Btrfs: don't continue setting up space cache when enospc
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
817d52f8 361static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
362 struct btrfs_fs_info *info, u64 start, u64 end)
363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
d458b054 399static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_caching_control *caching_ctl;
404 struct btrfs_root *extent_root;
e37c9e69 405 struct btrfs_path *path;
5f39d397 406 struct extent_buffer *leaf;
11833d66 407 struct btrfs_key key;
817d52f8 408 u64 total_found = 0;
11833d66
YZ
409 u64 last = 0;
410 u32 nritems;
36cce922 411 int ret = -ENOMEM;
d0bd4560 412 bool wakeup = true;
f510cfec 413
bab39bf9
JB
414 caching_ctl = container_of(work, struct btrfs_caching_control, work);
415 block_group = caching_ctl->block_group;
416 fs_info = block_group->fs_info;
417 extent_root = fs_info->extent_root;
418
e37c9e69
CM
419 path = btrfs_alloc_path();
420 if (!path)
bab39bf9 421 goto out;
7d7d6068 422
817d52f8 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 424
d0bd4560
JB
425#ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
431 if (btrfs_should_fragment_free_space(extent_root, block_group))
432 wakeup = false;
433#endif
5cd57b2c 434 /*
817d52f8
JB
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
5cd57b2c
CM
439 */
440 path->skip_locking = 1;
817d52f8 441 path->search_commit_root = 1;
026fd317 442 path->reada = 1;
817d52f8 443
e4404d6e 444 key.objectid = last;
e37c9e69 445 key.offset = 0;
11833d66 446 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 447again:
11833d66 448 mutex_lock(&caching_ctl->mutex);
013f1b12 449 /* need to make sure the commit_root doesn't disappear */
9e351cc8 450 down_read(&fs_info->commit_root_sem);
013f1b12 451
52ee28d2 452next:
11833d66 453 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 454 if (ret < 0)
ef8bbdfe 455 goto err;
a512bbf8 456
11833d66
YZ
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459
d397712b 460 while (1) {
7841cb28 461 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 462 last = (u64)-1;
817d52f8 463 break;
f25784b3 464 }
817d52f8 465
11833d66
YZ
466 if (path->slots[0] < nritems) {
467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
468 } else {
469 ret = find_next_key(path, 0, &key);
470 if (ret)
e37c9e69 471 break;
817d52f8 472
c9ea7b24 473 if (need_resched() ||
9e351cc8 474 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
475 if (wakeup)
476 caching_ctl->progress = last;
ff5714cc 477 btrfs_release_path(path);
9e351cc8 478 up_read(&fs_info->commit_root_sem);
589d8ade 479 mutex_unlock(&caching_ctl->mutex);
11833d66 480 cond_resched();
589d8ade
JB
481 goto again;
482 }
0a3896d0
JB
483
484 ret = btrfs_next_leaf(extent_root, path);
485 if (ret < 0)
486 goto err;
487 if (ret)
488 break;
589d8ade
JB
489 leaf = path->nodes[0];
490 nritems = btrfs_header_nritems(leaf);
491 continue;
11833d66 492 }
817d52f8 493
52ee28d2
LB
494 if (key.objectid < last) {
495 key.objectid = last;
496 key.offset = 0;
497 key.type = BTRFS_EXTENT_ITEM_KEY;
498
d0bd4560
JB
499 if (wakeup)
500 caching_ctl->progress = last;
52ee28d2
LB
501 btrfs_release_path(path);
502 goto next;
503 }
504
11833d66
YZ
505 if (key.objectid < block_group->key.objectid) {
506 path->slots[0]++;
817d52f8 507 continue;
e37c9e69 508 }
0f9dd46c 509
e37c9e69 510 if (key.objectid >= block_group->key.objectid +
0f9dd46c 511 block_group->key.offset)
e37c9e69 512 break;
7d7d6068 513
3173a18f
JB
514 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
515 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
516 total_found += add_new_free_space(block_group,
517 fs_info, last,
518 key.objectid);
3173a18f
JB
519 if (key.type == BTRFS_METADATA_ITEM_KEY)
520 last = key.objectid +
707e8a07 521 fs_info->tree_root->nodesize;
3173a18f
JB
522 else
523 last = key.objectid + key.offset;
817d52f8 524
11833d66
YZ
525 if (total_found > (1024 * 1024 * 2)) {
526 total_found = 0;
d0bd4560
JB
527 if (wakeup)
528 wake_up(&caching_ctl->wait);
11833d66 529 }
817d52f8 530 }
e37c9e69
CM
531 path->slots[0]++;
532 }
817d52f8 533 ret = 0;
e37c9e69 534
817d52f8
JB
535 total_found += add_new_free_space(block_group, fs_info, last,
536 block_group->key.objectid +
537 block_group->key.offset);
817d52f8 538 spin_lock(&block_group->lock);
11833d66 539 block_group->caching_ctl = NULL;
817d52f8
JB
540 block_group->cached = BTRFS_CACHE_FINISHED;
541 spin_unlock(&block_group->lock);
0f9dd46c 542
d0bd4560
JB
543#ifdef CONFIG_BTRFS_DEBUG
544 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
545 u64 bytes_used;
546
547 spin_lock(&block_group->space_info->lock);
548 spin_lock(&block_group->lock);
549 bytes_used = block_group->key.offset -
550 btrfs_block_group_used(&block_group->item);
551 block_group->space_info->bytes_used += bytes_used >> 1;
552 spin_unlock(&block_group->lock);
553 spin_unlock(&block_group->space_info->lock);
554 fragment_free_space(extent_root, block_group);
555 }
556#endif
557
558 caching_ctl->progress = (u64)-1;
54aa1f4d 559err:
e37c9e69 560 btrfs_free_path(path);
9e351cc8 561 up_read(&fs_info->commit_root_sem);
817d52f8 562
11833d66
YZ
563 free_excluded_extents(extent_root, block_group);
564
565 mutex_unlock(&caching_ctl->mutex);
bab39bf9 566out:
36cce922
JB
567 if (ret) {
568 spin_lock(&block_group->lock);
569 block_group->caching_ctl = NULL;
570 block_group->cached = BTRFS_CACHE_ERROR;
571 spin_unlock(&block_group->lock);
572 }
11833d66
YZ
573 wake_up(&caching_ctl->wait);
574
575 put_caching_control(caching_ctl);
11dfe35a 576 btrfs_put_block_group(block_group);
817d52f8
JB
577}
578
9d66e233 579static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 580 int load_cache_only)
817d52f8 581{
291c7d2f 582 DEFINE_WAIT(wait);
11833d66
YZ
583 struct btrfs_fs_info *fs_info = cache->fs_info;
584 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
585 int ret = 0;
586
291c7d2f 587 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
588 if (!caching_ctl)
589 return -ENOMEM;
291c7d2f
JB
590
591 INIT_LIST_HEAD(&caching_ctl->list);
592 mutex_init(&caching_ctl->mutex);
593 init_waitqueue_head(&caching_ctl->wait);
594 caching_ctl->block_group = cache;
595 caching_ctl->progress = cache->key.objectid;
596 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
597 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
598 caching_thread, NULL, NULL);
291c7d2f
JB
599
600 spin_lock(&cache->lock);
601 /*
602 * This should be a rare occasion, but this could happen I think in the
603 * case where one thread starts to load the space cache info, and then
604 * some other thread starts a transaction commit which tries to do an
605 * allocation while the other thread is still loading the space cache
606 * info. The previous loop should have kept us from choosing this block
607 * group, but if we've moved to the state where we will wait on caching
608 * block groups we need to first check if we're doing a fast load here,
609 * so we can wait for it to finish, otherwise we could end up allocating
610 * from a block group who's cache gets evicted for one reason or
611 * another.
612 */
613 while (cache->cached == BTRFS_CACHE_FAST) {
614 struct btrfs_caching_control *ctl;
615
616 ctl = cache->caching_ctl;
617 atomic_inc(&ctl->count);
618 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
619 spin_unlock(&cache->lock);
620
621 schedule();
622
623 finish_wait(&ctl->wait, &wait);
624 put_caching_control(ctl);
625 spin_lock(&cache->lock);
626 }
627
628 if (cache->cached != BTRFS_CACHE_NO) {
629 spin_unlock(&cache->lock);
630 kfree(caching_ctl);
11833d66 631 return 0;
291c7d2f
JB
632 }
633 WARN_ON(cache->caching_ctl);
634 cache->caching_ctl = caching_ctl;
635 cache->cached = BTRFS_CACHE_FAST;
636 spin_unlock(&cache->lock);
11833d66 637
d53ba474 638 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 639 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
640 ret = load_free_space_cache(fs_info, cache);
641
642 spin_lock(&cache->lock);
643 if (ret == 1) {
291c7d2f 644 cache->caching_ctl = NULL;
9d66e233
JB
645 cache->cached = BTRFS_CACHE_FINISHED;
646 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 647 caching_ctl->progress = (u64)-1;
9d66e233 648 } else {
291c7d2f
JB
649 if (load_cache_only) {
650 cache->caching_ctl = NULL;
651 cache->cached = BTRFS_CACHE_NO;
652 } else {
653 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 654 cache->has_caching_ctl = 1;
291c7d2f 655 }
9d66e233
JB
656 }
657 spin_unlock(&cache->lock);
d0bd4560
JB
658#ifdef CONFIG_BTRFS_DEBUG
659 if (ret == 1 &&
660 btrfs_should_fragment_free_space(fs_info->extent_root,
661 cache)) {
662 u64 bytes_used;
663
664 spin_lock(&cache->space_info->lock);
665 spin_lock(&cache->lock);
666 bytes_used = cache->key.offset -
667 btrfs_block_group_used(&cache->item);
668 cache->space_info->bytes_used += bytes_used >> 1;
669 spin_unlock(&cache->lock);
670 spin_unlock(&cache->space_info->lock);
671 fragment_free_space(fs_info->extent_root, cache);
672 }
673#endif
cb83b7b8
JB
674 mutex_unlock(&caching_ctl->mutex);
675
291c7d2f 676 wake_up(&caching_ctl->wait);
3c14874a 677 if (ret == 1) {
291c7d2f 678 put_caching_control(caching_ctl);
3c14874a 679 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 680 return 0;
3c14874a 681 }
291c7d2f
JB
682 } else {
683 /*
684 * We are not going to do the fast caching, set cached to the
685 * appropriate value and wakeup any waiters.
686 */
687 spin_lock(&cache->lock);
688 if (load_cache_only) {
689 cache->caching_ctl = NULL;
690 cache->cached = BTRFS_CACHE_NO;
691 } else {
692 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 693 cache->has_caching_ctl = 1;
291c7d2f
JB
694 }
695 spin_unlock(&cache->lock);
696 wake_up(&caching_ctl->wait);
9d66e233
JB
697 }
698
291c7d2f
JB
699 if (load_cache_only) {
700 put_caching_control(caching_ctl);
11833d66 701 return 0;
817d52f8 702 }
817d52f8 703
9e351cc8 704 down_write(&fs_info->commit_root_sem);
291c7d2f 705 atomic_inc(&caching_ctl->count);
11833d66 706 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 707 up_write(&fs_info->commit_root_sem);
11833d66 708
11dfe35a 709 btrfs_get_block_group(cache);
11833d66 710
e66f0bb1 711 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 712
ef8bbdfe 713 return ret;
e37c9e69
CM
714}
715
0f9dd46c
JB
716/*
717 * return the block group that starts at or after bytenr
718 */
d397712b
CM
719static struct btrfs_block_group_cache *
720btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 721{
0f9dd46c 722 struct btrfs_block_group_cache *cache;
0ef3e66b 723
0f9dd46c 724 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 725
0f9dd46c 726 return cache;
0ef3e66b
CM
727}
728
0f9dd46c 729/*
9f55684c 730 * return the block group that contains the given bytenr
0f9dd46c 731 */
d397712b
CM
732struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 struct btrfs_fs_info *info,
734 u64 bytenr)
be744175 735{
0f9dd46c 736 struct btrfs_block_group_cache *cache;
be744175 737
0f9dd46c 738 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 739
0f9dd46c 740 return cache;
be744175 741}
0b86a832 742
0f9dd46c
JB
743static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
744 u64 flags)
6324fbf3 745{
0f9dd46c 746 struct list_head *head = &info->space_info;
0f9dd46c 747 struct btrfs_space_info *found;
4184ea7f 748
52ba6929 749 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 750
4184ea7f
CM
751 rcu_read_lock();
752 list_for_each_entry_rcu(found, head, list) {
67377734 753 if (found->flags & flags) {
4184ea7f 754 rcu_read_unlock();
0f9dd46c 755 return found;
4184ea7f 756 }
0f9dd46c 757 }
4184ea7f 758 rcu_read_unlock();
0f9dd46c 759 return NULL;
6324fbf3
CM
760}
761
4184ea7f
CM
762/*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767{
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775}
776
1a4ed8fd
FM
777/* simple helper to search for an existing data extent at a given offset */
778int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
779{
780 int ret;
781 struct btrfs_key key;
31840ae1 782 struct btrfs_path *path;
e02119d5 783
31840ae1 784 path = btrfs_alloc_path();
d8926bb3
MF
785 if (!path)
786 return -ENOMEM;
787
e02119d5
CM
788 key.objectid = start;
789 key.offset = len;
3173a18f 790 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
791 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
792 0, 0);
31840ae1 793 btrfs_free_path(path);
7bb86316
CM
794 return ret;
795}
796
a22285a6 797/*
3173a18f 798 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
799 *
800 * the head node for delayed ref is used to store the sum of all the
801 * reference count modifications queued up in the rbtree. the head
802 * node may also store the extent flags to set. This way you can check
803 * to see what the reference count and extent flags would be if all of
804 * the delayed refs are not processed.
805 */
806int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
807 struct btrfs_root *root, u64 bytenr,
3173a18f 808 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
809{
810 struct btrfs_delayed_ref_head *head;
811 struct btrfs_delayed_ref_root *delayed_refs;
812 struct btrfs_path *path;
813 struct btrfs_extent_item *ei;
814 struct extent_buffer *leaf;
815 struct btrfs_key key;
816 u32 item_size;
817 u64 num_refs;
818 u64 extent_flags;
819 int ret;
820
3173a18f
JB
821 /*
822 * If we don't have skinny metadata, don't bother doing anything
823 * different
824 */
825 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 826 offset = root->nodesize;
3173a18f
JB
827 metadata = 0;
828 }
829
a22285a6
YZ
830 path = btrfs_alloc_path();
831 if (!path)
832 return -ENOMEM;
833
a22285a6
YZ
834 if (!trans) {
835 path->skip_locking = 1;
836 path->search_commit_root = 1;
837 }
639eefc8
FDBM
838
839search_again:
840 key.objectid = bytenr;
841 key.offset = offset;
842 if (metadata)
843 key.type = BTRFS_METADATA_ITEM_KEY;
844 else
845 key.type = BTRFS_EXTENT_ITEM_KEY;
846
a22285a6
YZ
847 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
848 &key, path, 0, 0);
849 if (ret < 0)
850 goto out_free;
851
3173a18f 852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
853 if (path->slots[0]) {
854 path->slots[0]--;
855 btrfs_item_key_to_cpu(path->nodes[0], &key,
856 path->slots[0]);
857 if (key.objectid == bytenr &&
858 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 859 key.offset == root->nodesize)
74be9510
FDBM
860 ret = 0;
861 }
3173a18f
JB
862 }
863
a22285a6
YZ
864 if (ret == 0) {
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
867 if (item_size >= sizeof(*ei)) {
868 ei = btrfs_item_ptr(leaf, path->slots[0],
869 struct btrfs_extent_item);
870 num_refs = btrfs_extent_refs(leaf, ei);
871 extent_flags = btrfs_extent_flags(leaf, ei);
872 } else {
873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 struct btrfs_extent_item_v0 *ei0;
875 BUG_ON(item_size != sizeof(*ei0));
876 ei0 = btrfs_item_ptr(leaf, path->slots[0],
877 struct btrfs_extent_item_v0);
878 num_refs = btrfs_extent_refs_v0(leaf, ei0);
879 /* FIXME: this isn't correct for data */
880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881#else
882 BUG();
883#endif
884 }
885 BUG_ON(num_refs == 0);
886 } else {
887 num_refs = 0;
888 extent_flags = 0;
889 ret = 0;
890 }
891
892 if (!trans)
893 goto out;
894
895 delayed_refs = &trans->transaction->delayed_refs;
896 spin_lock(&delayed_refs->lock);
897 head = btrfs_find_delayed_ref_head(trans, bytenr);
898 if (head) {
899 if (!mutex_trylock(&head->mutex)) {
900 atomic_inc(&head->node.refs);
901 spin_unlock(&delayed_refs->lock);
902
b3b4aa74 903 btrfs_release_path(path);
a22285a6 904
8cc33e5c
DS
905 /*
906 * Mutex was contended, block until it's released and try
907 * again
908 */
a22285a6
YZ
909 mutex_lock(&head->mutex);
910 mutex_unlock(&head->mutex);
911 btrfs_put_delayed_ref(&head->node);
639eefc8 912 goto search_again;
a22285a6 913 }
d7df2c79 914 spin_lock(&head->lock);
a22285a6
YZ
915 if (head->extent_op && head->extent_op->update_flags)
916 extent_flags |= head->extent_op->flags_to_set;
917 else
918 BUG_ON(num_refs == 0);
919
920 num_refs += head->node.ref_mod;
d7df2c79 921 spin_unlock(&head->lock);
a22285a6
YZ
922 mutex_unlock(&head->mutex);
923 }
924 spin_unlock(&delayed_refs->lock);
925out:
926 WARN_ON(num_refs == 0);
927 if (refs)
928 *refs = num_refs;
929 if (flags)
930 *flags = extent_flags;
931out_free:
932 btrfs_free_path(path);
933 return ret;
934}
935
d8d5f3e1
CM
936/*
937 * Back reference rules. Back refs have three main goals:
938 *
939 * 1) differentiate between all holders of references to an extent so that
940 * when a reference is dropped we can make sure it was a valid reference
941 * before freeing the extent.
942 *
943 * 2) Provide enough information to quickly find the holders of an extent
944 * if we notice a given block is corrupted or bad.
945 *
946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
947 * maintenance. This is actually the same as #2, but with a slightly
948 * different use case.
949 *
5d4f98a2
YZ
950 * There are two kinds of back refs. The implicit back refs is optimized
951 * for pointers in non-shared tree blocks. For a given pointer in a block,
952 * back refs of this kind provide information about the block's owner tree
953 * and the pointer's key. These information allow us to find the block by
954 * b-tree searching. The full back refs is for pointers in tree blocks not
955 * referenced by their owner trees. The location of tree block is recorded
956 * in the back refs. Actually the full back refs is generic, and can be
957 * used in all cases the implicit back refs is used. The major shortcoming
958 * of the full back refs is its overhead. Every time a tree block gets
959 * COWed, we have to update back refs entry for all pointers in it.
960 *
961 * For a newly allocated tree block, we use implicit back refs for
962 * pointers in it. This means most tree related operations only involve
963 * implicit back refs. For a tree block created in old transaction, the
964 * only way to drop a reference to it is COW it. So we can detect the
965 * event that tree block loses its owner tree's reference and do the
966 * back refs conversion.
967 *
968 * When a tree block is COW'd through a tree, there are four cases:
969 *
970 * The reference count of the block is one and the tree is the block's
971 * owner tree. Nothing to do in this case.
972 *
973 * The reference count of the block is one and the tree is not the
974 * block's owner tree. In this case, full back refs is used for pointers
975 * in the block. Remove these full back refs, add implicit back refs for
976 * every pointers in the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * the block's owner tree. In this case, implicit back refs is used for
980 * pointers in the block. Add full back refs for every pointers in the
981 * block, increase lower level extents' reference counts. The original
982 * implicit back refs are entailed to the new block.
983 *
984 * The reference count of the block is greater than one and the tree is
985 * not the block's owner tree. Add implicit back refs for every pointer in
986 * the new block, increase lower level extents' reference count.
987 *
988 * Back Reference Key composing:
989 *
990 * The key objectid corresponds to the first byte in the extent,
991 * The key type is used to differentiate between types of back refs.
992 * There are different meanings of the key offset for different types
993 * of back refs.
994 *
d8d5f3e1
CM
995 * File extents can be referenced by:
996 *
997 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 998 * - different files inside a single subvolume
d8d5f3e1
CM
999 * - different offsets inside a file (bookend extents in file.c)
1000 *
5d4f98a2 1001 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1002 *
1003 * - Objectid of the subvolume root
d8d5f3e1 1004 * - objectid of the file holding the reference
5d4f98a2
YZ
1005 * - original offset in the file
1006 * - how many bookend extents
d8d5f3e1 1007 *
5d4f98a2
YZ
1008 * The key offset for the implicit back refs is hash of the first
1009 * three fields.
d8d5f3e1 1010 *
5d4f98a2 1011 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1012 *
5d4f98a2 1013 * - number of pointers in the tree leaf
d8d5f3e1 1014 *
5d4f98a2
YZ
1015 * The key offset for the implicit back refs is the first byte of
1016 * the tree leaf
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * When a file extent is allocated, The implicit back refs is used.
1019 * the fields are filled in:
d8d5f3e1 1020 *
5d4f98a2 1021 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * When a file extent is removed file truncation, we find the
1024 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1025 *
5d4f98a2 1026 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1027 *
5d4f98a2 1028 * Btree extents can be referenced by:
d8d5f3e1 1029 *
5d4f98a2 1030 * - Different subvolumes
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * Both the implicit back refs and the full back refs for tree blocks
1033 * only consist of key. The key offset for the implicit back refs is
1034 * objectid of block's owner tree. The key offset for the full back refs
1035 * is the first byte of parent block.
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When implicit back refs is used, information about the lowest key and
1038 * level of the tree block are required. These information are stored in
1039 * tree block info structure.
d8d5f3e1 1040 */
31840ae1 1041
5d4f98a2
YZ
1042#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1043static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1044 struct btrfs_root *root,
1045 struct btrfs_path *path,
1046 u64 owner, u32 extra_size)
7bb86316 1047{
5d4f98a2
YZ
1048 struct btrfs_extent_item *item;
1049 struct btrfs_extent_item_v0 *ei0;
1050 struct btrfs_extent_ref_v0 *ref0;
1051 struct btrfs_tree_block_info *bi;
1052 struct extent_buffer *leaf;
7bb86316 1053 struct btrfs_key key;
5d4f98a2
YZ
1054 struct btrfs_key found_key;
1055 u32 new_size = sizeof(*item);
1056 u64 refs;
1057 int ret;
1058
1059 leaf = path->nodes[0];
1060 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1061
1062 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1063 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1064 struct btrfs_extent_item_v0);
1065 refs = btrfs_extent_refs_v0(leaf, ei0);
1066
1067 if (owner == (u64)-1) {
1068 while (1) {
1069 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1070 ret = btrfs_next_leaf(root, path);
1071 if (ret < 0)
1072 return ret;
79787eaa 1073 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1074 leaf = path->nodes[0];
1075 }
1076 btrfs_item_key_to_cpu(leaf, &found_key,
1077 path->slots[0]);
1078 BUG_ON(key.objectid != found_key.objectid);
1079 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1080 path->slots[0]++;
1081 continue;
1082 }
1083 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1084 struct btrfs_extent_ref_v0);
1085 owner = btrfs_ref_objectid_v0(leaf, ref0);
1086 break;
1087 }
1088 }
b3b4aa74 1089 btrfs_release_path(path);
5d4f98a2
YZ
1090
1091 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1092 new_size += sizeof(*bi);
1093
1094 new_size -= sizeof(*ei0);
1095 ret = btrfs_search_slot(trans, root, &key, path,
1096 new_size + extra_size, 1);
1097 if (ret < 0)
1098 return ret;
79787eaa 1099 BUG_ON(ret); /* Corruption */
5d4f98a2 1100
4b90c680 1101 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1102
1103 leaf = path->nodes[0];
1104 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1105 btrfs_set_extent_refs(leaf, item, refs);
1106 /* FIXME: get real generation */
1107 btrfs_set_extent_generation(leaf, item, 0);
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1109 btrfs_set_extent_flags(leaf, item,
1110 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1111 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1112 bi = (struct btrfs_tree_block_info *)(item + 1);
1113 /* FIXME: get first key of the block */
1114 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1115 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1116 } else {
1117 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1118 }
1119 btrfs_mark_buffer_dirty(leaf);
1120 return 0;
1121}
1122#endif
1123
1124static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1125{
1126 u32 high_crc = ~(u32)0;
1127 u32 low_crc = ~(u32)0;
1128 __le64 lenum;
1129
1130 lenum = cpu_to_le64(root_objectid);
14a958e6 1131 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1132 lenum = cpu_to_le64(owner);
14a958e6 1133 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1134 lenum = cpu_to_le64(offset);
14a958e6 1135 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1136
1137 return ((u64)high_crc << 31) ^ (u64)low_crc;
1138}
1139
1140static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1141 struct btrfs_extent_data_ref *ref)
1142{
1143 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1144 btrfs_extent_data_ref_objectid(leaf, ref),
1145 btrfs_extent_data_ref_offset(leaf, ref));
1146}
1147
1148static int match_extent_data_ref(struct extent_buffer *leaf,
1149 struct btrfs_extent_data_ref *ref,
1150 u64 root_objectid, u64 owner, u64 offset)
1151{
1152 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1153 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1154 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1155 return 0;
1156 return 1;
1157}
1158
1159static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid,
1164 u64 owner, u64 offset)
1165{
1166 struct btrfs_key key;
1167 struct btrfs_extent_data_ref *ref;
31840ae1 1168 struct extent_buffer *leaf;
5d4f98a2 1169 u32 nritems;
74493f7a 1170 int ret;
5d4f98a2
YZ
1171 int recow;
1172 int err = -ENOENT;
74493f7a 1173
31840ae1 1174 key.objectid = bytenr;
5d4f98a2
YZ
1175 if (parent) {
1176 key.type = BTRFS_SHARED_DATA_REF_KEY;
1177 key.offset = parent;
1178 } else {
1179 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1180 key.offset = hash_extent_data_ref(root_objectid,
1181 owner, offset);
1182 }
1183again:
1184 recow = 0;
1185 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1186 if (ret < 0) {
1187 err = ret;
1188 goto fail;
1189 }
31840ae1 1190
5d4f98a2
YZ
1191 if (parent) {
1192 if (!ret)
1193 return 0;
1194#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1195 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1196 btrfs_release_path(path);
5d4f98a2
YZ
1197 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1198 if (ret < 0) {
1199 err = ret;
1200 goto fail;
1201 }
1202 if (!ret)
1203 return 0;
1204#endif
1205 goto fail;
31840ae1
ZY
1206 }
1207
1208 leaf = path->nodes[0];
5d4f98a2
YZ
1209 nritems = btrfs_header_nritems(leaf);
1210 while (1) {
1211 if (path->slots[0] >= nritems) {
1212 ret = btrfs_next_leaf(root, path);
1213 if (ret < 0)
1214 err = ret;
1215 if (ret)
1216 goto fail;
1217
1218 leaf = path->nodes[0];
1219 nritems = btrfs_header_nritems(leaf);
1220 recow = 1;
1221 }
1222
1223 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1224 if (key.objectid != bytenr ||
1225 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1226 goto fail;
1227
1228 ref = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_extent_data_ref);
1230
1231 if (match_extent_data_ref(leaf, ref, root_objectid,
1232 owner, offset)) {
1233 if (recow) {
b3b4aa74 1234 btrfs_release_path(path);
5d4f98a2
YZ
1235 goto again;
1236 }
1237 err = 0;
1238 break;
1239 }
1240 path->slots[0]++;
31840ae1 1241 }
5d4f98a2
YZ
1242fail:
1243 return err;
31840ae1
ZY
1244}
1245
5d4f98a2
YZ
1246static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1247 struct btrfs_root *root,
1248 struct btrfs_path *path,
1249 u64 bytenr, u64 parent,
1250 u64 root_objectid, u64 owner,
1251 u64 offset, int refs_to_add)
31840ae1
ZY
1252{
1253 struct btrfs_key key;
1254 struct extent_buffer *leaf;
5d4f98a2 1255 u32 size;
31840ae1
ZY
1256 u32 num_refs;
1257 int ret;
74493f7a 1258
74493f7a 1259 key.objectid = bytenr;
5d4f98a2
YZ
1260 if (parent) {
1261 key.type = BTRFS_SHARED_DATA_REF_KEY;
1262 key.offset = parent;
1263 size = sizeof(struct btrfs_shared_data_ref);
1264 } else {
1265 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1266 key.offset = hash_extent_data_ref(root_objectid,
1267 owner, offset);
1268 size = sizeof(struct btrfs_extent_data_ref);
1269 }
74493f7a 1270
5d4f98a2
YZ
1271 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1272 if (ret && ret != -EEXIST)
1273 goto fail;
1274
1275 leaf = path->nodes[0];
1276 if (parent) {
1277 struct btrfs_shared_data_ref *ref;
31840ae1 1278 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1279 struct btrfs_shared_data_ref);
1280 if (ret == 0) {
1281 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1282 } else {
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1284 num_refs += refs_to_add;
1285 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1286 }
5d4f98a2
YZ
1287 } else {
1288 struct btrfs_extent_data_ref *ref;
1289 while (ret == -EEXIST) {
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1292 if (match_extent_data_ref(leaf, ref, root_objectid,
1293 owner, offset))
1294 break;
b3b4aa74 1295 btrfs_release_path(path);
5d4f98a2
YZ
1296 key.offset++;
1297 ret = btrfs_insert_empty_item(trans, root, path, &key,
1298 size);
1299 if (ret && ret != -EEXIST)
1300 goto fail;
31840ae1 1301
5d4f98a2
YZ
1302 leaf = path->nodes[0];
1303 }
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306 if (ret == 0) {
1307 btrfs_set_extent_data_ref_root(leaf, ref,
1308 root_objectid);
1309 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1310 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1311 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1312 } else {
1313 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1314 num_refs += refs_to_add;
1315 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1316 }
31840ae1 1317 }
5d4f98a2
YZ
1318 btrfs_mark_buffer_dirty(leaf);
1319 ret = 0;
1320fail:
b3b4aa74 1321 btrfs_release_path(path);
7bb86316 1322 return ret;
74493f7a
CM
1323}
1324
5d4f98a2
YZ
1325static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *root,
1327 struct btrfs_path *path,
fcebe456 1328 int refs_to_drop, int *last_ref)
31840ae1 1329{
5d4f98a2
YZ
1330 struct btrfs_key key;
1331 struct btrfs_extent_data_ref *ref1 = NULL;
1332 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1333 struct extent_buffer *leaf;
5d4f98a2 1334 u32 num_refs = 0;
31840ae1
ZY
1335 int ret = 0;
1336
1337 leaf = path->nodes[0];
5d4f98a2
YZ
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339
1340 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354#endif
1355 } else {
1356 BUG();
1357 }
1358
56bec294
CM
1359 BUG_ON(num_refs < refs_to_drop);
1360 num_refs -= refs_to_drop;
5d4f98a2 1361
31840ae1
ZY
1362 if (num_refs == 0) {
1363 ret = btrfs_del_item(trans, root, path);
fcebe456 1364 *last_ref = 1;
31840ae1 1365 } else {
5d4f98a2
YZ
1366 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1367 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1368 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1369 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1370#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1371 else {
1372 struct btrfs_extent_ref_v0 *ref0;
1373 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1374 struct btrfs_extent_ref_v0);
1375 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1376 }
1377#endif
31840ae1
ZY
1378 btrfs_mark_buffer_dirty(leaf);
1379 }
31840ae1
ZY
1380 return ret;
1381}
1382
9ed0dea0 1383static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1384 struct btrfs_extent_inline_ref *iref)
15916de8 1385{
5d4f98a2
YZ
1386 struct btrfs_key key;
1387 struct extent_buffer *leaf;
1388 struct btrfs_extent_data_ref *ref1;
1389 struct btrfs_shared_data_ref *ref2;
1390 u32 num_refs = 0;
1391
1392 leaf = path->nodes[0];
1393 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1394 if (iref) {
1395 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1396 BTRFS_EXTENT_DATA_REF_KEY) {
1397 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1398 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1399 } else {
1400 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1401 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1402 }
1403 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1417#endif
5d4f98a2
YZ
1418 } else {
1419 WARN_ON(1);
1420 }
1421 return num_refs;
1422}
15916de8 1423
5d4f98a2
YZ
1424static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root,
1426 struct btrfs_path *path,
1427 u64 bytenr, u64 parent,
1428 u64 root_objectid)
1f3c79a2 1429{
5d4f98a2 1430 struct btrfs_key key;
1f3c79a2 1431 int ret;
1f3c79a2 1432
5d4f98a2
YZ
1433 key.objectid = bytenr;
1434 if (parent) {
1435 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1436 key.offset = parent;
1437 } else {
1438 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1439 key.offset = root_objectid;
1f3c79a2
LH
1440 }
1441
5d4f98a2
YZ
1442 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1443 if (ret > 0)
1444 ret = -ENOENT;
1445#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1446 if (ret == -ENOENT && parent) {
b3b4aa74 1447 btrfs_release_path(path);
5d4f98a2
YZ
1448 key.type = BTRFS_EXTENT_REF_V0_KEY;
1449 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1450 if (ret > 0)
1451 ret = -ENOENT;
1452 }
1f3c79a2 1453#endif
5d4f98a2 1454 return ret;
1f3c79a2
LH
1455}
1456
5d4f98a2
YZ
1457static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root,
1459 struct btrfs_path *path,
1460 u64 bytenr, u64 parent,
1461 u64 root_objectid)
31840ae1 1462{
5d4f98a2 1463 struct btrfs_key key;
31840ae1 1464 int ret;
31840ae1 1465
5d4f98a2
YZ
1466 key.objectid = bytenr;
1467 if (parent) {
1468 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1469 key.offset = parent;
1470 } else {
1471 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1472 key.offset = root_objectid;
1473 }
1474
1475 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1476 btrfs_release_path(path);
31840ae1
ZY
1477 return ret;
1478}
1479
5d4f98a2 1480static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1481{
5d4f98a2
YZ
1482 int type;
1483 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1484 if (parent > 0)
1485 type = BTRFS_SHARED_BLOCK_REF_KEY;
1486 else
1487 type = BTRFS_TREE_BLOCK_REF_KEY;
1488 } else {
1489 if (parent > 0)
1490 type = BTRFS_SHARED_DATA_REF_KEY;
1491 else
1492 type = BTRFS_EXTENT_DATA_REF_KEY;
1493 }
1494 return type;
31840ae1 1495}
56bec294 1496
2c47e605
YZ
1497static int find_next_key(struct btrfs_path *path, int level,
1498 struct btrfs_key *key)
56bec294 1499
02217ed2 1500{
2c47e605 1501 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1502 if (!path->nodes[level])
1503 break;
5d4f98a2
YZ
1504 if (path->slots[level] + 1 >=
1505 btrfs_header_nritems(path->nodes[level]))
1506 continue;
1507 if (level == 0)
1508 btrfs_item_key_to_cpu(path->nodes[level], key,
1509 path->slots[level] + 1);
1510 else
1511 btrfs_node_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 return 0;
1514 }
1515 return 1;
1516}
037e6390 1517
5d4f98a2
YZ
1518/*
1519 * look for inline back ref. if back ref is found, *ref_ret is set
1520 * to the address of inline back ref, and 0 is returned.
1521 *
1522 * if back ref isn't found, *ref_ret is set to the address where it
1523 * should be inserted, and -ENOENT is returned.
1524 *
1525 * if insert is true and there are too many inline back refs, the path
1526 * points to the extent item, and -EAGAIN is returned.
1527 *
1528 * NOTE: inline back refs are ordered in the same way that back ref
1529 * items in the tree are ordered.
1530 */
1531static noinline_for_stack
1532int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1533 struct btrfs_root *root,
1534 struct btrfs_path *path,
1535 struct btrfs_extent_inline_ref **ref_ret,
1536 u64 bytenr, u64 num_bytes,
1537 u64 parent, u64 root_objectid,
1538 u64 owner, u64 offset, int insert)
1539{
1540 struct btrfs_key key;
1541 struct extent_buffer *leaf;
1542 struct btrfs_extent_item *ei;
1543 struct btrfs_extent_inline_ref *iref;
1544 u64 flags;
1545 u64 item_size;
1546 unsigned long ptr;
1547 unsigned long end;
1548 int extra_size;
1549 int type;
1550 int want;
1551 int ret;
1552 int err = 0;
3173a18f
JB
1553 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1554 SKINNY_METADATA);
26b8003f 1555
db94535d 1556 key.objectid = bytenr;
31840ae1 1557 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1558 key.offset = num_bytes;
31840ae1 1559
5d4f98a2
YZ
1560 want = extent_ref_type(parent, owner);
1561 if (insert) {
1562 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1563 path->keep_locks = 1;
5d4f98a2
YZ
1564 } else
1565 extra_size = -1;
3173a18f
JB
1566
1567 /*
1568 * Owner is our parent level, so we can just add one to get the level
1569 * for the block we are interested in.
1570 */
1571 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1572 key.type = BTRFS_METADATA_ITEM_KEY;
1573 key.offset = owner;
1574 }
1575
1576again:
5d4f98a2 1577 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1578 if (ret < 0) {
5d4f98a2
YZ
1579 err = ret;
1580 goto out;
1581 }
3173a18f
JB
1582
1583 /*
1584 * We may be a newly converted file system which still has the old fat
1585 * extent entries for metadata, so try and see if we have one of those.
1586 */
1587 if (ret > 0 && skinny_metadata) {
1588 skinny_metadata = false;
1589 if (path->slots[0]) {
1590 path->slots[0]--;
1591 btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 path->slots[0]);
1593 if (key.objectid == bytenr &&
1594 key.type == BTRFS_EXTENT_ITEM_KEY &&
1595 key.offset == num_bytes)
1596 ret = 0;
1597 }
1598 if (ret) {
9ce49a0b 1599 key.objectid = bytenr;
3173a18f
JB
1600 key.type = BTRFS_EXTENT_ITEM_KEY;
1601 key.offset = num_bytes;
1602 btrfs_release_path(path);
1603 goto again;
1604 }
1605 }
1606
79787eaa
JM
1607 if (ret && !insert) {
1608 err = -ENOENT;
1609 goto out;
fae7f21c 1610 } else if (WARN_ON(ret)) {
492104c8 1611 err = -EIO;
492104c8 1612 goto out;
79787eaa 1613 }
5d4f98a2
YZ
1614
1615 leaf = path->nodes[0];
1616 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1617#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1618 if (item_size < sizeof(*ei)) {
1619 if (!insert) {
1620 err = -ENOENT;
1621 goto out;
1622 }
1623 ret = convert_extent_item_v0(trans, root, path, owner,
1624 extra_size);
1625 if (ret < 0) {
1626 err = ret;
1627 goto out;
1628 }
1629 leaf = path->nodes[0];
1630 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1631 }
1632#endif
1633 BUG_ON(item_size < sizeof(*ei));
1634
5d4f98a2
YZ
1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 flags = btrfs_extent_flags(leaf, ei);
1637
1638 ptr = (unsigned long)(ei + 1);
1639 end = (unsigned long)ei + item_size;
1640
3173a18f 1641 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1642 ptr += sizeof(struct btrfs_tree_block_info);
1643 BUG_ON(ptr > end);
5d4f98a2
YZ
1644 }
1645
1646 err = -ENOENT;
1647 while (1) {
1648 if (ptr >= end) {
1649 WARN_ON(ptr > end);
1650 break;
1651 }
1652 iref = (struct btrfs_extent_inline_ref *)ptr;
1653 type = btrfs_extent_inline_ref_type(leaf, iref);
1654 if (want < type)
1655 break;
1656 if (want > type) {
1657 ptr += btrfs_extent_inline_ref_size(type);
1658 continue;
1659 }
1660
1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 struct btrfs_extent_data_ref *dref;
1663 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1664 if (match_extent_data_ref(leaf, dref, root_objectid,
1665 owner, offset)) {
1666 err = 0;
1667 break;
1668 }
1669 if (hash_extent_data_ref_item(leaf, dref) <
1670 hash_extent_data_ref(root_objectid, owner, offset))
1671 break;
1672 } else {
1673 u64 ref_offset;
1674 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1675 if (parent > 0) {
1676 if (parent == ref_offset) {
1677 err = 0;
1678 break;
1679 }
1680 if (ref_offset < parent)
1681 break;
1682 } else {
1683 if (root_objectid == ref_offset) {
1684 err = 0;
1685 break;
1686 }
1687 if (ref_offset < root_objectid)
1688 break;
1689 }
1690 }
1691 ptr += btrfs_extent_inline_ref_size(type);
1692 }
1693 if (err == -ENOENT && insert) {
1694 if (item_size + extra_size >=
1695 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1696 err = -EAGAIN;
1697 goto out;
1698 }
1699 /*
1700 * To add new inline back ref, we have to make sure
1701 * there is no corresponding back ref item.
1702 * For simplicity, we just do not add new inline back
1703 * ref if there is any kind of item for this block
1704 */
2c47e605
YZ
1705 if (find_next_key(path, 0, &key) == 0 &&
1706 key.objectid == bytenr &&
85d4198e 1707 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1708 err = -EAGAIN;
1709 goto out;
1710 }
1711 }
1712 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1713out:
85d4198e 1714 if (insert) {
5d4f98a2
YZ
1715 path->keep_locks = 0;
1716 btrfs_unlock_up_safe(path, 1);
1717 }
1718 return err;
1719}
1720
1721/*
1722 * helper to add new inline back ref
1723 */
1724static noinline_for_stack
fd279fae 1725void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref *iref,
1728 u64 parent, u64 root_objectid,
1729 u64 owner, u64 offset, int refs_to_add,
1730 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1731{
1732 struct extent_buffer *leaf;
1733 struct btrfs_extent_item *ei;
1734 unsigned long ptr;
1735 unsigned long end;
1736 unsigned long item_offset;
1737 u64 refs;
1738 int size;
1739 int type;
5d4f98a2
YZ
1740
1741 leaf = path->nodes[0];
1742 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1743 item_offset = (unsigned long)iref - (unsigned long)ei;
1744
1745 type = extent_ref_type(parent, owner);
1746 size = btrfs_extent_inline_ref_size(type);
1747
4b90c680 1748 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1749
1750 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1751 refs = btrfs_extent_refs(leaf, ei);
1752 refs += refs_to_add;
1753 btrfs_set_extent_refs(leaf, ei, refs);
1754 if (extent_op)
1755 __run_delayed_extent_op(extent_op, leaf, ei);
1756
1757 ptr = (unsigned long)ei + item_offset;
1758 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1759 if (ptr < end - size)
1760 memmove_extent_buffer(leaf, ptr + size, ptr,
1761 end - size - ptr);
1762
1763 iref = (struct btrfs_extent_inline_ref *)ptr;
1764 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1765 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1766 struct btrfs_extent_data_ref *dref;
1767 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1768 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1769 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1770 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1771 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1772 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1773 struct btrfs_shared_data_ref *sref;
1774 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1775 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1776 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1777 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1778 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1779 } else {
1780 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1781 }
1782 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1783}
1784
1785static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1786 struct btrfs_root *root,
1787 struct btrfs_path *path,
1788 struct btrfs_extent_inline_ref **ref_ret,
1789 u64 bytenr, u64 num_bytes, u64 parent,
1790 u64 root_objectid, u64 owner, u64 offset)
1791{
1792 int ret;
1793
1794 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1795 bytenr, num_bytes, parent,
1796 root_objectid, owner, offset, 0);
1797 if (ret != -ENOENT)
54aa1f4d 1798 return ret;
5d4f98a2 1799
b3b4aa74 1800 btrfs_release_path(path);
5d4f98a2
YZ
1801 *ref_ret = NULL;
1802
1803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1804 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1805 root_objectid);
1806 } else {
1807 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1808 root_objectid, owner, offset);
b9473439 1809 }
5d4f98a2
YZ
1810 return ret;
1811}
31840ae1 1812
5d4f98a2
YZ
1813/*
1814 * helper to update/remove inline back ref
1815 */
1816static noinline_for_stack
afe5fea7 1817void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref *iref,
1820 int refs_to_mod,
fcebe456
JB
1821 struct btrfs_delayed_extent_op *extent_op,
1822 int *last_ref)
5d4f98a2
YZ
1823{
1824 struct extent_buffer *leaf;
1825 struct btrfs_extent_item *ei;
1826 struct btrfs_extent_data_ref *dref = NULL;
1827 struct btrfs_shared_data_ref *sref = NULL;
1828 unsigned long ptr;
1829 unsigned long end;
1830 u32 item_size;
1831 int size;
1832 int type;
5d4f98a2
YZ
1833 u64 refs;
1834
1835 leaf = path->nodes[0];
1836 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1837 refs = btrfs_extent_refs(leaf, ei);
1838 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1839 refs += refs_to_mod;
1840 btrfs_set_extent_refs(leaf, ei, refs);
1841 if (extent_op)
1842 __run_delayed_extent_op(extent_op, leaf, ei);
1843
1844 type = btrfs_extent_inline_ref_type(leaf, iref);
1845
1846 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1847 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1848 refs = btrfs_extent_data_ref_count(leaf, dref);
1849 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1850 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1851 refs = btrfs_shared_data_ref_count(leaf, sref);
1852 } else {
1853 refs = 1;
1854 BUG_ON(refs_to_mod != -1);
56bec294 1855 }
31840ae1 1856
5d4f98a2
YZ
1857 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1858 refs += refs_to_mod;
1859
1860 if (refs > 0) {
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1862 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1863 else
1864 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1865 } else {
fcebe456 1866 *last_ref = 1;
5d4f98a2
YZ
1867 size = btrfs_extent_inline_ref_size(type);
1868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1869 ptr = (unsigned long)iref;
1870 end = (unsigned long)ei + item_size;
1871 if (ptr + size < end)
1872 memmove_extent_buffer(leaf, ptr, ptr + size,
1873 end - ptr - size);
1874 item_size -= size;
afe5fea7 1875 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1876 }
1877 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1878}
1879
1880static noinline_for_stack
1881int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1882 struct btrfs_root *root,
1883 struct btrfs_path *path,
1884 u64 bytenr, u64 num_bytes, u64 parent,
1885 u64 root_objectid, u64 owner,
1886 u64 offset, int refs_to_add,
1887 struct btrfs_delayed_extent_op *extent_op)
1888{
1889 struct btrfs_extent_inline_ref *iref;
1890 int ret;
1891
1892 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1893 bytenr, num_bytes, parent,
1894 root_objectid, owner, offset, 1);
1895 if (ret == 0) {
1896 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1897 update_inline_extent_backref(root, path, iref,
fcebe456 1898 refs_to_add, extent_op, NULL);
5d4f98a2 1899 } else if (ret == -ENOENT) {
fd279fae 1900 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1901 root_objectid, owner, offset,
1902 refs_to_add, extent_op);
1903 ret = 0;
771ed689 1904 }
5d4f98a2
YZ
1905 return ret;
1906}
31840ae1 1907
5d4f98a2
YZ
1908static int insert_extent_backref(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *root,
1910 struct btrfs_path *path,
1911 u64 bytenr, u64 parent, u64 root_objectid,
1912 u64 owner, u64 offset, int refs_to_add)
1913{
1914 int ret;
1915 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1916 BUG_ON(refs_to_add != 1);
1917 ret = insert_tree_block_ref(trans, root, path, bytenr,
1918 parent, root_objectid);
1919 } else {
1920 ret = insert_extent_data_ref(trans, root, path, bytenr,
1921 parent, root_objectid,
1922 owner, offset, refs_to_add);
1923 }
1924 return ret;
1925}
56bec294 1926
5d4f98a2
YZ
1927static int remove_extent_backref(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct btrfs_extent_inline_ref *iref,
fcebe456 1931 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1932{
143bede5 1933 int ret = 0;
b9473439 1934
5d4f98a2
YZ
1935 BUG_ON(!is_data && refs_to_drop != 1);
1936 if (iref) {
afe5fea7 1937 update_inline_extent_backref(root, path, iref,
fcebe456 1938 -refs_to_drop, NULL, last_ref);
5d4f98a2 1939 } else if (is_data) {
fcebe456
JB
1940 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1941 last_ref);
5d4f98a2 1942 } else {
fcebe456 1943 *last_ref = 1;
5d4f98a2
YZ
1944 ret = btrfs_del_item(trans, root, path);
1945 }
1946 return ret;
1947}
1948
86557861 1949#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1950static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1951 u64 *discarded_bytes)
5d4f98a2 1952{
86557861
JM
1953 int j, ret = 0;
1954 u64 bytes_left, end;
4d89d377 1955 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1956
4d89d377
JM
1957 if (WARN_ON(start != aligned_start)) {
1958 len -= aligned_start - start;
1959 len = round_down(len, 1 << 9);
1960 start = aligned_start;
1961 }
d04c6b88 1962
4d89d377 1963 *discarded_bytes = 0;
86557861
JM
1964
1965 if (!len)
1966 return 0;
1967
1968 end = start + len;
1969 bytes_left = len;
1970
1971 /* Skip any superblocks on this device. */
1972 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1973 u64 sb_start = btrfs_sb_offset(j);
1974 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1975 u64 size = sb_start - start;
1976
1977 if (!in_range(sb_start, start, bytes_left) &&
1978 !in_range(sb_end, start, bytes_left) &&
1979 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1980 continue;
1981
1982 /*
1983 * Superblock spans beginning of range. Adjust start and
1984 * try again.
1985 */
1986 if (sb_start <= start) {
1987 start += sb_end - start;
1988 if (start > end) {
1989 bytes_left = 0;
1990 break;
1991 }
1992 bytes_left = end - start;
1993 continue;
1994 }
1995
1996 if (size) {
1997 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1998 GFP_NOFS, 0);
1999 if (!ret)
2000 *discarded_bytes += size;
2001 else if (ret != -EOPNOTSUPP)
2002 return ret;
2003 }
2004
2005 start = sb_end;
2006 if (start > end) {
2007 bytes_left = 0;
2008 break;
2009 }
2010 bytes_left = end - start;
2011 }
2012
2013 if (bytes_left) {
2014 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2015 GFP_NOFS, 0);
2016 if (!ret)
86557861 2017 *discarded_bytes += bytes_left;
4d89d377 2018 }
d04c6b88 2019 return ret;
5d4f98a2 2020}
5d4f98a2 2021
1edb647b
FM
2022int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2023 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2024{
5d4f98a2 2025 int ret;
5378e607 2026 u64 discarded_bytes = 0;
a1d3c478 2027 struct btrfs_bio *bbio = NULL;
5d4f98a2 2028
e244a0ae 2029
5d4f98a2 2030 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2031 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2032 bytenr, &num_bytes, &bbio, 0);
79787eaa 2033 /* Error condition is -ENOMEM */
5d4f98a2 2034 if (!ret) {
a1d3c478 2035 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2036 int i;
2037
5d4f98a2 2038
a1d3c478 2039 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2040 u64 bytes;
d5e2003c
JB
2041 if (!stripe->dev->can_discard)
2042 continue;
2043
5378e607
LD
2044 ret = btrfs_issue_discard(stripe->dev->bdev,
2045 stripe->physical,
d04c6b88
JM
2046 stripe->length,
2047 &bytes);
5378e607 2048 if (!ret)
d04c6b88 2049 discarded_bytes += bytes;
5378e607 2050 else if (ret != -EOPNOTSUPP)
79787eaa 2051 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2052
2053 /*
2054 * Just in case we get back EOPNOTSUPP for some reason,
2055 * just ignore the return value so we don't screw up
2056 * people calling discard_extent.
2057 */
2058 ret = 0;
5d4f98a2 2059 }
6e9606d2 2060 btrfs_put_bbio(bbio);
5d4f98a2 2061 }
5378e607
LD
2062
2063 if (actual_bytes)
2064 *actual_bytes = discarded_bytes;
2065
5d4f98a2 2066
53b381b3
DW
2067 if (ret == -EOPNOTSUPP)
2068 ret = 0;
5d4f98a2 2069 return ret;
5d4f98a2
YZ
2070}
2071
79787eaa 2072/* Can return -ENOMEM */
5d4f98a2
YZ
2073int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2074 struct btrfs_root *root,
2075 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2076 u64 root_objectid, u64 owner, u64 offset,
2077 int no_quota)
5d4f98a2
YZ
2078{
2079 int ret;
66d7e7f0
AJ
2080 struct btrfs_fs_info *fs_info = root->fs_info;
2081
5d4f98a2
YZ
2082 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2083 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2084
2085 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2086 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2087 num_bytes,
5d4f98a2 2088 parent, root_objectid, (int)owner,
fcebe456 2089 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2090 } else {
66d7e7f0
AJ
2091 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2092 num_bytes,
5d4f98a2 2093 parent, root_objectid, owner, offset,
fcebe456 2094 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2095 }
2096 return ret;
2097}
2098
2099static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
c682f9b3 2101 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2102 u64 parent, u64 root_objectid,
2103 u64 owner, u64 offset, int refs_to_add,
2104 struct btrfs_delayed_extent_op *extent_op)
2105{
fcebe456 2106 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2107 struct btrfs_path *path;
2108 struct extent_buffer *leaf;
2109 struct btrfs_extent_item *item;
fcebe456 2110 struct btrfs_key key;
c682f9b3
QW
2111 u64 bytenr = node->bytenr;
2112 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2113 u64 refs;
2114 int ret;
c682f9b3 2115 int no_quota = node->no_quota;
5d4f98a2
YZ
2116
2117 path = btrfs_alloc_path();
2118 if (!path)
2119 return -ENOMEM;
2120
fcebe456
JB
2121 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2122 no_quota = 1;
2123
5d4f98a2
YZ
2124 path->reada = 1;
2125 path->leave_spinning = 1;
2126 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2127 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2128 bytenr, num_bytes, parent,
5d4f98a2
YZ
2129 root_objectid, owner, offset,
2130 refs_to_add, extent_op);
0ed4792a 2131 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2132 goto out;
fcebe456
JB
2133
2134 /*
2135 * Ok we had -EAGAIN which means we didn't have space to insert and
2136 * inline extent ref, so just update the reference count and add a
2137 * normal backref.
2138 */
5d4f98a2 2139 leaf = path->nodes[0];
fcebe456 2140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2141 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2142 refs = btrfs_extent_refs(leaf, item);
2143 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2144 if (extent_op)
2145 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2146
5d4f98a2 2147 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2148 btrfs_release_path(path);
56bec294
CM
2149
2150 path->reada = 1;
b9473439 2151 path->leave_spinning = 1;
56bec294
CM
2152 /* now insert the actual backref */
2153 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2154 path, bytenr, parent, root_objectid,
2155 owner, offset, refs_to_add);
79787eaa
JM
2156 if (ret)
2157 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2158out:
56bec294 2159 btrfs_free_path(path);
30d133fc 2160 return ret;
56bec294
CM
2161}
2162
5d4f98a2
YZ
2163static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2164 struct btrfs_root *root,
2165 struct btrfs_delayed_ref_node *node,
2166 struct btrfs_delayed_extent_op *extent_op,
2167 int insert_reserved)
56bec294 2168{
5d4f98a2
YZ
2169 int ret = 0;
2170 struct btrfs_delayed_data_ref *ref;
2171 struct btrfs_key ins;
2172 u64 parent = 0;
2173 u64 ref_root = 0;
2174 u64 flags = 0;
2175
2176 ins.objectid = node->bytenr;
2177 ins.offset = node->num_bytes;
2178 ins.type = BTRFS_EXTENT_ITEM_KEY;
2179
2180 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2181 trace_run_delayed_data_ref(node, ref, node->action);
2182
5d4f98a2
YZ
2183 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2184 parent = ref->parent;
fcebe456 2185 ref_root = ref->root;
5d4f98a2
YZ
2186
2187 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2188 if (extent_op)
5d4f98a2 2189 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2190 ret = alloc_reserved_file_extent(trans, root,
2191 parent, ref_root, flags,
2192 ref->objectid, ref->offset,
2193 &ins, node->ref_mod);
5d4f98a2 2194 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2195 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2196 ref_root, ref->objectid,
2197 ref->offset, node->ref_mod,
c682f9b3 2198 extent_op);
5d4f98a2 2199 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2200 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2201 ref_root, ref->objectid,
2202 ref->offset, node->ref_mod,
c682f9b3 2203 extent_op);
5d4f98a2
YZ
2204 } else {
2205 BUG();
2206 }
2207 return ret;
2208}
2209
2210static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2211 struct extent_buffer *leaf,
2212 struct btrfs_extent_item *ei)
2213{
2214 u64 flags = btrfs_extent_flags(leaf, ei);
2215 if (extent_op->update_flags) {
2216 flags |= extent_op->flags_to_set;
2217 btrfs_set_extent_flags(leaf, ei, flags);
2218 }
2219
2220 if (extent_op->update_key) {
2221 struct btrfs_tree_block_info *bi;
2222 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2223 bi = (struct btrfs_tree_block_info *)(ei + 1);
2224 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2225 }
2226}
2227
2228static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2229 struct btrfs_root *root,
2230 struct btrfs_delayed_ref_node *node,
2231 struct btrfs_delayed_extent_op *extent_op)
2232{
2233 struct btrfs_key key;
2234 struct btrfs_path *path;
2235 struct btrfs_extent_item *ei;
2236 struct extent_buffer *leaf;
2237 u32 item_size;
56bec294 2238 int ret;
5d4f98a2 2239 int err = 0;
b1c79e09 2240 int metadata = !extent_op->is_data;
5d4f98a2 2241
79787eaa
JM
2242 if (trans->aborted)
2243 return 0;
2244
3173a18f
JB
2245 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2246 metadata = 0;
2247
5d4f98a2
YZ
2248 path = btrfs_alloc_path();
2249 if (!path)
2250 return -ENOMEM;
2251
2252 key.objectid = node->bytenr;
5d4f98a2 2253
3173a18f 2254 if (metadata) {
3173a18f 2255 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2256 key.offset = extent_op->level;
3173a18f
JB
2257 } else {
2258 key.type = BTRFS_EXTENT_ITEM_KEY;
2259 key.offset = node->num_bytes;
2260 }
2261
2262again:
5d4f98a2
YZ
2263 path->reada = 1;
2264 path->leave_spinning = 1;
2265 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2266 path, 0, 1);
2267 if (ret < 0) {
2268 err = ret;
2269 goto out;
2270 }
2271 if (ret > 0) {
3173a18f 2272 if (metadata) {
55994887
FDBM
2273 if (path->slots[0] > 0) {
2274 path->slots[0]--;
2275 btrfs_item_key_to_cpu(path->nodes[0], &key,
2276 path->slots[0]);
2277 if (key.objectid == node->bytenr &&
2278 key.type == BTRFS_EXTENT_ITEM_KEY &&
2279 key.offset == node->num_bytes)
2280 ret = 0;
2281 }
2282 if (ret > 0) {
2283 btrfs_release_path(path);
2284 metadata = 0;
3173a18f 2285
55994887
FDBM
2286 key.objectid = node->bytenr;
2287 key.offset = node->num_bytes;
2288 key.type = BTRFS_EXTENT_ITEM_KEY;
2289 goto again;
2290 }
2291 } else {
2292 err = -EIO;
2293 goto out;
3173a18f 2294 }
5d4f98a2
YZ
2295 }
2296
2297 leaf = path->nodes[0];
2298 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2299#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2300 if (item_size < sizeof(*ei)) {
2301 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2302 path, (u64)-1, 0);
2303 if (ret < 0) {
2304 err = ret;
2305 goto out;
2306 }
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309 }
2310#endif
2311 BUG_ON(item_size < sizeof(*ei));
2312 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2313 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2314
5d4f98a2
YZ
2315 btrfs_mark_buffer_dirty(leaf);
2316out:
2317 btrfs_free_path(path);
2318 return err;
56bec294
CM
2319}
2320
5d4f98a2
YZ
2321static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 struct btrfs_delayed_ref_node *node,
2324 struct btrfs_delayed_extent_op *extent_op,
2325 int insert_reserved)
56bec294
CM
2326{
2327 int ret = 0;
5d4f98a2
YZ
2328 struct btrfs_delayed_tree_ref *ref;
2329 struct btrfs_key ins;
2330 u64 parent = 0;
2331 u64 ref_root = 0;
3173a18f
JB
2332 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2333 SKINNY_METADATA);
56bec294 2334
5d4f98a2 2335 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2336 trace_run_delayed_tree_ref(node, ref, node->action);
2337
5d4f98a2
YZ
2338 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2339 parent = ref->parent;
fcebe456 2340 ref_root = ref->root;
5d4f98a2 2341
3173a18f
JB
2342 ins.objectid = node->bytenr;
2343 if (skinny_metadata) {
2344 ins.offset = ref->level;
2345 ins.type = BTRFS_METADATA_ITEM_KEY;
2346 } else {
2347 ins.offset = node->num_bytes;
2348 ins.type = BTRFS_EXTENT_ITEM_KEY;
2349 }
2350
5d4f98a2
YZ
2351 BUG_ON(node->ref_mod != 1);
2352 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2353 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2354 ret = alloc_reserved_tree_block(trans, root,
2355 parent, ref_root,
2356 extent_op->flags_to_set,
2357 &extent_op->key,
fcebe456
JB
2358 ref->level, &ins,
2359 node->no_quota);
5d4f98a2 2360 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2361 ret = __btrfs_inc_extent_ref(trans, root, node,
2362 parent, ref_root,
2363 ref->level, 0, 1,
fcebe456 2364 extent_op);
5d4f98a2 2365 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2366 ret = __btrfs_free_extent(trans, root, node,
2367 parent, ref_root,
2368 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2369 } else {
2370 BUG();
2371 }
56bec294
CM
2372 return ret;
2373}
2374
2375/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2376static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2377 struct btrfs_root *root,
2378 struct btrfs_delayed_ref_node *node,
2379 struct btrfs_delayed_extent_op *extent_op,
2380 int insert_reserved)
56bec294 2381{
79787eaa
JM
2382 int ret = 0;
2383
857cc2fc
JB
2384 if (trans->aborted) {
2385 if (insert_reserved)
2386 btrfs_pin_extent(root, node->bytenr,
2387 node->num_bytes, 1);
79787eaa 2388 return 0;
857cc2fc 2389 }
79787eaa 2390
5d4f98a2 2391 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2392 struct btrfs_delayed_ref_head *head;
2393 /*
2394 * we've hit the end of the chain and we were supposed
2395 * to insert this extent into the tree. But, it got
2396 * deleted before we ever needed to insert it, so all
2397 * we have to do is clean up the accounting
2398 */
5d4f98a2
YZ
2399 BUG_ON(extent_op);
2400 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2401 trace_run_delayed_ref_head(node, head, node->action);
2402
56bec294 2403 if (insert_reserved) {
f0486c68
YZ
2404 btrfs_pin_extent(root, node->bytenr,
2405 node->num_bytes, 1);
5d4f98a2
YZ
2406 if (head->is_data) {
2407 ret = btrfs_del_csums(trans, root,
2408 node->bytenr,
2409 node->num_bytes);
5d4f98a2 2410 }
56bec294 2411 }
79787eaa 2412 return ret;
56bec294
CM
2413 }
2414
5d4f98a2
YZ
2415 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2416 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2417 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2418 insert_reserved);
2419 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2420 node->type == BTRFS_SHARED_DATA_REF_KEY)
2421 ret = run_delayed_data_ref(trans, root, node, extent_op,
2422 insert_reserved);
2423 else
2424 BUG();
2425 return ret;
56bec294
CM
2426}
2427
c6fc2454 2428static inline struct btrfs_delayed_ref_node *
56bec294
CM
2429select_delayed_ref(struct btrfs_delayed_ref_head *head)
2430{
cffc3374
FM
2431 struct btrfs_delayed_ref_node *ref;
2432
c6fc2454
QW
2433 if (list_empty(&head->ref_list))
2434 return NULL;
d7df2c79 2435
cffc3374
FM
2436 /*
2437 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2438 * This is to prevent a ref count from going down to zero, which deletes
2439 * the extent item from the extent tree, when there still are references
2440 * to add, which would fail because they would not find the extent item.
2441 */
2442 list_for_each_entry(ref, &head->ref_list, list) {
2443 if (ref->action == BTRFS_ADD_DELAYED_REF)
2444 return ref;
2445 }
2446
c6fc2454
QW
2447 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2448 list);
56bec294
CM
2449}
2450
79787eaa
JM
2451/*
2452 * Returns 0 on success or if called with an already aborted transaction.
2453 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2454 */
d7df2c79
JB
2455static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2456 struct btrfs_root *root,
2457 unsigned long nr)
56bec294 2458{
56bec294
CM
2459 struct btrfs_delayed_ref_root *delayed_refs;
2460 struct btrfs_delayed_ref_node *ref;
2461 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2462 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2463 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2464 ktime_t start = ktime_get();
56bec294 2465 int ret;
d7df2c79 2466 unsigned long count = 0;
0a2b2a84 2467 unsigned long actual_count = 0;
56bec294 2468 int must_insert_reserved = 0;
56bec294
CM
2469
2470 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2471 while (1) {
2472 if (!locked_ref) {
d7df2c79 2473 if (count >= nr)
56bec294 2474 break;
56bec294 2475
d7df2c79
JB
2476 spin_lock(&delayed_refs->lock);
2477 locked_ref = btrfs_select_ref_head(trans);
2478 if (!locked_ref) {
2479 spin_unlock(&delayed_refs->lock);
2480 break;
2481 }
c3e69d58
CM
2482
2483 /* grab the lock that says we are going to process
2484 * all the refs for this head */
2485 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2486 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2487 /*
2488 * we may have dropped the spin lock to get the head
2489 * mutex lock, and that might have given someone else
2490 * time to free the head. If that's true, it has been
2491 * removed from our list and we can move on.
2492 */
2493 if (ret == -EAGAIN) {
2494 locked_ref = NULL;
2495 count++;
2496 continue;
56bec294
CM
2497 }
2498 }
a28ec197 2499
d7df2c79 2500 spin_lock(&locked_ref->lock);
ae1e206b 2501
d1270cd9
AJ
2502 /*
2503 * locked_ref is the head node, so we have to go one
2504 * node back for any delayed ref updates
2505 */
2506 ref = select_delayed_ref(locked_ref);
2507
2508 if (ref && ref->seq &&
097b8a7c 2509 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2510 spin_unlock(&locked_ref->lock);
093486c4 2511 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2512 spin_lock(&delayed_refs->lock);
2513 locked_ref->processing = 0;
d1270cd9
AJ
2514 delayed_refs->num_heads_ready++;
2515 spin_unlock(&delayed_refs->lock);
d7df2c79 2516 locked_ref = NULL;
d1270cd9 2517 cond_resched();
27a377db 2518 count++;
d1270cd9
AJ
2519 continue;
2520 }
2521
56bec294
CM
2522 /*
2523 * record the must insert reserved flag before we
2524 * drop the spin lock.
2525 */
2526 must_insert_reserved = locked_ref->must_insert_reserved;
2527 locked_ref->must_insert_reserved = 0;
7bb86316 2528
5d4f98a2
YZ
2529 extent_op = locked_ref->extent_op;
2530 locked_ref->extent_op = NULL;
2531
56bec294 2532 if (!ref) {
d7df2c79
JB
2533
2534
56bec294
CM
2535 /* All delayed refs have been processed, Go ahead
2536 * and send the head node to run_one_delayed_ref,
2537 * so that any accounting fixes can happen
2538 */
2539 ref = &locked_ref->node;
5d4f98a2
YZ
2540
2541 if (extent_op && must_insert_reserved) {
78a6184a 2542 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2543 extent_op = NULL;
2544 }
2545
2546 if (extent_op) {
d7df2c79 2547 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2548 ret = run_delayed_extent_op(trans, root,
2549 ref, extent_op);
78a6184a 2550 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2551
79787eaa 2552 if (ret) {
857cc2fc
JB
2553 /*
2554 * Need to reset must_insert_reserved if
2555 * there was an error so the abort stuff
2556 * can cleanup the reserved space
2557 * properly.
2558 */
2559 if (must_insert_reserved)
2560 locked_ref->must_insert_reserved = 1;
d7df2c79 2561 locked_ref->processing = 0;
c2cf52eb 2562 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2563 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2564 return ret;
2565 }
d7df2c79 2566 continue;
5d4f98a2 2567 }
02217ed2 2568
d7df2c79
JB
2569 /*
2570 * Need to drop our head ref lock and re-aqcuire the
2571 * delayed ref lock and then re-check to make sure
2572 * nobody got added.
2573 */
2574 spin_unlock(&locked_ref->lock);
2575 spin_lock(&delayed_refs->lock);
2576 spin_lock(&locked_ref->lock);
c6fc2454 2577 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2578 locked_ref->extent_op) {
d7df2c79
JB
2579 spin_unlock(&locked_ref->lock);
2580 spin_unlock(&delayed_refs->lock);
2581 continue;
2582 }
2583 ref->in_tree = 0;
2584 delayed_refs->num_heads--;
c46effa6
LB
2585 rb_erase(&locked_ref->href_node,
2586 &delayed_refs->href_root);
d7df2c79
JB
2587 spin_unlock(&delayed_refs->lock);
2588 } else {
0a2b2a84 2589 actual_count++;
d7df2c79 2590 ref->in_tree = 0;
c6fc2454 2591 list_del(&ref->list);
c46effa6 2592 }
d7df2c79
JB
2593 atomic_dec(&delayed_refs->num_entries);
2594
093486c4 2595 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2596 /*
2597 * when we play the delayed ref, also correct the
2598 * ref_mod on head
2599 */
2600 switch (ref->action) {
2601 case BTRFS_ADD_DELAYED_REF:
2602 case BTRFS_ADD_DELAYED_EXTENT:
2603 locked_ref->node.ref_mod -= ref->ref_mod;
2604 break;
2605 case BTRFS_DROP_DELAYED_REF:
2606 locked_ref->node.ref_mod += ref->ref_mod;
2607 break;
2608 default:
2609 WARN_ON(1);
2610 }
2611 }
d7df2c79 2612 spin_unlock(&locked_ref->lock);
925baedd 2613
5d4f98a2 2614 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2615 must_insert_reserved);
eb099670 2616
78a6184a 2617 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2618 if (ret) {
d7df2c79 2619 locked_ref->processing = 0;
093486c4
MX
2620 btrfs_delayed_ref_unlock(locked_ref);
2621 btrfs_put_delayed_ref(ref);
c2cf52eb 2622 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2623 return ret;
2624 }
2625
093486c4
MX
2626 /*
2627 * If this node is a head, that means all the refs in this head
2628 * have been dealt with, and we will pick the next head to deal
2629 * with, so we must unlock the head and drop it from the cluster
2630 * list before we release it.
2631 */
2632 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2633 if (locked_ref->is_data &&
2634 locked_ref->total_ref_mod < 0) {
2635 spin_lock(&delayed_refs->lock);
2636 delayed_refs->pending_csums -= ref->num_bytes;
2637 spin_unlock(&delayed_refs->lock);
2638 }
093486c4
MX
2639 btrfs_delayed_ref_unlock(locked_ref);
2640 locked_ref = NULL;
2641 }
2642 btrfs_put_delayed_ref(ref);
2643 count++;
c3e69d58 2644 cond_resched();
c3e69d58 2645 }
0a2b2a84
JB
2646
2647 /*
2648 * We don't want to include ref heads since we can have empty ref heads
2649 * and those will drastically skew our runtime down since we just do
2650 * accounting, no actual extent tree updates.
2651 */
2652 if (actual_count > 0) {
2653 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2654 u64 avg;
2655
2656 /*
2657 * We weigh the current average higher than our current runtime
2658 * to avoid large swings in the average.
2659 */
2660 spin_lock(&delayed_refs->lock);
2661 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2662 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2663 spin_unlock(&delayed_refs->lock);
2664 }
d7df2c79 2665 return 0;
c3e69d58
CM
2666}
2667
709c0486
AJ
2668#ifdef SCRAMBLE_DELAYED_REFS
2669/*
2670 * Normally delayed refs get processed in ascending bytenr order. This
2671 * correlates in most cases to the order added. To expose dependencies on this
2672 * order, we start to process the tree in the middle instead of the beginning
2673 */
2674static u64 find_middle(struct rb_root *root)
2675{
2676 struct rb_node *n = root->rb_node;
2677 struct btrfs_delayed_ref_node *entry;
2678 int alt = 1;
2679 u64 middle;
2680 u64 first = 0, last = 0;
2681
2682 n = rb_first(root);
2683 if (n) {
2684 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2685 first = entry->bytenr;
2686 }
2687 n = rb_last(root);
2688 if (n) {
2689 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2690 last = entry->bytenr;
2691 }
2692 n = root->rb_node;
2693
2694 while (n) {
2695 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2696 WARN_ON(!entry->in_tree);
2697
2698 middle = entry->bytenr;
2699
2700 if (alt)
2701 n = n->rb_left;
2702 else
2703 n = n->rb_right;
2704
2705 alt = 1 - alt;
2706 }
2707 return middle;
2708}
2709#endif
2710
1be41b78
JB
2711static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2712{
2713 u64 num_bytes;
2714
2715 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2716 sizeof(struct btrfs_extent_inline_ref));
2717 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2718 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2719
2720 /*
2721 * We don't ever fill up leaves all the way so multiply by 2 just to be
2722 * closer to what we're really going to want to ouse.
2723 */
f8c269d7 2724 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2725}
2726
1262133b
JB
2727/*
2728 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2729 * would require to store the csums for that many bytes.
2730 */
28f75a0e 2731u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2732{
2733 u64 csum_size;
2734 u64 num_csums_per_leaf;
2735 u64 num_csums;
2736
2737 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2738 num_csums_per_leaf = div64_u64(csum_size,
2739 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2740 num_csums = div64_u64(csum_bytes, root->sectorsize);
2741 num_csums += num_csums_per_leaf - 1;
2742 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2743 return num_csums;
2744}
2745
0a2b2a84 2746int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2747 struct btrfs_root *root)
2748{
2749 struct btrfs_block_rsv *global_rsv;
2750 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2751 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2752 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2753 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2754 int ret = 0;
2755
2756 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2757 num_heads = heads_to_leaves(root, num_heads);
2758 if (num_heads > 1)
707e8a07 2759 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2760 num_bytes <<= 1;
28f75a0e 2761 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2762 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2763 num_dirty_bgs);
1be41b78
JB
2764 global_rsv = &root->fs_info->global_block_rsv;
2765
2766 /*
2767 * If we can't allocate any more chunks lets make sure we have _lots_ of
2768 * wiggle room since running delayed refs can create more delayed refs.
2769 */
cb723e49
JB
2770 if (global_rsv->space_info->full) {
2771 num_dirty_bgs_bytes <<= 1;
1be41b78 2772 num_bytes <<= 1;
cb723e49 2773 }
1be41b78
JB
2774
2775 spin_lock(&global_rsv->lock);
cb723e49 2776 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2777 ret = 1;
2778 spin_unlock(&global_rsv->lock);
2779 return ret;
2780}
2781
0a2b2a84
JB
2782int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2783 struct btrfs_root *root)
2784{
2785 struct btrfs_fs_info *fs_info = root->fs_info;
2786 u64 num_entries =
2787 atomic_read(&trans->transaction->delayed_refs.num_entries);
2788 u64 avg_runtime;
a79b7d4b 2789 u64 val;
0a2b2a84
JB
2790
2791 smp_mb();
2792 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2793 val = num_entries * avg_runtime;
0a2b2a84
JB
2794 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2795 return 1;
a79b7d4b
CM
2796 if (val >= NSEC_PER_SEC / 2)
2797 return 2;
0a2b2a84
JB
2798
2799 return btrfs_check_space_for_delayed_refs(trans, root);
2800}
2801
a79b7d4b
CM
2802struct async_delayed_refs {
2803 struct btrfs_root *root;
2804 int count;
2805 int error;
2806 int sync;
2807 struct completion wait;
2808 struct btrfs_work work;
2809};
2810
2811static void delayed_ref_async_start(struct btrfs_work *work)
2812{
2813 struct async_delayed_refs *async;
2814 struct btrfs_trans_handle *trans;
2815 int ret;
2816
2817 async = container_of(work, struct async_delayed_refs, work);
2818
2819 trans = btrfs_join_transaction(async->root);
2820 if (IS_ERR(trans)) {
2821 async->error = PTR_ERR(trans);
2822 goto done;
2823 }
2824
2825 /*
2826 * trans->sync means that when we call end_transaciton, we won't
2827 * wait on delayed refs
2828 */
2829 trans->sync = true;
2830 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2831 if (ret)
2832 async->error = ret;
2833
2834 ret = btrfs_end_transaction(trans, async->root);
2835 if (ret && !async->error)
2836 async->error = ret;
2837done:
2838 if (async->sync)
2839 complete(&async->wait);
2840 else
2841 kfree(async);
2842}
2843
2844int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2845 unsigned long count, int wait)
2846{
2847 struct async_delayed_refs *async;
2848 int ret;
2849
2850 async = kmalloc(sizeof(*async), GFP_NOFS);
2851 if (!async)
2852 return -ENOMEM;
2853
2854 async->root = root->fs_info->tree_root;
2855 async->count = count;
2856 async->error = 0;
2857 if (wait)
2858 async->sync = 1;
2859 else
2860 async->sync = 0;
2861 init_completion(&async->wait);
2862
9e0af237
LB
2863 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2864 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2865
2866 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2867
2868 if (wait) {
2869 wait_for_completion(&async->wait);
2870 ret = async->error;
2871 kfree(async);
2872 return ret;
2873 }
2874 return 0;
2875}
2876
c3e69d58
CM
2877/*
2878 * this starts processing the delayed reference count updates and
2879 * extent insertions we have queued up so far. count can be
2880 * 0, which means to process everything in the tree at the start
2881 * of the run (but not newly added entries), or it can be some target
2882 * number you'd like to process.
79787eaa
JM
2883 *
2884 * Returns 0 on success or if called with an aborted transaction
2885 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2886 */
2887int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2888 struct btrfs_root *root, unsigned long count)
2889{
2890 struct rb_node *node;
2891 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2892 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2893 int ret;
2894 int run_all = count == (unsigned long)-1;
d9a0540a 2895 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2896
79787eaa
JM
2897 /* We'll clean this up in btrfs_cleanup_transaction */
2898 if (trans->aborted)
2899 return 0;
2900
c3e69d58
CM
2901 if (root == root->fs_info->extent_root)
2902 root = root->fs_info->tree_root;
2903
2904 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2905 if (count == 0)
d7df2c79 2906 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2907
c3e69d58 2908again:
709c0486
AJ
2909#ifdef SCRAMBLE_DELAYED_REFS
2910 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2911#endif
d9a0540a 2912 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2913 ret = __btrfs_run_delayed_refs(trans, root, count);
2914 if (ret < 0) {
2915 btrfs_abort_transaction(trans, root, ret);
2916 return ret;
eb099670 2917 }
c3e69d58 2918
56bec294 2919 if (run_all) {
d7df2c79 2920 if (!list_empty(&trans->new_bgs))
ea658bad 2921 btrfs_create_pending_block_groups(trans, root);
ea658bad 2922
d7df2c79 2923 spin_lock(&delayed_refs->lock);
c46effa6 2924 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2925 if (!node) {
2926 spin_unlock(&delayed_refs->lock);
56bec294 2927 goto out;
d7df2c79 2928 }
c3e69d58 2929 count = (unsigned long)-1;
e9d0b13b 2930
56bec294 2931 while (node) {
c46effa6
LB
2932 head = rb_entry(node, struct btrfs_delayed_ref_head,
2933 href_node);
2934 if (btrfs_delayed_ref_is_head(&head->node)) {
2935 struct btrfs_delayed_ref_node *ref;
5caf2a00 2936
c46effa6 2937 ref = &head->node;
56bec294
CM
2938 atomic_inc(&ref->refs);
2939
2940 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2941 /*
2942 * Mutex was contended, block until it's
2943 * released and try again
2944 */
56bec294
CM
2945 mutex_lock(&head->mutex);
2946 mutex_unlock(&head->mutex);
2947
2948 btrfs_put_delayed_ref(ref);
1887be66 2949 cond_resched();
56bec294 2950 goto again;
c46effa6
LB
2951 } else {
2952 WARN_ON(1);
56bec294
CM
2953 }
2954 node = rb_next(node);
2955 }
2956 spin_unlock(&delayed_refs->lock);
d7df2c79 2957 cond_resched();
56bec294 2958 goto again;
5f39d397 2959 }
54aa1f4d 2960out:
edf39272 2961 assert_qgroups_uptodate(trans);
d9a0540a 2962 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2963 return 0;
2964}
2965
5d4f98a2
YZ
2966int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2969 int level, int is_data)
5d4f98a2
YZ
2970{
2971 struct btrfs_delayed_extent_op *extent_op;
2972 int ret;
2973
78a6184a 2974 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2975 if (!extent_op)
2976 return -ENOMEM;
2977
2978 extent_op->flags_to_set = flags;
2979 extent_op->update_flags = 1;
2980 extent_op->update_key = 0;
2981 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2982 extent_op->level = level;
5d4f98a2 2983
66d7e7f0
AJ
2984 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2985 num_bytes, extent_op);
5d4f98a2 2986 if (ret)
78a6184a 2987 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2988 return ret;
2989}
2990
2991static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2992 struct btrfs_root *root,
2993 struct btrfs_path *path,
2994 u64 objectid, u64 offset, u64 bytenr)
2995{
2996 struct btrfs_delayed_ref_head *head;
2997 struct btrfs_delayed_ref_node *ref;
2998 struct btrfs_delayed_data_ref *data_ref;
2999 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3000 int ret = 0;
3001
5d4f98a2
YZ
3002 delayed_refs = &trans->transaction->delayed_refs;
3003 spin_lock(&delayed_refs->lock);
3004 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3005 if (!head) {
3006 spin_unlock(&delayed_refs->lock);
3007 return 0;
3008 }
5d4f98a2
YZ
3009
3010 if (!mutex_trylock(&head->mutex)) {
3011 atomic_inc(&head->node.refs);
3012 spin_unlock(&delayed_refs->lock);
3013
b3b4aa74 3014 btrfs_release_path(path);
5d4f98a2 3015
8cc33e5c
DS
3016 /*
3017 * Mutex was contended, block until it's released and let
3018 * caller try again
3019 */
5d4f98a2
YZ
3020 mutex_lock(&head->mutex);
3021 mutex_unlock(&head->mutex);
3022 btrfs_put_delayed_ref(&head->node);
3023 return -EAGAIN;
3024 }
d7df2c79 3025 spin_unlock(&delayed_refs->lock);
5d4f98a2 3026
d7df2c79 3027 spin_lock(&head->lock);
c6fc2454 3028 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3029 /* If it's a shared ref we know a cross reference exists */
3030 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3031 ret = 1;
3032 break;
3033 }
5d4f98a2 3034
d7df2c79 3035 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3036
d7df2c79
JB
3037 /*
3038 * If our ref doesn't match the one we're currently looking at
3039 * then we have a cross reference.
3040 */
3041 if (data_ref->root != root->root_key.objectid ||
3042 data_ref->objectid != objectid ||
3043 data_ref->offset != offset) {
3044 ret = 1;
3045 break;
3046 }
5d4f98a2 3047 }
d7df2c79 3048 spin_unlock(&head->lock);
5d4f98a2 3049 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3050 return ret;
3051}
3052
3053static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3054 struct btrfs_root *root,
3055 struct btrfs_path *path,
3056 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3057{
3058 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3059 struct extent_buffer *leaf;
5d4f98a2
YZ
3060 struct btrfs_extent_data_ref *ref;
3061 struct btrfs_extent_inline_ref *iref;
3062 struct btrfs_extent_item *ei;
f321e491 3063 struct btrfs_key key;
5d4f98a2 3064 u32 item_size;
be20aa9d 3065 int ret;
925baedd 3066
be20aa9d 3067 key.objectid = bytenr;
31840ae1 3068 key.offset = (u64)-1;
f321e491 3069 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3070
be20aa9d
CM
3071 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3072 if (ret < 0)
3073 goto out;
79787eaa 3074 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3075
3076 ret = -ENOENT;
3077 if (path->slots[0] == 0)
31840ae1 3078 goto out;
be20aa9d 3079
31840ae1 3080 path->slots[0]--;
f321e491 3081 leaf = path->nodes[0];
5d4f98a2 3082 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3083
5d4f98a2 3084 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3085 goto out;
f321e491 3086
5d4f98a2
YZ
3087 ret = 1;
3088 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3089#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3090 if (item_size < sizeof(*ei)) {
3091 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3092 goto out;
3093 }
3094#endif
3095 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3096
5d4f98a2
YZ
3097 if (item_size != sizeof(*ei) +
3098 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3099 goto out;
be20aa9d 3100
5d4f98a2
YZ
3101 if (btrfs_extent_generation(leaf, ei) <=
3102 btrfs_root_last_snapshot(&root->root_item))
3103 goto out;
3104
3105 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3106 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3107 BTRFS_EXTENT_DATA_REF_KEY)
3108 goto out;
3109
3110 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3111 if (btrfs_extent_refs(leaf, ei) !=
3112 btrfs_extent_data_ref_count(leaf, ref) ||
3113 btrfs_extent_data_ref_root(leaf, ref) !=
3114 root->root_key.objectid ||
3115 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3116 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3117 goto out;
3118
3119 ret = 0;
3120out:
3121 return ret;
3122}
3123
3124int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3125 struct btrfs_root *root,
3126 u64 objectid, u64 offset, u64 bytenr)
3127{
3128 struct btrfs_path *path;
3129 int ret;
3130 int ret2;
3131
3132 path = btrfs_alloc_path();
3133 if (!path)
3134 return -ENOENT;
3135
3136 do {
3137 ret = check_committed_ref(trans, root, path, objectid,
3138 offset, bytenr);
3139 if (ret && ret != -ENOENT)
f321e491 3140 goto out;
80ff3856 3141
5d4f98a2
YZ
3142 ret2 = check_delayed_ref(trans, root, path, objectid,
3143 offset, bytenr);
3144 } while (ret2 == -EAGAIN);
3145
3146 if (ret2 && ret2 != -ENOENT) {
3147 ret = ret2;
3148 goto out;
f321e491 3149 }
5d4f98a2
YZ
3150
3151 if (ret != -ENOENT || ret2 != -ENOENT)
3152 ret = 0;
be20aa9d 3153out:
80ff3856 3154 btrfs_free_path(path);
f0486c68
YZ
3155 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3156 WARN_ON(ret > 0);
f321e491 3157 return ret;
be20aa9d 3158}
c5739bba 3159
5d4f98a2 3160static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3161 struct btrfs_root *root,
5d4f98a2 3162 struct extent_buffer *buf,
e339a6b0 3163 int full_backref, int inc)
31840ae1
ZY
3164{
3165 u64 bytenr;
5d4f98a2
YZ
3166 u64 num_bytes;
3167 u64 parent;
31840ae1 3168 u64 ref_root;
31840ae1 3169 u32 nritems;
31840ae1
ZY
3170 struct btrfs_key key;
3171 struct btrfs_file_extent_item *fi;
3172 int i;
3173 int level;
3174 int ret = 0;
31840ae1 3175 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3176 u64, u64, u64, u64, u64, u64, int);
31840ae1 3177
fccb84c9
DS
3178
3179 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3180 return 0;
fccb84c9 3181
31840ae1 3182 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3183 nritems = btrfs_header_nritems(buf);
3184 level = btrfs_header_level(buf);
3185
27cdeb70 3186 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3187 return 0;
31840ae1 3188
5d4f98a2
YZ
3189 if (inc)
3190 process_func = btrfs_inc_extent_ref;
3191 else
3192 process_func = btrfs_free_extent;
31840ae1 3193
5d4f98a2
YZ
3194 if (full_backref)
3195 parent = buf->start;
3196 else
3197 parent = 0;
3198
3199 for (i = 0; i < nritems; i++) {
31840ae1 3200 if (level == 0) {
5d4f98a2 3201 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3202 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3203 continue;
5d4f98a2 3204 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3205 struct btrfs_file_extent_item);
3206 if (btrfs_file_extent_type(buf, fi) ==
3207 BTRFS_FILE_EXTENT_INLINE)
3208 continue;
3209 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3210 if (bytenr == 0)
3211 continue;
5d4f98a2
YZ
3212
3213 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3214 key.offset -= btrfs_file_extent_offset(buf, fi);
3215 ret = process_func(trans, root, bytenr, num_bytes,
3216 parent, ref_root, key.objectid,
e339a6b0 3217 key.offset, 1);
31840ae1
ZY
3218 if (ret)
3219 goto fail;
3220 } else {
5d4f98a2 3221 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3222 num_bytes = root->nodesize;
5d4f98a2 3223 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3224 parent, ref_root, level - 1, 0,
e339a6b0 3225 1);
31840ae1
ZY
3226 if (ret)
3227 goto fail;
3228 }
3229 }
3230 return 0;
3231fail:
5d4f98a2
YZ
3232 return ret;
3233}
3234
3235int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3236 struct extent_buffer *buf, int full_backref)
5d4f98a2 3237{
e339a6b0 3238 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3239}
3240
3241int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3242 struct extent_buffer *buf, int full_backref)
5d4f98a2 3243{
e339a6b0 3244 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3245}
3246
9078a3e1
CM
3247static int write_one_cache_group(struct btrfs_trans_handle *trans,
3248 struct btrfs_root *root,
3249 struct btrfs_path *path,
3250 struct btrfs_block_group_cache *cache)
3251{
3252 int ret;
9078a3e1 3253 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3254 unsigned long bi;
3255 struct extent_buffer *leaf;
9078a3e1 3256
9078a3e1 3257 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3258 if (ret) {
3259 if (ret > 0)
3260 ret = -ENOENT;
54aa1f4d 3261 goto fail;
df95e7f0 3262 }
5f39d397
CM
3263
3264 leaf = path->nodes[0];
3265 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3266 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3267 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3268fail:
24b89d08 3269 btrfs_release_path(path);
df95e7f0 3270 return ret;
9078a3e1
CM
3271
3272}
3273
4a8c9a62
YZ
3274static struct btrfs_block_group_cache *
3275next_block_group(struct btrfs_root *root,
3276 struct btrfs_block_group_cache *cache)
3277{
3278 struct rb_node *node;
292cbd51 3279
4a8c9a62 3280 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3281
3282 /* If our block group was removed, we need a full search. */
3283 if (RB_EMPTY_NODE(&cache->cache_node)) {
3284 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3285
3286 spin_unlock(&root->fs_info->block_group_cache_lock);
3287 btrfs_put_block_group(cache);
3288 cache = btrfs_lookup_first_block_group(root->fs_info,
3289 next_bytenr);
3290 return cache;
3291 }
4a8c9a62
YZ
3292 node = rb_next(&cache->cache_node);
3293 btrfs_put_block_group(cache);
3294 if (node) {
3295 cache = rb_entry(node, struct btrfs_block_group_cache,
3296 cache_node);
11dfe35a 3297 btrfs_get_block_group(cache);
4a8c9a62
YZ
3298 } else
3299 cache = NULL;
3300 spin_unlock(&root->fs_info->block_group_cache_lock);
3301 return cache;
3302}
3303
0af3d00b
JB
3304static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3305 struct btrfs_trans_handle *trans,
3306 struct btrfs_path *path)
3307{
3308 struct btrfs_root *root = block_group->fs_info->tree_root;
3309 struct inode *inode = NULL;
3310 u64 alloc_hint = 0;
2b20982e 3311 int dcs = BTRFS_DC_ERROR;
f8c269d7 3312 u64 num_pages = 0;
0af3d00b
JB
3313 int retries = 0;
3314 int ret = 0;
3315
3316 /*
3317 * If this block group is smaller than 100 megs don't bother caching the
3318 * block group.
3319 */
3320 if (block_group->key.offset < (100 * 1024 * 1024)) {
3321 spin_lock(&block_group->lock);
3322 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3323 spin_unlock(&block_group->lock);
3324 return 0;
3325 }
3326
0c0ef4bc
JB
3327 if (trans->aborted)
3328 return 0;
0af3d00b
JB
3329again:
3330 inode = lookup_free_space_inode(root, block_group, path);
3331 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3332 ret = PTR_ERR(inode);
b3b4aa74 3333 btrfs_release_path(path);
0af3d00b
JB
3334 goto out;
3335 }
3336
3337 if (IS_ERR(inode)) {
3338 BUG_ON(retries);
3339 retries++;
3340
3341 if (block_group->ro)
3342 goto out_free;
3343
3344 ret = create_free_space_inode(root, trans, block_group, path);
3345 if (ret)
3346 goto out_free;
3347 goto again;
3348 }
3349
5b0e95bf
JB
3350 /* We've already setup this transaction, go ahead and exit */
3351 if (block_group->cache_generation == trans->transid &&
3352 i_size_read(inode)) {
3353 dcs = BTRFS_DC_SETUP;
3354 goto out_put;
3355 }
3356
0af3d00b
JB
3357 /*
3358 * We want to set the generation to 0, that way if anything goes wrong
3359 * from here on out we know not to trust this cache when we load up next
3360 * time.
3361 */
3362 BTRFS_I(inode)->generation = 0;
3363 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3364 if (ret) {
3365 /*
3366 * So theoretically we could recover from this, simply set the
3367 * super cache generation to 0 so we know to invalidate the
3368 * cache, but then we'd have to keep track of the block groups
3369 * that fail this way so we know we _have_ to reset this cache
3370 * before the next commit or risk reading stale cache. So to
3371 * limit our exposure to horrible edge cases lets just abort the
3372 * transaction, this only happens in really bad situations
3373 * anyway.
3374 */
3375 btrfs_abort_transaction(trans, root, ret);
3376 goto out_put;
3377 }
0af3d00b
JB
3378 WARN_ON(ret);
3379
3380 if (i_size_read(inode) > 0) {
7b61cd92
MX
3381 ret = btrfs_check_trunc_cache_free_space(root,
3382 &root->fs_info->global_block_rsv);
3383 if (ret)
3384 goto out_put;
3385
1bbc621e 3386 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3387 if (ret)
3388 goto out_put;
3389 }
3390
3391 spin_lock(&block_group->lock);
cf7c1ef6 3392 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3393 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3394 /*
3395 * don't bother trying to write stuff out _if_
3396 * a) we're not cached,
3397 * b) we're with nospace_cache mount option.
3398 */
2b20982e 3399 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3400 spin_unlock(&block_group->lock);
3401 goto out_put;
3402 }
3403 spin_unlock(&block_group->lock);
3404
2968b1f4
JB
3405 /*
3406 * We hit an ENOSPC when setting up the cache in this transaction, just
3407 * skip doing the setup, we've already cleared the cache so we're safe.
3408 */
3409 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3410 ret = -ENOSPC;
3411 goto out_put;
3412 }
3413
6fc823b1
JB
3414 /*
3415 * Try to preallocate enough space based on how big the block group is.
3416 * Keep in mind this has to include any pinned space which could end up
3417 * taking up quite a bit since it's not folded into the other space
3418 * cache.
3419 */
f8c269d7 3420 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3421 if (!num_pages)
3422 num_pages = 1;
3423
0af3d00b
JB
3424 num_pages *= 16;
3425 num_pages *= PAGE_CACHE_SIZE;
3426
e2d1f923 3427 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3428 if (ret)
3429 goto out_put;
3430
3431 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3432 num_pages, num_pages,
3433 &alloc_hint);
2968b1f4
JB
3434 /*
3435 * Our cache requires contiguous chunks so that we don't modify a bunch
3436 * of metadata or split extents when writing the cache out, which means
3437 * we can enospc if we are heavily fragmented in addition to just normal
3438 * out of space conditions. So if we hit this just skip setting up any
3439 * other block groups for this transaction, maybe we'll unpin enough
3440 * space the next time around.
3441 */
2b20982e
JB
3442 if (!ret)
3443 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3444 else if (ret == -ENOSPC)
3445 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
0af3d00b 3446 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3447
0af3d00b
JB
3448out_put:
3449 iput(inode);
3450out_free:
b3b4aa74 3451 btrfs_release_path(path);
0af3d00b
JB
3452out:
3453 spin_lock(&block_group->lock);
e65cbb94 3454 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3455 block_group->cache_generation = trans->transid;
2b20982e 3456 block_group->disk_cache_state = dcs;
0af3d00b
JB
3457 spin_unlock(&block_group->lock);
3458
3459 return ret;
3460}
3461
dcdf7f6d
JB
3462int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3463 struct btrfs_root *root)
3464{
3465 struct btrfs_block_group_cache *cache, *tmp;
3466 struct btrfs_transaction *cur_trans = trans->transaction;
3467 struct btrfs_path *path;
3468
3469 if (list_empty(&cur_trans->dirty_bgs) ||
3470 !btrfs_test_opt(root, SPACE_CACHE))
3471 return 0;
3472
3473 path = btrfs_alloc_path();
3474 if (!path)
3475 return -ENOMEM;
3476
3477 /* Could add new block groups, use _safe just in case */
3478 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3479 dirty_list) {
3480 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3481 cache_save_setup(cache, trans, path);
3482 }
3483
3484 btrfs_free_path(path);
3485 return 0;
3486}
3487
1bbc621e
CM
3488/*
3489 * transaction commit does final block group cache writeback during a
3490 * critical section where nothing is allowed to change the FS. This is
3491 * required in order for the cache to actually match the block group,
3492 * but can introduce a lot of latency into the commit.
3493 *
3494 * So, btrfs_start_dirty_block_groups is here to kick off block group
3495 * cache IO. There's a chance we'll have to redo some of it if the
3496 * block group changes again during the commit, but it greatly reduces
3497 * the commit latency by getting rid of the easy block groups while
3498 * we're still allowing others to join the commit.
3499 */
3500int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3501 struct btrfs_root *root)
9078a3e1 3502{
4a8c9a62 3503 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3504 struct btrfs_transaction *cur_trans = trans->transaction;
3505 int ret = 0;
c9dc4c65 3506 int should_put;
1bbc621e
CM
3507 struct btrfs_path *path = NULL;
3508 LIST_HEAD(dirty);
3509 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3510 int num_started = 0;
1bbc621e
CM
3511 int loops = 0;
3512
3513 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3514 if (list_empty(&cur_trans->dirty_bgs)) {
3515 spin_unlock(&cur_trans->dirty_bgs_lock);
3516 return 0;
1bbc621e 3517 }
b58d1a9e 3518 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3519 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3520
1bbc621e 3521again:
1bbc621e
CM
3522 /*
3523 * make sure all the block groups on our dirty list actually
3524 * exist
3525 */
3526 btrfs_create_pending_block_groups(trans, root);
3527
3528 if (!path) {
3529 path = btrfs_alloc_path();
3530 if (!path)
3531 return -ENOMEM;
3532 }
3533
b58d1a9e
FM
3534 /*
3535 * cache_write_mutex is here only to save us from balance or automatic
3536 * removal of empty block groups deleting this block group while we are
3537 * writing out the cache
3538 */
3539 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3540 while (!list_empty(&dirty)) {
3541 cache = list_first_entry(&dirty,
3542 struct btrfs_block_group_cache,
3543 dirty_list);
1bbc621e
CM
3544 /*
3545 * this can happen if something re-dirties a block
3546 * group that is already under IO. Just wait for it to
3547 * finish and then do it all again
3548 */
3549 if (!list_empty(&cache->io_list)) {
3550 list_del_init(&cache->io_list);
3551 btrfs_wait_cache_io(root, trans, cache,
3552 &cache->io_ctl, path,
3553 cache->key.objectid);
3554 btrfs_put_block_group(cache);
3555 }
3556
3557
3558 /*
3559 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3560 * if it should update the cache_state. Don't delete
3561 * until after we wait.
3562 *
3563 * Since we're not running in the commit critical section
3564 * we need the dirty_bgs_lock to protect from update_block_group
3565 */
3566 spin_lock(&cur_trans->dirty_bgs_lock);
3567 list_del_init(&cache->dirty_list);
3568 spin_unlock(&cur_trans->dirty_bgs_lock);
3569
3570 should_put = 1;
3571
3572 cache_save_setup(cache, trans, path);
3573
3574 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3575 cache->io_ctl.inode = NULL;
3576 ret = btrfs_write_out_cache(root, trans, cache, path);
3577 if (ret == 0 && cache->io_ctl.inode) {
3578 num_started++;
3579 should_put = 0;
3580
3581 /*
3582 * the cache_write_mutex is protecting
3583 * the io_list
3584 */
3585 list_add_tail(&cache->io_list, io);
3586 } else {
3587 /*
3588 * if we failed to write the cache, the
3589 * generation will be bad and life goes on
3590 */
3591 ret = 0;
3592 }
3593 }
ff1f8250 3594 if (!ret) {
1bbc621e 3595 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3596 /*
3597 * Our block group might still be attached to the list
3598 * of new block groups in the transaction handle of some
3599 * other task (struct btrfs_trans_handle->new_bgs). This
3600 * means its block group item isn't yet in the extent
3601 * tree. If this happens ignore the error, as we will
3602 * try again later in the critical section of the
3603 * transaction commit.
3604 */
3605 if (ret == -ENOENT) {
3606 ret = 0;
3607 spin_lock(&cur_trans->dirty_bgs_lock);
3608 if (list_empty(&cache->dirty_list)) {
3609 list_add_tail(&cache->dirty_list,
3610 &cur_trans->dirty_bgs);
3611 btrfs_get_block_group(cache);
3612 }
3613 spin_unlock(&cur_trans->dirty_bgs_lock);
3614 } else if (ret) {
3615 btrfs_abort_transaction(trans, root, ret);
3616 }
3617 }
1bbc621e
CM
3618
3619 /* if its not on the io list, we need to put the block group */
3620 if (should_put)
3621 btrfs_put_block_group(cache);
3622
3623 if (ret)
3624 break;
b58d1a9e
FM
3625
3626 /*
3627 * Avoid blocking other tasks for too long. It might even save
3628 * us from writing caches for block groups that are going to be
3629 * removed.
3630 */
3631 mutex_unlock(&trans->transaction->cache_write_mutex);
3632 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3633 }
b58d1a9e 3634 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3635
3636 /*
3637 * go through delayed refs for all the stuff we've just kicked off
3638 * and then loop back (just once)
3639 */
3640 ret = btrfs_run_delayed_refs(trans, root, 0);
3641 if (!ret && loops == 0) {
3642 loops++;
3643 spin_lock(&cur_trans->dirty_bgs_lock);
3644 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3645 /*
3646 * dirty_bgs_lock protects us from concurrent block group
3647 * deletes too (not just cache_write_mutex).
3648 */
3649 if (!list_empty(&dirty)) {
3650 spin_unlock(&cur_trans->dirty_bgs_lock);
3651 goto again;
3652 }
1bbc621e 3653 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3654 }
3655
3656 btrfs_free_path(path);
3657 return ret;
3658}
3659
3660int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3661 struct btrfs_root *root)
3662{
3663 struct btrfs_block_group_cache *cache;
3664 struct btrfs_transaction *cur_trans = trans->transaction;
3665 int ret = 0;
3666 int should_put;
3667 struct btrfs_path *path;
3668 struct list_head *io = &cur_trans->io_bgs;
3669 int num_started = 0;
9078a3e1
CM
3670
3671 path = btrfs_alloc_path();
3672 if (!path)
3673 return -ENOMEM;
3674
ce93ec54
JB
3675 /*
3676 * We don't need the lock here since we are protected by the transaction
3677 * commit. We want to do the cache_save_setup first and then run the
3678 * delayed refs to make sure we have the best chance at doing this all
3679 * in one shot.
3680 */
3681 while (!list_empty(&cur_trans->dirty_bgs)) {
3682 cache = list_first_entry(&cur_trans->dirty_bgs,
3683 struct btrfs_block_group_cache,
3684 dirty_list);
c9dc4c65
CM
3685
3686 /*
3687 * this can happen if cache_save_setup re-dirties a block
3688 * group that is already under IO. Just wait for it to
3689 * finish and then do it all again
3690 */
3691 if (!list_empty(&cache->io_list)) {
3692 list_del_init(&cache->io_list);
3693 btrfs_wait_cache_io(root, trans, cache,
3694 &cache->io_ctl, path,
3695 cache->key.objectid);
3696 btrfs_put_block_group(cache);
c9dc4c65
CM
3697 }
3698
1bbc621e
CM
3699 /*
3700 * don't remove from the dirty list until after we've waited
3701 * on any pending IO
3702 */
ce93ec54 3703 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3704 should_put = 1;
3705
1bbc621e 3706 cache_save_setup(cache, trans, path);
c9dc4c65 3707
ce93ec54 3708 if (!ret)
c9dc4c65
CM
3709 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3710
3711 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3712 cache->io_ctl.inode = NULL;
3713 ret = btrfs_write_out_cache(root, trans, cache, path);
3714 if (ret == 0 && cache->io_ctl.inode) {
3715 num_started++;
3716 should_put = 0;
1bbc621e 3717 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3718 } else {
3719 /*
3720 * if we failed to write the cache, the
3721 * generation will be bad and life goes on
3722 */
3723 ret = 0;
3724 }
3725 }
ff1f8250 3726 if (!ret) {
ce93ec54 3727 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3728 if (ret)
3729 btrfs_abort_transaction(trans, root, ret);
3730 }
c9dc4c65
CM
3731
3732 /* if its not on the io list, we need to put the block group */
3733 if (should_put)
3734 btrfs_put_block_group(cache);
3735 }
3736
1bbc621e
CM
3737 while (!list_empty(io)) {
3738 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3739 io_list);
3740 list_del_init(&cache->io_list);
c9dc4c65
CM
3741 btrfs_wait_cache_io(root, trans, cache,
3742 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3743 btrfs_put_block_group(cache);
3744 }
3745
9078a3e1 3746 btrfs_free_path(path);
ce93ec54 3747 return ret;
9078a3e1
CM
3748}
3749
d2fb3437
YZ
3750int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3751{
3752 struct btrfs_block_group_cache *block_group;
3753 int readonly = 0;
3754
3755 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3756 if (!block_group || block_group->ro)
3757 readonly = 1;
3758 if (block_group)
fa9c0d79 3759 btrfs_put_block_group(block_group);
d2fb3437
YZ
3760 return readonly;
3761}
3762
6ab0a202
JM
3763static const char *alloc_name(u64 flags)
3764{
3765 switch (flags) {
3766 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3767 return "mixed";
3768 case BTRFS_BLOCK_GROUP_METADATA:
3769 return "metadata";
3770 case BTRFS_BLOCK_GROUP_DATA:
3771 return "data";
3772 case BTRFS_BLOCK_GROUP_SYSTEM:
3773 return "system";
3774 default:
3775 WARN_ON(1);
3776 return "invalid-combination";
3777 };
3778}
3779
593060d7
CM
3780static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3781 u64 total_bytes, u64 bytes_used,
3782 struct btrfs_space_info **space_info)
3783{
3784 struct btrfs_space_info *found;
b742bb82
YZ
3785 int i;
3786 int factor;
b150a4f1 3787 int ret;
b742bb82
YZ
3788
3789 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3790 BTRFS_BLOCK_GROUP_RAID10))
3791 factor = 2;
3792 else
3793 factor = 1;
593060d7
CM
3794
3795 found = __find_space_info(info, flags);
3796 if (found) {
25179201 3797 spin_lock(&found->lock);
593060d7 3798 found->total_bytes += total_bytes;
89a55897 3799 found->disk_total += total_bytes * factor;
593060d7 3800 found->bytes_used += bytes_used;
b742bb82 3801 found->disk_used += bytes_used * factor;
2e6e5183
FM
3802 if (total_bytes > 0)
3803 found->full = 0;
25179201 3804 spin_unlock(&found->lock);
593060d7
CM
3805 *space_info = found;
3806 return 0;
3807 }
c146afad 3808 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3809 if (!found)
3810 return -ENOMEM;
3811
908c7f19 3812 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3813 if (ret) {
3814 kfree(found);
3815 return ret;
3816 }
3817
c1895442 3818 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3819 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3820 init_rwsem(&found->groups_sem);
0f9dd46c 3821 spin_lock_init(&found->lock);
52ba6929 3822 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3823 found->total_bytes = total_bytes;
89a55897 3824 found->disk_total = total_bytes * factor;
593060d7 3825 found->bytes_used = bytes_used;
b742bb82 3826 found->disk_used = bytes_used * factor;
593060d7 3827 found->bytes_pinned = 0;
e8569813 3828 found->bytes_reserved = 0;
c146afad 3829 found->bytes_readonly = 0;
f0486c68 3830 found->bytes_may_use = 0;
6af3e3ad 3831 found->full = 0;
4f4db217 3832 found->max_extent_size = 0;
0e4f8f88 3833 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3834 found->chunk_alloc = 0;
fdb5effd
JB
3835 found->flush = 0;
3836 init_waitqueue_head(&found->wait);
633c0aad 3837 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3838
3839 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3840 info->space_info_kobj, "%s",
3841 alloc_name(found->flags));
3842 if (ret) {
3843 kfree(found);
3844 return ret;
3845 }
3846
593060d7 3847 *space_info = found;
4184ea7f 3848 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3849 if (flags & BTRFS_BLOCK_GROUP_DATA)
3850 info->data_sinfo = found;
6ab0a202
JM
3851
3852 return ret;
593060d7
CM
3853}
3854
8790d502
CM
3855static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3856{
899c81ea
ID
3857 u64 extra_flags = chunk_to_extended(flags) &
3858 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3859
de98ced9 3860 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3861 if (flags & BTRFS_BLOCK_GROUP_DATA)
3862 fs_info->avail_data_alloc_bits |= extra_flags;
3863 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3864 fs_info->avail_metadata_alloc_bits |= extra_flags;
3865 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3866 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3867 write_sequnlock(&fs_info->profiles_lock);
8790d502 3868}
593060d7 3869
fc67c450
ID
3870/*
3871 * returns target flags in extended format or 0 if restripe for this
3872 * chunk_type is not in progress
c6664b42
ID
3873 *
3874 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3875 */
3876static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3877{
3878 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3879 u64 target = 0;
3880
fc67c450
ID
3881 if (!bctl)
3882 return 0;
3883
3884 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3885 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3886 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3887 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3888 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3889 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3890 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3891 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3892 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3893 }
3894
3895 return target;
3896}
3897
a46d11a8
ID
3898/*
3899 * @flags: available profiles in extended format (see ctree.h)
3900 *
e4d8ec0f
ID
3901 * Returns reduced profile in chunk format. If profile changing is in
3902 * progress (either running or paused) picks the target profile (if it's
3903 * already available), otherwise falls back to plain reducing.
a46d11a8 3904 */
48a3b636 3905static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3906{
95669976 3907 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3908 u64 target;
9c170b26
ZL
3909 u64 raid_type;
3910 u64 allowed = 0;
a061fc8d 3911
fc67c450
ID
3912 /*
3913 * see if restripe for this chunk_type is in progress, if so
3914 * try to reduce to the target profile
3915 */
e4d8ec0f 3916 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3917 target = get_restripe_target(root->fs_info, flags);
3918 if (target) {
3919 /* pick target profile only if it's already available */
3920 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3921 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3922 return extended_to_chunk(target);
e4d8ec0f
ID
3923 }
3924 }
3925 spin_unlock(&root->fs_info->balance_lock);
3926
53b381b3 3927 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3928 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3929 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3930 allowed |= btrfs_raid_group[raid_type];
3931 }
3932 allowed &= flags;
3933
3934 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3935 allowed = BTRFS_BLOCK_GROUP_RAID6;
3936 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3937 allowed = BTRFS_BLOCK_GROUP_RAID5;
3938 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3939 allowed = BTRFS_BLOCK_GROUP_RAID10;
3940 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3941 allowed = BTRFS_BLOCK_GROUP_RAID1;
3942 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3943 allowed = BTRFS_BLOCK_GROUP_RAID0;
3944
3945 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3946
3947 return extended_to_chunk(flags | allowed);
ec44a35c
CM
3948}
3949
f8213bdc 3950static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3951{
de98ced9 3952 unsigned seq;
f8213bdc 3953 u64 flags;
de98ced9
MX
3954
3955 do {
f8213bdc 3956 flags = orig_flags;
de98ced9
MX
3957 seq = read_seqbegin(&root->fs_info->profiles_lock);
3958
3959 if (flags & BTRFS_BLOCK_GROUP_DATA)
3960 flags |= root->fs_info->avail_data_alloc_bits;
3961 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3962 flags |= root->fs_info->avail_system_alloc_bits;
3963 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3964 flags |= root->fs_info->avail_metadata_alloc_bits;
3965 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3966
b742bb82 3967 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3968}
3969
6d07bcec 3970u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3971{
b742bb82 3972 u64 flags;
53b381b3 3973 u64 ret;
9ed74f2d 3974
b742bb82
YZ
3975 if (data)
3976 flags = BTRFS_BLOCK_GROUP_DATA;
3977 else if (root == root->fs_info->chunk_root)
3978 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3979 else
b742bb82 3980 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3981
53b381b3
DW
3982 ret = get_alloc_profile(root, flags);
3983 return ret;
6a63209f 3984}
9ed74f2d 3985
6a63209f 3986/*
6a63209f
JB
3987 * This will check the space that the inode allocates from to make sure we have
3988 * enough space for bytes.
6a63209f 3989 */
e2d1f923 3990int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3991{
6a63209f 3992 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3993 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3994 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3995 u64 used;
94b947b2 3996 int ret = 0;
c99f1b0c
ZL
3997 int need_commit = 2;
3998 int have_pinned_space;
6a63209f 3999
6a63209f 4000 /* make sure bytes are sectorsize aligned */
fda2832f 4001 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4002
9dced186 4003 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4004 need_commit = 0;
9dced186 4005 ASSERT(current->journal_info);
0af3d00b
JB
4006 }
4007
b4d7c3c9 4008 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4009 if (!data_sinfo)
4010 goto alloc;
9ed74f2d 4011
6a63209f
JB
4012again:
4013 /* make sure we have enough space to handle the data first */
4014 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4015 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4016 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4017 data_sinfo->bytes_may_use;
ab6e2410
JB
4018
4019 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4020 struct btrfs_trans_handle *trans;
9ed74f2d 4021
6a63209f
JB
4022 /*
4023 * if we don't have enough free bytes in this space then we need
4024 * to alloc a new chunk.
4025 */
b9fd47cd 4026 if (!data_sinfo->full) {
6a63209f 4027 u64 alloc_target;
9ed74f2d 4028
0e4f8f88 4029 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4030 spin_unlock(&data_sinfo->lock);
33b4d47f 4031alloc:
6a63209f 4032 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4033 /*
4034 * It is ugly that we don't call nolock join
4035 * transaction for the free space inode case here.
4036 * But it is safe because we only do the data space
4037 * reservation for the free space cache in the
4038 * transaction context, the common join transaction
4039 * just increase the counter of the current transaction
4040 * handler, doesn't try to acquire the trans_lock of
4041 * the fs.
4042 */
7a7eaa40 4043 trans = btrfs_join_transaction(root);
a22285a6
YZ
4044 if (IS_ERR(trans))
4045 return PTR_ERR(trans);
9ed74f2d 4046
6a63209f 4047 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4048 alloc_target,
4049 CHUNK_ALLOC_NO_FORCE);
6a63209f 4050 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4051 if (ret < 0) {
4052 if (ret != -ENOSPC)
4053 return ret;
c99f1b0c
ZL
4054 else {
4055 have_pinned_space = 1;
d52a5b5f 4056 goto commit_trans;
c99f1b0c 4057 }
d52a5b5f 4058 }
9ed74f2d 4059
b4d7c3c9
LZ
4060 if (!data_sinfo)
4061 data_sinfo = fs_info->data_sinfo;
4062
6a63209f
JB
4063 goto again;
4064 }
f2bb8f5c
JB
4065
4066 /*
b150a4f1 4067 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4068 * allocation, and no removed chunk in current transaction,
4069 * don't bother committing the transaction.
f2bb8f5c 4070 */
c99f1b0c
ZL
4071 have_pinned_space = percpu_counter_compare(
4072 &data_sinfo->total_bytes_pinned,
4073 used + bytes - data_sinfo->total_bytes);
6a63209f 4074 spin_unlock(&data_sinfo->lock);
6a63209f 4075
4e06bdd6 4076 /* commit the current transaction and try again */
d52a5b5f 4077commit_trans:
c99f1b0c 4078 if (need_commit &&
a4abeea4 4079 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4080 need_commit--;
b150a4f1 4081
9a4e7276
ZL
4082 if (need_commit > 0)
4083 btrfs_wait_ordered_roots(fs_info, -1);
4084
7a7eaa40 4085 trans = btrfs_join_transaction(root);
a22285a6
YZ
4086 if (IS_ERR(trans))
4087 return PTR_ERR(trans);
c99f1b0c 4088 if (have_pinned_space >= 0 ||
3204d33c
JB
4089 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4090 &trans->transaction->flags) ||
c99f1b0c 4091 need_commit > 0) {
94b947b2
ZL
4092 ret = btrfs_commit_transaction(trans, root);
4093 if (ret)
4094 return ret;
d7c15171
ZL
4095 /*
4096 * make sure that all running delayed iput are
4097 * done
4098 */
4099 down_write(&root->fs_info->delayed_iput_sem);
4100 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4101 goto again;
4102 } else {
4103 btrfs_end_transaction(trans, root);
4104 }
4e06bdd6 4105 }
9ed74f2d 4106
cab45e22
JM
4107 trace_btrfs_space_reservation(root->fs_info,
4108 "space_info:enospc",
4109 data_sinfo->flags, bytes, 1);
6a63209f
JB
4110 return -ENOSPC;
4111 }
e2d1f923 4112 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
4113 if (ret)
4114 goto out;
6a63209f 4115 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4116 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4117 data_sinfo->flags, bytes, 1);
237c0e9f 4118out:
6a63209f 4119 spin_unlock(&data_sinfo->lock);
6a63209f 4120
237c0e9f 4121 return ret;
9ed74f2d 4122}
6a63209f 4123
6a63209f 4124/*
fb25e914 4125 * Called if we need to clear a data reservation for this inode.
6a63209f 4126 */
0ca1f7ce 4127void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 4128{
0ca1f7ce 4129 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4130 struct btrfs_space_info *data_sinfo;
e3ccfa98 4131
6a63209f 4132 /* make sure bytes are sectorsize aligned */
fda2832f 4133 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4134
b4d7c3c9 4135 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4136 spin_lock(&data_sinfo->lock);
7ee9e440 4137 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4138 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4139 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4140 data_sinfo->flags, bytes, 0);
6a63209f 4141 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4142}
4143
97e728d4 4144static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4145{
97e728d4
JB
4146 struct list_head *head = &info->space_info;
4147 struct btrfs_space_info *found;
e3ccfa98 4148
97e728d4
JB
4149 rcu_read_lock();
4150 list_for_each_entry_rcu(found, head, list) {
4151 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4152 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4153 }
97e728d4 4154 rcu_read_unlock();
e3ccfa98
JB
4155}
4156
3c76cd84
MX
4157static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4158{
4159 return (global->size << 1);
4160}
4161
e5bc2458 4162static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4163 struct btrfs_space_info *sinfo, int force)
32c00aff 4164{
fb25e914 4165 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4166 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4167 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4168 u64 thresh;
e3ccfa98 4169
0e4f8f88
CM
4170 if (force == CHUNK_ALLOC_FORCE)
4171 return 1;
4172
fb25e914
JB
4173 /*
4174 * We need to take into account the global rsv because for all intents
4175 * and purposes it's used space. Don't worry about locking the
4176 * global_rsv, it doesn't change except when the transaction commits.
4177 */
54338b5c 4178 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4179 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4180
0e4f8f88
CM
4181 /*
4182 * in limited mode, we want to have some free space up to
4183 * about 1% of the FS size.
4184 */
4185 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4186 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4187 thresh = max_t(u64, 64 * 1024 * 1024,
4188 div_factor_fine(thresh, 1));
4189
4190 if (num_bytes - num_allocated < thresh)
4191 return 1;
4192 }
0e4f8f88 4193
698d0082 4194 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4195 return 0;
424499db 4196 return 1;
32c00aff
JB
4197}
4198
39c2d7fa 4199static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4200{
4201 u64 num_dev;
4202
53b381b3
DW
4203 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4204 BTRFS_BLOCK_GROUP_RAID0 |
4205 BTRFS_BLOCK_GROUP_RAID5 |
4206 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4207 num_dev = root->fs_info->fs_devices->rw_devices;
4208 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4209 num_dev = 2;
4210 else
4211 num_dev = 1; /* DUP or single */
4212
39c2d7fa 4213 return num_dev;
15d1ff81
LB
4214}
4215
39c2d7fa
FM
4216/*
4217 * If @is_allocation is true, reserve space in the system space info necessary
4218 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4219 * removing a chunk.
4220 */
4221void check_system_chunk(struct btrfs_trans_handle *trans,
4222 struct btrfs_root *root,
4617ea3a 4223 u64 type)
15d1ff81
LB
4224{
4225 struct btrfs_space_info *info;
4226 u64 left;
4227 u64 thresh;
4fbcdf66 4228 int ret = 0;
39c2d7fa 4229 u64 num_devs;
4fbcdf66
FM
4230
4231 /*
4232 * Needed because we can end up allocating a system chunk and for an
4233 * atomic and race free space reservation in the chunk block reserve.
4234 */
4235 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4236
4237 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4238 spin_lock(&info->lock);
4239 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4240 info->bytes_reserved - info->bytes_readonly -
4241 info->bytes_may_use;
15d1ff81
LB
4242 spin_unlock(&info->lock);
4243
39c2d7fa
FM
4244 num_devs = get_profile_num_devs(root, type);
4245
4246 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4247 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4248 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4249
15d1ff81 4250 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4251 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4252 left, thresh, type);
15d1ff81
LB
4253 dump_space_info(info, 0, 0);
4254 }
4255
4256 if (left < thresh) {
4257 u64 flags;
4258
4259 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4260 /*
4261 * Ignore failure to create system chunk. We might end up not
4262 * needing it, as we might not need to COW all nodes/leafs from
4263 * the paths we visit in the chunk tree (they were already COWed
4264 * or created in the current transaction for example).
4265 */
4266 ret = btrfs_alloc_chunk(trans, root, flags);
4267 }
4268
4269 if (!ret) {
4270 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4271 &root->fs_info->chunk_block_rsv,
4272 thresh, BTRFS_RESERVE_NO_FLUSH);
4273 if (!ret)
4274 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4275 }
4276}
4277
6324fbf3 4278static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4279 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4280{
6324fbf3 4281 struct btrfs_space_info *space_info;
97e728d4 4282 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4283 int wait_for_alloc = 0;
9ed74f2d 4284 int ret = 0;
9ed74f2d 4285
c6b305a8
JB
4286 /* Don't re-enter if we're already allocating a chunk */
4287 if (trans->allocating_chunk)
4288 return -ENOSPC;
4289
6324fbf3 4290 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4291 if (!space_info) {
4292 ret = update_space_info(extent_root->fs_info, flags,
4293 0, 0, &space_info);
79787eaa 4294 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4295 }
79787eaa 4296 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4297
6d74119f 4298again:
25179201 4299 spin_lock(&space_info->lock);
9e622d6b 4300 if (force < space_info->force_alloc)
0e4f8f88 4301 force = space_info->force_alloc;
25179201 4302 if (space_info->full) {
09fb99a6
FDBM
4303 if (should_alloc_chunk(extent_root, space_info, force))
4304 ret = -ENOSPC;
4305 else
4306 ret = 0;
25179201 4307 spin_unlock(&space_info->lock);
09fb99a6 4308 return ret;
9ed74f2d
JB
4309 }
4310
698d0082 4311 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4312 spin_unlock(&space_info->lock);
6d74119f
JB
4313 return 0;
4314 } else if (space_info->chunk_alloc) {
4315 wait_for_alloc = 1;
4316 } else {
4317 space_info->chunk_alloc = 1;
9ed74f2d 4318 }
0e4f8f88 4319
25179201 4320 spin_unlock(&space_info->lock);
9ed74f2d 4321
6d74119f
JB
4322 mutex_lock(&fs_info->chunk_mutex);
4323
4324 /*
4325 * The chunk_mutex is held throughout the entirety of a chunk
4326 * allocation, so once we've acquired the chunk_mutex we know that the
4327 * other guy is done and we need to recheck and see if we should
4328 * allocate.
4329 */
4330 if (wait_for_alloc) {
4331 mutex_unlock(&fs_info->chunk_mutex);
4332 wait_for_alloc = 0;
4333 goto again;
4334 }
4335
c6b305a8
JB
4336 trans->allocating_chunk = true;
4337
67377734
JB
4338 /*
4339 * If we have mixed data/metadata chunks we want to make sure we keep
4340 * allocating mixed chunks instead of individual chunks.
4341 */
4342 if (btrfs_mixed_space_info(space_info))
4343 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4344
97e728d4
JB
4345 /*
4346 * if we're doing a data chunk, go ahead and make sure that
4347 * we keep a reasonable number of metadata chunks allocated in the
4348 * FS as well.
4349 */
9ed74f2d 4350 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4351 fs_info->data_chunk_allocations++;
4352 if (!(fs_info->data_chunk_allocations %
4353 fs_info->metadata_ratio))
4354 force_metadata_allocation(fs_info);
9ed74f2d
JB
4355 }
4356
15d1ff81
LB
4357 /*
4358 * Check if we have enough space in SYSTEM chunk because we may need
4359 * to update devices.
4360 */
4617ea3a 4361 check_system_chunk(trans, extent_root, flags);
15d1ff81 4362
2b82032c 4363 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4364 trans->allocating_chunk = false;
92b8e897 4365
9ed74f2d 4366 spin_lock(&space_info->lock);
a81cb9a2
AO
4367 if (ret < 0 && ret != -ENOSPC)
4368 goto out;
9ed74f2d 4369 if (ret)
6324fbf3 4370 space_info->full = 1;
424499db
YZ
4371 else
4372 ret = 1;
6d74119f 4373
0e4f8f88 4374 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4375out:
6d74119f 4376 space_info->chunk_alloc = 0;
9ed74f2d 4377 spin_unlock(&space_info->lock);
a25c75d5 4378 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4379 /*
4380 * When we allocate a new chunk we reserve space in the chunk block
4381 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4382 * add new nodes/leafs to it if we end up needing to do it when
4383 * inserting the chunk item and updating device items as part of the
4384 * second phase of chunk allocation, performed by
4385 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4386 * large number of new block groups to create in our transaction
4387 * handle's new_bgs list to avoid exhausting the chunk block reserve
4388 * in extreme cases - like having a single transaction create many new
4389 * block groups when starting to write out the free space caches of all
4390 * the block groups that were made dirty during the lifetime of the
4391 * transaction.
4392 */
d9a0540a
FM
4393 if (trans->can_flush_pending_bgs &&
4394 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4395 btrfs_create_pending_block_groups(trans, trans->root);
4396 btrfs_trans_release_chunk_metadata(trans);
4397 }
0f9dd46c 4398 return ret;
6324fbf3 4399}
9ed74f2d 4400
a80c8dcf
JB
4401static int can_overcommit(struct btrfs_root *root,
4402 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4403 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4404{
96f1bb57 4405 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4406 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4407 u64 space_size;
a80c8dcf
JB
4408 u64 avail;
4409 u64 used;
4410
4411 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4412 space_info->bytes_pinned + space_info->bytes_readonly;
4413
96f1bb57
JB
4414 /*
4415 * We only want to allow over committing if we have lots of actual space
4416 * free, but if we don't have enough space to handle the global reserve
4417 * space then we could end up having a real enospc problem when trying
4418 * to allocate a chunk or some other such important allocation.
4419 */
3c76cd84
MX
4420 spin_lock(&global_rsv->lock);
4421 space_size = calc_global_rsv_need_space(global_rsv);
4422 spin_unlock(&global_rsv->lock);
4423 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4424 return 0;
4425
4426 used += space_info->bytes_may_use;
a80c8dcf
JB
4427
4428 spin_lock(&root->fs_info->free_chunk_lock);
4429 avail = root->fs_info->free_chunk_space;
4430 spin_unlock(&root->fs_info->free_chunk_lock);
4431
4432 /*
4433 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4434 * space is actually useable. For raid56, the space info used
4435 * doesn't include the parity drive, so we don't have to
4436 * change the math
a80c8dcf
JB
4437 */
4438 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4439 BTRFS_BLOCK_GROUP_RAID1 |
4440 BTRFS_BLOCK_GROUP_RAID10))
4441 avail >>= 1;
4442
4443 /*
561c294d
MX
4444 * If we aren't flushing all things, let us overcommit up to
4445 * 1/2th of the space. If we can flush, don't let us overcommit
4446 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4447 */
08e007d2 4448 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4449 avail >>= 3;
a80c8dcf 4450 else
14575aef 4451 avail >>= 1;
a80c8dcf 4452
14575aef 4453 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4454 return 1;
4455 return 0;
4456}
4457
48a3b636 4458static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4459 unsigned long nr_pages, int nr_items)
da633a42
MX
4460{
4461 struct super_block *sb = root->fs_info->sb;
da633a42 4462
925a6efb
JB
4463 if (down_read_trylock(&sb->s_umount)) {
4464 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4465 up_read(&sb->s_umount);
4466 } else {
da633a42
MX
4467 /*
4468 * We needn't worry the filesystem going from r/w to r/o though
4469 * we don't acquire ->s_umount mutex, because the filesystem
4470 * should guarantee the delalloc inodes list be empty after
4471 * the filesystem is readonly(all dirty pages are written to
4472 * the disk).
4473 */
6c255e67 4474 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4475 if (!current->journal_info)
6c255e67 4476 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4477 }
4478}
4479
18cd8ea6
MX
4480static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4481{
4482 u64 bytes;
4483 int nr;
4484
4485 bytes = btrfs_calc_trans_metadata_size(root, 1);
4486 nr = (int)div64_u64(to_reclaim, bytes);
4487 if (!nr)
4488 nr = 1;
4489 return nr;
4490}
4491
c61a16a7
MX
4492#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4493
9ed74f2d 4494/*
5da9d01b 4495 * shrink metadata reservation for delalloc
9ed74f2d 4496 */
f4c738c2
JB
4497static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4498 bool wait_ordered)
5da9d01b 4499{
0ca1f7ce 4500 struct btrfs_block_rsv *block_rsv;
0019f10d 4501 struct btrfs_space_info *space_info;
663350ac 4502 struct btrfs_trans_handle *trans;
f4c738c2 4503 u64 delalloc_bytes;
5da9d01b 4504 u64 max_reclaim;
b1953bce 4505 long time_left;
d3ee29e3
MX
4506 unsigned long nr_pages;
4507 int loops;
b0244199 4508 int items;
08e007d2 4509 enum btrfs_reserve_flush_enum flush;
5da9d01b 4510
c61a16a7 4511 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4512 items = calc_reclaim_items_nr(root, to_reclaim);
4513 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4514
663350ac 4515 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4516 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4517 space_info = block_rsv->space_info;
bf9022e0 4518
963d678b
MX
4519 delalloc_bytes = percpu_counter_sum_positive(
4520 &root->fs_info->delalloc_bytes);
f4c738c2 4521 if (delalloc_bytes == 0) {
fdb5effd 4522 if (trans)
f4c738c2 4523 return;
38c135af 4524 if (wait_ordered)
b0244199 4525 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4526 return;
fdb5effd
JB
4527 }
4528
d3ee29e3 4529 loops = 0;
f4c738c2
JB
4530 while (delalloc_bytes && loops < 3) {
4531 max_reclaim = min(delalloc_bytes, to_reclaim);
4532 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4533 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4534 /*
4535 * We need to wait for the async pages to actually start before
4536 * we do anything.
4537 */
9f3a074d
MX
4538 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4539 if (!max_reclaim)
4540 goto skip_async;
4541
4542 if (max_reclaim <= nr_pages)
4543 max_reclaim = 0;
4544 else
4545 max_reclaim -= nr_pages;
dea31f52 4546
9f3a074d
MX
4547 wait_event(root->fs_info->async_submit_wait,
4548 atomic_read(&root->fs_info->async_delalloc_pages) <=
4549 (int)max_reclaim);
4550skip_async:
08e007d2
MX
4551 if (!trans)
4552 flush = BTRFS_RESERVE_FLUSH_ALL;
4553 else
4554 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4555 spin_lock(&space_info->lock);
08e007d2 4556 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4557 spin_unlock(&space_info->lock);
4558 break;
4559 }
0019f10d 4560 spin_unlock(&space_info->lock);
5da9d01b 4561
36e39c40 4562 loops++;
f104d044 4563 if (wait_ordered && !trans) {
b0244199 4564 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4565 } else {
f4c738c2 4566 time_left = schedule_timeout_killable(1);
f104d044
JB
4567 if (time_left)
4568 break;
4569 }
963d678b
MX
4570 delalloc_bytes = percpu_counter_sum_positive(
4571 &root->fs_info->delalloc_bytes);
5da9d01b 4572 }
5da9d01b
YZ
4573}
4574
663350ac
JB
4575/**
4576 * maybe_commit_transaction - possibly commit the transaction if its ok to
4577 * @root - the root we're allocating for
4578 * @bytes - the number of bytes we want to reserve
4579 * @force - force the commit
8bb8ab2e 4580 *
663350ac
JB
4581 * This will check to make sure that committing the transaction will actually
4582 * get us somewhere and then commit the transaction if it does. Otherwise it
4583 * will return -ENOSPC.
8bb8ab2e 4584 */
663350ac
JB
4585static int may_commit_transaction(struct btrfs_root *root,
4586 struct btrfs_space_info *space_info,
4587 u64 bytes, int force)
4588{
4589 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4590 struct btrfs_trans_handle *trans;
4591
4592 trans = (struct btrfs_trans_handle *)current->journal_info;
4593 if (trans)
4594 return -EAGAIN;
4595
4596 if (force)
4597 goto commit;
4598
4599 /* See if there is enough pinned space to make this reservation */
b150a4f1 4600 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4601 bytes) >= 0)
663350ac 4602 goto commit;
663350ac
JB
4603
4604 /*
4605 * See if there is some space in the delayed insertion reservation for
4606 * this reservation.
4607 */
4608 if (space_info != delayed_rsv->space_info)
4609 return -ENOSPC;
4610
4611 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4612 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4613 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4614 spin_unlock(&delayed_rsv->lock);
4615 return -ENOSPC;
4616 }
4617 spin_unlock(&delayed_rsv->lock);
4618
4619commit:
4620 trans = btrfs_join_transaction(root);
4621 if (IS_ERR(trans))
4622 return -ENOSPC;
4623
4624 return btrfs_commit_transaction(trans, root);
4625}
4626
96c3f433 4627enum flush_state {
67b0fd63
JB
4628 FLUSH_DELAYED_ITEMS_NR = 1,
4629 FLUSH_DELAYED_ITEMS = 2,
4630 FLUSH_DELALLOC = 3,
4631 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4632 ALLOC_CHUNK = 5,
4633 COMMIT_TRANS = 6,
96c3f433
JB
4634};
4635
4636static int flush_space(struct btrfs_root *root,
4637 struct btrfs_space_info *space_info, u64 num_bytes,
4638 u64 orig_bytes, int state)
4639{
4640 struct btrfs_trans_handle *trans;
4641 int nr;
f4c738c2 4642 int ret = 0;
96c3f433
JB
4643
4644 switch (state) {
96c3f433
JB
4645 case FLUSH_DELAYED_ITEMS_NR:
4646 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4647 if (state == FLUSH_DELAYED_ITEMS_NR)
4648 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4649 else
96c3f433 4650 nr = -1;
18cd8ea6 4651
96c3f433
JB
4652 trans = btrfs_join_transaction(root);
4653 if (IS_ERR(trans)) {
4654 ret = PTR_ERR(trans);
4655 break;
4656 }
4657 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4658 btrfs_end_transaction(trans, root);
4659 break;
67b0fd63
JB
4660 case FLUSH_DELALLOC:
4661 case FLUSH_DELALLOC_WAIT:
24af7dd1 4662 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4663 state == FLUSH_DELALLOC_WAIT);
4664 break;
ea658bad
JB
4665 case ALLOC_CHUNK:
4666 trans = btrfs_join_transaction(root);
4667 if (IS_ERR(trans)) {
4668 ret = PTR_ERR(trans);
4669 break;
4670 }
4671 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4672 btrfs_get_alloc_profile(root, 0),
4673 CHUNK_ALLOC_NO_FORCE);
4674 btrfs_end_transaction(trans, root);
4675 if (ret == -ENOSPC)
4676 ret = 0;
4677 break;
96c3f433
JB
4678 case COMMIT_TRANS:
4679 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4680 break;
4681 default:
4682 ret = -ENOSPC;
4683 break;
4684 }
4685
4686 return ret;
4687}
21c7e756
MX
4688
4689static inline u64
4690btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4691 struct btrfs_space_info *space_info)
4692{
4693 u64 used;
4694 u64 expected;
4695 u64 to_reclaim;
4696
4697 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4698 16 * 1024 * 1024);
4699 spin_lock(&space_info->lock);
4700 if (can_overcommit(root, space_info, to_reclaim,
4701 BTRFS_RESERVE_FLUSH_ALL)) {
4702 to_reclaim = 0;
4703 goto out;
4704 }
4705
4706 used = space_info->bytes_used + space_info->bytes_reserved +
4707 space_info->bytes_pinned + space_info->bytes_readonly +
4708 space_info->bytes_may_use;
4709 if (can_overcommit(root, space_info, 1024 * 1024,
4710 BTRFS_RESERVE_FLUSH_ALL))
4711 expected = div_factor_fine(space_info->total_bytes, 95);
4712 else
4713 expected = div_factor_fine(space_info->total_bytes, 90);
4714
4715 if (used > expected)
4716 to_reclaim = used - expected;
4717 else
4718 to_reclaim = 0;
4719 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4720 space_info->bytes_reserved);
4721out:
4722 spin_unlock(&space_info->lock);
4723
4724 return to_reclaim;
4725}
4726
4727static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4728 struct btrfs_fs_info *fs_info, u64 used)
4729{
365c5313
JB
4730 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4731
4732 /* If we're just plain full then async reclaim just slows us down. */
4733 if (space_info->bytes_used >= thresh)
4734 return 0;
4735
4736 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4737 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4738}
4739
4740static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4741 struct btrfs_fs_info *fs_info,
4742 int flush_state)
21c7e756
MX
4743{
4744 u64 used;
4745
4746 spin_lock(&space_info->lock);
25ce459c
LB
4747 /*
4748 * We run out of space and have not got any free space via flush_space,
4749 * so don't bother doing async reclaim.
4750 */
4751 if (flush_state > COMMIT_TRANS && space_info->full) {
4752 spin_unlock(&space_info->lock);
4753 return 0;
4754 }
4755
21c7e756
MX
4756 used = space_info->bytes_used + space_info->bytes_reserved +
4757 space_info->bytes_pinned + space_info->bytes_readonly +
4758 space_info->bytes_may_use;
4759 if (need_do_async_reclaim(space_info, fs_info, used)) {
4760 spin_unlock(&space_info->lock);
4761 return 1;
4762 }
4763 spin_unlock(&space_info->lock);
4764
4765 return 0;
4766}
4767
4768static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4769{
4770 struct btrfs_fs_info *fs_info;
4771 struct btrfs_space_info *space_info;
4772 u64 to_reclaim;
4773 int flush_state;
4774
4775 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4776 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4777
4778 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4779 space_info);
4780 if (!to_reclaim)
4781 return;
4782
4783 flush_state = FLUSH_DELAYED_ITEMS_NR;
4784 do {
4785 flush_space(fs_info->fs_root, space_info, to_reclaim,
4786 to_reclaim, flush_state);
4787 flush_state++;
25ce459c
LB
4788 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4789 flush_state))
21c7e756 4790 return;
365c5313 4791 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4792}
4793
4794void btrfs_init_async_reclaim_work(struct work_struct *work)
4795{
4796 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4797}
4798
4a92b1b8
JB
4799/**
4800 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4801 * @root - the root we're allocating for
4802 * @block_rsv - the block_rsv we're allocating for
4803 * @orig_bytes - the number of bytes we want
48fc7f7e 4804 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4805 *
4a92b1b8
JB
4806 * This will reserve orgi_bytes number of bytes from the space info associated
4807 * with the block_rsv. If there is not enough space it will make an attempt to
4808 * flush out space to make room. It will do this by flushing delalloc if
4809 * possible or committing the transaction. If flush is 0 then no attempts to
4810 * regain reservations will be made and this will fail if there is not enough
4811 * space already.
8bb8ab2e 4812 */
4a92b1b8 4813static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4814 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4815 u64 orig_bytes,
4816 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4817{
f0486c68 4818 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4819 u64 used;
8bb8ab2e 4820 u64 num_bytes = orig_bytes;
67b0fd63 4821 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4822 int ret = 0;
fdb5effd 4823 bool flushing = false;
9ed74f2d 4824
8bb8ab2e 4825again:
fdb5effd 4826 ret = 0;
8bb8ab2e 4827 spin_lock(&space_info->lock);
fdb5effd 4828 /*
08e007d2
MX
4829 * We only want to wait if somebody other than us is flushing and we
4830 * are actually allowed to flush all things.
fdb5effd 4831 */
08e007d2
MX
4832 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4833 space_info->flush) {
fdb5effd
JB
4834 spin_unlock(&space_info->lock);
4835 /*
4836 * If we have a trans handle we can't wait because the flusher
4837 * may have to commit the transaction, which would mean we would
4838 * deadlock since we are waiting for the flusher to finish, but
4839 * hold the current transaction open.
4840 */
663350ac 4841 if (current->journal_info)
fdb5effd 4842 return -EAGAIN;
b9688bb8
AJ
4843 ret = wait_event_killable(space_info->wait, !space_info->flush);
4844 /* Must have been killed, return */
4845 if (ret)
fdb5effd
JB
4846 return -EINTR;
4847
4848 spin_lock(&space_info->lock);
4849 }
4850
4851 ret = -ENOSPC;
2bf64758
JB
4852 used = space_info->bytes_used + space_info->bytes_reserved +
4853 space_info->bytes_pinned + space_info->bytes_readonly +
4854 space_info->bytes_may_use;
9ed74f2d 4855
8bb8ab2e
JB
4856 /*
4857 * The idea here is that we've not already over-reserved the block group
4858 * then we can go ahead and save our reservation first and then start
4859 * flushing if we need to. Otherwise if we've already overcommitted
4860 * lets start flushing stuff first and then come back and try to make
4861 * our reservation.
4862 */
2bf64758
JB
4863 if (used <= space_info->total_bytes) {
4864 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4865 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4866 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4867 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4868 ret = 0;
4869 } else {
4870 /*
4871 * Ok set num_bytes to orig_bytes since we aren't
4872 * overocmmitted, this way we only try and reclaim what
4873 * we need.
4874 */
4875 num_bytes = orig_bytes;
4876 }
4877 } else {
4878 /*
4879 * Ok we're over committed, set num_bytes to the overcommitted
4880 * amount plus the amount of bytes that we need for this
4881 * reservation.
4882 */
2bf64758 4883 num_bytes = used - space_info->total_bytes +
96c3f433 4884 (orig_bytes * 2);
8bb8ab2e 4885 }
9ed74f2d 4886
44734ed1
JB
4887 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4888 space_info->bytes_may_use += orig_bytes;
4889 trace_btrfs_space_reservation(root->fs_info, "space_info",
4890 space_info->flags, orig_bytes,
4891 1);
4892 ret = 0;
2bf64758
JB
4893 }
4894
8bb8ab2e
JB
4895 /*
4896 * Couldn't make our reservation, save our place so while we're trying
4897 * to reclaim space we can actually use it instead of somebody else
4898 * stealing it from us.
08e007d2
MX
4899 *
4900 * We make the other tasks wait for the flush only when we can flush
4901 * all things.
8bb8ab2e 4902 */
72bcd99d 4903 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4904 flushing = true;
4905 space_info->flush = 1;
21c7e756
MX
4906 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4907 used += orig_bytes;
f6acfd50
JB
4908 /*
4909 * We will do the space reservation dance during log replay,
4910 * which means we won't have fs_info->fs_root set, so don't do
4911 * the async reclaim as we will panic.
4912 */
4913 if (!root->fs_info->log_root_recovering &&
4914 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4915 !work_busy(&root->fs_info->async_reclaim_work))
4916 queue_work(system_unbound_wq,
4917 &root->fs_info->async_reclaim_work);
8bb8ab2e 4918 }
f0486c68 4919 spin_unlock(&space_info->lock);
9ed74f2d 4920
08e007d2 4921 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4922 goto out;
f0486c68 4923
96c3f433
JB
4924 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4925 flush_state);
4926 flush_state++;
08e007d2
MX
4927
4928 /*
4929 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4930 * would happen. So skip delalloc flush.
4931 */
4932 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4933 (flush_state == FLUSH_DELALLOC ||
4934 flush_state == FLUSH_DELALLOC_WAIT))
4935 flush_state = ALLOC_CHUNK;
4936
96c3f433 4937 if (!ret)
8bb8ab2e 4938 goto again;
08e007d2
MX
4939 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4940 flush_state < COMMIT_TRANS)
4941 goto again;
4942 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4943 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4944 goto again;
4945
4946out:
5d80366e
JB
4947 if (ret == -ENOSPC &&
4948 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4949 struct btrfs_block_rsv *global_rsv =
4950 &root->fs_info->global_block_rsv;
4951
4952 if (block_rsv != global_rsv &&
4953 !block_rsv_use_bytes(global_rsv, orig_bytes))
4954 ret = 0;
4955 }
cab45e22
JM
4956 if (ret == -ENOSPC)
4957 trace_btrfs_space_reservation(root->fs_info,
4958 "space_info:enospc",
4959 space_info->flags, orig_bytes, 1);
fdb5effd 4960 if (flushing) {
8bb8ab2e 4961 spin_lock(&space_info->lock);
fdb5effd
JB
4962 space_info->flush = 0;
4963 wake_up_all(&space_info->wait);
8bb8ab2e 4964 spin_unlock(&space_info->lock);
f0486c68 4965 }
f0486c68
YZ
4966 return ret;
4967}
4968
79787eaa
JM
4969static struct btrfs_block_rsv *get_block_rsv(
4970 const struct btrfs_trans_handle *trans,
4971 const struct btrfs_root *root)
f0486c68 4972{
4c13d758
JB
4973 struct btrfs_block_rsv *block_rsv = NULL;
4974
e9cf439f
AM
4975 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4976 (root == root->fs_info->csum_root && trans->adding_csums) ||
4977 (root == root->fs_info->uuid_root))
f7a81ea4
SB
4978 block_rsv = trans->block_rsv;
4979
4c13d758 4980 if (!block_rsv)
f0486c68
YZ
4981 block_rsv = root->block_rsv;
4982
4983 if (!block_rsv)
4984 block_rsv = &root->fs_info->empty_block_rsv;
4985
4986 return block_rsv;
4987}
4988
4989static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4990 u64 num_bytes)
4991{
4992 int ret = -ENOSPC;
4993 spin_lock(&block_rsv->lock);
4994 if (block_rsv->reserved >= num_bytes) {
4995 block_rsv->reserved -= num_bytes;
4996 if (block_rsv->reserved < block_rsv->size)
4997 block_rsv->full = 0;
4998 ret = 0;
4999 }
5000 spin_unlock(&block_rsv->lock);
5001 return ret;
5002}
5003
5004static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5005 u64 num_bytes, int update_size)
5006{
5007 spin_lock(&block_rsv->lock);
5008 block_rsv->reserved += num_bytes;
5009 if (update_size)
5010 block_rsv->size += num_bytes;
5011 else if (block_rsv->reserved >= block_rsv->size)
5012 block_rsv->full = 1;
5013 spin_unlock(&block_rsv->lock);
5014}
5015
d52be818
JB
5016int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5017 struct btrfs_block_rsv *dest, u64 num_bytes,
5018 int min_factor)
5019{
5020 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5021 u64 min_bytes;
5022
5023 if (global_rsv->space_info != dest->space_info)
5024 return -ENOSPC;
5025
5026 spin_lock(&global_rsv->lock);
5027 min_bytes = div_factor(global_rsv->size, min_factor);
5028 if (global_rsv->reserved < min_bytes + num_bytes) {
5029 spin_unlock(&global_rsv->lock);
5030 return -ENOSPC;
5031 }
5032 global_rsv->reserved -= num_bytes;
5033 if (global_rsv->reserved < global_rsv->size)
5034 global_rsv->full = 0;
5035 spin_unlock(&global_rsv->lock);
5036
5037 block_rsv_add_bytes(dest, num_bytes, 1);
5038 return 0;
5039}
5040
8c2a3ca2
JB
5041static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5042 struct btrfs_block_rsv *block_rsv,
62a45b60 5043 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5044{
5045 struct btrfs_space_info *space_info = block_rsv->space_info;
5046
5047 spin_lock(&block_rsv->lock);
5048 if (num_bytes == (u64)-1)
5049 num_bytes = block_rsv->size;
5050 block_rsv->size -= num_bytes;
5051 if (block_rsv->reserved >= block_rsv->size) {
5052 num_bytes = block_rsv->reserved - block_rsv->size;
5053 block_rsv->reserved = block_rsv->size;
5054 block_rsv->full = 1;
5055 } else {
5056 num_bytes = 0;
5057 }
5058 spin_unlock(&block_rsv->lock);
5059
5060 if (num_bytes > 0) {
5061 if (dest) {
e9e22899
JB
5062 spin_lock(&dest->lock);
5063 if (!dest->full) {
5064 u64 bytes_to_add;
5065
5066 bytes_to_add = dest->size - dest->reserved;
5067 bytes_to_add = min(num_bytes, bytes_to_add);
5068 dest->reserved += bytes_to_add;
5069 if (dest->reserved >= dest->size)
5070 dest->full = 1;
5071 num_bytes -= bytes_to_add;
5072 }
5073 spin_unlock(&dest->lock);
5074 }
5075 if (num_bytes) {
f0486c68 5076 spin_lock(&space_info->lock);
fb25e914 5077 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5078 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5079 space_info->flags, num_bytes, 0);
f0486c68 5080 spin_unlock(&space_info->lock);
4e06bdd6 5081 }
9ed74f2d 5082 }
f0486c68 5083}
4e06bdd6 5084
f0486c68
YZ
5085static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5086 struct btrfs_block_rsv *dst, u64 num_bytes)
5087{
5088 int ret;
9ed74f2d 5089
f0486c68
YZ
5090 ret = block_rsv_use_bytes(src, num_bytes);
5091 if (ret)
5092 return ret;
9ed74f2d 5093
f0486c68 5094 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5095 return 0;
5096}
5097
66d8f3dd 5098void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5099{
f0486c68
YZ
5100 memset(rsv, 0, sizeof(*rsv));
5101 spin_lock_init(&rsv->lock);
66d8f3dd 5102 rsv->type = type;
f0486c68
YZ
5103}
5104
66d8f3dd
MX
5105struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5106 unsigned short type)
f0486c68
YZ
5107{
5108 struct btrfs_block_rsv *block_rsv;
5109 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5110
f0486c68
YZ
5111 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5112 if (!block_rsv)
5113 return NULL;
9ed74f2d 5114
66d8f3dd 5115 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5116 block_rsv->space_info = __find_space_info(fs_info,
5117 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5118 return block_rsv;
5119}
9ed74f2d 5120
f0486c68
YZ
5121void btrfs_free_block_rsv(struct btrfs_root *root,
5122 struct btrfs_block_rsv *rsv)
5123{
2aaa6655
JB
5124 if (!rsv)
5125 return;
dabdb640
JB
5126 btrfs_block_rsv_release(root, rsv, (u64)-1);
5127 kfree(rsv);
9ed74f2d
JB
5128}
5129
cdfb080e
CM
5130void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5131{
5132 kfree(rsv);
5133}
5134
08e007d2
MX
5135int btrfs_block_rsv_add(struct btrfs_root *root,
5136 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5137 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5138{
f0486c68 5139 int ret;
9ed74f2d 5140
f0486c68
YZ
5141 if (num_bytes == 0)
5142 return 0;
8bb8ab2e 5143
61b520a9 5144 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5145 if (!ret) {
5146 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5147 return 0;
5148 }
9ed74f2d 5149
f0486c68 5150 return ret;
f0486c68 5151}
9ed74f2d 5152
4a92b1b8 5153int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5154 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5155{
5156 u64 num_bytes = 0;
f0486c68 5157 int ret = -ENOSPC;
9ed74f2d 5158
f0486c68
YZ
5159 if (!block_rsv)
5160 return 0;
9ed74f2d 5161
f0486c68 5162 spin_lock(&block_rsv->lock);
36ba022a
JB
5163 num_bytes = div_factor(block_rsv->size, min_factor);
5164 if (block_rsv->reserved >= num_bytes)
5165 ret = 0;
5166 spin_unlock(&block_rsv->lock);
9ed74f2d 5167
36ba022a
JB
5168 return ret;
5169}
5170
08e007d2
MX
5171int btrfs_block_rsv_refill(struct btrfs_root *root,
5172 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5173 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5174{
5175 u64 num_bytes = 0;
5176 int ret = -ENOSPC;
5177
5178 if (!block_rsv)
5179 return 0;
5180
5181 spin_lock(&block_rsv->lock);
5182 num_bytes = min_reserved;
13553e52 5183 if (block_rsv->reserved >= num_bytes)
f0486c68 5184 ret = 0;
13553e52 5185 else
f0486c68 5186 num_bytes -= block_rsv->reserved;
f0486c68 5187 spin_unlock(&block_rsv->lock);
13553e52 5188
f0486c68
YZ
5189 if (!ret)
5190 return 0;
5191
aa38a711 5192 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5193 if (!ret) {
5194 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5195 return 0;
6a63209f 5196 }
9ed74f2d 5197
13553e52 5198 return ret;
f0486c68
YZ
5199}
5200
5201int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5202 struct btrfs_block_rsv *dst_rsv,
5203 u64 num_bytes)
5204{
5205 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5206}
5207
5208void btrfs_block_rsv_release(struct btrfs_root *root,
5209 struct btrfs_block_rsv *block_rsv,
5210 u64 num_bytes)
5211{
5212 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5213 if (global_rsv == block_rsv ||
f0486c68
YZ
5214 block_rsv->space_info != global_rsv->space_info)
5215 global_rsv = NULL;
8c2a3ca2
JB
5216 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5217 num_bytes);
6a63209f
JB
5218}
5219
5220/*
8929ecfa
YZ
5221 * helper to calculate size of global block reservation.
5222 * the desired value is sum of space used by extent tree,
5223 * checksum tree and root tree
6a63209f 5224 */
8929ecfa 5225static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5226{
8929ecfa
YZ
5227 struct btrfs_space_info *sinfo;
5228 u64 num_bytes;
5229 u64 meta_used;
5230 u64 data_used;
6c41761f 5231 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5232
8929ecfa
YZ
5233 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5234 spin_lock(&sinfo->lock);
5235 data_used = sinfo->bytes_used;
5236 spin_unlock(&sinfo->lock);
33b4d47f 5237
8929ecfa
YZ
5238 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5239 spin_lock(&sinfo->lock);
6d48755d
JB
5240 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5241 data_used = 0;
8929ecfa
YZ
5242 meta_used = sinfo->bytes_used;
5243 spin_unlock(&sinfo->lock);
ab6e2410 5244
8929ecfa
YZ
5245 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5246 csum_size * 2;
f8c269d7 5247 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5248
8929ecfa 5249 if (num_bytes * 3 > meta_used)
f8c269d7 5250 num_bytes = div_u64(meta_used, 3);
ab6e2410 5251
707e8a07 5252 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5253}
6a63209f 5254
8929ecfa
YZ
5255static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5256{
5257 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5258 struct btrfs_space_info *sinfo = block_rsv->space_info;
5259 u64 num_bytes;
6a63209f 5260
8929ecfa 5261 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5262
8929ecfa 5263 spin_lock(&sinfo->lock);
1f699d38 5264 spin_lock(&block_rsv->lock);
4e06bdd6 5265
fdf30d1c 5266 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5267
8929ecfa 5268 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5269 sinfo->bytes_reserved + sinfo->bytes_readonly +
5270 sinfo->bytes_may_use;
8929ecfa
YZ
5271
5272 if (sinfo->total_bytes > num_bytes) {
5273 num_bytes = sinfo->total_bytes - num_bytes;
5274 block_rsv->reserved += num_bytes;
fb25e914 5275 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5276 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5277 sinfo->flags, num_bytes, 1);
6a63209f 5278 }
6a63209f 5279
8929ecfa
YZ
5280 if (block_rsv->reserved >= block_rsv->size) {
5281 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5282 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5283 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5284 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5285 block_rsv->reserved = block_rsv->size;
5286 block_rsv->full = 1;
5287 }
182608c8 5288
8929ecfa 5289 spin_unlock(&block_rsv->lock);
1f699d38 5290 spin_unlock(&sinfo->lock);
6a63209f
JB
5291}
5292
f0486c68 5293static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5294{
f0486c68 5295 struct btrfs_space_info *space_info;
6a63209f 5296
f0486c68
YZ
5297 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5298 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5299
f0486c68 5300 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5301 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5302 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5303 fs_info->trans_block_rsv.space_info = space_info;
5304 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5305 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5306
8929ecfa
YZ
5307 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5308 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5309 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5310 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5311 if (fs_info->quota_root)
5312 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5313 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5314
8929ecfa 5315 update_global_block_rsv(fs_info);
6a63209f
JB
5316}
5317
8929ecfa 5318static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5319{
8c2a3ca2
JB
5320 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5321 (u64)-1);
8929ecfa
YZ
5322 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5323 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5324 WARN_ON(fs_info->trans_block_rsv.size > 0);
5325 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5326 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5327 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5328 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5329 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5330}
5331
a22285a6
YZ
5332void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5333 struct btrfs_root *root)
6a63209f 5334{
0e721106
JB
5335 if (!trans->block_rsv)
5336 return;
5337
a22285a6
YZ
5338 if (!trans->bytes_reserved)
5339 return;
6a63209f 5340
e77266e4 5341 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5342 trans->transid, trans->bytes_reserved, 0);
b24e03db 5343 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5344 trans->bytes_reserved = 0;
5345}
6a63209f 5346
4fbcdf66
FM
5347/*
5348 * To be called after all the new block groups attached to the transaction
5349 * handle have been created (btrfs_create_pending_block_groups()).
5350 */
5351void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5352{
5353 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5354
5355 if (!trans->chunk_bytes_reserved)
5356 return;
5357
5358 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5359
5360 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5361 trans->chunk_bytes_reserved);
5362 trans->chunk_bytes_reserved = 0;
5363}
5364
79787eaa 5365/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5366int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5367 struct inode *inode)
5368{
5369 struct btrfs_root *root = BTRFS_I(inode)->root;
5370 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5371 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5372
5373 /*
fcb80c2a
JB
5374 * We need to hold space in order to delete our orphan item once we've
5375 * added it, so this takes the reservation so we can release it later
5376 * when we are truly done with the orphan item.
d68fc57b 5377 */
ff5714cc 5378 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5379 trace_btrfs_space_reservation(root->fs_info, "orphan",
5380 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5381 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5382}
5383
d68fc57b 5384void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5385{
d68fc57b 5386 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5387 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5388 trace_btrfs_space_reservation(root->fs_info, "orphan",
5389 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5390 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5391}
97e728d4 5392
d5c12070
MX
5393/*
5394 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5395 * root: the root of the parent directory
5396 * rsv: block reservation
5397 * items: the number of items that we need do reservation
5398 * qgroup_reserved: used to return the reserved size in qgroup
5399 *
5400 * This function is used to reserve the space for snapshot/subvolume
5401 * creation and deletion. Those operations are different with the
5402 * common file/directory operations, they change two fs/file trees
5403 * and root tree, the number of items that the qgroup reserves is
5404 * different with the free space reservation. So we can not use
5405 * the space reseravtion mechanism in start_transaction().
5406 */
5407int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5408 struct btrfs_block_rsv *rsv,
5409 int items,
ee3441b4
JM
5410 u64 *qgroup_reserved,
5411 bool use_global_rsv)
a22285a6 5412{
d5c12070
MX
5413 u64 num_bytes;
5414 int ret;
ee3441b4 5415 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5416
5417 if (root->fs_info->quota_enabled) {
5418 /* One for parent inode, two for dir entries */
707e8a07 5419 num_bytes = 3 * root->nodesize;
d5c12070
MX
5420 ret = btrfs_qgroup_reserve(root, num_bytes);
5421 if (ret)
5422 return ret;
5423 } else {
5424 num_bytes = 0;
5425 }
5426
5427 *qgroup_reserved = num_bytes;
5428
5429 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5430 rsv->space_info = __find_space_info(root->fs_info,
5431 BTRFS_BLOCK_GROUP_METADATA);
5432 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5433 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5434
5435 if (ret == -ENOSPC && use_global_rsv)
5436 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5437
d5c12070
MX
5438 if (ret) {
5439 if (*qgroup_reserved)
5440 btrfs_qgroup_free(root, *qgroup_reserved);
5441 }
5442
5443 return ret;
5444}
5445
5446void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5447 struct btrfs_block_rsv *rsv,
5448 u64 qgroup_reserved)
5449{
5450 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5451}
5452
7709cde3
JB
5453/**
5454 * drop_outstanding_extent - drop an outstanding extent
5455 * @inode: the inode we're dropping the extent for
dcab6a3b 5456 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5457 *
5458 * This is called when we are freeing up an outstanding extent, either called
5459 * after an error or after an extent is written. This will return the number of
5460 * reserved extents that need to be freed. This must be called with
5461 * BTRFS_I(inode)->lock held.
5462 */
dcab6a3b 5463static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5464{
7fd2ae21 5465 unsigned drop_inode_space = 0;
9e0baf60 5466 unsigned dropped_extents = 0;
dcab6a3b 5467 unsigned num_extents = 0;
9e0baf60 5468
dcab6a3b
JB
5469 num_extents = (unsigned)div64_u64(num_bytes +
5470 BTRFS_MAX_EXTENT_SIZE - 1,
5471 BTRFS_MAX_EXTENT_SIZE);
5472 ASSERT(num_extents);
5473 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5474 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5475
7fd2ae21 5476 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5477 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5478 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5479 drop_inode_space = 1;
7fd2ae21 5480
9e0baf60
JB
5481 /*
5482 * If we have more or the same amount of outsanding extents than we have
5483 * reserved then we need to leave the reserved extents count alone.
5484 */
5485 if (BTRFS_I(inode)->outstanding_extents >=
5486 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5487 return drop_inode_space;
9e0baf60
JB
5488
5489 dropped_extents = BTRFS_I(inode)->reserved_extents -
5490 BTRFS_I(inode)->outstanding_extents;
5491 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5492 return dropped_extents + drop_inode_space;
9e0baf60
JB
5493}
5494
7709cde3
JB
5495/**
5496 * calc_csum_metadata_size - return the amount of metada space that must be
5497 * reserved/free'd for the given bytes.
5498 * @inode: the inode we're manipulating
5499 * @num_bytes: the number of bytes in question
5500 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5501 *
5502 * This adjusts the number of csum_bytes in the inode and then returns the
5503 * correct amount of metadata that must either be reserved or freed. We
5504 * calculate how many checksums we can fit into one leaf and then divide the
5505 * number of bytes that will need to be checksumed by this value to figure out
5506 * how many checksums will be required. If we are adding bytes then the number
5507 * may go up and we will return the number of additional bytes that must be
5508 * reserved. If it is going down we will return the number of bytes that must
5509 * be freed.
5510 *
5511 * This must be called with BTRFS_I(inode)->lock held.
5512 */
5513static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5514 int reserve)
6324fbf3 5515{
7709cde3 5516 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5517 u64 old_csums, num_csums;
7709cde3
JB
5518
5519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5520 BTRFS_I(inode)->csum_bytes == 0)
5521 return 0;
5522
28f75a0e 5523 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5524 if (reserve)
5525 BTRFS_I(inode)->csum_bytes += num_bytes;
5526 else
5527 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5528 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5529
5530 /* No change, no need to reserve more */
5531 if (old_csums == num_csums)
5532 return 0;
5533
5534 if (reserve)
5535 return btrfs_calc_trans_metadata_size(root,
5536 num_csums - old_csums);
5537
5538 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5539}
c146afad 5540
0ca1f7ce
YZ
5541int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5542{
5543 struct btrfs_root *root = BTRFS_I(inode)->root;
5544 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5545 u64 to_reserve = 0;
660d3f6c 5546 u64 csum_bytes;
9e0baf60 5547 unsigned nr_extents = 0;
660d3f6c 5548 int extra_reserve = 0;
08e007d2 5549 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5550 int ret = 0;
c64c2bd8 5551 bool delalloc_lock = true;
88e081bf
WS
5552 u64 to_free = 0;
5553 unsigned dropped;
6324fbf3 5554
c64c2bd8
JB
5555 /* If we are a free space inode we need to not flush since we will be in
5556 * the middle of a transaction commit. We also don't need the delalloc
5557 * mutex since we won't race with anybody. We need this mostly to make
5558 * lockdep shut its filthy mouth.
5559 */
5560 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5561 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5562 delalloc_lock = false;
5563 }
c09544e0 5564
08e007d2
MX
5565 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5566 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5567 schedule_timeout(1);
ec44a35c 5568
c64c2bd8
JB
5569 if (delalloc_lock)
5570 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5571
0ca1f7ce 5572 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5573
9e0baf60 5574 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5575 nr_extents = (unsigned)div64_u64(num_bytes +
5576 BTRFS_MAX_EXTENT_SIZE - 1,
5577 BTRFS_MAX_EXTENT_SIZE);
5578 BTRFS_I(inode)->outstanding_extents += nr_extents;
5579 nr_extents = 0;
9e0baf60
JB
5580
5581 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5582 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5583 nr_extents = BTRFS_I(inode)->outstanding_extents -
5584 BTRFS_I(inode)->reserved_extents;
57a45ced 5585
7fd2ae21
JB
5586 /*
5587 * Add an item to reserve for updating the inode when we complete the
5588 * delalloc io.
5589 */
72ac3c0d
JB
5590 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5591 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5592 nr_extents++;
660d3f6c 5593 extra_reserve = 1;
593060d7 5594 }
7fd2ae21
JB
5595
5596 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5597 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5598 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5599 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5600
88e081bf 5601 if (root->fs_info->quota_enabled) {
237c0e9f 5602 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5603 if (ret)
5604 goto out_fail;
5605 }
c5567237 5606
88e081bf
WS
5607 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5608 if (unlikely(ret)) {
5609 if (root->fs_info->quota_enabled)
237c0e9f 5610 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5611 goto out_fail;
9e0baf60 5612 }
25179201 5613
660d3f6c
JB
5614 spin_lock(&BTRFS_I(inode)->lock);
5615 if (extra_reserve) {
72ac3c0d
JB
5616 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5617 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5618 nr_extents--;
5619 }
5620 BTRFS_I(inode)->reserved_extents += nr_extents;
5621 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5622
5623 if (delalloc_lock)
5624 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5625
8c2a3ca2 5626 if (to_reserve)
67871254 5627 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5628 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5629 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5630
0ca1f7ce 5631 return 0;
88e081bf
WS
5632
5633out_fail:
5634 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5635 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5636 /*
5637 * If the inodes csum_bytes is the same as the original
5638 * csum_bytes then we know we haven't raced with any free()ers
5639 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5640 */
f4881bc7 5641 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5642 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5643 } else {
5644 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5645 u64 bytes;
5646
5647 /*
5648 * This is tricky, but first we need to figure out how much we
5649 * free'd from any free-ers that occured during this
5650 * reservation, so we reset ->csum_bytes to the csum_bytes
5651 * before we dropped our lock, and then call the free for the
5652 * number of bytes that were freed while we were trying our
5653 * reservation.
5654 */
5655 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5656 BTRFS_I(inode)->csum_bytes = csum_bytes;
5657 to_free = calc_csum_metadata_size(inode, bytes, 0);
5658
5659
5660 /*
5661 * Now we need to see how much we would have freed had we not
5662 * been making this reservation and our ->csum_bytes were not
5663 * artificially inflated.
5664 */
5665 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5666 bytes = csum_bytes - orig_csum_bytes;
5667 bytes = calc_csum_metadata_size(inode, bytes, 0);
5668
5669 /*
5670 * Now reset ->csum_bytes to what it should be. If bytes is
5671 * more than to_free then we would have free'd more space had we
5672 * not had an artificially high ->csum_bytes, so we need to free
5673 * the remainder. If bytes is the same or less then we don't
5674 * need to do anything, the other free-ers did the correct
5675 * thing.
5676 */
5677 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5678 if (bytes > to_free)
5679 to_free = bytes - to_free;
5680 else
5681 to_free = 0;
5682 }
88e081bf 5683 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5684 if (dropped)
88e081bf
WS
5685 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5686
5687 if (to_free) {
5688 btrfs_block_rsv_release(root, block_rsv, to_free);
5689 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5690 btrfs_ino(inode), to_free, 0);
5691 }
5692 if (delalloc_lock)
5693 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5694 return ret;
0ca1f7ce
YZ
5695}
5696
7709cde3
JB
5697/**
5698 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5699 * @inode: the inode to release the reservation for
5700 * @num_bytes: the number of bytes we're releasing
5701 *
5702 * This will release the metadata reservation for an inode. This can be called
5703 * once we complete IO for a given set of bytes to release their metadata
5704 * reservations.
5705 */
0ca1f7ce
YZ
5706void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5707{
5708 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5709 u64 to_free = 0;
5710 unsigned dropped;
0ca1f7ce
YZ
5711
5712 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5713 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5714 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5715
0934856d
MX
5716 if (num_bytes)
5717 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5718 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5719 if (dropped > 0)
5720 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5721
6a3891c5
JB
5722 if (btrfs_test_is_dummy_root(root))
5723 return;
5724
8c2a3ca2
JB
5725 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5726 btrfs_ino(inode), to_free, 0);
c5567237 5727
0ca1f7ce
YZ
5728 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5729 to_free);
5730}
5731
7709cde3
JB
5732/**
5733 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5734 * @inode: inode we're writing to
5735 * @num_bytes: the number of bytes we want to allocate
5736 *
5737 * This will do the following things
5738 *
5739 * o reserve space in the data space info for num_bytes
5740 * o reserve space in the metadata space info based on number of outstanding
5741 * extents and how much csums will be needed
5742 * o add to the inodes ->delalloc_bytes
5743 * o add it to the fs_info's delalloc inodes list.
5744 *
5745 * This will return 0 for success and -ENOSPC if there is no space left.
5746 */
0ca1f7ce
YZ
5747int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5748{
5749 int ret;
5750
e2d1f923 5751 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5752 if (ret)
0ca1f7ce
YZ
5753 return ret;
5754
5755 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5756 if (ret) {
5757 btrfs_free_reserved_data_space(inode, num_bytes);
5758 return ret;
5759 }
5760
5761 return 0;
5762}
5763
7709cde3
JB
5764/**
5765 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5766 * @inode: inode we're releasing space for
5767 * @num_bytes: the number of bytes we want to free up
5768 *
5769 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5770 * called in the case that we don't need the metadata AND data reservations
5771 * anymore. So if there is an error or we insert an inline extent.
5772 *
5773 * This function will release the metadata space that was not used and will
5774 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5775 * list if there are no delalloc bytes left.
5776 */
0ca1f7ce
YZ
5777void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5778{
5779 btrfs_delalloc_release_metadata(inode, num_bytes);
5780 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5781}
5782
ce93ec54
JB
5783static int update_block_group(struct btrfs_trans_handle *trans,
5784 struct btrfs_root *root, u64 bytenr,
5785 u64 num_bytes, int alloc)
9078a3e1 5786{
0af3d00b 5787 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5788 struct btrfs_fs_info *info = root->fs_info;
db94535d 5789 u64 total = num_bytes;
9078a3e1 5790 u64 old_val;
db94535d 5791 u64 byte_in_group;
0af3d00b 5792 int factor;
3e1ad54f 5793
5d4f98a2 5794 /* block accounting for super block */
eb73c1b7 5795 spin_lock(&info->delalloc_root_lock);
6c41761f 5796 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5797 if (alloc)
5798 old_val += num_bytes;
5799 else
5800 old_val -= num_bytes;
6c41761f 5801 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5802 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5803
d397712b 5804 while (total) {
db94535d 5805 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5806 if (!cache)
79787eaa 5807 return -ENOENT;
b742bb82
YZ
5808 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5809 BTRFS_BLOCK_GROUP_RAID1 |
5810 BTRFS_BLOCK_GROUP_RAID10))
5811 factor = 2;
5812 else
5813 factor = 1;
9d66e233
JB
5814 /*
5815 * If this block group has free space cache written out, we
5816 * need to make sure to load it if we are removing space. This
5817 * is because we need the unpinning stage to actually add the
5818 * space back to the block group, otherwise we will leak space.
5819 */
5820 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5821 cache_block_group(cache, 1);
0af3d00b 5822
db94535d
CM
5823 byte_in_group = bytenr - cache->key.objectid;
5824 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5825
25179201 5826 spin_lock(&cache->space_info->lock);
c286ac48 5827 spin_lock(&cache->lock);
0af3d00b 5828
73bc1876 5829 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5830 cache->disk_cache_state < BTRFS_DC_CLEAR)
5831 cache->disk_cache_state = BTRFS_DC_CLEAR;
5832
9078a3e1 5833 old_val = btrfs_block_group_used(&cache->item);
db94535d 5834 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5835 if (alloc) {
db94535d 5836 old_val += num_bytes;
11833d66
YZ
5837 btrfs_set_block_group_used(&cache->item, old_val);
5838 cache->reserved -= num_bytes;
11833d66 5839 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5840 cache->space_info->bytes_used += num_bytes;
5841 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5842 spin_unlock(&cache->lock);
25179201 5843 spin_unlock(&cache->space_info->lock);
cd1bc465 5844 } else {
db94535d 5845 old_val -= num_bytes;
ae0ab003
FM
5846 btrfs_set_block_group_used(&cache->item, old_val);
5847 cache->pinned += num_bytes;
5848 cache->space_info->bytes_pinned += num_bytes;
5849 cache->space_info->bytes_used -= num_bytes;
5850 cache->space_info->disk_used -= num_bytes * factor;
5851 spin_unlock(&cache->lock);
5852 spin_unlock(&cache->space_info->lock);
47ab2a6c 5853
ae0ab003
FM
5854 set_extent_dirty(info->pinned_extents,
5855 bytenr, bytenr + num_bytes - 1,
5856 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5857 /*
5858 * No longer have used bytes in this block group, queue
5859 * it for deletion.
5860 */
5861 if (old_val == 0) {
5862 spin_lock(&info->unused_bgs_lock);
5863 if (list_empty(&cache->bg_list)) {
5864 btrfs_get_block_group(cache);
5865 list_add_tail(&cache->bg_list,
5866 &info->unused_bgs);
5867 }
5868 spin_unlock(&info->unused_bgs_lock);
5869 }
cd1bc465 5870 }
1bbc621e
CM
5871
5872 spin_lock(&trans->transaction->dirty_bgs_lock);
5873 if (list_empty(&cache->dirty_list)) {
5874 list_add_tail(&cache->dirty_list,
5875 &trans->transaction->dirty_bgs);
5876 trans->transaction->num_dirty_bgs++;
5877 btrfs_get_block_group(cache);
5878 }
5879 spin_unlock(&trans->transaction->dirty_bgs_lock);
5880
fa9c0d79 5881 btrfs_put_block_group(cache);
db94535d
CM
5882 total -= num_bytes;
5883 bytenr += num_bytes;
9078a3e1
CM
5884 }
5885 return 0;
5886}
6324fbf3 5887
a061fc8d
CM
5888static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5889{
0f9dd46c 5890 struct btrfs_block_group_cache *cache;
d2fb3437 5891 u64 bytenr;
0f9dd46c 5892
a1897fdd
LB
5893 spin_lock(&root->fs_info->block_group_cache_lock);
5894 bytenr = root->fs_info->first_logical_byte;
5895 spin_unlock(&root->fs_info->block_group_cache_lock);
5896
5897 if (bytenr < (u64)-1)
5898 return bytenr;
5899
0f9dd46c
JB
5900 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5901 if (!cache)
a061fc8d 5902 return 0;
0f9dd46c 5903
d2fb3437 5904 bytenr = cache->key.objectid;
fa9c0d79 5905 btrfs_put_block_group(cache);
d2fb3437
YZ
5906
5907 return bytenr;
a061fc8d
CM
5908}
5909
f0486c68
YZ
5910static int pin_down_extent(struct btrfs_root *root,
5911 struct btrfs_block_group_cache *cache,
5912 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5913{
11833d66
YZ
5914 spin_lock(&cache->space_info->lock);
5915 spin_lock(&cache->lock);
5916 cache->pinned += num_bytes;
5917 cache->space_info->bytes_pinned += num_bytes;
5918 if (reserved) {
5919 cache->reserved -= num_bytes;
5920 cache->space_info->bytes_reserved -= num_bytes;
5921 }
5922 spin_unlock(&cache->lock);
5923 spin_unlock(&cache->space_info->lock);
68b38550 5924
f0486c68
YZ
5925 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5926 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5927 if (reserved)
0be5dc67 5928 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5929 return 0;
5930}
68b38550 5931
f0486c68
YZ
5932/*
5933 * this function must be called within transaction
5934 */
5935int btrfs_pin_extent(struct btrfs_root *root,
5936 u64 bytenr, u64 num_bytes, int reserved)
5937{
5938 struct btrfs_block_group_cache *cache;
68b38550 5939
f0486c68 5940 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5941 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5942
5943 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5944
5945 btrfs_put_block_group(cache);
11833d66
YZ
5946 return 0;
5947}
5948
f0486c68 5949/*
e688b725
CM
5950 * this function must be called within transaction
5951 */
dcfac415 5952int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5953 u64 bytenr, u64 num_bytes)
5954{
5955 struct btrfs_block_group_cache *cache;
b50c6e25 5956 int ret;
e688b725
CM
5957
5958 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5959 if (!cache)
5960 return -EINVAL;
e688b725
CM
5961
5962 /*
5963 * pull in the free space cache (if any) so that our pin
5964 * removes the free space from the cache. We have load_only set
5965 * to one because the slow code to read in the free extents does check
5966 * the pinned extents.
5967 */
f6373bf3 5968 cache_block_group(cache, 1);
e688b725
CM
5969
5970 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5971
5972 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5973 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5974 btrfs_put_block_group(cache);
b50c6e25 5975 return ret;
e688b725
CM
5976}
5977
8c2a1a30
JB
5978static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5979{
5980 int ret;
5981 struct btrfs_block_group_cache *block_group;
5982 struct btrfs_caching_control *caching_ctl;
5983
5984 block_group = btrfs_lookup_block_group(root->fs_info, start);
5985 if (!block_group)
5986 return -EINVAL;
5987
5988 cache_block_group(block_group, 0);
5989 caching_ctl = get_caching_control(block_group);
5990
5991 if (!caching_ctl) {
5992 /* Logic error */
5993 BUG_ON(!block_group_cache_done(block_group));
5994 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5995 } else {
5996 mutex_lock(&caching_ctl->mutex);
5997
5998 if (start >= caching_ctl->progress) {
5999 ret = add_excluded_extent(root, start, num_bytes);
6000 } else if (start + num_bytes <= caching_ctl->progress) {
6001 ret = btrfs_remove_free_space(block_group,
6002 start, num_bytes);
6003 } else {
6004 num_bytes = caching_ctl->progress - start;
6005 ret = btrfs_remove_free_space(block_group,
6006 start, num_bytes);
6007 if (ret)
6008 goto out_lock;
6009
6010 num_bytes = (start + num_bytes) -
6011 caching_ctl->progress;
6012 start = caching_ctl->progress;
6013 ret = add_excluded_extent(root, start, num_bytes);
6014 }
6015out_lock:
6016 mutex_unlock(&caching_ctl->mutex);
6017 put_caching_control(caching_ctl);
6018 }
6019 btrfs_put_block_group(block_group);
6020 return ret;
6021}
6022
6023int btrfs_exclude_logged_extents(struct btrfs_root *log,
6024 struct extent_buffer *eb)
6025{
6026 struct btrfs_file_extent_item *item;
6027 struct btrfs_key key;
6028 int found_type;
6029 int i;
6030
6031 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6032 return 0;
6033
6034 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6035 btrfs_item_key_to_cpu(eb, &key, i);
6036 if (key.type != BTRFS_EXTENT_DATA_KEY)
6037 continue;
6038 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6039 found_type = btrfs_file_extent_type(eb, item);
6040 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6041 continue;
6042 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6043 continue;
6044 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6045 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6046 __exclude_logged_extent(log, key.objectid, key.offset);
6047 }
6048
6049 return 0;
6050}
6051
fb25e914
JB
6052/**
6053 * btrfs_update_reserved_bytes - update the block_group and space info counters
6054 * @cache: The cache we are manipulating
6055 * @num_bytes: The number of bytes in question
6056 * @reserve: One of the reservation enums
e570fd27 6057 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6058 *
6059 * This is called by the allocator when it reserves space, or by somebody who is
6060 * freeing space that was never actually used on disk. For example if you
6061 * reserve some space for a new leaf in transaction A and before transaction A
6062 * commits you free that leaf, you call this with reserve set to 0 in order to
6063 * clear the reservation.
6064 *
6065 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6066 * ENOSPC accounting. For data we handle the reservation through clearing the
6067 * delalloc bits in the io_tree. We have to do this since we could end up
6068 * allocating less disk space for the amount of data we have reserved in the
6069 * case of compression.
6070 *
6071 * If this is a reservation and the block group has become read only we cannot
6072 * make the reservation and return -EAGAIN, otherwise this function always
6073 * succeeds.
f0486c68 6074 */
fb25e914 6075static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6076 u64 num_bytes, int reserve, int delalloc)
11833d66 6077{
fb25e914 6078 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6079 int ret = 0;
79787eaa 6080
fb25e914
JB
6081 spin_lock(&space_info->lock);
6082 spin_lock(&cache->lock);
6083 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6084 if (cache->ro) {
6085 ret = -EAGAIN;
6086 } else {
fb25e914
JB
6087 cache->reserved += num_bytes;
6088 space_info->bytes_reserved += num_bytes;
6089 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6090 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6091 "space_info", space_info->flags,
6092 num_bytes, 0);
fb25e914
JB
6093 space_info->bytes_may_use -= num_bytes;
6094 }
e570fd27
MX
6095
6096 if (delalloc)
6097 cache->delalloc_bytes += num_bytes;
f0486c68 6098 }
fb25e914
JB
6099 } else {
6100 if (cache->ro)
6101 space_info->bytes_readonly += num_bytes;
6102 cache->reserved -= num_bytes;
6103 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6104
6105 if (delalloc)
6106 cache->delalloc_bytes -= num_bytes;
324ae4df 6107 }
fb25e914
JB
6108 spin_unlock(&cache->lock);
6109 spin_unlock(&space_info->lock);
f0486c68 6110 return ret;
324ae4df 6111}
9078a3e1 6112
143bede5 6113void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6114 struct btrfs_root *root)
e8569813 6115{
e8569813 6116 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6117 struct btrfs_caching_control *next;
6118 struct btrfs_caching_control *caching_ctl;
6119 struct btrfs_block_group_cache *cache;
e8569813 6120
9e351cc8 6121 down_write(&fs_info->commit_root_sem);
25179201 6122
11833d66
YZ
6123 list_for_each_entry_safe(caching_ctl, next,
6124 &fs_info->caching_block_groups, list) {
6125 cache = caching_ctl->block_group;
6126 if (block_group_cache_done(cache)) {
6127 cache->last_byte_to_unpin = (u64)-1;
6128 list_del_init(&caching_ctl->list);
6129 put_caching_control(caching_ctl);
e8569813 6130 } else {
11833d66 6131 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6132 }
e8569813 6133 }
11833d66
YZ
6134
6135 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6136 fs_info->pinned_extents = &fs_info->freed_extents[1];
6137 else
6138 fs_info->pinned_extents = &fs_info->freed_extents[0];
6139
9e351cc8 6140 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6141
6142 update_global_block_rsv(fs_info);
e8569813
ZY
6143}
6144
678886bd
FM
6145static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6146 const bool return_free_space)
ccd467d6 6147{
11833d66
YZ
6148 struct btrfs_fs_info *fs_info = root->fs_info;
6149 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6150 struct btrfs_space_info *space_info;
6151 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6152 u64 len;
7b398f8e 6153 bool readonly;
ccd467d6 6154
11833d66 6155 while (start <= end) {
7b398f8e 6156 readonly = false;
11833d66
YZ
6157 if (!cache ||
6158 start >= cache->key.objectid + cache->key.offset) {
6159 if (cache)
6160 btrfs_put_block_group(cache);
6161 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6162 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6163 }
6164
6165 len = cache->key.objectid + cache->key.offset - start;
6166 len = min(len, end + 1 - start);
6167
6168 if (start < cache->last_byte_to_unpin) {
6169 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6170 if (return_free_space)
6171 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6172 }
6173
f0486c68 6174 start += len;
7b398f8e 6175 space_info = cache->space_info;
f0486c68 6176
7b398f8e 6177 spin_lock(&space_info->lock);
11833d66
YZ
6178 spin_lock(&cache->lock);
6179 cache->pinned -= len;
7b398f8e 6180 space_info->bytes_pinned -= len;
4f4db217 6181 space_info->max_extent_size = 0;
d288db5d 6182 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6183 if (cache->ro) {
6184 space_info->bytes_readonly += len;
6185 readonly = true;
6186 }
11833d66 6187 spin_unlock(&cache->lock);
7b398f8e
JB
6188 if (!readonly && global_rsv->space_info == space_info) {
6189 spin_lock(&global_rsv->lock);
6190 if (!global_rsv->full) {
6191 len = min(len, global_rsv->size -
6192 global_rsv->reserved);
6193 global_rsv->reserved += len;
6194 space_info->bytes_may_use += len;
6195 if (global_rsv->reserved >= global_rsv->size)
6196 global_rsv->full = 1;
6197 }
6198 spin_unlock(&global_rsv->lock);
6199 }
6200 spin_unlock(&space_info->lock);
ccd467d6 6201 }
11833d66
YZ
6202
6203 if (cache)
6204 btrfs_put_block_group(cache);
ccd467d6
CM
6205 return 0;
6206}
6207
6208int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6209 struct btrfs_root *root)
a28ec197 6210{
11833d66 6211 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6212 struct btrfs_block_group_cache *block_group, *tmp;
6213 struct list_head *deleted_bgs;
11833d66 6214 struct extent_io_tree *unpin;
1a5bc167
CM
6215 u64 start;
6216 u64 end;
a28ec197 6217 int ret;
a28ec197 6218
11833d66
YZ
6219 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6220 unpin = &fs_info->freed_extents[1];
6221 else
6222 unpin = &fs_info->freed_extents[0];
6223
e33e17ee 6224 while (!trans->aborted) {
d4b450cd 6225 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6226 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6227 EXTENT_DIRTY, NULL);
d4b450cd
FM
6228 if (ret) {
6229 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6230 break;
d4b450cd 6231 }
1f3c79a2 6232
5378e607
LD
6233 if (btrfs_test_opt(root, DISCARD))
6234 ret = btrfs_discard_extent(root, start,
6235 end + 1 - start, NULL);
1f3c79a2 6236
1a5bc167 6237 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6238 unpin_extent_range(root, start, end, true);
d4b450cd 6239 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6240 cond_resched();
a28ec197 6241 }
817d52f8 6242
e33e17ee
JM
6243 /*
6244 * Transaction is finished. We don't need the lock anymore. We
6245 * do need to clean up the block groups in case of a transaction
6246 * abort.
6247 */
6248 deleted_bgs = &trans->transaction->deleted_bgs;
6249 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6250 u64 trimmed = 0;
6251
6252 ret = -EROFS;
6253 if (!trans->aborted)
6254 ret = btrfs_discard_extent(root,
6255 block_group->key.objectid,
6256 block_group->key.offset,
6257 &trimmed);
6258
6259 list_del_init(&block_group->bg_list);
6260 btrfs_put_block_group_trimming(block_group);
6261 btrfs_put_block_group(block_group);
6262
6263 if (ret) {
6264 const char *errstr = btrfs_decode_error(ret);
6265 btrfs_warn(fs_info,
6266 "Discard failed while removing blockgroup: errno=%d %s\n",
6267 ret, errstr);
6268 }
6269 }
6270
e20d96d6
CM
6271 return 0;
6272}
6273
b150a4f1
JB
6274static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6275 u64 owner, u64 root_objectid)
6276{
6277 struct btrfs_space_info *space_info;
6278 u64 flags;
6279
6280 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6281 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6282 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6283 else
6284 flags = BTRFS_BLOCK_GROUP_METADATA;
6285 } else {
6286 flags = BTRFS_BLOCK_GROUP_DATA;
6287 }
6288
6289 space_info = __find_space_info(fs_info, flags);
6290 BUG_ON(!space_info); /* Logic bug */
6291 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6292}
6293
6294
5d4f98a2
YZ
6295static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6296 struct btrfs_root *root,
c682f9b3 6297 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6298 u64 root_objectid, u64 owner_objectid,
6299 u64 owner_offset, int refs_to_drop,
c682f9b3 6300 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6301{
e2fa7227 6302 struct btrfs_key key;
5d4f98a2 6303 struct btrfs_path *path;
1261ec42
CM
6304 struct btrfs_fs_info *info = root->fs_info;
6305 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6306 struct extent_buffer *leaf;
5d4f98a2
YZ
6307 struct btrfs_extent_item *ei;
6308 struct btrfs_extent_inline_ref *iref;
a28ec197 6309 int ret;
5d4f98a2 6310 int is_data;
952fccac
CM
6311 int extent_slot = 0;
6312 int found_extent = 0;
6313 int num_to_del = 1;
c682f9b3 6314 int no_quota = node->no_quota;
5d4f98a2
YZ
6315 u32 item_size;
6316 u64 refs;
c682f9b3
QW
6317 u64 bytenr = node->bytenr;
6318 u64 num_bytes = node->num_bytes;
fcebe456 6319 int last_ref = 0;
3173a18f
JB
6320 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6321 SKINNY_METADATA);
037e6390 6322
fcebe456
JB
6323 if (!info->quota_enabled || !is_fstree(root_objectid))
6324 no_quota = 1;
6325
5caf2a00 6326 path = btrfs_alloc_path();
54aa1f4d
CM
6327 if (!path)
6328 return -ENOMEM;
5f26f772 6329
3c12ac72 6330 path->reada = 1;
b9473439 6331 path->leave_spinning = 1;
5d4f98a2
YZ
6332
6333 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6334 BUG_ON(!is_data && refs_to_drop != 1);
6335
3173a18f
JB
6336 if (is_data)
6337 skinny_metadata = 0;
6338
5d4f98a2
YZ
6339 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6340 bytenr, num_bytes, parent,
6341 root_objectid, owner_objectid,
6342 owner_offset);
7bb86316 6343 if (ret == 0) {
952fccac 6344 extent_slot = path->slots[0];
5d4f98a2
YZ
6345 while (extent_slot >= 0) {
6346 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6347 extent_slot);
5d4f98a2 6348 if (key.objectid != bytenr)
952fccac 6349 break;
5d4f98a2
YZ
6350 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6351 key.offset == num_bytes) {
952fccac
CM
6352 found_extent = 1;
6353 break;
6354 }
3173a18f
JB
6355 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6356 key.offset == owner_objectid) {
6357 found_extent = 1;
6358 break;
6359 }
952fccac
CM
6360 if (path->slots[0] - extent_slot > 5)
6361 break;
5d4f98a2 6362 extent_slot--;
952fccac 6363 }
5d4f98a2
YZ
6364#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6365 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6366 if (found_extent && item_size < sizeof(*ei))
6367 found_extent = 0;
6368#endif
31840ae1 6369 if (!found_extent) {
5d4f98a2 6370 BUG_ON(iref);
56bec294 6371 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6372 NULL, refs_to_drop,
fcebe456 6373 is_data, &last_ref);
005d6427
DS
6374 if (ret) {
6375 btrfs_abort_transaction(trans, extent_root, ret);
6376 goto out;
6377 }
b3b4aa74 6378 btrfs_release_path(path);
b9473439 6379 path->leave_spinning = 1;
5d4f98a2
YZ
6380
6381 key.objectid = bytenr;
6382 key.type = BTRFS_EXTENT_ITEM_KEY;
6383 key.offset = num_bytes;
6384
3173a18f
JB
6385 if (!is_data && skinny_metadata) {
6386 key.type = BTRFS_METADATA_ITEM_KEY;
6387 key.offset = owner_objectid;
6388 }
6389
31840ae1
ZY
6390 ret = btrfs_search_slot(trans, extent_root,
6391 &key, path, -1, 1);
3173a18f
JB
6392 if (ret > 0 && skinny_metadata && path->slots[0]) {
6393 /*
6394 * Couldn't find our skinny metadata item,
6395 * see if we have ye olde extent item.
6396 */
6397 path->slots[0]--;
6398 btrfs_item_key_to_cpu(path->nodes[0], &key,
6399 path->slots[0]);
6400 if (key.objectid == bytenr &&
6401 key.type == BTRFS_EXTENT_ITEM_KEY &&
6402 key.offset == num_bytes)
6403 ret = 0;
6404 }
6405
6406 if (ret > 0 && skinny_metadata) {
6407 skinny_metadata = false;
9ce49a0b 6408 key.objectid = bytenr;
3173a18f
JB
6409 key.type = BTRFS_EXTENT_ITEM_KEY;
6410 key.offset = num_bytes;
6411 btrfs_release_path(path);
6412 ret = btrfs_search_slot(trans, extent_root,
6413 &key, path, -1, 1);
6414 }
6415
f3465ca4 6416 if (ret) {
c2cf52eb 6417 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6418 ret, bytenr);
b783e62d
JB
6419 if (ret > 0)
6420 btrfs_print_leaf(extent_root,
6421 path->nodes[0]);
f3465ca4 6422 }
005d6427
DS
6423 if (ret < 0) {
6424 btrfs_abort_transaction(trans, extent_root, ret);
6425 goto out;
6426 }
31840ae1
ZY
6427 extent_slot = path->slots[0];
6428 }
fae7f21c 6429 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6430 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6431 btrfs_err(info,
6432 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6433 bytenr, parent, root_objectid, owner_objectid,
6434 owner_offset);
c4a050bb
JB
6435 btrfs_abort_transaction(trans, extent_root, ret);
6436 goto out;
79787eaa 6437 } else {
005d6427
DS
6438 btrfs_abort_transaction(trans, extent_root, ret);
6439 goto out;
7bb86316 6440 }
5f39d397
CM
6441
6442 leaf = path->nodes[0];
5d4f98a2
YZ
6443 item_size = btrfs_item_size_nr(leaf, extent_slot);
6444#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6445 if (item_size < sizeof(*ei)) {
6446 BUG_ON(found_extent || extent_slot != path->slots[0]);
6447 ret = convert_extent_item_v0(trans, extent_root, path,
6448 owner_objectid, 0);
005d6427
DS
6449 if (ret < 0) {
6450 btrfs_abort_transaction(trans, extent_root, ret);
6451 goto out;
6452 }
5d4f98a2 6453
b3b4aa74 6454 btrfs_release_path(path);
5d4f98a2
YZ
6455 path->leave_spinning = 1;
6456
6457 key.objectid = bytenr;
6458 key.type = BTRFS_EXTENT_ITEM_KEY;
6459 key.offset = num_bytes;
6460
6461 ret = btrfs_search_slot(trans, extent_root, &key, path,
6462 -1, 1);
6463 if (ret) {
c2cf52eb 6464 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6465 ret, bytenr);
5d4f98a2
YZ
6466 btrfs_print_leaf(extent_root, path->nodes[0]);
6467 }
005d6427
DS
6468 if (ret < 0) {
6469 btrfs_abort_transaction(trans, extent_root, ret);
6470 goto out;
6471 }
6472
5d4f98a2
YZ
6473 extent_slot = path->slots[0];
6474 leaf = path->nodes[0];
6475 item_size = btrfs_item_size_nr(leaf, extent_slot);
6476 }
6477#endif
6478 BUG_ON(item_size < sizeof(*ei));
952fccac 6479 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6480 struct btrfs_extent_item);
3173a18f
JB
6481 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6482 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6483 struct btrfs_tree_block_info *bi;
6484 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6485 bi = (struct btrfs_tree_block_info *)(ei + 1);
6486 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6487 }
56bec294 6488
5d4f98a2 6489 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6490 if (refs < refs_to_drop) {
6491 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6492 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6493 ret = -EINVAL;
6494 btrfs_abort_transaction(trans, extent_root, ret);
6495 goto out;
6496 }
56bec294 6497 refs -= refs_to_drop;
5f39d397 6498
5d4f98a2
YZ
6499 if (refs > 0) {
6500 if (extent_op)
6501 __run_delayed_extent_op(extent_op, leaf, ei);
6502 /*
6503 * In the case of inline back ref, reference count will
6504 * be updated by remove_extent_backref
952fccac 6505 */
5d4f98a2
YZ
6506 if (iref) {
6507 BUG_ON(!found_extent);
6508 } else {
6509 btrfs_set_extent_refs(leaf, ei, refs);
6510 btrfs_mark_buffer_dirty(leaf);
6511 }
6512 if (found_extent) {
6513 ret = remove_extent_backref(trans, extent_root, path,
6514 iref, refs_to_drop,
fcebe456 6515 is_data, &last_ref);
005d6427
DS
6516 if (ret) {
6517 btrfs_abort_transaction(trans, extent_root, ret);
6518 goto out;
6519 }
952fccac 6520 }
b150a4f1
JB
6521 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6522 root_objectid);
5d4f98a2 6523 } else {
5d4f98a2
YZ
6524 if (found_extent) {
6525 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6526 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6527 if (iref) {
6528 BUG_ON(path->slots[0] != extent_slot);
6529 } else {
6530 BUG_ON(path->slots[0] != extent_slot + 1);
6531 path->slots[0] = extent_slot;
6532 num_to_del = 2;
6533 }
78fae27e 6534 }
b9473439 6535
fcebe456 6536 last_ref = 1;
952fccac
CM
6537 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6538 num_to_del);
005d6427
DS
6539 if (ret) {
6540 btrfs_abort_transaction(trans, extent_root, ret);
6541 goto out;
6542 }
b3b4aa74 6543 btrfs_release_path(path);
21af804c 6544
5d4f98a2 6545 if (is_data) {
459931ec 6546 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6547 if (ret) {
6548 btrfs_abort_transaction(trans, extent_root, ret);
6549 goto out;
6550 }
459931ec
CM
6551 }
6552
ce93ec54 6553 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6554 if (ret) {
6555 btrfs_abort_transaction(trans, extent_root, ret);
6556 goto out;
6557 }
a28ec197 6558 }
fcebe456
JB
6559 btrfs_release_path(path);
6560
79787eaa 6561out:
5caf2a00 6562 btrfs_free_path(path);
a28ec197
CM
6563 return ret;
6564}
6565
1887be66 6566/*
f0486c68 6567 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6568 * delayed ref for that extent as well. This searches the delayed ref tree for
6569 * a given extent, and if there are no other delayed refs to be processed, it
6570 * removes it from the tree.
6571 */
6572static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6573 struct btrfs_root *root, u64 bytenr)
6574{
6575 struct btrfs_delayed_ref_head *head;
6576 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6577 int ret = 0;
1887be66
CM
6578
6579 delayed_refs = &trans->transaction->delayed_refs;
6580 spin_lock(&delayed_refs->lock);
6581 head = btrfs_find_delayed_ref_head(trans, bytenr);
6582 if (!head)
cf93da7b 6583 goto out_delayed_unlock;
1887be66 6584
d7df2c79 6585 spin_lock(&head->lock);
c6fc2454 6586 if (!list_empty(&head->ref_list))
1887be66
CM
6587 goto out;
6588
5d4f98a2
YZ
6589 if (head->extent_op) {
6590 if (!head->must_insert_reserved)
6591 goto out;
78a6184a 6592 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6593 head->extent_op = NULL;
6594 }
6595
1887be66
CM
6596 /*
6597 * waiting for the lock here would deadlock. If someone else has it
6598 * locked they are already in the process of dropping it anyway
6599 */
6600 if (!mutex_trylock(&head->mutex))
6601 goto out;
6602
6603 /*
6604 * at this point we have a head with no other entries. Go
6605 * ahead and process it.
6606 */
6607 head->node.in_tree = 0;
c46effa6 6608 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6609
d7df2c79 6610 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6611
6612 /*
6613 * we don't take a ref on the node because we're removing it from the
6614 * tree, so we just steal the ref the tree was holding.
6615 */
c3e69d58 6616 delayed_refs->num_heads--;
d7df2c79 6617 if (head->processing == 0)
c3e69d58 6618 delayed_refs->num_heads_ready--;
d7df2c79
JB
6619 head->processing = 0;
6620 spin_unlock(&head->lock);
1887be66
CM
6621 spin_unlock(&delayed_refs->lock);
6622
f0486c68
YZ
6623 BUG_ON(head->extent_op);
6624 if (head->must_insert_reserved)
6625 ret = 1;
6626
6627 mutex_unlock(&head->mutex);
1887be66 6628 btrfs_put_delayed_ref(&head->node);
f0486c68 6629 return ret;
1887be66 6630out:
d7df2c79 6631 spin_unlock(&head->lock);
cf93da7b
CM
6632
6633out_delayed_unlock:
1887be66
CM
6634 spin_unlock(&delayed_refs->lock);
6635 return 0;
6636}
6637
f0486c68
YZ
6638void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6639 struct btrfs_root *root,
6640 struct extent_buffer *buf,
5581a51a 6641 u64 parent, int last_ref)
f0486c68 6642{
b150a4f1 6643 int pin = 1;
f0486c68
YZ
6644 int ret;
6645
6646 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6647 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6648 buf->start, buf->len,
6649 parent, root->root_key.objectid,
6650 btrfs_header_level(buf),
5581a51a 6651 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6652 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6653 }
6654
6655 if (!last_ref)
6656 return;
6657
f0486c68 6658 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6659 struct btrfs_block_group_cache *cache;
6660
f0486c68
YZ
6661 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6662 ret = check_ref_cleanup(trans, root, buf->start);
6663 if (!ret)
37be25bc 6664 goto out;
f0486c68
YZ
6665 }
6666
6219872d
FM
6667 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6668
f0486c68
YZ
6669 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6670 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6671 btrfs_put_block_group(cache);
37be25bc 6672 goto out;
f0486c68
YZ
6673 }
6674
6675 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6676
6677 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6678 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6679 btrfs_put_block_group(cache);
0be5dc67 6680 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6681 pin = 0;
f0486c68
YZ
6682 }
6683out:
b150a4f1
JB
6684 if (pin)
6685 add_pinned_bytes(root->fs_info, buf->len,
6686 btrfs_header_level(buf),
6687 root->root_key.objectid);
6688
a826d6dc
JB
6689 /*
6690 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6691 * anymore.
6692 */
6693 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6694}
6695
79787eaa 6696/* Can return -ENOMEM */
66d7e7f0
AJ
6697int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6698 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6699 u64 owner, u64 offset, int no_quota)
925baedd
CM
6700{
6701 int ret;
66d7e7f0 6702 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6703
fccb84c9 6704 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6705 return 0;
fccb84c9 6706
b150a4f1
JB
6707 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6708
56bec294
CM
6709 /*
6710 * tree log blocks never actually go into the extent allocation
6711 * tree, just update pinning info and exit early.
56bec294 6712 */
5d4f98a2
YZ
6713 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6714 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6715 /* unlocks the pinned mutex */
11833d66 6716 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6717 ret = 0;
5d4f98a2 6718 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6719 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6720 num_bytes,
5d4f98a2 6721 parent, root_objectid, (int)owner,
fcebe456 6722 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6723 } else {
66d7e7f0
AJ
6724 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6725 num_bytes,
6726 parent, root_objectid, owner,
6727 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6728 NULL, no_quota);
56bec294 6729 }
925baedd
CM
6730 return ret;
6731}
6732
817d52f8
JB
6733/*
6734 * when we wait for progress in the block group caching, its because
6735 * our allocation attempt failed at least once. So, we must sleep
6736 * and let some progress happen before we try again.
6737 *
6738 * This function will sleep at least once waiting for new free space to
6739 * show up, and then it will check the block group free space numbers
6740 * for our min num_bytes. Another option is to have it go ahead
6741 * and look in the rbtree for a free extent of a given size, but this
6742 * is a good start.
36cce922
JB
6743 *
6744 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6745 * any of the information in this block group.
817d52f8 6746 */
36cce922 6747static noinline void
817d52f8
JB
6748wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6749 u64 num_bytes)
6750{
11833d66 6751 struct btrfs_caching_control *caching_ctl;
817d52f8 6752
11833d66
YZ
6753 caching_ctl = get_caching_control(cache);
6754 if (!caching_ctl)
36cce922 6755 return;
817d52f8 6756
11833d66 6757 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6758 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6759
6760 put_caching_control(caching_ctl);
11833d66
YZ
6761}
6762
6763static noinline int
6764wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6765{
6766 struct btrfs_caching_control *caching_ctl;
36cce922 6767 int ret = 0;
11833d66
YZ
6768
6769 caching_ctl = get_caching_control(cache);
6770 if (!caching_ctl)
36cce922 6771 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6772
6773 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6774 if (cache->cached == BTRFS_CACHE_ERROR)
6775 ret = -EIO;
11833d66 6776 put_caching_control(caching_ctl);
36cce922 6777 return ret;
817d52f8
JB
6778}
6779
31e50229 6780int __get_raid_index(u64 flags)
b742bb82 6781{
7738a53a 6782 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6783 return BTRFS_RAID_RAID10;
7738a53a 6784 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6785 return BTRFS_RAID_RAID1;
7738a53a 6786 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6787 return BTRFS_RAID_DUP;
7738a53a 6788 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6789 return BTRFS_RAID_RAID0;
53b381b3 6790 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6791 return BTRFS_RAID_RAID5;
53b381b3 6792 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6793 return BTRFS_RAID_RAID6;
7738a53a 6794
e942f883 6795 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6796}
6797
6ab0a202 6798int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6799{
31e50229 6800 return __get_raid_index(cache->flags);
7738a53a
ID
6801}
6802
6ab0a202
JM
6803static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6804 [BTRFS_RAID_RAID10] = "raid10",
6805 [BTRFS_RAID_RAID1] = "raid1",
6806 [BTRFS_RAID_DUP] = "dup",
6807 [BTRFS_RAID_RAID0] = "raid0",
6808 [BTRFS_RAID_SINGLE] = "single",
6809 [BTRFS_RAID_RAID5] = "raid5",
6810 [BTRFS_RAID_RAID6] = "raid6",
6811};
6812
1b8e5df6 6813static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6814{
6815 if (type >= BTRFS_NR_RAID_TYPES)
6816 return NULL;
6817
6818 return btrfs_raid_type_names[type];
6819}
6820
817d52f8 6821enum btrfs_loop_type {
285ff5af
JB
6822 LOOP_CACHING_NOWAIT = 0,
6823 LOOP_CACHING_WAIT = 1,
6824 LOOP_ALLOC_CHUNK = 2,
6825 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6826};
6827
e570fd27
MX
6828static inline void
6829btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6830 int delalloc)
6831{
6832 if (delalloc)
6833 down_read(&cache->data_rwsem);
6834}
6835
6836static inline void
6837btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6838 int delalloc)
6839{
6840 btrfs_get_block_group(cache);
6841 if (delalloc)
6842 down_read(&cache->data_rwsem);
6843}
6844
6845static struct btrfs_block_group_cache *
6846btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6847 struct btrfs_free_cluster *cluster,
6848 int delalloc)
6849{
6850 struct btrfs_block_group_cache *used_bg;
6851 bool locked = false;
6852again:
6853 spin_lock(&cluster->refill_lock);
6854 if (locked) {
6855 if (used_bg == cluster->block_group)
6856 return used_bg;
6857
6858 up_read(&used_bg->data_rwsem);
6859 btrfs_put_block_group(used_bg);
6860 }
6861
6862 used_bg = cluster->block_group;
6863 if (!used_bg)
6864 return NULL;
6865
6866 if (used_bg == block_group)
6867 return used_bg;
6868
6869 btrfs_get_block_group(used_bg);
6870
6871 if (!delalloc)
6872 return used_bg;
6873
6874 if (down_read_trylock(&used_bg->data_rwsem))
6875 return used_bg;
6876
6877 spin_unlock(&cluster->refill_lock);
6878 down_read(&used_bg->data_rwsem);
6879 locked = true;
6880 goto again;
6881}
6882
6883static inline void
6884btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6885 int delalloc)
6886{
6887 if (delalloc)
6888 up_read(&cache->data_rwsem);
6889 btrfs_put_block_group(cache);
6890}
6891
fec577fb
CM
6892/*
6893 * walks the btree of allocated extents and find a hole of a given size.
6894 * The key ins is changed to record the hole:
a4820398 6895 * ins->objectid == start position
62e2749e 6896 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6897 * ins->offset == the size of the hole.
fec577fb 6898 * Any available blocks before search_start are skipped.
a4820398
MX
6899 *
6900 * If there is no suitable free space, we will record the max size of
6901 * the free space extent currently.
fec577fb 6902 */
00361589 6903static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6904 u64 num_bytes, u64 empty_size,
98ed5174 6905 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6906 u64 flags, int delalloc)
fec577fb 6907{
80eb234a 6908 int ret = 0;
d397712b 6909 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6910 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6911 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6912 u64 search_start = 0;
a4820398 6913 u64 max_extent_size = 0;
239b14b3 6914 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6915 struct btrfs_space_info *space_info;
fa9c0d79 6916 int loop = 0;
b6919a58
DS
6917 int index = __get_raid_index(flags);
6918 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6919 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6920 bool failed_cluster_refill = false;
1cdda9b8 6921 bool failed_alloc = false;
67377734 6922 bool use_cluster = true;
60d2adbb 6923 bool have_caching_bg = false;
fec577fb 6924
db94535d 6925 WARN_ON(num_bytes < root->sectorsize);
962a298f 6926 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6927 ins->objectid = 0;
6928 ins->offset = 0;
b1a4d965 6929
b6919a58 6930 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6931
b6919a58 6932 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6933 if (!space_info) {
b6919a58 6934 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6935 return -ENOSPC;
6936 }
2552d17e 6937
4f4db217
JB
6938 /*
6939 * If our free space is heavily fragmented we may not be able to make
6940 * big contiguous allocations, so instead of doing the expensive search
6941 * for free space, simply return ENOSPC with our max_extent_size so we
6942 * can go ahead and search for a more manageable chunk.
6943 *
6944 * If our max_extent_size is large enough for our allocation simply
6945 * disable clustering since we will likely not be able to find enough
6946 * space to create a cluster and induce latency trying.
6947 */
6948 if (unlikely(space_info->max_extent_size)) {
6949 spin_lock(&space_info->lock);
6950 if (space_info->max_extent_size &&
6951 num_bytes > space_info->max_extent_size) {
6952 ins->offset = space_info->max_extent_size;
6953 spin_unlock(&space_info->lock);
6954 return -ENOSPC;
6955 } else if (space_info->max_extent_size) {
6956 use_cluster = false;
6957 }
6958 spin_unlock(&space_info->lock);
6959 }
6960
67377734
JB
6961 /*
6962 * If the space info is for both data and metadata it means we have a
6963 * small filesystem and we can't use the clustering stuff.
6964 */
6965 if (btrfs_mixed_space_info(space_info))
6966 use_cluster = false;
6967
b6919a58 6968 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6969 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6970 if (!btrfs_test_opt(root, SSD))
6971 empty_cluster = 64 * 1024;
239b14b3
CM
6972 }
6973
b6919a58 6974 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6975 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6976 last_ptr = &root->fs_info->data_alloc_cluster;
6977 }
0f9dd46c 6978
239b14b3 6979 if (last_ptr) {
fa9c0d79
CM
6980 spin_lock(&last_ptr->lock);
6981 if (last_ptr->block_group)
6982 hint_byte = last_ptr->window_start;
6983 spin_unlock(&last_ptr->lock);
239b14b3 6984 }
fa9c0d79 6985
a061fc8d 6986 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6987 search_start = max(search_start, hint_byte);
0b86a832 6988
817d52f8 6989 if (!last_ptr)
fa9c0d79 6990 empty_cluster = 0;
fa9c0d79 6991
2552d17e 6992 if (search_start == hint_byte) {
2552d17e
JB
6993 block_group = btrfs_lookup_block_group(root->fs_info,
6994 search_start);
817d52f8
JB
6995 /*
6996 * we don't want to use the block group if it doesn't match our
6997 * allocation bits, or if its not cached.
ccf0e725
JB
6998 *
6999 * However if we are re-searching with an ideal block group
7000 * picked out then we don't care that the block group is cached.
817d52f8 7001 */
b6919a58 7002 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7003 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7004 down_read(&space_info->groups_sem);
44fb5511
CM
7005 if (list_empty(&block_group->list) ||
7006 block_group->ro) {
7007 /*
7008 * someone is removing this block group,
7009 * we can't jump into the have_block_group
7010 * target because our list pointers are not
7011 * valid
7012 */
7013 btrfs_put_block_group(block_group);
7014 up_read(&space_info->groups_sem);
ccf0e725 7015 } else {
b742bb82 7016 index = get_block_group_index(block_group);
e570fd27 7017 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7018 goto have_block_group;
ccf0e725 7019 }
2552d17e 7020 } else if (block_group) {
fa9c0d79 7021 btrfs_put_block_group(block_group);
2552d17e 7022 }
42e70e7a 7023 }
2552d17e 7024search:
60d2adbb 7025 have_caching_bg = false;
80eb234a 7026 down_read(&space_info->groups_sem);
b742bb82
YZ
7027 list_for_each_entry(block_group, &space_info->block_groups[index],
7028 list) {
6226cb0a 7029 u64 offset;
817d52f8 7030 int cached;
8a1413a2 7031
e570fd27 7032 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7033 search_start = block_group->key.objectid;
42e70e7a 7034
83a50de9
CM
7035 /*
7036 * this can happen if we end up cycling through all the
7037 * raid types, but we want to make sure we only allocate
7038 * for the proper type.
7039 */
b6919a58 7040 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7041 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7042 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7043 BTRFS_BLOCK_GROUP_RAID5 |
7044 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7045 BTRFS_BLOCK_GROUP_RAID10;
7046
7047 /*
7048 * if they asked for extra copies and this block group
7049 * doesn't provide them, bail. This does allow us to
7050 * fill raid0 from raid1.
7051 */
b6919a58 7052 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7053 goto loop;
7054 }
7055
2552d17e 7056have_block_group:
291c7d2f
JB
7057 cached = block_group_cache_done(block_group);
7058 if (unlikely(!cached)) {
f6373bf3 7059 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7060 BUG_ON(ret < 0);
7061 ret = 0;
817d52f8
JB
7062 }
7063
36cce922
JB
7064 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7065 goto loop;
ea6a478e 7066 if (unlikely(block_group->ro))
2552d17e 7067 goto loop;
0f9dd46c 7068
0a24325e 7069 /*
062c05c4
AO
7070 * Ok we want to try and use the cluster allocator, so
7071 * lets look there
0a24325e 7072 */
062c05c4 7073 if (last_ptr) {
215a63d1 7074 struct btrfs_block_group_cache *used_block_group;
8de972b4 7075 unsigned long aligned_cluster;
fa9c0d79
CM
7076 /*
7077 * the refill lock keeps out other
7078 * people trying to start a new cluster
7079 */
e570fd27
MX
7080 used_block_group = btrfs_lock_cluster(block_group,
7081 last_ptr,
7082 delalloc);
7083 if (!used_block_group)
44fb5511 7084 goto refill_cluster;
274bd4fb 7085
e570fd27
MX
7086 if (used_block_group != block_group &&
7087 (used_block_group->ro ||
7088 !block_group_bits(used_block_group, flags)))
7089 goto release_cluster;
44fb5511 7090
274bd4fb 7091 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7092 last_ptr,
7093 num_bytes,
7094 used_block_group->key.objectid,
7095 &max_extent_size);
fa9c0d79
CM
7096 if (offset) {
7097 /* we have a block, we're done */
7098 spin_unlock(&last_ptr->refill_lock);
3f7de037 7099 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7100 used_block_group,
7101 search_start, num_bytes);
215a63d1 7102 if (used_block_group != block_group) {
e570fd27
MX
7103 btrfs_release_block_group(block_group,
7104 delalloc);
215a63d1
MX
7105 block_group = used_block_group;
7106 }
fa9c0d79
CM
7107 goto checks;
7108 }
7109
274bd4fb 7110 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7111release_cluster:
062c05c4
AO
7112 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7113 * set up a new clusters, so lets just skip it
7114 * and let the allocator find whatever block
7115 * it can find. If we reach this point, we
7116 * will have tried the cluster allocator
7117 * plenty of times and not have found
7118 * anything, so we are likely way too
7119 * fragmented for the clustering stuff to find
a5f6f719
AO
7120 * anything.
7121 *
7122 * However, if the cluster is taken from the
7123 * current block group, release the cluster
7124 * first, so that we stand a better chance of
7125 * succeeding in the unclustered
7126 * allocation. */
7127 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7128 used_block_group != block_group) {
062c05c4 7129 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7130 btrfs_release_block_group(used_block_group,
7131 delalloc);
062c05c4
AO
7132 goto unclustered_alloc;
7133 }
7134
fa9c0d79
CM
7135 /*
7136 * this cluster didn't work out, free it and
7137 * start over
7138 */
7139 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7140
e570fd27
MX
7141 if (used_block_group != block_group)
7142 btrfs_release_block_group(used_block_group,
7143 delalloc);
7144refill_cluster:
a5f6f719
AO
7145 if (loop >= LOOP_NO_EMPTY_SIZE) {
7146 spin_unlock(&last_ptr->refill_lock);
7147 goto unclustered_alloc;
7148 }
7149
8de972b4
CM
7150 aligned_cluster = max_t(unsigned long,
7151 empty_cluster + empty_size,
7152 block_group->full_stripe_len);
7153
fa9c0d79 7154 /* allocate a cluster in this block group */
00361589
JB
7155 ret = btrfs_find_space_cluster(root, block_group,
7156 last_ptr, search_start,
7157 num_bytes,
7158 aligned_cluster);
fa9c0d79
CM
7159 if (ret == 0) {
7160 /*
7161 * now pull our allocation out of this
7162 * cluster
7163 */
7164 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7165 last_ptr,
7166 num_bytes,
7167 search_start,
7168 &max_extent_size);
fa9c0d79
CM
7169 if (offset) {
7170 /* we found one, proceed */
7171 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7172 trace_btrfs_reserve_extent_cluster(root,
7173 block_group, search_start,
7174 num_bytes);
fa9c0d79
CM
7175 goto checks;
7176 }
0a24325e
JB
7177 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7178 && !failed_cluster_refill) {
817d52f8
JB
7179 spin_unlock(&last_ptr->refill_lock);
7180
0a24325e 7181 failed_cluster_refill = true;
817d52f8
JB
7182 wait_block_group_cache_progress(block_group,
7183 num_bytes + empty_cluster + empty_size);
7184 goto have_block_group;
fa9c0d79 7185 }
817d52f8 7186
fa9c0d79
CM
7187 /*
7188 * at this point we either didn't find a cluster
7189 * or we weren't able to allocate a block from our
7190 * cluster. Free the cluster we've been trying
7191 * to use, and go to the next block group
7192 */
0a24325e 7193 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7194 spin_unlock(&last_ptr->refill_lock);
0a24325e 7195 goto loop;
fa9c0d79
CM
7196 }
7197
062c05c4 7198unclustered_alloc:
a5f6f719
AO
7199 spin_lock(&block_group->free_space_ctl->tree_lock);
7200 if (cached &&
7201 block_group->free_space_ctl->free_space <
7202 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7203 if (block_group->free_space_ctl->free_space >
7204 max_extent_size)
7205 max_extent_size =
7206 block_group->free_space_ctl->free_space;
a5f6f719
AO
7207 spin_unlock(&block_group->free_space_ctl->tree_lock);
7208 goto loop;
7209 }
7210 spin_unlock(&block_group->free_space_ctl->tree_lock);
7211
6226cb0a 7212 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7213 num_bytes, empty_size,
7214 &max_extent_size);
1cdda9b8
JB
7215 /*
7216 * If we didn't find a chunk, and we haven't failed on this
7217 * block group before, and this block group is in the middle of
7218 * caching and we are ok with waiting, then go ahead and wait
7219 * for progress to be made, and set failed_alloc to true.
7220 *
7221 * If failed_alloc is true then we've already waited on this
7222 * block group once and should move on to the next block group.
7223 */
7224 if (!offset && !failed_alloc && !cached &&
7225 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7226 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7227 num_bytes + empty_size);
7228 failed_alloc = true;
817d52f8 7229 goto have_block_group;
1cdda9b8 7230 } else if (!offset) {
60d2adbb
MX
7231 if (!cached)
7232 have_caching_bg = true;
1cdda9b8 7233 goto loop;
817d52f8 7234 }
fa9c0d79 7235checks:
4e54b17a 7236 search_start = ALIGN(offset, root->stripesize);
25179201 7237
2552d17e
JB
7238 /* move on to the next group */
7239 if (search_start + num_bytes >
215a63d1
MX
7240 block_group->key.objectid + block_group->key.offset) {
7241 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7242 goto loop;
6226cb0a 7243 }
f5a31e16 7244
f0486c68 7245 if (offset < search_start)
215a63d1 7246 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7247 search_start - offset);
7248 BUG_ON(offset > search_start);
2552d17e 7249
215a63d1 7250 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7251 alloc_type, delalloc);
f0486c68 7252 if (ret == -EAGAIN) {
215a63d1 7253 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7254 goto loop;
0f9dd46c 7255 }
0b86a832 7256
f0486c68 7257 /* we are all good, lets return */
2552d17e
JB
7258 ins->objectid = search_start;
7259 ins->offset = num_bytes;
d2fb3437 7260
3f7de037
JB
7261 trace_btrfs_reserve_extent(orig_root, block_group,
7262 search_start, num_bytes);
e570fd27 7263 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7264 break;
7265loop:
0a24325e 7266 failed_cluster_refill = false;
1cdda9b8 7267 failed_alloc = false;
b742bb82 7268 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7269 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7270 }
7271 up_read(&space_info->groups_sem);
7272
60d2adbb
MX
7273 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7274 goto search;
7275
b742bb82
YZ
7276 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7277 goto search;
7278
285ff5af 7279 /*
ccf0e725
JB
7280 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7281 * caching kthreads as we move along
817d52f8
JB
7282 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7283 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7284 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7285 * again
fa9c0d79 7286 */
723bda20 7287 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7288 index = 0;
723bda20 7289 loop++;
817d52f8 7290 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7291 struct btrfs_trans_handle *trans;
f017f15f
WS
7292 int exist = 0;
7293
7294 trans = current->journal_info;
7295 if (trans)
7296 exist = 1;
7297 else
7298 trans = btrfs_join_transaction(root);
00361589 7299
00361589
JB
7300 if (IS_ERR(trans)) {
7301 ret = PTR_ERR(trans);
7302 goto out;
7303 }
7304
b6919a58 7305 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7306 CHUNK_ALLOC_FORCE);
7307 /*
7308 * Do not bail out on ENOSPC since we
7309 * can do more things.
7310 */
00361589 7311 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7312 btrfs_abort_transaction(trans,
7313 root, ret);
00361589
JB
7314 else
7315 ret = 0;
f017f15f
WS
7316 if (!exist)
7317 btrfs_end_transaction(trans, root);
00361589 7318 if (ret)
ea658bad 7319 goto out;
2552d17e
JB
7320 }
7321
723bda20
JB
7322 if (loop == LOOP_NO_EMPTY_SIZE) {
7323 empty_size = 0;
7324 empty_cluster = 0;
fa9c0d79 7325 }
723bda20
JB
7326
7327 goto search;
2552d17e
JB
7328 } else if (!ins->objectid) {
7329 ret = -ENOSPC;
d82a6f1d 7330 } else if (ins->objectid) {
80eb234a 7331 ret = 0;
be744175 7332 }
79787eaa 7333out:
4f4db217
JB
7334 if (ret == -ENOSPC) {
7335 spin_lock(&space_info->lock);
7336 space_info->max_extent_size = max_extent_size;
7337 spin_unlock(&space_info->lock);
a4820398 7338 ins->offset = max_extent_size;
4f4db217 7339 }
0f70abe2 7340 return ret;
fec577fb 7341}
ec44a35c 7342
9ed74f2d
JB
7343static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7344 int dump_block_groups)
0f9dd46c
JB
7345{
7346 struct btrfs_block_group_cache *cache;
b742bb82 7347 int index = 0;
0f9dd46c 7348
9ed74f2d 7349 spin_lock(&info->lock);
efe120a0 7350 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7351 info->flags,
7352 info->total_bytes - info->bytes_used - info->bytes_pinned -
7353 info->bytes_reserved - info->bytes_readonly,
d397712b 7354 (info->full) ? "" : "not ");
efe120a0 7355 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7356 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7357 info->total_bytes, info->bytes_used, info->bytes_pinned,
7358 info->bytes_reserved, info->bytes_may_use,
7359 info->bytes_readonly);
9ed74f2d
JB
7360 spin_unlock(&info->lock);
7361
7362 if (!dump_block_groups)
7363 return;
0f9dd46c 7364
80eb234a 7365 down_read(&info->groups_sem);
b742bb82
YZ
7366again:
7367 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7368 spin_lock(&cache->lock);
efe120a0
FH
7369 printk(KERN_INFO "BTRFS: "
7370 "block group %llu has %llu bytes, "
7371 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7372 cache->key.objectid, cache->key.offset,
7373 btrfs_block_group_used(&cache->item), cache->pinned,
7374 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7375 btrfs_dump_free_space(cache, bytes);
7376 spin_unlock(&cache->lock);
7377 }
b742bb82
YZ
7378 if (++index < BTRFS_NR_RAID_TYPES)
7379 goto again;
80eb234a 7380 up_read(&info->groups_sem);
0f9dd46c 7381}
e8569813 7382
00361589 7383int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7384 u64 num_bytes, u64 min_alloc_size,
7385 u64 empty_size, u64 hint_byte,
e570fd27 7386 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7387{
36af4e07 7388 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7389 u64 flags;
fec577fb 7390 int ret;
925baedd 7391
b6919a58 7392 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7393again:
db94535d 7394 WARN_ON(num_bytes < root->sectorsize);
00361589 7395 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7396 flags, delalloc);
3b951516 7397
9e622d6b 7398 if (ret == -ENOSPC) {
a4820398
MX
7399 if (!final_tried && ins->offset) {
7400 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7401 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7402 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7403 if (num_bytes == min_alloc_size)
7404 final_tried = true;
7405 goto again;
7406 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7407 struct btrfs_space_info *sinfo;
7408
b6919a58 7409 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7410 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7411 flags, num_bytes);
53804280
JM
7412 if (sinfo)
7413 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7414 }
925baedd 7415 }
0f9dd46c
JB
7416
7417 return ret;
e6dcd2dc
CM
7418}
7419
e688b725 7420static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7421 u64 start, u64 len,
7422 int pin, int delalloc)
65b51a00 7423{
0f9dd46c 7424 struct btrfs_block_group_cache *cache;
1f3c79a2 7425 int ret = 0;
0f9dd46c 7426
0f9dd46c
JB
7427 cache = btrfs_lookup_block_group(root->fs_info, start);
7428 if (!cache) {
c2cf52eb 7429 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7430 start);
0f9dd46c
JB
7431 return -ENOSPC;
7432 }
1f3c79a2 7433
e688b725
CM
7434 if (pin)
7435 pin_down_extent(root, cache, start, len, 1);
7436 else {
dcc82f47
FM
7437 if (btrfs_test_opt(root, DISCARD))
7438 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7439 btrfs_add_free_space(cache, start, len);
e570fd27 7440 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7441 }
31193213 7442
fa9c0d79 7443 btrfs_put_block_group(cache);
817d52f8 7444
1abe9b8a 7445 trace_btrfs_reserved_extent_free(root, start, len);
7446
e6dcd2dc
CM
7447 return ret;
7448}
7449
e688b725 7450int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7451 u64 start, u64 len, int delalloc)
e688b725 7452{
e570fd27 7453 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7454}
7455
7456int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7457 u64 start, u64 len)
7458{
e570fd27 7459 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7460}
7461
5d4f98a2
YZ
7462static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7463 struct btrfs_root *root,
7464 u64 parent, u64 root_objectid,
7465 u64 flags, u64 owner, u64 offset,
7466 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7467{
7468 int ret;
5d4f98a2 7469 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7470 struct btrfs_extent_item *extent_item;
5d4f98a2 7471 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7472 struct btrfs_path *path;
5d4f98a2
YZ
7473 struct extent_buffer *leaf;
7474 int type;
7475 u32 size;
26b8003f 7476
5d4f98a2
YZ
7477 if (parent > 0)
7478 type = BTRFS_SHARED_DATA_REF_KEY;
7479 else
7480 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7481
5d4f98a2 7482 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7483
7484 path = btrfs_alloc_path();
db5b493a
TI
7485 if (!path)
7486 return -ENOMEM;
47e4bb98 7487
b9473439 7488 path->leave_spinning = 1;
5d4f98a2
YZ
7489 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7490 ins, size);
79787eaa
JM
7491 if (ret) {
7492 btrfs_free_path(path);
7493 return ret;
7494 }
0f9dd46c 7495
5d4f98a2
YZ
7496 leaf = path->nodes[0];
7497 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7498 struct btrfs_extent_item);
5d4f98a2
YZ
7499 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7500 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7501 btrfs_set_extent_flags(leaf, extent_item,
7502 flags | BTRFS_EXTENT_FLAG_DATA);
7503
7504 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7505 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7506 if (parent > 0) {
7507 struct btrfs_shared_data_ref *ref;
7508 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7509 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7510 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7511 } else {
7512 struct btrfs_extent_data_ref *ref;
7513 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7514 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7515 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7516 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7517 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7518 }
47e4bb98
CM
7519
7520 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7521 btrfs_free_path(path);
f510cfec 7522
ce93ec54 7523 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7524 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7525 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7526 ins->objectid, ins->offset);
f5947066
CM
7527 BUG();
7528 }
0be5dc67 7529 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7530 return ret;
7531}
7532
5d4f98a2
YZ
7533static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7534 struct btrfs_root *root,
7535 u64 parent, u64 root_objectid,
7536 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7537 int level, struct btrfs_key *ins,
7538 int no_quota)
e6dcd2dc
CM
7539{
7540 int ret;
5d4f98a2
YZ
7541 struct btrfs_fs_info *fs_info = root->fs_info;
7542 struct btrfs_extent_item *extent_item;
7543 struct btrfs_tree_block_info *block_info;
7544 struct btrfs_extent_inline_ref *iref;
7545 struct btrfs_path *path;
7546 struct extent_buffer *leaf;
3173a18f 7547 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7548 u64 num_bytes = ins->offset;
3173a18f
JB
7549 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7550 SKINNY_METADATA);
7551
7552 if (!skinny_metadata)
7553 size += sizeof(*block_info);
1c2308f8 7554
5d4f98a2 7555 path = btrfs_alloc_path();
857cc2fc
JB
7556 if (!path) {
7557 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7558 root->nodesize);
d8926bb3 7559 return -ENOMEM;
857cc2fc 7560 }
56bec294 7561
5d4f98a2
YZ
7562 path->leave_spinning = 1;
7563 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7564 ins, size);
79787eaa 7565 if (ret) {
dd825259 7566 btrfs_free_path(path);
857cc2fc 7567 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7568 root->nodesize);
79787eaa
JM
7569 return ret;
7570 }
5d4f98a2
YZ
7571
7572 leaf = path->nodes[0];
7573 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7574 struct btrfs_extent_item);
7575 btrfs_set_extent_refs(leaf, extent_item, 1);
7576 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7577 btrfs_set_extent_flags(leaf, extent_item,
7578 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7579
3173a18f
JB
7580 if (skinny_metadata) {
7581 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7582 num_bytes = root->nodesize;
3173a18f
JB
7583 } else {
7584 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7585 btrfs_set_tree_block_key(leaf, block_info, key);
7586 btrfs_set_tree_block_level(leaf, block_info, level);
7587 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7588 }
5d4f98a2 7589
5d4f98a2
YZ
7590 if (parent > 0) {
7591 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7592 btrfs_set_extent_inline_ref_type(leaf, iref,
7593 BTRFS_SHARED_BLOCK_REF_KEY);
7594 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7595 } else {
7596 btrfs_set_extent_inline_ref_type(leaf, iref,
7597 BTRFS_TREE_BLOCK_REF_KEY);
7598 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7599 }
7600
7601 btrfs_mark_buffer_dirty(leaf);
7602 btrfs_free_path(path);
7603
ce93ec54
JB
7604 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7605 1);
79787eaa 7606 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7607 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7608 ins->objectid, ins->offset);
5d4f98a2
YZ
7609 BUG();
7610 }
0be5dc67 7611
707e8a07 7612 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7613 return ret;
7614}
7615
7616int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7617 struct btrfs_root *root,
7618 u64 root_objectid, u64 owner,
7619 u64 offset, struct btrfs_key *ins)
7620{
7621 int ret;
7622
7623 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7624
66d7e7f0
AJ
7625 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7626 ins->offset, 0,
7627 root_objectid, owner, offset,
7628 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7629 return ret;
7630}
e02119d5
CM
7631
7632/*
7633 * this is used by the tree logging recovery code. It records that
7634 * an extent has been allocated and makes sure to clear the free
7635 * space cache bits as well
7636 */
5d4f98a2
YZ
7637int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7638 struct btrfs_root *root,
7639 u64 root_objectid, u64 owner, u64 offset,
7640 struct btrfs_key *ins)
e02119d5
CM
7641{
7642 int ret;
7643 struct btrfs_block_group_cache *block_group;
11833d66 7644
8c2a1a30
JB
7645 /*
7646 * Mixed block groups will exclude before processing the log so we only
7647 * need to do the exlude dance if this fs isn't mixed.
7648 */
7649 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7650 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7651 if (ret)
8c2a1a30 7652 return ret;
11833d66
YZ
7653 }
7654
8c2a1a30
JB
7655 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7656 if (!block_group)
7657 return -EINVAL;
7658
fb25e914 7659 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7660 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7661 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7662 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7663 0, owner, offset, ins, 1);
b50c6e25 7664 btrfs_put_block_group(block_group);
e02119d5
CM
7665 return ret;
7666}
7667
48a3b636
ES
7668static struct extent_buffer *
7669btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7670 u64 bytenr, int level)
65b51a00
CM
7671{
7672 struct extent_buffer *buf;
7673
a83fffb7 7674 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7675 if (!buf)
7676 return ERR_PTR(-ENOMEM);
7677 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7678 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7679 btrfs_tree_lock(buf);
01d58472 7680 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7681 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7682
7683 btrfs_set_lock_blocking(buf);
65b51a00 7684 btrfs_set_buffer_uptodate(buf);
b4ce94de 7685
d0c803c4 7686 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7687 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7688 /*
7689 * we allow two log transactions at a time, use different
7690 * EXENT bit to differentiate dirty pages.
7691 */
656f30db 7692 if (buf->log_index == 0)
8cef4e16
YZ
7693 set_extent_dirty(&root->dirty_log_pages, buf->start,
7694 buf->start + buf->len - 1, GFP_NOFS);
7695 else
7696 set_extent_new(&root->dirty_log_pages, buf->start,
7697 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7698 } else {
656f30db 7699 buf->log_index = -1;
d0c803c4 7700 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7701 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7702 }
65b51a00 7703 trans->blocks_used++;
b4ce94de 7704 /* this returns a buffer locked for blocking */
65b51a00
CM
7705 return buf;
7706}
7707
f0486c68
YZ
7708static struct btrfs_block_rsv *
7709use_block_rsv(struct btrfs_trans_handle *trans,
7710 struct btrfs_root *root, u32 blocksize)
7711{
7712 struct btrfs_block_rsv *block_rsv;
68a82277 7713 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7714 int ret;
d88033db 7715 bool global_updated = false;
f0486c68
YZ
7716
7717 block_rsv = get_block_rsv(trans, root);
7718
b586b323
MX
7719 if (unlikely(block_rsv->size == 0))
7720 goto try_reserve;
d88033db 7721again:
f0486c68
YZ
7722 ret = block_rsv_use_bytes(block_rsv, blocksize);
7723 if (!ret)
7724 return block_rsv;
7725
b586b323
MX
7726 if (block_rsv->failfast)
7727 return ERR_PTR(ret);
7728
d88033db
MX
7729 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7730 global_updated = true;
7731 update_global_block_rsv(root->fs_info);
7732 goto again;
7733 }
7734
b586b323
MX
7735 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7736 static DEFINE_RATELIMIT_STATE(_rs,
7737 DEFAULT_RATELIMIT_INTERVAL * 10,
7738 /*DEFAULT_RATELIMIT_BURST*/ 1);
7739 if (__ratelimit(&_rs))
7740 WARN(1, KERN_DEBUG
efe120a0 7741 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7742 }
7743try_reserve:
7744 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7745 BTRFS_RESERVE_NO_FLUSH);
7746 if (!ret)
7747 return block_rsv;
7748 /*
7749 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7750 * the global reserve if its space type is the same as the global
7751 * reservation.
b586b323 7752 */
5881cfc9
MX
7753 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7754 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7755 ret = block_rsv_use_bytes(global_rsv, blocksize);
7756 if (!ret)
7757 return global_rsv;
7758 }
7759 return ERR_PTR(ret);
f0486c68
YZ
7760}
7761
8c2a3ca2
JB
7762static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7763 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7764{
7765 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7766 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7767}
7768
fec577fb 7769/*
f0486c68 7770 * finds a free extent and does all the dirty work required for allocation
67b7859e 7771 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7772 */
4d75f8a9
DS
7773struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7774 struct btrfs_root *root,
5d4f98a2
YZ
7775 u64 parent, u64 root_objectid,
7776 struct btrfs_disk_key *key, int level,
5581a51a 7777 u64 hint, u64 empty_size)
fec577fb 7778{
e2fa7227 7779 struct btrfs_key ins;
f0486c68 7780 struct btrfs_block_rsv *block_rsv;
5f39d397 7781 struct extent_buffer *buf;
67b7859e 7782 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7783 u64 flags = 0;
7784 int ret;
4d75f8a9 7785 u32 blocksize = root->nodesize;
3173a18f
JB
7786 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7787 SKINNY_METADATA);
fec577fb 7788
fccb84c9 7789 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7790 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7791 level);
faa2dbf0
JB
7792 if (!IS_ERR(buf))
7793 root->alloc_bytenr += blocksize;
7794 return buf;
7795 }
fccb84c9 7796
f0486c68
YZ
7797 block_rsv = use_block_rsv(trans, root, blocksize);
7798 if (IS_ERR(block_rsv))
7799 return ERR_CAST(block_rsv);
7800
00361589 7801 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7802 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7803 if (ret)
7804 goto out_unuse;
55c69072 7805
fe864576 7806 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7807 if (IS_ERR(buf)) {
7808 ret = PTR_ERR(buf);
7809 goto out_free_reserved;
7810 }
f0486c68
YZ
7811
7812 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7813 if (parent == 0)
7814 parent = ins.objectid;
7815 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7816 } else
7817 BUG_ON(parent > 0);
7818
7819 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7820 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7821 if (!extent_op) {
7822 ret = -ENOMEM;
7823 goto out_free_buf;
7824 }
f0486c68
YZ
7825 if (key)
7826 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7827 else
7828 memset(&extent_op->key, 0, sizeof(extent_op->key));
7829 extent_op->flags_to_set = flags;
3173a18f
JB
7830 if (skinny_metadata)
7831 extent_op->update_key = 0;
7832 else
7833 extent_op->update_key = 1;
f0486c68
YZ
7834 extent_op->update_flags = 1;
7835 extent_op->is_data = 0;
b1c79e09 7836 extent_op->level = level;
f0486c68 7837
66d7e7f0 7838 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7839 ins.objectid, ins.offset,
7840 parent, root_objectid, level,
7841 BTRFS_ADD_DELAYED_EXTENT,
7842 extent_op, 0);
7843 if (ret)
7844 goto out_free_delayed;
f0486c68 7845 }
fec577fb 7846 return buf;
67b7859e
OS
7847
7848out_free_delayed:
7849 btrfs_free_delayed_extent_op(extent_op);
7850out_free_buf:
7851 free_extent_buffer(buf);
7852out_free_reserved:
7853 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7854out_unuse:
7855 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7856 return ERR_PTR(ret);
fec577fb 7857}
a28ec197 7858
2c47e605
YZ
7859struct walk_control {
7860 u64 refs[BTRFS_MAX_LEVEL];
7861 u64 flags[BTRFS_MAX_LEVEL];
7862 struct btrfs_key update_progress;
7863 int stage;
7864 int level;
7865 int shared_level;
7866 int update_ref;
7867 int keep_locks;
1c4850e2
YZ
7868 int reada_slot;
7869 int reada_count;
66d7e7f0 7870 int for_reloc;
2c47e605
YZ
7871};
7872
7873#define DROP_REFERENCE 1
7874#define UPDATE_BACKREF 2
7875
1c4850e2
YZ
7876static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7877 struct btrfs_root *root,
7878 struct walk_control *wc,
7879 struct btrfs_path *path)
6407bf6d 7880{
1c4850e2
YZ
7881 u64 bytenr;
7882 u64 generation;
7883 u64 refs;
94fcca9f 7884 u64 flags;
5d4f98a2 7885 u32 nritems;
1c4850e2
YZ
7886 u32 blocksize;
7887 struct btrfs_key key;
7888 struct extent_buffer *eb;
6407bf6d 7889 int ret;
1c4850e2
YZ
7890 int slot;
7891 int nread = 0;
6407bf6d 7892
1c4850e2
YZ
7893 if (path->slots[wc->level] < wc->reada_slot) {
7894 wc->reada_count = wc->reada_count * 2 / 3;
7895 wc->reada_count = max(wc->reada_count, 2);
7896 } else {
7897 wc->reada_count = wc->reada_count * 3 / 2;
7898 wc->reada_count = min_t(int, wc->reada_count,
7899 BTRFS_NODEPTRS_PER_BLOCK(root));
7900 }
7bb86316 7901
1c4850e2
YZ
7902 eb = path->nodes[wc->level];
7903 nritems = btrfs_header_nritems(eb);
707e8a07 7904 blocksize = root->nodesize;
bd56b302 7905
1c4850e2
YZ
7906 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7907 if (nread >= wc->reada_count)
7908 break;
bd56b302 7909
2dd3e67b 7910 cond_resched();
1c4850e2
YZ
7911 bytenr = btrfs_node_blockptr(eb, slot);
7912 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7913
1c4850e2
YZ
7914 if (slot == path->slots[wc->level])
7915 goto reada;
5d4f98a2 7916
1c4850e2
YZ
7917 if (wc->stage == UPDATE_BACKREF &&
7918 generation <= root->root_key.offset)
bd56b302
CM
7919 continue;
7920
94fcca9f 7921 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7922 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7923 wc->level - 1, 1, &refs,
7924 &flags);
79787eaa
JM
7925 /* We don't care about errors in readahead. */
7926 if (ret < 0)
7927 continue;
94fcca9f
YZ
7928 BUG_ON(refs == 0);
7929
1c4850e2 7930 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7931 if (refs == 1)
7932 goto reada;
bd56b302 7933
94fcca9f
YZ
7934 if (wc->level == 1 &&
7935 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7936 continue;
1c4850e2
YZ
7937 if (!wc->update_ref ||
7938 generation <= root->root_key.offset)
7939 continue;
7940 btrfs_node_key_to_cpu(eb, &key, slot);
7941 ret = btrfs_comp_cpu_keys(&key,
7942 &wc->update_progress);
7943 if (ret < 0)
7944 continue;
94fcca9f
YZ
7945 } else {
7946 if (wc->level == 1 &&
7947 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7948 continue;
6407bf6d 7949 }
1c4850e2 7950reada:
d3e46fea 7951 readahead_tree_block(root, bytenr);
1c4850e2 7952 nread++;
20524f02 7953 }
1c4850e2 7954 wc->reada_slot = slot;
20524f02 7955}
2c47e605 7956
0ed4792a
QW
7957/*
7958 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7959 * for later qgroup accounting.
7960 *
7961 * Current, this function does nothing.
7962 */
1152651a
MF
7963static int account_leaf_items(struct btrfs_trans_handle *trans,
7964 struct btrfs_root *root,
7965 struct extent_buffer *eb)
7966{
7967 int nr = btrfs_header_nritems(eb);
0ed4792a 7968 int i, extent_type;
1152651a
MF
7969 struct btrfs_key key;
7970 struct btrfs_file_extent_item *fi;
7971 u64 bytenr, num_bytes;
7972
7973 for (i = 0; i < nr; i++) {
7974 btrfs_item_key_to_cpu(eb, &key, i);
7975
7976 if (key.type != BTRFS_EXTENT_DATA_KEY)
7977 continue;
7978
7979 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7980 /* filter out non qgroup-accountable extents */
7981 extent_type = btrfs_file_extent_type(eb, fi);
7982
7983 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7984 continue;
7985
7986 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7987 if (!bytenr)
7988 continue;
7989
7990 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7991 }
7992 return 0;
7993}
7994
7995/*
7996 * Walk up the tree from the bottom, freeing leaves and any interior
7997 * nodes which have had all slots visited. If a node (leaf or
7998 * interior) is freed, the node above it will have it's slot
7999 * incremented. The root node will never be freed.
8000 *
8001 * At the end of this function, we should have a path which has all
8002 * slots incremented to the next position for a search. If we need to
8003 * read a new node it will be NULL and the node above it will have the
8004 * correct slot selected for a later read.
8005 *
8006 * If we increment the root nodes slot counter past the number of
8007 * elements, 1 is returned to signal completion of the search.
8008 */
8009static int adjust_slots_upwards(struct btrfs_root *root,
8010 struct btrfs_path *path, int root_level)
8011{
8012 int level = 0;
8013 int nr, slot;
8014 struct extent_buffer *eb;
8015
8016 if (root_level == 0)
8017 return 1;
8018
8019 while (level <= root_level) {
8020 eb = path->nodes[level];
8021 nr = btrfs_header_nritems(eb);
8022 path->slots[level]++;
8023 slot = path->slots[level];
8024 if (slot >= nr || level == 0) {
8025 /*
8026 * Don't free the root - we will detect this
8027 * condition after our loop and return a
8028 * positive value for caller to stop walking the tree.
8029 */
8030 if (level != root_level) {
8031 btrfs_tree_unlock_rw(eb, path->locks[level]);
8032 path->locks[level] = 0;
8033
8034 free_extent_buffer(eb);
8035 path->nodes[level] = NULL;
8036 path->slots[level] = 0;
8037 }
8038 } else {
8039 /*
8040 * We have a valid slot to walk back down
8041 * from. Stop here so caller can process these
8042 * new nodes.
8043 */
8044 break;
8045 }
8046
8047 level++;
8048 }
8049
8050 eb = path->nodes[root_level];
8051 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8052 return 1;
8053
8054 return 0;
8055}
8056
8057/*
8058 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
8059 * TODO: Modify this function to mark all (including complete shared node)
8060 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
8061 */
8062static int account_shared_subtree(struct btrfs_trans_handle *trans,
8063 struct btrfs_root *root,
8064 struct extent_buffer *root_eb,
8065 u64 root_gen,
8066 int root_level)
8067{
8068 int ret = 0;
8069 int level;
8070 struct extent_buffer *eb = root_eb;
8071 struct btrfs_path *path = NULL;
8072
8073 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8074 BUG_ON(root_eb == NULL);
8075
8076 if (!root->fs_info->quota_enabled)
8077 return 0;
8078
8079 if (!extent_buffer_uptodate(root_eb)) {
8080 ret = btrfs_read_buffer(root_eb, root_gen);
8081 if (ret)
8082 goto out;
8083 }
8084
8085 if (root_level == 0) {
8086 ret = account_leaf_items(trans, root, root_eb);
8087 goto out;
8088 }
8089
8090 path = btrfs_alloc_path();
8091 if (!path)
8092 return -ENOMEM;
8093
8094 /*
8095 * Walk down the tree. Missing extent blocks are filled in as
8096 * we go. Metadata is accounted every time we read a new
8097 * extent block.
8098 *
8099 * When we reach a leaf, we account for file extent items in it,
8100 * walk back up the tree (adjusting slot pointers as we go)
8101 * and restart the search process.
8102 */
8103 extent_buffer_get(root_eb); /* For path */
8104 path->nodes[root_level] = root_eb;
8105 path->slots[root_level] = 0;
8106 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8107walk_down:
8108 level = root_level;
8109 while (level >= 0) {
8110 if (path->nodes[level] == NULL) {
1152651a
MF
8111 int parent_slot;
8112 u64 child_gen;
8113 u64 child_bytenr;
8114
8115 /* We need to get child blockptr/gen from
8116 * parent before we can read it. */
8117 eb = path->nodes[level + 1];
8118 parent_slot = path->slots[level + 1];
8119 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8120 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8121
ce86cd59 8122 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8123 if (IS_ERR(eb)) {
8124 ret = PTR_ERR(eb);
8125 goto out;
8126 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8127 free_extent_buffer(eb);
64c043de 8128 ret = -EIO;
1152651a
MF
8129 goto out;
8130 }
8131
8132 path->nodes[level] = eb;
8133 path->slots[level] = 0;
8134
8135 btrfs_tree_read_lock(eb);
8136 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8137 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8138 }
8139
8140 if (level == 0) {
8141 ret = account_leaf_items(trans, root, path->nodes[level]);
8142 if (ret)
8143 goto out;
8144
8145 /* Nonzero return here means we completed our search */
8146 ret = adjust_slots_upwards(root, path, root_level);
8147 if (ret)
8148 break;
8149
8150 /* Restart search with new slots */
8151 goto walk_down;
8152 }
8153
8154 level--;
8155 }
8156
8157 ret = 0;
8158out:
8159 btrfs_free_path(path);
8160
8161 return ret;
8162}
8163
f82d02d9 8164/*
2c016dc2 8165 * helper to process tree block while walking down the tree.
2c47e605 8166 *
2c47e605
YZ
8167 * when wc->stage == UPDATE_BACKREF, this function updates
8168 * back refs for pointers in the block.
8169 *
8170 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8171 */
2c47e605 8172static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8173 struct btrfs_root *root,
2c47e605 8174 struct btrfs_path *path,
94fcca9f 8175 struct walk_control *wc, int lookup_info)
f82d02d9 8176{
2c47e605
YZ
8177 int level = wc->level;
8178 struct extent_buffer *eb = path->nodes[level];
2c47e605 8179 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8180 int ret;
8181
2c47e605
YZ
8182 if (wc->stage == UPDATE_BACKREF &&
8183 btrfs_header_owner(eb) != root->root_key.objectid)
8184 return 1;
f82d02d9 8185
2c47e605
YZ
8186 /*
8187 * when reference count of tree block is 1, it won't increase
8188 * again. once full backref flag is set, we never clear it.
8189 */
94fcca9f
YZ
8190 if (lookup_info &&
8191 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8192 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8193 BUG_ON(!path->locks[level]);
8194 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8195 eb->start, level, 1,
2c47e605
YZ
8196 &wc->refs[level],
8197 &wc->flags[level]);
79787eaa
JM
8198 BUG_ON(ret == -ENOMEM);
8199 if (ret)
8200 return ret;
2c47e605
YZ
8201 BUG_ON(wc->refs[level] == 0);
8202 }
5d4f98a2 8203
2c47e605
YZ
8204 if (wc->stage == DROP_REFERENCE) {
8205 if (wc->refs[level] > 1)
8206 return 1;
f82d02d9 8207
2c47e605 8208 if (path->locks[level] && !wc->keep_locks) {
bd681513 8209 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8210 path->locks[level] = 0;
8211 }
8212 return 0;
8213 }
f82d02d9 8214
2c47e605
YZ
8215 /* wc->stage == UPDATE_BACKREF */
8216 if (!(wc->flags[level] & flag)) {
8217 BUG_ON(!path->locks[level]);
e339a6b0 8218 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8219 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8220 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8221 BUG_ON(ret); /* -ENOMEM */
2c47e605 8222 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8223 eb->len, flag,
8224 btrfs_header_level(eb), 0);
79787eaa 8225 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8226 wc->flags[level] |= flag;
8227 }
8228
8229 /*
8230 * the block is shared by multiple trees, so it's not good to
8231 * keep the tree lock
8232 */
8233 if (path->locks[level] && level > 0) {
bd681513 8234 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8235 path->locks[level] = 0;
8236 }
8237 return 0;
8238}
8239
1c4850e2 8240/*
2c016dc2 8241 * helper to process tree block pointer.
1c4850e2
YZ
8242 *
8243 * when wc->stage == DROP_REFERENCE, this function checks
8244 * reference count of the block pointed to. if the block
8245 * is shared and we need update back refs for the subtree
8246 * rooted at the block, this function changes wc->stage to
8247 * UPDATE_BACKREF. if the block is shared and there is no
8248 * need to update back, this function drops the reference
8249 * to the block.
8250 *
8251 * NOTE: return value 1 means we should stop walking down.
8252 */
8253static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8254 struct btrfs_root *root,
8255 struct btrfs_path *path,
94fcca9f 8256 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8257{
8258 u64 bytenr;
8259 u64 generation;
8260 u64 parent;
8261 u32 blocksize;
8262 struct btrfs_key key;
8263 struct extent_buffer *next;
8264 int level = wc->level;
8265 int reada = 0;
8266 int ret = 0;
1152651a 8267 bool need_account = false;
1c4850e2
YZ
8268
8269 generation = btrfs_node_ptr_generation(path->nodes[level],
8270 path->slots[level]);
8271 /*
8272 * if the lower level block was created before the snapshot
8273 * was created, we know there is no need to update back refs
8274 * for the subtree
8275 */
8276 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8277 generation <= root->root_key.offset) {
8278 *lookup_info = 1;
1c4850e2 8279 return 1;
94fcca9f 8280 }
1c4850e2
YZ
8281
8282 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8283 blocksize = root->nodesize;
1c4850e2 8284
01d58472 8285 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8286 if (!next) {
a83fffb7 8287 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8288 if (!next)
8289 return -ENOMEM;
b2aaaa3b
JB
8290 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8291 level - 1);
1c4850e2
YZ
8292 reada = 1;
8293 }
8294 btrfs_tree_lock(next);
8295 btrfs_set_lock_blocking(next);
8296
3173a18f 8297 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8298 &wc->refs[level - 1],
8299 &wc->flags[level - 1]);
79787eaa
JM
8300 if (ret < 0) {
8301 btrfs_tree_unlock(next);
8302 return ret;
8303 }
8304
c2cf52eb
SK
8305 if (unlikely(wc->refs[level - 1] == 0)) {
8306 btrfs_err(root->fs_info, "Missing references.");
8307 BUG();
8308 }
94fcca9f 8309 *lookup_info = 0;
1c4850e2 8310
94fcca9f 8311 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8312 if (wc->refs[level - 1] > 1) {
1152651a 8313 need_account = true;
94fcca9f
YZ
8314 if (level == 1 &&
8315 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8316 goto skip;
8317
1c4850e2
YZ
8318 if (!wc->update_ref ||
8319 generation <= root->root_key.offset)
8320 goto skip;
8321
8322 btrfs_node_key_to_cpu(path->nodes[level], &key,
8323 path->slots[level]);
8324 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8325 if (ret < 0)
8326 goto skip;
8327
8328 wc->stage = UPDATE_BACKREF;
8329 wc->shared_level = level - 1;
8330 }
94fcca9f
YZ
8331 } else {
8332 if (level == 1 &&
8333 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8334 goto skip;
1c4850e2
YZ
8335 }
8336
b9fab919 8337 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8338 btrfs_tree_unlock(next);
8339 free_extent_buffer(next);
8340 next = NULL;
94fcca9f 8341 *lookup_info = 1;
1c4850e2
YZ
8342 }
8343
8344 if (!next) {
8345 if (reada && level == 1)
8346 reada_walk_down(trans, root, wc, path);
ce86cd59 8347 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8348 if (IS_ERR(next)) {
8349 return PTR_ERR(next);
8350 } else if (!extent_buffer_uptodate(next)) {
416bc658 8351 free_extent_buffer(next);
97d9a8a4 8352 return -EIO;
416bc658 8353 }
1c4850e2
YZ
8354 btrfs_tree_lock(next);
8355 btrfs_set_lock_blocking(next);
8356 }
8357
8358 level--;
8359 BUG_ON(level != btrfs_header_level(next));
8360 path->nodes[level] = next;
8361 path->slots[level] = 0;
bd681513 8362 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8363 wc->level = level;
8364 if (wc->level == 1)
8365 wc->reada_slot = 0;
8366 return 0;
8367skip:
8368 wc->refs[level - 1] = 0;
8369 wc->flags[level - 1] = 0;
94fcca9f
YZ
8370 if (wc->stage == DROP_REFERENCE) {
8371 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8372 parent = path->nodes[level]->start;
8373 } else {
8374 BUG_ON(root->root_key.objectid !=
8375 btrfs_header_owner(path->nodes[level]));
8376 parent = 0;
8377 }
1c4850e2 8378
1152651a
MF
8379 if (need_account) {
8380 ret = account_shared_subtree(trans, root, next,
8381 generation, level - 1);
8382 if (ret) {
94647322
DS
8383 btrfs_err_rl(root->fs_info,
8384 "Error "
1152651a 8385 "%d accounting shared subtree. Quota "
94647322
DS
8386 "is out of sync, rescan required.",
8387 ret);
1152651a
MF
8388 }
8389 }
94fcca9f 8390 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8391 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8392 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8393 }
1c4850e2
YZ
8394 btrfs_tree_unlock(next);
8395 free_extent_buffer(next);
94fcca9f 8396 *lookup_info = 1;
1c4850e2
YZ
8397 return 1;
8398}
8399
2c47e605 8400/*
2c016dc2 8401 * helper to process tree block while walking up the tree.
2c47e605
YZ
8402 *
8403 * when wc->stage == DROP_REFERENCE, this function drops
8404 * reference count on the block.
8405 *
8406 * when wc->stage == UPDATE_BACKREF, this function changes
8407 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8408 * to UPDATE_BACKREF previously while processing the block.
8409 *
8410 * NOTE: return value 1 means we should stop walking up.
8411 */
8412static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8413 struct btrfs_root *root,
8414 struct btrfs_path *path,
8415 struct walk_control *wc)
8416{
f0486c68 8417 int ret;
2c47e605
YZ
8418 int level = wc->level;
8419 struct extent_buffer *eb = path->nodes[level];
8420 u64 parent = 0;
8421
8422 if (wc->stage == UPDATE_BACKREF) {
8423 BUG_ON(wc->shared_level < level);
8424 if (level < wc->shared_level)
8425 goto out;
8426
2c47e605
YZ
8427 ret = find_next_key(path, level + 1, &wc->update_progress);
8428 if (ret > 0)
8429 wc->update_ref = 0;
8430
8431 wc->stage = DROP_REFERENCE;
8432 wc->shared_level = -1;
8433 path->slots[level] = 0;
8434
8435 /*
8436 * check reference count again if the block isn't locked.
8437 * we should start walking down the tree again if reference
8438 * count is one.
8439 */
8440 if (!path->locks[level]) {
8441 BUG_ON(level == 0);
8442 btrfs_tree_lock(eb);
8443 btrfs_set_lock_blocking(eb);
bd681513 8444 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8445
8446 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8447 eb->start, level, 1,
2c47e605
YZ
8448 &wc->refs[level],
8449 &wc->flags[level]);
79787eaa
JM
8450 if (ret < 0) {
8451 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8452 path->locks[level] = 0;
79787eaa
JM
8453 return ret;
8454 }
2c47e605
YZ
8455 BUG_ON(wc->refs[level] == 0);
8456 if (wc->refs[level] == 1) {
bd681513 8457 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8458 path->locks[level] = 0;
2c47e605
YZ
8459 return 1;
8460 }
f82d02d9 8461 }
2c47e605 8462 }
f82d02d9 8463
2c47e605
YZ
8464 /* wc->stage == DROP_REFERENCE */
8465 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8466
2c47e605
YZ
8467 if (wc->refs[level] == 1) {
8468 if (level == 0) {
8469 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8470 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8471 else
e339a6b0 8472 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8473 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8474 ret = account_leaf_items(trans, root, eb);
8475 if (ret) {
94647322
DS
8476 btrfs_err_rl(root->fs_info,
8477 "error "
1152651a 8478 "%d accounting leaf items. Quota "
94647322
DS
8479 "is out of sync, rescan required.",
8480 ret);
1152651a 8481 }
2c47e605
YZ
8482 }
8483 /* make block locked assertion in clean_tree_block happy */
8484 if (!path->locks[level] &&
8485 btrfs_header_generation(eb) == trans->transid) {
8486 btrfs_tree_lock(eb);
8487 btrfs_set_lock_blocking(eb);
bd681513 8488 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8489 }
01d58472 8490 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8491 }
8492
8493 if (eb == root->node) {
8494 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8495 parent = eb->start;
8496 else
8497 BUG_ON(root->root_key.objectid !=
8498 btrfs_header_owner(eb));
8499 } else {
8500 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8501 parent = path->nodes[level + 1]->start;
8502 else
8503 BUG_ON(root->root_key.objectid !=
8504 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8505 }
f82d02d9 8506
5581a51a 8507 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8508out:
8509 wc->refs[level] = 0;
8510 wc->flags[level] = 0;
f0486c68 8511 return 0;
2c47e605
YZ
8512}
8513
8514static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8515 struct btrfs_root *root,
8516 struct btrfs_path *path,
8517 struct walk_control *wc)
8518{
2c47e605 8519 int level = wc->level;
94fcca9f 8520 int lookup_info = 1;
2c47e605
YZ
8521 int ret;
8522
8523 while (level >= 0) {
94fcca9f 8524 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8525 if (ret > 0)
8526 break;
8527
8528 if (level == 0)
8529 break;
8530
7a7965f8
YZ
8531 if (path->slots[level] >=
8532 btrfs_header_nritems(path->nodes[level]))
8533 break;
8534
94fcca9f 8535 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8536 if (ret > 0) {
8537 path->slots[level]++;
8538 continue;
90d2c51d
MX
8539 } else if (ret < 0)
8540 return ret;
1c4850e2 8541 level = wc->level;
f82d02d9 8542 }
f82d02d9
YZ
8543 return 0;
8544}
8545
d397712b 8546static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8547 struct btrfs_root *root,
f82d02d9 8548 struct btrfs_path *path,
2c47e605 8549 struct walk_control *wc, int max_level)
20524f02 8550{
2c47e605 8551 int level = wc->level;
20524f02 8552 int ret;
9f3a7427 8553
2c47e605
YZ
8554 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8555 while (level < max_level && path->nodes[level]) {
8556 wc->level = level;
8557 if (path->slots[level] + 1 <
8558 btrfs_header_nritems(path->nodes[level])) {
8559 path->slots[level]++;
20524f02
CM
8560 return 0;
8561 } else {
2c47e605
YZ
8562 ret = walk_up_proc(trans, root, path, wc);
8563 if (ret > 0)
8564 return 0;
bd56b302 8565
2c47e605 8566 if (path->locks[level]) {
bd681513
CM
8567 btrfs_tree_unlock_rw(path->nodes[level],
8568 path->locks[level]);
2c47e605 8569 path->locks[level] = 0;
f82d02d9 8570 }
2c47e605
YZ
8571 free_extent_buffer(path->nodes[level]);
8572 path->nodes[level] = NULL;
8573 level++;
20524f02
CM
8574 }
8575 }
8576 return 1;
8577}
8578
9aca1d51 8579/*
2c47e605
YZ
8580 * drop a subvolume tree.
8581 *
8582 * this function traverses the tree freeing any blocks that only
8583 * referenced by the tree.
8584 *
8585 * when a shared tree block is found. this function decreases its
8586 * reference count by one. if update_ref is true, this function
8587 * also make sure backrefs for the shared block and all lower level
8588 * blocks are properly updated.
9d1a2a3a
DS
8589 *
8590 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8591 */
2c536799 8592int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8593 struct btrfs_block_rsv *block_rsv, int update_ref,
8594 int for_reloc)
20524f02 8595{
5caf2a00 8596 struct btrfs_path *path;
2c47e605
YZ
8597 struct btrfs_trans_handle *trans;
8598 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8599 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8600 struct walk_control *wc;
8601 struct btrfs_key key;
8602 int err = 0;
8603 int ret;
8604 int level;
d29a9f62 8605 bool root_dropped = false;
20524f02 8606
1152651a
MF
8607 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8608
5caf2a00 8609 path = btrfs_alloc_path();
cb1b69f4
TI
8610 if (!path) {
8611 err = -ENOMEM;
8612 goto out;
8613 }
20524f02 8614
2c47e605 8615 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8616 if (!wc) {
8617 btrfs_free_path(path);
cb1b69f4
TI
8618 err = -ENOMEM;
8619 goto out;
38a1a919 8620 }
2c47e605 8621
a22285a6 8622 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8623 if (IS_ERR(trans)) {
8624 err = PTR_ERR(trans);
8625 goto out_free;
8626 }
98d5dc13 8627
3fd0a558
YZ
8628 if (block_rsv)
8629 trans->block_rsv = block_rsv;
2c47e605 8630
9f3a7427 8631 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8632 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8633 path->nodes[level] = btrfs_lock_root_node(root);
8634 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8635 path->slots[level] = 0;
bd681513 8636 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8637 memset(&wc->update_progress, 0,
8638 sizeof(wc->update_progress));
9f3a7427 8639 } else {
9f3a7427 8640 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8641 memcpy(&wc->update_progress, &key,
8642 sizeof(wc->update_progress));
8643
6702ed49 8644 level = root_item->drop_level;
2c47e605 8645 BUG_ON(level == 0);
6702ed49 8646 path->lowest_level = level;
2c47e605
YZ
8647 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8648 path->lowest_level = 0;
8649 if (ret < 0) {
8650 err = ret;
79787eaa 8651 goto out_end_trans;
9f3a7427 8652 }
1c4850e2 8653 WARN_ON(ret > 0);
2c47e605 8654
7d9eb12c
CM
8655 /*
8656 * unlock our path, this is safe because only this
8657 * function is allowed to delete this snapshot
8658 */
5d4f98a2 8659 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8660
8661 level = btrfs_header_level(root->node);
8662 while (1) {
8663 btrfs_tree_lock(path->nodes[level]);
8664 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8665 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8666
8667 ret = btrfs_lookup_extent_info(trans, root,
8668 path->nodes[level]->start,
3173a18f 8669 level, 1, &wc->refs[level],
2c47e605 8670 &wc->flags[level]);
79787eaa
JM
8671 if (ret < 0) {
8672 err = ret;
8673 goto out_end_trans;
8674 }
2c47e605
YZ
8675 BUG_ON(wc->refs[level] == 0);
8676
8677 if (level == root_item->drop_level)
8678 break;
8679
8680 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8681 path->locks[level] = 0;
2c47e605
YZ
8682 WARN_ON(wc->refs[level] != 1);
8683 level--;
8684 }
9f3a7427 8685 }
2c47e605
YZ
8686
8687 wc->level = level;
8688 wc->shared_level = -1;
8689 wc->stage = DROP_REFERENCE;
8690 wc->update_ref = update_ref;
8691 wc->keep_locks = 0;
66d7e7f0 8692 wc->for_reloc = for_reloc;
1c4850e2 8693 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8694
d397712b 8695 while (1) {
9d1a2a3a 8696
2c47e605
YZ
8697 ret = walk_down_tree(trans, root, path, wc);
8698 if (ret < 0) {
8699 err = ret;
20524f02 8700 break;
2c47e605 8701 }
9aca1d51 8702
2c47e605
YZ
8703 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8704 if (ret < 0) {
8705 err = ret;
20524f02 8706 break;
2c47e605
YZ
8707 }
8708
8709 if (ret > 0) {
8710 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8711 break;
8712 }
2c47e605
YZ
8713
8714 if (wc->stage == DROP_REFERENCE) {
8715 level = wc->level;
8716 btrfs_node_key(path->nodes[level],
8717 &root_item->drop_progress,
8718 path->slots[level]);
8719 root_item->drop_level = level;
8720 }
8721
8722 BUG_ON(wc->level == 0);
3c8f2422
JB
8723 if (btrfs_should_end_transaction(trans, tree_root) ||
8724 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8725 ret = btrfs_update_root(trans, tree_root,
8726 &root->root_key,
8727 root_item);
79787eaa
JM
8728 if (ret) {
8729 btrfs_abort_transaction(trans, tree_root, ret);
8730 err = ret;
8731 goto out_end_trans;
8732 }
2c47e605 8733
3fd0a558 8734 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8735 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8736 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8737 err = -EAGAIN;
8738 goto out_free;
8739 }
8740
a22285a6 8741 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8742 if (IS_ERR(trans)) {
8743 err = PTR_ERR(trans);
8744 goto out_free;
8745 }
3fd0a558
YZ
8746 if (block_rsv)
8747 trans->block_rsv = block_rsv;
c3e69d58 8748 }
20524f02 8749 }
b3b4aa74 8750 btrfs_release_path(path);
79787eaa
JM
8751 if (err)
8752 goto out_end_trans;
2c47e605
YZ
8753
8754 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8755 if (ret) {
8756 btrfs_abort_transaction(trans, tree_root, ret);
8757 goto out_end_trans;
8758 }
2c47e605 8759
76dda93c 8760 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8761 ret = btrfs_find_root(tree_root, &root->root_key, path,
8762 NULL, NULL);
79787eaa
JM
8763 if (ret < 0) {
8764 btrfs_abort_transaction(trans, tree_root, ret);
8765 err = ret;
8766 goto out_end_trans;
8767 } else if (ret > 0) {
84cd948c
JB
8768 /* if we fail to delete the orphan item this time
8769 * around, it'll get picked up the next time.
8770 *
8771 * The most common failure here is just -ENOENT.
8772 */
8773 btrfs_del_orphan_item(trans, tree_root,
8774 root->root_key.objectid);
76dda93c
YZ
8775 }
8776 }
8777
27cdeb70 8778 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8779 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8780 } else {
8781 free_extent_buffer(root->node);
8782 free_extent_buffer(root->commit_root);
b0feb9d9 8783 btrfs_put_fs_root(root);
76dda93c 8784 }
d29a9f62 8785 root_dropped = true;
79787eaa 8786out_end_trans:
3fd0a558 8787 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8788out_free:
2c47e605 8789 kfree(wc);
5caf2a00 8790 btrfs_free_path(path);
cb1b69f4 8791out:
d29a9f62
JB
8792 /*
8793 * So if we need to stop dropping the snapshot for whatever reason we
8794 * need to make sure to add it back to the dead root list so that we
8795 * keep trying to do the work later. This also cleans up roots if we
8796 * don't have it in the radix (like when we recover after a power fail
8797 * or unmount) so we don't leak memory.
8798 */
b37b39cd 8799 if (!for_reloc && root_dropped == false)
d29a9f62 8800 btrfs_add_dead_root(root);
90515e7f 8801 if (err && err != -EAGAIN)
a4553fef 8802 btrfs_std_error(root->fs_info, err, NULL);
2c536799 8803 return err;
20524f02 8804}
9078a3e1 8805
2c47e605
YZ
8806/*
8807 * drop subtree rooted at tree block 'node'.
8808 *
8809 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8810 * only used by relocation code
2c47e605 8811 */
f82d02d9
YZ
8812int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8813 struct btrfs_root *root,
8814 struct extent_buffer *node,
8815 struct extent_buffer *parent)
8816{
8817 struct btrfs_path *path;
2c47e605 8818 struct walk_control *wc;
f82d02d9
YZ
8819 int level;
8820 int parent_level;
8821 int ret = 0;
8822 int wret;
8823
2c47e605
YZ
8824 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8825
f82d02d9 8826 path = btrfs_alloc_path();
db5b493a
TI
8827 if (!path)
8828 return -ENOMEM;
f82d02d9 8829
2c47e605 8830 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8831 if (!wc) {
8832 btrfs_free_path(path);
8833 return -ENOMEM;
8834 }
2c47e605 8835
b9447ef8 8836 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8837 parent_level = btrfs_header_level(parent);
8838 extent_buffer_get(parent);
8839 path->nodes[parent_level] = parent;
8840 path->slots[parent_level] = btrfs_header_nritems(parent);
8841
b9447ef8 8842 btrfs_assert_tree_locked(node);
f82d02d9 8843 level = btrfs_header_level(node);
f82d02d9
YZ
8844 path->nodes[level] = node;
8845 path->slots[level] = 0;
bd681513 8846 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8847
8848 wc->refs[parent_level] = 1;
8849 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8850 wc->level = level;
8851 wc->shared_level = -1;
8852 wc->stage = DROP_REFERENCE;
8853 wc->update_ref = 0;
8854 wc->keep_locks = 1;
66d7e7f0 8855 wc->for_reloc = 1;
1c4850e2 8856 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8857
8858 while (1) {
2c47e605
YZ
8859 wret = walk_down_tree(trans, root, path, wc);
8860 if (wret < 0) {
f82d02d9 8861 ret = wret;
f82d02d9 8862 break;
2c47e605 8863 }
f82d02d9 8864
2c47e605 8865 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8866 if (wret < 0)
8867 ret = wret;
8868 if (wret != 0)
8869 break;
8870 }
8871
2c47e605 8872 kfree(wc);
f82d02d9
YZ
8873 btrfs_free_path(path);
8874 return ret;
8875}
8876
ec44a35c
CM
8877static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8878{
8879 u64 num_devices;
fc67c450 8880 u64 stripped;
e4d8ec0f 8881
fc67c450
ID
8882 /*
8883 * if restripe for this chunk_type is on pick target profile and
8884 * return, otherwise do the usual balance
8885 */
8886 stripped = get_restripe_target(root->fs_info, flags);
8887 if (stripped)
8888 return extended_to_chunk(stripped);
e4d8ec0f 8889
95669976 8890 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8891
fc67c450 8892 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8893 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8894 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8895
ec44a35c
CM
8896 if (num_devices == 1) {
8897 stripped |= BTRFS_BLOCK_GROUP_DUP;
8898 stripped = flags & ~stripped;
8899
8900 /* turn raid0 into single device chunks */
8901 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8902 return stripped;
8903
8904 /* turn mirroring into duplication */
8905 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8906 BTRFS_BLOCK_GROUP_RAID10))
8907 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8908 } else {
8909 /* they already had raid on here, just return */
ec44a35c
CM
8910 if (flags & stripped)
8911 return flags;
8912
8913 stripped |= BTRFS_BLOCK_GROUP_DUP;
8914 stripped = flags & ~stripped;
8915
8916 /* switch duplicated blocks with raid1 */
8917 if (flags & BTRFS_BLOCK_GROUP_DUP)
8918 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8919
e3176ca2 8920 /* this is drive concat, leave it alone */
ec44a35c 8921 }
e3176ca2 8922
ec44a35c
CM
8923 return flags;
8924}
8925
868f401a 8926static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8927{
f0486c68
YZ
8928 struct btrfs_space_info *sinfo = cache->space_info;
8929 u64 num_bytes;
199c36ea 8930 u64 min_allocable_bytes;
f0486c68 8931 int ret = -ENOSPC;
0ef3e66b 8932
199c36ea
MX
8933 /*
8934 * We need some metadata space and system metadata space for
8935 * allocating chunks in some corner cases until we force to set
8936 * it to be readonly.
8937 */
8938 if ((sinfo->flags &
8939 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8940 !force)
8941 min_allocable_bytes = 1 * 1024 * 1024;
8942 else
8943 min_allocable_bytes = 0;
8944
f0486c68
YZ
8945 spin_lock(&sinfo->lock);
8946 spin_lock(&cache->lock);
61cfea9b
W
8947
8948 if (cache->ro) {
868f401a 8949 cache->ro++;
61cfea9b
W
8950 ret = 0;
8951 goto out;
8952 }
8953
f0486c68
YZ
8954 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8955 cache->bytes_super - btrfs_block_group_used(&cache->item);
8956
8957 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8958 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8959 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8960 sinfo->bytes_readonly += num_bytes;
868f401a 8961 cache->ro++;
633c0aad 8962 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8963 ret = 0;
8964 }
61cfea9b 8965out:
f0486c68
YZ
8966 spin_unlock(&cache->lock);
8967 spin_unlock(&sinfo->lock);
8968 return ret;
8969}
7d9eb12c 8970
868f401a 8971int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 8972 struct btrfs_block_group_cache *cache)
c286ac48 8973
f0486c68
YZ
8974{
8975 struct btrfs_trans_handle *trans;
8976 u64 alloc_flags;
8977 int ret;
7d9eb12c 8978
1bbc621e 8979again:
ff5714cc 8980 trans = btrfs_join_transaction(root);
79787eaa
JM
8981 if (IS_ERR(trans))
8982 return PTR_ERR(trans);
5d4f98a2 8983
1bbc621e
CM
8984 /*
8985 * we're not allowed to set block groups readonly after the dirty
8986 * block groups cache has started writing. If it already started,
8987 * back off and let this transaction commit
8988 */
8989 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 8990 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
8991 u64 transid = trans->transid;
8992
8993 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8994 btrfs_end_transaction(trans, root);
8995
8996 ret = btrfs_wait_for_commit(root, transid);
8997 if (ret)
8998 return ret;
8999 goto again;
9000 }
9001
153c35b6
CM
9002 /*
9003 * if we are changing raid levels, try to allocate a corresponding
9004 * block group with the new raid level.
9005 */
9006 alloc_flags = update_block_group_flags(root, cache->flags);
9007 if (alloc_flags != cache->flags) {
9008 ret = do_chunk_alloc(trans, root, alloc_flags,
9009 CHUNK_ALLOC_FORCE);
9010 /*
9011 * ENOSPC is allowed here, we may have enough space
9012 * already allocated at the new raid level to
9013 * carry on
9014 */
9015 if (ret == -ENOSPC)
9016 ret = 0;
9017 if (ret < 0)
9018 goto out;
9019 }
1bbc621e 9020
868f401a 9021 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9022 if (!ret)
9023 goto out;
9024 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9025 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9026 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9027 if (ret < 0)
9028 goto out;
868f401a 9029 ret = inc_block_group_ro(cache, 0);
f0486c68 9030out:
2f081088
SL
9031 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9032 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9033 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9034 check_system_chunk(trans, root, alloc_flags);
a9629596 9035 unlock_chunks(root->fs_info->chunk_root);
2f081088 9036 }
1bbc621e 9037 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9038
f0486c68
YZ
9039 btrfs_end_transaction(trans, root);
9040 return ret;
9041}
5d4f98a2 9042
c87f08ca
CM
9043int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9044 struct btrfs_root *root, u64 type)
9045{
9046 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9047 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9048 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9049}
9050
6d07bcec
MX
9051/*
9052 * helper to account the unused space of all the readonly block group in the
633c0aad 9053 * space_info. takes mirrors into account.
6d07bcec 9054 */
633c0aad 9055u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9056{
9057 struct btrfs_block_group_cache *block_group;
9058 u64 free_bytes = 0;
9059 int factor;
9060
633c0aad
JB
9061 /* It's df, we don't care if it's racey */
9062 if (list_empty(&sinfo->ro_bgs))
9063 return 0;
9064
9065 spin_lock(&sinfo->lock);
9066 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9067 spin_lock(&block_group->lock);
9068
9069 if (!block_group->ro) {
9070 spin_unlock(&block_group->lock);
9071 continue;
9072 }
9073
9074 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9075 BTRFS_BLOCK_GROUP_RAID10 |
9076 BTRFS_BLOCK_GROUP_DUP))
9077 factor = 2;
9078 else
9079 factor = 1;
9080
9081 free_bytes += (block_group->key.offset -
9082 btrfs_block_group_used(&block_group->item)) *
9083 factor;
9084
9085 spin_unlock(&block_group->lock);
9086 }
6d07bcec
MX
9087 spin_unlock(&sinfo->lock);
9088
9089 return free_bytes;
9090}
9091
868f401a 9092void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9093 struct btrfs_block_group_cache *cache)
5d4f98a2 9094{
f0486c68
YZ
9095 struct btrfs_space_info *sinfo = cache->space_info;
9096 u64 num_bytes;
9097
9098 BUG_ON(!cache->ro);
9099
9100 spin_lock(&sinfo->lock);
9101 spin_lock(&cache->lock);
868f401a
Z
9102 if (!--cache->ro) {
9103 num_bytes = cache->key.offset - cache->reserved -
9104 cache->pinned - cache->bytes_super -
9105 btrfs_block_group_used(&cache->item);
9106 sinfo->bytes_readonly -= num_bytes;
9107 list_del_init(&cache->ro_list);
9108 }
f0486c68
YZ
9109 spin_unlock(&cache->lock);
9110 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9111}
9112
ba1bf481
JB
9113/*
9114 * checks to see if its even possible to relocate this block group.
9115 *
9116 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9117 * ok to go ahead and try.
9118 */
9119int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9120{
ba1bf481
JB
9121 struct btrfs_block_group_cache *block_group;
9122 struct btrfs_space_info *space_info;
9123 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9124 struct btrfs_device *device;
6df9a95e 9125 struct btrfs_trans_handle *trans;
cdcb725c 9126 u64 min_free;
6719db6a
JB
9127 u64 dev_min = 1;
9128 u64 dev_nr = 0;
4a5e98f5 9129 u64 target;
cdcb725c 9130 int index;
ba1bf481
JB
9131 int full = 0;
9132 int ret = 0;
1a40e23b 9133
ba1bf481 9134 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9135
ba1bf481
JB
9136 /* odd, couldn't find the block group, leave it alone */
9137 if (!block_group)
9138 return -1;
1a40e23b 9139
cdcb725c 9140 min_free = btrfs_block_group_used(&block_group->item);
9141
ba1bf481 9142 /* no bytes used, we're good */
cdcb725c 9143 if (!min_free)
1a40e23b
ZY
9144 goto out;
9145
ba1bf481
JB
9146 space_info = block_group->space_info;
9147 spin_lock(&space_info->lock);
17d217fe 9148
ba1bf481 9149 full = space_info->full;
17d217fe 9150
ba1bf481
JB
9151 /*
9152 * if this is the last block group we have in this space, we can't
7ce618db
CM
9153 * relocate it unless we're able to allocate a new chunk below.
9154 *
9155 * Otherwise, we need to make sure we have room in the space to handle
9156 * all of the extents from this block group. If we can, we're good
ba1bf481 9157 */
7ce618db 9158 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9159 (space_info->bytes_used + space_info->bytes_reserved +
9160 space_info->bytes_pinned + space_info->bytes_readonly +
9161 min_free < space_info->total_bytes)) {
ba1bf481
JB
9162 spin_unlock(&space_info->lock);
9163 goto out;
17d217fe 9164 }
ba1bf481 9165 spin_unlock(&space_info->lock);
ea8c2819 9166
ba1bf481
JB
9167 /*
9168 * ok we don't have enough space, but maybe we have free space on our
9169 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9170 * alloc devices and guess if we have enough space. if this block
9171 * group is going to be restriped, run checks against the target
9172 * profile instead of the current one.
ba1bf481
JB
9173 */
9174 ret = -1;
ea8c2819 9175
cdcb725c 9176 /*
9177 * index:
9178 * 0: raid10
9179 * 1: raid1
9180 * 2: dup
9181 * 3: raid0
9182 * 4: single
9183 */
4a5e98f5
ID
9184 target = get_restripe_target(root->fs_info, block_group->flags);
9185 if (target) {
31e50229 9186 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9187 } else {
9188 /*
9189 * this is just a balance, so if we were marked as full
9190 * we know there is no space for a new chunk
9191 */
9192 if (full)
9193 goto out;
9194
9195 index = get_block_group_index(block_group);
9196 }
9197
e6ec716f 9198 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9199 dev_min = 4;
6719db6a
JB
9200 /* Divide by 2 */
9201 min_free >>= 1;
e6ec716f 9202 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9203 dev_min = 2;
e6ec716f 9204 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9205 /* Multiply by 2 */
9206 min_free <<= 1;
e6ec716f 9207 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9208 dev_min = fs_devices->rw_devices;
47c5713f 9209 min_free = div64_u64(min_free, dev_min);
cdcb725c 9210 }
9211
6df9a95e
JB
9212 /* We need to do this so that we can look at pending chunks */
9213 trans = btrfs_join_transaction(root);
9214 if (IS_ERR(trans)) {
9215 ret = PTR_ERR(trans);
9216 goto out;
9217 }
9218
ba1bf481
JB
9219 mutex_lock(&root->fs_info->chunk_mutex);
9220 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9221 u64 dev_offset;
56bec294 9222
ba1bf481
JB
9223 /*
9224 * check to make sure we can actually find a chunk with enough
9225 * space to fit our block group in.
9226 */
63a212ab
SB
9227 if (device->total_bytes > device->bytes_used + min_free &&
9228 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9229 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9230 &dev_offset, NULL);
ba1bf481 9231 if (!ret)
cdcb725c 9232 dev_nr++;
9233
9234 if (dev_nr >= dev_min)
73e48b27 9235 break;
cdcb725c 9236
ba1bf481 9237 ret = -1;
725c8463 9238 }
edbd8d4e 9239 }
ba1bf481 9240 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9241 btrfs_end_transaction(trans, root);
edbd8d4e 9242out:
ba1bf481 9243 btrfs_put_block_group(block_group);
edbd8d4e
CM
9244 return ret;
9245}
9246
b2950863
CH
9247static int find_first_block_group(struct btrfs_root *root,
9248 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9249{
925baedd 9250 int ret = 0;
0b86a832
CM
9251 struct btrfs_key found_key;
9252 struct extent_buffer *leaf;
9253 int slot;
edbd8d4e 9254
0b86a832
CM
9255 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9256 if (ret < 0)
925baedd
CM
9257 goto out;
9258
d397712b 9259 while (1) {
0b86a832 9260 slot = path->slots[0];
edbd8d4e 9261 leaf = path->nodes[0];
0b86a832
CM
9262 if (slot >= btrfs_header_nritems(leaf)) {
9263 ret = btrfs_next_leaf(root, path);
9264 if (ret == 0)
9265 continue;
9266 if (ret < 0)
925baedd 9267 goto out;
0b86a832 9268 break;
edbd8d4e 9269 }
0b86a832 9270 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9271
0b86a832 9272 if (found_key.objectid >= key->objectid &&
925baedd
CM
9273 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9274 ret = 0;
9275 goto out;
9276 }
0b86a832 9277 path->slots[0]++;
edbd8d4e 9278 }
925baedd 9279out:
0b86a832 9280 return ret;
edbd8d4e
CM
9281}
9282
0af3d00b
JB
9283void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9284{
9285 struct btrfs_block_group_cache *block_group;
9286 u64 last = 0;
9287
9288 while (1) {
9289 struct inode *inode;
9290
9291 block_group = btrfs_lookup_first_block_group(info, last);
9292 while (block_group) {
9293 spin_lock(&block_group->lock);
9294 if (block_group->iref)
9295 break;
9296 spin_unlock(&block_group->lock);
9297 block_group = next_block_group(info->tree_root,
9298 block_group);
9299 }
9300 if (!block_group) {
9301 if (last == 0)
9302 break;
9303 last = 0;
9304 continue;
9305 }
9306
9307 inode = block_group->inode;
9308 block_group->iref = 0;
9309 block_group->inode = NULL;
9310 spin_unlock(&block_group->lock);
9311 iput(inode);
9312 last = block_group->key.objectid + block_group->key.offset;
9313 btrfs_put_block_group(block_group);
9314 }
9315}
9316
1a40e23b
ZY
9317int btrfs_free_block_groups(struct btrfs_fs_info *info)
9318{
9319 struct btrfs_block_group_cache *block_group;
4184ea7f 9320 struct btrfs_space_info *space_info;
11833d66 9321 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9322 struct rb_node *n;
9323
9e351cc8 9324 down_write(&info->commit_root_sem);
11833d66
YZ
9325 while (!list_empty(&info->caching_block_groups)) {
9326 caching_ctl = list_entry(info->caching_block_groups.next,
9327 struct btrfs_caching_control, list);
9328 list_del(&caching_ctl->list);
9329 put_caching_control(caching_ctl);
9330 }
9e351cc8 9331 up_write(&info->commit_root_sem);
11833d66 9332
47ab2a6c
JB
9333 spin_lock(&info->unused_bgs_lock);
9334 while (!list_empty(&info->unused_bgs)) {
9335 block_group = list_first_entry(&info->unused_bgs,
9336 struct btrfs_block_group_cache,
9337 bg_list);
9338 list_del_init(&block_group->bg_list);
9339 btrfs_put_block_group(block_group);
9340 }
9341 spin_unlock(&info->unused_bgs_lock);
9342
1a40e23b
ZY
9343 spin_lock(&info->block_group_cache_lock);
9344 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9345 block_group = rb_entry(n, struct btrfs_block_group_cache,
9346 cache_node);
1a40e23b
ZY
9347 rb_erase(&block_group->cache_node,
9348 &info->block_group_cache_tree);
01eacb27 9349 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9350 spin_unlock(&info->block_group_cache_lock);
9351
80eb234a 9352 down_write(&block_group->space_info->groups_sem);
1a40e23b 9353 list_del(&block_group->list);
80eb234a 9354 up_write(&block_group->space_info->groups_sem);
d2fb3437 9355
817d52f8 9356 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9357 wait_block_group_cache_done(block_group);
817d52f8 9358
3c14874a
JB
9359 /*
9360 * We haven't cached this block group, which means we could
9361 * possibly have excluded extents on this block group.
9362 */
36cce922
JB
9363 if (block_group->cached == BTRFS_CACHE_NO ||
9364 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9365 free_excluded_extents(info->extent_root, block_group);
9366
817d52f8 9367 btrfs_remove_free_space_cache(block_group);
11dfe35a 9368 btrfs_put_block_group(block_group);
d899e052
YZ
9369
9370 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9371 }
9372 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9373
9374 /* now that all the block groups are freed, go through and
9375 * free all the space_info structs. This is only called during
9376 * the final stages of unmount, and so we know nobody is
9377 * using them. We call synchronize_rcu() once before we start,
9378 * just to be on the safe side.
9379 */
9380 synchronize_rcu();
9381
8929ecfa
YZ
9382 release_global_block_rsv(info);
9383
67871254 9384 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9385 int i;
9386
4184ea7f
CM
9387 space_info = list_entry(info->space_info.next,
9388 struct btrfs_space_info,
9389 list);
b069e0c3 9390 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9391 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9392 space_info->bytes_reserved > 0 ||
fae7f21c 9393 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9394 dump_space_info(space_info, 0, 0);
9395 }
f0486c68 9396 }
4184ea7f 9397 list_del(&space_info->list);
6ab0a202
JM
9398 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9399 struct kobject *kobj;
c1895442
JM
9400 kobj = space_info->block_group_kobjs[i];
9401 space_info->block_group_kobjs[i] = NULL;
9402 if (kobj) {
6ab0a202
JM
9403 kobject_del(kobj);
9404 kobject_put(kobj);
9405 }
9406 }
9407 kobject_del(&space_info->kobj);
9408 kobject_put(&space_info->kobj);
4184ea7f 9409 }
1a40e23b
ZY
9410 return 0;
9411}
9412
b742bb82
YZ
9413static void __link_block_group(struct btrfs_space_info *space_info,
9414 struct btrfs_block_group_cache *cache)
9415{
9416 int index = get_block_group_index(cache);
ed55b6ac 9417 bool first = false;
b742bb82
YZ
9418
9419 down_write(&space_info->groups_sem);
ed55b6ac
JM
9420 if (list_empty(&space_info->block_groups[index]))
9421 first = true;
9422 list_add_tail(&cache->list, &space_info->block_groups[index]);
9423 up_write(&space_info->groups_sem);
9424
9425 if (first) {
c1895442 9426 struct raid_kobject *rkobj;
6ab0a202
JM
9427 int ret;
9428
c1895442
JM
9429 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9430 if (!rkobj)
9431 goto out_err;
9432 rkobj->raid_type = index;
9433 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9434 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9435 "%s", get_raid_name(index));
6ab0a202 9436 if (ret) {
c1895442
JM
9437 kobject_put(&rkobj->kobj);
9438 goto out_err;
6ab0a202 9439 }
c1895442 9440 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9441 }
c1895442
JM
9442
9443 return;
9444out_err:
9445 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9446}
9447
920e4a58
MX
9448static struct btrfs_block_group_cache *
9449btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9450{
9451 struct btrfs_block_group_cache *cache;
9452
9453 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9454 if (!cache)
9455 return NULL;
9456
9457 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9458 GFP_NOFS);
9459 if (!cache->free_space_ctl) {
9460 kfree(cache);
9461 return NULL;
9462 }
9463
9464 cache->key.objectid = start;
9465 cache->key.offset = size;
9466 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9467
9468 cache->sectorsize = root->sectorsize;
9469 cache->fs_info = root->fs_info;
9470 cache->full_stripe_len = btrfs_full_stripe_len(root,
9471 &root->fs_info->mapping_tree,
9472 start);
9473 atomic_set(&cache->count, 1);
9474 spin_lock_init(&cache->lock);
e570fd27 9475 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9476 INIT_LIST_HEAD(&cache->list);
9477 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9478 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9479 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9480 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9481 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9482 btrfs_init_free_space_ctl(cache);
04216820 9483 atomic_set(&cache->trimming, 0);
920e4a58
MX
9484
9485 return cache;
9486}
9487
9078a3e1
CM
9488int btrfs_read_block_groups(struct btrfs_root *root)
9489{
9490 struct btrfs_path *path;
9491 int ret;
9078a3e1 9492 struct btrfs_block_group_cache *cache;
be744175 9493 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9494 struct btrfs_space_info *space_info;
9078a3e1
CM
9495 struct btrfs_key key;
9496 struct btrfs_key found_key;
5f39d397 9497 struct extent_buffer *leaf;
0af3d00b
JB
9498 int need_clear = 0;
9499 u64 cache_gen;
96b5179d 9500
be744175 9501 root = info->extent_root;
9078a3e1 9502 key.objectid = 0;
0b86a832 9503 key.offset = 0;
962a298f 9504 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9505 path = btrfs_alloc_path();
9506 if (!path)
9507 return -ENOMEM;
026fd317 9508 path->reada = 1;
9078a3e1 9509
6c41761f 9510 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9511 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9512 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9513 need_clear = 1;
88c2ba3b
JB
9514 if (btrfs_test_opt(root, CLEAR_CACHE))
9515 need_clear = 1;
0af3d00b 9516
d397712b 9517 while (1) {
0b86a832 9518 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9519 if (ret > 0)
9520 break;
0b86a832
CM
9521 if (ret != 0)
9522 goto error;
920e4a58 9523
5f39d397
CM
9524 leaf = path->nodes[0];
9525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9526
9527 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9528 found_key.offset);
9078a3e1 9529 if (!cache) {
0b86a832 9530 ret = -ENOMEM;
f0486c68 9531 goto error;
9078a3e1 9532 }
96303081 9533
cf7c1ef6
LB
9534 if (need_clear) {
9535 /*
9536 * When we mount with old space cache, we need to
9537 * set BTRFS_DC_CLEAR and set dirty flag.
9538 *
9539 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9540 * truncate the old free space cache inode and
9541 * setup a new one.
9542 * b) Setting 'dirty flag' makes sure that we flush
9543 * the new space cache info onto disk.
9544 */
cf7c1ef6 9545 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9546 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9547 }
0af3d00b 9548
5f39d397
CM
9549 read_extent_buffer(leaf, &cache->item,
9550 btrfs_item_ptr_offset(leaf, path->slots[0]),
9551 sizeof(cache->item));
920e4a58 9552 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9553
9078a3e1 9554 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9555 btrfs_release_path(path);
34d52cb6 9556
3c14874a
JB
9557 /*
9558 * We need to exclude the super stripes now so that the space
9559 * info has super bytes accounted for, otherwise we'll think
9560 * we have more space than we actually do.
9561 */
835d974f
JB
9562 ret = exclude_super_stripes(root, cache);
9563 if (ret) {
9564 /*
9565 * We may have excluded something, so call this just in
9566 * case.
9567 */
9568 free_excluded_extents(root, cache);
920e4a58 9569 btrfs_put_block_group(cache);
835d974f
JB
9570 goto error;
9571 }
3c14874a 9572
817d52f8
JB
9573 /*
9574 * check for two cases, either we are full, and therefore
9575 * don't need to bother with the caching work since we won't
9576 * find any space, or we are empty, and we can just add all
9577 * the space in and be done with it. This saves us _alot_ of
9578 * time, particularly in the full case.
9579 */
9580 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9581 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9582 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9583 free_excluded_extents(root, cache);
817d52f8 9584 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9585 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9586 cache->cached = BTRFS_CACHE_FINISHED;
9587 add_new_free_space(cache, root->fs_info,
9588 found_key.objectid,
9589 found_key.objectid +
9590 found_key.offset);
11833d66 9591 free_excluded_extents(root, cache);
817d52f8 9592 }
96b5179d 9593
8c579fe7
JB
9594 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9595 if (ret) {
9596 btrfs_remove_free_space_cache(cache);
9597 btrfs_put_block_group(cache);
9598 goto error;
9599 }
9600
6324fbf3
CM
9601 ret = update_space_info(info, cache->flags, found_key.offset,
9602 btrfs_block_group_used(&cache->item),
9603 &space_info);
8c579fe7
JB
9604 if (ret) {
9605 btrfs_remove_free_space_cache(cache);
9606 spin_lock(&info->block_group_cache_lock);
9607 rb_erase(&cache->cache_node,
9608 &info->block_group_cache_tree);
01eacb27 9609 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9610 spin_unlock(&info->block_group_cache_lock);
9611 btrfs_put_block_group(cache);
9612 goto error;
9613 }
9614
6324fbf3 9615 cache->space_info = space_info;
1b2da372 9616 spin_lock(&cache->space_info->lock);
f0486c68 9617 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9618 spin_unlock(&cache->space_info->lock);
9619
b742bb82 9620 __link_block_group(space_info, cache);
0f9dd46c 9621
75ccf47d 9622 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9623 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9624 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9625 } else if (btrfs_block_group_used(&cache->item) == 0) {
9626 spin_lock(&info->unused_bgs_lock);
9627 /* Should always be true but just in case. */
9628 if (list_empty(&cache->bg_list)) {
9629 btrfs_get_block_group(cache);
9630 list_add_tail(&cache->bg_list,
9631 &info->unused_bgs);
9632 }
9633 spin_unlock(&info->unused_bgs_lock);
9634 }
9078a3e1 9635 }
b742bb82
YZ
9636
9637 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9638 if (!(get_alloc_profile(root, space_info->flags) &
9639 (BTRFS_BLOCK_GROUP_RAID10 |
9640 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9641 BTRFS_BLOCK_GROUP_RAID5 |
9642 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9643 BTRFS_BLOCK_GROUP_DUP)))
9644 continue;
9645 /*
9646 * avoid allocating from un-mirrored block group if there are
9647 * mirrored block groups.
9648 */
1095cc0d 9649 list_for_each_entry(cache,
9650 &space_info->block_groups[BTRFS_RAID_RAID0],
9651 list)
868f401a 9652 inc_block_group_ro(cache, 1);
1095cc0d 9653 list_for_each_entry(cache,
9654 &space_info->block_groups[BTRFS_RAID_SINGLE],
9655 list)
868f401a 9656 inc_block_group_ro(cache, 1);
9078a3e1 9657 }
f0486c68
YZ
9658
9659 init_global_block_rsv(info);
0b86a832
CM
9660 ret = 0;
9661error:
9078a3e1 9662 btrfs_free_path(path);
0b86a832 9663 return ret;
9078a3e1 9664}
6324fbf3 9665
ea658bad
JB
9666void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9667 struct btrfs_root *root)
9668{
9669 struct btrfs_block_group_cache *block_group, *tmp;
9670 struct btrfs_root *extent_root = root->fs_info->extent_root;
9671 struct btrfs_block_group_item item;
9672 struct btrfs_key key;
9673 int ret = 0;
d9a0540a 9674 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9675
d9a0540a 9676 trans->can_flush_pending_bgs = false;
47ab2a6c 9677 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9678 if (ret)
c92f6be3 9679 goto next;
ea658bad
JB
9680
9681 spin_lock(&block_group->lock);
9682 memcpy(&item, &block_group->item, sizeof(item));
9683 memcpy(&key, &block_group->key, sizeof(key));
9684 spin_unlock(&block_group->lock);
9685
9686 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9687 sizeof(item));
9688 if (ret)
9689 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9690 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9691 key.objectid, key.offset);
9692 if (ret)
9693 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9694next:
9695 list_del_init(&block_group->bg_list);
ea658bad 9696 }
d9a0540a 9697 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9698}
9699
6324fbf3
CM
9700int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9701 struct btrfs_root *root, u64 bytes_used,
e17cade2 9702 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9703 u64 size)
9704{
9705 int ret;
6324fbf3
CM
9706 struct btrfs_root *extent_root;
9707 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9708
9709 extent_root = root->fs_info->extent_root;
6324fbf3 9710
995946dd 9711 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9712
920e4a58 9713 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9714 if (!cache)
9715 return -ENOMEM;
34d52cb6 9716
6324fbf3 9717 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9718 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9719 btrfs_set_block_group_flags(&cache->item, type);
9720
920e4a58 9721 cache->flags = type;
11833d66 9722 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9723 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9724 ret = exclude_super_stripes(root, cache);
9725 if (ret) {
9726 /*
9727 * We may have excluded something, so call this just in
9728 * case.
9729 */
9730 free_excluded_extents(root, cache);
920e4a58 9731 btrfs_put_block_group(cache);
835d974f
JB
9732 return ret;
9733 }
96303081 9734
817d52f8
JB
9735 add_new_free_space(cache, root->fs_info, chunk_offset,
9736 chunk_offset + size);
9737
11833d66
YZ
9738 free_excluded_extents(root, cache);
9739
d0bd4560
JB
9740#ifdef CONFIG_BTRFS_DEBUG
9741 if (btrfs_should_fragment_free_space(root, cache)) {
9742 u64 new_bytes_used = size - bytes_used;
9743
9744 bytes_used += new_bytes_used >> 1;
9745 fragment_free_space(root, cache);
9746 }
9747#endif
2e6e5183
FM
9748 /*
9749 * Call to ensure the corresponding space_info object is created and
9750 * assigned to our block group, but don't update its counters just yet.
9751 * We want our bg to be added to the rbtree with its ->space_info set.
9752 */
9753 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9754 &cache->space_info);
9755 if (ret) {
9756 btrfs_remove_free_space_cache(cache);
9757 btrfs_put_block_group(cache);
9758 return ret;
9759 }
9760
8c579fe7
JB
9761 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9762 if (ret) {
9763 btrfs_remove_free_space_cache(cache);
9764 btrfs_put_block_group(cache);
9765 return ret;
9766 }
9767
2e6e5183
FM
9768 /*
9769 * Now that our block group has its ->space_info set and is inserted in
9770 * the rbtree, update the space info's counters.
9771 */
6324fbf3
CM
9772 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9773 &cache->space_info);
8c579fe7
JB
9774 if (ret) {
9775 btrfs_remove_free_space_cache(cache);
9776 spin_lock(&root->fs_info->block_group_cache_lock);
9777 rb_erase(&cache->cache_node,
9778 &root->fs_info->block_group_cache_tree);
01eacb27 9779 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9780 spin_unlock(&root->fs_info->block_group_cache_lock);
9781 btrfs_put_block_group(cache);
9782 return ret;
9783 }
c7c144db 9784 update_global_block_rsv(root->fs_info);
1b2da372
JB
9785
9786 spin_lock(&cache->space_info->lock);
f0486c68 9787 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9788 spin_unlock(&cache->space_info->lock);
9789
b742bb82 9790 __link_block_group(cache->space_info, cache);
6324fbf3 9791
47ab2a6c 9792 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9793
d18a2c44 9794 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9795
6324fbf3
CM
9796 return 0;
9797}
1a40e23b 9798
10ea00f5
ID
9799static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9800{
899c81ea
ID
9801 u64 extra_flags = chunk_to_extended(flags) &
9802 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9803
de98ced9 9804 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9805 if (flags & BTRFS_BLOCK_GROUP_DATA)
9806 fs_info->avail_data_alloc_bits &= ~extra_flags;
9807 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9808 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9809 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9810 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9811 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9812}
9813
1a40e23b 9814int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9815 struct btrfs_root *root, u64 group_start,
9816 struct extent_map *em)
1a40e23b
ZY
9817{
9818 struct btrfs_path *path;
9819 struct btrfs_block_group_cache *block_group;
44fb5511 9820 struct btrfs_free_cluster *cluster;
0af3d00b 9821 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9822 struct btrfs_key key;
0af3d00b 9823 struct inode *inode;
c1895442 9824 struct kobject *kobj = NULL;
1a40e23b 9825 int ret;
10ea00f5 9826 int index;
89a55897 9827 int factor;
4f69cb98 9828 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9829 bool remove_em;
1a40e23b 9830
1a40e23b
ZY
9831 root = root->fs_info->extent_root;
9832
9833 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9834 BUG_ON(!block_group);
c146afad 9835 BUG_ON(!block_group->ro);
1a40e23b 9836
9f7c43c9 9837 /*
9838 * Free the reserved super bytes from this block group before
9839 * remove it.
9840 */
9841 free_excluded_extents(root, block_group);
9842
1a40e23b 9843 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9844 index = get_block_group_index(block_group);
89a55897
JB
9845 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9846 BTRFS_BLOCK_GROUP_RAID1 |
9847 BTRFS_BLOCK_GROUP_RAID10))
9848 factor = 2;
9849 else
9850 factor = 1;
1a40e23b 9851
44fb5511
CM
9852 /* make sure this block group isn't part of an allocation cluster */
9853 cluster = &root->fs_info->data_alloc_cluster;
9854 spin_lock(&cluster->refill_lock);
9855 btrfs_return_cluster_to_free_space(block_group, cluster);
9856 spin_unlock(&cluster->refill_lock);
9857
9858 /*
9859 * make sure this block group isn't part of a metadata
9860 * allocation cluster
9861 */
9862 cluster = &root->fs_info->meta_alloc_cluster;
9863 spin_lock(&cluster->refill_lock);
9864 btrfs_return_cluster_to_free_space(block_group, cluster);
9865 spin_unlock(&cluster->refill_lock);
9866
1a40e23b 9867 path = btrfs_alloc_path();
d8926bb3
MF
9868 if (!path) {
9869 ret = -ENOMEM;
9870 goto out;
9871 }
1a40e23b 9872
1bbc621e
CM
9873 /*
9874 * get the inode first so any iput calls done for the io_list
9875 * aren't the final iput (no unlinks allowed now)
9876 */
10b2f34d 9877 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9878
9879 mutex_lock(&trans->transaction->cache_write_mutex);
9880 /*
9881 * make sure our free spache cache IO is done before remove the
9882 * free space inode
9883 */
9884 spin_lock(&trans->transaction->dirty_bgs_lock);
9885 if (!list_empty(&block_group->io_list)) {
9886 list_del_init(&block_group->io_list);
9887
9888 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9889
9890 spin_unlock(&trans->transaction->dirty_bgs_lock);
9891 btrfs_wait_cache_io(root, trans, block_group,
9892 &block_group->io_ctl, path,
9893 block_group->key.objectid);
9894 btrfs_put_block_group(block_group);
9895 spin_lock(&trans->transaction->dirty_bgs_lock);
9896 }
9897
9898 if (!list_empty(&block_group->dirty_list)) {
9899 list_del_init(&block_group->dirty_list);
9900 btrfs_put_block_group(block_group);
9901 }
9902 spin_unlock(&trans->transaction->dirty_bgs_lock);
9903 mutex_unlock(&trans->transaction->cache_write_mutex);
9904
0af3d00b 9905 if (!IS_ERR(inode)) {
b532402e 9906 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9907 if (ret) {
9908 btrfs_add_delayed_iput(inode);
9909 goto out;
9910 }
0af3d00b
JB
9911 clear_nlink(inode);
9912 /* One for the block groups ref */
9913 spin_lock(&block_group->lock);
9914 if (block_group->iref) {
9915 block_group->iref = 0;
9916 block_group->inode = NULL;
9917 spin_unlock(&block_group->lock);
9918 iput(inode);
9919 } else {
9920 spin_unlock(&block_group->lock);
9921 }
9922 /* One for our lookup ref */
455757c3 9923 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9924 }
9925
9926 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9927 key.offset = block_group->key.objectid;
9928 key.type = 0;
9929
9930 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9931 if (ret < 0)
9932 goto out;
9933 if (ret > 0)
b3b4aa74 9934 btrfs_release_path(path);
0af3d00b
JB
9935 if (ret == 0) {
9936 ret = btrfs_del_item(trans, tree_root, path);
9937 if (ret)
9938 goto out;
b3b4aa74 9939 btrfs_release_path(path);
0af3d00b
JB
9940 }
9941
3dfdb934 9942 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9943 rb_erase(&block_group->cache_node,
9944 &root->fs_info->block_group_cache_tree);
292cbd51 9945 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9946
9947 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9948 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9949 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9950
80eb234a 9951 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9952 /*
9953 * we must use list_del_init so people can check to see if they
9954 * are still on the list after taking the semaphore
9955 */
9956 list_del_init(&block_group->list);
6ab0a202 9957 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9958 kobj = block_group->space_info->block_group_kobjs[index];
9959 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9960 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9961 }
80eb234a 9962 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9963 if (kobj) {
9964 kobject_del(kobj);
9965 kobject_put(kobj);
9966 }
1a40e23b 9967
4f69cb98
FM
9968 if (block_group->has_caching_ctl)
9969 caching_ctl = get_caching_control(block_group);
817d52f8 9970 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9971 wait_block_group_cache_done(block_group);
4f69cb98
FM
9972 if (block_group->has_caching_ctl) {
9973 down_write(&root->fs_info->commit_root_sem);
9974 if (!caching_ctl) {
9975 struct btrfs_caching_control *ctl;
9976
9977 list_for_each_entry(ctl,
9978 &root->fs_info->caching_block_groups, list)
9979 if (ctl->block_group == block_group) {
9980 caching_ctl = ctl;
9981 atomic_inc(&caching_ctl->count);
9982 break;
9983 }
9984 }
9985 if (caching_ctl)
9986 list_del_init(&caching_ctl->list);
9987 up_write(&root->fs_info->commit_root_sem);
9988 if (caching_ctl) {
9989 /* Once for the caching bgs list and once for us. */
9990 put_caching_control(caching_ctl);
9991 put_caching_control(caching_ctl);
9992 }
9993 }
817d52f8 9994
ce93ec54
JB
9995 spin_lock(&trans->transaction->dirty_bgs_lock);
9996 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9997 WARN_ON(1);
9998 }
9999 if (!list_empty(&block_group->io_list)) {
10000 WARN_ON(1);
ce93ec54
JB
10001 }
10002 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10003 btrfs_remove_free_space_cache(block_group);
10004
c146afad 10005 spin_lock(&block_group->space_info->lock);
75c68e9f 10006 list_del_init(&block_group->ro_list);
18d018ad
ZL
10007
10008 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10009 WARN_ON(block_group->space_info->total_bytes
10010 < block_group->key.offset);
10011 WARN_ON(block_group->space_info->bytes_readonly
10012 < block_group->key.offset);
10013 WARN_ON(block_group->space_info->disk_total
10014 < block_group->key.offset * factor);
10015 }
c146afad
YZ
10016 block_group->space_info->total_bytes -= block_group->key.offset;
10017 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10018 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10019
c146afad 10020 spin_unlock(&block_group->space_info->lock);
283bb197 10021
0af3d00b
JB
10022 memcpy(&key, &block_group->key, sizeof(key));
10023
04216820 10024 lock_chunks(root);
495e64f4
FM
10025 if (!list_empty(&em->list)) {
10026 /* We're in the transaction->pending_chunks list. */
10027 free_extent_map(em);
10028 }
04216820
FM
10029 spin_lock(&block_group->lock);
10030 block_group->removed = 1;
10031 /*
10032 * At this point trimming can't start on this block group, because we
10033 * removed the block group from the tree fs_info->block_group_cache_tree
10034 * so no one can't find it anymore and even if someone already got this
10035 * block group before we removed it from the rbtree, they have already
10036 * incremented block_group->trimming - if they didn't, they won't find
10037 * any free space entries because we already removed them all when we
10038 * called btrfs_remove_free_space_cache().
10039 *
10040 * And we must not remove the extent map from the fs_info->mapping_tree
10041 * to prevent the same logical address range and physical device space
10042 * ranges from being reused for a new block group. This is because our
10043 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10044 * completely transactionless, so while it is trimming a range the
10045 * currently running transaction might finish and a new one start,
10046 * allowing for new block groups to be created that can reuse the same
10047 * physical device locations unless we take this special care.
e33e17ee
JM
10048 *
10049 * There may also be an implicit trim operation if the file system
10050 * is mounted with -odiscard. The same protections must remain
10051 * in place until the extents have been discarded completely when
10052 * the transaction commit has completed.
04216820
FM
10053 */
10054 remove_em = (atomic_read(&block_group->trimming) == 0);
10055 /*
10056 * Make sure a trimmer task always sees the em in the pinned_chunks list
10057 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10058 * before checking block_group->removed).
10059 */
10060 if (!remove_em) {
10061 /*
10062 * Our em might be in trans->transaction->pending_chunks which
10063 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10064 * and so is the fs_info->pinned_chunks list.
10065 *
10066 * So at this point we must be holding the chunk_mutex to avoid
10067 * any races with chunk allocation (more specifically at
10068 * volumes.c:contains_pending_extent()), to ensure it always
10069 * sees the em, either in the pending_chunks list or in the
10070 * pinned_chunks list.
10071 */
10072 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10073 }
10074 spin_unlock(&block_group->lock);
04216820
FM
10075
10076 if (remove_em) {
10077 struct extent_map_tree *em_tree;
10078
10079 em_tree = &root->fs_info->mapping_tree.map_tree;
10080 write_lock(&em_tree->lock);
8dbcd10f
FM
10081 /*
10082 * The em might be in the pending_chunks list, so make sure the
10083 * chunk mutex is locked, since remove_extent_mapping() will
10084 * delete us from that list.
10085 */
04216820
FM
10086 remove_extent_mapping(em_tree, em);
10087 write_unlock(&em_tree->lock);
10088 /* once for the tree */
10089 free_extent_map(em);
10090 }
10091
8dbcd10f
FM
10092 unlock_chunks(root);
10093
fa9c0d79
CM
10094 btrfs_put_block_group(block_group);
10095 btrfs_put_block_group(block_group);
1a40e23b
ZY
10096
10097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10098 if (ret > 0)
10099 ret = -EIO;
10100 if (ret < 0)
10101 goto out;
10102
10103 ret = btrfs_del_item(trans, root, path);
10104out:
10105 btrfs_free_path(path);
10106 return ret;
10107}
acce952b 10108
47ab2a6c
JB
10109/*
10110 * Process the unused_bgs list and remove any that don't have any allocated
10111 * space inside of them.
10112 */
10113void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10114{
10115 struct btrfs_block_group_cache *block_group;
10116 struct btrfs_space_info *space_info;
10117 struct btrfs_root *root = fs_info->extent_root;
10118 struct btrfs_trans_handle *trans;
10119 int ret = 0;
10120
10121 if (!fs_info->open)
10122 return;
10123
10124 spin_lock(&fs_info->unused_bgs_lock);
10125 while (!list_empty(&fs_info->unused_bgs)) {
10126 u64 start, end;
e33e17ee 10127 int trimming;
47ab2a6c
JB
10128
10129 block_group = list_first_entry(&fs_info->unused_bgs,
10130 struct btrfs_block_group_cache,
10131 bg_list);
10132 space_info = block_group->space_info;
10133 list_del_init(&block_group->bg_list);
10134 if (ret || btrfs_mixed_space_info(space_info)) {
10135 btrfs_put_block_group(block_group);
10136 continue;
10137 }
10138 spin_unlock(&fs_info->unused_bgs_lock);
10139
67c5e7d4
FM
10140 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10141
47ab2a6c
JB
10142 /* Don't want to race with allocators so take the groups_sem */
10143 down_write(&space_info->groups_sem);
10144 spin_lock(&block_group->lock);
10145 if (block_group->reserved ||
10146 btrfs_block_group_used(&block_group->item) ||
10147 block_group->ro) {
10148 /*
10149 * We want to bail if we made new allocations or have
10150 * outstanding allocations in this block group. We do
10151 * the ro check in case balance is currently acting on
10152 * this block group.
10153 */
10154 spin_unlock(&block_group->lock);
10155 up_write(&space_info->groups_sem);
10156 goto next;
10157 }
10158 spin_unlock(&block_group->lock);
10159
10160 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10161 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10162 up_write(&space_info->groups_sem);
10163 if (ret < 0) {
10164 ret = 0;
10165 goto next;
10166 }
10167
10168 /*
10169 * Want to do this before we do anything else so we can recover
10170 * properly if we fail to join the transaction.
10171 */
3d84be79
FL
10172 /* 1 for btrfs_orphan_reserve_metadata() */
10173 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10174 if (IS_ERR(trans)) {
868f401a 10175 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10176 ret = PTR_ERR(trans);
10177 goto next;
10178 }
10179
10180 /*
10181 * We could have pending pinned extents for this block group,
10182 * just delete them, we don't care about them anymore.
10183 */
10184 start = block_group->key.objectid;
10185 end = start + block_group->key.offset - 1;
d4b450cd
FM
10186 /*
10187 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10188 * btrfs_finish_extent_commit(). If we are at transaction N,
10189 * another task might be running finish_extent_commit() for the
10190 * previous transaction N - 1, and have seen a range belonging
10191 * to the block group in freed_extents[] before we were able to
10192 * clear the whole block group range from freed_extents[]. This
10193 * means that task can lookup for the block group after we
10194 * unpinned it from freed_extents[] and removed it, leading to
10195 * a BUG_ON() at btrfs_unpin_extent_range().
10196 */
10197 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10198 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10199 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10200 if (ret) {
d4b450cd 10201 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10202 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10203 goto end_trans;
10204 }
10205 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10206 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10207 if (ret) {
d4b450cd 10208 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10209 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10210 goto end_trans;
10211 }
d4b450cd 10212 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10213
10214 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10215 spin_lock(&space_info->lock);
10216 spin_lock(&block_group->lock);
10217
10218 space_info->bytes_pinned -= block_group->pinned;
10219 space_info->bytes_readonly += block_group->pinned;
10220 percpu_counter_add(&space_info->total_bytes_pinned,
10221 -block_group->pinned);
47ab2a6c
JB
10222 block_group->pinned = 0;
10223
c30666d4
ZL
10224 spin_unlock(&block_group->lock);
10225 spin_unlock(&space_info->lock);
10226
e33e17ee
JM
10227 /* DISCARD can flip during remount */
10228 trimming = btrfs_test_opt(root, DISCARD);
10229
10230 /* Implicit trim during transaction commit. */
10231 if (trimming)
10232 btrfs_get_block_group_trimming(block_group);
10233
47ab2a6c
JB
10234 /*
10235 * Btrfs_remove_chunk will abort the transaction if things go
10236 * horribly wrong.
10237 */
10238 ret = btrfs_remove_chunk(trans, root,
10239 block_group->key.objectid);
e33e17ee
JM
10240
10241 if (ret) {
10242 if (trimming)
10243 btrfs_put_block_group_trimming(block_group);
10244 goto end_trans;
10245 }
10246
10247 /*
10248 * If we're not mounted with -odiscard, we can just forget
10249 * about this block group. Otherwise we'll need to wait
10250 * until transaction commit to do the actual discard.
10251 */
10252 if (trimming) {
10253 WARN_ON(!list_empty(&block_group->bg_list));
10254 spin_lock(&trans->transaction->deleted_bgs_lock);
10255 list_move(&block_group->bg_list,
10256 &trans->transaction->deleted_bgs);
10257 spin_unlock(&trans->transaction->deleted_bgs_lock);
10258 btrfs_get_block_group(block_group);
10259 }
758eb51e 10260end_trans:
47ab2a6c
JB
10261 btrfs_end_transaction(trans, root);
10262next:
67c5e7d4 10263 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10264 btrfs_put_block_group(block_group);
10265 spin_lock(&fs_info->unused_bgs_lock);
10266 }
10267 spin_unlock(&fs_info->unused_bgs_lock);
10268}
10269
c59021f8 10270int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10271{
10272 struct btrfs_space_info *space_info;
1aba86d6 10273 struct btrfs_super_block *disk_super;
10274 u64 features;
10275 u64 flags;
10276 int mixed = 0;
c59021f8 10277 int ret;
10278
6c41761f 10279 disk_super = fs_info->super_copy;
1aba86d6 10280 if (!btrfs_super_root(disk_super))
10281 return 1;
c59021f8 10282
1aba86d6 10283 features = btrfs_super_incompat_flags(disk_super);
10284 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10285 mixed = 1;
c59021f8 10286
1aba86d6 10287 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10288 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10289 if (ret)
1aba86d6 10290 goto out;
c59021f8 10291
1aba86d6 10292 if (mixed) {
10293 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10294 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10295 } else {
10296 flags = BTRFS_BLOCK_GROUP_METADATA;
10297 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10298 if (ret)
10299 goto out;
10300
10301 flags = BTRFS_BLOCK_GROUP_DATA;
10302 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10303 }
10304out:
c59021f8 10305 return ret;
10306}
10307
acce952b 10308int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10309{
678886bd 10310 return unpin_extent_range(root, start, end, false);
acce952b 10311}
10312
499f377f
JM
10313/*
10314 * It used to be that old block groups would be left around forever.
10315 * Iterating over them would be enough to trim unused space. Since we
10316 * now automatically remove them, we also need to iterate over unallocated
10317 * space.
10318 *
10319 * We don't want a transaction for this since the discard may take a
10320 * substantial amount of time. We don't require that a transaction be
10321 * running, but we do need to take a running transaction into account
10322 * to ensure that we're not discarding chunks that were released in
10323 * the current transaction.
10324 *
10325 * Holding the chunks lock will prevent other threads from allocating
10326 * or releasing chunks, but it won't prevent a running transaction
10327 * from committing and releasing the memory that the pending chunks
10328 * list head uses. For that, we need to take a reference to the
10329 * transaction.
10330 */
10331static int btrfs_trim_free_extents(struct btrfs_device *device,
10332 u64 minlen, u64 *trimmed)
10333{
10334 u64 start = 0, len = 0;
10335 int ret;
10336
10337 *trimmed = 0;
10338
10339 /* Not writeable = nothing to do. */
10340 if (!device->writeable)
10341 return 0;
10342
10343 /* No free space = nothing to do. */
10344 if (device->total_bytes <= device->bytes_used)
10345 return 0;
10346
10347 ret = 0;
10348
10349 while (1) {
10350 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10351 struct btrfs_transaction *trans;
10352 u64 bytes;
10353
10354 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10355 if (ret)
10356 return ret;
10357
10358 down_read(&fs_info->commit_root_sem);
10359
10360 spin_lock(&fs_info->trans_lock);
10361 trans = fs_info->running_transaction;
10362 if (trans)
10363 atomic_inc(&trans->use_count);
10364 spin_unlock(&fs_info->trans_lock);
10365
10366 ret = find_free_dev_extent_start(trans, device, minlen, start,
10367 &start, &len);
10368 if (trans)
10369 btrfs_put_transaction(trans);
10370
10371 if (ret) {
10372 up_read(&fs_info->commit_root_sem);
10373 mutex_unlock(&fs_info->chunk_mutex);
10374 if (ret == -ENOSPC)
10375 ret = 0;
10376 break;
10377 }
10378
10379 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10380 up_read(&fs_info->commit_root_sem);
10381 mutex_unlock(&fs_info->chunk_mutex);
10382
10383 if (ret)
10384 break;
10385
10386 start += len;
10387 *trimmed += bytes;
10388
10389 if (fatal_signal_pending(current)) {
10390 ret = -ERESTARTSYS;
10391 break;
10392 }
10393
10394 cond_resched();
10395 }
10396
10397 return ret;
10398}
10399
f7039b1d
LD
10400int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10401{
10402 struct btrfs_fs_info *fs_info = root->fs_info;
10403 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10404 struct btrfs_device *device;
10405 struct list_head *devices;
f7039b1d
LD
10406 u64 group_trimmed;
10407 u64 start;
10408 u64 end;
10409 u64 trimmed = 0;
2cac13e4 10410 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10411 int ret = 0;
10412
2cac13e4
LB
10413 /*
10414 * try to trim all FS space, our block group may start from non-zero.
10415 */
10416 if (range->len == total_bytes)
10417 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10418 else
10419 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10420
10421 while (cache) {
10422 if (cache->key.objectid >= (range->start + range->len)) {
10423 btrfs_put_block_group(cache);
10424 break;
10425 }
10426
10427 start = max(range->start, cache->key.objectid);
10428 end = min(range->start + range->len,
10429 cache->key.objectid + cache->key.offset);
10430
10431 if (end - start >= range->minlen) {
10432 if (!block_group_cache_done(cache)) {
f6373bf3 10433 ret = cache_block_group(cache, 0);
1be41b78
JB
10434 if (ret) {
10435 btrfs_put_block_group(cache);
10436 break;
10437 }
10438 ret = wait_block_group_cache_done(cache);
10439 if (ret) {
10440 btrfs_put_block_group(cache);
10441 break;
10442 }
f7039b1d
LD
10443 }
10444 ret = btrfs_trim_block_group(cache,
10445 &group_trimmed,
10446 start,
10447 end,
10448 range->minlen);
10449
10450 trimmed += group_trimmed;
10451 if (ret) {
10452 btrfs_put_block_group(cache);
10453 break;
10454 }
10455 }
10456
10457 cache = next_block_group(fs_info->tree_root, cache);
10458 }
10459
499f377f
JM
10460 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10461 devices = &root->fs_info->fs_devices->alloc_list;
10462 list_for_each_entry(device, devices, dev_alloc_list) {
10463 ret = btrfs_trim_free_extents(device, range->minlen,
10464 &group_trimmed);
10465 if (ret)
10466 break;
10467
10468 trimmed += group_trimmed;
10469 }
10470 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10471
f7039b1d
LD
10472 range->len = trimmed;
10473 return ret;
10474}
8257b2dc
MX
10475
10476/*
9ea24bbe
FM
10477 * btrfs_{start,end}_write_no_snapshoting() are similar to
10478 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10479 * data into the page cache through nocow before the subvolume is snapshoted,
10480 * but flush the data into disk after the snapshot creation, or to prevent
10481 * operations while snapshoting is ongoing and that cause the snapshot to be
10482 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10483 */
9ea24bbe 10484void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10485{
10486 percpu_counter_dec(&root->subv_writers->counter);
10487 /*
a83342aa 10488 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10489 */
10490 smp_mb();
10491 if (waitqueue_active(&root->subv_writers->wait))
10492 wake_up(&root->subv_writers->wait);
10493}
10494
9ea24bbe 10495int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10496{
ee39b432 10497 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10498 return 0;
10499
10500 percpu_counter_inc(&root->subv_writers->counter);
10501 /*
10502 * Make sure counter is updated before we check for snapshot creation.
10503 */
10504 smp_mb();
ee39b432 10505 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10506 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10507 return 0;
10508 }
10509 return 1;
10510}
This page took 1.384727 seconds and 5 git commands to generate.