btrfs: use bio op accessors
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
fb25e914
JB
63/*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76};
77
ce93ec54
JB
78static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
5d4f98a2
YZ
81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
c682f9b3 83 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
c682f9b3 86 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 99 int level, struct btrfs_key *ins);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
758f2dfc 128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66 235 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 236 start, end, EXTENT_UPTODATE);
11833d66
YZ
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 249 start, end, EXTENT_UPTODATE);
11833d66 250 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 251 start, end, EXTENT_UPTODATE);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
a5ed9182
OS
361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
73fa48b6 399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
bab39bf9 403 struct btrfs_root *extent_root;
e37c9e69 404 struct btrfs_path *path;
5f39d397 405 struct extent_buffer *leaf;
11833d66 406 struct btrfs_key key;
817d52f8 407 u64 total_found = 0;
11833d66
YZ
408 u64 last = 0;
409 u32 nritems;
73fa48b6 410 int ret;
d0bd4560 411 bool wakeup = true;
f510cfec 412
bab39bf9
JB
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
e37c9e69
CM
417 path = btrfs_alloc_path();
418 if (!path)
73fa48b6 419 return -ENOMEM;
7d7d6068 420
817d52f8 421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 422
d0bd4560
JB
423#ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431#endif
5cd57b2c 432 /*
817d52f8
JB
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
5cd57b2c
CM
437 */
438 path->skip_locking = 1;
817d52f8 439 path->search_commit_root = 1;
e4058b54 440 path->reada = READA_FORWARD;
817d52f8 441
e4404d6e 442 key.objectid = last;
e37c9e69 443 key.offset = 0;
11833d66 444 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 445
52ee28d2 446next:
11833d66 447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 448 if (ret < 0)
73fa48b6 449 goto out;
a512bbf8 450
11833d66
YZ
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
d397712b 454 while (1) {
7841cb28 455 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 456 last = (u64)-1;
817d52f8 457 break;
f25784b3 458 }
817d52f8 459
11833d66
YZ
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
e37c9e69 465 break;
817d52f8 466
c9ea7b24 467 if (need_resched() ||
9e351cc8 468 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
469 if (wakeup)
470 caching_ctl->progress = last;
ff5714cc 471 btrfs_release_path(path);
9e351cc8 472 up_read(&fs_info->commit_root_sem);
589d8ade 473 mutex_unlock(&caching_ctl->mutex);
11833d66 474 cond_resched();
73fa48b6
OS
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
589d8ade 478 }
0a3896d0
JB
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
73fa48b6 482 goto out;
0a3896d0
JB
483 if (ret)
484 break;
589d8ade
JB
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
11833d66 488 }
817d52f8 489
52ee28d2
LB
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
d0bd4560
JB
495 if (wakeup)
496 caching_ctl->progress = last;
52ee28d2
LB
497 btrfs_release_path(path);
498 goto next;
499 }
500
11833d66
YZ
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
817d52f8 503 continue;
e37c9e69 504 }
0f9dd46c 505
e37c9e69 506 if (key.objectid >= block_group->key.objectid +
0f9dd46c 507 block_group->key.offset)
e37c9e69 508 break;
7d7d6068 509
3173a18f
JB
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
3173a18f
JB
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
707e8a07 517 fs_info->tree_root->nodesize;
3173a18f
JB
518 else
519 last = key.objectid + key.offset;
817d52f8 520
73fa48b6 521 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 522 total_found = 0;
d0bd4560
JB
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
11833d66 525 }
817d52f8 526 }
e37c9e69
CM
527 path->slots[0]++;
528 }
817d52f8 529 ret = 0;
e37c9e69 530
817d52f8
JB
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
11833d66 534 caching_ctl->progress = (u64)-1;
817d52f8 535
73fa48b6
OS
536out:
537 btrfs_free_path(path);
538 return ret;
539}
540
541static noinline void caching_thread(struct btrfs_work *work)
542{
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
b4570aa9 546 struct btrfs_root *extent_root;
73fa48b6
OS
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
b4570aa9 552 extent_root = fs_info->extent_root;
73fa48b6
OS
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
1e144fb8
OS
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
73fa48b6 561
817d52f8 562 spin_lock(&block_group->lock);
11833d66 563 block_group->caching_ctl = NULL;
73fa48b6 564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 565 spin_unlock(&block_group->lock);
0f9dd46c 566
d0bd4560
JB
567#ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580#endif
581
582 caching_ctl->progress = (u64)-1;
11833d66 583
9e351cc8 584 up_read(&fs_info->commit_root_sem);
73fa48b6 585 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 586 mutex_unlock(&caching_ctl->mutex);
73fa48b6 587
11833d66
YZ
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
11dfe35a 591 btrfs_put_block_group(block_group);
817d52f8
JB
592}
593
9d66e233 594static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 595 int load_cache_only)
817d52f8 596{
291c7d2f 597 DEFINE_WAIT(wait);
11833d66
YZ
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
600 int ret = 0;
601
291c7d2f 602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
603 if (!caching_ctl)
604 return -ENOMEM;
291c7d2f
JB
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
291c7d2f
JB
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
11833d66 646 return 0;
291c7d2f
JB
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
11833d66 652
d53ba474 653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 654 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
291c7d2f 659 cache->caching_ctl = NULL;
9d66e233
JB
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 662 caching_ctl->progress = (u64)-1;
9d66e233 663 } else {
291c7d2f
JB
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 669 cache->has_caching_ctl = 1;
291c7d2f 670 }
9d66e233
JB
671 }
672 spin_unlock(&cache->lock);
d0bd4560
JB
673#ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688#endif
cb83b7b8
JB
689 mutex_unlock(&caching_ctl->mutex);
690
291c7d2f 691 wake_up(&caching_ctl->wait);
3c14874a 692 if (ret == 1) {
291c7d2f 693 put_caching_control(caching_ctl);
3c14874a 694 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 695 return 0;
3c14874a 696 }
291c7d2f
JB
697 } else {
698 /*
1e144fb8
OS
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 708 cache->has_caching_ctl = 1;
291c7d2f
JB
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
9d66e233
JB
712 }
713
291c7d2f
JB
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
11833d66 716 return 0;
817d52f8 717 }
817d52f8 718
9e351cc8 719 down_write(&fs_info->commit_root_sem);
291c7d2f 720 atomic_inc(&caching_ctl->count);
11833d66 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 722 up_write(&fs_info->commit_root_sem);
11833d66 723
11dfe35a 724 btrfs_get_block_group(cache);
11833d66 725
e66f0bb1 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 727
ef8bbdfe 728 return ret;
e37c9e69
CM
729}
730
0f9dd46c
JB
731/*
732 * return the block group that starts at or after bytenr
733 */
d397712b
CM
734static struct btrfs_block_group_cache *
735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 736{
0f9dd46c 737 struct btrfs_block_group_cache *cache;
0ef3e66b 738
0f9dd46c 739 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 740
0f9dd46c 741 return cache;
0ef3e66b
CM
742}
743
0f9dd46c 744/*
9f55684c 745 * return the block group that contains the given bytenr
0f9dd46c 746 */
d397712b
CM
747struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
be744175 750{
0f9dd46c 751 struct btrfs_block_group_cache *cache;
be744175 752
0f9dd46c 753 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 754
0f9dd46c 755 return cache;
be744175 756}
0b86a832 757
0f9dd46c
JB
758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
6324fbf3 760{
0f9dd46c 761 struct list_head *head = &info->space_info;
0f9dd46c 762 struct btrfs_space_info *found;
4184ea7f 763
52ba6929 764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 765
4184ea7f
CM
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
67377734 768 if (found->flags & flags) {
4184ea7f 769 rcu_read_unlock();
0f9dd46c 770 return found;
4184ea7f 771 }
0f9dd46c 772 }
4184ea7f 773 rcu_read_unlock();
0f9dd46c 774 return NULL;
6324fbf3
CM
775}
776
4184ea7f
CM
777/*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782{
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790}
791
1a4ed8fd
FM
792/* simple helper to search for an existing data extent at a given offset */
793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
794{
795 int ret;
796 struct btrfs_key key;
31840ae1 797 struct btrfs_path *path;
e02119d5 798
31840ae1 799 path = btrfs_alloc_path();
d8926bb3
MF
800 if (!path)
801 return -ENOMEM;
802
e02119d5
CM
803 key.objectid = start;
804 key.offset = len;
3173a18f 805 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
31840ae1 808 btrfs_free_path(path);
7bb86316
CM
809 return ret;
810}
811
a22285a6 812/*
3173a18f 813 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
3173a18f 823 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
824{
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
3173a18f
JB
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 841 offset = root->nodesize;
3173a18f
JB
842 metadata = 0;
843 }
844
a22285a6
YZ
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
a22285a6
YZ
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
639eefc8
FDBM
853
854search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
a22285a6
YZ
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
3173a18f 867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 874 key.offset == root->nodesize)
74be9510
FDBM
875 ret = 0;
876 }
3173a18f
JB
877 }
878
a22285a6
YZ
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896#else
897 BUG();
898#endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
b3b4aa74 918 btrfs_release_path(path);
a22285a6 919
8cc33e5c
DS
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
a22285a6
YZ
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
639eefc8 927 goto search_again;
a22285a6 928 }
d7df2c79 929 spin_lock(&head->lock);
a22285a6
YZ
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
d7df2c79 936 spin_unlock(&head->lock);
a22285a6
YZ
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946out_free:
947 btrfs_free_path(path);
948 return ret;
949}
950
d8d5f3e1
CM
951/*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
5d4f98a2
YZ
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
01327610 983 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
d8d5f3e1
CM
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1013 * - different files inside a single subvolume
d8d5f3e1
CM
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
5d4f98a2 1016 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1017 *
1018 * - Objectid of the subvolume root
d8d5f3e1 1019 * - objectid of the file holding the reference
5d4f98a2
YZ
1020 * - original offset in the file
1021 * - how many bookend extents
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
d8d5f3e1 1025 *
5d4f98a2 1026 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1027 *
5d4f98a2 1028 * - number of pointers in the tree leaf
d8d5f3e1 1029 *
5d4f98a2
YZ
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
d8d5f3e1 1035 *
5d4f98a2 1036 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1037 *
5d4f98a2
YZ
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1040 *
5d4f98a2 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1042 *
5d4f98a2 1043 * Btree extents can be referenced by:
d8d5f3e1 1044 *
5d4f98a2 1045 * - Different subvolumes
d8d5f3e1 1046 *
5d4f98a2
YZ
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
d8d5f3e1 1051 *
5d4f98a2
YZ
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
d8d5f3e1 1055 */
31840ae1 1056
5d4f98a2
YZ
1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
7bb86316 1062{
5d4f98a2
YZ
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
7bb86316 1068 struct btrfs_key key;
5d4f98a2
YZ
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
79787eaa 1088 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
b3b4aa74 1104 btrfs_release_path(path);
5d4f98a2
YZ
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
79787eaa 1114 BUG_ON(ret); /* Corruption */
5d4f98a2 1115
4b90c680 1116 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136}
1137#endif
1138
1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140{
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
14a958e6 1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1147 lenum = cpu_to_le64(owner);
14a958e6 1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1149 lenum = cpu_to_le64(offset);
14a958e6 1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153}
1154
1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157{
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161}
1162
1163static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166{
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172}
1173
1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180{
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
31840ae1 1183 struct extent_buffer *leaf;
5d4f98a2 1184 u32 nritems;
74493f7a 1185 int ret;
5d4f98a2
YZ
1186 int recow;
1187 int err = -ENOENT;
74493f7a 1188
31840ae1 1189 key.objectid = bytenr;
5d4f98a2
YZ
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
31840ae1 1205
5d4f98a2
YZ
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1211 btrfs_release_path(path);
5d4f98a2
YZ
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219#endif
1220 goto fail;
31840ae1
ZY
1221 }
1222
1223 leaf = path->nodes[0];
5d4f98a2
YZ
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
b3b4aa74 1249 btrfs_release_path(path);
5d4f98a2
YZ
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
31840ae1 1256 }
5d4f98a2
YZ
1257fail:
1258 return err;
31840ae1
ZY
1259}
1260
5d4f98a2
YZ
1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
31840ae1
ZY
1267{
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 size;
31840ae1
ZY
1271 u32 num_refs;
1272 int ret;
74493f7a 1273
74493f7a 1274 key.objectid = bytenr;
5d4f98a2
YZ
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
74493f7a 1285
5d4f98a2
YZ
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
31840ae1 1293 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1301 }
5d4f98a2
YZ
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
31840ae1 1316
5d4f98a2
YZ
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1331 }
31840ae1 1332 }
5d4f98a2
YZ
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335fail:
b3b4aa74 1336 btrfs_release_path(path);
7bb86316 1337 return ret;
74493f7a
CM
1338}
1339
5d4f98a2
YZ
1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
fcebe456 1343 int refs_to_drop, int *last_ref)
31840ae1 1344{
5d4f98a2
YZ
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1348 struct extent_buffer *leaf;
5d4f98a2 1349 u32 num_refs = 0;
31840ae1
ZY
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
5d4f98a2
YZ
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369#endif
1370 } else {
1371 BUG();
1372 }
1373
56bec294
CM
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
5d4f98a2 1376
31840ae1
ZY
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
fcebe456 1379 *last_ref = 1;
31840ae1 1380 } else {
5d4f98a2
YZ
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392#endif
31840ae1
ZY
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
31840ae1
ZY
1395 return ret;
1396}
1397
9ed0dea0 1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1399 struct btrfs_extent_inline_ref *iref)
15916de8 1400{
5d4f98a2
YZ
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1432#endif
5d4f98a2
YZ
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437}
15916de8 1438
5d4f98a2
YZ
1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1f3c79a2 1444{
5d4f98a2 1445 struct btrfs_key key;
1f3c79a2 1446 int ret;
1f3c79a2 1447
5d4f98a2
YZ
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1f3c79a2
LH
1455 }
1456
5d4f98a2
YZ
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
b3b4aa74 1462 btrfs_release_path(path);
5d4f98a2
YZ
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1f3c79a2 1468#endif
5d4f98a2 1469 return ret;
1f3c79a2
LH
1470}
1471
5d4f98a2
YZ
1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
31840ae1 1477{
5d4f98a2 1478 struct btrfs_key key;
31840ae1 1479 int ret;
31840ae1 1480
5d4f98a2
YZ
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1491 btrfs_release_path(path);
31840ae1
ZY
1492 return ret;
1493}
1494
5d4f98a2 1495static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1496{
5d4f98a2
YZ
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
31840ae1 1510}
56bec294 1511
2c47e605
YZ
1512static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
56bec294 1514
02217ed2 1515{
2c47e605 1516 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1517 if (!path->nodes[level])
1518 break;
5d4f98a2
YZ
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531}
037e6390 1532
5d4f98a2
YZ
1533/*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546static noinline_for_stack
1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554{
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
3173a18f
JB
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
26b8003f 1570
db94535d 1571 key.objectid = bytenr;
31840ae1 1572 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1573 key.offset = num_bytes;
31840ae1 1574
5d4f98a2
YZ
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1578 path->keep_locks = 1;
5d4f98a2
YZ
1579 } else
1580 extra_size = -1;
3173a18f
JB
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591again:
5d4f98a2 1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1593 if (ret < 0) {
5d4f98a2
YZ
1594 err = ret;
1595 goto out;
1596 }
3173a18f
JB
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
9ce49a0b 1614 key.objectid = bytenr;
3173a18f
JB
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
79787eaa
JM
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
fae7f21c 1625 } else if (WARN_ON(ret)) {
492104c8 1626 err = -EIO;
492104c8 1627 goto out;
79787eaa 1628 }
5d4f98a2
YZ
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647#endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
5d4f98a2
YZ
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
3173a18f 1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
5d4f98a2
YZ
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
2c47e605
YZ
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
85d4198e 1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728out:
85d4198e 1729 if (insert) {
5d4f98a2
YZ
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734}
1735
1736/*
1737 * helper to add new inline back ref
1738 */
1739static noinline_for_stack
fd279fae 1740void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1746{
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
5d4f98a2
YZ
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
4b90c680 1763 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1798}
1799
1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806{
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
54aa1f4d 1813 return ret;
5d4f98a2 1814
b3b4aa74 1815 btrfs_release_path(path);
5d4f98a2
YZ
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
b9473439 1824 }
5d4f98a2
YZ
1825 return ret;
1826}
31840ae1 1827
5d4f98a2
YZ
1828/*
1829 * helper to update/remove inline back ref
1830 */
1831static noinline_for_stack
afe5fea7 1832void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
fcebe456
JB
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
5d4f98a2
YZ
1838{
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
5d4f98a2
YZ
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
56bec294 1870 }
31840ae1 1871
5d4f98a2
YZ
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
afe5fea7 1890 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1893}
1894
1895static noinline_for_stack
1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903{
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1912 update_inline_extent_backref(root, path, iref,
fcebe456 1913 refs_to_add, extent_op, NULL);
5d4f98a2 1914 } else if (ret == -ENOENT) {
fd279fae 1915 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
771ed689 1919 }
5d4f98a2
YZ
1920 return ret;
1921}
31840ae1 1922
5d4f98a2
YZ
1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928{
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940}
56bec294 1941
5d4f98a2
YZ
1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
fcebe456 1946 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1947{
143bede5 1948 int ret = 0;
b9473439 1949
5d4f98a2
YZ
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
afe5fea7 1952 update_inline_extent_backref(root, path, iref,
fcebe456 1953 -refs_to_drop, NULL, last_ref);
5d4f98a2 1954 } else if (is_data) {
fcebe456
JB
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
5d4f98a2 1957 } else {
fcebe456 1958 *last_ref = 1;
5d4f98a2
YZ
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962}
1963
86557861 1964#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
5d4f98a2 1967{
86557861
JM
1968 int j, ret = 0;
1969 u64 bytes_left, end;
4d89d377 1970 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1971
4d89d377
JM
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
d04c6b88 1977
4d89d377 1978 *discarded_bytes = 0;
86557861
JM
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2030 GFP_NOFS, 0);
2031 if (!ret)
86557861 2032 *discarded_bytes += bytes_left;
4d89d377 2033 }
d04c6b88 2034 return ret;
5d4f98a2 2035}
5d4f98a2 2036
1edb647b
FM
2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2039{
5d4f98a2 2040 int ret;
5378e607 2041 u64 discarded_bytes = 0;
a1d3c478 2042 struct btrfs_bio *bbio = NULL;
5d4f98a2 2043
e244a0ae 2044
2999241d
FM
2045 /*
2046 * Avoid races with device replace and make sure our bbio has devices
2047 * associated to its stripes that don't go away while we are discarding.
2048 */
2049 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2050 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2051 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2052 bytenr, &num_bytes, &bbio, 0);
79787eaa 2053 /* Error condition is -ENOMEM */
5d4f98a2 2054 if (!ret) {
a1d3c478 2055 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2056 int i;
2057
5d4f98a2 2058
a1d3c478 2059 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2060 u64 bytes;
d5e2003c
JB
2061 if (!stripe->dev->can_discard)
2062 continue;
2063
5378e607
LD
2064 ret = btrfs_issue_discard(stripe->dev->bdev,
2065 stripe->physical,
d04c6b88
JM
2066 stripe->length,
2067 &bytes);
5378e607 2068 if (!ret)
d04c6b88 2069 discarded_bytes += bytes;
5378e607 2070 else if (ret != -EOPNOTSUPP)
79787eaa 2071 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2072
2073 /*
2074 * Just in case we get back EOPNOTSUPP for some reason,
2075 * just ignore the return value so we don't screw up
2076 * people calling discard_extent.
2077 */
2078 ret = 0;
5d4f98a2 2079 }
6e9606d2 2080 btrfs_put_bbio(bbio);
5d4f98a2 2081 }
2999241d 2082 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2083
2084 if (actual_bytes)
2085 *actual_bytes = discarded_bytes;
2086
5d4f98a2 2087
53b381b3
DW
2088 if (ret == -EOPNOTSUPP)
2089 ret = 0;
5d4f98a2 2090 return ret;
5d4f98a2
YZ
2091}
2092
79787eaa 2093/* Can return -ENOMEM */
5d4f98a2
YZ
2094int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *root,
2096 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2097 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2098{
2099 int ret;
66d7e7f0
AJ
2100 struct btrfs_fs_info *fs_info = root->fs_info;
2101
5d4f98a2
YZ
2102 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104
2105 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2106 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107 num_bytes,
5d4f98a2 2108 parent, root_objectid, (int)owner,
b06c4bf5 2109 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2110 } else {
66d7e7f0 2111 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2112 num_bytes, parent, root_objectid,
2113 owner, offset, 0,
b06c4bf5 2114 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2115 }
2116 return ret;
2117}
2118
2119static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
c682f9b3 2121 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2122 u64 parent, u64 root_objectid,
2123 u64 owner, u64 offset, int refs_to_add,
2124 struct btrfs_delayed_extent_op *extent_op)
2125{
fcebe456 2126 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2127 struct btrfs_path *path;
2128 struct extent_buffer *leaf;
2129 struct btrfs_extent_item *item;
fcebe456 2130 struct btrfs_key key;
c682f9b3
QW
2131 u64 bytenr = node->bytenr;
2132 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2133 u64 refs;
2134 int ret;
5d4f98a2
YZ
2135
2136 path = btrfs_alloc_path();
2137 if (!path)
2138 return -ENOMEM;
2139
e4058b54 2140 path->reada = READA_FORWARD;
5d4f98a2
YZ
2141 path->leave_spinning = 1;
2142 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2143 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144 bytenr, num_bytes, parent,
5d4f98a2
YZ
2145 root_objectid, owner, offset,
2146 refs_to_add, extent_op);
0ed4792a 2147 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2148 goto out;
fcebe456
JB
2149
2150 /*
2151 * Ok we had -EAGAIN which means we didn't have space to insert and
2152 * inline extent ref, so just update the reference count and add a
2153 * normal backref.
2154 */
5d4f98a2 2155 leaf = path->nodes[0];
fcebe456 2156 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2157 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158 refs = btrfs_extent_refs(leaf, item);
2159 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160 if (extent_op)
2161 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2162
5d4f98a2 2163 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2164 btrfs_release_path(path);
56bec294 2165
e4058b54 2166 path->reada = READA_FORWARD;
b9473439 2167 path->leave_spinning = 1;
56bec294
CM
2168 /* now insert the actual backref */
2169 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2170 path, bytenr, parent, root_objectid,
2171 owner, offset, refs_to_add);
79787eaa
JM
2172 if (ret)
2173 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2174out:
56bec294 2175 btrfs_free_path(path);
30d133fc 2176 return ret;
56bec294
CM
2177}
2178
5d4f98a2
YZ
2179static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root,
2181 struct btrfs_delayed_ref_node *node,
2182 struct btrfs_delayed_extent_op *extent_op,
2183 int insert_reserved)
56bec294 2184{
5d4f98a2
YZ
2185 int ret = 0;
2186 struct btrfs_delayed_data_ref *ref;
2187 struct btrfs_key ins;
2188 u64 parent = 0;
2189 u64 ref_root = 0;
2190 u64 flags = 0;
2191
2192 ins.objectid = node->bytenr;
2193 ins.offset = node->num_bytes;
2194 ins.type = BTRFS_EXTENT_ITEM_KEY;
2195
2196 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2197 trace_run_delayed_data_ref(node, ref, node->action);
2198
5d4f98a2
YZ
2199 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200 parent = ref->parent;
fcebe456 2201 ref_root = ref->root;
5d4f98a2
YZ
2202
2203 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2204 if (extent_op)
5d4f98a2 2205 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2206 ret = alloc_reserved_file_extent(trans, root,
2207 parent, ref_root, flags,
2208 ref->objectid, ref->offset,
2209 &ins, node->ref_mod);
5d4f98a2 2210 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2211 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2212 ref_root, ref->objectid,
2213 ref->offset, node->ref_mod,
c682f9b3 2214 extent_op);
5d4f98a2 2215 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2216 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2217 ref_root, ref->objectid,
2218 ref->offset, node->ref_mod,
c682f9b3 2219 extent_op);
5d4f98a2
YZ
2220 } else {
2221 BUG();
2222 }
2223 return ret;
2224}
2225
2226static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227 struct extent_buffer *leaf,
2228 struct btrfs_extent_item *ei)
2229{
2230 u64 flags = btrfs_extent_flags(leaf, ei);
2231 if (extent_op->update_flags) {
2232 flags |= extent_op->flags_to_set;
2233 btrfs_set_extent_flags(leaf, ei, flags);
2234 }
2235
2236 if (extent_op->update_key) {
2237 struct btrfs_tree_block_info *bi;
2238 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239 bi = (struct btrfs_tree_block_info *)(ei + 1);
2240 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241 }
2242}
2243
2244static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op)
2248{
2249 struct btrfs_key key;
2250 struct btrfs_path *path;
2251 struct btrfs_extent_item *ei;
2252 struct extent_buffer *leaf;
2253 u32 item_size;
56bec294 2254 int ret;
5d4f98a2 2255 int err = 0;
b1c79e09 2256 int metadata = !extent_op->is_data;
5d4f98a2 2257
79787eaa
JM
2258 if (trans->aborted)
2259 return 0;
2260
3173a18f
JB
2261 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262 metadata = 0;
2263
5d4f98a2
YZ
2264 path = btrfs_alloc_path();
2265 if (!path)
2266 return -ENOMEM;
2267
2268 key.objectid = node->bytenr;
5d4f98a2 2269
3173a18f 2270 if (metadata) {
3173a18f 2271 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2272 key.offset = extent_op->level;
3173a18f
JB
2273 } else {
2274 key.type = BTRFS_EXTENT_ITEM_KEY;
2275 key.offset = node->num_bytes;
2276 }
2277
2278again:
e4058b54 2279 path->reada = READA_FORWARD;
5d4f98a2
YZ
2280 path->leave_spinning = 1;
2281 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282 path, 0, 1);
2283 if (ret < 0) {
2284 err = ret;
2285 goto out;
2286 }
2287 if (ret > 0) {
3173a18f 2288 if (metadata) {
55994887
FDBM
2289 if (path->slots[0] > 0) {
2290 path->slots[0]--;
2291 btrfs_item_key_to_cpu(path->nodes[0], &key,
2292 path->slots[0]);
2293 if (key.objectid == node->bytenr &&
2294 key.type == BTRFS_EXTENT_ITEM_KEY &&
2295 key.offset == node->num_bytes)
2296 ret = 0;
2297 }
2298 if (ret > 0) {
2299 btrfs_release_path(path);
2300 metadata = 0;
3173a18f 2301
55994887
FDBM
2302 key.objectid = node->bytenr;
2303 key.offset = node->num_bytes;
2304 key.type = BTRFS_EXTENT_ITEM_KEY;
2305 goto again;
2306 }
2307 } else {
2308 err = -EIO;
2309 goto out;
3173a18f 2310 }
5d4f98a2
YZ
2311 }
2312
2313 leaf = path->nodes[0];
2314 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316 if (item_size < sizeof(*ei)) {
2317 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318 path, (u64)-1, 0);
2319 if (ret < 0) {
2320 err = ret;
2321 goto out;
2322 }
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 }
2326#endif
2327 BUG_ON(item_size < sizeof(*ei));
2328 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2330
5d4f98a2
YZ
2331 btrfs_mark_buffer_dirty(leaf);
2332out:
2333 btrfs_free_path(path);
2334 return err;
56bec294
CM
2335}
2336
5d4f98a2
YZ
2337static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338 struct btrfs_root *root,
2339 struct btrfs_delayed_ref_node *node,
2340 struct btrfs_delayed_extent_op *extent_op,
2341 int insert_reserved)
56bec294
CM
2342{
2343 int ret = 0;
5d4f98a2
YZ
2344 struct btrfs_delayed_tree_ref *ref;
2345 struct btrfs_key ins;
2346 u64 parent = 0;
2347 u64 ref_root = 0;
3173a18f
JB
2348 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349 SKINNY_METADATA);
56bec294 2350
5d4f98a2 2351 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2352 trace_run_delayed_tree_ref(node, ref, node->action);
2353
5d4f98a2
YZ
2354 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355 parent = ref->parent;
fcebe456 2356 ref_root = ref->root;
5d4f98a2 2357
3173a18f
JB
2358 ins.objectid = node->bytenr;
2359 if (skinny_metadata) {
2360 ins.offset = ref->level;
2361 ins.type = BTRFS_METADATA_ITEM_KEY;
2362 } else {
2363 ins.offset = node->num_bytes;
2364 ins.type = BTRFS_EXTENT_ITEM_KEY;
2365 }
2366
5d4f98a2
YZ
2367 BUG_ON(node->ref_mod != 1);
2368 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2369 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2370 ret = alloc_reserved_tree_block(trans, root,
2371 parent, ref_root,
2372 extent_op->flags_to_set,
2373 &extent_op->key,
b06c4bf5 2374 ref->level, &ins);
5d4f98a2 2375 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2376 ret = __btrfs_inc_extent_ref(trans, root, node,
2377 parent, ref_root,
2378 ref->level, 0, 1,
fcebe456 2379 extent_op);
5d4f98a2 2380 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2381 ret = __btrfs_free_extent(trans, root, node,
2382 parent, ref_root,
2383 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2384 } else {
2385 BUG();
2386 }
56bec294
CM
2387 return ret;
2388}
2389
2390/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2391static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 struct btrfs_delayed_ref_node *node,
2394 struct btrfs_delayed_extent_op *extent_op,
2395 int insert_reserved)
56bec294 2396{
79787eaa
JM
2397 int ret = 0;
2398
857cc2fc
JB
2399 if (trans->aborted) {
2400 if (insert_reserved)
2401 btrfs_pin_extent(root, node->bytenr,
2402 node->num_bytes, 1);
79787eaa 2403 return 0;
857cc2fc 2404 }
79787eaa 2405
5d4f98a2 2406 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2407 struct btrfs_delayed_ref_head *head;
2408 /*
2409 * we've hit the end of the chain and we were supposed
2410 * to insert this extent into the tree. But, it got
2411 * deleted before we ever needed to insert it, so all
2412 * we have to do is clean up the accounting
2413 */
5d4f98a2
YZ
2414 BUG_ON(extent_op);
2415 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2416 trace_run_delayed_ref_head(node, head, node->action);
2417
56bec294 2418 if (insert_reserved) {
f0486c68
YZ
2419 btrfs_pin_extent(root, node->bytenr,
2420 node->num_bytes, 1);
5d4f98a2
YZ
2421 if (head->is_data) {
2422 ret = btrfs_del_csums(trans, root,
2423 node->bytenr,
2424 node->num_bytes);
5d4f98a2 2425 }
56bec294 2426 }
297d750b
QW
2427
2428 /* Also free its reserved qgroup space */
2429 btrfs_qgroup_free_delayed_ref(root->fs_info,
2430 head->qgroup_ref_root,
2431 head->qgroup_reserved);
79787eaa 2432 return ret;
56bec294
CM
2433 }
2434
5d4f98a2
YZ
2435 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438 insert_reserved);
2439 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441 ret = run_delayed_data_ref(trans, root, node, extent_op,
2442 insert_reserved);
2443 else
2444 BUG();
2445 return ret;
56bec294
CM
2446}
2447
c6fc2454 2448static inline struct btrfs_delayed_ref_node *
56bec294
CM
2449select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450{
cffc3374
FM
2451 struct btrfs_delayed_ref_node *ref;
2452
c6fc2454
QW
2453 if (list_empty(&head->ref_list))
2454 return NULL;
d7df2c79 2455
cffc3374
FM
2456 /*
2457 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458 * This is to prevent a ref count from going down to zero, which deletes
2459 * the extent item from the extent tree, when there still are references
2460 * to add, which would fail because they would not find the extent item.
2461 */
2462 list_for_each_entry(ref, &head->ref_list, list) {
2463 if (ref->action == BTRFS_ADD_DELAYED_REF)
2464 return ref;
2465 }
2466
c6fc2454
QW
2467 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468 list);
56bec294
CM
2469}
2470
79787eaa
JM
2471/*
2472 * Returns 0 on success or if called with an already aborted transaction.
2473 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474 */
d7df2c79
JB
2475static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476 struct btrfs_root *root,
2477 unsigned long nr)
56bec294 2478{
56bec294
CM
2479 struct btrfs_delayed_ref_root *delayed_refs;
2480 struct btrfs_delayed_ref_node *ref;
2481 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2482 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2483 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2484 ktime_t start = ktime_get();
56bec294 2485 int ret;
d7df2c79 2486 unsigned long count = 0;
0a2b2a84 2487 unsigned long actual_count = 0;
56bec294 2488 int must_insert_reserved = 0;
56bec294
CM
2489
2490 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2491 while (1) {
2492 if (!locked_ref) {
d7df2c79 2493 if (count >= nr)
56bec294 2494 break;
56bec294 2495
d7df2c79
JB
2496 spin_lock(&delayed_refs->lock);
2497 locked_ref = btrfs_select_ref_head(trans);
2498 if (!locked_ref) {
2499 spin_unlock(&delayed_refs->lock);
2500 break;
2501 }
c3e69d58
CM
2502
2503 /* grab the lock that says we are going to process
2504 * all the refs for this head */
2505 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2506 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2507 /*
2508 * we may have dropped the spin lock to get the head
2509 * mutex lock, and that might have given someone else
2510 * time to free the head. If that's true, it has been
2511 * removed from our list and we can move on.
2512 */
2513 if (ret == -EAGAIN) {
2514 locked_ref = NULL;
2515 count++;
2516 continue;
56bec294
CM
2517 }
2518 }
a28ec197 2519
2c3cf7d5
FM
2520 /*
2521 * We need to try and merge add/drops of the same ref since we
2522 * can run into issues with relocate dropping the implicit ref
2523 * and then it being added back again before the drop can
2524 * finish. If we merged anything we need to re-loop so we can
2525 * get a good ref.
2526 * Or we can get node references of the same type that weren't
2527 * merged when created due to bumps in the tree mod seq, and
2528 * we need to merge them to prevent adding an inline extent
2529 * backref before dropping it (triggering a BUG_ON at
2530 * insert_inline_extent_backref()).
2531 */
d7df2c79 2532 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2533 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534 locked_ref);
ae1e206b 2535
d1270cd9
AJ
2536 /*
2537 * locked_ref is the head node, so we have to go one
2538 * node back for any delayed ref updates
2539 */
2540 ref = select_delayed_ref(locked_ref);
2541
2542 if (ref && ref->seq &&
097b8a7c 2543 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2544 spin_unlock(&locked_ref->lock);
093486c4 2545 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2546 spin_lock(&delayed_refs->lock);
2547 locked_ref->processing = 0;
d1270cd9
AJ
2548 delayed_refs->num_heads_ready++;
2549 spin_unlock(&delayed_refs->lock);
d7df2c79 2550 locked_ref = NULL;
d1270cd9 2551 cond_resched();
27a377db 2552 count++;
d1270cd9
AJ
2553 continue;
2554 }
2555
56bec294
CM
2556 /*
2557 * record the must insert reserved flag before we
2558 * drop the spin lock.
2559 */
2560 must_insert_reserved = locked_ref->must_insert_reserved;
2561 locked_ref->must_insert_reserved = 0;
7bb86316 2562
5d4f98a2
YZ
2563 extent_op = locked_ref->extent_op;
2564 locked_ref->extent_op = NULL;
2565
56bec294 2566 if (!ref) {
d7df2c79
JB
2567
2568
56bec294
CM
2569 /* All delayed refs have been processed, Go ahead
2570 * and send the head node to run_one_delayed_ref,
2571 * so that any accounting fixes can happen
2572 */
2573 ref = &locked_ref->node;
5d4f98a2
YZ
2574
2575 if (extent_op && must_insert_reserved) {
78a6184a 2576 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2577 extent_op = NULL;
2578 }
2579
2580 if (extent_op) {
d7df2c79 2581 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2582 ret = run_delayed_extent_op(trans, root,
2583 ref, extent_op);
78a6184a 2584 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2585
79787eaa 2586 if (ret) {
857cc2fc
JB
2587 /*
2588 * Need to reset must_insert_reserved if
2589 * there was an error so the abort stuff
2590 * can cleanup the reserved space
2591 * properly.
2592 */
2593 if (must_insert_reserved)
2594 locked_ref->must_insert_reserved = 1;
d7df2c79 2595 locked_ref->processing = 0;
c2cf52eb 2596 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2597 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2598 return ret;
2599 }
d7df2c79 2600 continue;
5d4f98a2 2601 }
02217ed2 2602
d7df2c79 2603 /*
01327610 2604 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
c6fc2454 2611 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2612 locked_ref->extent_op) {
d7df2c79
JB
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
c46effa6
LB
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
d7df2c79
JB
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
0a2b2a84 2623 actual_count++;
d7df2c79 2624 ref->in_tree = 0;
c6fc2454 2625 list_del(&ref->list);
c46effa6 2626 }
d7df2c79
JB
2627 atomic_dec(&delayed_refs->num_entries);
2628
093486c4 2629 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2630 /*
2631 * when we play the delayed ref, also correct the
2632 * ref_mod on head
2633 */
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2638 break;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2641 break;
2642 default:
2643 WARN_ON(1);
2644 }
2645 }
d7df2c79 2646 spin_unlock(&locked_ref->lock);
925baedd 2647
5d4f98a2 2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2649 must_insert_reserved);
eb099670 2650
78a6184a 2651 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2652 if (ret) {
d7df2c79 2653 locked_ref->processing = 0;
093486c4
MX
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
c2cf52eb 2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2657 return ret;
2658 }
2659
093486c4
MX
2660 /*
2661 * If this node is a head, that means all the refs in this head
2662 * have been dealt with, and we will pick the next head to deal
2663 * with, so we must unlock the head and drop it from the cluster
2664 * list before we release it.
2665 */
2666 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2667 if (locked_ref->is_data &&
2668 locked_ref->total_ref_mod < 0) {
2669 spin_lock(&delayed_refs->lock);
2670 delayed_refs->pending_csums -= ref->num_bytes;
2671 spin_unlock(&delayed_refs->lock);
2672 }
093486c4
MX
2673 btrfs_delayed_ref_unlock(locked_ref);
2674 locked_ref = NULL;
2675 }
2676 btrfs_put_delayed_ref(ref);
2677 count++;
c3e69d58 2678 cond_resched();
c3e69d58 2679 }
0a2b2a84
JB
2680
2681 /*
2682 * We don't want to include ref heads since we can have empty ref heads
2683 * and those will drastically skew our runtime down since we just do
2684 * accounting, no actual extent tree updates.
2685 */
2686 if (actual_count > 0) {
2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 u64 avg;
2689
2690 /*
2691 * We weigh the current average higher than our current runtime
2692 * to avoid large swings in the average.
2693 */
2694 spin_lock(&delayed_refs->lock);
2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2697 spin_unlock(&delayed_refs->lock);
2698 }
d7df2c79 2699 return 0;
c3e69d58
CM
2700}
2701
709c0486
AJ
2702#ifdef SCRAMBLE_DELAYED_REFS
2703/*
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2707 */
2708static u64 find_middle(struct rb_root *root)
2709{
2710 struct rb_node *n = root->rb_node;
2711 struct btrfs_delayed_ref_node *entry;
2712 int alt = 1;
2713 u64 middle;
2714 u64 first = 0, last = 0;
2715
2716 n = rb_first(root);
2717 if (n) {
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 first = entry->bytenr;
2720 }
2721 n = rb_last(root);
2722 if (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 last = entry->bytenr;
2725 }
2726 n = root->rb_node;
2727
2728 while (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 WARN_ON(!entry->in_tree);
2731
2732 middle = entry->bytenr;
2733
2734 if (alt)
2735 n = n->rb_left;
2736 else
2737 n = n->rb_right;
2738
2739 alt = 1 - alt;
2740 }
2741 return middle;
2742}
2743#endif
2744
1be41b78
JB
2745static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746{
2747 u64 num_bytes;
2748
2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 sizeof(struct btrfs_extent_inline_ref));
2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754 /*
2755 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2756 * closer to what we're really going to want to use.
1be41b78 2757 */
f8c269d7 2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2759}
2760
1262133b
JB
2761/*
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2764 */
28f75a0e 2765u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2766{
2767 u64 csum_size;
2768 u64 num_csums_per_leaf;
2769 u64 num_csums;
2770
2771 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772 num_csums_per_leaf = div64_u64(csum_size,
2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 num_csums += num_csums_per_leaf - 1;
2776 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 return num_csums;
2778}
2779
0a2b2a84 2780int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2781 struct btrfs_root *root)
2782{
2783 struct btrfs_block_rsv *global_rsv;
2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2788 int ret = 0;
2789
2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 num_heads = heads_to_leaves(root, num_heads);
2792 if (num_heads > 1)
707e8a07 2793 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2794 num_bytes <<= 1;
28f75a0e 2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 num_dirty_bgs);
1be41b78
JB
2798 global_rsv = &root->fs_info->global_block_rsv;
2799
2800 /*
2801 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 * wiggle room since running delayed refs can create more delayed refs.
2803 */
cb723e49
JB
2804 if (global_rsv->space_info->full) {
2805 num_dirty_bgs_bytes <<= 1;
1be41b78 2806 num_bytes <<= 1;
cb723e49 2807 }
1be41b78
JB
2808
2809 spin_lock(&global_rsv->lock);
cb723e49 2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2811 ret = 1;
2812 spin_unlock(&global_rsv->lock);
2813 return ret;
2814}
2815
0a2b2a84
JB
2816int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root)
2818{
2819 struct btrfs_fs_info *fs_info = root->fs_info;
2820 u64 num_entries =
2821 atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 u64 avg_runtime;
a79b7d4b 2823 u64 val;
0a2b2a84
JB
2824
2825 smp_mb();
2826 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2827 val = num_entries * avg_runtime;
0a2b2a84
JB
2828 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 return 1;
a79b7d4b
CM
2830 if (val >= NSEC_PER_SEC / 2)
2831 return 2;
0a2b2a84
JB
2832
2833 return btrfs_check_space_for_delayed_refs(trans, root);
2834}
2835
a79b7d4b
CM
2836struct async_delayed_refs {
2837 struct btrfs_root *root;
2838 int count;
2839 int error;
2840 int sync;
2841 struct completion wait;
2842 struct btrfs_work work;
2843};
2844
2845static void delayed_ref_async_start(struct btrfs_work *work)
2846{
2847 struct async_delayed_refs *async;
2848 struct btrfs_trans_handle *trans;
2849 int ret;
2850
2851 async = container_of(work, struct async_delayed_refs, work);
2852
2853 trans = btrfs_join_transaction(async->root);
2854 if (IS_ERR(trans)) {
2855 async->error = PTR_ERR(trans);
2856 goto done;
2857 }
2858
2859 /*
01327610 2860 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2861 * wait on delayed refs
2862 */
2863 trans->sync = true;
2864 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2865 if (ret)
2866 async->error = ret;
2867
2868 ret = btrfs_end_transaction(trans, async->root);
2869 if (ret && !async->error)
2870 async->error = ret;
2871done:
2872 if (async->sync)
2873 complete(&async->wait);
2874 else
2875 kfree(async);
2876}
2877
2878int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2879 unsigned long count, int wait)
2880{
2881 struct async_delayed_refs *async;
2882 int ret;
2883
2884 async = kmalloc(sizeof(*async), GFP_NOFS);
2885 if (!async)
2886 return -ENOMEM;
2887
2888 async->root = root->fs_info->tree_root;
2889 async->count = count;
2890 async->error = 0;
2891 if (wait)
2892 async->sync = 1;
2893 else
2894 async->sync = 0;
2895 init_completion(&async->wait);
2896
9e0af237
LB
2897 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2898 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2899
2900 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2901
2902 if (wait) {
2903 wait_for_completion(&async->wait);
2904 ret = async->error;
2905 kfree(async);
2906 return ret;
2907 }
2908 return 0;
2909}
2910
c3e69d58
CM
2911/*
2912 * this starts processing the delayed reference count updates and
2913 * extent insertions we have queued up so far. count can be
2914 * 0, which means to process everything in the tree at the start
2915 * of the run (but not newly added entries), or it can be some target
2916 * number you'd like to process.
79787eaa
JM
2917 *
2918 * Returns 0 on success or if called with an aborted transaction
2919 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2920 */
2921int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2922 struct btrfs_root *root, unsigned long count)
2923{
2924 struct rb_node *node;
2925 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2926 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2927 int ret;
2928 int run_all = count == (unsigned long)-1;
d9a0540a 2929 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2930
79787eaa
JM
2931 /* We'll clean this up in btrfs_cleanup_transaction */
2932 if (trans->aborted)
2933 return 0;
2934
511711af
CM
2935 if (root->fs_info->creating_free_space_tree)
2936 return 0;
2937
c3e69d58
CM
2938 if (root == root->fs_info->extent_root)
2939 root = root->fs_info->tree_root;
2940
2941 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2942 if (count == 0)
d7df2c79 2943 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2944
c3e69d58 2945again:
709c0486
AJ
2946#ifdef SCRAMBLE_DELAYED_REFS
2947 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2948#endif
d9a0540a 2949 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2950 ret = __btrfs_run_delayed_refs(trans, root, count);
2951 if (ret < 0) {
2952 btrfs_abort_transaction(trans, root, ret);
2953 return ret;
eb099670 2954 }
c3e69d58 2955
56bec294 2956 if (run_all) {
d7df2c79 2957 if (!list_empty(&trans->new_bgs))
ea658bad 2958 btrfs_create_pending_block_groups(trans, root);
ea658bad 2959
d7df2c79 2960 spin_lock(&delayed_refs->lock);
c46effa6 2961 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2962 if (!node) {
2963 spin_unlock(&delayed_refs->lock);
56bec294 2964 goto out;
d7df2c79 2965 }
c3e69d58 2966 count = (unsigned long)-1;
e9d0b13b 2967
56bec294 2968 while (node) {
c46effa6
LB
2969 head = rb_entry(node, struct btrfs_delayed_ref_head,
2970 href_node);
2971 if (btrfs_delayed_ref_is_head(&head->node)) {
2972 struct btrfs_delayed_ref_node *ref;
5caf2a00 2973
c46effa6 2974 ref = &head->node;
56bec294
CM
2975 atomic_inc(&ref->refs);
2976
2977 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2978 /*
2979 * Mutex was contended, block until it's
2980 * released and try again
2981 */
56bec294
CM
2982 mutex_lock(&head->mutex);
2983 mutex_unlock(&head->mutex);
2984
2985 btrfs_put_delayed_ref(ref);
1887be66 2986 cond_resched();
56bec294 2987 goto again;
c46effa6
LB
2988 } else {
2989 WARN_ON(1);
56bec294
CM
2990 }
2991 node = rb_next(node);
2992 }
2993 spin_unlock(&delayed_refs->lock);
d7df2c79 2994 cond_resched();
56bec294 2995 goto again;
5f39d397 2996 }
54aa1f4d 2997out:
edf39272 2998 assert_qgroups_uptodate(trans);
d9a0540a 2999 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3000 return 0;
3001}
3002
5d4f98a2
YZ
3003int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *root,
3005 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3006 int level, int is_data)
5d4f98a2
YZ
3007{
3008 struct btrfs_delayed_extent_op *extent_op;
3009 int ret;
3010
78a6184a 3011 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3012 if (!extent_op)
3013 return -ENOMEM;
3014
3015 extent_op->flags_to_set = flags;
35b3ad50
DS
3016 extent_op->update_flags = true;
3017 extent_op->update_key = false;
3018 extent_op->is_data = is_data ? true : false;
b1c79e09 3019 extent_op->level = level;
5d4f98a2 3020
66d7e7f0
AJ
3021 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3022 num_bytes, extent_op);
5d4f98a2 3023 if (ret)
78a6184a 3024 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3025 return ret;
3026}
3027
3028static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3029 struct btrfs_root *root,
3030 struct btrfs_path *path,
3031 u64 objectid, u64 offset, u64 bytenr)
3032{
3033 struct btrfs_delayed_ref_head *head;
3034 struct btrfs_delayed_ref_node *ref;
3035 struct btrfs_delayed_data_ref *data_ref;
3036 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3037 int ret = 0;
3038
5d4f98a2
YZ
3039 delayed_refs = &trans->transaction->delayed_refs;
3040 spin_lock(&delayed_refs->lock);
3041 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3042 if (!head) {
3043 spin_unlock(&delayed_refs->lock);
3044 return 0;
3045 }
5d4f98a2
YZ
3046
3047 if (!mutex_trylock(&head->mutex)) {
3048 atomic_inc(&head->node.refs);
3049 spin_unlock(&delayed_refs->lock);
3050
b3b4aa74 3051 btrfs_release_path(path);
5d4f98a2 3052
8cc33e5c
DS
3053 /*
3054 * Mutex was contended, block until it's released and let
3055 * caller try again
3056 */
5d4f98a2
YZ
3057 mutex_lock(&head->mutex);
3058 mutex_unlock(&head->mutex);
3059 btrfs_put_delayed_ref(&head->node);
3060 return -EAGAIN;
3061 }
d7df2c79 3062 spin_unlock(&delayed_refs->lock);
5d4f98a2 3063
d7df2c79 3064 spin_lock(&head->lock);
c6fc2454 3065 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3066 /* If it's a shared ref we know a cross reference exists */
3067 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3068 ret = 1;
3069 break;
3070 }
5d4f98a2 3071
d7df2c79 3072 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3073
d7df2c79
JB
3074 /*
3075 * If our ref doesn't match the one we're currently looking at
3076 * then we have a cross reference.
3077 */
3078 if (data_ref->root != root->root_key.objectid ||
3079 data_ref->objectid != objectid ||
3080 data_ref->offset != offset) {
3081 ret = 1;
3082 break;
3083 }
5d4f98a2 3084 }
d7df2c79 3085 spin_unlock(&head->lock);
5d4f98a2 3086 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3087 return ret;
3088}
3089
3090static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3091 struct btrfs_root *root,
3092 struct btrfs_path *path,
3093 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3094{
3095 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3096 struct extent_buffer *leaf;
5d4f98a2
YZ
3097 struct btrfs_extent_data_ref *ref;
3098 struct btrfs_extent_inline_ref *iref;
3099 struct btrfs_extent_item *ei;
f321e491 3100 struct btrfs_key key;
5d4f98a2 3101 u32 item_size;
be20aa9d 3102 int ret;
925baedd 3103
be20aa9d 3104 key.objectid = bytenr;
31840ae1 3105 key.offset = (u64)-1;
f321e491 3106 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3107
be20aa9d
CM
3108 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3109 if (ret < 0)
3110 goto out;
79787eaa 3111 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3112
3113 ret = -ENOENT;
3114 if (path->slots[0] == 0)
31840ae1 3115 goto out;
be20aa9d 3116
31840ae1 3117 path->slots[0]--;
f321e491 3118 leaf = path->nodes[0];
5d4f98a2 3119 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3120
5d4f98a2 3121 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3122 goto out;
f321e491 3123
5d4f98a2
YZ
3124 ret = 1;
3125 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3126#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3127 if (item_size < sizeof(*ei)) {
3128 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3129 goto out;
3130 }
3131#endif
3132 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3133
5d4f98a2
YZ
3134 if (item_size != sizeof(*ei) +
3135 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3136 goto out;
be20aa9d 3137
5d4f98a2
YZ
3138 if (btrfs_extent_generation(leaf, ei) <=
3139 btrfs_root_last_snapshot(&root->root_item))
3140 goto out;
3141
3142 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3143 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3144 BTRFS_EXTENT_DATA_REF_KEY)
3145 goto out;
3146
3147 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3148 if (btrfs_extent_refs(leaf, ei) !=
3149 btrfs_extent_data_ref_count(leaf, ref) ||
3150 btrfs_extent_data_ref_root(leaf, ref) !=
3151 root->root_key.objectid ||
3152 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3153 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3154 goto out;
3155
3156 ret = 0;
3157out:
3158 return ret;
3159}
3160
3161int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3162 struct btrfs_root *root,
3163 u64 objectid, u64 offset, u64 bytenr)
3164{
3165 struct btrfs_path *path;
3166 int ret;
3167 int ret2;
3168
3169 path = btrfs_alloc_path();
3170 if (!path)
3171 return -ENOENT;
3172
3173 do {
3174 ret = check_committed_ref(trans, root, path, objectid,
3175 offset, bytenr);
3176 if (ret && ret != -ENOENT)
f321e491 3177 goto out;
80ff3856 3178
5d4f98a2
YZ
3179 ret2 = check_delayed_ref(trans, root, path, objectid,
3180 offset, bytenr);
3181 } while (ret2 == -EAGAIN);
3182
3183 if (ret2 && ret2 != -ENOENT) {
3184 ret = ret2;
3185 goto out;
f321e491 3186 }
5d4f98a2
YZ
3187
3188 if (ret != -ENOENT || ret2 != -ENOENT)
3189 ret = 0;
be20aa9d 3190out:
80ff3856 3191 btrfs_free_path(path);
f0486c68
YZ
3192 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3193 WARN_ON(ret > 0);
f321e491 3194 return ret;
be20aa9d 3195}
c5739bba 3196
5d4f98a2 3197static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3198 struct btrfs_root *root,
5d4f98a2 3199 struct extent_buffer *buf,
e339a6b0 3200 int full_backref, int inc)
31840ae1
ZY
3201{
3202 u64 bytenr;
5d4f98a2
YZ
3203 u64 num_bytes;
3204 u64 parent;
31840ae1 3205 u64 ref_root;
31840ae1 3206 u32 nritems;
31840ae1
ZY
3207 struct btrfs_key key;
3208 struct btrfs_file_extent_item *fi;
3209 int i;
3210 int level;
3211 int ret = 0;
31840ae1 3212 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3213 u64, u64, u64, u64, u64, u64);
31840ae1 3214
fccb84c9
DS
3215
3216 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3217 return 0;
fccb84c9 3218
31840ae1 3219 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3220 nritems = btrfs_header_nritems(buf);
3221 level = btrfs_header_level(buf);
3222
27cdeb70 3223 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3224 return 0;
31840ae1 3225
5d4f98a2
YZ
3226 if (inc)
3227 process_func = btrfs_inc_extent_ref;
3228 else
3229 process_func = btrfs_free_extent;
31840ae1 3230
5d4f98a2
YZ
3231 if (full_backref)
3232 parent = buf->start;
3233 else
3234 parent = 0;
3235
3236 for (i = 0; i < nritems; i++) {
31840ae1 3237 if (level == 0) {
5d4f98a2 3238 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3239 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3240 continue;
5d4f98a2 3241 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3242 struct btrfs_file_extent_item);
3243 if (btrfs_file_extent_type(buf, fi) ==
3244 BTRFS_FILE_EXTENT_INLINE)
3245 continue;
3246 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3247 if (bytenr == 0)
3248 continue;
5d4f98a2
YZ
3249
3250 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3251 key.offset -= btrfs_file_extent_offset(buf, fi);
3252 ret = process_func(trans, root, bytenr, num_bytes,
3253 parent, ref_root, key.objectid,
b06c4bf5 3254 key.offset);
31840ae1
ZY
3255 if (ret)
3256 goto fail;
3257 } else {
5d4f98a2 3258 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3259 num_bytes = root->nodesize;
5d4f98a2 3260 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3261 parent, ref_root, level - 1, 0);
31840ae1
ZY
3262 if (ret)
3263 goto fail;
3264 }
3265 }
3266 return 0;
3267fail:
5d4f98a2
YZ
3268 return ret;
3269}
3270
3271int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3272 struct extent_buffer *buf, int full_backref)
5d4f98a2 3273{
e339a6b0 3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3275}
3276
3277int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3278 struct extent_buffer *buf, int full_backref)
5d4f98a2 3279{
e339a6b0 3280 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3281}
3282
9078a3e1
CM
3283static int write_one_cache_group(struct btrfs_trans_handle *trans,
3284 struct btrfs_root *root,
3285 struct btrfs_path *path,
3286 struct btrfs_block_group_cache *cache)
3287{
3288 int ret;
9078a3e1 3289 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3290 unsigned long bi;
3291 struct extent_buffer *leaf;
9078a3e1 3292
9078a3e1 3293 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3294 if (ret) {
3295 if (ret > 0)
3296 ret = -ENOENT;
54aa1f4d 3297 goto fail;
df95e7f0 3298 }
5f39d397
CM
3299
3300 leaf = path->nodes[0];
3301 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3302 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3303 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3304fail:
24b89d08 3305 btrfs_release_path(path);
df95e7f0 3306 return ret;
9078a3e1
CM
3307
3308}
3309
4a8c9a62
YZ
3310static struct btrfs_block_group_cache *
3311next_block_group(struct btrfs_root *root,
3312 struct btrfs_block_group_cache *cache)
3313{
3314 struct rb_node *node;
292cbd51 3315
4a8c9a62 3316 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3317
3318 /* If our block group was removed, we need a full search. */
3319 if (RB_EMPTY_NODE(&cache->cache_node)) {
3320 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3321
3322 spin_unlock(&root->fs_info->block_group_cache_lock);
3323 btrfs_put_block_group(cache);
3324 cache = btrfs_lookup_first_block_group(root->fs_info,
3325 next_bytenr);
3326 return cache;
3327 }
4a8c9a62
YZ
3328 node = rb_next(&cache->cache_node);
3329 btrfs_put_block_group(cache);
3330 if (node) {
3331 cache = rb_entry(node, struct btrfs_block_group_cache,
3332 cache_node);
11dfe35a 3333 btrfs_get_block_group(cache);
4a8c9a62
YZ
3334 } else
3335 cache = NULL;
3336 spin_unlock(&root->fs_info->block_group_cache_lock);
3337 return cache;
3338}
3339
0af3d00b
JB
3340static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3341 struct btrfs_trans_handle *trans,
3342 struct btrfs_path *path)
3343{
3344 struct btrfs_root *root = block_group->fs_info->tree_root;
3345 struct inode *inode = NULL;
3346 u64 alloc_hint = 0;
2b20982e 3347 int dcs = BTRFS_DC_ERROR;
f8c269d7 3348 u64 num_pages = 0;
0af3d00b
JB
3349 int retries = 0;
3350 int ret = 0;
3351
3352 /*
3353 * If this block group is smaller than 100 megs don't bother caching the
3354 * block group.
3355 */
ee22184b 3356 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3357 spin_lock(&block_group->lock);
3358 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3359 spin_unlock(&block_group->lock);
3360 return 0;
3361 }
3362
0c0ef4bc
JB
3363 if (trans->aborted)
3364 return 0;
0af3d00b
JB
3365again:
3366 inode = lookup_free_space_inode(root, block_group, path);
3367 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3368 ret = PTR_ERR(inode);
b3b4aa74 3369 btrfs_release_path(path);
0af3d00b
JB
3370 goto out;
3371 }
3372
3373 if (IS_ERR(inode)) {
3374 BUG_ON(retries);
3375 retries++;
3376
3377 if (block_group->ro)
3378 goto out_free;
3379
3380 ret = create_free_space_inode(root, trans, block_group, path);
3381 if (ret)
3382 goto out_free;
3383 goto again;
3384 }
3385
5b0e95bf
JB
3386 /* We've already setup this transaction, go ahead and exit */
3387 if (block_group->cache_generation == trans->transid &&
3388 i_size_read(inode)) {
3389 dcs = BTRFS_DC_SETUP;
3390 goto out_put;
3391 }
3392
0af3d00b
JB
3393 /*
3394 * We want to set the generation to 0, that way if anything goes wrong
3395 * from here on out we know not to trust this cache when we load up next
3396 * time.
3397 */
3398 BTRFS_I(inode)->generation = 0;
3399 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3400 if (ret) {
3401 /*
3402 * So theoretically we could recover from this, simply set the
3403 * super cache generation to 0 so we know to invalidate the
3404 * cache, but then we'd have to keep track of the block groups
3405 * that fail this way so we know we _have_ to reset this cache
3406 * before the next commit or risk reading stale cache. So to
3407 * limit our exposure to horrible edge cases lets just abort the
3408 * transaction, this only happens in really bad situations
3409 * anyway.
3410 */
3411 btrfs_abort_transaction(trans, root, ret);
3412 goto out_put;
3413 }
0af3d00b
JB
3414 WARN_ON(ret);
3415
3416 if (i_size_read(inode) > 0) {
7b61cd92
MX
3417 ret = btrfs_check_trunc_cache_free_space(root,
3418 &root->fs_info->global_block_rsv);
3419 if (ret)
3420 goto out_put;
3421
1bbc621e 3422 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3423 if (ret)
3424 goto out_put;
3425 }
3426
3427 spin_lock(&block_group->lock);
cf7c1ef6 3428 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3429 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3430 /*
3431 * don't bother trying to write stuff out _if_
3432 * a) we're not cached,
3433 * b) we're with nospace_cache mount option.
3434 */
2b20982e 3435 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3436 spin_unlock(&block_group->lock);
3437 goto out_put;
3438 }
3439 spin_unlock(&block_group->lock);
3440
2968b1f4
JB
3441 /*
3442 * We hit an ENOSPC when setting up the cache in this transaction, just
3443 * skip doing the setup, we've already cleared the cache so we're safe.
3444 */
3445 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3446 ret = -ENOSPC;
3447 goto out_put;
3448 }
3449
6fc823b1
JB
3450 /*
3451 * Try to preallocate enough space based on how big the block group is.
3452 * Keep in mind this has to include any pinned space which could end up
3453 * taking up quite a bit since it's not folded into the other space
3454 * cache.
3455 */
ee22184b 3456 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3457 if (!num_pages)
3458 num_pages = 1;
3459
0af3d00b 3460 num_pages *= 16;
09cbfeaf 3461 num_pages *= PAGE_SIZE;
0af3d00b 3462
7cf5b976 3463 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3464 if (ret)
3465 goto out_put;
3466
3467 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3468 num_pages, num_pages,
3469 &alloc_hint);
2968b1f4
JB
3470 /*
3471 * Our cache requires contiguous chunks so that we don't modify a bunch
3472 * of metadata or split extents when writing the cache out, which means
3473 * we can enospc if we are heavily fragmented in addition to just normal
3474 * out of space conditions. So if we hit this just skip setting up any
3475 * other block groups for this transaction, maybe we'll unpin enough
3476 * space the next time around.
3477 */
2b20982e
JB
3478 if (!ret)
3479 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3480 else if (ret == -ENOSPC)
3481 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3482 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3483
0af3d00b
JB
3484out_put:
3485 iput(inode);
3486out_free:
b3b4aa74 3487 btrfs_release_path(path);
0af3d00b
JB
3488out:
3489 spin_lock(&block_group->lock);
e65cbb94 3490 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3491 block_group->cache_generation = trans->transid;
2b20982e 3492 block_group->disk_cache_state = dcs;
0af3d00b
JB
3493 spin_unlock(&block_group->lock);
3494
3495 return ret;
3496}
3497
dcdf7f6d
JB
3498int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *root)
3500{
3501 struct btrfs_block_group_cache *cache, *tmp;
3502 struct btrfs_transaction *cur_trans = trans->transaction;
3503 struct btrfs_path *path;
3504
3505 if (list_empty(&cur_trans->dirty_bgs) ||
3506 !btrfs_test_opt(root, SPACE_CACHE))
3507 return 0;
3508
3509 path = btrfs_alloc_path();
3510 if (!path)
3511 return -ENOMEM;
3512
3513 /* Could add new block groups, use _safe just in case */
3514 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3515 dirty_list) {
3516 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3517 cache_save_setup(cache, trans, path);
3518 }
3519
3520 btrfs_free_path(path);
3521 return 0;
3522}
3523
1bbc621e
CM
3524/*
3525 * transaction commit does final block group cache writeback during a
3526 * critical section where nothing is allowed to change the FS. This is
3527 * required in order for the cache to actually match the block group,
3528 * but can introduce a lot of latency into the commit.
3529 *
3530 * So, btrfs_start_dirty_block_groups is here to kick off block group
3531 * cache IO. There's a chance we'll have to redo some of it if the
3532 * block group changes again during the commit, but it greatly reduces
3533 * the commit latency by getting rid of the easy block groups while
3534 * we're still allowing others to join the commit.
3535 */
3536int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3537 struct btrfs_root *root)
9078a3e1 3538{
4a8c9a62 3539 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3540 struct btrfs_transaction *cur_trans = trans->transaction;
3541 int ret = 0;
c9dc4c65 3542 int should_put;
1bbc621e
CM
3543 struct btrfs_path *path = NULL;
3544 LIST_HEAD(dirty);
3545 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3546 int num_started = 0;
1bbc621e
CM
3547 int loops = 0;
3548
3549 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3550 if (list_empty(&cur_trans->dirty_bgs)) {
3551 spin_unlock(&cur_trans->dirty_bgs_lock);
3552 return 0;
1bbc621e 3553 }
b58d1a9e 3554 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3555 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3556
1bbc621e 3557again:
1bbc621e
CM
3558 /*
3559 * make sure all the block groups on our dirty list actually
3560 * exist
3561 */
3562 btrfs_create_pending_block_groups(trans, root);
3563
3564 if (!path) {
3565 path = btrfs_alloc_path();
3566 if (!path)
3567 return -ENOMEM;
3568 }
3569
b58d1a9e
FM
3570 /*
3571 * cache_write_mutex is here only to save us from balance or automatic
3572 * removal of empty block groups deleting this block group while we are
3573 * writing out the cache
3574 */
3575 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3576 while (!list_empty(&dirty)) {
3577 cache = list_first_entry(&dirty,
3578 struct btrfs_block_group_cache,
3579 dirty_list);
1bbc621e
CM
3580 /*
3581 * this can happen if something re-dirties a block
3582 * group that is already under IO. Just wait for it to
3583 * finish and then do it all again
3584 */
3585 if (!list_empty(&cache->io_list)) {
3586 list_del_init(&cache->io_list);
3587 btrfs_wait_cache_io(root, trans, cache,
3588 &cache->io_ctl, path,
3589 cache->key.objectid);
3590 btrfs_put_block_group(cache);
3591 }
3592
3593
3594 /*
3595 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3596 * if it should update the cache_state. Don't delete
3597 * until after we wait.
3598 *
3599 * Since we're not running in the commit critical section
3600 * we need the dirty_bgs_lock to protect from update_block_group
3601 */
3602 spin_lock(&cur_trans->dirty_bgs_lock);
3603 list_del_init(&cache->dirty_list);
3604 spin_unlock(&cur_trans->dirty_bgs_lock);
3605
3606 should_put = 1;
3607
3608 cache_save_setup(cache, trans, path);
3609
3610 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3611 cache->io_ctl.inode = NULL;
3612 ret = btrfs_write_out_cache(root, trans, cache, path);
3613 if (ret == 0 && cache->io_ctl.inode) {
3614 num_started++;
3615 should_put = 0;
3616
3617 /*
3618 * the cache_write_mutex is protecting
3619 * the io_list
3620 */
3621 list_add_tail(&cache->io_list, io);
3622 } else {
3623 /*
3624 * if we failed to write the cache, the
3625 * generation will be bad and life goes on
3626 */
3627 ret = 0;
3628 }
3629 }
ff1f8250 3630 if (!ret) {
1bbc621e 3631 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3632 /*
3633 * Our block group might still be attached to the list
3634 * of new block groups in the transaction handle of some
3635 * other task (struct btrfs_trans_handle->new_bgs). This
3636 * means its block group item isn't yet in the extent
3637 * tree. If this happens ignore the error, as we will
3638 * try again later in the critical section of the
3639 * transaction commit.
3640 */
3641 if (ret == -ENOENT) {
3642 ret = 0;
3643 spin_lock(&cur_trans->dirty_bgs_lock);
3644 if (list_empty(&cache->dirty_list)) {
3645 list_add_tail(&cache->dirty_list,
3646 &cur_trans->dirty_bgs);
3647 btrfs_get_block_group(cache);
3648 }
3649 spin_unlock(&cur_trans->dirty_bgs_lock);
3650 } else if (ret) {
3651 btrfs_abort_transaction(trans, root, ret);
3652 }
3653 }
1bbc621e
CM
3654
3655 /* if its not on the io list, we need to put the block group */
3656 if (should_put)
3657 btrfs_put_block_group(cache);
3658
3659 if (ret)
3660 break;
b58d1a9e
FM
3661
3662 /*
3663 * Avoid blocking other tasks for too long. It might even save
3664 * us from writing caches for block groups that are going to be
3665 * removed.
3666 */
3667 mutex_unlock(&trans->transaction->cache_write_mutex);
3668 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3669 }
b58d1a9e 3670 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3671
3672 /*
3673 * go through delayed refs for all the stuff we've just kicked off
3674 * and then loop back (just once)
3675 */
3676 ret = btrfs_run_delayed_refs(trans, root, 0);
3677 if (!ret && loops == 0) {
3678 loops++;
3679 spin_lock(&cur_trans->dirty_bgs_lock);
3680 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3681 /*
3682 * dirty_bgs_lock protects us from concurrent block group
3683 * deletes too (not just cache_write_mutex).
3684 */
3685 if (!list_empty(&dirty)) {
3686 spin_unlock(&cur_trans->dirty_bgs_lock);
3687 goto again;
3688 }
1bbc621e 3689 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3690 }
3691
3692 btrfs_free_path(path);
3693 return ret;
3694}
3695
3696int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3697 struct btrfs_root *root)
3698{
3699 struct btrfs_block_group_cache *cache;
3700 struct btrfs_transaction *cur_trans = trans->transaction;
3701 int ret = 0;
3702 int should_put;
3703 struct btrfs_path *path;
3704 struct list_head *io = &cur_trans->io_bgs;
3705 int num_started = 0;
9078a3e1
CM
3706
3707 path = btrfs_alloc_path();
3708 if (!path)
3709 return -ENOMEM;
3710
ce93ec54 3711 /*
e44081ef
FM
3712 * Even though we are in the critical section of the transaction commit,
3713 * we can still have concurrent tasks adding elements to this
3714 * transaction's list of dirty block groups. These tasks correspond to
3715 * endio free space workers started when writeback finishes for a
3716 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3717 * allocate new block groups as a result of COWing nodes of the root
3718 * tree when updating the free space inode. The writeback for the space
3719 * caches is triggered by an earlier call to
3720 * btrfs_start_dirty_block_groups() and iterations of the following
3721 * loop.
3722 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3723 * delayed refs to make sure we have the best chance at doing this all
3724 * in one shot.
3725 */
e44081ef 3726 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3727 while (!list_empty(&cur_trans->dirty_bgs)) {
3728 cache = list_first_entry(&cur_trans->dirty_bgs,
3729 struct btrfs_block_group_cache,
3730 dirty_list);
c9dc4c65
CM
3731
3732 /*
3733 * this can happen if cache_save_setup re-dirties a block
3734 * group that is already under IO. Just wait for it to
3735 * finish and then do it all again
3736 */
3737 if (!list_empty(&cache->io_list)) {
e44081ef 3738 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3739 list_del_init(&cache->io_list);
3740 btrfs_wait_cache_io(root, trans, cache,
3741 &cache->io_ctl, path,
3742 cache->key.objectid);
3743 btrfs_put_block_group(cache);
e44081ef 3744 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3745 }
3746
1bbc621e
CM
3747 /*
3748 * don't remove from the dirty list until after we've waited
3749 * on any pending IO
3750 */
ce93ec54 3751 list_del_init(&cache->dirty_list);
e44081ef 3752 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3753 should_put = 1;
3754
1bbc621e 3755 cache_save_setup(cache, trans, path);
c9dc4c65 3756
ce93ec54 3757 if (!ret)
c9dc4c65
CM
3758 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3759
3760 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3761 cache->io_ctl.inode = NULL;
3762 ret = btrfs_write_out_cache(root, trans, cache, path);
3763 if (ret == 0 && cache->io_ctl.inode) {
3764 num_started++;
3765 should_put = 0;
1bbc621e 3766 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3767 } else {
3768 /*
3769 * if we failed to write the cache, the
3770 * generation will be bad and life goes on
3771 */
3772 ret = 0;
3773 }
3774 }
ff1f8250 3775 if (!ret) {
ce93ec54 3776 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3777 /*
3778 * One of the free space endio workers might have
3779 * created a new block group while updating a free space
3780 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3781 * and hasn't released its transaction handle yet, in
3782 * which case the new block group is still attached to
3783 * its transaction handle and its creation has not
3784 * finished yet (no block group item in the extent tree
3785 * yet, etc). If this is the case, wait for all free
3786 * space endio workers to finish and retry. This is a
3787 * a very rare case so no need for a more efficient and
3788 * complex approach.
3789 */
3790 if (ret == -ENOENT) {
3791 wait_event(cur_trans->writer_wait,
3792 atomic_read(&cur_trans->num_writers) == 1);
3793 ret = write_one_cache_group(trans, root, path,
3794 cache);
3795 }
ff1f8250
FM
3796 if (ret)
3797 btrfs_abort_transaction(trans, root, ret);
3798 }
c9dc4c65
CM
3799
3800 /* if its not on the io list, we need to put the block group */
3801 if (should_put)
3802 btrfs_put_block_group(cache);
e44081ef 3803 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3804 }
e44081ef 3805 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3806
1bbc621e
CM
3807 while (!list_empty(io)) {
3808 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3809 io_list);
3810 list_del_init(&cache->io_list);
c9dc4c65
CM
3811 btrfs_wait_cache_io(root, trans, cache,
3812 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3813 btrfs_put_block_group(cache);
3814 }
3815
9078a3e1 3816 btrfs_free_path(path);
ce93ec54 3817 return ret;
9078a3e1
CM
3818}
3819
d2fb3437
YZ
3820int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3821{
3822 struct btrfs_block_group_cache *block_group;
3823 int readonly = 0;
3824
3825 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3826 if (!block_group || block_group->ro)
3827 readonly = 1;
3828 if (block_group)
fa9c0d79 3829 btrfs_put_block_group(block_group);
d2fb3437
YZ
3830 return readonly;
3831}
3832
f78c436c
FM
3833bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3834{
3835 struct btrfs_block_group_cache *bg;
3836 bool ret = true;
3837
3838 bg = btrfs_lookup_block_group(fs_info, bytenr);
3839 if (!bg)
3840 return false;
3841
3842 spin_lock(&bg->lock);
3843 if (bg->ro)
3844 ret = false;
3845 else
3846 atomic_inc(&bg->nocow_writers);
3847 spin_unlock(&bg->lock);
3848
3849 /* no put on block group, done by btrfs_dec_nocow_writers */
3850 if (!ret)
3851 btrfs_put_block_group(bg);
3852
3853 return ret;
3854
3855}
3856
3857void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3858{
3859 struct btrfs_block_group_cache *bg;
3860
3861 bg = btrfs_lookup_block_group(fs_info, bytenr);
3862 ASSERT(bg);
3863 if (atomic_dec_and_test(&bg->nocow_writers))
3864 wake_up_atomic_t(&bg->nocow_writers);
3865 /*
3866 * Once for our lookup and once for the lookup done by a previous call
3867 * to btrfs_inc_nocow_writers()
3868 */
3869 btrfs_put_block_group(bg);
3870 btrfs_put_block_group(bg);
3871}
3872
3873static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3874{
3875 schedule();
3876 return 0;
3877}
3878
3879void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3880{
3881 wait_on_atomic_t(&bg->nocow_writers,
3882 btrfs_wait_nocow_writers_atomic_t,
3883 TASK_UNINTERRUPTIBLE);
3884}
3885
6ab0a202
JM
3886static const char *alloc_name(u64 flags)
3887{
3888 switch (flags) {
3889 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3890 return "mixed";
3891 case BTRFS_BLOCK_GROUP_METADATA:
3892 return "metadata";
3893 case BTRFS_BLOCK_GROUP_DATA:
3894 return "data";
3895 case BTRFS_BLOCK_GROUP_SYSTEM:
3896 return "system";
3897 default:
3898 WARN_ON(1);
3899 return "invalid-combination";
3900 };
3901}
3902
593060d7
CM
3903static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3904 u64 total_bytes, u64 bytes_used,
3905 struct btrfs_space_info **space_info)
3906{
3907 struct btrfs_space_info *found;
b742bb82
YZ
3908 int i;
3909 int factor;
b150a4f1 3910 int ret;
b742bb82
YZ
3911
3912 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3913 BTRFS_BLOCK_GROUP_RAID10))
3914 factor = 2;
3915 else
3916 factor = 1;
593060d7
CM
3917
3918 found = __find_space_info(info, flags);
3919 if (found) {
25179201 3920 spin_lock(&found->lock);
593060d7 3921 found->total_bytes += total_bytes;
89a55897 3922 found->disk_total += total_bytes * factor;
593060d7 3923 found->bytes_used += bytes_used;
b742bb82 3924 found->disk_used += bytes_used * factor;
2e6e5183
FM
3925 if (total_bytes > 0)
3926 found->full = 0;
25179201 3927 spin_unlock(&found->lock);
593060d7
CM
3928 *space_info = found;
3929 return 0;
3930 }
c146afad 3931 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3932 if (!found)
3933 return -ENOMEM;
3934
908c7f19 3935 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3936 if (ret) {
3937 kfree(found);
3938 return ret;
3939 }
3940
c1895442 3941 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3942 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3943 init_rwsem(&found->groups_sem);
0f9dd46c 3944 spin_lock_init(&found->lock);
52ba6929 3945 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3946 found->total_bytes = total_bytes;
89a55897 3947 found->disk_total = total_bytes * factor;
593060d7 3948 found->bytes_used = bytes_used;
b742bb82 3949 found->disk_used = bytes_used * factor;
593060d7 3950 found->bytes_pinned = 0;
e8569813 3951 found->bytes_reserved = 0;
c146afad 3952 found->bytes_readonly = 0;
f0486c68 3953 found->bytes_may_use = 0;
6af3e3ad 3954 found->full = 0;
4f4db217 3955 found->max_extent_size = 0;
0e4f8f88 3956 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3957 found->chunk_alloc = 0;
fdb5effd
JB
3958 found->flush = 0;
3959 init_waitqueue_head(&found->wait);
633c0aad 3960 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3961
3962 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3963 info->space_info_kobj, "%s",
3964 alloc_name(found->flags));
3965 if (ret) {
3966 kfree(found);
3967 return ret;
3968 }
3969
593060d7 3970 *space_info = found;
4184ea7f 3971 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3972 if (flags & BTRFS_BLOCK_GROUP_DATA)
3973 info->data_sinfo = found;
6ab0a202
JM
3974
3975 return ret;
593060d7
CM
3976}
3977
8790d502
CM
3978static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3979{
899c81ea
ID
3980 u64 extra_flags = chunk_to_extended(flags) &
3981 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3982
de98ced9 3983 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3984 if (flags & BTRFS_BLOCK_GROUP_DATA)
3985 fs_info->avail_data_alloc_bits |= extra_flags;
3986 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3987 fs_info->avail_metadata_alloc_bits |= extra_flags;
3988 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3989 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3990 write_sequnlock(&fs_info->profiles_lock);
8790d502 3991}
593060d7 3992
fc67c450
ID
3993/*
3994 * returns target flags in extended format or 0 if restripe for this
3995 * chunk_type is not in progress
c6664b42
ID
3996 *
3997 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3998 */
3999static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4000{
4001 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4002 u64 target = 0;
4003
fc67c450
ID
4004 if (!bctl)
4005 return 0;
4006
4007 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4008 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4009 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4010 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4011 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4012 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4013 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4014 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4015 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4016 }
4017
4018 return target;
4019}
4020
a46d11a8
ID
4021/*
4022 * @flags: available profiles in extended format (see ctree.h)
4023 *
e4d8ec0f
ID
4024 * Returns reduced profile in chunk format. If profile changing is in
4025 * progress (either running or paused) picks the target profile (if it's
4026 * already available), otherwise falls back to plain reducing.
a46d11a8 4027 */
48a3b636 4028static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4029{
95669976 4030 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4031 u64 target;
9c170b26
ZL
4032 u64 raid_type;
4033 u64 allowed = 0;
a061fc8d 4034
fc67c450
ID
4035 /*
4036 * see if restripe for this chunk_type is in progress, if so
4037 * try to reduce to the target profile
4038 */
e4d8ec0f 4039 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4040 target = get_restripe_target(root->fs_info, flags);
4041 if (target) {
4042 /* pick target profile only if it's already available */
4043 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4044 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4045 return extended_to_chunk(target);
e4d8ec0f
ID
4046 }
4047 }
4048 spin_unlock(&root->fs_info->balance_lock);
4049
53b381b3 4050 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4051 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4052 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4053 allowed |= btrfs_raid_group[raid_type];
4054 }
4055 allowed &= flags;
4056
4057 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4058 allowed = BTRFS_BLOCK_GROUP_RAID6;
4059 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4060 allowed = BTRFS_BLOCK_GROUP_RAID5;
4061 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4062 allowed = BTRFS_BLOCK_GROUP_RAID10;
4063 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4064 allowed = BTRFS_BLOCK_GROUP_RAID1;
4065 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4066 allowed = BTRFS_BLOCK_GROUP_RAID0;
4067
4068 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4069
4070 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4071}
4072
f8213bdc 4073static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4074{
de98ced9 4075 unsigned seq;
f8213bdc 4076 u64 flags;
de98ced9
MX
4077
4078 do {
f8213bdc 4079 flags = orig_flags;
de98ced9
MX
4080 seq = read_seqbegin(&root->fs_info->profiles_lock);
4081
4082 if (flags & BTRFS_BLOCK_GROUP_DATA)
4083 flags |= root->fs_info->avail_data_alloc_bits;
4084 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4085 flags |= root->fs_info->avail_system_alloc_bits;
4086 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4087 flags |= root->fs_info->avail_metadata_alloc_bits;
4088 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4089
b742bb82 4090 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4091}
4092
6d07bcec 4093u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4094{
b742bb82 4095 u64 flags;
53b381b3 4096 u64 ret;
9ed74f2d 4097
b742bb82
YZ
4098 if (data)
4099 flags = BTRFS_BLOCK_GROUP_DATA;
4100 else if (root == root->fs_info->chunk_root)
4101 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4102 else
b742bb82 4103 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4104
53b381b3
DW
4105 ret = get_alloc_profile(root, flags);
4106 return ret;
6a63209f 4107}
9ed74f2d 4108
4ceff079 4109int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4110{
6a63209f 4111 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4112 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4113 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4114 u64 used;
94b947b2 4115 int ret = 0;
c99f1b0c
ZL
4116 int need_commit = 2;
4117 int have_pinned_space;
6a63209f 4118
6a63209f 4119 /* make sure bytes are sectorsize aligned */
fda2832f 4120 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4121
9dced186 4122 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4123 need_commit = 0;
9dced186 4124 ASSERT(current->journal_info);
0af3d00b
JB
4125 }
4126
b4d7c3c9 4127 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4128 if (!data_sinfo)
4129 goto alloc;
9ed74f2d 4130
6a63209f
JB
4131again:
4132 /* make sure we have enough space to handle the data first */
4133 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4134 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4135 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4136 data_sinfo->bytes_may_use;
ab6e2410
JB
4137
4138 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4139 struct btrfs_trans_handle *trans;
9ed74f2d 4140
6a63209f
JB
4141 /*
4142 * if we don't have enough free bytes in this space then we need
4143 * to alloc a new chunk.
4144 */
b9fd47cd 4145 if (!data_sinfo->full) {
6a63209f 4146 u64 alloc_target;
9ed74f2d 4147
0e4f8f88 4148 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4149 spin_unlock(&data_sinfo->lock);
33b4d47f 4150alloc:
6a63209f 4151 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4152 /*
4153 * It is ugly that we don't call nolock join
4154 * transaction for the free space inode case here.
4155 * But it is safe because we only do the data space
4156 * reservation for the free space cache in the
4157 * transaction context, the common join transaction
4158 * just increase the counter of the current transaction
4159 * handler, doesn't try to acquire the trans_lock of
4160 * the fs.
4161 */
7a7eaa40 4162 trans = btrfs_join_transaction(root);
a22285a6
YZ
4163 if (IS_ERR(trans))
4164 return PTR_ERR(trans);
9ed74f2d 4165
6a63209f 4166 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4167 alloc_target,
4168 CHUNK_ALLOC_NO_FORCE);
6a63209f 4169 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4170 if (ret < 0) {
4171 if (ret != -ENOSPC)
4172 return ret;
c99f1b0c
ZL
4173 else {
4174 have_pinned_space = 1;
d52a5b5f 4175 goto commit_trans;
c99f1b0c 4176 }
d52a5b5f 4177 }
9ed74f2d 4178
b4d7c3c9
LZ
4179 if (!data_sinfo)
4180 data_sinfo = fs_info->data_sinfo;
4181
6a63209f
JB
4182 goto again;
4183 }
f2bb8f5c
JB
4184
4185 /*
b150a4f1 4186 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4187 * allocation, and no removed chunk in current transaction,
4188 * don't bother committing the transaction.
f2bb8f5c 4189 */
c99f1b0c
ZL
4190 have_pinned_space = percpu_counter_compare(
4191 &data_sinfo->total_bytes_pinned,
4192 used + bytes - data_sinfo->total_bytes);
6a63209f 4193 spin_unlock(&data_sinfo->lock);
6a63209f 4194
4e06bdd6 4195 /* commit the current transaction and try again */
d52a5b5f 4196commit_trans:
c99f1b0c 4197 if (need_commit &&
a4abeea4 4198 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4199 need_commit--;
b150a4f1 4200
e1746e83
ZL
4201 if (need_commit > 0) {
4202 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4203 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4204 }
9a4e7276 4205
7a7eaa40 4206 trans = btrfs_join_transaction(root);
a22285a6
YZ
4207 if (IS_ERR(trans))
4208 return PTR_ERR(trans);
c99f1b0c 4209 if (have_pinned_space >= 0 ||
3204d33c
JB
4210 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4211 &trans->transaction->flags) ||
c99f1b0c 4212 need_commit > 0) {
94b947b2
ZL
4213 ret = btrfs_commit_transaction(trans, root);
4214 if (ret)
4215 return ret;
d7c15171 4216 /*
c2d6cb16
FM
4217 * The cleaner kthread might still be doing iput
4218 * operations. Wait for it to finish so that
4219 * more space is released.
d7c15171 4220 */
c2d6cb16
FM
4221 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4222 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4223 goto again;
4224 } else {
4225 btrfs_end_transaction(trans, root);
4226 }
4e06bdd6 4227 }
9ed74f2d 4228
cab45e22
JM
4229 trace_btrfs_space_reservation(root->fs_info,
4230 "space_info:enospc",
4231 data_sinfo->flags, bytes, 1);
6a63209f
JB
4232 return -ENOSPC;
4233 }
4234 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4235 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4236 data_sinfo->flags, bytes, 1);
6a63209f 4237 spin_unlock(&data_sinfo->lock);
6a63209f 4238
237c0e9f 4239 return ret;
9ed74f2d 4240}
6a63209f 4241
4ceff079
QW
4242/*
4243 * New check_data_free_space() with ability for precious data reservation
4244 * Will replace old btrfs_check_data_free_space(), but for patch split,
4245 * add a new function first and then replace it.
4246 */
7cf5b976 4247int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4248{
4249 struct btrfs_root *root = BTRFS_I(inode)->root;
4250 int ret;
4251
4252 /* align the range */
4253 len = round_up(start + len, root->sectorsize) -
4254 round_down(start, root->sectorsize);
4255 start = round_down(start, root->sectorsize);
4256
4257 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4258 if (ret < 0)
4259 return ret;
4260
94ed938a
QW
4261 /*
4262 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4263 *
4264 * TODO: Find a good method to avoid reserve data space for NOCOW
4265 * range, but don't impact performance on quota disable case.
4266 */
4ceff079
QW
4267 ret = btrfs_qgroup_reserve_data(inode, start, len);
4268 return ret;
4269}
4270
4ceff079
QW
4271/*
4272 * Called if we need to clear a data reservation for this inode
4273 * Normally in a error case.
4274 *
51773bec
QW
4275 * This one will *NOT* use accurate qgroup reserved space API, just for case
4276 * which we can't sleep and is sure it won't affect qgroup reserved space.
4277 * Like clear_bit_hook().
4ceff079 4278 */
51773bec
QW
4279void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4280 u64 len)
4ceff079
QW
4281{
4282 struct btrfs_root *root = BTRFS_I(inode)->root;
4283 struct btrfs_space_info *data_sinfo;
4284
4285 /* Make sure the range is aligned to sectorsize */
4286 len = round_up(start + len, root->sectorsize) -
4287 round_down(start, root->sectorsize);
4288 start = round_down(start, root->sectorsize);
4289
4ceff079
QW
4290 data_sinfo = root->fs_info->data_sinfo;
4291 spin_lock(&data_sinfo->lock);
4292 if (WARN_ON(data_sinfo->bytes_may_use < len))
4293 data_sinfo->bytes_may_use = 0;
4294 else
4295 data_sinfo->bytes_may_use -= len;
4296 trace_btrfs_space_reservation(root->fs_info, "space_info",
4297 data_sinfo->flags, len, 0);
4298 spin_unlock(&data_sinfo->lock);
4299}
4300
51773bec
QW
4301/*
4302 * Called if we need to clear a data reservation for this inode
4303 * Normally in a error case.
4304 *
01327610 4305 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4306 * space framework.
4307 */
4308void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4309{
4310 btrfs_free_reserved_data_space_noquota(inode, start, len);
4311 btrfs_qgroup_free_data(inode, start, len);
4312}
4313
97e728d4 4314static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4315{
97e728d4
JB
4316 struct list_head *head = &info->space_info;
4317 struct btrfs_space_info *found;
e3ccfa98 4318
97e728d4
JB
4319 rcu_read_lock();
4320 list_for_each_entry_rcu(found, head, list) {
4321 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4322 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4323 }
97e728d4 4324 rcu_read_unlock();
e3ccfa98
JB
4325}
4326
3c76cd84
MX
4327static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4328{
4329 return (global->size << 1);
4330}
4331
e5bc2458 4332static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4333 struct btrfs_space_info *sinfo, int force)
32c00aff 4334{
fb25e914 4335 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4336 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4337 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4338 u64 thresh;
e3ccfa98 4339
0e4f8f88
CM
4340 if (force == CHUNK_ALLOC_FORCE)
4341 return 1;
4342
fb25e914
JB
4343 /*
4344 * We need to take into account the global rsv because for all intents
4345 * and purposes it's used space. Don't worry about locking the
4346 * global_rsv, it doesn't change except when the transaction commits.
4347 */
54338b5c 4348 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4349 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4350
0e4f8f88
CM
4351 /*
4352 * in limited mode, we want to have some free space up to
4353 * about 1% of the FS size.
4354 */
4355 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4356 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4357 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4358
4359 if (num_bytes - num_allocated < thresh)
4360 return 1;
4361 }
0e4f8f88 4362
ee22184b 4363 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4364 return 0;
424499db 4365 return 1;
32c00aff
JB
4366}
4367
39c2d7fa 4368static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4369{
4370 u64 num_dev;
4371
53b381b3
DW
4372 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4373 BTRFS_BLOCK_GROUP_RAID0 |
4374 BTRFS_BLOCK_GROUP_RAID5 |
4375 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4376 num_dev = root->fs_info->fs_devices->rw_devices;
4377 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4378 num_dev = 2;
4379 else
4380 num_dev = 1; /* DUP or single */
4381
39c2d7fa 4382 return num_dev;
15d1ff81
LB
4383}
4384
39c2d7fa
FM
4385/*
4386 * If @is_allocation is true, reserve space in the system space info necessary
4387 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4388 * removing a chunk.
4389 */
4390void check_system_chunk(struct btrfs_trans_handle *trans,
4391 struct btrfs_root *root,
4617ea3a 4392 u64 type)
15d1ff81
LB
4393{
4394 struct btrfs_space_info *info;
4395 u64 left;
4396 u64 thresh;
4fbcdf66 4397 int ret = 0;
39c2d7fa 4398 u64 num_devs;
4fbcdf66
FM
4399
4400 /*
4401 * Needed because we can end up allocating a system chunk and for an
4402 * atomic and race free space reservation in the chunk block reserve.
4403 */
4404 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4405
4406 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4407 spin_lock(&info->lock);
4408 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4409 info->bytes_reserved - info->bytes_readonly -
4410 info->bytes_may_use;
15d1ff81
LB
4411 spin_unlock(&info->lock);
4412
39c2d7fa
FM
4413 num_devs = get_profile_num_devs(root, type);
4414
4415 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4416 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4417 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4418
15d1ff81 4419 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4420 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4421 left, thresh, type);
15d1ff81
LB
4422 dump_space_info(info, 0, 0);
4423 }
4424
4425 if (left < thresh) {
4426 u64 flags;
4427
4428 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4429 /*
4430 * Ignore failure to create system chunk. We might end up not
4431 * needing it, as we might not need to COW all nodes/leafs from
4432 * the paths we visit in the chunk tree (they were already COWed
4433 * or created in the current transaction for example).
4434 */
4435 ret = btrfs_alloc_chunk(trans, root, flags);
4436 }
4437
4438 if (!ret) {
4439 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4440 &root->fs_info->chunk_block_rsv,
4441 thresh, BTRFS_RESERVE_NO_FLUSH);
4442 if (!ret)
4443 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4444 }
4445}
4446
6324fbf3 4447static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4448 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4449{
6324fbf3 4450 struct btrfs_space_info *space_info;
97e728d4 4451 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4452 int wait_for_alloc = 0;
9ed74f2d 4453 int ret = 0;
9ed74f2d 4454
c6b305a8
JB
4455 /* Don't re-enter if we're already allocating a chunk */
4456 if (trans->allocating_chunk)
4457 return -ENOSPC;
4458
6324fbf3 4459 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4460 if (!space_info) {
4461 ret = update_space_info(extent_root->fs_info, flags,
4462 0, 0, &space_info);
79787eaa 4463 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4464 }
79787eaa 4465 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4466
6d74119f 4467again:
25179201 4468 spin_lock(&space_info->lock);
9e622d6b 4469 if (force < space_info->force_alloc)
0e4f8f88 4470 force = space_info->force_alloc;
25179201 4471 if (space_info->full) {
09fb99a6
FDBM
4472 if (should_alloc_chunk(extent_root, space_info, force))
4473 ret = -ENOSPC;
4474 else
4475 ret = 0;
25179201 4476 spin_unlock(&space_info->lock);
09fb99a6 4477 return ret;
9ed74f2d
JB
4478 }
4479
698d0082 4480 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4481 spin_unlock(&space_info->lock);
6d74119f
JB
4482 return 0;
4483 } else if (space_info->chunk_alloc) {
4484 wait_for_alloc = 1;
4485 } else {
4486 space_info->chunk_alloc = 1;
9ed74f2d 4487 }
0e4f8f88 4488
25179201 4489 spin_unlock(&space_info->lock);
9ed74f2d 4490
6d74119f
JB
4491 mutex_lock(&fs_info->chunk_mutex);
4492
4493 /*
4494 * The chunk_mutex is held throughout the entirety of a chunk
4495 * allocation, so once we've acquired the chunk_mutex we know that the
4496 * other guy is done and we need to recheck and see if we should
4497 * allocate.
4498 */
4499 if (wait_for_alloc) {
4500 mutex_unlock(&fs_info->chunk_mutex);
4501 wait_for_alloc = 0;
4502 goto again;
4503 }
4504
c6b305a8
JB
4505 trans->allocating_chunk = true;
4506
67377734
JB
4507 /*
4508 * If we have mixed data/metadata chunks we want to make sure we keep
4509 * allocating mixed chunks instead of individual chunks.
4510 */
4511 if (btrfs_mixed_space_info(space_info))
4512 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4513
97e728d4
JB
4514 /*
4515 * if we're doing a data chunk, go ahead and make sure that
4516 * we keep a reasonable number of metadata chunks allocated in the
4517 * FS as well.
4518 */
9ed74f2d 4519 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4520 fs_info->data_chunk_allocations++;
4521 if (!(fs_info->data_chunk_allocations %
4522 fs_info->metadata_ratio))
4523 force_metadata_allocation(fs_info);
9ed74f2d
JB
4524 }
4525
15d1ff81
LB
4526 /*
4527 * Check if we have enough space in SYSTEM chunk because we may need
4528 * to update devices.
4529 */
4617ea3a 4530 check_system_chunk(trans, extent_root, flags);
15d1ff81 4531
2b82032c 4532 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4533 trans->allocating_chunk = false;
92b8e897 4534
9ed74f2d 4535 spin_lock(&space_info->lock);
a81cb9a2
AO
4536 if (ret < 0 && ret != -ENOSPC)
4537 goto out;
9ed74f2d 4538 if (ret)
6324fbf3 4539 space_info->full = 1;
424499db
YZ
4540 else
4541 ret = 1;
6d74119f 4542
0e4f8f88 4543 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4544out:
6d74119f 4545 space_info->chunk_alloc = 0;
9ed74f2d 4546 spin_unlock(&space_info->lock);
a25c75d5 4547 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4548 /*
4549 * When we allocate a new chunk we reserve space in the chunk block
4550 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4551 * add new nodes/leafs to it if we end up needing to do it when
4552 * inserting the chunk item and updating device items as part of the
4553 * second phase of chunk allocation, performed by
4554 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4555 * large number of new block groups to create in our transaction
4556 * handle's new_bgs list to avoid exhausting the chunk block reserve
4557 * in extreme cases - like having a single transaction create many new
4558 * block groups when starting to write out the free space caches of all
4559 * the block groups that were made dirty during the lifetime of the
4560 * transaction.
4561 */
d9a0540a 4562 if (trans->can_flush_pending_bgs &&
ee22184b 4563 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
00d80e34
FM
4564 btrfs_create_pending_block_groups(trans, trans->root);
4565 btrfs_trans_release_chunk_metadata(trans);
4566 }
0f9dd46c 4567 return ret;
6324fbf3 4568}
9ed74f2d 4569
a80c8dcf
JB
4570static int can_overcommit(struct btrfs_root *root,
4571 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4572 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4573{
96f1bb57 4574 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4575 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4576 u64 space_size;
a80c8dcf
JB
4577 u64 avail;
4578 u64 used;
4579
4580 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4581 space_info->bytes_pinned + space_info->bytes_readonly;
4582
96f1bb57
JB
4583 /*
4584 * We only want to allow over committing if we have lots of actual space
4585 * free, but if we don't have enough space to handle the global reserve
4586 * space then we could end up having a real enospc problem when trying
4587 * to allocate a chunk or some other such important allocation.
4588 */
3c76cd84
MX
4589 spin_lock(&global_rsv->lock);
4590 space_size = calc_global_rsv_need_space(global_rsv);
4591 spin_unlock(&global_rsv->lock);
4592 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4593 return 0;
4594
4595 used += space_info->bytes_may_use;
a80c8dcf
JB
4596
4597 spin_lock(&root->fs_info->free_chunk_lock);
4598 avail = root->fs_info->free_chunk_space;
4599 spin_unlock(&root->fs_info->free_chunk_lock);
4600
4601 /*
4602 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4603 * space is actually useable. For raid56, the space info used
4604 * doesn't include the parity drive, so we don't have to
4605 * change the math
a80c8dcf
JB
4606 */
4607 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4608 BTRFS_BLOCK_GROUP_RAID1 |
4609 BTRFS_BLOCK_GROUP_RAID10))
4610 avail >>= 1;
4611
4612 /*
561c294d
MX
4613 * If we aren't flushing all things, let us overcommit up to
4614 * 1/2th of the space. If we can flush, don't let us overcommit
4615 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4616 */
08e007d2 4617 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4618 avail >>= 3;
a80c8dcf 4619 else
14575aef 4620 avail >>= 1;
a80c8dcf 4621
14575aef 4622 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4623 return 1;
4624 return 0;
4625}
4626
48a3b636 4627static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4628 unsigned long nr_pages, int nr_items)
da633a42
MX
4629{
4630 struct super_block *sb = root->fs_info->sb;
da633a42 4631
925a6efb
JB
4632 if (down_read_trylock(&sb->s_umount)) {
4633 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4634 up_read(&sb->s_umount);
4635 } else {
da633a42
MX
4636 /*
4637 * We needn't worry the filesystem going from r/w to r/o though
4638 * we don't acquire ->s_umount mutex, because the filesystem
4639 * should guarantee the delalloc inodes list be empty after
4640 * the filesystem is readonly(all dirty pages are written to
4641 * the disk).
4642 */
6c255e67 4643 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4644 if (!current->journal_info)
578def7c
FM
4645 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4646 0, (u64)-1);
da633a42
MX
4647 }
4648}
4649
18cd8ea6
MX
4650static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4651{
4652 u64 bytes;
4653 int nr;
4654
4655 bytes = btrfs_calc_trans_metadata_size(root, 1);
4656 nr = (int)div64_u64(to_reclaim, bytes);
4657 if (!nr)
4658 nr = 1;
4659 return nr;
4660}
4661
ee22184b 4662#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4663
9ed74f2d 4664/*
5da9d01b 4665 * shrink metadata reservation for delalloc
9ed74f2d 4666 */
f4c738c2
JB
4667static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4668 bool wait_ordered)
5da9d01b 4669{
0ca1f7ce 4670 struct btrfs_block_rsv *block_rsv;
0019f10d 4671 struct btrfs_space_info *space_info;
663350ac 4672 struct btrfs_trans_handle *trans;
f4c738c2 4673 u64 delalloc_bytes;
5da9d01b 4674 u64 max_reclaim;
b1953bce 4675 long time_left;
d3ee29e3
MX
4676 unsigned long nr_pages;
4677 int loops;
b0244199 4678 int items;
08e007d2 4679 enum btrfs_reserve_flush_enum flush;
5da9d01b 4680
c61a16a7 4681 /* Calc the number of the pages we need flush for space reservation */
b0244199 4682 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4683 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4684
663350ac 4685 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4686 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4687 space_info = block_rsv->space_info;
bf9022e0 4688
963d678b
MX
4689 delalloc_bytes = percpu_counter_sum_positive(
4690 &root->fs_info->delalloc_bytes);
f4c738c2 4691 if (delalloc_bytes == 0) {
fdb5effd 4692 if (trans)
f4c738c2 4693 return;
38c135af 4694 if (wait_ordered)
578def7c
FM
4695 btrfs_wait_ordered_roots(root->fs_info, items,
4696 0, (u64)-1);
f4c738c2 4697 return;
fdb5effd
JB
4698 }
4699
d3ee29e3 4700 loops = 0;
f4c738c2
JB
4701 while (delalloc_bytes && loops < 3) {
4702 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4703 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4704 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4705 /*
4706 * We need to wait for the async pages to actually start before
4707 * we do anything.
4708 */
9f3a074d
MX
4709 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4710 if (!max_reclaim)
4711 goto skip_async;
4712
4713 if (max_reclaim <= nr_pages)
4714 max_reclaim = 0;
4715 else
4716 max_reclaim -= nr_pages;
dea31f52 4717
9f3a074d
MX
4718 wait_event(root->fs_info->async_submit_wait,
4719 atomic_read(&root->fs_info->async_delalloc_pages) <=
4720 (int)max_reclaim);
4721skip_async:
08e007d2
MX
4722 if (!trans)
4723 flush = BTRFS_RESERVE_FLUSH_ALL;
4724 else
4725 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4726 spin_lock(&space_info->lock);
08e007d2 4727 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4728 spin_unlock(&space_info->lock);
4729 break;
4730 }
0019f10d 4731 spin_unlock(&space_info->lock);
5da9d01b 4732
36e39c40 4733 loops++;
f104d044 4734 if (wait_ordered && !trans) {
578def7c
FM
4735 btrfs_wait_ordered_roots(root->fs_info, items,
4736 0, (u64)-1);
f104d044 4737 } else {
f4c738c2 4738 time_left = schedule_timeout_killable(1);
f104d044
JB
4739 if (time_left)
4740 break;
4741 }
963d678b
MX
4742 delalloc_bytes = percpu_counter_sum_positive(
4743 &root->fs_info->delalloc_bytes);
5da9d01b 4744 }
5da9d01b
YZ
4745}
4746
663350ac
JB
4747/**
4748 * maybe_commit_transaction - possibly commit the transaction if its ok to
4749 * @root - the root we're allocating for
4750 * @bytes - the number of bytes we want to reserve
4751 * @force - force the commit
8bb8ab2e 4752 *
663350ac
JB
4753 * This will check to make sure that committing the transaction will actually
4754 * get us somewhere and then commit the transaction if it does. Otherwise it
4755 * will return -ENOSPC.
8bb8ab2e 4756 */
663350ac
JB
4757static int may_commit_transaction(struct btrfs_root *root,
4758 struct btrfs_space_info *space_info,
4759 u64 bytes, int force)
4760{
4761 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4762 struct btrfs_trans_handle *trans;
4763
4764 trans = (struct btrfs_trans_handle *)current->journal_info;
4765 if (trans)
4766 return -EAGAIN;
4767
4768 if (force)
4769 goto commit;
4770
4771 /* See if there is enough pinned space to make this reservation */
b150a4f1 4772 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4773 bytes) >= 0)
663350ac 4774 goto commit;
663350ac
JB
4775
4776 /*
4777 * See if there is some space in the delayed insertion reservation for
4778 * this reservation.
4779 */
4780 if (space_info != delayed_rsv->space_info)
4781 return -ENOSPC;
4782
4783 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4784 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4785 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4786 spin_unlock(&delayed_rsv->lock);
4787 return -ENOSPC;
4788 }
4789 spin_unlock(&delayed_rsv->lock);
4790
4791commit:
4792 trans = btrfs_join_transaction(root);
4793 if (IS_ERR(trans))
4794 return -ENOSPC;
4795
4796 return btrfs_commit_transaction(trans, root);
4797}
4798
96c3f433 4799enum flush_state {
67b0fd63
JB
4800 FLUSH_DELAYED_ITEMS_NR = 1,
4801 FLUSH_DELAYED_ITEMS = 2,
4802 FLUSH_DELALLOC = 3,
4803 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4804 ALLOC_CHUNK = 5,
4805 COMMIT_TRANS = 6,
96c3f433
JB
4806};
4807
4808static int flush_space(struct btrfs_root *root,
4809 struct btrfs_space_info *space_info, u64 num_bytes,
4810 u64 orig_bytes, int state)
4811{
4812 struct btrfs_trans_handle *trans;
4813 int nr;
f4c738c2 4814 int ret = 0;
96c3f433
JB
4815
4816 switch (state) {
96c3f433
JB
4817 case FLUSH_DELAYED_ITEMS_NR:
4818 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4819 if (state == FLUSH_DELAYED_ITEMS_NR)
4820 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4821 else
96c3f433 4822 nr = -1;
18cd8ea6 4823
96c3f433
JB
4824 trans = btrfs_join_transaction(root);
4825 if (IS_ERR(trans)) {
4826 ret = PTR_ERR(trans);
4827 break;
4828 }
4829 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4830 btrfs_end_transaction(trans, root);
4831 break;
67b0fd63
JB
4832 case FLUSH_DELALLOC:
4833 case FLUSH_DELALLOC_WAIT:
24af7dd1 4834 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4835 state == FLUSH_DELALLOC_WAIT);
4836 break;
ea658bad
JB
4837 case ALLOC_CHUNK:
4838 trans = btrfs_join_transaction(root);
4839 if (IS_ERR(trans)) {
4840 ret = PTR_ERR(trans);
4841 break;
4842 }
4843 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4844 btrfs_get_alloc_profile(root, 0),
4845 CHUNK_ALLOC_NO_FORCE);
4846 btrfs_end_transaction(trans, root);
4847 if (ret == -ENOSPC)
4848 ret = 0;
4849 break;
96c3f433
JB
4850 case COMMIT_TRANS:
4851 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4852 break;
4853 default:
4854 ret = -ENOSPC;
4855 break;
4856 }
4857
4858 return ret;
4859}
21c7e756
MX
4860
4861static inline u64
4862btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4863 struct btrfs_space_info *space_info)
4864{
4865 u64 used;
4866 u64 expected;
4867 u64 to_reclaim;
4868
ee22184b 4869 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
21c7e756
MX
4870 spin_lock(&space_info->lock);
4871 if (can_overcommit(root, space_info, to_reclaim,
4872 BTRFS_RESERVE_FLUSH_ALL)) {
4873 to_reclaim = 0;
4874 goto out;
4875 }
4876
4877 used = space_info->bytes_used + space_info->bytes_reserved +
4878 space_info->bytes_pinned + space_info->bytes_readonly +
4879 space_info->bytes_may_use;
ee22184b 4880 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4881 expected = div_factor_fine(space_info->total_bytes, 95);
4882 else
4883 expected = div_factor_fine(space_info->total_bytes, 90);
4884
4885 if (used > expected)
4886 to_reclaim = used - expected;
4887 else
4888 to_reclaim = 0;
4889 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4890 space_info->bytes_reserved);
4891out:
4892 spin_unlock(&space_info->lock);
4893
4894 return to_reclaim;
4895}
4896
4897static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4898 struct btrfs_fs_info *fs_info, u64 used)
4899{
365c5313
JB
4900 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4901
4902 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4903 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4904 return 0;
4905
4906 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4907 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4908}
4909
4910static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4911 struct btrfs_fs_info *fs_info,
4912 int flush_state)
21c7e756
MX
4913{
4914 u64 used;
4915
4916 spin_lock(&space_info->lock);
25ce459c
LB
4917 /*
4918 * We run out of space and have not got any free space via flush_space,
4919 * so don't bother doing async reclaim.
4920 */
4921 if (flush_state > COMMIT_TRANS && space_info->full) {
4922 spin_unlock(&space_info->lock);
4923 return 0;
4924 }
4925
21c7e756
MX
4926 used = space_info->bytes_used + space_info->bytes_reserved +
4927 space_info->bytes_pinned + space_info->bytes_readonly +
4928 space_info->bytes_may_use;
4929 if (need_do_async_reclaim(space_info, fs_info, used)) {
4930 spin_unlock(&space_info->lock);
4931 return 1;
4932 }
4933 spin_unlock(&space_info->lock);
4934
4935 return 0;
4936}
4937
4938static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4939{
4940 struct btrfs_fs_info *fs_info;
4941 struct btrfs_space_info *space_info;
4942 u64 to_reclaim;
4943 int flush_state;
4944
4945 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4946 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4947
4948 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4949 space_info);
4950 if (!to_reclaim)
4951 return;
4952
4953 flush_state = FLUSH_DELAYED_ITEMS_NR;
4954 do {
4955 flush_space(fs_info->fs_root, space_info, to_reclaim,
4956 to_reclaim, flush_state);
4957 flush_state++;
25ce459c
LB
4958 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4959 flush_state))
21c7e756 4960 return;
365c5313 4961 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4962}
4963
4964void btrfs_init_async_reclaim_work(struct work_struct *work)
4965{
4966 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4967}
4968
4a92b1b8
JB
4969/**
4970 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4971 * @root - the root we're allocating for
4972 * @block_rsv - the block_rsv we're allocating for
4973 * @orig_bytes - the number of bytes we want
48fc7f7e 4974 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4975 *
01327610 4976 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
4977 * with the block_rsv. If there is not enough space it will make an attempt to
4978 * flush out space to make room. It will do this by flushing delalloc if
4979 * possible or committing the transaction. If flush is 0 then no attempts to
4980 * regain reservations will be made and this will fail if there is not enough
4981 * space already.
8bb8ab2e 4982 */
4a92b1b8 4983static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4984 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4985 u64 orig_bytes,
4986 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4987{
f0486c68 4988 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4989 u64 used;
8bb8ab2e 4990 u64 num_bytes = orig_bytes;
67b0fd63 4991 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4992 int ret = 0;
fdb5effd 4993 bool flushing = false;
9ed74f2d 4994
8bb8ab2e 4995again:
fdb5effd 4996 ret = 0;
8bb8ab2e 4997 spin_lock(&space_info->lock);
fdb5effd 4998 /*
08e007d2
MX
4999 * We only want to wait if somebody other than us is flushing and we
5000 * are actually allowed to flush all things.
fdb5effd 5001 */
08e007d2
MX
5002 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5003 space_info->flush) {
fdb5effd
JB
5004 spin_unlock(&space_info->lock);
5005 /*
5006 * If we have a trans handle we can't wait because the flusher
5007 * may have to commit the transaction, which would mean we would
5008 * deadlock since we are waiting for the flusher to finish, but
5009 * hold the current transaction open.
5010 */
663350ac 5011 if (current->journal_info)
fdb5effd 5012 return -EAGAIN;
b9688bb8
AJ
5013 ret = wait_event_killable(space_info->wait, !space_info->flush);
5014 /* Must have been killed, return */
5015 if (ret)
fdb5effd
JB
5016 return -EINTR;
5017
5018 spin_lock(&space_info->lock);
5019 }
5020
5021 ret = -ENOSPC;
2bf64758
JB
5022 used = space_info->bytes_used + space_info->bytes_reserved +
5023 space_info->bytes_pinned + space_info->bytes_readonly +
5024 space_info->bytes_may_use;
9ed74f2d 5025
8bb8ab2e
JB
5026 /*
5027 * The idea here is that we've not already over-reserved the block group
5028 * then we can go ahead and save our reservation first and then start
5029 * flushing if we need to. Otherwise if we've already overcommitted
5030 * lets start flushing stuff first and then come back and try to make
5031 * our reservation.
5032 */
2bf64758
JB
5033 if (used <= space_info->total_bytes) {
5034 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 5035 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 5036 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 5037 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
5038 ret = 0;
5039 } else {
5040 /*
5041 * Ok set num_bytes to orig_bytes since we aren't
5042 * overocmmitted, this way we only try and reclaim what
5043 * we need.
5044 */
5045 num_bytes = orig_bytes;
5046 }
5047 } else {
5048 /*
5049 * Ok we're over committed, set num_bytes to the overcommitted
5050 * amount plus the amount of bytes that we need for this
5051 * reservation.
5052 */
2bf64758 5053 num_bytes = used - space_info->total_bytes +
96c3f433 5054 (orig_bytes * 2);
8bb8ab2e 5055 }
9ed74f2d 5056
44734ed1
JB
5057 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5058 space_info->bytes_may_use += orig_bytes;
5059 trace_btrfs_space_reservation(root->fs_info, "space_info",
5060 space_info->flags, orig_bytes,
5061 1);
5062 ret = 0;
2bf64758
JB
5063 }
5064
8bb8ab2e
JB
5065 /*
5066 * Couldn't make our reservation, save our place so while we're trying
5067 * to reclaim space we can actually use it instead of somebody else
5068 * stealing it from us.
08e007d2
MX
5069 *
5070 * We make the other tasks wait for the flush only when we can flush
5071 * all things.
8bb8ab2e 5072 */
72bcd99d 5073 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
5074 flushing = true;
5075 space_info->flush = 1;
21c7e756
MX
5076 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5077 used += orig_bytes;
f6acfd50
JB
5078 /*
5079 * We will do the space reservation dance during log replay,
5080 * which means we won't have fs_info->fs_root set, so don't do
5081 * the async reclaim as we will panic.
5082 */
5083 if (!root->fs_info->log_root_recovering &&
5084 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
5085 !work_busy(&root->fs_info->async_reclaim_work))
5086 queue_work(system_unbound_wq,
5087 &root->fs_info->async_reclaim_work);
8bb8ab2e 5088 }
f0486c68 5089 spin_unlock(&space_info->lock);
9ed74f2d 5090
08e007d2 5091 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 5092 goto out;
f0486c68 5093
96c3f433
JB
5094 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5095 flush_state);
5096 flush_state++;
08e007d2
MX
5097
5098 /*
5099 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5100 * would happen. So skip delalloc flush.
5101 */
5102 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5103 (flush_state == FLUSH_DELALLOC ||
5104 flush_state == FLUSH_DELALLOC_WAIT))
5105 flush_state = ALLOC_CHUNK;
5106
96c3f433 5107 if (!ret)
8bb8ab2e 5108 goto again;
08e007d2
MX
5109 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5110 flush_state < COMMIT_TRANS)
5111 goto again;
5112 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5113 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
5114 goto again;
5115
5116out:
5d80366e
JB
5117 if (ret == -ENOSPC &&
5118 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5119 struct btrfs_block_rsv *global_rsv =
5120 &root->fs_info->global_block_rsv;
5121
5122 if (block_rsv != global_rsv &&
5123 !block_rsv_use_bytes(global_rsv, orig_bytes))
5124 ret = 0;
5125 }
cab45e22
JM
5126 if (ret == -ENOSPC)
5127 trace_btrfs_space_reservation(root->fs_info,
5128 "space_info:enospc",
5129 space_info->flags, orig_bytes, 1);
fdb5effd 5130 if (flushing) {
8bb8ab2e 5131 spin_lock(&space_info->lock);
fdb5effd
JB
5132 space_info->flush = 0;
5133 wake_up_all(&space_info->wait);
8bb8ab2e 5134 spin_unlock(&space_info->lock);
f0486c68 5135 }
f0486c68
YZ
5136 return ret;
5137}
5138
79787eaa
JM
5139static struct btrfs_block_rsv *get_block_rsv(
5140 const struct btrfs_trans_handle *trans,
5141 const struct btrfs_root *root)
f0486c68 5142{
4c13d758
JB
5143 struct btrfs_block_rsv *block_rsv = NULL;
5144
e9cf439f
AM
5145 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5146 (root == root->fs_info->csum_root && trans->adding_csums) ||
5147 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5148 block_rsv = trans->block_rsv;
5149
4c13d758 5150 if (!block_rsv)
f0486c68
YZ
5151 block_rsv = root->block_rsv;
5152
5153 if (!block_rsv)
5154 block_rsv = &root->fs_info->empty_block_rsv;
5155
5156 return block_rsv;
5157}
5158
5159static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5160 u64 num_bytes)
5161{
5162 int ret = -ENOSPC;
5163 spin_lock(&block_rsv->lock);
5164 if (block_rsv->reserved >= num_bytes) {
5165 block_rsv->reserved -= num_bytes;
5166 if (block_rsv->reserved < block_rsv->size)
5167 block_rsv->full = 0;
5168 ret = 0;
5169 }
5170 spin_unlock(&block_rsv->lock);
5171 return ret;
5172}
5173
5174static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5175 u64 num_bytes, int update_size)
5176{
5177 spin_lock(&block_rsv->lock);
5178 block_rsv->reserved += num_bytes;
5179 if (update_size)
5180 block_rsv->size += num_bytes;
5181 else if (block_rsv->reserved >= block_rsv->size)
5182 block_rsv->full = 1;
5183 spin_unlock(&block_rsv->lock);
5184}
5185
d52be818
JB
5186int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5187 struct btrfs_block_rsv *dest, u64 num_bytes,
5188 int min_factor)
5189{
5190 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5191 u64 min_bytes;
5192
5193 if (global_rsv->space_info != dest->space_info)
5194 return -ENOSPC;
5195
5196 spin_lock(&global_rsv->lock);
5197 min_bytes = div_factor(global_rsv->size, min_factor);
5198 if (global_rsv->reserved < min_bytes + num_bytes) {
5199 spin_unlock(&global_rsv->lock);
5200 return -ENOSPC;
5201 }
5202 global_rsv->reserved -= num_bytes;
5203 if (global_rsv->reserved < global_rsv->size)
5204 global_rsv->full = 0;
5205 spin_unlock(&global_rsv->lock);
5206
5207 block_rsv_add_bytes(dest, num_bytes, 1);
5208 return 0;
5209}
5210
8c2a3ca2
JB
5211static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5212 struct btrfs_block_rsv *block_rsv,
62a45b60 5213 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5214{
5215 struct btrfs_space_info *space_info = block_rsv->space_info;
5216
5217 spin_lock(&block_rsv->lock);
5218 if (num_bytes == (u64)-1)
5219 num_bytes = block_rsv->size;
5220 block_rsv->size -= num_bytes;
5221 if (block_rsv->reserved >= block_rsv->size) {
5222 num_bytes = block_rsv->reserved - block_rsv->size;
5223 block_rsv->reserved = block_rsv->size;
5224 block_rsv->full = 1;
5225 } else {
5226 num_bytes = 0;
5227 }
5228 spin_unlock(&block_rsv->lock);
5229
5230 if (num_bytes > 0) {
5231 if (dest) {
e9e22899
JB
5232 spin_lock(&dest->lock);
5233 if (!dest->full) {
5234 u64 bytes_to_add;
5235
5236 bytes_to_add = dest->size - dest->reserved;
5237 bytes_to_add = min(num_bytes, bytes_to_add);
5238 dest->reserved += bytes_to_add;
5239 if (dest->reserved >= dest->size)
5240 dest->full = 1;
5241 num_bytes -= bytes_to_add;
5242 }
5243 spin_unlock(&dest->lock);
5244 }
5245 if (num_bytes) {
f0486c68 5246 spin_lock(&space_info->lock);
fb25e914 5247 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5248 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5249 space_info->flags, num_bytes, 0);
f0486c68 5250 spin_unlock(&space_info->lock);
4e06bdd6 5251 }
9ed74f2d 5252 }
f0486c68 5253}
4e06bdd6 5254
f0486c68
YZ
5255static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5256 struct btrfs_block_rsv *dst, u64 num_bytes)
5257{
5258 int ret;
9ed74f2d 5259
f0486c68
YZ
5260 ret = block_rsv_use_bytes(src, num_bytes);
5261 if (ret)
5262 return ret;
9ed74f2d 5263
f0486c68 5264 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5265 return 0;
5266}
5267
66d8f3dd 5268void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5269{
f0486c68
YZ
5270 memset(rsv, 0, sizeof(*rsv));
5271 spin_lock_init(&rsv->lock);
66d8f3dd 5272 rsv->type = type;
f0486c68
YZ
5273}
5274
66d8f3dd
MX
5275struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5276 unsigned short type)
f0486c68
YZ
5277{
5278 struct btrfs_block_rsv *block_rsv;
5279 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5280
f0486c68
YZ
5281 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5282 if (!block_rsv)
5283 return NULL;
9ed74f2d 5284
66d8f3dd 5285 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5286 block_rsv->space_info = __find_space_info(fs_info,
5287 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5288 return block_rsv;
5289}
9ed74f2d 5290
f0486c68
YZ
5291void btrfs_free_block_rsv(struct btrfs_root *root,
5292 struct btrfs_block_rsv *rsv)
5293{
2aaa6655
JB
5294 if (!rsv)
5295 return;
dabdb640
JB
5296 btrfs_block_rsv_release(root, rsv, (u64)-1);
5297 kfree(rsv);
9ed74f2d
JB
5298}
5299
cdfb080e
CM
5300void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5301{
5302 kfree(rsv);
5303}
5304
08e007d2
MX
5305int btrfs_block_rsv_add(struct btrfs_root *root,
5306 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5307 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5308{
f0486c68 5309 int ret;
9ed74f2d 5310
f0486c68
YZ
5311 if (num_bytes == 0)
5312 return 0;
8bb8ab2e 5313
61b520a9 5314 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5315 if (!ret) {
5316 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5317 return 0;
5318 }
9ed74f2d 5319
f0486c68 5320 return ret;
f0486c68 5321}
9ed74f2d 5322
4a92b1b8 5323int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5324 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5325{
5326 u64 num_bytes = 0;
f0486c68 5327 int ret = -ENOSPC;
9ed74f2d 5328
f0486c68
YZ
5329 if (!block_rsv)
5330 return 0;
9ed74f2d 5331
f0486c68 5332 spin_lock(&block_rsv->lock);
36ba022a
JB
5333 num_bytes = div_factor(block_rsv->size, min_factor);
5334 if (block_rsv->reserved >= num_bytes)
5335 ret = 0;
5336 spin_unlock(&block_rsv->lock);
9ed74f2d 5337
36ba022a
JB
5338 return ret;
5339}
5340
08e007d2
MX
5341int btrfs_block_rsv_refill(struct btrfs_root *root,
5342 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5343 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5344{
5345 u64 num_bytes = 0;
5346 int ret = -ENOSPC;
5347
5348 if (!block_rsv)
5349 return 0;
5350
5351 spin_lock(&block_rsv->lock);
5352 num_bytes = min_reserved;
13553e52 5353 if (block_rsv->reserved >= num_bytes)
f0486c68 5354 ret = 0;
13553e52 5355 else
f0486c68 5356 num_bytes -= block_rsv->reserved;
f0486c68 5357 spin_unlock(&block_rsv->lock);
13553e52 5358
f0486c68
YZ
5359 if (!ret)
5360 return 0;
5361
aa38a711 5362 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5363 if (!ret) {
5364 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5365 return 0;
6a63209f 5366 }
9ed74f2d 5367
13553e52 5368 return ret;
f0486c68
YZ
5369}
5370
5371int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5372 struct btrfs_block_rsv *dst_rsv,
5373 u64 num_bytes)
5374{
5375 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5376}
5377
5378void btrfs_block_rsv_release(struct btrfs_root *root,
5379 struct btrfs_block_rsv *block_rsv,
5380 u64 num_bytes)
5381{
5382 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5383 if (global_rsv == block_rsv ||
f0486c68
YZ
5384 block_rsv->space_info != global_rsv->space_info)
5385 global_rsv = NULL;
8c2a3ca2
JB
5386 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5387 num_bytes);
6a63209f
JB
5388}
5389
5390/*
8929ecfa
YZ
5391 * helper to calculate size of global block reservation.
5392 * the desired value is sum of space used by extent tree,
5393 * checksum tree and root tree
6a63209f 5394 */
8929ecfa 5395static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5396{
8929ecfa
YZ
5397 struct btrfs_space_info *sinfo;
5398 u64 num_bytes;
5399 u64 meta_used;
5400 u64 data_used;
6c41761f 5401 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5402
8929ecfa
YZ
5403 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5404 spin_lock(&sinfo->lock);
5405 data_used = sinfo->bytes_used;
5406 spin_unlock(&sinfo->lock);
33b4d47f 5407
8929ecfa
YZ
5408 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5409 spin_lock(&sinfo->lock);
6d48755d
JB
5410 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5411 data_used = 0;
8929ecfa
YZ
5412 meta_used = sinfo->bytes_used;
5413 spin_unlock(&sinfo->lock);
ab6e2410 5414
8929ecfa
YZ
5415 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5416 csum_size * 2;
f8c269d7 5417 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5418
8929ecfa 5419 if (num_bytes * 3 > meta_used)
f8c269d7 5420 num_bytes = div_u64(meta_used, 3);
ab6e2410 5421
707e8a07 5422 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5423}
6a63209f 5424
8929ecfa
YZ
5425static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5426{
5427 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5428 struct btrfs_space_info *sinfo = block_rsv->space_info;
5429 u64 num_bytes;
6a63209f 5430
8929ecfa 5431 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5432
8929ecfa 5433 spin_lock(&sinfo->lock);
1f699d38 5434 spin_lock(&block_rsv->lock);
4e06bdd6 5435
ee22184b 5436 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5437
fb4b10e5
JB
5438 if (block_rsv->reserved < block_rsv->size) {
5439 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5440 sinfo->bytes_reserved + sinfo->bytes_readonly +
5441 sinfo->bytes_may_use;
5442 if (sinfo->total_bytes > num_bytes) {
5443 num_bytes = sinfo->total_bytes - num_bytes;
5444 num_bytes = min(num_bytes,
5445 block_rsv->size - block_rsv->reserved);
5446 block_rsv->reserved += num_bytes;
5447 sinfo->bytes_may_use += num_bytes;
5448 trace_btrfs_space_reservation(fs_info, "space_info",
5449 sinfo->flags, num_bytes,
5450 1);
5451 }
5452 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5453 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5454 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5455 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5456 sinfo->flags, num_bytes, 0);
8929ecfa 5457 block_rsv->reserved = block_rsv->size;
8929ecfa 5458 }
182608c8 5459
fb4b10e5
JB
5460 if (block_rsv->reserved == block_rsv->size)
5461 block_rsv->full = 1;
5462 else
5463 block_rsv->full = 0;
5464
8929ecfa 5465 spin_unlock(&block_rsv->lock);
1f699d38 5466 spin_unlock(&sinfo->lock);
6a63209f
JB
5467}
5468
f0486c68 5469static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5470{
f0486c68 5471 struct btrfs_space_info *space_info;
6a63209f 5472
f0486c68
YZ
5473 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5474 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5475
f0486c68 5476 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5477 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5478 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5479 fs_info->trans_block_rsv.space_info = space_info;
5480 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5481 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5482
8929ecfa
YZ
5483 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5484 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5485 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5486 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5487 if (fs_info->quota_root)
5488 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5489 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5490
8929ecfa 5491 update_global_block_rsv(fs_info);
6a63209f
JB
5492}
5493
8929ecfa 5494static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5495{
8c2a3ca2
JB
5496 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5497 (u64)-1);
8929ecfa
YZ
5498 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5499 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5500 WARN_ON(fs_info->trans_block_rsv.size > 0);
5501 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5502 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5503 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5504 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5505 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5506}
5507
a22285a6
YZ
5508void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5509 struct btrfs_root *root)
6a63209f 5510{
0e721106
JB
5511 if (!trans->block_rsv)
5512 return;
5513
a22285a6
YZ
5514 if (!trans->bytes_reserved)
5515 return;
6a63209f 5516
e77266e4 5517 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5518 trans->transid, trans->bytes_reserved, 0);
b24e03db 5519 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5520 trans->bytes_reserved = 0;
5521}
6a63209f 5522
4fbcdf66
FM
5523/*
5524 * To be called after all the new block groups attached to the transaction
5525 * handle have been created (btrfs_create_pending_block_groups()).
5526 */
5527void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5528{
5529 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5530
5531 if (!trans->chunk_bytes_reserved)
5532 return;
5533
5534 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5535
5536 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5537 trans->chunk_bytes_reserved);
5538 trans->chunk_bytes_reserved = 0;
5539}
5540
79787eaa 5541/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5542int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5543 struct inode *inode)
5544{
5545 struct btrfs_root *root = BTRFS_I(inode)->root;
5546 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5547 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5548
5549 /*
fcb80c2a
JB
5550 * We need to hold space in order to delete our orphan item once we've
5551 * added it, so this takes the reservation so we can release it later
5552 * when we are truly done with the orphan item.
d68fc57b 5553 */
ff5714cc 5554 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5555 trace_btrfs_space_reservation(root->fs_info, "orphan",
5556 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5557 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5558}
5559
d68fc57b 5560void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5561{
d68fc57b 5562 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5563 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5564 trace_btrfs_space_reservation(root->fs_info, "orphan",
5565 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5566 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5567}
97e728d4 5568
d5c12070
MX
5569/*
5570 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5571 * root: the root of the parent directory
5572 * rsv: block reservation
5573 * items: the number of items that we need do reservation
5574 * qgroup_reserved: used to return the reserved size in qgroup
5575 *
5576 * This function is used to reserve the space for snapshot/subvolume
5577 * creation and deletion. Those operations are different with the
5578 * common file/directory operations, they change two fs/file trees
5579 * and root tree, the number of items that the qgroup reserves is
5580 * different with the free space reservation. So we can not use
01327610 5581 * the space reservation mechanism in start_transaction().
d5c12070
MX
5582 */
5583int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5584 struct btrfs_block_rsv *rsv,
5585 int items,
ee3441b4
JM
5586 u64 *qgroup_reserved,
5587 bool use_global_rsv)
a22285a6 5588{
d5c12070
MX
5589 u64 num_bytes;
5590 int ret;
ee3441b4 5591 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5592
5593 if (root->fs_info->quota_enabled) {
5594 /* One for parent inode, two for dir entries */
707e8a07 5595 num_bytes = 3 * root->nodesize;
7174109c 5596 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5597 if (ret)
5598 return ret;
5599 } else {
5600 num_bytes = 0;
5601 }
5602
5603 *qgroup_reserved = num_bytes;
5604
5605 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5606 rsv->space_info = __find_space_info(root->fs_info,
5607 BTRFS_BLOCK_GROUP_METADATA);
5608 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5609 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5610
5611 if (ret == -ENOSPC && use_global_rsv)
5612 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5613
7174109c
QW
5614 if (ret && *qgroup_reserved)
5615 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5616
5617 return ret;
5618}
5619
5620void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5621 struct btrfs_block_rsv *rsv,
5622 u64 qgroup_reserved)
5623{
5624 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5625}
5626
7709cde3
JB
5627/**
5628 * drop_outstanding_extent - drop an outstanding extent
5629 * @inode: the inode we're dropping the extent for
01327610 5630 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5631 *
5632 * This is called when we are freeing up an outstanding extent, either called
5633 * after an error or after an extent is written. This will return the number of
5634 * reserved extents that need to be freed. This must be called with
5635 * BTRFS_I(inode)->lock held.
5636 */
dcab6a3b 5637static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5638{
7fd2ae21 5639 unsigned drop_inode_space = 0;
9e0baf60 5640 unsigned dropped_extents = 0;
dcab6a3b 5641 unsigned num_extents = 0;
9e0baf60 5642
dcab6a3b
JB
5643 num_extents = (unsigned)div64_u64(num_bytes +
5644 BTRFS_MAX_EXTENT_SIZE - 1,
5645 BTRFS_MAX_EXTENT_SIZE);
5646 ASSERT(num_extents);
5647 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5648 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5649
7fd2ae21 5650 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5651 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5652 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5653 drop_inode_space = 1;
7fd2ae21 5654
9e0baf60 5655 /*
01327610 5656 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5657 * reserved then we need to leave the reserved extents count alone.
5658 */
5659 if (BTRFS_I(inode)->outstanding_extents >=
5660 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5661 return drop_inode_space;
9e0baf60
JB
5662
5663 dropped_extents = BTRFS_I(inode)->reserved_extents -
5664 BTRFS_I(inode)->outstanding_extents;
5665 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5666 return dropped_extents + drop_inode_space;
9e0baf60
JB
5667}
5668
7709cde3 5669/**
01327610
NS
5670 * calc_csum_metadata_size - return the amount of metadata space that must be
5671 * reserved/freed for the given bytes.
7709cde3
JB
5672 * @inode: the inode we're manipulating
5673 * @num_bytes: the number of bytes in question
5674 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5675 *
5676 * This adjusts the number of csum_bytes in the inode and then returns the
5677 * correct amount of metadata that must either be reserved or freed. We
5678 * calculate how many checksums we can fit into one leaf and then divide the
5679 * number of bytes that will need to be checksumed by this value to figure out
5680 * how many checksums will be required. If we are adding bytes then the number
5681 * may go up and we will return the number of additional bytes that must be
5682 * reserved. If it is going down we will return the number of bytes that must
5683 * be freed.
5684 *
5685 * This must be called with BTRFS_I(inode)->lock held.
5686 */
5687static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5688 int reserve)
6324fbf3 5689{
7709cde3 5690 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5691 u64 old_csums, num_csums;
7709cde3
JB
5692
5693 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5694 BTRFS_I(inode)->csum_bytes == 0)
5695 return 0;
5696
28f75a0e 5697 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5698 if (reserve)
5699 BTRFS_I(inode)->csum_bytes += num_bytes;
5700 else
5701 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5702 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5703
5704 /* No change, no need to reserve more */
5705 if (old_csums == num_csums)
5706 return 0;
5707
5708 if (reserve)
5709 return btrfs_calc_trans_metadata_size(root,
5710 num_csums - old_csums);
5711
5712 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5713}
c146afad 5714
0ca1f7ce
YZ
5715int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5716{
5717 struct btrfs_root *root = BTRFS_I(inode)->root;
5718 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5719 u64 to_reserve = 0;
660d3f6c 5720 u64 csum_bytes;
9e0baf60 5721 unsigned nr_extents = 0;
660d3f6c 5722 int extra_reserve = 0;
08e007d2 5723 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5724 int ret = 0;
c64c2bd8 5725 bool delalloc_lock = true;
88e081bf
WS
5726 u64 to_free = 0;
5727 unsigned dropped;
6324fbf3 5728
c64c2bd8
JB
5729 /* If we are a free space inode we need to not flush since we will be in
5730 * the middle of a transaction commit. We also don't need the delalloc
5731 * mutex since we won't race with anybody. We need this mostly to make
5732 * lockdep shut its filthy mouth.
5733 */
5734 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5735 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5736 delalloc_lock = false;
5737 }
c09544e0 5738
08e007d2
MX
5739 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5740 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5741 schedule_timeout(1);
ec44a35c 5742
c64c2bd8
JB
5743 if (delalloc_lock)
5744 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5745
0ca1f7ce 5746 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5747
9e0baf60 5748 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5749 nr_extents = (unsigned)div64_u64(num_bytes +
5750 BTRFS_MAX_EXTENT_SIZE - 1,
5751 BTRFS_MAX_EXTENT_SIZE);
5752 BTRFS_I(inode)->outstanding_extents += nr_extents;
5753 nr_extents = 0;
9e0baf60
JB
5754
5755 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5756 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5757 nr_extents = BTRFS_I(inode)->outstanding_extents -
5758 BTRFS_I(inode)->reserved_extents;
57a45ced 5759
7fd2ae21
JB
5760 /*
5761 * Add an item to reserve for updating the inode when we complete the
5762 * delalloc io.
5763 */
72ac3c0d
JB
5764 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5765 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5766 nr_extents++;
660d3f6c 5767 extra_reserve = 1;
593060d7 5768 }
7fd2ae21
JB
5769
5770 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5771 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5772 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5773 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5774
88e081bf 5775 if (root->fs_info->quota_enabled) {
7174109c
QW
5776 ret = btrfs_qgroup_reserve_meta(root,
5777 nr_extents * root->nodesize);
88e081bf
WS
5778 if (ret)
5779 goto out_fail;
5780 }
c5567237 5781
88e081bf
WS
5782 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5783 if (unlikely(ret)) {
7174109c 5784 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5785 goto out_fail;
9e0baf60 5786 }
25179201 5787
660d3f6c
JB
5788 spin_lock(&BTRFS_I(inode)->lock);
5789 if (extra_reserve) {
72ac3c0d
JB
5790 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5791 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5792 nr_extents--;
5793 }
5794 BTRFS_I(inode)->reserved_extents += nr_extents;
5795 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5796
5797 if (delalloc_lock)
5798 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5799
8c2a3ca2 5800 if (to_reserve)
67871254 5801 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5802 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5803 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5804
0ca1f7ce 5805 return 0;
88e081bf
WS
5806
5807out_fail:
5808 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5809 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5810 /*
5811 * If the inodes csum_bytes is the same as the original
5812 * csum_bytes then we know we haven't raced with any free()ers
5813 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5814 */
f4881bc7 5815 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5816 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5817 } else {
5818 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5819 u64 bytes;
5820
5821 /*
5822 * This is tricky, but first we need to figure out how much we
01327610 5823 * freed from any free-ers that occurred during this
f4881bc7
JB
5824 * reservation, so we reset ->csum_bytes to the csum_bytes
5825 * before we dropped our lock, and then call the free for the
5826 * number of bytes that were freed while we were trying our
5827 * reservation.
5828 */
5829 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5830 BTRFS_I(inode)->csum_bytes = csum_bytes;
5831 to_free = calc_csum_metadata_size(inode, bytes, 0);
5832
5833
5834 /*
5835 * Now we need to see how much we would have freed had we not
5836 * been making this reservation and our ->csum_bytes were not
5837 * artificially inflated.
5838 */
5839 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5840 bytes = csum_bytes - orig_csum_bytes;
5841 bytes = calc_csum_metadata_size(inode, bytes, 0);
5842
5843 /*
5844 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 5845 * more than to_free then we would have freed more space had we
f4881bc7
JB
5846 * not had an artificially high ->csum_bytes, so we need to free
5847 * the remainder. If bytes is the same or less then we don't
5848 * need to do anything, the other free-ers did the correct
5849 * thing.
5850 */
5851 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5852 if (bytes > to_free)
5853 to_free = bytes - to_free;
5854 else
5855 to_free = 0;
5856 }
88e081bf 5857 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5858 if (dropped)
88e081bf
WS
5859 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5860
5861 if (to_free) {
5862 btrfs_block_rsv_release(root, block_rsv, to_free);
5863 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5864 btrfs_ino(inode), to_free, 0);
5865 }
5866 if (delalloc_lock)
5867 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5868 return ret;
0ca1f7ce
YZ
5869}
5870
7709cde3
JB
5871/**
5872 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5873 * @inode: the inode to release the reservation for
5874 * @num_bytes: the number of bytes we're releasing
5875 *
5876 * This will release the metadata reservation for an inode. This can be called
5877 * once we complete IO for a given set of bytes to release their metadata
5878 * reservations.
5879 */
0ca1f7ce
YZ
5880void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5881{
5882 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5883 u64 to_free = 0;
5884 unsigned dropped;
0ca1f7ce
YZ
5885
5886 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5887 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5888 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5889
0934856d
MX
5890 if (num_bytes)
5891 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5892 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5893 if (dropped > 0)
5894 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5895
6a3891c5
JB
5896 if (btrfs_test_is_dummy_root(root))
5897 return;
5898
8c2a3ca2
JB
5899 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5900 btrfs_ino(inode), to_free, 0);
c5567237 5901
0ca1f7ce
YZ
5902 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5903 to_free);
5904}
5905
1ada3a62 5906/**
7cf5b976 5907 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5908 * delalloc
5909 * @inode: inode we're writing to
5910 * @start: start range we are writing to
5911 * @len: how long the range we are writing to
5912 *
5913 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5914 *
5915 * This will do the following things
5916 *
5917 * o reserve space in data space info for num bytes
5918 * and reserve precious corresponding qgroup space
5919 * (Done in check_data_free_space)
5920 *
5921 * o reserve space for metadata space, based on the number of outstanding
5922 * extents and how much csums will be needed
5923 * also reserve metadata space in a per root over-reserve method.
5924 * o add to the inodes->delalloc_bytes
5925 * o add it to the fs_info's delalloc inodes list.
5926 * (Above 3 all done in delalloc_reserve_metadata)
5927 *
5928 * Return 0 for success
5929 * Return <0 for error(-ENOSPC or -EQUOT)
5930 */
7cf5b976 5931int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5932{
5933 int ret;
5934
7cf5b976 5935 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
5936 if (ret < 0)
5937 return ret;
5938 ret = btrfs_delalloc_reserve_metadata(inode, len);
5939 if (ret < 0)
7cf5b976 5940 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
5941 return ret;
5942}
5943
7709cde3 5944/**
7cf5b976 5945 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
5946 * @inode: inode we're releasing space for
5947 * @start: start position of the space already reserved
5948 * @len: the len of the space already reserved
5949 *
5950 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5951 * called in the case that we don't need the metadata AND data reservations
5952 * anymore. So if there is an error or we insert an inline extent.
5953 *
5954 * This function will release the metadata space that was not used and will
5955 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5956 * list if there are no delalloc bytes left.
5957 * Also it will handle the qgroup reserved space.
5958 */
7cf5b976 5959void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5960{
5961 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 5962 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
5963}
5964
ce93ec54
JB
5965static int update_block_group(struct btrfs_trans_handle *trans,
5966 struct btrfs_root *root, u64 bytenr,
5967 u64 num_bytes, int alloc)
9078a3e1 5968{
0af3d00b 5969 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5970 struct btrfs_fs_info *info = root->fs_info;
db94535d 5971 u64 total = num_bytes;
9078a3e1 5972 u64 old_val;
db94535d 5973 u64 byte_in_group;
0af3d00b 5974 int factor;
3e1ad54f 5975
5d4f98a2 5976 /* block accounting for super block */
eb73c1b7 5977 spin_lock(&info->delalloc_root_lock);
6c41761f 5978 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5979 if (alloc)
5980 old_val += num_bytes;
5981 else
5982 old_val -= num_bytes;
6c41761f 5983 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5984 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5985
d397712b 5986 while (total) {
db94535d 5987 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5988 if (!cache)
79787eaa 5989 return -ENOENT;
b742bb82
YZ
5990 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5991 BTRFS_BLOCK_GROUP_RAID1 |
5992 BTRFS_BLOCK_GROUP_RAID10))
5993 factor = 2;
5994 else
5995 factor = 1;
9d66e233
JB
5996 /*
5997 * If this block group has free space cache written out, we
5998 * need to make sure to load it if we are removing space. This
5999 * is because we need the unpinning stage to actually add the
6000 * space back to the block group, otherwise we will leak space.
6001 */
6002 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6003 cache_block_group(cache, 1);
0af3d00b 6004
db94535d
CM
6005 byte_in_group = bytenr - cache->key.objectid;
6006 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6007
25179201 6008 spin_lock(&cache->space_info->lock);
c286ac48 6009 spin_lock(&cache->lock);
0af3d00b 6010
73bc1876 6011 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
6012 cache->disk_cache_state < BTRFS_DC_CLEAR)
6013 cache->disk_cache_state = BTRFS_DC_CLEAR;
6014
9078a3e1 6015 old_val = btrfs_block_group_used(&cache->item);
db94535d 6016 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6017 if (alloc) {
db94535d 6018 old_val += num_bytes;
11833d66
YZ
6019 btrfs_set_block_group_used(&cache->item, old_val);
6020 cache->reserved -= num_bytes;
11833d66 6021 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6022 cache->space_info->bytes_used += num_bytes;
6023 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6024 spin_unlock(&cache->lock);
25179201 6025 spin_unlock(&cache->space_info->lock);
cd1bc465 6026 } else {
db94535d 6027 old_val -= num_bytes;
ae0ab003
FM
6028 btrfs_set_block_group_used(&cache->item, old_val);
6029 cache->pinned += num_bytes;
6030 cache->space_info->bytes_pinned += num_bytes;
6031 cache->space_info->bytes_used -= num_bytes;
6032 cache->space_info->disk_used -= num_bytes * factor;
6033 spin_unlock(&cache->lock);
6034 spin_unlock(&cache->space_info->lock);
47ab2a6c 6035
ae0ab003
FM
6036 set_extent_dirty(info->pinned_extents,
6037 bytenr, bytenr + num_bytes - 1,
6038 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6039 }
1bbc621e
CM
6040
6041 spin_lock(&trans->transaction->dirty_bgs_lock);
6042 if (list_empty(&cache->dirty_list)) {
6043 list_add_tail(&cache->dirty_list,
6044 &trans->transaction->dirty_bgs);
6045 trans->transaction->num_dirty_bgs++;
6046 btrfs_get_block_group(cache);
6047 }
6048 spin_unlock(&trans->transaction->dirty_bgs_lock);
6049
036a9348
FM
6050 /*
6051 * No longer have used bytes in this block group, queue it for
6052 * deletion. We do this after adding the block group to the
6053 * dirty list to avoid races between cleaner kthread and space
6054 * cache writeout.
6055 */
6056 if (!alloc && old_val == 0) {
6057 spin_lock(&info->unused_bgs_lock);
6058 if (list_empty(&cache->bg_list)) {
6059 btrfs_get_block_group(cache);
6060 list_add_tail(&cache->bg_list,
6061 &info->unused_bgs);
6062 }
6063 spin_unlock(&info->unused_bgs_lock);
6064 }
6065
fa9c0d79 6066 btrfs_put_block_group(cache);
db94535d
CM
6067 total -= num_bytes;
6068 bytenr += num_bytes;
9078a3e1
CM
6069 }
6070 return 0;
6071}
6324fbf3 6072
a061fc8d
CM
6073static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6074{
0f9dd46c 6075 struct btrfs_block_group_cache *cache;
d2fb3437 6076 u64 bytenr;
0f9dd46c 6077
a1897fdd
LB
6078 spin_lock(&root->fs_info->block_group_cache_lock);
6079 bytenr = root->fs_info->first_logical_byte;
6080 spin_unlock(&root->fs_info->block_group_cache_lock);
6081
6082 if (bytenr < (u64)-1)
6083 return bytenr;
6084
0f9dd46c
JB
6085 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6086 if (!cache)
a061fc8d 6087 return 0;
0f9dd46c 6088
d2fb3437 6089 bytenr = cache->key.objectid;
fa9c0d79 6090 btrfs_put_block_group(cache);
d2fb3437
YZ
6091
6092 return bytenr;
a061fc8d
CM
6093}
6094
f0486c68
YZ
6095static int pin_down_extent(struct btrfs_root *root,
6096 struct btrfs_block_group_cache *cache,
6097 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6098{
11833d66
YZ
6099 spin_lock(&cache->space_info->lock);
6100 spin_lock(&cache->lock);
6101 cache->pinned += num_bytes;
6102 cache->space_info->bytes_pinned += num_bytes;
6103 if (reserved) {
6104 cache->reserved -= num_bytes;
6105 cache->space_info->bytes_reserved -= num_bytes;
6106 }
6107 spin_unlock(&cache->lock);
6108 spin_unlock(&cache->space_info->lock);
68b38550 6109
f0486c68
YZ
6110 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6111 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 6112 if (reserved)
0be5dc67 6113 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
6114 return 0;
6115}
68b38550 6116
f0486c68
YZ
6117/*
6118 * this function must be called within transaction
6119 */
6120int btrfs_pin_extent(struct btrfs_root *root,
6121 u64 bytenr, u64 num_bytes, int reserved)
6122{
6123 struct btrfs_block_group_cache *cache;
68b38550 6124
f0486c68 6125 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6126 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6127
6128 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6129
6130 btrfs_put_block_group(cache);
11833d66
YZ
6131 return 0;
6132}
6133
f0486c68 6134/*
e688b725
CM
6135 * this function must be called within transaction
6136 */
dcfac415 6137int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6138 u64 bytenr, u64 num_bytes)
6139{
6140 struct btrfs_block_group_cache *cache;
b50c6e25 6141 int ret;
e688b725
CM
6142
6143 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6144 if (!cache)
6145 return -EINVAL;
e688b725
CM
6146
6147 /*
6148 * pull in the free space cache (if any) so that our pin
6149 * removes the free space from the cache. We have load_only set
6150 * to one because the slow code to read in the free extents does check
6151 * the pinned extents.
6152 */
f6373bf3 6153 cache_block_group(cache, 1);
e688b725
CM
6154
6155 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6156
6157 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6158 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6159 btrfs_put_block_group(cache);
b50c6e25 6160 return ret;
e688b725
CM
6161}
6162
8c2a1a30
JB
6163static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6164{
6165 int ret;
6166 struct btrfs_block_group_cache *block_group;
6167 struct btrfs_caching_control *caching_ctl;
6168
6169 block_group = btrfs_lookup_block_group(root->fs_info, start);
6170 if (!block_group)
6171 return -EINVAL;
6172
6173 cache_block_group(block_group, 0);
6174 caching_ctl = get_caching_control(block_group);
6175
6176 if (!caching_ctl) {
6177 /* Logic error */
6178 BUG_ON(!block_group_cache_done(block_group));
6179 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6180 } else {
6181 mutex_lock(&caching_ctl->mutex);
6182
6183 if (start >= caching_ctl->progress) {
6184 ret = add_excluded_extent(root, start, num_bytes);
6185 } else if (start + num_bytes <= caching_ctl->progress) {
6186 ret = btrfs_remove_free_space(block_group,
6187 start, num_bytes);
6188 } else {
6189 num_bytes = caching_ctl->progress - start;
6190 ret = btrfs_remove_free_space(block_group,
6191 start, num_bytes);
6192 if (ret)
6193 goto out_lock;
6194
6195 num_bytes = (start + num_bytes) -
6196 caching_ctl->progress;
6197 start = caching_ctl->progress;
6198 ret = add_excluded_extent(root, start, num_bytes);
6199 }
6200out_lock:
6201 mutex_unlock(&caching_ctl->mutex);
6202 put_caching_control(caching_ctl);
6203 }
6204 btrfs_put_block_group(block_group);
6205 return ret;
6206}
6207
6208int btrfs_exclude_logged_extents(struct btrfs_root *log,
6209 struct extent_buffer *eb)
6210{
6211 struct btrfs_file_extent_item *item;
6212 struct btrfs_key key;
6213 int found_type;
6214 int i;
6215
6216 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6217 return 0;
6218
6219 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6220 btrfs_item_key_to_cpu(eb, &key, i);
6221 if (key.type != BTRFS_EXTENT_DATA_KEY)
6222 continue;
6223 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6224 found_type = btrfs_file_extent_type(eb, item);
6225 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6226 continue;
6227 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6228 continue;
6229 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6230 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6231 __exclude_logged_extent(log, key.objectid, key.offset);
6232 }
6233
6234 return 0;
6235}
6236
9cfa3e34
FM
6237static void
6238btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6239{
6240 atomic_inc(&bg->reservations);
6241}
6242
6243void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6244 const u64 start)
6245{
6246 struct btrfs_block_group_cache *bg;
6247
6248 bg = btrfs_lookup_block_group(fs_info, start);
6249 ASSERT(bg);
6250 if (atomic_dec_and_test(&bg->reservations))
6251 wake_up_atomic_t(&bg->reservations);
6252 btrfs_put_block_group(bg);
6253}
6254
6255static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6256{
6257 schedule();
6258 return 0;
6259}
6260
6261void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6262{
6263 struct btrfs_space_info *space_info = bg->space_info;
6264
6265 ASSERT(bg->ro);
6266
6267 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6268 return;
6269
6270 /*
6271 * Our block group is read only but before we set it to read only,
6272 * some task might have had allocated an extent from it already, but it
6273 * has not yet created a respective ordered extent (and added it to a
6274 * root's list of ordered extents).
6275 * Therefore wait for any task currently allocating extents, since the
6276 * block group's reservations counter is incremented while a read lock
6277 * on the groups' semaphore is held and decremented after releasing
6278 * the read access on that semaphore and creating the ordered extent.
6279 */
6280 down_write(&space_info->groups_sem);
6281 up_write(&space_info->groups_sem);
6282
6283 wait_on_atomic_t(&bg->reservations,
6284 btrfs_wait_bg_reservations_atomic_t,
6285 TASK_UNINTERRUPTIBLE);
6286}
6287
fb25e914
JB
6288/**
6289 * btrfs_update_reserved_bytes - update the block_group and space info counters
6290 * @cache: The cache we are manipulating
6291 * @num_bytes: The number of bytes in question
6292 * @reserve: One of the reservation enums
e570fd27 6293 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6294 *
6295 * This is called by the allocator when it reserves space, or by somebody who is
6296 * freeing space that was never actually used on disk. For example if you
6297 * reserve some space for a new leaf in transaction A and before transaction A
6298 * commits you free that leaf, you call this with reserve set to 0 in order to
6299 * clear the reservation.
6300 *
6301 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6302 * ENOSPC accounting. For data we handle the reservation through clearing the
6303 * delalloc bits in the io_tree. We have to do this since we could end up
6304 * allocating less disk space for the amount of data we have reserved in the
6305 * case of compression.
6306 *
6307 * If this is a reservation and the block group has become read only we cannot
6308 * make the reservation and return -EAGAIN, otherwise this function always
6309 * succeeds.
f0486c68 6310 */
fb25e914 6311static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6312 u64 num_bytes, int reserve, int delalloc)
11833d66 6313{
fb25e914 6314 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6315 int ret = 0;
79787eaa 6316
fb25e914
JB
6317 spin_lock(&space_info->lock);
6318 spin_lock(&cache->lock);
6319 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6320 if (cache->ro) {
6321 ret = -EAGAIN;
6322 } else {
fb25e914
JB
6323 cache->reserved += num_bytes;
6324 space_info->bytes_reserved += num_bytes;
6325 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6326 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6327 "space_info", space_info->flags,
6328 num_bytes, 0);
fb25e914
JB
6329 space_info->bytes_may_use -= num_bytes;
6330 }
e570fd27
MX
6331
6332 if (delalloc)
6333 cache->delalloc_bytes += num_bytes;
f0486c68 6334 }
fb25e914
JB
6335 } else {
6336 if (cache->ro)
6337 space_info->bytes_readonly += num_bytes;
6338 cache->reserved -= num_bytes;
6339 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6340
6341 if (delalloc)
6342 cache->delalloc_bytes -= num_bytes;
324ae4df 6343 }
fb25e914
JB
6344 spin_unlock(&cache->lock);
6345 spin_unlock(&space_info->lock);
f0486c68 6346 return ret;
324ae4df 6347}
9078a3e1 6348
143bede5 6349void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6350 struct btrfs_root *root)
e8569813 6351{
e8569813 6352 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6353 struct btrfs_caching_control *next;
6354 struct btrfs_caching_control *caching_ctl;
6355 struct btrfs_block_group_cache *cache;
e8569813 6356
9e351cc8 6357 down_write(&fs_info->commit_root_sem);
25179201 6358
11833d66
YZ
6359 list_for_each_entry_safe(caching_ctl, next,
6360 &fs_info->caching_block_groups, list) {
6361 cache = caching_ctl->block_group;
6362 if (block_group_cache_done(cache)) {
6363 cache->last_byte_to_unpin = (u64)-1;
6364 list_del_init(&caching_ctl->list);
6365 put_caching_control(caching_ctl);
e8569813 6366 } else {
11833d66 6367 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6368 }
e8569813 6369 }
11833d66
YZ
6370
6371 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6372 fs_info->pinned_extents = &fs_info->freed_extents[1];
6373 else
6374 fs_info->pinned_extents = &fs_info->freed_extents[0];
6375
9e351cc8 6376 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6377
6378 update_global_block_rsv(fs_info);
e8569813
ZY
6379}
6380
c759c4e1
JB
6381/*
6382 * Returns the free cluster for the given space info and sets empty_cluster to
6383 * what it should be based on the mount options.
6384 */
6385static struct btrfs_free_cluster *
6386fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6387 u64 *empty_cluster)
6388{
6389 struct btrfs_free_cluster *ret = NULL;
6390 bool ssd = btrfs_test_opt(root, SSD);
6391
6392 *empty_cluster = 0;
6393 if (btrfs_mixed_space_info(space_info))
6394 return ret;
6395
6396 if (ssd)
ee22184b 6397 *empty_cluster = SZ_2M;
c759c4e1
JB
6398 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6399 ret = &root->fs_info->meta_alloc_cluster;
6400 if (!ssd)
ee22184b 6401 *empty_cluster = SZ_64K;
c759c4e1
JB
6402 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6403 ret = &root->fs_info->data_alloc_cluster;
6404 }
6405
6406 return ret;
6407}
6408
678886bd
FM
6409static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6410 const bool return_free_space)
ccd467d6 6411{
11833d66
YZ
6412 struct btrfs_fs_info *fs_info = root->fs_info;
6413 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6414 struct btrfs_space_info *space_info;
6415 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6416 struct btrfs_free_cluster *cluster = NULL;
11833d66 6417 u64 len;
c759c4e1
JB
6418 u64 total_unpinned = 0;
6419 u64 empty_cluster = 0;
7b398f8e 6420 bool readonly;
ccd467d6 6421
11833d66 6422 while (start <= end) {
7b398f8e 6423 readonly = false;
11833d66
YZ
6424 if (!cache ||
6425 start >= cache->key.objectid + cache->key.offset) {
6426 if (cache)
6427 btrfs_put_block_group(cache);
c759c4e1 6428 total_unpinned = 0;
11833d66 6429 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6430 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6431
6432 cluster = fetch_cluster_info(root,
6433 cache->space_info,
6434 &empty_cluster);
6435 empty_cluster <<= 1;
11833d66
YZ
6436 }
6437
6438 len = cache->key.objectid + cache->key.offset - start;
6439 len = min(len, end + 1 - start);
6440
6441 if (start < cache->last_byte_to_unpin) {
6442 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6443 if (return_free_space)
6444 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6445 }
6446
f0486c68 6447 start += len;
c759c4e1 6448 total_unpinned += len;
7b398f8e 6449 space_info = cache->space_info;
f0486c68 6450
c759c4e1
JB
6451 /*
6452 * If this space cluster has been marked as fragmented and we've
6453 * unpinned enough in this block group to potentially allow a
6454 * cluster to be created inside of it go ahead and clear the
6455 * fragmented check.
6456 */
6457 if (cluster && cluster->fragmented &&
6458 total_unpinned > empty_cluster) {
6459 spin_lock(&cluster->lock);
6460 cluster->fragmented = 0;
6461 spin_unlock(&cluster->lock);
6462 }
6463
7b398f8e 6464 spin_lock(&space_info->lock);
11833d66
YZ
6465 spin_lock(&cache->lock);
6466 cache->pinned -= len;
7b398f8e 6467 space_info->bytes_pinned -= len;
4f4db217 6468 space_info->max_extent_size = 0;
d288db5d 6469 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6470 if (cache->ro) {
6471 space_info->bytes_readonly += len;
6472 readonly = true;
6473 }
11833d66 6474 spin_unlock(&cache->lock);
7b398f8e
JB
6475 if (!readonly && global_rsv->space_info == space_info) {
6476 spin_lock(&global_rsv->lock);
6477 if (!global_rsv->full) {
6478 len = min(len, global_rsv->size -
6479 global_rsv->reserved);
6480 global_rsv->reserved += len;
6481 space_info->bytes_may_use += len;
6482 if (global_rsv->reserved >= global_rsv->size)
6483 global_rsv->full = 1;
6484 }
6485 spin_unlock(&global_rsv->lock);
6486 }
6487 spin_unlock(&space_info->lock);
ccd467d6 6488 }
11833d66
YZ
6489
6490 if (cache)
6491 btrfs_put_block_group(cache);
ccd467d6
CM
6492 return 0;
6493}
6494
6495int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6496 struct btrfs_root *root)
a28ec197 6497{
11833d66 6498 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6499 struct btrfs_block_group_cache *block_group, *tmp;
6500 struct list_head *deleted_bgs;
11833d66 6501 struct extent_io_tree *unpin;
1a5bc167
CM
6502 u64 start;
6503 u64 end;
a28ec197 6504 int ret;
a28ec197 6505
11833d66
YZ
6506 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6507 unpin = &fs_info->freed_extents[1];
6508 else
6509 unpin = &fs_info->freed_extents[0];
6510
e33e17ee 6511 while (!trans->aborted) {
d4b450cd 6512 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6513 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6514 EXTENT_DIRTY, NULL);
d4b450cd
FM
6515 if (ret) {
6516 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6517 break;
d4b450cd 6518 }
1f3c79a2 6519
5378e607
LD
6520 if (btrfs_test_opt(root, DISCARD))
6521 ret = btrfs_discard_extent(root, start,
6522 end + 1 - start, NULL);
1f3c79a2 6523
af6f8f60 6524 clear_extent_dirty(unpin, start, end);
678886bd 6525 unpin_extent_range(root, start, end, true);
d4b450cd 6526 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6527 cond_resched();
a28ec197 6528 }
817d52f8 6529
e33e17ee
JM
6530 /*
6531 * Transaction is finished. We don't need the lock anymore. We
6532 * do need to clean up the block groups in case of a transaction
6533 * abort.
6534 */
6535 deleted_bgs = &trans->transaction->deleted_bgs;
6536 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6537 u64 trimmed = 0;
6538
6539 ret = -EROFS;
6540 if (!trans->aborted)
6541 ret = btrfs_discard_extent(root,
6542 block_group->key.objectid,
6543 block_group->key.offset,
6544 &trimmed);
6545
6546 list_del_init(&block_group->bg_list);
6547 btrfs_put_block_group_trimming(block_group);
6548 btrfs_put_block_group(block_group);
6549
6550 if (ret) {
6551 const char *errstr = btrfs_decode_error(ret);
6552 btrfs_warn(fs_info,
6553 "Discard failed while removing blockgroup: errno=%d %s\n",
6554 ret, errstr);
6555 }
6556 }
6557
e20d96d6
CM
6558 return 0;
6559}
6560
b150a4f1
JB
6561static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6562 u64 owner, u64 root_objectid)
6563{
6564 struct btrfs_space_info *space_info;
6565 u64 flags;
6566
6567 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6568 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6569 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6570 else
6571 flags = BTRFS_BLOCK_GROUP_METADATA;
6572 } else {
6573 flags = BTRFS_BLOCK_GROUP_DATA;
6574 }
6575
6576 space_info = __find_space_info(fs_info, flags);
6577 BUG_ON(!space_info); /* Logic bug */
6578 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6579}
6580
6581
5d4f98a2
YZ
6582static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6583 struct btrfs_root *root,
c682f9b3 6584 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6585 u64 root_objectid, u64 owner_objectid,
6586 u64 owner_offset, int refs_to_drop,
c682f9b3 6587 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6588{
e2fa7227 6589 struct btrfs_key key;
5d4f98a2 6590 struct btrfs_path *path;
1261ec42
CM
6591 struct btrfs_fs_info *info = root->fs_info;
6592 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6593 struct extent_buffer *leaf;
5d4f98a2
YZ
6594 struct btrfs_extent_item *ei;
6595 struct btrfs_extent_inline_ref *iref;
a28ec197 6596 int ret;
5d4f98a2 6597 int is_data;
952fccac
CM
6598 int extent_slot = 0;
6599 int found_extent = 0;
6600 int num_to_del = 1;
5d4f98a2
YZ
6601 u32 item_size;
6602 u64 refs;
c682f9b3
QW
6603 u64 bytenr = node->bytenr;
6604 u64 num_bytes = node->num_bytes;
fcebe456 6605 int last_ref = 0;
3173a18f
JB
6606 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6607 SKINNY_METADATA);
037e6390 6608
5caf2a00 6609 path = btrfs_alloc_path();
54aa1f4d
CM
6610 if (!path)
6611 return -ENOMEM;
5f26f772 6612
e4058b54 6613 path->reada = READA_FORWARD;
b9473439 6614 path->leave_spinning = 1;
5d4f98a2
YZ
6615
6616 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6617 BUG_ON(!is_data && refs_to_drop != 1);
6618
3173a18f
JB
6619 if (is_data)
6620 skinny_metadata = 0;
6621
5d4f98a2
YZ
6622 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6623 bytenr, num_bytes, parent,
6624 root_objectid, owner_objectid,
6625 owner_offset);
7bb86316 6626 if (ret == 0) {
952fccac 6627 extent_slot = path->slots[0];
5d4f98a2
YZ
6628 while (extent_slot >= 0) {
6629 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6630 extent_slot);
5d4f98a2 6631 if (key.objectid != bytenr)
952fccac 6632 break;
5d4f98a2
YZ
6633 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6634 key.offset == num_bytes) {
952fccac
CM
6635 found_extent = 1;
6636 break;
6637 }
3173a18f
JB
6638 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6639 key.offset == owner_objectid) {
6640 found_extent = 1;
6641 break;
6642 }
952fccac
CM
6643 if (path->slots[0] - extent_slot > 5)
6644 break;
5d4f98a2 6645 extent_slot--;
952fccac 6646 }
5d4f98a2
YZ
6647#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6648 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6649 if (found_extent && item_size < sizeof(*ei))
6650 found_extent = 0;
6651#endif
31840ae1 6652 if (!found_extent) {
5d4f98a2 6653 BUG_ON(iref);
56bec294 6654 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6655 NULL, refs_to_drop,
fcebe456 6656 is_data, &last_ref);
005d6427
DS
6657 if (ret) {
6658 btrfs_abort_transaction(trans, extent_root, ret);
6659 goto out;
6660 }
b3b4aa74 6661 btrfs_release_path(path);
b9473439 6662 path->leave_spinning = 1;
5d4f98a2
YZ
6663
6664 key.objectid = bytenr;
6665 key.type = BTRFS_EXTENT_ITEM_KEY;
6666 key.offset = num_bytes;
6667
3173a18f
JB
6668 if (!is_data && skinny_metadata) {
6669 key.type = BTRFS_METADATA_ITEM_KEY;
6670 key.offset = owner_objectid;
6671 }
6672
31840ae1
ZY
6673 ret = btrfs_search_slot(trans, extent_root,
6674 &key, path, -1, 1);
3173a18f
JB
6675 if (ret > 0 && skinny_metadata && path->slots[0]) {
6676 /*
6677 * Couldn't find our skinny metadata item,
6678 * see if we have ye olde extent item.
6679 */
6680 path->slots[0]--;
6681 btrfs_item_key_to_cpu(path->nodes[0], &key,
6682 path->slots[0]);
6683 if (key.objectid == bytenr &&
6684 key.type == BTRFS_EXTENT_ITEM_KEY &&
6685 key.offset == num_bytes)
6686 ret = 0;
6687 }
6688
6689 if (ret > 0 && skinny_metadata) {
6690 skinny_metadata = false;
9ce49a0b 6691 key.objectid = bytenr;
3173a18f
JB
6692 key.type = BTRFS_EXTENT_ITEM_KEY;
6693 key.offset = num_bytes;
6694 btrfs_release_path(path);
6695 ret = btrfs_search_slot(trans, extent_root,
6696 &key, path, -1, 1);
6697 }
6698
f3465ca4 6699 if (ret) {
c2cf52eb 6700 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6701 ret, bytenr);
b783e62d
JB
6702 if (ret > 0)
6703 btrfs_print_leaf(extent_root,
6704 path->nodes[0]);
f3465ca4 6705 }
005d6427
DS
6706 if (ret < 0) {
6707 btrfs_abort_transaction(trans, extent_root, ret);
6708 goto out;
6709 }
31840ae1
ZY
6710 extent_slot = path->slots[0];
6711 }
fae7f21c 6712 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6713 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6714 btrfs_err(info,
6715 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6716 bytenr, parent, root_objectid, owner_objectid,
6717 owner_offset);
c4a050bb
JB
6718 btrfs_abort_transaction(trans, extent_root, ret);
6719 goto out;
79787eaa 6720 } else {
005d6427
DS
6721 btrfs_abort_transaction(trans, extent_root, ret);
6722 goto out;
7bb86316 6723 }
5f39d397
CM
6724
6725 leaf = path->nodes[0];
5d4f98a2
YZ
6726 item_size = btrfs_item_size_nr(leaf, extent_slot);
6727#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6728 if (item_size < sizeof(*ei)) {
6729 BUG_ON(found_extent || extent_slot != path->slots[0]);
6730 ret = convert_extent_item_v0(trans, extent_root, path,
6731 owner_objectid, 0);
005d6427
DS
6732 if (ret < 0) {
6733 btrfs_abort_transaction(trans, extent_root, ret);
6734 goto out;
6735 }
5d4f98a2 6736
b3b4aa74 6737 btrfs_release_path(path);
5d4f98a2
YZ
6738 path->leave_spinning = 1;
6739
6740 key.objectid = bytenr;
6741 key.type = BTRFS_EXTENT_ITEM_KEY;
6742 key.offset = num_bytes;
6743
6744 ret = btrfs_search_slot(trans, extent_root, &key, path,
6745 -1, 1);
6746 if (ret) {
c2cf52eb 6747 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6748 ret, bytenr);
5d4f98a2
YZ
6749 btrfs_print_leaf(extent_root, path->nodes[0]);
6750 }
005d6427
DS
6751 if (ret < 0) {
6752 btrfs_abort_transaction(trans, extent_root, ret);
6753 goto out;
6754 }
6755
5d4f98a2
YZ
6756 extent_slot = path->slots[0];
6757 leaf = path->nodes[0];
6758 item_size = btrfs_item_size_nr(leaf, extent_slot);
6759 }
6760#endif
6761 BUG_ON(item_size < sizeof(*ei));
952fccac 6762 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6763 struct btrfs_extent_item);
3173a18f
JB
6764 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6765 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6766 struct btrfs_tree_block_info *bi;
6767 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6768 bi = (struct btrfs_tree_block_info *)(ei + 1);
6769 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6770 }
56bec294 6771
5d4f98a2 6772 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6773 if (refs < refs_to_drop) {
6774 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6775 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6776 ret = -EINVAL;
6777 btrfs_abort_transaction(trans, extent_root, ret);
6778 goto out;
6779 }
56bec294 6780 refs -= refs_to_drop;
5f39d397 6781
5d4f98a2
YZ
6782 if (refs > 0) {
6783 if (extent_op)
6784 __run_delayed_extent_op(extent_op, leaf, ei);
6785 /*
6786 * In the case of inline back ref, reference count will
6787 * be updated by remove_extent_backref
952fccac 6788 */
5d4f98a2
YZ
6789 if (iref) {
6790 BUG_ON(!found_extent);
6791 } else {
6792 btrfs_set_extent_refs(leaf, ei, refs);
6793 btrfs_mark_buffer_dirty(leaf);
6794 }
6795 if (found_extent) {
6796 ret = remove_extent_backref(trans, extent_root, path,
6797 iref, refs_to_drop,
fcebe456 6798 is_data, &last_ref);
005d6427
DS
6799 if (ret) {
6800 btrfs_abort_transaction(trans, extent_root, ret);
6801 goto out;
6802 }
952fccac 6803 }
b150a4f1
JB
6804 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6805 root_objectid);
5d4f98a2 6806 } else {
5d4f98a2
YZ
6807 if (found_extent) {
6808 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6809 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6810 if (iref) {
6811 BUG_ON(path->slots[0] != extent_slot);
6812 } else {
6813 BUG_ON(path->slots[0] != extent_slot + 1);
6814 path->slots[0] = extent_slot;
6815 num_to_del = 2;
6816 }
78fae27e 6817 }
b9473439 6818
fcebe456 6819 last_ref = 1;
952fccac
CM
6820 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6821 num_to_del);
005d6427
DS
6822 if (ret) {
6823 btrfs_abort_transaction(trans, extent_root, ret);
6824 goto out;
6825 }
b3b4aa74 6826 btrfs_release_path(path);
21af804c 6827
5d4f98a2 6828 if (is_data) {
459931ec 6829 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6830 if (ret) {
6831 btrfs_abort_transaction(trans, extent_root, ret);
6832 goto out;
6833 }
459931ec
CM
6834 }
6835
1e144fb8
OS
6836 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6837 num_bytes);
6838 if (ret) {
6839 btrfs_abort_transaction(trans, extent_root, ret);
6840 goto out;
6841 }
6842
ce93ec54 6843 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6844 if (ret) {
6845 btrfs_abort_transaction(trans, extent_root, ret);
6846 goto out;
6847 }
a28ec197 6848 }
fcebe456
JB
6849 btrfs_release_path(path);
6850
79787eaa 6851out:
5caf2a00 6852 btrfs_free_path(path);
a28ec197
CM
6853 return ret;
6854}
6855
1887be66 6856/*
f0486c68 6857 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6858 * delayed ref for that extent as well. This searches the delayed ref tree for
6859 * a given extent, and if there are no other delayed refs to be processed, it
6860 * removes it from the tree.
6861 */
6862static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6863 struct btrfs_root *root, u64 bytenr)
6864{
6865 struct btrfs_delayed_ref_head *head;
6866 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6867 int ret = 0;
1887be66
CM
6868
6869 delayed_refs = &trans->transaction->delayed_refs;
6870 spin_lock(&delayed_refs->lock);
6871 head = btrfs_find_delayed_ref_head(trans, bytenr);
6872 if (!head)
cf93da7b 6873 goto out_delayed_unlock;
1887be66 6874
d7df2c79 6875 spin_lock(&head->lock);
c6fc2454 6876 if (!list_empty(&head->ref_list))
1887be66
CM
6877 goto out;
6878
5d4f98a2
YZ
6879 if (head->extent_op) {
6880 if (!head->must_insert_reserved)
6881 goto out;
78a6184a 6882 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6883 head->extent_op = NULL;
6884 }
6885
1887be66
CM
6886 /*
6887 * waiting for the lock here would deadlock. If someone else has it
6888 * locked they are already in the process of dropping it anyway
6889 */
6890 if (!mutex_trylock(&head->mutex))
6891 goto out;
6892
6893 /*
6894 * at this point we have a head with no other entries. Go
6895 * ahead and process it.
6896 */
6897 head->node.in_tree = 0;
c46effa6 6898 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6899
d7df2c79 6900 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6901
6902 /*
6903 * we don't take a ref on the node because we're removing it from the
6904 * tree, so we just steal the ref the tree was holding.
6905 */
c3e69d58 6906 delayed_refs->num_heads--;
d7df2c79 6907 if (head->processing == 0)
c3e69d58 6908 delayed_refs->num_heads_ready--;
d7df2c79
JB
6909 head->processing = 0;
6910 spin_unlock(&head->lock);
1887be66
CM
6911 spin_unlock(&delayed_refs->lock);
6912
f0486c68
YZ
6913 BUG_ON(head->extent_op);
6914 if (head->must_insert_reserved)
6915 ret = 1;
6916
6917 mutex_unlock(&head->mutex);
1887be66 6918 btrfs_put_delayed_ref(&head->node);
f0486c68 6919 return ret;
1887be66 6920out:
d7df2c79 6921 spin_unlock(&head->lock);
cf93da7b
CM
6922
6923out_delayed_unlock:
1887be66
CM
6924 spin_unlock(&delayed_refs->lock);
6925 return 0;
6926}
6927
f0486c68
YZ
6928void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6929 struct btrfs_root *root,
6930 struct extent_buffer *buf,
5581a51a 6931 u64 parent, int last_ref)
f0486c68 6932{
b150a4f1 6933 int pin = 1;
f0486c68
YZ
6934 int ret;
6935
6936 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6937 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6938 buf->start, buf->len,
6939 parent, root->root_key.objectid,
6940 btrfs_header_level(buf),
b06c4bf5 6941 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 6942 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6943 }
6944
6945 if (!last_ref)
6946 return;
6947
f0486c68 6948 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6949 struct btrfs_block_group_cache *cache;
6950
f0486c68
YZ
6951 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6952 ret = check_ref_cleanup(trans, root, buf->start);
6953 if (!ret)
37be25bc 6954 goto out;
f0486c68
YZ
6955 }
6956
6219872d
FM
6957 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6958
f0486c68
YZ
6959 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6960 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6961 btrfs_put_block_group(cache);
37be25bc 6962 goto out;
f0486c68
YZ
6963 }
6964
6965 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6966
6967 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6968 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6969 btrfs_put_block_group(cache);
0be5dc67 6970 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6971 pin = 0;
f0486c68
YZ
6972 }
6973out:
b150a4f1
JB
6974 if (pin)
6975 add_pinned_bytes(root->fs_info, buf->len,
6976 btrfs_header_level(buf),
6977 root->root_key.objectid);
6978
a826d6dc
JB
6979 /*
6980 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6981 * anymore.
6982 */
6983 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6984}
6985
79787eaa 6986/* Can return -ENOMEM */
66d7e7f0
AJ
6987int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6988 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 6989 u64 owner, u64 offset)
925baedd
CM
6990{
6991 int ret;
66d7e7f0 6992 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6993
fccb84c9 6994 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6995 return 0;
fccb84c9 6996
b150a4f1
JB
6997 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6998
56bec294
CM
6999 /*
7000 * tree log blocks never actually go into the extent allocation
7001 * tree, just update pinning info and exit early.
56bec294 7002 */
5d4f98a2
YZ
7003 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7004 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7005 /* unlocks the pinned mutex */
11833d66 7006 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7007 ret = 0;
5d4f98a2 7008 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7009 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7010 num_bytes,
5d4f98a2 7011 parent, root_objectid, (int)owner,
b06c4bf5 7012 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7013 } else {
66d7e7f0
AJ
7014 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7015 num_bytes,
7016 parent, root_objectid, owner,
5846a3c2
QW
7017 offset, 0,
7018 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7019 }
925baedd
CM
7020 return ret;
7021}
7022
817d52f8
JB
7023/*
7024 * when we wait for progress in the block group caching, its because
7025 * our allocation attempt failed at least once. So, we must sleep
7026 * and let some progress happen before we try again.
7027 *
7028 * This function will sleep at least once waiting for new free space to
7029 * show up, and then it will check the block group free space numbers
7030 * for our min num_bytes. Another option is to have it go ahead
7031 * and look in the rbtree for a free extent of a given size, but this
7032 * is a good start.
36cce922
JB
7033 *
7034 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7035 * any of the information in this block group.
817d52f8 7036 */
36cce922 7037static noinline void
817d52f8
JB
7038wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7039 u64 num_bytes)
7040{
11833d66 7041 struct btrfs_caching_control *caching_ctl;
817d52f8 7042
11833d66
YZ
7043 caching_ctl = get_caching_control(cache);
7044 if (!caching_ctl)
36cce922 7045 return;
817d52f8 7046
11833d66 7047 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7048 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7049
7050 put_caching_control(caching_ctl);
11833d66
YZ
7051}
7052
7053static noinline int
7054wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7055{
7056 struct btrfs_caching_control *caching_ctl;
36cce922 7057 int ret = 0;
11833d66
YZ
7058
7059 caching_ctl = get_caching_control(cache);
7060 if (!caching_ctl)
36cce922 7061 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7062
7063 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7064 if (cache->cached == BTRFS_CACHE_ERROR)
7065 ret = -EIO;
11833d66 7066 put_caching_control(caching_ctl);
36cce922 7067 return ret;
817d52f8
JB
7068}
7069
31e50229 7070int __get_raid_index(u64 flags)
b742bb82 7071{
7738a53a 7072 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7073 return BTRFS_RAID_RAID10;
7738a53a 7074 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7075 return BTRFS_RAID_RAID1;
7738a53a 7076 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7077 return BTRFS_RAID_DUP;
7738a53a 7078 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7079 return BTRFS_RAID_RAID0;
53b381b3 7080 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7081 return BTRFS_RAID_RAID5;
53b381b3 7082 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7083 return BTRFS_RAID_RAID6;
7738a53a 7084
e942f883 7085 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7086}
7087
6ab0a202 7088int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7089{
31e50229 7090 return __get_raid_index(cache->flags);
7738a53a
ID
7091}
7092
6ab0a202
JM
7093static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7094 [BTRFS_RAID_RAID10] = "raid10",
7095 [BTRFS_RAID_RAID1] = "raid1",
7096 [BTRFS_RAID_DUP] = "dup",
7097 [BTRFS_RAID_RAID0] = "raid0",
7098 [BTRFS_RAID_SINGLE] = "single",
7099 [BTRFS_RAID_RAID5] = "raid5",
7100 [BTRFS_RAID_RAID6] = "raid6",
7101};
7102
1b8e5df6 7103static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7104{
7105 if (type >= BTRFS_NR_RAID_TYPES)
7106 return NULL;
7107
7108 return btrfs_raid_type_names[type];
7109}
7110
817d52f8 7111enum btrfs_loop_type {
285ff5af
JB
7112 LOOP_CACHING_NOWAIT = 0,
7113 LOOP_CACHING_WAIT = 1,
7114 LOOP_ALLOC_CHUNK = 2,
7115 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7116};
7117
e570fd27
MX
7118static inline void
7119btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7120 int delalloc)
7121{
7122 if (delalloc)
7123 down_read(&cache->data_rwsem);
7124}
7125
7126static inline void
7127btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7128 int delalloc)
7129{
7130 btrfs_get_block_group(cache);
7131 if (delalloc)
7132 down_read(&cache->data_rwsem);
7133}
7134
7135static struct btrfs_block_group_cache *
7136btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7137 struct btrfs_free_cluster *cluster,
7138 int delalloc)
7139{
89771cc9 7140 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7141
e570fd27 7142 spin_lock(&cluster->refill_lock);
6719afdc
GU
7143 while (1) {
7144 used_bg = cluster->block_group;
7145 if (!used_bg)
7146 return NULL;
7147
7148 if (used_bg == block_group)
e570fd27
MX
7149 return used_bg;
7150
6719afdc 7151 btrfs_get_block_group(used_bg);
e570fd27 7152
6719afdc
GU
7153 if (!delalloc)
7154 return used_bg;
e570fd27 7155
6719afdc
GU
7156 if (down_read_trylock(&used_bg->data_rwsem))
7157 return used_bg;
e570fd27 7158
6719afdc 7159 spin_unlock(&cluster->refill_lock);
e570fd27 7160
6719afdc 7161 down_read(&used_bg->data_rwsem);
e570fd27 7162
6719afdc
GU
7163 spin_lock(&cluster->refill_lock);
7164 if (used_bg == cluster->block_group)
7165 return used_bg;
e570fd27 7166
6719afdc
GU
7167 up_read(&used_bg->data_rwsem);
7168 btrfs_put_block_group(used_bg);
7169 }
e570fd27
MX
7170}
7171
7172static inline void
7173btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7174 int delalloc)
7175{
7176 if (delalloc)
7177 up_read(&cache->data_rwsem);
7178 btrfs_put_block_group(cache);
7179}
7180
fec577fb
CM
7181/*
7182 * walks the btree of allocated extents and find a hole of a given size.
7183 * The key ins is changed to record the hole:
a4820398 7184 * ins->objectid == start position
62e2749e 7185 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7186 * ins->offset == the size of the hole.
fec577fb 7187 * Any available blocks before search_start are skipped.
a4820398
MX
7188 *
7189 * If there is no suitable free space, we will record the max size of
7190 * the free space extent currently.
fec577fb 7191 */
00361589 7192static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7193 u64 num_bytes, u64 empty_size,
98ed5174 7194 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7195 u64 flags, int delalloc)
fec577fb 7196{
80eb234a 7197 int ret = 0;
d397712b 7198 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7199 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7200 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7201 u64 search_start = 0;
a4820398 7202 u64 max_extent_size = 0;
c759c4e1 7203 u64 empty_cluster = 0;
80eb234a 7204 struct btrfs_space_info *space_info;
fa9c0d79 7205 int loop = 0;
b6919a58
DS
7206 int index = __get_raid_index(flags);
7207 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7208 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7209 bool failed_cluster_refill = false;
1cdda9b8 7210 bool failed_alloc = false;
67377734 7211 bool use_cluster = true;
60d2adbb 7212 bool have_caching_bg = false;
13a0db5a 7213 bool orig_have_caching_bg = false;
a5e681d9 7214 bool full_search = false;
fec577fb 7215
db94535d 7216 WARN_ON(num_bytes < root->sectorsize);
962a298f 7217 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7218 ins->objectid = 0;
7219 ins->offset = 0;
b1a4d965 7220
b6919a58 7221 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7222
b6919a58 7223 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7224 if (!space_info) {
b6919a58 7225 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7226 return -ENOSPC;
7227 }
2552d17e 7228
67377734 7229 /*
4f4db217
JB
7230 * If our free space is heavily fragmented we may not be able to make
7231 * big contiguous allocations, so instead of doing the expensive search
7232 * for free space, simply return ENOSPC with our max_extent_size so we
7233 * can go ahead and search for a more manageable chunk.
7234 *
7235 * If our max_extent_size is large enough for our allocation simply
7236 * disable clustering since we will likely not be able to find enough
7237 * space to create a cluster and induce latency trying.
67377734 7238 */
4f4db217
JB
7239 if (unlikely(space_info->max_extent_size)) {
7240 spin_lock(&space_info->lock);
7241 if (space_info->max_extent_size &&
7242 num_bytes > space_info->max_extent_size) {
7243 ins->offset = space_info->max_extent_size;
7244 spin_unlock(&space_info->lock);
7245 return -ENOSPC;
7246 } else if (space_info->max_extent_size) {
7247 use_cluster = false;
7248 }
7249 spin_unlock(&space_info->lock);
fa9c0d79 7250 }
0f9dd46c 7251
c759c4e1 7252 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7253 if (last_ptr) {
fa9c0d79
CM
7254 spin_lock(&last_ptr->lock);
7255 if (last_ptr->block_group)
7256 hint_byte = last_ptr->window_start;
c759c4e1
JB
7257 if (last_ptr->fragmented) {
7258 /*
7259 * We still set window_start so we can keep track of the
7260 * last place we found an allocation to try and save
7261 * some time.
7262 */
7263 hint_byte = last_ptr->window_start;
7264 use_cluster = false;
7265 }
fa9c0d79 7266 spin_unlock(&last_ptr->lock);
239b14b3 7267 }
fa9c0d79 7268
a061fc8d 7269 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7270 search_start = max(search_start, hint_byte);
2552d17e 7271 if (search_start == hint_byte) {
2552d17e
JB
7272 block_group = btrfs_lookup_block_group(root->fs_info,
7273 search_start);
817d52f8
JB
7274 /*
7275 * we don't want to use the block group if it doesn't match our
7276 * allocation bits, or if its not cached.
ccf0e725
JB
7277 *
7278 * However if we are re-searching with an ideal block group
7279 * picked out then we don't care that the block group is cached.
817d52f8 7280 */
b6919a58 7281 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7282 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7283 down_read(&space_info->groups_sem);
44fb5511
CM
7284 if (list_empty(&block_group->list) ||
7285 block_group->ro) {
7286 /*
7287 * someone is removing this block group,
7288 * we can't jump into the have_block_group
7289 * target because our list pointers are not
7290 * valid
7291 */
7292 btrfs_put_block_group(block_group);
7293 up_read(&space_info->groups_sem);
ccf0e725 7294 } else {
b742bb82 7295 index = get_block_group_index(block_group);
e570fd27 7296 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7297 goto have_block_group;
ccf0e725 7298 }
2552d17e 7299 } else if (block_group) {
fa9c0d79 7300 btrfs_put_block_group(block_group);
2552d17e 7301 }
42e70e7a 7302 }
2552d17e 7303search:
60d2adbb 7304 have_caching_bg = false;
a5e681d9
JB
7305 if (index == 0 || index == __get_raid_index(flags))
7306 full_search = true;
80eb234a 7307 down_read(&space_info->groups_sem);
b742bb82
YZ
7308 list_for_each_entry(block_group, &space_info->block_groups[index],
7309 list) {
6226cb0a 7310 u64 offset;
817d52f8 7311 int cached;
8a1413a2 7312
e570fd27 7313 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7314 search_start = block_group->key.objectid;
42e70e7a 7315
83a50de9
CM
7316 /*
7317 * this can happen if we end up cycling through all the
7318 * raid types, but we want to make sure we only allocate
7319 * for the proper type.
7320 */
b6919a58 7321 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7322 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7323 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7324 BTRFS_BLOCK_GROUP_RAID5 |
7325 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7326 BTRFS_BLOCK_GROUP_RAID10;
7327
7328 /*
7329 * if they asked for extra copies and this block group
7330 * doesn't provide them, bail. This does allow us to
7331 * fill raid0 from raid1.
7332 */
b6919a58 7333 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7334 goto loop;
7335 }
7336
2552d17e 7337have_block_group:
291c7d2f
JB
7338 cached = block_group_cache_done(block_group);
7339 if (unlikely(!cached)) {
a5e681d9 7340 have_caching_bg = true;
f6373bf3 7341 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7342 BUG_ON(ret < 0);
7343 ret = 0;
817d52f8
JB
7344 }
7345
36cce922
JB
7346 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7347 goto loop;
ea6a478e 7348 if (unlikely(block_group->ro))
2552d17e 7349 goto loop;
0f9dd46c 7350
0a24325e 7351 /*
062c05c4
AO
7352 * Ok we want to try and use the cluster allocator, so
7353 * lets look there
0a24325e 7354 */
c759c4e1 7355 if (last_ptr && use_cluster) {
215a63d1 7356 struct btrfs_block_group_cache *used_block_group;
8de972b4 7357 unsigned long aligned_cluster;
fa9c0d79
CM
7358 /*
7359 * the refill lock keeps out other
7360 * people trying to start a new cluster
7361 */
e570fd27
MX
7362 used_block_group = btrfs_lock_cluster(block_group,
7363 last_ptr,
7364 delalloc);
7365 if (!used_block_group)
44fb5511 7366 goto refill_cluster;
274bd4fb 7367
e570fd27
MX
7368 if (used_block_group != block_group &&
7369 (used_block_group->ro ||
7370 !block_group_bits(used_block_group, flags)))
7371 goto release_cluster;
44fb5511 7372
274bd4fb 7373 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7374 last_ptr,
7375 num_bytes,
7376 used_block_group->key.objectid,
7377 &max_extent_size);
fa9c0d79
CM
7378 if (offset) {
7379 /* we have a block, we're done */
7380 spin_unlock(&last_ptr->refill_lock);
3f7de037 7381 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7382 used_block_group,
7383 search_start, num_bytes);
215a63d1 7384 if (used_block_group != block_group) {
e570fd27
MX
7385 btrfs_release_block_group(block_group,
7386 delalloc);
215a63d1
MX
7387 block_group = used_block_group;
7388 }
fa9c0d79
CM
7389 goto checks;
7390 }
7391
274bd4fb 7392 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7393release_cluster:
062c05c4
AO
7394 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7395 * set up a new clusters, so lets just skip it
7396 * and let the allocator find whatever block
7397 * it can find. If we reach this point, we
7398 * will have tried the cluster allocator
7399 * plenty of times and not have found
7400 * anything, so we are likely way too
7401 * fragmented for the clustering stuff to find
a5f6f719
AO
7402 * anything.
7403 *
7404 * However, if the cluster is taken from the
7405 * current block group, release the cluster
7406 * first, so that we stand a better chance of
7407 * succeeding in the unclustered
7408 * allocation. */
7409 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7410 used_block_group != block_group) {
062c05c4 7411 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7412 btrfs_release_block_group(used_block_group,
7413 delalloc);
062c05c4
AO
7414 goto unclustered_alloc;
7415 }
7416
fa9c0d79
CM
7417 /*
7418 * this cluster didn't work out, free it and
7419 * start over
7420 */
7421 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7422
e570fd27
MX
7423 if (used_block_group != block_group)
7424 btrfs_release_block_group(used_block_group,
7425 delalloc);
7426refill_cluster:
a5f6f719
AO
7427 if (loop >= LOOP_NO_EMPTY_SIZE) {
7428 spin_unlock(&last_ptr->refill_lock);
7429 goto unclustered_alloc;
7430 }
7431
8de972b4
CM
7432 aligned_cluster = max_t(unsigned long,
7433 empty_cluster + empty_size,
7434 block_group->full_stripe_len);
7435
fa9c0d79 7436 /* allocate a cluster in this block group */
00361589
JB
7437 ret = btrfs_find_space_cluster(root, block_group,
7438 last_ptr, search_start,
7439 num_bytes,
7440 aligned_cluster);
fa9c0d79
CM
7441 if (ret == 0) {
7442 /*
7443 * now pull our allocation out of this
7444 * cluster
7445 */
7446 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7447 last_ptr,
7448 num_bytes,
7449 search_start,
7450 &max_extent_size);
fa9c0d79
CM
7451 if (offset) {
7452 /* we found one, proceed */
7453 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7454 trace_btrfs_reserve_extent_cluster(root,
7455 block_group, search_start,
7456 num_bytes);
fa9c0d79
CM
7457 goto checks;
7458 }
0a24325e
JB
7459 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7460 && !failed_cluster_refill) {
817d52f8
JB
7461 spin_unlock(&last_ptr->refill_lock);
7462
0a24325e 7463 failed_cluster_refill = true;
817d52f8
JB
7464 wait_block_group_cache_progress(block_group,
7465 num_bytes + empty_cluster + empty_size);
7466 goto have_block_group;
fa9c0d79 7467 }
817d52f8 7468
fa9c0d79
CM
7469 /*
7470 * at this point we either didn't find a cluster
7471 * or we weren't able to allocate a block from our
7472 * cluster. Free the cluster we've been trying
7473 * to use, and go to the next block group
7474 */
0a24325e 7475 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7476 spin_unlock(&last_ptr->refill_lock);
0a24325e 7477 goto loop;
fa9c0d79
CM
7478 }
7479
062c05c4 7480unclustered_alloc:
c759c4e1
JB
7481 /*
7482 * We are doing an unclustered alloc, set the fragmented flag so
7483 * we don't bother trying to setup a cluster again until we get
7484 * more space.
7485 */
7486 if (unlikely(last_ptr)) {
7487 spin_lock(&last_ptr->lock);
7488 last_ptr->fragmented = 1;
7489 spin_unlock(&last_ptr->lock);
7490 }
a5f6f719
AO
7491 spin_lock(&block_group->free_space_ctl->tree_lock);
7492 if (cached &&
7493 block_group->free_space_ctl->free_space <
7494 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7495 if (block_group->free_space_ctl->free_space >
7496 max_extent_size)
7497 max_extent_size =
7498 block_group->free_space_ctl->free_space;
a5f6f719
AO
7499 spin_unlock(&block_group->free_space_ctl->tree_lock);
7500 goto loop;
7501 }
7502 spin_unlock(&block_group->free_space_ctl->tree_lock);
7503
6226cb0a 7504 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7505 num_bytes, empty_size,
7506 &max_extent_size);
1cdda9b8
JB
7507 /*
7508 * If we didn't find a chunk, and we haven't failed on this
7509 * block group before, and this block group is in the middle of
7510 * caching and we are ok with waiting, then go ahead and wait
7511 * for progress to be made, and set failed_alloc to true.
7512 *
7513 * If failed_alloc is true then we've already waited on this
7514 * block group once and should move on to the next block group.
7515 */
7516 if (!offset && !failed_alloc && !cached &&
7517 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7518 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7519 num_bytes + empty_size);
7520 failed_alloc = true;
817d52f8 7521 goto have_block_group;
1cdda9b8
JB
7522 } else if (!offset) {
7523 goto loop;
817d52f8 7524 }
fa9c0d79 7525checks:
4e54b17a 7526 search_start = ALIGN(offset, root->stripesize);
25179201 7527
2552d17e
JB
7528 /* move on to the next group */
7529 if (search_start + num_bytes >
215a63d1
MX
7530 block_group->key.objectid + block_group->key.offset) {
7531 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7532 goto loop;
6226cb0a 7533 }
f5a31e16 7534
f0486c68 7535 if (offset < search_start)
215a63d1 7536 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7537 search_start - offset);
7538 BUG_ON(offset > search_start);
2552d17e 7539
215a63d1 7540 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7541 alloc_type, delalloc);
f0486c68 7542 if (ret == -EAGAIN) {
215a63d1 7543 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7544 goto loop;
0f9dd46c 7545 }
9cfa3e34 7546 btrfs_inc_block_group_reservations(block_group);
0b86a832 7547
f0486c68 7548 /* we are all good, lets return */
2552d17e
JB
7549 ins->objectid = search_start;
7550 ins->offset = num_bytes;
d2fb3437 7551
3f7de037
JB
7552 trace_btrfs_reserve_extent(orig_root, block_group,
7553 search_start, num_bytes);
e570fd27 7554 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7555 break;
7556loop:
0a24325e 7557 failed_cluster_refill = false;
1cdda9b8 7558 failed_alloc = false;
b742bb82 7559 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7560 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7561 }
7562 up_read(&space_info->groups_sem);
7563
13a0db5a 7564 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7565 && !orig_have_caching_bg)
7566 orig_have_caching_bg = true;
7567
60d2adbb
MX
7568 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7569 goto search;
7570
b742bb82
YZ
7571 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7572 goto search;
7573
285ff5af 7574 /*
ccf0e725
JB
7575 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7576 * caching kthreads as we move along
817d52f8
JB
7577 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7578 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7579 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7580 * again
fa9c0d79 7581 */
723bda20 7582 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7583 index = 0;
a5e681d9
JB
7584 if (loop == LOOP_CACHING_NOWAIT) {
7585 /*
7586 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7587 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7588 * full search through.
7589 */
13a0db5a 7590 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7591 loop = LOOP_CACHING_WAIT;
7592 else
7593 loop = LOOP_ALLOC_CHUNK;
7594 } else {
7595 loop++;
7596 }
7597
817d52f8 7598 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7599 struct btrfs_trans_handle *trans;
f017f15f
WS
7600 int exist = 0;
7601
7602 trans = current->journal_info;
7603 if (trans)
7604 exist = 1;
7605 else
7606 trans = btrfs_join_transaction(root);
00361589 7607
00361589
JB
7608 if (IS_ERR(trans)) {
7609 ret = PTR_ERR(trans);
7610 goto out;
7611 }
7612
b6919a58 7613 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7614 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7615
7616 /*
7617 * If we can't allocate a new chunk we've already looped
7618 * through at least once, move on to the NO_EMPTY_SIZE
7619 * case.
7620 */
7621 if (ret == -ENOSPC)
7622 loop = LOOP_NO_EMPTY_SIZE;
7623
ea658bad
JB
7624 /*
7625 * Do not bail out on ENOSPC since we
7626 * can do more things.
7627 */
00361589 7628 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7629 btrfs_abort_transaction(trans,
7630 root, ret);
00361589
JB
7631 else
7632 ret = 0;
f017f15f
WS
7633 if (!exist)
7634 btrfs_end_transaction(trans, root);
00361589 7635 if (ret)
ea658bad 7636 goto out;
2552d17e
JB
7637 }
7638
723bda20 7639 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7640 /*
7641 * Don't loop again if we already have no empty_size and
7642 * no empty_cluster.
7643 */
7644 if (empty_size == 0 &&
7645 empty_cluster == 0) {
7646 ret = -ENOSPC;
7647 goto out;
7648 }
723bda20
JB
7649 empty_size = 0;
7650 empty_cluster = 0;
fa9c0d79 7651 }
723bda20
JB
7652
7653 goto search;
2552d17e
JB
7654 } else if (!ins->objectid) {
7655 ret = -ENOSPC;
d82a6f1d 7656 } else if (ins->objectid) {
c759c4e1
JB
7657 if (!use_cluster && last_ptr) {
7658 spin_lock(&last_ptr->lock);
7659 last_ptr->window_start = ins->objectid;
7660 spin_unlock(&last_ptr->lock);
7661 }
80eb234a 7662 ret = 0;
be744175 7663 }
79787eaa 7664out:
4f4db217
JB
7665 if (ret == -ENOSPC) {
7666 spin_lock(&space_info->lock);
7667 space_info->max_extent_size = max_extent_size;
7668 spin_unlock(&space_info->lock);
a4820398 7669 ins->offset = max_extent_size;
4f4db217 7670 }
0f70abe2 7671 return ret;
fec577fb 7672}
ec44a35c 7673
9ed74f2d
JB
7674static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7675 int dump_block_groups)
0f9dd46c
JB
7676{
7677 struct btrfs_block_group_cache *cache;
b742bb82 7678 int index = 0;
0f9dd46c 7679
9ed74f2d 7680 spin_lock(&info->lock);
efe120a0 7681 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7682 info->flags,
7683 info->total_bytes - info->bytes_used - info->bytes_pinned -
7684 info->bytes_reserved - info->bytes_readonly,
d397712b 7685 (info->full) ? "" : "not ");
efe120a0 7686 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7687 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7688 info->total_bytes, info->bytes_used, info->bytes_pinned,
7689 info->bytes_reserved, info->bytes_may_use,
7690 info->bytes_readonly);
9ed74f2d
JB
7691 spin_unlock(&info->lock);
7692
7693 if (!dump_block_groups)
7694 return;
0f9dd46c 7695
80eb234a 7696 down_read(&info->groups_sem);
b742bb82
YZ
7697again:
7698 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7699 spin_lock(&cache->lock);
efe120a0
FH
7700 printk(KERN_INFO "BTRFS: "
7701 "block group %llu has %llu bytes, "
7702 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7703 cache->key.objectid, cache->key.offset,
7704 btrfs_block_group_used(&cache->item), cache->pinned,
7705 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7706 btrfs_dump_free_space(cache, bytes);
7707 spin_unlock(&cache->lock);
7708 }
b742bb82
YZ
7709 if (++index < BTRFS_NR_RAID_TYPES)
7710 goto again;
80eb234a 7711 up_read(&info->groups_sem);
0f9dd46c 7712}
e8569813 7713
00361589 7714int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7715 u64 num_bytes, u64 min_alloc_size,
7716 u64 empty_size, u64 hint_byte,
e570fd27 7717 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7718{
36af4e07 7719 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7720 u64 flags;
fec577fb 7721 int ret;
925baedd 7722
b6919a58 7723 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7724again:
db94535d 7725 WARN_ON(num_bytes < root->sectorsize);
00361589 7726 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7727 flags, delalloc);
9cfa3e34
FM
7728 if (!ret && !is_data) {
7729 btrfs_dec_block_group_reservations(root->fs_info,
7730 ins->objectid);
7731 } else if (ret == -ENOSPC) {
a4820398
MX
7732 if (!final_tried && ins->offset) {
7733 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7734 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7735 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7736 if (num_bytes == min_alloc_size)
7737 final_tried = true;
7738 goto again;
7739 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7740 struct btrfs_space_info *sinfo;
7741
b6919a58 7742 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7743 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7744 flags, num_bytes);
53804280
JM
7745 if (sinfo)
7746 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7747 }
925baedd 7748 }
0f9dd46c
JB
7749
7750 return ret;
e6dcd2dc
CM
7751}
7752
e688b725 7753static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7754 u64 start, u64 len,
7755 int pin, int delalloc)
65b51a00 7756{
0f9dd46c 7757 struct btrfs_block_group_cache *cache;
1f3c79a2 7758 int ret = 0;
0f9dd46c 7759
0f9dd46c
JB
7760 cache = btrfs_lookup_block_group(root->fs_info, start);
7761 if (!cache) {
c2cf52eb 7762 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7763 start);
0f9dd46c
JB
7764 return -ENOSPC;
7765 }
1f3c79a2 7766
e688b725
CM
7767 if (pin)
7768 pin_down_extent(root, cache, start, len, 1);
7769 else {
dcc82f47
FM
7770 if (btrfs_test_opt(root, DISCARD))
7771 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7772 btrfs_add_free_space(cache, start, len);
e570fd27 7773 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7774 }
31193213 7775
fa9c0d79 7776 btrfs_put_block_group(cache);
817d52f8 7777
1abe9b8a 7778 trace_btrfs_reserved_extent_free(root, start, len);
7779
e6dcd2dc
CM
7780 return ret;
7781}
7782
e688b725 7783int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7784 u64 start, u64 len, int delalloc)
e688b725 7785{
e570fd27 7786 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7787}
7788
7789int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7790 u64 start, u64 len)
7791{
e570fd27 7792 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7793}
7794
5d4f98a2
YZ
7795static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7796 struct btrfs_root *root,
7797 u64 parent, u64 root_objectid,
7798 u64 flags, u64 owner, u64 offset,
7799 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7800{
7801 int ret;
5d4f98a2 7802 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7803 struct btrfs_extent_item *extent_item;
5d4f98a2 7804 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7805 struct btrfs_path *path;
5d4f98a2
YZ
7806 struct extent_buffer *leaf;
7807 int type;
7808 u32 size;
26b8003f 7809
5d4f98a2
YZ
7810 if (parent > 0)
7811 type = BTRFS_SHARED_DATA_REF_KEY;
7812 else
7813 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7814
5d4f98a2 7815 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7816
7817 path = btrfs_alloc_path();
db5b493a
TI
7818 if (!path)
7819 return -ENOMEM;
47e4bb98 7820
b9473439 7821 path->leave_spinning = 1;
5d4f98a2
YZ
7822 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7823 ins, size);
79787eaa
JM
7824 if (ret) {
7825 btrfs_free_path(path);
7826 return ret;
7827 }
0f9dd46c 7828
5d4f98a2
YZ
7829 leaf = path->nodes[0];
7830 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7831 struct btrfs_extent_item);
5d4f98a2
YZ
7832 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7833 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7834 btrfs_set_extent_flags(leaf, extent_item,
7835 flags | BTRFS_EXTENT_FLAG_DATA);
7836
7837 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7838 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7839 if (parent > 0) {
7840 struct btrfs_shared_data_ref *ref;
7841 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7842 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7843 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7844 } else {
7845 struct btrfs_extent_data_ref *ref;
7846 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7847 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7848 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7849 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7850 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7851 }
47e4bb98
CM
7852
7853 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7854 btrfs_free_path(path);
f510cfec 7855
1e144fb8
OS
7856 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7857 ins->offset);
7858 if (ret)
7859 return ret;
7860
ce93ec54 7861 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7862 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7863 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7864 ins->objectid, ins->offset);
f5947066
CM
7865 BUG();
7866 }
0be5dc67 7867 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7868 return ret;
7869}
7870
5d4f98a2
YZ
7871static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7872 struct btrfs_root *root,
7873 u64 parent, u64 root_objectid,
7874 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 7875 int level, struct btrfs_key *ins)
e6dcd2dc
CM
7876{
7877 int ret;
5d4f98a2
YZ
7878 struct btrfs_fs_info *fs_info = root->fs_info;
7879 struct btrfs_extent_item *extent_item;
7880 struct btrfs_tree_block_info *block_info;
7881 struct btrfs_extent_inline_ref *iref;
7882 struct btrfs_path *path;
7883 struct extent_buffer *leaf;
3173a18f 7884 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7885 u64 num_bytes = ins->offset;
3173a18f
JB
7886 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7887 SKINNY_METADATA);
7888
7889 if (!skinny_metadata)
7890 size += sizeof(*block_info);
1c2308f8 7891
5d4f98a2 7892 path = btrfs_alloc_path();
857cc2fc
JB
7893 if (!path) {
7894 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7895 root->nodesize);
d8926bb3 7896 return -ENOMEM;
857cc2fc 7897 }
56bec294 7898
5d4f98a2
YZ
7899 path->leave_spinning = 1;
7900 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7901 ins, size);
79787eaa 7902 if (ret) {
dd825259 7903 btrfs_free_path(path);
857cc2fc 7904 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7905 root->nodesize);
79787eaa
JM
7906 return ret;
7907 }
5d4f98a2
YZ
7908
7909 leaf = path->nodes[0];
7910 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7911 struct btrfs_extent_item);
7912 btrfs_set_extent_refs(leaf, extent_item, 1);
7913 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7914 btrfs_set_extent_flags(leaf, extent_item,
7915 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7916
3173a18f
JB
7917 if (skinny_metadata) {
7918 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7919 num_bytes = root->nodesize;
3173a18f
JB
7920 } else {
7921 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7922 btrfs_set_tree_block_key(leaf, block_info, key);
7923 btrfs_set_tree_block_level(leaf, block_info, level);
7924 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7925 }
5d4f98a2 7926
5d4f98a2
YZ
7927 if (parent > 0) {
7928 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7929 btrfs_set_extent_inline_ref_type(leaf, iref,
7930 BTRFS_SHARED_BLOCK_REF_KEY);
7931 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7932 } else {
7933 btrfs_set_extent_inline_ref_type(leaf, iref,
7934 BTRFS_TREE_BLOCK_REF_KEY);
7935 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7936 }
7937
7938 btrfs_mark_buffer_dirty(leaf);
7939 btrfs_free_path(path);
7940
1e144fb8
OS
7941 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7942 num_bytes);
7943 if (ret)
7944 return ret;
7945
ce93ec54
JB
7946 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7947 1);
79787eaa 7948 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7949 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7950 ins->objectid, ins->offset);
5d4f98a2
YZ
7951 BUG();
7952 }
0be5dc67 7953
707e8a07 7954 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7955 return ret;
7956}
7957
7958int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7959 struct btrfs_root *root,
7960 u64 root_objectid, u64 owner,
5846a3c2
QW
7961 u64 offset, u64 ram_bytes,
7962 struct btrfs_key *ins)
5d4f98a2
YZ
7963{
7964 int ret;
7965
7966 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7967
66d7e7f0
AJ
7968 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7969 ins->offset, 0,
7970 root_objectid, owner, offset,
5846a3c2
QW
7971 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7972 NULL);
e6dcd2dc
CM
7973 return ret;
7974}
e02119d5
CM
7975
7976/*
7977 * this is used by the tree logging recovery code. It records that
7978 * an extent has been allocated and makes sure to clear the free
7979 * space cache bits as well
7980 */
5d4f98a2
YZ
7981int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7982 struct btrfs_root *root,
7983 u64 root_objectid, u64 owner, u64 offset,
7984 struct btrfs_key *ins)
e02119d5
CM
7985{
7986 int ret;
7987 struct btrfs_block_group_cache *block_group;
11833d66 7988
8c2a1a30
JB
7989 /*
7990 * Mixed block groups will exclude before processing the log so we only
01327610 7991 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
7992 */
7993 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7994 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7995 if (ret)
8c2a1a30 7996 return ret;
11833d66
YZ
7997 }
7998
8c2a1a30
JB
7999 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8000 if (!block_group)
8001 return -EINVAL;
8002
fb25e914 8003 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 8004 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 8005 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
8006 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8007 0, owner, offset, ins, 1);
b50c6e25 8008 btrfs_put_block_group(block_group);
e02119d5
CM
8009 return ret;
8010}
8011
48a3b636
ES
8012static struct extent_buffer *
8013btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8014 u64 bytenr, int level)
65b51a00
CM
8015{
8016 struct extent_buffer *buf;
8017
a83fffb7 8018 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
8019 if (!buf)
8020 return ERR_PTR(-ENOMEM);
8021 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8022 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8023 btrfs_tree_lock(buf);
01d58472 8024 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8025 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8026
8027 btrfs_set_lock_blocking(buf);
4db8c528 8028 set_extent_buffer_uptodate(buf);
b4ce94de 8029
d0c803c4 8030 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8031 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8032 /*
8033 * we allow two log transactions at a time, use different
8034 * EXENT bit to differentiate dirty pages.
8035 */
656f30db 8036 if (buf->log_index == 0)
8cef4e16
YZ
8037 set_extent_dirty(&root->dirty_log_pages, buf->start,
8038 buf->start + buf->len - 1, GFP_NOFS);
8039 else
8040 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8041 buf->start + buf->len - 1);
d0c803c4 8042 } else {
656f30db 8043 buf->log_index = -1;
d0c803c4 8044 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8045 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8046 }
65b51a00 8047 trans->blocks_used++;
b4ce94de 8048 /* this returns a buffer locked for blocking */
65b51a00
CM
8049 return buf;
8050}
8051
f0486c68
YZ
8052static struct btrfs_block_rsv *
8053use_block_rsv(struct btrfs_trans_handle *trans,
8054 struct btrfs_root *root, u32 blocksize)
8055{
8056 struct btrfs_block_rsv *block_rsv;
68a82277 8057 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8058 int ret;
d88033db 8059 bool global_updated = false;
f0486c68
YZ
8060
8061 block_rsv = get_block_rsv(trans, root);
8062
b586b323
MX
8063 if (unlikely(block_rsv->size == 0))
8064 goto try_reserve;
d88033db 8065again:
f0486c68
YZ
8066 ret = block_rsv_use_bytes(block_rsv, blocksize);
8067 if (!ret)
8068 return block_rsv;
8069
b586b323
MX
8070 if (block_rsv->failfast)
8071 return ERR_PTR(ret);
8072
d88033db
MX
8073 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8074 global_updated = true;
8075 update_global_block_rsv(root->fs_info);
8076 goto again;
8077 }
8078
b586b323
MX
8079 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8080 static DEFINE_RATELIMIT_STATE(_rs,
8081 DEFAULT_RATELIMIT_INTERVAL * 10,
8082 /*DEFAULT_RATELIMIT_BURST*/ 1);
8083 if (__ratelimit(&_rs))
8084 WARN(1, KERN_DEBUG
efe120a0 8085 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8086 }
8087try_reserve:
8088 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8089 BTRFS_RESERVE_NO_FLUSH);
8090 if (!ret)
8091 return block_rsv;
8092 /*
8093 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8094 * the global reserve if its space type is the same as the global
8095 * reservation.
b586b323 8096 */
5881cfc9
MX
8097 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8098 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8099 ret = block_rsv_use_bytes(global_rsv, blocksize);
8100 if (!ret)
8101 return global_rsv;
8102 }
8103 return ERR_PTR(ret);
f0486c68
YZ
8104}
8105
8c2a3ca2
JB
8106static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8107 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8108{
8109 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8110 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8111}
8112
fec577fb 8113/*
f0486c68 8114 * finds a free extent and does all the dirty work required for allocation
67b7859e 8115 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8116 */
4d75f8a9
DS
8117struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8118 struct btrfs_root *root,
5d4f98a2
YZ
8119 u64 parent, u64 root_objectid,
8120 struct btrfs_disk_key *key, int level,
5581a51a 8121 u64 hint, u64 empty_size)
fec577fb 8122{
e2fa7227 8123 struct btrfs_key ins;
f0486c68 8124 struct btrfs_block_rsv *block_rsv;
5f39d397 8125 struct extent_buffer *buf;
67b7859e 8126 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8127 u64 flags = 0;
8128 int ret;
4d75f8a9 8129 u32 blocksize = root->nodesize;
3173a18f
JB
8130 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8131 SKINNY_METADATA);
fec577fb 8132
fccb84c9 8133 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 8134 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8135 level);
faa2dbf0
JB
8136 if (!IS_ERR(buf))
8137 root->alloc_bytenr += blocksize;
8138 return buf;
8139 }
fccb84c9 8140
f0486c68
YZ
8141 block_rsv = use_block_rsv(trans, root, blocksize);
8142 if (IS_ERR(block_rsv))
8143 return ERR_CAST(block_rsv);
8144
00361589 8145 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 8146 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8147 if (ret)
8148 goto out_unuse;
55c69072 8149
fe864576 8150 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8151 if (IS_ERR(buf)) {
8152 ret = PTR_ERR(buf);
8153 goto out_free_reserved;
8154 }
f0486c68
YZ
8155
8156 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8157 if (parent == 0)
8158 parent = ins.objectid;
8159 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8160 } else
8161 BUG_ON(parent > 0);
8162
8163 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8164 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8165 if (!extent_op) {
8166 ret = -ENOMEM;
8167 goto out_free_buf;
8168 }
f0486c68
YZ
8169 if (key)
8170 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8171 else
8172 memset(&extent_op->key, 0, sizeof(extent_op->key));
8173 extent_op->flags_to_set = flags;
35b3ad50
DS
8174 extent_op->update_key = skinny_metadata ? false : true;
8175 extent_op->update_flags = true;
8176 extent_op->is_data = false;
b1c79e09 8177 extent_op->level = level;
f0486c68 8178
66d7e7f0 8179 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8180 ins.objectid, ins.offset,
8181 parent, root_objectid, level,
8182 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8183 extent_op);
67b7859e
OS
8184 if (ret)
8185 goto out_free_delayed;
f0486c68 8186 }
fec577fb 8187 return buf;
67b7859e
OS
8188
8189out_free_delayed:
8190 btrfs_free_delayed_extent_op(extent_op);
8191out_free_buf:
8192 free_extent_buffer(buf);
8193out_free_reserved:
8194 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8195out_unuse:
8196 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8197 return ERR_PTR(ret);
fec577fb 8198}
a28ec197 8199
2c47e605
YZ
8200struct walk_control {
8201 u64 refs[BTRFS_MAX_LEVEL];
8202 u64 flags[BTRFS_MAX_LEVEL];
8203 struct btrfs_key update_progress;
8204 int stage;
8205 int level;
8206 int shared_level;
8207 int update_ref;
8208 int keep_locks;
1c4850e2
YZ
8209 int reada_slot;
8210 int reada_count;
66d7e7f0 8211 int for_reloc;
2c47e605
YZ
8212};
8213
8214#define DROP_REFERENCE 1
8215#define UPDATE_BACKREF 2
8216
1c4850e2
YZ
8217static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8218 struct btrfs_root *root,
8219 struct walk_control *wc,
8220 struct btrfs_path *path)
6407bf6d 8221{
1c4850e2
YZ
8222 u64 bytenr;
8223 u64 generation;
8224 u64 refs;
94fcca9f 8225 u64 flags;
5d4f98a2 8226 u32 nritems;
1c4850e2
YZ
8227 u32 blocksize;
8228 struct btrfs_key key;
8229 struct extent_buffer *eb;
6407bf6d 8230 int ret;
1c4850e2
YZ
8231 int slot;
8232 int nread = 0;
6407bf6d 8233
1c4850e2
YZ
8234 if (path->slots[wc->level] < wc->reada_slot) {
8235 wc->reada_count = wc->reada_count * 2 / 3;
8236 wc->reada_count = max(wc->reada_count, 2);
8237 } else {
8238 wc->reada_count = wc->reada_count * 3 / 2;
8239 wc->reada_count = min_t(int, wc->reada_count,
8240 BTRFS_NODEPTRS_PER_BLOCK(root));
8241 }
7bb86316 8242
1c4850e2
YZ
8243 eb = path->nodes[wc->level];
8244 nritems = btrfs_header_nritems(eb);
707e8a07 8245 blocksize = root->nodesize;
bd56b302 8246
1c4850e2
YZ
8247 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8248 if (nread >= wc->reada_count)
8249 break;
bd56b302 8250
2dd3e67b 8251 cond_resched();
1c4850e2
YZ
8252 bytenr = btrfs_node_blockptr(eb, slot);
8253 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8254
1c4850e2
YZ
8255 if (slot == path->slots[wc->level])
8256 goto reada;
5d4f98a2 8257
1c4850e2
YZ
8258 if (wc->stage == UPDATE_BACKREF &&
8259 generation <= root->root_key.offset)
bd56b302
CM
8260 continue;
8261
94fcca9f 8262 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8263 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8264 wc->level - 1, 1, &refs,
8265 &flags);
79787eaa
JM
8266 /* We don't care about errors in readahead. */
8267 if (ret < 0)
8268 continue;
94fcca9f
YZ
8269 BUG_ON(refs == 0);
8270
1c4850e2 8271 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8272 if (refs == 1)
8273 goto reada;
bd56b302 8274
94fcca9f
YZ
8275 if (wc->level == 1 &&
8276 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8277 continue;
1c4850e2
YZ
8278 if (!wc->update_ref ||
8279 generation <= root->root_key.offset)
8280 continue;
8281 btrfs_node_key_to_cpu(eb, &key, slot);
8282 ret = btrfs_comp_cpu_keys(&key,
8283 &wc->update_progress);
8284 if (ret < 0)
8285 continue;
94fcca9f
YZ
8286 } else {
8287 if (wc->level == 1 &&
8288 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8289 continue;
6407bf6d 8290 }
1c4850e2 8291reada:
d3e46fea 8292 readahead_tree_block(root, bytenr);
1c4850e2 8293 nread++;
20524f02 8294 }
1c4850e2 8295 wc->reada_slot = slot;
20524f02 8296}
2c47e605 8297
0ed4792a 8298/*
82bd101b
MF
8299 * These may not be seen by the usual inc/dec ref code so we have to
8300 * add them here.
0ed4792a 8301 */
82bd101b
MF
8302static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8303 struct btrfs_root *root, u64 bytenr,
8304 u64 num_bytes)
8305{
8306 struct btrfs_qgroup_extent_record *qrecord;
8307 struct btrfs_delayed_ref_root *delayed_refs;
8308
8309 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8310 if (!qrecord)
8311 return -ENOMEM;
8312
8313 qrecord->bytenr = bytenr;
8314 qrecord->num_bytes = num_bytes;
8315 qrecord->old_roots = NULL;
8316
8317 delayed_refs = &trans->transaction->delayed_refs;
8318 spin_lock(&delayed_refs->lock);
8319 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8320 kfree(qrecord);
8321 spin_unlock(&delayed_refs->lock);
8322
8323 return 0;
8324}
8325
1152651a
MF
8326static int account_leaf_items(struct btrfs_trans_handle *trans,
8327 struct btrfs_root *root,
8328 struct extent_buffer *eb)
8329{
8330 int nr = btrfs_header_nritems(eb);
82bd101b 8331 int i, extent_type, ret;
1152651a
MF
8332 struct btrfs_key key;
8333 struct btrfs_file_extent_item *fi;
8334 u64 bytenr, num_bytes;
8335
82bd101b
MF
8336 /* We can be called directly from walk_up_proc() */
8337 if (!root->fs_info->quota_enabled)
8338 return 0;
8339
1152651a
MF
8340 for (i = 0; i < nr; i++) {
8341 btrfs_item_key_to_cpu(eb, &key, i);
8342
8343 if (key.type != BTRFS_EXTENT_DATA_KEY)
8344 continue;
8345
8346 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8347 /* filter out non qgroup-accountable extents */
8348 extent_type = btrfs_file_extent_type(eb, fi);
8349
8350 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8351 continue;
8352
8353 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8354 if (!bytenr)
8355 continue;
8356
8357 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b
MF
8358
8359 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8360 if (ret)
8361 return ret;
1152651a
MF
8362 }
8363 return 0;
8364}
8365
8366/*
8367 * Walk up the tree from the bottom, freeing leaves and any interior
8368 * nodes which have had all slots visited. If a node (leaf or
8369 * interior) is freed, the node above it will have it's slot
8370 * incremented. The root node will never be freed.
8371 *
8372 * At the end of this function, we should have a path which has all
8373 * slots incremented to the next position for a search. If we need to
8374 * read a new node it will be NULL and the node above it will have the
8375 * correct slot selected for a later read.
8376 *
8377 * If we increment the root nodes slot counter past the number of
8378 * elements, 1 is returned to signal completion of the search.
8379 */
8380static int adjust_slots_upwards(struct btrfs_root *root,
8381 struct btrfs_path *path, int root_level)
8382{
8383 int level = 0;
8384 int nr, slot;
8385 struct extent_buffer *eb;
8386
8387 if (root_level == 0)
8388 return 1;
8389
8390 while (level <= root_level) {
8391 eb = path->nodes[level];
8392 nr = btrfs_header_nritems(eb);
8393 path->slots[level]++;
8394 slot = path->slots[level];
8395 if (slot >= nr || level == 0) {
8396 /*
8397 * Don't free the root - we will detect this
8398 * condition after our loop and return a
8399 * positive value for caller to stop walking the tree.
8400 */
8401 if (level != root_level) {
8402 btrfs_tree_unlock_rw(eb, path->locks[level]);
8403 path->locks[level] = 0;
8404
8405 free_extent_buffer(eb);
8406 path->nodes[level] = NULL;
8407 path->slots[level] = 0;
8408 }
8409 } else {
8410 /*
8411 * We have a valid slot to walk back down
8412 * from. Stop here so caller can process these
8413 * new nodes.
8414 */
8415 break;
8416 }
8417
8418 level++;
8419 }
8420
8421 eb = path->nodes[root_level];
8422 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8423 return 1;
8424
8425 return 0;
8426}
8427
8428/*
8429 * root_eb is the subtree root and is locked before this function is called.
8430 */
8431static int account_shared_subtree(struct btrfs_trans_handle *trans,
8432 struct btrfs_root *root,
8433 struct extent_buffer *root_eb,
8434 u64 root_gen,
8435 int root_level)
8436{
8437 int ret = 0;
8438 int level;
8439 struct extent_buffer *eb = root_eb;
8440 struct btrfs_path *path = NULL;
8441
8442 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8443 BUG_ON(root_eb == NULL);
8444
8445 if (!root->fs_info->quota_enabled)
8446 return 0;
8447
8448 if (!extent_buffer_uptodate(root_eb)) {
8449 ret = btrfs_read_buffer(root_eb, root_gen);
8450 if (ret)
8451 goto out;
8452 }
8453
8454 if (root_level == 0) {
8455 ret = account_leaf_items(trans, root, root_eb);
8456 goto out;
8457 }
8458
8459 path = btrfs_alloc_path();
8460 if (!path)
8461 return -ENOMEM;
8462
8463 /*
8464 * Walk down the tree. Missing extent blocks are filled in as
8465 * we go. Metadata is accounted every time we read a new
8466 * extent block.
8467 *
8468 * When we reach a leaf, we account for file extent items in it,
8469 * walk back up the tree (adjusting slot pointers as we go)
8470 * and restart the search process.
8471 */
8472 extent_buffer_get(root_eb); /* For path */
8473 path->nodes[root_level] = root_eb;
8474 path->slots[root_level] = 0;
8475 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8476walk_down:
8477 level = root_level;
8478 while (level >= 0) {
8479 if (path->nodes[level] == NULL) {
1152651a
MF
8480 int parent_slot;
8481 u64 child_gen;
8482 u64 child_bytenr;
8483
8484 /* We need to get child blockptr/gen from
8485 * parent before we can read it. */
8486 eb = path->nodes[level + 1];
8487 parent_slot = path->slots[level + 1];
8488 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8489 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8490
ce86cd59 8491 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8492 if (IS_ERR(eb)) {
8493 ret = PTR_ERR(eb);
8494 goto out;
8495 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8496 free_extent_buffer(eb);
64c043de 8497 ret = -EIO;
1152651a
MF
8498 goto out;
8499 }
8500
8501 path->nodes[level] = eb;
8502 path->slots[level] = 0;
8503
8504 btrfs_tree_read_lock(eb);
8505 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8506 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b
MF
8507
8508 ret = record_one_subtree_extent(trans, root, child_bytenr,
8509 root->nodesize);
8510 if (ret)
8511 goto out;
1152651a
MF
8512 }
8513
8514 if (level == 0) {
8515 ret = account_leaf_items(trans, root, path->nodes[level]);
8516 if (ret)
8517 goto out;
8518
8519 /* Nonzero return here means we completed our search */
8520 ret = adjust_slots_upwards(root, path, root_level);
8521 if (ret)
8522 break;
8523
8524 /* Restart search with new slots */
8525 goto walk_down;
8526 }
8527
8528 level--;
8529 }
8530
8531 ret = 0;
8532out:
8533 btrfs_free_path(path);
8534
8535 return ret;
8536}
8537
f82d02d9 8538/*
2c016dc2 8539 * helper to process tree block while walking down the tree.
2c47e605 8540 *
2c47e605
YZ
8541 * when wc->stage == UPDATE_BACKREF, this function updates
8542 * back refs for pointers in the block.
8543 *
8544 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8545 */
2c47e605 8546static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8547 struct btrfs_root *root,
2c47e605 8548 struct btrfs_path *path,
94fcca9f 8549 struct walk_control *wc, int lookup_info)
f82d02d9 8550{
2c47e605
YZ
8551 int level = wc->level;
8552 struct extent_buffer *eb = path->nodes[level];
2c47e605 8553 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8554 int ret;
8555
2c47e605
YZ
8556 if (wc->stage == UPDATE_BACKREF &&
8557 btrfs_header_owner(eb) != root->root_key.objectid)
8558 return 1;
f82d02d9 8559
2c47e605
YZ
8560 /*
8561 * when reference count of tree block is 1, it won't increase
8562 * again. once full backref flag is set, we never clear it.
8563 */
94fcca9f
YZ
8564 if (lookup_info &&
8565 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8566 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8567 BUG_ON(!path->locks[level]);
8568 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8569 eb->start, level, 1,
2c47e605
YZ
8570 &wc->refs[level],
8571 &wc->flags[level]);
79787eaa
JM
8572 BUG_ON(ret == -ENOMEM);
8573 if (ret)
8574 return ret;
2c47e605
YZ
8575 BUG_ON(wc->refs[level] == 0);
8576 }
5d4f98a2 8577
2c47e605
YZ
8578 if (wc->stage == DROP_REFERENCE) {
8579 if (wc->refs[level] > 1)
8580 return 1;
f82d02d9 8581
2c47e605 8582 if (path->locks[level] && !wc->keep_locks) {
bd681513 8583 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8584 path->locks[level] = 0;
8585 }
8586 return 0;
8587 }
f82d02d9 8588
2c47e605
YZ
8589 /* wc->stage == UPDATE_BACKREF */
8590 if (!(wc->flags[level] & flag)) {
8591 BUG_ON(!path->locks[level]);
e339a6b0 8592 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8593 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8594 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8595 BUG_ON(ret); /* -ENOMEM */
2c47e605 8596 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8597 eb->len, flag,
8598 btrfs_header_level(eb), 0);
79787eaa 8599 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8600 wc->flags[level] |= flag;
8601 }
8602
8603 /*
8604 * the block is shared by multiple trees, so it's not good to
8605 * keep the tree lock
8606 */
8607 if (path->locks[level] && level > 0) {
bd681513 8608 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8609 path->locks[level] = 0;
8610 }
8611 return 0;
8612}
8613
1c4850e2 8614/*
2c016dc2 8615 * helper to process tree block pointer.
1c4850e2
YZ
8616 *
8617 * when wc->stage == DROP_REFERENCE, this function checks
8618 * reference count of the block pointed to. if the block
8619 * is shared and we need update back refs for the subtree
8620 * rooted at the block, this function changes wc->stage to
8621 * UPDATE_BACKREF. if the block is shared and there is no
8622 * need to update back, this function drops the reference
8623 * to the block.
8624 *
8625 * NOTE: return value 1 means we should stop walking down.
8626 */
8627static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8628 struct btrfs_root *root,
8629 struct btrfs_path *path,
94fcca9f 8630 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8631{
8632 u64 bytenr;
8633 u64 generation;
8634 u64 parent;
8635 u32 blocksize;
8636 struct btrfs_key key;
8637 struct extent_buffer *next;
8638 int level = wc->level;
8639 int reada = 0;
8640 int ret = 0;
1152651a 8641 bool need_account = false;
1c4850e2
YZ
8642
8643 generation = btrfs_node_ptr_generation(path->nodes[level],
8644 path->slots[level]);
8645 /*
8646 * if the lower level block was created before the snapshot
8647 * was created, we know there is no need to update back refs
8648 * for the subtree
8649 */
8650 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8651 generation <= root->root_key.offset) {
8652 *lookup_info = 1;
1c4850e2 8653 return 1;
94fcca9f 8654 }
1c4850e2
YZ
8655
8656 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8657 blocksize = root->nodesize;
1c4850e2 8658
01d58472 8659 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8660 if (!next) {
a83fffb7 8661 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8662 if (!next)
8663 return -ENOMEM;
b2aaaa3b
JB
8664 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8665 level - 1);
1c4850e2
YZ
8666 reada = 1;
8667 }
8668 btrfs_tree_lock(next);
8669 btrfs_set_lock_blocking(next);
8670
3173a18f 8671 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8672 &wc->refs[level - 1],
8673 &wc->flags[level - 1]);
79787eaa
JM
8674 if (ret < 0) {
8675 btrfs_tree_unlock(next);
8676 return ret;
8677 }
8678
c2cf52eb
SK
8679 if (unlikely(wc->refs[level - 1] == 0)) {
8680 btrfs_err(root->fs_info, "Missing references.");
8681 BUG();
8682 }
94fcca9f 8683 *lookup_info = 0;
1c4850e2 8684
94fcca9f 8685 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8686 if (wc->refs[level - 1] > 1) {
1152651a 8687 need_account = true;
94fcca9f
YZ
8688 if (level == 1 &&
8689 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8690 goto skip;
8691
1c4850e2
YZ
8692 if (!wc->update_ref ||
8693 generation <= root->root_key.offset)
8694 goto skip;
8695
8696 btrfs_node_key_to_cpu(path->nodes[level], &key,
8697 path->slots[level]);
8698 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8699 if (ret < 0)
8700 goto skip;
8701
8702 wc->stage = UPDATE_BACKREF;
8703 wc->shared_level = level - 1;
8704 }
94fcca9f
YZ
8705 } else {
8706 if (level == 1 &&
8707 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8708 goto skip;
1c4850e2
YZ
8709 }
8710
b9fab919 8711 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8712 btrfs_tree_unlock(next);
8713 free_extent_buffer(next);
8714 next = NULL;
94fcca9f 8715 *lookup_info = 1;
1c4850e2
YZ
8716 }
8717
8718 if (!next) {
8719 if (reada && level == 1)
8720 reada_walk_down(trans, root, wc, path);
ce86cd59 8721 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8722 if (IS_ERR(next)) {
8723 return PTR_ERR(next);
8724 } else if (!extent_buffer_uptodate(next)) {
416bc658 8725 free_extent_buffer(next);
97d9a8a4 8726 return -EIO;
416bc658 8727 }
1c4850e2
YZ
8728 btrfs_tree_lock(next);
8729 btrfs_set_lock_blocking(next);
8730 }
8731
8732 level--;
8733 BUG_ON(level != btrfs_header_level(next));
8734 path->nodes[level] = next;
8735 path->slots[level] = 0;
bd681513 8736 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8737 wc->level = level;
8738 if (wc->level == 1)
8739 wc->reada_slot = 0;
8740 return 0;
8741skip:
8742 wc->refs[level - 1] = 0;
8743 wc->flags[level - 1] = 0;
94fcca9f
YZ
8744 if (wc->stage == DROP_REFERENCE) {
8745 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8746 parent = path->nodes[level]->start;
8747 } else {
8748 BUG_ON(root->root_key.objectid !=
8749 btrfs_header_owner(path->nodes[level]));
8750 parent = 0;
8751 }
1c4850e2 8752
1152651a
MF
8753 if (need_account) {
8754 ret = account_shared_subtree(trans, root, next,
8755 generation, level - 1);
8756 if (ret) {
94647322
DS
8757 btrfs_err_rl(root->fs_info,
8758 "Error "
1152651a 8759 "%d accounting shared subtree. Quota "
94647322
DS
8760 "is out of sync, rescan required.",
8761 ret);
1152651a
MF
8762 }
8763 }
94fcca9f 8764 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8765 root->root_key.objectid, level - 1, 0);
79787eaa 8766 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8767 }
1c4850e2
YZ
8768 btrfs_tree_unlock(next);
8769 free_extent_buffer(next);
94fcca9f 8770 *lookup_info = 1;
1c4850e2
YZ
8771 return 1;
8772}
8773
2c47e605 8774/*
2c016dc2 8775 * helper to process tree block while walking up the tree.
2c47e605
YZ
8776 *
8777 * when wc->stage == DROP_REFERENCE, this function drops
8778 * reference count on the block.
8779 *
8780 * when wc->stage == UPDATE_BACKREF, this function changes
8781 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8782 * to UPDATE_BACKREF previously while processing the block.
8783 *
8784 * NOTE: return value 1 means we should stop walking up.
8785 */
8786static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8787 struct btrfs_root *root,
8788 struct btrfs_path *path,
8789 struct walk_control *wc)
8790{
f0486c68 8791 int ret;
2c47e605
YZ
8792 int level = wc->level;
8793 struct extent_buffer *eb = path->nodes[level];
8794 u64 parent = 0;
8795
8796 if (wc->stage == UPDATE_BACKREF) {
8797 BUG_ON(wc->shared_level < level);
8798 if (level < wc->shared_level)
8799 goto out;
8800
2c47e605
YZ
8801 ret = find_next_key(path, level + 1, &wc->update_progress);
8802 if (ret > 0)
8803 wc->update_ref = 0;
8804
8805 wc->stage = DROP_REFERENCE;
8806 wc->shared_level = -1;
8807 path->slots[level] = 0;
8808
8809 /*
8810 * check reference count again if the block isn't locked.
8811 * we should start walking down the tree again if reference
8812 * count is one.
8813 */
8814 if (!path->locks[level]) {
8815 BUG_ON(level == 0);
8816 btrfs_tree_lock(eb);
8817 btrfs_set_lock_blocking(eb);
bd681513 8818 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8819
8820 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8821 eb->start, level, 1,
2c47e605
YZ
8822 &wc->refs[level],
8823 &wc->flags[level]);
79787eaa
JM
8824 if (ret < 0) {
8825 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8826 path->locks[level] = 0;
79787eaa
JM
8827 return ret;
8828 }
2c47e605
YZ
8829 BUG_ON(wc->refs[level] == 0);
8830 if (wc->refs[level] == 1) {
bd681513 8831 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8832 path->locks[level] = 0;
2c47e605
YZ
8833 return 1;
8834 }
f82d02d9 8835 }
2c47e605 8836 }
f82d02d9 8837
2c47e605
YZ
8838 /* wc->stage == DROP_REFERENCE */
8839 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8840
2c47e605
YZ
8841 if (wc->refs[level] == 1) {
8842 if (level == 0) {
8843 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8844 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8845 else
e339a6b0 8846 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8847 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8848 ret = account_leaf_items(trans, root, eb);
8849 if (ret) {
94647322
DS
8850 btrfs_err_rl(root->fs_info,
8851 "error "
1152651a 8852 "%d accounting leaf items. Quota "
94647322
DS
8853 "is out of sync, rescan required.",
8854 ret);
1152651a 8855 }
2c47e605
YZ
8856 }
8857 /* make block locked assertion in clean_tree_block happy */
8858 if (!path->locks[level] &&
8859 btrfs_header_generation(eb) == trans->transid) {
8860 btrfs_tree_lock(eb);
8861 btrfs_set_lock_blocking(eb);
bd681513 8862 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8863 }
01d58472 8864 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8865 }
8866
8867 if (eb == root->node) {
8868 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8869 parent = eb->start;
8870 else
8871 BUG_ON(root->root_key.objectid !=
8872 btrfs_header_owner(eb));
8873 } else {
8874 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8875 parent = path->nodes[level + 1]->start;
8876 else
8877 BUG_ON(root->root_key.objectid !=
8878 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8879 }
f82d02d9 8880
5581a51a 8881 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8882out:
8883 wc->refs[level] = 0;
8884 wc->flags[level] = 0;
f0486c68 8885 return 0;
2c47e605
YZ
8886}
8887
8888static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8889 struct btrfs_root *root,
8890 struct btrfs_path *path,
8891 struct walk_control *wc)
8892{
2c47e605 8893 int level = wc->level;
94fcca9f 8894 int lookup_info = 1;
2c47e605
YZ
8895 int ret;
8896
8897 while (level >= 0) {
94fcca9f 8898 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8899 if (ret > 0)
8900 break;
8901
8902 if (level == 0)
8903 break;
8904
7a7965f8
YZ
8905 if (path->slots[level] >=
8906 btrfs_header_nritems(path->nodes[level]))
8907 break;
8908
94fcca9f 8909 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8910 if (ret > 0) {
8911 path->slots[level]++;
8912 continue;
90d2c51d
MX
8913 } else if (ret < 0)
8914 return ret;
1c4850e2 8915 level = wc->level;
f82d02d9 8916 }
f82d02d9
YZ
8917 return 0;
8918}
8919
d397712b 8920static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8921 struct btrfs_root *root,
f82d02d9 8922 struct btrfs_path *path,
2c47e605 8923 struct walk_control *wc, int max_level)
20524f02 8924{
2c47e605 8925 int level = wc->level;
20524f02 8926 int ret;
9f3a7427 8927
2c47e605
YZ
8928 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8929 while (level < max_level && path->nodes[level]) {
8930 wc->level = level;
8931 if (path->slots[level] + 1 <
8932 btrfs_header_nritems(path->nodes[level])) {
8933 path->slots[level]++;
20524f02
CM
8934 return 0;
8935 } else {
2c47e605
YZ
8936 ret = walk_up_proc(trans, root, path, wc);
8937 if (ret > 0)
8938 return 0;
bd56b302 8939
2c47e605 8940 if (path->locks[level]) {
bd681513
CM
8941 btrfs_tree_unlock_rw(path->nodes[level],
8942 path->locks[level]);
2c47e605 8943 path->locks[level] = 0;
f82d02d9 8944 }
2c47e605
YZ
8945 free_extent_buffer(path->nodes[level]);
8946 path->nodes[level] = NULL;
8947 level++;
20524f02
CM
8948 }
8949 }
8950 return 1;
8951}
8952
9aca1d51 8953/*
2c47e605
YZ
8954 * drop a subvolume tree.
8955 *
8956 * this function traverses the tree freeing any blocks that only
8957 * referenced by the tree.
8958 *
8959 * when a shared tree block is found. this function decreases its
8960 * reference count by one. if update_ref is true, this function
8961 * also make sure backrefs for the shared block and all lower level
8962 * blocks are properly updated.
9d1a2a3a
DS
8963 *
8964 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8965 */
2c536799 8966int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8967 struct btrfs_block_rsv *block_rsv, int update_ref,
8968 int for_reloc)
20524f02 8969{
5caf2a00 8970 struct btrfs_path *path;
2c47e605
YZ
8971 struct btrfs_trans_handle *trans;
8972 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8973 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8974 struct walk_control *wc;
8975 struct btrfs_key key;
8976 int err = 0;
8977 int ret;
8978 int level;
d29a9f62 8979 bool root_dropped = false;
20524f02 8980
1152651a
MF
8981 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8982
5caf2a00 8983 path = btrfs_alloc_path();
cb1b69f4
TI
8984 if (!path) {
8985 err = -ENOMEM;
8986 goto out;
8987 }
20524f02 8988
2c47e605 8989 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8990 if (!wc) {
8991 btrfs_free_path(path);
cb1b69f4
TI
8992 err = -ENOMEM;
8993 goto out;
38a1a919 8994 }
2c47e605 8995
a22285a6 8996 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8997 if (IS_ERR(trans)) {
8998 err = PTR_ERR(trans);
8999 goto out_free;
9000 }
98d5dc13 9001
3fd0a558
YZ
9002 if (block_rsv)
9003 trans->block_rsv = block_rsv;
2c47e605 9004
9f3a7427 9005 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9006 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9007 path->nodes[level] = btrfs_lock_root_node(root);
9008 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9009 path->slots[level] = 0;
bd681513 9010 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9011 memset(&wc->update_progress, 0,
9012 sizeof(wc->update_progress));
9f3a7427 9013 } else {
9f3a7427 9014 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9015 memcpy(&wc->update_progress, &key,
9016 sizeof(wc->update_progress));
9017
6702ed49 9018 level = root_item->drop_level;
2c47e605 9019 BUG_ON(level == 0);
6702ed49 9020 path->lowest_level = level;
2c47e605
YZ
9021 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9022 path->lowest_level = 0;
9023 if (ret < 0) {
9024 err = ret;
79787eaa 9025 goto out_end_trans;
9f3a7427 9026 }
1c4850e2 9027 WARN_ON(ret > 0);
2c47e605 9028
7d9eb12c
CM
9029 /*
9030 * unlock our path, this is safe because only this
9031 * function is allowed to delete this snapshot
9032 */
5d4f98a2 9033 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9034
9035 level = btrfs_header_level(root->node);
9036 while (1) {
9037 btrfs_tree_lock(path->nodes[level]);
9038 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9039 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9040
9041 ret = btrfs_lookup_extent_info(trans, root,
9042 path->nodes[level]->start,
3173a18f 9043 level, 1, &wc->refs[level],
2c47e605 9044 &wc->flags[level]);
79787eaa
JM
9045 if (ret < 0) {
9046 err = ret;
9047 goto out_end_trans;
9048 }
2c47e605
YZ
9049 BUG_ON(wc->refs[level] == 0);
9050
9051 if (level == root_item->drop_level)
9052 break;
9053
9054 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9055 path->locks[level] = 0;
2c47e605
YZ
9056 WARN_ON(wc->refs[level] != 1);
9057 level--;
9058 }
9f3a7427 9059 }
2c47e605
YZ
9060
9061 wc->level = level;
9062 wc->shared_level = -1;
9063 wc->stage = DROP_REFERENCE;
9064 wc->update_ref = update_ref;
9065 wc->keep_locks = 0;
66d7e7f0 9066 wc->for_reloc = for_reloc;
1c4850e2 9067 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9068
d397712b 9069 while (1) {
9d1a2a3a 9070
2c47e605
YZ
9071 ret = walk_down_tree(trans, root, path, wc);
9072 if (ret < 0) {
9073 err = ret;
20524f02 9074 break;
2c47e605 9075 }
9aca1d51 9076
2c47e605
YZ
9077 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9078 if (ret < 0) {
9079 err = ret;
20524f02 9080 break;
2c47e605
YZ
9081 }
9082
9083 if (ret > 0) {
9084 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9085 break;
9086 }
2c47e605
YZ
9087
9088 if (wc->stage == DROP_REFERENCE) {
9089 level = wc->level;
9090 btrfs_node_key(path->nodes[level],
9091 &root_item->drop_progress,
9092 path->slots[level]);
9093 root_item->drop_level = level;
9094 }
9095
9096 BUG_ON(wc->level == 0);
3c8f2422
JB
9097 if (btrfs_should_end_transaction(trans, tree_root) ||
9098 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9099 ret = btrfs_update_root(trans, tree_root,
9100 &root->root_key,
9101 root_item);
79787eaa
JM
9102 if (ret) {
9103 btrfs_abort_transaction(trans, tree_root, ret);
9104 err = ret;
9105 goto out_end_trans;
9106 }
2c47e605 9107
3fd0a558 9108 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9109 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 9110 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
9111 err = -EAGAIN;
9112 goto out_free;
9113 }
9114
a22285a6 9115 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9116 if (IS_ERR(trans)) {
9117 err = PTR_ERR(trans);
9118 goto out_free;
9119 }
3fd0a558
YZ
9120 if (block_rsv)
9121 trans->block_rsv = block_rsv;
c3e69d58 9122 }
20524f02 9123 }
b3b4aa74 9124 btrfs_release_path(path);
79787eaa
JM
9125 if (err)
9126 goto out_end_trans;
2c47e605
YZ
9127
9128 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
9129 if (ret) {
9130 btrfs_abort_transaction(trans, tree_root, ret);
9131 goto out_end_trans;
9132 }
2c47e605 9133
76dda93c 9134 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9135 ret = btrfs_find_root(tree_root, &root->root_key, path,
9136 NULL, NULL);
79787eaa
JM
9137 if (ret < 0) {
9138 btrfs_abort_transaction(trans, tree_root, ret);
9139 err = ret;
9140 goto out_end_trans;
9141 } else if (ret > 0) {
84cd948c
JB
9142 /* if we fail to delete the orphan item this time
9143 * around, it'll get picked up the next time.
9144 *
9145 * The most common failure here is just -ENOENT.
9146 */
9147 btrfs_del_orphan_item(trans, tree_root,
9148 root->root_key.objectid);
76dda93c
YZ
9149 }
9150 }
9151
27cdeb70 9152 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9153 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9154 } else {
9155 free_extent_buffer(root->node);
9156 free_extent_buffer(root->commit_root);
b0feb9d9 9157 btrfs_put_fs_root(root);
76dda93c 9158 }
d29a9f62 9159 root_dropped = true;
79787eaa 9160out_end_trans:
3fd0a558 9161 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9162out_free:
2c47e605 9163 kfree(wc);
5caf2a00 9164 btrfs_free_path(path);
cb1b69f4 9165out:
d29a9f62
JB
9166 /*
9167 * So if we need to stop dropping the snapshot for whatever reason we
9168 * need to make sure to add it back to the dead root list so that we
9169 * keep trying to do the work later. This also cleans up roots if we
9170 * don't have it in the radix (like when we recover after a power fail
9171 * or unmount) so we don't leak memory.
9172 */
b37b39cd 9173 if (!for_reloc && root_dropped == false)
d29a9f62 9174 btrfs_add_dead_root(root);
90515e7f 9175 if (err && err != -EAGAIN)
34d97007 9176 btrfs_handle_fs_error(root->fs_info, err, NULL);
2c536799 9177 return err;
20524f02 9178}
9078a3e1 9179
2c47e605
YZ
9180/*
9181 * drop subtree rooted at tree block 'node'.
9182 *
9183 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9184 * only used by relocation code
2c47e605 9185 */
f82d02d9
YZ
9186int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9187 struct btrfs_root *root,
9188 struct extent_buffer *node,
9189 struct extent_buffer *parent)
9190{
9191 struct btrfs_path *path;
2c47e605 9192 struct walk_control *wc;
f82d02d9
YZ
9193 int level;
9194 int parent_level;
9195 int ret = 0;
9196 int wret;
9197
2c47e605
YZ
9198 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9199
f82d02d9 9200 path = btrfs_alloc_path();
db5b493a
TI
9201 if (!path)
9202 return -ENOMEM;
f82d02d9 9203
2c47e605 9204 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9205 if (!wc) {
9206 btrfs_free_path(path);
9207 return -ENOMEM;
9208 }
2c47e605 9209
b9447ef8 9210 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9211 parent_level = btrfs_header_level(parent);
9212 extent_buffer_get(parent);
9213 path->nodes[parent_level] = parent;
9214 path->slots[parent_level] = btrfs_header_nritems(parent);
9215
b9447ef8 9216 btrfs_assert_tree_locked(node);
f82d02d9 9217 level = btrfs_header_level(node);
f82d02d9
YZ
9218 path->nodes[level] = node;
9219 path->slots[level] = 0;
bd681513 9220 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9221
9222 wc->refs[parent_level] = 1;
9223 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9224 wc->level = level;
9225 wc->shared_level = -1;
9226 wc->stage = DROP_REFERENCE;
9227 wc->update_ref = 0;
9228 wc->keep_locks = 1;
66d7e7f0 9229 wc->for_reloc = 1;
1c4850e2 9230 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9231
9232 while (1) {
2c47e605
YZ
9233 wret = walk_down_tree(trans, root, path, wc);
9234 if (wret < 0) {
f82d02d9 9235 ret = wret;
f82d02d9 9236 break;
2c47e605 9237 }
f82d02d9 9238
2c47e605 9239 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9240 if (wret < 0)
9241 ret = wret;
9242 if (wret != 0)
9243 break;
9244 }
9245
2c47e605 9246 kfree(wc);
f82d02d9
YZ
9247 btrfs_free_path(path);
9248 return ret;
9249}
9250
ec44a35c
CM
9251static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9252{
9253 u64 num_devices;
fc67c450 9254 u64 stripped;
e4d8ec0f 9255
fc67c450
ID
9256 /*
9257 * if restripe for this chunk_type is on pick target profile and
9258 * return, otherwise do the usual balance
9259 */
9260 stripped = get_restripe_target(root->fs_info, flags);
9261 if (stripped)
9262 return extended_to_chunk(stripped);
e4d8ec0f 9263
95669976 9264 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9265
fc67c450 9266 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9267 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9268 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9269
ec44a35c
CM
9270 if (num_devices == 1) {
9271 stripped |= BTRFS_BLOCK_GROUP_DUP;
9272 stripped = flags & ~stripped;
9273
9274 /* turn raid0 into single device chunks */
9275 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9276 return stripped;
9277
9278 /* turn mirroring into duplication */
9279 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9280 BTRFS_BLOCK_GROUP_RAID10))
9281 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9282 } else {
9283 /* they already had raid on here, just return */
ec44a35c
CM
9284 if (flags & stripped)
9285 return flags;
9286
9287 stripped |= BTRFS_BLOCK_GROUP_DUP;
9288 stripped = flags & ~stripped;
9289
9290 /* switch duplicated blocks with raid1 */
9291 if (flags & BTRFS_BLOCK_GROUP_DUP)
9292 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9293
e3176ca2 9294 /* this is drive concat, leave it alone */
ec44a35c 9295 }
e3176ca2 9296
ec44a35c
CM
9297 return flags;
9298}
9299
868f401a 9300static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9301{
f0486c68
YZ
9302 struct btrfs_space_info *sinfo = cache->space_info;
9303 u64 num_bytes;
199c36ea 9304 u64 min_allocable_bytes;
f0486c68 9305 int ret = -ENOSPC;
0ef3e66b 9306
199c36ea
MX
9307 /*
9308 * We need some metadata space and system metadata space for
9309 * allocating chunks in some corner cases until we force to set
9310 * it to be readonly.
9311 */
9312 if ((sinfo->flags &
9313 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9314 !force)
ee22184b 9315 min_allocable_bytes = SZ_1M;
199c36ea
MX
9316 else
9317 min_allocable_bytes = 0;
9318
f0486c68
YZ
9319 spin_lock(&sinfo->lock);
9320 spin_lock(&cache->lock);
61cfea9b
W
9321
9322 if (cache->ro) {
868f401a 9323 cache->ro++;
61cfea9b
W
9324 ret = 0;
9325 goto out;
9326 }
9327
f0486c68
YZ
9328 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9329 cache->bytes_super - btrfs_block_group_used(&cache->item);
9330
9331 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9332 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9333 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9334 sinfo->bytes_readonly += num_bytes;
868f401a 9335 cache->ro++;
633c0aad 9336 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9337 ret = 0;
9338 }
61cfea9b 9339out:
f0486c68
YZ
9340 spin_unlock(&cache->lock);
9341 spin_unlock(&sinfo->lock);
9342 return ret;
9343}
7d9eb12c 9344
868f401a 9345int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9346 struct btrfs_block_group_cache *cache)
c286ac48 9347
f0486c68
YZ
9348{
9349 struct btrfs_trans_handle *trans;
9350 u64 alloc_flags;
9351 int ret;
7d9eb12c 9352
1bbc621e 9353again:
ff5714cc 9354 trans = btrfs_join_transaction(root);
79787eaa
JM
9355 if (IS_ERR(trans))
9356 return PTR_ERR(trans);
5d4f98a2 9357
1bbc621e
CM
9358 /*
9359 * we're not allowed to set block groups readonly after the dirty
9360 * block groups cache has started writing. If it already started,
9361 * back off and let this transaction commit
9362 */
9363 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9364 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9365 u64 transid = trans->transid;
9366
9367 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9368 btrfs_end_transaction(trans, root);
9369
9370 ret = btrfs_wait_for_commit(root, transid);
9371 if (ret)
9372 return ret;
9373 goto again;
9374 }
9375
153c35b6
CM
9376 /*
9377 * if we are changing raid levels, try to allocate a corresponding
9378 * block group with the new raid level.
9379 */
9380 alloc_flags = update_block_group_flags(root, cache->flags);
9381 if (alloc_flags != cache->flags) {
9382 ret = do_chunk_alloc(trans, root, alloc_flags,
9383 CHUNK_ALLOC_FORCE);
9384 /*
9385 * ENOSPC is allowed here, we may have enough space
9386 * already allocated at the new raid level to
9387 * carry on
9388 */
9389 if (ret == -ENOSPC)
9390 ret = 0;
9391 if (ret < 0)
9392 goto out;
9393 }
1bbc621e 9394
868f401a 9395 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9396 if (!ret)
9397 goto out;
9398 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9399 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9400 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9401 if (ret < 0)
9402 goto out;
868f401a 9403 ret = inc_block_group_ro(cache, 0);
f0486c68 9404out:
2f081088
SL
9405 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9406 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9407 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9408 check_system_chunk(trans, root, alloc_flags);
a9629596 9409 unlock_chunks(root->fs_info->chunk_root);
2f081088 9410 }
1bbc621e 9411 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9412
f0486c68
YZ
9413 btrfs_end_transaction(trans, root);
9414 return ret;
9415}
5d4f98a2 9416
c87f08ca
CM
9417int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9418 struct btrfs_root *root, u64 type)
9419{
9420 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9421 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9422 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9423}
9424
6d07bcec
MX
9425/*
9426 * helper to account the unused space of all the readonly block group in the
633c0aad 9427 * space_info. takes mirrors into account.
6d07bcec 9428 */
633c0aad 9429u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9430{
9431 struct btrfs_block_group_cache *block_group;
9432 u64 free_bytes = 0;
9433 int factor;
9434
01327610 9435 /* It's df, we don't care if it's racy */
633c0aad
JB
9436 if (list_empty(&sinfo->ro_bgs))
9437 return 0;
9438
9439 spin_lock(&sinfo->lock);
9440 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9441 spin_lock(&block_group->lock);
9442
9443 if (!block_group->ro) {
9444 spin_unlock(&block_group->lock);
9445 continue;
9446 }
9447
9448 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9449 BTRFS_BLOCK_GROUP_RAID10 |
9450 BTRFS_BLOCK_GROUP_DUP))
9451 factor = 2;
9452 else
9453 factor = 1;
9454
9455 free_bytes += (block_group->key.offset -
9456 btrfs_block_group_used(&block_group->item)) *
9457 factor;
9458
9459 spin_unlock(&block_group->lock);
9460 }
6d07bcec
MX
9461 spin_unlock(&sinfo->lock);
9462
9463 return free_bytes;
9464}
9465
868f401a 9466void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9467 struct btrfs_block_group_cache *cache)
5d4f98a2 9468{
f0486c68
YZ
9469 struct btrfs_space_info *sinfo = cache->space_info;
9470 u64 num_bytes;
9471
9472 BUG_ON(!cache->ro);
9473
9474 spin_lock(&sinfo->lock);
9475 spin_lock(&cache->lock);
868f401a
Z
9476 if (!--cache->ro) {
9477 num_bytes = cache->key.offset - cache->reserved -
9478 cache->pinned - cache->bytes_super -
9479 btrfs_block_group_used(&cache->item);
9480 sinfo->bytes_readonly -= num_bytes;
9481 list_del_init(&cache->ro_list);
9482 }
f0486c68
YZ
9483 spin_unlock(&cache->lock);
9484 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9485}
9486
ba1bf481
JB
9487/*
9488 * checks to see if its even possible to relocate this block group.
9489 *
9490 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9491 * ok to go ahead and try.
9492 */
9493int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9494{
ba1bf481
JB
9495 struct btrfs_block_group_cache *block_group;
9496 struct btrfs_space_info *space_info;
9497 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9498 struct btrfs_device *device;
6df9a95e 9499 struct btrfs_trans_handle *trans;
cdcb725c 9500 u64 min_free;
6719db6a
JB
9501 u64 dev_min = 1;
9502 u64 dev_nr = 0;
4a5e98f5 9503 u64 target;
0305bc27 9504 int debug;
cdcb725c 9505 int index;
ba1bf481
JB
9506 int full = 0;
9507 int ret = 0;
1a40e23b 9508
0305bc27
QW
9509 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9510
ba1bf481 9511 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9512
ba1bf481 9513 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9514 if (!block_group) {
9515 if (debug)
9516 btrfs_warn(root->fs_info,
9517 "can't find block group for bytenr %llu",
9518 bytenr);
ba1bf481 9519 return -1;
0305bc27 9520 }
1a40e23b 9521
cdcb725c 9522 min_free = btrfs_block_group_used(&block_group->item);
9523
ba1bf481 9524 /* no bytes used, we're good */
cdcb725c 9525 if (!min_free)
1a40e23b
ZY
9526 goto out;
9527
ba1bf481
JB
9528 space_info = block_group->space_info;
9529 spin_lock(&space_info->lock);
17d217fe 9530
ba1bf481 9531 full = space_info->full;
17d217fe 9532
ba1bf481
JB
9533 /*
9534 * if this is the last block group we have in this space, we can't
7ce618db
CM
9535 * relocate it unless we're able to allocate a new chunk below.
9536 *
9537 * Otherwise, we need to make sure we have room in the space to handle
9538 * all of the extents from this block group. If we can, we're good
ba1bf481 9539 */
7ce618db 9540 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9541 (space_info->bytes_used + space_info->bytes_reserved +
9542 space_info->bytes_pinned + space_info->bytes_readonly +
9543 min_free < space_info->total_bytes)) {
ba1bf481
JB
9544 spin_unlock(&space_info->lock);
9545 goto out;
17d217fe 9546 }
ba1bf481 9547 spin_unlock(&space_info->lock);
ea8c2819 9548
ba1bf481
JB
9549 /*
9550 * ok we don't have enough space, but maybe we have free space on our
9551 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9552 * alloc devices and guess if we have enough space. if this block
9553 * group is going to be restriped, run checks against the target
9554 * profile instead of the current one.
ba1bf481
JB
9555 */
9556 ret = -1;
ea8c2819 9557
cdcb725c 9558 /*
9559 * index:
9560 * 0: raid10
9561 * 1: raid1
9562 * 2: dup
9563 * 3: raid0
9564 * 4: single
9565 */
4a5e98f5
ID
9566 target = get_restripe_target(root->fs_info, block_group->flags);
9567 if (target) {
31e50229 9568 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9569 } else {
9570 /*
9571 * this is just a balance, so if we were marked as full
9572 * we know there is no space for a new chunk
9573 */
0305bc27
QW
9574 if (full) {
9575 if (debug)
9576 btrfs_warn(root->fs_info,
9577 "no space to alloc new chunk for block group %llu",
9578 block_group->key.objectid);
4a5e98f5 9579 goto out;
0305bc27 9580 }
4a5e98f5
ID
9581
9582 index = get_block_group_index(block_group);
9583 }
9584
e6ec716f 9585 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9586 dev_min = 4;
6719db6a
JB
9587 /* Divide by 2 */
9588 min_free >>= 1;
e6ec716f 9589 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9590 dev_min = 2;
e6ec716f 9591 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9592 /* Multiply by 2 */
9593 min_free <<= 1;
e6ec716f 9594 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9595 dev_min = fs_devices->rw_devices;
47c5713f 9596 min_free = div64_u64(min_free, dev_min);
cdcb725c 9597 }
9598
6df9a95e
JB
9599 /* We need to do this so that we can look at pending chunks */
9600 trans = btrfs_join_transaction(root);
9601 if (IS_ERR(trans)) {
9602 ret = PTR_ERR(trans);
9603 goto out;
9604 }
9605
ba1bf481
JB
9606 mutex_lock(&root->fs_info->chunk_mutex);
9607 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9608 u64 dev_offset;
56bec294 9609
ba1bf481
JB
9610 /*
9611 * check to make sure we can actually find a chunk with enough
9612 * space to fit our block group in.
9613 */
63a212ab
SB
9614 if (device->total_bytes > device->bytes_used + min_free &&
9615 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9616 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9617 &dev_offset, NULL);
ba1bf481 9618 if (!ret)
cdcb725c 9619 dev_nr++;
9620
9621 if (dev_nr >= dev_min)
73e48b27 9622 break;
cdcb725c 9623
ba1bf481 9624 ret = -1;
725c8463 9625 }
edbd8d4e 9626 }
0305bc27
QW
9627 if (debug && ret == -1)
9628 btrfs_warn(root->fs_info,
9629 "no space to allocate a new chunk for block group %llu",
9630 block_group->key.objectid);
ba1bf481 9631 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9632 btrfs_end_transaction(trans, root);
edbd8d4e 9633out:
ba1bf481 9634 btrfs_put_block_group(block_group);
edbd8d4e
CM
9635 return ret;
9636}
9637
b2950863
CH
9638static int find_first_block_group(struct btrfs_root *root,
9639 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9640{
925baedd 9641 int ret = 0;
0b86a832
CM
9642 struct btrfs_key found_key;
9643 struct extent_buffer *leaf;
9644 int slot;
edbd8d4e 9645
0b86a832
CM
9646 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9647 if (ret < 0)
925baedd
CM
9648 goto out;
9649
d397712b 9650 while (1) {
0b86a832 9651 slot = path->slots[0];
edbd8d4e 9652 leaf = path->nodes[0];
0b86a832
CM
9653 if (slot >= btrfs_header_nritems(leaf)) {
9654 ret = btrfs_next_leaf(root, path);
9655 if (ret == 0)
9656 continue;
9657 if (ret < 0)
925baedd 9658 goto out;
0b86a832 9659 break;
edbd8d4e 9660 }
0b86a832 9661 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9662
0b86a832 9663 if (found_key.objectid >= key->objectid &&
925baedd
CM
9664 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9665 ret = 0;
9666 goto out;
9667 }
0b86a832 9668 path->slots[0]++;
edbd8d4e 9669 }
925baedd 9670out:
0b86a832 9671 return ret;
edbd8d4e
CM
9672}
9673
0af3d00b
JB
9674void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9675{
9676 struct btrfs_block_group_cache *block_group;
9677 u64 last = 0;
9678
9679 while (1) {
9680 struct inode *inode;
9681
9682 block_group = btrfs_lookup_first_block_group(info, last);
9683 while (block_group) {
9684 spin_lock(&block_group->lock);
9685 if (block_group->iref)
9686 break;
9687 spin_unlock(&block_group->lock);
9688 block_group = next_block_group(info->tree_root,
9689 block_group);
9690 }
9691 if (!block_group) {
9692 if (last == 0)
9693 break;
9694 last = 0;
9695 continue;
9696 }
9697
9698 inode = block_group->inode;
9699 block_group->iref = 0;
9700 block_group->inode = NULL;
9701 spin_unlock(&block_group->lock);
9702 iput(inode);
9703 last = block_group->key.objectid + block_group->key.offset;
9704 btrfs_put_block_group(block_group);
9705 }
9706}
9707
1a40e23b
ZY
9708int btrfs_free_block_groups(struct btrfs_fs_info *info)
9709{
9710 struct btrfs_block_group_cache *block_group;
4184ea7f 9711 struct btrfs_space_info *space_info;
11833d66 9712 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9713 struct rb_node *n;
9714
9e351cc8 9715 down_write(&info->commit_root_sem);
11833d66
YZ
9716 while (!list_empty(&info->caching_block_groups)) {
9717 caching_ctl = list_entry(info->caching_block_groups.next,
9718 struct btrfs_caching_control, list);
9719 list_del(&caching_ctl->list);
9720 put_caching_control(caching_ctl);
9721 }
9e351cc8 9722 up_write(&info->commit_root_sem);
11833d66 9723
47ab2a6c
JB
9724 spin_lock(&info->unused_bgs_lock);
9725 while (!list_empty(&info->unused_bgs)) {
9726 block_group = list_first_entry(&info->unused_bgs,
9727 struct btrfs_block_group_cache,
9728 bg_list);
9729 list_del_init(&block_group->bg_list);
9730 btrfs_put_block_group(block_group);
9731 }
9732 spin_unlock(&info->unused_bgs_lock);
9733
1a40e23b
ZY
9734 spin_lock(&info->block_group_cache_lock);
9735 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9736 block_group = rb_entry(n, struct btrfs_block_group_cache,
9737 cache_node);
1a40e23b
ZY
9738 rb_erase(&block_group->cache_node,
9739 &info->block_group_cache_tree);
01eacb27 9740 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9741 spin_unlock(&info->block_group_cache_lock);
9742
80eb234a 9743 down_write(&block_group->space_info->groups_sem);
1a40e23b 9744 list_del(&block_group->list);
80eb234a 9745 up_write(&block_group->space_info->groups_sem);
d2fb3437 9746
817d52f8 9747 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9748 wait_block_group_cache_done(block_group);
817d52f8 9749
3c14874a
JB
9750 /*
9751 * We haven't cached this block group, which means we could
9752 * possibly have excluded extents on this block group.
9753 */
36cce922
JB
9754 if (block_group->cached == BTRFS_CACHE_NO ||
9755 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9756 free_excluded_extents(info->extent_root, block_group);
9757
817d52f8 9758 btrfs_remove_free_space_cache(block_group);
11dfe35a 9759 btrfs_put_block_group(block_group);
d899e052
YZ
9760
9761 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9762 }
9763 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9764
9765 /* now that all the block groups are freed, go through and
9766 * free all the space_info structs. This is only called during
9767 * the final stages of unmount, and so we know nobody is
9768 * using them. We call synchronize_rcu() once before we start,
9769 * just to be on the safe side.
9770 */
9771 synchronize_rcu();
9772
8929ecfa
YZ
9773 release_global_block_rsv(info);
9774
67871254 9775 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9776 int i;
9777
4184ea7f
CM
9778 space_info = list_entry(info->space_info.next,
9779 struct btrfs_space_info,
9780 list);
b069e0c3 9781 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9782 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9783 space_info->bytes_reserved > 0 ||
fae7f21c 9784 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9785 dump_space_info(space_info, 0, 0);
9786 }
f0486c68 9787 }
4184ea7f 9788 list_del(&space_info->list);
6ab0a202
JM
9789 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9790 struct kobject *kobj;
c1895442
JM
9791 kobj = space_info->block_group_kobjs[i];
9792 space_info->block_group_kobjs[i] = NULL;
9793 if (kobj) {
6ab0a202
JM
9794 kobject_del(kobj);
9795 kobject_put(kobj);
9796 }
9797 }
9798 kobject_del(&space_info->kobj);
9799 kobject_put(&space_info->kobj);
4184ea7f 9800 }
1a40e23b
ZY
9801 return 0;
9802}
9803
b742bb82
YZ
9804static void __link_block_group(struct btrfs_space_info *space_info,
9805 struct btrfs_block_group_cache *cache)
9806{
9807 int index = get_block_group_index(cache);
ed55b6ac 9808 bool first = false;
b742bb82
YZ
9809
9810 down_write(&space_info->groups_sem);
ed55b6ac
JM
9811 if (list_empty(&space_info->block_groups[index]))
9812 first = true;
9813 list_add_tail(&cache->list, &space_info->block_groups[index]);
9814 up_write(&space_info->groups_sem);
9815
9816 if (first) {
c1895442 9817 struct raid_kobject *rkobj;
6ab0a202
JM
9818 int ret;
9819
c1895442
JM
9820 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9821 if (!rkobj)
9822 goto out_err;
9823 rkobj->raid_type = index;
9824 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9825 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9826 "%s", get_raid_name(index));
6ab0a202 9827 if (ret) {
c1895442
JM
9828 kobject_put(&rkobj->kobj);
9829 goto out_err;
6ab0a202 9830 }
c1895442 9831 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9832 }
c1895442
JM
9833
9834 return;
9835out_err:
9836 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9837}
9838
920e4a58
MX
9839static struct btrfs_block_group_cache *
9840btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9841{
9842 struct btrfs_block_group_cache *cache;
9843
9844 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9845 if (!cache)
9846 return NULL;
9847
9848 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9849 GFP_NOFS);
9850 if (!cache->free_space_ctl) {
9851 kfree(cache);
9852 return NULL;
9853 }
9854
9855 cache->key.objectid = start;
9856 cache->key.offset = size;
9857 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9858
9859 cache->sectorsize = root->sectorsize;
9860 cache->fs_info = root->fs_info;
9861 cache->full_stripe_len = btrfs_full_stripe_len(root,
9862 &root->fs_info->mapping_tree,
9863 start);
1e144fb8
OS
9864 set_free_space_tree_thresholds(cache);
9865
920e4a58
MX
9866 atomic_set(&cache->count, 1);
9867 spin_lock_init(&cache->lock);
e570fd27 9868 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9869 INIT_LIST_HEAD(&cache->list);
9870 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9871 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9872 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9873 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9874 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9875 btrfs_init_free_space_ctl(cache);
04216820 9876 atomic_set(&cache->trimming, 0);
a5ed9182 9877 mutex_init(&cache->free_space_lock);
920e4a58
MX
9878
9879 return cache;
9880}
9881
9078a3e1
CM
9882int btrfs_read_block_groups(struct btrfs_root *root)
9883{
9884 struct btrfs_path *path;
9885 int ret;
9078a3e1 9886 struct btrfs_block_group_cache *cache;
be744175 9887 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9888 struct btrfs_space_info *space_info;
9078a3e1
CM
9889 struct btrfs_key key;
9890 struct btrfs_key found_key;
5f39d397 9891 struct extent_buffer *leaf;
0af3d00b
JB
9892 int need_clear = 0;
9893 u64 cache_gen;
96b5179d 9894
be744175 9895 root = info->extent_root;
9078a3e1 9896 key.objectid = 0;
0b86a832 9897 key.offset = 0;
962a298f 9898 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9899 path = btrfs_alloc_path();
9900 if (!path)
9901 return -ENOMEM;
e4058b54 9902 path->reada = READA_FORWARD;
9078a3e1 9903
6c41761f 9904 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9905 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9906 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9907 need_clear = 1;
88c2ba3b
JB
9908 if (btrfs_test_opt(root, CLEAR_CACHE))
9909 need_clear = 1;
0af3d00b 9910
d397712b 9911 while (1) {
0b86a832 9912 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9913 if (ret > 0)
9914 break;
0b86a832
CM
9915 if (ret != 0)
9916 goto error;
920e4a58 9917
5f39d397
CM
9918 leaf = path->nodes[0];
9919 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9920
9921 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9922 found_key.offset);
9078a3e1 9923 if (!cache) {
0b86a832 9924 ret = -ENOMEM;
f0486c68 9925 goto error;
9078a3e1 9926 }
96303081 9927
cf7c1ef6
LB
9928 if (need_clear) {
9929 /*
9930 * When we mount with old space cache, we need to
9931 * set BTRFS_DC_CLEAR and set dirty flag.
9932 *
9933 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9934 * truncate the old free space cache inode and
9935 * setup a new one.
9936 * b) Setting 'dirty flag' makes sure that we flush
9937 * the new space cache info onto disk.
9938 */
cf7c1ef6 9939 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9940 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9941 }
0af3d00b 9942
5f39d397
CM
9943 read_extent_buffer(leaf, &cache->item,
9944 btrfs_item_ptr_offset(leaf, path->slots[0]),
9945 sizeof(cache->item));
920e4a58 9946 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9947
9078a3e1 9948 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9949 btrfs_release_path(path);
34d52cb6 9950
3c14874a
JB
9951 /*
9952 * We need to exclude the super stripes now so that the space
9953 * info has super bytes accounted for, otherwise we'll think
9954 * we have more space than we actually do.
9955 */
835d974f
JB
9956 ret = exclude_super_stripes(root, cache);
9957 if (ret) {
9958 /*
9959 * We may have excluded something, so call this just in
9960 * case.
9961 */
9962 free_excluded_extents(root, cache);
920e4a58 9963 btrfs_put_block_group(cache);
835d974f
JB
9964 goto error;
9965 }
3c14874a 9966
817d52f8
JB
9967 /*
9968 * check for two cases, either we are full, and therefore
9969 * don't need to bother with the caching work since we won't
9970 * find any space, or we are empty, and we can just add all
9971 * the space in and be done with it. This saves us _alot_ of
9972 * time, particularly in the full case.
9973 */
9974 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9975 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9976 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9977 free_excluded_extents(root, cache);
817d52f8 9978 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9979 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9980 cache->cached = BTRFS_CACHE_FINISHED;
9981 add_new_free_space(cache, root->fs_info,
9982 found_key.objectid,
9983 found_key.objectid +
9984 found_key.offset);
11833d66 9985 free_excluded_extents(root, cache);
817d52f8 9986 }
96b5179d 9987
8c579fe7
JB
9988 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9989 if (ret) {
9990 btrfs_remove_free_space_cache(cache);
9991 btrfs_put_block_group(cache);
9992 goto error;
9993 }
9994
6324fbf3
CM
9995 ret = update_space_info(info, cache->flags, found_key.offset,
9996 btrfs_block_group_used(&cache->item),
9997 &space_info);
8c579fe7
JB
9998 if (ret) {
9999 btrfs_remove_free_space_cache(cache);
10000 spin_lock(&info->block_group_cache_lock);
10001 rb_erase(&cache->cache_node,
10002 &info->block_group_cache_tree);
01eacb27 10003 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10004 spin_unlock(&info->block_group_cache_lock);
10005 btrfs_put_block_group(cache);
10006 goto error;
10007 }
10008
6324fbf3 10009 cache->space_info = space_info;
1b2da372 10010 spin_lock(&cache->space_info->lock);
f0486c68 10011 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
10012 spin_unlock(&cache->space_info->lock);
10013
b742bb82 10014 __link_block_group(space_info, cache);
0f9dd46c 10015
75ccf47d 10016 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10017 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10018 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10019 } else if (btrfs_block_group_used(&cache->item) == 0) {
10020 spin_lock(&info->unused_bgs_lock);
10021 /* Should always be true but just in case. */
10022 if (list_empty(&cache->bg_list)) {
10023 btrfs_get_block_group(cache);
10024 list_add_tail(&cache->bg_list,
10025 &info->unused_bgs);
10026 }
10027 spin_unlock(&info->unused_bgs_lock);
10028 }
9078a3e1 10029 }
b742bb82
YZ
10030
10031 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10032 if (!(get_alloc_profile(root, space_info->flags) &
10033 (BTRFS_BLOCK_GROUP_RAID10 |
10034 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10035 BTRFS_BLOCK_GROUP_RAID5 |
10036 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10037 BTRFS_BLOCK_GROUP_DUP)))
10038 continue;
10039 /*
10040 * avoid allocating from un-mirrored block group if there are
10041 * mirrored block groups.
10042 */
1095cc0d 10043 list_for_each_entry(cache,
10044 &space_info->block_groups[BTRFS_RAID_RAID0],
10045 list)
868f401a 10046 inc_block_group_ro(cache, 1);
1095cc0d 10047 list_for_each_entry(cache,
10048 &space_info->block_groups[BTRFS_RAID_SINGLE],
10049 list)
868f401a 10050 inc_block_group_ro(cache, 1);
9078a3e1 10051 }
f0486c68
YZ
10052
10053 init_global_block_rsv(info);
0b86a832
CM
10054 ret = 0;
10055error:
9078a3e1 10056 btrfs_free_path(path);
0b86a832 10057 return ret;
9078a3e1 10058}
6324fbf3 10059
ea658bad
JB
10060void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10061 struct btrfs_root *root)
10062{
10063 struct btrfs_block_group_cache *block_group, *tmp;
10064 struct btrfs_root *extent_root = root->fs_info->extent_root;
10065 struct btrfs_block_group_item item;
10066 struct btrfs_key key;
10067 int ret = 0;
d9a0540a 10068 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10069
d9a0540a 10070 trans->can_flush_pending_bgs = false;
47ab2a6c 10071 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10072 if (ret)
c92f6be3 10073 goto next;
ea658bad
JB
10074
10075 spin_lock(&block_group->lock);
10076 memcpy(&item, &block_group->item, sizeof(item));
10077 memcpy(&key, &block_group->key, sizeof(key));
10078 spin_unlock(&block_group->lock);
10079
10080 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10081 sizeof(item));
10082 if (ret)
10083 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
10084 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10085 key.objectid, key.offset);
10086 if (ret)
10087 btrfs_abort_transaction(trans, extent_root, ret);
1e144fb8
OS
10088 add_block_group_free_space(trans, root->fs_info, block_group);
10089 /* already aborted the transaction if it failed. */
c92f6be3
FM
10090next:
10091 list_del_init(&block_group->bg_list);
ea658bad 10092 }
d9a0540a 10093 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10094}
10095
6324fbf3
CM
10096int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10097 struct btrfs_root *root, u64 bytes_used,
e17cade2 10098 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10099 u64 size)
10100{
10101 int ret;
6324fbf3
CM
10102 struct btrfs_root *extent_root;
10103 struct btrfs_block_group_cache *cache;
6324fbf3
CM
10104
10105 extent_root = root->fs_info->extent_root;
6324fbf3 10106
995946dd 10107 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10108
920e4a58 10109 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10110 if (!cache)
10111 return -ENOMEM;
34d52cb6 10112
6324fbf3 10113 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10114 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10115 btrfs_set_block_group_flags(&cache->item, type);
10116
920e4a58 10117 cache->flags = type;
11833d66 10118 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10119 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10120 cache->needs_free_space = 1;
835d974f
JB
10121 ret = exclude_super_stripes(root, cache);
10122 if (ret) {
10123 /*
10124 * We may have excluded something, so call this just in
10125 * case.
10126 */
10127 free_excluded_extents(root, cache);
920e4a58 10128 btrfs_put_block_group(cache);
835d974f
JB
10129 return ret;
10130 }
96303081 10131
817d52f8
JB
10132 add_new_free_space(cache, root->fs_info, chunk_offset,
10133 chunk_offset + size);
10134
11833d66
YZ
10135 free_excluded_extents(root, cache);
10136
d0bd4560
JB
10137#ifdef CONFIG_BTRFS_DEBUG
10138 if (btrfs_should_fragment_free_space(root, cache)) {
10139 u64 new_bytes_used = size - bytes_used;
10140
10141 bytes_used += new_bytes_used >> 1;
10142 fragment_free_space(root, cache);
10143 }
10144#endif
2e6e5183
FM
10145 /*
10146 * Call to ensure the corresponding space_info object is created and
10147 * assigned to our block group, but don't update its counters just yet.
10148 * We want our bg to be added to the rbtree with its ->space_info set.
10149 */
10150 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10151 &cache->space_info);
10152 if (ret) {
10153 btrfs_remove_free_space_cache(cache);
10154 btrfs_put_block_group(cache);
10155 return ret;
10156 }
10157
8c579fe7
JB
10158 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10159 if (ret) {
10160 btrfs_remove_free_space_cache(cache);
10161 btrfs_put_block_group(cache);
10162 return ret;
10163 }
10164
2e6e5183
FM
10165 /*
10166 * Now that our block group has its ->space_info set and is inserted in
10167 * the rbtree, update the space info's counters.
10168 */
6324fbf3
CM
10169 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10170 &cache->space_info);
8c579fe7
JB
10171 if (ret) {
10172 btrfs_remove_free_space_cache(cache);
10173 spin_lock(&root->fs_info->block_group_cache_lock);
10174 rb_erase(&cache->cache_node,
10175 &root->fs_info->block_group_cache_tree);
01eacb27 10176 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10177 spin_unlock(&root->fs_info->block_group_cache_lock);
10178 btrfs_put_block_group(cache);
10179 return ret;
10180 }
c7c144db 10181 update_global_block_rsv(root->fs_info);
1b2da372
JB
10182
10183 spin_lock(&cache->space_info->lock);
f0486c68 10184 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
10185 spin_unlock(&cache->space_info->lock);
10186
b742bb82 10187 __link_block_group(cache->space_info, cache);
6324fbf3 10188
47ab2a6c 10189 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10190
d18a2c44 10191 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 10192
6324fbf3
CM
10193 return 0;
10194}
1a40e23b 10195
10ea00f5
ID
10196static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10197{
899c81ea
ID
10198 u64 extra_flags = chunk_to_extended(flags) &
10199 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10200
de98ced9 10201 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10202 if (flags & BTRFS_BLOCK_GROUP_DATA)
10203 fs_info->avail_data_alloc_bits &= ~extra_flags;
10204 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10205 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10206 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10207 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10208 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10209}
10210
1a40e23b 10211int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10212 struct btrfs_root *root, u64 group_start,
10213 struct extent_map *em)
1a40e23b
ZY
10214{
10215 struct btrfs_path *path;
10216 struct btrfs_block_group_cache *block_group;
44fb5511 10217 struct btrfs_free_cluster *cluster;
0af3d00b 10218 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10219 struct btrfs_key key;
0af3d00b 10220 struct inode *inode;
c1895442 10221 struct kobject *kobj = NULL;
1a40e23b 10222 int ret;
10ea00f5 10223 int index;
89a55897 10224 int factor;
4f69cb98 10225 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10226 bool remove_em;
1a40e23b 10227
1a40e23b
ZY
10228 root = root->fs_info->extent_root;
10229
10230 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10231 BUG_ON(!block_group);
c146afad 10232 BUG_ON(!block_group->ro);
1a40e23b 10233
9f7c43c9 10234 /*
10235 * Free the reserved super bytes from this block group before
10236 * remove it.
10237 */
10238 free_excluded_extents(root, block_group);
10239
1a40e23b 10240 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10241 index = get_block_group_index(block_group);
89a55897
JB
10242 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10243 BTRFS_BLOCK_GROUP_RAID1 |
10244 BTRFS_BLOCK_GROUP_RAID10))
10245 factor = 2;
10246 else
10247 factor = 1;
1a40e23b 10248
44fb5511
CM
10249 /* make sure this block group isn't part of an allocation cluster */
10250 cluster = &root->fs_info->data_alloc_cluster;
10251 spin_lock(&cluster->refill_lock);
10252 btrfs_return_cluster_to_free_space(block_group, cluster);
10253 spin_unlock(&cluster->refill_lock);
10254
10255 /*
10256 * make sure this block group isn't part of a metadata
10257 * allocation cluster
10258 */
10259 cluster = &root->fs_info->meta_alloc_cluster;
10260 spin_lock(&cluster->refill_lock);
10261 btrfs_return_cluster_to_free_space(block_group, cluster);
10262 spin_unlock(&cluster->refill_lock);
10263
1a40e23b 10264 path = btrfs_alloc_path();
d8926bb3
MF
10265 if (!path) {
10266 ret = -ENOMEM;
10267 goto out;
10268 }
1a40e23b 10269
1bbc621e
CM
10270 /*
10271 * get the inode first so any iput calls done for the io_list
10272 * aren't the final iput (no unlinks allowed now)
10273 */
10b2f34d 10274 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10275
10276 mutex_lock(&trans->transaction->cache_write_mutex);
10277 /*
10278 * make sure our free spache cache IO is done before remove the
10279 * free space inode
10280 */
10281 spin_lock(&trans->transaction->dirty_bgs_lock);
10282 if (!list_empty(&block_group->io_list)) {
10283 list_del_init(&block_group->io_list);
10284
10285 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10286
10287 spin_unlock(&trans->transaction->dirty_bgs_lock);
10288 btrfs_wait_cache_io(root, trans, block_group,
10289 &block_group->io_ctl, path,
10290 block_group->key.objectid);
10291 btrfs_put_block_group(block_group);
10292 spin_lock(&trans->transaction->dirty_bgs_lock);
10293 }
10294
10295 if (!list_empty(&block_group->dirty_list)) {
10296 list_del_init(&block_group->dirty_list);
10297 btrfs_put_block_group(block_group);
10298 }
10299 spin_unlock(&trans->transaction->dirty_bgs_lock);
10300 mutex_unlock(&trans->transaction->cache_write_mutex);
10301
0af3d00b 10302 if (!IS_ERR(inode)) {
b532402e 10303 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10304 if (ret) {
10305 btrfs_add_delayed_iput(inode);
10306 goto out;
10307 }
0af3d00b
JB
10308 clear_nlink(inode);
10309 /* One for the block groups ref */
10310 spin_lock(&block_group->lock);
10311 if (block_group->iref) {
10312 block_group->iref = 0;
10313 block_group->inode = NULL;
10314 spin_unlock(&block_group->lock);
10315 iput(inode);
10316 } else {
10317 spin_unlock(&block_group->lock);
10318 }
10319 /* One for our lookup ref */
455757c3 10320 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10321 }
10322
10323 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10324 key.offset = block_group->key.objectid;
10325 key.type = 0;
10326
10327 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10328 if (ret < 0)
10329 goto out;
10330 if (ret > 0)
b3b4aa74 10331 btrfs_release_path(path);
0af3d00b
JB
10332 if (ret == 0) {
10333 ret = btrfs_del_item(trans, tree_root, path);
10334 if (ret)
10335 goto out;
b3b4aa74 10336 btrfs_release_path(path);
0af3d00b
JB
10337 }
10338
3dfdb934 10339 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10340 rb_erase(&block_group->cache_node,
10341 &root->fs_info->block_group_cache_tree);
292cbd51 10342 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10343
10344 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10345 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10346 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10347
80eb234a 10348 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10349 /*
10350 * we must use list_del_init so people can check to see if they
10351 * are still on the list after taking the semaphore
10352 */
10353 list_del_init(&block_group->list);
6ab0a202 10354 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10355 kobj = block_group->space_info->block_group_kobjs[index];
10356 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10357 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10358 }
80eb234a 10359 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10360 if (kobj) {
10361 kobject_del(kobj);
10362 kobject_put(kobj);
10363 }
1a40e23b 10364
4f69cb98
FM
10365 if (block_group->has_caching_ctl)
10366 caching_ctl = get_caching_control(block_group);
817d52f8 10367 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10368 wait_block_group_cache_done(block_group);
4f69cb98
FM
10369 if (block_group->has_caching_ctl) {
10370 down_write(&root->fs_info->commit_root_sem);
10371 if (!caching_ctl) {
10372 struct btrfs_caching_control *ctl;
10373
10374 list_for_each_entry(ctl,
10375 &root->fs_info->caching_block_groups, list)
10376 if (ctl->block_group == block_group) {
10377 caching_ctl = ctl;
10378 atomic_inc(&caching_ctl->count);
10379 break;
10380 }
10381 }
10382 if (caching_ctl)
10383 list_del_init(&caching_ctl->list);
10384 up_write(&root->fs_info->commit_root_sem);
10385 if (caching_ctl) {
10386 /* Once for the caching bgs list and once for us. */
10387 put_caching_control(caching_ctl);
10388 put_caching_control(caching_ctl);
10389 }
10390 }
817d52f8 10391
ce93ec54
JB
10392 spin_lock(&trans->transaction->dirty_bgs_lock);
10393 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10394 WARN_ON(1);
10395 }
10396 if (!list_empty(&block_group->io_list)) {
10397 WARN_ON(1);
ce93ec54
JB
10398 }
10399 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10400 btrfs_remove_free_space_cache(block_group);
10401
c146afad 10402 spin_lock(&block_group->space_info->lock);
75c68e9f 10403 list_del_init(&block_group->ro_list);
18d018ad
ZL
10404
10405 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10406 WARN_ON(block_group->space_info->total_bytes
10407 < block_group->key.offset);
10408 WARN_ON(block_group->space_info->bytes_readonly
10409 < block_group->key.offset);
10410 WARN_ON(block_group->space_info->disk_total
10411 < block_group->key.offset * factor);
10412 }
c146afad
YZ
10413 block_group->space_info->total_bytes -= block_group->key.offset;
10414 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10415 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10416
c146afad 10417 spin_unlock(&block_group->space_info->lock);
283bb197 10418
0af3d00b
JB
10419 memcpy(&key, &block_group->key, sizeof(key));
10420
04216820 10421 lock_chunks(root);
495e64f4
FM
10422 if (!list_empty(&em->list)) {
10423 /* We're in the transaction->pending_chunks list. */
10424 free_extent_map(em);
10425 }
04216820
FM
10426 spin_lock(&block_group->lock);
10427 block_group->removed = 1;
10428 /*
10429 * At this point trimming can't start on this block group, because we
10430 * removed the block group from the tree fs_info->block_group_cache_tree
10431 * so no one can't find it anymore and even if someone already got this
10432 * block group before we removed it from the rbtree, they have already
10433 * incremented block_group->trimming - if they didn't, they won't find
10434 * any free space entries because we already removed them all when we
10435 * called btrfs_remove_free_space_cache().
10436 *
10437 * And we must not remove the extent map from the fs_info->mapping_tree
10438 * to prevent the same logical address range and physical device space
10439 * ranges from being reused for a new block group. This is because our
10440 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10441 * completely transactionless, so while it is trimming a range the
10442 * currently running transaction might finish and a new one start,
10443 * allowing for new block groups to be created that can reuse the same
10444 * physical device locations unless we take this special care.
e33e17ee
JM
10445 *
10446 * There may also be an implicit trim operation if the file system
10447 * is mounted with -odiscard. The same protections must remain
10448 * in place until the extents have been discarded completely when
10449 * the transaction commit has completed.
04216820
FM
10450 */
10451 remove_em = (atomic_read(&block_group->trimming) == 0);
10452 /*
10453 * Make sure a trimmer task always sees the em in the pinned_chunks list
10454 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10455 * before checking block_group->removed).
10456 */
10457 if (!remove_em) {
10458 /*
10459 * Our em might be in trans->transaction->pending_chunks which
10460 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10461 * and so is the fs_info->pinned_chunks list.
10462 *
10463 * So at this point we must be holding the chunk_mutex to avoid
10464 * any races with chunk allocation (more specifically at
10465 * volumes.c:contains_pending_extent()), to ensure it always
10466 * sees the em, either in the pending_chunks list or in the
10467 * pinned_chunks list.
10468 */
10469 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10470 }
10471 spin_unlock(&block_group->lock);
04216820
FM
10472
10473 if (remove_em) {
10474 struct extent_map_tree *em_tree;
10475
10476 em_tree = &root->fs_info->mapping_tree.map_tree;
10477 write_lock(&em_tree->lock);
8dbcd10f
FM
10478 /*
10479 * The em might be in the pending_chunks list, so make sure the
10480 * chunk mutex is locked, since remove_extent_mapping() will
10481 * delete us from that list.
10482 */
04216820
FM
10483 remove_extent_mapping(em_tree, em);
10484 write_unlock(&em_tree->lock);
10485 /* once for the tree */
10486 free_extent_map(em);
10487 }
10488
8dbcd10f
FM
10489 unlock_chunks(root);
10490
1e144fb8
OS
10491 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10492 if (ret)
10493 goto out;
10494
fa9c0d79
CM
10495 btrfs_put_block_group(block_group);
10496 btrfs_put_block_group(block_group);
1a40e23b
ZY
10497
10498 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10499 if (ret > 0)
10500 ret = -EIO;
10501 if (ret < 0)
10502 goto out;
10503
10504 ret = btrfs_del_item(trans, root, path);
10505out:
10506 btrfs_free_path(path);
10507 return ret;
10508}
acce952b 10509
8eab77ff 10510struct btrfs_trans_handle *
7fd01182
FM
10511btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10512 const u64 chunk_offset)
8eab77ff 10513{
7fd01182
FM
10514 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10515 struct extent_map *em;
10516 struct map_lookup *map;
10517 unsigned int num_items;
10518
10519 read_lock(&em_tree->lock);
10520 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10521 read_unlock(&em_tree->lock);
10522 ASSERT(em && em->start == chunk_offset);
10523
8eab77ff 10524 /*
7fd01182
FM
10525 * We need to reserve 3 + N units from the metadata space info in order
10526 * to remove a block group (done at btrfs_remove_chunk() and at
10527 * btrfs_remove_block_group()), which are used for:
10528 *
8eab77ff
FM
10529 * 1 unit for adding the free space inode's orphan (located in the tree
10530 * of tree roots).
7fd01182
FM
10531 * 1 unit for deleting the block group item (located in the extent
10532 * tree).
10533 * 1 unit for deleting the free space item (located in tree of tree
10534 * roots).
10535 * N units for deleting N device extent items corresponding to each
10536 * stripe (located in the device tree).
10537 *
10538 * In order to remove a block group we also need to reserve units in the
10539 * system space info in order to update the chunk tree (update one or
10540 * more device items and remove one chunk item), but this is done at
10541 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10542 */
95617d69 10543 map = em->map_lookup;
7fd01182
FM
10544 num_items = 3 + map->num_stripes;
10545 free_extent_map(em);
10546
8eab77ff 10547 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10548 num_items, 1);
8eab77ff
FM
10549}
10550
47ab2a6c
JB
10551/*
10552 * Process the unused_bgs list and remove any that don't have any allocated
10553 * space inside of them.
10554 */
10555void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10556{
10557 struct btrfs_block_group_cache *block_group;
10558 struct btrfs_space_info *space_info;
10559 struct btrfs_root *root = fs_info->extent_root;
10560 struct btrfs_trans_handle *trans;
10561 int ret = 0;
10562
10563 if (!fs_info->open)
10564 return;
10565
10566 spin_lock(&fs_info->unused_bgs_lock);
10567 while (!list_empty(&fs_info->unused_bgs)) {
10568 u64 start, end;
e33e17ee 10569 int trimming;
47ab2a6c
JB
10570
10571 block_group = list_first_entry(&fs_info->unused_bgs,
10572 struct btrfs_block_group_cache,
10573 bg_list);
47ab2a6c 10574 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10575
10576 space_info = block_group->space_info;
10577
47ab2a6c
JB
10578 if (ret || btrfs_mixed_space_info(space_info)) {
10579 btrfs_put_block_group(block_group);
10580 continue;
10581 }
10582 spin_unlock(&fs_info->unused_bgs_lock);
10583
d5f2e33b 10584 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10585
47ab2a6c
JB
10586 /* Don't want to race with allocators so take the groups_sem */
10587 down_write(&space_info->groups_sem);
10588 spin_lock(&block_group->lock);
10589 if (block_group->reserved ||
10590 btrfs_block_group_used(&block_group->item) ||
aefbe9a6
ZL
10591 block_group->ro ||
10592 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10593 /*
10594 * We want to bail if we made new allocations or have
10595 * outstanding allocations in this block group. We do
10596 * the ro check in case balance is currently acting on
10597 * this block group.
10598 */
10599 spin_unlock(&block_group->lock);
10600 up_write(&space_info->groups_sem);
10601 goto next;
10602 }
10603 spin_unlock(&block_group->lock);
10604
10605 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10606 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10607 up_write(&space_info->groups_sem);
10608 if (ret < 0) {
10609 ret = 0;
10610 goto next;
10611 }
10612
10613 /*
10614 * Want to do this before we do anything else so we can recover
10615 * properly if we fail to join the transaction.
10616 */
7fd01182
FM
10617 trans = btrfs_start_trans_remove_block_group(fs_info,
10618 block_group->key.objectid);
47ab2a6c 10619 if (IS_ERR(trans)) {
868f401a 10620 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10621 ret = PTR_ERR(trans);
10622 goto next;
10623 }
10624
10625 /*
10626 * We could have pending pinned extents for this block group,
10627 * just delete them, we don't care about them anymore.
10628 */
10629 start = block_group->key.objectid;
10630 end = start + block_group->key.offset - 1;
d4b450cd
FM
10631 /*
10632 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10633 * btrfs_finish_extent_commit(). If we are at transaction N,
10634 * another task might be running finish_extent_commit() for the
10635 * previous transaction N - 1, and have seen a range belonging
10636 * to the block group in freed_extents[] before we were able to
10637 * clear the whole block group range from freed_extents[]. This
10638 * means that task can lookup for the block group after we
10639 * unpinned it from freed_extents[] and removed it, leading to
10640 * a BUG_ON() at btrfs_unpin_extent_range().
10641 */
10642 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10643 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10644 EXTENT_DIRTY);
758eb51e 10645 if (ret) {
d4b450cd 10646 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10647 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10648 goto end_trans;
10649 }
10650 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10651 EXTENT_DIRTY);
758eb51e 10652 if (ret) {
d4b450cd 10653 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10654 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10655 goto end_trans;
10656 }
d4b450cd 10657 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10658
10659 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10660 spin_lock(&space_info->lock);
10661 spin_lock(&block_group->lock);
10662
10663 space_info->bytes_pinned -= block_group->pinned;
10664 space_info->bytes_readonly += block_group->pinned;
10665 percpu_counter_add(&space_info->total_bytes_pinned,
10666 -block_group->pinned);
47ab2a6c
JB
10667 block_group->pinned = 0;
10668
c30666d4
ZL
10669 spin_unlock(&block_group->lock);
10670 spin_unlock(&space_info->lock);
10671
e33e17ee
JM
10672 /* DISCARD can flip during remount */
10673 trimming = btrfs_test_opt(root, DISCARD);
10674
10675 /* Implicit trim during transaction commit. */
10676 if (trimming)
10677 btrfs_get_block_group_trimming(block_group);
10678
47ab2a6c
JB
10679 /*
10680 * Btrfs_remove_chunk will abort the transaction if things go
10681 * horribly wrong.
10682 */
10683 ret = btrfs_remove_chunk(trans, root,
10684 block_group->key.objectid);
e33e17ee
JM
10685
10686 if (ret) {
10687 if (trimming)
10688 btrfs_put_block_group_trimming(block_group);
10689 goto end_trans;
10690 }
10691
10692 /*
10693 * If we're not mounted with -odiscard, we can just forget
10694 * about this block group. Otherwise we'll need to wait
10695 * until transaction commit to do the actual discard.
10696 */
10697 if (trimming) {
348a0013
FM
10698 spin_lock(&fs_info->unused_bgs_lock);
10699 /*
10700 * A concurrent scrub might have added us to the list
10701 * fs_info->unused_bgs, so use a list_move operation
10702 * to add the block group to the deleted_bgs list.
10703 */
e33e17ee
JM
10704 list_move(&block_group->bg_list,
10705 &trans->transaction->deleted_bgs);
348a0013 10706 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10707 btrfs_get_block_group(block_group);
10708 }
758eb51e 10709end_trans:
47ab2a6c
JB
10710 btrfs_end_transaction(trans, root);
10711next:
d5f2e33b 10712 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10713 btrfs_put_block_group(block_group);
10714 spin_lock(&fs_info->unused_bgs_lock);
10715 }
10716 spin_unlock(&fs_info->unused_bgs_lock);
10717}
10718
c59021f8 10719int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10720{
10721 struct btrfs_space_info *space_info;
1aba86d6 10722 struct btrfs_super_block *disk_super;
10723 u64 features;
10724 u64 flags;
10725 int mixed = 0;
c59021f8 10726 int ret;
10727
6c41761f 10728 disk_super = fs_info->super_copy;
1aba86d6 10729 if (!btrfs_super_root(disk_super))
0dc924c5 10730 return -EINVAL;
c59021f8 10731
1aba86d6 10732 features = btrfs_super_incompat_flags(disk_super);
10733 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10734 mixed = 1;
c59021f8 10735
1aba86d6 10736 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10737 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10738 if (ret)
1aba86d6 10739 goto out;
c59021f8 10740
1aba86d6 10741 if (mixed) {
10742 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10743 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10744 } else {
10745 flags = BTRFS_BLOCK_GROUP_METADATA;
10746 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10747 if (ret)
10748 goto out;
10749
10750 flags = BTRFS_BLOCK_GROUP_DATA;
10751 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10752 }
10753out:
c59021f8 10754 return ret;
10755}
10756
acce952b 10757int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10758{
678886bd 10759 return unpin_extent_range(root, start, end, false);
acce952b 10760}
10761
499f377f
JM
10762/*
10763 * It used to be that old block groups would be left around forever.
10764 * Iterating over them would be enough to trim unused space. Since we
10765 * now automatically remove them, we also need to iterate over unallocated
10766 * space.
10767 *
10768 * We don't want a transaction for this since the discard may take a
10769 * substantial amount of time. We don't require that a transaction be
10770 * running, but we do need to take a running transaction into account
10771 * to ensure that we're not discarding chunks that were released in
10772 * the current transaction.
10773 *
10774 * Holding the chunks lock will prevent other threads from allocating
10775 * or releasing chunks, but it won't prevent a running transaction
10776 * from committing and releasing the memory that the pending chunks
10777 * list head uses. For that, we need to take a reference to the
10778 * transaction.
10779 */
10780static int btrfs_trim_free_extents(struct btrfs_device *device,
10781 u64 minlen, u64 *trimmed)
10782{
10783 u64 start = 0, len = 0;
10784 int ret;
10785
10786 *trimmed = 0;
10787
10788 /* Not writeable = nothing to do. */
10789 if (!device->writeable)
10790 return 0;
10791
10792 /* No free space = nothing to do. */
10793 if (device->total_bytes <= device->bytes_used)
10794 return 0;
10795
10796 ret = 0;
10797
10798 while (1) {
10799 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10800 struct btrfs_transaction *trans;
10801 u64 bytes;
10802
10803 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10804 if (ret)
10805 return ret;
10806
10807 down_read(&fs_info->commit_root_sem);
10808
10809 spin_lock(&fs_info->trans_lock);
10810 trans = fs_info->running_transaction;
10811 if (trans)
10812 atomic_inc(&trans->use_count);
10813 spin_unlock(&fs_info->trans_lock);
10814
10815 ret = find_free_dev_extent_start(trans, device, minlen, start,
10816 &start, &len);
10817 if (trans)
10818 btrfs_put_transaction(trans);
10819
10820 if (ret) {
10821 up_read(&fs_info->commit_root_sem);
10822 mutex_unlock(&fs_info->chunk_mutex);
10823 if (ret == -ENOSPC)
10824 ret = 0;
10825 break;
10826 }
10827
10828 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10829 up_read(&fs_info->commit_root_sem);
10830 mutex_unlock(&fs_info->chunk_mutex);
10831
10832 if (ret)
10833 break;
10834
10835 start += len;
10836 *trimmed += bytes;
10837
10838 if (fatal_signal_pending(current)) {
10839 ret = -ERESTARTSYS;
10840 break;
10841 }
10842
10843 cond_resched();
10844 }
10845
10846 return ret;
10847}
10848
f7039b1d
LD
10849int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10850{
10851 struct btrfs_fs_info *fs_info = root->fs_info;
10852 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10853 struct btrfs_device *device;
10854 struct list_head *devices;
f7039b1d
LD
10855 u64 group_trimmed;
10856 u64 start;
10857 u64 end;
10858 u64 trimmed = 0;
2cac13e4 10859 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10860 int ret = 0;
10861
2cac13e4
LB
10862 /*
10863 * try to trim all FS space, our block group may start from non-zero.
10864 */
10865 if (range->len == total_bytes)
10866 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10867 else
10868 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10869
10870 while (cache) {
10871 if (cache->key.objectid >= (range->start + range->len)) {
10872 btrfs_put_block_group(cache);
10873 break;
10874 }
10875
10876 start = max(range->start, cache->key.objectid);
10877 end = min(range->start + range->len,
10878 cache->key.objectid + cache->key.offset);
10879
10880 if (end - start >= range->minlen) {
10881 if (!block_group_cache_done(cache)) {
f6373bf3 10882 ret = cache_block_group(cache, 0);
1be41b78
JB
10883 if (ret) {
10884 btrfs_put_block_group(cache);
10885 break;
10886 }
10887 ret = wait_block_group_cache_done(cache);
10888 if (ret) {
10889 btrfs_put_block_group(cache);
10890 break;
10891 }
f7039b1d
LD
10892 }
10893 ret = btrfs_trim_block_group(cache,
10894 &group_trimmed,
10895 start,
10896 end,
10897 range->minlen);
10898
10899 trimmed += group_trimmed;
10900 if (ret) {
10901 btrfs_put_block_group(cache);
10902 break;
10903 }
10904 }
10905
10906 cache = next_block_group(fs_info->tree_root, cache);
10907 }
10908
499f377f
JM
10909 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10910 devices = &root->fs_info->fs_devices->alloc_list;
10911 list_for_each_entry(device, devices, dev_alloc_list) {
10912 ret = btrfs_trim_free_extents(device, range->minlen,
10913 &group_trimmed);
10914 if (ret)
10915 break;
10916
10917 trimmed += group_trimmed;
10918 }
10919 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10920
f7039b1d
LD
10921 range->len = trimmed;
10922 return ret;
10923}
8257b2dc
MX
10924
10925/*
9ea24bbe
FM
10926 * btrfs_{start,end}_write_no_snapshoting() are similar to
10927 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10928 * data into the page cache through nocow before the subvolume is snapshoted,
10929 * but flush the data into disk after the snapshot creation, or to prevent
10930 * operations while snapshoting is ongoing and that cause the snapshot to be
10931 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10932 */
9ea24bbe 10933void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10934{
10935 percpu_counter_dec(&root->subv_writers->counter);
10936 /*
a83342aa 10937 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10938 */
10939 smp_mb();
10940 if (waitqueue_active(&root->subv_writers->wait))
10941 wake_up(&root->subv_writers->wait);
10942}
10943
9ea24bbe 10944int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10945{
ee39b432 10946 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10947 return 0;
10948
10949 percpu_counter_inc(&root->subv_writers->counter);
10950 /*
10951 * Make sure counter is updated before we check for snapshot creation.
10952 */
10953 smp_mb();
ee39b432 10954 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10955 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10956 return 0;
10957 }
10958 return 1;
10959}
0bc19f90
ZL
10960
10961static int wait_snapshoting_atomic_t(atomic_t *a)
10962{
10963 schedule();
10964 return 0;
10965}
10966
10967void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10968{
10969 while (true) {
10970 int ret;
10971
10972 ret = btrfs_start_write_no_snapshoting(root);
10973 if (ret)
10974 break;
10975 wait_on_atomic_t(&root->will_be_snapshoted,
10976 wait_snapshoting_atomic_t,
10977 TASK_UNINTERRUPTIBLE);
10978 }
10979}
This page took 1.897707 seconds and 5 git commands to generate.