Btrfs: track transid for delayed ref flushing
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
fb25e914
JB
63/*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76};
77
ce93ec54
JB
78static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
5d4f98a2
YZ
81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
c682f9b3 83 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
c682f9b3 86 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 99 int level, struct btrfs_key *ins);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
758f2dfc 128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66 235 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 236 start, end, EXTENT_UPTODATE);
11833d66
YZ
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 249 start, end, EXTENT_UPTODATE);
11833d66 250 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 251 start, end, EXTENT_UPTODATE);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
a5ed9182
OS
361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
73fa48b6 399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
bab39bf9 403 struct btrfs_root *extent_root;
e37c9e69 404 struct btrfs_path *path;
5f39d397 405 struct extent_buffer *leaf;
11833d66 406 struct btrfs_key key;
817d52f8 407 u64 total_found = 0;
11833d66
YZ
408 u64 last = 0;
409 u32 nritems;
73fa48b6 410 int ret;
d0bd4560 411 bool wakeup = true;
f510cfec 412
bab39bf9
JB
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
e37c9e69
CM
417 path = btrfs_alloc_path();
418 if (!path)
73fa48b6 419 return -ENOMEM;
7d7d6068 420
817d52f8 421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 422
d0bd4560
JB
423#ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431#endif
5cd57b2c 432 /*
817d52f8
JB
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
5cd57b2c
CM
437 */
438 path->skip_locking = 1;
817d52f8 439 path->search_commit_root = 1;
e4058b54 440 path->reada = READA_FORWARD;
817d52f8 441
e4404d6e 442 key.objectid = last;
e37c9e69 443 key.offset = 0;
11833d66 444 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 445
52ee28d2 446next:
11833d66 447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 448 if (ret < 0)
73fa48b6 449 goto out;
a512bbf8 450
11833d66
YZ
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
d397712b 454 while (1) {
7841cb28 455 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 456 last = (u64)-1;
817d52f8 457 break;
f25784b3 458 }
817d52f8 459
11833d66
YZ
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
e37c9e69 465 break;
817d52f8 466
c9ea7b24 467 if (need_resched() ||
9e351cc8 468 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
469 if (wakeup)
470 caching_ctl->progress = last;
ff5714cc 471 btrfs_release_path(path);
9e351cc8 472 up_read(&fs_info->commit_root_sem);
589d8ade 473 mutex_unlock(&caching_ctl->mutex);
11833d66 474 cond_resched();
73fa48b6
OS
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
589d8ade 478 }
0a3896d0
JB
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
73fa48b6 482 goto out;
0a3896d0
JB
483 if (ret)
484 break;
589d8ade
JB
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
11833d66 488 }
817d52f8 489
52ee28d2
LB
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
d0bd4560
JB
495 if (wakeup)
496 caching_ctl->progress = last;
52ee28d2
LB
497 btrfs_release_path(path);
498 goto next;
499 }
500
11833d66
YZ
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
817d52f8 503 continue;
e37c9e69 504 }
0f9dd46c 505
e37c9e69 506 if (key.objectid >= block_group->key.objectid +
0f9dd46c 507 block_group->key.offset)
e37c9e69 508 break;
7d7d6068 509
3173a18f
JB
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
3173a18f
JB
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
707e8a07 517 fs_info->tree_root->nodesize;
3173a18f
JB
518 else
519 last = key.objectid + key.offset;
817d52f8 520
73fa48b6 521 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 522 total_found = 0;
d0bd4560
JB
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
11833d66 525 }
817d52f8 526 }
e37c9e69
CM
527 path->slots[0]++;
528 }
817d52f8 529 ret = 0;
e37c9e69 530
817d52f8
JB
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
11833d66 534 caching_ctl->progress = (u64)-1;
817d52f8 535
73fa48b6
OS
536out:
537 btrfs_free_path(path);
538 return ret;
539}
540
541static noinline void caching_thread(struct btrfs_work *work)
542{
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
b4570aa9 546 struct btrfs_root *extent_root;
73fa48b6
OS
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
b4570aa9 552 extent_root = fs_info->extent_root;
73fa48b6
OS
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
1e144fb8
OS
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
73fa48b6 561
817d52f8 562 spin_lock(&block_group->lock);
11833d66 563 block_group->caching_ctl = NULL;
73fa48b6 564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 565 spin_unlock(&block_group->lock);
0f9dd46c 566
d0bd4560
JB
567#ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580#endif
581
582 caching_ctl->progress = (u64)-1;
11833d66 583
9e351cc8 584 up_read(&fs_info->commit_root_sem);
73fa48b6 585 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 586 mutex_unlock(&caching_ctl->mutex);
73fa48b6 587
11833d66
YZ
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
11dfe35a 591 btrfs_put_block_group(block_group);
817d52f8
JB
592}
593
9d66e233 594static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 595 int load_cache_only)
817d52f8 596{
291c7d2f 597 DEFINE_WAIT(wait);
11833d66
YZ
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
600 int ret = 0;
601
291c7d2f 602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
603 if (!caching_ctl)
604 return -ENOMEM;
291c7d2f
JB
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
291c7d2f
JB
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
11833d66 646 return 0;
291c7d2f
JB
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
11833d66 652
d53ba474 653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 654 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
291c7d2f 659 cache->caching_ctl = NULL;
9d66e233
JB
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 662 caching_ctl->progress = (u64)-1;
9d66e233 663 } else {
291c7d2f
JB
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 669 cache->has_caching_ctl = 1;
291c7d2f 670 }
9d66e233
JB
671 }
672 spin_unlock(&cache->lock);
d0bd4560
JB
673#ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688#endif
cb83b7b8
JB
689 mutex_unlock(&caching_ctl->mutex);
690
291c7d2f 691 wake_up(&caching_ctl->wait);
3c14874a 692 if (ret == 1) {
291c7d2f 693 put_caching_control(caching_ctl);
3c14874a 694 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 695 return 0;
3c14874a 696 }
291c7d2f
JB
697 } else {
698 /*
1e144fb8
OS
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 708 cache->has_caching_ctl = 1;
291c7d2f
JB
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
9d66e233
JB
712 }
713
291c7d2f
JB
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
11833d66 716 return 0;
817d52f8 717 }
817d52f8 718
9e351cc8 719 down_write(&fs_info->commit_root_sem);
291c7d2f 720 atomic_inc(&caching_ctl->count);
11833d66 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 722 up_write(&fs_info->commit_root_sem);
11833d66 723
11dfe35a 724 btrfs_get_block_group(cache);
11833d66 725
e66f0bb1 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 727
ef8bbdfe 728 return ret;
e37c9e69
CM
729}
730
0f9dd46c
JB
731/*
732 * return the block group that starts at or after bytenr
733 */
d397712b
CM
734static struct btrfs_block_group_cache *
735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 736{
0f9dd46c 737 struct btrfs_block_group_cache *cache;
0ef3e66b 738
0f9dd46c 739 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 740
0f9dd46c 741 return cache;
0ef3e66b
CM
742}
743
0f9dd46c 744/*
9f55684c 745 * return the block group that contains the given bytenr
0f9dd46c 746 */
d397712b
CM
747struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
be744175 750{
0f9dd46c 751 struct btrfs_block_group_cache *cache;
be744175 752
0f9dd46c 753 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 754
0f9dd46c 755 return cache;
be744175 756}
0b86a832 757
0f9dd46c
JB
758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
6324fbf3 760{
0f9dd46c 761 struct list_head *head = &info->space_info;
0f9dd46c 762 struct btrfs_space_info *found;
4184ea7f 763
52ba6929 764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 765
4184ea7f
CM
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
67377734 768 if (found->flags & flags) {
4184ea7f 769 rcu_read_unlock();
0f9dd46c 770 return found;
4184ea7f 771 }
0f9dd46c 772 }
4184ea7f 773 rcu_read_unlock();
0f9dd46c 774 return NULL;
6324fbf3
CM
775}
776
4184ea7f
CM
777/*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782{
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790}
791
1a4ed8fd
FM
792/* simple helper to search for an existing data extent at a given offset */
793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
794{
795 int ret;
796 struct btrfs_key key;
31840ae1 797 struct btrfs_path *path;
e02119d5 798
31840ae1 799 path = btrfs_alloc_path();
d8926bb3
MF
800 if (!path)
801 return -ENOMEM;
802
e02119d5
CM
803 key.objectid = start;
804 key.offset = len;
3173a18f 805 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
31840ae1 808 btrfs_free_path(path);
7bb86316
CM
809 return ret;
810}
811
a22285a6 812/*
3173a18f 813 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
3173a18f 823 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
824{
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
3173a18f
JB
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 841 offset = root->nodesize;
3173a18f
JB
842 metadata = 0;
843 }
844
a22285a6
YZ
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
a22285a6
YZ
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
639eefc8
FDBM
853
854search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
a22285a6
YZ
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
3173a18f 867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 874 key.offset == root->nodesize)
74be9510
FDBM
875 ret = 0;
876 }
3173a18f
JB
877 }
878
a22285a6
YZ
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896#else
897 BUG();
898#endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
b3b4aa74 918 btrfs_release_path(path);
a22285a6 919
8cc33e5c
DS
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
a22285a6
YZ
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
639eefc8 927 goto search_again;
a22285a6 928 }
d7df2c79 929 spin_lock(&head->lock);
a22285a6
YZ
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
d7df2c79 936 spin_unlock(&head->lock);
a22285a6
YZ
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946out_free:
947 btrfs_free_path(path);
948 return ret;
949}
950
d8d5f3e1
CM
951/*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
5d4f98a2
YZ
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
01327610 983 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
d8d5f3e1
CM
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1013 * - different files inside a single subvolume
d8d5f3e1
CM
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
5d4f98a2 1016 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1017 *
1018 * - Objectid of the subvolume root
d8d5f3e1 1019 * - objectid of the file holding the reference
5d4f98a2
YZ
1020 * - original offset in the file
1021 * - how many bookend extents
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
d8d5f3e1 1025 *
5d4f98a2 1026 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1027 *
5d4f98a2 1028 * - number of pointers in the tree leaf
d8d5f3e1 1029 *
5d4f98a2
YZ
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
d8d5f3e1 1035 *
5d4f98a2 1036 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1037 *
5d4f98a2
YZ
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1040 *
5d4f98a2 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1042 *
5d4f98a2 1043 * Btree extents can be referenced by:
d8d5f3e1 1044 *
5d4f98a2 1045 * - Different subvolumes
d8d5f3e1 1046 *
5d4f98a2
YZ
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
d8d5f3e1 1051 *
5d4f98a2
YZ
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
d8d5f3e1 1055 */
31840ae1 1056
5d4f98a2
YZ
1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
7bb86316 1062{
5d4f98a2
YZ
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
7bb86316 1068 struct btrfs_key key;
5d4f98a2
YZ
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
79787eaa 1088 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
b3b4aa74 1104 btrfs_release_path(path);
5d4f98a2
YZ
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
79787eaa 1114 BUG_ON(ret); /* Corruption */
5d4f98a2 1115
4b90c680 1116 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136}
1137#endif
1138
1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140{
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
14a958e6 1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1147 lenum = cpu_to_le64(owner);
14a958e6 1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1149 lenum = cpu_to_le64(offset);
14a958e6 1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153}
1154
1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157{
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161}
1162
1163static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166{
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172}
1173
1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180{
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
31840ae1 1183 struct extent_buffer *leaf;
5d4f98a2 1184 u32 nritems;
74493f7a 1185 int ret;
5d4f98a2
YZ
1186 int recow;
1187 int err = -ENOENT;
74493f7a 1188
31840ae1 1189 key.objectid = bytenr;
5d4f98a2
YZ
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
31840ae1 1205
5d4f98a2
YZ
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1211 btrfs_release_path(path);
5d4f98a2
YZ
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219#endif
1220 goto fail;
31840ae1
ZY
1221 }
1222
1223 leaf = path->nodes[0];
5d4f98a2
YZ
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
b3b4aa74 1249 btrfs_release_path(path);
5d4f98a2
YZ
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
31840ae1 1256 }
5d4f98a2
YZ
1257fail:
1258 return err;
31840ae1
ZY
1259}
1260
5d4f98a2
YZ
1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
31840ae1
ZY
1267{
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 size;
31840ae1
ZY
1271 u32 num_refs;
1272 int ret;
74493f7a 1273
74493f7a 1274 key.objectid = bytenr;
5d4f98a2
YZ
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
74493f7a 1285
5d4f98a2
YZ
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
31840ae1 1293 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1301 }
5d4f98a2
YZ
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
31840ae1 1316
5d4f98a2
YZ
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1331 }
31840ae1 1332 }
5d4f98a2
YZ
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335fail:
b3b4aa74 1336 btrfs_release_path(path);
7bb86316 1337 return ret;
74493f7a
CM
1338}
1339
5d4f98a2
YZ
1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
fcebe456 1343 int refs_to_drop, int *last_ref)
31840ae1 1344{
5d4f98a2
YZ
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1348 struct extent_buffer *leaf;
5d4f98a2 1349 u32 num_refs = 0;
31840ae1
ZY
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
5d4f98a2
YZ
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369#endif
1370 } else {
1371 BUG();
1372 }
1373
56bec294
CM
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
5d4f98a2 1376
31840ae1
ZY
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
fcebe456 1379 *last_ref = 1;
31840ae1 1380 } else {
5d4f98a2
YZ
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392#endif
31840ae1
ZY
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
31840ae1
ZY
1395 return ret;
1396}
1397
9ed0dea0 1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1399 struct btrfs_extent_inline_ref *iref)
15916de8 1400{
5d4f98a2
YZ
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1432#endif
5d4f98a2
YZ
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437}
15916de8 1438
5d4f98a2
YZ
1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1f3c79a2 1444{
5d4f98a2 1445 struct btrfs_key key;
1f3c79a2 1446 int ret;
1f3c79a2 1447
5d4f98a2
YZ
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1f3c79a2
LH
1455 }
1456
5d4f98a2
YZ
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
b3b4aa74 1462 btrfs_release_path(path);
5d4f98a2
YZ
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1f3c79a2 1468#endif
5d4f98a2 1469 return ret;
1f3c79a2
LH
1470}
1471
5d4f98a2
YZ
1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
31840ae1 1477{
5d4f98a2 1478 struct btrfs_key key;
31840ae1 1479 int ret;
31840ae1 1480
5d4f98a2
YZ
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1491 btrfs_release_path(path);
31840ae1
ZY
1492 return ret;
1493}
1494
5d4f98a2 1495static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1496{
5d4f98a2
YZ
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
31840ae1 1510}
56bec294 1511
2c47e605
YZ
1512static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
56bec294 1514
02217ed2 1515{
2c47e605 1516 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1517 if (!path->nodes[level])
1518 break;
5d4f98a2
YZ
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531}
037e6390 1532
5d4f98a2
YZ
1533/*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546static noinline_for_stack
1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554{
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
3173a18f
JB
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
26b8003f 1570
db94535d 1571 key.objectid = bytenr;
31840ae1 1572 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1573 key.offset = num_bytes;
31840ae1 1574
5d4f98a2
YZ
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1578 path->keep_locks = 1;
5d4f98a2
YZ
1579 } else
1580 extra_size = -1;
3173a18f
JB
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591again:
5d4f98a2 1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1593 if (ret < 0) {
5d4f98a2
YZ
1594 err = ret;
1595 goto out;
1596 }
3173a18f
JB
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
9ce49a0b 1614 key.objectid = bytenr;
3173a18f
JB
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
79787eaa
JM
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
fae7f21c 1625 } else if (WARN_ON(ret)) {
492104c8 1626 err = -EIO;
492104c8 1627 goto out;
79787eaa 1628 }
5d4f98a2
YZ
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647#endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
5d4f98a2
YZ
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
3173a18f 1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
5d4f98a2
YZ
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
2c47e605
YZ
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
85d4198e 1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728out:
85d4198e 1729 if (insert) {
5d4f98a2
YZ
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734}
1735
1736/*
1737 * helper to add new inline back ref
1738 */
1739static noinline_for_stack
fd279fae 1740void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1746{
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
5d4f98a2
YZ
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
4b90c680 1763 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1798}
1799
1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806{
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
54aa1f4d 1813 return ret;
5d4f98a2 1814
b3b4aa74 1815 btrfs_release_path(path);
5d4f98a2
YZ
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
b9473439 1824 }
5d4f98a2
YZ
1825 return ret;
1826}
31840ae1 1827
5d4f98a2
YZ
1828/*
1829 * helper to update/remove inline back ref
1830 */
1831static noinline_for_stack
afe5fea7 1832void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
fcebe456
JB
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
5d4f98a2
YZ
1838{
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
5d4f98a2
YZ
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
56bec294 1870 }
31840ae1 1871
5d4f98a2
YZ
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
afe5fea7 1890 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1893}
1894
1895static noinline_for_stack
1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903{
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1912 update_inline_extent_backref(root, path, iref,
fcebe456 1913 refs_to_add, extent_op, NULL);
5d4f98a2 1914 } else if (ret == -ENOENT) {
fd279fae 1915 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
771ed689 1919 }
5d4f98a2
YZ
1920 return ret;
1921}
31840ae1 1922
5d4f98a2
YZ
1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928{
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940}
56bec294 1941
5d4f98a2
YZ
1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
fcebe456 1946 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1947{
143bede5 1948 int ret = 0;
b9473439 1949
5d4f98a2
YZ
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
afe5fea7 1952 update_inline_extent_backref(root, path, iref,
fcebe456 1953 -refs_to_drop, NULL, last_ref);
5d4f98a2 1954 } else if (is_data) {
fcebe456
JB
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
5d4f98a2 1957 } else {
fcebe456 1958 *last_ref = 1;
5d4f98a2
YZ
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962}
1963
86557861 1964#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
5d4f98a2 1967{
86557861
JM
1968 int j, ret = 0;
1969 u64 bytes_left, end;
4d89d377 1970 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1971
4d89d377
JM
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
d04c6b88 1977
4d89d377 1978 *discarded_bytes = 0;
86557861
JM
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2030 GFP_NOFS, 0);
2031 if (!ret)
86557861 2032 *discarded_bytes += bytes_left;
4d89d377 2033 }
d04c6b88 2034 return ret;
5d4f98a2 2035}
5d4f98a2 2036
1edb647b
FM
2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2039{
5d4f98a2 2040 int ret;
5378e607 2041 u64 discarded_bytes = 0;
a1d3c478 2042 struct btrfs_bio *bbio = NULL;
5d4f98a2 2043
e244a0ae 2044
2999241d
FM
2045 /*
2046 * Avoid races with device replace and make sure our bbio has devices
2047 * associated to its stripes that don't go away while we are discarding.
2048 */
2049 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2050 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2051 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2052 bytenr, &num_bytes, &bbio, 0);
79787eaa 2053 /* Error condition is -ENOMEM */
5d4f98a2 2054 if (!ret) {
a1d3c478 2055 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2056 int i;
2057
5d4f98a2 2058
a1d3c478 2059 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2060 u64 bytes;
d5e2003c
JB
2061 if (!stripe->dev->can_discard)
2062 continue;
2063
5378e607
LD
2064 ret = btrfs_issue_discard(stripe->dev->bdev,
2065 stripe->physical,
d04c6b88
JM
2066 stripe->length,
2067 &bytes);
5378e607 2068 if (!ret)
d04c6b88 2069 discarded_bytes += bytes;
5378e607 2070 else if (ret != -EOPNOTSUPP)
79787eaa 2071 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2072
2073 /*
2074 * Just in case we get back EOPNOTSUPP for some reason,
2075 * just ignore the return value so we don't screw up
2076 * people calling discard_extent.
2077 */
2078 ret = 0;
5d4f98a2 2079 }
6e9606d2 2080 btrfs_put_bbio(bbio);
5d4f98a2 2081 }
2999241d 2082 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2083
2084 if (actual_bytes)
2085 *actual_bytes = discarded_bytes;
2086
5d4f98a2 2087
53b381b3
DW
2088 if (ret == -EOPNOTSUPP)
2089 ret = 0;
5d4f98a2 2090 return ret;
5d4f98a2
YZ
2091}
2092
79787eaa 2093/* Can return -ENOMEM */
5d4f98a2
YZ
2094int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *root,
2096 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2097 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2098{
2099 int ret;
66d7e7f0
AJ
2100 struct btrfs_fs_info *fs_info = root->fs_info;
2101
5d4f98a2
YZ
2102 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104
2105 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2106 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107 num_bytes,
5d4f98a2 2108 parent, root_objectid, (int)owner,
b06c4bf5 2109 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2110 } else {
66d7e7f0 2111 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2112 num_bytes, parent, root_objectid,
2113 owner, offset, 0,
b06c4bf5 2114 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2115 }
2116 return ret;
2117}
2118
2119static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
c682f9b3 2121 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2122 u64 parent, u64 root_objectid,
2123 u64 owner, u64 offset, int refs_to_add,
2124 struct btrfs_delayed_extent_op *extent_op)
2125{
fcebe456 2126 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2127 struct btrfs_path *path;
2128 struct extent_buffer *leaf;
2129 struct btrfs_extent_item *item;
fcebe456 2130 struct btrfs_key key;
c682f9b3
QW
2131 u64 bytenr = node->bytenr;
2132 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2133 u64 refs;
2134 int ret;
5d4f98a2
YZ
2135
2136 path = btrfs_alloc_path();
2137 if (!path)
2138 return -ENOMEM;
2139
e4058b54 2140 path->reada = READA_FORWARD;
5d4f98a2
YZ
2141 path->leave_spinning = 1;
2142 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2143 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144 bytenr, num_bytes, parent,
5d4f98a2
YZ
2145 root_objectid, owner, offset,
2146 refs_to_add, extent_op);
0ed4792a 2147 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2148 goto out;
fcebe456
JB
2149
2150 /*
2151 * Ok we had -EAGAIN which means we didn't have space to insert and
2152 * inline extent ref, so just update the reference count and add a
2153 * normal backref.
2154 */
5d4f98a2 2155 leaf = path->nodes[0];
fcebe456 2156 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2157 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158 refs = btrfs_extent_refs(leaf, item);
2159 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160 if (extent_op)
2161 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2162
5d4f98a2 2163 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2164 btrfs_release_path(path);
56bec294 2165
e4058b54 2166 path->reada = READA_FORWARD;
b9473439 2167 path->leave_spinning = 1;
56bec294
CM
2168 /* now insert the actual backref */
2169 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2170 path, bytenr, parent, root_objectid,
2171 owner, offset, refs_to_add);
79787eaa
JM
2172 if (ret)
2173 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2174out:
56bec294 2175 btrfs_free_path(path);
30d133fc 2176 return ret;
56bec294
CM
2177}
2178
5d4f98a2
YZ
2179static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root,
2181 struct btrfs_delayed_ref_node *node,
2182 struct btrfs_delayed_extent_op *extent_op,
2183 int insert_reserved)
56bec294 2184{
5d4f98a2
YZ
2185 int ret = 0;
2186 struct btrfs_delayed_data_ref *ref;
2187 struct btrfs_key ins;
2188 u64 parent = 0;
2189 u64 ref_root = 0;
2190 u64 flags = 0;
2191
2192 ins.objectid = node->bytenr;
2193 ins.offset = node->num_bytes;
2194 ins.type = BTRFS_EXTENT_ITEM_KEY;
2195
2196 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2197 trace_run_delayed_data_ref(node, ref, node->action);
2198
5d4f98a2
YZ
2199 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200 parent = ref->parent;
fcebe456 2201 ref_root = ref->root;
5d4f98a2
YZ
2202
2203 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2204 if (extent_op)
5d4f98a2 2205 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2206 ret = alloc_reserved_file_extent(trans, root,
2207 parent, ref_root, flags,
2208 ref->objectid, ref->offset,
2209 &ins, node->ref_mod);
5d4f98a2 2210 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2211 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2212 ref_root, ref->objectid,
2213 ref->offset, node->ref_mod,
c682f9b3 2214 extent_op);
5d4f98a2 2215 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2216 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2217 ref_root, ref->objectid,
2218 ref->offset, node->ref_mod,
c682f9b3 2219 extent_op);
5d4f98a2
YZ
2220 } else {
2221 BUG();
2222 }
2223 return ret;
2224}
2225
2226static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227 struct extent_buffer *leaf,
2228 struct btrfs_extent_item *ei)
2229{
2230 u64 flags = btrfs_extent_flags(leaf, ei);
2231 if (extent_op->update_flags) {
2232 flags |= extent_op->flags_to_set;
2233 btrfs_set_extent_flags(leaf, ei, flags);
2234 }
2235
2236 if (extent_op->update_key) {
2237 struct btrfs_tree_block_info *bi;
2238 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239 bi = (struct btrfs_tree_block_info *)(ei + 1);
2240 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241 }
2242}
2243
2244static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op)
2248{
2249 struct btrfs_key key;
2250 struct btrfs_path *path;
2251 struct btrfs_extent_item *ei;
2252 struct extent_buffer *leaf;
2253 u32 item_size;
56bec294 2254 int ret;
5d4f98a2 2255 int err = 0;
b1c79e09 2256 int metadata = !extent_op->is_data;
5d4f98a2 2257
79787eaa
JM
2258 if (trans->aborted)
2259 return 0;
2260
3173a18f
JB
2261 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262 metadata = 0;
2263
5d4f98a2
YZ
2264 path = btrfs_alloc_path();
2265 if (!path)
2266 return -ENOMEM;
2267
2268 key.objectid = node->bytenr;
5d4f98a2 2269
3173a18f 2270 if (metadata) {
3173a18f 2271 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2272 key.offset = extent_op->level;
3173a18f
JB
2273 } else {
2274 key.type = BTRFS_EXTENT_ITEM_KEY;
2275 key.offset = node->num_bytes;
2276 }
2277
2278again:
e4058b54 2279 path->reada = READA_FORWARD;
5d4f98a2
YZ
2280 path->leave_spinning = 1;
2281 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282 path, 0, 1);
2283 if (ret < 0) {
2284 err = ret;
2285 goto out;
2286 }
2287 if (ret > 0) {
3173a18f 2288 if (metadata) {
55994887
FDBM
2289 if (path->slots[0] > 0) {
2290 path->slots[0]--;
2291 btrfs_item_key_to_cpu(path->nodes[0], &key,
2292 path->slots[0]);
2293 if (key.objectid == node->bytenr &&
2294 key.type == BTRFS_EXTENT_ITEM_KEY &&
2295 key.offset == node->num_bytes)
2296 ret = 0;
2297 }
2298 if (ret > 0) {
2299 btrfs_release_path(path);
2300 metadata = 0;
3173a18f 2301
55994887
FDBM
2302 key.objectid = node->bytenr;
2303 key.offset = node->num_bytes;
2304 key.type = BTRFS_EXTENT_ITEM_KEY;
2305 goto again;
2306 }
2307 } else {
2308 err = -EIO;
2309 goto out;
3173a18f 2310 }
5d4f98a2
YZ
2311 }
2312
2313 leaf = path->nodes[0];
2314 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316 if (item_size < sizeof(*ei)) {
2317 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318 path, (u64)-1, 0);
2319 if (ret < 0) {
2320 err = ret;
2321 goto out;
2322 }
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 }
2326#endif
2327 BUG_ON(item_size < sizeof(*ei));
2328 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2330
5d4f98a2
YZ
2331 btrfs_mark_buffer_dirty(leaf);
2332out:
2333 btrfs_free_path(path);
2334 return err;
56bec294
CM
2335}
2336
5d4f98a2
YZ
2337static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338 struct btrfs_root *root,
2339 struct btrfs_delayed_ref_node *node,
2340 struct btrfs_delayed_extent_op *extent_op,
2341 int insert_reserved)
56bec294
CM
2342{
2343 int ret = 0;
5d4f98a2
YZ
2344 struct btrfs_delayed_tree_ref *ref;
2345 struct btrfs_key ins;
2346 u64 parent = 0;
2347 u64 ref_root = 0;
3173a18f
JB
2348 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349 SKINNY_METADATA);
56bec294 2350
5d4f98a2 2351 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2352 trace_run_delayed_tree_ref(node, ref, node->action);
2353
5d4f98a2
YZ
2354 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355 parent = ref->parent;
fcebe456 2356 ref_root = ref->root;
5d4f98a2 2357
3173a18f
JB
2358 ins.objectid = node->bytenr;
2359 if (skinny_metadata) {
2360 ins.offset = ref->level;
2361 ins.type = BTRFS_METADATA_ITEM_KEY;
2362 } else {
2363 ins.offset = node->num_bytes;
2364 ins.type = BTRFS_EXTENT_ITEM_KEY;
2365 }
2366
5d4f98a2
YZ
2367 BUG_ON(node->ref_mod != 1);
2368 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2369 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2370 ret = alloc_reserved_tree_block(trans, root,
2371 parent, ref_root,
2372 extent_op->flags_to_set,
2373 &extent_op->key,
b06c4bf5 2374 ref->level, &ins);
5d4f98a2 2375 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2376 ret = __btrfs_inc_extent_ref(trans, root, node,
2377 parent, ref_root,
2378 ref->level, 0, 1,
fcebe456 2379 extent_op);
5d4f98a2 2380 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2381 ret = __btrfs_free_extent(trans, root, node,
2382 parent, ref_root,
2383 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2384 } else {
2385 BUG();
2386 }
56bec294
CM
2387 return ret;
2388}
2389
2390/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2391static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 struct btrfs_delayed_ref_node *node,
2394 struct btrfs_delayed_extent_op *extent_op,
2395 int insert_reserved)
56bec294 2396{
79787eaa
JM
2397 int ret = 0;
2398
857cc2fc
JB
2399 if (trans->aborted) {
2400 if (insert_reserved)
2401 btrfs_pin_extent(root, node->bytenr,
2402 node->num_bytes, 1);
79787eaa 2403 return 0;
857cc2fc 2404 }
79787eaa 2405
5d4f98a2 2406 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2407 struct btrfs_delayed_ref_head *head;
2408 /*
2409 * we've hit the end of the chain and we were supposed
2410 * to insert this extent into the tree. But, it got
2411 * deleted before we ever needed to insert it, so all
2412 * we have to do is clean up the accounting
2413 */
5d4f98a2
YZ
2414 BUG_ON(extent_op);
2415 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2416 trace_run_delayed_ref_head(node, head, node->action);
2417
56bec294 2418 if (insert_reserved) {
f0486c68
YZ
2419 btrfs_pin_extent(root, node->bytenr,
2420 node->num_bytes, 1);
5d4f98a2
YZ
2421 if (head->is_data) {
2422 ret = btrfs_del_csums(trans, root,
2423 node->bytenr,
2424 node->num_bytes);
5d4f98a2 2425 }
56bec294 2426 }
297d750b
QW
2427
2428 /* Also free its reserved qgroup space */
2429 btrfs_qgroup_free_delayed_ref(root->fs_info,
2430 head->qgroup_ref_root,
2431 head->qgroup_reserved);
79787eaa 2432 return ret;
56bec294
CM
2433 }
2434
5d4f98a2
YZ
2435 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438 insert_reserved);
2439 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441 ret = run_delayed_data_ref(trans, root, node, extent_op,
2442 insert_reserved);
2443 else
2444 BUG();
2445 return ret;
56bec294
CM
2446}
2447
c6fc2454 2448static inline struct btrfs_delayed_ref_node *
56bec294
CM
2449select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450{
cffc3374
FM
2451 struct btrfs_delayed_ref_node *ref;
2452
c6fc2454
QW
2453 if (list_empty(&head->ref_list))
2454 return NULL;
d7df2c79 2455
cffc3374
FM
2456 /*
2457 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458 * This is to prevent a ref count from going down to zero, which deletes
2459 * the extent item from the extent tree, when there still are references
2460 * to add, which would fail because they would not find the extent item.
2461 */
2462 list_for_each_entry(ref, &head->ref_list, list) {
2463 if (ref->action == BTRFS_ADD_DELAYED_REF)
2464 return ref;
2465 }
2466
c6fc2454
QW
2467 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468 list);
56bec294
CM
2469}
2470
79787eaa
JM
2471/*
2472 * Returns 0 on success or if called with an already aborted transaction.
2473 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474 */
d7df2c79
JB
2475static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476 struct btrfs_root *root,
2477 unsigned long nr)
56bec294 2478{
56bec294
CM
2479 struct btrfs_delayed_ref_root *delayed_refs;
2480 struct btrfs_delayed_ref_node *ref;
2481 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2482 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2483 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2484 ktime_t start = ktime_get();
56bec294 2485 int ret;
d7df2c79 2486 unsigned long count = 0;
0a2b2a84 2487 unsigned long actual_count = 0;
56bec294 2488 int must_insert_reserved = 0;
56bec294
CM
2489
2490 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2491 while (1) {
2492 if (!locked_ref) {
d7df2c79 2493 if (count >= nr)
56bec294 2494 break;
56bec294 2495
d7df2c79
JB
2496 spin_lock(&delayed_refs->lock);
2497 locked_ref = btrfs_select_ref_head(trans);
2498 if (!locked_ref) {
2499 spin_unlock(&delayed_refs->lock);
2500 break;
2501 }
c3e69d58
CM
2502
2503 /* grab the lock that says we are going to process
2504 * all the refs for this head */
2505 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2506 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2507 /*
2508 * we may have dropped the spin lock to get the head
2509 * mutex lock, and that might have given someone else
2510 * time to free the head. If that's true, it has been
2511 * removed from our list and we can move on.
2512 */
2513 if (ret == -EAGAIN) {
2514 locked_ref = NULL;
2515 count++;
2516 continue;
56bec294
CM
2517 }
2518 }
a28ec197 2519
2c3cf7d5
FM
2520 /*
2521 * We need to try and merge add/drops of the same ref since we
2522 * can run into issues with relocate dropping the implicit ref
2523 * and then it being added back again before the drop can
2524 * finish. If we merged anything we need to re-loop so we can
2525 * get a good ref.
2526 * Or we can get node references of the same type that weren't
2527 * merged when created due to bumps in the tree mod seq, and
2528 * we need to merge them to prevent adding an inline extent
2529 * backref before dropping it (triggering a BUG_ON at
2530 * insert_inline_extent_backref()).
2531 */
d7df2c79 2532 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2533 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534 locked_ref);
ae1e206b 2535
d1270cd9
AJ
2536 /*
2537 * locked_ref is the head node, so we have to go one
2538 * node back for any delayed ref updates
2539 */
2540 ref = select_delayed_ref(locked_ref);
2541
2542 if (ref && ref->seq &&
097b8a7c 2543 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2544 spin_unlock(&locked_ref->lock);
093486c4 2545 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2546 spin_lock(&delayed_refs->lock);
2547 locked_ref->processing = 0;
d1270cd9
AJ
2548 delayed_refs->num_heads_ready++;
2549 spin_unlock(&delayed_refs->lock);
d7df2c79 2550 locked_ref = NULL;
d1270cd9 2551 cond_resched();
27a377db 2552 count++;
d1270cd9
AJ
2553 continue;
2554 }
2555
56bec294
CM
2556 /*
2557 * record the must insert reserved flag before we
2558 * drop the spin lock.
2559 */
2560 must_insert_reserved = locked_ref->must_insert_reserved;
2561 locked_ref->must_insert_reserved = 0;
7bb86316 2562
5d4f98a2
YZ
2563 extent_op = locked_ref->extent_op;
2564 locked_ref->extent_op = NULL;
2565
56bec294 2566 if (!ref) {
d7df2c79
JB
2567
2568
56bec294
CM
2569 /* All delayed refs have been processed, Go ahead
2570 * and send the head node to run_one_delayed_ref,
2571 * so that any accounting fixes can happen
2572 */
2573 ref = &locked_ref->node;
5d4f98a2
YZ
2574
2575 if (extent_op && must_insert_reserved) {
78a6184a 2576 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2577 extent_op = NULL;
2578 }
2579
2580 if (extent_op) {
d7df2c79 2581 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2582 ret = run_delayed_extent_op(trans, root,
2583 ref, extent_op);
78a6184a 2584 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2585
79787eaa 2586 if (ret) {
857cc2fc
JB
2587 /*
2588 * Need to reset must_insert_reserved if
2589 * there was an error so the abort stuff
2590 * can cleanup the reserved space
2591 * properly.
2592 */
2593 if (must_insert_reserved)
2594 locked_ref->must_insert_reserved = 1;
d7df2c79 2595 locked_ref->processing = 0;
c2cf52eb 2596 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2597 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2598 return ret;
2599 }
d7df2c79 2600 continue;
5d4f98a2 2601 }
02217ed2 2602
d7df2c79 2603 /*
01327610 2604 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
c6fc2454 2611 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2612 locked_ref->extent_op) {
d7df2c79
JB
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
c46effa6
LB
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
d7df2c79
JB
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
0a2b2a84 2623 actual_count++;
d7df2c79 2624 ref->in_tree = 0;
c6fc2454 2625 list_del(&ref->list);
c46effa6 2626 }
d7df2c79
JB
2627 atomic_dec(&delayed_refs->num_entries);
2628
093486c4 2629 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2630 /*
2631 * when we play the delayed ref, also correct the
2632 * ref_mod on head
2633 */
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2638 break;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2641 break;
2642 default:
2643 WARN_ON(1);
2644 }
2645 }
d7df2c79 2646 spin_unlock(&locked_ref->lock);
925baedd 2647
5d4f98a2 2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2649 must_insert_reserved);
eb099670 2650
78a6184a 2651 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2652 if (ret) {
d7df2c79 2653 locked_ref->processing = 0;
093486c4
MX
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
c2cf52eb 2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2657 return ret;
2658 }
2659
093486c4
MX
2660 /*
2661 * If this node is a head, that means all the refs in this head
2662 * have been dealt with, and we will pick the next head to deal
2663 * with, so we must unlock the head and drop it from the cluster
2664 * list before we release it.
2665 */
2666 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2667 if (locked_ref->is_data &&
2668 locked_ref->total_ref_mod < 0) {
2669 spin_lock(&delayed_refs->lock);
2670 delayed_refs->pending_csums -= ref->num_bytes;
2671 spin_unlock(&delayed_refs->lock);
2672 }
093486c4
MX
2673 btrfs_delayed_ref_unlock(locked_ref);
2674 locked_ref = NULL;
2675 }
2676 btrfs_put_delayed_ref(ref);
2677 count++;
c3e69d58 2678 cond_resched();
c3e69d58 2679 }
0a2b2a84
JB
2680
2681 /*
2682 * We don't want to include ref heads since we can have empty ref heads
2683 * and those will drastically skew our runtime down since we just do
2684 * accounting, no actual extent tree updates.
2685 */
2686 if (actual_count > 0) {
2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 u64 avg;
2689
2690 /*
2691 * We weigh the current average higher than our current runtime
2692 * to avoid large swings in the average.
2693 */
2694 spin_lock(&delayed_refs->lock);
2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2697 spin_unlock(&delayed_refs->lock);
2698 }
d7df2c79 2699 return 0;
c3e69d58
CM
2700}
2701
709c0486
AJ
2702#ifdef SCRAMBLE_DELAYED_REFS
2703/*
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2707 */
2708static u64 find_middle(struct rb_root *root)
2709{
2710 struct rb_node *n = root->rb_node;
2711 struct btrfs_delayed_ref_node *entry;
2712 int alt = 1;
2713 u64 middle;
2714 u64 first = 0, last = 0;
2715
2716 n = rb_first(root);
2717 if (n) {
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 first = entry->bytenr;
2720 }
2721 n = rb_last(root);
2722 if (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 last = entry->bytenr;
2725 }
2726 n = root->rb_node;
2727
2728 while (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 WARN_ON(!entry->in_tree);
2731
2732 middle = entry->bytenr;
2733
2734 if (alt)
2735 n = n->rb_left;
2736 else
2737 n = n->rb_right;
2738
2739 alt = 1 - alt;
2740 }
2741 return middle;
2742}
2743#endif
2744
1be41b78
JB
2745static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746{
2747 u64 num_bytes;
2748
2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 sizeof(struct btrfs_extent_inline_ref));
2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754 /*
2755 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2756 * closer to what we're really going to want to use.
1be41b78 2757 */
f8c269d7 2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2759}
2760
1262133b
JB
2761/*
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2764 */
28f75a0e 2765u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2766{
2767 u64 csum_size;
2768 u64 num_csums_per_leaf;
2769 u64 num_csums;
2770
2771 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772 num_csums_per_leaf = div64_u64(csum_size,
2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 num_csums += num_csums_per_leaf - 1;
2776 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 return num_csums;
2778}
2779
0a2b2a84 2780int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2781 struct btrfs_root *root)
2782{
2783 struct btrfs_block_rsv *global_rsv;
2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2788 int ret = 0;
2789
2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 num_heads = heads_to_leaves(root, num_heads);
2792 if (num_heads > 1)
707e8a07 2793 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2794 num_bytes <<= 1;
28f75a0e 2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 num_dirty_bgs);
1be41b78
JB
2798 global_rsv = &root->fs_info->global_block_rsv;
2799
2800 /*
2801 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 * wiggle room since running delayed refs can create more delayed refs.
2803 */
cb723e49
JB
2804 if (global_rsv->space_info->full) {
2805 num_dirty_bgs_bytes <<= 1;
1be41b78 2806 num_bytes <<= 1;
cb723e49 2807 }
1be41b78
JB
2808
2809 spin_lock(&global_rsv->lock);
cb723e49 2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2811 ret = 1;
2812 spin_unlock(&global_rsv->lock);
2813 return ret;
2814}
2815
0a2b2a84
JB
2816int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root)
2818{
2819 struct btrfs_fs_info *fs_info = root->fs_info;
2820 u64 num_entries =
2821 atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 u64 avg_runtime;
a79b7d4b 2823 u64 val;
0a2b2a84
JB
2824
2825 smp_mb();
2826 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2827 val = num_entries * avg_runtime;
0a2b2a84
JB
2828 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 return 1;
a79b7d4b
CM
2830 if (val >= NSEC_PER_SEC / 2)
2831 return 2;
0a2b2a84
JB
2832
2833 return btrfs_check_space_for_delayed_refs(trans, root);
2834}
2835
a79b7d4b
CM
2836struct async_delayed_refs {
2837 struct btrfs_root *root;
31b9655f 2838 u64 transid;
a79b7d4b
CM
2839 int count;
2840 int error;
2841 int sync;
2842 struct completion wait;
2843 struct btrfs_work work;
2844};
2845
2846static void delayed_ref_async_start(struct btrfs_work *work)
2847{
2848 struct async_delayed_refs *async;
2849 struct btrfs_trans_handle *trans;
2850 int ret;
2851
2852 async = container_of(work, struct async_delayed_refs, work);
2853
31b9655f 2854 trans = btrfs_attach_transaction(async->root);
a79b7d4b 2855 if (IS_ERR(trans)) {
31b9655f
JB
2856 if (PTR_ERR(trans) != -ENOENT)
2857 async->error = PTR_ERR(trans);
2858 goto done;
2859 }
2860
2861 /* Don't bother flushing if we got into a different transaction */
2862 if (trans->transid != async->transid) {
2863 btrfs_end_transaction(trans, async->root);
a79b7d4b
CM
2864 goto done;
2865 }
2866
2867 /*
01327610 2868 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2869 * wait on delayed refs
2870 */
2871 trans->sync = true;
2872 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2873 if (ret)
2874 async->error = ret;
2875
2876 ret = btrfs_end_transaction(trans, async->root);
2877 if (ret && !async->error)
2878 async->error = ret;
2879done:
2880 if (async->sync)
2881 complete(&async->wait);
2882 else
2883 kfree(async);
2884}
2885
2886int btrfs_async_run_delayed_refs(struct btrfs_root *root,
31b9655f 2887 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2888{
2889 struct async_delayed_refs *async;
2890 int ret;
2891
2892 async = kmalloc(sizeof(*async), GFP_NOFS);
2893 if (!async)
2894 return -ENOMEM;
2895
2896 async->root = root->fs_info->tree_root;
2897 async->count = count;
2898 async->error = 0;
31b9655f 2899 async->transid = transid;
a79b7d4b
CM
2900 if (wait)
2901 async->sync = 1;
2902 else
2903 async->sync = 0;
2904 init_completion(&async->wait);
2905
9e0af237
LB
2906 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2907 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2908
2909 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2910
2911 if (wait) {
2912 wait_for_completion(&async->wait);
2913 ret = async->error;
2914 kfree(async);
2915 return ret;
2916 }
2917 return 0;
2918}
2919
c3e69d58
CM
2920/*
2921 * this starts processing the delayed reference count updates and
2922 * extent insertions we have queued up so far. count can be
2923 * 0, which means to process everything in the tree at the start
2924 * of the run (but not newly added entries), or it can be some target
2925 * number you'd like to process.
79787eaa
JM
2926 *
2927 * Returns 0 on success or if called with an aborted transaction
2928 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2929 */
2930int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2931 struct btrfs_root *root, unsigned long count)
2932{
2933 struct rb_node *node;
2934 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2935 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2936 int ret;
2937 int run_all = count == (unsigned long)-1;
d9a0540a 2938 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2939
79787eaa
JM
2940 /* We'll clean this up in btrfs_cleanup_transaction */
2941 if (trans->aborted)
2942 return 0;
2943
511711af
CM
2944 if (root->fs_info->creating_free_space_tree)
2945 return 0;
2946
c3e69d58
CM
2947 if (root == root->fs_info->extent_root)
2948 root = root->fs_info->tree_root;
2949
2950 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2951 if (count == 0)
d7df2c79 2952 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2953
c3e69d58 2954again:
709c0486
AJ
2955#ifdef SCRAMBLE_DELAYED_REFS
2956 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2957#endif
d9a0540a 2958 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2959 ret = __btrfs_run_delayed_refs(trans, root, count);
2960 if (ret < 0) {
2961 btrfs_abort_transaction(trans, root, ret);
2962 return ret;
eb099670 2963 }
c3e69d58 2964
56bec294 2965 if (run_all) {
d7df2c79 2966 if (!list_empty(&trans->new_bgs))
ea658bad 2967 btrfs_create_pending_block_groups(trans, root);
ea658bad 2968
d7df2c79 2969 spin_lock(&delayed_refs->lock);
c46effa6 2970 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2971 if (!node) {
2972 spin_unlock(&delayed_refs->lock);
56bec294 2973 goto out;
d7df2c79 2974 }
c3e69d58 2975 count = (unsigned long)-1;
e9d0b13b 2976
56bec294 2977 while (node) {
c46effa6
LB
2978 head = rb_entry(node, struct btrfs_delayed_ref_head,
2979 href_node);
2980 if (btrfs_delayed_ref_is_head(&head->node)) {
2981 struct btrfs_delayed_ref_node *ref;
5caf2a00 2982
c46effa6 2983 ref = &head->node;
56bec294
CM
2984 atomic_inc(&ref->refs);
2985
2986 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2987 /*
2988 * Mutex was contended, block until it's
2989 * released and try again
2990 */
56bec294
CM
2991 mutex_lock(&head->mutex);
2992 mutex_unlock(&head->mutex);
2993
2994 btrfs_put_delayed_ref(ref);
1887be66 2995 cond_resched();
56bec294 2996 goto again;
c46effa6
LB
2997 } else {
2998 WARN_ON(1);
56bec294
CM
2999 }
3000 node = rb_next(node);
3001 }
3002 spin_unlock(&delayed_refs->lock);
d7df2c79 3003 cond_resched();
56bec294 3004 goto again;
5f39d397 3005 }
54aa1f4d 3006out:
edf39272 3007 assert_qgroups_uptodate(trans);
d9a0540a 3008 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3009 return 0;
3010}
3011
5d4f98a2
YZ
3012int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3013 struct btrfs_root *root,
3014 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3015 int level, int is_data)
5d4f98a2
YZ
3016{
3017 struct btrfs_delayed_extent_op *extent_op;
3018 int ret;
3019
78a6184a 3020 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3021 if (!extent_op)
3022 return -ENOMEM;
3023
3024 extent_op->flags_to_set = flags;
35b3ad50
DS
3025 extent_op->update_flags = true;
3026 extent_op->update_key = false;
3027 extent_op->is_data = is_data ? true : false;
b1c79e09 3028 extent_op->level = level;
5d4f98a2 3029
66d7e7f0
AJ
3030 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3031 num_bytes, extent_op);
5d4f98a2 3032 if (ret)
78a6184a 3033 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3034 return ret;
3035}
3036
3037static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 struct btrfs_path *path,
3040 u64 objectid, u64 offset, u64 bytenr)
3041{
3042 struct btrfs_delayed_ref_head *head;
3043 struct btrfs_delayed_ref_node *ref;
3044 struct btrfs_delayed_data_ref *data_ref;
3045 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3046 int ret = 0;
3047
5d4f98a2
YZ
3048 delayed_refs = &trans->transaction->delayed_refs;
3049 spin_lock(&delayed_refs->lock);
3050 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3051 if (!head) {
3052 spin_unlock(&delayed_refs->lock);
3053 return 0;
3054 }
5d4f98a2
YZ
3055
3056 if (!mutex_trylock(&head->mutex)) {
3057 atomic_inc(&head->node.refs);
3058 spin_unlock(&delayed_refs->lock);
3059
b3b4aa74 3060 btrfs_release_path(path);
5d4f98a2 3061
8cc33e5c
DS
3062 /*
3063 * Mutex was contended, block until it's released and let
3064 * caller try again
3065 */
5d4f98a2
YZ
3066 mutex_lock(&head->mutex);
3067 mutex_unlock(&head->mutex);
3068 btrfs_put_delayed_ref(&head->node);
3069 return -EAGAIN;
3070 }
d7df2c79 3071 spin_unlock(&delayed_refs->lock);
5d4f98a2 3072
d7df2c79 3073 spin_lock(&head->lock);
c6fc2454 3074 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3075 /* If it's a shared ref we know a cross reference exists */
3076 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3077 ret = 1;
3078 break;
3079 }
5d4f98a2 3080
d7df2c79 3081 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3082
d7df2c79
JB
3083 /*
3084 * If our ref doesn't match the one we're currently looking at
3085 * then we have a cross reference.
3086 */
3087 if (data_ref->root != root->root_key.objectid ||
3088 data_ref->objectid != objectid ||
3089 data_ref->offset != offset) {
3090 ret = 1;
3091 break;
3092 }
5d4f98a2 3093 }
d7df2c79 3094 spin_unlock(&head->lock);
5d4f98a2 3095 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3096 return ret;
3097}
3098
3099static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3100 struct btrfs_root *root,
3101 struct btrfs_path *path,
3102 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3103{
3104 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3105 struct extent_buffer *leaf;
5d4f98a2
YZ
3106 struct btrfs_extent_data_ref *ref;
3107 struct btrfs_extent_inline_ref *iref;
3108 struct btrfs_extent_item *ei;
f321e491 3109 struct btrfs_key key;
5d4f98a2 3110 u32 item_size;
be20aa9d 3111 int ret;
925baedd 3112
be20aa9d 3113 key.objectid = bytenr;
31840ae1 3114 key.offset = (u64)-1;
f321e491 3115 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3116
be20aa9d
CM
3117 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3118 if (ret < 0)
3119 goto out;
79787eaa 3120 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3121
3122 ret = -ENOENT;
3123 if (path->slots[0] == 0)
31840ae1 3124 goto out;
be20aa9d 3125
31840ae1 3126 path->slots[0]--;
f321e491 3127 leaf = path->nodes[0];
5d4f98a2 3128 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3129
5d4f98a2 3130 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3131 goto out;
f321e491 3132
5d4f98a2
YZ
3133 ret = 1;
3134 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3135#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3136 if (item_size < sizeof(*ei)) {
3137 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3138 goto out;
3139 }
3140#endif
3141 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3142
5d4f98a2
YZ
3143 if (item_size != sizeof(*ei) +
3144 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3145 goto out;
be20aa9d 3146
5d4f98a2
YZ
3147 if (btrfs_extent_generation(leaf, ei) <=
3148 btrfs_root_last_snapshot(&root->root_item))
3149 goto out;
3150
3151 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3152 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3153 BTRFS_EXTENT_DATA_REF_KEY)
3154 goto out;
3155
3156 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3157 if (btrfs_extent_refs(leaf, ei) !=
3158 btrfs_extent_data_ref_count(leaf, ref) ||
3159 btrfs_extent_data_ref_root(leaf, ref) !=
3160 root->root_key.objectid ||
3161 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3162 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3163 goto out;
3164
3165 ret = 0;
3166out:
3167 return ret;
3168}
3169
3170int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3171 struct btrfs_root *root,
3172 u64 objectid, u64 offset, u64 bytenr)
3173{
3174 struct btrfs_path *path;
3175 int ret;
3176 int ret2;
3177
3178 path = btrfs_alloc_path();
3179 if (!path)
3180 return -ENOENT;
3181
3182 do {
3183 ret = check_committed_ref(trans, root, path, objectid,
3184 offset, bytenr);
3185 if (ret && ret != -ENOENT)
f321e491 3186 goto out;
80ff3856 3187
5d4f98a2
YZ
3188 ret2 = check_delayed_ref(trans, root, path, objectid,
3189 offset, bytenr);
3190 } while (ret2 == -EAGAIN);
3191
3192 if (ret2 && ret2 != -ENOENT) {
3193 ret = ret2;
3194 goto out;
f321e491 3195 }
5d4f98a2
YZ
3196
3197 if (ret != -ENOENT || ret2 != -ENOENT)
3198 ret = 0;
be20aa9d 3199out:
80ff3856 3200 btrfs_free_path(path);
f0486c68
YZ
3201 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3202 WARN_ON(ret > 0);
f321e491 3203 return ret;
be20aa9d 3204}
c5739bba 3205
5d4f98a2 3206static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3207 struct btrfs_root *root,
5d4f98a2 3208 struct extent_buffer *buf,
e339a6b0 3209 int full_backref, int inc)
31840ae1
ZY
3210{
3211 u64 bytenr;
5d4f98a2
YZ
3212 u64 num_bytes;
3213 u64 parent;
31840ae1 3214 u64 ref_root;
31840ae1 3215 u32 nritems;
31840ae1
ZY
3216 struct btrfs_key key;
3217 struct btrfs_file_extent_item *fi;
3218 int i;
3219 int level;
3220 int ret = 0;
31840ae1 3221 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3222 u64, u64, u64, u64, u64, u64);
31840ae1 3223
fccb84c9
DS
3224
3225 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3226 return 0;
fccb84c9 3227
31840ae1 3228 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3229 nritems = btrfs_header_nritems(buf);
3230 level = btrfs_header_level(buf);
3231
27cdeb70 3232 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3233 return 0;
31840ae1 3234
5d4f98a2
YZ
3235 if (inc)
3236 process_func = btrfs_inc_extent_ref;
3237 else
3238 process_func = btrfs_free_extent;
31840ae1 3239
5d4f98a2
YZ
3240 if (full_backref)
3241 parent = buf->start;
3242 else
3243 parent = 0;
3244
3245 for (i = 0; i < nritems; i++) {
31840ae1 3246 if (level == 0) {
5d4f98a2 3247 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3248 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3249 continue;
5d4f98a2 3250 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3251 struct btrfs_file_extent_item);
3252 if (btrfs_file_extent_type(buf, fi) ==
3253 BTRFS_FILE_EXTENT_INLINE)
3254 continue;
3255 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3256 if (bytenr == 0)
3257 continue;
5d4f98a2
YZ
3258
3259 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3260 key.offset -= btrfs_file_extent_offset(buf, fi);
3261 ret = process_func(trans, root, bytenr, num_bytes,
3262 parent, ref_root, key.objectid,
b06c4bf5 3263 key.offset);
31840ae1
ZY
3264 if (ret)
3265 goto fail;
3266 } else {
5d4f98a2 3267 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3268 num_bytes = root->nodesize;
5d4f98a2 3269 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3270 parent, ref_root, level - 1, 0);
31840ae1
ZY
3271 if (ret)
3272 goto fail;
3273 }
3274 }
3275 return 0;
3276fail:
5d4f98a2
YZ
3277 return ret;
3278}
3279
3280int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3281 struct extent_buffer *buf, int full_backref)
5d4f98a2 3282{
e339a6b0 3283 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3284}
3285
3286int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3287 struct extent_buffer *buf, int full_backref)
5d4f98a2 3288{
e339a6b0 3289 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3290}
3291
9078a3e1
CM
3292static int write_one_cache_group(struct btrfs_trans_handle *trans,
3293 struct btrfs_root *root,
3294 struct btrfs_path *path,
3295 struct btrfs_block_group_cache *cache)
3296{
3297 int ret;
9078a3e1 3298 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3299 unsigned long bi;
3300 struct extent_buffer *leaf;
9078a3e1 3301
9078a3e1 3302 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3303 if (ret) {
3304 if (ret > 0)
3305 ret = -ENOENT;
54aa1f4d 3306 goto fail;
df95e7f0 3307 }
5f39d397
CM
3308
3309 leaf = path->nodes[0];
3310 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3311 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3312 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3313fail:
24b89d08 3314 btrfs_release_path(path);
df95e7f0 3315 return ret;
9078a3e1
CM
3316
3317}
3318
4a8c9a62
YZ
3319static struct btrfs_block_group_cache *
3320next_block_group(struct btrfs_root *root,
3321 struct btrfs_block_group_cache *cache)
3322{
3323 struct rb_node *node;
292cbd51 3324
4a8c9a62 3325 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3326
3327 /* If our block group was removed, we need a full search. */
3328 if (RB_EMPTY_NODE(&cache->cache_node)) {
3329 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3330
3331 spin_unlock(&root->fs_info->block_group_cache_lock);
3332 btrfs_put_block_group(cache);
3333 cache = btrfs_lookup_first_block_group(root->fs_info,
3334 next_bytenr);
3335 return cache;
3336 }
4a8c9a62
YZ
3337 node = rb_next(&cache->cache_node);
3338 btrfs_put_block_group(cache);
3339 if (node) {
3340 cache = rb_entry(node, struct btrfs_block_group_cache,
3341 cache_node);
11dfe35a 3342 btrfs_get_block_group(cache);
4a8c9a62
YZ
3343 } else
3344 cache = NULL;
3345 spin_unlock(&root->fs_info->block_group_cache_lock);
3346 return cache;
3347}
3348
0af3d00b
JB
3349static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3350 struct btrfs_trans_handle *trans,
3351 struct btrfs_path *path)
3352{
3353 struct btrfs_root *root = block_group->fs_info->tree_root;
3354 struct inode *inode = NULL;
3355 u64 alloc_hint = 0;
2b20982e 3356 int dcs = BTRFS_DC_ERROR;
f8c269d7 3357 u64 num_pages = 0;
0af3d00b
JB
3358 int retries = 0;
3359 int ret = 0;
3360
3361 /*
3362 * If this block group is smaller than 100 megs don't bother caching the
3363 * block group.
3364 */
ee22184b 3365 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3366 spin_lock(&block_group->lock);
3367 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3368 spin_unlock(&block_group->lock);
3369 return 0;
3370 }
3371
0c0ef4bc
JB
3372 if (trans->aborted)
3373 return 0;
0af3d00b
JB
3374again:
3375 inode = lookup_free_space_inode(root, block_group, path);
3376 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3377 ret = PTR_ERR(inode);
b3b4aa74 3378 btrfs_release_path(path);
0af3d00b
JB
3379 goto out;
3380 }
3381
3382 if (IS_ERR(inode)) {
3383 BUG_ON(retries);
3384 retries++;
3385
3386 if (block_group->ro)
3387 goto out_free;
3388
3389 ret = create_free_space_inode(root, trans, block_group, path);
3390 if (ret)
3391 goto out_free;
3392 goto again;
3393 }
3394
5b0e95bf
JB
3395 /* We've already setup this transaction, go ahead and exit */
3396 if (block_group->cache_generation == trans->transid &&
3397 i_size_read(inode)) {
3398 dcs = BTRFS_DC_SETUP;
3399 goto out_put;
3400 }
3401
0af3d00b
JB
3402 /*
3403 * We want to set the generation to 0, that way if anything goes wrong
3404 * from here on out we know not to trust this cache when we load up next
3405 * time.
3406 */
3407 BTRFS_I(inode)->generation = 0;
3408 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3409 if (ret) {
3410 /*
3411 * So theoretically we could recover from this, simply set the
3412 * super cache generation to 0 so we know to invalidate the
3413 * cache, but then we'd have to keep track of the block groups
3414 * that fail this way so we know we _have_ to reset this cache
3415 * before the next commit or risk reading stale cache. So to
3416 * limit our exposure to horrible edge cases lets just abort the
3417 * transaction, this only happens in really bad situations
3418 * anyway.
3419 */
3420 btrfs_abort_transaction(trans, root, ret);
3421 goto out_put;
3422 }
0af3d00b
JB
3423 WARN_ON(ret);
3424
3425 if (i_size_read(inode) > 0) {
7b61cd92
MX
3426 ret = btrfs_check_trunc_cache_free_space(root,
3427 &root->fs_info->global_block_rsv);
3428 if (ret)
3429 goto out_put;
3430
1bbc621e 3431 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3432 if (ret)
3433 goto out_put;
3434 }
3435
3436 spin_lock(&block_group->lock);
cf7c1ef6 3437 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3438 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3439 /*
3440 * don't bother trying to write stuff out _if_
3441 * a) we're not cached,
3442 * b) we're with nospace_cache mount option.
3443 */
2b20982e 3444 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3445 spin_unlock(&block_group->lock);
3446 goto out_put;
3447 }
3448 spin_unlock(&block_group->lock);
3449
2968b1f4
JB
3450 /*
3451 * We hit an ENOSPC when setting up the cache in this transaction, just
3452 * skip doing the setup, we've already cleared the cache so we're safe.
3453 */
3454 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3455 ret = -ENOSPC;
3456 goto out_put;
3457 }
3458
6fc823b1
JB
3459 /*
3460 * Try to preallocate enough space based on how big the block group is.
3461 * Keep in mind this has to include any pinned space which could end up
3462 * taking up quite a bit since it's not folded into the other space
3463 * cache.
3464 */
ee22184b 3465 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3466 if (!num_pages)
3467 num_pages = 1;
3468
0af3d00b 3469 num_pages *= 16;
09cbfeaf 3470 num_pages *= PAGE_SIZE;
0af3d00b 3471
7cf5b976 3472 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3473 if (ret)
3474 goto out_put;
3475
3476 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3477 num_pages, num_pages,
3478 &alloc_hint);
2968b1f4
JB
3479 /*
3480 * Our cache requires contiguous chunks so that we don't modify a bunch
3481 * of metadata or split extents when writing the cache out, which means
3482 * we can enospc if we are heavily fragmented in addition to just normal
3483 * out of space conditions. So if we hit this just skip setting up any
3484 * other block groups for this transaction, maybe we'll unpin enough
3485 * space the next time around.
3486 */
2b20982e
JB
3487 if (!ret)
3488 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3489 else if (ret == -ENOSPC)
3490 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3491 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3492
0af3d00b
JB
3493out_put:
3494 iput(inode);
3495out_free:
b3b4aa74 3496 btrfs_release_path(path);
0af3d00b
JB
3497out:
3498 spin_lock(&block_group->lock);
e65cbb94 3499 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3500 block_group->cache_generation = trans->transid;
2b20982e 3501 block_group->disk_cache_state = dcs;
0af3d00b
JB
3502 spin_unlock(&block_group->lock);
3503
3504 return ret;
3505}
3506
dcdf7f6d
JB
3507int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3508 struct btrfs_root *root)
3509{
3510 struct btrfs_block_group_cache *cache, *tmp;
3511 struct btrfs_transaction *cur_trans = trans->transaction;
3512 struct btrfs_path *path;
3513
3514 if (list_empty(&cur_trans->dirty_bgs) ||
3515 !btrfs_test_opt(root, SPACE_CACHE))
3516 return 0;
3517
3518 path = btrfs_alloc_path();
3519 if (!path)
3520 return -ENOMEM;
3521
3522 /* Could add new block groups, use _safe just in case */
3523 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3524 dirty_list) {
3525 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3526 cache_save_setup(cache, trans, path);
3527 }
3528
3529 btrfs_free_path(path);
3530 return 0;
3531}
3532
1bbc621e
CM
3533/*
3534 * transaction commit does final block group cache writeback during a
3535 * critical section where nothing is allowed to change the FS. This is
3536 * required in order for the cache to actually match the block group,
3537 * but can introduce a lot of latency into the commit.
3538 *
3539 * So, btrfs_start_dirty_block_groups is here to kick off block group
3540 * cache IO. There's a chance we'll have to redo some of it if the
3541 * block group changes again during the commit, but it greatly reduces
3542 * the commit latency by getting rid of the easy block groups while
3543 * we're still allowing others to join the commit.
3544 */
3545int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3546 struct btrfs_root *root)
9078a3e1 3547{
4a8c9a62 3548 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3549 struct btrfs_transaction *cur_trans = trans->transaction;
3550 int ret = 0;
c9dc4c65 3551 int should_put;
1bbc621e
CM
3552 struct btrfs_path *path = NULL;
3553 LIST_HEAD(dirty);
3554 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3555 int num_started = 0;
1bbc621e
CM
3556 int loops = 0;
3557
3558 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3559 if (list_empty(&cur_trans->dirty_bgs)) {
3560 spin_unlock(&cur_trans->dirty_bgs_lock);
3561 return 0;
1bbc621e 3562 }
b58d1a9e 3563 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3564 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3565
1bbc621e 3566again:
1bbc621e
CM
3567 /*
3568 * make sure all the block groups on our dirty list actually
3569 * exist
3570 */
3571 btrfs_create_pending_block_groups(trans, root);
3572
3573 if (!path) {
3574 path = btrfs_alloc_path();
3575 if (!path)
3576 return -ENOMEM;
3577 }
3578
b58d1a9e
FM
3579 /*
3580 * cache_write_mutex is here only to save us from balance or automatic
3581 * removal of empty block groups deleting this block group while we are
3582 * writing out the cache
3583 */
3584 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3585 while (!list_empty(&dirty)) {
3586 cache = list_first_entry(&dirty,
3587 struct btrfs_block_group_cache,
3588 dirty_list);
1bbc621e
CM
3589 /*
3590 * this can happen if something re-dirties a block
3591 * group that is already under IO. Just wait for it to
3592 * finish and then do it all again
3593 */
3594 if (!list_empty(&cache->io_list)) {
3595 list_del_init(&cache->io_list);
3596 btrfs_wait_cache_io(root, trans, cache,
3597 &cache->io_ctl, path,
3598 cache->key.objectid);
3599 btrfs_put_block_group(cache);
3600 }
3601
3602
3603 /*
3604 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3605 * if it should update the cache_state. Don't delete
3606 * until after we wait.
3607 *
3608 * Since we're not running in the commit critical section
3609 * we need the dirty_bgs_lock to protect from update_block_group
3610 */
3611 spin_lock(&cur_trans->dirty_bgs_lock);
3612 list_del_init(&cache->dirty_list);
3613 spin_unlock(&cur_trans->dirty_bgs_lock);
3614
3615 should_put = 1;
3616
3617 cache_save_setup(cache, trans, path);
3618
3619 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3620 cache->io_ctl.inode = NULL;
3621 ret = btrfs_write_out_cache(root, trans, cache, path);
3622 if (ret == 0 && cache->io_ctl.inode) {
3623 num_started++;
3624 should_put = 0;
3625
3626 /*
3627 * the cache_write_mutex is protecting
3628 * the io_list
3629 */
3630 list_add_tail(&cache->io_list, io);
3631 } else {
3632 /*
3633 * if we failed to write the cache, the
3634 * generation will be bad and life goes on
3635 */
3636 ret = 0;
3637 }
3638 }
ff1f8250 3639 if (!ret) {
1bbc621e 3640 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3641 /*
3642 * Our block group might still be attached to the list
3643 * of new block groups in the transaction handle of some
3644 * other task (struct btrfs_trans_handle->new_bgs). This
3645 * means its block group item isn't yet in the extent
3646 * tree. If this happens ignore the error, as we will
3647 * try again later in the critical section of the
3648 * transaction commit.
3649 */
3650 if (ret == -ENOENT) {
3651 ret = 0;
3652 spin_lock(&cur_trans->dirty_bgs_lock);
3653 if (list_empty(&cache->dirty_list)) {
3654 list_add_tail(&cache->dirty_list,
3655 &cur_trans->dirty_bgs);
3656 btrfs_get_block_group(cache);
3657 }
3658 spin_unlock(&cur_trans->dirty_bgs_lock);
3659 } else if (ret) {
3660 btrfs_abort_transaction(trans, root, ret);
3661 }
3662 }
1bbc621e
CM
3663
3664 /* if its not on the io list, we need to put the block group */
3665 if (should_put)
3666 btrfs_put_block_group(cache);
3667
3668 if (ret)
3669 break;
b58d1a9e
FM
3670
3671 /*
3672 * Avoid blocking other tasks for too long. It might even save
3673 * us from writing caches for block groups that are going to be
3674 * removed.
3675 */
3676 mutex_unlock(&trans->transaction->cache_write_mutex);
3677 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3678 }
b58d1a9e 3679 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3680
3681 /*
3682 * go through delayed refs for all the stuff we've just kicked off
3683 * and then loop back (just once)
3684 */
3685 ret = btrfs_run_delayed_refs(trans, root, 0);
3686 if (!ret && loops == 0) {
3687 loops++;
3688 spin_lock(&cur_trans->dirty_bgs_lock);
3689 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3690 /*
3691 * dirty_bgs_lock protects us from concurrent block group
3692 * deletes too (not just cache_write_mutex).
3693 */
3694 if (!list_empty(&dirty)) {
3695 spin_unlock(&cur_trans->dirty_bgs_lock);
3696 goto again;
3697 }
1bbc621e 3698 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3699 }
3700
3701 btrfs_free_path(path);
3702 return ret;
3703}
3704
3705int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3706 struct btrfs_root *root)
3707{
3708 struct btrfs_block_group_cache *cache;
3709 struct btrfs_transaction *cur_trans = trans->transaction;
3710 int ret = 0;
3711 int should_put;
3712 struct btrfs_path *path;
3713 struct list_head *io = &cur_trans->io_bgs;
3714 int num_started = 0;
9078a3e1
CM
3715
3716 path = btrfs_alloc_path();
3717 if (!path)
3718 return -ENOMEM;
3719
ce93ec54 3720 /*
e44081ef
FM
3721 * Even though we are in the critical section of the transaction commit,
3722 * we can still have concurrent tasks adding elements to this
3723 * transaction's list of dirty block groups. These tasks correspond to
3724 * endio free space workers started when writeback finishes for a
3725 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3726 * allocate new block groups as a result of COWing nodes of the root
3727 * tree when updating the free space inode. The writeback for the space
3728 * caches is triggered by an earlier call to
3729 * btrfs_start_dirty_block_groups() and iterations of the following
3730 * loop.
3731 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3732 * delayed refs to make sure we have the best chance at doing this all
3733 * in one shot.
3734 */
e44081ef 3735 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3736 while (!list_empty(&cur_trans->dirty_bgs)) {
3737 cache = list_first_entry(&cur_trans->dirty_bgs,
3738 struct btrfs_block_group_cache,
3739 dirty_list);
c9dc4c65
CM
3740
3741 /*
3742 * this can happen if cache_save_setup re-dirties a block
3743 * group that is already under IO. Just wait for it to
3744 * finish and then do it all again
3745 */
3746 if (!list_empty(&cache->io_list)) {
e44081ef 3747 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3748 list_del_init(&cache->io_list);
3749 btrfs_wait_cache_io(root, trans, cache,
3750 &cache->io_ctl, path,
3751 cache->key.objectid);
3752 btrfs_put_block_group(cache);
e44081ef 3753 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3754 }
3755
1bbc621e
CM
3756 /*
3757 * don't remove from the dirty list until after we've waited
3758 * on any pending IO
3759 */
ce93ec54 3760 list_del_init(&cache->dirty_list);
e44081ef 3761 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3762 should_put = 1;
3763
1bbc621e 3764 cache_save_setup(cache, trans, path);
c9dc4c65 3765
ce93ec54 3766 if (!ret)
c9dc4c65
CM
3767 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3768
3769 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3770 cache->io_ctl.inode = NULL;
3771 ret = btrfs_write_out_cache(root, trans, cache, path);
3772 if (ret == 0 && cache->io_ctl.inode) {
3773 num_started++;
3774 should_put = 0;
1bbc621e 3775 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3776 } else {
3777 /*
3778 * if we failed to write the cache, the
3779 * generation will be bad and life goes on
3780 */
3781 ret = 0;
3782 }
3783 }
ff1f8250 3784 if (!ret) {
ce93ec54 3785 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3786 /*
3787 * One of the free space endio workers might have
3788 * created a new block group while updating a free space
3789 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3790 * and hasn't released its transaction handle yet, in
3791 * which case the new block group is still attached to
3792 * its transaction handle and its creation has not
3793 * finished yet (no block group item in the extent tree
3794 * yet, etc). If this is the case, wait for all free
3795 * space endio workers to finish and retry. This is a
3796 * a very rare case so no need for a more efficient and
3797 * complex approach.
3798 */
3799 if (ret == -ENOENT) {
3800 wait_event(cur_trans->writer_wait,
3801 atomic_read(&cur_trans->num_writers) == 1);
3802 ret = write_one_cache_group(trans, root, path,
3803 cache);
3804 }
ff1f8250
FM
3805 if (ret)
3806 btrfs_abort_transaction(trans, root, ret);
3807 }
c9dc4c65
CM
3808
3809 /* if its not on the io list, we need to put the block group */
3810 if (should_put)
3811 btrfs_put_block_group(cache);
e44081ef 3812 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3813 }
e44081ef 3814 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3815
1bbc621e
CM
3816 while (!list_empty(io)) {
3817 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3818 io_list);
3819 list_del_init(&cache->io_list);
c9dc4c65
CM
3820 btrfs_wait_cache_io(root, trans, cache,
3821 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3822 btrfs_put_block_group(cache);
3823 }
3824
9078a3e1 3825 btrfs_free_path(path);
ce93ec54 3826 return ret;
9078a3e1
CM
3827}
3828
d2fb3437
YZ
3829int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3830{
3831 struct btrfs_block_group_cache *block_group;
3832 int readonly = 0;
3833
3834 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3835 if (!block_group || block_group->ro)
3836 readonly = 1;
3837 if (block_group)
fa9c0d79 3838 btrfs_put_block_group(block_group);
d2fb3437
YZ
3839 return readonly;
3840}
3841
f78c436c
FM
3842bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3843{
3844 struct btrfs_block_group_cache *bg;
3845 bool ret = true;
3846
3847 bg = btrfs_lookup_block_group(fs_info, bytenr);
3848 if (!bg)
3849 return false;
3850
3851 spin_lock(&bg->lock);
3852 if (bg->ro)
3853 ret = false;
3854 else
3855 atomic_inc(&bg->nocow_writers);
3856 spin_unlock(&bg->lock);
3857
3858 /* no put on block group, done by btrfs_dec_nocow_writers */
3859 if (!ret)
3860 btrfs_put_block_group(bg);
3861
3862 return ret;
3863
3864}
3865
3866void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3867{
3868 struct btrfs_block_group_cache *bg;
3869
3870 bg = btrfs_lookup_block_group(fs_info, bytenr);
3871 ASSERT(bg);
3872 if (atomic_dec_and_test(&bg->nocow_writers))
3873 wake_up_atomic_t(&bg->nocow_writers);
3874 /*
3875 * Once for our lookup and once for the lookup done by a previous call
3876 * to btrfs_inc_nocow_writers()
3877 */
3878 btrfs_put_block_group(bg);
3879 btrfs_put_block_group(bg);
3880}
3881
3882static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3883{
3884 schedule();
3885 return 0;
3886}
3887
3888void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3889{
3890 wait_on_atomic_t(&bg->nocow_writers,
3891 btrfs_wait_nocow_writers_atomic_t,
3892 TASK_UNINTERRUPTIBLE);
3893}
3894
6ab0a202
JM
3895static const char *alloc_name(u64 flags)
3896{
3897 switch (flags) {
3898 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3899 return "mixed";
3900 case BTRFS_BLOCK_GROUP_METADATA:
3901 return "metadata";
3902 case BTRFS_BLOCK_GROUP_DATA:
3903 return "data";
3904 case BTRFS_BLOCK_GROUP_SYSTEM:
3905 return "system";
3906 default:
3907 WARN_ON(1);
3908 return "invalid-combination";
3909 };
3910}
3911
593060d7
CM
3912static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3913 u64 total_bytes, u64 bytes_used,
3914 struct btrfs_space_info **space_info)
3915{
3916 struct btrfs_space_info *found;
b742bb82
YZ
3917 int i;
3918 int factor;
b150a4f1 3919 int ret;
b742bb82
YZ
3920
3921 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3922 BTRFS_BLOCK_GROUP_RAID10))
3923 factor = 2;
3924 else
3925 factor = 1;
593060d7
CM
3926
3927 found = __find_space_info(info, flags);
3928 if (found) {
25179201 3929 spin_lock(&found->lock);
593060d7 3930 found->total_bytes += total_bytes;
89a55897 3931 found->disk_total += total_bytes * factor;
593060d7 3932 found->bytes_used += bytes_used;
b742bb82 3933 found->disk_used += bytes_used * factor;
2e6e5183
FM
3934 if (total_bytes > 0)
3935 found->full = 0;
25179201 3936 spin_unlock(&found->lock);
593060d7
CM
3937 *space_info = found;
3938 return 0;
3939 }
c146afad 3940 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3941 if (!found)
3942 return -ENOMEM;
3943
908c7f19 3944 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3945 if (ret) {
3946 kfree(found);
3947 return ret;
3948 }
3949
c1895442 3950 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3951 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3952 init_rwsem(&found->groups_sem);
0f9dd46c 3953 spin_lock_init(&found->lock);
52ba6929 3954 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3955 found->total_bytes = total_bytes;
89a55897 3956 found->disk_total = total_bytes * factor;
593060d7 3957 found->bytes_used = bytes_used;
b742bb82 3958 found->disk_used = bytes_used * factor;
593060d7 3959 found->bytes_pinned = 0;
e8569813 3960 found->bytes_reserved = 0;
c146afad 3961 found->bytes_readonly = 0;
f0486c68 3962 found->bytes_may_use = 0;
6af3e3ad 3963 found->full = 0;
4f4db217 3964 found->max_extent_size = 0;
0e4f8f88 3965 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3966 found->chunk_alloc = 0;
fdb5effd
JB
3967 found->flush = 0;
3968 init_waitqueue_head(&found->wait);
633c0aad 3969 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3970
3971 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3972 info->space_info_kobj, "%s",
3973 alloc_name(found->flags));
3974 if (ret) {
3975 kfree(found);
3976 return ret;
3977 }
3978
593060d7 3979 *space_info = found;
4184ea7f 3980 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3981 if (flags & BTRFS_BLOCK_GROUP_DATA)
3982 info->data_sinfo = found;
6ab0a202
JM
3983
3984 return ret;
593060d7
CM
3985}
3986
8790d502
CM
3987static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3988{
899c81ea
ID
3989 u64 extra_flags = chunk_to_extended(flags) &
3990 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3991
de98ced9 3992 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3993 if (flags & BTRFS_BLOCK_GROUP_DATA)
3994 fs_info->avail_data_alloc_bits |= extra_flags;
3995 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3996 fs_info->avail_metadata_alloc_bits |= extra_flags;
3997 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3998 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3999 write_sequnlock(&fs_info->profiles_lock);
8790d502 4000}
593060d7 4001
fc67c450
ID
4002/*
4003 * returns target flags in extended format or 0 if restripe for this
4004 * chunk_type is not in progress
c6664b42
ID
4005 *
4006 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4007 */
4008static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4009{
4010 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4011 u64 target = 0;
4012
fc67c450
ID
4013 if (!bctl)
4014 return 0;
4015
4016 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4017 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4018 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4019 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4020 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4021 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4022 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4023 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4024 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4025 }
4026
4027 return target;
4028}
4029
a46d11a8
ID
4030/*
4031 * @flags: available profiles in extended format (see ctree.h)
4032 *
e4d8ec0f
ID
4033 * Returns reduced profile in chunk format. If profile changing is in
4034 * progress (either running or paused) picks the target profile (if it's
4035 * already available), otherwise falls back to plain reducing.
a46d11a8 4036 */
48a3b636 4037static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4038{
95669976 4039 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4040 u64 target;
9c170b26
ZL
4041 u64 raid_type;
4042 u64 allowed = 0;
a061fc8d 4043
fc67c450
ID
4044 /*
4045 * see if restripe for this chunk_type is in progress, if so
4046 * try to reduce to the target profile
4047 */
e4d8ec0f 4048 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4049 target = get_restripe_target(root->fs_info, flags);
4050 if (target) {
4051 /* pick target profile only if it's already available */
4052 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4053 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4054 return extended_to_chunk(target);
e4d8ec0f
ID
4055 }
4056 }
4057 spin_unlock(&root->fs_info->balance_lock);
4058
53b381b3 4059 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4060 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4061 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4062 allowed |= btrfs_raid_group[raid_type];
4063 }
4064 allowed &= flags;
4065
4066 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4067 allowed = BTRFS_BLOCK_GROUP_RAID6;
4068 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4069 allowed = BTRFS_BLOCK_GROUP_RAID5;
4070 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4071 allowed = BTRFS_BLOCK_GROUP_RAID10;
4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4073 allowed = BTRFS_BLOCK_GROUP_RAID1;
4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4075 allowed = BTRFS_BLOCK_GROUP_RAID0;
4076
4077 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4078
4079 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4080}
4081
f8213bdc 4082static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4083{
de98ced9 4084 unsigned seq;
f8213bdc 4085 u64 flags;
de98ced9
MX
4086
4087 do {
f8213bdc 4088 flags = orig_flags;
de98ced9
MX
4089 seq = read_seqbegin(&root->fs_info->profiles_lock);
4090
4091 if (flags & BTRFS_BLOCK_GROUP_DATA)
4092 flags |= root->fs_info->avail_data_alloc_bits;
4093 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4094 flags |= root->fs_info->avail_system_alloc_bits;
4095 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4096 flags |= root->fs_info->avail_metadata_alloc_bits;
4097 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4098
b742bb82 4099 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4100}
4101
6d07bcec 4102u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4103{
b742bb82 4104 u64 flags;
53b381b3 4105 u64 ret;
9ed74f2d 4106
b742bb82
YZ
4107 if (data)
4108 flags = BTRFS_BLOCK_GROUP_DATA;
4109 else if (root == root->fs_info->chunk_root)
4110 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4111 else
b742bb82 4112 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4113
53b381b3
DW
4114 ret = get_alloc_profile(root, flags);
4115 return ret;
6a63209f 4116}
9ed74f2d 4117
4ceff079 4118int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4119{
6a63209f 4120 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4121 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4122 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4123 u64 used;
94b947b2 4124 int ret = 0;
c99f1b0c
ZL
4125 int need_commit = 2;
4126 int have_pinned_space;
6a63209f 4127
6a63209f 4128 /* make sure bytes are sectorsize aligned */
fda2832f 4129 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4130
9dced186 4131 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4132 need_commit = 0;
9dced186 4133 ASSERT(current->journal_info);
0af3d00b
JB
4134 }
4135
b4d7c3c9 4136 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4137 if (!data_sinfo)
4138 goto alloc;
9ed74f2d 4139
6a63209f
JB
4140again:
4141 /* make sure we have enough space to handle the data first */
4142 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4143 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4144 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4145 data_sinfo->bytes_may_use;
ab6e2410
JB
4146
4147 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4148 struct btrfs_trans_handle *trans;
9ed74f2d 4149
6a63209f
JB
4150 /*
4151 * if we don't have enough free bytes in this space then we need
4152 * to alloc a new chunk.
4153 */
b9fd47cd 4154 if (!data_sinfo->full) {
6a63209f 4155 u64 alloc_target;
9ed74f2d 4156
0e4f8f88 4157 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4158 spin_unlock(&data_sinfo->lock);
33b4d47f 4159alloc:
6a63209f 4160 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4161 /*
4162 * It is ugly that we don't call nolock join
4163 * transaction for the free space inode case here.
4164 * But it is safe because we only do the data space
4165 * reservation for the free space cache in the
4166 * transaction context, the common join transaction
4167 * just increase the counter of the current transaction
4168 * handler, doesn't try to acquire the trans_lock of
4169 * the fs.
4170 */
7a7eaa40 4171 trans = btrfs_join_transaction(root);
a22285a6
YZ
4172 if (IS_ERR(trans))
4173 return PTR_ERR(trans);
9ed74f2d 4174
6a63209f 4175 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4176 alloc_target,
4177 CHUNK_ALLOC_NO_FORCE);
6a63209f 4178 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4179 if (ret < 0) {
4180 if (ret != -ENOSPC)
4181 return ret;
c99f1b0c
ZL
4182 else {
4183 have_pinned_space = 1;
d52a5b5f 4184 goto commit_trans;
c99f1b0c 4185 }
d52a5b5f 4186 }
9ed74f2d 4187
b4d7c3c9
LZ
4188 if (!data_sinfo)
4189 data_sinfo = fs_info->data_sinfo;
4190
6a63209f
JB
4191 goto again;
4192 }
f2bb8f5c
JB
4193
4194 /*
b150a4f1 4195 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4196 * allocation, and no removed chunk in current transaction,
4197 * don't bother committing the transaction.
f2bb8f5c 4198 */
c99f1b0c
ZL
4199 have_pinned_space = percpu_counter_compare(
4200 &data_sinfo->total_bytes_pinned,
4201 used + bytes - data_sinfo->total_bytes);
6a63209f 4202 spin_unlock(&data_sinfo->lock);
6a63209f 4203
4e06bdd6 4204 /* commit the current transaction and try again */
d52a5b5f 4205commit_trans:
c99f1b0c 4206 if (need_commit &&
a4abeea4 4207 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4208 need_commit--;
b150a4f1 4209
e1746e83
ZL
4210 if (need_commit > 0) {
4211 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4212 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4213 }
9a4e7276 4214
7a7eaa40 4215 trans = btrfs_join_transaction(root);
a22285a6
YZ
4216 if (IS_ERR(trans))
4217 return PTR_ERR(trans);
c99f1b0c 4218 if (have_pinned_space >= 0 ||
3204d33c
JB
4219 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4220 &trans->transaction->flags) ||
c99f1b0c 4221 need_commit > 0) {
94b947b2
ZL
4222 ret = btrfs_commit_transaction(trans, root);
4223 if (ret)
4224 return ret;
d7c15171 4225 /*
c2d6cb16
FM
4226 * The cleaner kthread might still be doing iput
4227 * operations. Wait for it to finish so that
4228 * more space is released.
d7c15171 4229 */
c2d6cb16
FM
4230 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4231 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4232 goto again;
4233 } else {
4234 btrfs_end_transaction(trans, root);
4235 }
4e06bdd6 4236 }
9ed74f2d 4237
cab45e22
JM
4238 trace_btrfs_space_reservation(root->fs_info,
4239 "space_info:enospc",
4240 data_sinfo->flags, bytes, 1);
6a63209f
JB
4241 return -ENOSPC;
4242 }
4243 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4244 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4245 data_sinfo->flags, bytes, 1);
6a63209f 4246 spin_unlock(&data_sinfo->lock);
6a63209f 4247
237c0e9f 4248 return ret;
9ed74f2d 4249}
6a63209f 4250
4ceff079
QW
4251/*
4252 * New check_data_free_space() with ability for precious data reservation
4253 * Will replace old btrfs_check_data_free_space(), but for patch split,
4254 * add a new function first and then replace it.
4255 */
7cf5b976 4256int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4257{
4258 struct btrfs_root *root = BTRFS_I(inode)->root;
4259 int ret;
4260
4261 /* align the range */
4262 len = round_up(start + len, root->sectorsize) -
4263 round_down(start, root->sectorsize);
4264 start = round_down(start, root->sectorsize);
4265
4266 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4267 if (ret < 0)
4268 return ret;
4269
94ed938a
QW
4270 /*
4271 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4272 *
4273 * TODO: Find a good method to avoid reserve data space for NOCOW
4274 * range, but don't impact performance on quota disable case.
4275 */
4ceff079
QW
4276 ret = btrfs_qgroup_reserve_data(inode, start, len);
4277 return ret;
4278}
4279
4ceff079
QW
4280/*
4281 * Called if we need to clear a data reservation for this inode
4282 * Normally in a error case.
4283 *
51773bec
QW
4284 * This one will *NOT* use accurate qgroup reserved space API, just for case
4285 * which we can't sleep and is sure it won't affect qgroup reserved space.
4286 * Like clear_bit_hook().
4ceff079 4287 */
51773bec
QW
4288void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4289 u64 len)
4ceff079
QW
4290{
4291 struct btrfs_root *root = BTRFS_I(inode)->root;
4292 struct btrfs_space_info *data_sinfo;
4293
4294 /* Make sure the range is aligned to sectorsize */
4295 len = round_up(start + len, root->sectorsize) -
4296 round_down(start, root->sectorsize);
4297 start = round_down(start, root->sectorsize);
4298
4ceff079
QW
4299 data_sinfo = root->fs_info->data_sinfo;
4300 spin_lock(&data_sinfo->lock);
4301 if (WARN_ON(data_sinfo->bytes_may_use < len))
4302 data_sinfo->bytes_may_use = 0;
4303 else
4304 data_sinfo->bytes_may_use -= len;
4305 trace_btrfs_space_reservation(root->fs_info, "space_info",
4306 data_sinfo->flags, len, 0);
4307 spin_unlock(&data_sinfo->lock);
4308}
4309
51773bec
QW
4310/*
4311 * Called if we need to clear a data reservation for this inode
4312 * Normally in a error case.
4313 *
01327610 4314 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4315 * space framework.
4316 */
4317void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4318{
4319 btrfs_free_reserved_data_space_noquota(inode, start, len);
4320 btrfs_qgroup_free_data(inode, start, len);
4321}
4322
97e728d4 4323static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4324{
97e728d4
JB
4325 struct list_head *head = &info->space_info;
4326 struct btrfs_space_info *found;
e3ccfa98 4327
97e728d4
JB
4328 rcu_read_lock();
4329 list_for_each_entry_rcu(found, head, list) {
4330 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4331 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4332 }
97e728d4 4333 rcu_read_unlock();
e3ccfa98
JB
4334}
4335
3c76cd84
MX
4336static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4337{
4338 return (global->size << 1);
4339}
4340
e5bc2458 4341static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4342 struct btrfs_space_info *sinfo, int force)
32c00aff 4343{
fb25e914 4344 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4345 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4346 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4347 u64 thresh;
e3ccfa98 4348
0e4f8f88
CM
4349 if (force == CHUNK_ALLOC_FORCE)
4350 return 1;
4351
fb25e914
JB
4352 /*
4353 * We need to take into account the global rsv because for all intents
4354 * and purposes it's used space. Don't worry about locking the
4355 * global_rsv, it doesn't change except when the transaction commits.
4356 */
54338b5c 4357 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4358 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4359
0e4f8f88
CM
4360 /*
4361 * in limited mode, we want to have some free space up to
4362 * about 1% of the FS size.
4363 */
4364 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4365 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4366 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4367
4368 if (num_bytes - num_allocated < thresh)
4369 return 1;
4370 }
0e4f8f88 4371
ee22184b 4372 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4373 return 0;
424499db 4374 return 1;
32c00aff
JB
4375}
4376
39c2d7fa 4377static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4378{
4379 u64 num_dev;
4380
53b381b3
DW
4381 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4382 BTRFS_BLOCK_GROUP_RAID0 |
4383 BTRFS_BLOCK_GROUP_RAID5 |
4384 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4385 num_dev = root->fs_info->fs_devices->rw_devices;
4386 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4387 num_dev = 2;
4388 else
4389 num_dev = 1; /* DUP or single */
4390
39c2d7fa 4391 return num_dev;
15d1ff81
LB
4392}
4393
39c2d7fa
FM
4394/*
4395 * If @is_allocation is true, reserve space in the system space info necessary
4396 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4397 * removing a chunk.
4398 */
4399void check_system_chunk(struct btrfs_trans_handle *trans,
4400 struct btrfs_root *root,
4617ea3a 4401 u64 type)
15d1ff81
LB
4402{
4403 struct btrfs_space_info *info;
4404 u64 left;
4405 u64 thresh;
4fbcdf66 4406 int ret = 0;
39c2d7fa 4407 u64 num_devs;
4fbcdf66
FM
4408
4409 /*
4410 * Needed because we can end up allocating a system chunk and for an
4411 * atomic and race free space reservation in the chunk block reserve.
4412 */
4413 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4414
4415 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4416 spin_lock(&info->lock);
4417 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4418 info->bytes_reserved - info->bytes_readonly -
4419 info->bytes_may_use;
15d1ff81
LB
4420 spin_unlock(&info->lock);
4421
39c2d7fa
FM
4422 num_devs = get_profile_num_devs(root, type);
4423
4424 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4425 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4426 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4427
15d1ff81 4428 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4429 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4430 left, thresh, type);
15d1ff81
LB
4431 dump_space_info(info, 0, 0);
4432 }
4433
4434 if (left < thresh) {
4435 u64 flags;
4436
4437 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4438 /*
4439 * Ignore failure to create system chunk. We might end up not
4440 * needing it, as we might not need to COW all nodes/leafs from
4441 * the paths we visit in the chunk tree (they were already COWed
4442 * or created in the current transaction for example).
4443 */
4444 ret = btrfs_alloc_chunk(trans, root, flags);
4445 }
4446
4447 if (!ret) {
4448 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4449 &root->fs_info->chunk_block_rsv,
4450 thresh, BTRFS_RESERVE_NO_FLUSH);
4451 if (!ret)
4452 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4453 }
4454}
4455
6324fbf3 4456static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4457 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4458{
6324fbf3 4459 struct btrfs_space_info *space_info;
97e728d4 4460 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4461 int wait_for_alloc = 0;
9ed74f2d 4462 int ret = 0;
9ed74f2d 4463
c6b305a8
JB
4464 /* Don't re-enter if we're already allocating a chunk */
4465 if (trans->allocating_chunk)
4466 return -ENOSPC;
4467
6324fbf3 4468 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4469 if (!space_info) {
4470 ret = update_space_info(extent_root->fs_info, flags,
4471 0, 0, &space_info);
79787eaa 4472 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4473 }
79787eaa 4474 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4475
6d74119f 4476again:
25179201 4477 spin_lock(&space_info->lock);
9e622d6b 4478 if (force < space_info->force_alloc)
0e4f8f88 4479 force = space_info->force_alloc;
25179201 4480 if (space_info->full) {
09fb99a6
FDBM
4481 if (should_alloc_chunk(extent_root, space_info, force))
4482 ret = -ENOSPC;
4483 else
4484 ret = 0;
25179201 4485 spin_unlock(&space_info->lock);
09fb99a6 4486 return ret;
9ed74f2d
JB
4487 }
4488
698d0082 4489 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4490 spin_unlock(&space_info->lock);
6d74119f
JB
4491 return 0;
4492 } else if (space_info->chunk_alloc) {
4493 wait_for_alloc = 1;
4494 } else {
4495 space_info->chunk_alloc = 1;
9ed74f2d 4496 }
0e4f8f88 4497
25179201 4498 spin_unlock(&space_info->lock);
9ed74f2d 4499
6d74119f
JB
4500 mutex_lock(&fs_info->chunk_mutex);
4501
4502 /*
4503 * The chunk_mutex is held throughout the entirety of a chunk
4504 * allocation, so once we've acquired the chunk_mutex we know that the
4505 * other guy is done and we need to recheck and see if we should
4506 * allocate.
4507 */
4508 if (wait_for_alloc) {
4509 mutex_unlock(&fs_info->chunk_mutex);
4510 wait_for_alloc = 0;
4511 goto again;
4512 }
4513
c6b305a8
JB
4514 trans->allocating_chunk = true;
4515
67377734
JB
4516 /*
4517 * If we have mixed data/metadata chunks we want to make sure we keep
4518 * allocating mixed chunks instead of individual chunks.
4519 */
4520 if (btrfs_mixed_space_info(space_info))
4521 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4522
97e728d4
JB
4523 /*
4524 * if we're doing a data chunk, go ahead and make sure that
4525 * we keep a reasonable number of metadata chunks allocated in the
4526 * FS as well.
4527 */
9ed74f2d 4528 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4529 fs_info->data_chunk_allocations++;
4530 if (!(fs_info->data_chunk_allocations %
4531 fs_info->metadata_ratio))
4532 force_metadata_allocation(fs_info);
9ed74f2d
JB
4533 }
4534
15d1ff81
LB
4535 /*
4536 * Check if we have enough space in SYSTEM chunk because we may need
4537 * to update devices.
4538 */
4617ea3a 4539 check_system_chunk(trans, extent_root, flags);
15d1ff81 4540
2b82032c 4541 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4542 trans->allocating_chunk = false;
92b8e897 4543
9ed74f2d 4544 spin_lock(&space_info->lock);
a81cb9a2
AO
4545 if (ret < 0 && ret != -ENOSPC)
4546 goto out;
9ed74f2d 4547 if (ret)
6324fbf3 4548 space_info->full = 1;
424499db
YZ
4549 else
4550 ret = 1;
6d74119f 4551
0e4f8f88 4552 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4553out:
6d74119f 4554 space_info->chunk_alloc = 0;
9ed74f2d 4555 spin_unlock(&space_info->lock);
a25c75d5 4556 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4557 /*
4558 * When we allocate a new chunk we reserve space in the chunk block
4559 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4560 * add new nodes/leafs to it if we end up needing to do it when
4561 * inserting the chunk item and updating device items as part of the
4562 * second phase of chunk allocation, performed by
4563 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4564 * large number of new block groups to create in our transaction
4565 * handle's new_bgs list to avoid exhausting the chunk block reserve
4566 * in extreme cases - like having a single transaction create many new
4567 * block groups when starting to write out the free space caches of all
4568 * the block groups that were made dirty during the lifetime of the
4569 * transaction.
4570 */
d9a0540a 4571 if (trans->can_flush_pending_bgs &&
ee22184b 4572 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
00d80e34
FM
4573 btrfs_create_pending_block_groups(trans, trans->root);
4574 btrfs_trans_release_chunk_metadata(trans);
4575 }
0f9dd46c 4576 return ret;
6324fbf3 4577}
9ed74f2d 4578
a80c8dcf
JB
4579static int can_overcommit(struct btrfs_root *root,
4580 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4581 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4582{
96f1bb57 4583 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4584 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4585 u64 space_size;
a80c8dcf
JB
4586 u64 avail;
4587 u64 used;
4588
4589 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4590 space_info->bytes_pinned + space_info->bytes_readonly;
4591
96f1bb57
JB
4592 /*
4593 * We only want to allow over committing if we have lots of actual space
4594 * free, but if we don't have enough space to handle the global reserve
4595 * space then we could end up having a real enospc problem when trying
4596 * to allocate a chunk or some other such important allocation.
4597 */
3c76cd84
MX
4598 spin_lock(&global_rsv->lock);
4599 space_size = calc_global_rsv_need_space(global_rsv);
4600 spin_unlock(&global_rsv->lock);
4601 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4602 return 0;
4603
4604 used += space_info->bytes_may_use;
a80c8dcf
JB
4605
4606 spin_lock(&root->fs_info->free_chunk_lock);
4607 avail = root->fs_info->free_chunk_space;
4608 spin_unlock(&root->fs_info->free_chunk_lock);
4609
4610 /*
4611 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4612 * space is actually useable. For raid56, the space info used
4613 * doesn't include the parity drive, so we don't have to
4614 * change the math
a80c8dcf
JB
4615 */
4616 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4617 BTRFS_BLOCK_GROUP_RAID1 |
4618 BTRFS_BLOCK_GROUP_RAID10))
4619 avail >>= 1;
4620
4621 /*
561c294d
MX
4622 * If we aren't flushing all things, let us overcommit up to
4623 * 1/2th of the space. If we can flush, don't let us overcommit
4624 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4625 */
08e007d2 4626 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4627 avail >>= 3;
a80c8dcf 4628 else
14575aef 4629 avail >>= 1;
a80c8dcf 4630
14575aef 4631 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4632 return 1;
4633 return 0;
4634}
4635
48a3b636 4636static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4637 unsigned long nr_pages, int nr_items)
da633a42
MX
4638{
4639 struct super_block *sb = root->fs_info->sb;
da633a42 4640
925a6efb
JB
4641 if (down_read_trylock(&sb->s_umount)) {
4642 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4643 up_read(&sb->s_umount);
4644 } else {
da633a42
MX
4645 /*
4646 * We needn't worry the filesystem going from r/w to r/o though
4647 * we don't acquire ->s_umount mutex, because the filesystem
4648 * should guarantee the delalloc inodes list be empty after
4649 * the filesystem is readonly(all dirty pages are written to
4650 * the disk).
4651 */
6c255e67 4652 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4653 if (!current->journal_info)
578def7c
FM
4654 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4655 0, (u64)-1);
da633a42
MX
4656 }
4657}
4658
18cd8ea6
MX
4659static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4660{
4661 u64 bytes;
4662 int nr;
4663
4664 bytes = btrfs_calc_trans_metadata_size(root, 1);
4665 nr = (int)div64_u64(to_reclaim, bytes);
4666 if (!nr)
4667 nr = 1;
4668 return nr;
4669}
4670
ee22184b 4671#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4672
9ed74f2d 4673/*
5da9d01b 4674 * shrink metadata reservation for delalloc
9ed74f2d 4675 */
f4c738c2
JB
4676static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4677 bool wait_ordered)
5da9d01b 4678{
0ca1f7ce 4679 struct btrfs_block_rsv *block_rsv;
0019f10d 4680 struct btrfs_space_info *space_info;
663350ac 4681 struct btrfs_trans_handle *trans;
f4c738c2 4682 u64 delalloc_bytes;
5da9d01b 4683 u64 max_reclaim;
b1953bce 4684 long time_left;
d3ee29e3
MX
4685 unsigned long nr_pages;
4686 int loops;
b0244199 4687 int items;
08e007d2 4688 enum btrfs_reserve_flush_enum flush;
5da9d01b 4689
c61a16a7 4690 /* Calc the number of the pages we need flush for space reservation */
b0244199 4691 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4692 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4693
663350ac 4694 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4695 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4696 space_info = block_rsv->space_info;
bf9022e0 4697
963d678b
MX
4698 delalloc_bytes = percpu_counter_sum_positive(
4699 &root->fs_info->delalloc_bytes);
f4c738c2 4700 if (delalloc_bytes == 0) {
fdb5effd 4701 if (trans)
f4c738c2 4702 return;
38c135af 4703 if (wait_ordered)
578def7c
FM
4704 btrfs_wait_ordered_roots(root->fs_info, items,
4705 0, (u64)-1);
f4c738c2 4706 return;
fdb5effd
JB
4707 }
4708
d3ee29e3 4709 loops = 0;
f4c738c2
JB
4710 while (delalloc_bytes && loops < 3) {
4711 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4712 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4713 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4714 /*
4715 * We need to wait for the async pages to actually start before
4716 * we do anything.
4717 */
9f3a074d
MX
4718 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4719 if (!max_reclaim)
4720 goto skip_async;
4721
4722 if (max_reclaim <= nr_pages)
4723 max_reclaim = 0;
4724 else
4725 max_reclaim -= nr_pages;
dea31f52 4726
9f3a074d
MX
4727 wait_event(root->fs_info->async_submit_wait,
4728 atomic_read(&root->fs_info->async_delalloc_pages) <=
4729 (int)max_reclaim);
4730skip_async:
08e007d2
MX
4731 if (!trans)
4732 flush = BTRFS_RESERVE_FLUSH_ALL;
4733 else
4734 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4735 spin_lock(&space_info->lock);
08e007d2 4736 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4737 spin_unlock(&space_info->lock);
4738 break;
4739 }
0019f10d 4740 spin_unlock(&space_info->lock);
5da9d01b 4741
36e39c40 4742 loops++;
f104d044 4743 if (wait_ordered && !trans) {
578def7c
FM
4744 btrfs_wait_ordered_roots(root->fs_info, items,
4745 0, (u64)-1);
f104d044 4746 } else {
f4c738c2 4747 time_left = schedule_timeout_killable(1);
f104d044
JB
4748 if (time_left)
4749 break;
4750 }
963d678b
MX
4751 delalloc_bytes = percpu_counter_sum_positive(
4752 &root->fs_info->delalloc_bytes);
5da9d01b 4753 }
5da9d01b
YZ
4754}
4755
663350ac
JB
4756/**
4757 * maybe_commit_transaction - possibly commit the transaction if its ok to
4758 * @root - the root we're allocating for
4759 * @bytes - the number of bytes we want to reserve
4760 * @force - force the commit
8bb8ab2e 4761 *
663350ac
JB
4762 * This will check to make sure that committing the transaction will actually
4763 * get us somewhere and then commit the transaction if it does. Otherwise it
4764 * will return -ENOSPC.
8bb8ab2e 4765 */
663350ac
JB
4766static int may_commit_transaction(struct btrfs_root *root,
4767 struct btrfs_space_info *space_info,
4768 u64 bytes, int force)
4769{
4770 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4771 struct btrfs_trans_handle *trans;
4772
4773 trans = (struct btrfs_trans_handle *)current->journal_info;
4774 if (trans)
4775 return -EAGAIN;
4776
4777 if (force)
4778 goto commit;
4779
4780 /* See if there is enough pinned space to make this reservation */
b150a4f1 4781 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4782 bytes) >= 0)
663350ac 4783 goto commit;
663350ac
JB
4784
4785 /*
4786 * See if there is some space in the delayed insertion reservation for
4787 * this reservation.
4788 */
4789 if (space_info != delayed_rsv->space_info)
4790 return -ENOSPC;
4791
4792 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4793 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4794 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4795 spin_unlock(&delayed_rsv->lock);
4796 return -ENOSPC;
4797 }
4798 spin_unlock(&delayed_rsv->lock);
4799
4800commit:
4801 trans = btrfs_join_transaction(root);
4802 if (IS_ERR(trans))
4803 return -ENOSPC;
4804
4805 return btrfs_commit_transaction(trans, root);
4806}
4807
96c3f433 4808enum flush_state {
67b0fd63
JB
4809 FLUSH_DELAYED_ITEMS_NR = 1,
4810 FLUSH_DELAYED_ITEMS = 2,
4811 FLUSH_DELALLOC = 3,
4812 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4813 ALLOC_CHUNK = 5,
4814 COMMIT_TRANS = 6,
96c3f433
JB
4815};
4816
4817static int flush_space(struct btrfs_root *root,
4818 struct btrfs_space_info *space_info, u64 num_bytes,
4819 u64 orig_bytes, int state)
4820{
4821 struct btrfs_trans_handle *trans;
4822 int nr;
f4c738c2 4823 int ret = 0;
96c3f433
JB
4824
4825 switch (state) {
96c3f433
JB
4826 case FLUSH_DELAYED_ITEMS_NR:
4827 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4828 if (state == FLUSH_DELAYED_ITEMS_NR)
4829 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4830 else
96c3f433 4831 nr = -1;
18cd8ea6 4832
96c3f433
JB
4833 trans = btrfs_join_transaction(root);
4834 if (IS_ERR(trans)) {
4835 ret = PTR_ERR(trans);
4836 break;
4837 }
4838 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4839 btrfs_end_transaction(trans, root);
4840 break;
67b0fd63
JB
4841 case FLUSH_DELALLOC:
4842 case FLUSH_DELALLOC_WAIT:
24af7dd1 4843 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4844 state == FLUSH_DELALLOC_WAIT);
4845 break;
ea658bad
JB
4846 case ALLOC_CHUNK:
4847 trans = btrfs_join_transaction(root);
4848 if (IS_ERR(trans)) {
4849 ret = PTR_ERR(trans);
4850 break;
4851 }
4852 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4853 btrfs_get_alloc_profile(root, 0),
4854 CHUNK_ALLOC_NO_FORCE);
4855 btrfs_end_transaction(trans, root);
4856 if (ret == -ENOSPC)
4857 ret = 0;
4858 break;
96c3f433
JB
4859 case COMMIT_TRANS:
4860 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4861 break;
4862 default:
4863 ret = -ENOSPC;
4864 break;
4865 }
4866
4867 return ret;
4868}
21c7e756
MX
4869
4870static inline u64
4871btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4872 struct btrfs_space_info *space_info)
4873{
4874 u64 used;
4875 u64 expected;
4876 u64 to_reclaim;
4877
ee22184b 4878 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
21c7e756
MX
4879 spin_lock(&space_info->lock);
4880 if (can_overcommit(root, space_info, to_reclaim,
4881 BTRFS_RESERVE_FLUSH_ALL)) {
4882 to_reclaim = 0;
4883 goto out;
4884 }
4885
4886 used = space_info->bytes_used + space_info->bytes_reserved +
4887 space_info->bytes_pinned + space_info->bytes_readonly +
4888 space_info->bytes_may_use;
ee22184b 4889 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4890 expected = div_factor_fine(space_info->total_bytes, 95);
4891 else
4892 expected = div_factor_fine(space_info->total_bytes, 90);
4893
4894 if (used > expected)
4895 to_reclaim = used - expected;
4896 else
4897 to_reclaim = 0;
4898 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4899 space_info->bytes_reserved);
4900out:
4901 spin_unlock(&space_info->lock);
4902
4903 return to_reclaim;
4904}
4905
4906static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4907 struct btrfs_fs_info *fs_info, u64 used)
4908{
365c5313
JB
4909 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4910
4911 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4912 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4913 return 0;
4914
4915 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4916 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4917}
4918
4919static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4920 struct btrfs_fs_info *fs_info,
4921 int flush_state)
21c7e756
MX
4922{
4923 u64 used;
4924
4925 spin_lock(&space_info->lock);
25ce459c
LB
4926 /*
4927 * We run out of space and have not got any free space via flush_space,
4928 * so don't bother doing async reclaim.
4929 */
4930 if (flush_state > COMMIT_TRANS && space_info->full) {
4931 spin_unlock(&space_info->lock);
4932 return 0;
4933 }
4934
21c7e756
MX
4935 used = space_info->bytes_used + space_info->bytes_reserved +
4936 space_info->bytes_pinned + space_info->bytes_readonly +
4937 space_info->bytes_may_use;
4938 if (need_do_async_reclaim(space_info, fs_info, used)) {
4939 spin_unlock(&space_info->lock);
4940 return 1;
4941 }
4942 spin_unlock(&space_info->lock);
4943
4944 return 0;
4945}
4946
4947static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4948{
4949 struct btrfs_fs_info *fs_info;
4950 struct btrfs_space_info *space_info;
4951 u64 to_reclaim;
4952 int flush_state;
4953
4954 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4955 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4956
4957 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4958 space_info);
4959 if (!to_reclaim)
4960 return;
4961
4962 flush_state = FLUSH_DELAYED_ITEMS_NR;
4963 do {
4964 flush_space(fs_info->fs_root, space_info, to_reclaim,
4965 to_reclaim, flush_state);
4966 flush_state++;
25ce459c
LB
4967 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4968 flush_state))
21c7e756 4969 return;
365c5313 4970 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4971}
4972
4973void btrfs_init_async_reclaim_work(struct work_struct *work)
4974{
4975 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4976}
4977
4a92b1b8
JB
4978/**
4979 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4980 * @root - the root we're allocating for
4981 * @block_rsv - the block_rsv we're allocating for
4982 * @orig_bytes - the number of bytes we want
48fc7f7e 4983 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4984 *
01327610 4985 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
4986 * with the block_rsv. If there is not enough space it will make an attempt to
4987 * flush out space to make room. It will do this by flushing delalloc if
4988 * possible or committing the transaction. If flush is 0 then no attempts to
4989 * regain reservations will be made and this will fail if there is not enough
4990 * space already.
8bb8ab2e 4991 */
4a92b1b8 4992static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4993 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4994 u64 orig_bytes,
4995 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4996{
f0486c68 4997 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4998 u64 used;
8bb8ab2e 4999 u64 num_bytes = orig_bytes;
67b0fd63 5000 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 5001 int ret = 0;
fdb5effd 5002 bool flushing = false;
9ed74f2d 5003
8bb8ab2e 5004again:
fdb5effd 5005 ret = 0;
8bb8ab2e 5006 spin_lock(&space_info->lock);
fdb5effd 5007 /*
08e007d2
MX
5008 * We only want to wait if somebody other than us is flushing and we
5009 * are actually allowed to flush all things.
fdb5effd 5010 */
08e007d2
MX
5011 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5012 space_info->flush) {
fdb5effd
JB
5013 spin_unlock(&space_info->lock);
5014 /*
5015 * If we have a trans handle we can't wait because the flusher
5016 * may have to commit the transaction, which would mean we would
5017 * deadlock since we are waiting for the flusher to finish, but
5018 * hold the current transaction open.
5019 */
663350ac 5020 if (current->journal_info)
fdb5effd 5021 return -EAGAIN;
b9688bb8
AJ
5022 ret = wait_event_killable(space_info->wait, !space_info->flush);
5023 /* Must have been killed, return */
5024 if (ret)
fdb5effd
JB
5025 return -EINTR;
5026
5027 spin_lock(&space_info->lock);
5028 }
5029
5030 ret = -ENOSPC;
2bf64758
JB
5031 used = space_info->bytes_used + space_info->bytes_reserved +
5032 space_info->bytes_pinned + space_info->bytes_readonly +
5033 space_info->bytes_may_use;
9ed74f2d 5034
8bb8ab2e
JB
5035 /*
5036 * The idea here is that we've not already over-reserved the block group
5037 * then we can go ahead and save our reservation first and then start
5038 * flushing if we need to. Otherwise if we've already overcommitted
5039 * lets start flushing stuff first and then come back and try to make
5040 * our reservation.
5041 */
2bf64758
JB
5042 if (used <= space_info->total_bytes) {
5043 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 5044 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 5045 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 5046 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
5047 ret = 0;
5048 } else {
5049 /*
5050 * Ok set num_bytes to orig_bytes since we aren't
5051 * overocmmitted, this way we only try and reclaim what
5052 * we need.
5053 */
5054 num_bytes = orig_bytes;
5055 }
5056 } else {
5057 /*
5058 * Ok we're over committed, set num_bytes to the overcommitted
5059 * amount plus the amount of bytes that we need for this
5060 * reservation.
5061 */
2bf64758 5062 num_bytes = used - space_info->total_bytes +
96c3f433 5063 (orig_bytes * 2);
8bb8ab2e 5064 }
9ed74f2d 5065
44734ed1
JB
5066 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5067 space_info->bytes_may_use += orig_bytes;
5068 trace_btrfs_space_reservation(root->fs_info, "space_info",
5069 space_info->flags, orig_bytes,
5070 1);
5071 ret = 0;
2bf64758
JB
5072 }
5073
8bb8ab2e
JB
5074 /*
5075 * Couldn't make our reservation, save our place so while we're trying
5076 * to reclaim space we can actually use it instead of somebody else
5077 * stealing it from us.
08e007d2
MX
5078 *
5079 * We make the other tasks wait for the flush only when we can flush
5080 * all things.
8bb8ab2e 5081 */
72bcd99d 5082 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
5083 flushing = true;
5084 space_info->flush = 1;
21c7e756
MX
5085 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5086 used += orig_bytes;
f6acfd50
JB
5087 /*
5088 * We will do the space reservation dance during log replay,
5089 * which means we won't have fs_info->fs_root set, so don't do
5090 * the async reclaim as we will panic.
5091 */
5092 if (!root->fs_info->log_root_recovering &&
5093 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
5094 !work_busy(&root->fs_info->async_reclaim_work))
5095 queue_work(system_unbound_wq,
5096 &root->fs_info->async_reclaim_work);
8bb8ab2e 5097 }
f0486c68 5098 spin_unlock(&space_info->lock);
9ed74f2d 5099
08e007d2 5100 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 5101 goto out;
f0486c68 5102
96c3f433
JB
5103 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5104 flush_state);
5105 flush_state++;
08e007d2
MX
5106
5107 /*
5108 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5109 * would happen. So skip delalloc flush.
5110 */
5111 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5112 (flush_state == FLUSH_DELALLOC ||
5113 flush_state == FLUSH_DELALLOC_WAIT))
5114 flush_state = ALLOC_CHUNK;
5115
96c3f433 5116 if (!ret)
8bb8ab2e 5117 goto again;
08e007d2
MX
5118 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5119 flush_state < COMMIT_TRANS)
5120 goto again;
5121 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5122 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
5123 goto again;
5124
5125out:
5d80366e
JB
5126 if (ret == -ENOSPC &&
5127 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5128 struct btrfs_block_rsv *global_rsv =
5129 &root->fs_info->global_block_rsv;
5130
5131 if (block_rsv != global_rsv &&
5132 !block_rsv_use_bytes(global_rsv, orig_bytes))
5133 ret = 0;
5134 }
cab45e22
JM
5135 if (ret == -ENOSPC)
5136 trace_btrfs_space_reservation(root->fs_info,
5137 "space_info:enospc",
5138 space_info->flags, orig_bytes, 1);
fdb5effd 5139 if (flushing) {
8bb8ab2e 5140 spin_lock(&space_info->lock);
fdb5effd
JB
5141 space_info->flush = 0;
5142 wake_up_all(&space_info->wait);
8bb8ab2e 5143 spin_unlock(&space_info->lock);
f0486c68 5144 }
f0486c68
YZ
5145 return ret;
5146}
5147
79787eaa
JM
5148static struct btrfs_block_rsv *get_block_rsv(
5149 const struct btrfs_trans_handle *trans,
5150 const struct btrfs_root *root)
f0486c68 5151{
4c13d758
JB
5152 struct btrfs_block_rsv *block_rsv = NULL;
5153
e9cf439f
AM
5154 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5155 (root == root->fs_info->csum_root && trans->adding_csums) ||
5156 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5157 block_rsv = trans->block_rsv;
5158
4c13d758 5159 if (!block_rsv)
f0486c68
YZ
5160 block_rsv = root->block_rsv;
5161
5162 if (!block_rsv)
5163 block_rsv = &root->fs_info->empty_block_rsv;
5164
5165 return block_rsv;
5166}
5167
5168static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5169 u64 num_bytes)
5170{
5171 int ret = -ENOSPC;
5172 spin_lock(&block_rsv->lock);
5173 if (block_rsv->reserved >= num_bytes) {
5174 block_rsv->reserved -= num_bytes;
5175 if (block_rsv->reserved < block_rsv->size)
5176 block_rsv->full = 0;
5177 ret = 0;
5178 }
5179 spin_unlock(&block_rsv->lock);
5180 return ret;
5181}
5182
5183static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5184 u64 num_bytes, int update_size)
5185{
5186 spin_lock(&block_rsv->lock);
5187 block_rsv->reserved += num_bytes;
5188 if (update_size)
5189 block_rsv->size += num_bytes;
5190 else if (block_rsv->reserved >= block_rsv->size)
5191 block_rsv->full = 1;
5192 spin_unlock(&block_rsv->lock);
5193}
5194
d52be818
JB
5195int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5196 struct btrfs_block_rsv *dest, u64 num_bytes,
5197 int min_factor)
5198{
5199 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5200 u64 min_bytes;
5201
5202 if (global_rsv->space_info != dest->space_info)
5203 return -ENOSPC;
5204
5205 spin_lock(&global_rsv->lock);
5206 min_bytes = div_factor(global_rsv->size, min_factor);
5207 if (global_rsv->reserved < min_bytes + num_bytes) {
5208 spin_unlock(&global_rsv->lock);
5209 return -ENOSPC;
5210 }
5211 global_rsv->reserved -= num_bytes;
5212 if (global_rsv->reserved < global_rsv->size)
5213 global_rsv->full = 0;
5214 spin_unlock(&global_rsv->lock);
5215
5216 block_rsv_add_bytes(dest, num_bytes, 1);
5217 return 0;
5218}
5219
8c2a3ca2
JB
5220static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5221 struct btrfs_block_rsv *block_rsv,
62a45b60 5222 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5223{
5224 struct btrfs_space_info *space_info = block_rsv->space_info;
5225
5226 spin_lock(&block_rsv->lock);
5227 if (num_bytes == (u64)-1)
5228 num_bytes = block_rsv->size;
5229 block_rsv->size -= num_bytes;
5230 if (block_rsv->reserved >= block_rsv->size) {
5231 num_bytes = block_rsv->reserved - block_rsv->size;
5232 block_rsv->reserved = block_rsv->size;
5233 block_rsv->full = 1;
5234 } else {
5235 num_bytes = 0;
5236 }
5237 spin_unlock(&block_rsv->lock);
5238
5239 if (num_bytes > 0) {
5240 if (dest) {
e9e22899
JB
5241 spin_lock(&dest->lock);
5242 if (!dest->full) {
5243 u64 bytes_to_add;
5244
5245 bytes_to_add = dest->size - dest->reserved;
5246 bytes_to_add = min(num_bytes, bytes_to_add);
5247 dest->reserved += bytes_to_add;
5248 if (dest->reserved >= dest->size)
5249 dest->full = 1;
5250 num_bytes -= bytes_to_add;
5251 }
5252 spin_unlock(&dest->lock);
5253 }
5254 if (num_bytes) {
f0486c68 5255 spin_lock(&space_info->lock);
fb25e914 5256 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5257 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5258 space_info->flags, num_bytes, 0);
f0486c68 5259 spin_unlock(&space_info->lock);
4e06bdd6 5260 }
9ed74f2d 5261 }
f0486c68 5262}
4e06bdd6 5263
f0486c68
YZ
5264static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5265 struct btrfs_block_rsv *dst, u64 num_bytes)
5266{
5267 int ret;
9ed74f2d 5268
f0486c68
YZ
5269 ret = block_rsv_use_bytes(src, num_bytes);
5270 if (ret)
5271 return ret;
9ed74f2d 5272
f0486c68 5273 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5274 return 0;
5275}
5276
66d8f3dd 5277void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5278{
f0486c68
YZ
5279 memset(rsv, 0, sizeof(*rsv));
5280 spin_lock_init(&rsv->lock);
66d8f3dd 5281 rsv->type = type;
f0486c68
YZ
5282}
5283
66d8f3dd
MX
5284struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5285 unsigned short type)
f0486c68
YZ
5286{
5287 struct btrfs_block_rsv *block_rsv;
5288 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5289
f0486c68
YZ
5290 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5291 if (!block_rsv)
5292 return NULL;
9ed74f2d 5293
66d8f3dd 5294 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5295 block_rsv->space_info = __find_space_info(fs_info,
5296 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5297 return block_rsv;
5298}
9ed74f2d 5299
f0486c68
YZ
5300void btrfs_free_block_rsv(struct btrfs_root *root,
5301 struct btrfs_block_rsv *rsv)
5302{
2aaa6655
JB
5303 if (!rsv)
5304 return;
dabdb640
JB
5305 btrfs_block_rsv_release(root, rsv, (u64)-1);
5306 kfree(rsv);
9ed74f2d
JB
5307}
5308
cdfb080e
CM
5309void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5310{
5311 kfree(rsv);
5312}
5313
08e007d2
MX
5314int btrfs_block_rsv_add(struct btrfs_root *root,
5315 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5316 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5317{
f0486c68 5318 int ret;
9ed74f2d 5319
f0486c68
YZ
5320 if (num_bytes == 0)
5321 return 0;
8bb8ab2e 5322
61b520a9 5323 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5324 if (!ret) {
5325 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5326 return 0;
5327 }
9ed74f2d 5328
f0486c68 5329 return ret;
f0486c68 5330}
9ed74f2d 5331
4a92b1b8 5332int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5333 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5334{
5335 u64 num_bytes = 0;
f0486c68 5336 int ret = -ENOSPC;
9ed74f2d 5337
f0486c68
YZ
5338 if (!block_rsv)
5339 return 0;
9ed74f2d 5340
f0486c68 5341 spin_lock(&block_rsv->lock);
36ba022a
JB
5342 num_bytes = div_factor(block_rsv->size, min_factor);
5343 if (block_rsv->reserved >= num_bytes)
5344 ret = 0;
5345 spin_unlock(&block_rsv->lock);
9ed74f2d 5346
36ba022a
JB
5347 return ret;
5348}
5349
08e007d2
MX
5350int btrfs_block_rsv_refill(struct btrfs_root *root,
5351 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5352 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5353{
5354 u64 num_bytes = 0;
5355 int ret = -ENOSPC;
5356
5357 if (!block_rsv)
5358 return 0;
5359
5360 spin_lock(&block_rsv->lock);
5361 num_bytes = min_reserved;
13553e52 5362 if (block_rsv->reserved >= num_bytes)
f0486c68 5363 ret = 0;
13553e52 5364 else
f0486c68 5365 num_bytes -= block_rsv->reserved;
f0486c68 5366 spin_unlock(&block_rsv->lock);
13553e52 5367
f0486c68
YZ
5368 if (!ret)
5369 return 0;
5370
aa38a711 5371 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5372 if (!ret) {
5373 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5374 return 0;
6a63209f 5375 }
9ed74f2d 5376
13553e52 5377 return ret;
f0486c68
YZ
5378}
5379
5380int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5381 struct btrfs_block_rsv *dst_rsv,
5382 u64 num_bytes)
5383{
5384 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5385}
5386
5387void btrfs_block_rsv_release(struct btrfs_root *root,
5388 struct btrfs_block_rsv *block_rsv,
5389 u64 num_bytes)
5390{
5391 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5392 if (global_rsv == block_rsv ||
f0486c68
YZ
5393 block_rsv->space_info != global_rsv->space_info)
5394 global_rsv = NULL;
8c2a3ca2
JB
5395 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5396 num_bytes);
6a63209f
JB
5397}
5398
5399/*
8929ecfa
YZ
5400 * helper to calculate size of global block reservation.
5401 * the desired value is sum of space used by extent tree,
5402 * checksum tree and root tree
6a63209f 5403 */
8929ecfa 5404static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5405{
8929ecfa
YZ
5406 struct btrfs_space_info *sinfo;
5407 u64 num_bytes;
5408 u64 meta_used;
5409 u64 data_used;
6c41761f 5410 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5411
8929ecfa
YZ
5412 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5413 spin_lock(&sinfo->lock);
5414 data_used = sinfo->bytes_used;
5415 spin_unlock(&sinfo->lock);
33b4d47f 5416
8929ecfa
YZ
5417 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5418 spin_lock(&sinfo->lock);
6d48755d
JB
5419 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5420 data_used = 0;
8929ecfa
YZ
5421 meta_used = sinfo->bytes_used;
5422 spin_unlock(&sinfo->lock);
ab6e2410 5423
8929ecfa
YZ
5424 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5425 csum_size * 2;
f8c269d7 5426 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5427
8929ecfa 5428 if (num_bytes * 3 > meta_used)
f8c269d7 5429 num_bytes = div_u64(meta_used, 3);
ab6e2410 5430
707e8a07 5431 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5432}
6a63209f 5433
8929ecfa
YZ
5434static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5435{
5436 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5437 struct btrfs_space_info *sinfo = block_rsv->space_info;
5438 u64 num_bytes;
6a63209f 5439
8929ecfa 5440 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5441
8929ecfa 5442 spin_lock(&sinfo->lock);
1f699d38 5443 spin_lock(&block_rsv->lock);
4e06bdd6 5444
ee22184b 5445 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5446
fb4b10e5
JB
5447 if (block_rsv->reserved < block_rsv->size) {
5448 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5449 sinfo->bytes_reserved + sinfo->bytes_readonly +
5450 sinfo->bytes_may_use;
5451 if (sinfo->total_bytes > num_bytes) {
5452 num_bytes = sinfo->total_bytes - num_bytes;
5453 num_bytes = min(num_bytes,
5454 block_rsv->size - block_rsv->reserved);
5455 block_rsv->reserved += num_bytes;
5456 sinfo->bytes_may_use += num_bytes;
5457 trace_btrfs_space_reservation(fs_info, "space_info",
5458 sinfo->flags, num_bytes,
5459 1);
5460 }
5461 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5462 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5463 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5464 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5465 sinfo->flags, num_bytes, 0);
8929ecfa 5466 block_rsv->reserved = block_rsv->size;
8929ecfa 5467 }
182608c8 5468
fb4b10e5
JB
5469 if (block_rsv->reserved == block_rsv->size)
5470 block_rsv->full = 1;
5471 else
5472 block_rsv->full = 0;
5473
8929ecfa 5474 spin_unlock(&block_rsv->lock);
1f699d38 5475 spin_unlock(&sinfo->lock);
6a63209f
JB
5476}
5477
f0486c68 5478static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5479{
f0486c68 5480 struct btrfs_space_info *space_info;
6a63209f 5481
f0486c68
YZ
5482 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5483 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5484
f0486c68 5485 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5486 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5487 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5488 fs_info->trans_block_rsv.space_info = space_info;
5489 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5490 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5491
8929ecfa
YZ
5492 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5493 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5494 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5495 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5496 if (fs_info->quota_root)
5497 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5498 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5499
8929ecfa 5500 update_global_block_rsv(fs_info);
6a63209f
JB
5501}
5502
8929ecfa 5503static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5504{
8c2a3ca2
JB
5505 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5506 (u64)-1);
8929ecfa
YZ
5507 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5508 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5509 WARN_ON(fs_info->trans_block_rsv.size > 0);
5510 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5511 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5512 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5513 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5514 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5515}
5516
a22285a6
YZ
5517void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5518 struct btrfs_root *root)
6a63209f 5519{
0e721106
JB
5520 if (!trans->block_rsv)
5521 return;
5522
a22285a6
YZ
5523 if (!trans->bytes_reserved)
5524 return;
6a63209f 5525
e77266e4 5526 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5527 trans->transid, trans->bytes_reserved, 0);
b24e03db 5528 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5529 trans->bytes_reserved = 0;
5530}
6a63209f 5531
4fbcdf66
FM
5532/*
5533 * To be called after all the new block groups attached to the transaction
5534 * handle have been created (btrfs_create_pending_block_groups()).
5535 */
5536void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5537{
5538 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5539
5540 if (!trans->chunk_bytes_reserved)
5541 return;
5542
5543 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5544
5545 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5546 trans->chunk_bytes_reserved);
5547 trans->chunk_bytes_reserved = 0;
5548}
5549
79787eaa 5550/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5551int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5552 struct inode *inode)
5553{
5554 struct btrfs_root *root = BTRFS_I(inode)->root;
5555 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5556 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5557
5558 /*
fcb80c2a
JB
5559 * We need to hold space in order to delete our orphan item once we've
5560 * added it, so this takes the reservation so we can release it later
5561 * when we are truly done with the orphan item.
d68fc57b 5562 */
ff5714cc 5563 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5564 trace_btrfs_space_reservation(root->fs_info, "orphan",
5565 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5566 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5567}
5568
d68fc57b 5569void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5570{
d68fc57b 5571 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5572 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5573 trace_btrfs_space_reservation(root->fs_info, "orphan",
5574 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5575 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5576}
97e728d4 5577
d5c12070
MX
5578/*
5579 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5580 * root: the root of the parent directory
5581 * rsv: block reservation
5582 * items: the number of items that we need do reservation
5583 * qgroup_reserved: used to return the reserved size in qgroup
5584 *
5585 * This function is used to reserve the space for snapshot/subvolume
5586 * creation and deletion. Those operations are different with the
5587 * common file/directory operations, they change two fs/file trees
5588 * and root tree, the number of items that the qgroup reserves is
5589 * different with the free space reservation. So we can not use
01327610 5590 * the space reservation mechanism in start_transaction().
d5c12070
MX
5591 */
5592int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5593 struct btrfs_block_rsv *rsv,
5594 int items,
ee3441b4
JM
5595 u64 *qgroup_reserved,
5596 bool use_global_rsv)
a22285a6 5597{
d5c12070
MX
5598 u64 num_bytes;
5599 int ret;
ee3441b4 5600 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5601
5602 if (root->fs_info->quota_enabled) {
5603 /* One for parent inode, two for dir entries */
707e8a07 5604 num_bytes = 3 * root->nodesize;
7174109c 5605 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5606 if (ret)
5607 return ret;
5608 } else {
5609 num_bytes = 0;
5610 }
5611
5612 *qgroup_reserved = num_bytes;
5613
5614 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5615 rsv->space_info = __find_space_info(root->fs_info,
5616 BTRFS_BLOCK_GROUP_METADATA);
5617 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5618 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5619
5620 if (ret == -ENOSPC && use_global_rsv)
5621 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5622
7174109c
QW
5623 if (ret && *qgroup_reserved)
5624 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5625
5626 return ret;
5627}
5628
5629void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5630 struct btrfs_block_rsv *rsv,
5631 u64 qgroup_reserved)
5632{
5633 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5634}
5635
7709cde3
JB
5636/**
5637 * drop_outstanding_extent - drop an outstanding extent
5638 * @inode: the inode we're dropping the extent for
01327610 5639 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5640 *
5641 * This is called when we are freeing up an outstanding extent, either called
5642 * after an error or after an extent is written. This will return the number of
5643 * reserved extents that need to be freed. This must be called with
5644 * BTRFS_I(inode)->lock held.
5645 */
dcab6a3b 5646static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5647{
7fd2ae21 5648 unsigned drop_inode_space = 0;
9e0baf60 5649 unsigned dropped_extents = 0;
dcab6a3b 5650 unsigned num_extents = 0;
9e0baf60 5651
dcab6a3b
JB
5652 num_extents = (unsigned)div64_u64(num_bytes +
5653 BTRFS_MAX_EXTENT_SIZE - 1,
5654 BTRFS_MAX_EXTENT_SIZE);
5655 ASSERT(num_extents);
5656 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5657 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5658
7fd2ae21 5659 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5660 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5661 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5662 drop_inode_space = 1;
7fd2ae21 5663
9e0baf60 5664 /*
01327610 5665 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5666 * reserved then we need to leave the reserved extents count alone.
5667 */
5668 if (BTRFS_I(inode)->outstanding_extents >=
5669 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5670 return drop_inode_space;
9e0baf60
JB
5671
5672 dropped_extents = BTRFS_I(inode)->reserved_extents -
5673 BTRFS_I(inode)->outstanding_extents;
5674 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5675 return dropped_extents + drop_inode_space;
9e0baf60
JB
5676}
5677
7709cde3 5678/**
01327610
NS
5679 * calc_csum_metadata_size - return the amount of metadata space that must be
5680 * reserved/freed for the given bytes.
7709cde3
JB
5681 * @inode: the inode we're manipulating
5682 * @num_bytes: the number of bytes in question
5683 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5684 *
5685 * This adjusts the number of csum_bytes in the inode and then returns the
5686 * correct amount of metadata that must either be reserved or freed. We
5687 * calculate how many checksums we can fit into one leaf and then divide the
5688 * number of bytes that will need to be checksumed by this value to figure out
5689 * how many checksums will be required. If we are adding bytes then the number
5690 * may go up and we will return the number of additional bytes that must be
5691 * reserved. If it is going down we will return the number of bytes that must
5692 * be freed.
5693 *
5694 * This must be called with BTRFS_I(inode)->lock held.
5695 */
5696static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5697 int reserve)
6324fbf3 5698{
7709cde3 5699 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5700 u64 old_csums, num_csums;
7709cde3
JB
5701
5702 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5703 BTRFS_I(inode)->csum_bytes == 0)
5704 return 0;
5705
28f75a0e 5706 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5707 if (reserve)
5708 BTRFS_I(inode)->csum_bytes += num_bytes;
5709 else
5710 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5711 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5712
5713 /* No change, no need to reserve more */
5714 if (old_csums == num_csums)
5715 return 0;
5716
5717 if (reserve)
5718 return btrfs_calc_trans_metadata_size(root,
5719 num_csums - old_csums);
5720
5721 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5722}
c146afad 5723
0ca1f7ce
YZ
5724int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5725{
5726 struct btrfs_root *root = BTRFS_I(inode)->root;
5727 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5728 u64 to_reserve = 0;
660d3f6c 5729 u64 csum_bytes;
9e0baf60 5730 unsigned nr_extents = 0;
660d3f6c 5731 int extra_reserve = 0;
08e007d2 5732 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5733 int ret = 0;
c64c2bd8 5734 bool delalloc_lock = true;
88e081bf
WS
5735 u64 to_free = 0;
5736 unsigned dropped;
6324fbf3 5737
c64c2bd8
JB
5738 /* If we are a free space inode we need to not flush since we will be in
5739 * the middle of a transaction commit. We also don't need the delalloc
5740 * mutex since we won't race with anybody. We need this mostly to make
5741 * lockdep shut its filthy mouth.
5742 */
5743 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5744 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5745 delalloc_lock = false;
5746 }
c09544e0 5747
08e007d2
MX
5748 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5749 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5750 schedule_timeout(1);
ec44a35c 5751
c64c2bd8
JB
5752 if (delalloc_lock)
5753 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5754
0ca1f7ce 5755 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5756
9e0baf60 5757 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5758 nr_extents = (unsigned)div64_u64(num_bytes +
5759 BTRFS_MAX_EXTENT_SIZE - 1,
5760 BTRFS_MAX_EXTENT_SIZE);
5761 BTRFS_I(inode)->outstanding_extents += nr_extents;
5762 nr_extents = 0;
9e0baf60
JB
5763
5764 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5765 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5766 nr_extents = BTRFS_I(inode)->outstanding_extents -
5767 BTRFS_I(inode)->reserved_extents;
57a45ced 5768
7fd2ae21
JB
5769 /*
5770 * Add an item to reserve for updating the inode when we complete the
5771 * delalloc io.
5772 */
72ac3c0d
JB
5773 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5774 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5775 nr_extents++;
660d3f6c 5776 extra_reserve = 1;
593060d7 5777 }
7fd2ae21
JB
5778
5779 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5780 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5781 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5782 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5783
88e081bf 5784 if (root->fs_info->quota_enabled) {
7174109c
QW
5785 ret = btrfs_qgroup_reserve_meta(root,
5786 nr_extents * root->nodesize);
88e081bf
WS
5787 if (ret)
5788 goto out_fail;
5789 }
c5567237 5790
88e081bf
WS
5791 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5792 if (unlikely(ret)) {
7174109c 5793 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5794 goto out_fail;
9e0baf60 5795 }
25179201 5796
660d3f6c
JB
5797 spin_lock(&BTRFS_I(inode)->lock);
5798 if (extra_reserve) {
72ac3c0d
JB
5799 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5800 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5801 nr_extents--;
5802 }
5803 BTRFS_I(inode)->reserved_extents += nr_extents;
5804 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5805
5806 if (delalloc_lock)
5807 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5808
8c2a3ca2 5809 if (to_reserve)
67871254 5810 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5811 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5812 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5813
0ca1f7ce 5814 return 0;
88e081bf
WS
5815
5816out_fail:
5817 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5818 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5819 /*
5820 * If the inodes csum_bytes is the same as the original
5821 * csum_bytes then we know we haven't raced with any free()ers
5822 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5823 */
f4881bc7 5824 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5825 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5826 } else {
5827 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5828 u64 bytes;
5829
5830 /*
5831 * This is tricky, but first we need to figure out how much we
01327610 5832 * freed from any free-ers that occurred during this
f4881bc7
JB
5833 * reservation, so we reset ->csum_bytes to the csum_bytes
5834 * before we dropped our lock, and then call the free for the
5835 * number of bytes that were freed while we were trying our
5836 * reservation.
5837 */
5838 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5839 BTRFS_I(inode)->csum_bytes = csum_bytes;
5840 to_free = calc_csum_metadata_size(inode, bytes, 0);
5841
5842
5843 /*
5844 * Now we need to see how much we would have freed had we not
5845 * been making this reservation and our ->csum_bytes were not
5846 * artificially inflated.
5847 */
5848 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5849 bytes = csum_bytes - orig_csum_bytes;
5850 bytes = calc_csum_metadata_size(inode, bytes, 0);
5851
5852 /*
5853 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 5854 * more than to_free then we would have freed more space had we
f4881bc7
JB
5855 * not had an artificially high ->csum_bytes, so we need to free
5856 * the remainder. If bytes is the same or less then we don't
5857 * need to do anything, the other free-ers did the correct
5858 * thing.
5859 */
5860 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5861 if (bytes > to_free)
5862 to_free = bytes - to_free;
5863 else
5864 to_free = 0;
5865 }
88e081bf 5866 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5867 if (dropped)
88e081bf
WS
5868 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5869
5870 if (to_free) {
5871 btrfs_block_rsv_release(root, block_rsv, to_free);
5872 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5873 btrfs_ino(inode), to_free, 0);
5874 }
5875 if (delalloc_lock)
5876 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5877 return ret;
0ca1f7ce
YZ
5878}
5879
7709cde3
JB
5880/**
5881 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5882 * @inode: the inode to release the reservation for
5883 * @num_bytes: the number of bytes we're releasing
5884 *
5885 * This will release the metadata reservation for an inode. This can be called
5886 * once we complete IO for a given set of bytes to release their metadata
5887 * reservations.
5888 */
0ca1f7ce
YZ
5889void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5890{
5891 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5892 u64 to_free = 0;
5893 unsigned dropped;
0ca1f7ce
YZ
5894
5895 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5896 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5897 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5898
0934856d
MX
5899 if (num_bytes)
5900 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5901 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5902 if (dropped > 0)
5903 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5904
6a3891c5
JB
5905 if (btrfs_test_is_dummy_root(root))
5906 return;
5907
8c2a3ca2
JB
5908 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5909 btrfs_ino(inode), to_free, 0);
c5567237 5910
0ca1f7ce
YZ
5911 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5912 to_free);
5913}
5914
1ada3a62 5915/**
7cf5b976 5916 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5917 * delalloc
5918 * @inode: inode we're writing to
5919 * @start: start range we are writing to
5920 * @len: how long the range we are writing to
5921 *
5922 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5923 *
5924 * This will do the following things
5925 *
5926 * o reserve space in data space info for num bytes
5927 * and reserve precious corresponding qgroup space
5928 * (Done in check_data_free_space)
5929 *
5930 * o reserve space for metadata space, based on the number of outstanding
5931 * extents and how much csums will be needed
5932 * also reserve metadata space in a per root over-reserve method.
5933 * o add to the inodes->delalloc_bytes
5934 * o add it to the fs_info's delalloc inodes list.
5935 * (Above 3 all done in delalloc_reserve_metadata)
5936 *
5937 * Return 0 for success
5938 * Return <0 for error(-ENOSPC or -EQUOT)
5939 */
7cf5b976 5940int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5941{
5942 int ret;
5943
7cf5b976 5944 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
5945 if (ret < 0)
5946 return ret;
5947 ret = btrfs_delalloc_reserve_metadata(inode, len);
5948 if (ret < 0)
7cf5b976 5949 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
5950 return ret;
5951}
5952
7709cde3 5953/**
7cf5b976 5954 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
5955 * @inode: inode we're releasing space for
5956 * @start: start position of the space already reserved
5957 * @len: the len of the space already reserved
5958 *
5959 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5960 * called in the case that we don't need the metadata AND data reservations
5961 * anymore. So if there is an error or we insert an inline extent.
5962 *
5963 * This function will release the metadata space that was not used and will
5964 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5965 * list if there are no delalloc bytes left.
5966 * Also it will handle the qgroup reserved space.
5967 */
7cf5b976 5968void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5969{
5970 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 5971 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
5972}
5973
ce93ec54
JB
5974static int update_block_group(struct btrfs_trans_handle *trans,
5975 struct btrfs_root *root, u64 bytenr,
5976 u64 num_bytes, int alloc)
9078a3e1 5977{
0af3d00b 5978 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5979 struct btrfs_fs_info *info = root->fs_info;
db94535d 5980 u64 total = num_bytes;
9078a3e1 5981 u64 old_val;
db94535d 5982 u64 byte_in_group;
0af3d00b 5983 int factor;
3e1ad54f 5984
5d4f98a2 5985 /* block accounting for super block */
eb73c1b7 5986 spin_lock(&info->delalloc_root_lock);
6c41761f 5987 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5988 if (alloc)
5989 old_val += num_bytes;
5990 else
5991 old_val -= num_bytes;
6c41761f 5992 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5993 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5994
d397712b 5995 while (total) {
db94535d 5996 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5997 if (!cache)
79787eaa 5998 return -ENOENT;
b742bb82
YZ
5999 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6000 BTRFS_BLOCK_GROUP_RAID1 |
6001 BTRFS_BLOCK_GROUP_RAID10))
6002 factor = 2;
6003 else
6004 factor = 1;
9d66e233
JB
6005 /*
6006 * If this block group has free space cache written out, we
6007 * need to make sure to load it if we are removing space. This
6008 * is because we need the unpinning stage to actually add the
6009 * space back to the block group, otherwise we will leak space.
6010 */
6011 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6012 cache_block_group(cache, 1);
0af3d00b 6013
db94535d
CM
6014 byte_in_group = bytenr - cache->key.objectid;
6015 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6016
25179201 6017 spin_lock(&cache->space_info->lock);
c286ac48 6018 spin_lock(&cache->lock);
0af3d00b 6019
73bc1876 6020 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
6021 cache->disk_cache_state < BTRFS_DC_CLEAR)
6022 cache->disk_cache_state = BTRFS_DC_CLEAR;
6023
9078a3e1 6024 old_val = btrfs_block_group_used(&cache->item);
db94535d 6025 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6026 if (alloc) {
db94535d 6027 old_val += num_bytes;
11833d66
YZ
6028 btrfs_set_block_group_used(&cache->item, old_val);
6029 cache->reserved -= num_bytes;
11833d66 6030 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6031 cache->space_info->bytes_used += num_bytes;
6032 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6033 spin_unlock(&cache->lock);
25179201 6034 spin_unlock(&cache->space_info->lock);
cd1bc465 6035 } else {
db94535d 6036 old_val -= num_bytes;
ae0ab003
FM
6037 btrfs_set_block_group_used(&cache->item, old_val);
6038 cache->pinned += num_bytes;
6039 cache->space_info->bytes_pinned += num_bytes;
6040 cache->space_info->bytes_used -= num_bytes;
6041 cache->space_info->disk_used -= num_bytes * factor;
6042 spin_unlock(&cache->lock);
6043 spin_unlock(&cache->space_info->lock);
47ab2a6c 6044
ae0ab003
FM
6045 set_extent_dirty(info->pinned_extents,
6046 bytenr, bytenr + num_bytes - 1,
6047 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6048 }
1bbc621e
CM
6049
6050 spin_lock(&trans->transaction->dirty_bgs_lock);
6051 if (list_empty(&cache->dirty_list)) {
6052 list_add_tail(&cache->dirty_list,
6053 &trans->transaction->dirty_bgs);
6054 trans->transaction->num_dirty_bgs++;
6055 btrfs_get_block_group(cache);
6056 }
6057 spin_unlock(&trans->transaction->dirty_bgs_lock);
6058
036a9348
FM
6059 /*
6060 * No longer have used bytes in this block group, queue it for
6061 * deletion. We do this after adding the block group to the
6062 * dirty list to avoid races between cleaner kthread and space
6063 * cache writeout.
6064 */
6065 if (!alloc && old_val == 0) {
6066 spin_lock(&info->unused_bgs_lock);
6067 if (list_empty(&cache->bg_list)) {
6068 btrfs_get_block_group(cache);
6069 list_add_tail(&cache->bg_list,
6070 &info->unused_bgs);
6071 }
6072 spin_unlock(&info->unused_bgs_lock);
6073 }
6074
fa9c0d79 6075 btrfs_put_block_group(cache);
db94535d
CM
6076 total -= num_bytes;
6077 bytenr += num_bytes;
9078a3e1
CM
6078 }
6079 return 0;
6080}
6324fbf3 6081
a061fc8d
CM
6082static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6083{
0f9dd46c 6084 struct btrfs_block_group_cache *cache;
d2fb3437 6085 u64 bytenr;
0f9dd46c 6086
a1897fdd
LB
6087 spin_lock(&root->fs_info->block_group_cache_lock);
6088 bytenr = root->fs_info->first_logical_byte;
6089 spin_unlock(&root->fs_info->block_group_cache_lock);
6090
6091 if (bytenr < (u64)-1)
6092 return bytenr;
6093
0f9dd46c
JB
6094 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6095 if (!cache)
a061fc8d 6096 return 0;
0f9dd46c 6097
d2fb3437 6098 bytenr = cache->key.objectid;
fa9c0d79 6099 btrfs_put_block_group(cache);
d2fb3437
YZ
6100
6101 return bytenr;
a061fc8d
CM
6102}
6103
f0486c68
YZ
6104static int pin_down_extent(struct btrfs_root *root,
6105 struct btrfs_block_group_cache *cache,
6106 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6107{
11833d66
YZ
6108 spin_lock(&cache->space_info->lock);
6109 spin_lock(&cache->lock);
6110 cache->pinned += num_bytes;
6111 cache->space_info->bytes_pinned += num_bytes;
6112 if (reserved) {
6113 cache->reserved -= num_bytes;
6114 cache->space_info->bytes_reserved -= num_bytes;
6115 }
6116 spin_unlock(&cache->lock);
6117 spin_unlock(&cache->space_info->lock);
68b38550 6118
f0486c68
YZ
6119 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6120 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 6121 if (reserved)
0be5dc67 6122 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
6123 return 0;
6124}
68b38550 6125
f0486c68
YZ
6126/*
6127 * this function must be called within transaction
6128 */
6129int btrfs_pin_extent(struct btrfs_root *root,
6130 u64 bytenr, u64 num_bytes, int reserved)
6131{
6132 struct btrfs_block_group_cache *cache;
68b38550 6133
f0486c68 6134 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6135 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6136
6137 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6138
6139 btrfs_put_block_group(cache);
11833d66
YZ
6140 return 0;
6141}
6142
f0486c68 6143/*
e688b725
CM
6144 * this function must be called within transaction
6145 */
dcfac415 6146int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6147 u64 bytenr, u64 num_bytes)
6148{
6149 struct btrfs_block_group_cache *cache;
b50c6e25 6150 int ret;
e688b725
CM
6151
6152 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6153 if (!cache)
6154 return -EINVAL;
e688b725
CM
6155
6156 /*
6157 * pull in the free space cache (if any) so that our pin
6158 * removes the free space from the cache. We have load_only set
6159 * to one because the slow code to read in the free extents does check
6160 * the pinned extents.
6161 */
f6373bf3 6162 cache_block_group(cache, 1);
e688b725
CM
6163
6164 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6165
6166 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6167 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6168 btrfs_put_block_group(cache);
b50c6e25 6169 return ret;
e688b725
CM
6170}
6171
8c2a1a30
JB
6172static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6173{
6174 int ret;
6175 struct btrfs_block_group_cache *block_group;
6176 struct btrfs_caching_control *caching_ctl;
6177
6178 block_group = btrfs_lookup_block_group(root->fs_info, start);
6179 if (!block_group)
6180 return -EINVAL;
6181
6182 cache_block_group(block_group, 0);
6183 caching_ctl = get_caching_control(block_group);
6184
6185 if (!caching_ctl) {
6186 /* Logic error */
6187 BUG_ON(!block_group_cache_done(block_group));
6188 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6189 } else {
6190 mutex_lock(&caching_ctl->mutex);
6191
6192 if (start >= caching_ctl->progress) {
6193 ret = add_excluded_extent(root, start, num_bytes);
6194 } else if (start + num_bytes <= caching_ctl->progress) {
6195 ret = btrfs_remove_free_space(block_group,
6196 start, num_bytes);
6197 } else {
6198 num_bytes = caching_ctl->progress - start;
6199 ret = btrfs_remove_free_space(block_group,
6200 start, num_bytes);
6201 if (ret)
6202 goto out_lock;
6203
6204 num_bytes = (start + num_bytes) -
6205 caching_ctl->progress;
6206 start = caching_ctl->progress;
6207 ret = add_excluded_extent(root, start, num_bytes);
6208 }
6209out_lock:
6210 mutex_unlock(&caching_ctl->mutex);
6211 put_caching_control(caching_ctl);
6212 }
6213 btrfs_put_block_group(block_group);
6214 return ret;
6215}
6216
6217int btrfs_exclude_logged_extents(struct btrfs_root *log,
6218 struct extent_buffer *eb)
6219{
6220 struct btrfs_file_extent_item *item;
6221 struct btrfs_key key;
6222 int found_type;
6223 int i;
6224
6225 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6226 return 0;
6227
6228 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6229 btrfs_item_key_to_cpu(eb, &key, i);
6230 if (key.type != BTRFS_EXTENT_DATA_KEY)
6231 continue;
6232 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6233 found_type = btrfs_file_extent_type(eb, item);
6234 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6235 continue;
6236 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6237 continue;
6238 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6239 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6240 __exclude_logged_extent(log, key.objectid, key.offset);
6241 }
6242
6243 return 0;
6244}
6245
9cfa3e34
FM
6246static void
6247btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6248{
6249 atomic_inc(&bg->reservations);
6250}
6251
6252void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6253 const u64 start)
6254{
6255 struct btrfs_block_group_cache *bg;
6256
6257 bg = btrfs_lookup_block_group(fs_info, start);
6258 ASSERT(bg);
6259 if (atomic_dec_and_test(&bg->reservations))
6260 wake_up_atomic_t(&bg->reservations);
6261 btrfs_put_block_group(bg);
6262}
6263
6264static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6265{
6266 schedule();
6267 return 0;
6268}
6269
6270void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6271{
6272 struct btrfs_space_info *space_info = bg->space_info;
6273
6274 ASSERT(bg->ro);
6275
6276 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6277 return;
6278
6279 /*
6280 * Our block group is read only but before we set it to read only,
6281 * some task might have had allocated an extent from it already, but it
6282 * has not yet created a respective ordered extent (and added it to a
6283 * root's list of ordered extents).
6284 * Therefore wait for any task currently allocating extents, since the
6285 * block group's reservations counter is incremented while a read lock
6286 * on the groups' semaphore is held and decremented after releasing
6287 * the read access on that semaphore and creating the ordered extent.
6288 */
6289 down_write(&space_info->groups_sem);
6290 up_write(&space_info->groups_sem);
6291
6292 wait_on_atomic_t(&bg->reservations,
6293 btrfs_wait_bg_reservations_atomic_t,
6294 TASK_UNINTERRUPTIBLE);
6295}
6296
fb25e914
JB
6297/**
6298 * btrfs_update_reserved_bytes - update the block_group and space info counters
6299 * @cache: The cache we are manipulating
6300 * @num_bytes: The number of bytes in question
6301 * @reserve: One of the reservation enums
e570fd27 6302 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6303 *
6304 * This is called by the allocator when it reserves space, or by somebody who is
6305 * freeing space that was never actually used on disk. For example if you
6306 * reserve some space for a new leaf in transaction A and before transaction A
6307 * commits you free that leaf, you call this with reserve set to 0 in order to
6308 * clear the reservation.
6309 *
6310 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6311 * ENOSPC accounting. For data we handle the reservation through clearing the
6312 * delalloc bits in the io_tree. We have to do this since we could end up
6313 * allocating less disk space for the amount of data we have reserved in the
6314 * case of compression.
6315 *
6316 * If this is a reservation and the block group has become read only we cannot
6317 * make the reservation and return -EAGAIN, otherwise this function always
6318 * succeeds.
f0486c68 6319 */
fb25e914 6320static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6321 u64 num_bytes, int reserve, int delalloc)
11833d66 6322{
fb25e914 6323 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6324 int ret = 0;
79787eaa 6325
fb25e914
JB
6326 spin_lock(&space_info->lock);
6327 spin_lock(&cache->lock);
6328 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6329 if (cache->ro) {
6330 ret = -EAGAIN;
6331 } else {
fb25e914
JB
6332 cache->reserved += num_bytes;
6333 space_info->bytes_reserved += num_bytes;
6334 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6335 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6336 "space_info", space_info->flags,
6337 num_bytes, 0);
fb25e914
JB
6338 space_info->bytes_may_use -= num_bytes;
6339 }
e570fd27
MX
6340
6341 if (delalloc)
6342 cache->delalloc_bytes += num_bytes;
f0486c68 6343 }
fb25e914
JB
6344 } else {
6345 if (cache->ro)
6346 space_info->bytes_readonly += num_bytes;
6347 cache->reserved -= num_bytes;
6348 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6349
6350 if (delalloc)
6351 cache->delalloc_bytes -= num_bytes;
324ae4df 6352 }
fb25e914
JB
6353 spin_unlock(&cache->lock);
6354 spin_unlock(&space_info->lock);
f0486c68 6355 return ret;
324ae4df 6356}
9078a3e1 6357
143bede5 6358void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6359 struct btrfs_root *root)
e8569813 6360{
e8569813 6361 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6362 struct btrfs_caching_control *next;
6363 struct btrfs_caching_control *caching_ctl;
6364 struct btrfs_block_group_cache *cache;
e8569813 6365
9e351cc8 6366 down_write(&fs_info->commit_root_sem);
25179201 6367
11833d66
YZ
6368 list_for_each_entry_safe(caching_ctl, next,
6369 &fs_info->caching_block_groups, list) {
6370 cache = caching_ctl->block_group;
6371 if (block_group_cache_done(cache)) {
6372 cache->last_byte_to_unpin = (u64)-1;
6373 list_del_init(&caching_ctl->list);
6374 put_caching_control(caching_ctl);
e8569813 6375 } else {
11833d66 6376 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6377 }
e8569813 6378 }
11833d66
YZ
6379
6380 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6381 fs_info->pinned_extents = &fs_info->freed_extents[1];
6382 else
6383 fs_info->pinned_extents = &fs_info->freed_extents[0];
6384
9e351cc8 6385 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6386
6387 update_global_block_rsv(fs_info);
e8569813
ZY
6388}
6389
c759c4e1
JB
6390/*
6391 * Returns the free cluster for the given space info and sets empty_cluster to
6392 * what it should be based on the mount options.
6393 */
6394static struct btrfs_free_cluster *
6395fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6396 u64 *empty_cluster)
6397{
6398 struct btrfs_free_cluster *ret = NULL;
6399 bool ssd = btrfs_test_opt(root, SSD);
6400
6401 *empty_cluster = 0;
6402 if (btrfs_mixed_space_info(space_info))
6403 return ret;
6404
6405 if (ssd)
ee22184b 6406 *empty_cluster = SZ_2M;
c759c4e1
JB
6407 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6408 ret = &root->fs_info->meta_alloc_cluster;
6409 if (!ssd)
ee22184b 6410 *empty_cluster = SZ_64K;
c759c4e1
JB
6411 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6412 ret = &root->fs_info->data_alloc_cluster;
6413 }
6414
6415 return ret;
6416}
6417
678886bd
FM
6418static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6419 const bool return_free_space)
ccd467d6 6420{
11833d66
YZ
6421 struct btrfs_fs_info *fs_info = root->fs_info;
6422 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6423 struct btrfs_space_info *space_info;
6424 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6425 struct btrfs_free_cluster *cluster = NULL;
11833d66 6426 u64 len;
c759c4e1
JB
6427 u64 total_unpinned = 0;
6428 u64 empty_cluster = 0;
7b398f8e 6429 bool readonly;
ccd467d6 6430
11833d66 6431 while (start <= end) {
7b398f8e 6432 readonly = false;
11833d66
YZ
6433 if (!cache ||
6434 start >= cache->key.objectid + cache->key.offset) {
6435 if (cache)
6436 btrfs_put_block_group(cache);
c759c4e1 6437 total_unpinned = 0;
11833d66 6438 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6439 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6440
6441 cluster = fetch_cluster_info(root,
6442 cache->space_info,
6443 &empty_cluster);
6444 empty_cluster <<= 1;
11833d66
YZ
6445 }
6446
6447 len = cache->key.objectid + cache->key.offset - start;
6448 len = min(len, end + 1 - start);
6449
6450 if (start < cache->last_byte_to_unpin) {
6451 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6452 if (return_free_space)
6453 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6454 }
6455
f0486c68 6456 start += len;
c759c4e1 6457 total_unpinned += len;
7b398f8e 6458 space_info = cache->space_info;
f0486c68 6459
c759c4e1
JB
6460 /*
6461 * If this space cluster has been marked as fragmented and we've
6462 * unpinned enough in this block group to potentially allow a
6463 * cluster to be created inside of it go ahead and clear the
6464 * fragmented check.
6465 */
6466 if (cluster && cluster->fragmented &&
6467 total_unpinned > empty_cluster) {
6468 spin_lock(&cluster->lock);
6469 cluster->fragmented = 0;
6470 spin_unlock(&cluster->lock);
6471 }
6472
7b398f8e 6473 spin_lock(&space_info->lock);
11833d66
YZ
6474 spin_lock(&cache->lock);
6475 cache->pinned -= len;
7b398f8e 6476 space_info->bytes_pinned -= len;
4f4db217 6477 space_info->max_extent_size = 0;
d288db5d 6478 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6479 if (cache->ro) {
6480 space_info->bytes_readonly += len;
6481 readonly = true;
6482 }
11833d66 6483 spin_unlock(&cache->lock);
7b398f8e
JB
6484 if (!readonly && global_rsv->space_info == space_info) {
6485 spin_lock(&global_rsv->lock);
6486 if (!global_rsv->full) {
6487 len = min(len, global_rsv->size -
6488 global_rsv->reserved);
6489 global_rsv->reserved += len;
6490 space_info->bytes_may_use += len;
6491 if (global_rsv->reserved >= global_rsv->size)
6492 global_rsv->full = 1;
6493 }
6494 spin_unlock(&global_rsv->lock);
6495 }
6496 spin_unlock(&space_info->lock);
ccd467d6 6497 }
11833d66
YZ
6498
6499 if (cache)
6500 btrfs_put_block_group(cache);
ccd467d6
CM
6501 return 0;
6502}
6503
6504int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6505 struct btrfs_root *root)
a28ec197 6506{
11833d66 6507 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6508 struct btrfs_block_group_cache *block_group, *tmp;
6509 struct list_head *deleted_bgs;
11833d66 6510 struct extent_io_tree *unpin;
1a5bc167
CM
6511 u64 start;
6512 u64 end;
a28ec197 6513 int ret;
a28ec197 6514
11833d66
YZ
6515 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6516 unpin = &fs_info->freed_extents[1];
6517 else
6518 unpin = &fs_info->freed_extents[0];
6519
e33e17ee 6520 while (!trans->aborted) {
d4b450cd 6521 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6522 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6523 EXTENT_DIRTY, NULL);
d4b450cd
FM
6524 if (ret) {
6525 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6526 break;
d4b450cd 6527 }
1f3c79a2 6528
5378e607
LD
6529 if (btrfs_test_opt(root, DISCARD))
6530 ret = btrfs_discard_extent(root, start,
6531 end + 1 - start, NULL);
1f3c79a2 6532
af6f8f60 6533 clear_extent_dirty(unpin, start, end);
678886bd 6534 unpin_extent_range(root, start, end, true);
d4b450cd 6535 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6536 cond_resched();
a28ec197 6537 }
817d52f8 6538
e33e17ee
JM
6539 /*
6540 * Transaction is finished. We don't need the lock anymore. We
6541 * do need to clean up the block groups in case of a transaction
6542 * abort.
6543 */
6544 deleted_bgs = &trans->transaction->deleted_bgs;
6545 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6546 u64 trimmed = 0;
6547
6548 ret = -EROFS;
6549 if (!trans->aborted)
6550 ret = btrfs_discard_extent(root,
6551 block_group->key.objectid,
6552 block_group->key.offset,
6553 &trimmed);
6554
6555 list_del_init(&block_group->bg_list);
6556 btrfs_put_block_group_trimming(block_group);
6557 btrfs_put_block_group(block_group);
6558
6559 if (ret) {
6560 const char *errstr = btrfs_decode_error(ret);
6561 btrfs_warn(fs_info,
6562 "Discard failed while removing blockgroup: errno=%d %s\n",
6563 ret, errstr);
6564 }
6565 }
6566
e20d96d6
CM
6567 return 0;
6568}
6569
b150a4f1
JB
6570static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6571 u64 owner, u64 root_objectid)
6572{
6573 struct btrfs_space_info *space_info;
6574 u64 flags;
6575
6576 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6577 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6578 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6579 else
6580 flags = BTRFS_BLOCK_GROUP_METADATA;
6581 } else {
6582 flags = BTRFS_BLOCK_GROUP_DATA;
6583 }
6584
6585 space_info = __find_space_info(fs_info, flags);
6586 BUG_ON(!space_info); /* Logic bug */
6587 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6588}
6589
6590
5d4f98a2
YZ
6591static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6592 struct btrfs_root *root,
c682f9b3 6593 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6594 u64 root_objectid, u64 owner_objectid,
6595 u64 owner_offset, int refs_to_drop,
c682f9b3 6596 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6597{
e2fa7227 6598 struct btrfs_key key;
5d4f98a2 6599 struct btrfs_path *path;
1261ec42
CM
6600 struct btrfs_fs_info *info = root->fs_info;
6601 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6602 struct extent_buffer *leaf;
5d4f98a2
YZ
6603 struct btrfs_extent_item *ei;
6604 struct btrfs_extent_inline_ref *iref;
a28ec197 6605 int ret;
5d4f98a2 6606 int is_data;
952fccac
CM
6607 int extent_slot = 0;
6608 int found_extent = 0;
6609 int num_to_del = 1;
5d4f98a2
YZ
6610 u32 item_size;
6611 u64 refs;
c682f9b3
QW
6612 u64 bytenr = node->bytenr;
6613 u64 num_bytes = node->num_bytes;
fcebe456 6614 int last_ref = 0;
3173a18f
JB
6615 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6616 SKINNY_METADATA);
037e6390 6617
5caf2a00 6618 path = btrfs_alloc_path();
54aa1f4d
CM
6619 if (!path)
6620 return -ENOMEM;
5f26f772 6621
e4058b54 6622 path->reada = READA_FORWARD;
b9473439 6623 path->leave_spinning = 1;
5d4f98a2
YZ
6624
6625 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6626 BUG_ON(!is_data && refs_to_drop != 1);
6627
3173a18f
JB
6628 if (is_data)
6629 skinny_metadata = 0;
6630
5d4f98a2
YZ
6631 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6632 bytenr, num_bytes, parent,
6633 root_objectid, owner_objectid,
6634 owner_offset);
7bb86316 6635 if (ret == 0) {
952fccac 6636 extent_slot = path->slots[0];
5d4f98a2
YZ
6637 while (extent_slot >= 0) {
6638 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6639 extent_slot);
5d4f98a2 6640 if (key.objectid != bytenr)
952fccac 6641 break;
5d4f98a2
YZ
6642 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6643 key.offset == num_bytes) {
952fccac
CM
6644 found_extent = 1;
6645 break;
6646 }
3173a18f
JB
6647 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6648 key.offset == owner_objectid) {
6649 found_extent = 1;
6650 break;
6651 }
952fccac
CM
6652 if (path->slots[0] - extent_slot > 5)
6653 break;
5d4f98a2 6654 extent_slot--;
952fccac 6655 }
5d4f98a2
YZ
6656#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6657 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6658 if (found_extent && item_size < sizeof(*ei))
6659 found_extent = 0;
6660#endif
31840ae1 6661 if (!found_extent) {
5d4f98a2 6662 BUG_ON(iref);
56bec294 6663 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6664 NULL, refs_to_drop,
fcebe456 6665 is_data, &last_ref);
005d6427
DS
6666 if (ret) {
6667 btrfs_abort_transaction(trans, extent_root, ret);
6668 goto out;
6669 }
b3b4aa74 6670 btrfs_release_path(path);
b9473439 6671 path->leave_spinning = 1;
5d4f98a2
YZ
6672
6673 key.objectid = bytenr;
6674 key.type = BTRFS_EXTENT_ITEM_KEY;
6675 key.offset = num_bytes;
6676
3173a18f
JB
6677 if (!is_data && skinny_metadata) {
6678 key.type = BTRFS_METADATA_ITEM_KEY;
6679 key.offset = owner_objectid;
6680 }
6681
31840ae1
ZY
6682 ret = btrfs_search_slot(trans, extent_root,
6683 &key, path, -1, 1);
3173a18f
JB
6684 if (ret > 0 && skinny_metadata && path->slots[0]) {
6685 /*
6686 * Couldn't find our skinny metadata item,
6687 * see if we have ye olde extent item.
6688 */
6689 path->slots[0]--;
6690 btrfs_item_key_to_cpu(path->nodes[0], &key,
6691 path->slots[0]);
6692 if (key.objectid == bytenr &&
6693 key.type == BTRFS_EXTENT_ITEM_KEY &&
6694 key.offset == num_bytes)
6695 ret = 0;
6696 }
6697
6698 if (ret > 0 && skinny_metadata) {
6699 skinny_metadata = false;
9ce49a0b 6700 key.objectid = bytenr;
3173a18f
JB
6701 key.type = BTRFS_EXTENT_ITEM_KEY;
6702 key.offset = num_bytes;
6703 btrfs_release_path(path);
6704 ret = btrfs_search_slot(trans, extent_root,
6705 &key, path, -1, 1);
6706 }
6707
f3465ca4 6708 if (ret) {
c2cf52eb 6709 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6710 ret, bytenr);
b783e62d
JB
6711 if (ret > 0)
6712 btrfs_print_leaf(extent_root,
6713 path->nodes[0]);
f3465ca4 6714 }
005d6427
DS
6715 if (ret < 0) {
6716 btrfs_abort_transaction(trans, extent_root, ret);
6717 goto out;
6718 }
31840ae1
ZY
6719 extent_slot = path->slots[0];
6720 }
fae7f21c 6721 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6722 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6723 btrfs_err(info,
6724 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6725 bytenr, parent, root_objectid, owner_objectid,
6726 owner_offset);
c4a050bb
JB
6727 btrfs_abort_transaction(trans, extent_root, ret);
6728 goto out;
79787eaa 6729 } else {
005d6427
DS
6730 btrfs_abort_transaction(trans, extent_root, ret);
6731 goto out;
7bb86316 6732 }
5f39d397
CM
6733
6734 leaf = path->nodes[0];
5d4f98a2
YZ
6735 item_size = btrfs_item_size_nr(leaf, extent_slot);
6736#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6737 if (item_size < sizeof(*ei)) {
6738 BUG_ON(found_extent || extent_slot != path->slots[0]);
6739 ret = convert_extent_item_v0(trans, extent_root, path,
6740 owner_objectid, 0);
005d6427
DS
6741 if (ret < 0) {
6742 btrfs_abort_transaction(trans, extent_root, ret);
6743 goto out;
6744 }
5d4f98a2 6745
b3b4aa74 6746 btrfs_release_path(path);
5d4f98a2
YZ
6747 path->leave_spinning = 1;
6748
6749 key.objectid = bytenr;
6750 key.type = BTRFS_EXTENT_ITEM_KEY;
6751 key.offset = num_bytes;
6752
6753 ret = btrfs_search_slot(trans, extent_root, &key, path,
6754 -1, 1);
6755 if (ret) {
c2cf52eb 6756 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6757 ret, bytenr);
5d4f98a2
YZ
6758 btrfs_print_leaf(extent_root, path->nodes[0]);
6759 }
005d6427
DS
6760 if (ret < 0) {
6761 btrfs_abort_transaction(trans, extent_root, ret);
6762 goto out;
6763 }
6764
5d4f98a2
YZ
6765 extent_slot = path->slots[0];
6766 leaf = path->nodes[0];
6767 item_size = btrfs_item_size_nr(leaf, extent_slot);
6768 }
6769#endif
6770 BUG_ON(item_size < sizeof(*ei));
952fccac 6771 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6772 struct btrfs_extent_item);
3173a18f
JB
6773 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6774 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6775 struct btrfs_tree_block_info *bi;
6776 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6777 bi = (struct btrfs_tree_block_info *)(ei + 1);
6778 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6779 }
56bec294 6780
5d4f98a2 6781 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6782 if (refs < refs_to_drop) {
6783 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6784 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6785 ret = -EINVAL;
6786 btrfs_abort_transaction(trans, extent_root, ret);
6787 goto out;
6788 }
56bec294 6789 refs -= refs_to_drop;
5f39d397 6790
5d4f98a2
YZ
6791 if (refs > 0) {
6792 if (extent_op)
6793 __run_delayed_extent_op(extent_op, leaf, ei);
6794 /*
6795 * In the case of inline back ref, reference count will
6796 * be updated by remove_extent_backref
952fccac 6797 */
5d4f98a2
YZ
6798 if (iref) {
6799 BUG_ON(!found_extent);
6800 } else {
6801 btrfs_set_extent_refs(leaf, ei, refs);
6802 btrfs_mark_buffer_dirty(leaf);
6803 }
6804 if (found_extent) {
6805 ret = remove_extent_backref(trans, extent_root, path,
6806 iref, refs_to_drop,
fcebe456 6807 is_data, &last_ref);
005d6427
DS
6808 if (ret) {
6809 btrfs_abort_transaction(trans, extent_root, ret);
6810 goto out;
6811 }
952fccac 6812 }
b150a4f1
JB
6813 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6814 root_objectid);
5d4f98a2 6815 } else {
5d4f98a2
YZ
6816 if (found_extent) {
6817 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6818 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6819 if (iref) {
6820 BUG_ON(path->slots[0] != extent_slot);
6821 } else {
6822 BUG_ON(path->slots[0] != extent_slot + 1);
6823 path->slots[0] = extent_slot;
6824 num_to_del = 2;
6825 }
78fae27e 6826 }
b9473439 6827
fcebe456 6828 last_ref = 1;
952fccac
CM
6829 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6830 num_to_del);
005d6427
DS
6831 if (ret) {
6832 btrfs_abort_transaction(trans, extent_root, ret);
6833 goto out;
6834 }
b3b4aa74 6835 btrfs_release_path(path);
21af804c 6836
5d4f98a2 6837 if (is_data) {
459931ec 6838 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6839 if (ret) {
6840 btrfs_abort_transaction(trans, extent_root, ret);
6841 goto out;
6842 }
459931ec
CM
6843 }
6844
1e144fb8
OS
6845 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6846 num_bytes);
6847 if (ret) {
6848 btrfs_abort_transaction(trans, extent_root, ret);
6849 goto out;
6850 }
6851
ce93ec54 6852 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6853 if (ret) {
6854 btrfs_abort_transaction(trans, extent_root, ret);
6855 goto out;
6856 }
a28ec197 6857 }
fcebe456
JB
6858 btrfs_release_path(path);
6859
79787eaa 6860out:
5caf2a00 6861 btrfs_free_path(path);
a28ec197
CM
6862 return ret;
6863}
6864
1887be66 6865/*
f0486c68 6866 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6867 * delayed ref for that extent as well. This searches the delayed ref tree for
6868 * a given extent, and if there are no other delayed refs to be processed, it
6869 * removes it from the tree.
6870 */
6871static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6872 struct btrfs_root *root, u64 bytenr)
6873{
6874 struct btrfs_delayed_ref_head *head;
6875 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6876 int ret = 0;
1887be66
CM
6877
6878 delayed_refs = &trans->transaction->delayed_refs;
6879 spin_lock(&delayed_refs->lock);
6880 head = btrfs_find_delayed_ref_head(trans, bytenr);
6881 if (!head)
cf93da7b 6882 goto out_delayed_unlock;
1887be66 6883
d7df2c79 6884 spin_lock(&head->lock);
c6fc2454 6885 if (!list_empty(&head->ref_list))
1887be66
CM
6886 goto out;
6887
5d4f98a2
YZ
6888 if (head->extent_op) {
6889 if (!head->must_insert_reserved)
6890 goto out;
78a6184a 6891 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6892 head->extent_op = NULL;
6893 }
6894
1887be66
CM
6895 /*
6896 * waiting for the lock here would deadlock. If someone else has it
6897 * locked they are already in the process of dropping it anyway
6898 */
6899 if (!mutex_trylock(&head->mutex))
6900 goto out;
6901
6902 /*
6903 * at this point we have a head with no other entries. Go
6904 * ahead and process it.
6905 */
6906 head->node.in_tree = 0;
c46effa6 6907 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6908
d7df2c79 6909 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6910
6911 /*
6912 * we don't take a ref on the node because we're removing it from the
6913 * tree, so we just steal the ref the tree was holding.
6914 */
c3e69d58 6915 delayed_refs->num_heads--;
d7df2c79 6916 if (head->processing == 0)
c3e69d58 6917 delayed_refs->num_heads_ready--;
d7df2c79
JB
6918 head->processing = 0;
6919 spin_unlock(&head->lock);
1887be66
CM
6920 spin_unlock(&delayed_refs->lock);
6921
f0486c68
YZ
6922 BUG_ON(head->extent_op);
6923 if (head->must_insert_reserved)
6924 ret = 1;
6925
6926 mutex_unlock(&head->mutex);
1887be66 6927 btrfs_put_delayed_ref(&head->node);
f0486c68 6928 return ret;
1887be66 6929out:
d7df2c79 6930 spin_unlock(&head->lock);
cf93da7b
CM
6931
6932out_delayed_unlock:
1887be66
CM
6933 spin_unlock(&delayed_refs->lock);
6934 return 0;
6935}
6936
f0486c68
YZ
6937void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6938 struct btrfs_root *root,
6939 struct extent_buffer *buf,
5581a51a 6940 u64 parent, int last_ref)
f0486c68 6941{
b150a4f1 6942 int pin = 1;
f0486c68
YZ
6943 int ret;
6944
6945 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6946 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6947 buf->start, buf->len,
6948 parent, root->root_key.objectid,
6949 btrfs_header_level(buf),
b06c4bf5 6950 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 6951 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6952 }
6953
6954 if (!last_ref)
6955 return;
6956
f0486c68 6957 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6958 struct btrfs_block_group_cache *cache;
6959
f0486c68
YZ
6960 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6961 ret = check_ref_cleanup(trans, root, buf->start);
6962 if (!ret)
37be25bc 6963 goto out;
f0486c68
YZ
6964 }
6965
6219872d
FM
6966 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6967
f0486c68
YZ
6968 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6969 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6970 btrfs_put_block_group(cache);
37be25bc 6971 goto out;
f0486c68
YZ
6972 }
6973
6974 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6975
6976 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6977 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6978 btrfs_put_block_group(cache);
0be5dc67 6979 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6980 pin = 0;
f0486c68
YZ
6981 }
6982out:
b150a4f1
JB
6983 if (pin)
6984 add_pinned_bytes(root->fs_info, buf->len,
6985 btrfs_header_level(buf),
6986 root->root_key.objectid);
6987
a826d6dc
JB
6988 /*
6989 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6990 * anymore.
6991 */
6992 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6993}
6994
79787eaa 6995/* Can return -ENOMEM */
66d7e7f0
AJ
6996int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6997 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 6998 u64 owner, u64 offset)
925baedd
CM
6999{
7000 int ret;
66d7e7f0 7001 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 7002
fccb84c9 7003 if (btrfs_test_is_dummy_root(root))
faa2dbf0 7004 return 0;
fccb84c9 7005
b150a4f1
JB
7006 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7007
56bec294
CM
7008 /*
7009 * tree log blocks never actually go into the extent allocation
7010 * tree, just update pinning info and exit early.
56bec294 7011 */
5d4f98a2
YZ
7012 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7013 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7014 /* unlocks the pinned mutex */
11833d66 7015 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7016 ret = 0;
5d4f98a2 7017 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7018 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7019 num_bytes,
5d4f98a2 7020 parent, root_objectid, (int)owner,
b06c4bf5 7021 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7022 } else {
66d7e7f0
AJ
7023 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7024 num_bytes,
7025 parent, root_objectid, owner,
5846a3c2
QW
7026 offset, 0,
7027 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7028 }
925baedd
CM
7029 return ret;
7030}
7031
817d52f8
JB
7032/*
7033 * when we wait for progress in the block group caching, its because
7034 * our allocation attempt failed at least once. So, we must sleep
7035 * and let some progress happen before we try again.
7036 *
7037 * This function will sleep at least once waiting for new free space to
7038 * show up, and then it will check the block group free space numbers
7039 * for our min num_bytes. Another option is to have it go ahead
7040 * and look in the rbtree for a free extent of a given size, but this
7041 * is a good start.
36cce922
JB
7042 *
7043 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7044 * any of the information in this block group.
817d52f8 7045 */
36cce922 7046static noinline void
817d52f8
JB
7047wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7048 u64 num_bytes)
7049{
11833d66 7050 struct btrfs_caching_control *caching_ctl;
817d52f8 7051
11833d66
YZ
7052 caching_ctl = get_caching_control(cache);
7053 if (!caching_ctl)
36cce922 7054 return;
817d52f8 7055
11833d66 7056 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7057 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7058
7059 put_caching_control(caching_ctl);
11833d66
YZ
7060}
7061
7062static noinline int
7063wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7064{
7065 struct btrfs_caching_control *caching_ctl;
36cce922 7066 int ret = 0;
11833d66
YZ
7067
7068 caching_ctl = get_caching_control(cache);
7069 if (!caching_ctl)
36cce922 7070 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7071
7072 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7073 if (cache->cached == BTRFS_CACHE_ERROR)
7074 ret = -EIO;
11833d66 7075 put_caching_control(caching_ctl);
36cce922 7076 return ret;
817d52f8
JB
7077}
7078
31e50229 7079int __get_raid_index(u64 flags)
b742bb82 7080{
7738a53a 7081 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7082 return BTRFS_RAID_RAID10;
7738a53a 7083 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7084 return BTRFS_RAID_RAID1;
7738a53a 7085 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7086 return BTRFS_RAID_DUP;
7738a53a 7087 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7088 return BTRFS_RAID_RAID0;
53b381b3 7089 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7090 return BTRFS_RAID_RAID5;
53b381b3 7091 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7092 return BTRFS_RAID_RAID6;
7738a53a 7093
e942f883 7094 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7095}
7096
6ab0a202 7097int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7098{
31e50229 7099 return __get_raid_index(cache->flags);
7738a53a
ID
7100}
7101
6ab0a202
JM
7102static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7103 [BTRFS_RAID_RAID10] = "raid10",
7104 [BTRFS_RAID_RAID1] = "raid1",
7105 [BTRFS_RAID_DUP] = "dup",
7106 [BTRFS_RAID_RAID0] = "raid0",
7107 [BTRFS_RAID_SINGLE] = "single",
7108 [BTRFS_RAID_RAID5] = "raid5",
7109 [BTRFS_RAID_RAID6] = "raid6",
7110};
7111
1b8e5df6 7112static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7113{
7114 if (type >= BTRFS_NR_RAID_TYPES)
7115 return NULL;
7116
7117 return btrfs_raid_type_names[type];
7118}
7119
817d52f8 7120enum btrfs_loop_type {
285ff5af
JB
7121 LOOP_CACHING_NOWAIT = 0,
7122 LOOP_CACHING_WAIT = 1,
7123 LOOP_ALLOC_CHUNK = 2,
7124 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7125};
7126
e570fd27
MX
7127static inline void
7128btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7129 int delalloc)
7130{
7131 if (delalloc)
7132 down_read(&cache->data_rwsem);
7133}
7134
7135static inline void
7136btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7137 int delalloc)
7138{
7139 btrfs_get_block_group(cache);
7140 if (delalloc)
7141 down_read(&cache->data_rwsem);
7142}
7143
7144static struct btrfs_block_group_cache *
7145btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7146 struct btrfs_free_cluster *cluster,
7147 int delalloc)
7148{
89771cc9 7149 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7150
e570fd27 7151 spin_lock(&cluster->refill_lock);
6719afdc
GU
7152 while (1) {
7153 used_bg = cluster->block_group;
7154 if (!used_bg)
7155 return NULL;
7156
7157 if (used_bg == block_group)
e570fd27
MX
7158 return used_bg;
7159
6719afdc 7160 btrfs_get_block_group(used_bg);
e570fd27 7161
6719afdc
GU
7162 if (!delalloc)
7163 return used_bg;
e570fd27 7164
6719afdc
GU
7165 if (down_read_trylock(&used_bg->data_rwsem))
7166 return used_bg;
e570fd27 7167
6719afdc 7168 spin_unlock(&cluster->refill_lock);
e570fd27 7169
6719afdc 7170 down_read(&used_bg->data_rwsem);
e570fd27 7171
6719afdc
GU
7172 spin_lock(&cluster->refill_lock);
7173 if (used_bg == cluster->block_group)
7174 return used_bg;
e570fd27 7175
6719afdc
GU
7176 up_read(&used_bg->data_rwsem);
7177 btrfs_put_block_group(used_bg);
7178 }
e570fd27
MX
7179}
7180
7181static inline void
7182btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7183 int delalloc)
7184{
7185 if (delalloc)
7186 up_read(&cache->data_rwsem);
7187 btrfs_put_block_group(cache);
7188}
7189
fec577fb
CM
7190/*
7191 * walks the btree of allocated extents and find a hole of a given size.
7192 * The key ins is changed to record the hole:
a4820398 7193 * ins->objectid == start position
62e2749e 7194 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7195 * ins->offset == the size of the hole.
fec577fb 7196 * Any available blocks before search_start are skipped.
a4820398
MX
7197 *
7198 * If there is no suitable free space, we will record the max size of
7199 * the free space extent currently.
fec577fb 7200 */
00361589 7201static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7202 u64 num_bytes, u64 empty_size,
98ed5174 7203 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7204 u64 flags, int delalloc)
fec577fb 7205{
80eb234a 7206 int ret = 0;
d397712b 7207 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7208 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7209 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7210 u64 search_start = 0;
a4820398 7211 u64 max_extent_size = 0;
c759c4e1 7212 u64 empty_cluster = 0;
80eb234a 7213 struct btrfs_space_info *space_info;
fa9c0d79 7214 int loop = 0;
b6919a58
DS
7215 int index = __get_raid_index(flags);
7216 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7217 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7218 bool failed_cluster_refill = false;
1cdda9b8 7219 bool failed_alloc = false;
67377734 7220 bool use_cluster = true;
60d2adbb 7221 bool have_caching_bg = false;
13a0db5a 7222 bool orig_have_caching_bg = false;
a5e681d9 7223 bool full_search = false;
fec577fb 7224
db94535d 7225 WARN_ON(num_bytes < root->sectorsize);
962a298f 7226 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7227 ins->objectid = 0;
7228 ins->offset = 0;
b1a4d965 7229
b6919a58 7230 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7231
b6919a58 7232 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7233 if (!space_info) {
b6919a58 7234 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7235 return -ENOSPC;
7236 }
2552d17e 7237
67377734 7238 /*
4f4db217
JB
7239 * If our free space is heavily fragmented we may not be able to make
7240 * big contiguous allocations, so instead of doing the expensive search
7241 * for free space, simply return ENOSPC with our max_extent_size so we
7242 * can go ahead and search for a more manageable chunk.
7243 *
7244 * If our max_extent_size is large enough for our allocation simply
7245 * disable clustering since we will likely not be able to find enough
7246 * space to create a cluster and induce latency trying.
67377734 7247 */
4f4db217
JB
7248 if (unlikely(space_info->max_extent_size)) {
7249 spin_lock(&space_info->lock);
7250 if (space_info->max_extent_size &&
7251 num_bytes > space_info->max_extent_size) {
7252 ins->offset = space_info->max_extent_size;
7253 spin_unlock(&space_info->lock);
7254 return -ENOSPC;
7255 } else if (space_info->max_extent_size) {
7256 use_cluster = false;
7257 }
7258 spin_unlock(&space_info->lock);
fa9c0d79 7259 }
0f9dd46c 7260
c759c4e1 7261 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7262 if (last_ptr) {
fa9c0d79
CM
7263 spin_lock(&last_ptr->lock);
7264 if (last_ptr->block_group)
7265 hint_byte = last_ptr->window_start;
c759c4e1
JB
7266 if (last_ptr->fragmented) {
7267 /*
7268 * We still set window_start so we can keep track of the
7269 * last place we found an allocation to try and save
7270 * some time.
7271 */
7272 hint_byte = last_ptr->window_start;
7273 use_cluster = false;
7274 }
fa9c0d79 7275 spin_unlock(&last_ptr->lock);
239b14b3 7276 }
fa9c0d79 7277
a061fc8d 7278 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7279 search_start = max(search_start, hint_byte);
2552d17e 7280 if (search_start == hint_byte) {
2552d17e
JB
7281 block_group = btrfs_lookup_block_group(root->fs_info,
7282 search_start);
817d52f8
JB
7283 /*
7284 * we don't want to use the block group if it doesn't match our
7285 * allocation bits, or if its not cached.
ccf0e725
JB
7286 *
7287 * However if we are re-searching with an ideal block group
7288 * picked out then we don't care that the block group is cached.
817d52f8 7289 */
b6919a58 7290 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7291 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7292 down_read(&space_info->groups_sem);
44fb5511
CM
7293 if (list_empty(&block_group->list) ||
7294 block_group->ro) {
7295 /*
7296 * someone is removing this block group,
7297 * we can't jump into the have_block_group
7298 * target because our list pointers are not
7299 * valid
7300 */
7301 btrfs_put_block_group(block_group);
7302 up_read(&space_info->groups_sem);
ccf0e725 7303 } else {
b742bb82 7304 index = get_block_group_index(block_group);
e570fd27 7305 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7306 goto have_block_group;
ccf0e725 7307 }
2552d17e 7308 } else if (block_group) {
fa9c0d79 7309 btrfs_put_block_group(block_group);
2552d17e 7310 }
42e70e7a 7311 }
2552d17e 7312search:
60d2adbb 7313 have_caching_bg = false;
a5e681d9
JB
7314 if (index == 0 || index == __get_raid_index(flags))
7315 full_search = true;
80eb234a 7316 down_read(&space_info->groups_sem);
b742bb82
YZ
7317 list_for_each_entry(block_group, &space_info->block_groups[index],
7318 list) {
6226cb0a 7319 u64 offset;
817d52f8 7320 int cached;
8a1413a2 7321
e570fd27 7322 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7323 search_start = block_group->key.objectid;
42e70e7a 7324
83a50de9
CM
7325 /*
7326 * this can happen if we end up cycling through all the
7327 * raid types, but we want to make sure we only allocate
7328 * for the proper type.
7329 */
b6919a58 7330 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7331 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7332 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7333 BTRFS_BLOCK_GROUP_RAID5 |
7334 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7335 BTRFS_BLOCK_GROUP_RAID10;
7336
7337 /*
7338 * if they asked for extra copies and this block group
7339 * doesn't provide them, bail. This does allow us to
7340 * fill raid0 from raid1.
7341 */
b6919a58 7342 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7343 goto loop;
7344 }
7345
2552d17e 7346have_block_group:
291c7d2f
JB
7347 cached = block_group_cache_done(block_group);
7348 if (unlikely(!cached)) {
a5e681d9 7349 have_caching_bg = true;
f6373bf3 7350 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7351 BUG_ON(ret < 0);
7352 ret = 0;
817d52f8
JB
7353 }
7354
36cce922
JB
7355 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7356 goto loop;
ea6a478e 7357 if (unlikely(block_group->ro))
2552d17e 7358 goto loop;
0f9dd46c 7359
0a24325e 7360 /*
062c05c4
AO
7361 * Ok we want to try and use the cluster allocator, so
7362 * lets look there
0a24325e 7363 */
c759c4e1 7364 if (last_ptr && use_cluster) {
215a63d1 7365 struct btrfs_block_group_cache *used_block_group;
8de972b4 7366 unsigned long aligned_cluster;
fa9c0d79
CM
7367 /*
7368 * the refill lock keeps out other
7369 * people trying to start a new cluster
7370 */
e570fd27
MX
7371 used_block_group = btrfs_lock_cluster(block_group,
7372 last_ptr,
7373 delalloc);
7374 if (!used_block_group)
44fb5511 7375 goto refill_cluster;
274bd4fb 7376
e570fd27
MX
7377 if (used_block_group != block_group &&
7378 (used_block_group->ro ||
7379 !block_group_bits(used_block_group, flags)))
7380 goto release_cluster;
44fb5511 7381
274bd4fb 7382 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7383 last_ptr,
7384 num_bytes,
7385 used_block_group->key.objectid,
7386 &max_extent_size);
fa9c0d79
CM
7387 if (offset) {
7388 /* we have a block, we're done */
7389 spin_unlock(&last_ptr->refill_lock);
3f7de037 7390 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7391 used_block_group,
7392 search_start, num_bytes);
215a63d1 7393 if (used_block_group != block_group) {
e570fd27
MX
7394 btrfs_release_block_group(block_group,
7395 delalloc);
215a63d1
MX
7396 block_group = used_block_group;
7397 }
fa9c0d79
CM
7398 goto checks;
7399 }
7400
274bd4fb 7401 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7402release_cluster:
062c05c4
AO
7403 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7404 * set up a new clusters, so lets just skip it
7405 * and let the allocator find whatever block
7406 * it can find. If we reach this point, we
7407 * will have tried the cluster allocator
7408 * plenty of times and not have found
7409 * anything, so we are likely way too
7410 * fragmented for the clustering stuff to find
a5f6f719
AO
7411 * anything.
7412 *
7413 * However, if the cluster is taken from the
7414 * current block group, release the cluster
7415 * first, so that we stand a better chance of
7416 * succeeding in the unclustered
7417 * allocation. */
7418 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7419 used_block_group != block_group) {
062c05c4 7420 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7421 btrfs_release_block_group(used_block_group,
7422 delalloc);
062c05c4
AO
7423 goto unclustered_alloc;
7424 }
7425
fa9c0d79
CM
7426 /*
7427 * this cluster didn't work out, free it and
7428 * start over
7429 */
7430 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7431
e570fd27
MX
7432 if (used_block_group != block_group)
7433 btrfs_release_block_group(used_block_group,
7434 delalloc);
7435refill_cluster:
a5f6f719
AO
7436 if (loop >= LOOP_NO_EMPTY_SIZE) {
7437 spin_unlock(&last_ptr->refill_lock);
7438 goto unclustered_alloc;
7439 }
7440
8de972b4
CM
7441 aligned_cluster = max_t(unsigned long,
7442 empty_cluster + empty_size,
7443 block_group->full_stripe_len);
7444
fa9c0d79 7445 /* allocate a cluster in this block group */
00361589
JB
7446 ret = btrfs_find_space_cluster(root, block_group,
7447 last_ptr, search_start,
7448 num_bytes,
7449 aligned_cluster);
fa9c0d79
CM
7450 if (ret == 0) {
7451 /*
7452 * now pull our allocation out of this
7453 * cluster
7454 */
7455 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7456 last_ptr,
7457 num_bytes,
7458 search_start,
7459 &max_extent_size);
fa9c0d79
CM
7460 if (offset) {
7461 /* we found one, proceed */
7462 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7463 trace_btrfs_reserve_extent_cluster(root,
7464 block_group, search_start,
7465 num_bytes);
fa9c0d79
CM
7466 goto checks;
7467 }
0a24325e
JB
7468 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7469 && !failed_cluster_refill) {
817d52f8
JB
7470 spin_unlock(&last_ptr->refill_lock);
7471
0a24325e 7472 failed_cluster_refill = true;
817d52f8
JB
7473 wait_block_group_cache_progress(block_group,
7474 num_bytes + empty_cluster + empty_size);
7475 goto have_block_group;
fa9c0d79 7476 }
817d52f8 7477
fa9c0d79
CM
7478 /*
7479 * at this point we either didn't find a cluster
7480 * or we weren't able to allocate a block from our
7481 * cluster. Free the cluster we've been trying
7482 * to use, and go to the next block group
7483 */
0a24325e 7484 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7485 spin_unlock(&last_ptr->refill_lock);
0a24325e 7486 goto loop;
fa9c0d79
CM
7487 }
7488
062c05c4 7489unclustered_alloc:
c759c4e1
JB
7490 /*
7491 * We are doing an unclustered alloc, set the fragmented flag so
7492 * we don't bother trying to setup a cluster again until we get
7493 * more space.
7494 */
7495 if (unlikely(last_ptr)) {
7496 spin_lock(&last_ptr->lock);
7497 last_ptr->fragmented = 1;
7498 spin_unlock(&last_ptr->lock);
7499 }
a5f6f719
AO
7500 spin_lock(&block_group->free_space_ctl->tree_lock);
7501 if (cached &&
7502 block_group->free_space_ctl->free_space <
7503 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7504 if (block_group->free_space_ctl->free_space >
7505 max_extent_size)
7506 max_extent_size =
7507 block_group->free_space_ctl->free_space;
a5f6f719
AO
7508 spin_unlock(&block_group->free_space_ctl->tree_lock);
7509 goto loop;
7510 }
7511 spin_unlock(&block_group->free_space_ctl->tree_lock);
7512
6226cb0a 7513 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7514 num_bytes, empty_size,
7515 &max_extent_size);
1cdda9b8
JB
7516 /*
7517 * If we didn't find a chunk, and we haven't failed on this
7518 * block group before, and this block group is in the middle of
7519 * caching and we are ok with waiting, then go ahead and wait
7520 * for progress to be made, and set failed_alloc to true.
7521 *
7522 * If failed_alloc is true then we've already waited on this
7523 * block group once and should move on to the next block group.
7524 */
7525 if (!offset && !failed_alloc && !cached &&
7526 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7527 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7528 num_bytes + empty_size);
7529 failed_alloc = true;
817d52f8 7530 goto have_block_group;
1cdda9b8
JB
7531 } else if (!offset) {
7532 goto loop;
817d52f8 7533 }
fa9c0d79 7534checks:
4e54b17a 7535 search_start = ALIGN(offset, root->stripesize);
25179201 7536
2552d17e
JB
7537 /* move on to the next group */
7538 if (search_start + num_bytes >
215a63d1
MX
7539 block_group->key.objectid + block_group->key.offset) {
7540 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7541 goto loop;
6226cb0a 7542 }
f5a31e16 7543
f0486c68 7544 if (offset < search_start)
215a63d1 7545 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7546 search_start - offset);
7547 BUG_ON(offset > search_start);
2552d17e 7548
215a63d1 7549 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7550 alloc_type, delalloc);
f0486c68 7551 if (ret == -EAGAIN) {
215a63d1 7552 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7553 goto loop;
0f9dd46c 7554 }
9cfa3e34 7555 btrfs_inc_block_group_reservations(block_group);
0b86a832 7556
f0486c68 7557 /* we are all good, lets return */
2552d17e
JB
7558 ins->objectid = search_start;
7559 ins->offset = num_bytes;
d2fb3437 7560
3f7de037
JB
7561 trace_btrfs_reserve_extent(orig_root, block_group,
7562 search_start, num_bytes);
e570fd27 7563 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7564 break;
7565loop:
0a24325e 7566 failed_cluster_refill = false;
1cdda9b8 7567 failed_alloc = false;
b742bb82 7568 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7569 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7570 }
7571 up_read(&space_info->groups_sem);
7572
13a0db5a 7573 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7574 && !orig_have_caching_bg)
7575 orig_have_caching_bg = true;
7576
60d2adbb
MX
7577 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7578 goto search;
7579
b742bb82
YZ
7580 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7581 goto search;
7582
285ff5af 7583 /*
ccf0e725
JB
7584 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7585 * caching kthreads as we move along
817d52f8
JB
7586 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7587 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7588 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7589 * again
fa9c0d79 7590 */
723bda20 7591 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7592 index = 0;
a5e681d9
JB
7593 if (loop == LOOP_CACHING_NOWAIT) {
7594 /*
7595 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7596 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7597 * full search through.
7598 */
13a0db5a 7599 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7600 loop = LOOP_CACHING_WAIT;
7601 else
7602 loop = LOOP_ALLOC_CHUNK;
7603 } else {
7604 loop++;
7605 }
7606
817d52f8 7607 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7608 struct btrfs_trans_handle *trans;
f017f15f
WS
7609 int exist = 0;
7610
7611 trans = current->journal_info;
7612 if (trans)
7613 exist = 1;
7614 else
7615 trans = btrfs_join_transaction(root);
00361589 7616
00361589
JB
7617 if (IS_ERR(trans)) {
7618 ret = PTR_ERR(trans);
7619 goto out;
7620 }
7621
b6919a58 7622 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7623 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7624
7625 /*
7626 * If we can't allocate a new chunk we've already looped
7627 * through at least once, move on to the NO_EMPTY_SIZE
7628 * case.
7629 */
7630 if (ret == -ENOSPC)
7631 loop = LOOP_NO_EMPTY_SIZE;
7632
ea658bad
JB
7633 /*
7634 * Do not bail out on ENOSPC since we
7635 * can do more things.
7636 */
00361589 7637 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7638 btrfs_abort_transaction(trans,
7639 root, ret);
00361589
JB
7640 else
7641 ret = 0;
f017f15f
WS
7642 if (!exist)
7643 btrfs_end_transaction(trans, root);
00361589 7644 if (ret)
ea658bad 7645 goto out;
2552d17e
JB
7646 }
7647
723bda20 7648 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7649 /*
7650 * Don't loop again if we already have no empty_size and
7651 * no empty_cluster.
7652 */
7653 if (empty_size == 0 &&
7654 empty_cluster == 0) {
7655 ret = -ENOSPC;
7656 goto out;
7657 }
723bda20
JB
7658 empty_size = 0;
7659 empty_cluster = 0;
fa9c0d79 7660 }
723bda20
JB
7661
7662 goto search;
2552d17e
JB
7663 } else if (!ins->objectid) {
7664 ret = -ENOSPC;
d82a6f1d 7665 } else if (ins->objectid) {
c759c4e1
JB
7666 if (!use_cluster && last_ptr) {
7667 spin_lock(&last_ptr->lock);
7668 last_ptr->window_start = ins->objectid;
7669 spin_unlock(&last_ptr->lock);
7670 }
80eb234a 7671 ret = 0;
be744175 7672 }
79787eaa 7673out:
4f4db217
JB
7674 if (ret == -ENOSPC) {
7675 spin_lock(&space_info->lock);
7676 space_info->max_extent_size = max_extent_size;
7677 spin_unlock(&space_info->lock);
a4820398 7678 ins->offset = max_extent_size;
4f4db217 7679 }
0f70abe2 7680 return ret;
fec577fb 7681}
ec44a35c 7682
9ed74f2d
JB
7683static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7684 int dump_block_groups)
0f9dd46c
JB
7685{
7686 struct btrfs_block_group_cache *cache;
b742bb82 7687 int index = 0;
0f9dd46c 7688
9ed74f2d 7689 spin_lock(&info->lock);
efe120a0 7690 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7691 info->flags,
7692 info->total_bytes - info->bytes_used - info->bytes_pinned -
7693 info->bytes_reserved - info->bytes_readonly,
d397712b 7694 (info->full) ? "" : "not ");
efe120a0 7695 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7696 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7697 info->total_bytes, info->bytes_used, info->bytes_pinned,
7698 info->bytes_reserved, info->bytes_may_use,
7699 info->bytes_readonly);
9ed74f2d
JB
7700 spin_unlock(&info->lock);
7701
7702 if (!dump_block_groups)
7703 return;
0f9dd46c 7704
80eb234a 7705 down_read(&info->groups_sem);
b742bb82
YZ
7706again:
7707 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7708 spin_lock(&cache->lock);
efe120a0
FH
7709 printk(KERN_INFO "BTRFS: "
7710 "block group %llu has %llu bytes, "
7711 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7712 cache->key.objectid, cache->key.offset,
7713 btrfs_block_group_used(&cache->item), cache->pinned,
7714 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7715 btrfs_dump_free_space(cache, bytes);
7716 spin_unlock(&cache->lock);
7717 }
b742bb82
YZ
7718 if (++index < BTRFS_NR_RAID_TYPES)
7719 goto again;
80eb234a 7720 up_read(&info->groups_sem);
0f9dd46c 7721}
e8569813 7722
00361589 7723int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7724 u64 num_bytes, u64 min_alloc_size,
7725 u64 empty_size, u64 hint_byte,
e570fd27 7726 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7727{
36af4e07 7728 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7729 u64 flags;
fec577fb 7730 int ret;
925baedd 7731
b6919a58 7732 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7733again:
db94535d 7734 WARN_ON(num_bytes < root->sectorsize);
00361589 7735 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7736 flags, delalloc);
9cfa3e34
FM
7737 if (!ret && !is_data) {
7738 btrfs_dec_block_group_reservations(root->fs_info,
7739 ins->objectid);
7740 } else if (ret == -ENOSPC) {
a4820398
MX
7741 if (!final_tried && ins->offset) {
7742 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7743 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7744 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7745 if (num_bytes == min_alloc_size)
7746 final_tried = true;
7747 goto again;
7748 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7749 struct btrfs_space_info *sinfo;
7750
b6919a58 7751 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7752 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7753 flags, num_bytes);
53804280
JM
7754 if (sinfo)
7755 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7756 }
925baedd 7757 }
0f9dd46c
JB
7758
7759 return ret;
e6dcd2dc
CM
7760}
7761
e688b725 7762static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7763 u64 start, u64 len,
7764 int pin, int delalloc)
65b51a00 7765{
0f9dd46c 7766 struct btrfs_block_group_cache *cache;
1f3c79a2 7767 int ret = 0;
0f9dd46c 7768
0f9dd46c
JB
7769 cache = btrfs_lookup_block_group(root->fs_info, start);
7770 if (!cache) {
c2cf52eb 7771 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7772 start);
0f9dd46c
JB
7773 return -ENOSPC;
7774 }
1f3c79a2 7775
e688b725
CM
7776 if (pin)
7777 pin_down_extent(root, cache, start, len, 1);
7778 else {
dcc82f47
FM
7779 if (btrfs_test_opt(root, DISCARD))
7780 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7781 btrfs_add_free_space(cache, start, len);
e570fd27 7782 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7783 }
31193213 7784
fa9c0d79 7785 btrfs_put_block_group(cache);
817d52f8 7786
1abe9b8a 7787 trace_btrfs_reserved_extent_free(root, start, len);
7788
e6dcd2dc
CM
7789 return ret;
7790}
7791
e688b725 7792int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7793 u64 start, u64 len, int delalloc)
e688b725 7794{
e570fd27 7795 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7796}
7797
7798int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7799 u64 start, u64 len)
7800{
e570fd27 7801 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7802}
7803
5d4f98a2
YZ
7804static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7805 struct btrfs_root *root,
7806 u64 parent, u64 root_objectid,
7807 u64 flags, u64 owner, u64 offset,
7808 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7809{
7810 int ret;
5d4f98a2 7811 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7812 struct btrfs_extent_item *extent_item;
5d4f98a2 7813 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7814 struct btrfs_path *path;
5d4f98a2
YZ
7815 struct extent_buffer *leaf;
7816 int type;
7817 u32 size;
26b8003f 7818
5d4f98a2
YZ
7819 if (parent > 0)
7820 type = BTRFS_SHARED_DATA_REF_KEY;
7821 else
7822 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7823
5d4f98a2 7824 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7825
7826 path = btrfs_alloc_path();
db5b493a
TI
7827 if (!path)
7828 return -ENOMEM;
47e4bb98 7829
b9473439 7830 path->leave_spinning = 1;
5d4f98a2
YZ
7831 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7832 ins, size);
79787eaa
JM
7833 if (ret) {
7834 btrfs_free_path(path);
7835 return ret;
7836 }
0f9dd46c 7837
5d4f98a2
YZ
7838 leaf = path->nodes[0];
7839 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7840 struct btrfs_extent_item);
5d4f98a2
YZ
7841 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7842 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7843 btrfs_set_extent_flags(leaf, extent_item,
7844 flags | BTRFS_EXTENT_FLAG_DATA);
7845
7846 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7847 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7848 if (parent > 0) {
7849 struct btrfs_shared_data_ref *ref;
7850 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7851 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7852 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7853 } else {
7854 struct btrfs_extent_data_ref *ref;
7855 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7856 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7857 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7858 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7859 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7860 }
47e4bb98
CM
7861
7862 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7863 btrfs_free_path(path);
f510cfec 7864
1e144fb8
OS
7865 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7866 ins->offset);
7867 if (ret)
7868 return ret;
7869
ce93ec54 7870 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7871 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7872 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7873 ins->objectid, ins->offset);
f5947066
CM
7874 BUG();
7875 }
0be5dc67 7876 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7877 return ret;
7878}
7879
5d4f98a2
YZ
7880static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7881 struct btrfs_root *root,
7882 u64 parent, u64 root_objectid,
7883 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 7884 int level, struct btrfs_key *ins)
e6dcd2dc
CM
7885{
7886 int ret;
5d4f98a2
YZ
7887 struct btrfs_fs_info *fs_info = root->fs_info;
7888 struct btrfs_extent_item *extent_item;
7889 struct btrfs_tree_block_info *block_info;
7890 struct btrfs_extent_inline_ref *iref;
7891 struct btrfs_path *path;
7892 struct extent_buffer *leaf;
3173a18f 7893 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7894 u64 num_bytes = ins->offset;
3173a18f
JB
7895 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7896 SKINNY_METADATA);
7897
7898 if (!skinny_metadata)
7899 size += sizeof(*block_info);
1c2308f8 7900
5d4f98a2 7901 path = btrfs_alloc_path();
857cc2fc
JB
7902 if (!path) {
7903 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7904 root->nodesize);
d8926bb3 7905 return -ENOMEM;
857cc2fc 7906 }
56bec294 7907
5d4f98a2
YZ
7908 path->leave_spinning = 1;
7909 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7910 ins, size);
79787eaa 7911 if (ret) {
dd825259 7912 btrfs_free_path(path);
857cc2fc 7913 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7914 root->nodesize);
79787eaa
JM
7915 return ret;
7916 }
5d4f98a2
YZ
7917
7918 leaf = path->nodes[0];
7919 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7920 struct btrfs_extent_item);
7921 btrfs_set_extent_refs(leaf, extent_item, 1);
7922 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7923 btrfs_set_extent_flags(leaf, extent_item,
7924 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7925
3173a18f
JB
7926 if (skinny_metadata) {
7927 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7928 num_bytes = root->nodesize;
3173a18f
JB
7929 } else {
7930 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7931 btrfs_set_tree_block_key(leaf, block_info, key);
7932 btrfs_set_tree_block_level(leaf, block_info, level);
7933 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7934 }
5d4f98a2 7935
5d4f98a2
YZ
7936 if (parent > 0) {
7937 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7938 btrfs_set_extent_inline_ref_type(leaf, iref,
7939 BTRFS_SHARED_BLOCK_REF_KEY);
7940 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7941 } else {
7942 btrfs_set_extent_inline_ref_type(leaf, iref,
7943 BTRFS_TREE_BLOCK_REF_KEY);
7944 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7945 }
7946
7947 btrfs_mark_buffer_dirty(leaf);
7948 btrfs_free_path(path);
7949
1e144fb8
OS
7950 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7951 num_bytes);
7952 if (ret)
7953 return ret;
7954
ce93ec54
JB
7955 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7956 1);
79787eaa 7957 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7958 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7959 ins->objectid, ins->offset);
5d4f98a2
YZ
7960 BUG();
7961 }
0be5dc67 7962
707e8a07 7963 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7964 return ret;
7965}
7966
7967int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7968 struct btrfs_root *root,
7969 u64 root_objectid, u64 owner,
5846a3c2
QW
7970 u64 offset, u64 ram_bytes,
7971 struct btrfs_key *ins)
5d4f98a2
YZ
7972{
7973 int ret;
7974
7975 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7976
66d7e7f0
AJ
7977 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7978 ins->offset, 0,
7979 root_objectid, owner, offset,
5846a3c2
QW
7980 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7981 NULL);
e6dcd2dc
CM
7982 return ret;
7983}
e02119d5
CM
7984
7985/*
7986 * this is used by the tree logging recovery code. It records that
7987 * an extent has been allocated and makes sure to clear the free
7988 * space cache bits as well
7989 */
5d4f98a2
YZ
7990int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7991 struct btrfs_root *root,
7992 u64 root_objectid, u64 owner, u64 offset,
7993 struct btrfs_key *ins)
e02119d5
CM
7994{
7995 int ret;
7996 struct btrfs_block_group_cache *block_group;
11833d66 7997
8c2a1a30
JB
7998 /*
7999 * Mixed block groups will exclude before processing the log so we only
01327610 8000 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
8001 */
8002 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8003 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 8004 if (ret)
8c2a1a30 8005 return ret;
11833d66
YZ
8006 }
8007
8c2a1a30
JB
8008 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8009 if (!block_group)
8010 return -EINVAL;
8011
fb25e914 8012 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 8013 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 8014 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
8015 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8016 0, owner, offset, ins, 1);
b50c6e25 8017 btrfs_put_block_group(block_group);
e02119d5
CM
8018 return ret;
8019}
8020
48a3b636
ES
8021static struct extent_buffer *
8022btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8023 u64 bytenr, int level)
65b51a00
CM
8024{
8025 struct extent_buffer *buf;
8026
a83fffb7 8027 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8028 if (IS_ERR(buf))
8029 return buf;
8030
65b51a00 8031 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8032 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8033 btrfs_tree_lock(buf);
01d58472 8034 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8035 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8036
8037 btrfs_set_lock_blocking(buf);
4db8c528 8038 set_extent_buffer_uptodate(buf);
b4ce94de 8039
d0c803c4 8040 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8041 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8042 /*
8043 * we allow two log transactions at a time, use different
8044 * EXENT bit to differentiate dirty pages.
8045 */
656f30db 8046 if (buf->log_index == 0)
8cef4e16
YZ
8047 set_extent_dirty(&root->dirty_log_pages, buf->start,
8048 buf->start + buf->len - 1, GFP_NOFS);
8049 else
8050 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8051 buf->start + buf->len - 1);
d0c803c4 8052 } else {
656f30db 8053 buf->log_index = -1;
d0c803c4 8054 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8055 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8056 }
64c12921 8057 trans->dirty = true;
b4ce94de 8058 /* this returns a buffer locked for blocking */
65b51a00
CM
8059 return buf;
8060}
8061
f0486c68
YZ
8062static struct btrfs_block_rsv *
8063use_block_rsv(struct btrfs_trans_handle *trans,
8064 struct btrfs_root *root, u32 blocksize)
8065{
8066 struct btrfs_block_rsv *block_rsv;
68a82277 8067 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8068 int ret;
d88033db 8069 bool global_updated = false;
f0486c68
YZ
8070
8071 block_rsv = get_block_rsv(trans, root);
8072
b586b323
MX
8073 if (unlikely(block_rsv->size == 0))
8074 goto try_reserve;
d88033db 8075again:
f0486c68
YZ
8076 ret = block_rsv_use_bytes(block_rsv, blocksize);
8077 if (!ret)
8078 return block_rsv;
8079
b586b323
MX
8080 if (block_rsv->failfast)
8081 return ERR_PTR(ret);
8082
d88033db
MX
8083 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8084 global_updated = true;
8085 update_global_block_rsv(root->fs_info);
8086 goto again;
8087 }
8088
b586b323
MX
8089 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8090 static DEFINE_RATELIMIT_STATE(_rs,
8091 DEFAULT_RATELIMIT_INTERVAL * 10,
8092 /*DEFAULT_RATELIMIT_BURST*/ 1);
8093 if (__ratelimit(&_rs))
8094 WARN(1, KERN_DEBUG
efe120a0 8095 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8096 }
8097try_reserve:
8098 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8099 BTRFS_RESERVE_NO_FLUSH);
8100 if (!ret)
8101 return block_rsv;
8102 /*
8103 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8104 * the global reserve if its space type is the same as the global
8105 * reservation.
b586b323 8106 */
5881cfc9
MX
8107 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8108 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8109 ret = block_rsv_use_bytes(global_rsv, blocksize);
8110 if (!ret)
8111 return global_rsv;
8112 }
8113 return ERR_PTR(ret);
f0486c68
YZ
8114}
8115
8c2a3ca2
JB
8116static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8117 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8118{
8119 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8120 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8121}
8122
fec577fb 8123/*
f0486c68 8124 * finds a free extent and does all the dirty work required for allocation
67b7859e 8125 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8126 */
4d75f8a9
DS
8127struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8128 struct btrfs_root *root,
5d4f98a2
YZ
8129 u64 parent, u64 root_objectid,
8130 struct btrfs_disk_key *key, int level,
5581a51a 8131 u64 hint, u64 empty_size)
fec577fb 8132{
e2fa7227 8133 struct btrfs_key ins;
f0486c68 8134 struct btrfs_block_rsv *block_rsv;
5f39d397 8135 struct extent_buffer *buf;
67b7859e 8136 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8137 u64 flags = 0;
8138 int ret;
4d75f8a9 8139 u32 blocksize = root->nodesize;
3173a18f
JB
8140 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8141 SKINNY_METADATA);
fec577fb 8142
fccb84c9 8143 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 8144 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8145 level);
faa2dbf0
JB
8146 if (!IS_ERR(buf))
8147 root->alloc_bytenr += blocksize;
8148 return buf;
8149 }
fccb84c9 8150
f0486c68
YZ
8151 block_rsv = use_block_rsv(trans, root, blocksize);
8152 if (IS_ERR(block_rsv))
8153 return ERR_CAST(block_rsv);
8154
00361589 8155 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 8156 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8157 if (ret)
8158 goto out_unuse;
55c69072 8159
fe864576 8160 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8161 if (IS_ERR(buf)) {
8162 ret = PTR_ERR(buf);
8163 goto out_free_reserved;
8164 }
f0486c68
YZ
8165
8166 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8167 if (parent == 0)
8168 parent = ins.objectid;
8169 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8170 } else
8171 BUG_ON(parent > 0);
8172
8173 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8174 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8175 if (!extent_op) {
8176 ret = -ENOMEM;
8177 goto out_free_buf;
8178 }
f0486c68
YZ
8179 if (key)
8180 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8181 else
8182 memset(&extent_op->key, 0, sizeof(extent_op->key));
8183 extent_op->flags_to_set = flags;
35b3ad50
DS
8184 extent_op->update_key = skinny_metadata ? false : true;
8185 extent_op->update_flags = true;
8186 extent_op->is_data = false;
b1c79e09 8187 extent_op->level = level;
f0486c68 8188
66d7e7f0 8189 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8190 ins.objectid, ins.offset,
8191 parent, root_objectid, level,
8192 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8193 extent_op);
67b7859e
OS
8194 if (ret)
8195 goto out_free_delayed;
f0486c68 8196 }
fec577fb 8197 return buf;
67b7859e
OS
8198
8199out_free_delayed:
8200 btrfs_free_delayed_extent_op(extent_op);
8201out_free_buf:
8202 free_extent_buffer(buf);
8203out_free_reserved:
8204 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8205out_unuse:
8206 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8207 return ERR_PTR(ret);
fec577fb 8208}
a28ec197 8209
2c47e605
YZ
8210struct walk_control {
8211 u64 refs[BTRFS_MAX_LEVEL];
8212 u64 flags[BTRFS_MAX_LEVEL];
8213 struct btrfs_key update_progress;
8214 int stage;
8215 int level;
8216 int shared_level;
8217 int update_ref;
8218 int keep_locks;
1c4850e2
YZ
8219 int reada_slot;
8220 int reada_count;
66d7e7f0 8221 int for_reloc;
2c47e605
YZ
8222};
8223
8224#define DROP_REFERENCE 1
8225#define UPDATE_BACKREF 2
8226
1c4850e2
YZ
8227static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8228 struct btrfs_root *root,
8229 struct walk_control *wc,
8230 struct btrfs_path *path)
6407bf6d 8231{
1c4850e2
YZ
8232 u64 bytenr;
8233 u64 generation;
8234 u64 refs;
94fcca9f 8235 u64 flags;
5d4f98a2 8236 u32 nritems;
1c4850e2
YZ
8237 u32 blocksize;
8238 struct btrfs_key key;
8239 struct extent_buffer *eb;
6407bf6d 8240 int ret;
1c4850e2
YZ
8241 int slot;
8242 int nread = 0;
6407bf6d 8243
1c4850e2
YZ
8244 if (path->slots[wc->level] < wc->reada_slot) {
8245 wc->reada_count = wc->reada_count * 2 / 3;
8246 wc->reada_count = max(wc->reada_count, 2);
8247 } else {
8248 wc->reada_count = wc->reada_count * 3 / 2;
8249 wc->reada_count = min_t(int, wc->reada_count,
8250 BTRFS_NODEPTRS_PER_BLOCK(root));
8251 }
7bb86316 8252
1c4850e2
YZ
8253 eb = path->nodes[wc->level];
8254 nritems = btrfs_header_nritems(eb);
707e8a07 8255 blocksize = root->nodesize;
bd56b302 8256
1c4850e2
YZ
8257 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8258 if (nread >= wc->reada_count)
8259 break;
bd56b302 8260
2dd3e67b 8261 cond_resched();
1c4850e2
YZ
8262 bytenr = btrfs_node_blockptr(eb, slot);
8263 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8264
1c4850e2
YZ
8265 if (slot == path->slots[wc->level])
8266 goto reada;
5d4f98a2 8267
1c4850e2
YZ
8268 if (wc->stage == UPDATE_BACKREF &&
8269 generation <= root->root_key.offset)
bd56b302
CM
8270 continue;
8271
94fcca9f 8272 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8273 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8274 wc->level - 1, 1, &refs,
8275 &flags);
79787eaa
JM
8276 /* We don't care about errors in readahead. */
8277 if (ret < 0)
8278 continue;
94fcca9f
YZ
8279 BUG_ON(refs == 0);
8280
1c4850e2 8281 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8282 if (refs == 1)
8283 goto reada;
bd56b302 8284
94fcca9f
YZ
8285 if (wc->level == 1 &&
8286 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8287 continue;
1c4850e2
YZ
8288 if (!wc->update_ref ||
8289 generation <= root->root_key.offset)
8290 continue;
8291 btrfs_node_key_to_cpu(eb, &key, slot);
8292 ret = btrfs_comp_cpu_keys(&key,
8293 &wc->update_progress);
8294 if (ret < 0)
8295 continue;
94fcca9f
YZ
8296 } else {
8297 if (wc->level == 1 &&
8298 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8299 continue;
6407bf6d 8300 }
1c4850e2 8301reada:
d3e46fea 8302 readahead_tree_block(root, bytenr);
1c4850e2 8303 nread++;
20524f02 8304 }
1c4850e2 8305 wc->reada_slot = slot;
20524f02 8306}
2c47e605 8307
0ed4792a 8308/*
82bd101b
MF
8309 * These may not be seen by the usual inc/dec ref code so we have to
8310 * add them here.
0ed4792a 8311 */
82bd101b
MF
8312static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8313 struct btrfs_root *root, u64 bytenr,
8314 u64 num_bytes)
8315{
8316 struct btrfs_qgroup_extent_record *qrecord;
8317 struct btrfs_delayed_ref_root *delayed_refs;
8318
8319 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8320 if (!qrecord)
8321 return -ENOMEM;
8322
8323 qrecord->bytenr = bytenr;
8324 qrecord->num_bytes = num_bytes;
8325 qrecord->old_roots = NULL;
8326
8327 delayed_refs = &trans->transaction->delayed_refs;
8328 spin_lock(&delayed_refs->lock);
8329 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8330 kfree(qrecord);
8331 spin_unlock(&delayed_refs->lock);
8332
8333 return 0;
8334}
8335
1152651a
MF
8336static int account_leaf_items(struct btrfs_trans_handle *trans,
8337 struct btrfs_root *root,
8338 struct extent_buffer *eb)
8339{
8340 int nr = btrfs_header_nritems(eb);
82bd101b 8341 int i, extent_type, ret;
1152651a
MF
8342 struct btrfs_key key;
8343 struct btrfs_file_extent_item *fi;
8344 u64 bytenr, num_bytes;
8345
82bd101b
MF
8346 /* We can be called directly from walk_up_proc() */
8347 if (!root->fs_info->quota_enabled)
8348 return 0;
8349
1152651a
MF
8350 for (i = 0; i < nr; i++) {
8351 btrfs_item_key_to_cpu(eb, &key, i);
8352
8353 if (key.type != BTRFS_EXTENT_DATA_KEY)
8354 continue;
8355
8356 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8357 /* filter out non qgroup-accountable extents */
8358 extent_type = btrfs_file_extent_type(eb, fi);
8359
8360 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8361 continue;
8362
8363 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8364 if (!bytenr)
8365 continue;
8366
8367 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b
MF
8368
8369 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8370 if (ret)
8371 return ret;
1152651a
MF
8372 }
8373 return 0;
8374}
8375
8376/*
8377 * Walk up the tree from the bottom, freeing leaves and any interior
8378 * nodes which have had all slots visited. If a node (leaf or
8379 * interior) is freed, the node above it will have it's slot
8380 * incremented. The root node will never be freed.
8381 *
8382 * At the end of this function, we should have a path which has all
8383 * slots incremented to the next position for a search. If we need to
8384 * read a new node it will be NULL and the node above it will have the
8385 * correct slot selected for a later read.
8386 *
8387 * If we increment the root nodes slot counter past the number of
8388 * elements, 1 is returned to signal completion of the search.
8389 */
8390static int adjust_slots_upwards(struct btrfs_root *root,
8391 struct btrfs_path *path, int root_level)
8392{
8393 int level = 0;
8394 int nr, slot;
8395 struct extent_buffer *eb;
8396
8397 if (root_level == 0)
8398 return 1;
8399
8400 while (level <= root_level) {
8401 eb = path->nodes[level];
8402 nr = btrfs_header_nritems(eb);
8403 path->slots[level]++;
8404 slot = path->slots[level];
8405 if (slot >= nr || level == 0) {
8406 /*
8407 * Don't free the root - we will detect this
8408 * condition after our loop and return a
8409 * positive value for caller to stop walking the tree.
8410 */
8411 if (level != root_level) {
8412 btrfs_tree_unlock_rw(eb, path->locks[level]);
8413 path->locks[level] = 0;
8414
8415 free_extent_buffer(eb);
8416 path->nodes[level] = NULL;
8417 path->slots[level] = 0;
8418 }
8419 } else {
8420 /*
8421 * We have a valid slot to walk back down
8422 * from. Stop here so caller can process these
8423 * new nodes.
8424 */
8425 break;
8426 }
8427
8428 level++;
8429 }
8430
8431 eb = path->nodes[root_level];
8432 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8433 return 1;
8434
8435 return 0;
8436}
8437
8438/*
8439 * root_eb is the subtree root and is locked before this function is called.
8440 */
8441static int account_shared_subtree(struct btrfs_trans_handle *trans,
8442 struct btrfs_root *root,
8443 struct extent_buffer *root_eb,
8444 u64 root_gen,
8445 int root_level)
8446{
8447 int ret = 0;
8448 int level;
8449 struct extent_buffer *eb = root_eb;
8450 struct btrfs_path *path = NULL;
8451
8452 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8453 BUG_ON(root_eb == NULL);
8454
8455 if (!root->fs_info->quota_enabled)
8456 return 0;
8457
8458 if (!extent_buffer_uptodate(root_eb)) {
8459 ret = btrfs_read_buffer(root_eb, root_gen);
8460 if (ret)
8461 goto out;
8462 }
8463
8464 if (root_level == 0) {
8465 ret = account_leaf_items(trans, root, root_eb);
8466 goto out;
8467 }
8468
8469 path = btrfs_alloc_path();
8470 if (!path)
8471 return -ENOMEM;
8472
8473 /*
8474 * Walk down the tree. Missing extent blocks are filled in as
8475 * we go. Metadata is accounted every time we read a new
8476 * extent block.
8477 *
8478 * When we reach a leaf, we account for file extent items in it,
8479 * walk back up the tree (adjusting slot pointers as we go)
8480 * and restart the search process.
8481 */
8482 extent_buffer_get(root_eb); /* For path */
8483 path->nodes[root_level] = root_eb;
8484 path->slots[root_level] = 0;
8485 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8486walk_down:
8487 level = root_level;
8488 while (level >= 0) {
8489 if (path->nodes[level] == NULL) {
1152651a
MF
8490 int parent_slot;
8491 u64 child_gen;
8492 u64 child_bytenr;
8493
8494 /* We need to get child blockptr/gen from
8495 * parent before we can read it. */
8496 eb = path->nodes[level + 1];
8497 parent_slot = path->slots[level + 1];
8498 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8499 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8500
ce86cd59 8501 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8502 if (IS_ERR(eb)) {
8503 ret = PTR_ERR(eb);
8504 goto out;
8505 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8506 free_extent_buffer(eb);
64c043de 8507 ret = -EIO;
1152651a
MF
8508 goto out;
8509 }
8510
8511 path->nodes[level] = eb;
8512 path->slots[level] = 0;
8513
8514 btrfs_tree_read_lock(eb);
8515 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8516 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b
MF
8517
8518 ret = record_one_subtree_extent(trans, root, child_bytenr,
8519 root->nodesize);
8520 if (ret)
8521 goto out;
1152651a
MF
8522 }
8523
8524 if (level == 0) {
8525 ret = account_leaf_items(trans, root, path->nodes[level]);
8526 if (ret)
8527 goto out;
8528
8529 /* Nonzero return here means we completed our search */
8530 ret = adjust_slots_upwards(root, path, root_level);
8531 if (ret)
8532 break;
8533
8534 /* Restart search with new slots */
8535 goto walk_down;
8536 }
8537
8538 level--;
8539 }
8540
8541 ret = 0;
8542out:
8543 btrfs_free_path(path);
8544
8545 return ret;
8546}
8547
f82d02d9 8548/*
2c016dc2 8549 * helper to process tree block while walking down the tree.
2c47e605 8550 *
2c47e605
YZ
8551 * when wc->stage == UPDATE_BACKREF, this function updates
8552 * back refs for pointers in the block.
8553 *
8554 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8555 */
2c47e605 8556static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8557 struct btrfs_root *root,
2c47e605 8558 struct btrfs_path *path,
94fcca9f 8559 struct walk_control *wc, int lookup_info)
f82d02d9 8560{
2c47e605
YZ
8561 int level = wc->level;
8562 struct extent_buffer *eb = path->nodes[level];
2c47e605 8563 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8564 int ret;
8565
2c47e605
YZ
8566 if (wc->stage == UPDATE_BACKREF &&
8567 btrfs_header_owner(eb) != root->root_key.objectid)
8568 return 1;
f82d02d9 8569
2c47e605
YZ
8570 /*
8571 * when reference count of tree block is 1, it won't increase
8572 * again. once full backref flag is set, we never clear it.
8573 */
94fcca9f
YZ
8574 if (lookup_info &&
8575 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8576 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8577 BUG_ON(!path->locks[level]);
8578 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8579 eb->start, level, 1,
2c47e605
YZ
8580 &wc->refs[level],
8581 &wc->flags[level]);
79787eaa
JM
8582 BUG_ON(ret == -ENOMEM);
8583 if (ret)
8584 return ret;
2c47e605
YZ
8585 BUG_ON(wc->refs[level] == 0);
8586 }
5d4f98a2 8587
2c47e605
YZ
8588 if (wc->stage == DROP_REFERENCE) {
8589 if (wc->refs[level] > 1)
8590 return 1;
f82d02d9 8591
2c47e605 8592 if (path->locks[level] && !wc->keep_locks) {
bd681513 8593 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8594 path->locks[level] = 0;
8595 }
8596 return 0;
8597 }
f82d02d9 8598
2c47e605
YZ
8599 /* wc->stage == UPDATE_BACKREF */
8600 if (!(wc->flags[level] & flag)) {
8601 BUG_ON(!path->locks[level]);
e339a6b0 8602 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8603 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8604 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8605 BUG_ON(ret); /* -ENOMEM */
2c47e605 8606 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8607 eb->len, flag,
8608 btrfs_header_level(eb), 0);
79787eaa 8609 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8610 wc->flags[level] |= flag;
8611 }
8612
8613 /*
8614 * the block is shared by multiple trees, so it's not good to
8615 * keep the tree lock
8616 */
8617 if (path->locks[level] && level > 0) {
bd681513 8618 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8619 path->locks[level] = 0;
8620 }
8621 return 0;
8622}
8623
1c4850e2 8624/*
2c016dc2 8625 * helper to process tree block pointer.
1c4850e2
YZ
8626 *
8627 * when wc->stage == DROP_REFERENCE, this function checks
8628 * reference count of the block pointed to. if the block
8629 * is shared and we need update back refs for the subtree
8630 * rooted at the block, this function changes wc->stage to
8631 * UPDATE_BACKREF. if the block is shared and there is no
8632 * need to update back, this function drops the reference
8633 * to the block.
8634 *
8635 * NOTE: return value 1 means we should stop walking down.
8636 */
8637static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8638 struct btrfs_root *root,
8639 struct btrfs_path *path,
94fcca9f 8640 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8641{
8642 u64 bytenr;
8643 u64 generation;
8644 u64 parent;
8645 u32 blocksize;
8646 struct btrfs_key key;
8647 struct extent_buffer *next;
8648 int level = wc->level;
8649 int reada = 0;
8650 int ret = 0;
1152651a 8651 bool need_account = false;
1c4850e2
YZ
8652
8653 generation = btrfs_node_ptr_generation(path->nodes[level],
8654 path->slots[level]);
8655 /*
8656 * if the lower level block was created before the snapshot
8657 * was created, we know there is no need to update back refs
8658 * for the subtree
8659 */
8660 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8661 generation <= root->root_key.offset) {
8662 *lookup_info = 1;
1c4850e2 8663 return 1;
94fcca9f 8664 }
1c4850e2
YZ
8665
8666 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8667 blocksize = root->nodesize;
1c4850e2 8668
01d58472 8669 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8670 if (!next) {
a83fffb7 8671 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8672 if (IS_ERR(next))
8673 return PTR_ERR(next);
8674
b2aaaa3b
JB
8675 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8676 level - 1);
1c4850e2
YZ
8677 reada = 1;
8678 }
8679 btrfs_tree_lock(next);
8680 btrfs_set_lock_blocking(next);
8681
3173a18f 8682 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8683 &wc->refs[level - 1],
8684 &wc->flags[level - 1]);
79787eaa
JM
8685 if (ret < 0) {
8686 btrfs_tree_unlock(next);
8687 return ret;
8688 }
8689
c2cf52eb
SK
8690 if (unlikely(wc->refs[level - 1] == 0)) {
8691 btrfs_err(root->fs_info, "Missing references.");
8692 BUG();
8693 }
94fcca9f 8694 *lookup_info = 0;
1c4850e2 8695
94fcca9f 8696 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8697 if (wc->refs[level - 1] > 1) {
1152651a 8698 need_account = true;
94fcca9f
YZ
8699 if (level == 1 &&
8700 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8701 goto skip;
8702
1c4850e2
YZ
8703 if (!wc->update_ref ||
8704 generation <= root->root_key.offset)
8705 goto skip;
8706
8707 btrfs_node_key_to_cpu(path->nodes[level], &key,
8708 path->slots[level]);
8709 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8710 if (ret < 0)
8711 goto skip;
8712
8713 wc->stage = UPDATE_BACKREF;
8714 wc->shared_level = level - 1;
8715 }
94fcca9f
YZ
8716 } else {
8717 if (level == 1 &&
8718 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8719 goto skip;
1c4850e2
YZ
8720 }
8721
b9fab919 8722 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8723 btrfs_tree_unlock(next);
8724 free_extent_buffer(next);
8725 next = NULL;
94fcca9f 8726 *lookup_info = 1;
1c4850e2
YZ
8727 }
8728
8729 if (!next) {
8730 if (reada && level == 1)
8731 reada_walk_down(trans, root, wc, path);
ce86cd59 8732 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8733 if (IS_ERR(next)) {
8734 return PTR_ERR(next);
8735 } else if (!extent_buffer_uptodate(next)) {
416bc658 8736 free_extent_buffer(next);
97d9a8a4 8737 return -EIO;
416bc658 8738 }
1c4850e2
YZ
8739 btrfs_tree_lock(next);
8740 btrfs_set_lock_blocking(next);
8741 }
8742
8743 level--;
8744 BUG_ON(level != btrfs_header_level(next));
8745 path->nodes[level] = next;
8746 path->slots[level] = 0;
bd681513 8747 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8748 wc->level = level;
8749 if (wc->level == 1)
8750 wc->reada_slot = 0;
8751 return 0;
8752skip:
8753 wc->refs[level - 1] = 0;
8754 wc->flags[level - 1] = 0;
94fcca9f
YZ
8755 if (wc->stage == DROP_REFERENCE) {
8756 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8757 parent = path->nodes[level]->start;
8758 } else {
8759 BUG_ON(root->root_key.objectid !=
8760 btrfs_header_owner(path->nodes[level]));
8761 parent = 0;
8762 }
1c4850e2 8763
1152651a
MF
8764 if (need_account) {
8765 ret = account_shared_subtree(trans, root, next,
8766 generation, level - 1);
8767 if (ret) {
94647322
DS
8768 btrfs_err_rl(root->fs_info,
8769 "Error "
1152651a 8770 "%d accounting shared subtree. Quota "
94647322
DS
8771 "is out of sync, rescan required.",
8772 ret);
1152651a
MF
8773 }
8774 }
94fcca9f 8775 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8776 root->root_key.objectid, level - 1, 0);
79787eaa 8777 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8778 }
1c4850e2
YZ
8779 btrfs_tree_unlock(next);
8780 free_extent_buffer(next);
94fcca9f 8781 *lookup_info = 1;
1c4850e2
YZ
8782 return 1;
8783}
8784
2c47e605 8785/*
2c016dc2 8786 * helper to process tree block while walking up the tree.
2c47e605
YZ
8787 *
8788 * when wc->stage == DROP_REFERENCE, this function drops
8789 * reference count on the block.
8790 *
8791 * when wc->stage == UPDATE_BACKREF, this function changes
8792 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8793 * to UPDATE_BACKREF previously while processing the block.
8794 *
8795 * NOTE: return value 1 means we should stop walking up.
8796 */
8797static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8798 struct btrfs_root *root,
8799 struct btrfs_path *path,
8800 struct walk_control *wc)
8801{
f0486c68 8802 int ret;
2c47e605
YZ
8803 int level = wc->level;
8804 struct extent_buffer *eb = path->nodes[level];
8805 u64 parent = 0;
8806
8807 if (wc->stage == UPDATE_BACKREF) {
8808 BUG_ON(wc->shared_level < level);
8809 if (level < wc->shared_level)
8810 goto out;
8811
2c47e605
YZ
8812 ret = find_next_key(path, level + 1, &wc->update_progress);
8813 if (ret > 0)
8814 wc->update_ref = 0;
8815
8816 wc->stage = DROP_REFERENCE;
8817 wc->shared_level = -1;
8818 path->slots[level] = 0;
8819
8820 /*
8821 * check reference count again if the block isn't locked.
8822 * we should start walking down the tree again if reference
8823 * count is one.
8824 */
8825 if (!path->locks[level]) {
8826 BUG_ON(level == 0);
8827 btrfs_tree_lock(eb);
8828 btrfs_set_lock_blocking(eb);
bd681513 8829 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8830
8831 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8832 eb->start, level, 1,
2c47e605
YZ
8833 &wc->refs[level],
8834 &wc->flags[level]);
79787eaa
JM
8835 if (ret < 0) {
8836 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8837 path->locks[level] = 0;
79787eaa
JM
8838 return ret;
8839 }
2c47e605
YZ
8840 BUG_ON(wc->refs[level] == 0);
8841 if (wc->refs[level] == 1) {
bd681513 8842 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8843 path->locks[level] = 0;
2c47e605
YZ
8844 return 1;
8845 }
f82d02d9 8846 }
2c47e605 8847 }
f82d02d9 8848
2c47e605
YZ
8849 /* wc->stage == DROP_REFERENCE */
8850 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8851
2c47e605
YZ
8852 if (wc->refs[level] == 1) {
8853 if (level == 0) {
8854 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8855 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8856 else
e339a6b0 8857 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8858 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8859 ret = account_leaf_items(trans, root, eb);
8860 if (ret) {
94647322
DS
8861 btrfs_err_rl(root->fs_info,
8862 "error "
1152651a 8863 "%d accounting leaf items. Quota "
94647322
DS
8864 "is out of sync, rescan required.",
8865 ret);
1152651a 8866 }
2c47e605
YZ
8867 }
8868 /* make block locked assertion in clean_tree_block happy */
8869 if (!path->locks[level] &&
8870 btrfs_header_generation(eb) == trans->transid) {
8871 btrfs_tree_lock(eb);
8872 btrfs_set_lock_blocking(eb);
bd681513 8873 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8874 }
01d58472 8875 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8876 }
8877
8878 if (eb == root->node) {
8879 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8880 parent = eb->start;
8881 else
8882 BUG_ON(root->root_key.objectid !=
8883 btrfs_header_owner(eb));
8884 } else {
8885 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8886 parent = path->nodes[level + 1]->start;
8887 else
8888 BUG_ON(root->root_key.objectid !=
8889 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8890 }
f82d02d9 8891
5581a51a 8892 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8893out:
8894 wc->refs[level] = 0;
8895 wc->flags[level] = 0;
f0486c68 8896 return 0;
2c47e605
YZ
8897}
8898
8899static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8900 struct btrfs_root *root,
8901 struct btrfs_path *path,
8902 struct walk_control *wc)
8903{
2c47e605 8904 int level = wc->level;
94fcca9f 8905 int lookup_info = 1;
2c47e605
YZ
8906 int ret;
8907
8908 while (level >= 0) {
94fcca9f 8909 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8910 if (ret > 0)
8911 break;
8912
8913 if (level == 0)
8914 break;
8915
7a7965f8
YZ
8916 if (path->slots[level] >=
8917 btrfs_header_nritems(path->nodes[level]))
8918 break;
8919
94fcca9f 8920 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8921 if (ret > 0) {
8922 path->slots[level]++;
8923 continue;
90d2c51d
MX
8924 } else if (ret < 0)
8925 return ret;
1c4850e2 8926 level = wc->level;
f82d02d9 8927 }
f82d02d9
YZ
8928 return 0;
8929}
8930
d397712b 8931static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8932 struct btrfs_root *root,
f82d02d9 8933 struct btrfs_path *path,
2c47e605 8934 struct walk_control *wc, int max_level)
20524f02 8935{
2c47e605 8936 int level = wc->level;
20524f02 8937 int ret;
9f3a7427 8938
2c47e605
YZ
8939 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8940 while (level < max_level && path->nodes[level]) {
8941 wc->level = level;
8942 if (path->slots[level] + 1 <
8943 btrfs_header_nritems(path->nodes[level])) {
8944 path->slots[level]++;
20524f02
CM
8945 return 0;
8946 } else {
2c47e605
YZ
8947 ret = walk_up_proc(trans, root, path, wc);
8948 if (ret > 0)
8949 return 0;
bd56b302 8950
2c47e605 8951 if (path->locks[level]) {
bd681513
CM
8952 btrfs_tree_unlock_rw(path->nodes[level],
8953 path->locks[level]);
2c47e605 8954 path->locks[level] = 0;
f82d02d9 8955 }
2c47e605
YZ
8956 free_extent_buffer(path->nodes[level]);
8957 path->nodes[level] = NULL;
8958 level++;
20524f02
CM
8959 }
8960 }
8961 return 1;
8962}
8963
9aca1d51 8964/*
2c47e605
YZ
8965 * drop a subvolume tree.
8966 *
8967 * this function traverses the tree freeing any blocks that only
8968 * referenced by the tree.
8969 *
8970 * when a shared tree block is found. this function decreases its
8971 * reference count by one. if update_ref is true, this function
8972 * also make sure backrefs for the shared block and all lower level
8973 * blocks are properly updated.
9d1a2a3a
DS
8974 *
8975 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8976 */
2c536799 8977int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8978 struct btrfs_block_rsv *block_rsv, int update_ref,
8979 int for_reloc)
20524f02 8980{
5caf2a00 8981 struct btrfs_path *path;
2c47e605
YZ
8982 struct btrfs_trans_handle *trans;
8983 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8984 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8985 struct walk_control *wc;
8986 struct btrfs_key key;
8987 int err = 0;
8988 int ret;
8989 int level;
d29a9f62 8990 bool root_dropped = false;
20524f02 8991
1152651a
MF
8992 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8993
5caf2a00 8994 path = btrfs_alloc_path();
cb1b69f4
TI
8995 if (!path) {
8996 err = -ENOMEM;
8997 goto out;
8998 }
20524f02 8999
2c47e605 9000 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9001 if (!wc) {
9002 btrfs_free_path(path);
cb1b69f4
TI
9003 err = -ENOMEM;
9004 goto out;
38a1a919 9005 }
2c47e605 9006
a22285a6 9007 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9008 if (IS_ERR(trans)) {
9009 err = PTR_ERR(trans);
9010 goto out_free;
9011 }
98d5dc13 9012
3fd0a558
YZ
9013 if (block_rsv)
9014 trans->block_rsv = block_rsv;
2c47e605 9015
9f3a7427 9016 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9017 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9018 path->nodes[level] = btrfs_lock_root_node(root);
9019 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9020 path->slots[level] = 0;
bd681513 9021 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9022 memset(&wc->update_progress, 0,
9023 sizeof(wc->update_progress));
9f3a7427 9024 } else {
9f3a7427 9025 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9026 memcpy(&wc->update_progress, &key,
9027 sizeof(wc->update_progress));
9028
6702ed49 9029 level = root_item->drop_level;
2c47e605 9030 BUG_ON(level == 0);
6702ed49 9031 path->lowest_level = level;
2c47e605
YZ
9032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9033 path->lowest_level = 0;
9034 if (ret < 0) {
9035 err = ret;
79787eaa 9036 goto out_end_trans;
9f3a7427 9037 }
1c4850e2 9038 WARN_ON(ret > 0);
2c47e605 9039
7d9eb12c
CM
9040 /*
9041 * unlock our path, this is safe because only this
9042 * function is allowed to delete this snapshot
9043 */
5d4f98a2 9044 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9045
9046 level = btrfs_header_level(root->node);
9047 while (1) {
9048 btrfs_tree_lock(path->nodes[level]);
9049 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9050 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9051
9052 ret = btrfs_lookup_extent_info(trans, root,
9053 path->nodes[level]->start,
3173a18f 9054 level, 1, &wc->refs[level],
2c47e605 9055 &wc->flags[level]);
79787eaa
JM
9056 if (ret < 0) {
9057 err = ret;
9058 goto out_end_trans;
9059 }
2c47e605
YZ
9060 BUG_ON(wc->refs[level] == 0);
9061
9062 if (level == root_item->drop_level)
9063 break;
9064
9065 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9066 path->locks[level] = 0;
2c47e605
YZ
9067 WARN_ON(wc->refs[level] != 1);
9068 level--;
9069 }
9f3a7427 9070 }
2c47e605
YZ
9071
9072 wc->level = level;
9073 wc->shared_level = -1;
9074 wc->stage = DROP_REFERENCE;
9075 wc->update_ref = update_ref;
9076 wc->keep_locks = 0;
66d7e7f0 9077 wc->for_reloc = for_reloc;
1c4850e2 9078 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9079
d397712b 9080 while (1) {
9d1a2a3a 9081
2c47e605
YZ
9082 ret = walk_down_tree(trans, root, path, wc);
9083 if (ret < 0) {
9084 err = ret;
20524f02 9085 break;
2c47e605 9086 }
9aca1d51 9087
2c47e605
YZ
9088 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9089 if (ret < 0) {
9090 err = ret;
20524f02 9091 break;
2c47e605
YZ
9092 }
9093
9094 if (ret > 0) {
9095 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9096 break;
9097 }
2c47e605
YZ
9098
9099 if (wc->stage == DROP_REFERENCE) {
9100 level = wc->level;
9101 btrfs_node_key(path->nodes[level],
9102 &root_item->drop_progress,
9103 path->slots[level]);
9104 root_item->drop_level = level;
9105 }
9106
9107 BUG_ON(wc->level == 0);
3c8f2422
JB
9108 if (btrfs_should_end_transaction(trans, tree_root) ||
9109 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9110 ret = btrfs_update_root(trans, tree_root,
9111 &root->root_key,
9112 root_item);
79787eaa
JM
9113 if (ret) {
9114 btrfs_abort_transaction(trans, tree_root, ret);
9115 err = ret;
9116 goto out_end_trans;
9117 }
2c47e605 9118
3fd0a558 9119 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9120 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 9121 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
9122 err = -EAGAIN;
9123 goto out_free;
9124 }
9125
a22285a6 9126 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9127 if (IS_ERR(trans)) {
9128 err = PTR_ERR(trans);
9129 goto out_free;
9130 }
3fd0a558
YZ
9131 if (block_rsv)
9132 trans->block_rsv = block_rsv;
c3e69d58 9133 }
20524f02 9134 }
b3b4aa74 9135 btrfs_release_path(path);
79787eaa
JM
9136 if (err)
9137 goto out_end_trans;
2c47e605
YZ
9138
9139 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
9140 if (ret) {
9141 btrfs_abort_transaction(trans, tree_root, ret);
9142 goto out_end_trans;
9143 }
2c47e605 9144
76dda93c 9145 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9146 ret = btrfs_find_root(tree_root, &root->root_key, path,
9147 NULL, NULL);
79787eaa
JM
9148 if (ret < 0) {
9149 btrfs_abort_transaction(trans, tree_root, ret);
9150 err = ret;
9151 goto out_end_trans;
9152 } else if (ret > 0) {
84cd948c
JB
9153 /* if we fail to delete the orphan item this time
9154 * around, it'll get picked up the next time.
9155 *
9156 * The most common failure here is just -ENOENT.
9157 */
9158 btrfs_del_orphan_item(trans, tree_root,
9159 root->root_key.objectid);
76dda93c
YZ
9160 }
9161 }
9162
27cdeb70 9163 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9164 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9165 } else {
9166 free_extent_buffer(root->node);
9167 free_extent_buffer(root->commit_root);
b0feb9d9 9168 btrfs_put_fs_root(root);
76dda93c 9169 }
d29a9f62 9170 root_dropped = true;
79787eaa 9171out_end_trans:
3fd0a558 9172 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9173out_free:
2c47e605 9174 kfree(wc);
5caf2a00 9175 btrfs_free_path(path);
cb1b69f4 9176out:
d29a9f62
JB
9177 /*
9178 * So if we need to stop dropping the snapshot for whatever reason we
9179 * need to make sure to add it back to the dead root list so that we
9180 * keep trying to do the work later. This also cleans up roots if we
9181 * don't have it in the radix (like when we recover after a power fail
9182 * or unmount) so we don't leak memory.
9183 */
b37b39cd 9184 if (!for_reloc && root_dropped == false)
d29a9f62 9185 btrfs_add_dead_root(root);
90515e7f 9186 if (err && err != -EAGAIN)
34d97007 9187 btrfs_handle_fs_error(root->fs_info, err, NULL);
2c536799 9188 return err;
20524f02 9189}
9078a3e1 9190
2c47e605
YZ
9191/*
9192 * drop subtree rooted at tree block 'node'.
9193 *
9194 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9195 * only used by relocation code
2c47e605 9196 */
f82d02d9
YZ
9197int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9198 struct btrfs_root *root,
9199 struct extent_buffer *node,
9200 struct extent_buffer *parent)
9201{
9202 struct btrfs_path *path;
2c47e605 9203 struct walk_control *wc;
f82d02d9
YZ
9204 int level;
9205 int parent_level;
9206 int ret = 0;
9207 int wret;
9208
2c47e605
YZ
9209 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9210
f82d02d9 9211 path = btrfs_alloc_path();
db5b493a
TI
9212 if (!path)
9213 return -ENOMEM;
f82d02d9 9214
2c47e605 9215 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9216 if (!wc) {
9217 btrfs_free_path(path);
9218 return -ENOMEM;
9219 }
2c47e605 9220
b9447ef8 9221 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9222 parent_level = btrfs_header_level(parent);
9223 extent_buffer_get(parent);
9224 path->nodes[parent_level] = parent;
9225 path->slots[parent_level] = btrfs_header_nritems(parent);
9226
b9447ef8 9227 btrfs_assert_tree_locked(node);
f82d02d9 9228 level = btrfs_header_level(node);
f82d02d9
YZ
9229 path->nodes[level] = node;
9230 path->slots[level] = 0;
bd681513 9231 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9232
9233 wc->refs[parent_level] = 1;
9234 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9235 wc->level = level;
9236 wc->shared_level = -1;
9237 wc->stage = DROP_REFERENCE;
9238 wc->update_ref = 0;
9239 wc->keep_locks = 1;
66d7e7f0 9240 wc->for_reloc = 1;
1c4850e2 9241 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9242
9243 while (1) {
2c47e605
YZ
9244 wret = walk_down_tree(trans, root, path, wc);
9245 if (wret < 0) {
f82d02d9 9246 ret = wret;
f82d02d9 9247 break;
2c47e605 9248 }
f82d02d9 9249
2c47e605 9250 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9251 if (wret < 0)
9252 ret = wret;
9253 if (wret != 0)
9254 break;
9255 }
9256
2c47e605 9257 kfree(wc);
f82d02d9
YZ
9258 btrfs_free_path(path);
9259 return ret;
9260}
9261
ec44a35c
CM
9262static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9263{
9264 u64 num_devices;
fc67c450 9265 u64 stripped;
e4d8ec0f 9266
fc67c450
ID
9267 /*
9268 * if restripe for this chunk_type is on pick target profile and
9269 * return, otherwise do the usual balance
9270 */
9271 stripped = get_restripe_target(root->fs_info, flags);
9272 if (stripped)
9273 return extended_to_chunk(stripped);
e4d8ec0f 9274
95669976 9275 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9276
fc67c450 9277 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9278 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9279 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9280
ec44a35c
CM
9281 if (num_devices == 1) {
9282 stripped |= BTRFS_BLOCK_GROUP_DUP;
9283 stripped = flags & ~stripped;
9284
9285 /* turn raid0 into single device chunks */
9286 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9287 return stripped;
9288
9289 /* turn mirroring into duplication */
9290 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9291 BTRFS_BLOCK_GROUP_RAID10))
9292 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9293 } else {
9294 /* they already had raid on here, just return */
ec44a35c
CM
9295 if (flags & stripped)
9296 return flags;
9297
9298 stripped |= BTRFS_BLOCK_GROUP_DUP;
9299 stripped = flags & ~stripped;
9300
9301 /* switch duplicated blocks with raid1 */
9302 if (flags & BTRFS_BLOCK_GROUP_DUP)
9303 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9304
e3176ca2 9305 /* this is drive concat, leave it alone */
ec44a35c 9306 }
e3176ca2 9307
ec44a35c
CM
9308 return flags;
9309}
9310
868f401a 9311static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9312{
f0486c68
YZ
9313 struct btrfs_space_info *sinfo = cache->space_info;
9314 u64 num_bytes;
199c36ea 9315 u64 min_allocable_bytes;
f0486c68 9316 int ret = -ENOSPC;
0ef3e66b 9317
199c36ea
MX
9318 /*
9319 * We need some metadata space and system metadata space for
9320 * allocating chunks in some corner cases until we force to set
9321 * it to be readonly.
9322 */
9323 if ((sinfo->flags &
9324 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9325 !force)
ee22184b 9326 min_allocable_bytes = SZ_1M;
199c36ea
MX
9327 else
9328 min_allocable_bytes = 0;
9329
f0486c68
YZ
9330 spin_lock(&sinfo->lock);
9331 spin_lock(&cache->lock);
61cfea9b
W
9332
9333 if (cache->ro) {
868f401a 9334 cache->ro++;
61cfea9b
W
9335 ret = 0;
9336 goto out;
9337 }
9338
f0486c68
YZ
9339 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9340 cache->bytes_super - btrfs_block_group_used(&cache->item);
9341
9342 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9343 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9344 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9345 sinfo->bytes_readonly += num_bytes;
868f401a 9346 cache->ro++;
633c0aad 9347 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9348 ret = 0;
9349 }
61cfea9b 9350out:
f0486c68
YZ
9351 spin_unlock(&cache->lock);
9352 spin_unlock(&sinfo->lock);
9353 return ret;
9354}
7d9eb12c 9355
868f401a 9356int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9357 struct btrfs_block_group_cache *cache)
c286ac48 9358
f0486c68
YZ
9359{
9360 struct btrfs_trans_handle *trans;
9361 u64 alloc_flags;
9362 int ret;
7d9eb12c 9363
1bbc621e 9364again:
ff5714cc 9365 trans = btrfs_join_transaction(root);
79787eaa
JM
9366 if (IS_ERR(trans))
9367 return PTR_ERR(trans);
5d4f98a2 9368
1bbc621e
CM
9369 /*
9370 * we're not allowed to set block groups readonly after the dirty
9371 * block groups cache has started writing. If it already started,
9372 * back off and let this transaction commit
9373 */
9374 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9375 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9376 u64 transid = trans->transid;
9377
9378 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9379 btrfs_end_transaction(trans, root);
9380
9381 ret = btrfs_wait_for_commit(root, transid);
9382 if (ret)
9383 return ret;
9384 goto again;
9385 }
9386
153c35b6
CM
9387 /*
9388 * if we are changing raid levels, try to allocate a corresponding
9389 * block group with the new raid level.
9390 */
9391 alloc_flags = update_block_group_flags(root, cache->flags);
9392 if (alloc_flags != cache->flags) {
9393 ret = do_chunk_alloc(trans, root, alloc_flags,
9394 CHUNK_ALLOC_FORCE);
9395 /*
9396 * ENOSPC is allowed here, we may have enough space
9397 * already allocated at the new raid level to
9398 * carry on
9399 */
9400 if (ret == -ENOSPC)
9401 ret = 0;
9402 if (ret < 0)
9403 goto out;
9404 }
1bbc621e 9405
868f401a 9406 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9407 if (!ret)
9408 goto out;
9409 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9410 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9411 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9412 if (ret < 0)
9413 goto out;
868f401a 9414 ret = inc_block_group_ro(cache, 0);
f0486c68 9415out:
2f081088
SL
9416 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9417 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9418 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9419 check_system_chunk(trans, root, alloc_flags);
a9629596 9420 unlock_chunks(root->fs_info->chunk_root);
2f081088 9421 }
1bbc621e 9422 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9423
f0486c68
YZ
9424 btrfs_end_transaction(trans, root);
9425 return ret;
9426}
5d4f98a2 9427
c87f08ca
CM
9428int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9429 struct btrfs_root *root, u64 type)
9430{
9431 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9432 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9433 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9434}
9435
6d07bcec
MX
9436/*
9437 * helper to account the unused space of all the readonly block group in the
633c0aad 9438 * space_info. takes mirrors into account.
6d07bcec 9439 */
633c0aad 9440u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9441{
9442 struct btrfs_block_group_cache *block_group;
9443 u64 free_bytes = 0;
9444 int factor;
9445
01327610 9446 /* It's df, we don't care if it's racy */
633c0aad
JB
9447 if (list_empty(&sinfo->ro_bgs))
9448 return 0;
9449
9450 spin_lock(&sinfo->lock);
9451 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9452 spin_lock(&block_group->lock);
9453
9454 if (!block_group->ro) {
9455 spin_unlock(&block_group->lock);
9456 continue;
9457 }
9458
9459 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9460 BTRFS_BLOCK_GROUP_RAID10 |
9461 BTRFS_BLOCK_GROUP_DUP))
9462 factor = 2;
9463 else
9464 factor = 1;
9465
9466 free_bytes += (block_group->key.offset -
9467 btrfs_block_group_used(&block_group->item)) *
9468 factor;
9469
9470 spin_unlock(&block_group->lock);
9471 }
6d07bcec
MX
9472 spin_unlock(&sinfo->lock);
9473
9474 return free_bytes;
9475}
9476
868f401a 9477void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9478 struct btrfs_block_group_cache *cache)
5d4f98a2 9479{
f0486c68
YZ
9480 struct btrfs_space_info *sinfo = cache->space_info;
9481 u64 num_bytes;
9482
9483 BUG_ON(!cache->ro);
9484
9485 spin_lock(&sinfo->lock);
9486 spin_lock(&cache->lock);
868f401a
Z
9487 if (!--cache->ro) {
9488 num_bytes = cache->key.offset - cache->reserved -
9489 cache->pinned - cache->bytes_super -
9490 btrfs_block_group_used(&cache->item);
9491 sinfo->bytes_readonly -= num_bytes;
9492 list_del_init(&cache->ro_list);
9493 }
f0486c68
YZ
9494 spin_unlock(&cache->lock);
9495 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9496}
9497
ba1bf481
JB
9498/*
9499 * checks to see if its even possible to relocate this block group.
9500 *
9501 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9502 * ok to go ahead and try.
9503 */
9504int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9505{
ba1bf481
JB
9506 struct btrfs_block_group_cache *block_group;
9507 struct btrfs_space_info *space_info;
9508 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9509 struct btrfs_device *device;
6df9a95e 9510 struct btrfs_trans_handle *trans;
cdcb725c 9511 u64 min_free;
6719db6a
JB
9512 u64 dev_min = 1;
9513 u64 dev_nr = 0;
4a5e98f5 9514 u64 target;
0305bc27 9515 int debug;
cdcb725c 9516 int index;
ba1bf481
JB
9517 int full = 0;
9518 int ret = 0;
1a40e23b 9519
0305bc27
QW
9520 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9521
ba1bf481 9522 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9523
ba1bf481 9524 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9525 if (!block_group) {
9526 if (debug)
9527 btrfs_warn(root->fs_info,
9528 "can't find block group for bytenr %llu",
9529 bytenr);
ba1bf481 9530 return -1;
0305bc27 9531 }
1a40e23b 9532
cdcb725c 9533 min_free = btrfs_block_group_used(&block_group->item);
9534
ba1bf481 9535 /* no bytes used, we're good */
cdcb725c 9536 if (!min_free)
1a40e23b
ZY
9537 goto out;
9538
ba1bf481
JB
9539 space_info = block_group->space_info;
9540 spin_lock(&space_info->lock);
17d217fe 9541
ba1bf481 9542 full = space_info->full;
17d217fe 9543
ba1bf481
JB
9544 /*
9545 * if this is the last block group we have in this space, we can't
7ce618db
CM
9546 * relocate it unless we're able to allocate a new chunk below.
9547 *
9548 * Otherwise, we need to make sure we have room in the space to handle
9549 * all of the extents from this block group. If we can, we're good
ba1bf481 9550 */
7ce618db 9551 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9552 (space_info->bytes_used + space_info->bytes_reserved +
9553 space_info->bytes_pinned + space_info->bytes_readonly +
9554 min_free < space_info->total_bytes)) {
ba1bf481
JB
9555 spin_unlock(&space_info->lock);
9556 goto out;
17d217fe 9557 }
ba1bf481 9558 spin_unlock(&space_info->lock);
ea8c2819 9559
ba1bf481
JB
9560 /*
9561 * ok we don't have enough space, but maybe we have free space on our
9562 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9563 * alloc devices and guess if we have enough space. if this block
9564 * group is going to be restriped, run checks against the target
9565 * profile instead of the current one.
ba1bf481
JB
9566 */
9567 ret = -1;
ea8c2819 9568
cdcb725c 9569 /*
9570 * index:
9571 * 0: raid10
9572 * 1: raid1
9573 * 2: dup
9574 * 3: raid0
9575 * 4: single
9576 */
4a5e98f5
ID
9577 target = get_restripe_target(root->fs_info, block_group->flags);
9578 if (target) {
31e50229 9579 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9580 } else {
9581 /*
9582 * this is just a balance, so if we were marked as full
9583 * we know there is no space for a new chunk
9584 */
0305bc27
QW
9585 if (full) {
9586 if (debug)
9587 btrfs_warn(root->fs_info,
9588 "no space to alloc new chunk for block group %llu",
9589 block_group->key.objectid);
4a5e98f5 9590 goto out;
0305bc27 9591 }
4a5e98f5
ID
9592
9593 index = get_block_group_index(block_group);
9594 }
9595
e6ec716f 9596 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9597 dev_min = 4;
6719db6a
JB
9598 /* Divide by 2 */
9599 min_free >>= 1;
e6ec716f 9600 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9601 dev_min = 2;
e6ec716f 9602 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9603 /* Multiply by 2 */
9604 min_free <<= 1;
e6ec716f 9605 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9606 dev_min = fs_devices->rw_devices;
47c5713f 9607 min_free = div64_u64(min_free, dev_min);
cdcb725c 9608 }
9609
6df9a95e
JB
9610 /* We need to do this so that we can look at pending chunks */
9611 trans = btrfs_join_transaction(root);
9612 if (IS_ERR(trans)) {
9613 ret = PTR_ERR(trans);
9614 goto out;
9615 }
9616
ba1bf481
JB
9617 mutex_lock(&root->fs_info->chunk_mutex);
9618 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9619 u64 dev_offset;
56bec294 9620
ba1bf481
JB
9621 /*
9622 * check to make sure we can actually find a chunk with enough
9623 * space to fit our block group in.
9624 */
63a212ab
SB
9625 if (device->total_bytes > device->bytes_used + min_free &&
9626 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9627 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9628 &dev_offset, NULL);
ba1bf481 9629 if (!ret)
cdcb725c 9630 dev_nr++;
9631
9632 if (dev_nr >= dev_min)
73e48b27 9633 break;
cdcb725c 9634
ba1bf481 9635 ret = -1;
725c8463 9636 }
edbd8d4e 9637 }
0305bc27
QW
9638 if (debug && ret == -1)
9639 btrfs_warn(root->fs_info,
9640 "no space to allocate a new chunk for block group %llu",
9641 block_group->key.objectid);
ba1bf481 9642 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9643 btrfs_end_transaction(trans, root);
edbd8d4e 9644out:
ba1bf481 9645 btrfs_put_block_group(block_group);
edbd8d4e
CM
9646 return ret;
9647}
9648
b2950863
CH
9649static int find_first_block_group(struct btrfs_root *root,
9650 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9651{
925baedd 9652 int ret = 0;
0b86a832
CM
9653 struct btrfs_key found_key;
9654 struct extent_buffer *leaf;
9655 int slot;
edbd8d4e 9656
0b86a832
CM
9657 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9658 if (ret < 0)
925baedd
CM
9659 goto out;
9660
d397712b 9661 while (1) {
0b86a832 9662 slot = path->slots[0];
edbd8d4e 9663 leaf = path->nodes[0];
0b86a832
CM
9664 if (slot >= btrfs_header_nritems(leaf)) {
9665 ret = btrfs_next_leaf(root, path);
9666 if (ret == 0)
9667 continue;
9668 if (ret < 0)
925baedd 9669 goto out;
0b86a832 9670 break;
edbd8d4e 9671 }
0b86a832 9672 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9673
0b86a832 9674 if (found_key.objectid >= key->objectid &&
925baedd
CM
9675 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9676 ret = 0;
9677 goto out;
9678 }
0b86a832 9679 path->slots[0]++;
edbd8d4e 9680 }
925baedd 9681out:
0b86a832 9682 return ret;
edbd8d4e
CM
9683}
9684
0af3d00b
JB
9685void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9686{
9687 struct btrfs_block_group_cache *block_group;
9688 u64 last = 0;
9689
9690 while (1) {
9691 struct inode *inode;
9692
9693 block_group = btrfs_lookup_first_block_group(info, last);
9694 while (block_group) {
9695 spin_lock(&block_group->lock);
9696 if (block_group->iref)
9697 break;
9698 spin_unlock(&block_group->lock);
9699 block_group = next_block_group(info->tree_root,
9700 block_group);
9701 }
9702 if (!block_group) {
9703 if (last == 0)
9704 break;
9705 last = 0;
9706 continue;
9707 }
9708
9709 inode = block_group->inode;
9710 block_group->iref = 0;
9711 block_group->inode = NULL;
9712 spin_unlock(&block_group->lock);
9713 iput(inode);
9714 last = block_group->key.objectid + block_group->key.offset;
9715 btrfs_put_block_group(block_group);
9716 }
9717}
9718
1a40e23b
ZY
9719int btrfs_free_block_groups(struct btrfs_fs_info *info)
9720{
9721 struct btrfs_block_group_cache *block_group;
4184ea7f 9722 struct btrfs_space_info *space_info;
11833d66 9723 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9724 struct rb_node *n;
9725
9e351cc8 9726 down_write(&info->commit_root_sem);
11833d66
YZ
9727 while (!list_empty(&info->caching_block_groups)) {
9728 caching_ctl = list_entry(info->caching_block_groups.next,
9729 struct btrfs_caching_control, list);
9730 list_del(&caching_ctl->list);
9731 put_caching_control(caching_ctl);
9732 }
9e351cc8 9733 up_write(&info->commit_root_sem);
11833d66 9734
47ab2a6c
JB
9735 spin_lock(&info->unused_bgs_lock);
9736 while (!list_empty(&info->unused_bgs)) {
9737 block_group = list_first_entry(&info->unused_bgs,
9738 struct btrfs_block_group_cache,
9739 bg_list);
9740 list_del_init(&block_group->bg_list);
9741 btrfs_put_block_group(block_group);
9742 }
9743 spin_unlock(&info->unused_bgs_lock);
9744
1a40e23b
ZY
9745 spin_lock(&info->block_group_cache_lock);
9746 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9747 block_group = rb_entry(n, struct btrfs_block_group_cache,
9748 cache_node);
1a40e23b
ZY
9749 rb_erase(&block_group->cache_node,
9750 &info->block_group_cache_tree);
01eacb27 9751 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9752 spin_unlock(&info->block_group_cache_lock);
9753
80eb234a 9754 down_write(&block_group->space_info->groups_sem);
1a40e23b 9755 list_del(&block_group->list);
80eb234a 9756 up_write(&block_group->space_info->groups_sem);
d2fb3437 9757
817d52f8 9758 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9759 wait_block_group_cache_done(block_group);
817d52f8 9760
3c14874a
JB
9761 /*
9762 * We haven't cached this block group, which means we could
9763 * possibly have excluded extents on this block group.
9764 */
36cce922
JB
9765 if (block_group->cached == BTRFS_CACHE_NO ||
9766 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9767 free_excluded_extents(info->extent_root, block_group);
9768
817d52f8 9769 btrfs_remove_free_space_cache(block_group);
11dfe35a 9770 btrfs_put_block_group(block_group);
d899e052
YZ
9771
9772 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9773 }
9774 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9775
9776 /* now that all the block groups are freed, go through and
9777 * free all the space_info structs. This is only called during
9778 * the final stages of unmount, and so we know nobody is
9779 * using them. We call synchronize_rcu() once before we start,
9780 * just to be on the safe side.
9781 */
9782 synchronize_rcu();
9783
8929ecfa
YZ
9784 release_global_block_rsv(info);
9785
67871254 9786 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9787 int i;
9788
4184ea7f
CM
9789 space_info = list_entry(info->space_info.next,
9790 struct btrfs_space_info,
9791 list);
b069e0c3 9792 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9793 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9794 space_info->bytes_reserved > 0 ||
fae7f21c 9795 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9796 dump_space_info(space_info, 0, 0);
9797 }
f0486c68 9798 }
4184ea7f 9799 list_del(&space_info->list);
6ab0a202
JM
9800 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9801 struct kobject *kobj;
c1895442
JM
9802 kobj = space_info->block_group_kobjs[i];
9803 space_info->block_group_kobjs[i] = NULL;
9804 if (kobj) {
6ab0a202
JM
9805 kobject_del(kobj);
9806 kobject_put(kobj);
9807 }
9808 }
9809 kobject_del(&space_info->kobj);
9810 kobject_put(&space_info->kobj);
4184ea7f 9811 }
1a40e23b
ZY
9812 return 0;
9813}
9814
b742bb82
YZ
9815static void __link_block_group(struct btrfs_space_info *space_info,
9816 struct btrfs_block_group_cache *cache)
9817{
9818 int index = get_block_group_index(cache);
ed55b6ac 9819 bool first = false;
b742bb82
YZ
9820
9821 down_write(&space_info->groups_sem);
ed55b6ac
JM
9822 if (list_empty(&space_info->block_groups[index]))
9823 first = true;
9824 list_add_tail(&cache->list, &space_info->block_groups[index]);
9825 up_write(&space_info->groups_sem);
9826
9827 if (first) {
c1895442 9828 struct raid_kobject *rkobj;
6ab0a202
JM
9829 int ret;
9830
c1895442
JM
9831 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9832 if (!rkobj)
9833 goto out_err;
9834 rkobj->raid_type = index;
9835 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9836 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9837 "%s", get_raid_name(index));
6ab0a202 9838 if (ret) {
c1895442
JM
9839 kobject_put(&rkobj->kobj);
9840 goto out_err;
6ab0a202 9841 }
c1895442 9842 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9843 }
c1895442
JM
9844
9845 return;
9846out_err:
9847 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9848}
9849
920e4a58
MX
9850static struct btrfs_block_group_cache *
9851btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9852{
9853 struct btrfs_block_group_cache *cache;
9854
9855 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9856 if (!cache)
9857 return NULL;
9858
9859 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9860 GFP_NOFS);
9861 if (!cache->free_space_ctl) {
9862 kfree(cache);
9863 return NULL;
9864 }
9865
9866 cache->key.objectid = start;
9867 cache->key.offset = size;
9868 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9869
9870 cache->sectorsize = root->sectorsize;
9871 cache->fs_info = root->fs_info;
9872 cache->full_stripe_len = btrfs_full_stripe_len(root,
9873 &root->fs_info->mapping_tree,
9874 start);
1e144fb8
OS
9875 set_free_space_tree_thresholds(cache);
9876
920e4a58
MX
9877 atomic_set(&cache->count, 1);
9878 spin_lock_init(&cache->lock);
e570fd27 9879 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9880 INIT_LIST_HEAD(&cache->list);
9881 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9882 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9883 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9884 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9885 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9886 btrfs_init_free_space_ctl(cache);
04216820 9887 atomic_set(&cache->trimming, 0);
a5ed9182 9888 mutex_init(&cache->free_space_lock);
920e4a58
MX
9889
9890 return cache;
9891}
9892
9078a3e1
CM
9893int btrfs_read_block_groups(struct btrfs_root *root)
9894{
9895 struct btrfs_path *path;
9896 int ret;
9078a3e1 9897 struct btrfs_block_group_cache *cache;
be744175 9898 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9899 struct btrfs_space_info *space_info;
9078a3e1
CM
9900 struct btrfs_key key;
9901 struct btrfs_key found_key;
5f39d397 9902 struct extent_buffer *leaf;
0af3d00b
JB
9903 int need_clear = 0;
9904 u64 cache_gen;
96b5179d 9905
be744175 9906 root = info->extent_root;
9078a3e1 9907 key.objectid = 0;
0b86a832 9908 key.offset = 0;
962a298f 9909 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9910 path = btrfs_alloc_path();
9911 if (!path)
9912 return -ENOMEM;
e4058b54 9913 path->reada = READA_FORWARD;
9078a3e1 9914
6c41761f 9915 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9916 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9917 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9918 need_clear = 1;
88c2ba3b
JB
9919 if (btrfs_test_opt(root, CLEAR_CACHE))
9920 need_clear = 1;
0af3d00b 9921
d397712b 9922 while (1) {
0b86a832 9923 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9924 if (ret > 0)
9925 break;
0b86a832
CM
9926 if (ret != 0)
9927 goto error;
920e4a58 9928
5f39d397
CM
9929 leaf = path->nodes[0];
9930 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9931
9932 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9933 found_key.offset);
9078a3e1 9934 if (!cache) {
0b86a832 9935 ret = -ENOMEM;
f0486c68 9936 goto error;
9078a3e1 9937 }
96303081 9938
cf7c1ef6
LB
9939 if (need_clear) {
9940 /*
9941 * When we mount with old space cache, we need to
9942 * set BTRFS_DC_CLEAR and set dirty flag.
9943 *
9944 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9945 * truncate the old free space cache inode and
9946 * setup a new one.
9947 * b) Setting 'dirty flag' makes sure that we flush
9948 * the new space cache info onto disk.
9949 */
cf7c1ef6 9950 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9951 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9952 }
0af3d00b 9953
5f39d397
CM
9954 read_extent_buffer(leaf, &cache->item,
9955 btrfs_item_ptr_offset(leaf, path->slots[0]),
9956 sizeof(cache->item));
920e4a58 9957 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9958
9078a3e1 9959 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9960 btrfs_release_path(path);
34d52cb6 9961
3c14874a
JB
9962 /*
9963 * We need to exclude the super stripes now so that the space
9964 * info has super bytes accounted for, otherwise we'll think
9965 * we have more space than we actually do.
9966 */
835d974f
JB
9967 ret = exclude_super_stripes(root, cache);
9968 if (ret) {
9969 /*
9970 * We may have excluded something, so call this just in
9971 * case.
9972 */
9973 free_excluded_extents(root, cache);
920e4a58 9974 btrfs_put_block_group(cache);
835d974f
JB
9975 goto error;
9976 }
3c14874a 9977
817d52f8
JB
9978 /*
9979 * check for two cases, either we are full, and therefore
9980 * don't need to bother with the caching work since we won't
9981 * find any space, or we are empty, and we can just add all
9982 * the space in and be done with it. This saves us _alot_ of
9983 * time, particularly in the full case.
9984 */
9985 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9986 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9987 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9988 free_excluded_extents(root, cache);
817d52f8 9989 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9990 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9991 cache->cached = BTRFS_CACHE_FINISHED;
9992 add_new_free_space(cache, root->fs_info,
9993 found_key.objectid,
9994 found_key.objectid +
9995 found_key.offset);
11833d66 9996 free_excluded_extents(root, cache);
817d52f8 9997 }
96b5179d 9998
8c579fe7
JB
9999 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10000 if (ret) {
10001 btrfs_remove_free_space_cache(cache);
10002 btrfs_put_block_group(cache);
10003 goto error;
10004 }
10005
6324fbf3
CM
10006 ret = update_space_info(info, cache->flags, found_key.offset,
10007 btrfs_block_group_used(&cache->item),
10008 &space_info);
8c579fe7
JB
10009 if (ret) {
10010 btrfs_remove_free_space_cache(cache);
10011 spin_lock(&info->block_group_cache_lock);
10012 rb_erase(&cache->cache_node,
10013 &info->block_group_cache_tree);
01eacb27 10014 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10015 spin_unlock(&info->block_group_cache_lock);
10016 btrfs_put_block_group(cache);
10017 goto error;
10018 }
10019
6324fbf3 10020 cache->space_info = space_info;
1b2da372 10021 spin_lock(&cache->space_info->lock);
f0486c68 10022 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
10023 spin_unlock(&cache->space_info->lock);
10024
b742bb82 10025 __link_block_group(space_info, cache);
0f9dd46c 10026
75ccf47d 10027 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10028 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10029 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10030 } else if (btrfs_block_group_used(&cache->item) == 0) {
10031 spin_lock(&info->unused_bgs_lock);
10032 /* Should always be true but just in case. */
10033 if (list_empty(&cache->bg_list)) {
10034 btrfs_get_block_group(cache);
10035 list_add_tail(&cache->bg_list,
10036 &info->unused_bgs);
10037 }
10038 spin_unlock(&info->unused_bgs_lock);
10039 }
9078a3e1 10040 }
b742bb82
YZ
10041
10042 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10043 if (!(get_alloc_profile(root, space_info->flags) &
10044 (BTRFS_BLOCK_GROUP_RAID10 |
10045 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10046 BTRFS_BLOCK_GROUP_RAID5 |
10047 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10048 BTRFS_BLOCK_GROUP_DUP)))
10049 continue;
10050 /*
10051 * avoid allocating from un-mirrored block group if there are
10052 * mirrored block groups.
10053 */
1095cc0d 10054 list_for_each_entry(cache,
10055 &space_info->block_groups[BTRFS_RAID_RAID0],
10056 list)
868f401a 10057 inc_block_group_ro(cache, 1);
1095cc0d 10058 list_for_each_entry(cache,
10059 &space_info->block_groups[BTRFS_RAID_SINGLE],
10060 list)
868f401a 10061 inc_block_group_ro(cache, 1);
9078a3e1 10062 }
f0486c68
YZ
10063
10064 init_global_block_rsv(info);
0b86a832
CM
10065 ret = 0;
10066error:
9078a3e1 10067 btrfs_free_path(path);
0b86a832 10068 return ret;
9078a3e1 10069}
6324fbf3 10070
ea658bad
JB
10071void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10072 struct btrfs_root *root)
10073{
10074 struct btrfs_block_group_cache *block_group, *tmp;
10075 struct btrfs_root *extent_root = root->fs_info->extent_root;
10076 struct btrfs_block_group_item item;
10077 struct btrfs_key key;
10078 int ret = 0;
d9a0540a 10079 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10080
d9a0540a 10081 trans->can_flush_pending_bgs = false;
47ab2a6c 10082 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10083 if (ret)
c92f6be3 10084 goto next;
ea658bad
JB
10085
10086 spin_lock(&block_group->lock);
10087 memcpy(&item, &block_group->item, sizeof(item));
10088 memcpy(&key, &block_group->key, sizeof(key));
10089 spin_unlock(&block_group->lock);
10090
10091 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10092 sizeof(item));
10093 if (ret)
10094 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
10095 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10096 key.objectid, key.offset);
10097 if (ret)
10098 btrfs_abort_transaction(trans, extent_root, ret);
1e144fb8
OS
10099 add_block_group_free_space(trans, root->fs_info, block_group);
10100 /* already aborted the transaction if it failed. */
c92f6be3
FM
10101next:
10102 list_del_init(&block_group->bg_list);
ea658bad 10103 }
d9a0540a 10104 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10105}
10106
6324fbf3
CM
10107int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10108 struct btrfs_root *root, u64 bytes_used,
e17cade2 10109 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10110 u64 size)
10111{
10112 int ret;
6324fbf3
CM
10113 struct btrfs_root *extent_root;
10114 struct btrfs_block_group_cache *cache;
6324fbf3
CM
10115
10116 extent_root = root->fs_info->extent_root;
6324fbf3 10117
995946dd 10118 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10119
920e4a58 10120 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10121 if (!cache)
10122 return -ENOMEM;
34d52cb6 10123
6324fbf3 10124 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10125 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10126 btrfs_set_block_group_flags(&cache->item, type);
10127
920e4a58 10128 cache->flags = type;
11833d66 10129 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10130 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10131 cache->needs_free_space = 1;
835d974f
JB
10132 ret = exclude_super_stripes(root, cache);
10133 if (ret) {
10134 /*
10135 * We may have excluded something, so call this just in
10136 * case.
10137 */
10138 free_excluded_extents(root, cache);
920e4a58 10139 btrfs_put_block_group(cache);
835d974f
JB
10140 return ret;
10141 }
96303081 10142
817d52f8
JB
10143 add_new_free_space(cache, root->fs_info, chunk_offset,
10144 chunk_offset + size);
10145
11833d66
YZ
10146 free_excluded_extents(root, cache);
10147
d0bd4560
JB
10148#ifdef CONFIG_BTRFS_DEBUG
10149 if (btrfs_should_fragment_free_space(root, cache)) {
10150 u64 new_bytes_used = size - bytes_used;
10151
10152 bytes_used += new_bytes_used >> 1;
10153 fragment_free_space(root, cache);
10154 }
10155#endif
2e6e5183
FM
10156 /*
10157 * Call to ensure the corresponding space_info object is created and
10158 * assigned to our block group, but don't update its counters just yet.
10159 * We want our bg to be added to the rbtree with its ->space_info set.
10160 */
10161 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10162 &cache->space_info);
10163 if (ret) {
10164 btrfs_remove_free_space_cache(cache);
10165 btrfs_put_block_group(cache);
10166 return ret;
10167 }
10168
8c579fe7
JB
10169 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10170 if (ret) {
10171 btrfs_remove_free_space_cache(cache);
10172 btrfs_put_block_group(cache);
10173 return ret;
10174 }
10175
2e6e5183
FM
10176 /*
10177 * Now that our block group has its ->space_info set and is inserted in
10178 * the rbtree, update the space info's counters.
10179 */
6324fbf3
CM
10180 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10181 &cache->space_info);
8c579fe7
JB
10182 if (ret) {
10183 btrfs_remove_free_space_cache(cache);
10184 spin_lock(&root->fs_info->block_group_cache_lock);
10185 rb_erase(&cache->cache_node,
10186 &root->fs_info->block_group_cache_tree);
01eacb27 10187 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10188 spin_unlock(&root->fs_info->block_group_cache_lock);
10189 btrfs_put_block_group(cache);
10190 return ret;
10191 }
c7c144db 10192 update_global_block_rsv(root->fs_info);
1b2da372
JB
10193
10194 spin_lock(&cache->space_info->lock);
f0486c68 10195 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
10196 spin_unlock(&cache->space_info->lock);
10197
b742bb82 10198 __link_block_group(cache->space_info, cache);
6324fbf3 10199
47ab2a6c 10200 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10201
d18a2c44 10202 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 10203
6324fbf3
CM
10204 return 0;
10205}
1a40e23b 10206
10ea00f5
ID
10207static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10208{
899c81ea
ID
10209 u64 extra_flags = chunk_to_extended(flags) &
10210 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10211
de98ced9 10212 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10213 if (flags & BTRFS_BLOCK_GROUP_DATA)
10214 fs_info->avail_data_alloc_bits &= ~extra_flags;
10215 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10216 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10217 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10218 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10219 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10220}
10221
1a40e23b 10222int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10223 struct btrfs_root *root, u64 group_start,
10224 struct extent_map *em)
1a40e23b
ZY
10225{
10226 struct btrfs_path *path;
10227 struct btrfs_block_group_cache *block_group;
44fb5511 10228 struct btrfs_free_cluster *cluster;
0af3d00b 10229 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10230 struct btrfs_key key;
0af3d00b 10231 struct inode *inode;
c1895442 10232 struct kobject *kobj = NULL;
1a40e23b 10233 int ret;
10ea00f5 10234 int index;
89a55897 10235 int factor;
4f69cb98 10236 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10237 bool remove_em;
1a40e23b 10238
1a40e23b
ZY
10239 root = root->fs_info->extent_root;
10240
10241 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10242 BUG_ON(!block_group);
c146afad 10243 BUG_ON(!block_group->ro);
1a40e23b 10244
9f7c43c9 10245 /*
10246 * Free the reserved super bytes from this block group before
10247 * remove it.
10248 */
10249 free_excluded_extents(root, block_group);
10250
1a40e23b 10251 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10252 index = get_block_group_index(block_group);
89a55897
JB
10253 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10254 BTRFS_BLOCK_GROUP_RAID1 |
10255 BTRFS_BLOCK_GROUP_RAID10))
10256 factor = 2;
10257 else
10258 factor = 1;
1a40e23b 10259
44fb5511
CM
10260 /* make sure this block group isn't part of an allocation cluster */
10261 cluster = &root->fs_info->data_alloc_cluster;
10262 spin_lock(&cluster->refill_lock);
10263 btrfs_return_cluster_to_free_space(block_group, cluster);
10264 spin_unlock(&cluster->refill_lock);
10265
10266 /*
10267 * make sure this block group isn't part of a metadata
10268 * allocation cluster
10269 */
10270 cluster = &root->fs_info->meta_alloc_cluster;
10271 spin_lock(&cluster->refill_lock);
10272 btrfs_return_cluster_to_free_space(block_group, cluster);
10273 spin_unlock(&cluster->refill_lock);
10274
1a40e23b 10275 path = btrfs_alloc_path();
d8926bb3
MF
10276 if (!path) {
10277 ret = -ENOMEM;
10278 goto out;
10279 }
1a40e23b 10280
1bbc621e
CM
10281 /*
10282 * get the inode first so any iput calls done for the io_list
10283 * aren't the final iput (no unlinks allowed now)
10284 */
10b2f34d 10285 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10286
10287 mutex_lock(&trans->transaction->cache_write_mutex);
10288 /*
10289 * make sure our free spache cache IO is done before remove the
10290 * free space inode
10291 */
10292 spin_lock(&trans->transaction->dirty_bgs_lock);
10293 if (!list_empty(&block_group->io_list)) {
10294 list_del_init(&block_group->io_list);
10295
10296 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10297
10298 spin_unlock(&trans->transaction->dirty_bgs_lock);
10299 btrfs_wait_cache_io(root, trans, block_group,
10300 &block_group->io_ctl, path,
10301 block_group->key.objectid);
10302 btrfs_put_block_group(block_group);
10303 spin_lock(&trans->transaction->dirty_bgs_lock);
10304 }
10305
10306 if (!list_empty(&block_group->dirty_list)) {
10307 list_del_init(&block_group->dirty_list);
10308 btrfs_put_block_group(block_group);
10309 }
10310 spin_unlock(&trans->transaction->dirty_bgs_lock);
10311 mutex_unlock(&trans->transaction->cache_write_mutex);
10312
0af3d00b 10313 if (!IS_ERR(inode)) {
b532402e 10314 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10315 if (ret) {
10316 btrfs_add_delayed_iput(inode);
10317 goto out;
10318 }
0af3d00b
JB
10319 clear_nlink(inode);
10320 /* One for the block groups ref */
10321 spin_lock(&block_group->lock);
10322 if (block_group->iref) {
10323 block_group->iref = 0;
10324 block_group->inode = NULL;
10325 spin_unlock(&block_group->lock);
10326 iput(inode);
10327 } else {
10328 spin_unlock(&block_group->lock);
10329 }
10330 /* One for our lookup ref */
455757c3 10331 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10332 }
10333
10334 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10335 key.offset = block_group->key.objectid;
10336 key.type = 0;
10337
10338 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10339 if (ret < 0)
10340 goto out;
10341 if (ret > 0)
b3b4aa74 10342 btrfs_release_path(path);
0af3d00b
JB
10343 if (ret == 0) {
10344 ret = btrfs_del_item(trans, tree_root, path);
10345 if (ret)
10346 goto out;
b3b4aa74 10347 btrfs_release_path(path);
0af3d00b
JB
10348 }
10349
3dfdb934 10350 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10351 rb_erase(&block_group->cache_node,
10352 &root->fs_info->block_group_cache_tree);
292cbd51 10353 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10354
10355 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10356 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10357 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10358
80eb234a 10359 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10360 /*
10361 * we must use list_del_init so people can check to see if they
10362 * are still on the list after taking the semaphore
10363 */
10364 list_del_init(&block_group->list);
6ab0a202 10365 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10366 kobj = block_group->space_info->block_group_kobjs[index];
10367 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10368 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10369 }
80eb234a 10370 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10371 if (kobj) {
10372 kobject_del(kobj);
10373 kobject_put(kobj);
10374 }
1a40e23b 10375
4f69cb98
FM
10376 if (block_group->has_caching_ctl)
10377 caching_ctl = get_caching_control(block_group);
817d52f8 10378 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10379 wait_block_group_cache_done(block_group);
4f69cb98
FM
10380 if (block_group->has_caching_ctl) {
10381 down_write(&root->fs_info->commit_root_sem);
10382 if (!caching_ctl) {
10383 struct btrfs_caching_control *ctl;
10384
10385 list_for_each_entry(ctl,
10386 &root->fs_info->caching_block_groups, list)
10387 if (ctl->block_group == block_group) {
10388 caching_ctl = ctl;
10389 atomic_inc(&caching_ctl->count);
10390 break;
10391 }
10392 }
10393 if (caching_ctl)
10394 list_del_init(&caching_ctl->list);
10395 up_write(&root->fs_info->commit_root_sem);
10396 if (caching_ctl) {
10397 /* Once for the caching bgs list and once for us. */
10398 put_caching_control(caching_ctl);
10399 put_caching_control(caching_ctl);
10400 }
10401 }
817d52f8 10402
ce93ec54
JB
10403 spin_lock(&trans->transaction->dirty_bgs_lock);
10404 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10405 WARN_ON(1);
10406 }
10407 if (!list_empty(&block_group->io_list)) {
10408 WARN_ON(1);
ce93ec54
JB
10409 }
10410 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10411 btrfs_remove_free_space_cache(block_group);
10412
c146afad 10413 spin_lock(&block_group->space_info->lock);
75c68e9f 10414 list_del_init(&block_group->ro_list);
18d018ad
ZL
10415
10416 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10417 WARN_ON(block_group->space_info->total_bytes
10418 < block_group->key.offset);
10419 WARN_ON(block_group->space_info->bytes_readonly
10420 < block_group->key.offset);
10421 WARN_ON(block_group->space_info->disk_total
10422 < block_group->key.offset * factor);
10423 }
c146afad
YZ
10424 block_group->space_info->total_bytes -= block_group->key.offset;
10425 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10426 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10427
c146afad 10428 spin_unlock(&block_group->space_info->lock);
283bb197 10429
0af3d00b
JB
10430 memcpy(&key, &block_group->key, sizeof(key));
10431
04216820 10432 lock_chunks(root);
495e64f4
FM
10433 if (!list_empty(&em->list)) {
10434 /* We're in the transaction->pending_chunks list. */
10435 free_extent_map(em);
10436 }
04216820
FM
10437 spin_lock(&block_group->lock);
10438 block_group->removed = 1;
10439 /*
10440 * At this point trimming can't start on this block group, because we
10441 * removed the block group from the tree fs_info->block_group_cache_tree
10442 * so no one can't find it anymore and even if someone already got this
10443 * block group before we removed it from the rbtree, they have already
10444 * incremented block_group->trimming - if they didn't, they won't find
10445 * any free space entries because we already removed them all when we
10446 * called btrfs_remove_free_space_cache().
10447 *
10448 * And we must not remove the extent map from the fs_info->mapping_tree
10449 * to prevent the same logical address range and physical device space
10450 * ranges from being reused for a new block group. This is because our
10451 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10452 * completely transactionless, so while it is trimming a range the
10453 * currently running transaction might finish and a new one start,
10454 * allowing for new block groups to be created that can reuse the same
10455 * physical device locations unless we take this special care.
e33e17ee
JM
10456 *
10457 * There may also be an implicit trim operation if the file system
10458 * is mounted with -odiscard. The same protections must remain
10459 * in place until the extents have been discarded completely when
10460 * the transaction commit has completed.
04216820
FM
10461 */
10462 remove_em = (atomic_read(&block_group->trimming) == 0);
10463 /*
10464 * Make sure a trimmer task always sees the em in the pinned_chunks list
10465 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10466 * before checking block_group->removed).
10467 */
10468 if (!remove_em) {
10469 /*
10470 * Our em might be in trans->transaction->pending_chunks which
10471 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10472 * and so is the fs_info->pinned_chunks list.
10473 *
10474 * So at this point we must be holding the chunk_mutex to avoid
10475 * any races with chunk allocation (more specifically at
10476 * volumes.c:contains_pending_extent()), to ensure it always
10477 * sees the em, either in the pending_chunks list or in the
10478 * pinned_chunks list.
10479 */
10480 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10481 }
10482 spin_unlock(&block_group->lock);
04216820
FM
10483
10484 if (remove_em) {
10485 struct extent_map_tree *em_tree;
10486
10487 em_tree = &root->fs_info->mapping_tree.map_tree;
10488 write_lock(&em_tree->lock);
8dbcd10f
FM
10489 /*
10490 * The em might be in the pending_chunks list, so make sure the
10491 * chunk mutex is locked, since remove_extent_mapping() will
10492 * delete us from that list.
10493 */
04216820
FM
10494 remove_extent_mapping(em_tree, em);
10495 write_unlock(&em_tree->lock);
10496 /* once for the tree */
10497 free_extent_map(em);
10498 }
10499
8dbcd10f
FM
10500 unlock_chunks(root);
10501
1e144fb8
OS
10502 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10503 if (ret)
10504 goto out;
10505
fa9c0d79
CM
10506 btrfs_put_block_group(block_group);
10507 btrfs_put_block_group(block_group);
1a40e23b
ZY
10508
10509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10510 if (ret > 0)
10511 ret = -EIO;
10512 if (ret < 0)
10513 goto out;
10514
10515 ret = btrfs_del_item(trans, root, path);
10516out:
10517 btrfs_free_path(path);
10518 return ret;
10519}
acce952b 10520
8eab77ff 10521struct btrfs_trans_handle *
7fd01182
FM
10522btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10523 const u64 chunk_offset)
8eab77ff 10524{
7fd01182
FM
10525 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10526 struct extent_map *em;
10527 struct map_lookup *map;
10528 unsigned int num_items;
10529
10530 read_lock(&em_tree->lock);
10531 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10532 read_unlock(&em_tree->lock);
10533 ASSERT(em && em->start == chunk_offset);
10534
8eab77ff 10535 /*
7fd01182
FM
10536 * We need to reserve 3 + N units from the metadata space info in order
10537 * to remove a block group (done at btrfs_remove_chunk() and at
10538 * btrfs_remove_block_group()), which are used for:
10539 *
8eab77ff
FM
10540 * 1 unit for adding the free space inode's orphan (located in the tree
10541 * of tree roots).
7fd01182
FM
10542 * 1 unit for deleting the block group item (located in the extent
10543 * tree).
10544 * 1 unit for deleting the free space item (located in tree of tree
10545 * roots).
10546 * N units for deleting N device extent items corresponding to each
10547 * stripe (located in the device tree).
10548 *
10549 * In order to remove a block group we also need to reserve units in the
10550 * system space info in order to update the chunk tree (update one or
10551 * more device items and remove one chunk item), but this is done at
10552 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10553 */
95617d69 10554 map = em->map_lookup;
7fd01182
FM
10555 num_items = 3 + map->num_stripes;
10556 free_extent_map(em);
10557
8eab77ff 10558 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10559 num_items, 1);
8eab77ff
FM
10560}
10561
47ab2a6c
JB
10562/*
10563 * Process the unused_bgs list and remove any that don't have any allocated
10564 * space inside of them.
10565 */
10566void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10567{
10568 struct btrfs_block_group_cache *block_group;
10569 struct btrfs_space_info *space_info;
10570 struct btrfs_root *root = fs_info->extent_root;
10571 struct btrfs_trans_handle *trans;
10572 int ret = 0;
10573
10574 if (!fs_info->open)
10575 return;
10576
10577 spin_lock(&fs_info->unused_bgs_lock);
10578 while (!list_empty(&fs_info->unused_bgs)) {
10579 u64 start, end;
e33e17ee 10580 int trimming;
47ab2a6c
JB
10581
10582 block_group = list_first_entry(&fs_info->unused_bgs,
10583 struct btrfs_block_group_cache,
10584 bg_list);
47ab2a6c 10585 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10586
10587 space_info = block_group->space_info;
10588
47ab2a6c
JB
10589 if (ret || btrfs_mixed_space_info(space_info)) {
10590 btrfs_put_block_group(block_group);
10591 continue;
10592 }
10593 spin_unlock(&fs_info->unused_bgs_lock);
10594
d5f2e33b 10595 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10596
47ab2a6c
JB
10597 /* Don't want to race with allocators so take the groups_sem */
10598 down_write(&space_info->groups_sem);
10599 spin_lock(&block_group->lock);
10600 if (block_group->reserved ||
10601 btrfs_block_group_used(&block_group->item) ||
aefbe9a6
ZL
10602 block_group->ro ||
10603 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10604 /*
10605 * We want to bail if we made new allocations or have
10606 * outstanding allocations in this block group. We do
10607 * the ro check in case balance is currently acting on
10608 * this block group.
10609 */
10610 spin_unlock(&block_group->lock);
10611 up_write(&space_info->groups_sem);
10612 goto next;
10613 }
10614 spin_unlock(&block_group->lock);
10615
10616 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10617 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10618 up_write(&space_info->groups_sem);
10619 if (ret < 0) {
10620 ret = 0;
10621 goto next;
10622 }
10623
10624 /*
10625 * Want to do this before we do anything else so we can recover
10626 * properly if we fail to join the transaction.
10627 */
7fd01182
FM
10628 trans = btrfs_start_trans_remove_block_group(fs_info,
10629 block_group->key.objectid);
47ab2a6c 10630 if (IS_ERR(trans)) {
868f401a 10631 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10632 ret = PTR_ERR(trans);
10633 goto next;
10634 }
10635
10636 /*
10637 * We could have pending pinned extents for this block group,
10638 * just delete them, we don't care about them anymore.
10639 */
10640 start = block_group->key.objectid;
10641 end = start + block_group->key.offset - 1;
d4b450cd
FM
10642 /*
10643 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10644 * btrfs_finish_extent_commit(). If we are at transaction N,
10645 * another task might be running finish_extent_commit() for the
10646 * previous transaction N - 1, and have seen a range belonging
10647 * to the block group in freed_extents[] before we were able to
10648 * clear the whole block group range from freed_extents[]. This
10649 * means that task can lookup for the block group after we
10650 * unpinned it from freed_extents[] and removed it, leading to
10651 * a BUG_ON() at btrfs_unpin_extent_range().
10652 */
10653 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10654 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10655 EXTENT_DIRTY);
758eb51e 10656 if (ret) {
d4b450cd 10657 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10658 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10659 goto end_trans;
10660 }
10661 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10662 EXTENT_DIRTY);
758eb51e 10663 if (ret) {
d4b450cd 10664 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10665 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10666 goto end_trans;
10667 }
d4b450cd 10668 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10669
10670 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10671 spin_lock(&space_info->lock);
10672 spin_lock(&block_group->lock);
10673
10674 space_info->bytes_pinned -= block_group->pinned;
10675 space_info->bytes_readonly += block_group->pinned;
10676 percpu_counter_add(&space_info->total_bytes_pinned,
10677 -block_group->pinned);
47ab2a6c
JB
10678 block_group->pinned = 0;
10679
c30666d4
ZL
10680 spin_unlock(&block_group->lock);
10681 spin_unlock(&space_info->lock);
10682
e33e17ee
JM
10683 /* DISCARD can flip during remount */
10684 trimming = btrfs_test_opt(root, DISCARD);
10685
10686 /* Implicit trim during transaction commit. */
10687 if (trimming)
10688 btrfs_get_block_group_trimming(block_group);
10689
47ab2a6c
JB
10690 /*
10691 * Btrfs_remove_chunk will abort the transaction if things go
10692 * horribly wrong.
10693 */
10694 ret = btrfs_remove_chunk(trans, root,
10695 block_group->key.objectid);
e33e17ee
JM
10696
10697 if (ret) {
10698 if (trimming)
10699 btrfs_put_block_group_trimming(block_group);
10700 goto end_trans;
10701 }
10702
10703 /*
10704 * If we're not mounted with -odiscard, we can just forget
10705 * about this block group. Otherwise we'll need to wait
10706 * until transaction commit to do the actual discard.
10707 */
10708 if (trimming) {
348a0013
FM
10709 spin_lock(&fs_info->unused_bgs_lock);
10710 /*
10711 * A concurrent scrub might have added us to the list
10712 * fs_info->unused_bgs, so use a list_move operation
10713 * to add the block group to the deleted_bgs list.
10714 */
e33e17ee
JM
10715 list_move(&block_group->bg_list,
10716 &trans->transaction->deleted_bgs);
348a0013 10717 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10718 btrfs_get_block_group(block_group);
10719 }
758eb51e 10720end_trans:
47ab2a6c
JB
10721 btrfs_end_transaction(trans, root);
10722next:
d5f2e33b 10723 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10724 btrfs_put_block_group(block_group);
10725 spin_lock(&fs_info->unused_bgs_lock);
10726 }
10727 spin_unlock(&fs_info->unused_bgs_lock);
10728}
10729
c59021f8 10730int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10731{
10732 struct btrfs_space_info *space_info;
1aba86d6 10733 struct btrfs_super_block *disk_super;
10734 u64 features;
10735 u64 flags;
10736 int mixed = 0;
c59021f8 10737 int ret;
10738
6c41761f 10739 disk_super = fs_info->super_copy;
1aba86d6 10740 if (!btrfs_super_root(disk_super))
0dc924c5 10741 return -EINVAL;
c59021f8 10742
1aba86d6 10743 features = btrfs_super_incompat_flags(disk_super);
10744 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10745 mixed = 1;
c59021f8 10746
1aba86d6 10747 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10748 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10749 if (ret)
1aba86d6 10750 goto out;
c59021f8 10751
1aba86d6 10752 if (mixed) {
10753 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10754 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10755 } else {
10756 flags = BTRFS_BLOCK_GROUP_METADATA;
10757 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10758 if (ret)
10759 goto out;
10760
10761 flags = BTRFS_BLOCK_GROUP_DATA;
10762 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10763 }
10764out:
c59021f8 10765 return ret;
10766}
10767
acce952b 10768int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10769{
678886bd 10770 return unpin_extent_range(root, start, end, false);
acce952b 10771}
10772
499f377f
JM
10773/*
10774 * It used to be that old block groups would be left around forever.
10775 * Iterating over them would be enough to trim unused space. Since we
10776 * now automatically remove them, we also need to iterate over unallocated
10777 * space.
10778 *
10779 * We don't want a transaction for this since the discard may take a
10780 * substantial amount of time. We don't require that a transaction be
10781 * running, but we do need to take a running transaction into account
10782 * to ensure that we're not discarding chunks that were released in
10783 * the current transaction.
10784 *
10785 * Holding the chunks lock will prevent other threads from allocating
10786 * or releasing chunks, but it won't prevent a running transaction
10787 * from committing and releasing the memory that the pending chunks
10788 * list head uses. For that, we need to take a reference to the
10789 * transaction.
10790 */
10791static int btrfs_trim_free_extents(struct btrfs_device *device,
10792 u64 minlen, u64 *trimmed)
10793{
10794 u64 start = 0, len = 0;
10795 int ret;
10796
10797 *trimmed = 0;
10798
10799 /* Not writeable = nothing to do. */
10800 if (!device->writeable)
10801 return 0;
10802
10803 /* No free space = nothing to do. */
10804 if (device->total_bytes <= device->bytes_used)
10805 return 0;
10806
10807 ret = 0;
10808
10809 while (1) {
10810 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10811 struct btrfs_transaction *trans;
10812 u64 bytes;
10813
10814 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10815 if (ret)
10816 return ret;
10817
10818 down_read(&fs_info->commit_root_sem);
10819
10820 spin_lock(&fs_info->trans_lock);
10821 trans = fs_info->running_transaction;
10822 if (trans)
10823 atomic_inc(&trans->use_count);
10824 spin_unlock(&fs_info->trans_lock);
10825
10826 ret = find_free_dev_extent_start(trans, device, minlen, start,
10827 &start, &len);
10828 if (trans)
10829 btrfs_put_transaction(trans);
10830
10831 if (ret) {
10832 up_read(&fs_info->commit_root_sem);
10833 mutex_unlock(&fs_info->chunk_mutex);
10834 if (ret == -ENOSPC)
10835 ret = 0;
10836 break;
10837 }
10838
10839 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10840 up_read(&fs_info->commit_root_sem);
10841 mutex_unlock(&fs_info->chunk_mutex);
10842
10843 if (ret)
10844 break;
10845
10846 start += len;
10847 *trimmed += bytes;
10848
10849 if (fatal_signal_pending(current)) {
10850 ret = -ERESTARTSYS;
10851 break;
10852 }
10853
10854 cond_resched();
10855 }
10856
10857 return ret;
10858}
10859
f7039b1d
LD
10860int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10861{
10862 struct btrfs_fs_info *fs_info = root->fs_info;
10863 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10864 struct btrfs_device *device;
10865 struct list_head *devices;
f7039b1d
LD
10866 u64 group_trimmed;
10867 u64 start;
10868 u64 end;
10869 u64 trimmed = 0;
2cac13e4 10870 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10871 int ret = 0;
10872
2cac13e4
LB
10873 /*
10874 * try to trim all FS space, our block group may start from non-zero.
10875 */
10876 if (range->len == total_bytes)
10877 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10878 else
10879 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10880
10881 while (cache) {
10882 if (cache->key.objectid >= (range->start + range->len)) {
10883 btrfs_put_block_group(cache);
10884 break;
10885 }
10886
10887 start = max(range->start, cache->key.objectid);
10888 end = min(range->start + range->len,
10889 cache->key.objectid + cache->key.offset);
10890
10891 if (end - start >= range->minlen) {
10892 if (!block_group_cache_done(cache)) {
f6373bf3 10893 ret = cache_block_group(cache, 0);
1be41b78
JB
10894 if (ret) {
10895 btrfs_put_block_group(cache);
10896 break;
10897 }
10898 ret = wait_block_group_cache_done(cache);
10899 if (ret) {
10900 btrfs_put_block_group(cache);
10901 break;
10902 }
f7039b1d
LD
10903 }
10904 ret = btrfs_trim_block_group(cache,
10905 &group_trimmed,
10906 start,
10907 end,
10908 range->minlen);
10909
10910 trimmed += group_trimmed;
10911 if (ret) {
10912 btrfs_put_block_group(cache);
10913 break;
10914 }
10915 }
10916
10917 cache = next_block_group(fs_info->tree_root, cache);
10918 }
10919
499f377f
JM
10920 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10921 devices = &root->fs_info->fs_devices->alloc_list;
10922 list_for_each_entry(device, devices, dev_alloc_list) {
10923 ret = btrfs_trim_free_extents(device, range->minlen,
10924 &group_trimmed);
10925 if (ret)
10926 break;
10927
10928 trimmed += group_trimmed;
10929 }
10930 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10931
f7039b1d
LD
10932 range->len = trimmed;
10933 return ret;
10934}
8257b2dc
MX
10935
10936/*
9ea24bbe
FM
10937 * btrfs_{start,end}_write_no_snapshoting() are similar to
10938 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10939 * data into the page cache through nocow before the subvolume is snapshoted,
10940 * but flush the data into disk after the snapshot creation, or to prevent
10941 * operations while snapshoting is ongoing and that cause the snapshot to be
10942 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10943 */
9ea24bbe 10944void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10945{
10946 percpu_counter_dec(&root->subv_writers->counter);
10947 /*
a83342aa 10948 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10949 */
10950 smp_mb();
10951 if (waitqueue_active(&root->subv_writers->wait))
10952 wake_up(&root->subv_writers->wait);
10953}
10954
9ea24bbe 10955int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10956{
ee39b432 10957 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10958 return 0;
10959
10960 percpu_counter_inc(&root->subv_writers->counter);
10961 /*
10962 * Make sure counter is updated before we check for snapshot creation.
10963 */
10964 smp_mb();
ee39b432 10965 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10966 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10967 return 0;
10968 }
10969 return 1;
10970}
0bc19f90
ZL
10971
10972static int wait_snapshoting_atomic_t(atomic_t *a)
10973{
10974 schedule();
10975 return 0;
10976}
10977
10978void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10979{
10980 while (true) {
10981 int ret;
10982
10983 ret = btrfs_start_write_no_snapshoting(root);
10984 if (ret)
10985 break;
10986 wait_on_atomic_t(&root->will_be_snapshoted,
10987 wait_snapshoting_atomic_t,
10988 TASK_UNINTERRUPTIBLE);
10989 }
10990}
This page took 2.069483 seconds and 5 git commands to generate.