_path();
d8926bb3
MF
9746 if (!path) {
9747 ret = -ENOMEM;
9748 goto out;
9749 }
1a40e23b 9750
1bbc621e
CM
9751 /*
9752 * get the inode first so any iput calls done for the io_list
9753 * aren't the final iput (no unlinks allowed now)
9754 */
10b2f34d 9755 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9756
9757 mutex_lock(&trans->transaction->cache_write_mutex);
9758 /*
9759 * make sure our free spache cache IO is done before remove the
9760 * free space inode
9761 */
9762 spin_lock(&trans->transaction->dirty_bgs_lock);
9763 if (!list_empty(&block_group->io_list)) {
9764 list_del_init(&block_group->io_list);
9765
9766 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9767
9768 spin_unlock(&trans->transaction->dirty_bgs_lock);
9769 btrfs_wait_cache_io(root, trans, block_group,
9770 &block_group->io_ctl, path,
9771 block_group->key.objectid);
9772 btrfs_put_block_group(block_group);
9773 spin_lock(&trans->transaction->dirty_bgs_lock);
9774 }
9775
9776 if (!list_empty(&block_group->dirty_list)) {
9777 list_del_init(&block_group->dirty_list);
9778 btrfs_put_block_group(block_group);
9779 }
9780 spin_unlock(&trans->transaction->dirty_bgs_lock);
9781 mutex_unlock(&trans->transaction->cache_write_mutex);
9782
0af3d00b 9783 if (!IS_ERR(inode)) {
b532402e 9784 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9785 if (ret) {
9786 btrfs_add_delayed_iput(inode);
9787 goto out;
9788 }
0af3d00b
JB
9789 clear_nlink(inode);
9790 /* One for the block groups ref */
9791 spin_lock(&block_group->lock);
9792 if (block_group->iref) {
9793 block_group->iref = 0;
9794 block_group->inode = NULL;
9795 spin_unlock(&block_group->lock);
9796 iput(inode);
9797 } else {
9798 spin_unlock(&block_group->lock);
9799 }
9800 /* One for our lookup ref */
455757c3 9801 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9802 }
9803
9804 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9805 key.offset = block_group->key.objectid;
9806 key.type = 0;
9807
9808 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9809 if (ret < 0)
9810 goto out;
9811 if (ret > 0)
b3b4aa74 9812 btrfs_release_path(path);
0af3d00b
JB
9813 if (ret == 0) {
9814 ret = btrfs_del_item(trans, tree_root, path);
9815 if (ret)
9816 goto out;
b3b4aa74 9817 btrfs_release_path(path);
0af3d00b
JB
9818 }
9819
3dfdb934 9820 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9821 rb_erase(&block_group->cache_node,
9822 &root->fs_info->block_group_cache_tree);
292cbd51 9823 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9824
9825 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9826 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9827 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9828
80eb234a 9829 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9830 /*
9831 * we must use list_del_init so people can check to see if they
9832 * are still on the list after taking the semaphore
9833 */
9834 list_del_init(&block_group->list);
6ab0a202 9835 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9836 kobj = block_group->space_info->block_group_kobjs[index];
9837 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9838 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9839 }
80eb234a 9840 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9841 if (kobj) {
9842 kobject_del(kobj);
9843 kobject_put(kobj);
9844 }
1a40e23b 9845
4f69cb98
FM
9846 if (block_group->has_caching_ctl)
9847 caching_ctl = get_caching_control(block_group);
817d52f8 9848 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9849 wait_block_group_cache_done(block_group);
4f69cb98
FM
9850 if (block_group->has_caching_ctl) {
9851 down_write(&root->fs_info->commit_root_sem);
9852 if (!caching_ctl) {
9853 struct btrfs_caching_control *ctl;
9854
9855 list_for_each_entry(ctl,
9856 &root->fs_info->caching_block_groups, list)
9857 if (ctl->block_group == block_group) {
9858 caching_ctl = ctl;
9859 atomic_inc(&caching_ctl->count);
9860 break;
9861 }
9862 }
9863 if (caching_ctl)
9864 list_del_init(&caching_ctl->list);
9865 up_write(&root->fs_info->commit_root_sem);
9866 if (caching_ctl) {
9867 /* Once for the caching bgs list and once for us. */
9868 put_caching_control(caching_ctl);
9869 put_caching_control(caching_ctl);
9870 }
9871 }
817d52f8 9872
ce93ec54
JB
9873 spin_lock(&trans->transaction->dirty_bgs_lock);
9874 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9875 WARN_ON(1);
9876 }
9877 if (!list_empty(&block_group->io_list)) {
9878 WARN_ON(1);
ce93ec54
JB
9879 }
9880 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9881 btrfs_remove_free_space_cache(block_group);
9882
c146afad 9883 spin_lock(&block_group->space_info->lock);
75c68e9f 9884 list_del_init(&block_group->ro_list);
18d018ad
ZL
9885
9886 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9887 WARN_ON(block_group->space_info->total_bytes
9888 < block_group->key.offset);
9889 WARN_ON(block_group->space_info->bytes_readonly
9890 < block_group->key.offset);
9891 WARN_ON(block_group->space_info->disk_total
9892 < block_group->key.offset * factor);
9893 }
c146afad
YZ
9894 block_group->space_info->total_bytes -= block_group->key.offset;
9895 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9896 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9897
c146afad 9898 spin_unlock(&block_group->space_info->lock);
283bb197 9899
0af3d00b
JB
9900 memcpy(&key, &block_group->key, sizeof(key));
9901
04216820 9902 lock_chunks(root);
495e64f4
FM
9903 if (!list_empty(&em->list)) {
9904 /* We're in the transaction->pending_chunks list. */
9905 free_extent_map(em);
9906 }
04216820
FM
9907 spin_lock(&block_group->lock);
9908 block_group->removed = 1;
9909 /*
9910 * At this point trimming can't start on this block group, because we
9911 * removed the block group from the tree fs_info->block_group_cache_tree
9912 * so no one can't find it anymore and even if someone already got this
9913 * block group before we removed it from the rbtree, they have already
9914 * incremented block_group->trimming - if they didn't, they won't find
9915 * any free space entries because we already removed them all when we
9916 * called btrfs_remove_free_space_cache().
9917 *
9918 * And we must not remove the extent map from the fs_info->mapping_tree
9919 * to prevent the same logical address range and physical device space
9920 * ranges from being reused for a new block group. This is because our
9921 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9922 * completely transactionless, so while it is trimming a range the
9923 * currently running transaction might finish and a new one start,
9924 * allowing for new block groups to be created that can reuse the same
9925 * physical device locations unless we take this special care.
e33e17ee
JM
9926 *
9927 * There may also be an implicit trim operation if the file system
9928 * is mounted with -odiscard. The same protections must remain
9929 * in place until the extents have been discarded completely when
9930 * the transaction commit has completed.
04216820
FM
9931 */
9932 remove_em = (atomic_read(&block_group->trimming) == 0);
9933 /*
9934 * Make sure a trimmer task always sees the em in the pinned_chunks list
9935 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9936 * before checking block_group->removed).
9937 */
9938 if (!remove_em) {
9939 /*
9940 * Our em might be in trans->transaction->pending_chunks which
9941 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9942 * and so is the fs_info->pinned_chunks list.
9943 *
9944 * So at this point we must be holding the chunk_mutex to avoid
9945 * any races with chunk allocation (more specifically at
9946 * volumes.c:contains_pending_extent()), to ensure it always
9947 * sees the em, either in the pending_chunks list or in the
9948 * pinned_chunks list.
9949 */
9950 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9951 }
9952 spin_unlock(&block_group->lock);
04216820
FM
9953
9954 if (remove_em) {
9955 struct extent_map_tree *em_tree;
9956
9957 em_tree = &root->fs_info->mapping_tree.map_tree;
9958 write_lock(&em_tree->lock);
8dbcd10f
FM
9959 /*
9960 * The em might be in the pending_chunks list, so make sure the
9961 * chunk mutex is locked, since remove_extent_mapping() will
9962 * delete us from that list.
9963 */
04216820
FM
9964 remove_extent_mapping(em_tree, em);
9965 write_unlock(&em_tree->lock);
9966 /* once for the tree */
9967 free_extent_map(em);
9968 }
9969
8dbcd10f
FM
9970 unlock_chunks(root);
9971
fa9c0d79
CM
9972 btrfs_put_block_group(block_group);
9973 btrfs_put_block_group(block_group);
1a40e23b
ZY
9974
9975 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9976 if (ret > 0)
9977 ret = -EIO;
9978 if (ret < 0)
9979 goto out;
9980
9981 ret = btrfs_del_item(trans, root, path);
9982out:
9983 btrfs_free_path(path);
9984 return ret;
9985}
acce952b 9986
47ab2a6c
JB
9987/*
9988 * Process the unused_bgs list and remove any that don't have any allocated
9989 * space inside of them.
9990 */
9991void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9992{
9993 struct btrfs_block_group_cache *block_group;
9994 struct btrfs_space_info *space_info;
9995 struct btrfs_root *root = fs_info->extent_root;
9996 struct btrfs_trans_handle *trans;
9997 int ret = 0;
9998
9999 if (!fs_info->open)
10000 return;
10001
10002 spin_lock(&fs_info->unused_bgs_lock);
10003 while (!list_empty(&fs_info->unused_bgs)) {
10004 u64 start, end;
e33e17ee 10005 int trimming;
47ab2a6c
JB
10006
10007 block_group = list_first_entry(&fs_info->unused_bgs,
10008 struct btrfs_block_group_cache,
10009 bg_list);
10010 space_info = block_group->space_info;
10011 list_del_init(&block_group->bg_list);
10012 if (ret || btrfs_mixed_space_info(space_info)) {
10013 btrfs_put_block_group(block_group);
10014 continue;
10015 }
10016 spin_unlock(&fs_info->unused_bgs_lock);
10017
67c5e7d4
FM
10018 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10019
47ab2a6c
JB
10020 /* Don't want to race with allocators so take the groups_sem */
10021 down_write(&space_info->groups_sem);
10022 spin_lock(&block_group->lock);
10023 if (block_group->reserved ||
10024 btrfs_block_group_used(&block_group->item) ||
10025 block_group->ro) {
10026 /*
10027 * We want to bail if we made new allocations or have
10028 * outstanding allocations in this block group. We do
10029 * the ro check in case balance is currently acting on
10030 * this block group.
10031 */
10032 spin_unlock(&block_group->lock);
10033 up_write(&space_info->groups_sem);
10034 goto next;
10035 }
10036 spin_unlock(&block_group->lock);
10037
10038 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10039 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10040 up_write(&space_info->groups_sem);
10041 if (ret < 0) {
10042 ret = 0;
10043 goto next;
10044 }
10045
10046 /*
10047 * Want to do this before we do anything else so we can recover
10048 * properly if we fail to join the transaction.
10049 */
3d84be79
FL
10050 /* 1 for btrfs_orphan_reserve_metadata() */
10051 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10052 if (IS_ERR(trans)) {
868f401a 10053 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10054 ret = PTR_ERR(trans);
10055 goto next;
10056 }
10057
10058 /*
10059 * We could have pending pinned extents for this block group,
10060 * just delete them, we don't care about them anymore.
10061 */
10062 start = block_group->key.objectid;
10063 end = start + block_group->key.offset - 1;
d4b450cd
FM
10064 /*
10065 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10066 * btrfs_finish_extent_commit(). If we are at transaction N,
10067 * another task might be running finish_extent_commit() for the
10068 * previous transaction N - 1, and have seen a range belonging
10069 * to the block group in freed_extents[] before we were able to
10070 * clear the whole block group range from freed_extents[]. This
10071 * means that task can lookup for the block group after we
10072 * unpinned it from freed_extents[] and removed it, leading to
10073 * a BUG_ON() at btrfs_unpin_extent_range().
10074 */
10075 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10076 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10077 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10078 if (ret) {
d4b450cd 10079 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10080 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10081 goto end_trans;
10082 }
10083 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10084 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10085 if (ret) {
d4b450cd 10086 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10087 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10088 goto end_trans;
10089 }
d4b450cd 10090 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10091
10092 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10093 spin_lock(&space_info->lock);
10094 spin_lock(&block_group->lock);
10095
10096 space_info->bytes_pinned -= block_group->pinned;
10097 space_info->bytes_readonly += block_group->pinned;
10098 percpu_counter_add(&space_info->total_bytes_pinned,
10099 -block_group->pinned);
47ab2a6c
JB
10100 block_group->pinned = 0;
10101
c30666d4
ZL
10102 spin_unlock(&block_group->lock);
10103 spin_unlock(&space_info->lock);
10104
e33e17ee
JM
10105 /* DISCARD can flip during remount */
10106 trimming = btrfs_test_opt(root, DISCARD);
10107
10108 /* Implicit trim during transaction commit. */
10109 if (trimming)
10110 btrfs_get_block_group_trimming(block_group);
10111
47ab2a6c
JB
10112 /*
10113 * Btrfs_remove_chunk will abort the transaction if things go
10114 * horribly wrong.
10115 */
10116 ret = btrfs_remove_chunk(trans, root,
10117 block_group->key.objectid);
e33e17ee
JM
10118
10119 if (ret) {
10120 if (trimming)
10121 btrfs_put_block_group_trimming(block_group);
10122 goto end_trans;
10123 }
10124
10125 /*
10126 * If we're not mounted with -odiscard, we can just forget
10127 * about this block group. Otherwise we'll need to wait
10128 * until transaction commit to do the actual discard.
10129 */
10130 if (trimming) {
10131 WARN_ON(!list_empty(&block_group->bg_list));
10132 spin_lock(&trans->transaction->deleted_bgs_lock);
10133 list_move(&block_group->bg_list,
10134 &trans->transaction->deleted_bgs);
10135 spin_unlock(&trans->transaction->deleted_bgs_lock);
10136 btrfs_get_block_group(block_group);
10137 }
758eb51e 10138end_trans:
47ab2a6c
JB
10139 btrfs_end_transaction(trans, root);
10140next:
67c5e7d4 10141 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10142 btrfs_put_block_group(block_group);
10143 spin_lock(&fs_info->unused_bgs_lock);
10144 }
10145 spin_unlock(&fs_info->unused_bgs_lock);
10146}
10147
c59021f8 10148int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10149{
10150 struct btrfs_space_info *space_info;
1aba86d6 10151 struct btrfs_super_block *disk_super;
10152 u64 features;
10153 u64 flags;
10154 int mixed = 0;
c59021f8 10155 int ret;
10156
6c41761f 10157 disk_super = fs_info->super_copy;
1aba86d6 10158 if (!btrfs_super_root(disk_super))
10159 return 1;
c59021f8 10160
1aba86d6 10161 features = btrfs_super_incompat_flags(disk_super);
10162 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10163 mixed = 1;
c59021f8 10164
1aba86d6 10165 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10166 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10167 if (ret)
1aba86d6 10168 goto out;
c59021f8 10169
1aba86d6 10170 if (mixed) {
10171 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10172 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10173 } else {
10174 flags = BTRFS_BLOCK_GROUP_METADATA;
10175 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10176 if (ret)
10177 goto out;
10178
10179 flags = BTRFS_BLOCK_GROUP_DATA;
10180 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10181 }
10182out:
c59021f8 10183 return ret;
10184}
10185
acce952b 10186int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10187{
678886bd 10188 return unpin_extent_range(root, start, end, false);
acce952b 10189}
10190
499f377f
JM
10191/*
10192 * It used to be that old block groups would be left around forever.
10193 * Iterating over them would be enough to trim unused space. Since we
10194 * now automatically remove them, we also need to iterate over unallocated
10195 * space.
10196 *
10197 * We don't want a transaction for this since the discard may take a
10198 * substantial amount of time. We don't require that a transaction be
10199 * running, but we do need to take a running transaction into account
10200 * to ensure that we're not discarding chunks that were released in
10201 * the current transaction.
10202 *
10203 * Holding the chunks lock will prevent other threads from allocating
10204 * or releasing chunks, but it won't prevent a running transaction
10205 * from committing and releasing the memory that the pending chunks
10206 * list head uses. For that, we need to take a reference to the
10207 * transaction.
10208 */
10209static int btrfs_trim_free_extents(struct btrfs_device *device,
10210 u64 minlen, u64 *trimmed)
10211{
10212 u64 start = 0, len = 0;
10213 int ret;
10214
10215 *trimmed = 0;
10216
10217 /* Not writeable = nothing to do. */
10218 if (!device->writeable)
10219 return 0;
10220
10221 /* No free space = nothing to do. */
10222 if (device->total_bytes <= device->bytes_used)
10223 return 0;
10224
10225 ret = 0;
10226
10227 while (1) {
10228 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10229 struct btrfs_transaction *trans;
10230 u64 bytes;
10231
10232 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10233 if (ret)
10234 return ret;
10235
10236 down_read(&fs_info->commit_root_sem);
10237
10238 spin_lock(&fs_info->trans_lock);
10239 trans = fs_info->running_transaction;
10240 if (trans)
10241 atomic_inc(&trans->use_count);
10242 spin_unlock(&fs_info->trans_lock);
10243
10244 ret = find_free_dev_extent_start(trans, device, minlen, start,
10245 &start, &len);
10246 if (trans)
10247 btrfs_put_transaction(trans);
10248
10249 if (ret) {
10250 up_read(&fs_info->commit_root_sem);
10251 mutex_unlock(&fs_info->chunk_mutex);
10252 if (ret == -ENOSPC)
10253 ret = 0;
10254 break;
10255 }
10256
10257 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10258 up_read(&fs_info->commit_root_sem);
10259 mutex_unlock(&fs_info->chunk_mutex);
10260
10261 if (ret)
10262 break;
10263
10264 start += len;
10265 *trimmed += bytes;
10266
10267 if (fatal_signal_pending(current)) {
10268 ret = -ERESTARTSYS;
10269 break;
10270 }
10271
10272 cond_resched();
10273 }
10274
10275 return ret;
10276}
10277
f7039b1d
LD
10278int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10279{
10280 struct btrfs_fs_info *fs_info = root->fs_info;
10281 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10282 struct btrfs_device *device;
10283 struct list_head *devices;
f7039b1d
LD
10284 u64 group_trimmed;
10285 u64 start;
10286 u64 end;
10287 u64 trimmed = 0;
2cac13e4 10288 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10289 int ret = 0;
10290
2cac13e4
LB
10291 /*
10292 * try to trim all FS space, our block group may start from non-zero.
10293 */
10294 if (range->len == total_bytes)
10295 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10296 else
10297 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10298
10299 while (cache) {
10300 if (cache->key.objectid >= (range->start + range->len)) {
10301 btrfs_put_block_group(cache);
10302 break;
10303 }
10304
10305 start = max(range->start, cache->key.objectid);
10306 end = min(range->start + range->len,
10307 cache->key.objectid + cache->key.offset);
10308
10309 if (end - start >= range->minlen) {
10310 if (!block_group_cache_done(cache)) {
f6373bf3 10311 ret = cache_block_group(cache, 0);
1be41b78
JB
10312 if (ret) {
10313 btrfs_put_block_group(cache);
10314 break;
10315 }
10316 ret = wait_block_group_cache_done(cache);
10317 if (ret) {
10318 btrfs_put_block_group(cache);
10319 break;
10320 }
f7039b1d
LD
10321 }
10322 ret = btrfs_trim_block_group(cache,
10323 &group_trimmed,
10324 start,
10325 end,
10326 range->minlen);
10327
10328 trimmed += group_trimmed;
10329 if (ret) {
10330 btrfs_put_block_group(cache);
10331 break;
10332 }
10333 }
10334
10335 cache = next_block_group(fs_info->tree_root, cache);
10336 }
10337
499f377f
JM
10338 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10339 devices = &root->fs_info->fs_devices->alloc_list;
10340 list_for_each_entry(device, devices, dev_alloc_list) {
10341 ret = btrfs_trim_free_extents(device, range->minlen,
10342 &group_trimmed);
10343 if (ret)
10344 break;
10345
10346 trimmed += group_trimmed;
10347 }
10348 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10349
f7039b1d
LD
10350 range->len = trimmed;
10351 return ret;
10352}
8257b2dc
MX
10353
10354/*
9ea24bbe
FM
10355 * btrfs_{start,end}_write_no_snapshoting() are similar to
10356 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10357 * data into the page cache through nocow before the subvolume is snapshoted,
10358 * but flush the data into disk after the snapshot creation, or to prevent
10359 * operations while snapshoting is ongoing and that cause the snapshot to be
10360 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10361 */
9ea24bbe 10362void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10363{
10364 percpu_counter_dec(&root->subv_writers->counter);
10365 /*
10366 * Make sure counter is updated before we wake up
10367 * waiters.
10368 */
10369 smp_mb();
10370 if (waitqueue_active(&root->subv_writers->wait))
10371 wake_up(&root->subv_writers->wait);
10372}
10373
9ea24bbe 10374int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10375{
ee39b432 10376 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10377 return 0;
10378
10379 percpu_counter_inc(&root->subv_writers->counter);
10380 /*
10381 * Make sure counter is updated before we check for snapshot creation.
10382 */
10383 smp_mb();
ee39b432 10384 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10385 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10386 return 0;
10387 }
10388 return 1;
10389}
This page took 1.416016 seconds and 5 git commands to generate.