Btrfs: fix callers of btrfs_block_rsv_migrate
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
fb25e914
JB
63/*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76};
77
ce93ec54
JB
78static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
5d4f98a2
YZ
81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
c682f9b3 83 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
c682f9b3 86 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 99 int level, struct btrfs_key *ins);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
758f2dfc 128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66 235 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 236 start, end, EXTENT_UPTODATE);
11833d66
YZ
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 249 start, end, EXTENT_UPTODATE);
11833d66 250 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 251 start, end, EXTENT_UPTODATE);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
a5ed9182
OS
361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
73fa48b6 399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
bab39bf9 403 struct btrfs_root *extent_root;
e37c9e69 404 struct btrfs_path *path;
5f39d397 405 struct extent_buffer *leaf;
11833d66 406 struct btrfs_key key;
817d52f8 407 u64 total_found = 0;
11833d66
YZ
408 u64 last = 0;
409 u32 nritems;
73fa48b6 410 int ret;
d0bd4560 411 bool wakeup = true;
f510cfec 412
bab39bf9
JB
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
e37c9e69
CM
417 path = btrfs_alloc_path();
418 if (!path)
73fa48b6 419 return -ENOMEM;
7d7d6068 420
817d52f8 421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 422
d0bd4560
JB
423#ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431#endif
5cd57b2c 432 /*
817d52f8
JB
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
5cd57b2c
CM
437 */
438 path->skip_locking = 1;
817d52f8 439 path->search_commit_root = 1;
e4058b54 440 path->reada = READA_FORWARD;
817d52f8 441
e4404d6e 442 key.objectid = last;
e37c9e69 443 key.offset = 0;
11833d66 444 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 445
52ee28d2 446next:
11833d66 447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 448 if (ret < 0)
73fa48b6 449 goto out;
a512bbf8 450
11833d66
YZ
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
d397712b 454 while (1) {
7841cb28 455 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 456 last = (u64)-1;
817d52f8 457 break;
f25784b3 458 }
817d52f8 459
11833d66
YZ
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
e37c9e69 465 break;
817d52f8 466
c9ea7b24 467 if (need_resched() ||
9e351cc8 468 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
469 if (wakeup)
470 caching_ctl->progress = last;
ff5714cc 471 btrfs_release_path(path);
9e351cc8 472 up_read(&fs_info->commit_root_sem);
589d8ade 473 mutex_unlock(&caching_ctl->mutex);
11833d66 474 cond_resched();
73fa48b6
OS
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
589d8ade 478 }
0a3896d0
JB
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
73fa48b6 482 goto out;
0a3896d0
JB
483 if (ret)
484 break;
589d8ade
JB
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
11833d66 488 }
817d52f8 489
52ee28d2
LB
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
d0bd4560
JB
495 if (wakeup)
496 caching_ctl->progress = last;
52ee28d2
LB
497 btrfs_release_path(path);
498 goto next;
499 }
500
11833d66
YZ
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
817d52f8 503 continue;
e37c9e69 504 }
0f9dd46c 505
e37c9e69 506 if (key.objectid >= block_group->key.objectid +
0f9dd46c 507 block_group->key.offset)
e37c9e69 508 break;
7d7d6068 509
3173a18f
JB
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
3173a18f
JB
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
707e8a07 517 fs_info->tree_root->nodesize;
3173a18f
JB
518 else
519 last = key.objectid + key.offset;
817d52f8 520
73fa48b6 521 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 522 total_found = 0;
d0bd4560
JB
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
11833d66 525 }
817d52f8 526 }
e37c9e69
CM
527 path->slots[0]++;
528 }
817d52f8 529 ret = 0;
e37c9e69 530
817d52f8
JB
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
11833d66 534 caching_ctl->progress = (u64)-1;
817d52f8 535
73fa48b6
OS
536out:
537 btrfs_free_path(path);
538 return ret;
539}
540
541static noinline void caching_thread(struct btrfs_work *work)
542{
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
b4570aa9 546 struct btrfs_root *extent_root;
73fa48b6
OS
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
b4570aa9 552 extent_root = fs_info->extent_root;
73fa48b6
OS
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
1e144fb8
OS
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
73fa48b6 561
817d52f8 562 spin_lock(&block_group->lock);
11833d66 563 block_group->caching_ctl = NULL;
73fa48b6 564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 565 spin_unlock(&block_group->lock);
0f9dd46c 566
d0bd4560
JB
567#ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580#endif
581
582 caching_ctl->progress = (u64)-1;
11833d66 583
9e351cc8 584 up_read(&fs_info->commit_root_sem);
73fa48b6 585 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 586 mutex_unlock(&caching_ctl->mutex);
73fa48b6 587
11833d66
YZ
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
11dfe35a 591 btrfs_put_block_group(block_group);
817d52f8
JB
592}
593
9d66e233 594static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 595 int load_cache_only)
817d52f8 596{
291c7d2f 597 DEFINE_WAIT(wait);
11833d66
YZ
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
600 int ret = 0;
601
291c7d2f 602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
603 if (!caching_ctl)
604 return -ENOMEM;
291c7d2f
JB
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
291c7d2f
JB
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
11833d66 646 return 0;
291c7d2f
JB
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
11833d66 652
d53ba474 653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 654 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
291c7d2f 659 cache->caching_ctl = NULL;
9d66e233
JB
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 662 caching_ctl->progress = (u64)-1;
9d66e233 663 } else {
291c7d2f
JB
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 669 cache->has_caching_ctl = 1;
291c7d2f 670 }
9d66e233
JB
671 }
672 spin_unlock(&cache->lock);
d0bd4560
JB
673#ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688#endif
cb83b7b8
JB
689 mutex_unlock(&caching_ctl->mutex);
690
291c7d2f 691 wake_up(&caching_ctl->wait);
3c14874a 692 if (ret == 1) {
291c7d2f 693 put_caching_control(caching_ctl);
3c14874a 694 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 695 return 0;
3c14874a 696 }
291c7d2f
JB
697 } else {
698 /*
1e144fb8
OS
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 708 cache->has_caching_ctl = 1;
291c7d2f
JB
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
9d66e233
JB
712 }
713
291c7d2f
JB
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
11833d66 716 return 0;
817d52f8 717 }
817d52f8 718
9e351cc8 719 down_write(&fs_info->commit_root_sem);
291c7d2f 720 atomic_inc(&caching_ctl->count);
11833d66 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 722 up_write(&fs_info->commit_root_sem);
11833d66 723
11dfe35a 724 btrfs_get_block_group(cache);
11833d66 725
e66f0bb1 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 727
ef8bbdfe 728 return ret;
e37c9e69
CM
729}
730
0f9dd46c
JB
731/*
732 * return the block group that starts at or after bytenr
733 */
d397712b
CM
734static struct btrfs_block_group_cache *
735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 736{
0f9dd46c 737 struct btrfs_block_group_cache *cache;
0ef3e66b 738
0f9dd46c 739 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 740
0f9dd46c 741 return cache;
0ef3e66b
CM
742}
743
0f9dd46c 744/*
9f55684c 745 * return the block group that contains the given bytenr
0f9dd46c 746 */
d397712b
CM
747struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
be744175 750{
0f9dd46c 751 struct btrfs_block_group_cache *cache;
be744175 752
0f9dd46c 753 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 754
0f9dd46c 755 return cache;
be744175 756}
0b86a832 757
0f9dd46c
JB
758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
6324fbf3 760{
0f9dd46c 761 struct list_head *head = &info->space_info;
0f9dd46c 762 struct btrfs_space_info *found;
4184ea7f 763
52ba6929 764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 765
4184ea7f
CM
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
67377734 768 if (found->flags & flags) {
4184ea7f 769 rcu_read_unlock();
0f9dd46c 770 return found;
4184ea7f 771 }
0f9dd46c 772 }
4184ea7f 773 rcu_read_unlock();
0f9dd46c 774 return NULL;
6324fbf3
CM
775}
776
4184ea7f
CM
777/*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782{
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790}
791
1a4ed8fd
FM
792/* simple helper to search for an existing data extent at a given offset */
793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
794{
795 int ret;
796 struct btrfs_key key;
31840ae1 797 struct btrfs_path *path;
e02119d5 798
31840ae1 799 path = btrfs_alloc_path();
d8926bb3
MF
800 if (!path)
801 return -ENOMEM;
802
e02119d5
CM
803 key.objectid = start;
804 key.offset = len;
3173a18f 805 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
31840ae1 808 btrfs_free_path(path);
7bb86316
CM
809 return ret;
810}
811
a22285a6 812/*
3173a18f 813 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
3173a18f 823 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
824{
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
3173a18f
JB
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 841 offset = root->nodesize;
3173a18f
JB
842 metadata = 0;
843 }
844
a22285a6
YZ
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
a22285a6
YZ
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
639eefc8
FDBM
853
854search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
a22285a6
YZ
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
3173a18f 867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 874 key.offset == root->nodesize)
74be9510
FDBM
875 ret = 0;
876 }
3173a18f
JB
877 }
878
a22285a6
YZ
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896#else
897 BUG();
898#endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
b3b4aa74 918 btrfs_release_path(path);
a22285a6 919
8cc33e5c
DS
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
a22285a6
YZ
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
639eefc8 927 goto search_again;
a22285a6 928 }
d7df2c79 929 spin_lock(&head->lock);
a22285a6
YZ
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
d7df2c79 936 spin_unlock(&head->lock);
a22285a6
YZ
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946out_free:
947 btrfs_free_path(path);
948 return ret;
949}
950
d8d5f3e1
CM
951/*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
5d4f98a2
YZ
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
01327610 983 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
d8d5f3e1
CM
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1013 * - different files inside a single subvolume
d8d5f3e1
CM
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
5d4f98a2 1016 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1017 *
1018 * - Objectid of the subvolume root
d8d5f3e1 1019 * - objectid of the file holding the reference
5d4f98a2
YZ
1020 * - original offset in the file
1021 * - how many bookend extents
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
d8d5f3e1 1025 *
5d4f98a2 1026 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1027 *
5d4f98a2 1028 * - number of pointers in the tree leaf
d8d5f3e1 1029 *
5d4f98a2
YZ
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
d8d5f3e1 1035 *
5d4f98a2 1036 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1037 *
5d4f98a2
YZ
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1040 *
5d4f98a2 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1042 *
5d4f98a2 1043 * Btree extents can be referenced by:
d8d5f3e1 1044 *
5d4f98a2 1045 * - Different subvolumes
d8d5f3e1 1046 *
5d4f98a2
YZ
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
d8d5f3e1 1051 *
5d4f98a2
YZ
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
d8d5f3e1 1055 */
31840ae1 1056
5d4f98a2
YZ
1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
7bb86316 1062{
5d4f98a2
YZ
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
7bb86316 1068 struct btrfs_key key;
5d4f98a2
YZ
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
79787eaa 1088 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
b3b4aa74 1104 btrfs_release_path(path);
5d4f98a2
YZ
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
79787eaa 1114 BUG_ON(ret); /* Corruption */
5d4f98a2 1115
4b90c680 1116 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136}
1137#endif
1138
1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140{
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
14a958e6 1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1147 lenum = cpu_to_le64(owner);
14a958e6 1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1149 lenum = cpu_to_le64(offset);
14a958e6 1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153}
1154
1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157{
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161}
1162
1163static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166{
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172}
1173
1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180{
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
31840ae1 1183 struct extent_buffer *leaf;
5d4f98a2 1184 u32 nritems;
74493f7a 1185 int ret;
5d4f98a2
YZ
1186 int recow;
1187 int err = -ENOENT;
74493f7a 1188
31840ae1 1189 key.objectid = bytenr;
5d4f98a2
YZ
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
31840ae1 1205
5d4f98a2
YZ
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1211 btrfs_release_path(path);
5d4f98a2
YZ
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219#endif
1220 goto fail;
31840ae1
ZY
1221 }
1222
1223 leaf = path->nodes[0];
5d4f98a2
YZ
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
b3b4aa74 1249 btrfs_release_path(path);
5d4f98a2
YZ
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
31840ae1 1256 }
5d4f98a2
YZ
1257fail:
1258 return err;
31840ae1
ZY
1259}
1260
5d4f98a2
YZ
1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
31840ae1
ZY
1267{
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 size;
31840ae1
ZY
1271 u32 num_refs;
1272 int ret;
74493f7a 1273
74493f7a 1274 key.objectid = bytenr;
5d4f98a2
YZ
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
74493f7a 1285
5d4f98a2
YZ
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
31840ae1 1293 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1301 }
5d4f98a2
YZ
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
31840ae1 1316
5d4f98a2
YZ
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1331 }
31840ae1 1332 }
5d4f98a2
YZ
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335fail:
b3b4aa74 1336 btrfs_release_path(path);
7bb86316 1337 return ret;
74493f7a
CM
1338}
1339
5d4f98a2
YZ
1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
fcebe456 1343 int refs_to_drop, int *last_ref)
31840ae1 1344{
5d4f98a2
YZ
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1348 struct extent_buffer *leaf;
5d4f98a2 1349 u32 num_refs = 0;
31840ae1
ZY
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
5d4f98a2
YZ
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369#endif
1370 } else {
1371 BUG();
1372 }
1373
56bec294
CM
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
5d4f98a2 1376
31840ae1
ZY
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
fcebe456 1379 *last_ref = 1;
31840ae1 1380 } else {
5d4f98a2
YZ
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392#endif
31840ae1
ZY
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
31840ae1
ZY
1395 return ret;
1396}
1397
9ed0dea0 1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1399 struct btrfs_extent_inline_ref *iref)
15916de8 1400{
5d4f98a2
YZ
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1432#endif
5d4f98a2
YZ
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437}
15916de8 1438
5d4f98a2
YZ
1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1f3c79a2 1444{
5d4f98a2 1445 struct btrfs_key key;
1f3c79a2 1446 int ret;
1f3c79a2 1447
5d4f98a2
YZ
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1f3c79a2
LH
1455 }
1456
5d4f98a2
YZ
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
b3b4aa74 1462 btrfs_release_path(path);
5d4f98a2
YZ
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1f3c79a2 1468#endif
5d4f98a2 1469 return ret;
1f3c79a2
LH
1470}
1471
5d4f98a2
YZ
1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
31840ae1 1477{
5d4f98a2 1478 struct btrfs_key key;
31840ae1 1479 int ret;
31840ae1 1480
5d4f98a2
YZ
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1491 btrfs_release_path(path);
31840ae1
ZY
1492 return ret;
1493}
1494
5d4f98a2 1495static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1496{
5d4f98a2
YZ
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
31840ae1 1510}
56bec294 1511
2c47e605
YZ
1512static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
56bec294 1514
02217ed2 1515{
2c47e605 1516 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1517 if (!path->nodes[level])
1518 break;
5d4f98a2
YZ
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531}
037e6390 1532
5d4f98a2
YZ
1533/*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546static noinline_for_stack
1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554{
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
3173a18f
JB
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
26b8003f 1570
db94535d 1571 key.objectid = bytenr;
31840ae1 1572 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1573 key.offset = num_bytes;
31840ae1 1574
5d4f98a2
YZ
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1578 path->keep_locks = 1;
5d4f98a2
YZ
1579 } else
1580 extra_size = -1;
3173a18f
JB
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591again:
5d4f98a2 1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1593 if (ret < 0) {
5d4f98a2
YZ
1594 err = ret;
1595 goto out;
1596 }
3173a18f
JB
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
9ce49a0b 1614 key.objectid = bytenr;
3173a18f
JB
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
79787eaa
JM
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
fae7f21c 1625 } else if (WARN_ON(ret)) {
492104c8 1626 err = -EIO;
492104c8 1627 goto out;
79787eaa 1628 }
5d4f98a2
YZ
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647#endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
5d4f98a2
YZ
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
3173a18f 1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
5d4f98a2
YZ
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
2c47e605
YZ
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
85d4198e 1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728out:
85d4198e 1729 if (insert) {
5d4f98a2
YZ
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734}
1735
1736/*
1737 * helper to add new inline back ref
1738 */
1739static noinline_for_stack
fd279fae 1740void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1746{
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
5d4f98a2
YZ
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
4b90c680 1763 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1798}
1799
1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806{
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
54aa1f4d 1813 return ret;
5d4f98a2 1814
b3b4aa74 1815 btrfs_release_path(path);
5d4f98a2
YZ
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
b9473439 1824 }
5d4f98a2
YZ
1825 return ret;
1826}
31840ae1 1827
5d4f98a2
YZ
1828/*
1829 * helper to update/remove inline back ref
1830 */
1831static noinline_for_stack
afe5fea7 1832void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
fcebe456
JB
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
5d4f98a2
YZ
1838{
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
5d4f98a2
YZ
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
56bec294 1870 }
31840ae1 1871
5d4f98a2
YZ
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
afe5fea7 1890 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1893}
1894
1895static noinline_for_stack
1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903{
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1912 update_inline_extent_backref(root, path, iref,
fcebe456 1913 refs_to_add, extent_op, NULL);
5d4f98a2 1914 } else if (ret == -ENOENT) {
fd279fae 1915 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
771ed689 1919 }
5d4f98a2
YZ
1920 return ret;
1921}
31840ae1 1922
5d4f98a2
YZ
1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928{
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940}
56bec294 1941
5d4f98a2
YZ
1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
fcebe456 1946 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1947{
143bede5 1948 int ret = 0;
b9473439 1949
5d4f98a2
YZ
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
afe5fea7 1952 update_inline_extent_backref(root, path, iref,
fcebe456 1953 -refs_to_drop, NULL, last_ref);
5d4f98a2 1954 } else if (is_data) {
fcebe456
JB
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
5d4f98a2 1957 } else {
fcebe456 1958 *last_ref = 1;
5d4f98a2
YZ
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962}
1963
86557861 1964#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
5d4f98a2 1967{
86557861
JM
1968 int j, ret = 0;
1969 u64 bytes_left, end;
4d89d377 1970 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1971
4d89d377
JM
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
d04c6b88 1977
4d89d377 1978 *discarded_bytes = 0;
86557861
JM
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2030 GFP_NOFS, 0);
2031 if (!ret)
86557861 2032 *discarded_bytes += bytes_left;
4d89d377 2033 }
d04c6b88 2034 return ret;
5d4f98a2 2035}
5d4f98a2 2036
1edb647b
FM
2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2039{
5d4f98a2 2040 int ret;
5378e607 2041 u64 discarded_bytes = 0;
a1d3c478 2042 struct btrfs_bio *bbio = NULL;
5d4f98a2 2043
e244a0ae 2044
2999241d
FM
2045 /*
2046 * Avoid races with device replace and make sure our bbio has devices
2047 * associated to its stripes that don't go away while we are discarding.
2048 */
2049 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2050 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2051 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2052 bytenr, &num_bytes, &bbio, 0);
79787eaa 2053 /* Error condition is -ENOMEM */
5d4f98a2 2054 if (!ret) {
a1d3c478 2055 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2056 int i;
2057
5d4f98a2 2058
a1d3c478 2059 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2060 u64 bytes;
d5e2003c
JB
2061 if (!stripe->dev->can_discard)
2062 continue;
2063
5378e607
LD
2064 ret = btrfs_issue_discard(stripe->dev->bdev,
2065 stripe->physical,
d04c6b88
JM
2066 stripe->length,
2067 &bytes);
5378e607 2068 if (!ret)
d04c6b88 2069 discarded_bytes += bytes;
5378e607 2070 else if (ret != -EOPNOTSUPP)
79787eaa 2071 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2072
2073 /*
2074 * Just in case we get back EOPNOTSUPP for some reason,
2075 * just ignore the return value so we don't screw up
2076 * people calling discard_extent.
2077 */
2078 ret = 0;
5d4f98a2 2079 }
6e9606d2 2080 btrfs_put_bbio(bbio);
5d4f98a2 2081 }
2999241d 2082 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2083
2084 if (actual_bytes)
2085 *actual_bytes = discarded_bytes;
2086
5d4f98a2 2087
53b381b3
DW
2088 if (ret == -EOPNOTSUPP)
2089 ret = 0;
5d4f98a2 2090 return ret;
5d4f98a2
YZ
2091}
2092
79787eaa 2093/* Can return -ENOMEM */
5d4f98a2
YZ
2094int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *root,
2096 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2097 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2098{
2099 int ret;
66d7e7f0
AJ
2100 struct btrfs_fs_info *fs_info = root->fs_info;
2101
5d4f98a2
YZ
2102 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104
2105 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2106 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107 num_bytes,
5d4f98a2 2108 parent, root_objectid, (int)owner,
b06c4bf5 2109 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2110 } else {
66d7e7f0 2111 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2112 num_bytes, parent, root_objectid,
2113 owner, offset, 0,
b06c4bf5 2114 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2115 }
2116 return ret;
2117}
2118
2119static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
c682f9b3 2121 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2122 u64 parent, u64 root_objectid,
2123 u64 owner, u64 offset, int refs_to_add,
2124 struct btrfs_delayed_extent_op *extent_op)
2125{
fcebe456 2126 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2127 struct btrfs_path *path;
2128 struct extent_buffer *leaf;
2129 struct btrfs_extent_item *item;
fcebe456 2130 struct btrfs_key key;
c682f9b3
QW
2131 u64 bytenr = node->bytenr;
2132 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2133 u64 refs;
2134 int ret;
5d4f98a2
YZ
2135
2136 path = btrfs_alloc_path();
2137 if (!path)
2138 return -ENOMEM;
2139
e4058b54 2140 path->reada = READA_FORWARD;
5d4f98a2
YZ
2141 path->leave_spinning = 1;
2142 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2143 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144 bytenr, num_bytes, parent,
5d4f98a2
YZ
2145 root_objectid, owner, offset,
2146 refs_to_add, extent_op);
0ed4792a 2147 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2148 goto out;
fcebe456
JB
2149
2150 /*
2151 * Ok we had -EAGAIN which means we didn't have space to insert and
2152 * inline extent ref, so just update the reference count and add a
2153 * normal backref.
2154 */
5d4f98a2 2155 leaf = path->nodes[0];
fcebe456 2156 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2157 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158 refs = btrfs_extent_refs(leaf, item);
2159 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160 if (extent_op)
2161 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2162
5d4f98a2 2163 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2164 btrfs_release_path(path);
56bec294 2165
e4058b54 2166 path->reada = READA_FORWARD;
b9473439 2167 path->leave_spinning = 1;
56bec294
CM
2168 /* now insert the actual backref */
2169 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2170 path, bytenr, parent, root_objectid,
2171 owner, offset, refs_to_add);
79787eaa
JM
2172 if (ret)
2173 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2174out:
56bec294 2175 btrfs_free_path(path);
30d133fc 2176 return ret;
56bec294
CM
2177}
2178
5d4f98a2
YZ
2179static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root,
2181 struct btrfs_delayed_ref_node *node,
2182 struct btrfs_delayed_extent_op *extent_op,
2183 int insert_reserved)
56bec294 2184{
5d4f98a2
YZ
2185 int ret = 0;
2186 struct btrfs_delayed_data_ref *ref;
2187 struct btrfs_key ins;
2188 u64 parent = 0;
2189 u64 ref_root = 0;
2190 u64 flags = 0;
2191
2192 ins.objectid = node->bytenr;
2193 ins.offset = node->num_bytes;
2194 ins.type = BTRFS_EXTENT_ITEM_KEY;
2195
2196 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2197 trace_run_delayed_data_ref(node, ref, node->action);
2198
5d4f98a2
YZ
2199 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200 parent = ref->parent;
fcebe456 2201 ref_root = ref->root;
5d4f98a2
YZ
2202
2203 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2204 if (extent_op)
5d4f98a2 2205 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2206 ret = alloc_reserved_file_extent(trans, root,
2207 parent, ref_root, flags,
2208 ref->objectid, ref->offset,
2209 &ins, node->ref_mod);
5d4f98a2 2210 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2211 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2212 ref_root, ref->objectid,
2213 ref->offset, node->ref_mod,
c682f9b3 2214 extent_op);
5d4f98a2 2215 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2216 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2217 ref_root, ref->objectid,
2218 ref->offset, node->ref_mod,
c682f9b3 2219 extent_op);
5d4f98a2
YZ
2220 } else {
2221 BUG();
2222 }
2223 return ret;
2224}
2225
2226static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227 struct extent_buffer *leaf,
2228 struct btrfs_extent_item *ei)
2229{
2230 u64 flags = btrfs_extent_flags(leaf, ei);
2231 if (extent_op->update_flags) {
2232 flags |= extent_op->flags_to_set;
2233 btrfs_set_extent_flags(leaf, ei, flags);
2234 }
2235
2236 if (extent_op->update_key) {
2237 struct btrfs_tree_block_info *bi;
2238 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239 bi = (struct btrfs_tree_block_info *)(ei + 1);
2240 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241 }
2242}
2243
2244static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op)
2248{
2249 struct btrfs_key key;
2250 struct btrfs_path *path;
2251 struct btrfs_extent_item *ei;
2252 struct extent_buffer *leaf;
2253 u32 item_size;
56bec294 2254 int ret;
5d4f98a2 2255 int err = 0;
b1c79e09 2256 int metadata = !extent_op->is_data;
5d4f98a2 2257
79787eaa
JM
2258 if (trans->aborted)
2259 return 0;
2260
3173a18f
JB
2261 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262 metadata = 0;
2263
5d4f98a2
YZ
2264 path = btrfs_alloc_path();
2265 if (!path)
2266 return -ENOMEM;
2267
2268 key.objectid = node->bytenr;
5d4f98a2 2269
3173a18f 2270 if (metadata) {
3173a18f 2271 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2272 key.offset = extent_op->level;
3173a18f
JB
2273 } else {
2274 key.type = BTRFS_EXTENT_ITEM_KEY;
2275 key.offset = node->num_bytes;
2276 }
2277
2278again:
e4058b54 2279 path->reada = READA_FORWARD;
5d4f98a2
YZ
2280 path->leave_spinning = 1;
2281 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282 path, 0, 1);
2283 if (ret < 0) {
2284 err = ret;
2285 goto out;
2286 }
2287 if (ret > 0) {
3173a18f 2288 if (metadata) {
55994887
FDBM
2289 if (path->slots[0] > 0) {
2290 path->slots[0]--;
2291 btrfs_item_key_to_cpu(path->nodes[0], &key,
2292 path->slots[0]);
2293 if (key.objectid == node->bytenr &&
2294 key.type == BTRFS_EXTENT_ITEM_KEY &&
2295 key.offset == node->num_bytes)
2296 ret = 0;
2297 }
2298 if (ret > 0) {
2299 btrfs_release_path(path);
2300 metadata = 0;
3173a18f 2301
55994887
FDBM
2302 key.objectid = node->bytenr;
2303 key.offset = node->num_bytes;
2304 key.type = BTRFS_EXTENT_ITEM_KEY;
2305 goto again;
2306 }
2307 } else {
2308 err = -EIO;
2309 goto out;
3173a18f 2310 }
5d4f98a2
YZ
2311 }
2312
2313 leaf = path->nodes[0];
2314 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316 if (item_size < sizeof(*ei)) {
2317 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318 path, (u64)-1, 0);
2319 if (ret < 0) {
2320 err = ret;
2321 goto out;
2322 }
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 }
2326#endif
2327 BUG_ON(item_size < sizeof(*ei));
2328 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2330
5d4f98a2
YZ
2331 btrfs_mark_buffer_dirty(leaf);
2332out:
2333 btrfs_free_path(path);
2334 return err;
56bec294
CM
2335}
2336
5d4f98a2
YZ
2337static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338 struct btrfs_root *root,
2339 struct btrfs_delayed_ref_node *node,
2340 struct btrfs_delayed_extent_op *extent_op,
2341 int insert_reserved)
56bec294
CM
2342{
2343 int ret = 0;
5d4f98a2
YZ
2344 struct btrfs_delayed_tree_ref *ref;
2345 struct btrfs_key ins;
2346 u64 parent = 0;
2347 u64 ref_root = 0;
3173a18f
JB
2348 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349 SKINNY_METADATA);
56bec294 2350
5d4f98a2 2351 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2352 trace_run_delayed_tree_ref(node, ref, node->action);
2353
5d4f98a2
YZ
2354 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355 parent = ref->parent;
fcebe456 2356 ref_root = ref->root;
5d4f98a2 2357
3173a18f
JB
2358 ins.objectid = node->bytenr;
2359 if (skinny_metadata) {
2360 ins.offset = ref->level;
2361 ins.type = BTRFS_METADATA_ITEM_KEY;
2362 } else {
2363 ins.offset = node->num_bytes;
2364 ins.type = BTRFS_EXTENT_ITEM_KEY;
2365 }
2366
5d4f98a2
YZ
2367 BUG_ON(node->ref_mod != 1);
2368 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2369 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2370 ret = alloc_reserved_tree_block(trans, root,
2371 parent, ref_root,
2372 extent_op->flags_to_set,
2373 &extent_op->key,
b06c4bf5 2374 ref->level, &ins);
5d4f98a2 2375 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2376 ret = __btrfs_inc_extent_ref(trans, root, node,
2377 parent, ref_root,
2378 ref->level, 0, 1,
fcebe456 2379 extent_op);
5d4f98a2 2380 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2381 ret = __btrfs_free_extent(trans, root, node,
2382 parent, ref_root,
2383 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2384 } else {
2385 BUG();
2386 }
56bec294
CM
2387 return ret;
2388}
2389
2390/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2391static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 struct btrfs_delayed_ref_node *node,
2394 struct btrfs_delayed_extent_op *extent_op,
2395 int insert_reserved)
56bec294 2396{
79787eaa
JM
2397 int ret = 0;
2398
857cc2fc
JB
2399 if (trans->aborted) {
2400 if (insert_reserved)
2401 btrfs_pin_extent(root, node->bytenr,
2402 node->num_bytes, 1);
79787eaa 2403 return 0;
857cc2fc 2404 }
79787eaa 2405
5d4f98a2 2406 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2407 struct btrfs_delayed_ref_head *head;
2408 /*
2409 * we've hit the end of the chain and we were supposed
2410 * to insert this extent into the tree. But, it got
2411 * deleted before we ever needed to insert it, so all
2412 * we have to do is clean up the accounting
2413 */
5d4f98a2
YZ
2414 BUG_ON(extent_op);
2415 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2416 trace_run_delayed_ref_head(node, head, node->action);
2417
56bec294 2418 if (insert_reserved) {
f0486c68
YZ
2419 btrfs_pin_extent(root, node->bytenr,
2420 node->num_bytes, 1);
5d4f98a2
YZ
2421 if (head->is_data) {
2422 ret = btrfs_del_csums(trans, root,
2423 node->bytenr,
2424 node->num_bytes);
5d4f98a2 2425 }
56bec294 2426 }
297d750b
QW
2427
2428 /* Also free its reserved qgroup space */
2429 btrfs_qgroup_free_delayed_ref(root->fs_info,
2430 head->qgroup_ref_root,
2431 head->qgroup_reserved);
79787eaa 2432 return ret;
56bec294
CM
2433 }
2434
5d4f98a2
YZ
2435 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438 insert_reserved);
2439 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441 ret = run_delayed_data_ref(trans, root, node, extent_op,
2442 insert_reserved);
2443 else
2444 BUG();
2445 return ret;
56bec294
CM
2446}
2447
c6fc2454 2448static inline struct btrfs_delayed_ref_node *
56bec294
CM
2449select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450{
cffc3374
FM
2451 struct btrfs_delayed_ref_node *ref;
2452
c6fc2454
QW
2453 if (list_empty(&head->ref_list))
2454 return NULL;
d7df2c79 2455
cffc3374
FM
2456 /*
2457 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458 * This is to prevent a ref count from going down to zero, which deletes
2459 * the extent item from the extent tree, when there still are references
2460 * to add, which would fail because they would not find the extent item.
2461 */
2462 list_for_each_entry(ref, &head->ref_list, list) {
2463 if (ref->action == BTRFS_ADD_DELAYED_REF)
2464 return ref;
2465 }
2466
c6fc2454
QW
2467 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468 list);
56bec294
CM
2469}
2470
79787eaa
JM
2471/*
2472 * Returns 0 on success or if called with an already aborted transaction.
2473 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474 */
d7df2c79
JB
2475static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476 struct btrfs_root *root,
2477 unsigned long nr)
56bec294 2478{
56bec294
CM
2479 struct btrfs_delayed_ref_root *delayed_refs;
2480 struct btrfs_delayed_ref_node *ref;
2481 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2482 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2483 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2484 ktime_t start = ktime_get();
56bec294 2485 int ret;
d7df2c79 2486 unsigned long count = 0;
0a2b2a84 2487 unsigned long actual_count = 0;
56bec294 2488 int must_insert_reserved = 0;
56bec294
CM
2489
2490 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2491 while (1) {
2492 if (!locked_ref) {
d7df2c79 2493 if (count >= nr)
56bec294 2494 break;
56bec294 2495
d7df2c79
JB
2496 spin_lock(&delayed_refs->lock);
2497 locked_ref = btrfs_select_ref_head(trans);
2498 if (!locked_ref) {
2499 spin_unlock(&delayed_refs->lock);
2500 break;
2501 }
c3e69d58
CM
2502
2503 /* grab the lock that says we are going to process
2504 * all the refs for this head */
2505 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2506 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2507 /*
2508 * we may have dropped the spin lock to get the head
2509 * mutex lock, and that might have given someone else
2510 * time to free the head. If that's true, it has been
2511 * removed from our list and we can move on.
2512 */
2513 if (ret == -EAGAIN) {
2514 locked_ref = NULL;
2515 count++;
2516 continue;
56bec294
CM
2517 }
2518 }
a28ec197 2519
2c3cf7d5
FM
2520 /*
2521 * We need to try and merge add/drops of the same ref since we
2522 * can run into issues with relocate dropping the implicit ref
2523 * and then it being added back again before the drop can
2524 * finish. If we merged anything we need to re-loop so we can
2525 * get a good ref.
2526 * Or we can get node references of the same type that weren't
2527 * merged when created due to bumps in the tree mod seq, and
2528 * we need to merge them to prevent adding an inline extent
2529 * backref before dropping it (triggering a BUG_ON at
2530 * insert_inline_extent_backref()).
2531 */
d7df2c79 2532 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2533 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534 locked_ref);
ae1e206b 2535
d1270cd9
AJ
2536 /*
2537 * locked_ref is the head node, so we have to go one
2538 * node back for any delayed ref updates
2539 */
2540 ref = select_delayed_ref(locked_ref);
2541
2542 if (ref && ref->seq &&
097b8a7c 2543 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2544 spin_unlock(&locked_ref->lock);
093486c4 2545 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2546 spin_lock(&delayed_refs->lock);
2547 locked_ref->processing = 0;
d1270cd9
AJ
2548 delayed_refs->num_heads_ready++;
2549 spin_unlock(&delayed_refs->lock);
d7df2c79 2550 locked_ref = NULL;
d1270cd9 2551 cond_resched();
27a377db 2552 count++;
d1270cd9
AJ
2553 continue;
2554 }
2555
56bec294
CM
2556 /*
2557 * record the must insert reserved flag before we
2558 * drop the spin lock.
2559 */
2560 must_insert_reserved = locked_ref->must_insert_reserved;
2561 locked_ref->must_insert_reserved = 0;
7bb86316 2562
5d4f98a2
YZ
2563 extent_op = locked_ref->extent_op;
2564 locked_ref->extent_op = NULL;
2565
56bec294 2566 if (!ref) {
d7df2c79
JB
2567
2568
56bec294
CM
2569 /* All delayed refs have been processed, Go ahead
2570 * and send the head node to run_one_delayed_ref,
2571 * so that any accounting fixes can happen
2572 */
2573 ref = &locked_ref->node;
5d4f98a2
YZ
2574
2575 if (extent_op && must_insert_reserved) {
78a6184a 2576 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2577 extent_op = NULL;
2578 }
2579
2580 if (extent_op) {
d7df2c79 2581 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2582 ret = run_delayed_extent_op(trans, root,
2583 ref, extent_op);
78a6184a 2584 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2585
79787eaa 2586 if (ret) {
857cc2fc
JB
2587 /*
2588 * Need to reset must_insert_reserved if
2589 * there was an error so the abort stuff
2590 * can cleanup the reserved space
2591 * properly.
2592 */
2593 if (must_insert_reserved)
2594 locked_ref->must_insert_reserved = 1;
d7df2c79 2595 locked_ref->processing = 0;
c2cf52eb 2596 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2597 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2598 return ret;
2599 }
d7df2c79 2600 continue;
5d4f98a2 2601 }
02217ed2 2602
d7df2c79 2603 /*
01327610 2604 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
c6fc2454 2611 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2612 locked_ref->extent_op) {
d7df2c79
JB
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
c46effa6
LB
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
d7df2c79
JB
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
0a2b2a84 2623 actual_count++;
d7df2c79 2624 ref->in_tree = 0;
c6fc2454 2625 list_del(&ref->list);
c46effa6 2626 }
d7df2c79
JB
2627 atomic_dec(&delayed_refs->num_entries);
2628
093486c4 2629 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2630 /*
2631 * when we play the delayed ref, also correct the
2632 * ref_mod on head
2633 */
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2638 break;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2641 break;
2642 default:
2643 WARN_ON(1);
2644 }
2645 }
d7df2c79 2646 spin_unlock(&locked_ref->lock);
925baedd 2647
5d4f98a2 2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2649 must_insert_reserved);
eb099670 2650
78a6184a 2651 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2652 if (ret) {
d7df2c79 2653 locked_ref->processing = 0;
093486c4
MX
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
c2cf52eb 2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2657 return ret;
2658 }
2659
093486c4
MX
2660 /*
2661 * If this node is a head, that means all the refs in this head
2662 * have been dealt with, and we will pick the next head to deal
2663 * with, so we must unlock the head and drop it from the cluster
2664 * list before we release it.
2665 */
2666 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2667 if (locked_ref->is_data &&
2668 locked_ref->total_ref_mod < 0) {
2669 spin_lock(&delayed_refs->lock);
2670 delayed_refs->pending_csums -= ref->num_bytes;
2671 spin_unlock(&delayed_refs->lock);
2672 }
093486c4
MX
2673 btrfs_delayed_ref_unlock(locked_ref);
2674 locked_ref = NULL;
2675 }
2676 btrfs_put_delayed_ref(ref);
2677 count++;
c3e69d58 2678 cond_resched();
c3e69d58 2679 }
0a2b2a84
JB
2680
2681 /*
2682 * We don't want to include ref heads since we can have empty ref heads
2683 * and those will drastically skew our runtime down since we just do
2684 * accounting, no actual extent tree updates.
2685 */
2686 if (actual_count > 0) {
2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 u64 avg;
2689
2690 /*
2691 * We weigh the current average higher than our current runtime
2692 * to avoid large swings in the average.
2693 */
2694 spin_lock(&delayed_refs->lock);
2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2697 spin_unlock(&delayed_refs->lock);
2698 }
d7df2c79 2699 return 0;
c3e69d58
CM
2700}
2701
709c0486
AJ
2702#ifdef SCRAMBLE_DELAYED_REFS
2703/*
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2707 */
2708static u64 find_middle(struct rb_root *root)
2709{
2710 struct rb_node *n = root->rb_node;
2711 struct btrfs_delayed_ref_node *entry;
2712 int alt = 1;
2713 u64 middle;
2714 u64 first = 0, last = 0;
2715
2716 n = rb_first(root);
2717 if (n) {
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 first = entry->bytenr;
2720 }
2721 n = rb_last(root);
2722 if (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 last = entry->bytenr;
2725 }
2726 n = root->rb_node;
2727
2728 while (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 WARN_ON(!entry->in_tree);
2731
2732 middle = entry->bytenr;
2733
2734 if (alt)
2735 n = n->rb_left;
2736 else
2737 n = n->rb_right;
2738
2739 alt = 1 - alt;
2740 }
2741 return middle;
2742}
2743#endif
2744
1be41b78
JB
2745static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746{
2747 u64 num_bytes;
2748
2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 sizeof(struct btrfs_extent_inline_ref));
2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754 /*
2755 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2756 * closer to what we're really going to want to use.
1be41b78 2757 */
f8c269d7 2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2759}
2760
1262133b
JB
2761/*
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2764 */
28f75a0e 2765u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2766{
2767 u64 csum_size;
2768 u64 num_csums_per_leaf;
2769 u64 num_csums;
2770
2771 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772 num_csums_per_leaf = div64_u64(csum_size,
2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 num_csums += num_csums_per_leaf - 1;
2776 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 return num_csums;
2778}
2779
0a2b2a84 2780int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2781 struct btrfs_root *root)
2782{
2783 struct btrfs_block_rsv *global_rsv;
2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2788 int ret = 0;
2789
2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 num_heads = heads_to_leaves(root, num_heads);
2792 if (num_heads > 1)
707e8a07 2793 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2794 num_bytes <<= 1;
28f75a0e 2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 num_dirty_bgs);
1be41b78
JB
2798 global_rsv = &root->fs_info->global_block_rsv;
2799
2800 /*
2801 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 * wiggle room since running delayed refs can create more delayed refs.
2803 */
cb723e49
JB
2804 if (global_rsv->space_info->full) {
2805 num_dirty_bgs_bytes <<= 1;
1be41b78 2806 num_bytes <<= 1;
cb723e49 2807 }
1be41b78
JB
2808
2809 spin_lock(&global_rsv->lock);
cb723e49 2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2811 ret = 1;
2812 spin_unlock(&global_rsv->lock);
2813 return ret;
2814}
2815
0a2b2a84
JB
2816int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root)
2818{
2819 struct btrfs_fs_info *fs_info = root->fs_info;
2820 u64 num_entries =
2821 atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 u64 avg_runtime;
a79b7d4b 2823 u64 val;
0a2b2a84
JB
2824
2825 smp_mb();
2826 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2827 val = num_entries * avg_runtime;
0a2b2a84
JB
2828 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 return 1;
a79b7d4b
CM
2830 if (val >= NSEC_PER_SEC / 2)
2831 return 2;
0a2b2a84
JB
2832
2833 return btrfs_check_space_for_delayed_refs(trans, root);
2834}
2835
a79b7d4b
CM
2836struct async_delayed_refs {
2837 struct btrfs_root *root;
31b9655f 2838 u64 transid;
a79b7d4b
CM
2839 int count;
2840 int error;
2841 int sync;
2842 struct completion wait;
2843 struct btrfs_work work;
2844};
2845
2846static void delayed_ref_async_start(struct btrfs_work *work)
2847{
2848 struct async_delayed_refs *async;
2849 struct btrfs_trans_handle *trans;
2850 int ret;
2851
2852 async = container_of(work, struct async_delayed_refs, work);
2853
0f873eca
CM
2854 /* if the commit is already started, we don't need to wait here */
2855 if (btrfs_transaction_blocked(async->root->fs_info))
31b9655f 2856 goto done;
31b9655f 2857
0f873eca
CM
2858 trans = btrfs_join_transaction(async->root);
2859 if (IS_ERR(trans)) {
2860 async->error = PTR_ERR(trans);
a79b7d4b
CM
2861 goto done;
2862 }
2863
2864 /*
01327610 2865 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2866 * wait on delayed refs
2867 */
2868 trans->sync = true;
0f873eca
CM
2869
2870 /* Don't bother flushing if we got into a different transaction */
2871 if (trans->transid > async->transid)
2872 goto end;
2873
a79b7d4b
CM
2874 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2875 if (ret)
2876 async->error = ret;
0f873eca 2877end:
a79b7d4b
CM
2878 ret = btrfs_end_transaction(trans, async->root);
2879 if (ret && !async->error)
2880 async->error = ret;
2881done:
2882 if (async->sync)
2883 complete(&async->wait);
2884 else
2885 kfree(async);
2886}
2887
2888int btrfs_async_run_delayed_refs(struct btrfs_root *root,
31b9655f 2889 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2890{
2891 struct async_delayed_refs *async;
2892 int ret;
2893
2894 async = kmalloc(sizeof(*async), GFP_NOFS);
2895 if (!async)
2896 return -ENOMEM;
2897
2898 async->root = root->fs_info->tree_root;
2899 async->count = count;
2900 async->error = 0;
31b9655f 2901 async->transid = transid;
a79b7d4b
CM
2902 if (wait)
2903 async->sync = 1;
2904 else
2905 async->sync = 0;
2906 init_completion(&async->wait);
2907
9e0af237
LB
2908 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2910
2911 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2912
2913 if (wait) {
2914 wait_for_completion(&async->wait);
2915 ret = async->error;
2916 kfree(async);
2917 return ret;
2918 }
2919 return 0;
2920}
2921
c3e69d58
CM
2922/*
2923 * this starts processing the delayed reference count updates and
2924 * extent insertions we have queued up so far. count can be
2925 * 0, which means to process everything in the tree at the start
2926 * of the run (but not newly added entries), or it can be some target
2927 * number you'd like to process.
79787eaa
JM
2928 *
2929 * Returns 0 on success or if called with an aborted transaction
2930 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2931 */
2932int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root, unsigned long count)
2934{
2935 struct rb_node *node;
2936 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2937 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2938 int ret;
2939 int run_all = count == (unsigned long)-1;
d9a0540a 2940 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2941
79787eaa
JM
2942 /* We'll clean this up in btrfs_cleanup_transaction */
2943 if (trans->aborted)
2944 return 0;
2945
511711af
CM
2946 if (root->fs_info->creating_free_space_tree)
2947 return 0;
2948
c3e69d58
CM
2949 if (root == root->fs_info->extent_root)
2950 root = root->fs_info->tree_root;
2951
2952 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2953 if (count == 0)
d7df2c79 2954 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2955
c3e69d58 2956again:
709c0486
AJ
2957#ifdef SCRAMBLE_DELAYED_REFS
2958 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2959#endif
d9a0540a 2960 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2961 ret = __btrfs_run_delayed_refs(trans, root, count);
2962 if (ret < 0) {
2963 btrfs_abort_transaction(trans, root, ret);
2964 return ret;
eb099670 2965 }
c3e69d58 2966
56bec294 2967 if (run_all) {
d7df2c79 2968 if (!list_empty(&trans->new_bgs))
ea658bad 2969 btrfs_create_pending_block_groups(trans, root);
ea658bad 2970
d7df2c79 2971 spin_lock(&delayed_refs->lock);
c46effa6 2972 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2973 if (!node) {
2974 spin_unlock(&delayed_refs->lock);
56bec294 2975 goto out;
d7df2c79 2976 }
c3e69d58 2977 count = (unsigned long)-1;
e9d0b13b 2978
56bec294 2979 while (node) {
c46effa6
LB
2980 head = rb_entry(node, struct btrfs_delayed_ref_head,
2981 href_node);
2982 if (btrfs_delayed_ref_is_head(&head->node)) {
2983 struct btrfs_delayed_ref_node *ref;
5caf2a00 2984
c46effa6 2985 ref = &head->node;
56bec294
CM
2986 atomic_inc(&ref->refs);
2987
2988 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2989 /*
2990 * Mutex was contended, block until it's
2991 * released and try again
2992 */
56bec294
CM
2993 mutex_lock(&head->mutex);
2994 mutex_unlock(&head->mutex);
2995
2996 btrfs_put_delayed_ref(ref);
1887be66 2997 cond_resched();
56bec294 2998 goto again;
c46effa6
LB
2999 } else {
3000 WARN_ON(1);
56bec294
CM
3001 }
3002 node = rb_next(node);
3003 }
3004 spin_unlock(&delayed_refs->lock);
d7df2c79 3005 cond_resched();
56bec294 3006 goto again;
5f39d397 3007 }
54aa1f4d 3008out:
edf39272 3009 assert_qgroups_uptodate(trans);
d9a0540a 3010 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3011 return 0;
3012}
3013
5d4f98a2
YZ
3014int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015 struct btrfs_root *root,
3016 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3017 int level, int is_data)
5d4f98a2
YZ
3018{
3019 struct btrfs_delayed_extent_op *extent_op;
3020 int ret;
3021
78a6184a 3022 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3023 if (!extent_op)
3024 return -ENOMEM;
3025
3026 extent_op->flags_to_set = flags;
35b3ad50
DS
3027 extent_op->update_flags = true;
3028 extent_op->update_key = false;
3029 extent_op->is_data = is_data ? true : false;
b1c79e09 3030 extent_op->level = level;
5d4f98a2 3031
66d7e7f0
AJ
3032 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033 num_bytes, extent_op);
5d4f98a2 3034 if (ret)
78a6184a 3035 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3036 return ret;
3037}
3038
3039static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root,
3041 struct btrfs_path *path,
3042 u64 objectid, u64 offset, u64 bytenr)
3043{
3044 struct btrfs_delayed_ref_head *head;
3045 struct btrfs_delayed_ref_node *ref;
3046 struct btrfs_delayed_data_ref *data_ref;
3047 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3048 int ret = 0;
3049
5d4f98a2
YZ
3050 delayed_refs = &trans->transaction->delayed_refs;
3051 spin_lock(&delayed_refs->lock);
3052 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3053 if (!head) {
3054 spin_unlock(&delayed_refs->lock);
3055 return 0;
3056 }
5d4f98a2
YZ
3057
3058 if (!mutex_trylock(&head->mutex)) {
3059 atomic_inc(&head->node.refs);
3060 spin_unlock(&delayed_refs->lock);
3061
b3b4aa74 3062 btrfs_release_path(path);
5d4f98a2 3063
8cc33e5c
DS
3064 /*
3065 * Mutex was contended, block until it's released and let
3066 * caller try again
3067 */
5d4f98a2
YZ
3068 mutex_lock(&head->mutex);
3069 mutex_unlock(&head->mutex);
3070 btrfs_put_delayed_ref(&head->node);
3071 return -EAGAIN;
3072 }
d7df2c79 3073 spin_unlock(&delayed_refs->lock);
5d4f98a2 3074
d7df2c79 3075 spin_lock(&head->lock);
c6fc2454 3076 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3077 /* If it's a shared ref we know a cross reference exists */
3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 ret = 1;
3080 break;
3081 }
5d4f98a2 3082
d7df2c79 3083 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3084
d7df2c79
JB
3085 /*
3086 * If our ref doesn't match the one we're currently looking at
3087 * then we have a cross reference.
3088 */
3089 if (data_ref->root != root->root_key.objectid ||
3090 data_ref->objectid != objectid ||
3091 data_ref->offset != offset) {
3092 ret = 1;
3093 break;
3094 }
5d4f98a2 3095 }
d7df2c79 3096 spin_unlock(&head->lock);
5d4f98a2 3097 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3098 return ret;
3099}
3100
3101static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct btrfs_path *path,
3104 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3105{
3106 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3107 struct extent_buffer *leaf;
5d4f98a2
YZ
3108 struct btrfs_extent_data_ref *ref;
3109 struct btrfs_extent_inline_ref *iref;
3110 struct btrfs_extent_item *ei;
f321e491 3111 struct btrfs_key key;
5d4f98a2 3112 u32 item_size;
be20aa9d 3113 int ret;
925baedd 3114
be20aa9d 3115 key.objectid = bytenr;
31840ae1 3116 key.offset = (u64)-1;
f321e491 3117 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3118
be20aa9d
CM
3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 if (ret < 0)
3121 goto out;
79787eaa 3122 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3123
3124 ret = -ENOENT;
3125 if (path->slots[0] == 0)
31840ae1 3126 goto out;
be20aa9d 3127
31840ae1 3128 path->slots[0]--;
f321e491 3129 leaf = path->nodes[0];
5d4f98a2 3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3131
5d4f98a2 3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3133 goto out;
f321e491 3134
5d4f98a2
YZ
3135 ret = 1;
3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 if (item_size < sizeof(*ei)) {
3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 goto out;
3141 }
3142#endif
3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3144
5d4f98a2
YZ
3145 if (item_size != sizeof(*ei) +
3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 goto out;
be20aa9d 3148
5d4f98a2
YZ
3149 if (btrfs_extent_generation(leaf, ei) <=
3150 btrfs_root_last_snapshot(&root->root_item))
3151 goto out;
3152
3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 BTRFS_EXTENT_DATA_REF_KEY)
3156 goto out;
3157
3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 if (btrfs_extent_refs(leaf, ei) !=
3160 btrfs_extent_data_ref_count(leaf, ref) ||
3161 btrfs_extent_data_ref_root(leaf, ref) !=
3162 root->root_key.objectid ||
3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 goto out;
3166
3167 ret = 0;
3168out:
3169 return ret;
3170}
3171
3172int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 u64 objectid, u64 offset, u64 bytenr)
3175{
3176 struct btrfs_path *path;
3177 int ret;
3178 int ret2;
3179
3180 path = btrfs_alloc_path();
3181 if (!path)
3182 return -ENOENT;
3183
3184 do {
3185 ret = check_committed_ref(trans, root, path, objectid,
3186 offset, bytenr);
3187 if (ret && ret != -ENOENT)
f321e491 3188 goto out;
80ff3856 3189
5d4f98a2
YZ
3190 ret2 = check_delayed_ref(trans, root, path, objectid,
3191 offset, bytenr);
3192 } while (ret2 == -EAGAIN);
3193
3194 if (ret2 && ret2 != -ENOENT) {
3195 ret = ret2;
3196 goto out;
f321e491 3197 }
5d4f98a2
YZ
3198
3199 if (ret != -ENOENT || ret2 != -ENOENT)
3200 ret = 0;
be20aa9d 3201out:
80ff3856 3202 btrfs_free_path(path);
f0486c68
YZ
3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204 WARN_ON(ret > 0);
f321e491 3205 return ret;
be20aa9d 3206}
c5739bba 3207
5d4f98a2 3208static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3209 struct btrfs_root *root,
5d4f98a2 3210 struct extent_buffer *buf,
e339a6b0 3211 int full_backref, int inc)
31840ae1
ZY
3212{
3213 u64 bytenr;
5d4f98a2
YZ
3214 u64 num_bytes;
3215 u64 parent;
31840ae1 3216 u64 ref_root;
31840ae1 3217 u32 nritems;
31840ae1
ZY
3218 struct btrfs_key key;
3219 struct btrfs_file_extent_item *fi;
3220 int i;
3221 int level;
3222 int ret = 0;
31840ae1 3223 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3224 u64, u64, u64, u64, u64, u64);
31840ae1 3225
fccb84c9
DS
3226
3227 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3228 return 0;
fccb84c9 3229
31840ae1 3230 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3231 nritems = btrfs_header_nritems(buf);
3232 level = btrfs_header_level(buf);
3233
27cdeb70 3234 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3235 return 0;
31840ae1 3236
5d4f98a2
YZ
3237 if (inc)
3238 process_func = btrfs_inc_extent_ref;
3239 else
3240 process_func = btrfs_free_extent;
31840ae1 3241
5d4f98a2
YZ
3242 if (full_backref)
3243 parent = buf->start;
3244 else
3245 parent = 0;
3246
3247 for (i = 0; i < nritems; i++) {
31840ae1 3248 if (level == 0) {
5d4f98a2 3249 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3250 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3251 continue;
5d4f98a2 3252 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3253 struct btrfs_file_extent_item);
3254 if (btrfs_file_extent_type(buf, fi) ==
3255 BTRFS_FILE_EXTENT_INLINE)
3256 continue;
3257 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258 if (bytenr == 0)
3259 continue;
5d4f98a2
YZ
3260
3261 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3262 key.offset -= btrfs_file_extent_offset(buf, fi);
3263 ret = process_func(trans, root, bytenr, num_bytes,
3264 parent, ref_root, key.objectid,
b06c4bf5 3265 key.offset);
31840ae1
ZY
3266 if (ret)
3267 goto fail;
3268 } else {
5d4f98a2 3269 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3270 num_bytes = root->nodesize;
5d4f98a2 3271 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3272 parent, ref_root, level - 1, 0);
31840ae1
ZY
3273 if (ret)
3274 goto fail;
3275 }
3276 }
3277 return 0;
3278fail:
5d4f98a2
YZ
3279 return ret;
3280}
3281
3282int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3283 struct extent_buffer *buf, int full_backref)
5d4f98a2 3284{
e339a6b0 3285 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3286}
3287
3288int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3289 struct extent_buffer *buf, int full_backref)
5d4f98a2 3290{
e339a6b0 3291 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3292}
3293
9078a3e1
CM
3294static int write_one_cache_group(struct btrfs_trans_handle *trans,
3295 struct btrfs_root *root,
3296 struct btrfs_path *path,
3297 struct btrfs_block_group_cache *cache)
3298{
3299 int ret;
9078a3e1 3300 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3301 unsigned long bi;
3302 struct extent_buffer *leaf;
9078a3e1 3303
9078a3e1 3304 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3305 if (ret) {
3306 if (ret > 0)
3307 ret = -ENOENT;
54aa1f4d 3308 goto fail;
df95e7f0 3309 }
5f39d397
CM
3310
3311 leaf = path->nodes[0];
3312 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3313 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3314 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3315fail:
24b89d08 3316 btrfs_release_path(path);
df95e7f0 3317 return ret;
9078a3e1
CM
3318
3319}
3320
4a8c9a62
YZ
3321static struct btrfs_block_group_cache *
3322next_block_group(struct btrfs_root *root,
3323 struct btrfs_block_group_cache *cache)
3324{
3325 struct rb_node *node;
292cbd51 3326
4a8c9a62 3327 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3328
3329 /* If our block group was removed, we need a full search. */
3330 if (RB_EMPTY_NODE(&cache->cache_node)) {
3331 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3332
3333 spin_unlock(&root->fs_info->block_group_cache_lock);
3334 btrfs_put_block_group(cache);
3335 cache = btrfs_lookup_first_block_group(root->fs_info,
3336 next_bytenr);
3337 return cache;
3338 }
4a8c9a62
YZ
3339 node = rb_next(&cache->cache_node);
3340 btrfs_put_block_group(cache);
3341 if (node) {
3342 cache = rb_entry(node, struct btrfs_block_group_cache,
3343 cache_node);
11dfe35a 3344 btrfs_get_block_group(cache);
4a8c9a62
YZ
3345 } else
3346 cache = NULL;
3347 spin_unlock(&root->fs_info->block_group_cache_lock);
3348 return cache;
3349}
3350
0af3d00b
JB
3351static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352 struct btrfs_trans_handle *trans,
3353 struct btrfs_path *path)
3354{
3355 struct btrfs_root *root = block_group->fs_info->tree_root;
3356 struct inode *inode = NULL;
3357 u64 alloc_hint = 0;
2b20982e 3358 int dcs = BTRFS_DC_ERROR;
f8c269d7 3359 u64 num_pages = 0;
0af3d00b
JB
3360 int retries = 0;
3361 int ret = 0;
3362
3363 /*
3364 * If this block group is smaller than 100 megs don't bother caching the
3365 * block group.
3366 */
ee22184b 3367 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3368 spin_lock(&block_group->lock);
3369 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 spin_unlock(&block_group->lock);
3371 return 0;
3372 }
3373
0c0ef4bc
JB
3374 if (trans->aborted)
3375 return 0;
0af3d00b
JB
3376again:
3377 inode = lookup_free_space_inode(root, block_group, path);
3378 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 ret = PTR_ERR(inode);
b3b4aa74 3380 btrfs_release_path(path);
0af3d00b
JB
3381 goto out;
3382 }
3383
3384 if (IS_ERR(inode)) {
3385 BUG_ON(retries);
3386 retries++;
3387
3388 if (block_group->ro)
3389 goto out_free;
3390
3391 ret = create_free_space_inode(root, trans, block_group, path);
3392 if (ret)
3393 goto out_free;
3394 goto again;
3395 }
3396
5b0e95bf
JB
3397 /* We've already setup this transaction, go ahead and exit */
3398 if (block_group->cache_generation == trans->transid &&
3399 i_size_read(inode)) {
3400 dcs = BTRFS_DC_SETUP;
3401 goto out_put;
3402 }
3403
0af3d00b
JB
3404 /*
3405 * We want to set the generation to 0, that way if anything goes wrong
3406 * from here on out we know not to trust this cache when we load up next
3407 * time.
3408 */
3409 BTRFS_I(inode)->generation = 0;
3410 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3411 if (ret) {
3412 /*
3413 * So theoretically we could recover from this, simply set the
3414 * super cache generation to 0 so we know to invalidate the
3415 * cache, but then we'd have to keep track of the block groups
3416 * that fail this way so we know we _have_ to reset this cache
3417 * before the next commit or risk reading stale cache. So to
3418 * limit our exposure to horrible edge cases lets just abort the
3419 * transaction, this only happens in really bad situations
3420 * anyway.
3421 */
3422 btrfs_abort_transaction(trans, root, ret);
3423 goto out_put;
3424 }
0af3d00b
JB
3425 WARN_ON(ret);
3426
3427 if (i_size_read(inode) > 0) {
7b61cd92
MX
3428 ret = btrfs_check_trunc_cache_free_space(root,
3429 &root->fs_info->global_block_rsv);
3430 if (ret)
3431 goto out_put;
3432
1bbc621e 3433 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3434 if (ret)
3435 goto out_put;
3436 }
3437
3438 spin_lock(&block_group->lock);
cf7c1ef6 3439 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3440 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3441 /*
3442 * don't bother trying to write stuff out _if_
3443 * a) we're not cached,
3444 * b) we're with nospace_cache mount option.
3445 */
2b20982e 3446 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3447 spin_unlock(&block_group->lock);
3448 goto out_put;
3449 }
3450 spin_unlock(&block_group->lock);
3451
2968b1f4
JB
3452 /*
3453 * We hit an ENOSPC when setting up the cache in this transaction, just
3454 * skip doing the setup, we've already cleared the cache so we're safe.
3455 */
3456 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3457 ret = -ENOSPC;
3458 goto out_put;
3459 }
3460
6fc823b1
JB
3461 /*
3462 * Try to preallocate enough space based on how big the block group is.
3463 * Keep in mind this has to include any pinned space which could end up
3464 * taking up quite a bit since it's not folded into the other space
3465 * cache.
3466 */
ee22184b 3467 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3468 if (!num_pages)
3469 num_pages = 1;
3470
0af3d00b 3471 num_pages *= 16;
09cbfeaf 3472 num_pages *= PAGE_SIZE;
0af3d00b 3473
7cf5b976 3474 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3475 if (ret)
3476 goto out_put;
3477
3478 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3479 num_pages, num_pages,
3480 &alloc_hint);
2968b1f4
JB
3481 /*
3482 * Our cache requires contiguous chunks so that we don't modify a bunch
3483 * of metadata or split extents when writing the cache out, which means
3484 * we can enospc if we are heavily fragmented in addition to just normal
3485 * out of space conditions. So if we hit this just skip setting up any
3486 * other block groups for this transaction, maybe we'll unpin enough
3487 * space the next time around.
3488 */
2b20982e
JB
3489 if (!ret)
3490 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3491 else if (ret == -ENOSPC)
3492 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3493 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3494
0af3d00b
JB
3495out_put:
3496 iput(inode);
3497out_free:
b3b4aa74 3498 btrfs_release_path(path);
0af3d00b
JB
3499out:
3500 spin_lock(&block_group->lock);
e65cbb94 3501 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3502 block_group->cache_generation = trans->transid;
2b20982e 3503 block_group->disk_cache_state = dcs;
0af3d00b
JB
3504 spin_unlock(&block_group->lock);
3505
3506 return ret;
3507}
3508
dcdf7f6d
JB
3509int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root)
3511{
3512 struct btrfs_block_group_cache *cache, *tmp;
3513 struct btrfs_transaction *cur_trans = trans->transaction;
3514 struct btrfs_path *path;
3515
3516 if (list_empty(&cur_trans->dirty_bgs) ||
3517 !btrfs_test_opt(root, SPACE_CACHE))
3518 return 0;
3519
3520 path = btrfs_alloc_path();
3521 if (!path)
3522 return -ENOMEM;
3523
3524 /* Could add new block groups, use _safe just in case */
3525 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3526 dirty_list) {
3527 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3528 cache_save_setup(cache, trans, path);
3529 }
3530
3531 btrfs_free_path(path);
3532 return 0;
3533}
3534
1bbc621e
CM
3535/*
3536 * transaction commit does final block group cache writeback during a
3537 * critical section where nothing is allowed to change the FS. This is
3538 * required in order for the cache to actually match the block group,
3539 * but can introduce a lot of latency into the commit.
3540 *
3541 * So, btrfs_start_dirty_block_groups is here to kick off block group
3542 * cache IO. There's a chance we'll have to redo some of it if the
3543 * block group changes again during the commit, but it greatly reduces
3544 * the commit latency by getting rid of the easy block groups while
3545 * we're still allowing others to join the commit.
3546 */
3547int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3548 struct btrfs_root *root)
9078a3e1 3549{
4a8c9a62 3550 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3551 struct btrfs_transaction *cur_trans = trans->transaction;
3552 int ret = 0;
c9dc4c65 3553 int should_put;
1bbc621e
CM
3554 struct btrfs_path *path = NULL;
3555 LIST_HEAD(dirty);
3556 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3557 int num_started = 0;
1bbc621e
CM
3558 int loops = 0;
3559
3560 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3561 if (list_empty(&cur_trans->dirty_bgs)) {
3562 spin_unlock(&cur_trans->dirty_bgs_lock);
3563 return 0;
1bbc621e 3564 }
b58d1a9e 3565 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3566 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3567
1bbc621e 3568again:
1bbc621e
CM
3569 /*
3570 * make sure all the block groups on our dirty list actually
3571 * exist
3572 */
3573 btrfs_create_pending_block_groups(trans, root);
3574
3575 if (!path) {
3576 path = btrfs_alloc_path();
3577 if (!path)
3578 return -ENOMEM;
3579 }
3580
b58d1a9e
FM
3581 /*
3582 * cache_write_mutex is here only to save us from balance or automatic
3583 * removal of empty block groups deleting this block group while we are
3584 * writing out the cache
3585 */
3586 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3587 while (!list_empty(&dirty)) {
3588 cache = list_first_entry(&dirty,
3589 struct btrfs_block_group_cache,
3590 dirty_list);
1bbc621e
CM
3591 /*
3592 * this can happen if something re-dirties a block
3593 * group that is already under IO. Just wait for it to
3594 * finish and then do it all again
3595 */
3596 if (!list_empty(&cache->io_list)) {
3597 list_del_init(&cache->io_list);
3598 btrfs_wait_cache_io(root, trans, cache,
3599 &cache->io_ctl, path,
3600 cache->key.objectid);
3601 btrfs_put_block_group(cache);
3602 }
3603
3604
3605 /*
3606 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3607 * if it should update the cache_state. Don't delete
3608 * until after we wait.
3609 *
3610 * Since we're not running in the commit critical section
3611 * we need the dirty_bgs_lock to protect from update_block_group
3612 */
3613 spin_lock(&cur_trans->dirty_bgs_lock);
3614 list_del_init(&cache->dirty_list);
3615 spin_unlock(&cur_trans->dirty_bgs_lock);
3616
3617 should_put = 1;
3618
3619 cache_save_setup(cache, trans, path);
3620
3621 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3622 cache->io_ctl.inode = NULL;
3623 ret = btrfs_write_out_cache(root, trans, cache, path);
3624 if (ret == 0 && cache->io_ctl.inode) {
3625 num_started++;
3626 should_put = 0;
3627
3628 /*
3629 * the cache_write_mutex is protecting
3630 * the io_list
3631 */
3632 list_add_tail(&cache->io_list, io);
3633 } else {
3634 /*
3635 * if we failed to write the cache, the
3636 * generation will be bad and life goes on
3637 */
3638 ret = 0;
3639 }
3640 }
ff1f8250 3641 if (!ret) {
1bbc621e 3642 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3643 /*
3644 * Our block group might still be attached to the list
3645 * of new block groups in the transaction handle of some
3646 * other task (struct btrfs_trans_handle->new_bgs). This
3647 * means its block group item isn't yet in the extent
3648 * tree. If this happens ignore the error, as we will
3649 * try again later in the critical section of the
3650 * transaction commit.
3651 */
3652 if (ret == -ENOENT) {
3653 ret = 0;
3654 spin_lock(&cur_trans->dirty_bgs_lock);
3655 if (list_empty(&cache->dirty_list)) {
3656 list_add_tail(&cache->dirty_list,
3657 &cur_trans->dirty_bgs);
3658 btrfs_get_block_group(cache);
3659 }
3660 spin_unlock(&cur_trans->dirty_bgs_lock);
3661 } else if (ret) {
3662 btrfs_abort_transaction(trans, root, ret);
3663 }
3664 }
1bbc621e
CM
3665
3666 /* if its not on the io list, we need to put the block group */
3667 if (should_put)
3668 btrfs_put_block_group(cache);
3669
3670 if (ret)
3671 break;
b58d1a9e
FM
3672
3673 /*
3674 * Avoid blocking other tasks for too long. It might even save
3675 * us from writing caches for block groups that are going to be
3676 * removed.
3677 */
3678 mutex_unlock(&trans->transaction->cache_write_mutex);
3679 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3680 }
b58d1a9e 3681 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3682
3683 /*
3684 * go through delayed refs for all the stuff we've just kicked off
3685 * and then loop back (just once)
3686 */
3687 ret = btrfs_run_delayed_refs(trans, root, 0);
3688 if (!ret && loops == 0) {
3689 loops++;
3690 spin_lock(&cur_trans->dirty_bgs_lock);
3691 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3692 /*
3693 * dirty_bgs_lock protects us from concurrent block group
3694 * deletes too (not just cache_write_mutex).
3695 */
3696 if (!list_empty(&dirty)) {
3697 spin_unlock(&cur_trans->dirty_bgs_lock);
3698 goto again;
3699 }
1bbc621e 3700 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3701 }
3702
3703 btrfs_free_path(path);
3704 return ret;
3705}
3706
3707int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3708 struct btrfs_root *root)
3709{
3710 struct btrfs_block_group_cache *cache;
3711 struct btrfs_transaction *cur_trans = trans->transaction;
3712 int ret = 0;
3713 int should_put;
3714 struct btrfs_path *path;
3715 struct list_head *io = &cur_trans->io_bgs;
3716 int num_started = 0;
9078a3e1
CM
3717
3718 path = btrfs_alloc_path();
3719 if (!path)
3720 return -ENOMEM;
3721
ce93ec54 3722 /*
e44081ef
FM
3723 * Even though we are in the critical section of the transaction commit,
3724 * we can still have concurrent tasks adding elements to this
3725 * transaction's list of dirty block groups. These tasks correspond to
3726 * endio free space workers started when writeback finishes for a
3727 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3728 * allocate new block groups as a result of COWing nodes of the root
3729 * tree when updating the free space inode. The writeback for the space
3730 * caches is triggered by an earlier call to
3731 * btrfs_start_dirty_block_groups() and iterations of the following
3732 * loop.
3733 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3734 * delayed refs to make sure we have the best chance at doing this all
3735 * in one shot.
3736 */
e44081ef 3737 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3738 while (!list_empty(&cur_trans->dirty_bgs)) {
3739 cache = list_first_entry(&cur_trans->dirty_bgs,
3740 struct btrfs_block_group_cache,
3741 dirty_list);
c9dc4c65
CM
3742
3743 /*
3744 * this can happen if cache_save_setup re-dirties a block
3745 * group that is already under IO. Just wait for it to
3746 * finish and then do it all again
3747 */
3748 if (!list_empty(&cache->io_list)) {
e44081ef 3749 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3750 list_del_init(&cache->io_list);
3751 btrfs_wait_cache_io(root, trans, cache,
3752 &cache->io_ctl, path,
3753 cache->key.objectid);
3754 btrfs_put_block_group(cache);
e44081ef 3755 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3756 }
3757
1bbc621e
CM
3758 /*
3759 * don't remove from the dirty list until after we've waited
3760 * on any pending IO
3761 */
ce93ec54 3762 list_del_init(&cache->dirty_list);
e44081ef 3763 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3764 should_put = 1;
3765
1bbc621e 3766 cache_save_setup(cache, trans, path);
c9dc4c65 3767
ce93ec54 3768 if (!ret)
c9dc4c65
CM
3769 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3770
3771 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3772 cache->io_ctl.inode = NULL;
3773 ret = btrfs_write_out_cache(root, trans, cache, path);
3774 if (ret == 0 && cache->io_ctl.inode) {
3775 num_started++;
3776 should_put = 0;
1bbc621e 3777 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3778 } else {
3779 /*
3780 * if we failed to write the cache, the
3781 * generation will be bad and life goes on
3782 */
3783 ret = 0;
3784 }
3785 }
ff1f8250 3786 if (!ret) {
ce93ec54 3787 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3788 /*
3789 * One of the free space endio workers might have
3790 * created a new block group while updating a free space
3791 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3792 * and hasn't released its transaction handle yet, in
3793 * which case the new block group is still attached to
3794 * its transaction handle and its creation has not
3795 * finished yet (no block group item in the extent tree
3796 * yet, etc). If this is the case, wait for all free
3797 * space endio workers to finish and retry. This is a
3798 * a very rare case so no need for a more efficient and
3799 * complex approach.
3800 */
3801 if (ret == -ENOENT) {
3802 wait_event(cur_trans->writer_wait,
3803 atomic_read(&cur_trans->num_writers) == 1);
3804 ret = write_one_cache_group(trans, root, path,
3805 cache);
3806 }
ff1f8250
FM
3807 if (ret)
3808 btrfs_abort_transaction(trans, root, ret);
3809 }
c9dc4c65
CM
3810
3811 /* if its not on the io list, we need to put the block group */
3812 if (should_put)
3813 btrfs_put_block_group(cache);
e44081ef 3814 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3815 }
e44081ef 3816 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3817
1bbc621e
CM
3818 while (!list_empty(io)) {
3819 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3820 io_list);
3821 list_del_init(&cache->io_list);
c9dc4c65
CM
3822 btrfs_wait_cache_io(root, trans, cache,
3823 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3824 btrfs_put_block_group(cache);
3825 }
3826
9078a3e1 3827 btrfs_free_path(path);
ce93ec54 3828 return ret;
9078a3e1
CM
3829}
3830
d2fb3437
YZ
3831int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3832{
3833 struct btrfs_block_group_cache *block_group;
3834 int readonly = 0;
3835
3836 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3837 if (!block_group || block_group->ro)
3838 readonly = 1;
3839 if (block_group)
fa9c0d79 3840 btrfs_put_block_group(block_group);
d2fb3437
YZ
3841 return readonly;
3842}
3843
f78c436c
FM
3844bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3845{
3846 struct btrfs_block_group_cache *bg;
3847 bool ret = true;
3848
3849 bg = btrfs_lookup_block_group(fs_info, bytenr);
3850 if (!bg)
3851 return false;
3852
3853 spin_lock(&bg->lock);
3854 if (bg->ro)
3855 ret = false;
3856 else
3857 atomic_inc(&bg->nocow_writers);
3858 spin_unlock(&bg->lock);
3859
3860 /* no put on block group, done by btrfs_dec_nocow_writers */
3861 if (!ret)
3862 btrfs_put_block_group(bg);
3863
3864 return ret;
3865
3866}
3867
3868void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3869{
3870 struct btrfs_block_group_cache *bg;
3871
3872 bg = btrfs_lookup_block_group(fs_info, bytenr);
3873 ASSERT(bg);
3874 if (atomic_dec_and_test(&bg->nocow_writers))
3875 wake_up_atomic_t(&bg->nocow_writers);
3876 /*
3877 * Once for our lookup and once for the lookup done by a previous call
3878 * to btrfs_inc_nocow_writers()
3879 */
3880 btrfs_put_block_group(bg);
3881 btrfs_put_block_group(bg);
3882}
3883
3884static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3885{
3886 schedule();
3887 return 0;
3888}
3889
3890void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3891{
3892 wait_on_atomic_t(&bg->nocow_writers,
3893 btrfs_wait_nocow_writers_atomic_t,
3894 TASK_UNINTERRUPTIBLE);
3895}
3896
6ab0a202
JM
3897static const char *alloc_name(u64 flags)
3898{
3899 switch (flags) {
3900 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3901 return "mixed";
3902 case BTRFS_BLOCK_GROUP_METADATA:
3903 return "metadata";
3904 case BTRFS_BLOCK_GROUP_DATA:
3905 return "data";
3906 case BTRFS_BLOCK_GROUP_SYSTEM:
3907 return "system";
3908 default:
3909 WARN_ON(1);
3910 return "invalid-combination";
3911 };
3912}
3913
593060d7
CM
3914static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3915 u64 total_bytes, u64 bytes_used,
e40edf2d 3916 u64 bytes_readonly,
593060d7
CM
3917 struct btrfs_space_info **space_info)
3918{
3919 struct btrfs_space_info *found;
b742bb82
YZ
3920 int i;
3921 int factor;
b150a4f1 3922 int ret;
b742bb82
YZ
3923
3924 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3925 BTRFS_BLOCK_GROUP_RAID10))
3926 factor = 2;
3927 else
3928 factor = 1;
593060d7
CM
3929
3930 found = __find_space_info(info, flags);
3931 if (found) {
25179201 3932 spin_lock(&found->lock);
593060d7 3933 found->total_bytes += total_bytes;
89a55897 3934 found->disk_total += total_bytes * factor;
593060d7 3935 found->bytes_used += bytes_used;
b742bb82 3936 found->disk_used += bytes_used * factor;
e40edf2d 3937 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3938 if (total_bytes > 0)
3939 found->full = 0;
25179201 3940 spin_unlock(&found->lock);
593060d7
CM
3941 *space_info = found;
3942 return 0;
3943 }
c146afad 3944 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3945 if (!found)
3946 return -ENOMEM;
3947
908c7f19 3948 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3949 if (ret) {
3950 kfree(found);
3951 return ret;
3952 }
3953
c1895442 3954 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3955 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3956 init_rwsem(&found->groups_sem);
0f9dd46c 3957 spin_lock_init(&found->lock);
52ba6929 3958 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3959 found->total_bytes = total_bytes;
89a55897 3960 found->disk_total = total_bytes * factor;
593060d7 3961 found->bytes_used = bytes_used;
b742bb82 3962 found->disk_used = bytes_used * factor;
593060d7 3963 found->bytes_pinned = 0;
e8569813 3964 found->bytes_reserved = 0;
e40edf2d 3965 found->bytes_readonly = bytes_readonly;
f0486c68 3966 found->bytes_may_use = 0;
6af3e3ad 3967 found->full = 0;
4f4db217 3968 found->max_extent_size = 0;
0e4f8f88 3969 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3970 found->chunk_alloc = 0;
fdb5effd
JB
3971 found->flush = 0;
3972 init_waitqueue_head(&found->wait);
633c0aad 3973 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3974
3975 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3976 info->space_info_kobj, "%s",
3977 alloc_name(found->flags));
3978 if (ret) {
3979 kfree(found);
3980 return ret;
3981 }
3982
593060d7 3983 *space_info = found;
4184ea7f 3984 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3985 if (flags & BTRFS_BLOCK_GROUP_DATA)
3986 info->data_sinfo = found;
6ab0a202
JM
3987
3988 return ret;
593060d7
CM
3989}
3990
8790d502
CM
3991static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3992{
899c81ea
ID
3993 u64 extra_flags = chunk_to_extended(flags) &
3994 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3995
de98ced9 3996 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3997 if (flags & BTRFS_BLOCK_GROUP_DATA)
3998 fs_info->avail_data_alloc_bits |= extra_flags;
3999 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4000 fs_info->avail_metadata_alloc_bits |= extra_flags;
4001 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4002 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4003 write_sequnlock(&fs_info->profiles_lock);
8790d502 4004}
593060d7 4005
fc67c450
ID
4006/*
4007 * returns target flags in extended format or 0 if restripe for this
4008 * chunk_type is not in progress
c6664b42
ID
4009 *
4010 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4011 */
4012static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4013{
4014 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4015 u64 target = 0;
4016
fc67c450
ID
4017 if (!bctl)
4018 return 0;
4019
4020 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4021 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4022 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4023 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4024 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4025 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4026 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4027 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4028 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4029 }
4030
4031 return target;
4032}
4033
a46d11a8
ID
4034/*
4035 * @flags: available profiles in extended format (see ctree.h)
4036 *
e4d8ec0f
ID
4037 * Returns reduced profile in chunk format. If profile changing is in
4038 * progress (either running or paused) picks the target profile (if it's
4039 * already available), otherwise falls back to plain reducing.
a46d11a8 4040 */
48a3b636 4041static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4042{
95669976 4043 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4044 u64 target;
9c170b26
ZL
4045 u64 raid_type;
4046 u64 allowed = 0;
a061fc8d 4047
fc67c450
ID
4048 /*
4049 * see if restripe for this chunk_type is in progress, if so
4050 * try to reduce to the target profile
4051 */
e4d8ec0f 4052 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4053 target = get_restripe_target(root->fs_info, flags);
4054 if (target) {
4055 /* pick target profile only if it's already available */
4056 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4057 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4058 return extended_to_chunk(target);
e4d8ec0f
ID
4059 }
4060 }
4061 spin_unlock(&root->fs_info->balance_lock);
4062
53b381b3 4063 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4064 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4065 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4066 allowed |= btrfs_raid_group[raid_type];
4067 }
4068 allowed &= flags;
4069
4070 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4071 allowed = BTRFS_BLOCK_GROUP_RAID6;
4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4073 allowed = BTRFS_BLOCK_GROUP_RAID5;
4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4075 allowed = BTRFS_BLOCK_GROUP_RAID10;
4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4077 allowed = BTRFS_BLOCK_GROUP_RAID1;
4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4079 allowed = BTRFS_BLOCK_GROUP_RAID0;
4080
4081 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4082
4083 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4084}
4085
f8213bdc 4086static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4087{
de98ced9 4088 unsigned seq;
f8213bdc 4089 u64 flags;
de98ced9
MX
4090
4091 do {
f8213bdc 4092 flags = orig_flags;
de98ced9
MX
4093 seq = read_seqbegin(&root->fs_info->profiles_lock);
4094
4095 if (flags & BTRFS_BLOCK_GROUP_DATA)
4096 flags |= root->fs_info->avail_data_alloc_bits;
4097 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4098 flags |= root->fs_info->avail_system_alloc_bits;
4099 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4100 flags |= root->fs_info->avail_metadata_alloc_bits;
4101 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4102
b742bb82 4103 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4104}
4105
6d07bcec 4106u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4107{
b742bb82 4108 u64 flags;
53b381b3 4109 u64 ret;
9ed74f2d 4110
b742bb82
YZ
4111 if (data)
4112 flags = BTRFS_BLOCK_GROUP_DATA;
4113 else if (root == root->fs_info->chunk_root)
4114 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4115 else
b742bb82 4116 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4117
53b381b3
DW
4118 ret = get_alloc_profile(root, flags);
4119 return ret;
6a63209f 4120}
9ed74f2d 4121
4ceff079 4122int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4123{
6a63209f 4124 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4125 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4126 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4127 u64 used;
94b947b2 4128 int ret = 0;
c99f1b0c
ZL
4129 int need_commit = 2;
4130 int have_pinned_space;
6a63209f 4131
6a63209f 4132 /* make sure bytes are sectorsize aligned */
fda2832f 4133 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4134
9dced186 4135 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4136 need_commit = 0;
9dced186 4137 ASSERT(current->journal_info);
0af3d00b
JB
4138 }
4139
b4d7c3c9 4140 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4141 if (!data_sinfo)
4142 goto alloc;
9ed74f2d 4143
6a63209f
JB
4144again:
4145 /* make sure we have enough space to handle the data first */
4146 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4147 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4148 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4149 data_sinfo->bytes_may_use;
ab6e2410
JB
4150
4151 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4152 struct btrfs_trans_handle *trans;
9ed74f2d 4153
6a63209f
JB
4154 /*
4155 * if we don't have enough free bytes in this space then we need
4156 * to alloc a new chunk.
4157 */
b9fd47cd 4158 if (!data_sinfo->full) {
6a63209f 4159 u64 alloc_target;
9ed74f2d 4160
0e4f8f88 4161 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4162 spin_unlock(&data_sinfo->lock);
33b4d47f 4163alloc:
6a63209f 4164 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4165 /*
4166 * It is ugly that we don't call nolock join
4167 * transaction for the free space inode case here.
4168 * But it is safe because we only do the data space
4169 * reservation for the free space cache in the
4170 * transaction context, the common join transaction
4171 * just increase the counter of the current transaction
4172 * handler, doesn't try to acquire the trans_lock of
4173 * the fs.
4174 */
7a7eaa40 4175 trans = btrfs_join_transaction(root);
a22285a6
YZ
4176 if (IS_ERR(trans))
4177 return PTR_ERR(trans);
9ed74f2d 4178
6a63209f 4179 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4180 alloc_target,
4181 CHUNK_ALLOC_NO_FORCE);
6a63209f 4182 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4183 if (ret < 0) {
4184 if (ret != -ENOSPC)
4185 return ret;
c99f1b0c
ZL
4186 else {
4187 have_pinned_space = 1;
d52a5b5f 4188 goto commit_trans;
c99f1b0c 4189 }
d52a5b5f 4190 }
9ed74f2d 4191
b4d7c3c9
LZ
4192 if (!data_sinfo)
4193 data_sinfo = fs_info->data_sinfo;
4194
6a63209f
JB
4195 goto again;
4196 }
f2bb8f5c
JB
4197
4198 /*
b150a4f1 4199 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4200 * allocation, and no removed chunk in current transaction,
4201 * don't bother committing the transaction.
f2bb8f5c 4202 */
c99f1b0c
ZL
4203 have_pinned_space = percpu_counter_compare(
4204 &data_sinfo->total_bytes_pinned,
4205 used + bytes - data_sinfo->total_bytes);
6a63209f 4206 spin_unlock(&data_sinfo->lock);
6a63209f 4207
4e06bdd6 4208 /* commit the current transaction and try again */
d52a5b5f 4209commit_trans:
c99f1b0c 4210 if (need_commit &&
a4abeea4 4211 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4212 need_commit--;
b150a4f1 4213
e1746e83
ZL
4214 if (need_commit > 0) {
4215 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4216 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4217 }
9a4e7276 4218
7a7eaa40 4219 trans = btrfs_join_transaction(root);
a22285a6
YZ
4220 if (IS_ERR(trans))
4221 return PTR_ERR(trans);
c99f1b0c 4222 if (have_pinned_space >= 0 ||
3204d33c
JB
4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4224 &trans->transaction->flags) ||
c99f1b0c 4225 need_commit > 0) {
94b947b2
ZL
4226 ret = btrfs_commit_transaction(trans, root);
4227 if (ret)
4228 return ret;
d7c15171 4229 /*
c2d6cb16
FM
4230 * The cleaner kthread might still be doing iput
4231 * operations. Wait for it to finish so that
4232 * more space is released.
d7c15171 4233 */
c2d6cb16
FM
4234 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4235 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4236 goto again;
4237 } else {
4238 btrfs_end_transaction(trans, root);
4239 }
4e06bdd6 4240 }
9ed74f2d 4241
cab45e22
JM
4242 trace_btrfs_space_reservation(root->fs_info,
4243 "space_info:enospc",
4244 data_sinfo->flags, bytes, 1);
6a63209f
JB
4245 return -ENOSPC;
4246 }
4247 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4248 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4249 data_sinfo->flags, bytes, 1);
6a63209f 4250 spin_unlock(&data_sinfo->lock);
6a63209f 4251
237c0e9f 4252 return ret;
9ed74f2d 4253}
6a63209f 4254
4ceff079
QW
4255/*
4256 * New check_data_free_space() with ability for precious data reservation
4257 * Will replace old btrfs_check_data_free_space(), but for patch split,
4258 * add a new function first and then replace it.
4259 */
7cf5b976 4260int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4261{
4262 struct btrfs_root *root = BTRFS_I(inode)->root;
4263 int ret;
4264
4265 /* align the range */
4266 len = round_up(start + len, root->sectorsize) -
4267 round_down(start, root->sectorsize);
4268 start = round_down(start, root->sectorsize);
4269
4270 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4271 if (ret < 0)
4272 return ret;
4273
94ed938a
QW
4274 /*
4275 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4276 *
4277 * TODO: Find a good method to avoid reserve data space for NOCOW
4278 * range, but don't impact performance on quota disable case.
4279 */
4ceff079
QW
4280 ret = btrfs_qgroup_reserve_data(inode, start, len);
4281 return ret;
4282}
4283
4ceff079
QW
4284/*
4285 * Called if we need to clear a data reservation for this inode
4286 * Normally in a error case.
4287 *
51773bec
QW
4288 * This one will *NOT* use accurate qgroup reserved space API, just for case
4289 * which we can't sleep and is sure it won't affect qgroup reserved space.
4290 * Like clear_bit_hook().
4ceff079 4291 */
51773bec
QW
4292void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4293 u64 len)
4ceff079
QW
4294{
4295 struct btrfs_root *root = BTRFS_I(inode)->root;
4296 struct btrfs_space_info *data_sinfo;
4297
4298 /* Make sure the range is aligned to sectorsize */
4299 len = round_up(start + len, root->sectorsize) -
4300 round_down(start, root->sectorsize);
4301 start = round_down(start, root->sectorsize);
4302
4ceff079
QW
4303 data_sinfo = root->fs_info->data_sinfo;
4304 spin_lock(&data_sinfo->lock);
4305 if (WARN_ON(data_sinfo->bytes_may_use < len))
4306 data_sinfo->bytes_may_use = 0;
4307 else
4308 data_sinfo->bytes_may_use -= len;
4309 trace_btrfs_space_reservation(root->fs_info, "space_info",
4310 data_sinfo->flags, len, 0);
4311 spin_unlock(&data_sinfo->lock);
4312}
4313
51773bec
QW
4314/*
4315 * Called if we need to clear a data reservation for this inode
4316 * Normally in a error case.
4317 *
01327610 4318 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4319 * space framework.
4320 */
4321void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4322{
4323 btrfs_free_reserved_data_space_noquota(inode, start, len);
4324 btrfs_qgroup_free_data(inode, start, len);
4325}
4326
97e728d4 4327static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4328{
97e728d4
JB
4329 struct list_head *head = &info->space_info;
4330 struct btrfs_space_info *found;
e3ccfa98 4331
97e728d4
JB
4332 rcu_read_lock();
4333 list_for_each_entry_rcu(found, head, list) {
4334 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4335 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4336 }
97e728d4 4337 rcu_read_unlock();
e3ccfa98
JB
4338}
4339
3c76cd84
MX
4340static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4341{
4342 return (global->size << 1);
4343}
4344
e5bc2458 4345static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4346 struct btrfs_space_info *sinfo, int force)
32c00aff 4347{
fb25e914 4348 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4349 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4350 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4351 u64 thresh;
e3ccfa98 4352
0e4f8f88
CM
4353 if (force == CHUNK_ALLOC_FORCE)
4354 return 1;
4355
fb25e914
JB
4356 /*
4357 * We need to take into account the global rsv because for all intents
4358 * and purposes it's used space. Don't worry about locking the
4359 * global_rsv, it doesn't change except when the transaction commits.
4360 */
54338b5c 4361 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4362 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4363
0e4f8f88
CM
4364 /*
4365 * in limited mode, we want to have some free space up to
4366 * about 1% of the FS size.
4367 */
4368 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4369 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4370 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4371
4372 if (num_bytes - num_allocated < thresh)
4373 return 1;
4374 }
0e4f8f88 4375
ee22184b 4376 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4377 return 0;
424499db 4378 return 1;
32c00aff
JB
4379}
4380
39c2d7fa 4381static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4382{
4383 u64 num_dev;
4384
53b381b3
DW
4385 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4386 BTRFS_BLOCK_GROUP_RAID0 |
4387 BTRFS_BLOCK_GROUP_RAID5 |
4388 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4389 num_dev = root->fs_info->fs_devices->rw_devices;
4390 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4391 num_dev = 2;
4392 else
4393 num_dev = 1; /* DUP or single */
4394
39c2d7fa 4395 return num_dev;
15d1ff81
LB
4396}
4397
39c2d7fa
FM
4398/*
4399 * If @is_allocation is true, reserve space in the system space info necessary
4400 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4401 * removing a chunk.
4402 */
4403void check_system_chunk(struct btrfs_trans_handle *trans,
4404 struct btrfs_root *root,
4617ea3a 4405 u64 type)
15d1ff81
LB
4406{
4407 struct btrfs_space_info *info;
4408 u64 left;
4409 u64 thresh;
4fbcdf66 4410 int ret = 0;
39c2d7fa 4411 u64 num_devs;
4fbcdf66
FM
4412
4413 /*
4414 * Needed because we can end up allocating a system chunk and for an
4415 * atomic and race free space reservation in the chunk block reserve.
4416 */
4417 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4418
4419 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4420 spin_lock(&info->lock);
4421 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4422 info->bytes_reserved - info->bytes_readonly -
4423 info->bytes_may_use;
15d1ff81
LB
4424 spin_unlock(&info->lock);
4425
39c2d7fa
FM
4426 num_devs = get_profile_num_devs(root, type);
4427
4428 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4429 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4430 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4431
15d1ff81 4432 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4433 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4434 left, thresh, type);
15d1ff81
LB
4435 dump_space_info(info, 0, 0);
4436 }
4437
4438 if (left < thresh) {
4439 u64 flags;
4440
4441 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4442 /*
4443 * Ignore failure to create system chunk. We might end up not
4444 * needing it, as we might not need to COW all nodes/leafs from
4445 * the paths we visit in the chunk tree (they were already COWed
4446 * or created in the current transaction for example).
4447 */
4448 ret = btrfs_alloc_chunk(trans, root, flags);
4449 }
4450
4451 if (!ret) {
4452 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4453 &root->fs_info->chunk_block_rsv,
4454 thresh, BTRFS_RESERVE_NO_FLUSH);
4455 if (!ret)
4456 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4457 }
4458}
4459
6324fbf3 4460static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4461 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4462{
6324fbf3 4463 struct btrfs_space_info *space_info;
97e728d4 4464 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4465 int wait_for_alloc = 0;
9ed74f2d 4466 int ret = 0;
9ed74f2d 4467
c6b305a8
JB
4468 /* Don't re-enter if we're already allocating a chunk */
4469 if (trans->allocating_chunk)
4470 return -ENOSPC;
4471
6324fbf3 4472 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4473 if (!space_info) {
4474 ret = update_space_info(extent_root->fs_info, flags,
e40edf2d 4475 0, 0, 0, &space_info);
79787eaa 4476 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4477 }
79787eaa 4478 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4479
6d74119f 4480again:
25179201 4481 spin_lock(&space_info->lock);
9e622d6b 4482 if (force < space_info->force_alloc)
0e4f8f88 4483 force = space_info->force_alloc;
25179201 4484 if (space_info->full) {
09fb99a6
FDBM
4485 if (should_alloc_chunk(extent_root, space_info, force))
4486 ret = -ENOSPC;
4487 else
4488 ret = 0;
25179201 4489 spin_unlock(&space_info->lock);
09fb99a6 4490 return ret;
9ed74f2d
JB
4491 }
4492
698d0082 4493 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4494 spin_unlock(&space_info->lock);
6d74119f
JB
4495 return 0;
4496 } else if (space_info->chunk_alloc) {
4497 wait_for_alloc = 1;
4498 } else {
4499 space_info->chunk_alloc = 1;
9ed74f2d 4500 }
0e4f8f88 4501
25179201 4502 spin_unlock(&space_info->lock);
9ed74f2d 4503
6d74119f
JB
4504 mutex_lock(&fs_info->chunk_mutex);
4505
4506 /*
4507 * The chunk_mutex is held throughout the entirety of a chunk
4508 * allocation, so once we've acquired the chunk_mutex we know that the
4509 * other guy is done and we need to recheck and see if we should
4510 * allocate.
4511 */
4512 if (wait_for_alloc) {
4513 mutex_unlock(&fs_info->chunk_mutex);
4514 wait_for_alloc = 0;
4515 goto again;
4516 }
4517
c6b305a8
JB
4518 trans->allocating_chunk = true;
4519
67377734
JB
4520 /*
4521 * If we have mixed data/metadata chunks we want to make sure we keep
4522 * allocating mixed chunks instead of individual chunks.
4523 */
4524 if (btrfs_mixed_space_info(space_info))
4525 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4526
97e728d4
JB
4527 /*
4528 * if we're doing a data chunk, go ahead and make sure that
4529 * we keep a reasonable number of metadata chunks allocated in the
4530 * FS as well.
4531 */
9ed74f2d 4532 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4533 fs_info->data_chunk_allocations++;
4534 if (!(fs_info->data_chunk_allocations %
4535 fs_info->metadata_ratio))
4536 force_metadata_allocation(fs_info);
9ed74f2d
JB
4537 }
4538
15d1ff81
LB
4539 /*
4540 * Check if we have enough space in SYSTEM chunk because we may need
4541 * to update devices.
4542 */
4617ea3a 4543 check_system_chunk(trans, extent_root, flags);
15d1ff81 4544
2b82032c 4545 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4546 trans->allocating_chunk = false;
92b8e897 4547
9ed74f2d 4548 spin_lock(&space_info->lock);
a81cb9a2
AO
4549 if (ret < 0 && ret != -ENOSPC)
4550 goto out;
9ed74f2d 4551 if (ret)
6324fbf3 4552 space_info->full = 1;
424499db
YZ
4553 else
4554 ret = 1;
6d74119f 4555
0e4f8f88 4556 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4557out:
6d74119f 4558 space_info->chunk_alloc = 0;
9ed74f2d 4559 spin_unlock(&space_info->lock);
a25c75d5 4560 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4561 /*
4562 * When we allocate a new chunk we reserve space in the chunk block
4563 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4564 * add new nodes/leafs to it if we end up needing to do it when
4565 * inserting the chunk item and updating device items as part of the
4566 * second phase of chunk allocation, performed by
4567 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4568 * large number of new block groups to create in our transaction
4569 * handle's new_bgs list to avoid exhausting the chunk block reserve
4570 * in extreme cases - like having a single transaction create many new
4571 * block groups when starting to write out the free space caches of all
4572 * the block groups that were made dirty during the lifetime of the
4573 * transaction.
4574 */
d9a0540a 4575 if (trans->can_flush_pending_bgs &&
ee22184b 4576 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
00d80e34
FM
4577 btrfs_create_pending_block_groups(trans, trans->root);
4578 btrfs_trans_release_chunk_metadata(trans);
4579 }
0f9dd46c 4580 return ret;
6324fbf3 4581}
9ed74f2d 4582
a80c8dcf
JB
4583static int can_overcommit(struct btrfs_root *root,
4584 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4585 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4586{
96f1bb57 4587 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4588 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4589 u64 space_size;
a80c8dcf
JB
4590 u64 avail;
4591 u64 used;
4592
4593 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4594 space_info->bytes_pinned + space_info->bytes_readonly;
4595
96f1bb57
JB
4596 /*
4597 * We only want to allow over committing if we have lots of actual space
4598 * free, but if we don't have enough space to handle the global reserve
4599 * space then we could end up having a real enospc problem when trying
4600 * to allocate a chunk or some other such important allocation.
4601 */
3c76cd84
MX
4602 spin_lock(&global_rsv->lock);
4603 space_size = calc_global_rsv_need_space(global_rsv);
4604 spin_unlock(&global_rsv->lock);
4605 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4606 return 0;
4607
4608 used += space_info->bytes_may_use;
a80c8dcf
JB
4609
4610 spin_lock(&root->fs_info->free_chunk_lock);
4611 avail = root->fs_info->free_chunk_space;
4612 spin_unlock(&root->fs_info->free_chunk_lock);
4613
4614 /*
4615 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4616 * space is actually useable. For raid56, the space info used
4617 * doesn't include the parity drive, so we don't have to
4618 * change the math
a80c8dcf
JB
4619 */
4620 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4621 BTRFS_BLOCK_GROUP_RAID1 |
4622 BTRFS_BLOCK_GROUP_RAID10))
4623 avail >>= 1;
4624
4625 /*
561c294d
MX
4626 * If we aren't flushing all things, let us overcommit up to
4627 * 1/2th of the space. If we can flush, don't let us overcommit
4628 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4629 */
08e007d2 4630 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4631 avail >>= 3;
a80c8dcf 4632 else
14575aef 4633 avail >>= 1;
a80c8dcf 4634
14575aef 4635 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4636 return 1;
4637 return 0;
4638}
4639
48a3b636 4640static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4641 unsigned long nr_pages, int nr_items)
da633a42
MX
4642{
4643 struct super_block *sb = root->fs_info->sb;
da633a42 4644
925a6efb
JB
4645 if (down_read_trylock(&sb->s_umount)) {
4646 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4647 up_read(&sb->s_umount);
4648 } else {
da633a42
MX
4649 /*
4650 * We needn't worry the filesystem going from r/w to r/o though
4651 * we don't acquire ->s_umount mutex, because the filesystem
4652 * should guarantee the delalloc inodes list be empty after
4653 * the filesystem is readonly(all dirty pages are written to
4654 * the disk).
4655 */
6c255e67 4656 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4657 if (!current->journal_info)
578def7c
FM
4658 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4659 0, (u64)-1);
da633a42
MX
4660 }
4661}
4662
18cd8ea6
MX
4663static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4664{
4665 u64 bytes;
4666 int nr;
4667
4668 bytes = btrfs_calc_trans_metadata_size(root, 1);
4669 nr = (int)div64_u64(to_reclaim, bytes);
4670 if (!nr)
4671 nr = 1;
4672 return nr;
4673}
4674
ee22184b 4675#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4676
9ed74f2d 4677/*
5da9d01b 4678 * shrink metadata reservation for delalloc
9ed74f2d 4679 */
f4c738c2
JB
4680static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4681 bool wait_ordered)
5da9d01b 4682{
0ca1f7ce 4683 struct btrfs_block_rsv *block_rsv;
0019f10d 4684 struct btrfs_space_info *space_info;
663350ac 4685 struct btrfs_trans_handle *trans;
f4c738c2 4686 u64 delalloc_bytes;
5da9d01b 4687 u64 max_reclaim;
b1953bce 4688 long time_left;
d3ee29e3
MX
4689 unsigned long nr_pages;
4690 int loops;
b0244199 4691 int items;
08e007d2 4692 enum btrfs_reserve_flush_enum flush;
5da9d01b 4693
c61a16a7 4694 /* Calc the number of the pages we need flush for space reservation */
b0244199 4695 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4696 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4697
663350ac 4698 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4699 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4700 space_info = block_rsv->space_info;
bf9022e0 4701
963d678b
MX
4702 delalloc_bytes = percpu_counter_sum_positive(
4703 &root->fs_info->delalloc_bytes);
f4c738c2 4704 if (delalloc_bytes == 0) {
fdb5effd 4705 if (trans)
f4c738c2 4706 return;
38c135af 4707 if (wait_ordered)
578def7c
FM
4708 btrfs_wait_ordered_roots(root->fs_info, items,
4709 0, (u64)-1);
f4c738c2 4710 return;
fdb5effd
JB
4711 }
4712
d3ee29e3 4713 loops = 0;
f4c738c2
JB
4714 while (delalloc_bytes && loops < 3) {
4715 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4716 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4717 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4718 /*
4719 * We need to wait for the async pages to actually start before
4720 * we do anything.
4721 */
9f3a074d
MX
4722 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4723 if (!max_reclaim)
4724 goto skip_async;
4725
4726 if (max_reclaim <= nr_pages)
4727 max_reclaim = 0;
4728 else
4729 max_reclaim -= nr_pages;
dea31f52 4730
9f3a074d
MX
4731 wait_event(root->fs_info->async_submit_wait,
4732 atomic_read(&root->fs_info->async_delalloc_pages) <=
4733 (int)max_reclaim);
4734skip_async:
08e007d2
MX
4735 if (!trans)
4736 flush = BTRFS_RESERVE_FLUSH_ALL;
4737 else
4738 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4739 spin_lock(&space_info->lock);
08e007d2 4740 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4741 spin_unlock(&space_info->lock);
4742 break;
4743 }
0019f10d 4744 spin_unlock(&space_info->lock);
5da9d01b 4745
36e39c40 4746 loops++;
f104d044 4747 if (wait_ordered && !trans) {
578def7c
FM
4748 btrfs_wait_ordered_roots(root->fs_info, items,
4749 0, (u64)-1);
f104d044 4750 } else {
f4c738c2 4751 time_left = schedule_timeout_killable(1);
f104d044
JB
4752 if (time_left)
4753 break;
4754 }
963d678b
MX
4755 delalloc_bytes = percpu_counter_sum_positive(
4756 &root->fs_info->delalloc_bytes);
5da9d01b 4757 }
5da9d01b
YZ
4758}
4759
663350ac
JB
4760/**
4761 * maybe_commit_transaction - possibly commit the transaction if its ok to
4762 * @root - the root we're allocating for
4763 * @bytes - the number of bytes we want to reserve
4764 * @force - force the commit
8bb8ab2e 4765 *
663350ac
JB
4766 * This will check to make sure that committing the transaction will actually
4767 * get us somewhere and then commit the transaction if it does. Otherwise it
4768 * will return -ENOSPC.
8bb8ab2e 4769 */
663350ac
JB
4770static int may_commit_transaction(struct btrfs_root *root,
4771 struct btrfs_space_info *space_info,
4772 u64 bytes, int force)
4773{
4774 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4775 struct btrfs_trans_handle *trans;
4776
4777 trans = (struct btrfs_trans_handle *)current->journal_info;
4778 if (trans)
4779 return -EAGAIN;
4780
4781 if (force)
4782 goto commit;
4783
4784 /* See if there is enough pinned space to make this reservation */
b150a4f1 4785 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4786 bytes) >= 0)
663350ac 4787 goto commit;
663350ac
JB
4788
4789 /*
4790 * See if there is some space in the delayed insertion reservation for
4791 * this reservation.
4792 */
4793 if (space_info != delayed_rsv->space_info)
4794 return -ENOSPC;
4795
4796 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4797 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4798 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4799 spin_unlock(&delayed_rsv->lock);
4800 return -ENOSPC;
4801 }
4802 spin_unlock(&delayed_rsv->lock);
4803
4804commit:
4805 trans = btrfs_join_transaction(root);
4806 if (IS_ERR(trans))
4807 return -ENOSPC;
4808
4809 return btrfs_commit_transaction(trans, root);
4810}
4811
96c3f433 4812enum flush_state {
67b0fd63
JB
4813 FLUSH_DELAYED_ITEMS_NR = 1,
4814 FLUSH_DELAYED_ITEMS = 2,
4815 FLUSH_DELALLOC = 3,
4816 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4817 ALLOC_CHUNK = 5,
4818 COMMIT_TRANS = 6,
96c3f433
JB
4819};
4820
4821static int flush_space(struct btrfs_root *root,
4822 struct btrfs_space_info *space_info, u64 num_bytes,
4823 u64 orig_bytes, int state)
4824{
4825 struct btrfs_trans_handle *trans;
4826 int nr;
f4c738c2 4827 int ret = 0;
96c3f433
JB
4828
4829 switch (state) {
96c3f433
JB
4830 case FLUSH_DELAYED_ITEMS_NR:
4831 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4832 if (state == FLUSH_DELAYED_ITEMS_NR)
4833 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4834 else
96c3f433 4835 nr = -1;
18cd8ea6 4836
96c3f433
JB
4837 trans = btrfs_join_transaction(root);
4838 if (IS_ERR(trans)) {
4839 ret = PTR_ERR(trans);
4840 break;
4841 }
4842 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4843 btrfs_end_transaction(trans, root);
4844 break;
67b0fd63
JB
4845 case FLUSH_DELALLOC:
4846 case FLUSH_DELALLOC_WAIT:
24af7dd1 4847 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4848 state == FLUSH_DELALLOC_WAIT);
4849 break;
ea658bad
JB
4850 case ALLOC_CHUNK:
4851 trans = btrfs_join_transaction(root);
4852 if (IS_ERR(trans)) {
4853 ret = PTR_ERR(trans);
4854 break;
4855 }
4856 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4857 btrfs_get_alloc_profile(root, 0),
4858 CHUNK_ALLOC_NO_FORCE);
4859 btrfs_end_transaction(trans, root);
4860 if (ret == -ENOSPC)
4861 ret = 0;
4862 break;
96c3f433
JB
4863 case COMMIT_TRANS:
4864 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4865 break;
4866 default:
4867 ret = -ENOSPC;
4868 break;
4869 }
4870
4871 return ret;
4872}
21c7e756
MX
4873
4874static inline u64
4875btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4876 struct btrfs_space_info *space_info)
4877{
4878 u64 used;
4879 u64 expected;
4880 u64 to_reclaim;
4881
ee22184b 4882 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
21c7e756
MX
4883 spin_lock(&space_info->lock);
4884 if (can_overcommit(root, space_info, to_reclaim,
4885 BTRFS_RESERVE_FLUSH_ALL)) {
4886 to_reclaim = 0;
4887 goto out;
4888 }
4889
4890 used = space_info->bytes_used + space_info->bytes_reserved +
4891 space_info->bytes_pinned + space_info->bytes_readonly +
4892 space_info->bytes_may_use;
ee22184b 4893 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4894 expected = div_factor_fine(space_info->total_bytes, 95);
4895 else
4896 expected = div_factor_fine(space_info->total_bytes, 90);
4897
4898 if (used > expected)
4899 to_reclaim = used - expected;
4900 else
4901 to_reclaim = 0;
4902 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4903 space_info->bytes_reserved);
4904out:
4905 spin_unlock(&space_info->lock);
4906
4907 return to_reclaim;
4908}
4909
4910static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4911 struct btrfs_fs_info *fs_info, u64 used)
4912{
365c5313
JB
4913 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4914
4915 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4916 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4917 return 0;
4918
4919 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4920 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4921}
4922
4923static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4924 struct btrfs_fs_info *fs_info,
4925 int flush_state)
21c7e756
MX
4926{
4927 u64 used;
4928
4929 spin_lock(&space_info->lock);
25ce459c
LB
4930 /*
4931 * We run out of space and have not got any free space via flush_space,
4932 * so don't bother doing async reclaim.
4933 */
4934 if (flush_state > COMMIT_TRANS && space_info->full) {
4935 spin_unlock(&space_info->lock);
4936 return 0;
4937 }
4938
21c7e756
MX
4939 used = space_info->bytes_used + space_info->bytes_reserved +
4940 space_info->bytes_pinned + space_info->bytes_readonly +
4941 space_info->bytes_may_use;
4942 if (need_do_async_reclaim(space_info, fs_info, used)) {
4943 spin_unlock(&space_info->lock);
4944 return 1;
4945 }
4946 spin_unlock(&space_info->lock);
4947
4948 return 0;
4949}
4950
4951static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4952{
4953 struct btrfs_fs_info *fs_info;
4954 struct btrfs_space_info *space_info;
4955 u64 to_reclaim;
4956 int flush_state;
4957
4958 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4959 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4960
4961 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4962 space_info);
4963 if (!to_reclaim)
4964 return;
4965
4966 flush_state = FLUSH_DELAYED_ITEMS_NR;
4967 do {
4968 flush_space(fs_info->fs_root, space_info, to_reclaim,
4969 to_reclaim, flush_state);
4970 flush_state++;
25ce459c
LB
4971 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4972 flush_state))
21c7e756 4973 return;
365c5313 4974 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4975}
4976
4977void btrfs_init_async_reclaim_work(struct work_struct *work)
4978{
4979 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4980}
4981
4a92b1b8
JB
4982/**
4983 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4984 * @root - the root we're allocating for
4985 * @block_rsv - the block_rsv we're allocating for
4986 * @orig_bytes - the number of bytes we want
48fc7f7e 4987 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4988 *
01327610 4989 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
4990 * with the block_rsv. If there is not enough space it will make an attempt to
4991 * flush out space to make room. It will do this by flushing delalloc if
4992 * possible or committing the transaction. If flush is 0 then no attempts to
4993 * regain reservations will be made and this will fail if there is not enough
4994 * space already.
8bb8ab2e 4995 */
4a92b1b8 4996static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4997 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4998 u64 orig_bytes,
4999 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5000{
f0486c68 5001 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 5002 u64 used;
8bb8ab2e 5003 u64 num_bytes = orig_bytes;
67b0fd63 5004 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 5005 int ret = 0;
fdb5effd 5006 bool flushing = false;
9ed74f2d 5007
8bb8ab2e 5008again:
fdb5effd 5009 ret = 0;
8bb8ab2e 5010 spin_lock(&space_info->lock);
fdb5effd 5011 /*
08e007d2
MX
5012 * We only want to wait if somebody other than us is flushing and we
5013 * are actually allowed to flush all things.
fdb5effd 5014 */
08e007d2
MX
5015 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5016 space_info->flush) {
fdb5effd
JB
5017 spin_unlock(&space_info->lock);
5018 /*
5019 * If we have a trans handle we can't wait because the flusher
5020 * may have to commit the transaction, which would mean we would
5021 * deadlock since we are waiting for the flusher to finish, but
5022 * hold the current transaction open.
5023 */
663350ac 5024 if (current->journal_info)
fdb5effd 5025 return -EAGAIN;
b9688bb8
AJ
5026 ret = wait_event_killable(space_info->wait, !space_info->flush);
5027 /* Must have been killed, return */
5028 if (ret)
fdb5effd
JB
5029 return -EINTR;
5030
5031 spin_lock(&space_info->lock);
5032 }
5033
5034 ret = -ENOSPC;
2bf64758
JB
5035 used = space_info->bytes_used + space_info->bytes_reserved +
5036 space_info->bytes_pinned + space_info->bytes_readonly +
5037 space_info->bytes_may_use;
9ed74f2d 5038
8bb8ab2e
JB
5039 /*
5040 * The idea here is that we've not already over-reserved the block group
5041 * then we can go ahead and save our reservation first and then start
5042 * flushing if we need to. Otherwise if we've already overcommitted
5043 * lets start flushing stuff first and then come back and try to make
5044 * our reservation.
5045 */
2bf64758
JB
5046 if (used <= space_info->total_bytes) {
5047 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 5048 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 5049 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 5050 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
5051 ret = 0;
5052 } else {
5053 /*
5054 * Ok set num_bytes to orig_bytes since we aren't
5055 * overocmmitted, this way we only try and reclaim what
5056 * we need.
5057 */
5058 num_bytes = orig_bytes;
5059 }
5060 } else {
5061 /*
5062 * Ok we're over committed, set num_bytes to the overcommitted
5063 * amount plus the amount of bytes that we need for this
5064 * reservation.
5065 */
2bf64758 5066 num_bytes = used - space_info->total_bytes +
96c3f433 5067 (orig_bytes * 2);
8bb8ab2e 5068 }
9ed74f2d 5069
44734ed1
JB
5070 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5071 space_info->bytes_may_use += orig_bytes;
5072 trace_btrfs_space_reservation(root->fs_info, "space_info",
5073 space_info->flags, orig_bytes,
5074 1);
5075 ret = 0;
2bf64758
JB
5076 }
5077
8bb8ab2e
JB
5078 /*
5079 * Couldn't make our reservation, save our place so while we're trying
5080 * to reclaim space we can actually use it instead of somebody else
5081 * stealing it from us.
08e007d2
MX
5082 *
5083 * We make the other tasks wait for the flush only when we can flush
5084 * all things.
8bb8ab2e 5085 */
72bcd99d 5086 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
5087 flushing = true;
5088 space_info->flush = 1;
21c7e756
MX
5089 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5090 used += orig_bytes;
f6acfd50
JB
5091 /*
5092 * We will do the space reservation dance during log replay,
5093 * which means we won't have fs_info->fs_root set, so don't do
5094 * the async reclaim as we will panic.
5095 */
5096 if (!root->fs_info->log_root_recovering &&
5097 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
5098 !work_busy(&root->fs_info->async_reclaim_work))
5099 queue_work(system_unbound_wq,
5100 &root->fs_info->async_reclaim_work);
8bb8ab2e 5101 }
f0486c68 5102 spin_unlock(&space_info->lock);
9ed74f2d 5103
08e007d2 5104 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 5105 goto out;
f0486c68 5106
96c3f433
JB
5107 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5108 flush_state);
5109 flush_state++;
08e007d2
MX
5110
5111 /*
5112 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5113 * would happen. So skip delalloc flush.
5114 */
5115 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5116 (flush_state == FLUSH_DELALLOC ||
5117 flush_state == FLUSH_DELALLOC_WAIT))
5118 flush_state = ALLOC_CHUNK;
5119
96c3f433 5120 if (!ret)
8bb8ab2e 5121 goto again;
08e007d2
MX
5122 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5123 flush_state < COMMIT_TRANS)
5124 goto again;
5125 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5126 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
5127 goto again;
5128
5129out:
5d80366e
JB
5130 if (ret == -ENOSPC &&
5131 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5132 struct btrfs_block_rsv *global_rsv =
5133 &root->fs_info->global_block_rsv;
5134
5135 if (block_rsv != global_rsv &&
5136 !block_rsv_use_bytes(global_rsv, orig_bytes))
5137 ret = 0;
5138 }
cab45e22
JM
5139 if (ret == -ENOSPC)
5140 trace_btrfs_space_reservation(root->fs_info,
5141 "space_info:enospc",
5142 space_info->flags, orig_bytes, 1);
fdb5effd 5143 if (flushing) {
8bb8ab2e 5144 spin_lock(&space_info->lock);
fdb5effd
JB
5145 space_info->flush = 0;
5146 wake_up_all(&space_info->wait);
8bb8ab2e 5147 spin_unlock(&space_info->lock);
f0486c68 5148 }
f0486c68
YZ
5149 return ret;
5150}
5151
79787eaa
JM
5152static struct btrfs_block_rsv *get_block_rsv(
5153 const struct btrfs_trans_handle *trans,
5154 const struct btrfs_root *root)
f0486c68 5155{
4c13d758
JB
5156 struct btrfs_block_rsv *block_rsv = NULL;
5157
e9cf439f
AM
5158 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5159 (root == root->fs_info->csum_root && trans->adding_csums) ||
5160 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5161 block_rsv = trans->block_rsv;
5162
4c13d758 5163 if (!block_rsv)
f0486c68
YZ
5164 block_rsv = root->block_rsv;
5165
5166 if (!block_rsv)
5167 block_rsv = &root->fs_info->empty_block_rsv;
5168
5169 return block_rsv;
5170}
5171
5172static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5173 u64 num_bytes)
5174{
5175 int ret = -ENOSPC;
5176 spin_lock(&block_rsv->lock);
5177 if (block_rsv->reserved >= num_bytes) {
5178 block_rsv->reserved -= num_bytes;
5179 if (block_rsv->reserved < block_rsv->size)
5180 block_rsv->full = 0;
5181 ret = 0;
5182 }
5183 spin_unlock(&block_rsv->lock);
5184 return ret;
5185}
5186
5187static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5188 u64 num_bytes, int update_size)
5189{
5190 spin_lock(&block_rsv->lock);
5191 block_rsv->reserved += num_bytes;
5192 if (update_size)
5193 block_rsv->size += num_bytes;
5194 else if (block_rsv->reserved >= block_rsv->size)
5195 block_rsv->full = 1;
5196 spin_unlock(&block_rsv->lock);
5197}
5198
d52be818
JB
5199int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5200 struct btrfs_block_rsv *dest, u64 num_bytes,
5201 int min_factor)
5202{
5203 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5204 u64 min_bytes;
5205
5206 if (global_rsv->space_info != dest->space_info)
5207 return -ENOSPC;
5208
5209 spin_lock(&global_rsv->lock);
5210 min_bytes = div_factor(global_rsv->size, min_factor);
5211 if (global_rsv->reserved < min_bytes + num_bytes) {
5212 spin_unlock(&global_rsv->lock);
5213 return -ENOSPC;
5214 }
5215 global_rsv->reserved -= num_bytes;
5216 if (global_rsv->reserved < global_rsv->size)
5217 global_rsv->full = 0;
5218 spin_unlock(&global_rsv->lock);
5219
5220 block_rsv_add_bytes(dest, num_bytes, 1);
5221 return 0;
5222}
5223
8c2a3ca2
JB
5224static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5225 struct btrfs_block_rsv *block_rsv,
62a45b60 5226 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5227{
5228 struct btrfs_space_info *space_info = block_rsv->space_info;
5229
5230 spin_lock(&block_rsv->lock);
5231 if (num_bytes == (u64)-1)
5232 num_bytes = block_rsv->size;
5233 block_rsv->size -= num_bytes;
5234 if (block_rsv->reserved >= block_rsv->size) {
5235 num_bytes = block_rsv->reserved - block_rsv->size;
5236 block_rsv->reserved = block_rsv->size;
5237 block_rsv->full = 1;
5238 } else {
5239 num_bytes = 0;
5240 }
5241 spin_unlock(&block_rsv->lock);
5242
5243 if (num_bytes > 0) {
5244 if (dest) {
e9e22899
JB
5245 spin_lock(&dest->lock);
5246 if (!dest->full) {
5247 u64 bytes_to_add;
5248
5249 bytes_to_add = dest->size - dest->reserved;
5250 bytes_to_add = min(num_bytes, bytes_to_add);
5251 dest->reserved += bytes_to_add;
5252 if (dest->reserved >= dest->size)
5253 dest->full = 1;
5254 num_bytes -= bytes_to_add;
5255 }
5256 spin_unlock(&dest->lock);
5257 }
5258 if (num_bytes) {
f0486c68 5259 spin_lock(&space_info->lock);
fb25e914 5260 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5261 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5262 space_info->flags, num_bytes, 0);
f0486c68 5263 spin_unlock(&space_info->lock);
4e06bdd6 5264 }
9ed74f2d 5265 }
f0486c68 5266}
4e06bdd6 5267
25d609f8
JB
5268int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5269 struct btrfs_block_rsv *dst, u64 num_bytes,
5270 int update_size)
f0486c68
YZ
5271{
5272 int ret;
9ed74f2d 5273
f0486c68
YZ
5274 ret = block_rsv_use_bytes(src, num_bytes);
5275 if (ret)
5276 return ret;
9ed74f2d 5277
25d609f8 5278 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5279 return 0;
5280}
5281
66d8f3dd 5282void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5283{
f0486c68
YZ
5284 memset(rsv, 0, sizeof(*rsv));
5285 spin_lock_init(&rsv->lock);
66d8f3dd 5286 rsv->type = type;
f0486c68
YZ
5287}
5288
66d8f3dd
MX
5289struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5290 unsigned short type)
f0486c68
YZ
5291{
5292 struct btrfs_block_rsv *block_rsv;
5293 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5294
f0486c68
YZ
5295 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5296 if (!block_rsv)
5297 return NULL;
9ed74f2d 5298
66d8f3dd 5299 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5300 block_rsv->space_info = __find_space_info(fs_info,
5301 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5302 return block_rsv;
5303}
9ed74f2d 5304
f0486c68
YZ
5305void btrfs_free_block_rsv(struct btrfs_root *root,
5306 struct btrfs_block_rsv *rsv)
5307{
2aaa6655
JB
5308 if (!rsv)
5309 return;
dabdb640
JB
5310 btrfs_block_rsv_release(root, rsv, (u64)-1);
5311 kfree(rsv);
9ed74f2d
JB
5312}
5313
cdfb080e
CM
5314void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5315{
5316 kfree(rsv);
5317}
5318
08e007d2
MX
5319int btrfs_block_rsv_add(struct btrfs_root *root,
5320 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5321 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5322{
f0486c68 5323 int ret;
9ed74f2d 5324
f0486c68
YZ
5325 if (num_bytes == 0)
5326 return 0;
8bb8ab2e 5327
61b520a9 5328 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5329 if (!ret) {
5330 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5331 return 0;
5332 }
9ed74f2d 5333
f0486c68 5334 return ret;
f0486c68 5335}
9ed74f2d 5336
4a92b1b8 5337int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5338 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5339{
5340 u64 num_bytes = 0;
f0486c68 5341 int ret = -ENOSPC;
9ed74f2d 5342
f0486c68
YZ
5343 if (!block_rsv)
5344 return 0;
9ed74f2d 5345
f0486c68 5346 spin_lock(&block_rsv->lock);
36ba022a
JB
5347 num_bytes = div_factor(block_rsv->size, min_factor);
5348 if (block_rsv->reserved >= num_bytes)
5349 ret = 0;
5350 spin_unlock(&block_rsv->lock);
9ed74f2d 5351
36ba022a
JB
5352 return ret;
5353}
5354
08e007d2
MX
5355int btrfs_block_rsv_refill(struct btrfs_root *root,
5356 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5357 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5358{
5359 u64 num_bytes = 0;
5360 int ret = -ENOSPC;
5361
5362 if (!block_rsv)
5363 return 0;
5364
5365 spin_lock(&block_rsv->lock);
5366 num_bytes = min_reserved;
13553e52 5367 if (block_rsv->reserved >= num_bytes)
f0486c68 5368 ret = 0;
13553e52 5369 else
f0486c68 5370 num_bytes -= block_rsv->reserved;
f0486c68 5371 spin_unlock(&block_rsv->lock);
13553e52 5372
f0486c68
YZ
5373 if (!ret)
5374 return 0;
5375
aa38a711 5376 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5377 if (!ret) {
5378 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5379 return 0;
6a63209f 5380 }
9ed74f2d 5381
13553e52 5382 return ret;
f0486c68
YZ
5383}
5384
f0486c68
YZ
5385void btrfs_block_rsv_release(struct btrfs_root *root,
5386 struct btrfs_block_rsv *block_rsv,
5387 u64 num_bytes)
5388{
5389 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5390 if (global_rsv == block_rsv ||
f0486c68
YZ
5391 block_rsv->space_info != global_rsv->space_info)
5392 global_rsv = NULL;
8c2a3ca2
JB
5393 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5394 num_bytes);
6a63209f
JB
5395}
5396
5397/*
8929ecfa
YZ
5398 * helper to calculate size of global block reservation.
5399 * the desired value is sum of space used by extent tree,
5400 * checksum tree and root tree
6a63209f 5401 */
8929ecfa 5402static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5403{
8929ecfa
YZ
5404 struct btrfs_space_info *sinfo;
5405 u64 num_bytes;
5406 u64 meta_used;
5407 u64 data_used;
6c41761f 5408 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5409
8929ecfa
YZ
5410 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5411 spin_lock(&sinfo->lock);
5412 data_used = sinfo->bytes_used;
5413 spin_unlock(&sinfo->lock);
33b4d47f 5414
8929ecfa
YZ
5415 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5416 spin_lock(&sinfo->lock);
6d48755d
JB
5417 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5418 data_used = 0;
8929ecfa
YZ
5419 meta_used = sinfo->bytes_used;
5420 spin_unlock(&sinfo->lock);
ab6e2410 5421
8929ecfa
YZ
5422 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5423 csum_size * 2;
f8c269d7 5424 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5425
8929ecfa 5426 if (num_bytes * 3 > meta_used)
f8c269d7 5427 num_bytes = div_u64(meta_used, 3);
ab6e2410 5428
707e8a07 5429 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5430}
6a63209f 5431
8929ecfa
YZ
5432static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5433{
5434 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5435 struct btrfs_space_info *sinfo = block_rsv->space_info;
5436 u64 num_bytes;
6a63209f 5437
8929ecfa 5438 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5439
8929ecfa 5440 spin_lock(&sinfo->lock);
1f699d38 5441 spin_lock(&block_rsv->lock);
4e06bdd6 5442
ee22184b 5443 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5444
fb4b10e5
JB
5445 if (block_rsv->reserved < block_rsv->size) {
5446 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5447 sinfo->bytes_reserved + sinfo->bytes_readonly +
5448 sinfo->bytes_may_use;
5449 if (sinfo->total_bytes > num_bytes) {
5450 num_bytes = sinfo->total_bytes - num_bytes;
5451 num_bytes = min(num_bytes,
5452 block_rsv->size - block_rsv->reserved);
5453 block_rsv->reserved += num_bytes;
5454 sinfo->bytes_may_use += num_bytes;
5455 trace_btrfs_space_reservation(fs_info, "space_info",
5456 sinfo->flags, num_bytes,
5457 1);
5458 }
5459 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5460 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5461 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5462 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5463 sinfo->flags, num_bytes, 0);
8929ecfa 5464 block_rsv->reserved = block_rsv->size;
8929ecfa 5465 }
182608c8 5466
fb4b10e5
JB
5467 if (block_rsv->reserved == block_rsv->size)
5468 block_rsv->full = 1;
5469 else
5470 block_rsv->full = 0;
5471
8929ecfa 5472 spin_unlock(&block_rsv->lock);
1f699d38 5473 spin_unlock(&sinfo->lock);
6a63209f
JB
5474}
5475
f0486c68 5476static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5477{
f0486c68 5478 struct btrfs_space_info *space_info;
6a63209f 5479
f0486c68
YZ
5480 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5481 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5482
f0486c68 5483 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5484 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5485 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5486 fs_info->trans_block_rsv.space_info = space_info;
5487 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5488 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5489
8929ecfa
YZ
5490 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5491 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5492 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5493 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5494 if (fs_info->quota_root)
5495 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5496 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5497
8929ecfa 5498 update_global_block_rsv(fs_info);
6a63209f
JB
5499}
5500
8929ecfa 5501static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5502{
8c2a3ca2
JB
5503 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5504 (u64)-1);
8929ecfa
YZ
5505 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5506 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5507 WARN_ON(fs_info->trans_block_rsv.size > 0);
5508 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5509 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5510 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5511 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5512 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5513}
5514
a22285a6
YZ
5515void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5516 struct btrfs_root *root)
6a63209f 5517{
0e721106
JB
5518 if (!trans->block_rsv)
5519 return;
5520
a22285a6
YZ
5521 if (!trans->bytes_reserved)
5522 return;
6a63209f 5523
e77266e4 5524 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5525 trans->transid, trans->bytes_reserved, 0);
b24e03db 5526 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5527 trans->bytes_reserved = 0;
5528}
6a63209f 5529
4fbcdf66
FM
5530/*
5531 * To be called after all the new block groups attached to the transaction
5532 * handle have been created (btrfs_create_pending_block_groups()).
5533 */
5534void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5535{
5536 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5537
5538 if (!trans->chunk_bytes_reserved)
5539 return;
5540
5541 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5542
5543 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5544 trans->chunk_bytes_reserved);
5545 trans->chunk_bytes_reserved = 0;
5546}
5547
79787eaa 5548/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5549int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5550 struct inode *inode)
5551{
5552 struct btrfs_root *root = BTRFS_I(inode)->root;
5553 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5554 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5555
5556 /*
fcb80c2a
JB
5557 * We need to hold space in order to delete our orphan item once we've
5558 * added it, so this takes the reservation so we can release it later
5559 * when we are truly done with the orphan item.
d68fc57b 5560 */
ff5714cc 5561 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5562 trace_btrfs_space_reservation(root->fs_info, "orphan",
5563 btrfs_ino(inode), num_bytes, 1);
25d609f8 5564 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5565}
5566
d68fc57b 5567void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5568{
d68fc57b 5569 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5570 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5571 trace_btrfs_space_reservation(root->fs_info, "orphan",
5572 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5573 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5574}
97e728d4 5575
d5c12070
MX
5576/*
5577 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5578 * root: the root of the parent directory
5579 * rsv: block reservation
5580 * items: the number of items that we need do reservation
5581 * qgroup_reserved: used to return the reserved size in qgroup
5582 *
5583 * This function is used to reserve the space for snapshot/subvolume
5584 * creation and deletion. Those operations are different with the
5585 * common file/directory operations, they change two fs/file trees
5586 * and root tree, the number of items that the qgroup reserves is
5587 * different with the free space reservation. So we can not use
01327610 5588 * the space reservation mechanism in start_transaction().
d5c12070
MX
5589 */
5590int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5591 struct btrfs_block_rsv *rsv,
5592 int items,
ee3441b4
JM
5593 u64 *qgroup_reserved,
5594 bool use_global_rsv)
a22285a6 5595{
d5c12070
MX
5596 u64 num_bytes;
5597 int ret;
ee3441b4 5598 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5599
5600 if (root->fs_info->quota_enabled) {
5601 /* One for parent inode, two for dir entries */
707e8a07 5602 num_bytes = 3 * root->nodesize;
7174109c 5603 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5604 if (ret)
5605 return ret;
5606 } else {
5607 num_bytes = 0;
5608 }
5609
5610 *qgroup_reserved = num_bytes;
5611
5612 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5613 rsv->space_info = __find_space_info(root->fs_info,
5614 BTRFS_BLOCK_GROUP_METADATA);
5615 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5616 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5617
5618 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5619 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5620
7174109c
QW
5621 if (ret && *qgroup_reserved)
5622 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5623
5624 return ret;
5625}
5626
5627void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5628 struct btrfs_block_rsv *rsv,
5629 u64 qgroup_reserved)
5630{
5631 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5632}
5633
7709cde3
JB
5634/**
5635 * drop_outstanding_extent - drop an outstanding extent
5636 * @inode: the inode we're dropping the extent for
01327610 5637 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5638 *
5639 * This is called when we are freeing up an outstanding extent, either called
5640 * after an error or after an extent is written. This will return the number of
5641 * reserved extents that need to be freed. This must be called with
5642 * BTRFS_I(inode)->lock held.
5643 */
dcab6a3b 5644static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5645{
7fd2ae21 5646 unsigned drop_inode_space = 0;
9e0baf60 5647 unsigned dropped_extents = 0;
dcab6a3b 5648 unsigned num_extents = 0;
9e0baf60 5649
dcab6a3b
JB
5650 num_extents = (unsigned)div64_u64(num_bytes +
5651 BTRFS_MAX_EXTENT_SIZE - 1,
5652 BTRFS_MAX_EXTENT_SIZE);
5653 ASSERT(num_extents);
5654 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5655 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5656
7fd2ae21 5657 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5658 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5659 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5660 drop_inode_space = 1;
7fd2ae21 5661
9e0baf60 5662 /*
01327610 5663 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5664 * reserved then we need to leave the reserved extents count alone.
5665 */
5666 if (BTRFS_I(inode)->outstanding_extents >=
5667 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5668 return drop_inode_space;
9e0baf60
JB
5669
5670 dropped_extents = BTRFS_I(inode)->reserved_extents -
5671 BTRFS_I(inode)->outstanding_extents;
5672 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5673 return dropped_extents + drop_inode_space;
9e0baf60
JB
5674}
5675
7709cde3 5676/**
01327610
NS
5677 * calc_csum_metadata_size - return the amount of metadata space that must be
5678 * reserved/freed for the given bytes.
7709cde3
JB
5679 * @inode: the inode we're manipulating
5680 * @num_bytes: the number of bytes in question
5681 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5682 *
5683 * This adjusts the number of csum_bytes in the inode and then returns the
5684 * correct amount of metadata that must either be reserved or freed. We
5685 * calculate how many checksums we can fit into one leaf and then divide the
5686 * number of bytes that will need to be checksumed by this value to figure out
5687 * how many checksums will be required. If we are adding bytes then the number
5688 * may go up and we will return the number of additional bytes that must be
5689 * reserved. If it is going down we will return the number of bytes that must
5690 * be freed.
5691 *
5692 * This must be called with BTRFS_I(inode)->lock held.
5693 */
5694static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5695 int reserve)
6324fbf3 5696{
7709cde3 5697 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5698 u64 old_csums, num_csums;
7709cde3
JB
5699
5700 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5701 BTRFS_I(inode)->csum_bytes == 0)
5702 return 0;
5703
28f75a0e 5704 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5705 if (reserve)
5706 BTRFS_I(inode)->csum_bytes += num_bytes;
5707 else
5708 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5709 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5710
5711 /* No change, no need to reserve more */
5712 if (old_csums == num_csums)
5713 return 0;
5714
5715 if (reserve)
5716 return btrfs_calc_trans_metadata_size(root,
5717 num_csums - old_csums);
5718
5719 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5720}
c146afad 5721
0ca1f7ce
YZ
5722int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5723{
5724 struct btrfs_root *root = BTRFS_I(inode)->root;
5725 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5726 u64 to_reserve = 0;
660d3f6c 5727 u64 csum_bytes;
9e0baf60 5728 unsigned nr_extents = 0;
660d3f6c 5729 int extra_reserve = 0;
08e007d2 5730 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5731 int ret = 0;
c64c2bd8 5732 bool delalloc_lock = true;
88e081bf
WS
5733 u64 to_free = 0;
5734 unsigned dropped;
6324fbf3 5735
c64c2bd8
JB
5736 /* If we are a free space inode we need to not flush since we will be in
5737 * the middle of a transaction commit. We also don't need the delalloc
5738 * mutex since we won't race with anybody. We need this mostly to make
5739 * lockdep shut its filthy mouth.
5740 */
5741 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5742 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5743 delalloc_lock = false;
5744 }
c09544e0 5745
08e007d2
MX
5746 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5747 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5748 schedule_timeout(1);
ec44a35c 5749
c64c2bd8
JB
5750 if (delalloc_lock)
5751 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5752
0ca1f7ce 5753 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5754
9e0baf60 5755 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5756 nr_extents = (unsigned)div64_u64(num_bytes +
5757 BTRFS_MAX_EXTENT_SIZE - 1,
5758 BTRFS_MAX_EXTENT_SIZE);
5759 BTRFS_I(inode)->outstanding_extents += nr_extents;
5760 nr_extents = 0;
9e0baf60
JB
5761
5762 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5763 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5764 nr_extents = BTRFS_I(inode)->outstanding_extents -
5765 BTRFS_I(inode)->reserved_extents;
57a45ced 5766
7fd2ae21
JB
5767 /*
5768 * Add an item to reserve for updating the inode when we complete the
5769 * delalloc io.
5770 */
72ac3c0d
JB
5771 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5772 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5773 nr_extents++;
660d3f6c 5774 extra_reserve = 1;
593060d7 5775 }
7fd2ae21
JB
5776
5777 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5778 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5779 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5780 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5781
88e081bf 5782 if (root->fs_info->quota_enabled) {
7174109c
QW
5783 ret = btrfs_qgroup_reserve_meta(root,
5784 nr_extents * root->nodesize);
88e081bf
WS
5785 if (ret)
5786 goto out_fail;
5787 }
c5567237 5788
88e081bf
WS
5789 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5790 if (unlikely(ret)) {
7174109c 5791 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5792 goto out_fail;
9e0baf60 5793 }
25179201 5794
660d3f6c
JB
5795 spin_lock(&BTRFS_I(inode)->lock);
5796 if (extra_reserve) {
72ac3c0d
JB
5797 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5798 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5799 nr_extents--;
5800 }
5801 BTRFS_I(inode)->reserved_extents += nr_extents;
5802 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5803
5804 if (delalloc_lock)
5805 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5806
8c2a3ca2 5807 if (to_reserve)
67871254 5808 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5809 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5810 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5811
0ca1f7ce 5812 return 0;
88e081bf
WS
5813
5814out_fail:
5815 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5816 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5817 /*
5818 * If the inodes csum_bytes is the same as the original
5819 * csum_bytes then we know we haven't raced with any free()ers
5820 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5821 */
f4881bc7 5822 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5823 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5824 } else {
5825 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5826 u64 bytes;
5827
5828 /*
5829 * This is tricky, but first we need to figure out how much we
01327610 5830 * freed from any free-ers that occurred during this
f4881bc7
JB
5831 * reservation, so we reset ->csum_bytes to the csum_bytes
5832 * before we dropped our lock, and then call the free for the
5833 * number of bytes that were freed while we were trying our
5834 * reservation.
5835 */
5836 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5837 BTRFS_I(inode)->csum_bytes = csum_bytes;
5838 to_free = calc_csum_metadata_size(inode, bytes, 0);
5839
5840
5841 /*
5842 * Now we need to see how much we would have freed had we not
5843 * been making this reservation and our ->csum_bytes were not
5844 * artificially inflated.
5845 */
5846 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5847 bytes = csum_bytes - orig_csum_bytes;
5848 bytes = calc_csum_metadata_size(inode, bytes, 0);
5849
5850 /*
5851 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 5852 * more than to_free then we would have freed more space had we
f4881bc7
JB
5853 * not had an artificially high ->csum_bytes, so we need to free
5854 * the remainder. If bytes is the same or less then we don't
5855 * need to do anything, the other free-ers did the correct
5856 * thing.
5857 */
5858 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5859 if (bytes > to_free)
5860 to_free = bytes - to_free;
5861 else
5862 to_free = 0;
5863 }
88e081bf 5864 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5865 if (dropped)
88e081bf
WS
5866 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5867
5868 if (to_free) {
5869 btrfs_block_rsv_release(root, block_rsv, to_free);
5870 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5871 btrfs_ino(inode), to_free, 0);
5872 }
5873 if (delalloc_lock)
5874 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5875 return ret;
0ca1f7ce
YZ
5876}
5877
7709cde3
JB
5878/**
5879 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5880 * @inode: the inode to release the reservation for
5881 * @num_bytes: the number of bytes we're releasing
5882 *
5883 * This will release the metadata reservation for an inode. This can be called
5884 * once we complete IO for a given set of bytes to release their metadata
5885 * reservations.
5886 */
0ca1f7ce
YZ
5887void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5888{
5889 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5890 u64 to_free = 0;
5891 unsigned dropped;
0ca1f7ce
YZ
5892
5893 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5894 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5895 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5896
0934856d
MX
5897 if (num_bytes)
5898 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5899 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5900 if (dropped > 0)
5901 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5902
6a3891c5
JB
5903 if (btrfs_test_is_dummy_root(root))
5904 return;
5905
8c2a3ca2
JB
5906 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5907 btrfs_ino(inode), to_free, 0);
c5567237 5908
0ca1f7ce
YZ
5909 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5910 to_free);
5911}
5912
1ada3a62 5913/**
7cf5b976 5914 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5915 * delalloc
5916 * @inode: inode we're writing to
5917 * @start: start range we are writing to
5918 * @len: how long the range we are writing to
5919 *
5920 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5921 *
5922 * This will do the following things
5923 *
5924 * o reserve space in data space info for num bytes
5925 * and reserve precious corresponding qgroup space
5926 * (Done in check_data_free_space)
5927 *
5928 * o reserve space for metadata space, based on the number of outstanding
5929 * extents and how much csums will be needed
5930 * also reserve metadata space in a per root over-reserve method.
5931 * o add to the inodes->delalloc_bytes
5932 * o add it to the fs_info's delalloc inodes list.
5933 * (Above 3 all done in delalloc_reserve_metadata)
5934 *
5935 * Return 0 for success
5936 * Return <0 for error(-ENOSPC or -EQUOT)
5937 */
7cf5b976 5938int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5939{
5940 int ret;
5941
7cf5b976 5942 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
5943 if (ret < 0)
5944 return ret;
5945 ret = btrfs_delalloc_reserve_metadata(inode, len);
5946 if (ret < 0)
7cf5b976 5947 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
5948 return ret;
5949}
5950
7709cde3 5951/**
7cf5b976 5952 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
5953 * @inode: inode we're releasing space for
5954 * @start: start position of the space already reserved
5955 * @len: the len of the space already reserved
5956 *
5957 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5958 * called in the case that we don't need the metadata AND data reservations
5959 * anymore. So if there is an error or we insert an inline extent.
5960 *
5961 * This function will release the metadata space that was not used and will
5962 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5963 * list if there are no delalloc bytes left.
5964 * Also it will handle the qgroup reserved space.
5965 */
7cf5b976 5966void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5967{
5968 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 5969 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
5970}
5971
ce93ec54
JB
5972static int update_block_group(struct btrfs_trans_handle *trans,
5973 struct btrfs_root *root, u64 bytenr,
5974 u64 num_bytes, int alloc)
9078a3e1 5975{
0af3d00b 5976 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5977 struct btrfs_fs_info *info = root->fs_info;
db94535d 5978 u64 total = num_bytes;
9078a3e1 5979 u64 old_val;
db94535d 5980 u64 byte_in_group;
0af3d00b 5981 int factor;
3e1ad54f 5982
5d4f98a2 5983 /* block accounting for super block */
eb73c1b7 5984 spin_lock(&info->delalloc_root_lock);
6c41761f 5985 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5986 if (alloc)
5987 old_val += num_bytes;
5988 else
5989 old_val -= num_bytes;
6c41761f 5990 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5991 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5992
d397712b 5993 while (total) {
db94535d 5994 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5995 if (!cache)
79787eaa 5996 return -ENOENT;
b742bb82
YZ
5997 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5998 BTRFS_BLOCK_GROUP_RAID1 |
5999 BTRFS_BLOCK_GROUP_RAID10))
6000 factor = 2;
6001 else
6002 factor = 1;
9d66e233
JB
6003 /*
6004 * If this block group has free space cache written out, we
6005 * need to make sure to load it if we are removing space. This
6006 * is because we need the unpinning stage to actually add the
6007 * space back to the block group, otherwise we will leak space.
6008 */
6009 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6010 cache_block_group(cache, 1);
0af3d00b 6011
db94535d
CM
6012 byte_in_group = bytenr - cache->key.objectid;
6013 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6014
25179201 6015 spin_lock(&cache->space_info->lock);
c286ac48 6016 spin_lock(&cache->lock);
0af3d00b 6017
73bc1876 6018 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
6019 cache->disk_cache_state < BTRFS_DC_CLEAR)
6020 cache->disk_cache_state = BTRFS_DC_CLEAR;
6021
9078a3e1 6022 old_val = btrfs_block_group_used(&cache->item);
db94535d 6023 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6024 if (alloc) {
db94535d 6025 old_val += num_bytes;
11833d66
YZ
6026 btrfs_set_block_group_used(&cache->item, old_val);
6027 cache->reserved -= num_bytes;
11833d66 6028 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6029 cache->space_info->bytes_used += num_bytes;
6030 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6031 spin_unlock(&cache->lock);
25179201 6032 spin_unlock(&cache->space_info->lock);
cd1bc465 6033 } else {
db94535d 6034 old_val -= num_bytes;
ae0ab003
FM
6035 btrfs_set_block_group_used(&cache->item, old_val);
6036 cache->pinned += num_bytes;
6037 cache->space_info->bytes_pinned += num_bytes;
6038 cache->space_info->bytes_used -= num_bytes;
6039 cache->space_info->disk_used -= num_bytes * factor;
6040 spin_unlock(&cache->lock);
6041 spin_unlock(&cache->space_info->lock);
47ab2a6c 6042
ae0ab003
FM
6043 set_extent_dirty(info->pinned_extents,
6044 bytenr, bytenr + num_bytes - 1,
6045 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6046 }
1bbc621e
CM
6047
6048 spin_lock(&trans->transaction->dirty_bgs_lock);
6049 if (list_empty(&cache->dirty_list)) {
6050 list_add_tail(&cache->dirty_list,
6051 &trans->transaction->dirty_bgs);
6052 trans->transaction->num_dirty_bgs++;
6053 btrfs_get_block_group(cache);
6054 }
6055 spin_unlock(&trans->transaction->dirty_bgs_lock);
6056
036a9348
FM
6057 /*
6058 * No longer have used bytes in this block group, queue it for
6059 * deletion. We do this after adding the block group to the
6060 * dirty list to avoid races between cleaner kthread and space
6061 * cache writeout.
6062 */
6063 if (!alloc && old_val == 0) {
6064 spin_lock(&info->unused_bgs_lock);
6065 if (list_empty(&cache->bg_list)) {
6066 btrfs_get_block_group(cache);
6067 list_add_tail(&cache->bg_list,
6068 &info->unused_bgs);
6069 }
6070 spin_unlock(&info->unused_bgs_lock);
6071 }
6072
fa9c0d79 6073 btrfs_put_block_group(cache);
db94535d
CM
6074 total -= num_bytes;
6075 bytenr += num_bytes;
9078a3e1
CM
6076 }
6077 return 0;
6078}
6324fbf3 6079
a061fc8d
CM
6080static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6081{
0f9dd46c 6082 struct btrfs_block_group_cache *cache;
d2fb3437 6083 u64 bytenr;
0f9dd46c 6084
a1897fdd
LB
6085 spin_lock(&root->fs_info->block_group_cache_lock);
6086 bytenr = root->fs_info->first_logical_byte;
6087 spin_unlock(&root->fs_info->block_group_cache_lock);
6088
6089 if (bytenr < (u64)-1)
6090 return bytenr;
6091
0f9dd46c
JB
6092 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6093 if (!cache)
a061fc8d 6094 return 0;
0f9dd46c 6095
d2fb3437 6096 bytenr = cache->key.objectid;
fa9c0d79 6097 btrfs_put_block_group(cache);
d2fb3437
YZ
6098
6099 return bytenr;
a061fc8d
CM
6100}
6101
f0486c68
YZ
6102static int pin_down_extent(struct btrfs_root *root,
6103 struct btrfs_block_group_cache *cache,
6104 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6105{
11833d66
YZ
6106 spin_lock(&cache->space_info->lock);
6107 spin_lock(&cache->lock);
6108 cache->pinned += num_bytes;
6109 cache->space_info->bytes_pinned += num_bytes;
6110 if (reserved) {
6111 cache->reserved -= num_bytes;
6112 cache->space_info->bytes_reserved -= num_bytes;
6113 }
6114 spin_unlock(&cache->lock);
6115 spin_unlock(&cache->space_info->lock);
68b38550 6116
f0486c68
YZ
6117 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6118 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 6119 if (reserved)
0be5dc67 6120 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
6121 return 0;
6122}
68b38550 6123
f0486c68
YZ
6124/*
6125 * this function must be called within transaction
6126 */
6127int btrfs_pin_extent(struct btrfs_root *root,
6128 u64 bytenr, u64 num_bytes, int reserved)
6129{
6130 struct btrfs_block_group_cache *cache;
68b38550 6131
f0486c68 6132 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6133 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6134
6135 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6136
6137 btrfs_put_block_group(cache);
11833d66
YZ
6138 return 0;
6139}
6140
f0486c68 6141/*
e688b725
CM
6142 * this function must be called within transaction
6143 */
dcfac415 6144int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6145 u64 bytenr, u64 num_bytes)
6146{
6147 struct btrfs_block_group_cache *cache;
b50c6e25 6148 int ret;
e688b725
CM
6149
6150 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6151 if (!cache)
6152 return -EINVAL;
e688b725
CM
6153
6154 /*
6155 * pull in the free space cache (if any) so that our pin
6156 * removes the free space from the cache. We have load_only set
6157 * to one because the slow code to read in the free extents does check
6158 * the pinned extents.
6159 */
f6373bf3 6160 cache_block_group(cache, 1);
e688b725
CM
6161
6162 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6163
6164 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6165 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6166 btrfs_put_block_group(cache);
b50c6e25 6167 return ret;
e688b725
CM
6168}
6169
8c2a1a30
JB
6170static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6171{
6172 int ret;
6173 struct btrfs_block_group_cache *block_group;
6174 struct btrfs_caching_control *caching_ctl;
6175
6176 block_group = btrfs_lookup_block_group(root->fs_info, start);
6177 if (!block_group)
6178 return -EINVAL;
6179
6180 cache_block_group(block_group, 0);
6181 caching_ctl = get_caching_control(block_group);
6182
6183 if (!caching_ctl) {
6184 /* Logic error */
6185 BUG_ON(!block_group_cache_done(block_group));
6186 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6187 } else {
6188 mutex_lock(&caching_ctl->mutex);
6189
6190 if (start >= caching_ctl->progress) {
6191 ret = add_excluded_extent(root, start, num_bytes);
6192 } else if (start + num_bytes <= caching_ctl->progress) {
6193 ret = btrfs_remove_free_space(block_group,
6194 start, num_bytes);
6195 } else {
6196 num_bytes = caching_ctl->progress - start;
6197 ret = btrfs_remove_free_space(block_group,
6198 start, num_bytes);
6199 if (ret)
6200 goto out_lock;
6201
6202 num_bytes = (start + num_bytes) -
6203 caching_ctl->progress;
6204 start = caching_ctl->progress;
6205 ret = add_excluded_extent(root, start, num_bytes);
6206 }
6207out_lock:
6208 mutex_unlock(&caching_ctl->mutex);
6209 put_caching_control(caching_ctl);
6210 }
6211 btrfs_put_block_group(block_group);
6212 return ret;
6213}
6214
6215int btrfs_exclude_logged_extents(struct btrfs_root *log,
6216 struct extent_buffer *eb)
6217{
6218 struct btrfs_file_extent_item *item;
6219 struct btrfs_key key;
6220 int found_type;
6221 int i;
6222
6223 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6224 return 0;
6225
6226 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6227 btrfs_item_key_to_cpu(eb, &key, i);
6228 if (key.type != BTRFS_EXTENT_DATA_KEY)
6229 continue;
6230 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6231 found_type = btrfs_file_extent_type(eb, item);
6232 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6233 continue;
6234 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6235 continue;
6236 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6237 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6238 __exclude_logged_extent(log, key.objectid, key.offset);
6239 }
6240
6241 return 0;
6242}
6243
9cfa3e34
FM
6244static void
6245btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6246{
6247 atomic_inc(&bg->reservations);
6248}
6249
6250void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6251 const u64 start)
6252{
6253 struct btrfs_block_group_cache *bg;
6254
6255 bg = btrfs_lookup_block_group(fs_info, start);
6256 ASSERT(bg);
6257 if (atomic_dec_and_test(&bg->reservations))
6258 wake_up_atomic_t(&bg->reservations);
6259 btrfs_put_block_group(bg);
6260}
6261
6262static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6263{
6264 schedule();
6265 return 0;
6266}
6267
6268void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6269{
6270 struct btrfs_space_info *space_info = bg->space_info;
6271
6272 ASSERT(bg->ro);
6273
6274 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6275 return;
6276
6277 /*
6278 * Our block group is read only but before we set it to read only,
6279 * some task might have had allocated an extent from it already, but it
6280 * has not yet created a respective ordered extent (and added it to a
6281 * root's list of ordered extents).
6282 * Therefore wait for any task currently allocating extents, since the
6283 * block group's reservations counter is incremented while a read lock
6284 * on the groups' semaphore is held and decremented after releasing
6285 * the read access on that semaphore and creating the ordered extent.
6286 */
6287 down_write(&space_info->groups_sem);
6288 up_write(&space_info->groups_sem);
6289
6290 wait_on_atomic_t(&bg->reservations,
6291 btrfs_wait_bg_reservations_atomic_t,
6292 TASK_UNINTERRUPTIBLE);
6293}
6294
fb25e914
JB
6295/**
6296 * btrfs_update_reserved_bytes - update the block_group and space info counters
6297 * @cache: The cache we are manipulating
6298 * @num_bytes: The number of bytes in question
6299 * @reserve: One of the reservation enums
e570fd27 6300 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6301 *
6302 * This is called by the allocator when it reserves space, or by somebody who is
6303 * freeing space that was never actually used on disk. For example if you
6304 * reserve some space for a new leaf in transaction A and before transaction A
6305 * commits you free that leaf, you call this with reserve set to 0 in order to
6306 * clear the reservation.
6307 *
6308 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6309 * ENOSPC accounting. For data we handle the reservation through clearing the
6310 * delalloc bits in the io_tree. We have to do this since we could end up
6311 * allocating less disk space for the amount of data we have reserved in the
6312 * case of compression.
6313 *
6314 * If this is a reservation and the block group has become read only we cannot
6315 * make the reservation and return -EAGAIN, otherwise this function always
6316 * succeeds.
f0486c68 6317 */
fb25e914 6318static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6319 u64 num_bytes, int reserve, int delalloc)
11833d66 6320{
fb25e914 6321 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6322 int ret = 0;
79787eaa 6323
fb25e914
JB
6324 spin_lock(&space_info->lock);
6325 spin_lock(&cache->lock);
6326 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6327 if (cache->ro) {
6328 ret = -EAGAIN;
6329 } else {
fb25e914
JB
6330 cache->reserved += num_bytes;
6331 space_info->bytes_reserved += num_bytes;
6332 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6333 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6334 "space_info", space_info->flags,
6335 num_bytes, 0);
fb25e914
JB
6336 space_info->bytes_may_use -= num_bytes;
6337 }
e570fd27
MX
6338
6339 if (delalloc)
6340 cache->delalloc_bytes += num_bytes;
f0486c68 6341 }
fb25e914
JB
6342 } else {
6343 if (cache->ro)
6344 space_info->bytes_readonly += num_bytes;
6345 cache->reserved -= num_bytes;
6346 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6347
6348 if (delalloc)
6349 cache->delalloc_bytes -= num_bytes;
324ae4df 6350 }
fb25e914
JB
6351 spin_unlock(&cache->lock);
6352 spin_unlock(&space_info->lock);
f0486c68 6353 return ret;
324ae4df 6354}
9078a3e1 6355
143bede5 6356void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6357 struct btrfs_root *root)
e8569813 6358{
e8569813 6359 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6360 struct btrfs_caching_control *next;
6361 struct btrfs_caching_control *caching_ctl;
6362 struct btrfs_block_group_cache *cache;
e8569813 6363
9e351cc8 6364 down_write(&fs_info->commit_root_sem);
25179201 6365
11833d66
YZ
6366 list_for_each_entry_safe(caching_ctl, next,
6367 &fs_info->caching_block_groups, list) {
6368 cache = caching_ctl->block_group;
6369 if (block_group_cache_done(cache)) {
6370 cache->last_byte_to_unpin = (u64)-1;
6371 list_del_init(&caching_ctl->list);
6372 put_caching_control(caching_ctl);
e8569813 6373 } else {
11833d66 6374 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6375 }
e8569813 6376 }
11833d66
YZ
6377
6378 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6379 fs_info->pinned_extents = &fs_info->freed_extents[1];
6380 else
6381 fs_info->pinned_extents = &fs_info->freed_extents[0];
6382
9e351cc8 6383 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6384
6385 update_global_block_rsv(fs_info);
e8569813
ZY
6386}
6387
c759c4e1
JB
6388/*
6389 * Returns the free cluster for the given space info and sets empty_cluster to
6390 * what it should be based on the mount options.
6391 */
6392static struct btrfs_free_cluster *
6393fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6394 u64 *empty_cluster)
6395{
6396 struct btrfs_free_cluster *ret = NULL;
6397 bool ssd = btrfs_test_opt(root, SSD);
6398
6399 *empty_cluster = 0;
6400 if (btrfs_mixed_space_info(space_info))
6401 return ret;
6402
6403 if (ssd)
ee22184b 6404 *empty_cluster = SZ_2M;
c759c4e1
JB
6405 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6406 ret = &root->fs_info->meta_alloc_cluster;
6407 if (!ssd)
ee22184b 6408 *empty_cluster = SZ_64K;
c759c4e1
JB
6409 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6410 ret = &root->fs_info->data_alloc_cluster;
6411 }
6412
6413 return ret;
6414}
6415
678886bd
FM
6416static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6417 const bool return_free_space)
ccd467d6 6418{
11833d66
YZ
6419 struct btrfs_fs_info *fs_info = root->fs_info;
6420 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6421 struct btrfs_space_info *space_info;
6422 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6423 struct btrfs_free_cluster *cluster = NULL;
11833d66 6424 u64 len;
c759c4e1
JB
6425 u64 total_unpinned = 0;
6426 u64 empty_cluster = 0;
7b398f8e 6427 bool readonly;
ccd467d6 6428
11833d66 6429 while (start <= end) {
7b398f8e 6430 readonly = false;
11833d66
YZ
6431 if (!cache ||
6432 start >= cache->key.objectid + cache->key.offset) {
6433 if (cache)
6434 btrfs_put_block_group(cache);
c759c4e1 6435 total_unpinned = 0;
11833d66 6436 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6437 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6438
6439 cluster = fetch_cluster_info(root,
6440 cache->space_info,
6441 &empty_cluster);
6442 empty_cluster <<= 1;
11833d66
YZ
6443 }
6444
6445 len = cache->key.objectid + cache->key.offset - start;
6446 len = min(len, end + 1 - start);
6447
6448 if (start < cache->last_byte_to_unpin) {
6449 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6450 if (return_free_space)
6451 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6452 }
6453
f0486c68 6454 start += len;
c759c4e1 6455 total_unpinned += len;
7b398f8e 6456 space_info = cache->space_info;
f0486c68 6457
c759c4e1
JB
6458 /*
6459 * If this space cluster has been marked as fragmented and we've
6460 * unpinned enough in this block group to potentially allow a
6461 * cluster to be created inside of it go ahead and clear the
6462 * fragmented check.
6463 */
6464 if (cluster && cluster->fragmented &&
6465 total_unpinned > empty_cluster) {
6466 spin_lock(&cluster->lock);
6467 cluster->fragmented = 0;
6468 spin_unlock(&cluster->lock);
6469 }
6470
7b398f8e 6471 spin_lock(&space_info->lock);
11833d66
YZ
6472 spin_lock(&cache->lock);
6473 cache->pinned -= len;
7b398f8e 6474 space_info->bytes_pinned -= len;
4f4db217 6475 space_info->max_extent_size = 0;
d288db5d 6476 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6477 if (cache->ro) {
6478 space_info->bytes_readonly += len;
6479 readonly = true;
6480 }
11833d66 6481 spin_unlock(&cache->lock);
7b398f8e
JB
6482 if (!readonly && global_rsv->space_info == space_info) {
6483 spin_lock(&global_rsv->lock);
6484 if (!global_rsv->full) {
6485 len = min(len, global_rsv->size -
6486 global_rsv->reserved);
6487 global_rsv->reserved += len;
6488 space_info->bytes_may_use += len;
6489 if (global_rsv->reserved >= global_rsv->size)
6490 global_rsv->full = 1;
6491 }
6492 spin_unlock(&global_rsv->lock);
6493 }
6494 spin_unlock(&space_info->lock);
ccd467d6 6495 }
11833d66
YZ
6496
6497 if (cache)
6498 btrfs_put_block_group(cache);
ccd467d6
CM
6499 return 0;
6500}
6501
6502int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6503 struct btrfs_root *root)
a28ec197 6504{
11833d66 6505 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6506 struct btrfs_block_group_cache *block_group, *tmp;
6507 struct list_head *deleted_bgs;
11833d66 6508 struct extent_io_tree *unpin;
1a5bc167
CM
6509 u64 start;
6510 u64 end;
a28ec197 6511 int ret;
a28ec197 6512
11833d66
YZ
6513 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6514 unpin = &fs_info->freed_extents[1];
6515 else
6516 unpin = &fs_info->freed_extents[0];
6517
e33e17ee 6518 while (!trans->aborted) {
d4b450cd 6519 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6520 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6521 EXTENT_DIRTY, NULL);
d4b450cd
FM
6522 if (ret) {
6523 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6524 break;
d4b450cd 6525 }
1f3c79a2 6526
5378e607
LD
6527 if (btrfs_test_opt(root, DISCARD))
6528 ret = btrfs_discard_extent(root, start,
6529 end + 1 - start, NULL);
1f3c79a2 6530
af6f8f60 6531 clear_extent_dirty(unpin, start, end);
678886bd 6532 unpin_extent_range(root, start, end, true);
d4b450cd 6533 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6534 cond_resched();
a28ec197 6535 }
817d52f8 6536
e33e17ee
JM
6537 /*
6538 * Transaction is finished. We don't need the lock anymore. We
6539 * do need to clean up the block groups in case of a transaction
6540 * abort.
6541 */
6542 deleted_bgs = &trans->transaction->deleted_bgs;
6543 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6544 u64 trimmed = 0;
6545
6546 ret = -EROFS;
6547 if (!trans->aborted)
6548 ret = btrfs_discard_extent(root,
6549 block_group->key.objectid,
6550 block_group->key.offset,
6551 &trimmed);
6552
6553 list_del_init(&block_group->bg_list);
6554 btrfs_put_block_group_trimming(block_group);
6555 btrfs_put_block_group(block_group);
6556
6557 if (ret) {
6558 const char *errstr = btrfs_decode_error(ret);
6559 btrfs_warn(fs_info,
6560 "Discard failed while removing blockgroup: errno=%d %s\n",
6561 ret, errstr);
6562 }
6563 }
6564
e20d96d6
CM
6565 return 0;
6566}
6567
b150a4f1
JB
6568static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6569 u64 owner, u64 root_objectid)
6570{
6571 struct btrfs_space_info *space_info;
6572 u64 flags;
6573
6574 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6575 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6576 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6577 else
6578 flags = BTRFS_BLOCK_GROUP_METADATA;
6579 } else {
6580 flags = BTRFS_BLOCK_GROUP_DATA;
6581 }
6582
6583 space_info = __find_space_info(fs_info, flags);
6584 BUG_ON(!space_info); /* Logic bug */
6585 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6586}
6587
6588
5d4f98a2
YZ
6589static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6590 struct btrfs_root *root,
c682f9b3 6591 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6592 u64 root_objectid, u64 owner_objectid,
6593 u64 owner_offset, int refs_to_drop,
c682f9b3 6594 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6595{
e2fa7227 6596 struct btrfs_key key;
5d4f98a2 6597 struct btrfs_path *path;
1261ec42
CM
6598 struct btrfs_fs_info *info = root->fs_info;
6599 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6600 struct extent_buffer *leaf;
5d4f98a2
YZ
6601 struct btrfs_extent_item *ei;
6602 struct btrfs_extent_inline_ref *iref;
a28ec197 6603 int ret;
5d4f98a2 6604 int is_data;
952fccac
CM
6605 int extent_slot = 0;
6606 int found_extent = 0;
6607 int num_to_del = 1;
5d4f98a2
YZ
6608 u32 item_size;
6609 u64 refs;
c682f9b3
QW
6610 u64 bytenr = node->bytenr;
6611 u64 num_bytes = node->num_bytes;
fcebe456 6612 int last_ref = 0;
3173a18f
JB
6613 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6614 SKINNY_METADATA);
037e6390 6615
5caf2a00 6616 path = btrfs_alloc_path();
54aa1f4d
CM
6617 if (!path)
6618 return -ENOMEM;
5f26f772 6619
e4058b54 6620 path->reada = READA_FORWARD;
b9473439 6621 path->leave_spinning = 1;
5d4f98a2
YZ
6622
6623 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6624 BUG_ON(!is_data && refs_to_drop != 1);
6625
3173a18f
JB
6626 if (is_data)
6627 skinny_metadata = 0;
6628
5d4f98a2
YZ
6629 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6630 bytenr, num_bytes, parent,
6631 root_objectid, owner_objectid,
6632 owner_offset);
7bb86316 6633 if (ret == 0) {
952fccac 6634 extent_slot = path->slots[0];
5d4f98a2
YZ
6635 while (extent_slot >= 0) {
6636 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6637 extent_slot);
5d4f98a2 6638 if (key.objectid != bytenr)
952fccac 6639 break;
5d4f98a2
YZ
6640 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6641 key.offset == num_bytes) {
952fccac
CM
6642 found_extent = 1;
6643 break;
6644 }
3173a18f
JB
6645 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6646 key.offset == owner_objectid) {
6647 found_extent = 1;
6648 break;
6649 }
952fccac
CM
6650 if (path->slots[0] - extent_slot > 5)
6651 break;
5d4f98a2 6652 extent_slot--;
952fccac 6653 }
5d4f98a2
YZ
6654#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6655 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6656 if (found_extent && item_size < sizeof(*ei))
6657 found_extent = 0;
6658#endif
31840ae1 6659 if (!found_extent) {
5d4f98a2 6660 BUG_ON(iref);
56bec294 6661 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6662 NULL, refs_to_drop,
fcebe456 6663 is_data, &last_ref);
005d6427
DS
6664 if (ret) {
6665 btrfs_abort_transaction(trans, extent_root, ret);
6666 goto out;
6667 }
b3b4aa74 6668 btrfs_release_path(path);
b9473439 6669 path->leave_spinning = 1;
5d4f98a2
YZ
6670
6671 key.objectid = bytenr;
6672 key.type = BTRFS_EXTENT_ITEM_KEY;
6673 key.offset = num_bytes;
6674
3173a18f
JB
6675 if (!is_data && skinny_metadata) {
6676 key.type = BTRFS_METADATA_ITEM_KEY;
6677 key.offset = owner_objectid;
6678 }
6679
31840ae1
ZY
6680 ret = btrfs_search_slot(trans, extent_root,
6681 &key, path, -1, 1);
3173a18f
JB
6682 if (ret > 0 && skinny_metadata && path->slots[0]) {
6683 /*
6684 * Couldn't find our skinny metadata item,
6685 * see if we have ye olde extent item.
6686 */
6687 path->slots[0]--;
6688 btrfs_item_key_to_cpu(path->nodes[0], &key,
6689 path->slots[0]);
6690 if (key.objectid == bytenr &&
6691 key.type == BTRFS_EXTENT_ITEM_KEY &&
6692 key.offset == num_bytes)
6693 ret = 0;
6694 }
6695
6696 if (ret > 0 && skinny_metadata) {
6697 skinny_metadata = false;
9ce49a0b 6698 key.objectid = bytenr;
3173a18f
JB
6699 key.type = BTRFS_EXTENT_ITEM_KEY;
6700 key.offset = num_bytes;
6701 btrfs_release_path(path);
6702 ret = btrfs_search_slot(trans, extent_root,
6703 &key, path, -1, 1);
6704 }
6705
f3465ca4 6706 if (ret) {
c2cf52eb 6707 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6708 ret, bytenr);
b783e62d
JB
6709 if (ret > 0)
6710 btrfs_print_leaf(extent_root,
6711 path->nodes[0]);
f3465ca4 6712 }
005d6427
DS
6713 if (ret < 0) {
6714 btrfs_abort_transaction(trans, extent_root, ret);
6715 goto out;
6716 }
31840ae1
ZY
6717 extent_slot = path->slots[0];
6718 }
fae7f21c 6719 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6720 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6721 btrfs_err(info,
6722 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6723 bytenr, parent, root_objectid, owner_objectid,
6724 owner_offset);
c4a050bb
JB
6725 btrfs_abort_transaction(trans, extent_root, ret);
6726 goto out;
79787eaa 6727 } else {
005d6427
DS
6728 btrfs_abort_transaction(trans, extent_root, ret);
6729 goto out;
7bb86316 6730 }
5f39d397
CM
6731
6732 leaf = path->nodes[0];
5d4f98a2
YZ
6733 item_size = btrfs_item_size_nr(leaf, extent_slot);
6734#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6735 if (item_size < sizeof(*ei)) {
6736 BUG_ON(found_extent || extent_slot != path->slots[0]);
6737 ret = convert_extent_item_v0(trans, extent_root, path,
6738 owner_objectid, 0);
005d6427
DS
6739 if (ret < 0) {
6740 btrfs_abort_transaction(trans, extent_root, ret);
6741 goto out;
6742 }
5d4f98a2 6743
b3b4aa74 6744 btrfs_release_path(path);
5d4f98a2
YZ
6745 path->leave_spinning = 1;
6746
6747 key.objectid = bytenr;
6748 key.type = BTRFS_EXTENT_ITEM_KEY;
6749 key.offset = num_bytes;
6750
6751 ret = btrfs_search_slot(trans, extent_root, &key, path,
6752 -1, 1);
6753 if (ret) {
c2cf52eb 6754 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6755 ret, bytenr);
5d4f98a2
YZ
6756 btrfs_print_leaf(extent_root, path->nodes[0]);
6757 }
005d6427
DS
6758 if (ret < 0) {
6759 btrfs_abort_transaction(trans, extent_root, ret);
6760 goto out;
6761 }
6762
5d4f98a2
YZ
6763 extent_slot = path->slots[0];
6764 leaf = path->nodes[0];
6765 item_size = btrfs_item_size_nr(leaf, extent_slot);
6766 }
6767#endif
6768 BUG_ON(item_size < sizeof(*ei));
952fccac 6769 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6770 struct btrfs_extent_item);
3173a18f
JB
6771 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6772 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6773 struct btrfs_tree_block_info *bi;
6774 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6775 bi = (struct btrfs_tree_block_info *)(ei + 1);
6776 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6777 }
56bec294 6778
5d4f98a2 6779 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6780 if (refs < refs_to_drop) {
6781 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6782 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6783 ret = -EINVAL;
6784 btrfs_abort_transaction(trans, extent_root, ret);
6785 goto out;
6786 }
56bec294 6787 refs -= refs_to_drop;
5f39d397 6788
5d4f98a2
YZ
6789 if (refs > 0) {
6790 if (extent_op)
6791 __run_delayed_extent_op(extent_op, leaf, ei);
6792 /*
6793 * In the case of inline back ref, reference count will
6794 * be updated by remove_extent_backref
952fccac 6795 */
5d4f98a2
YZ
6796 if (iref) {
6797 BUG_ON(!found_extent);
6798 } else {
6799 btrfs_set_extent_refs(leaf, ei, refs);
6800 btrfs_mark_buffer_dirty(leaf);
6801 }
6802 if (found_extent) {
6803 ret = remove_extent_backref(trans, extent_root, path,
6804 iref, refs_to_drop,
fcebe456 6805 is_data, &last_ref);
005d6427
DS
6806 if (ret) {
6807 btrfs_abort_transaction(trans, extent_root, ret);
6808 goto out;
6809 }
952fccac 6810 }
b150a4f1
JB
6811 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6812 root_objectid);
5d4f98a2 6813 } else {
5d4f98a2
YZ
6814 if (found_extent) {
6815 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6816 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6817 if (iref) {
6818 BUG_ON(path->slots[0] != extent_slot);
6819 } else {
6820 BUG_ON(path->slots[0] != extent_slot + 1);
6821 path->slots[0] = extent_slot;
6822 num_to_del = 2;
6823 }
78fae27e 6824 }
b9473439 6825
fcebe456 6826 last_ref = 1;
952fccac
CM
6827 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6828 num_to_del);
005d6427
DS
6829 if (ret) {
6830 btrfs_abort_transaction(trans, extent_root, ret);
6831 goto out;
6832 }
b3b4aa74 6833 btrfs_release_path(path);
21af804c 6834
5d4f98a2 6835 if (is_data) {
459931ec 6836 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6837 if (ret) {
6838 btrfs_abort_transaction(trans, extent_root, ret);
6839 goto out;
6840 }
459931ec
CM
6841 }
6842
1e144fb8
OS
6843 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6844 num_bytes);
6845 if (ret) {
6846 btrfs_abort_transaction(trans, extent_root, ret);
6847 goto out;
6848 }
6849
ce93ec54 6850 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6851 if (ret) {
6852 btrfs_abort_transaction(trans, extent_root, ret);
6853 goto out;
6854 }
a28ec197 6855 }
fcebe456
JB
6856 btrfs_release_path(path);
6857
79787eaa 6858out:
5caf2a00 6859 btrfs_free_path(path);
a28ec197
CM
6860 return ret;
6861}
6862
1887be66 6863/*
f0486c68 6864 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6865 * delayed ref for that extent as well. This searches the delayed ref tree for
6866 * a given extent, and if there are no other delayed refs to be processed, it
6867 * removes it from the tree.
6868 */
6869static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6870 struct btrfs_root *root, u64 bytenr)
6871{
6872 struct btrfs_delayed_ref_head *head;
6873 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6874 int ret = 0;
1887be66
CM
6875
6876 delayed_refs = &trans->transaction->delayed_refs;
6877 spin_lock(&delayed_refs->lock);
6878 head = btrfs_find_delayed_ref_head(trans, bytenr);
6879 if (!head)
cf93da7b 6880 goto out_delayed_unlock;
1887be66 6881
d7df2c79 6882 spin_lock(&head->lock);
c6fc2454 6883 if (!list_empty(&head->ref_list))
1887be66
CM
6884 goto out;
6885
5d4f98a2
YZ
6886 if (head->extent_op) {
6887 if (!head->must_insert_reserved)
6888 goto out;
78a6184a 6889 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6890 head->extent_op = NULL;
6891 }
6892
1887be66
CM
6893 /*
6894 * waiting for the lock here would deadlock. If someone else has it
6895 * locked they are already in the process of dropping it anyway
6896 */
6897 if (!mutex_trylock(&head->mutex))
6898 goto out;
6899
6900 /*
6901 * at this point we have a head with no other entries. Go
6902 * ahead and process it.
6903 */
6904 head->node.in_tree = 0;
c46effa6 6905 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6906
d7df2c79 6907 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6908
6909 /*
6910 * we don't take a ref on the node because we're removing it from the
6911 * tree, so we just steal the ref the tree was holding.
6912 */
c3e69d58 6913 delayed_refs->num_heads--;
d7df2c79 6914 if (head->processing == 0)
c3e69d58 6915 delayed_refs->num_heads_ready--;
d7df2c79
JB
6916 head->processing = 0;
6917 spin_unlock(&head->lock);
1887be66
CM
6918 spin_unlock(&delayed_refs->lock);
6919
f0486c68
YZ
6920 BUG_ON(head->extent_op);
6921 if (head->must_insert_reserved)
6922 ret = 1;
6923
6924 mutex_unlock(&head->mutex);
1887be66 6925 btrfs_put_delayed_ref(&head->node);
f0486c68 6926 return ret;
1887be66 6927out:
d7df2c79 6928 spin_unlock(&head->lock);
cf93da7b
CM
6929
6930out_delayed_unlock:
1887be66
CM
6931 spin_unlock(&delayed_refs->lock);
6932 return 0;
6933}
6934
f0486c68
YZ
6935void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6936 struct btrfs_root *root,
6937 struct extent_buffer *buf,
5581a51a 6938 u64 parent, int last_ref)
f0486c68 6939{
b150a4f1 6940 int pin = 1;
f0486c68
YZ
6941 int ret;
6942
6943 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6944 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6945 buf->start, buf->len,
6946 parent, root->root_key.objectid,
6947 btrfs_header_level(buf),
b06c4bf5 6948 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 6949 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6950 }
6951
6952 if (!last_ref)
6953 return;
6954
f0486c68 6955 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6956 struct btrfs_block_group_cache *cache;
6957
f0486c68
YZ
6958 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6959 ret = check_ref_cleanup(trans, root, buf->start);
6960 if (!ret)
37be25bc 6961 goto out;
f0486c68
YZ
6962 }
6963
6219872d
FM
6964 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6965
f0486c68
YZ
6966 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6967 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6968 btrfs_put_block_group(cache);
37be25bc 6969 goto out;
f0486c68
YZ
6970 }
6971
6972 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6973
6974 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6975 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6976 btrfs_put_block_group(cache);
0be5dc67 6977 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6978 pin = 0;
f0486c68
YZ
6979 }
6980out:
b150a4f1
JB
6981 if (pin)
6982 add_pinned_bytes(root->fs_info, buf->len,
6983 btrfs_header_level(buf),
6984 root->root_key.objectid);
6985
a826d6dc
JB
6986 /*
6987 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6988 * anymore.
6989 */
6990 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6991}
6992
79787eaa 6993/* Can return -ENOMEM */
66d7e7f0
AJ
6994int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6995 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 6996 u64 owner, u64 offset)
925baedd
CM
6997{
6998 int ret;
66d7e7f0 6999 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 7000
fccb84c9 7001 if (btrfs_test_is_dummy_root(root))
faa2dbf0 7002 return 0;
fccb84c9 7003
b150a4f1
JB
7004 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7005
56bec294
CM
7006 /*
7007 * tree log blocks never actually go into the extent allocation
7008 * tree, just update pinning info and exit early.
56bec294 7009 */
5d4f98a2
YZ
7010 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7011 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7012 /* unlocks the pinned mutex */
11833d66 7013 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7014 ret = 0;
5d4f98a2 7015 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7016 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7017 num_bytes,
5d4f98a2 7018 parent, root_objectid, (int)owner,
b06c4bf5 7019 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7020 } else {
66d7e7f0
AJ
7021 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7022 num_bytes,
7023 parent, root_objectid, owner,
5846a3c2
QW
7024 offset, 0,
7025 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7026 }
925baedd
CM
7027 return ret;
7028}
7029
817d52f8
JB
7030/*
7031 * when we wait for progress in the block group caching, its because
7032 * our allocation attempt failed at least once. So, we must sleep
7033 * and let some progress happen before we try again.
7034 *
7035 * This function will sleep at least once waiting for new free space to
7036 * show up, and then it will check the block group free space numbers
7037 * for our min num_bytes. Another option is to have it go ahead
7038 * and look in the rbtree for a free extent of a given size, but this
7039 * is a good start.
36cce922
JB
7040 *
7041 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7042 * any of the information in this block group.
817d52f8 7043 */
36cce922 7044static noinline void
817d52f8
JB
7045wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7046 u64 num_bytes)
7047{
11833d66 7048 struct btrfs_caching_control *caching_ctl;
817d52f8 7049
11833d66
YZ
7050 caching_ctl = get_caching_control(cache);
7051 if (!caching_ctl)
36cce922 7052 return;
817d52f8 7053
11833d66 7054 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7055 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7056
7057 put_caching_control(caching_ctl);
11833d66
YZ
7058}
7059
7060static noinline int
7061wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7062{
7063 struct btrfs_caching_control *caching_ctl;
36cce922 7064 int ret = 0;
11833d66
YZ
7065
7066 caching_ctl = get_caching_control(cache);
7067 if (!caching_ctl)
36cce922 7068 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7069
7070 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7071 if (cache->cached == BTRFS_CACHE_ERROR)
7072 ret = -EIO;
11833d66 7073 put_caching_control(caching_ctl);
36cce922 7074 return ret;
817d52f8
JB
7075}
7076
31e50229 7077int __get_raid_index(u64 flags)
b742bb82 7078{
7738a53a 7079 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7080 return BTRFS_RAID_RAID10;
7738a53a 7081 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7082 return BTRFS_RAID_RAID1;
7738a53a 7083 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7084 return BTRFS_RAID_DUP;
7738a53a 7085 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7086 return BTRFS_RAID_RAID0;
53b381b3 7087 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7088 return BTRFS_RAID_RAID5;
53b381b3 7089 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7090 return BTRFS_RAID_RAID6;
7738a53a 7091
e942f883 7092 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7093}
7094
6ab0a202 7095int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7096{
31e50229 7097 return __get_raid_index(cache->flags);
7738a53a
ID
7098}
7099
6ab0a202
JM
7100static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7101 [BTRFS_RAID_RAID10] = "raid10",
7102 [BTRFS_RAID_RAID1] = "raid1",
7103 [BTRFS_RAID_DUP] = "dup",
7104 [BTRFS_RAID_RAID0] = "raid0",
7105 [BTRFS_RAID_SINGLE] = "single",
7106 [BTRFS_RAID_RAID5] = "raid5",
7107 [BTRFS_RAID_RAID6] = "raid6",
7108};
7109
1b8e5df6 7110static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7111{
7112 if (type >= BTRFS_NR_RAID_TYPES)
7113 return NULL;
7114
7115 return btrfs_raid_type_names[type];
7116}
7117
817d52f8 7118enum btrfs_loop_type {
285ff5af
JB
7119 LOOP_CACHING_NOWAIT = 0,
7120 LOOP_CACHING_WAIT = 1,
7121 LOOP_ALLOC_CHUNK = 2,
7122 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7123};
7124
e570fd27
MX
7125static inline void
7126btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7127 int delalloc)
7128{
7129 if (delalloc)
7130 down_read(&cache->data_rwsem);
7131}
7132
7133static inline void
7134btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7135 int delalloc)
7136{
7137 btrfs_get_block_group(cache);
7138 if (delalloc)
7139 down_read(&cache->data_rwsem);
7140}
7141
7142static struct btrfs_block_group_cache *
7143btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7144 struct btrfs_free_cluster *cluster,
7145 int delalloc)
7146{
89771cc9 7147 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7148
e570fd27 7149 spin_lock(&cluster->refill_lock);
6719afdc
GU
7150 while (1) {
7151 used_bg = cluster->block_group;
7152 if (!used_bg)
7153 return NULL;
7154
7155 if (used_bg == block_group)
e570fd27
MX
7156 return used_bg;
7157
6719afdc 7158 btrfs_get_block_group(used_bg);
e570fd27 7159
6719afdc
GU
7160 if (!delalloc)
7161 return used_bg;
e570fd27 7162
6719afdc
GU
7163 if (down_read_trylock(&used_bg->data_rwsem))
7164 return used_bg;
e570fd27 7165
6719afdc 7166 spin_unlock(&cluster->refill_lock);
e570fd27 7167
6719afdc 7168 down_read(&used_bg->data_rwsem);
e570fd27 7169
6719afdc
GU
7170 spin_lock(&cluster->refill_lock);
7171 if (used_bg == cluster->block_group)
7172 return used_bg;
e570fd27 7173
6719afdc
GU
7174 up_read(&used_bg->data_rwsem);
7175 btrfs_put_block_group(used_bg);
7176 }
e570fd27
MX
7177}
7178
7179static inline void
7180btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7181 int delalloc)
7182{
7183 if (delalloc)
7184 up_read(&cache->data_rwsem);
7185 btrfs_put_block_group(cache);
7186}
7187
fec577fb
CM
7188/*
7189 * walks the btree of allocated extents and find a hole of a given size.
7190 * The key ins is changed to record the hole:
a4820398 7191 * ins->objectid == start position
62e2749e 7192 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7193 * ins->offset == the size of the hole.
fec577fb 7194 * Any available blocks before search_start are skipped.
a4820398
MX
7195 *
7196 * If there is no suitable free space, we will record the max size of
7197 * the free space extent currently.
fec577fb 7198 */
00361589 7199static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7200 u64 num_bytes, u64 empty_size,
98ed5174 7201 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7202 u64 flags, int delalloc)
fec577fb 7203{
80eb234a 7204 int ret = 0;
d397712b 7205 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7206 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7207 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7208 u64 search_start = 0;
a4820398 7209 u64 max_extent_size = 0;
c759c4e1 7210 u64 empty_cluster = 0;
80eb234a 7211 struct btrfs_space_info *space_info;
fa9c0d79 7212 int loop = 0;
b6919a58
DS
7213 int index = __get_raid_index(flags);
7214 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7215 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7216 bool failed_cluster_refill = false;
1cdda9b8 7217 bool failed_alloc = false;
67377734 7218 bool use_cluster = true;
60d2adbb 7219 bool have_caching_bg = false;
13a0db5a 7220 bool orig_have_caching_bg = false;
a5e681d9 7221 bool full_search = false;
fec577fb 7222
db94535d 7223 WARN_ON(num_bytes < root->sectorsize);
962a298f 7224 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7225 ins->objectid = 0;
7226 ins->offset = 0;
b1a4d965 7227
b6919a58 7228 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7229
b6919a58 7230 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7231 if (!space_info) {
b6919a58 7232 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7233 return -ENOSPC;
7234 }
2552d17e 7235
67377734 7236 /*
4f4db217
JB
7237 * If our free space is heavily fragmented we may not be able to make
7238 * big contiguous allocations, so instead of doing the expensive search
7239 * for free space, simply return ENOSPC with our max_extent_size so we
7240 * can go ahead and search for a more manageable chunk.
7241 *
7242 * If our max_extent_size is large enough for our allocation simply
7243 * disable clustering since we will likely not be able to find enough
7244 * space to create a cluster and induce latency trying.
67377734 7245 */
4f4db217
JB
7246 if (unlikely(space_info->max_extent_size)) {
7247 spin_lock(&space_info->lock);
7248 if (space_info->max_extent_size &&
7249 num_bytes > space_info->max_extent_size) {
7250 ins->offset = space_info->max_extent_size;
7251 spin_unlock(&space_info->lock);
7252 return -ENOSPC;
7253 } else if (space_info->max_extent_size) {
7254 use_cluster = false;
7255 }
7256 spin_unlock(&space_info->lock);
fa9c0d79 7257 }
0f9dd46c 7258
c759c4e1 7259 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7260 if (last_ptr) {
fa9c0d79
CM
7261 spin_lock(&last_ptr->lock);
7262 if (last_ptr->block_group)
7263 hint_byte = last_ptr->window_start;
c759c4e1
JB
7264 if (last_ptr->fragmented) {
7265 /*
7266 * We still set window_start so we can keep track of the
7267 * last place we found an allocation to try and save
7268 * some time.
7269 */
7270 hint_byte = last_ptr->window_start;
7271 use_cluster = false;
7272 }
fa9c0d79 7273 spin_unlock(&last_ptr->lock);
239b14b3 7274 }
fa9c0d79 7275
a061fc8d 7276 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7277 search_start = max(search_start, hint_byte);
2552d17e 7278 if (search_start == hint_byte) {
2552d17e
JB
7279 block_group = btrfs_lookup_block_group(root->fs_info,
7280 search_start);
817d52f8
JB
7281 /*
7282 * we don't want to use the block group if it doesn't match our
7283 * allocation bits, or if its not cached.
ccf0e725
JB
7284 *
7285 * However if we are re-searching with an ideal block group
7286 * picked out then we don't care that the block group is cached.
817d52f8 7287 */
b6919a58 7288 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7289 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7290 down_read(&space_info->groups_sem);
44fb5511
CM
7291 if (list_empty(&block_group->list) ||
7292 block_group->ro) {
7293 /*
7294 * someone is removing this block group,
7295 * we can't jump into the have_block_group
7296 * target because our list pointers are not
7297 * valid
7298 */
7299 btrfs_put_block_group(block_group);
7300 up_read(&space_info->groups_sem);
ccf0e725 7301 } else {
b742bb82 7302 index = get_block_group_index(block_group);
e570fd27 7303 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7304 goto have_block_group;
ccf0e725 7305 }
2552d17e 7306 } else if (block_group) {
fa9c0d79 7307 btrfs_put_block_group(block_group);
2552d17e 7308 }
42e70e7a 7309 }
2552d17e 7310search:
60d2adbb 7311 have_caching_bg = false;
a5e681d9
JB
7312 if (index == 0 || index == __get_raid_index(flags))
7313 full_search = true;
80eb234a 7314 down_read(&space_info->groups_sem);
b742bb82
YZ
7315 list_for_each_entry(block_group, &space_info->block_groups[index],
7316 list) {
6226cb0a 7317 u64 offset;
817d52f8 7318 int cached;
8a1413a2 7319
e570fd27 7320 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7321 search_start = block_group->key.objectid;
42e70e7a 7322
83a50de9
CM
7323 /*
7324 * this can happen if we end up cycling through all the
7325 * raid types, but we want to make sure we only allocate
7326 * for the proper type.
7327 */
b6919a58 7328 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7329 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7330 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7331 BTRFS_BLOCK_GROUP_RAID5 |
7332 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7333 BTRFS_BLOCK_GROUP_RAID10;
7334
7335 /*
7336 * if they asked for extra copies and this block group
7337 * doesn't provide them, bail. This does allow us to
7338 * fill raid0 from raid1.
7339 */
b6919a58 7340 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7341 goto loop;
7342 }
7343
2552d17e 7344have_block_group:
291c7d2f
JB
7345 cached = block_group_cache_done(block_group);
7346 if (unlikely(!cached)) {
a5e681d9 7347 have_caching_bg = true;
f6373bf3 7348 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7349 BUG_ON(ret < 0);
7350 ret = 0;
817d52f8
JB
7351 }
7352
36cce922
JB
7353 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7354 goto loop;
ea6a478e 7355 if (unlikely(block_group->ro))
2552d17e 7356 goto loop;
0f9dd46c 7357
0a24325e 7358 /*
062c05c4
AO
7359 * Ok we want to try and use the cluster allocator, so
7360 * lets look there
0a24325e 7361 */
c759c4e1 7362 if (last_ptr && use_cluster) {
215a63d1 7363 struct btrfs_block_group_cache *used_block_group;
8de972b4 7364 unsigned long aligned_cluster;
fa9c0d79
CM
7365 /*
7366 * the refill lock keeps out other
7367 * people trying to start a new cluster
7368 */
e570fd27
MX
7369 used_block_group = btrfs_lock_cluster(block_group,
7370 last_ptr,
7371 delalloc);
7372 if (!used_block_group)
44fb5511 7373 goto refill_cluster;
274bd4fb 7374
e570fd27
MX
7375 if (used_block_group != block_group &&
7376 (used_block_group->ro ||
7377 !block_group_bits(used_block_group, flags)))
7378 goto release_cluster;
44fb5511 7379
274bd4fb 7380 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7381 last_ptr,
7382 num_bytes,
7383 used_block_group->key.objectid,
7384 &max_extent_size);
fa9c0d79
CM
7385 if (offset) {
7386 /* we have a block, we're done */
7387 spin_unlock(&last_ptr->refill_lock);
3f7de037 7388 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7389 used_block_group,
7390 search_start, num_bytes);
215a63d1 7391 if (used_block_group != block_group) {
e570fd27
MX
7392 btrfs_release_block_group(block_group,
7393 delalloc);
215a63d1
MX
7394 block_group = used_block_group;
7395 }
fa9c0d79
CM
7396 goto checks;
7397 }
7398
274bd4fb 7399 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7400release_cluster:
062c05c4
AO
7401 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7402 * set up a new clusters, so lets just skip it
7403 * and let the allocator find whatever block
7404 * it can find. If we reach this point, we
7405 * will have tried the cluster allocator
7406 * plenty of times and not have found
7407 * anything, so we are likely way too
7408 * fragmented for the clustering stuff to find
a5f6f719
AO
7409 * anything.
7410 *
7411 * However, if the cluster is taken from the
7412 * current block group, release the cluster
7413 * first, so that we stand a better chance of
7414 * succeeding in the unclustered
7415 * allocation. */
7416 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7417 used_block_group != block_group) {
062c05c4 7418 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7419 btrfs_release_block_group(used_block_group,
7420 delalloc);
062c05c4
AO
7421 goto unclustered_alloc;
7422 }
7423
fa9c0d79
CM
7424 /*
7425 * this cluster didn't work out, free it and
7426 * start over
7427 */
7428 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7429
e570fd27
MX
7430 if (used_block_group != block_group)
7431 btrfs_release_block_group(used_block_group,
7432 delalloc);
7433refill_cluster:
a5f6f719
AO
7434 if (loop >= LOOP_NO_EMPTY_SIZE) {
7435 spin_unlock(&last_ptr->refill_lock);
7436 goto unclustered_alloc;
7437 }
7438
8de972b4
CM
7439 aligned_cluster = max_t(unsigned long,
7440 empty_cluster + empty_size,
7441 block_group->full_stripe_len);
7442
fa9c0d79 7443 /* allocate a cluster in this block group */
00361589
JB
7444 ret = btrfs_find_space_cluster(root, block_group,
7445 last_ptr, search_start,
7446 num_bytes,
7447 aligned_cluster);
fa9c0d79
CM
7448 if (ret == 0) {
7449 /*
7450 * now pull our allocation out of this
7451 * cluster
7452 */
7453 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7454 last_ptr,
7455 num_bytes,
7456 search_start,
7457 &max_extent_size);
fa9c0d79
CM
7458 if (offset) {
7459 /* we found one, proceed */
7460 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7461 trace_btrfs_reserve_extent_cluster(root,
7462 block_group, search_start,
7463 num_bytes);
fa9c0d79
CM
7464 goto checks;
7465 }
0a24325e
JB
7466 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7467 && !failed_cluster_refill) {
817d52f8
JB
7468 spin_unlock(&last_ptr->refill_lock);
7469
0a24325e 7470 failed_cluster_refill = true;
817d52f8
JB
7471 wait_block_group_cache_progress(block_group,
7472 num_bytes + empty_cluster + empty_size);
7473 goto have_block_group;
fa9c0d79 7474 }
817d52f8 7475
fa9c0d79
CM
7476 /*
7477 * at this point we either didn't find a cluster
7478 * or we weren't able to allocate a block from our
7479 * cluster. Free the cluster we've been trying
7480 * to use, and go to the next block group
7481 */
0a24325e 7482 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7483 spin_unlock(&last_ptr->refill_lock);
0a24325e 7484 goto loop;
fa9c0d79
CM
7485 }
7486
062c05c4 7487unclustered_alloc:
c759c4e1
JB
7488 /*
7489 * We are doing an unclustered alloc, set the fragmented flag so
7490 * we don't bother trying to setup a cluster again until we get
7491 * more space.
7492 */
7493 if (unlikely(last_ptr)) {
7494 spin_lock(&last_ptr->lock);
7495 last_ptr->fragmented = 1;
7496 spin_unlock(&last_ptr->lock);
7497 }
a5f6f719
AO
7498 spin_lock(&block_group->free_space_ctl->tree_lock);
7499 if (cached &&
7500 block_group->free_space_ctl->free_space <
7501 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7502 if (block_group->free_space_ctl->free_space >
7503 max_extent_size)
7504 max_extent_size =
7505 block_group->free_space_ctl->free_space;
a5f6f719
AO
7506 spin_unlock(&block_group->free_space_ctl->tree_lock);
7507 goto loop;
7508 }
7509 spin_unlock(&block_group->free_space_ctl->tree_lock);
7510
6226cb0a 7511 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7512 num_bytes, empty_size,
7513 &max_extent_size);
1cdda9b8
JB
7514 /*
7515 * If we didn't find a chunk, and we haven't failed on this
7516 * block group before, and this block group is in the middle of
7517 * caching and we are ok with waiting, then go ahead and wait
7518 * for progress to be made, and set failed_alloc to true.
7519 *
7520 * If failed_alloc is true then we've already waited on this
7521 * block group once and should move on to the next block group.
7522 */
7523 if (!offset && !failed_alloc && !cached &&
7524 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7525 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7526 num_bytes + empty_size);
7527 failed_alloc = true;
817d52f8 7528 goto have_block_group;
1cdda9b8
JB
7529 } else if (!offset) {
7530 goto loop;
817d52f8 7531 }
fa9c0d79 7532checks:
4e54b17a 7533 search_start = ALIGN(offset, root->stripesize);
25179201 7534
2552d17e
JB
7535 /* move on to the next group */
7536 if (search_start + num_bytes >
215a63d1
MX
7537 block_group->key.objectid + block_group->key.offset) {
7538 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7539 goto loop;
6226cb0a 7540 }
f5a31e16 7541
f0486c68 7542 if (offset < search_start)
215a63d1 7543 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7544 search_start - offset);
7545 BUG_ON(offset > search_start);
2552d17e 7546
215a63d1 7547 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7548 alloc_type, delalloc);
f0486c68 7549 if (ret == -EAGAIN) {
215a63d1 7550 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7551 goto loop;
0f9dd46c 7552 }
9cfa3e34 7553 btrfs_inc_block_group_reservations(block_group);
0b86a832 7554
f0486c68 7555 /* we are all good, lets return */
2552d17e
JB
7556 ins->objectid = search_start;
7557 ins->offset = num_bytes;
d2fb3437 7558
3f7de037
JB
7559 trace_btrfs_reserve_extent(orig_root, block_group,
7560 search_start, num_bytes);
e570fd27 7561 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7562 break;
7563loop:
0a24325e 7564 failed_cluster_refill = false;
1cdda9b8 7565 failed_alloc = false;
b742bb82 7566 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7567 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7568 }
7569 up_read(&space_info->groups_sem);
7570
13a0db5a 7571 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7572 && !orig_have_caching_bg)
7573 orig_have_caching_bg = true;
7574
60d2adbb
MX
7575 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7576 goto search;
7577
b742bb82
YZ
7578 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7579 goto search;
7580
285ff5af 7581 /*
ccf0e725
JB
7582 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7583 * caching kthreads as we move along
817d52f8
JB
7584 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7585 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7586 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7587 * again
fa9c0d79 7588 */
723bda20 7589 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7590 index = 0;
a5e681d9
JB
7591 if (loop == LOOP_CACHING_NOWAIT) {
7592 /*
7593 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7594 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7595 * full search through.
7596 */
13a0db5a 7597 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7598 loop = LOOP_CACHING_WAIT;
7599 else
7600 loop = LOOP_ALLOC_CHUNK;
7601 } else {
7602 loop++;
7603 }
7604
817d52f8 7605 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7606 struct btrfs_trans_handle *trans;
f017f15f
WS
7607 int exist = 0;
7608
7609 trans = current->journal_info;
7610 if (trans)
7611 exist = 1;
7612 else
7613 trans = btrfs_join_transaction(root);
00361589 7614
00361589
JB
7615 if (IS_ERR(trans)) {
7616 ret = PTR_ERR(trans);
7617 goto out;
7618 }
7619
b6919a58 7620 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7621 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7622
7623 /*
7624 * If we can't allocate a new chunk we've already looped
7625 * through at least once, move on to the NO_EMPTY_SIZE
7626 * case.
7627 */
7628 if (ret == -ENOSPC)
7629 loop = LOOP_NO_EMPTY_SIZE;
7630
ea658bad
JB
7631 /*
7632 * Do not bail out on ENOSPC since we
7633 * can do more things.
7634 */
00361589 7635 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7636 btrfs_abort_transaction(trans,
7637 root, ret);
00361589
JB
7638 else
7639 ret = 0;
f017f15f
WS
7640 if (!exist)
7641 btrfs_end_transaction(trans, root);
00361589 7642 if (ret)
ea658bad 7643 goto out;
2552d17e
JB
7644 }
7645
723bda20 7646 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7647 /*
7648 * Don't loop again if we already have no empty_size and
7649 * no empty_cluster.
7650 */
7651 if (empty_size == 0 &&
7652 empty_cluster == 0) {
7653 ret = -ENOSPC;
7654 goto out;
7655 }
723bda20
JB
7656 empty_size = 0;
7657 empty_cluster = 0;
fa9c0d79 7658 }
723bda20
JB
7659
7660 goto search;
2552d17e
JB
7661 } else if (!ins->objectid) {
7662 ret = -ENOSPC;
d82a6f1d 7663 } else if (ins->objectid) {
c759c4e1
JB
7664 if (!use_cluster && last_ptr) {
7665 spin_lock(&last_ptr->lock);
7666 last_ptr->window_start = ins->objectid;
7667 spin_unlock(&last_ptr->lock);
7668 }
80eb234a 7669 ret = 0;
be744175 7670 }
79787eaa 7671out:
4f4db217
JB
7672 if (ret == -ENOSPC) {
7673 spin_lock(&space_info->lock);
7674 space_info->max_extent_size = max_extent_size;
7675 spin_unlock(&space_info->lock);
a4820398 7676 ins->offset = max_extent_size;
4f4db217 7677 }
0f70abe2 7678 return ret;
fec577fb 7679}
ec44a35c 7680
9ed74f2d
JB
7681static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7682 int dump_block_groups)
0f9dd46c
JB
7683{
7684 struct btrfs_block_group_cache *cache;
b742bb82 7685 int index = 0;
0f9dd46c 7686
9ed74f2d 7687 spin_lock(&info->lock);
efe120a0 7688 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7689 info->flags,
7690 info->total_bytes - info->bytes_used - info->bytes_pinned -
7691 info->bytes_reserved - info->bytes_readonly,
d397712b 7692 (info->full) ? "" : "not ");
efe120a0 7693 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7694 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7695 info->total_bytes, info->bytes_used, info->bytes_pinned,
7696 info->bytes_reserved, info->bytes_may_use,
7697 info->bytes_readonly);
9ed74f2d
JB
7698 spin_unlock(&info->lock);
7699
7700 if (!dump_block_groups)
7701 return;
0f9dd46c 7702
80eb234a 7703 down_read(&info->groups_sem);
b742bb82
YZ
7704again:
7705 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7706 spin_lock(&cache->lock);
efe120a0
FH
7707 printk(KERN_INFO "BTRFS: "
7708 "block group %llu has %llu bytes, "
7709 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7710 cache->key.objectid, cache->key.offset,
7711 btrfs_block_group_used(&cache->item), cache->pinned,
7712 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7713 btrfs_dump_free_space(cache, bytes);
7714 spin_unlock(&cache->lock);
7715 }
b742bb82
YZ
7716 if (++index < BTRFS_NR_RAID_TYPES)
7717 goto again;
80eb234a 7718 up_read(&info->groups_sem);
0f9dd46c 7719}
e8569813 7720
00361589 7721int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7722 u64 num_bytes, u64 min_alloc_size,
7723 u64 empty_size, u64 hint_byte,
e570fd27 7724 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7725{
36af4e07 7726 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7727 u64 flags;
fec577fb 7728 int ret;
925baedd 7729
b6919a58 7730 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7731again:
db94535d 7732 WARN_ON(num_bytes < root->sectorsize);
00361589 7733 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7734 flags, delalloc);
9cfa3e34
FM
7735 if (!ret && !is_data) {
7736 btrfs_dec_block_group_reservations(root->fs_info,
7737 ins->objectid);
7738 } else if (ret == -ENOSPC) {
a4820398
MX
7739 if (!final_tried && ins->offset) {
7740 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7741 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7742 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7743 if (num_bytes == min_alloc_size)
7744 final_tried = true;
7745 goto again;
7746 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7747 struct btrfs_space_info *sinfo;
7748
b6919a58 7749 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7750 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7751 flags, num_bytes);
53804280
JM
7752 if (sinfo)
7753 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7754 }
925baedd 7755 }
0f9dd46c
JB
7756
7757 return ret;
e6dcd2dc
CM
7758}
7759
e688b725 7760static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7761 u64 start, u64 len,
7762 int pin, int delalloc)
65b51a00 7763{
0f9dd46c 7764 struct btrfs_block_group_cache *cache;
1f3c79a2 7765 int ret = 0;
0f9dd46c 7766
0f9dd46c
JB
7767 cache = btrfs_lookup_block_group(root->fs_info, start);
7768 if (!cache) {
c2cf52eb 7769 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7770 start);
0f9dd46c
JB
7771 return -ENOSPC;
7772 }
1f3c79a2 7773
e688b725
CM
7774 if (pin)
7775 pin_down_extent(root, cache, start, len, 1);
7776 else {
dcc82f47
FM
7777 if (btrfs_test_opt(root, DISCARD))
7778 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7779 btrfs_add_free_space(cache, start, len);
e570fd27 7780 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7781 }
31193213 7782
fa9c0d79 7783 btrfs_put_block_group(cache);
817d52f8 7784
1abe9b8a 7785 trace_btrfs_reserved_extent_free(root, start, len);
7786
e6dcd2dc
CM
7787 return ret;
7788}
7789
e688b725 7790int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7791 u64 start, u64 len, int delalloc)
e688b725 7792{
e570fd27 7793 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7794}
7795
7796int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7797 u64 start, u64 len)
7798{
e570fd27 7799 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7800}
7801
5d4f98a2
YZ
7802static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7803 struct btrfs_root *root,
7804 u64 parent, u64 root_objectid,
7805 u64 flags, u64 owner, u64 offset,
7806 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7807{
7808 int ret;
5d4f98a2 7809 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7810 struct btrfs_extent_item *extent_item;
5d4f98a2 7811 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7812 struct btrfs_path *path;
5d4f98a2
YZ
7813 struct extent_buffer *leaf;
7814 int type;
7815 u32 size;
26b8003f 7816
5d4f98a2
YZ
7817 if (parent > 0)
7818 type = BTRFS_SHARED_DATA_REF_KEY;
7819 else
7820 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7821
5d4f98a2 7822 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7823
7824 path = btrfs_alloc_path();
db5b493a
TI
7825 if (!path)
7826 return -ENOMEM;
47e4bb98 7827
b9473439 7828 path->leave_spinning = 1;
5d4f98a2
YZ
7829 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7830 ins, size);
79787eaa
JM
7831 if (ret) {
7832 btrfs_free_path(path);
7833 return ret;
7834 }
0f9dd46c 7835
5d4f98a2
YZ
7836 leaf = path->nodes[0];
7837 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7838 struct btrfs_extent_item);
5d4f98a2
YZ
7839 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7840 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7841 btrfs_set_extent_flags(leaf, extent_item,
7842 flags | BTRFS_EXTENT_FLAG_DATA);
7843
7844 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7845 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7846 if (parent > 0) {
7847 struct btrfs_shared_data_ref *ref;
7848 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7849 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7850 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7851 } else {
7852 struct btrfs_extent_data_ref *ref;
7853 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7854 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7855 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7856 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7857 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7858 }
47e4bb98
CM
7859
7860 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7861 btrfs_free_path(path);
f510cfec 7862
1e144fb8
OS
7863 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7864 ins->offset);
7865 if (ret)
7866 return ret;
7867
ce93ec54 7868 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7869 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7870 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7871 ins->objectid, ins->offset);
f5947066
CM
7872 BUG();
7873 }
0be5dc67 7874 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7875 return ret;
7876}
7877
5d4f98a2
YZ
7878static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7879 struct btrfs_root *root,
7880 u64 parent, u64 root_objectid,
7881 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 7882 int level, struct btrfs_key *ins)
e6dcd2dc
CM
7883{
7884 int ret;
5d4f98a2
YZ
7885 struct btrfs_fs_info *fs_info = root->fs_info;
7886 struct btrfs_extent_item *extent_item;
7887 struct btrfs_tree_block_info *block_info;
7888 struct btrfs_extent_inline_ref *iref;
7889 struct btrfs_path *path;
7890 struct extent_buffer *leaf;
3173a18f 7891 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7892 u64 num_bytes = ins->offset;
3173a18f
JB
7893 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7894 SKINNY_METADATA);
7895
7896 if (!skinny_metadata)
7897 size += sizeof(*block_info);
1c2308f8 7898
5d4f98a2 7899 path = btrfs_alloc_path();
857cc2fc
JB
7900 if (!path) {
7901 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7902 root->nodesize);
d8926bb3 7903 return -ENOMEM;
857cc2fc 7904 }
56bec294 7905
5d4f98a2
YZ
7906 path->leave_spinning = 1;
7907 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7908 ins, size);
79787eaa 7909 if (ret) {
dd825259 7910 btrfs_free_path(path);
857cc2fc 7911 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7912 root->nodesize);
79787eaa
JM
7913 return ret;
7914 }
5d4f98a2
YZ
7915
7916 leaf = path->nodes[0];
7917 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7918 struct btrfs_extent_item);
7919 btrfs_set_extent_refs(leaf, extent_item, 1);
7920 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7921 btrfs_set_extent_flags(leaf, extent_item,
7922 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7923
3173a18f
JB
7924 if (skinny_metadata) {
7925 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7926 num_bytes = root->nodesize;
3173a18f
JB
7927 } else {
7928 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7929 btrfs_set_tree_block_key(leaf, block_info, key);
7930 btrfs_set_tree_block_level(leaf, block_info, level);
7931 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7932 }
5d4f98a2 7933
5d4f98a2
YZ
7934 if (parent > 0) {
7935 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7936 btrfs_set_extent_inline_ref_type(leaf, iref,
7937 BTRFS_SHARED_BLOCK_REF_KEY);
7938 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7939 } else {
7940 btrfs_set_extent_inline_ref_type(leaf, iref,
7941 BTRFS_TREE_BLOCK_REF_KEY);
7942 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7943 }
7944
7945 btrfs_mark_buffer_dirty(leaf);
7946 btrfs_free_path(path);
7947
1e144fb8
OS
7948 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7949 num_bytes);
7950 if (ret)
7951 return ret;
7952
ce93ec54
JB
7953 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7954 1);
79787eaa 7955 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7956 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7957 ins->objectid, ins->offset);
5d4f98a2
YZ
7958 BUG();
7959 }
0be5dc67 7960
707e8a07 7961 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7962 return ret;
7963}
7964
7965int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7966 struct btrfs_root *root,
7967 u64 root_objectid, u64 owner,
5846a3c2
QW
7968 u64 offset, u64 ram_bytes,
7969 struct btrfs_key *ins)
5d4f98a2
YZ
7970{
7971 int ret;
7972
7973 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7974
66d7e7f0
AJ
7975 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7976 ins->offset, 0,
7977 root_objectid, owner, offset,
5846a3c2
QW
7978 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7979 NULL);
e6dcd2dc
CM
7980 return ret;
7981}
e02119d5
CM
7982
7983/*
7984 * this is used by the tree logging recovery code. It records that
7985 * an extent has been allocated and makes sure to clear the free
7986 * space cache bits as well
7987 */
5d4f98a2
YZ
7988int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7989 struct btrfs_root *root,
7990 u64 root_objectid, u64 owner, u64 offset,
7991 struct btrfs_key *ins)
e02119d5
CM
7992{
7993 int ret;
7994 struct btrfs_block_group_cache *block_group;
11833d66 7995
8c2a1a30
JB
7996 /*
7997 * Mixed block groups will exclude before processing the log so we only
01327610 7998 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
7999 */
8000 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8001 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 8002 if (ret)
8c2a1a30 8003 return ret;
11833d66
YZ
8004 }
8005
8c2a1a30
JB
8006 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8007 if (!block_group)
8008 return -EINVAL;
8009
fb25e914 8010 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 8011 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 8012 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
8013 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8014 0, owner, offset, ins, 1);
b50c6e25 8015 btrfs_put_block_group(block_group);
e02119d5
CM
8016 return ret;
8017}
8018
48a3b636
ES
8019static struct extent_buffer *
8020btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8021 u64 bytenr, int level)
65b51a00
CM
8022{
8023 struct extent_buffer *buf;
8024
a83fffb7 8025 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8026 if (IS_ERR(buf))
8027 return buf;
8028
65b51a00 8029 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8030 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8031 btrfs_tree_lock(buf);
01d58472 8032 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8033 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8034
8035 btrfs_set_lock_blocking(buf);
4db8c528 8036 set_extent_buffer_uptodate(buf);
b4ce94de 8037
d0c803c4 8038 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8039 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8040 /*
8041 * we allow two log transactions at a time, use different
8042 * EXENT bit to differentiate dirty pages.
8043 */
656f30db 8044 if (buf->log_index == 0)
8cef4e16
YZ
8045 set_extent_dirty(&root->dirty_log_pages, buf->start,
8046 buf->start + buf->len - 1, GFP_NOFS);
8047 else
8048 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8049 buf->start + buf->len - 1);
d0c803c4 8050 } else {
656f30db 8051 buf->log_index = -1;
d0c803c4 8052 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8053 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8054 }
64c12921 8055 trans->dirty = true;
b4ce94de 8056 /* this returns a buffer locked for blocking */
65b51a00
CM
8057 return buf;
8058}
8059
f0486c68
YZ
8060static struct btrfs_block_rsv *
8061use_block_rsv(struct btrfs_trans_handle *trans,
8062 struct btrfs_root *root, u32 blocksize)
8063{
8064 struct btrfs_block_rsv *block_rsv;
68a82277 8065 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8066 int ret;
d88033db 8067 bool global_updated = false;
f0486c68
YZ
8068
8069 block_rsv = get_block_rsv(trans, root);
8070
b586b323
MX
8071 if (unlikely(block_rsv->size == 0))
8072 goto try_reserve;
d88033db 8073again:
f0486c68
YZ
8074 ret = block_rsv_use_bytes(block_rsv, blocksize);
8075 if (!ret)
8076 return block_rsv;
8077
b586b323
MX
8078 if (block_rsv->failfast)
8079 return ERR_PTR(ret);
8080
d88033db
MX
8081 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8082 global_updated = true;
8083 update_global_block_rsv(root->fs_info);
8084 goto again;
8085 }
8086
b586b323
MX
8087 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8088 static DEFINE_RATELIMIT_STATE(_rs,
8089 DEFAULT_RATELIMIT_INTERVAL * 10,
8090 /*DEFAULT_RATELIMIT_BURST*/ 1);
8091 if (__ratelimit(&_rs))
8092 WARN(1, KERN_DEBUG
efe120a0 8093 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8094 }
8095try_reserve:
8096 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8097 BTRFS_RESERVE_NO_FLUSH);
8098 if (!ret)
8099 return block_rsv;
8100 /*
8101 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8102 * the global reserve if its space type is the same as the global
8103 * reservation.
b586b323 8104 */
5881cfc9
MX
8105 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8106 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8107 ret = block_rsv_use_bytes(global_rsv, blocksize);
8108 if (!ret)
8109 return global_rsv;
8110 }
8111 return ERR_PTR(ret);
f0486c68
YZ
8112}
8113
8c2a3ca2
JB
8114static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8115 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8116{
8117 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8118 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8119}
8120
fec577fb 8121/*
f0486c68 8122 * finds a free extent and does all the dirty work required for allocation
67b7859e 8123 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8124 */
4d75f8a9
DS
8125struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8126 struct btrfs_root *root,
5d4f98a2
YZ
8127 u64 parent, u64 root_objectid,
8128 struct btrfs_disk_key *key, int level,
5581a51a 8129 u64 hint, u64 empty_size)
fec577fb 8130{
e2fa7227 8131 struct btrfs_key ins;
f0486c68 8132 struct btrfs_block_rsv *block_rsv;
5f39d397 8133 struct extent_buffer *buf;
67b7859e 8134 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8135 u64 flags = 0;
8136 int ret;
4d75f8a9 8137 u32 blocksize = root->nodesize;
3173a18f
JB
8138 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8139 SKINNY_METADATA);
fec577fb 8140
fccb84c9 8141 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 8142 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8143 level);
faa2dbf0
JB
8144 if (!IS_ERR(buf))
8145 root->alloc_bytenr += blocksize;
8146 return buf;
8147 }
fccb84c9 8148
f0486c68
YZ
8149 block_rsv = use_block_rsv(trans, root, blocksize);
8150 if (IS_ERR(block_rsv))
8151 return ERR_CAST(block_rsv);
8152
00361589 8153 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 8154 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8155 if (ret)
8156 goto out_unuse;
55c69072 8157
fe864576 8158 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8159 if (IS_ERR(buf)) {
8160 ret = PTR_ERR(buf);
8161 goto out_free_reserved;
8162 }
f0486c68
YZ
8163
8164 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8165 if (parent == 0)
8166 parent = ins.objectid;
8167 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8168 } else
8169 BUG_ON(parent > 0);
8170
8171 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8172 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8173 if (!extent_op) {
8174 ret = -ENOMEM;
8175 goto out_free_buf;
8176 }
f0486c68
YZ
8177 if (key)
8178 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8179 else
8180 memset(&extent_op->key, 0, sizeof(extent_op->key));
8181 extent_op->flags_to_set = flags;
35b3ad50
DS
8182 extent_op->update_key = skinny_metadata ? false : true;
8183 extent_op->update_flags = true;
8184 extent_op->is_data = false;
b1c79e09 8185 extent_op->level = level;
f0486c68 8186
66d7e7f0 8187 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8188 ins.objectid, ins.offset,
8189 parent, root_objectid, level,
8190 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8191 extent_op);
67b7859e
OS
8192 if (ret)
8193 goto out_free_delayed;
f0486c68 8194 }
fec577fb 8195 return buf;
67b7859e
OS
8196
8197out_free_delayed:
8198 btrfs_free_delayed_extent_op(extent_op);
8199out_free_buf:
8200 free_extent_buffer(buf);
8201out_free_reserved:
8202 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8203out_unuse:
8204 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8205 return ERR_PTR(ret);
fec577fb 8206}
a28ec197 8207
2c47e605
YZ
8208struct walk_control {
8209 u64 refs[BTRFS_MAX_LEVEL];
8210 u64 flags[BTRFS_MAX_LEVEL];
8211 struct btrfs_key update_progress;
8212 int stage;
8213 int level;
8214 int shared_level;
8215 int update_ref;
8216 int keep_locks;
1c4850e2
YZ
8217 int reada_slot;
8218 int reada_count;
66d7e7f0 8219 int for_reloc;
2c47e605
YZ
8220};
8221
8222#define DROP_REFERENCE 1
8223#define UPDATE_BACKREF 2
8224
1c4850e2
YZ
8225static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8226 struct btrfs_root *root,
8227 struct walk_control *wc,
8228 struct btrfs_path *path)
6407bf6d 8229{
1c4850e2
YZ
8230 u64 bytenr;
8231 u64 generation;
8232 u64 refs;
94fcca9f 8233 u64 flags;
5d4f98a2 8234 u32 nritems;
1c4850e2
YZ
8235 u32 blocksize;
8236 struct btrfs_key key;
8237 struct extent_buffer *eb;
6407bf6d 8238 int ret;
1c4850e2
YZ
8239 int slot;
8240 int nread = 0;
6407bf6d 8241
1c4850e2
YZ
8242 if (path->slots[wc->level] < wc->reada_slot) {
8243 wc->reada_count = wc->reada_count * 2 / 3;
8244 wc->reada_count = max(wc->reada_count, 2);
8245 } else {
8246 wc->reada_count = wc->reada_count * 3 / 2;
8247 wc->reada_count = min_t(int, wc->reada_count,
8248 BTRFS_NODEPTRS_PER_BLOCK(root));
8249 }
7bb86316 8250
1c4850e2
YZ
8251 eb = path->nodes[wc->level];
8252 nritems = btrfs_header_nritems(eb);
707e8a07 8253 blocksize = root->nodesize;
bd56b302 8254
1c4850e2
YZ
8255 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8256 if (nread >= wc->reada_count)
8257 break;
bd56b302 8258
2dd3e67b 8259 cond_resched();
1c4850e2
YZ
8260 bytenr = btrfs_node_blockptr(eb, slot);
8261 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8262
1c4850e2
YZ
8263 if (slot == path->slots[wc->level])
8264 goto reada;
5d4f98a2 8265
1c4850e2
YZ
8266 if (wc->stage == UPDATE_BACKREF &&
8267 generation <= root->root_key.offset)
bd56b302
CM
8268 continue;
8269
94fcca9f 8270 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8271 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8272 wc->level - 1, 1, &refs,
8273 &flags);
79787eaa
JM
8274 /* We don't care about errors in readahead. */
8275 if (ret < 0)
8276 continue;
94fcca9f
YZ
8277 BUG_ON(refs == 0);
8278
1c4850e2 8279 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8280 if (refs == 1)
8281 goto reada;
bd56b302 8282
94fcca9f
YZ
8283 if (wc->level == 1 &&
8284 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8285 continue;
1c4850e2
YZ
8286 if (!wc->update_ref ||
8287 generation <= root->root_key.offset)
8288 continue;
8289 btrfs_node_key_to_cpu(eb, &key, slot);
8290 ret = btrfs_comp_cpu_keys(&key,
8291 &wc->update_progress);
8292 if (ret < 0)
8293 continue;
94fcca9f
YZ
8294 } else {
8295 if (wc->level == 1 &&
8296 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8297 continue;
6407bf6d 8298 }
1c4850e2 8299reada:
d3e46fea 8300 readahead_tree_block(root, bytenr);
1c4850e2 8301 nread++;
20524f02 8302 }
1c4850e2 8303 wc->reada_slot = slot;
20524f02 8304}
2c47e605 8305
0ed4792a 8306/*
82bd101b
MF
8307 * These may not be seen by the usual inc/dec ref code so we have to
8308 * add them here.
0ed4792a 8309 */
82bd101b
MF
8310static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8311 struct btrfs_root *root, u64 bytenr,
8312 u64 num_bytes)
8313{
8314 struct btrfs_qgroup_extent_record *qrecord;
8315 struct btrfs_delayed_ref_root *delayed_refs;
8316
8317 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8318 if (!qrecord)
8319 return -ENOMEM;
8320
8321 qrecord->bytenr = bytenr;
8322 qrecord->num_bytes = num_bytes;
8323 qrecord->old_roots = NULL;
8324
8325 delayed_refs = &trans->transaction->delayed_refs;
8326 spin_lock(&delayed_refs->lock);
8327 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8328 kfree(qrecord);
8329 spin_unlock(&delayed_refs->lock);
8330
8331 return 0;
8332}
8333
1152651a
MF
8334static int account_leaf_items(struct btrfs_trans_handle *trans,
8335 struct btrfs_root *root,
8336 struct extent_buffer *eb)
8337{
8338 int nr = btrfs_header_nritems(eb);
82bd101b 8339 int i, extent_type, ret;
1152651a
MF
8340 struct btrfs_key key;
8341 struct btrfs_file_extent_item *fi;
8342 u64 bytenr, num_bytes;
8343
82bd101b
MF
8344 /* We can be called directly from walk_up_proc() */
8345 if (!root->fs_info->quota_enabled)
8346 return 0;
8347
1152651a
MF
8348 for (i = 0; i < nr; i++) {
8349 btrfs_item_key_to_cpu(eb, &key, i);
8350
8351 if (key.type != BTRFS_EXTENT_DATA_KEY)
8352 continue;
8353
8354 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8355 /* filter out non qgroup-accountable extents */
8356 extent_type = btrfs_file_extent_type(eb, fi);
8357
8358 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8359 continue;
8360
8361 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8362 if (!bytenr)
8363 continue;
8364
8365 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b
MF
8366
8367 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8368 if (ret)
8369 return ret;
1152651a
MF
8370 }
8371 return 0;
8372}
8373
8374/*
8375 * Walk up the tree from the bottom, freeing leaves and any interior
8376 * nodes which have had all slots visited. If a node (leaf or
8377 * interior) is freed, the node above it will have it's slot
8378 * incremented. The root node will never be freed.
8379 *
8380 * At the end of this function, we should have a path which has all
8381 * slots incremented to the next position for a search. If we need to
8382 * read a new node it will be NULL and the node above it will have the
8383 * correct slot selected for a later read.
8384 *
8385 * If we increment the root nodes slot counter past the number of
8386 * elements, 1 is returned to signal completion of the search.
8387 */
8388static int adjust_slots_upwards(struct btrfs_root *root,
8389 struct btrfs_path *path, int root_level)
8390{
8391 int level = 0;
8392 int nr, slot;
8393 struct extent_buffer *eb;
8394
8395 if (root_level == 0)
8396 return 1;
8397
8398 while (level <= root_level) {
8399 eb = path->nodes[level];
8400 nr = btrfs_header_nritems(eb);
8401 path->slots[level]++;
8402 slot = path->slots[level];
8403 if (slot >= nr || level == 0) {
8404 /*
8405 * Don't free the root - we will detect this
8406 * condition after our loop and return a
8407 * positive value for caller to stop walking the tree.
8408 */
8409 if (level != root_level) {
8410 btrfs_tree_unlock_rw(eb, path->locks[level]);
8411 path->locks[level] = 0;
8412
8413 free_extent_buffer(eb);
8414 path->nodes[level] = NULL;
8415 path->slots[level] = 0;
8416 }
8417 } else {
8418 /*
8419 * We have a valid slot to walk back down
8420 * from. Stop here so caller can process these
8421 * new nodes.
8422 */
8423 break;
8424 }
8425
8426 level++;
8427 }
8428
8429 eb = path->nodes[root_level];
8430 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8431 return 1;
8432
8433 return 0;
8434}
8435
8436/*
8437 * root_eb is the subtree root and is locked before this function is called.
8438 */
8439static int account_shared_subtree(struct btrfs_trans_handle *trans,
8440 struct btrfs_root *root,
8441 struct extent_buffer *root_eb,
8442 u64 root_gen,
8443 int root_level)
8444{
8445 int ret = 0;
8446 int level;
8447 struct extent_buffer *eb = root_eb;
8448 struct btrfs_path *path = NULL;
8449
8450 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8451 BUG_ON(root_eb == NULL);
8452
8453 if (!root->fs_info->quota_enabled)
8454 return 0;
8455
8456 if (!extent_buffer_uptodate(root_eb)) {
8457 ret = btrfs_read_buffer(root_eb, root_gen);
8458 if (ret)
8459 goto out;
8460 }
8461
8462 if (root_level == 0) {
8463 ret = account_leaf_items(trans, root, root_eb);
8464 goto out;
8465 }
8466
8467 path = btrfs_alloc_path();
8468 if (!path)
8469 return -ENOMEM;
8470
8471 /*
8472 * Walk down the tree. Missing extent blocks are filled in as
8473 * we go. Metadata is accounted every time we read a new
8474 * extent block.
8475 *
8476 * When we reach a leaf, we account for file extent items in it,
8477 * walk back up the tree (adjusting slot pointers as we go)
8478 * and restart the search process.
8479 */
8480 extent_buffer_get(root_eb); /* For path */
8481 path->nodes[root_level] = root_eb;
8482 path->slots[root_level] = 0;
8483 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8484walk_down:
8485 level = root_level;
8486 while (level >= 0) {
8487 if (path->nodes[level] == NULL) {
1152651a
MF
8488 int parent_slot;
8489 u64 child_gen;
8490 u64 child_bytenr;
8491
8492 /* We need to get child blockptr/gen from
8493 * parent before we can read it. */
8494 eb = path->nodes[level + 1];
8495 parent_slot = path->slots[level + 1];
8496 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8497 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8498
ce86cd59 8499 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8500 if (IS_ERR(eb)) {
8501 ret = PTR_ERR(eb);
8502 goto out;
8503 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8504 free_extent_buffer(eb);
64c043de 8505 ret = -EIO;
1152651a
MF
8506 goto out;
8507 }
8508
8509 path->nodes[level] = eb;
8510 path->slots[level] = 0;
8511
8512 btrfs_tree_read_lock(eb);
8513 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8514 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b
MF
8515
8516 ret = record_one_subtree_extent(trans, root, child_bytenr,
8517 root->nodesize);
8518 if (ret)
8519 goto out;
1152651a
MF
8520 }
8521
8522 if (level == 0) {
8523 ret = account_leaf_items(trans, root, path->nodes[level]);
8524 if (ret)
8525 goto out;
8526
8527 /* Nonzero return here means we completed our search */
8528 ret = adjust_slots_upwards(root, path, root_level);
8529 if (ret)
8530 break;
8531
8532 /* Restart search with new slots */
8533 goto walk_down;
8534 }
8535
8536 level--;
8537 }
8538
8539 ret = 0;
8540out:
8541 btrfs_free_path(path);
8542
8543 return ret;
8544}
8545
f82d02d9 8546/*
2c016dc2 8547 * helper to process tree block while walking down the tree.
2c47e605 8548 *
2c47e605
YZ
8549 * when wc->stage == UPDATE_BACKREF, this function updates
8550 * back refs for pointers in the block.
8551 *
8552 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8553 */
2c47e605 8554static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8555 struct btrfs_root *root,
2c47e605 8556 struct btrfs_path *path,
94fcca9f 8557 struct walk_control *wc, int lookup_info)
f82d02d9 8558{
2c47e605
YZ
8559 int level = wc->level;
8560 struct extent_buffer *eb = path->nodes[level];
2c47e605 8561 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8562 int ret;
8563
2c47e605
YZ
8564 if (wc->stage == UPDATE_BACKREF &&
8565 btrfs_header_owner(eb) != root->root_key.objectid)
8566 return 1;
f82d02d9 8567
2c47e605
YZ
8568 /*
8569 * when reference count of tree block is 1, it won't increase
8570 * again. once full backref flag is set, we never clear it.
8571 */
94fcca9f
YZ
8572 if (lookup_info &&
8573 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8574 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8575 BUG_ON(!path->locks[level]);
8576 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8577 eb->start, level, 1,
2c47e605
YZ
8578 &wc->refs[level],
8579 &wc->flags[level]);
79787eaa
JM
8580 BUG_ON(ret == -ENOMEM);
8581 if (ret)
8582 return ret;
2c47e605
YZ
8583 BUG_ON(wc->refs[level] == 0);
8584 }
5d4f98a2 8585
2c47e605
YZ
8586 if (wc->stage == DROP_REFERENCE) {
8587 if (wc->refs[level] > 1)
8588 return 1;
f82d02d9 8589
2c47e605 8590 if (path->locks[level] && !wc->keep_locks) {
bd681513 8591 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8592 path->locks[level] = 0;
8593 }
8594 return 0;
8595 }
f82d02d9 8596
2c47e605
YZ
8597 /* wc->stage == UPDATE_BACKREF */
8598 if (!(wc->flags[level] & flag)) {
8599 BUG_ON(!path->locks[level]);
e339a6b0 8600 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8601 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8602 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8603 BUG_ON(ret); /* -ENOMEM */
2c47e605 8604 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8605 eb->len, flag,
8606 btrfs_header_level(eb), 0);
79787eaa 8607 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8608 wc->flags[level] |= flag;
8609 }
8610
8611 /*
8612 * the block is shared by multiple trees, so it's not good to
8613 * keep the tree lock
8614 */
8615 if (path->locks[level] && level > 0) {
bd681513 8616 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8617 path->locks[level] = 0;
8618 }
8619 return 0;
8620}
8621
1c4850e2 8622/*
2c016dc2 8623 * helper to process tree block pointer.
1c4850e2
YZ
8624 *
8625 * when wc->stage == DROP_REFERENCE, this function checks
8626 * reference count of the block pointed to. if the block
8627 * is shared and we need update back refs for the subtree
8628 * rooted at the block, this function changes wc->stage to
8629 * UPDATE_BACKREF. if the block is shared and there is no
8630 * need to update back, this function drops the reference
8631 * to the block.
8632 *
8633 * NOTE: return value 1 means we should stop walking down.
8634 */
8635static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8636 struct btrfs_root *root,
8637 struct btrfs_path *path,
94fcca9f 8638 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8639{
8640 u64 bytenr;
8641 u64 generation;
8642 u64 parent;
8643 u32 blocksize;
8644 struct btrfs_key key;
8645 struct extent_buffer *next;
8646 int level = wc->level;
8647 int reada = 0;
8648 int ret = 0;
1152651a 8649 bool need_account = false;
1c4850e2
YZ
8650
8651 generation = btrfs_node_ptr_generation(path->nodes[level],
8652 path->slots[level]);
8653 /*
8654 * if the lower level block was created before the snapshot
8655 * was created, we know there is no need to update back refs
8656 * for the subtree
8657 */
8658 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8659 generation <= root->root_key.offset) {
8660 *lookup_info = 1;
1c4850e2 8661 return 1;
94fcca9f 8662 }
1c4850e2
YZ
8663
8664 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8665 blocksize = root->nodesize;
1c4850e2 8666
01d58472 8667 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8668 if (!next) {
a83fffb7 8669 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8670 if (IS_ERR(next))
8671 return PTR_ERR(next);
8672
b2aaaa3b
JB
8673 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8674 level - 1);
1c4850e2
YZ
8675 reada = 1;
8676 }
8677 btrfs_tree_lock(next);
8678 btrfs_set_lock_blocking(next);
8679
3173a18f 8680 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8681 &wc->refs[level - 1],
8682 &wc->flags[level - 1]);
79787eaa
JM
8683 if (ret < 0) {
8684 btrfs_tree_unlock(next);
8685 return ret;
8686 }
8687
c2cf52eb
SK
8688 if (unlikely(wc->refs[level - 1] == 0)) {
8689 btrfs_err(root->fs_info, "Missing references.");
8690 BUG();
8691 }
94fcca9f 8692 *lookup_info = 0;
1c4850e2 8693
94fcca9f 8694 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8695 if (wc->refs[level - 1] > 1) {
1152651a 8696 need_account = true;
94fcca9f
YZ
8697 if (level == 1 &&
8698 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8699 goto skip;
8700
1c4850e2
YZ
8701 if (!wc->update_ref ||
8702 generation <= root->root_key.offset)
8703 goto skip;
8704
8705 btrfs_node_key_to_cpu(path->nodes[level], &key,
8706 path->slots[level]);
8707 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8708 if (ret < 0)
8709 goto skip;
8710
8711 wc->stage = UPDATE_BACKREF;
8712 wc->shared_level = level - 1;
8713 }
94fcca9f
YZ
8714 } else {
8715 if (level == 1 &&
8716 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8717 goto skip;
1c4850e2
YZ
8718 }
8719
b9fab919 8720 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8721 btrfs_tree_unlock(next);
8722 free_extent_buffer(next);
8723 next = NULL;
94fcca9f 8724 *lookup_info = 1;
1c4850e2
YZ
8725 }
8726
8727 if (!next) {
8728 if (reada && level == 1)
8729 reada_walk_down(trans, root, wc, path);
ce86cd59 8730 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8731 if (IS_ERR(next)) {
8732 return PTR_ERR(next);
8733 } else if (!extent_buffer_uptodate(next)) {
416bc658 8734 free_extent_buffer(next);
97d9a8a4 8735 return -EIO;
416bc658 8736 }
1c4850e2
YZ
8737 btrfs_tree_lock(next);
8738 btrfs_set_lock_blocking(next);
8739 }
8740
8741 level--;
8742 BUG_ON(level != btrfs_header_level(next));
8743 path->nodes[level] = next;
8744 path->slots[level] = 0;
bd681513 8745 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8746 wc->level = level;
8747 if (wc->level == 1)
8748 wc->reada_slot = 0;
8749 return 0;
8750skip:
8751 wc->refs[level - 1] = 0;
8752 wc->flags[level - 1] = 0;
94fcca9f
YZ
8753 if (wc->stage == DROP_REFERENCE) {
8754 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8755 parent = path->nodes[level]->start;
8756 } else {
8757 BUG_ON(root->root_key.objectid !=
8758 btrfs_header_owner(path->nodes[level]));
8759 parent = 0;
8760 }
1c4850e2 8761
1152651a
MF
8762 if (need_account) {
8763 ret = account_shared_subtree(trans, root, next,
8764 generation, level - 1);
8765 if (ret) {
94647322
DS
8766 btrfs_err_rl(root->fs_info,
8767 "Error "
1152651a 8768 "%d accounting shared subtree. Quota "
94647322
DS
8769 "is out of sync, rescan required.",
8770 ret);
1152651a
MF
8771 }
8772 }
94fcca9f 8773 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8774 root->root_key.objectid, level - 1, 0);
79787eaa 8775 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8776 }
1c4850e2
YZ
8777 btrfs_tree_unlock(next);
8778 free_extent_buffer(next);
94fcca9f 8779 *lookup_info = 1;
1c4850e2
YZ
8780 return 1;
8781}
8782
2c47e605 8783/*
2c016dc2 8784 * helper to process tree block while walking up the tree.
2c47e605
YZ
8785 *
8786 * when wc->stage == DROP_REFERENCE, this function drops
8787 * reference count on the block.
8788 *
8789 * when wc->stage == UPDATE_BACKREF, this function changes
8790 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8791 * to UPDATE_BACKREF previously while processing the block.
8792 *
8793 * NOTE: return value 1 means we should stop walking up.
8794 */
8795static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8796 struct btrfs_root *root,
8797 struct btrfs_path *path,
8798 struct walk_control *wc)
8799{
f0486c68 8800 int ret;
2c47e605
YZ
8801 int level = wc->level;
8802 struct extent_buffer *eb = path->nodes[level];
8803 u64 parent = 0;
8804
8805 if (wc->stage == UPDATE_BACKREF) {
8806 BUG_ON(wc->shared_level < level);
8807 if (level < wc->shared_level)
8808 goto out;
8809
2c47e605
YZ
8810 ret = find_next_key(path, level + 1, &wc->update_progress);
8811 if (ret > 0)
8812 wc->update_ref = 0;
8813
8814 wc->stage = DROP_REFERENCE;
8815 wc->shared_level = -1;
8816 path->slots[level] = 0;
8817
8818 /*
8819 * check reference count again if the block isn't locked.
8820 * we should start walking down the tree again if reference
8821 * count is one.
8822 */
8823 if (!path->locks[level]) {
8824 BUG_ON(level == 0);
8825 btrfs_tree_lock(eb);
8826 btrfs_set_lock_blocking(eb);
bd681513 8827 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8828
8829 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8830 eb->start, level, 1,
2c47e605
YZ
8831 &wc->refs[level],
8832 &wc->flags[level]);
79787eaa
JM
8833 if (ret < 0) {
8834 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8835 path->locks[level] = 0;
79787eaa
JM
8836 return ret;
8837 }
2c47e605
YZ
8838 BUG_ON(wc->refs[level] == 0);
8839 if (wc->refs[level] == 1) {
bd681513 8840 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8841 path->locks[level] = 0;
2c47e605
YZ
8842 return 1;
8843 }
f82d02d9 8844 }
2c47e605 8845 }
f82d02d9 8846
2c47e605
YZ
8847 /* wc->stage == DROP_REFERENCE */
8848 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8849
2c47e605
YZ
8850 if (wc->refs[level] == 1) {
8851 if (level == 0) {
8852 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8853 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8854 else
e339a6b0 8855 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8856 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8857 ret = account_leaf_items(trans, root, eb);
8858 if (ret) {
94647322
DS
8859 btrfs_err_rl(root->fs_info,
8860 "error "
1152651a 8861 "%d accounting leaf items. Quota "
94647322
DS
8862 "is out of sync, rescan required.",
8863 ret);
1152651a 8864 }
2c47e605
YZ
8865 }
8866 /* make block locked assertion in clean_tree_block happy */
8867 if (!path->locks[level] &&
8868 btrfs_header_generation(eb) == trans->transid) {
8869 btrfs_tree_lock(eb);
8870 btrfs_set_lock_blocking(eb);
bd681513 8871 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8872 }
01d58472 8873 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8874 }
8875
8876 if (eb == root->node) {
8877 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8878 parent = eb->start;
8879 else
8880 BUG_ON(root->root_key.objectid !=
8881 btrfs_header_owner(eb));
8882 } else {
8883 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8884 parent = path->nodes[level + 1]->start;
8885 else
8886 BUG_ON(root->root_key.objectid !=
8887 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8888 }
f82d02d9 8889
5581a51a 8890 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8891out:
8892 wc->refs[level] = 0;
8893 wc->flags[level] = 0;
f0486c68 8894 return 0;
2c47e605
YZ
8895}
8896
8897static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8898 struct btrfs_root *root,
8899 struct btrfs_path *path,
8900 struct walk_control *wc)
8901{
2c47e605 8902 int level = wc->level;
94fcca9f 8903 int lookup_info = 1;
2c47e605
YZ
8904 int ret;
8905
8906 while (level >= 0) {
94fcca9f 8907 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8908 if (ret > 0)
8909 break;
8910
8911 if (level == 0)
8912 break;
8913
7a7965f8
YZ
8914 if (path->slots[level] >=
8915 btrfs_header_nritems(path->nodes[level]))
8916 break;
8917
94fcca9f 8918 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8919 if (ret > 0) {
8920 path->slots[level]++;
8921 continue;
90d2c51d
MX
8922 } else if (ret < 0)
8923 return ret;
1c4850e2 8924 level = wc->level;
f82d02d9 8925 }
f82d02d9
YZ
8926 return 0;
8927}
8928
d397712b 8929static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8930 struct btrfs_root *root,
f82d02d9 8931 struct btrfs_path *path,
2c47e605 8932 struct walk_control *wc, int max_level)
20524f02 8933{
2c47e605 8934 int level = wc->level;
20524f02 8935 int ret;
9f3a7427 8936
2c47e605
YZ
8937 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8938 while (level < max_level && path->nodes[level]) {
8939 wc->level = level;
8940 if (path->slots[level] + 1 <
8941 btrfs_header_nritems(path->nodes[level])) {
8942 path->slots[level]++;
20524f02
CM
8943 return 0;
8944 } else {
2c47e605
YZ
8945 ret = walk_up_proc(trans, root, path, wc);
8946 if (ret > 0)
8947 return 0;
bd56b302 8948
2c47e605 8949 if (path->locks[level]) {
bd681513
CM
8950 btrfs_tree_unlock_rw(path->nodes[level],
8951 path->locks[level]);
2c47e605 8952 path->locks[level] = 0;
f82d02d9 8953 }
2c47e605
YZ
8954 free_extent_buffer(path->nodes[level]);
8955 path->nodes[level] = NULL;
8956 level++;
20524f02
CM
8957 }
8958 }
8959 return 1;
8960}
8961
9aca1d51 8962/*
2c47e605
YZ
8963 * drop a subvolume tree.
8964 *
8965 * this function traverses the tree freeing any blocks that only
8966 * referenced by the tree.
8967 *
8968 * when a shared tree block is found. this function decreases its
8969 * reference count by one. if update_ref is true, this function
8970 * also make sure backrefs for the shared block and all lower level
8971 * blocks are properly updated.
9d1a2a3a
DS
8972 *
8973 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8974 */
2c536799 8975int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8976 struct btrfs_block_rsv *block_rsv, int update_ref,
8977 int for_reloc)
20524f02 8978{
5caf2a00 8979 struct btrfs_path *path;
2c47e605
YZ
8980 struct btrfs_trans_handle *trans;
8981 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8982 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8983 struct walk_control *wc;
8984 struct btrfs_key key;
8985 int err = 0;
8986 int ret;
8987 int level;
d29a9f62 8988 bool root_dropped = false;
20524f02 8989
1152651a
MF
8990 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8991
5caf2a00 8992 path = btrfs_alloc_path();
cb1b69f4
TI
8993 if (!path) {
8994 err = -ENOMEM;
8995 goto out;
8996 }
20524f02 8997
2c47e605 8998 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8999 if (!wc) {
9000 btrfs_free_path(path);
cb1b69f4
TI
9001 err = -ENOMEM;
9002 goto out;
38a1a919 9003 }
2c47e605 9004
a22285a6 9005 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9006 if (IS_ERR(trans)) {
9007 err = PTR_ERR(trans);
9008 goto out_free;
9009 }
98d5dc13 9010
3fd0a558
YZ
9011 if (block_rsv)
9012 trans->block_rsv = block_rsv;
2c47e605 9013
9f3a7427 9014 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9015 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9016 path->nodes[level] = btrfs_lock_root_node(root);
9017 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9018 path->slots[level] = 0;
bd681513 9019 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9020 memset(&wc->update_progress, 0,
9021 sizeof(wc->update_progress));
9f3a7427 9022 } else {
9f3a7427 9023 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9024 memcpy(&wc->update_progress, &key,
9025 sizeof(wc->update_progress));
9026
6702ed49 9027 level = root_item->drop_level;
2c47e605 9028 BUG_ON(level == 0);
6702ed49 9029 path->lowest_level = level;
2c47e605
YZ
9030 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9031 path->lowest_level = 0;
9032 if (ret < 0) {
9033 err = ret;
79787eaa 9034 goto out_end_trans;
9f3a7427 9035 }
1c4850e2 9036 WARN_ON(ret > 0);
2c47e605 9037
7d9eb12c
CM
9038 /*
9039 * unlock our path, this is safe because only this
9040 * function is allowed to delete this snapshot
9041 */
5d4f98a2 9042 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9043
9044 level = btrfs_header_level(root->node);
9045 while (1) {
9046 btrfs_tree_lock(path->nodes[level]);
9047 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9048 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9049
9050 ret = btrfs_lookup_extent_info(trans, root,
9051 path->nodes[level]->start,
3173a18f 9052 level, 1, &wc->refs[level],
2c47e605 9053 &wc->flags[level]);
79787eaa
JM
9054 if (ret < 0) {
9055 err = ret;
9056 goto out_end_trans;
9057 }
2c47e605
YZ
9058 BUG_ON(wc->refs[level] == 0);
9059
9060 if (level == root_item->drop_level)
9061 break;
9062
9063 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9064 path->locks[level] = 0;
2c47e605
YZ
9065 WARN_ON(wc->refs[level] != 1);
9066 level--;
9067 }
9f3a7427 9068 }
2c47e605
YZ
9069
9070 wc->level = level;
9071 wc->shared_level = -1;
9072 wc->stage = DROP_REFERENCE;
9073 wc->update_ref = update_ref;
9074 wc->keep_locks = 0;
66d7e7f0 9075 wc->for_reloc = for_reloc;
1c4850e2 9076 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9077
d397712b 9078 while (1) {
9d1a2a3a 9079
2c47e605
YZ
9080 ret = walk_down_tree(trans, root, path, wc);
9081 if (ret < 0) {
9082 err = ret;
20524f02 9083 break;
2c47e605 9084 }
9aca1d51 9085
2c47e605
YZ
9086 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9087 if (ret < 0) {
9088 err = ret;
20524f02 9089 break;
2c47e605
YZ
9090 }
9091
9092 if (ret > 0) {
9093 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9094 break;
9095 }
2c47e605
YZ
9096
9097 if (wc->stage == DROP_REFERENCE) {
9098 level = wc->level;
9099 btrfs_node_key(path->nodes[level],
9100 &root_item->drop_progress,
9101 path->slots[level]);
9102 root_item->drop_level = level;
9103 }
9104
9105 BUG_ON(wc->level == 0);
3c8f2422
JB
9106 if (btrfs_should_end_transaction(trans, tree_root) ||
9107 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9108 ret = btrfs_update_root(trans, tree_root,
9109 &root->root_key,
9110 root_item);
79787eaa
JM
9111 if (ret) {
9112 btrfs_abort_transaction(trans, tree_root, ret);
9113 err = ret;
9114 goto out_end_trans;
9115 }
2c47e605 9116
3fd0a558 9117 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9118 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 9119 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
9120 err = -EAGAIN;
9121 goto out_free;
9122 }
9123
a22285a6 9124 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9125 if (IS_ERR(trans)) {
9126 err = PTR_ERR(trans);
9127 goto out_free;
9128 }
3fd0a558
YZ
9129 if (block_rsv)
9130 trans->block_rsv = block_rsv;
c3e69d58 9131 }
20524f02 9132 }
b3b4aa74 9133 btrfs_release_path(path);
79787eaa
JM
9134 if (err)
9135 goto out_end_trans;
2c47e605
YZ
9136
9137 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
9138 if (ret) {
9139 btrfs_abort_transaction(trans, tree_root, ret);
9140 goto out_end_trans;
9141 }
2c47e605 9142
76dda93c 9143 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9144 ret = btrfs_find_root(tree_root, &root->root_key, path,
9145 NULL, NULL);
79787eaa
JM
9146 if (ret < 0) {
9147 btrfs_abort_transaction(trans, tree_root, ret);
9148 err = ret;
9149 goto out_end_trans;
9150 } else if (ret > 0) {
84cd948c
JB
9151 /* if we fail to delete the orphan item this time
9152 * around, it'll get picked up the next time.
9153 *
9154 * The most common failure here is just -ENOENT.
9155 */
9156 btrfs_del_orphan_item(trans, tree_root,
9157 root->root_key.objectid);
76dda93c
YZ
9158 }
9159 }
9160
27cdeb70 9161 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9162 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9163 } else {
9164 free_extent_buffer(root->node);
9165 free_extent_buffer(root->commit_root);
b0feb9d9 9166 btrfs_put_fs_root(root);
76dda93c 9167 }
d29a9f62 9168 root_dropped = true;
79787eaa 9169out_end_trans:
3fd0a558 9170 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9171out_free:
2c47e605 9172 kfree(wc);
5caf2a00 9173 btrfs_free_path(path);
cb1b69f4 9174out:
d29a9f62
JB
9175 /*
9176 * So if we need to stop dropping the snapshot for whatever reason we
9177 * need to make sure to add it back to the dead root list so that we
9178 * keep trying to do the work later. This also cleans up roots if we
9179 * don't have it in the radix (like when we recover after a power fail
9180 * or unmount) so we don't leak memory.
9181 */
b37b39cd 9182 if (!for_reloc && root_dropped == false)
d29a9f62 9183 btrfs_add_dead_root(root);
90515e7f 9184 if (err && err != -EAGAIN)
34d97007 9185 btrfs_handle_fs_error(root->fs_info, err, NULL);
2c536799 9186 return err;
20524f02 9187}
9078a3e1 9188
2c47e605
YZ
9189/*
9190 * drop subtree rooted at tree block 'node'.
9191 *
9192 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9193 * only used by relocation code
2c47e605 9194 */
f82d02d9
YZ
9195int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9196 struct btrfs_root *root,
9197 struct extent_buffer *node,
9198 struct extent_buffer *parent)
9199{
9200 struct btrfs_path *path;
2c47e605 9201 struct walk_control *wc;
f82d02d9
YZ
9202 int level;
9203 int parent_level;
9204 int ret = 0;
9205 int wret;
9206
2c47e605
YZ
9207 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9208
f82d02d9 9209 path = btrfs_alloc_path();
db5b493a
TI
9210 if (!path)
9211 return -ENOMEM;
f82d02d9 9212
2c47e605 9213 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9214 if (!wc) {
9215 btrfs_free_path(path);
9216 return -ENOMEM;
9217 }
2c47e605 9218
b9447ef8 9219 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9220 parent_level = btrfs_header_level(parent);
9221 extent_buffer_get(parent);
9222 path->nodes[parent_level] = parent;
9223 path->slots[parent_level] = btrfs_header_nritems(parent);
9224
b9447ef8 9225 btrfs_assert_tree_locked(node);
f82d02d9 9226 level = btrfs_header_level(node);
f82d02d9
YZ
9227 path->nodes[level] = node;
9228 path->slots[level] = 0;
bd681513 9229 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9230
9231 wc->refs[parent_level] = 1;
9232 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9233 wc->level = level;
9234 wc->shared_level = -1;
9235 wc->stage = DROP_REFERENCE;
9236 wc->update_ref = 0;
9237 wc->keep_locks = 1;
66d7e7f0 9238 wc->for_reloc = 1;
1c4850e2 9239 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9240
9241 while (1) {
2c47e605
YZ
9242 wret = walk_down_tree(trans, root, path, wc);
9243 if (wret < 0) {
f82d02d9 9244 ret = wret;
f82d02d9 9245 break;
2c47e605 9246 }
f82d02d9 9247
2c47e605 9248 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9249 if (wret < 0)
9250 ret = wret;
9251 if (wret != 0)
9252 break;
9253 }
9254
2c47e605 9255 kfree(wc);
f82d02d9
YZ
9256 btrfs_free_path(path);
9257 return ret;
9258}
9259
ec44a35c
CM
9260static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9261{
9262 u64 num_devices;
fc67c450 9263 u64 stripped;
e4d8ec0f 9264
fc67c450
ID
9265 /*
9266 * if restripe for this chunk_type is on pick target profile and
9267 * return, otherwise do the usual balance
9268 */
9269 stripped = get_restripe_target(root->fs_info, flags);
9270 if (stripped)
9271 return extended_to_chunk(stripped);
e4d8ec0f 9272
95669976 9273 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9274
fc67c450 9275 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9276 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9277 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9278
ec44a35c
CM
9279 if (num_devices == 1) {
9280 stripped |= BTRFS_BLOCK_GROUP_DUP;
9281 stripped = flags & ~stripped;
9282
9283 /* turn raid0 into single device chunks */
9284 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9285 return stripped;
9286
9287 /* turn mirroring into duplication */
9288 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9289 BTRFS_BLOCK_GROUP_RAID10))
9290 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9291 } else {
9292 /* they already had raid on here, just return */
ec44a35c
CM
9293 if (flags & stripped)
9294 return flags;
9295
9296 stripped |= BTRFS_BLOCK_GROUP_DUP;
9297 stripped = flags & ~stripped;
9298
9299 /* switch duplicated blocks with raid1 */
9300 if (flags & BTRFS_BLOCK_GROUP_DUP)
9301 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9302
e3176ca2 9303 /* this is drive concat, leave it alone */
ec44a35c 9304 }
e3176ca2 9305
ec44a35c
CM
9306 return flags;
9307}
9308
868f401a 9309static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9310{
f0486c68
YZ
9311 struct btrfs_space_info *sinfo = cache->space_info;
9312 u64 num_bytes;
199c36ea 9313 u64 min_allocable_bytes;
f0486c68 9314 int ret = -ENOSPC;
0ef3e66b 9315
199c36ea
MX
9316 /*
9317 * We need some metadata space and system metadata space for
9318 * allocating chunks in some corner cases until we force to set
9319 * it to be readonly.
9320 */
9321 if ((sinfo->flags &
9322 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9323 !force)
ee22184b 9324 min_allocable_bytes = SZ_1M;
199c36ea
MX
9325 else
9326 min_allocable_bytes = 0;
9327
f0486c68
YZ
9328 spin_lock(&sinfo->lock);
9329 spin_lock(&cache->lock);
61cfea9b
W
9330
9331 if (cache->ro) {
868f401a 9332 cache->ro++;
61cfea9b
W
9333 ret = 0;
9334 goto out;
9335 }
9336
f0486c68
YZ
9337 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9338 cache->bytes_super - btrfs_block_group_used(&cache->item);
9339
9340 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9341 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9342 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9343 sinfo->bytes_readonly += num_bytes;
868f401a 9344 cache->ro++;
633c0aad 9345 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9346 ret = 0;
9347 }
61cfea9b 9348out:
f0486c68
YZ
9349 spin_unlock(&cache->lock);
9350 spin_unlock(&sinfo->lock);
9351 return ret;
9352}
7d9eb12c 9353
868f401a 9354int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9355 struct btrfs_block_group_cache *cache)
c286ac48 9356
f0486c68
YZ
9357{
9358 struct btrfs_trans_handle *trans;
9359 u64 alloc_flags;
9360 int ret;
7d9eb12c 9361
1bbc621e 9362again:
ff5714cc 9363 trans = btrfs_join_transaction(root);
79787eaa
JM
9364 if (IS_ERR(trans))
9365 return PTR_ERR(trans);
5d4f98a2 9366
1bbc621e
CM
9367 /*
9368 * we're not allowed to set block groups readonly after the dirty
9369 * block groups cache has started writing. If it already started,
9370 * back off and let this transaction commit
9371 */
9372 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9373 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9374 u64 transid = trans->transid;
9375
9376 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9377 btrfs_end_transaction(trans, root);
9378
9379 ret = btrfs_wait_for_commit(root, transid);
9380 if (ret)
9381 return ret;
9382 goto again;
9383 }
9384
153c35b6
CM
9385 /*
9386 * if we are changing raid levels, try to allocate a corresponding
9387 * block group with the new raid level.
9388 */
9389 alloc_flags = update_block_group_flags(root, cache->flags);
9390 if (alloc_flags != cache->flags) {
9391 ret = do_chunk_alloc(trans, root, alloc_flags,
9392 CHUNK_ALLOC_FORCE);
9393 /*
9394 * ENOSPC is allowed here, we may have enough space
9395 * already allocated at the new raid level to
9396 * carry on
9397 */
9398 if (ret == -ENOSPC)
9399 ret = 0;
9400 if (ret < 0)
9401 goto out;
9402 }
1bbc621e 9403
868f401a 9404 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9405 if (!ret)
9406 goto out;
9407 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9408 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9409 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9410 if (ret < 0)
9411 goto out;
868f401a 9412 ret = inc_block_group_ro(cache, 0);
f0486c68 9413out:
2f081088
SL
9414 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9415 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9416 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9417 check_system_chunk(trans, root, alloc_flags);
a9629596 9418 unlock_chunks(root->fs_info->chunk_root);
2f081088 9419 }
1bbc621e 9420 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9421
f0486c68
YZ
9422 btrfs_end_transaction(trans, root);
9423 return ret;
9424}
5d4f98a2 9425
c87f08ca
CM
9426int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9427 struct btrfs_root *root, u64 type)
9428{
9429 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9430 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9431 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9432}
9433
6d07bcec
MX
9434/*
9435 * helper to account the unused space of all the readonly block group in the
633c0aad 9436 * space_info. takes mirrors into account.
6d07bcec 9437 */
633c0aad 9438u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9439{
9440 struct btrfs_block_group_cache *block_group;
9441 u64 free_bytes = 0;
9442 int factor;
9443
01327610 9444 /* It's df, we don't care if it's racy */
633c0aad
JB
9445 if (list_empty(&sinfo->ro_bgs))
9446 return 0;
9447
9448 spin_lock(&sinfo->lock);
9449 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9450 spin_lock(&block_group->lock);
9451
9452 if (!block_group->ro) {
9453 spin_unlock(&block_group->lock);
9454 continue;
9455 }
9456
9457 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9458 BTRFS_BLOCK_GROUP_RAID10 |
9459 BTRFS_BLOCK_GROUP_DUP))
9460 factor = 2;
9461 else
9462 factor = 1;
9463
9464 free_bytes += (block_group->key.offset -
9465 btrfs_block_group_used(&block_group->item)) *
9466 factor;
9467
9468 spin_unlock(&block_group->lock);
9469 }
6d07bcec
MX
9470 spin_unlock(&sinfo->lock);
9471
9472 return free_bytes;
9473}
9474
868f401a 9475void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9476 struct btrfs_block_group_cache *cache)
5d4f98a2 9477{
f0486c68
YZ
9478 struct btrfs_space_info *sinfo = cache->space_info;
9479 u64 num_bytes;
9480
9481 BUG_ON(!cache->ro);
9482
9483 spin_lock(&sinfo->lock);
9484 spin_lock(&cache->lock);
868f401a
Z
9485 if (!--cache->ro) {
9486 num_bytes = cache->key.offset - cache->reserved -
9487 cache->pinned - cache->bytes_super -
9488 btrfs_block_group_used(&cache->item);
9489 sinfo->bytes_readonly -= num_bytes;
9490 list_del_init(&cache->ro_list);
9491 }
f0486c68
YZ
9492 spin_unlock(&cache->lock);
9493 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9494}
9495
ba1bf481
JB
9496/*
9497 * checks to see if its even possible to relocate this block group.
9498 *
9499 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9500 * ok to go ahead and try.
9501 */
9502int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9503{
ba1bf481
JB
9504 struct btrfs_block_group_cache *block_group;
9505 struct btrfs_space_info *space_info;
9506 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9507 struct btrfs_device *device;
6df9a95e 9508 struct btrfs_trans_handle *trans;
cdcb725c 9509 u64 min_free;
6719db6a
JB
9510 u64 dev_min = 1;
9511 u64 dev_nr = 0;
4a5e98f5 9512 u64 target;
0305bc27 9513 int debug;
cdcb725c 9514 int index;
ba1bf481
JB
9515 int full = 0;
9516 int ret = 0;
1a40e23b 9517
0305bc27
QW
9518 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9519
ba1bf481 9520 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9521
ba1bf481 9522 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9523 if (!block_group) {
9524 if (debug)
9525 btrfs_warn(root->fs_info,
9526 "can't find block group for bytenr %llu",
9527 bytenr);
ba1bf481 9528 return -1;
0305bc27 9529 }
1a40e23b 9530
cdcb725c 9531 min_free = btrfs_block_group_used(&block_group->item);
9532
ba1bf481 9533 /* no bytes used, we're good */
cdcb725c 9534 if (!min_free)
1a40e23b
ZY
9535 goto out;
9536
ba1bf481
JB
9537 space_info = block_group->space_info;
9538 spin_lock(&space_info->lock);
17d217fe 9539
ba1bf481 9540 full = space_info->full;
17d217fe 9541
ba1bf481
JB
9542 /*
9543 * if this is the last block group we have in this space, we can't
7ce618db
CM
9544 * relocate it unless we're able to allocate a new chunk below.
9545 *
9546 * Otherwise, we need to make sure we have room in the space to handle
9547 * all of the extents from this block group. If we can, we're good
ba1bf481 9548 */
7ce618db 9549 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9550 (space_info->bytes_used + space_info->bytes_reserved +
9551 space_info->bytes_pinned + space_info->bytes_readonly +
9552 min_free < space_info->total_bytes)) {
ba1bf481
JB
9553 spin_unlock(&space_info->lock);
9554 goto out;
17d217fe 9555 }
ba1bf481 9556 spin_unlock(&space_info->lock);
ea8c2819 9557
ba1bf481
JB
9558 /*
9559 * ok we don't have enough space, but maybe we have free space on our
9560 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9561 * alloc devices and guess if we have enough space. if this block
9562 * group is going to be restriped, run checks against the target
9563 * profile instead of the current one.
ba1bf481
JB
9564 */
9565 ret = -1;
ea8c2819 9566
cdcb725c 9567 /*
9568 * index:
9569 * 0: raid10
9570 * 1: raid1
9571 * 2: dup
9572 * 3: raid0
9573 * 4: single
9574 */
4a5e98f5
ID
9575 target = get_restripe_target(root->fs_info, block_group->flags);
9576 if (target) {
31e50229 9577 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9578 } else {
9579 /*
9580 * this is just a balance, so if we were marked as full
9581 * we know there is no space for a new chunk
9582 */
0305bc27
QW
9583 if (full) {
9584 if (debug)
9585 btrfs_warn(root->fs_info,
9586 "no space to alloc new chunk for block group %llu",
9587 block_group->key.objectid);
4a5e98f5 9588 goto out;
0305bc27 9589 }
4a5e98f5
ID
9590
9591 index = get_block_group_index(block_group);
9592 }
9593
e6ec716f 9594 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9595 dev_min = 4;
6719db6a
JB
9596 /* Divide by 2 */
9597 min_free >>= 1;
e6ec716f 9598 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9599 dev_min = 2;
e6ec716f 9600 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9601 /* Multiply by 2 */
9602 min_free <<= 1;
e6ec716f 9603 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9604 dev_min = fs_devices->rw_devices;
47c5713f 9605 min_free = div64_u64(min_free, dev_min);
cdcb725c 9606 }
9607
6df9a95e
JB
9608 /* We need to do this so that we can look at pending chunks */
9609 trans = btrfs_join_transaction(root);
9610 if (IS_ERR(trans)) {
9611 ret = PTR_ERR(trans);
9612 goto out;
9613 }
9614
ba1bf481
JB
9615 mutex_lock(&root->fs_info->chunk_mutex);
9616 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9617 u64 dev_offset;
56bec294 9618
ba1bf481
JB
9619 /*
9620 * check to make sure we can actually find a chunk with enough
9621 * space to fit our block group in.
9622 */
63a212ab
SB
9623 if (device->total_bytes > device->bytes_used + min_free &&
9624 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9625 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9626 &dev_offset, NULL);
ba1bf481 9627 if (!ret)
cdcb725c 9628 dev_nr++;
9629
9630 if (dev_nr >= dev_min)
73e48b27 9631 break;
cdcb725c 9632
ba1bf481 9633 ret = -1;
725c8463 9634 }
edbd8d4e 9635 }
0305bc27
QW
9636 if (debug && ret == -1)
9637 btrfs_warn(root->fs_info,
9638 "no space to allocate a new chunk for block group %llu",
9639 block_group->key.objectid);
ba1bf481 9640 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9641 btrfs_end_transaction(trans, root);
edbd8d4e 9642out:
ba1bf481 9643 btrfs_put_block_group(block_group);
edbd8d4e
CM
9644 return ret;
9645}
9646
b2950863
CH
9647static int find_first_block_group(struct btrfs_root *root,
9648 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9649{
925baedd 9650 int ret = 0;
0b86a832
CM
9651 struct btrfs_key found_key;
9652 struct extent_buffer *leaf;
9653 int slot;
edbd8d4e 9654
0b86a832
CM
9655 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9656 if (ret < 0)
925baedd
CM
9657 goto out;
9658
d397712b 9659 while (1) {
0b86a832 9660 slot = path->slots[0];
edbd8d4e 9661 leaf = path->nodes[0];
0b86a832
CM
9662 if (slot >= btrfs_header_nritems(leaf)) {
9663 ret = btrfs_next_leaf(root, path);
9664 if (ret == 0)
9665 continue;
9666 if (ret < 0)
925baedd 9667 goto out;
0b86a832 9668 break;
edbd8d4e 9669 }
0b86a832 9670 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9671
0b86a832 9672 if (found_key.objectid >= key->objectid &&
925baedd
CM
9673 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9674 ret = 0;
9675 goto out;
9676 }
0b86a832 9677 path->slots[0]++;
edbd8d4e 9678 }
925baedd 9679out:
0b86a832 9680 return ret;
edbd8d4e
CM
9681}
9682
0af3d00b
JB
9683void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9684{
9685 struct btrfs_block_group_cache *block_group;
9686 u64 last = 0;
9687
9688 while (1) {
9689 struct inode *inode;
9690
9691 block_group = btrfs_lookup_first_block_group(info, last);
9692 while (block_group) {
9693 spin_lock(&block_group->lock);
9694 if (block_group->iref)
9695 break;
9696 spin_unlock(&block_group->lock);
9697 block_group = next_block_group(info->tree_root,
9698 block_group);
9699 }
9700 if (!block_group) {
9701 if (last == 0)
9702 break;
9703 last = 0;
9704 continue;
9705 }
9706
9707 inode = block_group->inode;
9708 block_group->iref = 0;
9709 block_group->inode = NULL;
9710 spin_unlock(&block_group->lock);
9711 iput(inode);
9712 last = block_group->key.objectid + block_group->key.offset;
9713 btrfs_put_block_group(block_group);
9714 }
9715}
9716
1a40e23b
ZY
9717int btrfs_free_block_groups(struct btrfs_fs_info *info)
9718{
9719 struct btrfs_block_group_cache *block_group;
4184ea7f 9720 struct btrfs_space_info *space_info;
11833d66 9721 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9722 struct rb_node *n;
9723
9e351cc8 9724 down_write(&info->commit_root_sem);
11833d66
YZ
9725 while (!list_empty(&info->caching_block_groups)) {
9726 caching_ctl = list_entry(info->caching_block_groups.next,
9727 struct btrfs_caching_control, list);
9728 list_del(&caching_ctl->list);
9729 put_caching_control(caching_ctl);
9730 }
9e351cc8 9731 up_write(&info->commit_root_sem);
11833d66 9732
47ab2a6c
JB
9733 spin_lock(&info->unused_bgs_lock);
9734 while (!list_empty(&info->unused_bgs)) {
9735 block_group = list_first_entry(&info->unused_bgs,
9736 struct btrfs_block_group_cache,
9737 bg_list);
9738 list_del_init(&block_group->bg_list);
9739 btrfs_put_block_group(block_group);
9740 }
9741 spin_unlock(&info->unused_bgs_lock);
9742
1a40e23b
ZY
9743 spin_lock(&info->block_group_cache_lock);
9744 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9745 block_group = rb_entry(n, struct btrfs_block_group_cache,
9746 cache_node);
1a40e23b
ZY
9747 rb_erase(&block_group->cache_node,
9748 &info->block_group_cache_tree);
01eacb27 9749 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9750 spin_unlock(&info->block_group_cache_lock);
9751
80eb234a 9752 down_write(&block_group->space_info->groups_sem);
1a40e23b 9753 list_del(&block_group->list);
80eb234a 9754 up_write(&block_group->space_info->groups_sem);
d2fb3437 9755
817d52f8 9756 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9757 wait_block_group_cache_done(block_group);
817d52f8 9758
3c14874a
JB
9759 /*
9760 * We haven't cached this block group, which means we could
9761 * possibly have excluded extents on this block group.
9762 */
36cce922
JB
9763 if (block_group->cached == BTRFS_CACHE_NO ||
9764 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9765 free_excluded_extents(info->extent_root, block_group);
9766
817d52f8 9767 btrfs_remove_free_space_cache(block_group);
11dfe35a 9768 btrfs_put_block_group(block_group);
d899e052
YZ
9769
9770 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9771 }
9772 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9773
9774 /* now that all the block groups are freed, go through and
9775 * free all the space_info structs. This is only called during
9776 * the final stages of unmount, and so we know nobody is
9777 * using them. We call synchronize_rcu() once before we start,
9778 * just to be on the safe side.
9779 */
9780 synchronize_rcu();
9781
8929ecfa
YZ
9782 release_global_block_rsv(info);
9783
67871254 9784 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9785 int i;
9786
4184ea7f
CM
9787 space_info = list_entry(info->space_info.next,
9788 struct btrfs_space_info,
9789 list);
b069e0c3 9790 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9791 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9792 space_info->bytes_reserved > 0 ||
fae7f21c 9793 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9794 dump_space_info(space_info, 0, 0);
9795 }
f0486c68 9796 }
4184ea7f 9797 list_del(&space_info->list);
6ab0a202
JM
9798 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9799 struct kobject *kobj;
c1895442
JM
9800 kobj = space_info->block_group_kobjs[i];
9801 space_info->block_group_kobjs[i] = NULL;
9802 if (kobj) {
6ab0a202
JM
9803 kobject_del(kobj);
9804 kobject_put(kobj);
9805 }
9806 }
9807 kobject_del(&space_info->kobj);
9808 kobject_put(&space_info->kobj);
4184ea7f 9809 }
1a40e23b
ZY
9810 return 0;
9811}
9812
b742bb82
YZ
9813static void __link_block_group(struct btrfs_space_info *space_info,
9814 struct btrfs_block_group_cache *cache)
9815{
9816 int index = get_block_group_index(cache);
ed55b6ac 9817 bool first = false;
b742bb82
YZ
9818
9819 down_write(&space_info->groups_sem);
ed55b6ac
JM
9820 if (list_empty(&space_info->block_groups[index]))
9821 first = true;
9822 list_add_tail(&cache->list, &space_info->block_groups[index]);
9823 up_write(&space_info->groups_sem);
9824
9825 if (first) {
c1895442 9826 struct raid_kobject *rkobj;
6ab0a202
JM
9827 int ret;
9828
c1895442
JM
9829 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9830 if (!rkobj)
9831 goto out_err;
9832 rkobj->raid_type = index;
9833 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9834 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9835 "%s", get_raid_name(index));
6ab0a202 9836 if (ret) {
c1895442
JM
9837 kobject_put(&rkobj->kobj);
9838 goto out_err;
6ab0a202 9839 }
c1895442 9840 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9841 }
c1895442
JM
9842
9843 return;
9844out_err:
9845 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9846}
9847
920e4a58
MX
9848static struct btrfs_block_group_cache *
9849btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9850{
9851 struct btrfs_block_group_cache *cache;
9852
9853 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9854 if (!cache)
9855 return NULL;
9856
9857 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9858 GFP_NOFS);
9859 if (!cache->free_space_ctl) {
9860 kfree(cache);
9861 return NULL;
9862 }
9863
9864 cache->key.objectid = start;
9865 cache->key.offset = size;
9866 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9867
9868 cache->sectorsize = root->sectorsize;
9869 cache->fs_info = root->fs_info;
9870 cache->full_stripe_len = btrfs_full_stripe_len(root,
9871 &root->fs_info->mapping_tree,
9872 start);
1e144fb8
OS
9873 set_free_space_tree_thresholds(cache);
9874
920e4a58
MX
9875 atomic_set(&cache->count, 1);
9876 spin_lock_init(&cache->lock);
e570fd27 9877 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9878 INIT_LIST_HEAD(&cache->list);
9879 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9880 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9881 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9882 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9883 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9884 btrfs_init_free_space_ctl(cache);
04216820 9885 atomic_set(&cache->trimming, 0);
a5ed9182 9886 mutex_init(&cache->free_space_lock);
920e4a58
MX
9887
9888 return cache;
9889}
9890
9078a3e1
CM
9891int btrfs_read_block_groups(struct btrfs_root *root)
9892{
9893 struct btrfs_path *path;
9894 int ret;
9078a3e1 9895 struct btrfs_block_group_cache *cache;
be744175 9896 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9897 struct btrfs_space_info *space_info;
9078a3e1
CM
9898 struct btrfs_key key;
9899 struct btrfs_key found_key;
5f39d397 9900 struct extent_buffer *leaf;
0af3d00b
JB
9901 int need_clear = 0;
9902 u64 cache_gen;
96b5179d 9903
be744175 9904 root = info->extent_root;
9078a3e1 9905 key.objectid = 0;
0b86a832 9906 key.offset = 0;
962a298f 9907 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9908 path = btrfs_alloc_path();
9909 if (!path)
9910 return -ENOMEM;
e4058b54 9911 path->reada = READA_FORWARD;
9078a3e1 9912
6c41761f 9913 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9914 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9915 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9916 need_clear = 1;
88c2ba3b
JB
9917 if (btrfs_test_opt(root, CLEAR_CACHE))
9918 need_clear = 1;
0af3d00b 9919
d397712b 9920 while (1) {
0b86a832 9921 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9922 if (ret > 0)
9923 break;
0b86a832
CM
9924 if (ret != 0)
9925 goto error;
920e4a58 9926
5f39d397
CM
9927 leaf = path->nodes[0];
9928 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9929
9930 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9931 found_key.offset);
9078a3e1 9932 if (!cache) {
0b86a832 9933 ret = -ENOMEM;
f0486c68 9934 goto error;
9078a3e1 9935 }
96303081 9936
cf7c1ef6
LB
9937 if (need_clear) {
9938 /*
9939 * When we mount with old space cache, we need to
9940 * set BTRFS_DC_CLEAR and set dirty flag.
9941 *
9942 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9943 * truncate the old free space cache inode and
9944 * setup a new one.
9945 * b) Setting 'dirty flag' makes sure that we flush
9946 * the new space cache info onto disk.
9947 */
cf7c1ef6 9948 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9949 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9950 }
0af3d00b 9951
5f39d397
CM
9952 read_extent_buffer(leaf, &cache->item,
9953 btrfs_item_ptr_offset(leaf, path->slots[0]),
9954 sizeof(cache->item));
920e4a58 9955 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9956
9078a3e1 9957 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9958 btrfs_release_path(path);
34d52cb6 9959
3c14874a
JB
9960 /*
9961 * We need to exclude the super stripes now so that the space
9962 * info has super bytes accounted for, otherwise we'll think
9963 * we have more space than we actually do.
9964 */
835d974f
JB
9965 ret = exclude_super_stripes(root, cache);
9966 if (ret) {
9967 /*
9968 * We may have excluded something, so call this just in
9969 * case.
9970 */
9971 free_excluded_extents(root, cache);
920e4a58 9972 btrfs_put_block_group(cache);
835d974f
JB
9973 goto error;
9974 }
3c14874a 9975
817d52f8
JB
9976 /*
9977 * check for two cases, either we are full, and therefore
9978 * don't need to bother with the caching work since we won't
9979 * find any space, or we are empty, and we can just add all
9980 * the space in and be done with it. This saves us _alot_ of
9981 * time, particularly in the full case.
9982 */
9983 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9984 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9985 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9986 free_excluded_extents(root, cache);
817d52f8 9987 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9988 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9989 cache->cached = BTRFS_CACHE_FINISHED;
9990 add_new_free_space(cache, root->fs_info,
9991 found_key.objectid,
9992 found_key.objectid +
9993 found_key.offset);
11833d66 9994 free_excluded_extents(root, cache);
817d52f8 9995 }
96b5179d 9996
8c579fe7
JB
9997 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9998 if (ret) {
9999 btrfs_remove_free_space_cache(cache);
10000 btrfs_put_block_group(cache);
10001 goto error;
10002 }
10003
6324fbf3
CM
10004 ret = update_space_info(info, cache->flags, found_key.offset,
10005 btrfs_block_group_used(&cache->item),
e40edf2d 10006 cache->bytes_super, &space_info);
8c579fe7
JB
10007 if (ret) {
10008 btrfs_remove_free_space_cache(cache);
10009 spin_lock(&info->block_group_cache_lock);
10010 rb_erase(&cache->cache_node,
10011 &info->block_group_cache_tree);
01eacb27 10012 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10013 spin_unlock(&info->block_group_cache_lock);
10014 btrfs_put_block_group(cache);
10015 goto error;
10016 }
10017
6324fbf3 10018 cache->space_info = space_info;
1b2da372 10019
b742bb82 10020 __link_block_group(space_info, cache);
0f9dd46c 10021
75ccf47d 10022 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10023 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10024 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10025 } else if (btrfs_block_group_used(&cache->item) == 0) {
10026 spin_lock(&info->unused_bgs_lock);
10027 /* Should always be true but just in case. */
10028 if (list_empty(&cache->bg_list)) {
10029 btrfs_get_block_group(cache);
10030 list_add_tail(&cache->bg_list,
10031 &info->unused_bgs);
10032 }
10033 spin_unlock(&info->unused_bgs_lock);
10034 }
9078a3e1 10035 }
b742bb82
YZ
10036
10037 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10038 if (!(get_alloc_profile(root, space_info->flags) &
10039 (BTRFS_BLOCK_GROUP_RAID10 |
10040 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10041 BTRFS_BLOCK_GROUP_RAID5 |
10042 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10043 BTRFS_BLOCK_GROUP_DUP)))
10044 continue;
10045 /*
10046 * avoid allocating from un-mirrored block group if there are
10047 * mirrored block groups.
10048 */
1095cc0d 10049 list_for_each_entry(cache,
10050 &space_info->block_groups[BTRFS_RAID_RAID0],
10051 list)
868f401a 10052 inc_block_group_ro(cache, 1);
1095cc0d 10053 list_for_each_entry(cache,
10054 &space_info->block_groups[BTRFS_RAID_SINGLE],
10055 list)
868f401a 10056 inc_block_group_ro(cache, 1);
9078a3e1 10057 }
f0486c68
YZ
10058
10059 init_global_block_rsv(info);
0b86a832
CM
10060 ret = 0;
10061error:
9078a3e1 10062 btrfs_free_path(path);
0b86a832 10063 return ret;
9078a3e1 10064}
6324fbf3 10065
ea658bad
JB
10066void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10067 struct btrfs_root *root)
10068{
10069 struct btrfs_block_group_cache *block_group, *tmp;
10070 struct btrfs_root *extent_root = root->fs_info->extent_root;
10071 struct btrfs_block_group_item item;
10072 struct btrfs_key key;
10073 int ret = 0;
d9a0540a 10074 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10075
d9a0540a 10076 trans->can_flush_pending_bgs = false;
47ab2a6c 10077 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10078 if (ret)
c92f6be3 10079 goto next;
ea658bad
JB
10080
10081 spin_lock(&block_group->lock);
10082 memcpy(&item, &block_group->item, sizeof(item));
10083 memcpy(&key, &block_group->key, sizeof(key));
10084 spin_unlock(&block_group->lock);
10085
10086 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10087 sizeof(item));
10088 if (ret)
10089 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
10090 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10091 key.objectid, key.offset);
10092 if (ret)
10093 btrfs_abort_transaction(trans, extent_root, ret);
1e144fb8
OS
10094 add_block_group_free_space(trans, root->fs_info, block_group);
10095 /* already aborted the transaction if it failed. */
c92f6be3
FM
10096next:
10097 list_del_init(&block_group->bg_list);
ea658bad 10098 }
d9a0540a 10099 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10100}
10101
6324fbf3
CM
10102int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10103 struct btrfs_root *root, u64 bytes_used,
e17cade2 10104 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10105 u64 size)
10106{
10107 int ret;
6324fbf3
CM
10108 struct btrfs_root *extent_root;
10109 struct btrfs_block_group_cache *cache;
6324fbf3 10110 extent_root = root->fs_info->extent_root;
6324fbf3 10111
995946dd 10112 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10113
920e4a58 10114 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10115 if (!cache)
10116 return -ENOMEM;
34d52cb6 10117
6324fbf3 10118 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10119 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10120 btrfs_set_block_group_flags(&cache->item, type);
10121
920e4a58 10122 cache->flags = type;
11833d66 10123 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10124 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10125 cache->needs_free_space = 1;
835d974f
JB
10126 ret = exclude_super_stripes(root, cache);
10127 if (ret) {
10128 /*
10129 * We may have excluded something, so call this just in
10130 * case.
10131 */
10132 free_excluded_extents(root, cache);
920e4a58 10133 btrfs_put_block_group(cache);
835d974f
JB
10134 return ret;
10135 }
96303081 10136
817d52f8
JB
10137 add_new_free_space(cache, root->fs_info, chunk_offset,
10138 chunk_offset + size);
10139
11833d66
YZ
10140 free_excluded_extents(root, cache);
10141
d0bd4560
JB
10142#ifdef CONFIG_BTRFS_DEBUG
10143 if (btrfs_should_fragment_free_space(root, cache)) {
10144 u64 new_bytes_used = size - bytes_used;
10145
10146 bytes_used += new_bytes_used >> 1;
10147 fragment_free_space(root, cache);
10148 }
10149#endif
2e6e5183
FM
10150 /*
10151 * Call to ensure the corresponding space_info object is created and
10152 * assigned to our block group, but don't update its counters just yet.
10153 * We want our bg to be added to the rbtree with its ->space_info set.
10154 */
e40edf2d 10155 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10156 &cache->space_info);
10157 if (ret) {
10158 btrfs_remove_free_space_cache(cache);
10159 btrfs_put_block_group(cache);
10160 return ret;
10161 }
10162
8c579fe7
JB
10163 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10164 if (ret) {
10165 btrfs_remove_free_space_cache(cache);
10166 btrfs_put_block_group(cache);
10167 return ret;
10168 }
10169
2e6e5183
FM
10170 /*
10171 * Now that our block group has its ->space_info set and is inserted in
10172 * the rbtree, update the space info's counters.
10173 */
6324fbf3 10174 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
e40edf2d 10175 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10176 if (ret) {
10177 btrfs_remove_free_space_cache(cache);
10178 spin_lock(&root->fs_info->block_group_cache_lock);
10179 rb_erase(&cache->cache_node,
10180 &root->fs_info->block_group_cache_tree);
01eacb27 10181 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10182 spin_unlock(&root->fs_info->block_group_cache_lock);
10183 btrfs_put_block_group(cache);
10184 return ret;
10185 }
c7c144db 10186 update_global_block_rsv(root->fs_info);
1b2da372 10187
b742bb82 10188 __link_block_group(cache->space_info, cache);
6324fbf3 10189
47ab2a6c 10190 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10191
d18a2c44 10192 set_avail_alloc_bits(extent_root->fs_info, type);
6324fbf3
CM
10193 return 0;
10194}
1a40e23b 10195
10ea00f5
ID
10196static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10197{
899c81ea
ID
10198 u64 extra_flags = chunk_to_extended(flags) &
10199 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10200
de98ced9 10201 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10202 if (flags & BTRFS_BLOCK_GROUP_DATA)
10203 fs_info->avail_data_alloc_bits &= ~extra_flags;
10204 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10205 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10206 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10207 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10208 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10209}
10210
1a40e23b 10211int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10212 struct btrfs_root *root, u64 group_start,
10213 struct extent_map *em)
1a40e23b
ZY
10214{
10215 struct btrfs_path *path;
10216 struct btrfs_block_group_cache *block_group;
44fb5511 10217 struct btrfs_free_cluster *cluster;
0af3d00b 10218 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10219 struct btrfs_key key;
0af3d00b 10220 struct inode *inode;
c1895442 10221 struct kobject *kobj = NULL;
1a40e23b 10222 int ret;
10ea00f5 10223 int index;
89a55897 10224 int factor;
4f69cb98 10225 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10226 bool remove_em;
1a40e23b 10227
1a40e23b
ZY
10228 root = root->fs_info->extent_root;
10229
10230 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10231 BUG_ON(!block_group);
c146afad 10232 BUG_ON(!block_group->ro);
1a40e23b 10233
9f7c43c9 10234 /*
10235 * Free the reserved super bytes from this block group before
10236 * remove it.
10237 */
10238 free_excluded_extents(root, block_group);
10239
1a40e23b 10240 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10241 index = get_block_group_index(block_group);
89a55897
JB
10242 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10243 BTRFS_BLOCK_GROUP_RAID1 |
10244 BTRFS_BLOCK_GROUP_RAID10))
10245 factor = 2;
10246 else
10247 factor = 1;
1a40e23b 10248
44fb5511
CM
10249 /* make sure this block group isn't part of an allocation cluster */
10250 cluster = &root->fs_info->data_alloc_cluster;
10251 spin_lock(&cluster->refill_lock);
10252 btrfs_return_cluster_to_free_space(block_group, cluster);
10253 spin_unlock(&cluster->refill_lock);
10254
10255 /*
10256 * make sure this block group isn't part of a metadata
10257 * allocation cluster
10258 */
10259 cluster = &root->fs_info->meta_alloc_cluster;
10260 spin_lock(&cluster->refill_lock);
10261 btrfs_return_cluster_to_free_space(block_group, cluster);
10262 spin_unlock(&cluster->refill_lock);
10263
1a40e23b 10264 path = btrfs_alloc_path();
d8926bb3
MF
10265 if (!path) {
10266 ret = -ENOMEM;
10267 goto out;
10268 }
1a40e23b 10269
1bbc621e
CM
10270 /*
10271 * get the inode first so any iput calls done for the io_list
10272 * aren't the final iput (no unlinks allowed now)
10273 */
10b2f34d 10274 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10275
10276 mutex_lock(&trans->transaction->cache_write_mutex);
10277 /*
10278 * make sure our free spache cache IO is done before remove the
10279 * free space inode
10280 */
10281 spin_lock(&trans->transaction->dirty_bgs_lock);
10282 if (!list_empty(&block_group->io_list)) {
10283 list_del_init(&block_group->io_list);
10284
10285 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10286
10287 spin_unlock(&trans->transaction->dirty_bgs_lock);
10288 btrfs_wait_cache_io(root, trans, block_group,
10289 &block_group->io_ctl, path,
10290 block_group->key.objectid);
10291 btrfs_put_block_group(block_group);
10292 spin_lock(&trans->transaction->dirty_bgs_lock);
10293 }
10294
10295 if (!list_empty(&block_group->dirty_list)) {
10296 list_del_init(&block_group->dirty_list);
10297 btrfs_put_block_group(block_group);
10298 }
10299 spin_unlock(&trans->transaction->dirty_bgs_lock);
10300 mutex_unlock(&trans->transaction->cache_write_mutex);
10301
0af3d00b 10302 if (!IS_ERR(inode)) {
b532402e 10303 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10304 if (ret) {
10305 btrfs_add_delayed_iput(inode);
10306 goto out;
10307 }
0af3d00b
JB
10308 clear_nlink(inode);
10309 /* One for the block groups ref */
10310 spin_lock(&block_group->lock);
10311 if (block_group->iref) {
10312 block_group->iref = 0;
10313 block_group->inode = NULL;
10314 spin_unlock(&block_group->lock);
10315 iput(inode);
10316 } else {
10317 spin_unlock(&block_group->lock);
10318 }
10319 /* One for our lookup ref */
455757c3 10320 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10321 }
10322
10323 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10324 key.offset = block_group->key.objectid;
10325 key.type = 0;
10326
10327 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10328 if (ret < 0)
10329 goto out;
10330 if (ret > 0)
b3b4aa74 10331 btrfs_release_path(path);
0af3d00b
JB
10332 if (ret == 0) {
10333 ret = btrfs_del_item(trans, tree_root, path);
10334 if (ret)
10335 goto out;
b3b4aa74 10336 btrfs_release_path(path);
0af3d00b
JB
10337 }
10338
3dfdb934 10339 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10340 rb_erase(&block_group->cache_node,
10341 &root->fs_info->block_group_cache_tree);
292cbd51 10342 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10343
10344 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10345 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10346 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10347
80eb234a 10348 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10349 /*
10350 * we must use list_del_init so people can check to see if they
10351 * are still on the list after taking the semaphore
10352 */
10353 list_del_init(&block_group->list);
6ab0a202 10354 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10355 kobj = block_group->space_info->block_group_kobjs[index];
10356 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10357 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10358 }
80eb234a 10359 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10360 if (kobj) {
10361 kobject_del(kobj);
10362 kobject_put(kobj);
10363 }
1a40e23b 10364
4f69cb98
FM
10365 if (block_group->has_caching_ctl)
10366 caching_ctl = get_caching_control(block_group);
817d52f8 10367 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10368 wait_block_group_cache_done(block_group);
4f69cb98
FM
10369 if (block_group->has_caching_ctl) {
10370 down_write(&root->fs_info->commit_root_sem);
10371 if (!caching_ctl) {
10372 struct btrfs_caching_control *ctl;
10373
10374 list_for_each_entry(ctl,
10375 &root->fs_info->caching_block_groups, list)
10376 if (ctl->block_group == block_group) {
10377 caching_ctl = ctl;
10378 atomic_inc(&caching_ctl->count);
10379 break;
10380 }
10381 }
10382 if (caching_ctl)
10383 list_del_init(&caching_ctl->list);
10384 up_write(&root->fs_info->commit_root_sem);
10385 if (caching_ctl) {
10386 /* Once for the caching bgs list and once for us. */
10387 put_caching_control(caching_ctl);
10388 put_caching_control(caching_ctl);
10389 }
10390 }
817d52f8 10391
ce93ec54
JB
10392 spin_lock(&trans->transaction->dirty_bgs_lock);
10393 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10394 WARN_ON(1);
10395 }
10396 if (!list_empty(&block_group->io_list)) {
10397 WARN_ON(1);
ce93ec54
JB
10398 }
10399 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10400 btrfs_remove_free_space_cache(block_group);
10401
c146afad 10402 spin_lock(&block_group->space_info->lock);
75c68e9f 10403 list_del_init(&block_group->ro_list);
18d018ad
ZL
10404
10405 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10406 WARN_ON(block_group->space_info->total_bytes
10407 < block_group->key.offset);
10408 WARN_ON(block_group->space_info->bytes_readonly
10409 < block_group->key.offset);
10410 WARN_ON(block_group->space_info->disk_total
10411 < block_group->key.offset * factor);
10412 }
c146afad
YZ
10413 block_group->space_info->total_bytes -= block_group->key.offset;
10414 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10415 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10416
c146afad 10417 spin_unlock(&block_group->space_info->lock);
283bb197 10418
0af3d00b
JB
10419 memcpy(&key, &block_group->key, sizeof(key));
10420
04216820 10421 lock_chunks(root);
495e64f4
FM
10422 if (!list_empty(&em->list)) {
10423 /* We're in the transaction->pending_chunks list. */
10424 free_extent_map(em);
10425 }
04216820
FM
10426 spin_lock(&block_group->lock);
10427 block_group->removed = 1;
10428 /*
10429 * At this point trimming can't start on this block group, because we
10430 * removed the block group from the tree fs_info->block_group_cache_tree
10431 * so no one can't find it anymore and even if someone already got this
10432 * block group before we removed it from the rbtree, they have already
10433 * incremented block_group->trimming - if they didn't, they won't find
10434 * any free space entries because we already removed them all when we
10435 * called btrfs_remove_free_space_cache().
10436 *
10437 * And we must not remove the extent map from the fs_info->mapping_tree
10438 * to prevent the same logical address range and physical device space
10439 * ranges from being reused for a new block group. This is because our
10440 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10441 * completely transactionless, so while it is trimming a range the
10442 * currently running transaction might finish and a new one start,
10443 * allowing for new block groups to be created that can reuse the same
10444 * physical device locations unless we take this special care.
e33e17ee
JM
10445 *
10446 * There may also be an implicit trim operation if the file system
10447 * is mounted with -odiscard. The same protections must remain
10448 * in place until the extents have been discarded completely when
10449 * the transaction commit has completed.
04216820
FM
10450 */
10451 remove_em = (atomic_read(&block_group->trimming) == 0);
10452 /*
10453 * Make sure a trimmer task always sees the em in the pinned_chunks list
10454 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10455 * before checking block_group->removed).
10456 */
10457 if (!remove_em) {
10458 /*
10459 * Our em might be in trans->transaction->pending_chunks which
10460 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10461 * and so is the fs_info->pinned_chunks list.
10462 *
10463 * So at this point we must be holding the chunk_mutex to avoid
10464 * any races with chunk allocation (more specifically at
10465 * volumes.c:contains_pending_extent()), to ensure it always
10466 * sees the em, either in the pending_chunks list or in the
10467 * pinned_chunks list.
10468 */
10469 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10470 }
10471 spin_unlock(&block_group->lock);
04216820
FM
10472
10473 if (remove_em) {
10474 struct extent_map_tree *em_tree;
10475
10476 em_tree = &root->fs_info->mapping_tree.map_tree;
10477 write_lock(&em_tree->lock);
8dbcd10f
FM
10478 /*
10479 * The em might be in the pending_chunks list, so make sure the
10480 * chunk mutex is locked, since remove_extent_mapping() will
10481 * delete us from that list.
10482 */
04216820
FM
10483 remove_extent_mapping(em_tree, em);
10484 write_unlock(&em_tree->lock);
10485 /* once for the tree */
10486 free_extent_map(em);
10487 }
10488
8dbcd10f
FM
10489 unlock_chunks(root);
10490
1e144fb8
OS
10491 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10492 if (ret)
10493 goto out;
10494
fa9c0d79
CM
10495 btrfs_put_block_group(block_group);
10496 btrfs_put_block_group(block_group);
1a40e23b
ZY
10497
10498 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10499 if (ret > 0)
10500 ret = -EIO;
10501 if (ret < 0)
10502 goto out;
10503
10504 ret = btrfs_del_item(trans, root, path);
10505out:
10506 btrfs_free_path(path);
10507 return ret;
10508}
acce952b 10509
8eab77ff 10510struct btrfs_trans_handle *
7fd01182
FM
10511btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10512 const u64 chunk_offset)
8eab77ff 10513{
7fd01182
FM
10514 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10515 struct extent_map *em;
10516 struct map_lookup *map;
10517 unsigned int num_items;
10518
10519 read_lock(&em_tree->lock);
10520 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10521 read_unlock(&em_tree->lock);
10522 ASSERT(em && em->start == chunk_offset);
10523
8eab77ff 10524 /*
7fd01182
FM
10525 * We need to reserve 3 + N units from the metadata space info in order
10526 * to remove a block group (done at btrfs_remove_chunk() and at
10527 * btrfs_remove_block_group()), which are used for:
10528 *
8eab77ff
FM
10529 * 1 unit for adding the free space inode's orphan (located in the tree
10530 * of tree roots).
7fd01182
FM
10531 * 1 unit for deleting the block group item (located in the extent
10532 * tree).
10533 * 1 unit for deleting the free space item (located in tree of tree
10534 * roots).
10535 * N units for deleting N device extent items corresponding to each
10536 * stripe (located in the device tree).
10537 *
10538 * In order to remove a block group we also need to reserve units in the
10539 * system space info in order to update the chunk tree (update one or
10540 * more device items and remove one chunk item), but this is done at
10541 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10542 */
95617d69 10543 map = em->map_lookup;
7fd01182
FM
10544 num_items = 3 + map->num_stripes;
10545 free_extent_map(em);
10546
8eab77ff 10547 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10548 num_items, 1);
8eab77ff
FM
10549}
10550
47ab2a6c
JB
10551/*
10552 * Process the unused_bgs list and remove any that don't have any allocated
10553 * space inside of them.
10554 */
10555void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10556{
10557 struct btrfs_block_group_cache *block_group;
10558 struct btrfs_space_info *space_info;
10559 struct btrfs_root *root = fs_info->extent_root;
10560 struct btrfs_trans_handle *trans;
10561 int ret = 0;
10562
10563 if (!fs_info->open)
10564 return;
10565
10566 spin_lock(&fs_info->unused_bgs_lock);
10567 while (!list_empty(&fs_info->unused_bgs)) {
10568 u64 start, end;
e33e17ee 10569 int trimming;
47ab2a6c
JB
10570
10571 block_group = list_first_entry(&fs_info->unused_bgs,
10572 struct btrfs_block_group_cache,
10573 bg_list);
47ab2a6c 10574 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10575
10576 space_info = block_group->space_info;
10577
47ab2a6c
JB
10578 if (ret || btrfs_mixed_space_info(space_info)) {
10579 btrfs_put_block_group(block_group);
10580 continue;
10581 }
10582 spin_unlock(&fs_info->unused_bgs_lock);
10583
d5f2e33b 10584 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10585
47ab2a6c
JB
10586 /* Don't want to race with allocators so take the groups_sem */
10587 down_write(&space_info->groups_sem);
10588 spin_lock(&block_group->lock);
10589 if (block_group->reserved ||
10590 btrfs_block_group_used(&block_group->item) ||
aefbe9a6
ZL
10591 block_group->ro ||
10592 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10593 /*
10594 * We want to bail if we made new allocations or have
10595 * outstanding allocations in this block group. We do
10596 * the ro check in case balance is currently acting on
10597 * this block group.
10598 */
10599 spin_unlock(&block_group->lock);
10600 up_write(&space_info->groups_sem);
10601 goto next;
10602 }
10603 spin_unlock(&block_group->lock);
10604
10605 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10606 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10607 up_write(&space_info->groups_sem);
10608 if (ret < 0) {
10609 ret = 0;
10610 goto next;
10611 }
10612
10613 /*
10614 * Want to do this before we do anything else so we can recover
10615 * properly if we fail to join the transaction.
10616 */
7fd01182
FM
10617 trans = btrfs_start_trans_remove_block_group(fs_info,
10618 block_group->key.objectid);
47ab2a6c 10619 if (IS_ERR(trans)) {
868f401a 10620 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10621 ret = PTR_ERR(trans);
10622 goto next;
10623 }
10624
10625 /*
10626 * We could have pending pinned extents for this block group,
10627 * just delete them, we don't care about them anymore.
10628 */
10629 start = block_group->key.objectid;
10630 end = start + block_group->key.offset - 1;
d4b450cd
FM
10631 /*
10632 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10633 * btrfs_finish_extent_commit(). If we are at transaction N,
10634 * another task might be running finish_extent_commit() for the
10635 * previous transaction N - 1, and have seen a range belonging
10636 * to the block group in freed_extents[] before we were able to
10637 * clear the whole block group range from freed_extents[]. This
10638 * means that task can lookup for the block group after we
10639 * unpinned it from freed_extents[] and removed it, leading to
10640 * a BUG_ON() at btrfs_unpin_extent_range().
10641 */
10642 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10643 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10644 EXTENT_DIRTY);
758eb51e 10645 if (ret) {
d4b450cd 10646 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10647 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10648 goto end_trans;
10649 }
10650 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10651 EXTENT_DIRTY);
758eb51e 10652 if (ret) {
d4b450cd 10653 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10654 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10655 goto end_trans;
10656 }
d4b450cd 10657 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10658
10659 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10660 spin_lock(&space_info->lock);
10661 spin_lock(&block_group->lock);
10662
10663 space_info->bytes_pinned -= block_group->pinned;
10664 space_info->bytes_readonly += block_group->pinned;
10665 percpu_counter_add(&space_info->total_bytes_pinned,
10666 -block_group->pinned);
47ab2a6c
JB
10667 block_group->pinned = 0;
10668
c30666d4
ZL
10669 spin_unlock(&block_group->lock);
10670 spin_unlock(&space_info->lock);
10671
e33e17ee
JM
10672 /* DISCARD can flip during remount */
10673 trimming = btrfs_test_opt(root, DISCARD);
10674
10675 /* Implicit trim during transaction commit. */
10676 if (trimming)
10677 btrfs_get_block_group_trimming(block_group);
10678
47ab2a6c
JB
10679 /*
10680 * Btrfs_remove_chunk will abort the transaction if things go
10681 * horribly wrong.
10682 */
10683 ret = btrfs_remove_chunk(trans, root,
10684 block_group->key.objectid);
e33e17ee
JM
10685
10686 if (ret) {
10687 if (trimming)
10688 btrfs_put_block_group_trimming(block_group);
10689 goto end_trans;
10690 }
10691
10692 /*
10693 * If we're not mounted with -odiscard, we can just forget
10694 * about this block group. Otherwise we'll need to wait
10695 * until transaction commit to do the actual discard.
10696 */
10697 if (trimming) {
348a0013
FM
10698 spin_lock(&fs_info->unused_bgs_lock);
10699 /*
10700 * A concurrent scrub might have added us to the list
10701 * fs_info->unused_bgs, so use a list_move operation
10702 * to add the block group to the deleted_bgs list.
10703 */
e33e17ee
JM
10704 list_move(&block_group->bg_list,
10705 &trans->transaction->deleted_bgs);
348a0013 10706 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10707 btrfs_get_block_group(block_group);
10708 }
758eb51e 10709end_trans:
47ab2a6c
JB
10710 btrfs_end_transaction(trans, root);
10711next:
d5f2e33b 10712 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10713 btrfs_put_block_group(block_group);
10714 spin_lock(&fs_info->unused_bgs_lock);
10715 }
10716 spin_unlock(&fs_info->unused_bgs_lock);
10717}
10718
c59021f8 10719int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10720{
10721 struct btrfs_space_info *space_info;
1aba86d6 10722 struct btrfs_super_block *disk_super;
10723 u64 features;
10724 u64 flags;
10725 int mixed = 0;
c59021f8 10726 int ret;
10727
6c41761f 10728 disk_super = fs_info->super_copy;
1aba86d6 10729 if (!btrfs_super_root(disk_super))
0dc924c5 10730 return -EINVAL;
c59021f8 10731
1aba86d6 10732 features = btrfs_super_incompat_flags(disk_super);
10733 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10734 mixed = 1;
c59021f8 10735
1aba86d6 10736 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10737 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10738 if (ret)
1aba86d6 10739 goto out;
c59021f8 10740
1aba86d6 10741 if (mixed) {
10742 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10743 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10744 } else {
10745 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10746 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10747 if (ret)
10748 goto out;
10749
10750 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10751 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10752 }
10753out:
c59021f8 10754 return ret;
10755}
10756
acce952b 10757int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10758{
678886bd 10759 return unpin_extent_range(root, start, end, false);
acce952b 10760}
10761
499f377f
JM
10762/*
10763 * It used to be that old block groups would be left around forever.
10764 * Iterating over them would be enough to trim unused space. Since we
10765 * now automatically remove them, we also need to iterate over unallocated
10766 * space.
10767 *
10768 * We don't want a transaction for this since the discard may take a
10769 * substantial amount of time. We don't require that a transaction be
10770 * running, but we do need to take a running transaction into account
10771 * to ensure that we're not discarding chunks that were released in
10772 * the current transaction.
10773 *
10774 * Holding the chunks lock will prevent other threads from allocating
10775 * or releasing chunks, but it won't prevent a running transaction
10776 * from committing and releasing the memory that the pending chunks
10777 * list head uses. For that, we need to take a reference to the
10778 * transaction.
10779 */
10780static int btrfs_trim_free_extents(struct btrfs_device *device,
10781 u64 minlen, u64 *trimmed)
10782{
10783 u64 start = 0, len = 0;
10784 int ret;
10785
10786 *trimmed = 0;
10787
10788 /* Not writeable = nothing to do. */
10789 if (!device->writeable)
10790 return 0;
10791
10792 /* No free space = nothing to do. */
10793 if (device->total_bytes <= device->bytes_used)
10794 return 0;
10795
10796 ret = 0;
10797
10798 while (1) {
10799 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10800 struct btrfs_transaction *trans;
10801 u64 bytes;
10802
10803 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10804 if (ret)
10805 return ret;
10806
10807 down_read(&fs_info->commit_root_sem);
10808
10809 spin_lock(&fs_info->trans_lock);
10810 trans = fs_info->running_transaction;
10811 if (trans)
10812 atomic_inc(&trans->use_count);
10813 spin_unlock(&fs_info->trans_lock);
10814
10815 ret = find_free_dev_extent_start(trans, device, minlen, start,
10816 &start, &len);
10817 if (trans)
10818 btrfs_put_transaction(trans);
10819
10820 if (ret) {
10821 up_read(&fs_info->commit_root_sem);
10822 mutex_unlock(&fs_info->chunk_mutex);
10823 if (ret == -ENOSPC)
10824 ret = 0;
10825 break;
10826 }
10827
10828 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10829 up_read(&fs_info->commit_root_sem);
10830 mutex_unlock(&fs_info->chunk_mutex);
10831
10832 if (ret)
10833 break;
10834
10835 start += len;
10836 *trimmed += bytes;
10837
10838 if (fatal_signal_pending(current)) {
10839 ret = -ERESTARTSYS;
10840 break;
10841 }
10842
10843 cond_resched();
10844 }
10845
10846 return ret;
10847}
10848
f7039b1d
LD
10849int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10850{
10851 struct btrfs_fs_info *fs_info = root->fs_info;
10852 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10853 struct btrfs_device *device;
10854 struct list_head *devices;
f7039b1d
LD
10855 u64 group_trimmed;
10856 u64 start;
10857 u64 end;
10858 u64 trimmed = 0;
2cac13e4 10859 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10860 int ret = 0;
10861
2cac13e4
LB
10862 /*
10863 * try to trim all FS space, our block group may start from non-zero.
10864 */
10865 if (range->len == total_bytes)
10866 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10867 else
10868 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10869
10870 while (cache) {
10871 if (cache->key.objectid >= (range->start + range->len)) {
10872 btrfs_put_block_group(cache);
10873 break;
10874 }
10875
10876 start = max(range->start, cache->key.objectid);
10877 end = min(range->start + range->len,
10878 cache->key.objectid + cache->key.offset);
10879
10880 if (end - start >= range->minlen) {
10881 if (!block_group_cache_done(cache)) {
f6373bf3 10882 ret = cache_block_group(cache, 0);
1be41b78
JB
10883 if (ret) {
10884 btrfs_put_block_group(cache);
10885 break;
10886 }
10887 ret = wait_block_group_cache_done(cache);
10888 if (ret) {
10889 btrfs_put_block_group(cache);
10890 break;
10891 }
f7039b1d
LD
10892 }
10893 ret = btrfs_trim_block_group(cache,
10894 &group_trimmed,
10895 start,
10896 end,
10897 range->minlen);
10898
10899 trimmed += group_trimmed;
10900 if (ret) {
10901 btrfs_put_block_group(cache);
10902 break;
10903 }
10904 }
10905
10906 cache = next_block_group(fs_info->tree_root, cache);
10907 }
10908
499f377f
JM
10909 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10910 devices = &root->fs_info->fs_devices->alloc_list;
10911 list_for_each_entry(device, devices, dev_alloc_list) {
10912 ret = btrfs_trim_free_extents(device, range->minlen,
10913 &group_trimmed);
10914 if (ret)
10915 break;
10916
10917 trimmed += group_trimmed;
10918 }
10919 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10920
f7039b1d
LD
10921 range->len = trimmed;
10922 return ret;
10923}
8257b2dc
MX
10924
10925/*
9ea24bbe
FM
10926 * btrfs_{start,end}_write_no_snapshoting() are similar to
10927 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10928 * data into the page cache through nocow before the subvolume is snapshoted,
10929 * but flush the data into disk after the snapshot creation, or to prevent
10930 * operations while snapshoting is ongoing and that cause the snapshot to be
10931 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10932 */
9ea24bbe 10933void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10934{
10935 percpu_counter_dec(&root->subv_writers->counter);
10936 /*
a83342aa 10937 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10938 */
10939 smp_mb();
10940 if (waitqueue_active(&root->subv_writers->wait))
10941 wake_up(&root->subv_writers->wait);
10942}
10943
9ea24bbe 10944int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10945{
ee39b432 10946 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10947 return 0;
10948
10949 percpu_counter_inc(&root->subv_writers->counter);
10950 /*
10951 * Make sure counter is updated before we check for snapshot creation.
10952 */
10953 smp_mb();
ee39b432 10954 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10955 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10956 return 0;
10957 }
10958 return 1;
10959}
0bc19f90
ZL
10960
10961static int wait_snapshoting_atomic_t(atomic_t *a)
10962{
10963 schedule();
10964 return 0;
10965}
10966
10967void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10968{
10969 while (true) {
10970 int ret;
10971
10972 ret = btrfs_start_write_no_snapshoting(root);
10973 if (ret)
10974 break;
10975 wait_on_atomic_t(&root->will_be_snapshoted,
10976 wait_snapshoting_atomic_t,
10977 TASK_UNINTERRUPTIBLE);
10978 }
10979}
This page took 1.789254 seconds and 5 git commands to generate.