Btrfs: fix regression when running delayed references
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
817d52f8 361static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
362 struct btrfs_fs_info *info, u64 start, u64 end)
363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
d458b054 399static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_caching_control *caching_ctl;
404 struct btrfs_root *extent_root;
e37c9e69 405 struct btrfs_path *path;
5f39d397 406 struct extent_buffer *leaf;
11833d66 407 struct btrfs_key key;
817d52f8 408 u64 total_found = 0;
11833d66
YZ
409 u64 last = 0;
410 u32 nritems;
36cce922 411 int ret = -ENOMEM;
d0bd4560 412 bool wakeup = true;
f510cfec 413
bab39bf9
JB
414 caching_ctl = container_of(work, struct btrfs_caching_control, work);
415 block_group = caching_ctl->block_group;
416 fs_info = block_group->fs_info;
417 extent_root = fs_info->extent_root;
418
e37c9e69
CM
419 path = btrfs_alloc_path();
420 if (!path)
bab39bf9 421 goto out;
7d7d6068 422
817d52f8 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 424
d0bd4560
JB
425#ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
431 if (btrfs_should_fragment_free_space(extent_root, block_group))
432 wakeup = false;
433#endif
5cd57b2c 434 /*
817d52f8
JB
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
5cd57b2c
CM
439 */
440 path->skip_locking = 1;
817d52f8 441 path->search_commit_root = 1;
026fd317 442 path->reada = 1;
817d52f8 443
e4404d6e 444 key.objectid = last;
e37c9e69 445 key.offset = 0;
11833d66 446 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 447again:
11833d66 448 mutex_lock(&caching_ctl->mutex);
013f1b12 449 /* need to make sure the commit_root doesn't disappear */
9e351cc8 450 down_read(&fs_info->commit_root_sem);
013f1b12 451
52ee28d2 452next:
11833d66 453 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 454 if (ret < 0)
ef8bbdfe 455 goto err;
a512bbf8 456
11833d66
YZ
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459
d397712b 460 while (1) {
7841cb28 461 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 462 last = (u64)-1;
817d52f8 463 break;
f25784b3 464 }
817d52f8 465
11833d66
YZ
466 if (path->slots[0] < nritems) {
467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
468 } else {
469 ret = find_next_key(path, 0, &key);
470 if (ret)
e37c9e69 471 break;
817d52f8 472
c9ea7b24 473 if (need_resched() ||
9e351cc8 474 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
475 if (wakeup)
476 caching_ctl->progress = last;
ff5714cc 477 btrfs_release_path(path);
9e351cc8 478 up_read(&fs_info->commit_root_sem);
589d8ade 479 mutex_unlock(&caching_ctl->mutex);
11833d66 480 cond_resched();
589d8ade
JB
481 goto again;
482 }
0a3896d0
JB
483
484 ret = btrfs_next_leaf(extent_root, path);
485 if (ret < 0)
486 goto err;
487 if (ret)
488 break;
589d8ade
JB
489 leaf = path->nodes[0];
490 nritems = btrfs_header_nritems(leaf);
491 continue;
11833d66 492 }
817d52f8 493
52ee28d2
LB
494 if (key.objectid < last) {
495 key.objectid = last;
496 key.offset = 0;
497 key.type = BTRFS_EXTENT_ITEM_KEY;
498
d0bd4560
JB
499 if (wakeup)
500 caching_ctl->progress = last;
52ee28d2
LB
501 btrfs_release_path(path);
502 goto next;
503 }
504
11833d66
YZ
505 if (key.objectid < block_group->key.objectid) {
506 path->slots[0]++;
817d52f8 507 continue;
e37c9e69 508 }
0f9dd46c 509
e37c9e69 510 if (key.objectid >= block_group->key.objectid +
0f9dd46c 511 block_group->key.offset)
e37c9e69 512 break;
7d7d6068 513
3173a18f
JB
514 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
515 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
516 total_found += add_new_free_space(block_group,
517 fs_info, last,
518 key.objectid);
3173a18f
JB
519 if (key.type == BTRFS_METADATA_ITEM_KEY)
520 last = key.objectid +
707e8a07 521 fs_info->tree_root->nodesize;
3173a18f
JB
522 else
523 last = key.objectid + key.offset;
817d52f8 524
11833d66
YZ
525 if (total_found > (1024 * 1024 * 2)) {
526 total_found = 0;
d0bd4560
JB
527 if (wakeup)
528 wake_up(&caching_ctl->wait);
11833d66 529 }
817d52f8 530 }
e37c9e69
CM
531 path->slots[0]++;
532 }
817d52f8 533 ret = 0;
e37c9e69 534
817d52f8
JB
535 total_found += add_new_free_space(block_group, fs_info, last,
536 block_group->key.objectid +
537 block_group->key.offset);
817d52f8 538 spin_lock(&block_group->lock);
11833d66 539 block_group->caching_ctl = NULL;
817d52f8
JB
540 block_group->cached = BTRFS_CACHE_FINISHED;
541 spin_unlock(&block_group->lock);
0f9dd46c 542
d0bd4560
JB
543#ifdef CONFIG_BTRFS_DEBUG
544 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
545 u64 bytes_used;
546
547 spin_lock(&block_group->space_info->lock);
548 spin_lock(&block_group->lock);
549 bytes_used = block_group->key.offset -
550 btrfs_block_group_used(&block_group->item);
551 block_group->space_info->bytes_used += bytes_used >> 1;
552 spin_unlock(&block_group->lock);
553 spin_unlock(&block_group->space_info->lock);
554 fragment_free_space(extent_root, block_group);
555 }
556#endif
557
558 caching_ctl->progress = (u64)-1;
54aa1f4d 559err:
e37c9e69 560 btrfs_free_path(path);
9e351cc8 561 up_read(&fs_info->commit_root_sem);
817d52f8 562
11833d66
YZ
563 free_excluded_extents(extent_root, block_group);
564
565 mutex_unlock(&caching_ctl->mutex);
bab39bf9 566out:
36cce922
JB
567 if (ret) {
568 spin_lock(&block_group->lock);
569 block_group->caching_ctl = NULL;
570 block_group->cached = BTRFS_CACHE_ERROR;
571 spin_unlock(&block_group->lock);
572 }
11833d66
YZ
573 wake_up(&caching_ctl->wait);
574
575 put_caching_control(caching_ctl);
11dfe35a 576 btrfs_put_block_group(block_group);
817d52f8
JB
577}
578
9d66e233 579static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 580 int load_cache_only)
817d52f8 581{
291c7d2f 582 DEFINE_WAIT(wait);
11833d66
YZ
583 struct btrfs_fs_info *fs_info = cache->fs_info;
584 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
585 int ret = 0;
586
291c7d2f 587 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
588 if (!caching_ctl)
589 return -ENOMEM;
291c7d2f
JB
590
591 INIT_LIST_HEAD(&caching_ctl->list);
592 mutex_init(&caching_ctl->mutex);
593 init_waitqueue_head(&caching_ctl->wait);
594 caching_ctl->block_group = cache;
595 caching_ctl->progress = cache->key.objectid;
596 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
597 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
598 caching_thread, NULL, NULL);
291c7d2f
JB
599
600 spin_lock(&cache->lock);
601 /*
602 * This should be a rare occasion, but this could happen I think in the
603 * case where one thread starts to load the space cache info, and then
604 * some other thread starts a transaction commit which tries to do an
605 * allocation while the other thread is still loading the space cache
606 * info. The previous loop should have kept us from choosing this block
607 * group, but if we've moved to the state where we will wait on caching
608 * block groups we need to first check if we're doing a fast load here,
609 * so we can wait for it to finish, otherwise we could end up allocating
610 * from a block group who's cache gets evicted for one reason or
611 * another.
612 */
613 while (cache->cached == BTRFS_CACHE_FAST) {
614 struct btrfs_caching_control *ctl;
615
616 ctl = cache->caching_ctl;
617 atomic_inc(&ctl->count);
618 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
619 spin_unlock(&cache->lock);
620
621 schedule();
622
623 finish_wait(&ctl->wait, &wait);
624 put_caching_control(ctl);
625 spin_lock(&cache->lock);
626 }
627
628 if (cache->cached != BTRFS_CACHE_NO) {
629 spin_unlock(&cache->lock);
630 kfree(caching_ctl);
11833d66 631 return 0;
291c7d2f
JB
632 }
633 WARN_ON(cache->caching_ctl);
634 cache->caching_ctl = caching_ctl;
635 cache->cached = BTRFS_CACHE_FAST;
636 spin_unlock(&cache->lock);
11833d66 637
d53ba474 638 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 639 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
640 ret = load_free_space_cache(fs_info, cache);
641
642 spin_lock(&cache->lock);
643 if (ret == 1) {
291c7d2f 644 cache->caching_ctl = NULL;
9d66e233
JB
645 cache->cached = BTRFS_CACHE_FINISHED;
646 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 647 caching_ctl->progress = (u64)-1;
9d66e233 648 } else {
291c7d2f
JB
649 if (load_cache_only) {
650 cache->caching_ctl = NULL;
651 cache->cached = BTRFS_CACHE_NO;
652 } else {
653 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 654 cache->has_caching_ctl = 1;
291c7d2f 655 }
9d66e233
JB
656 }
657 spin_unlock(&cache->lock);
d0bd4560
JB
658#ifdef CONFIG_BTRFS_DEBUG
659 if (ret == 1 &&
660 btrfs_should_fragment_free_space(fs_info->extent_root,
661 cache)) {
662 u64 bytes_used;
663
664 spin_lock(&cache->space_info->lock);
665 spin_lock(&cache->lock);
666 bytes_used = cache->key.offset -
667 btrfs_block_group_used(&cache->item);
668 cache->space_info->bytes_used += bytes_used >> 1;
669 spin_unlock(&cache->lock);
670 spin_unlock(&cache->space_info->lock);
671 fragment_free_space(fs_info->extent_root, cache);
672 }
673#endif
cb83b7b8
JB
674 mutex_unlock(&caching_ctl->mutex);
675
291c7d2f 676 wake_up(&caching_ctl->wait);
3c14874a 677 if (ret == 1) {
291c7d2f 678 put_caching_control(caching_ctl);
3c14874a 679 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 680 return 0;
3c14874a 681 }
291c7d2f
JB
682 } else {
683 /*
684 * We are not going to do the fast caching, set cached to the
685 * appropriate value and wakeup any waiters.
686 */
687 spin_lock(&cache->lock);
688 if (load_cache_only) {
689 cache->caching_ctl = NULL;
690 cache->cached = BTRFS_CACHE_NO;
691 } else {
692 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 693 cache->has_caching_ctl = 1;
291c7d2f
JB
694 }
695 spin_unlock(&cache->lock);
696 wake_up(&caching_ctl->wait);
9d66e233
JB
697 }
698
291c7d2f
JB
699 if (load_cache_only) {
700 put_caching_control(caching_ctl);
11833d66 701 return 0;
817d52f8 702 }
817d52f8 703
9e351cc8 704 down_write(&fs_info->commit_root_sem);
291c7d2f 705 atomic_inc(&caching_ctl->count);
11833d66 706 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 707 up_write(&fs_info->commit_root_sem);
11833d66 708
11dfe35a 709 btrfs_get_block_group(cache);
11833d66 710
e66f0bb1 711 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 712
ef8bbdfe 713 return ret;
e37c9e69
CM
714}
715
0f9dd46c
JB
716/*
717 * return the block group that starts at or after bytenr
718 */
d397712b
CM
719static struct btrfs_block_group_cache *
720btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 721{
0f9dd46c 722 struct btrfs_block_group_cache *cache;
0ef3e66b 723
0f9dd46c 724 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 725
0f9dd46c 726 return cache;
0ef3e66b
CM
727}
728
0f9dd46c 729/*
9f55684c 730 * return the block group that contains the given bytenr
0f9dd46c 731 */
d397712b
CM
732struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 struct btrfs_fs_info *info,
734 u64 bytenr)
be744175 735{
0f9dd46c 736 struct btrfs_block_group_cache *cache;
be744175 737
0f9dd46c 738 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 739
0f9dd46c 740 return cache;
be744175 741}
0b86a832 742
0f9dd46c
JB
743static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
744 u64 flags)
6324fbf3 745{
0f9dd46c 746 struct list_head *head = &info->space_info;
0f9dd46c 747 struct btrfs_space_info *found;
4184ea7f 748
52ba6929 749 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 750
4184ea7f
CM
751 rcu_read_lock();
752 list_for_each_entry_rcu(found, head, list) {
67377734 753 if (found->flags & flags) {
4184ea7f 754 rcu_read_unlock();
0f9dd46c 755 return found;
4184ea7f 756 }
0f9dd46c 757 }
4184ea7f 758 rcu_read_unlock();
0f9dd46c 759 return NULL;
6324fbf3
CM
760}
761
4184ea7f
CM
762/*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767{
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775}
776
1a4ed8fd
FM
777/* simple helper to search for an existing data extent at a given offset */
778int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
779{
780 int ret;
781 struct btrfs_key key;
31840ae1 782 struct btrfs_path *path;
e02119d5 783
31840ae1 784 path = btrfs_alloc_path();
d8926bb3
MF
785 if (!path)
786 return -ENOMEM;
787
e02119d5
CM
788 key.objectid = start;
789 key.offset = len;
3173a18f 790 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
791 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
792 0, 0);
31840ae1 793 btrfs_free_path(path);
7bb86316
CM
794 return ret;
795}
796
a22285a6 797/*
3173a18f 798 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
799 *
800 * the head node for delayed ref is used to store the sum of all the
801 * reference count modifications queued up in the rbtree. the head
802 * node may also store the extent flags to set. This way you can check
803 * to see what the reference count and extent flags would be if all of
804 * the delayed refs are not processed.
805 */
806int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
807 struct btrfs_root *root, u64 bytenr,
3173a18f 808 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
809{
810 struct btrfs_delayed_ref_head *head;
811 struct btrfs_delayed_ref_root *delayed_refs;
812 struct btrfs_path *path;
813 struct btrfs_extent_item *ei;
814 struct extent_buffer *leaf;
815 struct btrfs_key key;
816 u32 item_size;
817 u64 num_refs;
818 u64 extent_flags;
819 int ret;
820
3173a18f
JB
821 /*
822 * If we don't have skinny metadata, don't bother doing anything
823 * different
824 */
825 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 826 offset = root->nodesize;
3173a18f
JB
827 metadata = 0;
828 }
829
a22285a6
YZ
830 path = btrfs_alloc_path();
831 if (!path)
832 return -ENOMEM;
833
a22285a6
YZ
834 if (!trans) {
835 path->skip_locking = 1;
836 path->search_commit_root = 1;
837 }
639eefc8
FDBM
838
839search_again:
840 key.objectid = bytenr;
841 key.offset = offset;
842 if (metadata)
843 key.type = BTRFS_METADATA_ITEM_KEY;
844 else
845 key.type = BTRFS_EXTENT_ITEM_KEY;
846
a22285a6
YZ
847 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
848 &key, path, 0, 0);
849 if (ret < 0)
850 goto out_free;
851
3173a18f 852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
853 if (path->slots[0]) {
854 path->slots[0]--;
855 btrfs_item_key_to_cpu(path->nodes[0], &key,
856 path->slots[0]);
857 if (key.objectid == bytenr &&
858 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 859 key.offset == root->nodesize)
74be9510
FDBM
860 ret = 0;
861 }
3173a18f
JB
862 }
863
a22285a6
YZ
864 if (ret == 0) {
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
867 if (item_size >= sizeof(*ei)) {
868 ei = btrfs_item_ptr(leaf, path->slots[0],
869 struct btrfs_extent_item);
870 num_refs = btrfs_extent_refs(leaf, ei);
871 extent_flags = btrfs_extent_flags(leaf, ei);
872 } else {
873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 struct btrfs_extent_item_v0 *ei0;
875 BUG_ON(item_size != sizeof(*ei0));
876 ei0 = btrfs_item_ptr(leaf, path->slots[0],
877 struct btrfs_extent_item_v0);
878 num_refs = btrfs_extent_refs_v0(leaf, ei0);
879 /* FIXME: this isn't correct for data */
880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881#else
882 BUG();
883#endif
884 }
885 BUG_ON(num_refs == 0);
886 } else {
887 num_refs = 0;
888 extent_flags = 0;
889 ret = 0;
890 }
891
892 if (!trans)
893 goto out;
894
895 delayed_refs = &trans->transaction->delayed_refs;
896 spin_lock(&delayed_refs->lock);
897 head = btrfs_find_delayed_ref_head(trans, bytenr);
898 if (head) {
899 if (!mutex_trylock(&head->mutex)) {
900 atomic_inc(&head->node.refs);
901 spin_unlock(&delayed_refs->lock);
902
b3b4aa74 903 btrfs_release_path(path);
a22285a6 904
8cc33e5c
DS
905 /*
906 * Mutex was contended, block until it's released and try
907 * again
908 */
a22285a6
YZ
909 mutex_lock(&head->mutex);
910 mutex_unlock(&head->mutex);
911 btrfs_put_delayed_ref(&head->node);
639eefc8 912 goto search_again;
a22285a6 913 }
d7df2c79 914 spin_lock(&head->lock);
a22285a6
YZ
915 if (head->extent_op && head->extent_op->update_flags)
916 extent_flags |= head->extent_op->flags_to_set;
917 else
918 BUG_ON(num_refs == 0);
919
920 num_refs += head->node.ref_mod;
d7df2c79 921 spin_unlock(&head->lock);
a22285a6
YZ
922 mutex_unlock(&head->mutex);
923 }
924 spin_unlock(&delayed_refs->lock);
925out:
926 WARN_ON(num_refs == 0);
927 if (refs)
928 *refs = num_refs;
929 if (flags)
930 *flags = extent_flags;
931out_free:
932 btrfs_free_path(path);
933 return ret;
934}
935
d8d5f3e1
CM
936/*
937 * Back reference rules. Back refs have three main goals:
938 *
939 * 1) differentiate between all holders of references to an extent so that
940 * when a reference is dropped we can make sure it was a valid reference
941 * before freeing the extent.
942 *
943 * 2) Provide enough information to quickly find the holders of an extent
944 * if we notice a given block is corrupted or bad.
945 *
946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
947 * maintenance. This is actually the same as #2, but with a slightly
948 * different use case.
949 *
5d4f98a2
YZ
950 * There are two kinds of back refs. The implicit back refs is optimized
951 * for pointers in non-shared tree blocks. For a given pointer in a block,
952 * back refs of this kind provide information about the block's owner tree
953 * and the pointer's key. These information allow us to find the block by
954 * b-tree searching. The full back refs is for pointers in tree blocks not
955 * referenced by their owner trees. The location of tree block is recorded
956 * in the back refs. Actually the full back refs is generic, and can be
957 * used in all cases the implicit back refs is used. The major shortcoming
958 * of the full back refs is its overhead. Every time a tree block gets
959 * COWed, we have to update back refs entry for all pointers in it.
960 *
961 * For a newly allocated tree block, we use implicit back refs for
962 * pointers in it. This means most tree related operations only involve
963 * implicit back refs. For a tree block created in old transaction, the
964 * only way to drop a reference to it is COW it. So we can detect the
965 * event that tree block loses its owner tree's reference and do the
966 * back refs conversion.
967 *
968 * When a tree block is COW'd through a tree, there are four cases:
969 *
970 * The reference count of the block is one and the tree is the block's
971 * owner tree. Nothing to do in this case.
972 *
973 * The reference count of the block is one and the tree is not the
974 * block's owner tree. In this case, full back refs is used for pointers
975 * in the block. Remove these full back refs, add implicit back refs for
976 * every pointers in the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * the block's owner tree. In this case, implicit back refs is used for
980 * pointers in the block. Add full back refs for every pointers in the
981 * block, increase lower level extents' reference counts. The original
982 * implicit back refs are entailed to the new block.
983 *
984 * The reference count of the block is greater than one and the tree is
985 * not the block's owner tree. Add implicit back refs for every pointer in
986 * the new block, increase lower level extents' reference count.
987 *
988 * Back Reference Key composing:
989 *
990 * The key objectid corresponds to the first byte in the extent,
991 * The key type is used to differentiate between types of back refs.
992 * There are different meanings of the key offset for different types
993 * of back refs.
994 *
d8d5f3e1
CM
995 * File extents can be referenced by:
996 *
997 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 998 * - different files inside a single subvolume
d8d5f3e1
CM
999 * - different offsets inside a file (bookend extents in file.c)
1000 *
5d4f98a2 1001 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1002 *
1003 * - Objectid of the subvolume root
d8d5f3e1 1004 * - objectid of the file holding the reference
5d4f98a2
YZ
1005 * - original offset in the file
1006 * - how many bookend extents
d8d5f3e1 1007 *
5d4f98a2
YZ
1008 * The key offset for the implicit back refs is hash of the first
1009 * three fields.
d8d5f3e1 1010 *
5d4f98a2 1011 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1012 *
5d4f98a2 1013 * - number of pointers in the tree leaf
d8d5f3e1 1014 *
5d4f98a2
YZ
1015 * The key offset for the implicit back refs is the first byte of
1016 * the tree leaf
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * When a file extent is allocated, The implicit back refs is used.
1019 * the fields are filled in:
d8d5f3e1 1020 *
5d4f98a2 1021 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * When a file extent is removed file truncation, we find the
1024 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1025 *
5d4f98a2 1026 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1027 *
5d4f98a2 1028 * Btree extents can be referenced by:
d8d5f3e1 1029 *
5d4f98a2 1030 * - Different subvolumes
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * Both the implicit back refs and the full back refs for tree blocks
1033 * only consist of key. The key offset for the implicit back refs is
1034 * objectid of block's owner tree. The key offset for the full back refs
1035 * is the first byte of parent block.
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When implicit back refs is used, information about the lowest key and
1038 * level of the tree block are required. These information are stored in
1039 * tree block info structure.
d8d5f3e1 1040 */
31840ae1 1041
5d4f98a2
YZ
1042#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1043static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1044 struct btrfs_root *root,
1045 struct btrfs_path *path,
1046 u64 owner, u32 extra_size)
7bb86316 1047{
5d4f98a2
YZ
1048 struct btrfs_extent_item *item;
1049 struct btrfs_extent_item_v0 *ei0;
1050 struct btrfs_extent_ref_v0 *ref0;
1051 struct btrfs_tree_block_info *bi;
1052 struct extent_buffer *leaf;
7bb86316 1053 struct btrfs_key key;
5d4f98a2
YZ
1054 struct btrfs_key found_key;
1055 u32 new_size = sizeof(*item);
1056 u64 refs;
1057 int ret;
1058
1059 leaf = path->nodes[0];
1060 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1061
1062 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1063 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1064 struct btrfs_extent_item_v0);
1065 refs = btrfs_extent_refs_v0(leaf, ei0);
1066
1067 if (owner == (u64)-1) {
1068 while (1) {
1069 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1070 ret = btrfs_next_leaf(root, path);
1071 if (ret < 0)
1072 return ret;
79787eaa 1073 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1074 leaf = path->nodes[0];
1075 }
1076 btrfs_item_key_to_cpu(leaf, &found_key,
1077 path->slots[0]);
1078 BUG_ON(key.objectid != found_key.objectid);
1079 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1080 path->slots[0]++;
1081 continue;
1082 }
1083 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1084 struct btrfs_extent_ref_v0);
1085 owner = btrfs_ref_objectid_v0(leaf, ref0);
1086 break;
1087 }
1088 }
b3b4aa74 1089 btrfs_release_path(path);
5d4f98a2
YZ
1090
1091 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1092 new_size += sizeof(*bi);
1093
1094 new_size -= sizeof(*ei0);
1095 ret = btrfs_search_slot(trans, root, &key, path,
1096 new_size + extra_size, 1);
1097 if (ret < 0)
1098 return ret;
79787eaa 1099 BUG_ON(ret); /* Corruption */
5d4f98a2 1100
4b90c680 1101 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1102
1103 leaf = path->nodes[0];
1104 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1105 btrfs_set_extent_refs(leaf, item, refs);
1106 /* FIXME: get real generation */
1107 btrfs_set_extent_generation(leaf, item, 0);
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1109 btrfs_set_extent_flags(leaf, item,
1110 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1111 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1112 bi = (struct btrfs_tree_block_info *)(item + 1);
1113 /* FIXME: get first key of the block */
1114 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1115 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1116 } else {
1117 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1118 }
1119 btrfs_mark_buffer_dirty(leaf);
1120 return 0;
1121}
1122#endif
1123
1124static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1125{
1126 u32 high_crc = ~(u32)0;
1127 u32 low_crc = ~(u32)0;
1128 __le64 lenum;
1129
1130 lenum = cpu_to_le64(root_objectid);
14a958e6 1131 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1132 lenum = cpu_to_le64(owner);
14a958e6 1133 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1134 lenum = cpu_to_le64(offset);
14a958e6 1135 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1136
1137 return ((u64)high_crc << 31) ^ (u64)low_crc;
1138}
1139
1140static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1141 struct btrfs_extent_data_ref *ref)
1142{
1143 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1144 btrfs_extent_data_ref_objectid(leaf, ref),
1145 btrfs_extent_data_ref_offset(leaf, ref));
1146}
1147
1148static int match_extent_data_ref(struct extent_buffer *leaf,
1149 struct btrfs_extent_data_ref *ref,
1150 u64 root_objectid, u64 owner, u64 offset)
1151{
1152 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1153 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1154 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1155 return 0;
1156 return 1;
1157}
1158
1159static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid,
1164 u64 owner, u64 offset)
1165{
1166 struct btrfs_key key;
1167 struct btrfs_extent_data_ref *ref;
31840ae1 1168 struct extent_buffer *leaf;
5d4f98a2 1169 u32 nritems;
74493f7a 1170 int ret;
5d4f98a2
YZ
1171 int recow;
1172 int err = -ENOENT;
74493f7a 1173
31840ae1 1174 key.objectid = bytenr;
5d4f98a2
YZ
1175 if (parent) {
1176 key.type = BTRFS_SHARED_DATA_REF_KEY;
1177 key.offset = parent;
1178 } else {
1179 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1180 key.offset = hash_extent_data_ref(root_objectid,
1181 owner, offset);
1182 }
1183again:
1184 recow = 0;
1185 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1186 if (ret < 0) {
1187 err = ret;
1188 goto fail;
1189 }
31840ae1 1190
5d4f98a2
YZ
1191 if (parent) {
1192 if (!ret)
1193 return 0;
1194#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1195 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1196 btrfs_release_path(path);
5d4f98a2
YZ
1197 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1198 if (ret < 0) {
1199 err = ret;
1200 goto fail;
1201 }
1202 if (!ret)
1203 return 0;
1204#endif
1205 goto fail;
31840ae1
ZY
1206 }
1207
1208 leaf = path->nodes[0];
5d4f98a2
YZ
1209 nritems = btrfs_header_nritems(leaf);
1210 while (1) {
1211 if (path->slots[0] >= nritems) {
1212 ret = btrfs_next_leaf(root, path);
1213 if (ret < 0)
1214 err = ret;
1215 if (ret)
1216 goto fail;
1217
1218 leaf = path->nodes[0];
1219 nritems = btrfs_header_nritems(leaf);
1220 recow = 1;
1221 }
1222
1223 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1224 if (key.objectid != bytenr ||
1225 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1226 goto fail;
1227
1228 ref = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_extent_data_ref);
1230
1231 if (match_extent_data_ref(leaf, ref, root_objectid,
1232 owner, offset)) {
1233 if (recow) {
b3b4aa74 1234 btrfs_release_path(path);
5d4f98a2
YZ
1235 goto again;
1236 }
1237 err = 0;
1238 break;
1239 }
1240 path->slots[0]++;
31840ae1 1241 }
5d4f98a2
YZ
1242fail:
1243 return err;
31840ae1
ZY
1244}
1245
5d4f98a2
YZ
1246static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1247 struct btrfs_root *root,
1248 struct btrfs_path *path,
1249 u64 bytenr, u64 parent,
1250 u64 root_objectid, u64 owner,
1251 u64 offset, int refs_to_add)
31840ae1
ZY
1252{
1253 struct btrfs_key key;
1254 struct extent_buffer *leaf;
5d4f98a2 1255 u32 size;
31840ae1
ZY
1256 u32 num_refs;
1257 int ret;
74493f7a 1258
74493f7a 1259 key.objectid = bytenr;
5d4f98a2
YZ
1260 if (parent) {
1261 key.type = BTRFS_SHARED_DATA_REF_KEY;
1262 key.offset = parent;
1263 size = sizeof(struct btrfs_shared_data_ref);
1264 } else {
1265 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1266 key.offset = hash_extent_data_ref(root_objectid,
1267 owner, offset);
1268 size = sizeof(struct btrfs_extent_data_ref);
1269 }
74493f7a 1270
5d4f98a2
YZ
1271 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1272 if (ret && ret != -EEXIST)
1273 goto fail;
1274
1275 leaf = path->nodes[0];
1276 if (parent) {
1277 struct btrfs_shared_data_ref *ref;
31840ae1 1278 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1279 struct btrfs_shared_data_ref);
1280 if (ret == 0) {
1281 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1282 } else {
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1284 num_refs += refs_to_add;
1285 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1286 }
5d4f98a2
YZ
1287 } else {
1288 struct btrfs_extent_data_ref *ref;
1289 while (ret == -EEXIST) {
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1292 if (match_extent_data_ref(leaf, ref, root_objectid,
1293 owner, offset))
1294 break;
b3b4aa74 1295 btrfs_release_path(path);
5d4f98a2
YZ
1296 key.offset++;
1297 ret = btrfs_insert_empty_item(trans, root, path, &key,
1298 size);
1299 if (ret && ret != -EEXIST)
1300 goto fail;
31840ae1 1301
5d4f98a2
YZ
1302 leaf = path->nodes[0];
1303 }
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306 if (ret == 0) {
1307 btrfs_set_extent_data_ref_root(leaf, ref,
1308 root_objectid);
1309 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1310 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1311 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1312 } else {
1313 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1314 num_refs += refs_to_add;
1315 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1316 }
31840ae1 1317 }
5d4f98a2
YZ
1318 btrfs_mark_buffer_dirty(leaf);
1319 ret = 0;
1320fail:
b3b4aa74 1321 btrfs_release_path(path);
7bb86316 1322 return ret;
74493f7a
CM
1323}
1324
5d4f98a2
YZ
1325static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *root,
1327 struct btrfs_path *path,
fcebe456 1328 int refs_to_drop, int *last_ref)
31840ae1 1329{
5d4f98a2
YZ
1330 struct btrfs_key key;
1331 struct btrfs_extent_data_ref *ref1 = NULL;
1332 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1333 struct extent_buffer *leaf;
5d4f98a2 1334 u32 num_refs = 0;
31840ae1
ZY
1335 int ret = 0;
1336
1337 leaf = path->nodes[0];
5d4f98a2
YZ
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339
1340 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354#endif
1355 } else {
1356 BUG();
1357 }
1358
56bec294
CM
1359 BUG_ON(num_refs < refs_to_drop);
1360 num_refs -= refs_to_drop;
5d4f98a2 1361
31840ae1
ZY
1362 if (num_refs == 0) {
1363 ret = btrfs_del_item(trans, root, path);
fcebe456 1364 *last_ref = 1;
31840ae1 1365 } else {
5d4f98a2
YZ
1366 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1367 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1368 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1369 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1370#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1371 else {
1372 struct btrfs_extent_ref_v0 *ref0;
1373 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1374 struct btrfs_extent_ref_v0);
1375 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1376 }
1377#endif
31840ae1
ZY
1378 btrfs_mark_buffer_dirty(leaf);
1379 }
31840ae1
ZY
1380 return ret;
1381}
1382
9ed0dea0 1383static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1384 struct btrfs_extent_inline_ref *iref)
15916de8 1385{
5d4f98a2
YZ
1386 struct btrfs_key key;
1387 struct extent_buffer *leaf;
1388 struct btrfs_extent_data_ref *ref1;
1389 struct btrfs_shared_data_ref *ref2;
1390 u32 num_refs = 0;
1391
1392 leaf = path->nodes[0];
1393 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1394 if (iref) {
1395 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1396 BTRFS_EXTENT_DATA_REF_KEY) {
1397 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1398 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1399 } else {
1400 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1401 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1402 }
1403 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1417#endif
5d4f98a2
YZ
1418 } else {
1419 WARN_ON(1);
1420 }
1421 return num_refs;
1422}
15916de8 1423
5d4f98a2
YZ
1424static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root,
1426 struct btrfs_path *path,
1427 u64 bytenr, u64 parent,
1428 u64 root_objectid)
1f3c79a2 1429{
5d4f98a2 1430 struct btrfs_key key;
1f3c79a2 1431 int ret;
1f3c79a2 1432
5d4f98a2
YZ
1433 key.objectid = bytenr;
1434 if (parent) {
1435 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1436 key.offset = parent;
1437 } else {
1438 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1439 key.offset = root_objectid;
1f3c79a2
LH
1440 }
1441
5d4f98a2
YZ
1442 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1443 if (ret > 0)
1444 ret = -ENOENT;
1445#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1446 if (ret == -ENOENT && parent) {
b3b4aa74 1447 btrfs_release_path(path);
5d4f98a2
YZ
1448 key.type = BTRFS_EXTENT_REF_V0_KEY;
1449 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1450 if (ret > 0)
1451 ret = -ENOENT;
1452 }
1f3c79a2 1453#endif
5d4f98a2 1454 return ret;
1f3c79a2
LH
1455}
1456
5d4f98a2
YZ
1457static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root,
1459 struct btrfs_path *path,
1460 u64 bytenr, u64 parent,
1461 u64 root_objectid)
31840ae1 1462{
5d4f98a2 1463 struct btrfs_key key;
31840ae1 1464 int ret;
31840ae1 1465
5d4f98a2
YZ
1466 key.objectid = bytenr;
1467 if (parent) {
1468 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1469 key.offset = parent;
1470 } else {
1471 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1472 key.offset = root_objectid;
1473 }
1474
1475 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1476 btrfs_release_path(path);
31840ae1
ZY
1477 return ret;
1478}
1479
5d4f98a2 1480static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1481{
5d4f98a2
YZ
1482 int type;
1483 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1484 if (parent > 0)
1485 type = BTRFS_SHARED_BLOCK_REF_KEY;
1486 else
1487 type = BTRFS_TREE_BLOCK_REF_KEY;
1488 } else {
1489 if (parent > 0)
1490 type = BTRFS_SHARED_DATA_REF_KEY;
1491 else
1492 type = BTRFS_EXTENT_DATA_REF_KEY;
1493 }
1494 return type;
31840ae1 1495}
56bec294 1496
2c47e605
YZ
1497static int find_next_key(struct btrfs_path *path, int level,
1498 struct btrfs_key *key)
56bec294 1499
02217ed2 1500{
2c47e605 1501 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1502 if (!path->nodes[level])
1503 break;
5d4f98a2
YZ
1504 if (path->slots[level] + 1 >=
1505 btrfs_header_nritems(path->nodes[level]))
1506 continue;
1507 if (level == 0)
1508 btrfs_item_key_to_cpu(path->nodes[level], key,
1509 path->slots[level] + 1);
1510 else
1511 btrfs_node_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 return 0;
1514 }
1515 return 1;
1516}
037e6390 1517
5d4f98a2
YZ
1518/*
1519 * look for inline back ref. if back ref is found, *ref_ret is set
1520 * to the address of inline back ref, and 0 is returned.
1521 *
1522 * if back ref isn't found, *ref_ret is set to the address where it
1523 * should be inserted, and -ENOENT is returned.
1524 *
1525 * if insert is true and there are too many inline back refs, the path
1526 * points to the extent item, and -EAGAIN is returned.
1527 *
1528 * NOTE: inline back refs are ordered in the same way that back ref
1529 * items in the tree are ordered.
1530 */
1531static noinline_for_stack
1532int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1533 struct btrfs_root *root,
1534 struct btrfs_path *path,
1535 struct btrfs_extent_inline_ref **ref_ret,
1536 u64 bytenr, u64 num_bytes,
1537 u64 parent, u64 root_objectid,
1538 u64 owner, u64 offset, int insert)
1539{
1540 struct btrfs_key key;
1541 struct extent_buffer *leaf;
1542 struct btrfs_extent_item *ei;
1543 struct btrfs_extent_inline_ref *iref;
1544 u64 flags;
1545 u64 item_size;
1546 unsigned long ptr;
1547 unsigned long end;
1548 int extra_size;
1549 int type;
1550 int want;
1551 int ret;
1552 int err = 0;
3173a18f
JB
1553 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1554 SKINNY_METADATA);
26b8003f 1555
db94535d 1556 key.objectid = bytenr;
31840ae1 1557 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1558 key.offset = num_bytes;
31840ae1 1559
5d4f98a2
YZ
1560 want = extent_ref_type(parent, owner);
1561 if (insert) {
1562 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1563 path->keep_locks = 1;
5d4f98a2
YZ
1564 } else
1565 extra_size = -1;
3173a18f
JB
1566
1567 /*
1568 * Owner is our parent level, so we can just add one to get the level
1569 * for the block we are interested in.
1570 */
1571 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1572 key.type = BTRFS_METADATA_ITEM_KEY;
1573 key.offset = owner;
1574 }
1575
1576again:
5d4f98a2 1577 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1578 if (ret < 0) {
5d4f98a2
YZ
1579 err = ret;
1580 goto out;
1581 }
3173a18f
JB
1582
1583 /*
1584 * We may be a newly converted file system which still has the old fat
1585 * extent entries for metadata, so try and see if we have one of those.
1586 */
1587 if (ret > 0 && skinny_metadata) {
1588 skinny_metadata = false;
1589 if (path->slots[0]) {
1590 path->slots[0]--;
1591 btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 path->slots[0]);
1593 if (key.objectid == bytenr &&
1594 key.type == BTRFS_EXTENT_ITEM_KEY &&
1595 key.offset == num_bytes)
1596 ret = 0;
1597 }
1598 if (ret) {
9ce49a0b 1599 key.objectid = bytenr;
3173a18f
JB
1600 key.type = BTRFS_EXTENT_ITEM_KEY;
1601 key.offset = num_bytes;
1602 btrfs_release_path(path);
1603 goto again;
1604 }
1605 }
1606
79787eaa
JM
1607 if (ret && !insert) {
1608 err = -ENOENT;
1609 goto out;
fae7f21c 1610 } else if (WARN_ON(ret)) {
492104c8 1611 err = -EIO;
492104c8 1612 goto out;
79787eaa 1613 }
5d4f98a2
YZ
1614
1615 leaf = path->nodes[0];
1616 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1617#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1618 if (item_size < sizeof(*ei)) {
1619 if (!insert) {
1620 err = -ENOENT;
1621 goto out;
1622 }
1623 ret = convert_extent_item_v0(trans, root, path, owner,
1624 extra_size);
1625 if (ret < 0) {
1626 err = ret;
1627 goto out;
1628 }
1629 leaf = path->nodes[0];
1630 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1631 }
1632#endif
1633 BUG_ON(item_size < sizeof(*ei));
1634
5d4f98a2
YZ
1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 flags = btrfs_extent_flags(leaf, ei);
1637
1638 ptr = (unsigned long)(ei + 1);
1639 end = (unsigned long)ei + item_size;
1640
3173a18f 1641 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1642 ptr += sizeof(struct btrfs_tree_block_info);
1643 BUG_ON(ptr > end);
5d4f98a2
YZ
1644 }
1645
1646 err = -ENOENT;
1647 while (1) {
1648 if (ptr >= end) {
1649 WARN_ON(ptr > end);
1650 break;
1651 }
1652 iref = (struct btrfs_extent_inline_ref *)ptr;
1653 type = btrfs_extent_inline_ref_type(leaf, iref);
1654 if (want < type)
1655 break;
1656 if (want > type) {
1657 ptr += btrfs_extent_inline_ref_size(type);
1658 continue;
1659 }
1660
1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 struct btrfs_extent_data_ref *dref;
1663 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1664 if (match_extent_data_ref(leaf, dref, root_objectid,
1665 owner, offset)) {
1666 err = 0;
1667 break;
1668 }
1669 if (hash_extent_data_ref_item(leaf, dref) <
1670 hash_extent_data_ref(root_objectid, owner, offset))
1671 break;
1672 } else {
1673 u64 ref_offset;
1674 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1675 if (parent > 0) {
1676 if (parent == ref_offset) {
1677 err = 0;
1678 break;
1679 }
1680 if (ref_offset < parent)
1681 break;
1682 } else {
1683 if (root_objectid == ref_offset) {
1684 err = 0;
1685 break;
1686 }
1687 if (ref_offset < root_objectid)
1688 break;
1689 }
1690 }
1691 ptr += btrfs_extent_inline_ref_size(type);
1692 }
1693 if (err == -ENOENT && insert) {
1694 if (item_size + extra_size >=
1695 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1696 err = -EAGAIN;
1697 goto out;
1698 }
1699 /*
1700 * To add new inline back ref, we have to make sure
1701 * there is no corresponding back ref item.
1702 * For simplicity, we just do not add new inline back
1703 * ref if there is any kind of item for this block
1704 */
2c47e605
YZ
1705 if (find_next_key(path, 0, &key) == 0 &&
1706 key.objectid == bytenr &&
85d4198e 1707 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1708 err = -EAGAIN;
1709 goto out;
1710 }
1711 }
1712 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1713out:
85d4198e 1714 if (insert) {
5d4f98a2
YZ
1715 path->keep_locks = 0;
1716 btrfs_unlock_up_safe(path, 1);
1717 }
1718 return err;
1719}
1720
1721/*
1722 * helper to add new inline back ref
1723 */
1724static noinline_for_stack
fd279fae 1725void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref *iref,
1728 u64 parent, u64 root_objectid,
1729 u64 owner, u64 offset, int refs_to_add,
1730 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1731{
1732 struct extent_buffer *leaf;
1733 struct btrfs_extent_item *ei;
1734 unsigned long ptr;
1735 unsigned long end;
1736 unsigned long item_offset;
1737 u64 refs;
1738 int size;
1739 int type;
5d4f98a2
YZ
1740
1741 leaf = path->nodes[0];
1742 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1743 item_offset = (unsigned long)iref - (unsigned long)ei;
1744
1745 type = extent_ref_type(parent, owner);
1746 size = btrfs_extent_inline_ref_size(type);
1747
4b90c680 1748 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1749
1750 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1751 refs = btrfs_extent_refs(leaf, ei);
1752 refs += refs_to_add;
1753 btrfs_set_extent_refs(leaf, ei, refs);
1754 if (extent_op)
1755 __run_delayed_extent_op(extent_op, leaf, ei);
1756
1757 ptr = (unsigned long)ei + item_offset;
1758 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1759 if (ptr < end - size)
1760 memmove_extent_buffer(leaf, ptr + size, ptr,
1761 end - size - ptr);
1762
1763 iref = (struct btrfs_extent_inline_ref *)ptr;
1764 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1765 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1766 struct btrfs_extent_data_ref *dref;
1767 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1768 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1769 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1770 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1771 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1772 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1773 struct btrfs_shared_data_ref *sref;
1774 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1775 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1776 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1777 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1778 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1779 } else {
1780 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1781 }
1782 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1783}
1784
1785static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1786 struct btrfs_root *root,
1787 struct btrfs_path *path,
1788 struct btrfs_extent_inline_ref **ref_ret,
1789 u64 bytenr, u64 num_bytes, u64 parent,
1790 u64 root_objectid, u64 owner, u64 offset)
1791{
1792 int ret;
1793
1794 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1795 bytenr, num_bytes, parent,
1796 root_objectid, owner, offset, 0);
1797 if (ret != -ENOENT)
54aa1f4d 1798 return ret;
5d4f98a2 1799
b3b4aa74 1800 btrfs_release_path(path);
5d4f98a2
YZ
1801 *ref_ret = NULL;
1802
1803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1804 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1805 root_objectid);
1806 } else {
1807 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1808 root_objectid, owner, offset);
b9473439 1809 }
5d4f98a2
YZ
1810 return ret;
1811}
31840ae1 1812
5d4f98a2
YZ
1813/*
1814 * helper to update/remove inline back ref
1815 */
1816static noinline_for_stack
afe5fea7 1817void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref *iref,
1820 int refs_to_mod,
fcebe456
JB
1821 struct btrfs_delayed_extent_op *extent_op,
1822 int *last_ref)
5d4f98a2
YZ
1823{
1824 struct extent_buffer *leaf;
1825 struct btrfs_extent_item *ei;
1826 struct btrfs_extent_data_ref *dref = NULL;
1827 struct btrfs_shared_data_ref *sref = NULL;
1828 unsigned long ptr;
1829 unsigned long end;
1830 u32 item_size;
1831 int size;
1832 int type;
5d4f98a2
YZ
1833 u64 refs;
1834
1835 leaf = path->nodes[0];
1836 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1837 refs = btrfs_extent_refs(leaf, ei);
1838 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1839 refs += refs_to_mod;
1840 btrfs_set_extent_refs(leaf, ei, refs);
1841 if (extent_op)
1842 __run_delayed_extent_op(extent_op, leaf, ei);
1843
1844 type = btrfs_extent_inline_ref_type(leaf, iref);
1845
1846 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1847 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1848 refs = btrfs_extent_data_ref_count(leaf, dref);
1849 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1850 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1851 refs = btrfs_shared_data_ref_count(leaf, sref);
1852 } else {
1853 refs = 1;
1854 BUG_ON(refs_to_mod != -1);
56bec294 1855 }
31840ae1 1856
5d4f98a2
YZ
1857 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1858 refs += refs_to_mod;
1859
1860 if (refs > 0) {
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1862 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1863 else
1864 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1865 } else {
fcebe456 1866 *last_ref = 1;
5d4f98a2
YZ
1867 size = btrfs_extent_inline_ref_size(type);
1868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1869 ptr = (unsigned long)iref;
1870 end = (unsigned long)ei + item_size;
1871 if (ptr + size < end)
1872 memmove_extent_buffer(leaf, ptr, ptr + size,
1873 end - ptr - size);
1874 item_size -= size;
afe5fea7 1875 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1876 }
1877 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1878}
1879
1880static noinline_for_stack
1881int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1882 struct btrfs_root *root,
1883 struct btrfs_path *path,
1884 u64 bytenr, u64 num_bytes, u64 parent,
1885 u64 root_objectid, u64 owner,
1886 u64 offset, int refs_to_add,
1887 struct btrfs_delayed_extent_op *extent_op)
1888{
1889 struct btrfs_extent_inline_ref *iref;
1890 int ret;
1891
1892 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1893 bytenr, num_bytes, parent,
1894 root_objectid, owner, offset, 1);
1895 if (ret == 0) {
1896 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1897 update_inline_extent_backref(root, path, iref,
fcebe456 1898 refs_to_add, extent_op, NULL);
5d4f98a2 1899 } else if (ret == -ENOENT) {
fd279fae 1900 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1901 root_objectid, owner, offset,
1902 refs_to_add, extent_op);
1903 ret = 0;
771ed689 1904 }
5d4f98a2
YZ
1905 return ret;
1906}
31840ae1 1907
5d4f98a2
YZ
1908static int insert_extent_backref(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *root,
1910 struct btrfs_path *path,
1911 u64 bytenr, u64 parent, u64 root_objectid,
1912 u64 owner, u64 offset, int refs_to_add)
1913{
1914 int ret;
1915 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1916 BUG_ON(refs_to_add != 1);
1917 ret = insert_tree_block_ref(trans, root, path, bytenr,
1918 parent, root_objectid);
1919 } else {
1920 ret = insert_extent_data_ref(trans, root, path, bytenr,
1921 parent, root_objectid,
1922 owner, offset, refs_to_add);
1923 }
1924 return ret;
1925}
56bec294 1926
5d4f98a2
YZ
1927static int remove_extent_backref(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct btrfs_extent_inline_ref *iref,
fcebe456 1931 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1932{
143bede5 1933 int ret = 0;
b9473439 1934
5d4f98a2
YZ
1935 BUG_ON(!is_data && refs_to_drop != 1);
1936 if (iref) {
afe5fea7 1937 update_inline_extent_backref(root, path, iref,
fcebe456 1938 -refs_to_drop, NULL, last_ref);
5d4f98a2 1939 } else if (is_data) {
fcebe456
JB
1940 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1941 last_ref);
5d4f98a2 1942 } else {
fcebe456 1943 *last_ref = 1;
5d4f98a2
YZ
1944 ret = btrfs_del_item(trans, root, path);
1945 }
1946 return ret;
1947}
1948
86557861 1949#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1950static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1951 u64 *discarded_bytes)
5d4f98a2 1952{
86557861
JM
1953 int j, ret = 0;
1954 u64 bytes_left, end;
4d89d377 1955 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1956
4d89d377
JM
1957 if (WARN_ON(start != aligned_start)) {
1958 len -= aligned_start - start;
1959 len = round_down(len, 1 << 9);
1960 start = aligned_start;
1961 }
d04c6b88 1962
4d89d377 1963 *discarded_bytes = 0;
86557861
JM
1964
1965 if (!len)
1966 return 0;
1967
1968 end = start + len;
1969 bytes_left = len;
1970
1971 /* Skip any superblocks on this device. */
1972 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1973 u64 sb_start = btrfs_sb_offset(j);
1974 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1975 u64 size = sb_start - start;
1976
1977 if (!in_range(sb_start, start, bytes_left) &&
1978 !in_range(sb_end, start, bytes_left) &&
1979 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1980 continue;
1981
1982 /*
1983 * Superblock spans beginning of range. Adjust start and
1984 * try again.
1985 */
1986 if (sb_start <= start) {
1987 start += sb_end - start;
1988 if (start > end) {
1989 bytes_left = 0;
1990 break;
1991 }
1992 bytes_left = end - start;
1993 continue;
1994 }
1995
1996 if (size) {
1997 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1998 GFP_NOFS, 0);
1999 if (!ret)
2000 *discarded_bytes += size;
2001 else if (ret != -EOPNOTSUPP)
2002 return ret;
2003 }
2004
2005 start = sb_end;
2006 if (start > end) {
2007 bytes_left = 0;
2008 break;
2009 }
2010 bytes_left = end - start;
2011 }
2012
2013 if (bytes_left) {
2014 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2015 GFP_NOFS, 0);
2016 if (!ret)
86557861 2017 *discarded_bytes += bytes_left;
4d89d377 2018 }
d04c6b88 2019 return ret;
5d4f98a2 2020}
5d4f98a2 2021
1edb647b
FM
2022int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2023 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2024{
5d4f98a2 2025 int ret;
5378e607 2026 u64 discarded_bytes = 0;
a1d3c478 2027 struct btrfs_bio *bbio = NULL;
5d4f98a2 2028
e244a0ae 2029
5d4f98a2 2030 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2031 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2032 bytenr, &num_bytes, &bbio, 0);
79787eaa 2033 /* Error condition is -ENOMEM */
5d4f98a2 2034 if (!ret) {
a1d3c478 2035 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2036 int i;
2037
5d4f98a2 2038
a1d3c478 2039 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2040 u64 bytes;
d5e2003c
JB
2041 if (!stripe->dev->can_discard)
2042 continue;
2043
5378e607
LD
2044 ret = btrfs_issue_discard(stripe->dev->bdev,
2045 stripe->physical,
d04c6b88
JM
2046 stripe->length,
2047 &bytes);
5378e607 2048 if (!ret)
d04c6b88 2049 discarded_bytes += bytes;
5378e607 2050 else if (ret != -EOPNOTSUPP)
79787eaa 2051 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2052
2053 /*
2054 * Just in case we get back EOPNOTSUPP for some reason,
2055 * just ignore the return value so we don't screw up
2056 * people calling discard_extent.
2057 */
2058 ret = 0;
5d4f98a2 2059 }
6e9606d2 2060 btrfs_put_bbio(bbio);
5d4f98a2 2061 }
5378e607
LD
2062
2063 if (actual_bytes)
2064 *actual_bytes = discarded_bytes;
2065
5d4f98a2 2066
53b381b3
DW
2067 if (ret == -EOPNOTSUPP)
2068 ret = 0;
5d4f98a2 2069 return ret;
5d4f98a2
YZ
2070}
2071
79787eaa 2072/* Can return -ENOMEM */
5d4f98a2
YZ
2073int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2074 struct btrfs_root *root,
2075 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2076 u64 root_objectid, u64 owner, u64 offset,
2077 int no_quota)
5d4f98a2
YZ
2078{
2079 int ret;
66d7e7f0
AJ
2080 struct btrfs_fs_info *fs_info = root->fs_info;
2081
5d4f98a2
YZ
2082 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2083 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2084
2085 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2086 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2087 num_bytes,
5d4f98a2 2088 parent, root_objectid, (int)owner,
fcebe456 2089 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2090 } else {
66d7e7f0
AJ
2091 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2092 num_bytes,
5d4f98a2 2093 parent, root_objectid, owner, offset,
fcebe456 2094 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2095 }
2096 return ret;
2097}
2098
2099static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
c682f9b3 2101 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2102 u64 parent, u64 root_objectid,
2103 u64 owner, u64 offset, int refs_to_add,
2104 struct btrfs_delayed_extent_op *extent_op)
2105{
fcebe456 2106 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2107 struct btrfs_path *path;
2108 struct extent_buffer *leaf;
2109 struct btrfs_extent_item *item;
fcebe456 2110 struct btrfs_key key;
c682f9b3
QW
2111 u64 bytenr = node->bytenr;
2112 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2113 u64 refs;
2114 int ret;
c682f9b3 2115 int no_quota = node->no_quota;
5d4f98a2
YZ
2116
2117 path = btrfs_alloc_path();
2118 if (!path)
2119 return -ENOMEM;
2120
fcebe456
JB
2121 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2122 no_quota = 1;
2123
5d4f98a2
YZ
2124 path->reada = 1;
2125 path->leave_spinning = 1;
2126 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2127 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2128 bytenr, num_bytes, parent,
5d4f98a2
YZ
2129 root_objectid, owner, offset,
2130 refs_to_add, extent_op);
0ed4792a 2131 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2132 goto out;
fcebe456
JB
2133
2134 /*
2135 * Ok we had -EAGAIN which means we didn't have space to insert and
2136 * inline extent ref, so just update the reference count and add a
2137 * normal backref.
2138 */
5d4f98a2 2139 leaf = path->nodes[0];
fcebe456 2140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2141 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2142 refs = btrfs_extent_refs(leaf, item);
2143 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2144 if (extent_op)
2145 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2146
5d4f98a2 2147 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2148 btrfs_release_path(path);
56bec294
CM
2149
2150 path->reada = 1;
b9473439 2151 path->leave_spinning = 1;
56bec294
CM
2152 /* now insert the actual backref */
2153 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2154 path, bytenr, parent, root_objectid,
2155 owner, offset, refs_to_add);
79787eaa
JM
2156 if (ret)
2157 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2158out:
56bec294 2159 btrfs_free_path(path);
30d133fc 2160 return ret;
56bec294
CM
2161}
2162
5d4f98a2
YZ
2163static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2164 struct btrfs_root *root,
2165 struct btrfs_delayed_ref_node *node,
2166 struct btrfs_delayed_extent_op *extent_op,
2167 int insert_reserved)
56bec294 2168{
5d4f98a2
YZ
2169 int ret = 0;
2170 struct btrfs_delayed_data_ref *ref;
2171 struct btrfs_key ins;
2172 u64 parent = 0;
2173 u64 ref_root = 0;
2174 u64 flags = 0;
2175
2176 ins.objectid = node->bytenr;
2177 ins.offset = node->num_bytes;
2178 ins.type = BTRFS_EXTENT_ITEM_KEY;
2179
2180 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2181 trace_run_delayed_data_ref(node, ref, node->action);
2182
5d4f98a2
YZ
2183 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2184 parent = ref->parent;
fcebe456 2185 ref_root = ref->root;
5d4f98a2
YZ
2186
2187 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2188 if (extent_op)
5d4f98a2 2189 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2190 ret = alloc_reserved_file_extent(trans, root,
2191 parent, ref_root, flags,
2192 ref->objectid, ref->offset,
2193 &ins, node->ref_mod);
5d4f98a2 2194 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2195 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2196 ref_root, ref->objectid,
2197 ref->offset, node->ref_mod,
c682f9b3 2198 extent_op);
5d4f98a2 2199 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2200 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2201 ref_root, ref->objectid,
2202 ref->offset, node->ref_mod,
c682f9b3 2203 extent_op);
5d4f98a2
YZ
2204 } else {
2205 BUG();
2206 }
2207 return ret;
2208}
2209
2210static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2211 struct extent_buffer *leaf,
2212 struct btrfs_extent_item *ei)
2213{
2214 u64 flags = btrfs_extent_flags(leaf, ei);
2215 if (extent_op->update_flags) {
2216 flags |= extent_op->flags_to_set;
2217 btrfs_set_extent_flags(leaf, ei, flags);
2218 }
2219
2220 if (extent_op->update_key) {
2221 struct btrfs_tree_block_info *bi;
2222 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2223 bi = (struct btrfs_tree_block_info *)(ei + 1);
2224 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2225 }
2226}
2227
2228static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2229 struct btrfs_root *root,
2230 struct btrfs_delayed_ref_node *node,
2231 struct btrfs_delayed_extent_op *extent_op)
2232{
2233 struct btrfs_key key;
2234 struct btrfs_path *path;
2235 struct btrfs_extent_item *ei;
2236 struct extent_buffer *leaf;
2237 u32 item_size;
56bec294 2238 int ret;
5d4f98a2 2239 int err = 0;
b1c79e09 2240 int metadata = !extent_op->is_data;
5d4f98a2 2241
79787eaa
JM
2242 if (trans->aborted)
2243 return 0;
2244
3173a18f
JB
2245 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2246 metadata = 0;
2247
5d4f98a2
YZ
2248 path = btrfs_alloc_path();
2249 if (!path)
2250 return -ENOMEM;
2251
2252 key.objectid = node->bytenr;
5d4f98a2 2253
3173a18f 2254 if (metadata) {
3173a18f 2255 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2256 key.offset = extent_op->level;
3173a18f
JB
2257 } else {
2258 key.type = BTRFS_EXTENT_ITEM_KEY;
2259 key.offset = node->num_bytes;
2260 }
2261
2262again:
5d4f98a2
YZ
2263 path->reada = 1;
2264 path->leave_spinning = 1;
2265 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2266 path, 0, 1);
2267 if (ret < 0) {
2268 err = ret;
2269 goto out;
2270 }
2271 if (ret > 0) {
3173a18f 2272 if (metadata) {
55994887
FDBM
2273 if (path->slots[0] > 0) {
2274 path->slots[0]--;
2275 btrfs_item_key_to_cpu(path->nodes[0], &key,
2276 path->slots[0]);
2277 if (key.objectid == node->bytenr &&
2278 key.type == BTRFS_EXTENT_ITEM_KEY &&
2279 key.offset == node->num_bytes)
2280 ret = 0;
2281 }
2282 if (ret > 0) {
2283 btrfs_release_path(path);
2284 metadata = 0;
3173a18f 2285
55994887
FDBM
2286 key.objectid = node->bytenr;
2287 key.offset = node->num_bytes;
2288 key.type = BTRFS_EXTENT_ITEM_KEY;
2289 goto again;
2290 }
2291 } else {
2292 err = -EIO;
2293 goto out;
3173a18f 2294 }
5d4f98a2
YZ
2295 }
2296
2297 leaf = path->nodes[0];
2298 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2299#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2300 if (item_size < sizeof(*ei)) {
2301 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2302 path, (u64)-1, 0);
2303 if (ret < 0) {
2304 err = ret;
2305 goto out;
2306 }
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309 }
2310#endif
2311 BUG_ON(item_size < sizeof(*ei));
2312 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2313 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2314
5d4f98a2
YZ
2315 btrfs_mark_buffer_dirty(leaf);
2316out:
2317 btrfs_free_path(path);
2318 return err;
56bec294
CM
2319}
2320
5d4f98a2
YZ
2321static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 struct btrfs_delayed_ref_node *node,
2324 struct btrfs_delayed_extent_op *extent_op,
2325 int insert_reserved)
56bec294
CM
2326{
2327 int ret = 0;
5d4f98a2
YZ
2328 struct btrfs_delayed_tree_ref *ref;
2329 struct btrfs_key ins;
2330 u64 parent = 0;
2331 u64 ref_root = 0;
3173a18f
JB
2332 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2333 SKINNY_METADATA);
56bec294 2334
5d4f98a2 2335 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2336 trace_run_delayed_tree_ref(node, ref, node->action);
2337
5d4f98a2
YZ
2338 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2339 parent = ref->parent;
fcebe456 2340 ref_root = ref->root;
5d4f98a2 2341
3173a18f
JB
2342 ins.objectid = node->bytenr;
2343 if (skinny_metadata) {
2344 ins.offset = ref->level;
2345 ins.type = BTRFS_METADATA_ITEM_KEY;
2346 } else {
2347 ins.offset = node->num_bytes;
2348 ins.type = BTRFS_EXTENT_ITEM_KEY;
2349 }
2350
5d4f98a2
YZ
2351 BUG_ON(node->ref_mod != 1);
2352 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2353 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2354 ret = alloc_reserved_tree_block(trans, root,
2355 parent, ref_root,
2356 extent_op->flags_to_set,
2357 &extent_op->key,
fcebe456
JB
2358 ref->level, &ins,
2359 node->no_quota);
5d4f98a2 2360 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2361 ret = __btrfs_inc_extent_ref(trans, root, node,
2362 parent, ref_root,
2363 ref->level, 0, 1,
fcebe456 2364 extent_op);
5d4f98a2 2365 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2366 ret = __btrfs_free_extent(trans, root, node,
2367 parent, ref_root,
2368 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2369 } else {
2370 BUG();
2371 }
56bec294
CM
2372 return ret;
2373}
2374
2375/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2376static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2377 struct btrfs_root *root,
2378 struct btrfs_delayed_ref_node *node,
2379 struct btrfs_delayed_extent_op *extent_op,
2380 int insert_reserved)
56bec294 2381{
79787eaa
JM
2382 int ret = 0;
2383
857cc2fc
JB
2384 if (trans->aborted) {
2385 if (insert_reserved)
2386 btrfs_pin_extent(root, node->bytenr,
2387 node->num_bytes, 1);
79787eaa 2388 return 0;
857cc2fc 2389 }
79787eaa 2390
5d4f98a2 2391 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2392 struct btrfs_delayed_ref_head *head;
2393 /*
2394 * we've hit the end of the chain and we were supposed
2395 * to insert this extent into the tree. But, it got
2396 * deleted before we ever needed to insert it, so all
2397 * we have to do is clean up the accounting
2398 */
5d4f98a2
YZ
2399 BUG_ON(extent_op);
2400 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2401 trace_run_delayed_ref_head(node, head, node->action);
2402
56bec294 2403 if (insert_reserved) {
f0486c68
YZ
2404 btrfs_pin_extent(root, node->bytenr,
2405 node->num_bytes, 1);
5d4f98a2
YZ
2406 if (head->is_data) {
2407 ret = btrfs_del_csums(trans, root,
2408 node->bytenr,
2409 node->num_bytes);
5d4f98a2 2410 }
56bec294 2411 }
297d750b
QW
2412
2413 /* Also free its reserved qgroup space */
2414 btrfs_qgroup_free_delayed_ref(root->fs_info,
2415 head->qgroup_ref_root,
2416 head->qgroup_reserved);
79787eaa 2417 return ret;
56bec294
CM
2418 }
2419
5d4f98a2
YZ
2420 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2421 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2422 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2423 insert_reserved);
2424 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2425 node->type == BTRFS_SHARED_DATA_REF_KEY)
2426 ret = run_delayed_data_ref(trans, root, node, extent_op,
2427 insert_reserved);
2428 else
2429 BUG();
2430 return ret;
56bec294
CM
2431}
2432
c6fc2454 2433static inline struct btrfs_delayed_ref_node *
56bec294
CM
2434select_delayed_ref(struct btrfs_delayed_ref_head *head)
2435{
cffc3374
FM
2436 struct btrfs_delayed_ref_node *ref;
2437
c6fc2454
QW
2438 if (list_empty(&head->ref_list))
2439 return NULL;
d7df2c79 2440
cffc3374
FM
2441 /*
2442 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2443 * This is to prevent a ref count from going down to zero, which deletes
2444 * the extent item from the extent tree, when there still are references
2445 * to add, which would fail because they would not find the extent item.
2446 */
2447 list_for_each_entry(ref, &head->ref_list, list) {
2448 if (ref->action == BTRFS_ADD_DELAYED_REF)
2449 return ref;
2450 }
2451
c6fc2454
QW
2452 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2453 list);
56bec294
CM
2454}
2455
79787eaa
JM
2456/*
2457 * Returns 0 on success or if called with an already aborted transaction.
2458 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2459 */
d7df2c79
JB
2460static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2461 struct btrfs_root *root,
2462 unsigned long nr)
56bec294 2463{
56bec294
CM
2464 struct btrfs_delayed_ref_root *delayed_refs;
2465 struct btrfs_delayed_ref_node *ref;
2466 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2467 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2468 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2469 ktime_t start = ktime_get();
56bec294 2470 int ret;
d7df2c79 2471 unsigned long count = 0;
0a2b2a84 2472 unsigned long actual_count = 0;
56bec294 2473 int must_insert_reserved = 0;
56bec294
CM
2474
2475 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2476 while (1) {
2477 if (!locked_ref) {
d7df2c79 2478 if (count >= nr)
56bec294 2479 break;
56bec294 2480
d7df2c79
JB
2481 spin_lock(&delayed_refs->lock);
2482 locked_ref = btrfs_select_ref_head(trans);
2483 if (!locked_ref) {
2484 spin_unlock(&delayed_refs->lock);
2485 break;
2486 }
c3e69d58
CM
2487
2488 /* grab the lock that says we are going to process
2489 * all the refs for this head */
2490 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2491 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2492 /*
2493 * we may have dropped the spin lock to get the head
2494 * mutex lock, and that might have given someone else
2495 * time to free the head. If that's true, it has been
2496 * removed from our list and we can move on.
2497 */
2498 if (ret == -EAGAIN) {
2499 locked_ref = NULL;
2500 count++;
2501 continue;
56bec294
CM
2502 }
2503 }
a28ec197 2504
2c3cf7d5
FM
2505 /*
2506 * We need to try and merge add/drops of the same ref since we
2507 * can run into issues with relocate dropping the implicit ref
2508 * and then it being added back again before the drop can
2509 * finish. If we merged anything we need to re-loop so we can
2510 * get a good ref.
2511 * Or we can get node references of the same type that weren't
2512 * merged when created due to bumps in the tree mod seq, and
2513 * we need to merge them to prevent adding an inline extent
2514 * backref before dropping it (triggering a BUG_ON at
2515 * insert_inline_extent_backref()).
2516 */
d7df2c79 2517 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2518 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2519 locked_ref);
ae1e206b 2520
d1270cd9
AJ
2521 /*
2522 * locked_ref is the head node, so we have to go one
2523 * node back for any delayed ref updates
2524 */
2525 ref = select_delayed_ref(locked_ref);
2526
2527 if (ref && ref->seq &&
097b8a7c 2528 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2529 spin_unlock(&locked_ref->lock);
093486c4 2530 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2531 spin_lock(&delayed_refs->lock);
2532 locked_ref->processing = 0;
d1270cd9
AJ
2533 delayed_refs->num_heads_ready++;
2534 spin_unlock(&delayed_refs->lock);
d7df2c79 2535 locked_ref = NULL;
d1270cd9 2536 cond_resched();
27a377db 2537 count++;
d1270cd9
AJ
2538 continue;
2539 }
2540
56bec294
CM
2541 /*
2542 * record the must insert reserved flag before we
2543 * drop the spin lock.
2544 */
2545 must_insert_reserved = locked_ref->must_insert_reserved;
2546 locked_ref->must_insert_reserved = 0;
7bb86316 2547
5d4f98a2
YZ
2548 extent_op = locked_ref->extent_op;
2549 locked_ref->extent_op = NULL;
2550
56bec294 2551 if (!ref) {
d7df2c79
JB
2552
2553
56bec294
CM
2554 /* All delayed refs have been processed, Go ahead
2555 * and send the head node to run_one_delayed_ref,
2556 * so that any accounting fixes can happen
2557 */
2558 ref = &locked_ref->node;
5d4f98a2
YZ
2559
2560 if (extent_op && must_insert_reserved) {
78a6184a 2561 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2562 extent_op = NULL;
2563 }
2564
2565 if (extent_op) {
d7df2c79 2566 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2567 ret = run_delayed_extent_op(trans, root,
2568 ref, extent_op);
78a6184a 2569 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2570
79787eaa 2571 if (ret) {
857cc2fc
JB
2572 /*
2573 * Need to reset must_insert_reserved if
2574 * there was an error so the abort stuff
2575 * can cleanup the reserved space
2576 * properly.
2577 */
2578 if (must_insert_reserved)
2579 locked_ref->must_insert_reserved = 1;
d7df2c79 2580 locked_ref->processing = 0;
c2cf52eb 2581 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2582 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2583 return ret;
2584 }
d7df2c79 2585 continue;
5d4f98a2 2586 }
02217ed2 2587
d7df2c79
JB
2588 /*
2589 * Need to drop our head ref lock and re-aqcuire the
2590 * delayed ref lock and then re-check to make sure
2591 * nobody got added.
2592 */
2593 spin_unlock(&locked_ref->lock);
2594 spin_lock(&delayed_refs->lock);
2595 spin_lock(&locked_ref->lock);
c6fc2454 2596 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2597 locked_ref->extent_op) {
d7df2c79
JB
2598 spin_unlock(&locked_ref->lock);
2599 spin_unlock(&delayed_refs->lock);
2600 continue;
2601 }
2602 ref->in_tree = 0;
2603 delayed_refs->num_heads--;
c46effa6
LB
2604 rb_erase(&locked_ref->href_node,
2605 &delayed_refs->href_root);
d7df2c79
JB
2606 spin_unlock(&delayed_refs->lock);
2607 } else {
0a2b2a84 2608 actual_count++;
d7df2c79 2609 ref->in_tree = 0;
c6fc2454 2610 list_del(&ref->list);
c46effa6 2611 }
d7df2c79
JB
2612 atomic_dec(&delayed_refs->num_entries);
2613
093486c4 2614 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2615 /*
2616 * when we play the delayed ref, also correct the
2617 * ref_mod on head
2618 */
2619 switch (ref->action) {
2620 case BTRFS_ADD_DELAYED_REF:
2621 case BTRFS_ADD_DELAYED_EXTENT:
2622 locked_ref->node.ref_mod -= ref->ref_mod;
2623 break;
2624 case BTRFS_DROP_DELAYED_REF:
2625 locked_ref->node.ref_mod += ref->ref_mod;
2626 break;
2627 default:
2628 WARN_ON(1);
2629 }
2630 }
d7df2c79 2631 spin_unlock(&locked_ref->lock);
925baedd 2632
5d4f98a2 2633 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2634 must_insert_reserved);
eb099670 2635
78a6184a 2636 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2637 if (ret) {
d7df2c79 2638 locked_ref->processing = 0;
093486c4
MX
2639 btrfs_delayed_ref_unlock(locked_ref);
2640 btrfs_put_delayed_ref(ref);
c2cf52eb 2641 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2642 return ret;
2643 }
2644
093486c4
MX
2645 /*
2646 * If this node is a head, that means all the refs in this head
2647 * have been dealt with, and we will pick the next head to deal
2648 * with, so we must unlock the head and drop it from the cluster
2649 * list before we release it.
2650 */
2651 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2652 if (locked_ref->is_data &&
2653 locked_ref->total_ref_mod < 0) {
2654 spin_lock(&delayed_refs->lock);
2655 delayed_refs->pending_csums -= ref->num_bytes;
2656 spin_unlock(&delayed_refs->lock);
2657 }
093486c4
MX
2658 btrfs_delayed_ref_unlock(locked_ref);
2659 locked_ref = NULL;
2660 }
2661 btrfs_put_delayed_ref(ref);
2662 count++;
c3e69d58 2663 cond_resched();
c3e69d58 2664 }
0a2b2a84
JB
2665
2666 /*
2667 * We don't want to include ref heads since we can have empty ref heads
2668 * and those will drastically skew our runtime down since we just do
2669 * accounting, no actual extent tree updates.
2670 */
2671 if (actual_count > 0) {
2672 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2673 u64 avg;
2674
2675 /*
2676 * We weigh the current average higher than our current runtime
2677 * to avoid large swings in the average.
2678 */
2679 spin_lock(&delayed_refs->lock);
2680 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2681 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2682 spin_unlock(&delayed_refs->lock);
2683 }
d7df2c79 2684 return 0;
c3e69d58
CM
2685}
2686
709c0486
AJ
2687#ifdef SCRAMBLE_DELAYED_REFS
2688/*
2689 * Normally delayed refs get processed in ascending bytenr order. This
2690 * correlates in most cases to the order added. To expose dependencies on this
2691 * order, we start to process the tree in the middle instead of the beginning
2692 */
2693static u64 find_middle(struct rb_root *root)
2694{
2695 struct rb_node *n = root->rb_node;
2696 struct btrfs_delayed_ref_node *entry;
2697 int alt = 1;
2698 u64 middle;
2699 u64 first = 0, last = 0;
2700
2701 n = rb_first(root);
2702 if (n) {
2703 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2704 first = entry->bytenr;
2705 }
2706 n = rb_last(root);
2707 if (n) {
2708 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2709 last = entry->bytenr;
2710 }
2711 n = root->rb_node;
2712
2713 while (n) {
2714 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2715 WARN_ON(!entry->in_tree);
2716
2717 middle = entry->bytenr;
2718
2719 if (alt)
2720 n = n->rb_left;
2721 else
2722 n = n->rb_right;
2723
2724 alt = 1 - alt;
2725 }
2726 return middle;
2727}
2728#endif
2729
1be41b78
JB
2730static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2731{
2732 u64 num_bytes;
2733
2734 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2735 sizeof(struct btrfs_extent_inline_ref));
2736 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2737 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2738
2739 /*
2740 * We don't ever fill up leaves all the way so multiply by 2 just to be
2741 * closer to what we're really going to want to ouse.
2742 */
f8c269d7 2743 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2744}
2745
1262133b
JB
2746/*
2747 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2748 * would require to store the csums for that many bytes.
2749 */
28f75a0e 2750u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2751{
2752 u64 csum_size;
2753 u64 num_csums_per_leaf;
2754 u64 num_csums;
2755
2756 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2757 num_csums_per_leaf = div64_u64(csum_size,
2758 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2759 num_csums = div64_u64(csum_bytes, root->sectorsize);
2760 num_csums += num_csums_per_leaf - 1;
2761 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2762 return num_csums;
2763}
2764
0a2b2a84 2765int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2766 struct btrfs_root *root)
2767{
2768 struct btrfs_block_rsv *global_rsv;
2769 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2770 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2771 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2772 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2773 int ret = 0;
2774
2775 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2776 num_heads = heads_to_leaves(root, num_heads);
2777 if (num_heads > 1)
707e8a07 2778 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2779 num_bytes <<= 1;
28f75a0e 2780 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2781 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2782 num_dirty_bgs);
1be41b78
JB
2783 global_rsv = &root->fs_info->global_block_rsv;
2784
2785 /*
2786 * If we can't allocate any more chunks lets make sure we have _lots_ of
2787 * wiggle room since running delayed refs can create more delayed refs.
2788 */
cb723e49
JB
2789 if (global_rsv->space_info->full) {
2790 num_dirty_bgs_bytes <<= 1;
1be41b78 2791 num_bytes <<= 1;
cb723e49 2792 }
1be41b78
JB
2793
2794 spin_lock(&global_rsv->lock);
cb723e49 2795 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2796 ret = 1;
2797 spin_unlock(&global_rsv->lock);
2798 return ret;
2799}
2800
0a2b2a84
JB
2801int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2802 struct btrfs_root *root)
2803{
2804 struct btrfs_fs_info *fs_info = root->fs_info;
2805 u64 num_entries =
2806 atomic_read(&trans->transaction->delayed_refs.num_entries);
2807 u64 avg_runtime;
a79b7d4b 2808 u64 val;
0a2b2a84
JB
2809
2810 smp_mb();
2811 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2812 val = num_entries * avg_runtime;
0a2b2a84
JB
2813 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2814 return 1;
a79b7d4b
CM
2815 if (val >= NSEC_PER_SEC / 2)
2816 return 2;
0a2b2a84
JB
2817
2818 return btrfs_check_space_for_delayed_refs(trans, root);
2819}
2820
a79b7d4b
CM
2821struct async_delayed_refs {
2822 struct btrfs_root *root;
2823 int count;
2824 int error;
2825 int sync;
2826 struct completion wait;
2827 struct btrfs_work work;
2828};
2829
2830static void delayed_ref_async_start(struct btrfs_work *work)
2831{
2832 struct async_delayed_refs *async;
2833 struct btrfs_trans_handle *trans;
2834 int ret;
2835
2836 async = container_of(work, struct async_delayed_refs, work);
2837
2838 trans = btrfs_join_transaction(async->root);
2839 if (IS_ERR(trans)) {
2840 async->error = PTR_ERR(trans);
2841 goto done;
2842 }
2843
2844 /*
2845 * trans->sync means that when we call end_transaciton, we won't
2846 * wait on delayed refs
2847 */
2848 trans->sync = true;
2849 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2850 if (ret)
2851 async->error = ret;
2852
2853 ret = btrfs_end_transaction(trans, async->root);
2854 if (ret && !async->error)
2855 async->error = ret;
2856done:
2857 if (async->sync)
2858 complete(&async->wait);
2859 else
2860 kfree(async);
2861}
2862
2863int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2864 unsigned long count, int wait)
2865{
2866 struct async_delayed_refs *async;
2867 int ret;
2868
2869 async = kmalloc(sizeof(*async), GFP_NOFS);
2870 if (!async)
2871 return -ENOMEM;
2872
2873 async->root = root->fs_info->tree_root;
2874 async->count = count;
2875 async->error = 0;
2876 if (wait)
2877 async->sync = 1;
2878 else
2879 async->sync = 0;
2880 init_completion(&async->wait);
2881
9e0af237
LB
2882 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2883 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2884
2885 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2886
2887 if (wait) {
2888 wait_for_completion(&async->wait);
2889 ret = async->error;
2890 kfree(async);
2891 return ret;
2892 }
2893 return 0;
2894}
2895
c3e69d58
CM
2896/*
2897 * this starts processing the delayed reference count updates and
2898 * extent insertions we have queued up so far. count can be
2899 * 0, which means to process everything in the tree at the start
2900 * of the run (but not newly added entries), or it can be some target
2901 * number you'd like to process.
79787eaa
JM
2902 *
2903 * Returns 0 on success or if called with an aborted transaction
2904 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2905 */
2906int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2907 struct btrfs_root *root, unsigned long count)
2908{
2909 struct rb_node *node;
2910 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2911 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2912 int ret;
2913 int run_all = count == (unsigned long)-1;
d9a0540a 2914 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2915
79787eaa
JM
2916 /* We'll clean this up in btrfs_cleanup_transaction */
2917 if (trans->aborted)
2918 return 0;
2919
c3e69d58
CM
2920 if (root == root->fs_info->extent_root)
2921 root = root->fs_info->tree_root;
2922
2923 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2924 if (count == 0)
d7df2c79 2925 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2926
c3e69d58 2927again:
709c0486
AJ
2928#ifdef SCRAMBLE_DELAYED_REFS
2929 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2930#endif
d9a0540a 2931 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2932 ret = __btrfs_run_delayed_refs(trans, root, count);
2933 if (ret < 0) {
2934 btrfs_abort_transaction(trans, root, ret);
2935 return ret;
eb099670 2936 }
c3e69d58 2937
56bec294 2938 if (run_all) {
d7df2c79 2939 if (!list_empty(&trans->new_bgs))
ea658bad 2940 btrfs_create_pending_block_groups(trans, root);
ea658bad 2941
d7df2c79 2942 spin_lock(&delayed_refs->lock);
c46effa6 2943 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2944 if (!node) {
2945 spin_unlock(&delayed_refs->lock);
56bec294 2946 goto out;
d7df2c79 2947 }
c3e69d58 2948 count = (unsigned long)-1;
e9d0b13b 2949
56bec294 2950 while (node) {
c46effa6
LB
2951 head = rb_entry(node, struct btrfs_delayed_ref_head,
2952 href_node);
2953 if (btrfs_delayed_ref_is_head(&head->node)) {
2954 struct btrfs_delayed_ref_node *ref;
5caf2a00 2955
c46effa6 2956 ref = &head->node;
56bec294
CM
2957 atomic_inc(&ref->refs);
2958
2959 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2960 /*
2961 * Mutex was contended, block until it's
2962 * released and try again
2963 */
56bec294
CM
2964 mutex_lock(&head->mutex);
2965 mutex_unlock(&head->mutex);
2966
2967 btrfs_put_delayed_ref(ref);
1887be66 2968 cond_resched();
56bec294 2969 goto again;
c46effa6
LB
2970 } else {
2971 WARN_ON(1);
56bec294
CM
2972 }
2973 node = rb_next(node);
2974 }
2975 spin_unlock(&delayed_refs->lock);
d7df2c79 2976 cond_resched();
56bec294 2977 goto again;
5f39d397 2978 }
54aa1f4d 2979out:
edf39272 2980 assert_qgroups_uptodate(trans);
d9a0540a 2981 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2982 return 0;
2983}
2984
5d4f98a2
YZ
2985int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2986 struct btrfs_root *root,
2987 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2988 int level, int is_data)
5d4f98a2
YZ
2989{
2990 struct btrfs_delayed_extent_op *extent_op;
2991 int ret;
2992
78a6184a 2993 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2994 if (!extent_op)
2995 return -ENOMEM;
2996
2997 extent_op->flags_to_set = flags;
2998 extent_op->update_flags = 1;
2999 extent_op->update_key = 0;
3000 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 3001 extent_op->level = level;
5d4f98a2 3002
66d7e7f0
AJ
3003 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3004 num_bytes, extent_op);
5d4f98a2 3005 if (ret)
78a6184a 3006 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3007 return ret;
3008}
3009
3010static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3011 struct btrfs_root *root,
3012 struct btrfs_path *path,
3013 u64 objectid, u64 offset, u64 bytenr)
3014{
3015 struct btrfs_delayed_ref_head *head;
3016 struct btrfs_delayed_ref_node *ref;
3017 struct btrfs_delayed_data_ref *data_ref;
3018 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3019 int ret = 0;
3020
5d4f98a2
YZ
3021 delayed_refs = &trans->transaction->delayed_refs;
3022 spin_lock(&delayed_refs->lock);
3023 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3024 if (!head) {
3025 spin_unlock(&delayed_refs->lock);
3026 return 0;
3027 }
5d4f98a2
YZ
3028
3029 if (!mutex_trylock(&head->mutex)) {
3030 atomic_inc(&head->node.refs);
3031 spin_unlock(&delayed_refs->lock);
3032
b3b4aa74 3033 btrfs_release_path(path);
5d4f98a2 3034
8cc33e5c
DS
3035 /*
3036 * Mutex was contended, block until it's released and let
3037 * caller try again
3038 */
5d4f98a2
YZ
3039 mutex_lock(&head->mutex);
3040 mutex_unlock(&head->mutex);
3041 btrfs_put_delayed_ref(&head->node);
3042 return -EAGAIN;
3043 }
d7df2c79 3044 spin_unlock(&delayed_refs->lock);
5d4f98a2 3045
d7df2c79 3046 spin_lock(&head->lock);
c6fc2454 3047 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3048 /* If it's a shared ref we know a cross reference exists */
3049 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3050 ret = 1;
3051 break;
3052 }
5d4f98a2 3053
d7df2c79 3054 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3055
d7df2c79
JB
3056 /*
3057 * If our ref doesn't match the one we're currently looking at
3058 * then we have a cross reference.
3059 */
3060 if (data_ref->root != root->root_key.objectid ||
3061 data_ref->objectid != objectid ||
3062 data_ref->offset != offset) {
3063 ret = 1;
3064 break;
3065 }
5d4f98a2 3066 }
d7df2c79 3067 spin_unlock(&head->lock);
5d4f98a2 3068 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3069 return ret;
3070}
3071
3072static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3073 struct btrfs_root *root,
3074 struct btrfs_path *path,
3075 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3076{
3077 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3078 struct extent_buffer *leaf;
5d4f98a2
YZ
3079 struct btrfs_extent_data_ref *ref;
3080 struct btrfs_extent_inline_ref *iref;
3081 struct btrfs_extent_item *ei;
f321e491 3082 struct btrfs_key key;
5d4f98a2 3083 u32 item_size;
be20aa9d 3084 int ret;
925baedd 3085
be20aa9d 3086 key.objectid = bytenr;
31840ae1 3087 key.offset = (u64)-1;
f321e491 3088 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3089
be20aa9d
CM
3090 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3091 if (ret < 0)
3092 goto out;
79787eaa 3093 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3094
3095 ret = -ENOENT;
3096 if (path->slots[0] == 0)
31840ae1 3097 goto out;
be20aa9d 3098
31840ae1 3099 path->slots[0]--;
f321e491 3100 leaf = path->nodes[0];
5d4f98a2 3101 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3102
5d4f98a2 3103 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3104 goto out;
f321e491 3105
5d4f98a2
YZ
3106 ret = 1;
3107 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3108#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3109 if (item_size < sizeof(*ei)) {
3110 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3111 goto out;
3112 }
3113#endif
3114 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3115
5d4f98a2
YZ
3116 if (item_size != sizeof(*ei) +
3117 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3118 goto out;
be20aa9d 3119
5d4f98a2
YZ
3120 if (btrfs_extent_generation(leaf, ei) <=
3121 btrfs_root_last_snapshot(&root->root_item))
3122 goto out;
3123
3124 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3125 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3126 BTRFS_EXTENT_DATA_REF_KEY)
3127 goto out;
3128
3129 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3130 if (btrfs_extent_refs(leaf, ei) !=
3131 btrfs_extent_data_ref_count(leaf, ref) ||
3132 btrfs_extent_data_ref_root(leaf, ref) !=
3133 root->root_key.objectid ||
3134 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3135 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3136 goto out;
3137
3138 ret = 0;
3139out:
3140 return ret;
3141}
3142
3143int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3144 struct btrfs_root *root,
3145 u64 objectid, u64 offset, u64 bytenr)
3146{
3147 struct btrfs_path *path;
3148 int ret;
3149 int ret2;
3150
3151 path = btrfs_alloc_path();
3152 if (!path)
3153 return -ENOENT;
3154
3155 do {
3156 ret = check_committed_ref(trans, root, path, objectid,
3157 offset, bytenr);
3158 if (ret && ret != -ENOENT)
f321e491 3159 goto out;
80ff3856 3160
5d4f98a2
YZ
3161 ret2 = check_delayed_ref(trans, root, path, objectid,
3162 offset, bytenr);
3163 } while (ret2 == -EAGAIN);
3164
3165 if (ret2 && ret2 != -ENOENT) {
3166 ret = ret2;
3167 goto out;
f321e491 3168 }
5d4f98a2
YZ
3169
3170 if (ret != -ENOENT || ret2 != -ENOENT)
3171 ret = 0;
be20aa9d 3172out:
80ff3856 3173 btrfs_free_path(path);
f0486c68
YZ
3174 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3175 WARN_ON(ret > 0);
f321e491 3176 return ret;
be20aa9d 3177}
c5739bba 3178
5d4f98a2 3179static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3180 struct btrfs_root *root,
5d4f98a2 3181 struct extent_buffer *buf,
e339a6b0 3182 int full_backref, int inc)
31840ae1
ZY
3183{
3184 u64 bytenr;
5d4f98a2
YZ
3185 u64 num_bytes;
3186 u64 parent;
31840ae1 3187 u64 ref_root;
31840ae1 3188 u32 nritems;
31840ae1
ZY
3189 struct btrfs_key key;
3190 struct btrfs_file_extent_item *fi;
3191 int i;
3192 int level;
3193 int ret = 0;
31840ae1 3194 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3195 u64, u64, u64, u64, u64, u64, int);
31840ae1 3196
fccb84c9
DS
3197
3198 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3199 return 0;
fccb84c9 3200
31840ae1 3201 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3202 nritems = btrfs_header_nritems(buf);
3203 level = btrfs_header_level(buf);
3204
27cdeb70 3205 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3206 return 0;
31840ae1 3207
5d4f98a2
YZ
3208 if (inc)
3209 process_func = btrfs_inc_extent_ref;
3210 else
3211 process_func = btrfs_free_extent;
31840ae1 3212
5d4f98a2
YZ
3213 if (full_backref)
3214 parent = buf->start;
3215 else
3216 parent = 0;
3217
3218 for (i = 0; i < nritems; i++) {
31840ae1 3219 if (level == 0) {
5d4f98a2 3220 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3221 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3222 continue;
5d4f98a2 3223 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3224 struct btrfs_file_extent_item);
3225 if (btrfs_file_extent_type(buf, fi) ==
3226 BTRFS_FILE_EXTENT_INLINE)
3227 continue;
3228 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3229 if (bytenr == 0)
3230 continue;
5d4f98a2
YZ
3231
3232 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3233 key.offset -= btrfs_file_extent_offset(buf, fi);
3234 ret = process_func(trans, root, bytenr, num_bytes,
3235 parent, ref_root, key.objectid,
e339a6b0 3236 key.offset, 1);
31840ae1
ZY
3237 if (ret)
3238 goto fail;
3239 } else {
5d4f98a2 3240 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3241 num_bytes = root->nodesize;
5d4f98a2 3242 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3243 parent, ref_root, level - 1, 0,
e339a6b0 3244 1);
31840ae1
ZY
3245 if (ret)
3246 goto fail;
3247 }
3248 }
3249 return 0;
3250fail:
5d4f98a2
YZ
3251 return ret;
3252}
3253
3254int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3255 struct extent_buffer *buf, int full_backref)
5d4f98a2 3256{
e339a6b0 3257 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3258}
3259
3260int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3261 struct extent_buffer *buf, int full_backref)
5d4f98a2 3262{
e339a6b0 3263 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3264}
3265
9078a3e1
CM
3266static int write_one_cache_group(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *root,
3268 struct btrfs_path *path,
3269 struct btrfs_block_group_cache *cache)
3270{
3271 int ret;
9078a3e1 3272 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3273 unsigned long bi;
3274 struct extent_buffer *leaf;
9078a3e1 3275
9078a3e1 3276 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3277 if (ret) {
3278 if (ret > 0)
3279 ret = -ENOENT;
54aa1f4d 3280 goto fail;
df95e7f0 3281 }
5f39d397
CM
3282
3283 leaf = path->nodes[0];
3284 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3285 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3286 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3287fail:
24b89d08 3288 btrfs_release_path(path);
df95e7f0 3289 return ret;
9078a3e1
CM
3290
3291}
3292
4a8c9a62
YZ
3293static struct btrfs_block_group_cache *
3294next_block_group(struct btrfs_root *root,
3295 struct btrfs_block_group_cache *cache)
3296{
3297 struct rb_node *node;
292cbd51 3298
4a8c9a62 3299 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3300
3301 /* If our block group was removed, we need a full search. */
3302 if (RB_EMPTY_NODE(&cache->cache_node)) {
3303 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3304
3305 spin_unlock(&root->fs_info->block_group_cache_lock);
3306 btrfs_put_block_group(cache);
3307 cache = btrfs_lookup_first_block_group(root->fs_info,
3308 next_bytenr);
3309 return cache;
3310 }
4a8c9a62
YZ
3311 node = rb_next(&cache->cache_node);
3312 btrfs_put_block_group(cache);
3313 if (node) {
3314 cache = rb_entry(node, struct btrfs_block_group_cache,
3315 cache_node);
11dfe35a 3316 btrfs_get_block_group(cache);
4a8c9a62
YZ
3317 } else
3318 cache = NULL;
3319 spin_unlock(&root->fs_info->block_group_cache_lock);
3320 return cache;
3321}
3322
0af3d00b
JB
3323static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3324 struct btrfs_trans_handle *trans,
3325 struct btrfs_path *path)
3326{
3327 struct btrfs_root *root = block_group->fs_info->tree_root;
3328 struct inode *inode = NULL;
3329 u64 alloc_hint = 0;
2b20982e 3330 int dcs = BTRFS_DC_ERROR;
f8c269d7 3331 u64 num_pages = 0;
0af3d00b
JB
3332 int retries = 0;
3333 int ret = 0;
3334
3335 /*
3336 * If this block group is smaller than 100 megs don't bother caching the
3337 * block group.
3338 */
3339 if (block_group->key.offset < (100 * 1024 * 1024)) {
3340 spin_lock(&block_group->lock);
3341 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3342 spin_unlock(&block_group->lock);
3343 return 0;
3344 }
3345
0c0ef4bc
JB
3346 if (trans->aborted)
3347 return 0;
0af3d00b
JB
3348again:
3349 inode = lookup_free_space_inode(root, block_group, path);
3350 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3351 ret = PTR_ERR(inode);
b3b4aa74 3352 btrfs_release_path(path);
0af3d00b
JB
3353 goto out;
3354 }
3355
3356 if (IS_ERR(inode)) {
3357 BUG_ON(retries);
3358 retries++;
3359
3360 if (block_group->ro)
3361 goto out_free;
3362
3363 ret = create_free_space_inode(root, trans, block_group, path);
3364 if (ret)
3365 goto out_free;
3366 goto again;
3367 }
3368
5b0e95bf
JB
3369 /* We've already setup this transaction, go ahead and exit */
3370 if (block_group->cache_generation == trans->transid &&
3371 i_size_read(inode)) {
3372 dcs = BTRFS_DC_SETUP;
3373 goto out_put;
3374 }
3375
0af3d00b
JB
3376 /*
3377 * We want to set the generation to 0, that way if anything goes wrong
3378 * from here on out we know not to trust this cache when we load up next
3379 * time.
3380 */
3381 BTRFS_I(inode)->generation = 0;
3382 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3383 if (ret) {
3384 /*
3385 * So theoretically we could recover from this, simply set the
3386 * super cache generation to 0 so we know to invalidate the
3387 * cache, but then we'd have to keep track of the block groups
3388 * that fail this way so we know we _have_ to reset this cache
3389 * before the next commit or risk reading stale cache. So to
3390 * limit our exposure to horrible edge cases lets just abort the
3391 * transaction, this only happens in really bad situations
3392 * anyway.
3393 */
3394 btrfs_abort_transaction(trans, root, ret);
3395 goto out_put;
3396 }
0af3d00b
JB
3397 WARN_ON(ret);
3398
3399 if (i_size_read(inode) > 0) {
7b61cd92
MX
3400 ret = btrfs_check_trunc_cache_free_space(root,
3401 &root->fs_info->global_block_rsv);
3402 if (ret)
3403 goto out_put;
3404
1bbc621e 3405 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3406 if (ret)
3407 goto out_put;
3408 }
3409
3410 spin_lock(&block_group->lock);
cf7c1ef6 3411 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3412 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3413 /*
3414 * don't bother trying to write stuff out _if_
3415 * a) we're not cached,
3416 * b) we're with nospace_cache mount option.
3417 */
2b20982e 3418 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3419 spin_unlock(&block_group->lock);
3420 goto out_put;
3421 }
3422 spin_unlock(&block_group->lock);
3423
2968b1f4
JB
3424 /*
3425 * We hit an ENOSPC when setting up the cache in this transaction, just
3426 * skip doing the setup, we've already cleared the cache so we're safe.
3427 */
3428 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3429 ret = -ENOSPC;
3430 goto out_put;
3431 }
3432
6fc823b1
JB
3433 /*
3434 * Try to preallocate enough space based on how big the block group is.
3435 * Keep in mind this has to include any pinned space which could end up
3436 * taking up quite a bit since it's not folded into the other space
3437 * cache.
3438 */
f8c269d7 3439 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3440 if (!num_pages)
3441 num_pages = 1;
3442
0af3d00b
JB
3443 num_pages *= 16;
3444 num_pages *= PAGE_CACHE_SIZE;
3445
7cf5b976 3446 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3447 if (ret)
3448 goto out_put;
3449
3450 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3451 num_pages, num_pages,
3452 &alloc_hint);
2968b1f4
JB
3453 /*
3454 * Our cache requires contiguous chunks so that we don't modify a bunch
3455 * of metadata or split extents when writing the cache out, which means
3456 * we can enospc if we are heavily fragmented in addition to just normal
3457 * out of space conditions. So if we hit this just skip setting up any
3458 * other block groups for this transaction, maybe we'll unpin enough
3459 * space the next time around.
3460 */
2b20982e
JB
3461 if (!ret)
3462 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3463 else if (ret == -ENOSPC)
3464 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3465 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3466
0af3d00b
JB
3467out_put:
3468 iput(inode);
3469out_free:
b3b4aa74 3470 btrfs_release_path(path);
0af3d00b
JB
3471out:
3472 spin_lock(&block_group->lock);
e65cbb94 3473 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3474 block_group->cache_generation = trans->transid;
2b20982e 3475 block_group->disk_cache_state = dcs;
0af3d00b
JB
3476 spin_unlock(&block_group->lock);
3477
3478 return ret;
3479}
3480
dcdf7f6d
JB
3481int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3482 struct btrfs_root *root)
3483{
3484 struct btrfs_block_group_cache *cache, *tmp;
3485 struct btrfs_transaction *cur_trans = trans->transaction;
3486 struct btrfs_path *path;
3487
3488 if (list_empty(&cur_trans->dirty_bgs) ||
3489 !btrfs_test_opt(root, SPACE_CACHE))
3490 return 0;
3491
3492 path = btrfs_alloc_path();
3493 if (!path)
3494 return -ENOMEM;
3495
3496 /* Could add new block groups, use _safe just in case */
3497 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3498 dirty_list) {
3499 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3500 cache_save_setup(cache, trans, path);
3501 }
3502
3503 btrfs_free_path(path);
3504 return 0;
3505}
3506
1bbc621e
CM
3507/*
3508 * transaction commit does final block group cache writeback during a
3509 * critical section where nothing is allowed to change the FS. This is
3510 * required in order for the cache to actually match the block group,
3511 * but can introduce a lot of latency into the commit.
3512 *
3513 * So, btrfs_start_dirty_block_groups is here to kick off block group
3514 * cache IO. There's a chance we'll have to redo some of it if the
3515 * block group changes again during the commit, but it greatly reduces
3516 * the commit latency by getting rid of the easy block groups while
3517 * we're still allowing others to join the commit.
3518 */
3519int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3520 struct btrfs_root *root)
9078a3e1 3521{
4a8c9a62 3522 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3523 struct btrfs_transaction *cur_trans = trans->transaction;
3524 int ret = 0;
c9dc4c65 3525 int should_put;
1bbc621e
CM
3526 struct btrfs_path *path = NULL;
3527 LIST_HEAD(dirty);
3528 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3529 int num_started = 0;
1bbc621e
CM
3530 int loops = 0;
3531
3532 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3533 if (list_empty(&cur_trans->dirty_bgs)) {
3534 spin_unlock(&cur_trans->dirty_bgs_lock);
3535 return 0;
1bbc621e 3536 }
b58d1a9e 3537 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3538 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3539
1bbc621e 3540again:
1bbc621e
CM
3541 /*
3542 * make sure all the block groups on our dirty list actually
3543 * exist
3544 */
3545 btrfs_create_pending_block_groups(trans, root);
3546
3547 if (!path) {
3548 path = btrfs_alloc_path();
3549 if (!path)
3550 return -ENOMEM;
3551 }
3552
b58d1a9e
FM
3553 /*
3554 * cache_write_mutex is here only to save us from balance or automatic
3555 * removal of empty block groups deleting this block group while we are
3556 * writing out the cache
3557 */
3558 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3559 while (!list_empty(&dirty)) {
3560 cache = list_first_entry(&dirty,
3561 struct btrfs_block_group_cache,
3562 dirty_list);
1bbc621e
CM
3563 /*
3564 * this can happen if something re-dirties a block
3565 * group that is already under IO. Just wait for it to
3566 * finish and then do it all again
3567 */
3568 if (!list_empty(&cache->io_list)) {
3569 list_del_init(&cache->io_list);
3570 btrfs_wait_cache_io(root, trans, cache,
3571 &cache->io_ctl, path,
3572 cache->key.objectid);
3573 btrfs_put_block_group(cache);
3574 }
3575
3576
3577 /*
3578 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3579 * if it should update the cache_state. Don't delete
3580 * until after we wait.
3581 *
3582 * Since we're not running in the commit critical section
3583 * we need the dirty_bgs_lock to protect from update_block_group
3584 */
3585 spin_lock(&cur_trans->dirty_bgs_lock);
3586 list_del_init(&cache->dirty_list);
3587 spin_unlock(&cur_trans->dirty_bgs_lock);
3588
3589 should_put = 1;
3590
3591 cache_save_setup(cache, trans, path);
3592
3593 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3594 cache->io_ctl.inode = NULL;
3595 ret = btrfs_write_out_cache(root, trans, cache, path);
3596 if (ret == 0 && cache->io_ctl.inode) {
3597 num_started++;
3598 should_put = 0;
3599
3600 /*
3601 * the cache_write_mutex is protecting
3602 * the io_list
3603 */
3604 list_add_tail(&cache->io_list, io);
3605 } else {
3606 /*
3607 * if we failed to write the cache, the
3608 * generation will be bad and life goes on
3609 */
3610 ret = 0;
3611 }
3612 }
ff1f8250 3613 if (!ret) {
1bbc621e 3614 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3615 /*
3616 * Our block group might still be attached to the list
3617 * of new block groups in the transaction handle of some
3618 * other task (struct btrfs_trans_handle->new_bgs). This
3619 * means its block group item isn't yet in the extent
3620 * tree. If this happens ignore the error, as we will
3621 * try again later in the critical section of the
3622 * transaction commit.
3623 */
3624 if (ret == -ENOENT) {
3625 ret = 0;
3626 spin_lock(&cur_trans->dirty_bgs_lock);
3627 if (list_empty(&cache->dirty_list)) {
3628 list_add_tail(&cache->dirty_list,
3629 &cur_trans->dirty_bgs);
3630 btrfs_get_block_group(cache);
3631 }
3632 spin_unlock(&cur_trans->dirty_bgs_lock);
3633 } else if (ret) {
3634 btrfs_abort_transaction(trans, root, ret);
3635 }
3636 }
1bbc621e
CM
3637
3638 /* if its not on the io list, we need to put the block group */
3639 if (should_put)
3640 btrfs_put_block_group(cache);
3641
3642 if (ret)
3643 break;
b58d1a9e
FM
3644
3645 /*
3646 * Avoid blocking other tasks for too long. It might even save
3647 * us from writing caches for block groups that are going to be
3648 * removed.
3649 */
3650 mutex_unlock(&trans->transaction->cache_write_mutex);
3651 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3652 }
b58d1a9e 3653 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3654
3655 /*
3656 * go through delayed refs for all the stuff we've just kicked off
3657 * and then loop back (just once)
3658 */
3659 ret = btrfs_run_delayed_refs(trans, root, 0);
3660 if (!ret && loops == 0) {
3661 loops++;
3662 spin_lock(&cur_trans->dirty_bgs_lock);
3663 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3664 /*
3665 * dirty_bgs_lock protects us from concurrent block group
3666 * deletes too (not just cache_write_mutex).
3667 */
3668 if (!list_empty(&dirty)) {
3669 spin_unlock(&cur_trans->dirty_bgs_lock);
3670 goto again;
3671 }
1bbc621e 3672 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3673 }
3674
3675 btrfs_free_path(path);
3676 return ret;
3677}
3678
3679int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3680 struct btrfs_root *root)
3681{
3682 struct btrfs_block_group_cache *cache;
3683 struct btrfs_transaction *cur_trans = trans->transaction;
3684 int ret = 0;
3685 int should_put;
3686 struct btrfs_path *path;
3687 struct list_head *io = &cur_trans->io_bgs;
3688 int num_started = 0;
9078a3e1
CM
3689
3690 path = btrfs_alloc_path();
3691 if (!path)
3692 return -ENOMEM;
3693
ce93ec54
JB
3694 /*
3695 * We don't need the lock here since we are protected by the transaction
3696 * commit. We want to do the cache_save_setup first and then run the
3697 * delayed refs to make sure we have the best chance at doing this all
3698 * in one shot.
3699 */
3700 while (!list_empty(&cur_trans->dirty_bgs)) {
3701 cache = list_first_entry(&cur_trans->dirty_bgs,
3702 struct btrfs_block_group_cache,
3703 dirty_list);
c9dc4c65
CM
3704
3705 /*
3706 * this can happen if cache_save_setup re-dirties a block
3707 * group that is already under IO. Just wait for it to
3708 * finish and then do it all again
3709 */
3710 if (!list_empty(&cache->io_list)) {
3711 list_del_init(&cache->io_list);
3712 btrfs_wait_cache_io(root, trans, cache,
3713 &cache->io_ctl, path,
3714 cache->key.objectid);
3715 btrfs_put_block_group(cache);
c9dc4c65
CM
3716 }
3717
1bbc621e
CM
3718 /*
3719 * don't remove from the dirty list until after we've waited
3720 * on any pending IO
3721 */
ce93ec54 3722 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3723 should_put = 1;
3724
1bbc621e 3725 cache_save_setup(cache, trans, path);
c9dc4c65 3726
ce93ec54 3727 if (!ret)
c9dc4c65
CM
3728 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3729
3730 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3731 cache->io_ctl.inode = NULL;
3732 ret = btrfs_write_out_cache(root, trans, cache, path);
3733 if (ret == 0 && cache->io_ctl.inode) {
3734 num_started++;
3735 should_put = 0;
1bbc621e 3736 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3737 } else {
3738 /*
3739 * if we failed to write the cache, the
3740 * generation will be bad and life goes on
3741 */
3742 ret = 0;
3743 }
3744 }
ff1f8250 3745 if (!ret) {
ce93ec54 3746 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3747 if (ret)
3748 btrfs_abort_transaction(trans, root, ret);
3749 }
c9dc4c65
CM
3750
3751 /* if its not on the io list, we need to put the block group */
3752 if (should_put)
3753 btrfs_put_block_group(cache);
3754 }
3755
1bbc621e
CM
3756 while (!list_empty(io)) {
3757 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3758 io_list);
3759 list_del_init(&cache->io_list);
c9dc4c65
CM
3760 btrfs_wait_cache_io(root, trans, cache,
3761 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3762 btrfs_put_block_group(cache);
3763 }
3764
9078a3e1 3765 btrfs_free_path(path);
ce93ec54 3766 return ret;
9078a3e1
CM
3767}
3768
d2fb3437
YZ
3769int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3770{
3771 struct btrfs_block_group_cache *block_group;
3772 int readonly = 0;
3773
3774 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3775 if (!block_group || block_group->ro)
3776 readonly = 1;
3777 if (block_group)
fa9c0d79 3778 btrfs_put_block_group(block_group);
d2fb3437
YZ
3779 return readonly;
3780}
3781
6ab0a202
JM
3782static const char *alloc_name(u64 flags)
3783{
3784 switch (flags) {
3785 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3786 return "mixed";
3787 case BTRFS_BLOCK_GROUP_METADATA:
3788 return "metadata";
3789 case BTRFS_BLOCK_GROUP_DATA:
3790 return "data";
3791 case BTRFS_BLOCK_GROUP_SYSTEM:
3792 return "system";
3793 default:
3794 WARN_ON(1);
3795 return "invalid-combination";
3796 };
3797}
3798
593060d7
CM
3799static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3800 u64 total_bytes, u64 bytes_used,
3801 struct btrfs_space_info **space_info)
3802{
3803 struct btrfs_space_info *found;
b742bb82
YZ
3804 int i;
3805 int factor;
b150a4f1 3806 int ret;
b742bb82
YZ
3807
3808 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3809 BTRFS_BLOCK_GROUP_RAID10))
3810 factor = 2;
3811 else
3812 factor = 1;
593060d7
CM
3813
3814 found = __find_space_info(info, flags);
3815 if (found) {
25179201 3816 spin_lock(&found->lock);
593060d7 3817 found->total_bytes += total_bytes;
89a55897 3818 found->disk_total += total_bytes * factor;
593060d7 3819 found->bytes_used += bytes_used;
b742bb82 3820 found->disk_used += bytes_used * factor;
2e6e5183
FM
3821 if (total_bytes > 0)
3822 found->full = 0;
25179201 3823 spin_unlock(&found->lock);
593060d7
CM
3824 *space_info = found;
3825 return 0;
3826 }
c146afad 3827 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3828 if (!found)
3829 return -ENOMEM;
3830
908c7f19 3831 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3832 if (ret) {
3833 kfree(found);
3834 return ret;
3835 }
3836
c1895442 3837 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3838 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3839 init_rwsem(&found->groups_sem);
0f9dd46c 3840 spin_lock_init(&found->lock);
52ba6929 3841 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3842 found->total_bytes = total_bytes;
89a55897 3843 found->disk_total = total_bytes * factor;
593060d7 3844 found->bytes_used = bytes_used;
b742bb82 3845 found->disk_used = bytes_used * factor;
593060d7 3846 found->bytes_pinned = 0;
e8569813 3847 found->bytes_reserved = 0;
c146afad 3848 found->bytes_readonly = 0;
f0486c68 3849 found->bytes_may_use = 0;
6af3e3ad 3850 found->full = 0;
4f4db217 3851 found->max_extent_size = 0;
0e4f8f88 3852 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3853 found->chunk_alloc = 0;
fdb5effd
JB
3854 found->flush = 0;
3855 init_waitqueue_head(&found->wait);
633c0aad 3856 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3857
3858 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3859 info->space_info_kobj, "%s",
3860 alloc_name(found->flags));
3861 if (ret) {
3862 kfree(found);
3863 return ret;
3864 }
3865
593060d7 3866 *space_info = found;
4184ea7f 3867 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3868 if (flags & BTRFS_BLOCK_GROUP_DATA)
3869 info->data_sinfo = found;
6ab0a202
JM
3870
3871 return ret;
593060d7
CM
3872}
3873
8790d502
CM
3874static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3875{
899c81ea
ID
3876 u64 extra_flags = chunk_to_extended(flags) &
3877 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3878
de98ced9 3879 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3880 if (flags & BTRFS_BLOCK_GROUP_DATA)
3881 fs_info->avail_data_alloc_bits |= extra_flags;
3882 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3883 fs_info->avail_metadata_alloc_bits |= extra_flags;
3884 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3885 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3886 write_sequnlock(&fs_info->profiles_lock);
8790d502 3887}
593060d7 3888
fc67c450
ID
3889/*
3890 * returns target flags in extended format or 0 if restripe for this
3891 * chunk_type is not in progress
c6664b42
ID
3892 *
3893 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3894 */
3895static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3896{
3897 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3898 u64 target = 0;
3899
fc67c450
ID
3900 if (!bctl)
3901 return 0;
3902
3903 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3904 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3905 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3906 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3907 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3908 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3909 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3910 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3911 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3912 }
3913
3914 return target;
3915}
3916
a46d11a8
ID
3917/*
3918 * @flags: available profiles in extended format (see ctree.h)
3919 *
e4d8ec0f
ID
3920 * Returns reduced profile in chunk format. If profile changing is in
3921 * progress (either running or paused) picks the target profile (if it's
3922 * already available), otherwise falls back to plain reducing.
a46d11a8 3923 */
48a3b636 3924static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3925{
95669976 3926 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3927 u64 target;
9c170b26
ZL
3928 u64 raid_type;
3929 u64 allowed = 0;
a061fc8d 3930
fc67c450
ID
3931 /*
3932 * see if restripe for this chunk_type is in progress, if so
3933 * try to reduce to the target profile
3934 */
e4d8ec0f 3935 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3936 target = get_restripe_target(root->fs_info, flags);
3937 if (target) {
3938 /* pick target profile only if it's already available */
3939 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3940 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3941 return extended_to_chunk(target);
e4d8ec0f
ID
3942 }
3943 }
3944 spin_unlock(&root->fs_info->balance_lock);
3945
53b381b3 3946 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3947 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3948 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3949 allowed |= btrfs_raid_group[raid_type];
3950 }
3951 allowed &= flags;
3952
3953 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3954 allowed = BTRFS_BLOCK_GROUP_RAID6;
3955 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3956 allowed = BTRFS_BLOCK_GROUP_RAID5;
3957 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3958 allowed = BTRFS_BLOCK_GROUP_RAID10;
3959 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3960 allowed = BTRFS_BLOCK_GROUP_RAID1;
3961 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3962 allowed = BTRFS_BLOCK_GROUP_RAID0;
3963
3964 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3965
3966 return extended_to_chunk(flags | allowed);
ec44a35c
CM
3967}
3968
f8213bdc 3969static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3970{
de98ced9 3971 unsigned seq;
f8213bdc 3972 u64 flags;
de98ced9
MX
3973
3974 do {
f8213bdc 3975 flags = orig_flags;
de98ced9
MX
3976 seq = read_seqbegin(&root->fs_info->profiles_lock);
3977
3978 if (flags & BTRFS_BLOCK_GROUP_DATA)
3979 flags |= root->fs_info->avail_data_alloc_bits;
3980 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3981 flags |= root->fs_info->avail_system_alloc_bits;
3982 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3983 flags |= root->fs_info->avail_metadata_alloc_bits;
3984 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3985
b742bb82 3986 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3987}
3988
6d07bcec 3989u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3990{
b742bb82 3991 u64 flags;
53b381b3 3992 u64 ret;
9ed74f2d 3993
b742bb82
YZ
3994 if (data)
3995 flags = BTRFS_BLOCK_GROUP_DATA;
3996 else if (root == root->fs_info->chunk_root)
3997 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3998 else
b742bb82 3999 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4000
53b381b3
DW
4001 ret = get_alloc_profile(root, flags);
4002 return ret;
6a63209f 4003}
9ed74f2d 4004
4ceff079 4005int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4006{
6a63209f 4007 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4008 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4009 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4010 u64 used;
94b947b2 4011 int ret = 0;
c99f1b0c
ZL
4012 int need_commit = 2;
4013 int have_pinned_space;
6a63209f 4014
6a63209f 4015 /* make sure bytes are sectorsize aligned */
fda2832f 4016 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4017
9dced186 4018 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4019 need_commit = 0;
9dced186 4020 ASSERT(current->journal_info);
0af3d00b
JB
4021 }
4022
b4d7c3c9 4023 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4024 if (!data_sinfo)
4025 goto alloc;
9ed74f2d 4026
6a63209f
JB
4027again:
4028 /* make sure we have enough space to handle the data first */
4029 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4030 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4031 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4032 data_sinfo->bytes_may_use;
ab6e2410
JB
4033
4034 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4035 struct btrfs_trans_handle *trans;
9ed74f2d 4036
6a63209f
JB
4037 /*
4038 * if we don't have enough free bytes in this space then we need
4039 * to alloc a new chunk.
4040 */
b9fd47cd 4041 if (!data_sinfo->full) {
6a63209f 4042 u64 alloc_target;
9ed74f2d 4043
0e4f8f88 4044 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4045 spin_unlock(&data_sinfo->lock);
33b4d47f 4046alloc:
6a63209f 4047 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4048 /*
4049 * It is ugly that we don't call nolock join
4050 * transaction for the free space inode case here.
4051 * But it is safe because we only do the data space
4052 * reservation for the free space cache in the
4053 * transaction context, the common join transaction
4054 * just increase the counter of the current transaction
4055 * handler, doesn't try to acquire the trans_lock of
4056 * the fs.
4057 */
7a7eaa40 4058 trans = btrfs_join_transaction(root);
a22285a6
YZ
4059 if (IS_ERR(trans))
4060 return PTR_ERR(trans);
9ed74f2d 4061
6a63209f 4062 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4063 alloc_target,
4064 CHUNK_ALLOC_NO_FORCE);
6a63209f 4065 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4066 if (ret < 0) {
4067 if (ret != -ENOSPC)
4068 return ret;
c99f1b0c
ZL
4069 else {
4070 have_pinned_space = 1;
d52a5b5f 4071 goto commit_trans;
c99f1b0c 4072 }
d52a5b5f 4073 }
9ed74f2d 4074
b4d7c3c9
LZ
4075 if (!data_sinfo)
4076 data_sinfo = fs_info->data_sinfo;
4077
6a63209f
JB
4078 goto again;
4079 }
f2bb8f5c
JB
4080
4081 /*
b150a4f1 4082 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4083 * allocation, and no removed chunk in current transaction,
4084 * don't bother committing the transaction.
f2bb8f5c 4085 */
c99f1b0c
ZL
4086 have_pinned_space = percpu_counter_compare(
4087 &data_sinfo->total_bytes_pinned,
4088 used + bytes - data_sinfo->total_bytes);
6a63209f 4089 spin_unlock(&data_sinfo->lock);
6a63209f 4090
4e06bdd6 4091 /* commit the current transaction and try again */
d52a5b5f 4092commit_trans:
c99f1b0c 4093 if (need_commit &&
a4abeea4 4094 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4095 need_commit--;
b150a4f1 4096
9a4e7276
ZL
4097 if (need_commit > 0)
4098 btrfs_wait_ordered_roots(fs_info, -1);
4099
7a7eaa40 4100 trans = btrfs_join_transaction(root);
a22285a6
YZ
4101 if (IS_ERR(trans))
4102 return PTR_ERR(trans);
c99f1b0c 4103 if (have_pinned_space >= 0 ||
3204d33c
JB
4104 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4105 &trans->transaction->flags) ||
c99f1b0c 4106 need_commit > 0) {
94b947b2
ZL
4107 ret = btrfs_commit_transaction(trans, root);
4108 if (ret)
4109 return ret;
d7c15171
ZL
4110 /*
4111 * make sure that all running delayed iput are
4112 * done
4113 */
4114 down_write(&root->fs_info->delayed_iput_sem);
4115 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4116 goto again;
4117 } else {
4118 btrfs_end_transaction(trans, root);
4119 }
4e06bdd6 4120 }
9ed74f2d 4121
cab45e22
JM
4122 trace_btrfs_space_reservation(root->fs_info,
4123 "space_info:enospc",
4124 data_sinfo->flags, bytes, 1);
6a63209f
JB
4125 return -ENOSPC;
4126 }
4127 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4128 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4129 data_sinfo->flags, bytes, 1);
6a63209f 4130 spin_unlock(&data_sinfo->lock);
6a63209f 4131
237c0e9f 4132 return ret;
9ed74f2d 4133}
6a63209f 4134
4ceff079
QW
4135/*
4136 * New check_data_free_space() with ability for precious data reservation
4137 * Will replace old btrfs_check_data_free_space(), but for patch split,
4138 * add a new function first and then replace it.
4139 */
7cf5b976 4140int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4141{
4142 struct btrfs_root *root = BTRFS_I(inode)->root;
4143 int ret;
4144
4145 /* align the range */
4146 len = round_up(start + len, root->sectorsize) -
4147 round_down(start, root->sectorsize);
4148 start = round_down(start, root->sectorsize);
4149
4150 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4151 if (ret < 0)
4152 return ret;
4153
94ed938a
QW
4154 /*
4155 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4156 *
4157 * TODO: Find a good method to avoid reserve data space for NOCOW
4158 * range, but don't impact performance on quota disable case.
4159 */
4ceff079
QW
4160 ret = btrfs_qgroup_reserve_data(inode, start, len);
4161 return ret;
4162}
4163
4ceff079
QW
4164/*
4165 * Called if we need to clear a data reservation for this inode
4166 * Normally in a error case.
4167 *
51773bec
QW
4168 * This one will *NOT* use accurate qgroup reserved space API, just for case
4169 * which we can't sleep and is sure it won't affect qgroup reserved space.
4170 * Like clear_bit_hook().
4ceff079 4171 */
51773bec
QW
4172void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4173 u64 len)
4ceff079
QW
4174{
4175 struct btrfs_root *root = BTRFS_I(inode)->root;
4176 struct btrfs_space_info *data_sinfo;
4177
4178 /* Make sure the range is aligned to sectorsize */
4179 len = round_up(start + len, root->sectorsize) -
4180 round_down(start, root->sectorsize);
4181 start = round_down(start, root->sectorsize);
4182
4ceff079
QW
4183 data_sinfo = root->fs_info->data_sinfo;
4184 spin_lock(&data_sinfo->lock);
4185 if (WARN_ON(data_sinfo->bytes_may_use < len))
4186 data_sinfo->bytes_may_use = 0;
4187 else
4188 data_sinfo->bytes_may_use -= len;
4189 trace_btrfs_space_reservation(root->fs_info, "space_info",
4190 data_sinfo->flags, len, 0);
4191 spin_unlock(&data_sinfo->lock);
4192}
4193
51773bec
QW
4194/*
4195 * Called if we need to clear a data reservation for this inode
4196 * Normally in a error case.
4197 *
4198 * This one will handle the per-indoe data rsv map for accurate reserved
4199 * space framework.
4200 */
4201void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4202{
4203 btrfs_free_reserved_data_space_noquota(inode, start, len);
4204 btrfs_qgroup_free_data(inode, start, len);
4205}
4206
97e728d4 4207static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4208{
97e728d4
JB
4209 struct list_head *head = &info->space_info;
4210 struct btrfs_space_info *found;
e3ccfa98 4211
97e728d4
JB
4212 rcu_read_lock();
4213 list_for_each_entry_rcu(found, head, list) {
4214 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4215 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4216 }
97e728d4 4217 rcu_read_unlock();
e3ccfa98
JB
4218}
4219
3c76cd84
MX
4220static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4221{
4222 return (global->size << 1);
4223}
4224
e5bc2458 4225static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4226 struct btrfs_space_info *sinfo, int force)
32c00aff 4227{
fb25e914 4228 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4229 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4230 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4231 u64 thresh;
e3ccfa98 4232
0e4f8f88
CM
4233 if (force == CHUNK_ALLOC_FORCE)
4234 return 1;
4235
fb25e914
JB
4236 /*
4237 * We need to take into account the global rsv because for all intents
4238 * and purposes it's used space. Don't worry about locking the
4239 * global_rsv, it doesn't change except when the transaction commits.
4240 */
54338b5c 4241 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4242 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4243
0e4f8f88
CM
4244 /*
4245 * in limited mode, we want to have some free space up to
4246 * about 1% of the FS size.
4247 */
4248 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4249 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4250 thresh = max_t(u64, 64 * 1024 * 1024,
4251 div_factor_fine(thresh, 1));
4252
4253 if (num_bytes - num_allocated < thresh)
4254 return 1;
4255 }
0e4f8f88 4256
698d0082 4257 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4258 return 0;
424499db 4259 return 1;
32c00aff
JB
4260}
4261
39c2d7fa 4262static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4263{
4264 u64 num_dev;
4265
53b381b3
DW
4266 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4267 BTRFS_BLOCK_GROUP_RAID0 |
4268 BTRFS_BLOCK_GROUP_RAID5 |
4269 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4270 num_dev = root->fs_info->fs_devices->rw_devices;
4271 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4272 num_dev = 2;
4273 else
4274 num_dev = 1; /* DUP or single */
4275
39c2d7fa 4276 return num_dev;
15d1ff81
LB
4277}
4278
39c2d7fa
FM
4279/*
4280 * If @is_allocation is true, reserve space in the system space info necessary
4281 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4282 * removing a chunk.
4283 */
4284void check_system_chunk(struct btrfs_trans_handle *trans,
4285 struct btrfs_root *root,
4617ea3a 4286 u64 type)
15d1ff81
LB
4287{
4288 struct btrfs_space_info *info;
4289 u64 left;
4290 u64 thresh;
4fbcdf66 4291 int ret = 0;
39c2d7fa 4292 u64 num_devs;
4fbcdf66
FM
4293
4294 /*
4295 * Needed because we can end up allocating a system chunk and for an
4296 * atomic and race free space reservation in the chunk block reserve.
4297 */
4298 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4299
4300 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4301 spin_lock(&info->lock);
4302 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4303 info->bytes_reserved - info->bytes_readonly -
4304 info->bytes_may_use;
15d1ff81
LB
4305 spin_unlock(&info->lock);
4306
39c2d7fa
FM
4307 num_devs = get_profile_num_devs(root, type);
4308
4309 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4310 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4311 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4312
15d1ff81 4313 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4314 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4315 left, thresh, type);
15d1ff81
LB
4316 dump_space_info(info, 0, 0);
4317 }
4318
4319 if (left < thresh) {
4320 u64 flags;
4321
4322 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4323 /*
4324 * Ignore failure to create system chunk. We might end up not
4325 * needing it, as we might not need to COW all nodes/leafs from
4326 * the paths we visit in the chunk tree (they were already COWed
4327 * or created in the current transaction for example).
4328 */
4329 ret = btrfs_alloc_chunk(trans, root, flags);
4330 }
4331
4332 if (!ret) {
4333 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4334 &root->fs_info->chunk_block_rsv,
4335 thresh, BTRFS_RESERVE_NO_FLUSH);
4336 if (!ret)
4337 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4338 }
4339}
4340
6324fbf3 4341static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4342 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4343{
6324fbf3 4344 struct btrfs_space_info *space_info;
97e728d4 4345 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4346 int wait_for_alloc = 0;
9ed74f2d 4347 int ret = 0;
9ed74f2d 4348
c6b305a8
JB
4349 /* Don't re-enter if we're already allocating a chunk */
4350 if (trans->allocating_chunk)
4351 return -ENOSPC;
4352
6324fbf3 4353 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4354 if (!space_info) {
4355 ret = update_space_info(extent_root->fs_info, flags,
4356 0, 0, &space_info);
79787eaa 4357 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4358 }
79787eaa 4359 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4360
6d74119f 4361again:
25179201 4362 spin_lock(&space_info->lock);
9e622d6b 4363 if (force < space_info->force_alloc)
0e4f8f88 4364 force = space_info->force_alloc;
25179201 4365 if (space_info->full) {
09fb99a6
FDBM
4366 if (should_alloc_chunk(extent_root, space_info, force))
4367 ret = -ENOSPC;
4368 else
4369 ret = 0;
25179201 4370 spin_unlock(&space_info->lock);
09fb99a6 4371 return ret;
9ed74f2d
JB
4372 }
4373
698d0082 4374 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4375 spin_unlock(&space_info->lock);
6d74119f
JB
4376 return 0;
4377 } else if (space_info->chunk_alloc) {
4378 wait_for_alloc = 1;
4379 } else {
4380 space_info->chunk_alloc = 1;
9ed74f2d 4381 }
0e4f8f88 4382
25179201 4383 spin_unlock(&space_info->lock);
9ed74f2d 4384
6d74119f
JB
4385 mutex_lock(&fs_info->chunk_mutex);
4386
4387 /*
4388 * The chunk_mutex is held throughout the entirety of a chunk
4389 * allocation, so once we've acquired the chunk_mutex we know that the
4390 * other guy is done and we need to recheck and see if we should
4391 * allocate.
4392 */
4393 if (wait_for_alloc) {
4394 mutex_unlock(&fs_info->chunk_mutex);
4395 wait_for_alloc = 0;
4396 goto again;
4397 }
4398
c6b305a8
JB
4399 trans->allocating_chunk = true;
4400
67377734
JB
4401 /*
4402 * If we have mixed data/metadata chunks we want to make sure we keep
4403 * allocating mixed chunks instead of individual chunks.
4404 */
4405 if (btrfs_mixed_space_info(space_info))
4406 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4407
97e728d4
JB
4408 /*
4409 * if we're doing a data chunk, go ahead and make sure that
4410 * we keep a reasonable number of metadata chunks allocated in the
4411 * FS as well.
4412 */
9ed74f2d 4413 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4414 fs_info->data_chunk_allocations++;
4415 if (!(fs_info->data_chunk_allocations %
4416 fs_info->metadata_ratio))
4417 force_metadata_allocation(fs_info);
9ed74f2d
JB
4418 }
4419
15d1ff81
LB
4420 /*
4421 * Check if we have enough space in SYSTEM chunk because we may need
4422 * to update devices.
4423 */
4617ea3a 4424 check_system_chunk(trans, extent_root, flags);
15d1ff81 4425
2b82032c 4426 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4427 trans->allocating_chunk = false;
92b8e897 4428
9ed74f2d 4429 spin_lock(&space_info->lock);
a81cb9a2
AO
4430 if (ret < 0 && ret != -ENOSPC)
4431 goto out;
9ed74f2d 4432 if (ret)
6324fbf3 4433 space_info->full = 1;
424499db
YZ
4434 else
4435 ret = 1;
6d74119f 4436
0e4f8f88 4437 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4438out:
6d74119f 4439 space_info->chunk_alloc = 0;
9ed74f2d 4440 spin_unlock(&space_info->lock);
a25c75d5 4441 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4442 /*
4443 * When we allocate a new chunk we reserve space in the chunk block
4444 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4445 * add new nodes/leafs to it if we end up needing to do it when
4446 * inserting the chunk item and updating device items as part of the
4447 * second phase of chunk allocation, performed by
4448 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4449 * large number of new block groups to create in our transaction
4450 * handle's new_bgs list to avoid exhausting the chunk block reserve
4451 * in extreme cases - like having a single transaction create many new
4452 * block groups when starting to write out the free space caches of all
4453 * the block groups that were made dirty during the lifetime of the
4454 * transaction.
4455 */
d9a0540a
FM
4456 if (trans->can_flush_pending_bgs &&
4457 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4458 btrfs_create_pending_block_groups(trans, trans->root);
4459 btrfs_trans_release_chunk_metadata(trans);
4460 }
0f9dd46c 4461 return ret;
6324fbf3 4462}
9ed74f2d 4463
a80c8dcf
JB
4464static int can_overcommit(struct btrfs_root *root,
4465 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4466 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4467{
96f1bb57 4468 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4469 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4470 u64 space_size;
a80c8dcf
JB
4471 u64 avail;
4472 u64 used;
4473
4474 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4475 space_info->bytes_pinned + space_info->bytes_readonly;
4476
96f1bb57
JB
4477 /*
4478 * We only want to allow over committing if we have lots of actual space
4479 * free, but if we don't have enough space to handle the global reserve
4480 * space then we could end up having a real enospc problem when trying
4481 * to allocate a chunk or some other such important allocation.
4482 */
3c76cd84
MX
4483 spin_lock(&global_rsv->lock);
4484 space_size = calc_global_rsv_need_space(global_rsv);
4485 spin_unlock(&global_rsv->lock);
4486 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4487 return 0;
4488
4489 used += space_info->bytes_may_use;
a80c8dcf
JB
4490
4491 spin_lock(&root->fs_info->free_chunk_lock);
4492 avail = root->fs_info->free_chunk_space;
4493 spin_unlock(&root->fs_info->free_chunk_lock);
4494
4495 /*
4496 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4497 * space is actually useable. For raid56, the space info used
4498 * doesn't include the parity drive, so we don't have to
4499 * change the math
a80c8dcf
JB
4500 */
4501 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4502 BTRFS_BLOCK_GROUP_RAID1 |
4503 BTRFS_BLOCK_GROUP_RAID10))
4504 avail >>= 1;
4505
4506 /*
561c294d
MX
4507 * If we aren't flushing all things, let us overcommit up to
4508 * 1/2th of the space. If we can flush, don't let us overcommit
4509 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4510 */
08e007d2 4511 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4512 avail >>= 3;
a80c8dcf 4513 else
14575aef 4514 avail >>= 1;
a80c8dcf 4515
14575aef 4516 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4517 return 1;
4518 return 0;
4519}
4520
48a3b636 4521static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4522 unsigned long nr_pages, int nr_items)
da633a42
MX
4523{
4524 struct super_block *sb = root->fs_info->sb;
da633a42 4525
925a6efb
JB
4526 if (down_read_trylock(&sb->s_umount)) {
4527 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4528 up_read(&sb->s_umount);
4529 } else {
da633a42
MX
4530 /*
4531 * We needn't worry the filesystem going from r/w to r/o though
4532 * we don't acquire ->s_umount mutex, because the filesystem
4533 * should guarantee the delalloc inodes list be empty after
4534 * the filesystem is readonly(all dirty pages are written to
4535 * the disk).
4536 */
6c255e67 4537 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4538 if (!current->journal_info)
6c255e67 4539 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4540 }
4541}
4542
18cd8ea6
MX
4543static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4544{
4545 u64 bytes;
4546 int nr;
4547
4548 bytes = btrfs_calc_trans_metadata_size(root, 1);
4549 nr = (int)div64_u64(to_reclaim, bytes);
4550 if (!nr)
4551 nr = 1;
4552 return nr;
4553}
4554
c61a16a7
MX
4555#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4556
9ed74f2d 4557/*
5da9d01b 4558 * shrink metadata reservation for delalloc
9ed74f2d 4559 */
f4c738c2
JB
4560static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4561 bool wait_ordered)
5da9d01b 4562{
0ca1f7ce 4563 struct btrfs_block_rsv *block_rsv;
0019f10d 4564 struct btrfs_space_info *space_info;
663350ac 4565 struct btrfs_trans_handle *trans;
f4c738c2 4566 u64 delalloc_bytes;
5da9d01b 4567 u64 max_reclaim;
b1953bce 4568 long time_left;
d3ee29e3
MX
4569 unsigned long nr_pages;
4570 int loops;
b0244199 4571 int items;
08e007d2 4572 enum btrfs_reserve_flush_enum flush;
5da9d01b 4573
c61a16a7 4574 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4575 items = calc_reclaim_items_nr(root, to_reclaim);
4576 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4577
663350ac 4578 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4579 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4580 space_info = block_rsv->space_info;
bf9022e0 4581
963d678b
MX
4582 delalloc_bytes = percpu_counter_sum_positive(
4583 &root->fs_info->delalloc_bytes);
f4c738c2 4584 if (delalloc_bytes == 0) {
fdb5effd 4585 if (trans)
f4c738c2 4586 return;
38c135af 4587 if (wait_ordered)
b0244199 4588 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4589 return;
fdb5effd
JB
4590 }
4591
d3ee29e3 4592 loops = 0;
f4c738c2
JB
4593 while (delalloc_bytes && loops < 3) {
4594 max_reclaim = min(delalloc_bytes, to_reclaim);
4595 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4596 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4597 /*
4598 * We need to wait for the async pages to actually start before
4599 * we do anything.
4600 */
9f3a074d
MX
4601 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4602 if (!max_reclaim)
4603 goto skip_async;
4604
4605 if (max_reclaim <= nr_pages)
4606 max_reclaim = 0;
4607 else
4608 max_reclaim -= nr_pages;
dea31f52 4609
9f3a074d
MX
4610 wait_event(root->fs_info->async_submit_wait,
4611 atomic_read(&root->fs_info->async_delalloc_pages) <=
4612 (int)max_reclaim);
4613skip_async:
08e007d2
MX
4614 if (!trans)
4615 flush = BTRFS_RESERVE_FLUSH_ALL;
4616 else
4617 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4618 spin_lock(&space_info->lock);
08e007d2 4619 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4620 spin_unlock(&space_info->lock);
4621 break;
4622 }
0019f10d 4623 spin_unlock(&space_info->lock);
5da9d01b 4624
36e39c40 4625 loops++;
f104d044 4626 if (wait_ordered && !trans) {
b0244199 4627 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4628 } else {
f4c738c2 4629 time_left = schedule_timeout_killable(1);
f104d044
JB
4630 if (time_left)
4631 break;
4632 }
963d678b
MX
4633 delalloc_bytes = percpu_counter_sum_positive(
4634 &root->fs_info->delalloc_bytes);
5da9d01b 4635 }
5da9d01b
YZ
4636}
4637
663350ac
JB
4638/**
4639 * maybe_commit_transaction - possibly commit the transaction if its ok to
4640 * @root - the root we're allocating for
4641 * @bytes - the number of bytes we want to reserve
4642 * @force - force the commit
8bb8ab2e 4643 *
663350ac
JB
4644 * This will check to make sure that committing the transaction will actually
4645 * get us somewhere and then commit the transaction if it does. Otherwise it
4646 * will return -ENOSPC.
8bb8ab2e 4647 */
663350ac
JB
4648static int may_commit_transaction(struct btrfs_root *root,
4649 struct btrfs_space_info *space_info,
4650 u64 bytes, int force)
4651{
4652 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4653 struct btrfs_trans_handle *trans;
4654
4655 trans = (struct btrfs_trans_handle *)current->journal_info;
4656 if (trans)
4657 return -EAGAIN;
4658
4659 if (force)
4660 goto commit;
4661
4662 /* See if there is enough pinned space to make this reservation */
b150a4f1 4663 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4664 bytes) >= 0)
663350ac 4665 goto commit;
663350ac
JB
4666
4667 /*
4668 * See if there is some space in the delayed insertion reservation for
4669 * this reservation.
4670 */
4671 if (space_info != delayed_rsv->space_info)
4672 return -ENOSPC;
4673
4674 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4675 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4676 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4677 spin_unlock(&delayed_rsv->lock);
4678 return -ENOSPC;
4679 }
4680 spin_unlock(&delayed_rsv->lock);
4681
4682commit:
4683 trans = btrfs_join_transaction(root);
4684 if (IS_ERR(trans))
4685 return -ENOSPC;
4686
4687 return btrfs_commit_transaction(trans, root);
4688}
4689
96c3f433 4690enum flush_state {
67b0fd63
JB
4691 FLUSH_DELAYED_ITEMS_NR = 1,
4692 FLUSH_DELAYED_ITEMS = 2,
4693 FLUSH_DELALLOC = 3,
4694 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4695 ALLOC_CHUNK = 5,
4696 COMMIT_TRANS = 6,
96c3f433
JB
4697};
4698
4699static int flush_space(struct btrfs_root *root,
4700 struct btrfs_space_info *space_info, u64 num_bytes,
4701 u64 orig_bytes, int state)
4702{
4703 struct btrfs_trans_handle *trans;
4704 int nr;
f4c738c2 4705 int ret = 0;
96c3f433
JB
4706
4707 switch (state) {
96c3f433
JB
4708 case FLUSH_DELAYED_ITEMS_NR:
4709 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4710 if (state == FLUSH_DELAYED_ITEMS_NR)
4711 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4712 else
96c3f433 4713 nr = -1;
18cd8ea6 4714
96c3f433
JB
4715 trans = btrfs_join_transaction(root);
4716 if (IS_ERR(trans)) {
4717 ret = PTR_ERR(trans);
4718 break;
4719 }
4720 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4721 btrfs_end_transaction(trans, root);
4722 break;
67b0fd63
JB
4723 case FLUSH_DELALLOC:
4724 case FLUSH_DELALLOC_WAIT:
24af7dd1 4725 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4726 state == FLUSH_DELALLOC_WAIT);
4727 break;
ea658bad
JB
4728 case ALLOC_CHUNK:
4729 trans = btrfs_join_transaction(root);
4730 if (IS_ERR(trans)) {
4731 ret = PTR_ERR(trans);
4732 break;
4733 }
4734 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4735 btrfs_get_alloc_profile(root, 0),
4736 CHUNK_ALLOC_NO_FORCE);
4737 btrfs_end_transaction(trans, root);
4738 if (ret == -ENOSPC)
4739 ret = 0;
4740 break;
96c3f433
JB
4741 case COMMIT_TRANS:
4742 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4743 break;
4744 default:
4745 ret = -ENOSPC;
4746 break;
4747 }
4748
4749 return ret;
4750}
21c7e756
MX
4751
4752static inline u64
4753btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4754 struct btrfs_space_info *space_info)
4755{
4756 u64 used;
4757 u64 expected;
4758 u64 to_reclaim;
4759
4760 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4761 16 * 1024 * 1024);
4762 spin_lock(&space_info->lock);
4763 if (can_overcommit(root, space_info, to_reclaim,
4764 BTRFS_RESERVE_FLUSH_ALL)) {
4765 to_reclaim = 0;
4766 goto out;
4767 }
4768
4769 used = space_info->bytes_used + space_info->bytes_reserved +
4770 space_info->bytes_pinned + space_info->bytes_readonly +
4771 space_info->bytes_may_use;
4772 if (can_overcommit(root, space_info, 1024 * 1024,
4773 BTRFS_RESERVE_FLUSH_ALL))
4774 expected = div_factor_fine(space_info->total_bytes, 95);
4775 else
4776 expected = div_factor_fine(space_info->total_bytes, 90);
4777
4778 if (used > expected)
4779 to_reclaim = used - expected;
4780 else
4781 to_reclaim = 0;
4782 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4783 space_info->bytes_reserved);
4784out:
4785 spin_unlock(&space_info->lock);
4786
4787 return to_reclaim;
4788}
4789
4790static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4791 struct btrfs_fs_info *fs_info, u64 used)
4792{
365c5313
JB
4793 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4794
4795 /* If we're just plain full then async reclaim just slows us down. */
4796 if (space_info->bytes_used >= thresh)
4797 return 0;
4798
4799 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4800 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4801}
4802
4803static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4804 struct btrfs_fs_info *fs_info,
4805 int flush_state)
21c7e756
MX
4806{
4807 u64 used;
4808
4809 spin_lock(&space_info->lock);
25ce459c
LB
4810 /*
4811 * We run out of space and have not got any free space via flush_space,
4812 * so don't bother doing async reclaim.
4813 */
4814 if (flush_state > COMMIT_TRANS && space_info->full) {
4815 spin_unlock(&space_info->lock);
4816 return 0;
4817 }
4818
21c7e756
MX
4819 used = space_info->bytes_used + space_info->bytes_reserved +
4820 space_info->bytes_pinned + space_info->bytes_readonly +
4821 space_info->bytes_may_use;
4822 if (need_do_async_reclaim(space_info, fs_info, used)) {
4823 spin_unlock(&space_info->lock);
4824 return 1;
4825 }
4826 spin_unlock(&space_info->lock);
4827
4828 return 0;
4829}
4830
4831static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4832{
4833 struct btrfs_fs_info *fs_info;
4834 struct btrfs_space_info *space_info;
4835 u64 to_reclaim;
4836 int flush_state;
4837
4838 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4839 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4840
4841 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4842 space_info);
4843 if (!to_reclaim)
4844 return;
4845
4846 flush_state = FLUSH_DELAYED_ITEMS_NR;
4847 do {
4848 flush_space(fs_info->fs_root, space_info, to_reclaim,
4849 to_reclaim, flush_state);
4850 flush_state++;
25ce459c
LB
4851 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4852 flush_state))
21c7e756 4853 return;
365c5313 4854 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4855}
4856
4857void btrfs_init_async_reclaim_work(struct work_struct *work)
4858{
4859 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4860}
4861
4a92b1b8
JB
4862/**
4863 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4864 * @root - the root we're allocating for
4865 * @block_rsv - the block_rsv we're allocating for
4866 * @orig_bytes - the number of bytes we want
48fc7f7e 4867 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4868 *
4a92b1b8
JB
4869 * This will reserve orgi_bytes number of bytes from the space info associated
4870 * with the block_rsv. If there is not enough space it will make an attempt to
4871 * flush out space to make room. It will do this by flushing delalloc if
4872 * possible or committing the transaction. If flush is 0 then no attempts to
4873 * regain reservations will be made and this will fail if there is not enough
4874 * space already.
8bb8ab2e 4875 */
4a92b1b8 4876static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4877 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4878 u64 orig_bytes,
4879 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4880{
f0486c68 4881 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4882 u64 used;
8bb8ab2e 4883 u64 num_bytes = orig_bytes;
67b0fd63 4884 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4885 int ret = 0;
fdb5effd 4886 bool flushing = false;
9ed74f2d 4887
8bb8ab2e 4888again:
fdb5effd 4889 ret = 0;
8bb8ab2e 4890 spin_lock(&space_info->lock);
fdb5effd 4891 /*
08e007d2
MX
4892 * We only want to wait if somebody other than us is flushing and we
4893 * are actually allowed to flush all things.
fdb5effd 4894 */
08e007d2
MX
4895 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4896 space_info->flush) {
fdb5effd
JB
4897 spin_unlock(&space_info->lock);
4898 /*
4899 * If we have a trans handle we can't wait because the flusher
4900 * may have to commit the transaction, which would mean we would
4901 * deadlock since we are waiting for the flusher to finish, but
4902 * hold the current transaction open.
4903 */
663350ac 4904 if (current->journal_info)
fdb5effd 4905 return -EAGAIN;
b9688bb8
AJ
4906 ret = wait_event_killable(space_info->wait, !space_info->flush);
4907 /* Must have been killed, return */
4908 if (ret)
fdb5effd
JB
4909 return -EINTR;
4910
4911 spin_lock(&space_info->lock);
4912 }
4913
4914 ret = -ENOSPC;
2bf64758
JB
4915 used = space_info->bytes_used + space_info->bytes_reserved +
4916 space_info->bytes_pinned + space_info->bytes_readonly +
4917 space_info->bytes_may_use;
9ed74f2d 4918
8bb8ab2e
JB
4919 /*
4920 * The idea here is that we've not already over-reserved the block group
4921 * then we can go ahead and save our reservation first and then start
4922 * flushing if we need to. Otherwise if we've already overcommitted
4923 * lets start flushing stuff first and then come back and try to make
4924 * our reservation.
4925 */
2bf64758
JB
4926 if (used <= space_info->total_bytes) {
4927 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4928 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4929 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4930 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4931 ret = 0;
4932 } else {
4933 /*
4934 * Ok set num_bytes to orig_bytes since we aren't
4935 * overocmmitted, this way we only try and reclaim what
4936 * we need.
4937 */
4938 num_bytes = orig_bytes;
4939 }
4940 } else {
4941 /*
4942 * Ok we're over committed, set num_bytes to the overcommitted
4943 * amount plus the amount of bytes that we need for this
4944 * reservation.
4945 */
2bf64758 4946 num_bytes = used - space_info->total_bytes +
96c3f433 4947 (orig_bytes * 2);
8bb8ab2e 4948 }
9ed74f2d 4949
44734ed1
JB
4950 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4951 space_info->bytes_may_use += orig_bytes;
4952 trace_btrfs_space_reservation(root->fs_info, "space_info",
4953 space_info->flags, orig_bytes,
4954 1);
4955 ret = 0;
2bf64758
JB
4956 }
4957
8bb8ab2e
JB
4958 /*
4959 * Couldn't make our reservation, save our place so while we're trying
4960 * to reclaim space we can actually use it instead of somebody else
4961 * stealing it from us.
08e007d2
MX
4962 *
4963 * We make the other tasks wait for the flush only when we can flush
4964 * all things.
8bb8ab2e 4965 */
72bcd99d 4966 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4967 flushing = true;
4968 space_info->flush = 1;
21c7e756
MX
4969 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4970 used += orig_bytes;
f6acfd50
JB
4971 /*
4972 * We will do the space reservation dance during log replay,
4973 * which means we won't have fs_info->fs_root set, so don't do
4974 * the async reclaim as we will panic.
4975 */
4976 if (!root->fs_info->log_root_recovering &&
4977 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4978 !work_busy(&root->fs_info->async_reclaim_work))
4979 queue_work(system_unbound_wq,
4980 &root->fs_info->async_reclaim_work);
8bb8ab2e 4981 }
f0486c68 4982 spin_unlock(&space_info->lock);
9ed74f2d 4983
08e007d2 4984 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4985 goto out;
f0486c68 4986
96c3f433
JB
4987 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4988 flush_state);
4989 flush_state++;
08e007d2
MX
4990
4991 /*
4992 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4993 * would happen. So skip delalloc flush.
4994 */
4995 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4996 (flush_state == FLUSH_DELALLOC ||
4997 flush_state == FLUSH_DELALLOC_WAIT))
4998 flush_state = ALLOC_CHUNK;
4999
96c3f433 5000 if (!ret)
8bb8ab2e 5001 goto again;
08e007d2
MX
5002 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5003 flush_state < COMMIT_TRANS)
5004 goto again;
5005 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5006 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
5007 goto again;
5008
5009out:
5d80366e
JB
5010 if (ret == -ENOSPC &&
5011 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5012 struct btrfs_block_rsv *global_rsv =
5013 &root->fs_info->global_block_rsv;
5014
5015 if (block_rsv != global_rsv &&
5016 !block_rsv_use_bytes(global_rsv, orig_bytes))
5017 ret = 0;
5018 }
cab45e22
JM
5019 if (ret == -ENOSPC)
5020 trace_btrfs_space_reservation(root->fs_info,
5021 "space_info:enospc",
5022 space_info->flags, orig_bytes, 1);
fdb5effd 5023 if (flushing) {
8bb8ab2e 5024 spin_lock(&space_info->lock);
fdb5effd
JB
5025 space_info->flush = 0;
5026 wake_up_all(&space_info->wait);
8bb8ab2e 5027 spin_unlock(&space_info->lock);
f0486c68 5028 }
f0486c68
YZ
5029 return ret;
5030}
5031
79787eaa
JM
5032static struct btrfs_block_rsv *get_block_rsv(
5033 const struct btrfs_trans_handle *trans,
5034 const struct btrfs_root *root)
f0486c68 5035{
4c13d758
JB
5036 struct btrfs_block_rsv *block_rsv = NULL;
5037
e9cf439f
AM
5038 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5039 (root == root->fs_info->csum_root && trans->adding_csums) ||
5040 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5041 block_rsv = trans->block_rsv;
5042
4c13d758 5043 if (!block_rsv)
f0486c68
YZ
5044 block_rsv = root->block_rsv;
5045
5046 if (!block_rsv)
5047 block_rsv = &root->fs_info->empty_block_rsv;
5048
5049 return block_rsv;
5050}
5051
5052static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5053 u64 num_bytes)
5054{
5055 int ret = -ENOSPC;
5056 spin_lock(&block_rsv->lock);
5057 if (block_rsv->reserved >= num_bytes) {
5058 block_rsv->reserved -= num_bytes;
5059 if (block_rsv->reserved < block_rsv->size)
5060 block_rsv->full = 0;
5061 ret = 0;
5062 }
5063 spin_unlock(&block_rsv->lock);
5064 return ret;
5065}
5066
5067static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5068 u64 num_bytes, int update_size)
5069{
5070 spin_lock(&block_rsv->lock);
5071 block_rsv->reserved += num_bytes;
5072 if (update_size)
5073 block_rsv->size += num_bytes;
5074 else if (block_rsv->reserved >= block_rsv->size)
5075 block_rsv->full = 1;
5076 spin_unlock(&block_rsv->lock);
5077}
5078
d52be818
JB
5079int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5080 struct btrfs_block_rsv *dest, u64 num_bytes,
5081 int min_factor)
5082{
5083 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5084 u64 min_bytes;
5085
5086 if (global_rsv->space_info != dest->space_info)
5087 return -ENOSPC;
5088
5089 spin_lock(&global_rsv->lock);
5090 min_bytes = div_factor(global_rsv->size, min_factor);
5091 if (global_rsv->reserved < min_bytes + num_bytes) {
5092 spin_unlock(&global_rsv->lock);
5093 return -ENOSPC;
5094 }
5095 global_rsv->reserved -= num_bytes;
5096 if (global_rsv->reserved < global_rsv->size)
5097 global_rsv->full = 0;
5098 spin_unlock(&global_rsv->lock);
5099
5100 block_rsv_add_bytes(dest, num_bytes, 1);
5101 return 0;
5102}
5103
8c2a3ca2
JB
5104static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5105 struct btrfs_block_rsv *block_rsv,
62a45b60 5106 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5107{
5108 struct btrfs_space_info *space_info = block_rsv->space_info;
5109
5110 spin_lock(&block_rsv->lock);
5111 if (num_bytes == (u64)-1)
5112 num_bytes = block_rsv->size;
5113 block_rsv->size -= num_bytes;
5114 if (block_rsv->reserved >= block_rsv->size) {
5115 num_bytes = block_rsv->reserved - block_rsv->size;
5116 block_rsv->reserved = block_rsv->size;
5117 block_rsv->full = 1;
5118 } else {
5119 num_bytes = 0;
5120 }
5121 spin_unlock(&block_rsv->lock);
5122
5123 if (num_bytes > 0) {
5124 if (dest) {
e9e22899
JB
5125 spin_lock(&dest->lock);
5126 if (!dest->full) {
5127 u64 bytes_to_add;
5128
5129 bytes_to_add = dest->size - dest->reserved;
5130 bytes_to_add = min(num_bytes, bytes_to_add);
5131 dest->reserved += bytes_to_add;
5132 if (dest->reserved >= dest->size)
5133 dest->full = 1;
5134 num_bytes -= bytes_to_add;
5135 }
5136 spin_unlock(&dest->lock);
5137 }
5138 if (num_bytes) {
f0486c68 5139 spin_lock(&space_info->lock);
fb25e914 5140 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5141 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5142 space_info->flags, num_bytes, 0);
f0486c68 5143 spin_unlock(&space_info->lock);
4e06bdd6 5144 }
9ed74f2d 5145 }
f0486c68 5146}
4e06bdd6 5147
f0486c68
YZ
5148static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5149 struct btrfs_block_rsv *dst, u64 num_bytes)
5150{
5151 int ret;
9ed74f2d 5152
f0486c68
YZ
5153 ret = block_rsv_use_bytes(src, num_bytes);
5154 if (ret)
5155 return ret;
9ed74f2d 5156
f0486c68 5157 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5158 return 0;
5159}
5160
66d8f3dd 5161void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5162{
f0486c68
YZ
5163 memset(rsv, 0, sizeof(*rsv));
5164 spin_lock_init(&rsv->lock);
66d8f3dd 5165 rsv->type = type;
f0486c68
YZ
5166}
5167
66d8f3dd
MX
5168struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5169 unsigned short type)
f0486c68
YZ
5170{
5171 struct btrfs_block_rsv *block_rsv;
5172 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5173
f0486c68
YZ
5174 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5175 if (!block_rsv)
5176 return NULL;
9ed74f2d 5177
66d8f3dd 5178 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5179 block_rsv->space_info = __find_space_info(fs_info,
5180 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5181 return block_rsv;
5182}
9ed74f2d 5183
f0486c68
YZ
5184void btrfs_free_block_rsv(struct btrfs_root *root,
5185 struct btrfs_block_rsv *rsv)
5186{
2aaa6655
JB
5187 if (!rsv)
5188 return;
dabdb640
JB
5189 btrfs_block_rsv_release(root, rsv, (u64)-1);
5190 kfree(rsv);
9ed74f2d
JB
5191}
5192
cdfb080e
CM
5193void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5194{
5195 kfree(rsv);
5196}
5197
08e007d2
MX
5198int btrfs_block_rsv_add(struct btrfs_root *root,
5199 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5200 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5201{
f0486c68 5202 int ret;
9ed74f2d 5203
f0486c68
YZ
5204 if (num_bytes == 0)
5205 return 0;
8bb8ab2e 5206
61b520a9 5207 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5208 if (!ret) {
5209 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5210 return 0;
5211 }
9ed74f2d 5212
f0486c68 5213 return ret;
f0486c68 5214}
9ed74f2d 5215
4a92b1b8 5216int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5217 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5218{
5219 u64 num_bytes = 0;
f0486c68 5220 int ret = -ENOSPC;
9ed74f2d 5221
f0486c68
YZ
5222 if (!block_rsv)
5223 return 0;
9ed74f2d 5224
f0486c68 5225 spin_lock(&block_rsv->lock);
36ba022a
JB
5226 num_bytes = div_factor(block_rsv->size, min_factor);
5227 if (block_rsv->reserved >= num_bytes)
5228 ret = 0;
5229 spin_unlock(&block_rsv->lock);
9ed74f2d 5230
36ba022a
JB
5231 return ret;
5232}
5233
08e007d2
MX
5234int btrfs_block_rsv_refill(struct btrfs_root *root,
5235 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5236 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5237{
5238 u64 num_bytes = 0;
5239 int ret = -ENOSPC;
5240
5241 if (!block_rsv)
5242 return 0;
5243
5244 spin_lock(&block_rsv->lock);
5245 num_bytes = min_reserved;
13553e52 5246 if (block_rsv->reserved >= num_bytes)
f0486c68 5247 ret = 0;
13553e52 5248 else
f0486c68 5249 num_bytes -= block_rsv->reserved;
f0486c68 5250 spin_unlock(&block_rsv->lock);
13553e52 5251
f0486c68
YZ
5252 if (!ret)
5253 return 0;
5254
aa38a711 5255 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5256 if (!ret) {
5257 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5258 return 0;
6a63209f 5259 }
9ed74f2d 5260
13553e52 5261 return ret;
f0486c68
YZ
5262}
5263
5264int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5265 struct btrfs_block_rsv *dst_rsv,
5266 u64 num_bytes)
5267{
5268 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5269}
5270
5271void btrfs_block_rsv_release(struct btrfs_root *root,
5272 struct btrfs_block_rsv *block_rsv,
5273 u64 num_bytes)
5274{
5275 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5276 if (global_rsv == block_rsv ||
f0486c68
YZ
5277 block_rsv->space_info != global_rsv->space_info)
5278 global_rsv = NULL;
8c2a3ca2
JB
5279 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5280 num_bytes);
6a63209f
JB
5281}
5282
5283/*
8929ecfa
YZ
5284 * helper to calculate size of global block reservation.
5285 * the desired value is sum of space used by extent tree,
5286 * checksum tree and root tree
6a63209f 5287 */
8929ecfa 5288static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5289{
8929ecfa
YZ
5290 struct btrfs_space_info *sinfo;
5291 u64 num_bytes;
5292 u64 meta_used;
5293 u64 data_used;
6c41761f 5294 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5295
8929ecfa
YZ
5296 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5297 spin_lock(&sinfo->lock);
5298 data_used = sinfo->bytes_used;
5299 spin_unlock(&sinfo->lock);
33b4d47f 5300
8929ecfa
YZ
5301 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5302 spin_lock(&sinfo->lock);
6d48755d
JB
5303 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5304 data_used = 0;
8929ecfa
YZ
5305 meta_used = sinfo->bytes_used;
5306 spin_unlock(&sinfo->lock);
ab6e2410 5307
8929ecfa
YZ
5308 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5309 csum_size * 2;
f8c269d7 5310 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5311
8929ecfa 5312 if (num_bytes * 3 > meta_used)
f8c269d7 5313 num_bytes = div_u64(meta_used, 3);
ab6e2410 5314
707e8a07 5315 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5316}
6a63209f 5317
8929ecfa
YZ
5318static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5319{
5320 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5321 struct btrfs_space_info *sinfo = block_rsv->space_info;
5322 u64 num_bytes;
6a63209f 5323
8929ecfa 5324 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5325
8929ecfa 5326 spin_lock(&sinfo->lock);
1f699d38 5327 spin_lock(&block_rsv->lock);
4e06bdd6 5328
fdf30d1c 5329 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5330
8929ecfa 5331 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5332 sinfo->bytes_reserved + sinfo->bytes_readonly +
5333 sinfo->bytes_may_use;
8929ecfa
YZ
5334
5335 if (sinfo->total_bytes > num_bytes) {
5336 num_bytes = sinfo->total_bytes - num_bytes;
5337 block_rsv->reserved += num_bytes;
fb25e914 5338 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5339 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5340 sinfo->flags, num_bytes, 1);
6a63209f 5341 }
6a63209f 5342
8929ecfa
YZ
5343 if (block_rsv->reserved >= block_rsv->size) {
5344 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5345 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5346 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5347 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5348 block_rsv->reserved = block_rsv->size;
5349 block_rsv->full = 1;
5350 }
182608c8 5351
8929ecfa 5352 spin_unlock(&block_rsv->lock);
1f699d38 5353 spin_unlock(&sinfo->lock);
6a63209f
JB
5354}
5355
f0486c68 5356static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5357{
f0486c68 5358 struct btrfs_space_info *space_info;
6a63209f 5359
f0486c68
YZ
5360 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5361 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5362
f0486c68 5363 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5364 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5365 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5366 fs_info->trans_block_rsv.space_info = space_info;
5367 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5368 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5369
8929ecfa
YZ
5370 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5371 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5372 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5373 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5374 if (fs_info->quota_root)
5375 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5376 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5377
8929ecfa 5378 update_global_block_rsv(fs_info);
6a63209f
JB
5379}
5380
8929ecfa 5381static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5382{
8c2a3ca2
JB
5383 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5384 (u64)-1);
8929ecfa
YZ
5385 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5386 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5387 WARN_ON(fs_info->trans_block_rsv.size > 0);
5388 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5389 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5390 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5391 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5392 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5393}
5394
a22285a6
YZ
5395void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5396 struct btrfs_root *root)
6a63209f 5397{
0e721106
JB
5398 if (!trans->block_rsv)
5399 return;
5400
a22285a6
YZ
5401 if (!trans->bytes_reserved)
5402 return;
6a63209f 5403
e77266e4 5404 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5405 trans->transid, trans->bytes_reserved, 0);
b24e03db 5406 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5407 trans->bytes_reserved = 0;
5408}
6a63209f 5409
4fbcdf66
FM
5410/*
5411 * To be called after all the new block groups attached to the transaction
5412 * handle have been created (btrfs_create_pending_block_groups()).
5413 */
5414void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5415{
5416 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5417
5418 if (!trans->chunk_bytes_reserved)
5419 return;
5420
5421 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5422
5423 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5424 trans->chunk_bytes_reserved);
5425 trans->chunk_bytes_reserved = 0;
5426}
5427
79787eaa 5428/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5429int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5430 struct inode *inode)
5431{
5432 struct btrfs_root *root = BTRFS_I(inode)->root;
5433 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5434 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5435
5436 /*
fcb80c2a
JB
5437 * We need to hold space in order to delete our orphan item once we've
5438 * added it, so this takes the reservation so we can release it later
5439 * when we are truly done with the orphan item.
d68fc57b 5440 */
ff5714cc 5441 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5442 trace_btrfs_space_reservation(root->fs_info, "orphan",
5443 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5444 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5445}
5446
d68fc57b 5447void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5448{
d68fc57b 5449 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5450 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5451 trace_btrfs_space_reservation(root->fs_info, "orphan",
5452 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5453 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5454}
97e728d4 5455
d5c12070
MX
5456/*
5457 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5458 * root: the root of the parent directory
5459 * rsv: block reservation
5460 * items: the number of items that we need do reservation
5461 * qgroup_reserved: used to return the reserved size in qgroup
5462 *
5463 * This function is used to reserve the space for snapshot/subvolume
5464 * creation and deletion. Those operations are different with the
5465 * common file/directory operations, they change two fs/file trees
5466 * and root tree, the number of items that the qgroup reserves is
5467 * different with the free space reservation. So we can not use
5468 * the space reseravtion mechanism in start_transaction().
5469 */
5470int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5471 struct btrfs_block_rsv *rsv,
5472 int items,
ee3441b4
JM
5473 u64 *qgroup_reserved,
5474 bool use_global_rsv)
a22285a6 5475{
d5c12070
MX
5476 u64 num_bytes;
5477 int ret;
ee3441b4 5478 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5479
5480 if (root->fs_info->quota_enabled) {
5481 /* One for parent inode, two for dir entries */
707e8a07 5482 num_bytes = 3 * root->nodesize;
7174109c 5483 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5484 if (ret)
5485 return ret;
5486 } else {
5487 num_bytes = 0;
5488 }
5489
5490 *qgroup_reserved = num_bytes;
5491
5492 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5493 rsv->space_info = __find_space_info(root->fs_info,
5494 BTRFS_BLOCK_GROUP_METADATA);
5495 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5496 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5497
5498 if (ret == -ENOSPC && use_global_rsv)
5499 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5500
7174109c
QW
5501 if (ret && *qgroup_reserved)
5502 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5503
5504 return ret;
5505}
5506
5507void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5508 struct btrfs_block_rsv *rsv,
5509 u64 qgroup_reserved)
5510{
5511 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5512}
5513
7709cde3
JB
5514/**
5515 * drop_outstanding_extent - drop an outstanding extent
5516 * @inode: the inode we're dropping the extent for
dcab6a3b 5517 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5518 *
5519 * This is called when we are freeing up an outstanding extent, either called
5520 * after an error or after an extent is written. This will return the number of
5521 * reserved extents that need to be freed. This must be called with
5522 * BTRFS_I(inode)->lock held.
5523 */
dcab6a3b 5524static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5525{
7fd2ae21 5526 unsigned drop_inode_space = 0;
9e0baf60 5527 unsigned dropped_extents = 0;
dcab6a3b 5528 unsigned num_extents = 0;
9e0baf60 5529
dcab6a3b
JB
5530 num_extents = (unsigned)div64_u64(num_bytes +
5531 BTRFS_MAX_EXTENT_SIZE - 1,
5532 BTRFS_MAX_EXTENT_SIZE);
5533 ASSERT(num_extents);
5534 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5535 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5536
7fd2ae21 5537 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5538 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5539 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5540 drop_inode_space = 1;
7fd2ae21 5541
9e0baf60
JB
5542 /*
5543 * If we have more or the same amount of outsanding extents than we have
5544 * reserved then we need to leave the reserved extents count alone.
5545 */
5546 if (BTRFS_I(inode)->outstanding_extents >=
5547 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5548 return drop_inode_space;
9e0baf60
JB
5549
5550 dropped_extents = BTRFS_I(inode)->reserved_extents -
5551 BTRFS_I(inode)->outstanding_extents;
5552 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5553 return dropped_extents + drop_inode_space;
9e0baf60
JB
5554}
5555
7709cde3
JB
5556/**
5557 * calc_csum_metadata_size - return the amount of metada space that must be
5558 * reserved/free'd for the given bytes.
5559 * @inode: the inode we're manipulating
5560 * @num_bytes: the number of bytes in question
5561 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5562 *
5563 * This adjusts the number of csum_bytes in the inode and then returns the
5564 * correct amount of metadata that must either be reserved or freed. We
5565 * calculate how many checksums we can fit into one leaf and then divide the
5566 * number of bytes that will need to be checksumed by this value to figure out
5567 * how many checksums will be required. If we are adding bytes then the number
5568 * may go up and we will return the number of additional bytes that must be
5569 * reserved. If it is going down we will return the number of bytes that must
5570 * be freed.
5571 *
5572 * This must be called with BTRFS_I(inode)->lock held.
5573 */
5574static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5575 int reserve)
6324fbf3 5576{
7709cde3 5577 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5578 u64 old_csums, num_csums;
7709cde3
JB
5579
5580 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5581 BTRFS_I(inode)->csum_bytes == 0)
5582 return 0;
5583
28f75a0e 5584 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5585 if (reserve)
5586 BTRFS_I(inode)->csum_bytes += num_bytes;
5587 else
5588 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5589 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5590
5591 /* No change, no need to reserve more */
5592 if (old_csums == num_csums)
5593 return 0;
5594
5595 if (reserve)
5596 return btrfs_calc_trans_metadata_size(root,
5597 num_csums - old_csums);
5598
5599 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5600}
c146afad 5601
0ca1f7ce
YZ
5602int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5603{
5604 struct btrfs_root *root = BTRFS_I(inode)->root;
5605 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5606 u64 to_reserve = 0;
660d3f6c 5607 u64 csum_bytes;
9e0baf60 5608 unsigned nr_extents = 0;
660d3f6c 5609 int extra_reserve = 0;
08e007d2 5610 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5611 int ret = 0;
c64c2bd8 5612 bool delalloc_lock = true;
88e081bf
WS
5613 u64 to_free = 0;
5614 unsigned dropped;
6324fbf3 5615
c64c2bd8
JB
5616 /* If we are a free space inode we need to not flush since we will be in
5617 * the middle of a transaction commit. We also don't need the delalloc
5618 * mutex since we won't race with anybody. We need this mostly to make
5619 * lockdep shut its filthy mouth.
5620 */
5621 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5622 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5623 delalloc_lock = false;
5624 }
c09544e0 5625
08e007d2
MX
5626 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5627 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5628 schedule_timeout(1);
ec44a35c 5629
c64c2bd8
JB
5630 if (delalloc_lock)
5631 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5632
0ca1f7ce 5633 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5634
9e0baf60 5635 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5636 nr_extents = (unsigned)div64_u64(num_bytes +
5637 BTRFS_MAX_EXTENT_SIZE - 1,
5638 BTRFS_MAX_EXTENT_SIZE);
5639 BTRFS_I(inode)->outstanding_extents += nr_extents;
5640 nr_extents = 0;
9e0baf60
JB
5641
5642 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5643 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5644 nr_extents = BTRFS_I(inode)->outstanding_extents -
5645 BTRFS_I(inode)->reserved_extents;
57a45ced 5646
7fd2ae21
JB
5647 /*
5648 * Add an item to reserve for updating the inode when we complete the
5649 * delalloc io.
5650 */
72ac3c0d
JB
5651 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5652 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5653 nr_extents++;
660d3f6c 5654 extra_reserve = 1;
593060d7 5655 }
7fd2ae21
JB
5656
5657 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5658 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5659 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5660 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5661
88e081bf 5662 if (root->fs_info->quota_enabled) {
7174109c
QW
5663 ret = btrfs_qgroup_reserve_meta(root,
5664 nr_extents * root->nodesize);
88e081bf
WS
5665 if (ret)
5666 goto out_fail;
5667 }
c5567237 5668
88e081bf
WS
5669 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5670 if (unlikely(ret)) {
7174109c 5671 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5672 goto out_fail;
9e0baf60 5673 }
25179201 5674
660d3f6c
JB
5675 spin_lock(&BTRFS_I(inode)->lock);
5676 if (extra_reserve) {
72ac3c0d
JB
5677 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5678 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5679 nr_extents--;
5680 }
5681 BTRFS_I(inode)->reserved_extents += nr_extents;
5682 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5683
5684 if (delalloc_lock)
5685 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5686
8c2a3ca2 5687 if (to_reserve)
67871254 5688 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5689 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5690 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5691
0ca1f7ce 5692 return 0;
88e081bf
WS
5693
5694out_fail:
5695 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5696 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5697 /*
5698 * If the inodes csum_bytes is the same as the original
5699 * csum_bytes then we know we haven't raced with any free()ers
5700 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5701 */
f4881bc7 5702 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5703 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5704 } else {
5705 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5706 u64 bytes;
5707
5708 /*
5709 * This is tricky, but first we need to figure out how much we
5710 * free'd from any free-ers that occured during this
5711 * reservation, so we reset ->csum_bytes to the csum_bytes
5712 * before we dropped our lock, and then call the free for the
5713 * number of bytes that were freed while we were trying our
5714 * reservation.
5715 */
5716 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5717 BTRFS_I(inode)->csum_bytes = csum_bytes;
5718 to_free = calc_csum_metadata_size(inode, bytes, 0);
5719
5720
5721 /*
5722 * Now we need to see how much we would have freed had we not
5723 * been making this reservation and our ->csum_bytes were not
5724 * artificially inflated.
5725 */
5726 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5727 bytes = csum_bytes - orig_csum_bytes;
5728 bytes = calc_csum_metadata_size(inode, bytes, 0);
5729
5730 /*
5731 * Now reset ->csum_bytes to what it should be. If bytes is
5732 * more than to_free then we would have free'd more space had we
5733 * not had an artificially high ->csum_bytes, so we need to free
5734 * the remainder. If bytes is the same or less then we don't
5735 * need to do anything, the other free-ers did the correct
5736 * thing.
5737 */
5738 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5739 if (bytes > to_free)
5740 to_free = bytes - to_free;
5741 else
5742 to_free = 0;
5743 }
88e081bf 5744 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5745 if (dropped)
88e081bf
WS
5746 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5747
5748 if (to_free) {
5749 btrfs_block_rsv_release(root, block_rsv, to_free);
5750 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5751 btrfs_ino(inode), to_free, 0);
5752 }
5753 if (delalloc_lock)
5754 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5755 return ret;
0ca1f7ce
YZ
5756}
5757
7709cde3
JB
5758/**
5759 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5760 * @inode: the inode to release the reservation for
5761 * @num_bytes: the number of bytes we're releasing
5762 *
5763 * This will release the metadata reservation for an inode. This can be called
5764 * once we complete IO for a given set of bytes to release their metadata
5765 * reservations.
5766 */
0ca1f7ce
YZ
5767void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5768{
5769 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5770 u64 to_free = 0;
5771 unsigned dropped;
0ca1f7ce
YZ
5772
5773 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5774 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5775 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5776
0934856d
MX
5777 if (num_bytes)
5778 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5779 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5780 if (dropped > 0)
5781 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5782
6a3891c5
JB
5783 if (btrfs_test_is_dummy_root(root))
5784 return;
5785
8c2a3ca2
JB
5786 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5787 btrfs_ino(inode), to_free, 0);
c5567237 5788
0ca1f7ce
YZ
5789 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5790 to_free);
5791}
5792
1ada3a62 5793/**
7cf5b976 5794 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5795 * delalloc
5796 * @inode: inode we're writing to
5797 * @start: start range we are writing to
5798 * @len: how long the range we are writing to
5799 *
5800 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5801 *
5802 * This will do the following things
5803 *
5804 * o reserve space in data space info for num bytes
5805 * and reserve precious corresponding qgroup space
5806 * (Done in check_data_free_space)
5807 *
5808 * o reserve space for metadata space, based on the number of outstanding
5809 * extents and how much csums will be needed
5810 * also reserve metadata space in a per root over-reserve method.
5811 * o add to the inodes->delalloc_bytes
5812 * o add it to the fs_info's delalloc inodes list.
5813 * (Above 3 all done in delalloc_reserve_metadata)
5814 *
5815 * Return 0 for success
5816 * Return <0 for error(-ENOSPC or -EQUOT)
5817 */
7cf5b976 5818int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5819{
5820 int ret;
5821
7cf5b976 5822 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
5823 if (ret < 0)
5824 return ret;
5825 ret = btrfs_delalloc_reserve_metadata(inode, len);
5826 if (ret < 0)
7cf5b976 5827 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
5828 return ret;
5829}
5830
7709cde3 5831/**
7cf5b976 5832 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
5833 * @inode: inode we're releasing space for
5834 * @start: start position of the space already reserved
5835 * @len: the len of the space already reserved
5836 *
5837 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5838 * called in the case that we don't need the metadata AND data reservations
5839 * anymore. So if there is an error or we insert an inline extent.
5840 *
5841 * This function will release the metadata space that was not used and will
5842 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5843 * list if there are no delalloc bytes left.
5844 * Also it will handle the qgroup reserved space.
5845 */
7cf5b976 5846void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5847{
5848 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 5849 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
5850}
5851
ce93ec54
JB
5852static int update_block_group(struct btrfs_trans_handle *trans,
5853 struct btrfs_root *root, u64 bytenr,
5854 u64 num_bytes, int alloc)
9078a3e1 5855{
0af3d00b 5856 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5857 struct btrfs_fs_info *info = root->fs_info;
db94535d 5858 u64 total = num_bytes;
9078a3e1 5859 u64 old_val;
db94535d 5860 u64 byte_in_group;
0af3d00b 5861 int factor;
3e1ad54f 5862
5d4f98a2 5863 /* block accounting for super block */
eb73c1b7 5864 spin_lock(&info->delalloc_root_lock);
6c41761f 5865 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5866 if (alloc)
5867 old_val += num_bytes;
5868 else
5869 old_val -= num_bytes;
6c41761f 5870 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5871 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5872
d397712b 5873 while (total) {
db94535d 5874 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5875 if (!cache)
79787eaa 5876 return -ENOENT;
b742bb82
YZ
5877 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5878 BTRFS_BLOCK_GROUP_RAID1 |
5879 BTRFS_BLOCK_GROUP_RAID10))
5880 factor = 2;
5881 else
5882 factor = 1;
9d66e233
JB
5883 /*
5884 * If this block group has free space cache written out, we
5885 * need to make sure to load it if we are removing space. This
5886 * is because we need the unpinning stage to actually add the
5887 * space back to the block group, otherwise we will leak space.
5888 */
5889 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5890 cache_block_group(cache, 1);
0af3d00b 5891
db94535d
CM
5892 byte_in_group = bytenr - cache->key.objectid;
5893 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5894
25179201 5895 spin_lock(&cache->space_info->lock);
c286ac48 5896 spin_lock(&cache->lock);
0af3d00b 5897
73bc1876 5898 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5899 cache->disk_cache_state < BTRFS_DC_CLEAR)
5900 cache->disk_cache_state = BTRFS_DC_CLEAR;
5901
9078a3e1 5902 old_val = btrfs_block_group_used(&cache->item);
db94535d 5903 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5904 if (alloc) {
db94535d 5905 old_val += num_bytes;
11833d66
YZ
5906 btrfs_set_block_group_used(&cache->item, old_val);
5907 cache->reserved -= num_bytes;
11833d66 5908 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5909 cache->space_info->bytes_used += num_bytes;
5910 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5911 spin_unlock(&cache->lock);
25179201 5912 spin_unlock(&cache->space_info->lock);
cd1bc465 5913 } else {
db94535d 5914 old_val -= num_bytes;
ae0ab003
FM
5915 btrfs_set_block_group_used(&cache->item, old_val);
5916 cache->pinned += num_bytes;
5917 cache->space_info->bytes_pinned += num_bytes;
5918 cache->space_info->bytes_used -= num_bytes;
5919 cache->space_info->disk_used -= num_bytes * factor;
5920 spin_unlock(&cache->lock);
5921 spin_unlock(&cache->space_info->lock);
47ab2a6c 5922
ae0ab003
FM
5923 set_extent_dirty(info->pinned_extents,
5924 bytenr, bytenr + num_bytes - 1,
5925 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5926 /*
5927 * No longer have used bytes in this block group, queue
5928 * it for deletion.
5929 */
5930 if (old_val == 0) {
5931 spin_lock(&info->unused_bgs_lock);
5932 if (list_empty(&cache->bg_list)) {
5933 btrfs_get_block_group(cache);
5934 list_add_tail(&cache->bg_list,
5935 &info->unused_bgs);
5936 }
5937 spin_unlock(&info->unused_bgs_lock);
5938 }
cd1bc465 5939 }
1bbc621e
CM
5940
5941 spin_lock(&trans->transaction->dirty_bgs_lock);
5942 if (list_empty(&cache->dirty_list)) {
5943 list_add_tail(&cache->dirty_list,
5944 &trans->transaction->dirty_bgs);
5945 trans->transaction->num_dirty_bgs++;
5946 btrfs_get_block_group(cache);
5947 }
5948 spin_unlock(&trans->transaction->dirty_bgs_lock);
5949
fa9c0d79 5950 btrfs_put_block_group(cache);
db94535d
CM
5951 total -= num_bytes;
5952 bytenr += num_bytes;
9078a3e1
CM
5953 }
5954 return 0;
5955}
6324fbf3 5956
a061fc8d
CM
5957static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5958{
0f9dd46c 5959 struct btrfs_block_group_cache *cache;
d2fb3437 5960 u64 bytenr;
0f9dd46c 5961
a1897fdd
LB
5962 spin_lock(&root->fs_info->block_group_cache_lock);
5963 bytenr = root->fs_info->first_logical_byte;
5964 spin_unlock(&root->fs_info->block_group_cache_lock);
5965
5966 if (bytenr < (u64)-1)
5967 return bytenr;
5968
0f9dd46c
JB
5969 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5970 if (!cache)
a061fc8d 5971 return 0;
0f9dd46c 5972
d2fb3437 5973 bytenr = cache->key.objectid;
fa9c0d79 5974 btrfs_put_block_group(cache);
d2fb3437
YZ
5975
5976 return bytenr;
a061fc8d
CM
5977}
5978
f0486c68
YZ
5979static int pin_down_extent(struct btrfs_root *root,
5980 struct btrfs_block_group_cache *cache,
5981 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5982{
11833d66
YZ
5983 spin_lock(&cache->space_info->lock);
5984 spin_lock(&cache->lock);
5985 cache->pinned += num_bytes;
5986 cache->space_info->bytes_pinned += num_bytes;
5987 if (reserved) {
5988 cache->reserved -= num_bytes;
5989 cache->space_info->bytes_reserved -= num_bytes;
5990 }
5991 spin_unlock(&cache->lock);
5992 spin_unlock(&cache->space_info->lock);
68b38550 5993
f0486c68
YZ
5994 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5995 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5996 if (reserved)
0be5dc67 5997 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5998 return 0;
5999}
68b38550 6000
f0486c68
YZ
6001/*
6002 * this function must be called within transaction
6003 */
6004int btrfs_pin_extent(struct btrfs_root *root,
6005 u64 bytenr, u64 num_bytes, int reserved)
6006{
6007 struct btrfs_block_group_cache *cache;
68b38550 6008
f0486c68 6009 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6010 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6011
6012 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6013
6014 btrfs_put_block_group(cache);
11833d66
YZ
6015 return 0;
6016}
6017
f0486c68 6018/*
e688b725
CM
6019 * this function must be called within transaction
6020 */
dcfac415 6021int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6022 u64 bytenr, u64 num_bytes)
6023{
6024 struct btrfs_block_group_cache *cache;
b50c6e25 6025 int ret;
e688b725
CM
6026
6027 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6028 if (!cache)
6029 return -EINVAL;
e688b725
CM
6030
6031 /*
6032 * pull in the free space cache (if any) so that our pin
6033 * removes the free space from the cache. We have load_only set
6034 * to one because the slow code to read in the free extents does check
6035 * the pinned extents.
6036 */
f6373bf3 6037 cache_block_group(cache, 1);
e688b725
CM
6038
6039 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6040
6041 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6042 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6043 btrfs_put_block_group(cache);
b50c6e25 6044 return ret;
e688b725
CM
6045}
6046
8c2a1a30
JB
6047static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6048{
6049 int ret;
6050 struct btrfs_block_group_cache *block_group;
6051 struct btrfs_caching_control *caching_ctl;
6052
6053 block_group = btrfs_lookup_block_group(root->fs_info, start);
6054 if (!block_group)
6055 return -EINVAL;
6056
6057 cache_block_group(block_group, 0);
6058 caching_ctl = get_caching_control(block_group);
6059
6060 if (!caching_ctl) {
6061 /* Logic error */
6062 BUG_ON(!block_group_cache_done(block_group));
6063 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6064 } else {
6065 mutex_lock(&caching_ctl->mutex);
6066
6067 if (start >= caching_ctl->progress) {
6068 ret = add_excluded_extent(root, start, num_bytes);
6069 } else if (start + num_bytes <= caching_ctl->progress) {
6070 ret = btrfs_remove_free_space(block_group,
6071 start, num_bytes);
6072 } else {
6073 num_bytes = caching_ctl->progress - start;
6074 ret = btrfs_remove_free_space(block_group,
6075 start, num_bytes);
6076 if (ret)
6077 goto out_lock;
6078
6079 num_bytes = (start + num_bytes) -
6080 caching_ctl->progress;
6081 start = caching_ctl->progress;
6082 ret = add_excluded_extent(root, start, num_bytes);
6083 }
6084out_lock:
6085 mutex_unlock(&caching_ctl->mutex);
6086 put_caching_control(caching_ctl);
6087 }
6088 btrfs_put_block_group(block_group);
6089 return ret;
6090}
6091
6092int btrfs_exclude_logged_extents(struct btrfs_root *log,
6093 struct extent_buffer *eb)
6094{
6095 struct btrfs_file_extent_item *item;
6096 struct btrfs_key key;
6097 int found_type;
6098 int i;
6099
6100 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6101 return 0;
6102
6103 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6104 btrfs_item_key_to_cpu(eb, &key, i);
6105 if (key.type != BTRFS_EXTENT_DATA_KEY)
6106 continue;
6107 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6108 found_type = btrfs_file_extent_type(eb, item);
6109 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6110 continue;
6111 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6112 continue;
6113 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6114 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6115 __exclude_logged_extent(log, key.objectid, key.offset);
6116 }
6117
6118 return 0;
6119}
6120
fb25e914
JB
6121/**
6122 * btrfs_update_reserved_bytes - update the block_group and space info counters
6123 * @cache: The cache we are manipulating
6124 * @num_bytes: The number of bytes in question
6125 * @reserve: One of the reservation enums
e570fd27 6126 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6127 *
6128 * This is called by the allocator when it reserves space, or by somebody who is
6129 * freeing space that was never actually used on disk. For example if you
6130 * reserve some space for a new leaf in transaction A and before transaction A
6131 * commits you free that leaf, you call this with reserve set to 0 in order to
6132 * clear the reservation.
6133 *
6134 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6135 * ENOSPC accounting. For data we handle the reservation through clearing the
6136 * delalloc bits in the io_tree. We have to do this since we could end up
6137 * allocating less disk space for the amount of data we have reserved in the
6138 * case of compression.
6139 *
6140 * If this is a reservation and the block group has become read only we cannot
6141 * make the reservation and return -EAGAIN, otherwise this function always
6142 * succeeds.
f0486c68 6143 */
fb25e914 6144static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6145 u64 num_bytes, int reserve, int delalloc)
11833d66 6146{
fb25e914 6147 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6148 int ret = 0;
79787eaa 6149
fb25e914
JB
6150 spin_lock(&space_info->lock);
6151 spin_lock(&cache->lock);
6152 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6153 if (cache->ro) {
6154 ret = -EAGAIN;
6155 } else {
fb25e914
JB
6156 cache->reserved += num_bytes;
6157 space_info->bytes_reserved += num_bytes;
6158 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6159 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6160 "space_info", space_info->flags,
6161 num_bytes, 0);
fb25e914
JB
6162 space_info->bytes_may_use -= num_bytes;
6163 }
e570fd27
MX
6164
6165 if (delalloc)
6166 cache->delalloc_bytes += num_bytes;
f0486c68 6167 }
fb25e914
JB
6168 } else {
6169 if (cache->ro)
6170 space_info->bytes_readonly += num_bytes;
6171 cache->reserved -= num_bytes;
6172 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6173
6174 if (delalloc)
6175 cache->delalloc_bytes -= num_bytes;
324ae4df 6176 }
fb25e914
JB
6177 spin_unlock(&cache->lock);
6178 spin_unlock(&space_info->lock);
f0486c68 6179 return ret;
324ae4df 6180}
9078a3e1 6181
143bede5 6182void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6183 struct btrfs_root *root)
e8569813 6184{
e8569813 6185 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6186 struct btrfs_caching_control *next;
6187 struct btrfs_caching_control *caching_ctl;
6188 struct btrfs_block_group_cache *cache;
e8569813 6189
9e351cc8 6190 down_write(&fs_info->commit_root_sem);
25179201 6191
11833d66
YZ
6192 list_for_each_entry_safe(caching_ctl, next,
6193 &fs_info->caching_block_groups, list) {
6194 cache = caching_ctl->block_group;
6195 if (block_group_cache_done(cache)) {
6196 cache->last_byte_to_unpin = (u64)-1;
6197 list_del_init(&caching_ctl->list);
6198 put_caching_control(caching_ctl);
e8569813 6199 } else {
11833d66 6200 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6201 }
e8569813 6202 }
11833d66
YZ
6203
6204 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6205 fs_info->pinned_extents = &fs_info->freed_extents[1];
6206 else
6207 fs_info->pinned_extents = &fs_info->freed_extents[0];
6208
9e351cc8 6209 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6210
6211 update_global_block_rsv(fs_info);
e8569813
ZY
6212}
6213
c759c4e1
JB
6214/*
6215 * Returns the free cluster for the given space info and sets empty_cluster to
6216 * what it should be based on the mount options.
6217 */
6218static struct btrfs_free_cluster *
6219fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6220 u64 *empty_cluster)
6221{
6222 struct btrfs_free_cluster *ret = NULL;
6223 bool ssd = btrfs_test_opt(root, SSD);
6224
6225 *empty_cluster = 0;
6226 if (btrfs_mixed_space_info(space_info))
6227 return ret;
6228
6229 if (ssd)
6230 *empty_cluster = 2 * 1024 * 1024;
6231 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6232 ret = &root->fs_info->meta_alloc_cluster;
6233 if (!ssd)
6234 *empty_cluster = 64 * 1024;
6235 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6236 ret = &root->fs_info->data_alloc_cluster;
6237 }
6238
6239 return ret;
6240}
6241
678886bd
FM
6242static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6243 const bool return_free_space)
ccd467d6 6244{
11833d66
YZ
6245 struct btrfs_fs_info *fs_info = root->fs_info;
6246 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6247 struct btrfs_space_info *space_info;
6248 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6249 struct btrfs_free_cluster *cluster = NULL;
11833d66 6250 u64 len;
c759c4e1
JB
6251 u64 total_unpinned = 0;
6252 u64 empty_cluster = 0;
7b398f8e 6253 bool readonly;
ccd467d6 6254
11833d66 6255 while (start <= end) {
7b398f8e 6256 readonly = false;
11833d66
YZ
6257 if (!cache ||
6258 start >= cache->key.objectid + cache->key.offset) {
6259 if (cache)
6260 btrfs_put_block_group(cache);
c759c4e1 6261 total_unpinned = 0;
11833d66 6262 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6263 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6264
6265 cluster = fetch_cluster_info(root,
6266 cache->space_info,
6267 &empty_cluster);
6268 empty_cluster <<= 1;
11833d66
YZ
6269 }
6270
6271 len = cache->key.objectid + cache->key.offset - start;
6272 len = min(len, end + 1 - start);
6273
6274 if (start < cache->last_byte_to_unpin) {
6275 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6276 if (return_free_space)
6277 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6278 }
6279
f0486c68 6280 start += len;
c759c4e1 6281 total_unpinned += len;
7b398f8e 6282 space_info = cache->space_info;
f0486c68 6283
c759c4e1
JB
6284 /*
6285 * If this space cluster has been marked as fragmented and we've
6286 * unpinned enough in this block group to potentially allow a
6287 * cluster to be created inside of it go ahead and clear the
6288 * fragmented check.
6289 */
6290 if (cluster && cluster->fragmented &&
6291 total_unpinned > empty_cluster) {
6292 spin_lock(&cluster->lock);
6293 cluster->fragmented = 0;
6294 spin_unlock(&cluster->lock);
6295 }
6296
7b398f8e 6297 spin_lock(&space_info->lock);
11833d66
YZ
6298 spin_lock(&cache->lock);
6299 cache->pinned -= len;
7b398f8e 6300 space_info->bytes_pinned -= len;
4f4db217 6301 space_info->max_extent_size = 0;
d288db5d 6302 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6303 if (cache->ro) {
6304 space_info->bytes_readonly += len;
6305 readonly = true;
6306 }
11833d66 6307 spin_unlock(&cache->lock);
7b398f8e
JB
6308 if (!readonly && global_rsv->space_info == space_info) {
6309 spin_lock(&global_rsv->lock);
6310 if (!global_rsv->full) {
6311 len = min(len, global_rsv->size -
6312 global_rsv->reserved);
6313 global_rsv->reserved += len;
6314 space_info->bytes_may_use += len;
6315 if (global_rsv->reserved >= global_rsv->size)
6316 global_rsv->full = 1;
6317 }
6318 spin_unlock(&global_rsv->lock);
6319 }
6320 spin_unlock(&space_info->lock);
ccd467d6 6321 }
11833d66
YZ
6322
6323 if (cache)
6324 btrfs_put_block_group(cache);
ccd467d6
CM
6325 return 0;
6326}
6327
6328int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6329 struct btrfs_root *root)
a28ec197 6330{
11833d66 6331 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6332 struct btrfs_block_group_cache *block_group, *tmp;
6333 struct list_head *deleted_bgs;
11833d66 6334 struct extent_io_tree *unpin;
1a5bc167
CM
6335 u64 start;
6336 u64 end;
a28ec197 6337 int ret;
a28ec197 6338
11833d66
YZ
6339 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6340 unpin = &fs_info->freed_extents[1];
6341 else
6342 unpin = &fs_info->freed_extents[0];
6343
e33e17ee 6344 while (!trans->aborted) {
d4b450cd 6345 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6346 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6347 EXTENT_DIRTY, NULL);
d4b450cd
FM
6348 if (ret) {
6349 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6350 break;
d4b450cd 6351 }
1f3c79a2 6352
5378e607
LD
6353 if (btrfs_test_opt(root, DISCARD))
6354 ret = btrfs_discard_extent(root, start,
6355 end + 1 - start, NULL);
1f3c79a2 6356
1a5bc167 6357 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6358 unpin_extent_range(root, start, end, true);
d4b450cd 6359 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6360 cond_resched();
a28ec197 6361 }
817d52f8 6362
e33e17ee
JM
6363 /*
6364 * Transaction is finished. We don't need the lock anymore. We
6365 * do need to clean up the block groups in case of a transaction
6366 * abort.
6367 */
6368 deleted_bgs = &trans->transaction->deleted_bgs;
6369 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6370 u64 trimmed = 0;
6371
6372 ret = -EROFS;
6373 if (!trans->aborted)
6374 ret = btrfs_discard_extent(root,
6375 block_group->key.objectid,
6376 block_group->key.offset,
6377 &trimmed);
6378
6379 list_del_init(&block_group->bg_list);
6380 btrfs_put_block_group_trimming(block_group);
6381 btrfs_put_block_group(block_group);
6382
6383 if (ret) {
6384 const char *errstr = btrfs_decode_error(ret);
6385 btrfs_warn(fs_info,
6386 "Discard failed while removing blockgroup: errno=%d %s\n",
6387 ret, errstr);
6388 }
6389 }
6390
e20d96d6
CM
6391 return 0;
6392}
6393
b150a4f1
JB
6394static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6395 u64 owner, u64 root_objectid)
6396{
6397 struct btrfs_space_info *space_info;
6398 u64 flags;
6399
6400 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6401 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6402 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6403 else
6404 flags = BTRFS_BLOCK_GROUP_METADATA;
6405 } else {
6406 flags = BTRFS_BLOCK_GROUP_DATA;
6407 }
6408
6409 space_info = __find_space_info(fs_info, flags);
6410 BUG_ON(!space_info); /* Logic bug */
6411 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6412}
6413
6414
5d4f98a2
YZ
6415static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6416 struct btrfs_root *root,
c682f9b3 6417 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6418 u64 root_objectid, u64 owner_objectid,
6419 u64 owner_offset, int refs_to_drop,
c682f9b3 6420 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6421{
e2fa7227 6422 struct btrfs_key key;
5d4f98a2 6423 struct btrfs_path *path;
1261ec42
CM
6424 struct btrfs_fs_info *info = root->fs_info;
6425 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6426 struct extent_buffer *leaf;
5d4f98a2
YZ
6427 struct btrfs_extent_item *ei;
6428 struct btrfs_extent_inline_ref *iref;
a28ec197 6429 int ret;
5d4f98a2 6430 int is_data;
952fccac
CM
6431 int extent_slot = 0;
6432 int found_extent = 0;
6433 int num_to_del = 1;
c682f9b3 6434 int no_quota = node->no_quota;
5d4f98a2
YZ
6435 u32 item_size;
6436 u64 refs;
c682f9b3
QW
6437 u64 bytenr = node->bytenr;
6438 u64 num_bytes = node->num_bytes;
fcebe456 6439 int last_ref = 0;
3173a18f
JB
6440 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6441 SKINNY_METADATA);
037e6390 6442
fcebe456
JB
6443 if (!info->quota_enabled || !is_fstree(root_objectid))
6444 no_quota = 1;
6445
5caf2a00 6446 path = btrfs_alloc_path();
54aa1f4d
CM
6447 if (!path)
6448 return -ENOMEM;
5f26f772 6449
3c12ac72 6450 path->reada = 1;
b9473439 6451 path->leave_spinning = 1;
5d4f98a2
YZ
6452
6453 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6454 BUG_ON(!is_data && refs_to_drop != 1);
6455
3173a18f
JB
6456 if (is_data)
6457 skinny_metadata = 0;
6458
5d4f98a2
YZ
6459 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6460 bytenr, num_bytes, parent,
6461 root_objectid, owner_objectid,
6462 owner_offset);
7bb86316 6463 if (ret == 0) {
952fccac 6464 extent_slot = path->slots[0];
5d4f98a2
YZ
6465 while (extent_slot >= 0) {
6466 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6467 extent_slot);
5d4f98a2 6468 if (key.objectid != bytenr)
952fccac 6469 break;
5d4f98a2
YZ
6470 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6471 key.offset == num_bytes) {
952fccac
CM
6472 found_extent = 1;
6473 break;
6474 }
3173a18f
JB
6475 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6476 key.offset == owner_objectid) {
6477 found_extent = 1;
6478 break;
6479 }
952fccac
CM
6480 if (path->slots[0] - extent_slot > 5)
6481 break;
5d4f98a2 6482 extent_slot--;
952fccac 6483 }
5d4f98a2
YZ
6484#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6485 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6486 if (found_extent && item_size < sizeof(*ei))
6487 found_extent = 0;
6488#endif
31840ae1 6489 if (!found_extent) {
5d4f98a2 6490 BUG_ON(iref);
56bec294 6491 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6492 NULL, refs_to_drop,
fcebe456 6493 is_data, &last_ref);
005d6427
DS
6494 if (ret) {
6495 btrfs_abort_transaction(trans, extent_root, ret);
6496 goto out;
6497 }
b3b4aa74 6498 btrfs_release_path(path);
b9473439 6499 path->leave_spinning = 1;
5d4f98a2
YZ
6500
6501 key.objectid = bytenr;
6502 key.type = BTRFS_EXTENT_ITEM_KEY;
6503 key.offset = num_bytes;
6504
3173a18f
JB
6505 if (!is_data && skinny_metadata) {
6506 key.type = BTRFS_METADATA_ITEM_KEY;
6507 key.offset = owner_objectid;
6508 }
6509
31840ae1
ZY
6510 ret = btrfs_search_slot(trans, extent_root,
6511 &key, path, -1, 1);
3173a18f
JB
6512 if (ret > 0 && skinny_metadata && path->slots[0]) {
6513 /*
6514 * Couldn't find our skinny metadata item,
6515 * see if we have ye olde extent item.
6516 */
6517 path->slots[0]--;
6518 btrfs_item_key_to_cpu(path->nodes[0], &key,
6519 path->slots[0]);
6520 if (key.objectid == bytenr &&
6521 key.type == BTRFS_EXTENT_ITEM_KEY &&
6522 key.offset == num_bytes)
6523 ret = 0;
6524 }
6525
6526 if (ret > 0 && skinny_metadata) {
6527 skinny_metadata = false;
9ce49a0b 6528 key.objectid = bytenr;
3173a18f
JB
6529 key.type = BTRFS_EXTENT_ITEM_KEY;
6530 key.offset = num_bytes;
6531 btrfs_release_path(path);
6532 ret = btrfs_search_slot(trans, extent_root,
6533 &key, path, -1, 1);
6534 }
6535
f3465ca4 6536 if (ret) {
c2cf52eb 6537 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6538 ret, bytenr);
b783e62d
JB
6539 if (ret > 0)
6540 btrfs_print_leaf(extent_root,
6541 path->nodes[0]);
f3465ca4 6542 }
005d6427
DS
6543 if (ret < 0) {
6544 btrfs_abort_transaction(trans, extent_root, ret);
6545 goto out;
6546 }
31840ae1
ZY
6547 extent_slot = path->slots[0];
6548 }
fae7f21c 6549 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6550 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6551 btrfs_err(info,
6552 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6553 bytenr, parent, root_objectid, owner_objectid,
6554 owner_offset);
c4a050bb
JB
6555 btrfs_abort_transaction(trans, extent_root, ret);
6556 goto out;
79787eaa 6557 } else {
005d6427
DS
6558 btrfs_abort_transaction(trans, extent_root, ret);
6559 goto out;
7bb86316 6560 }
5f39d397
CM
6561
6562 leaf = path->nodes[0];
5d4f98a2
YZ
6563 item_size = btrfs_item_size_nr(leaf, extent_slot);
6564#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6565 if (item_size < sizeof(*ei)) {
6566 BUG_ON(found_extent || extent_slot != path->slots[0]);
6567 ret = convert_extent_item_v0(trans, extent_root, path,
6568 owner_objectid, 0);
005d6427
DS
6569 if (ret < 0) {
6570 btrfs_abort_transaction(trans, extent_root, ret);
6571 goto out;
6572 }
5d4f98a2 6573
b3b4aa74 6574 btrfs_release_path(path);
5d4f98a2
YZ
6575 path->leave_spinning = 1;
6576
6577 key.objectid = bytenr;
6578 key.type = BTRFS_EXTENT_ITEM_KEY;
6579 key.offset = num_bytes;
6580
6581 ret = btrfs_search_slot(trans, extent_root, &key, path,
6582 -1, 1);
6583 if (ret) {
c2cf52eb 6584 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6585 ret, bytenr);
5d4f98a2
YZ
6586 btrfs_print_leaf(extent_root, path->nodes[0]);
6587 }
005d6427
DS
6588 if (ret < 0) {
6589 btrfs_abort_transaction(trans, extent_root, ret);
6590 goto out;
6591 }
6592
5d4f98a2
YZ
6593 extent_slot = path->slots[0];
6594 leaf = path->nodes[0];
6595 item_size = btrfs_item_size_nr(leaf, extent_slot);
6596 }
6597#endif
6598 BUG_ON(item_size < sizeof(*ei));
952fccac 6599 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6600 struct btrfs_extent_item);
3173a18f
JB
6601 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6602 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6603 struct btrfs_tree_block_info *bi;
6604 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6605 bi = (struct btrfs_tree_block_info *)(ei + 1);
6606 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6607 }
56bec294 6608
5d4f98a2 6609 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6610 if (refs < refs_to_drop) {
6611 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6612 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6613 ret = -EINVAL;
6614 btrfs_abort_transaction(trans, extent_root, ret);
6615 goto out;
6616 }
56bec294 6617 refs -= refs_to_drop;
5f39d397 6618
5d4f98a2
YZ
6619 if (refs > 0) {
6620 if (extent_op)
6621 __run_delayed_extent_op(extent_op, leaf, ei);
6622 /*
6623 * In the case of inline back ref, reference count will
6624 * be updated by remove_extent_backref
952fccac 6625 */
5d4f98a2
YZ
6626 if (iref) {
6627 BUG_ON(!found_extent);
6628 } else {
6629 btrfs_set_extent_refs(leaf, ei, refs);
6630 btrfs_mark_buffer_dirty(leaf);
6631 }
6632 if (found_extent) {
6633 ret = remove_extent_backref(trans, extent_root, path,
6634 iref, refs_to_drop,
fcebe456 6635 is_data, &last_ref);
005d6427
DS
6636 if (ret) {
6637 btrfs_abort_transaction(trans, extent_root, ret);
6638 goto out;
6639 }
952fccac 6640 }
b150a4f1
JB
6641 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6642 root_objectid);
5d4f98a2 6643 } else {
5d4f98a2
YZ
6644 if (found_extent) {
6645 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6646 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6647 if (iref) {
6648 BUG_ON(path->slots[0] != extent_slot);
6649 } else {
6650 BUG_ON(path->slots[0] != extent_slot + 1);
6651 path->slots[0] = extent_slot;
6652 num_to_del = 2;
6653 }
78fae27e 6654 }
b9473439 6655
fcebe456 6656 last_ref = 1;
952fccac
CM
6657 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6658 num_to_del);
005d6427
DS
6659 if (ret) {
6660 btrfs_abort_transaction(trans, extent_root, ret);
6661 goto out;
6662 }
b3b4aa74 6663 btrfs_release_path(path);
21af804c 6664
5d4f98a2 6665 if (is_data) {
459931ec 6666 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6667 if (ret) {
6668 btrfs_abort_transaction(trans, extent_root, ret);
6669 goto out;
6670 }
459931ec
CM
6671 }
6672
ce93ec54 6673 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6674 if (ret) {
6675 btrfs_abort_transaction(trans, extent_root, ret);
6676 goto out;
6677 }
a28ec197 6678 }
fcebe456
JB
6679 btrfs_release_path(path);
6680
79787eaa 6681out:
5caf2a00 6682 btrfs_free_path(path);
a28ec197
CM
6683 return ret;
6684}
6685
1887be66 6686/*
f0486c68 6687 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6688 * delayed ref for that extent as well. This searches the delayed ref tree for
6689 * a given extent, and if there are no other delayed refs to be processed, it
6690 * removes it from the tree.
6691 */
6692static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6693 struct btrfs_root *root, u64 bytenr)
6694{
6695 struct btrfs_delayed_ref_head *head;
6696 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6697 int ret = 0;
1887be66
CM
6698
6699 delayed_refs = &trans->transaction->delayed_refs;
6700 spin_lock(&delayed_refs->lock);
6701 head = btrfs_find_delayed_ref_head(trans, bytenr);
6702 if (!head)
cf93da7b 6703 goto out_delayed_unlock;
1887be66 6704
d7df2c79 6705 spin_lock(&head->lock);
c6fc2454 6706 if (!list_empty(&head->ref_list))
1887be66
CM
6707 goto out;
6708
5d4f98a2
YZ
6709 if (head->extent_op) {
6710 if (!head->must_insert_reserved)
6711 goto out;
78a6184a 6712 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6713 head->extent_op = NULL;
6714 }
6715
1887be66
CM
6716 /*
6717 * waiting for the lock here would deadlock. If someone else has it
6718 * locked they are already in the process of dropping it anyway
6719 */
6720 if (!mutex_trylock(&head->mutex))
6721 goto out;
6722
6723 /*
6724 * at this point we have a head with no other entries. Go
6725 * ahead and process it.
6726 */
6727 head->node.in_tree = 0;
c46effa6 6728 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6729
d7df2c79 6730 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6731
6732 /*
6733 * we don't take a ref on the node because we're removing it from the
6734 * tree, so we just steal the ref the tree was holding.
6735 */
c3e69d58 6736 delayed_refs->num_heads--;
d7df2c79 6737 if (head->processing == 0)
c3e69d58 6738 delayed_refs->num_heads_ready--;
d7df2c79
JB
6739 head->processing = 0;
6740 spin_unlock(&head->lock);
1887be66
CM
6741 spin_unlock(&delayed_refs->lock);
6742
f0486c68
YZ
6743 BUG_ON(head->extent_op);
6744 if (head->must_insert_reserved)
6745 ret = 1;
6746
6747 mutex_unlock(&head->mutex);
1887be66 6748 btrfs_put_delayed_ref(&head->node);
f0486c68 6749 return ret;
1887be66 6750out:
d7df2c79 6751 spin_unlock(&head->lock);
cf93da7b
CM
6752
6753out_delayed_unlock:
1887be66
CM
6754 spin_unlock(&delayed_refs->lock);
6755 return 0;
6756}
6757
f0486c68
YZ
6758void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6759 struct btrfs_root *root,
6760 struct extent_buffer *buf,
5581a51a 6761 u64 parent, int last_ref)
f0486c68 6762{
b150a4f1 6763 int pin = 1;
f0486c68
YZ
6764 int ret;
6765
6766 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6767 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6768 buf->start, buf->len,
6769 parent, root->root_key.objectid,
6770 btrfs_header_level(buf),
5581a51a 6771 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6772 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6773 }
6774
6775 if (!last_ref)
6776 return;
6777
f0486c68 6778 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6779 struct btrfs_block_group_cache *cache;
6780
f0486c68
YZ
6781 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6782 ret = check_ref_cleanup(trans, root, buf->start);
6783 if (!ret)
37be25bc 6784 goto out;
f0486c68
YZ
6785 }
6786
6219872d
FM
6787 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6788
f0486c68
YZ
6789 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6790 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6791 btrfs_put_block_group(cache);
37be25bc 6792 goto out;
f0486c68
YZ
6793 }
6794
6795 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6796
6797 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6798 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6799 btrfs_put_block_group(cache);
0be5dc67 6800 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6801 pin = 0;
f0486c68
YZ
6802 }
6803out:
b150a4f1
JB
6804 if (pin)
6805 add_pinned_bytes(root->fs_info, buf->len,
6806 btrfs_header_level(buf),
6807 root->root_key.objectid);
6808
a826d6dc
JB
6809 /*
6810 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6811 * anymore.
6812 */
6813 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6814}
6815
79787eaa 6816/* Can return -ENOMEM */
66d7e7f0
AJ
6817int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6818 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6819 u64 owner, u64 offset, int no_quota)
925baedd
CM
6820{
6821 int ret;
66d7e7f0 6822 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6823
fccb84c9 6824 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6825 return 0;
fccb84c9 6826
b150a4f1
JB
6827 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6828
56bec294
CM
6829 /*
6830 * tree log blocks never actually go into the extent allocation
6831 * tree, just update pinning info and exit early.
56bec294 6832 */
5d4f98a2
YZ
6833 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6834 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6835 /* unlocks the pinned mutex */
11833d66 6836 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6837 ret = 0;
5d4f98a2 6838 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6839 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6840 num_bytes,
5d4f98a2 6841 parent, root_objectid, (int)owner,
fcebe456 6842 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6843 } else {
66d7e7f0
AJ
6844 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6845 num_bytes,
6846 parent, root_objectid, owner,
6847 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6848 NULL, no_quota);
56bec294 6849 }
925baedd
CM
6850 return ret;
6851}
6852
817d52f8
JB
6853/*
6854 * when we wait for progress in the block group caching, its because
6855 * our allocation attempt failed at least once. So, we must sleep
6856 * and let some progress happen before we try again.
6857 *
6858 * This function will sleep at least once waiting for new free space to
6859 * show up, and then it will check the block group free space numbers
6860 * for our min num_bytes. Another option is to have it go ahead
6861 * and look in the rbtree for a free extent of a given size, but this
6862 * is a good start.
36cce922
JB
6863 *
6864 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6865 * any of the information in this block group.
817d52f8 6866 */
36cce922 6867static noinline void
817d52f8
JB
6868wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6869 u64 num_bytes)
6870{
11833d66 6871 struct btrfs_caching_control *caching_ctl;
817d52f8 6872
11833d66
YZ
6873 caching_ctl = get_caching_control(cache);
6874 if (!caching_ctl)
36cce922 6875 return;
817d52f8 6876
11833d66 6877 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6878 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6879
6880 put_caching_control(caching_ctl);
11833d66
YZ
6881}
6882
6883static noinline int
6884wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6885{
6886 struct btrfs_caching_control *caching_ctl;
36cce922 6887 int ret = 0;
11833d66
YZ
6888
6889 caching_ctl = get_caching_control(cache);
6890 if (!caching_ctl)
36cce922 6891 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6892
6893 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6894 if (cache->cached == BTRFS_CACHE_ERROR)
6895 ret = -EIO;
11833d66 6896 put_caching_control(caching_ctl);
36cce922 6897 return ret;
817d52f8
JB
6898}
6899
31e50229 6900int __get_raid_index(u64 flags)
b742bb82 6901{
7738a53a 6902 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6903 return BTRFS_RAID_RAID10;
7738a53a 6904 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6905 return BTRFS_RAID_RAID1;
7738a53a 6906 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6907 return BTRFS_RAID_DUP;
7738a53a 6908 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6909 return BTRFS_RAID_RAID0;
53b381b3 6910 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6911 return BTRFS_RAID_RAID5;
53b381b3 6912 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6913 return BTRFS_RAID_RAID6;
7738a53a 6914
e942f883 6915 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6916}
6917
6ab0a202 6918int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6919{
31e50229 6920 return __get_raid_index(cache->flags);
7738a53a
ID
6921}
6922
6ab0a202
JM
6923static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6924 [BTRFS_RAID_RAID10] = "raid10",
6925 [BTRFS_RAID_RAID1] = "raid1",
6926 [BTRFS_RAID_DUP] = "dup",
6927 [BTRFS_RAID_RAID0] = "raid0",
6928 [BTRFS_RAID_SINGLE] = "single",
6929 [BTRFS_RAID_RAID5] = "raid5",
6930 [BTRFS_RAID_RAID6] = "raid6",
6931};
6932
1b8e5df6 6933static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6934{
6935 if (type >= BTRFS_NR_RAID_TYPES)
6936 return NULL;
6937
6938 return btrfs_raid_type_names[type];
6939}
6940
817d52f8 6941enum btrfs_loop_type {
285ff5af
JB
6942 LOOP_CACHING_NOWAIT = 0,
6943 LOOP_CACHING_WAIT = 1,
6944 LOOP_ALLOC_CHUNK = 2,
6945 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6946};
6947
e570fd27
MX
6948static inline void
6949btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6950 int delalloc)
6951{
6952 if (delalloc)
6953 down_read(&cache->data_rwsem);
6954}
6955
6956static inline void
6957btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6958 int delalloc)
6959{
6960 btrfs_get_block_group(cache);
6961 if (delalloc)
6962 down_read(&cache->data_rwsem);
6963}
6964
6965static struct btrfs_block_group_cache *
6966btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6967 struct btrfs_free_cluster *cluster,
6968 int delalloc)
6969{
6970 struct btrfs_block_group_cache *used_bg;
6971 bool locked = false;
6972again:
6973 spin_lock(&cluster->refill_lock);
6974 if (locked) {
6975 if (used_bg == cluster->block_group)
6976 return used_bg;
6977
6978 up_read(&used_bg->data_rwsem);
6979 btrfs_put_block_group(used_bg);
6980 }
6981
6982 used_bg = cluster->block_group;
6983 if (!used_bg)
6984 return NULL;
6985
6986 if (used_bg == block_group)
6987 return used_bg;
6988
6989 btrfs_get_block_group(used_bg);
6990
6991 if (!delalloc)
6992 return used_bg;
6993
6994 if (down_read_trylock(&used_bg->data_rwsem))
6995 return used_bg;
6996
6997 spin_unlock(&cluster->refill_lock);
6998 down_read(&used_bg->data_rwsem);
6999 locked = true;
7000 goto again;
7001}
7002
7003static inline void
7004btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7005 int delalloc)
7006{
7007 if (delalloc)
7008 up_read(&cache->data_rwsem);
7009 btrfs_put_block_group(cache);
7010}
7011
fec577fb
CM
7012/*
7013 * walks the btree of allocated extents and find a hole of a given size.
7014 * The key ins is changed to record the hole:
a4820398 7015 * ins->objectid == start position
62e2749e 7016 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7017 * ins->offset == the size of the hole.
fec577fb 7018 * Any available blocks before search_start are skipped.
a4820398
MX
7019 *
7020 * If there is no suitable free space, we will record the max size of
7021 * the free space extent currently.
fec577fb 7022 */
00361589 7023static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7024 u64 num_bytes, u64 empty_size,
98ed5174 7025 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7026 u64 flags, int delalloc)
fec577fb 7027{
80eb234a 7028 int ret = 0;
d397712b 7029 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7030 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7031 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7032 u64 search_start = 0;
a4820398 7033 u64 max_extent_size = 0;
c759c4e1 7034 u64 empty_cluster = 0;
80eb234a 7035 struct btrfs_space_info *space_info;
fa9c0d79 7036 int loop = 0;
b6919a58
DS
7037 int index = __get_raid_index(flags);
7038 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7039 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7040 bool failed_cluster_refill = false;
1cdda9b8 7041 bool failed_alloc = false;
67377734 7042 bool use_cluster = true;
60d2adbb 7043 bool have_caching_bg = false;
a5e681d9 7044 bool full_search = false;
fec577fb 7045
db94535d 7046 WARN_ON(num_bytes < root->sectorsize);
962a298f 7047 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7048 ins->objectid = 0;
7049 ins->offset = 0;
b1a4d965 7050
b6919a58 7051 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7052
b6919a58 7053 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7054 if (!space_info) {
b6919a58 7055 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7056 return -ENOSPC;
7057 }
2552d17e 7058
67377734 7059 /*
4f4db217
JB
7060 * If our free space is heavily fragmented we may not be able to make
7061 * big contiguous allocations, so instead of doing the expensive search
7062 * for free space, simply return ENOSPC with our max_extent_size so we
7063 * can go ahead and search for a more manageable chunk.
7064 *
7065 * If our max_extent_size is large enough for our allocation simply
7066 * disable clustering since we will likely not be able to find enough
7067 * space to create a cluster and induce latency trying.
67377734 7068 */
4f4db217
JB
7069 if (unlikely(space_info->max_extent_size)) {
7070 spin_lock(&space_info->lock);
7071 if (space_info->max_extent_size &&
7072 num_bytes > space_info->max_extent_size) {
7073 ins->offset = space_info->max_extent_size;
7074 spin_unlock(&space_info->lock);
7075 return -ENOSPC;
7076 } else if (space_info->max_extent_size) {
7077 use_cluster = false;
7078 }
7079 spin_unlock(&space_info->lock);
fa9c0d79 7080 }
0f9dd46c 7081
c759c4e1 7082 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7083 if (last_ptr) {
fa9c0d79
CM
7084 spin_lock(&last_ptr->lock);
7085 if (last_ptr->block_group)
7086 hint_byte = last_ptr->window_start;
c759c4e1
JB
7087 if (last_ptr->fragmented) {
7088 /*
7089 * We still set window_start so we can keep track of the
7090 * last place we found an allocation to try and save
7091 * some time.
7092 */
7093 hint_byte = last_ptr->window_start;
7094 use_cluster = false;
7095 }
fa9c0d79 7096 spin_unlock(&last_ptr->lock);
239b14b3 7097 }
fa9c0d79 7098
a061fc8d 7099 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7100 search_start = max(search_start, hint_byte);
2552d17e 7101 if (search_start == hint_byte) {
2552d17e
JB
7102 block_group = btrfs_lookup_block_group(root->fs_info,
7103 search_start);
817d52f8
JB
7104 /*
7105 * we don't want to use the block group if it doesn't match our
7106 * allocation bits, or if its not cached.
ccf0e725
JB
7107 *
7108 * However if we are re-searching with an ideal block group
7109 * picked out then we don't care that the block group is cached.
817d52f8 7110 */
b6919a58 7111 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7112 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7113 down_read(&space_info->groups_sem);
44fb5511
CM
7114 if (list_empty(&block_group->list) ||
7115 block_group->ro) {
7116 /*
7117 * someone is removing this block group,
7118 * we can't jump into the have_block_group
7119 * target because our list pointers are not
7120 * valid
7121 */
7122 btrfs_put_block_group(block_group);
7123 up_read(&space_info->groups_sem);
ccf0e725 7124 } else {
b742bb82 7125 index = get_block_group_index(block_group);
e570fd27 7126 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7127 goto have_block_group;
ccf0e725 7128 }
2552d17e 7129 } else if (block_group) {
fa9c0d79 7130 btrfs_put_block_group(block_group);
2552d17e 7131 }
42e70e7a 7132 }
2552d17e 7133search:
60d2adbb 7134 have_caching_bg = false;
a5e681d9
JB
7135 if (index == 0 || index == __get_raid_index(flags))
7136 full_search = true;
80eb234a 7137 down_read(&space_info->groups_sem);
b742bb82
YZ
7138 list_for_each_entry(block_group, &space_info->block_groups[index],
7139 list) {
6226cb0a 7140 u64 offset;
817d52f8 7141 int cached;
8a1413a2 7142
e570fd27 7143 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7144 search_start = block_group->key.objectid;
42e70e7a 7145
83a50de9
CM
7146 /*
7147 * this can happen if we end up cycling through all the
7148 * raid types, but we want to make sure we only allocate
7149 * for the proper type.
7150 */
b6919a58 7151 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7152 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7153 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7154 BTRFS_BLOCK_GROUP_RAID5 |
7155 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7156 BTRFS_BLOCK_GROUP_RAID10;
7157
7158 /*
7159 * if they asked for extra copies and this block group
7160 * doesn't provide them, bail. This does allow us to
7161 * fill raid0 from raid1.
7162 */
b6919a58 7163 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7164 goto loop;
7165 }
7166
2552d17e 7167have_block_group:
291c7d2f
JB
7168 cached = block_group_cache_done(block_group);
7169 if (unlikely(!cached)) {
a5e681d9 7170 have_caching_bg = true;
f6373bf3 7171 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7172 BUG_ON(ret < 0);
7173 ret = 0;
817d52f8
JB
7174 }
7175
36cce922
JB
7176 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7177 goto loop;
ea6a478e 7178 if (unlikely(block_group->ro))
2552d17e 7179 goto loop;
0f9dd46c 7180
0a24325e 7181 /*
062c05c4
AO
7182 * Ok we want to try and use the cluster allocator, so
7183 * lets look there
0a24325e 7184 */
c759c4e1 7185 if (last_ptr && use_cluster) {
215a63d1 7186 struct btrfs_block_group_cache *used_block_group;
8de972b4 7187 unsigned long aligned_cluster;
fa9c0d79
CM
7188 /*
7189 * the refill lock keeps out other
7190 * people trying to start a new cluster
7191 */
e570fd27
MX
7192 used_block_group = btrfs_lock_cluster(block_group,
7193 last_ptr,
7194 delalloc);
7195 if (!used_block_group)
44fb5511 7196 goto refill_cluster;
274bd4fb 7197
e570fd27
MX
7198 if (used_block_group != block_group &&
7199 (used_block_group->ro ||
7200 !block_group_bits(used_block_group, flags)))
7201 goto release_cluster;
44fb5511 7202
274bd4fb 7203 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7204 last_ptr,
7205 num_bytes,
7206 used_block_group->key.objectid,
7207 &max_extent_size);
fa9c0d79
CM
7208 if (offset) {
7209 /* we have a block, we're done */
7210 spin_unlock(&last_ptr->refill_lock);
3f7de037 7211 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7212 used_block_group,
7213 search_start, num_bytes);
215a63d1 7214 if (used_block_group != block_group) {
e570fd27
MX
7215 btrfs_release_block_group(block_group,
7216 delalloc);
215a63d1
MX
7217 block_group = used_block_group;
7218 }
fa9c0d79
CM
7219 goto checks;
7220 }
7221
274bd4fb 7222 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7223release_cluster:
062c05c4
AO
7224 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7225 * set up a new clusters, so lets just skip it
7226 * and let the allocator find whatever block
7227 * it can find. If we reach this point, we
7228 * will have tried the cluster allocator
7229 * plenty of times and not have found
7230 * anything, so we are likely way too
7231 * fragmented for the clustering stuff to find
a5f6f719
AO
7232 * anything.
7233 *
7234 * However, if the cluster is taken from the
7235 * current block group, release the cluster
7236 * first, so that we stand a better chance of
7237 * succeeding in the unclustered
7238 * allocation. */
7239 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7240 used_block_group != block_group) {
062c05c4 7241 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7242 btrfs_release_block_group(used_block_group,
7243 delalloc);
062c05c4
AO
7244 goto unclustered_alloc;
7245 }
7246
fa9c0d79
CM
7247 /*
7248 * this cluster didn't work out, free it and
7249 * start over
7250 */
7251 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7252
e570fd27
MX
7253 if (used_block_group != block_group)
7254 btrfs_release_block_group(used_block_group,
7255 delalloc);
7256refill_cluster:
a5f6f719
AO
7257 if (loop >= LOOP_NO_EMPTY_SIZE) {
7258 spin_unlock(&last_ptr->refill_lock);
7259 goto unclustered_alloc;
7260 }
7261
8de972b4
CM
7262 aligned_cluster = max_t(unsigned long,
7263 empty_cluster + empty_size,
7264 block_group->full_stripe_len);
7265
fa9c0d79 7266 /* allocate a cluster in this block group */
00361589
JB
7267 ret = btrfs_find_space_cluster(root, block_group,
7268 last_ptr, search_start,
7269 num_bytes,
7270 aligned_cluster);
fa9c0d79
CM
7271 if (ret == 0) {
7272 /*
7273 * now pull our allocation out of this
7274 * cluster
7275 */
7276 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7277 last_ptr,
7278 num_bytes,
7279 search_start,
7280 &max_extent_size);
fa9c0d79
CM
7281 if (offset) {
7282 /* we found one, proceed */
7283 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7284 trace_btrfs_reserve_extent_cluster(root,
7285 block_group, search_start,
7286 num_bytes);
fa9c0d79
CM
7287 goto checks;
7288 }
0a24325e
JB
7289 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7290 && !failed_cluster_refill) {
817d52f8
JB
7291 spin_unlock(&last_ptr->refill_lock);
7292
0a24325e 7293 failed_cluster_refill = true;
817d52f8
JB
7294 wait_block_group_cache_progress(block_group,
7295 num_bytes + empty_cluster + empty_size);
7296 goto have_block_group;
fa9c0d79 7297 }
817d52f8 7298
fa9c0d79
CM
7299 /*
7300 * at this point we either didn't find a cluster
7301 * or we weren't able to allocate a block from our
7302 * cluster. Free the cluster we've been trying
7303 * to use, and go to the next block group
7304 */
0a24325e 7305 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7306 spin_unlock(&last_ptr->refill_lock);
0a24325e 7307 goto loop;
fa9c0d79
CM
7308 }
7309
062c05c4 7310unclustered_alloc:
c759c4e1
JB
7311 /*
7312 * We are doing an unclustered alloc, set the fragmented flag so
7313 * we don't bother trying to setup a cluster again until we get
7314 * more space.
7315 */
7316 if (unlikely(last_ptr)) {
7317 spin_lock(&last_ptr->lock);
7318 last_ptr->fragmented = 1;
7319 spin_unlock(&last_ptr->lock);
7320 }
a5f6f719
AO
7321 spin_lock(&block_group->free_space_ctl->tree_lock);
7322 if (cached &&
7323 block_group->free_space_ctl->free_space <
7324 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7325 if (block_group->free_space_ctl->free_space >
7326 max_extent_size)
7327 max_extent_size =
7328 block_group->free_space_ctl->free_space;
a5f6f719
AO
7329 spin_unlock(&block_group->free_space_ctl->tree_lock);
7330 goto loop;
7331 }
7332 spin_unlock(&block_group->free_space_ctl->tree_lock);
7333
6226cb0a 7334 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7335 num_bytes, empty_size,
7336 &max_extent_size);
1cdda9b8
JB
7337 /*
7338 * If we didn't find a chunk, and we haven't failed on this
7339 * block group before, and this block group is in the middle of
7340 * caching and we are ok with waiting, then go ahead and wait
7341 * for progress to be made, and set failed_alloc to true.
7342 *
7343 * If failed_alloc is true then we've already waited on this
7344 * block group once and should move on to the next block group.
7345 */
7346 if (!offset && !failed_alloc && !cached &&
7347 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7348 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7349 num_bytes + empty_size);
7350 failed_alloc = true;
817d52f8 7351 goto have_block_group;
1cdda9b8
JB
7352 } else if (!offset) {
7353 goto loop;
817d52f8 7354 }
fa9c0d79 7355checks:
4e54b17a 7356 search_start = ALIGN(offset, root->stripesize);
25179201 7357
2552d17e
JB
7358 /* move on to the next group */
7359 if (search_start + num_bytes >
215a63d1
MX
7360 block_group->key.objectid + block_group->key.offset) {
7361 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7362 goto loop;
6226cb0a 7363 }
f5a31e16 7364
f0486c68 7365 if (offset < search_start)
215a63d1 7366 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7367 search_start - offset);
7368 BUG_ON(offset > search_start);
2552d17e 7369
215a63d1 7370 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7371 alloc_type, delalloc);
f0486c68 7372 if (ret == -EAGAIN) {
215a63d1 7373 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7374 goto loop;
0f9dd46c 7375 }
0b86a832 7376
f0486c68 7377 /* we are all good, lets return */
2552d17e
JB
7378 ins->objectid = search_start;
7379 ins->offset = num_bytes;
d2fb3437 7380
3f7de037
JB
7381 trace_btrfs_reserve_extent(orig_root, block_group,
7382 search_start, num_bytes);
e570fd27 7383 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7384 break;
7385loop:
0a24325e 7386 failed_cluster_refill = false;
1cdda9b8 7387 failed_alloc = false;
b742bb82 7388 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7389 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7390 }
7391 up_read(&space_info->groups_sem);
7392
60d2adbb
MX
7393 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7394 goto search;
7395
b742bb82
YZ
7396 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7397 goto search;
7398
285ff5af 7399 /*
ccf0e725
JB
7400 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7401 * caching kthreads as we move along
817d52f8
JB
7402 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7403 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7404 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7405 * again
fa9c0d79 7406 */
723bda20 7407 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7408 index = 0;
a5e681d9
JB
7409 if (loop == LOOP_CACHING_NOWAIT) {
7410 /*
7411 * We want to skip the LOOP_CACHING_WAIT step if we
7412 * don't have any unached bgs and we've alrelady done a
7413 * full search through.
7414 */
7415 if (have_caching_bg || !full_search)
7416 loop = LOOP_CACHING_WAIT;
7417 else
7418 loop = LOOP_ALLOC_CHUNK;
7419 } else {
7420 loop++;
7421 }
7422
817d52f8 7423 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7424 struct btrfs_trans_handle *trans;
f017f15f
WS
7425 int exist = 0;
7426
7427 trans = current->journal_info;
7428 if (trans)
7429 exist = 1;
7430 else
7431 trans = btrfs_join_transaction(root);
00361589 7432
00361589
JB
7433 if (IS_ERR(trans)) {
7434 ret = PTR_ERR(trans);
7435 goto out;
7436 }
7437
b6919a58 7438 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7439 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7440
7441 /*
7442 * If we can't allocate a new chunk we've already looped
7443 * through at least once, move on to the NO_EMPTY_SIZE
7444 * case.
7445 */
7446 if (ret == -ENOSPC)
7447 loop = LOOP_NO_EMPTY_SIZE;
7448
ea658bad
JB
7449 /*
7450 * Do not bail out on ENOSPC since we
7451 * can do more things.
7452 */
00361589 7453 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7454 btrfs_abort_transaction(trans,
7455 root, ret);
00361589
JB
7456 else
7457 ret = 0;
f017f15f
WS
7458 if (!exist)
7459 btrfs_end_transaction(trans, root);
00361589 7460 if (ret)
ea658bad 7461 goto out;
2552d17e
JB
7462 }
7463
723bda20 7464 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7465 /*
7466 * Don't loop again if we already have no empty_size and
7467 * no empty_cluster.
7468 */
7469 if (empty_size == 0 &&
7470 empty_cluster == 0) {
7471 ret = -ENOSPC;
7472 goto out;
7473 }
723bda20
JB
7474 empty_size = 0;
7475 empty_cluster = 0;
fa9c0d79 7476 }
723bda20
JB
7477
7478 goto search;
2552d17e
JB
7479 } else if (!ins->objectid) {
7480 ret = -ENOSPC;
d82a6f1d 7481 } else if (ins->objectid) {
c759c4e1
JB
7482 if (!use_cluster && last_ptr) {
7483 spin_lock(&last_ptr->lock);
7484 last_ptr->window_start = ins->objectid;
7485 spin_unlock(&last_ptr->lock);
7486 }
80eb234a 7487 ret = 0;
be744175 7488 }
79787eaa 7489out:
4f4db217
JB
7490 if (ret == -ENOSPC) {
7491 spin_lock(&space_info->lock);
7492 space_info->max_extent_size = max_extent_size;
7493 spin_unlock(&space_info->lock);
a4820398 7494 ins->offset = max_extent_size;
4f4db217 7495 }
0f70abe2 7496 return ret;
fec577fb 7497}
ec44a35c 7498
9ed74f2d
JB
7499static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7500 int dump_block_groups)
0f9dd46c
JB
7501{
7502 struct btrfs_block_group_cache *cache;
b742bb82 7503 int index = 0;
0f9dd46c 7504
9ed74f2d 7505 spin_lock(&info->lock);
efe120a0 7506 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7507 info->flags,
7508 info->total_bytes - info->bytes_used - info->bytes_pinned -
7509 info->bytes_reserved - info->bytes_readonly,
d397712b 7510 (info->full) ? "" : "not ");
efe120a0 7511 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7512 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7513 info->total_bytes, info->bytes_used, info->bytes_pinned,
7514 info->bytes_reserved, info->bytes_may_use,
7515 info->bytes_readonly);
9ed74f2d
JB
7516 spin_unlock(&info->lock);
7517
7518 if (!dump_block_groups)
7519 return;
0f9dd46c 7520
80eb234a 7521 down_read(&info->groups_sem);
b742bb82
YZ
7522again:
7523 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7524 spin_lock(&cache->lock);
efe120a0
FH
7525 printk(KERN_INFO "BTRFS: "
7526 "block group %llu has %llu bytes, "
7527 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7528 cache->key.objectid, cache->key.offset,
7529 btrfs_block_group_used(&cache->item), cache->pinned,
7530 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7531 btrfs_dump_free_space(cache, bytes);
7532 spin_unlock(&cache->lock);
7533 }
b742bb82
YZ
7534 if (++index < BTRFS_NR_RAID_TYPES)
7535 goto again;
80eb234a 7536 up_read(&info->groups_sem);
0f9dd46c 7537}
e8569813 7538
00361589 7539int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7540 u64 num_bytes, u64 min_alloc_size,
7541 u64 empty_size, u64 hint_byte,
e570fd27 7542 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7543{
36af4e07 7544 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7545 u64 flags;
fec577fb 7546 int ret;
925baedd 7547
b6919a58 7548 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7549again:
db94535d 7550 WARN_ON(num_bytes < root->sectorsize);
00361589 7551 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7552 flags, delalloc);
3b951516 7553
9e622d6b 7554 if (ret == -ENOSPC) {
a4820398
MX
7555 if (!final_tried && ins->offset) {
7556 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7557 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7558 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7559 if (num_bytes == min_alloc_size)
7560 final_tried = true;
7561 goto again;
7562 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7563 struct btrfs_space_info *sinfo;
7564
b6919a58 7565 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7566 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7567 flags, num_bytes);
53804280
JM
7568 if (sinfo)
7569 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7570 }
925baedd 7571 }
0f9dd46c
JB
7572
7573 return ret;
e6dcd2dc
CM
7574}
7575
e688b725 7576static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7577 u64 start, u64 len,
7578 int pin, int delalloc)
65b51a00 7579{
0f9dd46c 7580 struct btrfs_block_group_cache *cache;
1f3c79a2 7581 int ret = 0;
0f9dd46c 7582
0f9dd46c
JB
7583 cache = btrfs_lookup_block_group(root->fs_info, start);
7584 if (!cache) {
c2cf52eb 7585 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7586 start);
0f9dd46c
JB
7587 return -ENOSPC;
7588 }
1f3c79a2 7589
e688b725
CM
7590 if (pin)
7591 pin_down_extent(root, cache, start, len, 1);
7592 else {
dcc82f47
FM
7593 if (btrfs_test_opt(root, DISCARD))
7594 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7595 btrfs_add_free_space(cache, start, len);
e570fd27 7596 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7597 }
31193213 7598
fa9c0d79 7599 btrfs_put_block_group(cache);
817d52f8 7600
1abe9b8a 7601 trace_btrfs_reserved_extent_free(root, start, len);
7602
e6dcd2dc
CM
7603 return ret;
7604}
7605
e688b725 7606int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7607 u64 start, u64 len, int delalloc)
e688b725 7608{
e570fd27 7609 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7610}
7611
7612int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7613 u64 start, u64 len)
7614{
e570fd27 7615 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7616}
7617
5d4f98a2
YZ
7618static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7619 struct btrfs_root *root,
7620 u64 parent, u64 root_objectid,
7621 u64 flags, u64 owner, u64 offset,
7622 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7623{
7624 int ret;
5d4f98a2 7625 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7626 struct btrfs_extent_item *extent_item;
5d4f98a2 7627 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7628 struct btrfs_path *path;
5d4f98a2
YZ
7629 struct extent_buffer *leaf;
7630 int type;
7631 u32 size;
26b8003f 7632
5d4f98a2
YZ
7633 if (parent > 0)
7634 type = BTRFS_SHARED_DATA_REF_KEY;
7635 else
7636 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7637
5d4f98a2 7638 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7639
7640 path = btrfs_alloc_path();
db5b493a
TI
7641 if (!path)
7642 return -ENOMEM;
47e4bb98 7643
b9473439 7644 path->leave_spinning = 1;
5d4f98a2
YZ
7645 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7646 ins, size);
79787eaa
JM
7647 if (ret) {
7648 btrfs_free_path(path);
7649 return ret;
7650 }
0f9dd46c 7651
5d4f98a2
YZ
7652 leaf = path->nodes[0];
7653 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7654 struct btrfs_extent_item);
5d4f98a2
YZ
7655 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7656 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7657 btrfs_set_extent_flags(leaf, extent_item,
7658 flags | BTRFS_EXTENT_FLAG_DATA);
7659
7660 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7661 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7662 if (parent > 0) {
7663 struct btrfs_shared_data_ref *ref;
7664 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7665 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7666 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7667 } else {
7668 struct btrfs_extent_data_ref *ref;
7669 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7670 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7671 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7672 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7673 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7674 }
47e4bb98
CM
7675
7676 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7677 btrfs_free_path(path);
f510cfec 7678
ce93ec54 7679 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7680 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7681 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7682 ins->objectid, ins->offset);
f5947066
CM
7683 BUG();
7684 }
0be5dc67 7685 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7686 return ret;
7687}
7688
5d4f98a2
YZ
7689static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7690 struct btrfs_root *root,
7691 u64 parent, u64 root_objectid,
7692 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7693 int level, struct btrfs_key *ins,
7694 int no_quota)
e6dcd2dc
CM
7695{
7696 int ret;
5d4f98a2
YZ
7697 struct btrfs_fs_info *fs_info = root->fs_info;
7698 struct btrfs_extent_item *extent_item;
7699 struct btrfs_tree_block_info *block_info;
7700 struct btrfs_extent_inline_ref *iref;
7701 struct btrfs_path *path;
7702 struct extent_buffer *leaf;
3173a18f 7703 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7704 u64 num_bytes = ins->offset;
3173a18f
JB
7705 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7706 SKINNY_METADATA);
7707
7708 if (!skinny_metadata)
7709 size += sizeof(*block_info);
1c2308f8 7710
5d4f98a2 7711 path = btrfs_alloc_path();
857cc2fc
JB
7712 if (!path) {
7713 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7714 root->nodesize);
d8926bb3 7715 return -ENOMEM;
857cc2fc 7716 }
56bec294 7717
5d4f98a2
YZ
7718 path->leave_spinning = 1;
7719 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7720 ins, size);
79787eaa 7721 if (ret) {
dd825259 7722 btrfs_free_path(path);
857cc2fc 7723 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7724 root->nodesize);
79787eaa
JM
7725 return ret;
7726 }
5d4f98a2
YZ
7727
7728 leaf = path->nodes[0];
7729 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7730 struct btrfs_extent_item);
7731 btrfs_set_extent_refs(leaf, extent_item, 1);
7732 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7733 btrfs_set_extent_flags(leaf, extent_item,
7734 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7735
3173a18f
JB
7736 if (skinny_metadata) {
7737 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7738 num_bytes = root->nodesize;
3173a18f
JB
7739 } else {
7740 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7741 btrfs_set_tree_block_key(leaf, block_info, key);
7742 btrfs_set_tree_block_level(leaf, block_info, level);
7743 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7744 }
5d4f98a2 7745
5d4f98a2
YZ
7746 if (parent > 0) {
7747 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7748 btrfs_set_extent_inline_ref_type(leaf, iref,
7749 BTRFS_SHARED_BLOCK_REF_KEY);
7750 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7751 } else {
7752 btrfs_set_extent_inline_ref_type(leaf, iref,
7753 BTRFS_TREE_BLOCK_REF_KEY);
7754 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7755 }
7756
7757 btrfs_mark_buffer_dirty(leaf);
7758 btrfs_free_path(path);
7759
ce93ec54
JB
7760 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7761 1);
79787eaa 7762 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7763 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7764 ins->objectid, ins->offset);
5d4f98a2
YZ
7765 BUG();
7766 }
0be5dc67 7767
707e8a07 7768 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7769 return ret;
7770}
7771
7772int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7773 struct btrfs_root *root,
7774 u64 root_objectid, u64 owner,
7775 u64 offset, struct btrfs_key *ins)
7776{
7777 int ret;
7778
7779 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7780
66d7e7f0
AJ
7781 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7782 ins->offset, 0,
7783 root_objectid, owner, offset,
7784 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7785 return ret;
7786}
e02119d5
CM
7787
7788/*
7789 * this is used by the tree logging recovery code. It records that
7790 * an extent has been allocated and makes sure to clear the free
7791 * space cache bits as well
7792 */
5d4f98a2
YZ
7793int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7794 struct btrfs_root *root,
7795 u64 root_objectid, u64 owner, u64 offset,
7796 struct btrfs_key *ins)
e02119d5
CM
7797{
7798 int ret;
7799 struct btrfs_block_group_cache *block_group;
11833d66 7800
8c2a1a30
JB
7801 /*
7802 * Mixed block groups will exclude before processing the log so we only
7803 * need to do the exlude dance if this fs isn't mixed.
7804 */
7805 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7806 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7807 if (ret)
8c2a1a30 7808 return ret;
11833d66
YZ
7809 }
7810
8c2a1a30
JB
7811 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7812 if (!block_group)
7813 return -EINVAL;
7814
fb25e914 7815 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7816 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7817 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7818 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7819 0, owner, offset, ins, 1);
b50c6e25 7820 btrfs_put_block_group(block_group);
e02119d5
CM
7821 return ret;
7822}
7823
48a3b636
ES
7824static struct extent_buffer *
7825btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7826 u64 bytenr, int level)
65b51a00
CM
7827{
7828 struct extent_buffer *buf;
7829
a83fffb7 7830 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7831 if (!buf)
7832 return ERR_PTR(-ENOMEM);
7833 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7834 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7835 btrfs_tree_lock(buf);
01d58472 7836 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7837 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7838
7839 btrfs_set_lock_blocking(buf);
65b51a00 7840 btrfs_set_buffer_uptodate(buf);
b4ce94de 7841
d0c803c4 7842 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7843 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7844 /*
7845 * we allow two log transactions at a time, use different
7846 * EXENT bit to differentiate dirty pages.
7847 */
656f30db 7848 if (buf->log_index == 0)
8cef4e16
YZ
7849 set_extent_dirty(&root->dirty_log_pages, buf->start,
7850 buf->start + buf->len - 1, GFP_NOFS);
7851 else
7852 set_extent_new(&root->dirty_log_pages, buf->start,
7853 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7854 } else {
656f30db 7855 buf->log_index = -1;
d0c803c4 7856 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7857 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7858 }
65b51a00 7859 trans->blocks_used++;
b4ce94de 7860 /* this returns a buffer locked for blocking */
65b51a00
CM
7861 return buf;
7862}
7863
f0486c68
YZ
7864static struct btrfs_block_rsv *
7865use_block_rsv(struct btrfs_trans_handle *trans,
7866 struct btrfs_root *root, u32 blocksize)
7867{
7868 struct btrfs_block_rsv *block_rsv;
68a82277 7869 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7870 int ret;
d88033db 7871 bool global_updated = false;
f0486c68
YZ
7872
7873 block_rsv = get_block_rsv(trans, root);
7874
b586b323
MX
7875 if (unlikely(block_rsv->size == 0))
7876 goto try_reserve;
d88033db 7877again:
f0486c68
YZ
7878 ret = block_rsv_use_bytes(block_rsv, blocksize);
7879 if (!ret)
7880 return block_rsv;
7881
b586b323
MX
7882 if (block_rsv->failfast)
7883 return ERR_PTR(ret);
7884
d88033db
MX
7885 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7886 global_updated = true;
7887 update_global_block_rsv(root->fs_info);
7888 goto again;
7889 }
7890
b586b323
MX
7891 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7892 static DEFINE_RATELIMIT_STATE(_rs,
7893 DEFAULT_RATELIMIT_INTERVAL * 10,
7894 /*DEFAULT_RATELIMIT_BURST*/ 1);
7895 if (__ratelimit(&_rs))
7896 WARN(1, KERN_DEBUG
efe120a0 7897 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7898 }
7899try_reserve:
7900 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7901 BTRFS_RESERVE_NO_FLUSH);
7902 if (!ret)
7903 return block_rsv;
7904 /*
7905 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7906 * the global reserve if its space type is the same as the global
7907 * reservation.
b586b323 7908 */
5881cfc9
MX
7909 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7910 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7911 ret = block_rsv_use_bytes(global_rsv, blocksize);
7912 if (!ret)
7913 return global_rsv;
7914 }
7915 return ERR_PTR(ret);
f0486c68
YZ
7916}
7917
8c2a3ca2
JB
7918static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7919 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7920{
7921 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7922 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7923}
7924
fec577fb 7925/*
f0486c68 7926 * finds a free extent and does all the dirty work required for allocation
67b7859e 7927 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7928 */
4d75f8a9
DS
7929struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7930 struct btrfs_root *root,
5d4f98a2
YZ
7931 u64 parent, u64 root_objectid,
7932 struct btrfs_disk_key *key, int level,
5581a51a 7933 u64 hint, u64 empty_size)
fec577fb 7934{
e2fa7227 7935 struct btrfs_key ins;
f0486c68 7936 struct btrfs_block_rsv *block_rsv;
5f39d397 7937 struct extent_buffer *buf;
67b7859e 7938 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7939 u64 flags = 0;
7940 int ret;
4d75f8a9 7941 u32 blocksize = root->nodesize;
3173a18f
JB
7942 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7943 SKINNY_METADATA);
fec577fb 7944
fccb84c9 7945 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7946 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7947 level);
faa2dbf0
JB
7948 if (!IS_ERR(buf))
7949 root->alloc_bytenr += blocksize;
7950 return buf;
7951 }
fccb84c9 7952
f0486c68
YZ
7953 block_rsv = use_block_rsv(trans, root, blocksize);
7954 if (IS_ERR(block_rsv))
7955 return ERR_CAST(block_rsv);
7956
00361589 7957 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7958 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7959 if (ret)
7960 goto out_unuse;
55c69072 7961
fe864576 7962 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7963 if (IS_ERR(buf)) {
7964 ret = PTR_ERR(buf);
7965 goto out_free_reserved;
7966 }
f0486c68
YZ
7967
7968 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7969 if (parent == 0)
7970 parent = ins.objectid;
7971 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7972 } else
7973 BUG_ON(parent > 0);
7974
7975 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7976 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7977 if (!extent_op) {
7978 ret = -ENOMEM;
7979 goto out_free_buf;
7980 }
f0486c68
YZ
7981 if (key)
7982 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7983 else
7984 memset(&extent_op->key, 0, sizeof(extent_op->key));
7985 extent_op->flags_to_set = flags;
3173a18f
JB
7986 if (skinny_metadata)
7987 extent_op->update_key = 0;
7988 else
7989 extent_op->update_key = 1;
f0486c68
YZ
7990 extent_op->update_flags = 1;
7991 extent_op->is_data = 0;
b1c79e09 7992 extent_op->level = level;
f0486c68 7993
66d7e7f0 7994 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7995 ins.objectid, ins.offset,
7996 parent, root_objectid, level,
7997 BTRFS_ADD_DELAYED_EXTENT,
7998 extent_op, 0);
7999 if (ret)
8000 goto out_free_delayed;
f0486c68 8001 }
fec577fb 8002 return buf;
67b7859e
OS
8003
8004out_free_delayed:
8005 btrfs_free_delayed_extent_op(extent_op);
8006out_free_buf:
8007 free_extent_buffer(buf);
8008out_free_reserved:
8009 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8010out_unuse:
8011 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8012 return ERR_PTR(ret);
fec577fb 8013}
a28ec197 8014
2c47e605
YZ
8015struct walk_control {
8016 u64 refs[BTRFS_MAX_LEVEL];
8017 u64 flags[BTRFS_MAX_LEVEL];
8018 struct btrfs_key update_progress;
8019 int stage;
8020 int level;
8021 int shared_level;
8022 int update_ref;
8023 int keep_locks;
1c4850e2
YZ
8024 int reada_slot;
8025 int reada_count;
66d7e7f0 8026 int for_reloc;
2c47e605
YZ
8027};
8028
8029#define DROP_REFERENCE 1
8030#define UPDATE_BACKREF 2
8031
1c4850e2
YZ
8032static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8033 struct btrfs_root *root,
8034 struct walk_control *wc,
8035 struct btrfs_path *path)
6407bf6d 8036{
1c4850e2
YZ
8037 u64 bytenr;
8038 u64 generation;
8039 u64 refs;
94fcca9f 8040 u64 flags;
5d4f98a2 8041 u32 nritems;
1c4850e2
YZ
8042 u32 blocksize;
8043 struct btrfs_key key;
8044 struct extent_buffer *eb;
6407bf6d 8045 int ret;
1c4850e2
YZ
8046 int slot;
8047 int nread = 0;
6407bf6d 8048
1c4850e2
YZ
8049 if (path->slots[wc->level] < wc->reada_slot) {
8050 wc->reada_count = wc->reada_count * 2 / 3;
8051 wc->reada_count = max(wc->reada_count, 2);
8052 } else {
8053 wc->reada_count = wc->reada_count * 3 / 2;
8054 wc->reada_count = min_t(int, wc->reada_count,
8055 BTRFS_NODEPTRS_PER_BLOCK(root));
8056 }
7bb86316 8057
1c4850e2
YZ
8058 eb = path->nodes[wc->level];
8059 nritems = btrfs_header_nritems(eb);
707e8a07 8060 blocksize = root->nodesize;
bd56b302 8061
1c4850e2
YZ
8062 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8063 if (nread >= wc->reada_count)
8064 break;
bd56b302 8065
2dd3e67b 8066 cond_resched();
1c4850e2
YZ
8067 bytenr = btrfs_node_blockptr(eb, slot);
8068 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8069
1c4850e2
YZ
8070 if (slot == path->slots[wc->level])
8071 goto reada;
5d4f98a2 8072
1c4850e2
YZ
8073 if (wc->stage == UPDATE_BACKREF &&
8074 generation <= root->root_key.offset)
bd56b302
CM
8075 continue;
8076
94fcca9f 8077 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8078 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8079 wc->level - 1, 1, &refs,
8080 &flags);
79787eaa
JM
8081 /* We don't care about errors in readahead. */
8082 if (ret < 0)
8083 continue;
94fcca9f
YZ
8084 BUG_ON(refs == 0);
8085
1c4850e2 8086 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8087 if (refs == 1)
8088 goto reada;
bd56b302 8089
94fcca9f
YZ
8090 if (wc->level == 1 &&
8091 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8092 continue;
1c4850e2
YZ
8093 if (!wc->update_ref ||
8094 generation <= root->root_key.offset)
8095 continue;
8096 btrfs_node_key_to_cpu(eb, &key, slot);
8097 ret = btrfs_comp_cpu_keys(&key,
8098 &wc->update_progress);
8099 if (ret < 0)
8100 continue;
94fcca9f
YZ
8101 } else {
8102 if (wc->level == 1 &&
8103 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8104 continue;
6407bf6d 8105 }
1c4850e2 8106reada:
d3e46fea 8107 readahead_tree_block(root, bytenr);
1c4850e2 8108 nread++;
20524f02 8109 }
1c4850e2 8110 wc->reada_slot = slot;
20524f02 8111}
2c47e605 8112
0ed4792a
QW
8113/*
8114 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
8115 * for later qgroup accounting.
8116 *
8117 * Current, this function does nothing.
8118 */
1152651a
MF
8119static int account_leaf_items(struct btrfs_trans_handle *trans,
8120 struct btrfs_root *root,
8121 struct extent_buffer *eb)
8122{
8123 int nr = btrfs_header_nritems(eb);
0ed4792a 8124 int i, extent_type;
1152651a
MF
8125 struct btrfs_key key;
8126 struct btrfs_file_extent_item *fi;
8127 u64 bytenr, num_bytes;
8128
8129 for (i = 0; i < nr; i++) {
8130 btrfs_item_key_to_cpu(eb, &key, i);
8131
8132 if (key.type != BTRFS_EXTENT_DATA_KEY)
8133 continue;
8134
8135 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8136 /* filter out non qgroup-accountable extents */
8137 extent_type = btrfs_file_extent_type(eb, fi);
8138
8139 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8140 continue;
8141
8142 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8143 if (!bytenr)
8144 continue;
8145
8146 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
8147 }
8148 return 0;
8149}
8150
8151/*
8152 * Walk up the tree from the bottom, freeing leaves and any interior
8153 * nodes which have had all slots visited. If a node (leaf or
8154 * interior) is freed, the node above it will have it's slot
8155 * incremented. The root node will never be freed.
8156 *
8157 * At the end of this function, we should have a path which has all
8158 * slots incremented to the next position for a search. If we need to
8159 * read a new node it will be NULL and the node above it will have the
8160 * correct slot selected for a later read.
8161 *
8162 * If we increment the root nodes slot counter past the number of
8163 * elements, 1 is returned to signal completion of the search.
8164 */
8165static int adjust_slots_upwards(struct btrfs_root *root,
8166 struct btrfs_path *path, int root_level)
8167{
8168 int level = 0;
8169 int nr, slot;
8170 struct extent_buffer *eb;
8171
8172 if (root_level == 0)
8173 return 1;
8174
8175 while (level <= root_level) {
8176 eb = path->nodes[level];
8177 nr = btrfs_header_nritems(eb);
8178 path->slots[level]++;
8179 slot = path->slots[level];
8180 if (slot >= nr || level == 0) {
8181 /*
8182 * Don't free the root - we will detect this
8183 * condition after our loop and return a
8184 * positive value for caller to stop walking the tree.
8185 */
8186 if (level != root_level) {
8187 btrfs_tree_unlock_rw(eb, path->locks[level]);
8188 path->locks[level] = 0;
8189
8190 free_extent_buffer(eb);
8191 path->nodes[level] = NULL;
8192 path->slots[level] = 0;
8193 }
8194 } else {
8195 /*
8196 * We have a valid slot to walk back down
8197 * from. Stop here so caller can process these
8198 * new nodes.
8199 */
8200 break;
8201 }
8202
8203 level++;
8204 }
8205
8206 eb = path->nodes[root_level];
8207 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8208 return 1;
8209
8210 return 0;
8211}
8212
8213/*
8214 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
8215 * TODO: Modify this function to mark all (including complete shared node)
8216 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
8217 */
8218static int account_shared_subtree(struct btrfs_trans_handle *trans,
8219 struct btrfs_root *root,
8220 struct extent_buffer *root_eb,
8221 u64 root_gen,
8222 int root_level)
8223{
8224 int ret = 0;
8225 int level;
8226 struct extent_buffer *eb = root_eb;
8227 struct btrfs_path *path = NULL;
8228
8229 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8230 BUG_ON(root_eb == NULL);
8231
8232 if (!root->fs_info->quota_enabled)
8233 return 0;
8234
8235 if (!extent_buffer_uptodate(root_eb)) {
8236 ret = btrfs_read_buffer(root_eb, root_gen);
8237 if (ret)
8238 goto out;
8239 }
8240
8241 if (root_level == 0) {
8242 ret = account_leaf_items(trans, root, root_eb);
8243 goto out;
8244 }
8245
8246 path = btrfs_alloc_path();
8247 if (!path)
8248 return -ENOMEM;
8249
8250 /*
8251 * Walk down the tree. Missing extent blocks are filled in as
8252 * we go. Metadata is accounted every time we read a new
8253 * extent block.
8254 *
8255 * When we reach a leaf, we account for file extent items in it,
8256 * walk back up the tree (adjusting slot pointers as we go)
8257 * and restart the search process.
8258 */
8259 extent_buffer_get(root_eb); /* For path */
8260 path->nodes[root_level] = root_eb;
8261 path->slots[root_level] = 0;
8262 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8263walk_down:
8264 level = root_level;
8265 while (level >= 0) {
8266 if (path->nodes[level] == NULL) {
1152651a
MF
8267 int parent_slot;
8268 u64 child_gen;
8269 u64 child_bytenr;
8270
8271 /* We need to get child blockptr/gen from
8272 * parent before we can read it. */
8273 eb = path->nodes[level + 1];
8274 parent_slot = path->slots[level + 1];
8275 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8276 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8277
ce86cd59 8278 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8279 if (IS_ERR(eb)) {
8280 ret = PTR_ERR(eb);
8281 goto out;
8282 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8283 free_extent_buffer(eb);
64c043de 8284 ret = -EIO;
1152651a
MF
8285 goto out;
8286 }
8287
8288 path->nodes[level] = eb;
8289 path->slots[level] = 0;
8290
8291 btrfs_tree_read_lock(eb);
8292 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8293 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8294 }
8295
8296 if (level == 0) {
8297 ret = account_leaf_items(trans, root, path->nodes[level]);
8298 if (ret)
8299 goto out;
8300
8301 /* Nonzero return here means we completed our search */
8302 ret = adjust_slots_upwards(root, path, root_level);
8303 if (ret)
8304 break;
8305
8306 /* Restart search with new slots */
8307 goto walk_down;
8308 }
8309
8310 level--;
8311 }
8312
8313 ret = 0;
8314out:
8315 btrfs_free_path(path);
8316
8317 return ret;
8318}
8319
f82d02d9 8320/*
2c016dc2 8321 * helper to process tree block while walking down the tree.
2c47e605 8322 *
2c47e605
YZ
8323 * when wc->stage == UPDATE_BACKREF, this function updates
8324 * back refs for pointers in the block.
8325 *
8326 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8327 */
2c47e605 8328static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8329 struct btrfs_root *root,
2c47e605 8330 struct btrfs_path *path,
94fcca9f 8331 struct walk_control *wc, int lookup_info)
f82d02d9 8332{
2c47e605
YZ
8333 int level = wc->level;
8334 struct extent_buffer *eb = path->nodes[level];
2c47e605 8335 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8336 int ret;
8337
2c47e605
YZ
8338 if (wc->stage == UPDATE_BACKREF &&
8339 btrfs_header_owner(eb) != root->root_key.objectid)
8340 return 1;
f82d02d9 8341
2c47e605
YZ
8342 /*
8343 * when reference count of tree block is 1, it won't increase
8344 * again. once full backref flag is set, we never clear it.
8345 */
94fcca9f
YZ
8346 if (lookup_info &&
8347 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8348 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8349 BUG_ON(!path->locks[level]);
8350 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8351 eb->start, level, 1,
2c47e605
YZ
8352 &wc->refs[level],
8353 &wc->flags[level]);
79787eaa
JM
8354 BUG_ON(ret == -ENOMEM);
8355 if (ret)
8356 return ret;
2c47e605
YZ
8357 BUG_ON(wc->refs[level] == 0);
8358 }
5d4f98a2 8359
2c47e605
YZ
8360 if (wc->stage == DROP_REFERENCE) {
8361 if (wc->refs[level] > 1)
8362 return 1;
f82d02d9 8363
2c47e605 8364 if (path->locks[level] && !wc->keep_locks) {
bd681513 8365 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8366 path->locks[level] = 0;
8367 }
8368 return 0;
8369 }
f82d02d9 8370
2c47e605
YZ
8371 /* wc->stage == UPDATE_BACKREF */
8372 if (!(wc->flags[level] & flag)) {
8373 BUG_ON(!path->locks[level]);
e339a6b0 8374 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8375 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8376 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8377 BUG_ON(ret); /* -ENOMEM */
2c47e605 8378 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8379 eb->len, flag,
8380 btrfs_header_level(eb), 0);
79787eaa 8381 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8382 wc->flags[level] |= flag;
8383 }
8384
8385 /*
8386 * the block is shared by multiple trees, so it's not good to
8387 * keep the tree lock
8388 */
8389 if (path->locks[level] && level > 0) {
bd681513 8390 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8391 path->locks[level] = 0;
8392 }
8393 return 0;
8394}
8395
1c4850e2 8396/*
2c016dc2 8397 * helper to process tree block pointer.
1c4850e2
YZ
8398 *
8399 * when wc->stage == DROP_REFERENCE, this function checks
8400 * reference count of the block pointed to. if the block
8401 * is shared and we need update back refs for the subtree
8402 * rooted at the block, this function changes wc->stage to
8403 * UPDATE_BACKREF. if the block is shared and there is no
8404 * need to update back, this function drops the reference
8405 * to the block.
8406 *
8407 * NOTE: return value 1 means we should stop walking down.
8408 */
8409static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8410 struct btrfs_root *root,
8411 struct btrfs_path *path,
94fcca9f 8412 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8413{
8414 u64 bytenr;
8415 u64 generation;
8416 u64 parent;
8417 u32 blocksize;
8418 struct btrfs_key key;
8419 struct extent_buffer *next;
8420 int level = wc->level;
8421 int reada = 0;
8422 int ret = 0;
1152651a 8423 bool need_account = false;
1c4850e2
YZ
8424
8425 generation = btrfs_node_ptr_generation(path->nodes[level],
8426 path->slots[level]);
8427 /*
8428 * if the lower level block was created before the snapshot
8429 * was created, we know there is no need to update back refs
8430 * for the subtree
8431 */
8432 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8433 generation <= root->root_key.offset) {
8434 *lookup_info = 1;
1c4850e2 8435 return 1;
94fcca9f 8436 }
1c4850e2
YZ
8437
8438 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8439 blocksize = root->nodesize;
1c4850e2 8440
01d58472 8441 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8442 if (!next) {
a83fffb7 8443 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8444 if (!next)
8445 return -ENOMEM;
b2aaaa3b
JB
8446 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8447 level - 1);
1c4850e2
YZ
8448 reada = 1;
8449 }
8450 btrfs_tree_lock(next);
8451 btrfs_set_lock_blocking(next);
8452
3173a18f 8453 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8454 &wc->refs[level - 1],
8455 &wc->flags[level - 1]);
79787eaa
JM
8456 if (ret < 0) {
8457 btrfs_tree_unlock(next);
8458 return ret;
8459 }
8460
c2cf52eb
SK
8461 if (unlikely(wc->refs[level - 1] == 0)) {
8462 btrfs_err(root->fs_info, "Missing references.");
8463 BUG();
8464 }
94fcca9f 8465 *lookup_info = 0;
1c4850e2 8466
94fcca9f 8467 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8468 if (wc->refs[level - 1] > 1) {
1152651a 8469 need_account = true;
94fcca9f
YZ
8470 if (level == 1 &&
8471 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8472 goto skip;
8473
1c4850e2
YZ
8474 if (!wc->update_ref ||
8475 generation <= root->root_key.offset)
8476 goto skip;
8477
8478 btrfs_node_key_to_cpu(path->nodes[level], &key,
8479 path->slots[level]);
8480 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8481 if (ret < 0)
8482 goto skip;
8483
8484 wc->stage = UPDATE_BACKREF;
8485 wc->shared_level = level - 1;
8486 }
94fcca9f
YZ
8487 } else {
8488 if (level == 1 &&
8489 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8490 goto skip;
1c4850e2
YZ
8491 }
8492
b9fab919 8493 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8494 btrfs_tree_unlock(next);
8495 free_extent_buffer(next);
8496 next = NULL;
94fcca9f 8497 *lookup_info = 1;
1c4850e2
YZ
8498 }
8499
8500 if (!next) {
8501 if (reada && level == 1)
8502 reada_walk_down(trans, root, wc, path);
ce86cd59 8503 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8504 if (IS_ERR(next)) {
8505 return PTR_ERR(next);
8506 } else if (!extent_buffer_uptodate(next)) {
416bc658 8507 free_extent_buffer(next);
97d9a8a4 8508 return -EIO;
416bc658 8509 }
1c4850e2
YZ
8510 btrfs_tree_lock(next);
8511 btrfs_set_lock_blocking(next);
8512 }
8513
8514 level--;
8515 BUG_ON(level != btrfs_header_level(next));
8516 path->nodes[level] = next;
8517 path->slots[level] = 0;
bd681513 8518 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8519 wc->level = level;
8520 if (wc->level == 1)
8521 wc->reada_slot = 0;
8522 return 0;
8523skip:
8524 wc->refs[level - 1] = 0;
8525 wc->flags[level - 1] = 0;
94fcca9f
YZ
8526 if (wc->stage == DROP_REFERENCE) {
8527 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8528 parent = path->nodes[level]->start;
8529 } else {
8530 BUG_ON(root->root_key.objectid !=
8531 btrfs_header_owner(path->nodes[level]));
8532 parent = 0;
8533 }
1c4850e2 8534
1152651a
MF
8535 if (need_account) {
8536 ret = account_shared_subtree(trans, root, next,
8537 generation, level - 1);
8538 if (ret) {
94647322
DS
8539 btrfs_err_rl(root->fs_info,
8540 "Error "
1152651a 8541 "%d accounting shared subtree. Quota "
94647322
DS
8542 "is out of sync, rescan required.",
8543 ret);
1152651a
MF
8544 }
8545 }
94fcca9f 8546 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8547 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8548 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8549 }
1c4850e2
YZ
8550 btrfs_tree_unlock(next);
8551 free_extent_buffer(next);
94fcca9f 8552 *lookup_info = 1;
1c4850e2
YZ
8553 return 1;
8554}
8555
2c47e605 8556/*
2c016dc2 8557 * helper to process tree block while walking up the tree.
2c47e605
YZ
8558 *
8559 * when wc->stage == DROP_REFERENCE, this function drops
8560 * reference count on the block.
8561 *
8562 * when wc->stage == UPDATE_BACKREF, this function changes
8563 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8564 * to UPDATE_BACKREF previously while processing the block.
8565 *
8566 * NOTE: return value 1 means we should stop walking up.
8567 */
8568static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8569 struct btrfs_root *root,
8570 struct btrfs_path *path,
8571 struct walk_control *wc)
8572{
f0486c68 8573 int ret;
2c47e605
YZ
8574 int level = wc->level;
8575 struct extent_buffer *eb = path->nodes[level];
8576 u64 parent = 0;
8577
8578 if (wc->stage == UPDATE_BACKREF) {
8579 BUG_ON(wc->shared_level < level);
8580 if (level < wc->shared_level)
8581 goto out;
8582
2c47e605
YZ
8583 ret = find_next_key(path, level + 1, &wc->update_progress);
8584 if (ret > 0)
8585 wc->update_ref = 0;
8586
8587 wc->stage = DROP_REFERENCE;
8588 wc->shared_level = -1;
8589 path->slots[level] = 0;
8590
8591 /*
8592 * check reference count again if the block isn't locked.
8593 * we should start walking down the tree again if reference
8594 * count is one.
8595 */
8596 if (!path->locks[level]) {
8597 BUG_ON(level == 0);
8598 btrfs_tree_lock(eb);
8599 btrfs_set_lock_blocking(eb);
bd681513 8600 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8601
8602 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8603 eb->start, level, 1,
2c47e605
YZ
8604 &wc->refs[level],
8605 &wc->flags[level]);
79787eaa
JM
8606 if (ret < 0) {
8607 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8608 path->locks[level] = 0;
79787eaa
JM
8609 return ret;
8610 }
2c47e605
YZ
8611 BUG_ON(wc->refs[level] == 0);
8612 if (wc->refs[level] == 1) {
bd681513 8613 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8614 path->locks[level] = 0;
2c47e605
YZ
8615 return 1;
8616 }
f82d02d9 8617 }
2c47e605 8618 }
f82d02d9 8619
2c47e605
YZ
8620 /* wc->stage == DROP_REFERENCE */
8621 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8622
2c47e605
YZ
8623 if (wc->refs[level] == 1) {
8624 if (level == 0) {
8625 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8626 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8627 else
e339a6b0 8628 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8629 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8630 ret = account_leaf_items(trans, root, eb);
8631 if (ret) {
94647322
DS
8632 btrfs_err_rl(root->fs_info,
8633 "error "
1152651a 8634 "%d accounting leaf items. Quota "
94647322
DS
8635 "is out of sync, rescan required.",
8636 ret);
1152651a 8637 }
2c47e605
YZ
8638 }
8639 /* make block locked assertion in clean_tree_block happy */
8640 if (!path->locks[level] &&
8641 btrfs_header_generation(eb) == trans->transid) {
8642 btrfs_tree_lock(eb);
8643 btrfs_set_lock_blocking(eb);
bd681513 8644 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8645 }
01d58472 8646 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8647 }
8648
8649 if (eb == root->node) {
8650 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8651 parent = eb->start;
8652 else
8653 BUG_ON(root->root_key.objectid !=
8654 btrfs_header_owner(eb));
8655 } else {
8656 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8657 parent = path->nodes[level + 1]->start;
8658 else
8659 BUG_ON(root->root_key.objectid !=
8660 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8661 }
f82d02d9 8662
5581a51a 8663 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8664out:
8665 wc->refs[level] = 0;
8666 wc->flags[level] = 0;
f0486c68 8667 return 0;
2c47e605
YZ
8668}
8669
8670static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8671 struct btrfs_root *root,
8672 struct btrfs_path *path,
8673 struct walk_control *wc)
8674{
2c47e605 8675 int level = wc->level;
94fcca9f 8676 int lookup_info = 1;
2c47e605
YZ
8677 int ret;
8678
8679 while (level >= 0) {
94fcca9f 8680 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8681 if (ret > 0)
8682 break;
8683
8684 if (level == 0)
8685 break;
8686
7a7965f8
YZ
8687 if (path->slots[level] >=
8688 btrfs_header_nritems(path->nodes[level]))
8689 break;
8690
94fcca9f 8691 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8692 if (ret > 0) {
8693 path->slots[level]++;
8694 continue;
90d2c51d
MX
8695 } else if (ret < 0)
8696 return ret;
1c4850e2 8697 level = wc->level;
f82d02d9 8698 }
f82d02d9
YZ
8699 return 0;
8700}
8701
d397712b 8702static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8703 struct btrfs_root *root,
f82d02d9 8704 struct btrfs_path *path,
2c47e605 8705 struct walk_control *wc, int max_level)
20524f02 8706{
2c47e605 8707 int level = wc->level;
20524f02 8708 int ret;
9f3a7427 8709
2c47e605
YZ
8710 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8711 while (level < max_level && path->nodes[level]) {
8712 wc->level = level;
8713 if (path->slots[level] + 1 <
8714 btrfs_header_nritems(path->nodes[level])) {
8715 path->slots[level]++;
20524f02
CM
8716 return 0;
8717 } else {
2c47e605
YZ
8718 ret = walk_up_proc(trans, root, path, wc);
8719 if (ret > 0)
8720 return 0;
bd56b302 8721
2c47e605 8722 if (path->locks[level]) {
bd681513
CM
8723 btrfs_tree_unlock_rw(path->nodes[level],
8724 path->locks[level]);
2c47e605 8725 path->locks[level] = 0;
f82d02d9 8726 }
2c47e605
YZ
8727 free_extent_buffer(path->nodes[level]);
8728 path->nodes[level] = NULL;
8729 level++;
20524f02
CM
8730 }
8731 }
8732 return 1;
8733}
8734
9aca1d51 8735/*
2c47e605
YZ
8736 * drop a subvolume tree.
8737 *
8738 * this function traverses the tree freeing any blocks that only
8739 * referenced by the tree.
8740 *
8741 * when a shared tree block is found. this function decreases its
8742 * reference count by one. if update_ref is true, this function
8743 * also make sure backrefs for the shared block and all lower level
8744 * blocks are properly updated.
9d1a2a3a
DS
8745 *
8746 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8747 */
2c536799 8748int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8749 struct btrfs_block_rsv *block_rsv, int update_ref,
8750 int for_reloc)
20524f02 8751{
5caf2a00 8752 struct btrfs_path *path;
2c47e605
YZ
8753 struct btrfs_trans_handle *trans;
8754 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8755 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8756 struct walk_control *wc;
8757 struct btrfs_key key;
8758 int err = 0;
8759 int ret;
8760 int level;
d29a9f62 8761 bool root_dropped = false;
20524f02 8762
1152651a
MF
8763 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8764
5caf2a00 8765 path = btrfs_alloc_path();
cb1b69f4
TI
8766 if (!path) {
8767 err = -ENOMEM;
8768 goto out;
8769 }
20524f02 8770
2c47e605 8771 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8772 if (!wc) {
8773 btrfs_free_path(path);
cb1b69f4
TI
8774 err = -ENOMEM;
8775 goto out;
38a1a919 8776 }
2c47e605 8777
a22285a6 8778 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8779 if (IS_ERR(trans)) {
8780 err = PTR_ERR(trans);
8781 goto out_free;
8782 }
98d5dc13 8783
3fd0a558
YZ
8784 if (block_rsv)
8785 trans->block_rsv = block_rsv;
2c47e605 8786
9f3a7427 8787 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8788 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8789 path->nodes[level] = btrfs_lock_root_node(root);
8790 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8791 path->slots[level] = 0;
bd681513 8792 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8793 memset(&wc->update_progress, 0,
8794 sizeof(wc->update_progress));
9f3a7427 8795 } else {
9f3a7427 8796 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8797 memcpy(&wc->update_progress, &key,
8798 sizeof(wc->update_progress));
8799
6702ed49 8800 level = root_item->drop_level;
2c47e605 8801 BUG_ON(level == 0);
6702ed49 8802 path->lowest_level = level;
2c47e605
YZ
8803 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8804 path->lowest_level = 0;
8805 if (ret < 0) {
8806 err = ret;
79787eaa 8807 goto out_end_trans;
9f3a7427 8808 }
1c4850e2 8809 WARN_ON(ret > 0);
2c47e605 8810
7d9eb12c
CM
8811 /*
8812 * unlock our path, this is safe because only this
8813 * function is allowed to delete this snapshot
8814 */
5d4f98a2 8815 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8816
8817 level = btrfs_header_level(root->node);
8818 while (1) {
8819 btrfs_tree_lock(path->nodes[level]);
8820 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8821 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8822
8823 ret = btrfs_lookup_extent_info(trans, root,
8824 path->nodes[level]->start,
3173a18f 8825 level, 1, &wc->refs[level],
2c47e605 8826 &wc->flags[level]);
79787eaa
JM
8827 if (ret < 0) {
8828 err = ret;
8829 goto out_end_trans;
8830 }
2c47e605
YZ
8831 BUG_ON(wc->refs[level] == 0);
8832
8833 if (level == root_item->drop_level)
8834 break;
8835
8836 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8837 path->locks[level] = 0;
2c47e605
YZ
8838 WARN_ON(wc->refs[level] != 1);
8839 level--;
8840 }
9f3a7427 8841 }
2c47e605
YZ
8842
8843 wc->level = level;
8844 wc->shared_level = -1;
8845 wc->stage = DROP_REFERENCE;
8846 wc->update_ref = update_ref;
8847 wc->keep_locks = 0;
66d7e7f0 8848 wc->for_reloc = for_reloc;
1c4850e2 8849 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8850
d397712b 8851 while (1) {
9d1a2a3a 8852
2c47e605
YZ
8853 ret = walk_down_tree(trans, root, path, wc);
8854 if (ret < 0) {
8855 err = ret;
20524f02 8856 break;
2c47e605 8857 }
9aca1d51 8858
2c47e605
YZ
8859 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8860 if (ret < 0) {
8861 err = ret;
20524f02 8862 break;
2c47e605
YZ
8863 }
8864
8865 if (ret > 0) {
8866 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8867 break;
8868 }
2c47e605
YZ
8869
8870 if (wc->stage == DROP_REFERENCE) {
8871 level = wc->level;
8872 btrfs_node_key(path->nodes[level],
8873 &root_item->drop_progress,
8874 path->slots[level]);
8875 root_item->drop_level = level;
8876 }
8877
8878 BUG_ON(wc->level == 0);
3c8f2422
JB
8879 if (btrfs_should_end_transaction(trans, tree_root) ||
8880 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8881 ret = btrfs_update_root(trans, tree_root,
8882 &root->root_key,
8883 root_item);
79787eaa
JM
8884 if (ret) {
8885 btrfs_abort_transaction(trans, tree_root, ret);
8886 err = ret;
8887 goto out_end_trans;
8888 }
2c47e605 8889
3fd0a558 8890 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8891 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8892 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8893 err = -EAGAIN;
8894 goto out_free;
8895 }
8896
a22285a6 8897 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8898 if (IS_ERR(trans)) {
8899 err = PTR_ERR(trans);
8900 goto out_free;
8901 }
3fd0a558
YZ
8902 if (block_rsv)
8903 trans->block_rsv = block_rsv;
c3e69d58 8904 }
20524f02 8905 }
b3b4aa74 8906 btrfs_release_path(path);
79787eaa
JM
8907 if (err)
8908 goto out_end_trans;
2c47e605
YZ
8909
8910 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8911 if (ret) {
8912 btrfs_abort_transaction(trans, tree_root, ret);
8913 goto out_end_trans;
8914 }
2c47e605 8915
76dda93c 8916 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8917 ret = btrfs_find_root(tree_root, &root->root_key, path,
8918 NULL, NULL);
79787eaa
JM
8919 if (ret < 0) {
8920 btrfs_abort_transaction(trans, tree_root, ret);
8921 err = ret;
8922 goto out_end_trans;
8923 } else if (ret > 0) {
84cd948c
JB
8924 /* if we fail to delete the orphan item this time
8925 * around, it'll get picked up the next time.
8926 *
8927 * The most common failure here is just -ENOENT.
8928 */
8929 btrfs_del_orphan_item(trans, tree_root,
8930 root->root_key.objectid);
76dda93c
YZ
8931 }
8932 }
8933
27cdeb70 8934 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8935 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8936 } else {
8937 free_extent_buffer(root->node);
8938 free_extent_buffer(root->commit_root);
b0feb9d9 8939 btrfs_put_fs_root(root);
76dda93c 8940 }
d29a9f62 8941 root_dropped = true;
79787eaa 8942out_end_trans:
3fd0a558 8943 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8944out_free:
2c47e605 8945 kfree(wc);
5caf2a00 8946 btrfs_free_path(path);
cb1b69f4 8947out:
d29a9f62
JB
8948 /*
8949 * So if we need to stop dropping the snapshot for whatever reason we
8950 * need to make sure to add it back to the dead root list so that we
8951 * keep trying to do the work later. This also cleans up roots if we
8952 * don't have it in the radix (like when we recover after a power fail
8953 * or unmount) so we don't leak memory.
8954 */
b37b39cd 8955 if (!for_reloc && root_dropped == false)
d29a9f62 8956 btrfs_add_dead_root(root);
90515e7f 8957 if (err && err != -EAGAIN)
a4553fef 8958 btrfs_std_error(root->fs_info, err, NULL);
2c536799 8959 return err;
20524f02 8960}
9078a3e1 8961
2c47e605
YZ
8962/*
8963 * drop subtree rooted at tree block 'node'.
8964 *
8965 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8966 * only used by relocation code
2c47e605 8967 */
f82d02d9
YZ
8968int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8969 struct btrfs_root *root,
8970 struct extent_buffer *node,
8971 struct extent_buffer *parent)
8972{
8973 struct btrfs_path *path;
2c47e605 8974 struct walk_control *wc;
f82d02d9
YZ
8975 int level;
8976 int parent_level;
8977 int ret = 0;
8978 int wret;
8979
2c47e605
YZ
8980 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8981
f82d02d9 8982 path = btrfs_alloc_path();
db5b493a
TI
8983 if (!path)
8984 return -ENOMEM;
f82d02d9 8985
2c47e605 8986 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8987 if (!wc) {
8988 btrfs_free_path(path);
8989 return -ENOMEM;
8990 }
2c47e605 8991
b9447ef8 8992 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8993 parent_level = btrfs_header_level(parent);
8994 extent_buffer_get(parent);
8995 path->nodes[parent_level] = parent;
8996 path->slots[parent_level] = btrfs_header_nritems(parent);
8997
b9447ef8 8998 btrfs_assert_tree_locked(node);
f82d02d9 8999 level = btrfs_header_level(node);
f82d02d9
YZ
9000 path->nodes[level] = node;
9001 path->slots[level] = 0;
bd681513 9002 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9003
9004 wc->refs[parent_level] = 1;
9005 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9006 wc->level = level;
9007 wc->shared_level = -1;
9008 wc->stage = DROP_REFERENCE;
9009 wc->update_ref = 0;
9010 wc->keep_locks = 1;
66d7e7f0 9011 wc->for_reloc = 1;
1c4850e2 9012 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9013
9014 while (1) {
2c47e605
YZ
9015 wret = walk_down_tree(trans, root, path, wc);
9016 if (wret < 0) {
f82d02d9 9017 ret = wret;
f82d02d9 9018 break;
2c47e605 9019 }
f82d02d9 9020
2c47e605 9021 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9022 if (wret < 0)
9023 ret = wret;
9024 if (wret != 0)
9025 break;
9026 }
9027
2c47e605 9028 kfree(wc);
f82d02d9
YZ
9029 btrfs_free_path(path);
9030 return ret;
9031}
9032
ec44a35c
CM
9033static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9034{
9035 u64 num_devices;
fc67c450 9036 u64 stripped;
e4d8ec0f 9037
fc67c450
ID
9038 /*
9039 * if restripe for this chunk_type is on pick target profile and
9040 * return, otherwise do the usual balance
9041 */
9042 stripped = get_restripe_target(root->fs_info, flags);
9043 if (stripped)
9044 return extended_to_chunk(stripped);
e4d8ec0f 9045
95669976 9046 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9047
fc67c450 9048 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9049 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9050 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9051
ec44a35c
CM
9052 if (num_devices == 1) {
9053 stripped |= BTRFS_BLOCK_GROUP_DUP;
9054 stripped = flags & ~stripped;
9055
9056 /* turn raid0 into single device chunks */
9057 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9058 return stripped;
9059
9060 /* turn mirroring into duplication */
9061 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9062 BTRFS_BLOCK_GROUP_RAID10))
9063 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9064 } else {
9065 /* they already had raid on here, just return */
ec44a35c
CM
9066 if (flags & stripped)
9067 return flags;
9068
9069 stripped |= BTRFS_BLOCK_GROUP_DUP;
9070 stripped = flags & ~stripped;
9071
9072 /* switch duplicated blocks with raid1 */
9073 if (flags & BTRFS_BLOCK_GROUP_DUP)
9074 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9075
e3176ca2 9076 /* this is drive concat, leave it alone */
ec44a35c 9077 }
e3176ca2 9078
ec44a35c
CM
9079 return flags;
9080}
9081
868f401a 9082static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9083{
f0486c68
YZ
9084 struct btrfs_space_info *sinfo = cache->space_info;
9085 u64 num_bytes;
199c36ea 9086 u64 min_allocable_bytes;
f0486c68 9087 int ret = -ENOSPC;
0ef3e66b 9088
199c36ea
MX
9089 /*
9090 * We need some metadata space and system metadata space for
9091 * allocating chunks in some corner cases until we force to set
9092 * it to be readonly.
9093 */
9094 if ((sinfo->flags &
9095 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9096 !force)
9097 min_allocable_bytes = 1 * 1024 * 1024;
9098 else
9099 min_allocable_bytes = 0;
9100
f0486c68
YZ
9101 spin_lock(&sinfo->lock);
9102 spin_lock(&cache->lock);
61cfea9b
W
9103
9104 if (cache->ro) {
868f401a 9105 cache->ro++;
61cfea9b
W
9106 ret = 0;
9107 goto out;
9108 }
9109
f0486c68
YZ
9110 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9111 cache->bytes_super - btrfs_block_group_used(&cache->item);
9112
9113 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9114 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9115 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9116 sinfo->bytes_readonly += num_bytes;
868f401a 9117 cache->ro++;
633c0aad 9118 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9119 ret = 0;
9120 }
61cfea9b 9121out:
f0486c68
YZ
9122 spin_unlock(&cache->lock);
9123 spin_unlock(&sinfo->lock);
9124 return ret;
9125}
7d9eb12c 9126
868f401a 9127int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9128 struct btrfs_block_group_cache *cache)
c286ac48 9129
f0486c68
YZ
9130{
9131 struct btrfs_trans_handle *trans;
9132 u64 alloc_flags;
9133 int ret;
7d9eb12c 9134
1bbc621e 9135again:
ff5714cc 9136 trans = btrfs_join_transaction(root);
79787eaa
JM
9137 if (IS_ERR(trans))
9138 return PTR_ERR(trans);
5d4f98a2 9139
1bbc621e
CM
9140 /*
9141 * we're not allowed to set block groups readonly after the dirty
9142 * block groups cache has started writing. If it already started,
9143 * back off and let this transaction commit
9144 */
9145 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9146 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9147 u64 transid = trans->transid;
9148
9149 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9150 btrfs_end_transaction(trans, root);
9151
9152 ret = btrfs_wait_for_commit(root, transid);
9153 if (ret)
9154 return ret;
9155 goto again;
9156 }
9157
153c35b6
CM
9158 /*
9159 * if we are changing raid levels, try to allocate a corresponding
9160 * block group with the new raid level.
9161 */
9162 alloc_flags = update_block_group_flags(root, cache->flags);
9163 if (alloc_flags != cache->flags) {
9164 ret = do_chunk_alloc(trans, root, alloc_flags,
9165 CHUNK_ALLOC_FORCE);
9166 /*
9167 * ENOSPC is allowed here, we may have enough space
9168 * already allocated at the new raid level to
9169 * carry on
9170 */
9171 if (ret == -ENOSPC)
9172 ret = 0;
9173 if (ret < 0)
9174 goto out;
9175 }
1bbc621e 9176
868f401a 9177 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9178 if (!ret)
9179 goto out;
9180 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9181 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9182 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9183 if (ret < 0)
9184 goto out;
868f401a 9185 ret = inc_block_group_ro(cache, 0);
f0486c68 9186out:
2f081088
SL
9187 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9188 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9189 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9190 check_system_chunk(trans, root, alloc_flags);
a9629596 9191 unlock_chunks(root->fs_info->chunk_root);
2f081088 9192 }
1bbc621e 9193 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9194
f0486c68
YZ
9195 btrfs_end_transaction(trans, root);
9196 return ret;
9197}
5d4f98a2 9198
c87f08ca
CM
9199int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9200 struct btrfs_root *root, u64 type)
9201{
9202 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9203 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9204 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9205}
9206
6d07bcec
MX
9207/*
9208 * helper to account the unused space of all the readonly block group in the
633c0aad 9209 * space_info. takes mirrors into account.
6d07bcec 9210 */
633c0aad 9211u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9212{
9213 struct btrfs_block_group_cache *block_group;
9214 u64 free_bytes = 0;
9215 int factor;
9216
633c0aad
JB
9217 /* It's df, we don't care if it's racey */
9218 if (list_empty(&sinfo->ro_bgs))
9219 return 0;
9220
9221 spin_lock(&sinfo->lock);
9222 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9223 spin_lock(&block_group->lock);
9224
9225 if (!block_group->ro) {
9226 spin_unlock(&block_group->lock);
9227 continue;
9228 }
9229
9230 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9231 BTRFS_BLOCK_GROUP_RAID10 |
9232 BTRFS_BLOCK_GROUP_DUP))
9233 factor = 2;
9234 else
9235 factor = 1;
9236
9237 free_bytes += (block_group->key.offset -
9238 btrfs_block_group_used(&block_group->item)) *
9239 factor;
9240
9241 spin_unlock(&block_group->lock);
9242 }
6d07bcec
MX
9243 spin_unlock(&sinfo->lock);
9244
9245 return free_bytes;
9246}
9247
868f401a 9248void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9249 struct btrfs_block_group_cache *cache)
5d4f98a2 9250{
f0486c68
YZ
9251 struct btrfs_space_info *sinfo = cache->space_info;
9252 u64 num_bytes;
9253
9254 BUG_ON(!cache->ro);
9255
9256 spin_lock(&sinfo->lock);
9257 spin_lock(&cache->lock);
868f401a
Z
9258 if (!--cache->ro) {
9259 num_bytes = cache->key.offset - cache->reserved -
9260 cache->pinned - cache->bytes_super -
9261 btrfs_block_group_used(&cache->item);
9262 sinfo->bytes_readonly -= num_bytes;
9263 list_del_init(&cache->ro_list);
9264 }
f0486c68
YZ
9265 spin_unlock(&cache->lock);
9266 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9267}
9268
ba1bf481
JB
9269/*
9270 * checks to see if its even possible to relocate this block group.
9271 *
9272 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9273 * ok to go ahead and try.
9274 */
9275int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9276{
ba1bf481
JB
9277 struct btrfs_block_group_cache *block_group;
9278 struct btrfs_space_info *space_info;
9279 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9280 struct btrfs_device *device;
6df9a95e 9281 struct btrfs_trans_handle *trans;
cdcb725c 9282 u64 min_free;
6719db6a
JB
9283 u64 dev_min = 1;
9284 u64 dev_nr = 0;
4a5e98f5 9285 u64 target;
cdcb725c 9286 int index;
ba1bf481
JB
9287 int full = 0;
9288 int ret = 0;
1a40e23b 9289
ba1bf481 9290 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9291
ba1bf481
JB
9292 /* odd, couldn't find the block group, leave it alone */
9293 if (!block_group)
9294 return -1;
1a40e23b 9295
cdcb725c 9296 min_free = btrfs_block_group_used(&block_group->item);
9297
ba1bf481 9298 /* no bytes used, we're good */
cdcb725c 9299 if (!min_free)
1a40e23b
ZY
9300 goto out;
9301
ba1bf481
JB
9302 space_info = block_group->space_info;
9303 spin_lock(&space_info->lock);
17d217fe 9304
ba1bf481 9305 full = space_info->full;
17d217fe 9306
ba1bf481
JB
9307 /*
9308 * if this is the last block group we have in this space, we can't
7ce618db
CM
9309 * relocate it unless we're able to allocate a new chunk below.
9310 *
9311 * Otherwise, we need to make sure we have room in the space to handle
9312 * all of the extents from this block group. If we can, we're good
ba1bf481 9313 */
7ce618db 9314 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9315 (space_info->bytes_used + space_info->bytes_reserved +
9316 space_info->bytes_pinned + space_info->bytes_readonly +
9317 min_free < space_info->total_bytes)) {
ba1bf481
JB
9318 spin_unlock(&space_info->lock);
9319 goto out;
17d217fe 9320 }
ba1bf481 9321 spin_unlock(&space_info->lock);
ea8c2819 9322
ba1bf481
JB
9323 /*
9324 * ok we don't have enough space, but maybe we have free space on our
9325 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9326 * alloc devices and guess if we have enough space. if this block
9327 * group is going to be restriped, run checks against the target
9328 * profile instead of the current one.
ba1bf481
JB
9329 */
9330 ret = -1;
ea8c2819 9331
cdcb725c 9332 /*
9333 * index:
9334 * 0: raid10
9335 * 1: raid1
9336 * 2: dup
9337 * 3: raid0
9338 * 4: single
9339 */
4a5e98f5
ID
9340 target = get_restripe_target(root->fs_info, block_group->flags);
9341 if (target) {
31e50229 9342 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9343 } else {
9344 /*
9345 * this is just a balance, so if we were marked as full
9346 * we know there is no space for a new chunk
9347 */
9348 if (full)
9349 goto out;
9350
9351 index = get_block_group_index(block_group);
9352 }
9353
e6ec716f 9354 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9355 dev_min = 4;
6719db6a
JB
9356 /* Divide by 2 */
9357 min_free >>= 1;
e6ec716f 9358 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9359 dev_min = 2;
e6ec716f 9360 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9361 /* Multiply by 2 */
9362 min_free <<= 1;
e6ec716f 9363 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9364 dev_min = fs_devices->rw_devices;
47c5713f 9365 min_free = div64_u64(min_free, dev_min);
cdcb725c 9366 }
9367
6df9a95e
JB
9368 /* We need to do this so that we can look at pending chunks */
9369 trans = btrfs_join_transaction(root);
9370 if (IS_ERR(trans)) {
9371 ret = PTR_ERR(trans);
9372 goto out;
9373 }
9374
ba1bf481
JB
9375 mutex_lock(&root->fs_info->chunk_mutex);
9376 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9377 u64 dev_offset;
56bec294 9378
ba1bf481
JB
9379 /*
9380 * check to make sure we can actually find a chunk with enough
9381 * space to fit our block group in.
9382 */
63a212ab
SB
9383 if (device->total_bytes > device->bytes_used + min_free &&
9384 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9385 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9386 &dev_offset, NULL);
ba1bf481 9387 if (!ret)
cdcb725c 9388 dev_nr++;
9389
9390 if (dev_nr >= dev_min)
73e48b27 9391 break;
cdcb725c 9392
ba1bf481 9393 ret = -1;
725c8463 9394 }
edbd8d4e 9395 }
ba1bf481 9396 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9397 btrfs_end_transaction(trans, root);
edbd8d4e 9398out:
ba1bf481 9399 btrfs_put_block_group(block_group);
edbd8d4e
CM
9400 return ret;
9401}
9402
b2950863
CH
9403static int find_first_block_group(struct btrfs_root *root,
9404 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9405{
925baedd 9406 int ret = 0;
0b86a832
CM
9407 struct btrfs_key found_key;
9408 struct extent_buffer *leaf;
9409 int slot;
edbd8d4e 9410
0b86a832
CM
9411 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9412 if (ret < 0)
925baedd
CM
9413 goto out;
9414
d397712b 9415 while (1) {
0b86a832 9416 slot = path->slots[0];
edbd8d4e 9417 leaf = path->nodes[0];
0b86a832
CM
9418 if (slot >= btrfs_header_nritems(leaf)) {
9419 ret = btrfs_next_leaf(root, path);
9420 if (ret == 0)
9421 continue;
9422 if (ret < 0)
925baedd 9423 goto out;
0b86a832 9424 break;
edbd8d4e 9425 }
0b86a832 9426 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9427
0b86a832 9428 if (found_key.objectid >= key->objectid &&
925baedd
CM
9429 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9430 ret = 0;
9431 goto out;
9432 }
0b86a832 9433 path->slots[0]++;
edbd8d4e 9434 }
925baedd 9435out:
0b86a832 9436 return ret;
edbd8d4e
CM
9437}
9438
0af3d00b
JB
9439void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9440{
9441 struct btrfs_block_group_cache *block_group;
9442 u64 last = 0;
9443
9444 while (1) {
9445 struct inode *inode;
9446
9447 block_group = btrfs_lookup_first_block_group(info, last);
9448 while (block_group) {
9449 spin_lock(&block_group->lock);
9450 if (block_group->iref)
9451 break;
9452 spin_unlock(&block_group->lock);
9453 block_group = next_block_group(info->tree_root,
9454 block_group);
9455 }
9456 if (!block_group) {
9457 if (last == 0)
9458 break;
9459 last = 0;
9460 continue;
9461 }
9462
9463 inode = block_group->inode;
9464 block_group->iref = 0;
9465 block_group->inode = NULL;
9466 spin_unlock(&block_group->lock);
9467 iput(inode);
9468 last = block_group->key.objectid + block_group->key.offset;
9469 btrfs_put_block_group(block_group);
9470 }
9471}
9472
1a40e23b
ZY
9473int btrfs_free_block_groups(struct btrfs_fs_info *info)
9474{
9475 struct btrfs_block_group_cache *block_group;
4184ea7f 9476 struct btrfs_space_info *space_info;
11833d66 9477 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9478 struct rb_node *n;
9479
9e351cc8 9480 down_write(&info->commit_root_sem);
11833d66
YZ
9481 while (!list_empty(&info->caching_block_groups)) {
9482 caching_ctl = list_entry(info->caching_block_groups.next,
9483 struct btrfs_caching_control, list);
9484 list_del(&caching_ctl->list);
9485 put_caching_control(caching_ctl);
9486 }
9e351cc8 9487 up_write(&info->commit_root_sem);
11833d66 9488
47ab2a6c
JB
9489 spin_lock(&info->unused_bgs_lock);
9490 while (!list_empty(&info->unused_bgs)) {
9491 block_group = list_first_entry(&info->unused_bgs,
9492 struct btrfs_block_group_cache,
9493 bg_list);
9494 list_del_init(&block_group->bg_list);
9495 btrfs_put_block_group(block_group);
9496 }
9497 spin_unlock(&info->unused_bgs_lock);
9498
1a40e23b
ZY
9499 spin_lock(&info->block_group_cache_lock);
9500 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9501 block_group = rb_entry(n, struct btrfs_block_group_cache,
9502 cache_node);
1a40e23b
ZY
9503 rb_erase(&block_group->cache_node,
9504 &info->block_group_cache_tree);
01eacb27 9505 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9506 spin_unlock(&info->block_group_cache_lock);
9507
80eb234a 9508 down_write(&block_group->space_info->groups_sem);
1a40e23b 9509 list_del(&block_group->list);
80eb234a 9510 up_write(&block_group->space_info->groups_sem);
d2fb3437 9511
817d52f8 9512 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9513 wait_block_group_cache_done(block_group);
817d52f8 9514
3c14874a
JB
9515 /*
9516 * We haven't cached this block group, which means we could
9517 * possibly have excluded extents on this block group.
9518 */
36cce922
JB
9519 if (block_group->cached == BTRFS_CACHE_NO ||
9520 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9521 free_excluded_extents(info->extent_root, block_group);
9522
817d52f8 9523 btrfs_remove_free_space_cache(block_group);
11dfe35a 9524 btrfs_put_block_group(block_group);
d899e052
YZ
9525
9526 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9527 }
9528 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9529
9530 /* now that all the block groups are freed, go through and
9531 * free all the space_info structs. This is only called during
9532 * the final stages of unmount, and so we know nobody is
9533 * using them. We call synchronize_rcu() once before we start,
9534 * just to be on the safe side.
9535 */
9536 synchronize_rcu();
9537
8929ecfa
YZ
9538 release_global_block_rsv(info);
9539
67871254 9540 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9541 int i;
9542
4184ea7f
CM
9543 space_info = list_entry(info->space_info.next,
9544 struct btrfs_space_info,
9545 list);
b069e0c3 9546 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9547 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9548 space_info->bytes_reserved > 0 ||
fae7f21c 9549 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9550 dump_space_info(space_info, 0, 0);
9551 }
f0486c68 9552 }
4184ea7f 9553 list_del(&space_info->list);
6ab0a202
JM
9554 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9555 struct kobject *kobj;
c1895442
JM
9556 kobj = space_info->block_group_kobjs[i];
9557 space_info->block_group_kobjs[i] = NULL;
9558 if (kobj) {
6ab0a202
JM
9559 kobject_del(kobj);
9560 kobject_put(kobj);
9561 }
9562 }
9563 kobject_del(&space_info->kobj);
9564 kobject_put(&space_info->kobj);
4184ea7f 9565 }
1a40e23b
ZY
9566 return 0;
9567}
9568
b742bb82
YZ
9569static void __link_block_group(struct btrfs_space_info *space_info,
9570 struct btrfs_block_group_cache *cache)
9571{
9572 int index = get_block_group_index(cache);
ed55b6ac 9573 bool first = false;
b742bb82
YZ
9574
9575 down_write(&space_info->groups_sem);
ed55b6ac
JM
9576 if (list_empty(&space_info->block_groups[index]))
9577 first = true;
9578 list_add_tail(&cache->list, &space_info->block_groups[index]);
9579 up_write(&space_info->groups_sem);
9580
9581 if (first) {
c1895442 9582 struct raid_kobject *rkobj;
6ab0a202
JM
9583 int ret;
9584
c1895442
JM
9585 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9586 if (!rkobj)
9587 goto out_err;
9588 rkobj->raid_type = index;
9589 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9590 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9591 "%s", get_raid_name(index));
6ab0a202 9592 if (ret) {
c1895442
JM
9593 kobject_put(&rkobj->kobj);
9594 goto out_err;
6ab0a202 9595 }
c1895442 9596 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9597 }
c1895442
JM
9598
9599 return;
9600out_err:
9601 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9602}
9603
920e4a58
MX
9604static struct btrfs_block_group_cache *
9605btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9606{
9607 struct btrfs_block_group_cache *cache;
9608
9609 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9610 if (!cache)
9611 return NULL;
9612
9613 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9614 GFP_NOFS);
9615 if (!cache->free_space_ctl) {
9616 kfree(cache);
9617 return NULL;
9618 }
9619
9620 cache->key.objectid = start;
9621 cache->key.offset = size;
9622 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9623
9624 cache->sectorsize = root->sectorsize;
9625 cache->fs_info = root->fs_info;
9626 cache->full_stripe_len = btrfs_full_stripe_len(root,
9627 &root->fs_info->mapping_tree,
9628 start);
9629 atomic_set(&cache->count, 1);
9630 spin_lock_init(&cache->lock);
e570fd27 9631 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9632 INIT_LIST_HEAD(&cache->list);
9633 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9634 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9635 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9636 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9637 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9638 btrfs_init_free_space_ctl(cache);
04216820 9639 atomic_set(&cache->trimming, 0);
920e4a58
MX
9640
9641 return cache;
9642}
9643
9078a3e1
CM
9644int btrfs_read_block_groups(struct btrfs_root *root)
9645{
9646 struct btrfs_path *path;
9647 int ret;
9078a3e1 9648 struct btrfs_block_group_cache *cache;
be744175 9649 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9650 struct btrfs_space_info *space_info;
9078a3e1
CM
9651 struct btrfs_key key;
9652 struct btrfs_key found_key;
5f39d397 9653 struct extent_buffer *leaf;
0af3d00b
JB
9654 int need_clear = 0;
9655 u64 cache_gen;
96b5179d 9656
be744175 9657 root = info->extent_root;
9078a3e1 9658 key.objectid = 0;
0b86a832 9659 key.offset = 0;
962a298f 9660 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9661 path = btrfs_alloc_path();
9662 if (!path)
9663 return -ENOMEM;
026fd317 9664 path->reada = 1;
9078a3e1 9665
6c41761f 9666 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9667 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9668 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9669 need_clear = 1;
88c2ba3b
JB
9670 if (btrfs_test_opt(root, CLEAR_CACHE))
9671 need_clear = 1;
0af3d00b 9672
d397712b 9673 while (1) {
0b86a832 9674 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9675 if (ret > 0)
9676 break;
0b86a832
CM
9677 if (ret != 0)
9678 goto error;
920e4a58 9679
5f39d397
CM
9680 leaf = path->nodes[0];
9681 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9682
9683 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9684 found_key.offset);
9078a3e1 9685 if (!cache) {
0b86a832 9686 ret = -ENOMEM;
f0486c68 9687 goto error;
9078a3e1 9688 }
96303081 9689
cf7c1ef6
LB
9690 if (need_clear) {
9691 /*
9692 * When we mount with old space cache, we need to
9693 * set BTRFS_DC_CLEAR and set dirty flag.
9694 *
9695 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9696 * truncate the old free space cache inode and
9697 * setup a new one.
9698 * b) Setting 'dirty flag' makes sure that we flush
9699 * the new space cache info onto disk.
9700 */
cf7c1ef6 9701 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9702 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9703 }
0af3d00b 9704
5f39d397
CM
9705 read_extent_buffer(leaf, &cache->item,
9706 btrfs_item_ptr_offset(leaf, path->slots[0]),
9707 sizeof(cache->item));
920e4a58 9708 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9709
9078a3e1 9710 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9711 btrfs_release_path(path);
34d52cb6 9712
3c14874a
JB
9713 /*
9714 * We need to exclude the super stripes now so that the space
9715 * info has super bytes accounted for, otherwise we'll think
9716 * we have more space than we actually do.
9717 */
835d974f
JB
9718 ret = exclude_super_stripes(root, cache);
9719 if (ret) {
9720 /*
9721 * We may have excluded something, so call this just in
9722 * case.
9723 */
9724 free_excluded_extents(root, cache);
920e4a58 9725 btrfs_put_block_group(cache);
835d974f
JB
9726 goto error;
9727 }
3c14874a 9728
817d52f8
JB
9729 /*
9730 * check for two cases, either we are full, and therefore
9731 * don't need to bother with the caching work since we won't
9732 * find any space, or we are empty, and we can just add all
9733 * the space in and be done with it. This saves us _alot_ of
9734 * time, particularly in the full case.
9735 */
9736 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9737 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9738 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9739 free_excluded_extents(root, cache);
817d52f8 9740 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9741 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9742 cache->cached = BTRFS_CACHE_FINISHED;
9743 add_new_free_space(cache, root->fs_info,
9744 found_key.objectid,
9745 found_key.objectid +
9746 found_key.offset);
11833d66 9747 free_excluded_extents(root, cache);
817d52f8 9748 }
96b5179d 9749
8c579fe7
JB
9750 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9751 if (ret) {
9752 btrfs_remove_free_space_cache(cache);
9753 btrfs_put_block_group(cache);
9754 goto error;
9755 }
9756
6324fbf3
CM
9757 ret = update_space_info(info, cache->flags, found_key.offset,
9758 btrfs_block_group_used(&cache->item),
9759 &space_info);
8c579fe7
JB
9760 if (ret) {
9761 btrfs_remove_free_space_cache(cache);
9762 spin_lock(&info->block_group_cache_lock);
9763 rb_erase(&cache->cache_node,
9764 &info->block_group_cache_tree);
01eacb27 9765 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9766 spin_unlock(&info->block_group_cache_lock);
9767 btrfs_put_block_group(cache);
9768 goto error;
9769 }
9770
6324fbf3 9771 cache->space_info = space_info;
1b2da372 9772 spin_lock(&cache->space_info->lock);
f0486c68 9773 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9774 spin_unlock(&cache->space_info->lock);
9775
b742bb82 9776 __link_block_group(space_info, cache);
0f9dd46c 9777
75ccf47d 9778 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9779 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9780 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9781 } else if (btrfs_block_group_used(&cache->item) == 0) {
9782 spin_lock(&info->unused_bgs_lock);
9783 /* Should always be true but just in case. */
9784 if (list_empty(&cache->bg_list)) {
9785 btrfs_get_block_group(cache);
9786 list_add_tail(&cache->bg_list,
9787 &info->unused_bgs);
9788 }
9789 spin_unlock(&info->unused_bgs_lock);
9790 }
9078a3e1 9791 }
b742bb82
YZ
9792
9793 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9794 if (!(get_alloc_profile(root, space_info->flags) &
9795 (BTRFS_BLOCK_GROUP_RAID10 |
9796 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9797 BTRFS_BLOCK_GROUP_RAID5 |
9798 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9799 BTRFS_BLOCK_GROUP_DUP)))
9800 continue;
9801 /*
9802 * avoid allocating from un-mirrored block group if there are
9803 * mirrored block groups.
9804 */
1095cc0d 9805 list_for_each_entry(cache,
9806 &space_info->block_groups[BTRFS_RAID_RAID0],
9807 list)
868f401a 9808 inc_block_group_ro(cache, 1);
1095cc0d 9809 list_for_each_entry(cache,
9810 &space_info->block_groups[BTRFS_RAID_SINGLE],
9811 list)
868f401a 9812 inc_block_group_ro(cache, 1);
9078a3e1 9813 }
f0486c68
YZ
9814
9815 init_global_block_rsv(info);
0b86a832
CM
9816 ret = 0;
9817error:
9078a3e1 9818 btrfs_free_path(path);
0b86a832 9819 return ret;
9078a3e1 9820}
6324fbf3 9821
ea658bad
JB
9822void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9823 struct btrfs_root *root)
9824{
9825 struct btrfs_block_group_cache *block_group, *tmp;
9826 struct btrfs_root *extent_root = root->fs_info->extent_root;
9827 struct btrfs_block_group_item item;
9828 struct btrfs_key key;
9829 int ret = 0;
d9a0540a 9830 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9831
d9a0540a 9832 trans->can_flush_pending_bgs = false;
47ab2a6c 9833 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9834 if (ret)
c92f6be3 9835 goto next;
ea658bad
JB
9836
9837 spin_lock(&block_group->lock);
9838 memcpy(&item, &block_group->item, sizeof(item));
9839 memcpy(&key, &block_group->key, sizeof(key));
9840 spin_unlock(&block_group->lock);
9841
9842 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9843 sizeof(item));
9844 if (ret)
9845 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9846 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9847 key.objectid, key.offset);
9848 if (ret)
9849 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9850next:
9851 list_del_init(&block_group->bg_list);
ea658bad 9852 }
d9a0540a 9853 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9854}
9855
6324fbf3
CM
9856int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9857 struct btrfs_root *root, u64 bytes_used,
e17cade2 9858 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9859 u64 size)
9860{
9861 int ret;
6324fbf3
CM
9862 struct btrfs_root *extent_root;
9863 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9864
9865 extent_root = root->fs_info->extent_root;
6324fbf3 9866
995946dd 9867 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9868
920e4a58 9869 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9870 if (!cache)
9871 return -ENOMEM;
34d52cb6 9872
6324fbf3 9873 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9874 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9875 btrfs_set_block_group_flags(&cache->item, type);
9876
920e4a58 9877 cache->flags = type;
11833d66 9878 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9879 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9880 ret = exclude_super_stripes(root, cache);
9881 if (ret) {
9882 /*
9883 * We may have excluded something, so call this just in
9884 * case.
9885 */
9886 free_excluded_extents(root, cache);
920e4a58 9887 btrfs_put_block_group(cache);
835d974f
JB
9888 return ret;
9889 }
96303081 9890
817d52f8
JB
9891 add_new_free_space(cache, root->fs_info, chunk_offset,
9892 chunk_offset + size);
9893
11833d66
YZ
9894 free_excluded_extents(root, cache);
9895
d0bd4560
JB
9896#ifdef CONFIG_BTRFS_DEBUG
9897 if (btrfs_should_fragment_free_space(root, cache)) {
9898 u64 new_bytes_used = size - bytes_used;
9899
9900 bytes_used += new_bytes_used >> 1;
9901 fragment_free_space(root, cache);
9902 }
9903#endif
2e6e5183
FM
9904 /*
9905 * Call to ensure the corresponding space_info object is created and
9906 * assigned to our block group, but don't update its counters just yet.
9907 * We want our bg to be added to the rbtree with its ->space_info set.
9908 */
9909 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9910 &cache->space_info);
9911 if (ret) {
9912 btrfs_remove_free_space_cache(cache);
9913 btrfs_put_block_group(cache);
9914 return ret;
9915 }
9916
8c579fe7
JB
9917 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9918 if (ret) {
9919 btrfs_remove_free_space_cache(cache);
9920 btrfs_put_block_group(cache);
9921 return ret;
9922 }
9923
2e6e5183
FM
9924 /*
9925 * Now that our block group has its ->space_info set and is inserted in
9926 * the rbtree, update the space info's counters.
9927 */
6324fbf3
CM
9928 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9929 &cache->space_info);
8c579fe7
JB
9930 if (ret) {
9931 btrfs_remove_free_space_cache(cache);
9932 spin_lock(&root->fs_info->block_group_cache_lock);
9933 rb_erase(&cache->cache_node,
9934 &root->fs_info->block_group_cache_tree);
01eacb27 9935 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9936 spin_unlock(&root->fs_info->block_group_cache_lock);
9937 btrfs_put_block_group(cache);
9938 return ret;
9939 }
c7c144db 9940 update_global_block_rsv(root->fs_info);
1b2da372
JB
9941
9942 spin_lock(&cache->space_info->lock);
f0486c68 9943 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9944 spin_unlock(&cache->space_info->lock);
9945
b742bb82 9946 __link_block_group(cache->space_info, cache);
6324fbf3 9947
47ab2a6c 9948 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9949
d18a2c44 9950 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9951
6324fbf3
CM
9952 return 0;
9953}
1a40e23b 9954
10ea00f5
ID
9955static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9956{
899c81ea
ID
9957 u64 extra_flags = chunk_to_extended(flags) &
9958 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9959
de98ced9 9960 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9961 if (flags & BTRFS_BLOCK_GROUP_DATA)
9962 fs_info->avail_data_alloc_bits &= ~extra_flags;
9963 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9964 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9965 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9966 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9967 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9968}
9969
1a40e23b 9970int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9971 struct btrfs_root *root, u64 group_start,
9972 struct extent_map *em)
1a40e23b
ZY
9973{
9974 struct btrfs_path *path;
9975 struct btrfs_block_group_cache *block_group;
44fb5511 9976 struct btrfs_free_cluster *cluster;
0af3d00b 9977 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9978 struct btrfs_key key;
0af3d00b 9979 struct inode *inode;
c1895442 9980 struct kobject *kobj = NULL;
1a40e23b 9981 int ret;
10ea00f5 9982 int index;
89a55897 9983 int factor;
4f69cb98 9984 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9985 bool remove_em;
1a40e23b 9986
1a40e23b
ZY
9987 root = root->fs_info->extent_root;
9988
9989 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9990 BUG_ON(!block_group);
c146afad 9991 BUG_ON(!block_group->ro);
1a40e23b 9992
9f7c43c9 9993 /*
9994 * Free the reserved super bytes from this block group before
9995 * remove it.
9996 */
9997 free_excluded_extents(root, block_group);
9998
1a40e23b 9999 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10000 index = get_block_group_index(block_group);
89a55897
JB
10001 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10002 BTRFS_BLOCK_GROUP_RAID1 |
10003 BTRFS_BLOCK_GROUP_RAID10))
10004 factor = 2;
10005 else
10006 factor = 1;
1a40e23b 10007
44fb5511
CM
10008 /* make sure this block group isn't part of an allocation cluster */
10009 cluster = &root->fs_info->data_alloc_cluster;
10010 spin_lock(&cluster->refill_lock);
10011 btrfs_return_cluster_to_free_space(block_group, cluster);
10012 spin_unlock(&cluster->refill_lock);
10013
10014 /*
10015 * make sure this block group isn't part of a metadata
10016 * allocation cluster
10017 */
10018 cluster = &root->fs_info->meta_alloc_cluster;
10019 spin_lock(&cluster->refill_lock);
10020 btrfs_return_cluster_to_free_space(block_group, cluster);
10021 spin_unlock(&cluster->refill_lock);
10022
1a40e23b 10023 path = btrfs_alloc_path();
d8926bb3
MF
10024 if (!path) {
10025 ret = -ENOMEM;
10026 goto out;
10027 }
1a40e23b 10028
1bbc621e
CM
10029 /*
10030 * get the inode first so any iput calls done for the io_list
10031 * aren't the final iput (no unlinks allowed now)
10032 */
10b2f34d 10033 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10034
10035 mutex_lock(&trans->transaction->cache_write_mutex);
10036 /*
10037 * make sure our free spache cache IO is done before remove the
10038 * free space inode
10039 */
10040 spin_lock(&trans->transaction->dirty_bgs_lock);
10041 if (!list_empty(&block_group->io_list)) {
10042 list_del_init(&block_group->io_list);
10043
10044 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10045
10046 spin_unlock(&trans->transaction->dirty_bgs_lock);
10047 btrfs_wait_cache_io(root, trans, block_group,
10048 &block_group->io_ctl, path,
10049 block_group->key.objectid);
10050 btrfs_put_block_group(block_group);
10051 spin_lock(&trans->transaction->dirty_bgs_lock);
10052 }
10053
10054 if (!list_empty(&block_group->dirty_list)) {
10055 list_del_init(&block_group->dirty_list);
10056 btrfs_put_block_group(block_group);
10057 }
10058 spin_unlock(&trans->transaction->dirty_bgs_lock);
10059 mutex_unlock(&trans->transaction->cache_write_mutex);
10060
0af3d00b 10061 if (!IS_ERR(inode)) {
b532402e 10062 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10063 if (ret) {
10064 btrfs_add_delayed_iput(inode);
10065 goto out;
10066 }
0af3d00b
JB
10067 clear_nlink(inode);
10068 /* One for the block groups ref */
10069 spin_lock(&block_group->lock);
10070 if (block_group->iref) {
10071 block_group->iref = 0;
10072 block_group->inode = NULL;
10073 spin_unlock(&block_group->lock);
10074 iput(inode);
10075 } else {
10076 spin_unlock(&block_group->lock);
10077 }
10078 /* One for our lookup ref */
455757c3 10079 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10080 }
10081
10082 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10083 key.offset = block_group->key.objectid;
10084 key.type = 0;
10085
10086 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10087 if (ret < 0)
10088 goto out;
10089 if (ret > 0)
b3b4aa74 10090 btrfs_release_path(path);
0af3d00b
JB
10091 if (ret == 0) {
10092 ret = btrfs_del_item(trans, tree_root, path);
10093 if (ret)
10094 goto out;
b3b4aa74 10095 btrfs_release_path(path);
0af3d00b
JB
10096 }
10097
3dfdb934 10098 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10099 rb_erase(&block_group->cache_node,
10100 &root->fs_info->block_group_cache_tree);
292cbd51 10101 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10102
10103 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10104 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10105 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10106
80eb234a 10107 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10108 /*
10109 * we must use list_del_init so people can check to see if they
10110 * are still on the list after taking the semaphore
10111 */
10112 list_del_init(&block_group->list);
6ab0a202 10113 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10114 kobj = block_group->space_info->block_group_kobjs[index];
10115 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10116 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10117 }
80eb234a 10118 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10119 if (kobj) {
10120 kobject_del(kobj);
10121 kobject_put(kobj);
10122 }
1a40e23b 10123
4f69cb98
FM
10124 if (block_group->has_caching_ctl)
10125 caching_ctl = get_caching_control(block_group);
817d52f8 10126 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10127 wait_block_group_cache_done(block_group);
4f69cb98
FM
10128 if (block_group->has_caching_ctl) {
10129 down_write(&root->fs_info->commit_root_sem);
10130 if (!caching_ctl) {
10131 struct btrfs_caching_control *ctl;
10132
10133 list_for_each_entry(ctl,
10134 &root->fs_info->caching_block_groups, list)
10135 if (ctl->block_group == block_group) {
10136 caching_ctl = ctl;
10137 atomic_inc(&caching_ctl->count);
10138 break;
10139 }
10140 }
10141 if (caching_ctl)
10142 list_del_init(&caching_ctl->list);
10143 up_write(&root->fs_info->commit_root_sem);
10144 if (caching_ctl) {
10145 /* Once for the caching bgs list and once for us. */
10146 put_caching_control(caching_ctl);
10147 put_caching_control(caching_ctl);
10148 }
10149 }
817d52f8 10150
ce93ec54
JB
10151 spin_lock(&trans->transaction->dirty_bgs_lock);
10152 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10153 WARN_ON(1);
10154 }
10155 if (!list_empty(&block_group->io_list)) {
10156 WARN_ON(1);
ce93ec54
JB
10157 }
10158 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10159 btrfs_remove_free_space_cache(block_group);
10160
c146afad 10161 spin_lock(&block_group->space_info->lock);
75c68e9f 10162 list_del_init(&block_group->ro_list);
18d018ad
ZL
10163
10164 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10165 WARN_ON(block_group->space_info->total_bytes
10166 < block_group->key.offset);
10167 WARN_ON(block_group->space_info->bytes_readonly
10168 < block_group->key.offset);
10169 WARN_ON(block_group->space_info->disk_total
10170 < block_group->key.offset * factor);
10171 }
c146afad
YZ
10172 block_group->space_info->total_bytes -= block_group->key.offset;
10173 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10174 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10175
c146afad 10176 spin_unlock(&block_group->space_info->lock);
283bb197 10177
0af3d00b
JB
10178 memcpy(&key, &block_group->key, sizeof(key));
10179
04216820 10180 lock_chunks(root);
495e64f4
FM
10181 if (!list_empty(&em->list)) {
10182 /* We're in the transaction->pending_chunks list. */
10183 free_extent_map(em);
10184 }
04216820
FM
10185 spin_lock(&block_group->lock);
10186 block_group->removed = 1;
10187 /*
10188 * At this point trimming can't start on this block group, because we
10189 * removed the block group from the tree fs_info->block_group_cache_tree
10190 * so no one can't find it anymore and even if someone already got this
10191 * block group before we removed it from the rbtree, they have already
10192 * incremented block_group->trimming - if they didn't, they won't find
10193 * any free space entries because we already removed them all when we
10194 * called btrfs_remove_free_space_cache().
10195 *
10196 * And we must not remove the extent map from the fs_info->mapping_tree
10197 * to prevent the same logical address range and physical device space
10198 * ranges from being reused for a new block group. This is because our
10199 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10200 * completely transactionless, so while it is trimming a range the
10201 * currently running transaction might finish and a new one start,
10202 * allowing for new block groups to be created that can reuse the same
10203 * physical device locations unless we take this special care.
e33e17ee
JM
10204 *
10205 * There may also be an implicit trim operation if the file system
10206 * is mounted with -odiscard. The same protections must remain
10207 * in place until the extents have been discarded completely when
10208 * the transaction commit has completed.
04216820
FM
10209 */
10210 remove_em = (atomic_read(&block_group->trimming) == 0);
10211 /*
10212 * Make sure a trimmer task always sees the em in the pinned_chunks list
10213 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10214 * before checking block_group->removed).
10215 */
10216 if (!remove_em) {
10217 /*
10218 * Our em might be in trans->transaction->pending_chunks which
10219 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10220 * and so is the fs_info->pinned_chunks list.
10221 *
10222 * So at this point we must be holding the chunk_mutex to avoid
10223 * any races with chunk allocation (more specifically at
10224 * volumes.c:contains_pending_extent()), to ensure it always
10225 * sees the em, either in the pending_chunks list or in the
10226 * pinned_chunks list.
10227 */
10228 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10229 }
10230 spin_unlock(&block_group->lock);
04216820
FM
10231
10232 if (remove_em) {
10233 struct extent_map_tree *em_tree;
10234
10235 em_tree = &root->fs_info->mapping_tree.map_tree;
10236 write_lock(&em_tree->lock);
8dbcd10f
FM
10237 /*
10238 * The em might be in the pending_chunks list, so make sure the
10239 * chunk mutex is locked, since remove_extent_mapping() will
10240 * delete us from that list.
10241 */
04216820
FM
10242 remove_extent_mapping(em_tree, em);
10243 write_unlock(&em_tree->lock);
10244 /* once for the tree */
10245 free_extent_map(em);
10246 }
10247
8dbcd10f
FM
10248 unlock_chunks(root);
10249
fa9c0d79
CM
10250 btrfs_put_block_group(block_group);
10251 btrfs_put_block_group(block_group);
1a40e23b
ZY
10252
10253 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10254 if (ret > 0)
10255 ret = -EIO;
10256 if (ret < 0)
10257 goto out;
10258
10259 ret = btrfs_del_item(trans, root, path);
10260out:
10261 btrfs_free_path(path);
10262 return ret;
10263}
acce952b 10264
47ab2a6c
JB
10265/*
10266 * Process the unused_bgs list and remove any that don't have any allocated
10267 * space inside of them.
10268 */
10269void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10270{
10271 struct btrfs_block_group_cache *block_group;
10272 struct btrfs_space_info *space_info;
10273 struct btrfs_root *root = fs_info->extent_root;
10274 struct btrfs_trans_handle *trans;
10275 int ret = 0;
10276
10277 if (!fs_info->open)
10278 return;
10279
10280 spin_lock(&fs_info->unused_bgs_lock);
10281 while (!list_empty(&fs_info->unused_bgs)) {
10282 u64 start, end;
e33e17ee 10283 int trimming;
47ab2a6c
JB
10284
10285 block_group = list_first_entry(&fs_info->unused_bgs,
10286 struct btrfs_block_group_cache,
10287 bg_list);
10288 space_info = block_group->space_info;
10289 list_del_init(&block_group->bg_list);
10290 if (ret || btrfs_mixed_space_info(space_info)) {
10291 btrfs_put_block_group(block_group);
10292 continue;
10293 }
10294 spin_unlock(&fs_info->unused_bgs_lock);
10295
67c5e7d4
FM
10296 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10297
47ab2a6c
JB
10298 /* Don't want to race with allocators so take the groups_sem */
10299 down_write(&space_info->groups_sem);
10300 spin_lock(&block_group->lock);
10301 if (block_group->reserved ||
10302 btrfs_block_group_used(&block_group->item) ||
10303 block_group->ro) {
10304 /*
10305 * We want to bail if we made new allocations or have
10306 * outstanding allocations in this block group. We do
10307 * the ro check in case balance is currently acting on
10308 * this block group.
10309 */
10310 spin_unlock(&block_group->lock);
10311 up_write(&space_info->groups_sem);
10312 goto next;
10313 }
10314 spin_unlock(&block_group->lock);
10315
10316 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10317 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10318 up_write(&space_info->groups_sem);
10319 if (ret < 0) {
10320 ret = 0;
10321 goto next;
10322 }
10323
10324 /*
10325 * Want to do this before we do anything else so we can recover
10326 * properly if we fail to join the transaction.
10327 */
3d84be79
FL
10328 /* 1 for btrfs_orphan_reserve_metadata() */
10329 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10330 if (IS_ERR(trans)) {
868f401a 10331 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10332 ret = PTR_ERR(trans);
10333 goto next;
10334 }
10335
10336 /*
10337 * We could have pending pinned extents for this block group,
10338 * just delete them, we don't care about them anymore.
10339 */
10340 start = block_group->key.objectid;
10341 end = start + block_group->key.offset - 1;
d4b450cd
FM
10342 /*
10343 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10344 * btrfs_finish_extent_commit(). If we are at transaction N,
10345 * another task might be running finish_extent_commit() for the
10346 * previous transaction N - 1, and have seen a range belonging
10347 * to the block group in freed_extents[] before we were able to
10348 * clear the whole block group range from freed_extents[]. This
10349 * means that task can lookup for the block group after we
10350 * unpinned it from freed_extents[] and removed it, leading to
10351 * a BUG_ON() at btrfs_unpin_extent_range().
10352 */
10353 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10354 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10355 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10356 if (ret) {
d4b450cd 10357 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10358 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10359 goto end_trans;
10360 }
10361 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10362 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10363 if (ret) {
d4b450cd 10364 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10365 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10366 goto end_trans;
10367 }
d4b450cd 10368 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10369
10370 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10371 spin_lock(&space_info->lock);
10372 spin_lock(&block_group->lock);
10373
10374 space_info->bytes_pinned -= block_group->pinned;
10375 space_info->bytes_readonly += block_group->pinned;
10376 percpu_counter_add(&space_info->total_bytes_pinned,
10377 -block_group->pinned);
47ab2a6c
JB
10378 block_group->pinned = 0;
10379
c30666d4
ZL
10380 spin_unlock(&block_group->lock);
10381 spin_unlock(&space_info->lock);
10382
e33e17ee
JM
10383 /* DISCARD can flip during remount */
10384 trimming = btrfs_test_opt(root, DISCARD);
10385
10386 /* Implicit trim during transaction commit. */
10387 if (trimming)
10388 btrfs_get_block_group_trimming(block_group);
10389
47ab2a6c
JB
10390 /*
10391 * Btrfs_remove_chunk will abort the transaction if things go
10392 * horribly wrong.
10393 */
10394 ret = btrfs_remove_chunk(trans, root,
10395 block_group->key.objectid);
e33e17ee
JM
10396
10397 if (ret) {
10398 if (trimming)
10399 btrfs_put_block_group_trimming(block_group);
10400 goto end_trans;
10401 }
10402
10403 /*
10404 * If we're not mounted with -odiscard, we can just forget
10405 * about this block group. Otherwise we'll need to wait
10406 * until transaction commit to do the actual discard.
10407 */
10408 if (trimming) {
10409 WARN_ON(!list_empty(&block_group->bg_list));
10410 spin_lock(&trans->transaction->deleted_bgs_lock);
10411 list_move(&block_group->bg_list,
10412 &trans->transaction->deleted_bgs);
10413 spin_unlock(&trans->transaction->deleted_bgs_lock);
10414 btrfs_get_block_group(block_group);
10415 }
758eb51e 10416end_trans:
47ab2a6c
JB
10417 btrfs_end_transaction(trans, root);
10418next:
67c5e7d4 10419 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10420 btrfs_put_block_group(block_group);
10421 spin_lock(&fs_info->unused_bgs_lock);
10422 }
10423 spin_unlock(&fs_info->unused_bgs_lock);
10424}
10425
c59021f8 10426int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10427{
10428 struct btrfs_space_info *space_info;
1aba86d6 10429 struct btrfs_super_block *disk_super;
10430 u64 features;
10431 u64 flags;
10432 int mixed = 0;
c59021f8 10433 int ret;
10434
6c41761f 10435 disk_super = fs_info->super_copy;
1aba86d6 10436 if (!btrfs_super_root(disk_super))
10437 return 1;
c59021f8 10438
1aba86d6 10439 features = btrfs_super_incompat_flags(disk_super);
10440 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10441 mixed = 1;
c59021f8 10442
1aba86d6 10443 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10444 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10445 if (ret)
1aba86d6 10446 goto out;
c59021f8 10447
1aba86d6 10448 if (mixed) {
10449 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10450 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10451 } else {
10452 flags = BTRFS_BLOCK_GROUP_METADATA;
10453 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10454 if (ret)
10455 goto out;
10456
10457 flags = BTRFS_BLOCK_GROUP_DATA;
10458 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10459 }
10460out:
c59021f8 10461 return ret;
10462}
10463
acce952b 10464int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10465{
678886bd 10466 return unpin_extent_range(root, start, end, false);
acce952b 10467}
10468
499f377f
JM
10469/*
10470 * It used to be that old block groups would be left around forever.
10471 * Iterating over them would be enough to trim unused space. Since we
10472 * now automatically remove them, we also need to iterate over unallocated
10473 * space.
10474 *
10475 * We don't want a transaction for this since the discard may take a
10476 * substantial amount of time. We don't require that a transaction be
10477 * running, but we do need to take a running transaction into account
10478 * to ensure that we're not discarding chunks that were released in
10479 * the current transaction.
10480 *
10481 * Holding the chunks lock will prevent other threads from allocating
10482 * or releasing chunks, but it won't prevent a running transaction
10483 * from committing and releasing the memory that the pending chunks
10484 * list head uses. For that, we need to take a reference to the
10485 * transaction.
10486 */
10487static int btrfs_trim_free_extents(struct btrfs_device *device,
10488 u64 minlen, u64 *trimmed)
10489{
10490 u64 start = 0, len = 0;
10491 int ret;
10492
10493 *trimmed = 0;
10494
10495 /* Not writeable = nothing to do. */
10496 if (!device->writeable)
10497 return 0;
10498
10499 /* No free space = nothing to do. */
10500 if (device->total_bytes <= device->bytes_used)
10501 return 0;
10502
10503 ret = 0;
10504
10505 while (1) {
10506 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10507 struct btrfs_transaction *trans;
10508 u64 bytes;
10509
10510 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10511 if (ret)
10512 return ret;
10513
10514 down_read(&fs_info->commit_root_sem);
10515
10516 spin_lock(&fs_info->trans_lock);
10517 trans = fs_info->running_transaction;
10518 if (trans)
10519 atomic_inc(&trans->use_count);
10520 spin_unlock(&fs_info->trans_lock);
10521
10522 ret = find_free_dev_extent_start(trans, device, minlen, start,
10523 &start, &len);
10524 if (trans)
10525 btrfs_put_transaction(trans);
10526
10527 if (ret) {
10528 up_read(&fs_info->commit_root_sem);
10529 mutex_unlock(&fs_info->chunk_mutex);
10530 if (ret == -ENOSPC)
10531 ret = 0;
10532 break;
10533 }
10534
10535 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10536 up_read(&fs_info->commit_root_sem);
10537 mutex_unlock(&fs_info->chunk_mutex);
10538
10539 if (ret)
10540 break;
10541
10542 start += len;
10543 *trimmed += bytes;
10544
10545 if (fatal_signal_pending(current)) {
10546 ret = -ERESTARTSYS;
10547 break;
10548 }
10549
10550 cond_resched();
10551 }
10552
10553 return ret;
10554}
10555
f7039b1d
LD
10556int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10557{
10558 struct btrfs_fs_info *fs_info = root->fs_info;
10559 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10560 struct btrfs_device *device;
10561 struct list_head *devices;
f7039b1d
LD
10562 u64 group_trimmed;
10563 u64 start;
10564 u64 end;
10565 u64 trimmed = 0;
2cac13e4 10566 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10567 int ret = 0;
10568
2cac13e4
LB
10569 /*
10570 * try to trim all FS space, our block group may start from non-zero.
10571 */
10572 if (range->len == total_bytes)
10573 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10574 else
10575 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10576
10577 while (cache) {
10578 if (cache->key.objectid >= (range->start + range->len)) {
10579 btrfs_put_block_group(cache);
10580 break;
10581 }
10582
10583 start = max(range->start, cache->key.objectid);
10584 end = min(range->start + range->len,
10585 cache->key.objectid + cache->key.offset);
10586
10587 if (end - start >= range->minlen) {
10588 if (!block_group_cache_done(cache)) {
f6373bf3 10589 ret = cache_block_group(cache, 0);
1be41b78
JB
10590 if (ret) {
10591 btrfs_put_block_group(cache);
10592 break;
10593 }
10594 ret = wait_block_group_cache_done(cache);
10595 if (ret) {
10596 btrfs_put_block_group(cache);
10597 break;
10598 }
f7039b1d
LD
10599 }
10600 ret = btrfs_trim_block_group(cache,
10601 &group_trimmed,
10602 start,
10603 end,
10604 range->minlen);
10605
10606 trimmed += group_trimmed;
10607 if (ret) {
10608 btrfs_put_block_group(cache);
10609 break;
10610 }
10611 }
10612
10613 cache = next_block_group(fs_info->tree_root, cache);
10614 }
10615
499f377f
JM
10616 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10617 devices = &root->fs_info->fs_devices->alloc_list;
10618 list_for_each_entry(device, devices, dev_alloc_list) {
10619 ret = btrfs_trim_free_extents(device, range->minlen,
10620 &group_trimmed);
10621 if (ret)
10622 break;
10623
10624 trimmed += group_trimmed;
10625 }
10626 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10627
f7039b1d
LD
10628 range->len = trimmed;
10629 return ret;
10630}
8257b2dc
MX
10631
10632/*
9ea24bbe
FM
10633 * btrfs_{start,end}_write_no_snapshoting() are similar to
10634 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10635 * data into the page cache through nocow before the subvolume is snapshoted,
10636 * but flush the data into disk after the snapshot creation, or to prevent
10637 * operations while snapshoting is ongoing and that cause the snapshot to be
10638 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10639 */
9ea24bbe 10640void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10641{
10642 percpu_counter_dec(&root->subv_writers->counter);
10643 /*
a83342aa 10644 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10645 */
10646 smp_mb();
10647 if (waitqueue_active(&root->subv_writers->wait))
10648 wake_up(&root->subv_writers->wait);
10649}
10650
9ea24bbe 10651int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10652{
ee39b432 10653 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10654 return 0;
10655
10656 percpu_counter_inc(&root->subv_writers->counter);
10657 /*
10658 * Make sure counter is updated before we check for snapshot creation.
10659 */
10660 smp_mb();
ee39b432 10661 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10662 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10663 return 0;
10664 }
10665 return 1;
10666}
This page took 1.418459 seconds and 5 git commands to generate.