btrfs: Fix leaking bytes_may_use after hitting EDQUOTA
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
ce93ec54
JB
63static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
5d4f98a2
YZ
66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
86 struct btrfs_root *extent_root, u64 flags,
87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
9ed74f2d
JB
90static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
91 int dump_block_groups);
4824f1f4 92static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 93 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
94static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 num_bytes, int delalloc);
5d80366e
JB
96static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
97 u64 num_bytes);
48a3b636
ES
98int btrfs_pin_extent(struct btrfs_root *root,
99 u64 bytenr, u64 num_bytes, int reserved);
957780eb
JB
100static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
6a63209f 110
817d52f8
JB
111static noinline int
112block_group_cache_done(struct btrfs_block_group_cache *cache)
113{
114 smp_mb();
36cce922
JB
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
117}
118
0f9dd46c
JB
119static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120{
121 return (cache->flags & bits) == bits;
122}
123
758f2dfc 124void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
125{
126 atomic_inc(&cache->count);
127}
128
129void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130{
f0486c68
YZ
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
34d52cb6 134 kfree(cache->free_space_ctl);
11dfe35a 135 kfree(cache);
f0486c68 136 }
11dfe35a
JB
137}
138
0f9dd46c
JB
139/*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
b2950863 143static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
144 struct btrfs_block_group_cache *block_group)
145{
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
a1897fdd
LB
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
0f9dd46c
JB
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177}
178
179/*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183static struct btrfs_block_group_cache *
184block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186{
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
a1897fdd 215 if (ret) {
11dfe35a 216 btrfs_get_block_group(ret);
a1897fdd
LB
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
0f9dd46c
JB
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223}
224
11833d66
YZ
225static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
817d52f8 227{
11833d66
YZ
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 230 start, end, EXTENT_UPTODATE);
11833d66 231 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
11833d66
YZ
233 return 0;
234}
817d52f8 235
11833d66
YZ
236static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
238{
239 u64 start, end;
817d52f8 240
11833d66
YZ
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
244 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 245 start, end, EXTENT_UPTODATE);
11833d66 246 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 247 start, end, EXTENT_UPTODATE);
817d52f8
JB
248}
249
11833d66
YZ
250static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
817d52f8 252{
817d52f8
JB
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
06b2331f
YZ
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
262 stripe_len);
835d974f
JB
263 if (ret)
264 return ret;
06b2331f
YZ
265 }
266
817d52f8
JB
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
327 if (atomic_dec_and_test(&ctl->count))
328 kfree(ctl);
329}
330
d0bd4560
JB
331#ifdef CONFIG_BTRFS_DEBUG
332static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
334{
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 root->nodesize : root->sectorsize;
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
bab39bf9
JB
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
bab39bf9 399 struct btrfs_root *extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
bab39bf9
JB
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
412
e37c9e69
CM
413 path = btrfs_alloc_path();
414 if (!path)
73fa48b6 415 return -ENOMEM;
7d7d6068 416
817d52f8 417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 418
d0bd4560
JB
419#ifdef CONFIG_BTRFS_DEBUG
420 /*
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
423 * the free space.
424 */
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
426 wakeup = false;
427#endif
5cd57b2c 428 /*
817d52f8
JB
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
5cd57b2c
CM
433 */
434 path->skip_locking = 1;
817d52f8 435 path->search_commit_root = 1;
e4058b54 436 path->reada = READA_FORWARD;
817d52f8 437
e4404d6e 438 key.objectid = last;
e37c9e69 439 key.offset = 0;
11833d66 440 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 441
52ee28d2 442next:
11833d66 443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 444 if (ret < 0)
73fa48b6 445 goto out;
a512bbf8 446
11833d66
YZ
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
449
d397712b 450 while (1) {
7841cb28 451 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 452 last = (u64)-1;
817d52f8 453 break;
f25784b3 454 }
817d52f8 455
11833d66
YZ
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 } else {
459 ret = find_next_key(path, 0, &key);
460 if (ret)
e37c9e69 461 break;
817d52f8 462
c9ea7b24 463 if (need_resched() ||
9e351cc8 464 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
465 if (wakeup)
466 caching_ctl->progress = last;
ff5714cc 467 btrfs_release_path(path);
9e351cc8 468 up_read(&fs_info->commit_root_sem);
589d8ade 469 mutex_unlock(&caching_ctl->mutex);
11833d66 470 cond_resched();
73fa48b6
OS
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
473 goto next;
589d8ade 474 }
0a3896d0
JB
475
476 ret = btrfs_next_leaf(extent_root, path);
477 if (ret < 0)
73fa48b6 478 goto out;
0a3896d0
JB
479 if (ret)
480 break;
589d8ade
JB
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 continue;
11833d66 484 }
817d52f8 485
52ee28d2
LB
486 if (key.objectid < last) {
487 key.objectid = last;
488 key.offset = 0;
489 key.type = BTRFS_EXTENT_ITEM_KEY;
490
d0bd4560
JB
491 if (wakeup)
492 caching_ctl->progress = last;
52ee28d2
LB
493 btrfs_release_path(path);
494 goto next;
495 }
496
11833d66
YZ
497 if (key.objectid < block_group->key.objectid) {
498 path->slots[0]++;
817d52f8 499 continue;
e37c9e69 500 }
0f9dd46c 501
e37c9e69 502 if (key.objectid >= block_group->key.objectid +
0f9dd46c 503 block_group->key.offset)
e37c9e69 504 break;
7d7d6068 505
3173a18f
JB
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
508 total_found += add_new_free_space(block_group,
509 fs_info, last,
510 key.objectid);
3173a18f
JB
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
707e8a07 513 fs_info->tree_root->nodesize;
3173a18f
JB
514 else
515 last = key.objectid + key.offset;
817d52f8 516
73fa48b6 517 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 518 total_found = 0;
d0bd4560
JB
519 if (wakeup)
520 wake_up(&caching_ctl->wait);
11833d66 521 }
817d52f8 522 }
e37c9e69
CM
523 path->slots[0]++;
524 }
817d52f8 525 ret = 0;
e37c9e69 526
817d52f8
JB
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
11833d66 530 caching_ctl->progress = (u64)-1;
817d52f8 531
73fa48b6
OS
532out:
533 btrfs_free_path(path);
534 return ret;
535}
536
537static noinline void caching_thread(struct btrfs_work *work)
538{
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
b4570aa9 542 struct btrfs_root *extent_root;
73fa48b6
OS
543 int ret;
544
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
b4570aa9 548 extent_root = fs_info->extent_root;
73fa48b6
OS
549
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
552
1e144fb8
OS
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
555 else
556 ret = load_extent_tree_free(caching_ctl);
73fa48b6 557
817d52f8 558 spin_lock(&block_group->lock);
11833d66 559 block_group->caching_ctl = NULL;
73fa48b6 560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 561 spin_unlock(&block_group->lock);
0f9dd46c 562
d0bd4560
JB
563#ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 u64 bytes_used;
566
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
575 }
576#endif
577
578 caching_ctl->progress = (u64)-1;
11833d66 579
9e351cc8 580 up_read(&fs_info->commit_root_sem);
73fa48b6 581 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 582 mutex_unlock(&caching_ctl->mutex);
73fa48b6 583
11833d66
YZ
584 wake_up(&caching_ctl->wait);
585
586 put_caching_control(caching_ctl);
11dfe35a 587 btrfs_put_block_group(block_group);
817d52f8
JB
588}
589
9d66e233 590static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 591 int load_cache_only)
817d52f8 592{
291c7d2f 593 DEFINE_WAIT(wait);
11833d66
YZ
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
596 int ret = 0;
597
291c7d2f 598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
599 if (!caching_ctl)
600 return -ENOMEM;
291c7d2f
JB
601
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
291c7d2f
JB
610
611 spin_lock(&cache->lock);
612 /*
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
622 * another.
623 */
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
626
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
631
632 schedule();
633
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
637 }
638
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
641 kfree(caching_ctl);
11833d66 642 return 0;
291c7d2f
JB
643 }
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
11833d66 648
d53ba474 649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 650 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
651 ret = load_free_space_cache(fs_info, cache);
652
653 spin_lock(&cache->lock);
654 if (ret == 1) {
291c7d2f 655 cache->caching_ctl = NULL;
9d66e233
JB
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 658 caching_ctl->progress = (u64)-1;
9d66e233 659 } else {
291c7d2f
JB
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
663 } else {
664 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 665 cache->has_caching_ctl = 1;
291c7d2f 666 }
9d66e233
JB
667 }
668 spin_unlock(&cache->lock);
d0bd4560
JB
669#ifdef CONFIG_BTRFS_DEBUG
670 if (ret == 1 &&
671 btrfs_should_fragment_free_space(fs_info->extent_root,
672 cache)) {
673 u64 bytes_used;
674
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
683 }
684#endif
cb83b7b8
JB
685 mutex_unlock(&caching_ctl->mutex);
686
291c7d2f 687 wake_up(&caching_ctl->wait);
3c14874a 688 if (ret == 1) {
291c7d2f 689 put_caching_control(caching_ctl);
3c14874a 690 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 691 return 0;
3c14874a 692 }
291c7d2f
JB
693 } else {
694 /*
1e144fb8
OS
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
697 */
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
702 } else {
703 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 704 cache->has_caching_ctl = 1;
291c7d2f
JB
705 }
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
9d66e233
JB
708 }
709
291c7d2f
JB
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
11833d66 712 return 0;
817d52f8 713 }
817d52f8 714
9e351cc8 715 down_write(&fs_info->commit_root_sem);
291c7d2f 716 atomic_inc(&caching_ctl->count);
11833d66 717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 718 up_write(&fs_info->commit_root_sem);
11833d66 719
11dfe35a 720 btrfs_get_block_group(cache);
11833d66 721
e66f0bb1 722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 723
ef8bbdfe 724 return ret;
e37c9e69
CM
725}
726
0f9dd46c
JB
727/*
728 * return the block group that starts at or after bytenr
729 */
d397712b
CM
730static struct btrfs_block_group_cache *
731btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 732{
0f9dd46c 733 struct btrfs_block_group_cache *cache;
0ef3e66b 734
0f9dd46c 735 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 736
0f9dd46c 737 return cache;
0ef3e66b
CM
738}
739
0f9dd46c 740/*
9f55684c 741 * return the block group that contains the given bytenr
0f9dd46c 742 */
d397712b
CM
743struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
745 u64 bytenr)
be744175 746{
0f9dd46c 747 struct btrfs_block_group_cache *cache;
be744175 748
0f9dd46c 749 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 750
0f9dd46c 751 return cache;
be744175 752}
0b86a832 753
0f9dd46c
JB
754static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
755 u64 flags)
6324fbf3 756{
0f9dd46c 757 struct list_head *head = &info->space_info;
0f9dd46c 758 struct btrfs_space_info *found;
4184ea7f 759
52ba6929 760 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 761
4184ea7f
CM
762 rcu_read_lock();
763 list_for_each_entry_rcu(found, head, list) {
67377734 764 if (found->flags & flags) {
4184ea7f 765 rcu_read_unlock();
0f9dd46c 766 return found;
4184ea7f 767 }
0f9dd46c 768 }
4184ea7f 769 rcu_read_unlock();
0f9dd46c 770 return NULL;
6324fbf3
CM
771}
772
4184ea7f
CM
773/*
774 * after adding space to the filesystem, we need to clear the full flags
775 * on all the space infos.
776 */
777void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
778{
779 struct list_head *head = &info->space_info;
780 struct btrfs_space_info *found;
781
782 rcu_read_lock();
783 list_for_each_entry_rcu(found, head, list)
784 found->full = 0;
785 rcu_read_unlock();
786}
787
1a4ed8fd
FM
788/* simple helper to search for an existing data extent at a given offset */
789int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
790{
791 int ret;
792 struct btrfs_key key;
31840ae1 793 struct btrfs_path *path;
e02119d5 794
31840ae1 795 path = btrfs_alloc_path();
d8926bb3
MF
796 if (!path)
797 return -ENOMEM;
798
e02119d5
CM
799 key.objectid = start;
800 key.offset = len;
3173a18f 801 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
802 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
803 0, 0);
31840ae1 804 btrfs_free_path(path);
7bb86316
CM
805 return ret;
806}
807
a22285a6 808/*
3173a18f 809 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
810 *
811 * the head node for delayed ref is used to store the sum of all the
812 * reference count modifications queued up in the rbtree. the head
813 * node may also store the extent flags to set. This way you can check
814 * to see what the reference count and extent flags would be if all of
815 * the delayed refs are not processed.
816 */
817int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root, u64 bytenr,
3173a18f 819 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
820{
821 struct btrfs_delayed_ref_head *head;
822 struct btrfs_delayed_ref_root *delayed_refs;
823 struct btrfs_path *path;
824 struct btrfs_extent_item *ei;
825 struct extent_buffer *leaf;
826 struct btrfs_key key;
827 u32 item_size;
828 u64 num_refs;
829 u64 extent_flags;
830 int ret;
831
3173a18f
JB
832 /*
833 * If we don't have skinny metadata, don't bother doing anything
834 * different
835 */
836 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 837 offset = root->nodesize;
3173a18f
JB
838 metadata = 0;
839 }
840
a22285a6
YZ
841 path = btrfs_alloc_path();
842 if (!path)
843 return -ENOMEM;
844
a22285a6
YZ
845 if (!trans) {
846 path->skip_locking = 1;
847 path->search_commit_root = 1;
848 }
639eefc8
FDBM
849
850search_again:
851 key.objectid = bytenr;
852 key.offset = offset;
853 if (metadata)
854 key.type = BTRFS_METADATA_ITEM_KEY;
855 else
856 key.type = BTRFS_EXTENT_ITEM_KEY;
857
a22285a6
YZ
858 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
859 &key, path, 0, 0);
860 if (ret < 0)
861 goto out_free;
862
3173a18f 863 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
864 if (path->slots[0]) {
865 path->slots[0]--;
866 btrfs_item_key_to_cpu(path->nodes[0], &key,
867 path->slots[0]);
868 if (key.objectid == bytenr &&
869 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 870 key.offset == root->nodesize)
74be9510
FDBM
871 ret = 0;
872 }
3173a18f
JB
873 }
874
a22285a6
YZ
875 if (ret == 0) {
876 leaf = path->nodes[0];
877 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
878 if (item_size >= sizeof(*ei)) {
879 ei = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item);
881 num_refs = btrfs_extent_refs(leaf, ei);
882 extent_flags = btrfs_extent_flags(leaf, ei);
883 } else {
884#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
885 struct btrfs_extent_item_v0 *ei0;
886 BUG_ON(item_size != sizeof(*ei0));
887 ei0 = btrfs_item_ptr(leaf, path->slots[0],
888 struct btrfs_extent_item_v0);
889 num_refs = btrfs_extent_refs_v0(leaf, ei0);
890 /* FIXME: this isn't correct for data */
891 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
892#else
893 BUG();
894#endif
895 }
896 BUG_ON(num_refs == 0);
897 } else {
898 num_refs = 0;
899 extent_flags = 0;
900 ret = 0;
901 }
902
903 if (!trans)
904 goto out;
905
906 delayed_refs = &trans->transaction->delayed_refs;
907 spin_lock(&delayed_refs->lock);
908 head = btrfs_find_delayed_ref_head(trans, bytenr);
909 if (head) {
910 if (!mutex_trylock(&head->mutex)) {
911 atomic_inc(&head->node.refs);
912 spin_unlock(&delayed_refs->lock);
913
b3b4aa74 914 btrfs_release_path(path);
a22285a6 915
8cc33e5c
DS
916 /*
917 * Mutex was contended, block until it's released and try
918 * again
919 */
a22285a6
YZ
920 mutex_lock(&head->mutex);
921 mutex_unlock(&head->mutex);
922 btrfs_put_delayed_ref(&head->node);
639eefc8 923 goto search_again;
a22285a6 924 }
d7df2c79 925 spin_lock(&head->lock);
a22285a6
YZ
926 if (head->extent_op && head->extent_op->update_flags)
927 extent_flags |= head->extent_op->flags_to_set;
928 else
929 BUG_ON(num_refs == 0);
930
931 num_refs += head->node.ref_mod;
d7df2c79 932 spin_unlock(&head->lock);
a22285a6
YZ
933 mutex_unlock(&head->mutex);
934 }
935 spin_unlock(&delayed_refs->lock);
936out:
937 WARN_ON(num_refs == 0);
938 if (refs)
939 *refs = num_refs;
940 if (flags)
941 *flags = extent_flags;
942out_free:
943 btrfs_free_path(path);
944 return ret;
945}
946
d8d5f3e1
CM
947/*
948 * Back reference rules. Back refs have three main goals:
949 *
950 * 1) differentiate between all holders of references to an extent so that
951 * when a reference is dropped we can make sure it was a valid reference
952 * before freeing the extent.
953 *
954 * 2) Provide enough information to quickly find the holders of an extent
955 * if we notice a given block is corrupted or bad.
956 *
957 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
958 * maintenance. This is actually the same as #2, but with a slightly
959 * different use case.
960 *
5d4f98a2
YZ
961 * There are two kinds of back refs. The implicit back refs is optimized
962 * for pointers in non-shared tree blocks. For a given pointer in a block,
963 * back refs of this kind provide information about the block's owner tree
964 * and the pointer's key. These information allow us to find the block by
965 * b-tree searching. The full back refs is for pointers in tree blocks not
966 * referenced by their owner trees. The location of tree block is recorded
967 * in the back refs. Actually the full back refs is generic, and can be
968 * used in all cases the implicit back refs is used. The major shortcoming
969 * of the full back refs is its overhead. Every time a tree block gets
970 * COWed, we have to update back refs entry for all pointers in it.
971 *
972 * For a newly allocated tree block, we use implicit back refs for
973 * pointers in it. This means most tree related operations only involve
974 * implicit back refs. For a tree block created in old transaction, the
975 * only way to drop a reference to it is COW it. So we can detect the
976 * event that tree block loses its owner tree's reference and do the
977 * back refs conversion.
978 *
01327610 979 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
980 *
981 * The reference count of the block is one and the tree is the block's
982 * owner tree. Nothing to do in this case.
983 *
984 * The reference count of the block is one and the tree is not the
985 * block's owner tree. In this case, full back refs is used for pointers
986 * in the block. Remove these full back refs, add implicit back refs for
987 * every pointers in the new block.
988 *
989 * The reference count of the block is greater than one and the tree is
990 * the block's owner tree. In this case, implicit back refs is used for
991 * pointers in the block. Add full back refs for every pointers in the
992 * block, increase lower level extents' reference counts. The original
993 * implicit back refs are entailed to the new block.
994 *
995 * The reference count of the block is greater than one and the tree is
996 * not the block's owner tree. Add implicit back refs for every pointer in
997 * the new block, increase lower level extents' reference count.
998 *
999 * Back Reference Key composing:
1000 *
1001 * The key objectid corresponds to the first byte in the extent,
1002 * The key type is used to differentiate between types of back refs.
1003 * There are different meanings of the key offset for different types
1004 * of back refs.
1005 *
d8d5f3e1
CM
1006 * File extents can be referenced by:
1007 *
1008 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1009 * - different files inside a single subvolume
d8d5f3e1
CM
1010 * - different offsets inside a file (bookend extents in file.c)
1011 *
5d4f98a2 1012 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1013 *
1014 * - Objectid of the subvolume root
d8d5f3e1 1015 * - objectid of the file holding the reference
5d4f98a2
YZ
1016 * - original offset in the file
1017 * - how many bookend extents
d8d5f3e1 1018 *
5d4f98a2
YZ
1019 * The key offset for the implicit back refs is hash of the first
1020 * three fields.
d8d5f3e1 1021 *
5d4f98a2 1022 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1023 *
5d4f98a2 1024 * - number of pointers in the tree leaf
d8d5f3e1 1025 *
5d4f98a2
YZ
1026 * The key offset for the implicit back refs is the first byte of
1027 * the tree leaf
d8d5f3e1 1028 *
5d4f98a2
YZ
1029 * When a file extent is allocated, The implicit back refs is used.
1030 * the fields are filled in:
d8d5f3e1 1031 *
5d4f98a2 1032 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * When a file extent is removed file truncation, we find the
1035 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1036 *
5d4f98a2 1037 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1038 *
5d4f98a2 1039 * Btree extents can be referenced by:
d8d5f3e1 1040 *
5d4f98a2 1041 * - Different subvolumes
d8d5f3e1 1042 *
5d4f98a2
YZ
1043 * Both the implicit back refs and the full back refs for tree blocks
1044 * only consist of key. The key offset for the implicit back refs is
1045 * objectid of block's owner tree. The key offset for the full back refs
1046 * is the first byte of parent block.
d8d5f3e1 1047 *
5d4f98a2
YZ
1048 * When implicit back refs is used, information about the lowest key and
1049 * level of the tree block are required. These information are stored in
1050 * tree block info structure.
d8d5f3e1 1051 */
31840ae1 1052
5d4f98a2
YZ
1053#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1054static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1055 struct btrfs_root *root,
1056 struct btrfs_path *path,
1057 u64 owner, u32 extra_size)
7bb86316 1058{
5d4f98a2
YZ
1059 struct btrfs_extent_item *item;
1060 struct btrfs_extent_item_v0 *ei0;
1061 struct btrfs_extent_ref_v0 *ref0;
1062 struct btrfs_tree_block_info *bi;
1063 struct extent_buffer *leaf;
7bb86316 1064 struct btrfs_key key;
5d4f98a2
YZ
1065 struct btrfs_key found_key;
1066 u32 new_size = sizeof(*item);
1067 u64 refs;
1068 int ret;
1069
1070 leaf = path->nodes[0];
1071 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1072
1073 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1074 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_item_v0);
1076 refs = btrfs_extent_refs_v0(leaf, ei0);
1077
1078 if (owner == (u64)-1) {
1079 while (1) {
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 return ret;
79787eaa 1084 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1085 leaf = path->nodes[0];
1086 }
1087 btrfs_item_key_to_cpu(leaf, &found_key,
1088 path->slots[0]);
1089 BUG_ON(key.objectid != found_key.objectid);
1090 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1091 path->slots[0]++;
1092 continue;
1093 }
1094 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1095 struct btrfs_extent_ref_v0);
1096 owner = btrfs_ref_objectid_v0(leaf, ref0);
1097 break;
1098 }
1099 }
b3b4aa74 1100 btrfs_release_path(path);
5d4f98a2
YZ
1101
1102 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1103 new_size += sizeof(*bi);
1104
1105 new_size -= sizeof(*ei0);
1106 ret = btrfs_search_slot(trans, root, &key, path,
1107 new_size + extra_size, 1);
1108 if (ret < 0)
1109 return ret;
79787eaa 1110 BUG_ON(ret); /* Corruption */
5d4f98a2 1111
4b90c680 1112 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1113
1114 leaf = path->nodes[0];
1115 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1116 btrfs_set_extent_refs(leaf, item, refs);
1117 /* FIXME: get real generation */
1118 btrfs_set_extent_generation(leaf, item, 0);
1119 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1120 btrfs_set_extent_flags(leaf, item,
1121 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1122 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1123 bi = (struct btrfs_tree_block_info *)(item + 1);
1124 /* FIXME: get first key of the block */
1125 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1126 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1127 } else {
1128 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1129 }
1130 btrfs_mark_buffer_dirty(leaf);
1131 return 0;
1132}
1133#endif
1134
1135static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1136{
1137 u32 high_crc = ~(u32)0;
1138 u32 low_crc = ~(u32)0;
1139 __le64 lenum;
1140
1141 lenum = cpu_to_le64(root_objectid);
14a958e6 1142 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1143 lenum = cpu_to_le64(owner);
14a958e6 1144 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1145 lenum = cpu_to_le64(offset);
14a958e6 1146 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1147
1148 return ((u64)high_crc << 31) ^ (u64)low_crc;
1149}
1150
1151static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref)
1153{
1154 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1155 btrfs_extent_data_ref_objectid(leaf, ref),
1156 btrfs_extent_data_ref_offset(leaf, ref));
1157}
1158
1159static int match_extent_data_ref(struct extent_buffer *leaf,
1160 struct btrfs_extent_data_ref *ref,
1161 u64 root_objectid, u64 owner, u64 offset)
1162{
1163 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1164 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1165 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1166 return 0;
1167 return 1;
1168}
1169
1170static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1171 struct btrfs_root *root,
1172 struct btrfs_path *path,
1173 u64 bytenr, u64 parent,
1174 u64 root_objectid,
1175 u64 owner, u64 offset)
1176{
1177 struct btrfs_key key;
1178 struct btrfs_extent_data_ref *ref;
31840ae1 1179 struct extent_buffer *leaf;
5d4f98a2 1180 u32 nritems;
74493f7a 1181 int ret;
5d4f98a2
YZ
1182 int recow;
1183 int err = -ENOENT;
74493f7a 1184
31840ae1 1185 key.objectid = bytenr;
5d4f98a2
YZ
1186 if (parent) {
1187 key.type = BTRFS_SHARED_DATA_REF_KEY;
1188 key.offset = parent;
1189 } else {
1190 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1191 key.offset = hash_extent_data_ref(root_objectid,
1192 owner, offset);
1193 }
1194again:
1195 recow = 0;
1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 if (ret < 0) {
1198 err = ret;
1199 goto fail;
1200 }
31840ae1 1201
5d4f98a2
YZ
1202 if (parent) {
1203 if (!ret)
1204 return 0;
1205#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1207 btrfs_release_path(path);
5d4f98a2
YZ
1208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1209 if (ret < 0) {
1210 err = ret;
1211 goto fail;
1212 }
1213 if (!ret)
1214 return 0;
1215#endif
1216 goto fail;
31840ae1
ZY
1217 }
1218
1219 leaf = path->nodes[0];
5d4f98a2
YZ
1220 nritems = btrfs_header_nritems(leaf);
1221 while (1) {
1222 if (path->slots[0] >= nritems) {
1223 ret = btrfs_next_leaf(root, path);
1224 if (ret < 0)
1225 err = ret;
1226 if (ret)
1227 goto fail;
1228
1229 leaf = path->nodes[0];
1230 nritems = btrfs_header_nritems(leaf);
1231 recow = 1;
1232 }
1233
1234 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1235 if (key.objectid != bytenr ||
1236 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1237 goto fail;
1238
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1241
1242 if (match_extent_data_ref(leaf, ref, root_objectid,
1243 owner, offset)) {
1244 if (recow) {
b3b4aa74 1245 btrfs_release_path(path);
5d4f98a2
YZ
1246 goto again;
1247 }
1248 err = 0;
1249 break;
1250 }
1251 path->slots[0]++;
31840ae1 1252 }
5d4f98a2
YZ
1253fail:
1254 return err;
31840ae1
ZY
1255}
1256
5d4f98a2
YZ
1257static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1258 struct btrfs_root *root,
1259 struct btrfs_path *path,
1260 u64 bytenr, u64 parent,
1261 u64 root_objectid, u64 owner,
1262 u64 offset, int refs_to_add)
31840ae1
ZY
1263{
1264 struct btrfs_key key;
1265 struct extent_buffer *leaf;
5d4f98a2 1266 u32 size;
31840ae1
ZY
1267 u32 num_refs;
1268 int ret;
74493f7a 1269
74493f7a 1270 key.objectid = bytenr;
5d4f98a2
YZ
1271 if (parent) {
1272 key.type = BTRFS_SHARED_DATA_REF_KEY;
1273 key.offset = parent;
1274 size = sizeof(struct btrfs_shared_data_ref);
1275 } else {
1276 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1277 key.offset = hash_extent_data_ref(root_objectid,
1278 owner, offset);
1279 size = sizeof(struct btrfs_extent_data_ref);
1280 }
74493f7a 1281
5d4f98a2
YZ
1282 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1283 if (ret && ret != -EEXIST)
1284 goto fail;
1285
1286 leaf = path->nodes[0];
1287 if (parent) {
1288 struct btrfs_shared_data_ref *ref;
31840ae1 1289 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1290 struct btrfs_shared_data_ref);
1291 if (ret == 0) {
1292 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1293 } else {
1294 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1295 num_refs += refs_to_add;
1296 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1297 }
5d4f98a2
YZ
1298 } else {
1299 struct btrfs_extent_data_ref *ref;
1300 while (ret == -EEXIST) {
1301 ref = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 if (match_extent_data_ref(leaf, ref, root_objectid,
1304 owner, offset))
1305 break;
b3b4aa74 1306 btrfs_release_path(path);
5d4f98a2
YZ
1307 key.offset++;
1308 ret = btrfs_insert_empty_item(trans, root, path, &key,
1309 size);
1310 if (ret && ret != -EEXIST)
1311 goto fail;
31840ae1 1312
5d4f98a2
YZ
1313 leaf = path->nodes[0];
1314 }
1315 ref = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 if (ret == 0) {
1318 btrfs_set_extent_data_ref_root(leaf, ref,
1319 root_objectid);
1320 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1321 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1322 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1323 } else {
1324 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1325 num_refs += refs_to_add;
1326 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1327 }
31840ae1 1328 }
5d4f98a2
YZ
1329 btrfs_mark_buffer_dirty(leaf);
1330 ret = 0;
1331fail:
b3b4aa74 1332 btrfs_release_path(path);
7bb86316 1333 return ret;
74493f7a
CM
1334}
1335
5d4f98a2
YZ
1336static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
fcebe456 1339 int refs_to_drop, int *last_ref)
31840ae1 1340{
5d4f98a2
YZ
1341 struct btrfs_key key;
1342 struct btrfs_extent_data_ref *ref1 = NULL;
1343 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1344 struct extent_buffer *leaf;
5d4f98a2 1345 u32 num_refs = 0;
31840ae1
ZY
1346 int ret = 0;
1347
1348 leaf = path->nodes[0];
5d4f98a2
YZ
1349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1350
1351 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1352 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_data_ref);
1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1355 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1356 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_shared_data_ref);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1361 struct btrfs_extent_ref_v0 *ref0;
1362 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_extent_ref_v0);
1364 num_refs = btrfs_ref_count_v0(leaf, ref0);
1365#endif
1366 } else {
1367 BUG();
1368 }
1369
56bec294
CM
1370 BUG_ON(num_refs < refs_to_drop);
1371 num_refs -= refs_to_drop;
5d4f98a2 1372
31840ae1
ZY
1373 if (num_refs == 0) {
1374 ret = btrfs_del_item(trans, root, path);
fcebe456 1375 *last_ref = 1;
31840ae1 1376 } else {
5d4f98a2
YZ
1377 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1378 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1379 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1380 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1381#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 else {
1383 struct btrfs_extent_ref_v0 *ref0;
1384 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1385 struct btrfs_extent_ref_v0);
1386 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1387 }
1388#endif
31840ae1
ZY
1389 btrfs_mark_buffer_dirty(leaf);
1390 }
31840ae1
ZY
1391 return ret;
1392}
1393
9ed0dea0 1394static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1395 struct btrfs_extent_inline_ref *iref)
15916de8 1396{
5d4f98a2
YZ
1397 struct btrfs_key key;
1398 struct extent_buffer *leaf;
1399 struct btrfs_extent_data_ref *ref1;
1400 struct btrfs_shared_data_ref *ref2;
1401 u32 num_refs = 0;
1402
1403 leaf = path->nodes[0];
1404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1405 if (iref) {
1406 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1407 BTRFS_EXTENT_DATA_REF_KEY) {
1408 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 } else {
1411 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1412 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1413 }
1414 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1415 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1416 struct btrfs_extent_data_ref);
1417 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1418 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1419 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_shared_data_ref);
1421 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1422#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1423 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1424 struct btrfs_extent_ref_v0 *ref0;
1425 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1426 struct btrfs_extent_ref_v0);
1427 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1428#endif
5d4f98a2
YZ
1429 } else {
1430 WARN_ON(1);
1431 }
1432 return num_refs;
1433}
15916de8 1434
5d4f98a2
YZ
1435static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1436 struct btrfs_root *root,
1437 struct btrfs_path *path,
1438 u64 bytenr, u64 parent,
1439 u64 root_objectid)
1f3c79a2 1440{
5d4f98a2 1441 struct btrfs_key key;
1f3c79a2 1442 int ret;
1f3c79a2 1443
5d4f98a2
YZ
1444 key.objectid = bytenr;
1445 if (parent) {
1446 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1447 key.offset = parent;
1448 } else {
1449 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1450 key.offset = root_objectid;
1f3c79a2
LH
1451 }
1452
5d4f98a2
YZ
1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 if (ret > 0)
1455 ret = -ENOENT;
1456#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1457 if (ret == -ENOENT && parent) {
b3b4aa74 1458 btrfs_release_path(path);
5d4f98a2
YZ
1459 key.type = BTRFS_EXTENT_REF_V0_KEY;
1460 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1461 if (ret > 0)
1462 ret = -ENOENT;
1463 }
1f3c79a2 1464#endif
5d4f98a2 1465 return ret;
1f3c79a2
LH
1466}
1467
5d4f98a2
YZ
1468static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 u64 bytenr, u64 parent,
1472 u64 root_objectid)
31840ae1 1473{
5d4f98a2 1474 struct btrfs_key key;
31840ae1 1475 int ret;
31840ae1 1476
5d4f98a2
YZ
1477 key.objectid = bytenr;
1478 if (parent) {
1479 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1480 key.offset = parent;
1481 } else {
1482 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1483 key.offset = root_objectid;
1484 }
1485
1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1487 btrfs_release_path(path);
31840ae1
ZY
1488 return ret;
1489}
1490
5d4f98a2 1491static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1492{
5d4f98a2
YZ
1493 int type;
1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 if (parent > 0)
1496 type = BTRFS_SHARED_BLOCK_REF_KEY;
1497 else
1498 type = BTRFS_TREE_BLOCK_REF_KEY;
1499 } else {
1500 if (parent > 0)
1501 type = BTRFS_SHARED_DATA_REF_KEY;
1502 else
1503 type = BTRFS_EXTENT_DATA_REF_KEY;
1504 }
1505 return type;
31840ae1 1506}
56bec294 1507
2c47e605
YZ
1508static int find_next_key(struct btrfs_path *path, int level,
1509 struct btrfs_key *key)
56bec294 1510
02217ed2 1511{
2c47e605 1512 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1513 if (!path->nodes[level])
1514 break;
5d4f98a2
YZ
1515 if (path->slots[level] + 1 >=
1516 btrfs_header_nritems(path->nodes[level]))
1517 continue;
1518 if (level == 0)
1519 btrfs_item_key_to_cpu(path->nodes[level], key,
1520 path->slots[level] + 1);
1521 else
1522 btrfs_node_key_to_cpu(path->nodes[level], key,
1523 path->slots[level] + 1);
1524 return 0;
1525 }
1526 return 1;
1527}
037e6390 1528
5d4f98a2
YZ
1529/*
1530 * look for inline back ref. if back ref is found, *ref_ret is set
1531 * to the address of inline back ref, and 0 is returned.
1532 *
1533 * if back ref isn't found, *ref_ret is set to the address where it
1534 * should be inserted, and -ENOENT is returned.
1535 *
1536 * if insert is true and there are too many inline back refs, the path
1537 * points to the extent item, and -EAGAIN is returned.
1538 *
1539 * NOTE: inline back refs are ordered in the same way that back ref
1540 * items in the tree are ordered.
1541 */
1542static noinline_for_stack
1543int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root,
1545 struct btrfs_path *path,
1546 struct btrfs_extent_inline_ref **ref_ret,
1547 u64 bytenr, u64 num_bytes,
1548 u64 parent, u64 root_objectid,
1549 u64 owner, u64 offset, int insert)
1550{
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1555 u64 flags;
1556 u64 item_size;
1557 unsigned long ptr;
1558 unsigned long end;
1559 int extra_size;
1560 int type;
1561 int want;
1562 int ret;
1563 int err = 0;
3173a18f
JB
1564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1565 SKINNY_METADATA);
26b8003f 1566
db94535d 1567 key.objectid = bytenr;
31840ae1 1568 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1569 key.offset = num_bytes;
31840ae1 1570
5d4f98a2
YZ
1571 want = extent_ref_type(parent, owner);
1572 if (insert) {
1573 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1574 path->keep_locks = 1;
5d4f98a2
YZ
1575 } else
1576 extra_size = -1;
3173a18f
JB
1577
1578 /*
1579 * Owner is our parent level, so we can just add one to get the level
1580 * for the block we are interested in.
1581 */
1582 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1583 key.type = BTRFS_METADATA_ITEM_KEY;
1584 key.offset = owner;
1585 }
1586
1587again:
5d4f98a2 1588 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1589 if (ret < 0) {
5d4f98a2
YZ
1590 err = ret;
1591 goto out;
1592 }
3173a18f
JB
1593
1594 /*
1595 * We may be a newly converted file system which still has the old fat
1596 * extent entries for metadata, so try and see if we have one of those.
1597 */
1598 if (ret > 0 && skinny_metadata) {
1599 skinny_metadata = false;
1600 if (path->slots[0]) {
1601 path->slots[0]--;
1602 btrfs_item_key_to_cpu(path->nodes[0], &key,
1603 path->slots[0]);
1604 if (key.objectid == bytenr &&
1605 key.type == BTRFS_EXTENT_ITEM_KEY &&
1606 key.offset == num_bytes)
1607 ret = 0;
1608 }
1609 if (ret) {
9ce49a0b 1610 key.objectid = bytenr;
3173a18f
JB
1611 key.type = BTRFS_EXTENT_ITEM_KEY;
1612 key.offset = num_bytes;
1613 btrfs_release_path(path);
1614 goto again;
1615 }
1616 }
1617
79787eaa
JM
1618 if (ret && !insert) {
1619 err = -ENOENT;
1620 goto out;
fae7f21c 1621 } else if (WARN_ON(ret)) {
492104c8 1622 err = -EIO;
492104c8 1623 goto out;
79787eaa 1624 }
5d4f98a2
YZ
1625
1626 leaf = path->nodes[0];
1627 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1628#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1629 if (item_size < sizeof(*ei)) {
1630 if (!insert) {
1631 err = -ENOENT;
1632 goto out;
1633 }
1634 ret = convert_extent_item_v0(trans, root, path, owner,
1635 extra_size);
1636 if (ret < 0) {
1637 err = ret;
1638 goto out;
1639 }
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 }
1643#endif
1644 BUG_ON(item_size < sizeof(*ei));
1645
5d4f98a2
YZ
1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 flags = btrfs_extent_flags(leaf, ei);
1648
1649 ptr = (unsigned long)(ei + 1);
1650 end = (unsigned long)ei + item_size;
1651
3173a18f 1652 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1653 ptr += sizeof(struct btrfs_tree_block_info);
1654 BUG_ON(ptr > end);
5d4f98a2
YZ
1655 }
1656
1657 err = -ENOENT;
1658 while (1) {
1659 if (ptr >= end) {
1660 WARN_ON(ptr > end);
1661 break;
1662 }
1663 iref = (struct btrfs_extent_inline_ref *)ptr;
1664 type = btrfs_extent_inline_ref_type(leaf, iref);
1665 if (want < type)
1666 break;
1667 if (want > type) {
1668 ptr += btrfs_extent_inline_ref_size(type);
1669 continue;
1670 }
1671
1672 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1673 struct btrfs_extent_data_ref *dref;
1674 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1675 if (match_extent_data_ref(leaf, dref, root_objectid,
1676 owner, offset)) {
1677 err = 0;
1678 break;
1679 }
1680 if (hash_extent_data_ref_item(leaf, dref) <
1681 hash_extent_data_ref(root_objectid, owner, offset))
1682 break;
1683 } else {
1684 u64 ref_offset;
1685 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1686 if (parent > 0) {
1687 if (parent == ref_offset) {
1688 err = 0;
1689 break;
1690 }
1691 if (ref_offset < parent)
1692 break;
1693 } else {
1694 if (root_objectid == ref_offset) {
1695 err = 0;
1696 break;
1697 }
1698 if (ref_offset < root_objectid)
1699 break;
1700 }
1701 }
1702 ptr += btrfs_extent_inline_ref_size(type);
1703 }
1704 if (err == -ENOENT && insert) {
1705 if (item_size + extra_size >=
1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 /*
1711 * To add new inline back ref, we have to make sure
1712 * there is no corresponding back ref item.
1713 * For simplicity, we just do not add new inline back
1714 * ref if there is any kind of item for this block
1715 */
2c47e605
YZ
1716 if (find_next_key(path, 0, &key) == 0 &&
1717 key.objectid == bytenr &&
85d4198e 1718 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1719 err = -EAGAIN;
1720 goto out;
1721 }
1722 }
1723 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1724out:
85d4198e 1725 if (insert) {
5d4f98a2
YZ
1726 path->keep_locks = 0;
1727 btrfs_unlock_up_safe(path, 1);
1728 }
1729 return err;
1730}
1731
1732/*
1733 * helper to add new inline back ref
1734 */
1735static noinline_for_stack
fd279fae 1736void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1737 struct btrfs_path *path,
1738 struct btrfs_extent_inline_ref *iref,
1739 u64 parent, u64 root_objectid,
1740 u64 owner, u64 offset, int refs_to_add,
1741 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1742{
1743 struct extent_buffer *leaf;
1744 struct btrfs_extent_item *ei;
1745 unsigned long ptr;
1746 unsigned long end;
1747 unsigned long item_offset;
1748 u64 refs;
1749 int size;
1750 int type;
5d4f98a2
YZ
1751
1752 leaf = path->nodes[0];
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 item_offset = (unsigned long)iref - (unsigned long)ei;
1755
1756 type = extent_ref_type(parent, owner);
1757 size = btrfs_extent_inline_ref_size(type);
1758
4b90c680 1759 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1760
1761 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1762 refs = btrfs_extent_refs(leaf, ei);
1763 refs += refs_to_add;
1764 btrfs_set_extent_refs(leaf, ei, refs);
1765 if (extent_op)
1766 __run_delayed_extent_op(extent_op, leaf, ei);
1767
1768 ptr = (unsigned long)ei + item_offset;
1769 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1770 if (ptr < end - size)
1771 memmove_extent_buffer(leaf, ptr + size, ptr,
1772 end - size - ptr);
1773
1774 iref = (struct btrfs_extent_inline_ref *)ptr;
1775 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1776 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1777 struct btrfs_extent_data_ref *dref;
1778 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1779 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1780 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1781 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1782 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1783 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1784 struct btrfs_shared_data_ref *sref;
1785 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1786 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1787 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1788 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1789 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1790 } else {
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1792 }
1793 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1794}
1795
1796static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1797 struct btrfs_root *root,
1798 struct btrfs_path *path,
1799 struct btrfs_extent_inline_ref **ref_ret,
1800 u64 bytenr, u64 num_bytes, u64 parent,
1801 u64 root_objectid, u64 owner, u64 offset)
1802{
1803 int ret;
1804
1805 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1806 bytenr, num_bytes, parent,
1807 root_objectid, owner, offset, 0);
1808 if (ret != -ENOENT)
54aa1f4d 1809 return ret;
5d4f98a2 1810
b3b4aa74 1811 btrfs_release_path(path);
5d4f98a2
YZ
1812 *ref_ret = NULL;
1813
1814 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1815 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1816 root_objectid);
1817 } else {
1818 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1819 root_objectid, owner, offset);
b9473439 1820 }
5d4f98a2
YZ
1821 return ret;
1822}
31840ae1 1823
5d4f98a2
YZ
1824/*
1825 * helper to update/remove inline back ref
1826 */
1827static noinline_for_stack
afe5fea7 1828void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1831 int refs_to_mod,
fcebe456
JB
1832 struct btrfs_delayed_extent_op *extent_op,
1833 int *last_ref)
5d4f98a2
YZ
1834{
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1839 unsigned long ptr;
1840 unsigned long end;
1841 u32 item_size;
1842 int size;
1843 int type;
5d4f98a2
YZ
1844 u64 refs;
1845
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1852 if (extent_op)
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1863 } else {
1864 refs = 1;
1865 BUG_ON(refs_to_mod != -1);
56bec294 1866 }
31840ae1 1867
5d4f98a2
YZ
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1870
1871 if (refs > 0) {
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 else
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 } else {
fcebe456 1877 *last_ref = 1;
5d4f98a2
YZ
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1884 end - ptr - size);
1885 item_size -= size;
afe5fea7 1886 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1889}
1890
1891static noinline_for_stack
1892int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899{
1900 struct btrfs_extent_inline_ref *iref;
1901 int ret;
1902
1903 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1906 if (ret == 0) {
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1908 update_inline_extent_backref(root, path, iref,
fcebe456 1909 refs_to_add, extent_op, NULL);
5d4f98a2 1910 } else if (ret == -ENOENT) {
fd279fae 1911 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1914 ret = 0;
771ed689 1915 }
5d4f98a2
YZ
1916 return ret;
1917}
31840ae1 1918
5d4f98a2
YZ
1919static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1924{
1925 int ret;
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
1928 ret = insert_tree_block_ref(trans, root, path, bytenr,
1929 parent, root_objectid);
1930 } else {
1931 ret = insert_extent_data_ref(trans, root, path, bytenr,
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 }
1935 return ret;
1936}
56bec294 1937
5d4f98a2
YZ
1938static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 struct btrfs_root *root,
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
fcebe456 1942 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1943{
143bede5 1944 int ret = 0;
b9473439 1945
5d4f98a2
YZ
1946 BUG_ON(!is_data && refs_to_drop != 1);
1947 if (iref) {
afe5fea7 1948 update_inline_extent_backref(root, path, iref,
fcebe456 1949 -refs_to_drop, NULL, last_ref);
5d4f98a2 1950 } else if (is_data) {
fcebe456
JB
1951 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1952 last_ref);
5d4f98a2 1953 } else {
fcebe456 1954 *last_ref = 1;
5d4f98a2
YZ
1955 ret = btrfs_del_item(trans, root, path);
1956 }
1957 return ret;
1958}
1959
86557861 1960#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1961static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
5d4f98a2 1963{
86557861
JM
1964 int j, ret = 0;
1965 u64 bytes_left, end;
4d89d377 1966 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1967
4d89d377
JM
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1972 }
d04c6b88 1973
4d89d377 1974 *discarded_bytes = 0;
86557861
JM
1975
1976 if (!len)
1977 return 0;
1978
1979 end = start + len;
1980 bytes_left = len;
1981
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1987
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 continue;
1992
1993 /*
1994 * Superblock spans beginning of range. Adjust start and
1995 * try again.
1996 */
1997 if (sb_start <= start) {
1998 start += sb_end - start;
1999 if (start > end) {
2000 bytes_left = 0;
2001 break;
2002 }
2003 bytes_left = end - start;
2004 continue;
2005 }
2006
2007 if (size) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2013 return ret;
2014 }
2015
2016 start = sb_end;
2017 if (start > end) {
2018 bytes_left = 0;
2019 break;
2020 }
2021 bytes_left = end - start;
2022 }
2023
2024 if (bytes_left) {
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2026 GFP_NOFS, 0);
2027 if (!ret)
86557861 2028 *discarded_bytes += bytes_left;
4d89d377 2029 }
d04c6b88 2030 return ret;
5d4f98a2 2031}
5d4f98a2 2032
1edb647b
FM
2033int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2034 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2035{
5d4f98a2 2036 int ret;
5378e607 2037 u64 discarded_bytes = 0;
a1d3c478 2038 struct btrfs_bio *bbio = NULL;
5d4f98a2 2039
e244a0ae 2040
2999241d
FM
2041 /*
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2044 */
2045 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2046 /* Tell the block device(s) that the sectors can be discarded */
b3d3fa51 2047 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
a1d3c478 2048 bytenr, &num_bytes, &bbio, 0);
79787eaa 2049 /* Error condition is -ENOMEM */
5d4f98a2 2050 if (!ret) {
a1d3c478 2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2052 int i;
2053
5d4f98a2 2054
a1d3c478 2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2056 u64 bytes;
d5e2003c
JB
2057 if (!stripe->dev->can_discard)
2058 continue;
2059
5378e607
LD
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2061 stripe->physical,
d04c6b88
JM
2062 stripe->length,
2063 &bytes);
5378e607 2064 if (!ret)
d04c6b88 2065 discarded_bytes += bytes;
5378e607 2066 else if (ret != -EOPNOTSUPP)
79787eaa 2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2068
2069 /*
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2073 */
2074 ret = 0;
5d4f98a2 2075 }
6e9606d2 2076 btrfs_put_bbio(bbio);
5d4f98a2 2077 }
2999241d 2078 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2079
2080 if (actual_bytes)
2081 *actual_bytes = discarded_bytes;
2082
5d4f98a2 2083
53b381b3
DW
2084 if (ret == -EOPNOTSUPP)
2085 ret = 0;
5d4f98a2 2086 return ret;
5d4f98a2
YZ
2087}
2088
79787eaa 2089/* Can return -ENOMEM */
5d4f98a2
YZ
2090int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2093 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2094{
2095 int ret;
66d7e7f0
AJ
2096 struct btrfs_fs_info *fs_info = root->fs_info;
2097
5d4f98a2
YZ
2098 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2099 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2100
2101 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2102 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2103 num_bytes,
5d4f98a2 2104 parent, root_objectid, (int)owner,
b06c4bf5 2105 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2106 } else {
66d7e7f0 2107 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2108 num_bytes, parent, root_objectid,
2109 owner, offset, 0,
b06c4bf5 2110 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2111 }
2112 return ret;
2113}
2114
2115static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2116 struct btrfs_root *root,
c682f9b3 2117 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2118 u64 parent, u64 root_objectid,
2119 u64 owner, u64 offset, int refs_to_add,
2120 struct btrfs_delayed_extent_op *extent_op)
2121{
fcebe456 2122 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
fcebe456 2126 struct btrfs_key key;
c682f9b3
QW
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2129 u64 refs;
2130 int ret;
5d4f98a2
YZ
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
e4058b54 2136 path->reada = READA_FORWARD;
5d4f98a2
YZ
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2139 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2140 bytenr, num_bytes, parent,
5d4f98a2
YZ
2141 root_objectid, owner, offset,
2142 refs_to_add, extent_op);
0ed4792a 2143 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2144 goto out;
fcebe456
JB
2145
2146 /*
2147 * Ok we had -EAGAIN which means we didn't have space to insert and
2148 * inline extent ref, so just update the reference count and add a
2149 * normal backref.
2150 */
5d4f98a2 2151 leaf = path->nodes[0];
fcebe456 2152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2153 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2154 refs = btrfs_extent_refs(leaf, item);
2155 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2156 if (extent_op)
2157 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2158
5d4f98a2 2159 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2160 btrfs_release_path(path);
56bec294 2161
e4058b54 2162 path->reada = READA_FORWARD;
b9473439 2163 path->leave_spinning = 1;
56bec294
CM
2164 /* now insert the actual backref */
2165 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2166 path, bytenr, parent, root_objectid,
2167 owner, offset, refs_to_add);
79787eaa 2168 if (ret)
66642832 2169 btrfs_abort_transaction(trans, ret);
5d4f98a2 2170out:
56bec294 2171 btrfs_free_path(path);
30d133fc 2172 return ret;
56bec294
CM
2173}
2174
5d4f98a2
YZ
2175static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
56bec294 2180{
5d4f98a2
YZ
2181 int ret = 0;
2182 struct btrfs_delayed_data_ref *ref;
2183 struct btrfs_key ins;
2184 u64 parent = 0;
2185 u64 ref_root = 0;
2186 u64 flags = 0;
2187
2188 ins.objectid = node->bytenr;
2189 ins.offset = node->num_bytes;
2190 ins.type = BTRFS_EXTENT_ITEM_KEY;
2191
2192 ref = btrfs_delayed_node_to_data_ref(node);
bc074524 2193 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
599c75ec 2194
5d4f98a2
YZ
2195 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2196 parent = ref->parent;
fcebe456 2197 ref_root = ref->root;
5d4f98a2
YZ
2198
2199 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2200 if (extent_op)
5d4f98a2 2201 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2202 ret = alloc_reserved_file_extent(trans, root,
2203 parent, ref_root, flags,
2204 ref->objectid, ref->offset,
2205 &ins, node->ref_mod);
5d4f98a2 2206 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2207 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2208 ref_root, ref->objectid,
2209 ref->offset, node->ref_mod,
c682f9b3 2210 extent_op);
5d4f98a2 2211 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2212 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2213 ref_root, ref->objectid,
2214 ref->offset, node->ref_mod,
c682f9b3 2215 extent_op);
5d4f98a2
YZ
2216 } else {
2217 BUG();
2218 }
2219 return ret;
2220}
2221
2222static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2223 struct extent_buffer *leaf,
2224 struct btrfs_extent_item *ei)
2225{
2226 u64 flags = btrfs_extent_flags(leaf, ei);
2227 if (extent_op->update_flags) {
2228 flags |= extent_op->flags_to_set;
2229 btrfs_set_extent_flags(leaf, ei, flags);
2230 }
2231
2232 if (extent_op->update_key) {
2233 struct btrfs_tree_block_info *bi;
2234 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2235 bi = (struct btrfs_tree_block_info *)(ei + 1);
2236 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2237 }
2238}
2239
2240static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2241 struct btrfs_root *root,
2242 struct btrfs_delayed_ref_node *node,
2243 struct btrfs_delayed_extent_op *extent_op)
2244{
2245 struct btrfs_key key;
2246 struct btrfs_path *path;
2247 struct btrfs_extent_item *ei;
2248 struct extent_buffer *leaf;
2249 u32 item_size;
56bec294 2250 int ret;
5d4f98a2 2251 int err = 0;
b1c79e09 2252 int metadata = !extent_op->is_data;
5d4f98a2 2253
79787eaa
JM
2254 if (trans->aborted)
2255 return 0;
2256
3173a18f
JB
2257 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2258 metadata = 0;
2259
5d4f98a2
YZ
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2263
2264 key.objectid = node->bytenr;
5d4f98a2 2265
3173a18f 2266 if (metadata) {
3173a18f 2267 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2268 key.offset = extent_op->level;
3173a18f
JB
2269 } else {
2270 key.type = BTRFS_EXTENT_ITEM_KEY;
2271 key.offset = node->num_bytes;
2272 }
2273
2274again:
e4058b54 2275 path->reada = READA_FORWARD;
5d4f98a2
YZ
2276 path->leave_spinning = 1;
2277 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2278 path, 0, 1);
2279 if (ret < 0) {
2280 err = ret;
2281 goto out;
2282 }
2283 if (ret > 0) {
3173a18f 2284 if (metadata) {
55994887
FDBM
2285 if (path->slots[0] > 0) {
2286 path->slots[0]--;
2287 btrfs_item_key_to_cpu(path->nodes[0], &key,
2288 path->slots[0]);
2289 if (key.objectid == node->bytenr &&
2290 key.type == BTRFS_EXTENT_ITEM_KEY &&
2291 key.offset == node->num_bytes)
2292 ret = 0;
2293 }
2294 if (ret > 0) {
2295 btrfs_release_path(path);
2296 metadata = 0;
3173a18f 2297
55994887
FDBM
2298 key.objectid = node->bytenr;
2299 key.offset = node->num_bytes;
2300 key.type = BTRFS_EXTENT_ITEM_KEY;
2301 goto again;
2302 }
2303 } else {
2304 err = -EIO;
2305 goto out;
3173a18f 2306 }
5d4f98a2
YZ
2307 }
2308
2309 leaf = path->nodes[0];
2310 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2311#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2312 if (item_size < sizeof(*ei)) {
2313 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2314 path, (u64)-1, 0);
2315 if (ret < 0) {
2316 err = ret;
2317 goto out;
2318 }
2319 leaf = path->nodes[0];
2320 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2321 }
2322#endif
2323 BUG_ON(item_size < sizeof(*ei));
2324 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2325 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2326
5d4f98a2
YZ
2327 btrfs_mark_buffer_dirty(leaf);
2328out:
2329 btrfs_free_path(path);
2330 return err;
56bec294
CM
2331}
2332
5d4f98a2
YZ
2333static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *root,
2335 struct btrfs_delayed_ref_node *node,
2336 struct btrfs_delayed_extent_op *extent_op,
2337 int insert_reserved)
56bec294
CM
2338{
2339 int ret = 0;
5d4f98a2
YZ
2340 struct btrfs_delayed_tree_ref *ref;
2341 struct btrfs_key ins;
2342 u64 parent = 0;
2343 u64 ref_root = 0;
3173a18f
JB
2344 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2345 SKINNY_METADATA);
56bec294 2346
5d4f98a2 2347 ref = btrfs_delayed_node_to_tree_ref(node);
bc074524 2348 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
599c75ec 2349
5d4f98a2
YZ
2350 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2351 parent = ref->parent;
fcebe456 2352 ref_root = ref->root;
5d4f98a2 2353
3173a18f
JB
2354 ins.objectid = node->bytenr;
2355 if (skinny_metadata) {
2356 ins.offset = ref->level;
2357 ins.type = BTRFS_METADATA_ITEM_KEY;
2358 } else {
2359 ins.offset = node->num_bytes;
2360 ins.type = BTRFS_EXTENT_ITEM_KEY;
2361 }
2362
5d4f98a2
YZ
2363 BUG_ON(node->ref_mod != 1);
2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2365 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2366 ret = alloc_reserved_tree_block(trans, root,
2367 parent, ref_root,
2368 extent_op->flags_to_set,
2369 &extent_op->key,
b06c4bf5 2370 ref->level, &ins);
5d4f98a2 2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2372 ret = __btrfs_inc_extent_ref(trans, root, node,
2373 parent, ref_root,
2374 ref->level, 0, 1,
fcebe456 2375 extent_op);
5d4f98a2 2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2377 ret = __btrfs_free_extent(trans, root, node,
2378 parent, ref_root,
2379 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2380 } else {
2381 BUG();
2382 }
56bec294
CM
2383 return ret;
2384}
2385
2386/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2387static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root,
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
56bec294 2392{
79787eaa
JM
2393 int ret = 0;
2394
857cc2fc
JB
2395 if (trans->aborted) {
2396 if (insert_reserved)
2397 btrfs_pin_extent(root, node->bytenr,
2398 node->num_bytes, 1);
79787eaa 2399 return 0;
857cc2fc 2400 }
79787eaa 2401
5d4f98a2 2402 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2403 struct btrfs_delayed_ref_head *head;
2404 /*
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2409 */
5d4f98a2
YZ
2410 BUG_ON(extent_op);
2411 head = btrfs_delayed_node_to_head(node);
bc074524
JM
2412 trace_run_delayed_ref_head(root->fs_info, node, head,
2413 node->action);
599c75ec 2414
56bec294 2415 if (insert_reserved) {
f0486c68
YZ
2416 btrfs_pin_extent(root, node->bytenr,
2417 node->num_bytes, 1);
5d4f98a2
YZ
2418 if (head->is_data) {
2419 ret = btrfs_del_csums(trans, root,
2420 node->bytenr,
2421 node->num_bytes);
5d4f98a2 2422 }
56bec294 2423 }
297d750b
QW
2424
2425 /* Also free its reserved qgroup space */
2426 btrfs_qgroup_free_delayed_ref(root->fs_info,
2427 head->qgroup_ref_root,
2428 head->qgroup_reserved);
79787eaa 2429 return ret;
56bec294
CM
2430 }
2431
5d4f98a2
YZ
2432 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2433 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2434 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2435 insert_reserved);
2436 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2437 node->type == BTRFS_SHARED_DATA_REF_KEY)
2438 ret = run_delayed_data_ref(trans, root, node, extent_op,
2439 insert_reserved);
2440 else
2441 BUG();
2442 return ret;
56bec294
CM
2443}
2444
c6fc2454 2445static inline struct btrfs_delayed_ref_node *
56bec294
CM
2446select_delayed_ref(struct btrfs_delayed_ref_head *head)
2447{
cffc3374
FM
2448 struct btrfs_delayed_ref_node *ref;
2449
c6fc2454
QW
2450 if (list_empty(&head->ref_list))
2451 return NULL;
d7df2c79 2452
cffc3374
FM
2453 /*
2454 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2455 * This is to prevent a ref count from going down to zero, which deletes
2456 * the extent item from the extent tree, when there still are references
2457 * to add, which would fail because they would not find the extent item.
2458 */
2459 list_for_each_entry(ref, &head->ref_list, list) {
2460 if (ref->action == BTRFS_ADD_DELAYED_REF)
2461 return ref;
2462 }
2463
c6fc2454
QW
2464 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2465 list);
56bec294
CM
2466}
2467
79787eaa
JM
2468/*
2469 * Returns 0 on success or if called with an already aborted transaction.
2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2471 */
d7df2c79
JB
2472static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2473 struct btrfs_root *root,
2474 unsigned long nr)
56bec294 2475{
56bec294
CM
2476 struct btrfs_delayed_ref_root *delayed_refs;
2477 struct btrfs_delayed_ref_node *ref;
2478 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2479 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2480 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2481 ktime_t start = ktime_get();
56bec294 2482 int ret;
d7df2c79 2483 unsigned long count = 0;
0a2b2a84 2484 unsigned long actual_count = 0;
56bec294 2485 int must_insert_reserved = 0;
56bec294
CM
2486
2487 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2488 while (1) {
2489 if (!locked_ref) {
d7df2c79 2490 if (count >= nr)
56bec294 2491 break;
56bec294 2492
d7df2c79
JB
2493 spin_lock(&delayed_refs->lock);
2494 locked_ref = btrfs_select_ref_head(trans);
2495 if (!locked_ref) {
2496 spin_unlock(&delayed_refs->lock);
2497 break;
2498 }
c3e69d58
CM
2499
2500 /* grab the lock that says we are going to process
2501 * all the refs for this head */
2502 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2503 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2504 /*
2505 * we may have dropped the spin lock to get the head
2506 * mutex lock, and that might have given someone else
2507 * time to free the head. If that's true, it has been
2508 * removed from our list and we can move on.
2509 */
2510 if (ret == -EAGAIN) {
2511 locked_ref = NULL;
2512 count++;
2513 continue;
56bec294
CM
2514 }
2515 }
a28ec197 2516
2c3cf7d5
FM
2517 /*
2518 * We need to try and merge add/drops of the same ref since we
2519 * can run into issues with relocate dropping the implicit ref
2520 * and then it being added back again before the drop can
2521 * finish. If we merged anything we need to re-loop so we can
2522 * get a good ref.
2523 * Or we can get node references of the same type that weren't
2524 * merged when created due to bumps in the tree mod seq, and
2525 * we need to merge them to prevent adding an inline extent
2526 * backref before dropping it (triggering a BUG_ON at
2527 * insert_inline_extent_backref()).
2528 */
d7df2c79 2529 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2530 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2531 locked_ref);
ae1e206b 2532
d1270cd9
AJ
2533 /*
2534 * locked_ref is the head node, so we have to go one
2535 * node back for any delayed ref updates
2536 */
2537 ref = select_delayed_ref(locked_ref);
2538
2539 if (ref && ref->seq &&
097b8a7c 2540 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2541 spin_unlock(&locked_ref->lock);
093486c4 2542 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2543 spin_lock(&delayed_refs->lock);
2544 locked_ref->processing = 0;
d1270cd9
AJ
2545 delayed_refs->num_heads_ready++;
2546 spin_unlock(&delayed_refs->lock);
d7df2c79 2547 locked_ref = NULL;
d1270cd9 2548 cond_resched();
27a377db 2549 count++;
d1270cd9
AJ
2550 continue;
2551 }
2552
56bec294
CM
2553 /*
2554 * record the must insert reserved flag before we
2555 * drop the spin lock.
2556 */
2557 must_insert_reserved = locked_ref->must_insert_reserved;
2558 locked_ref->must_insert_reserved = 0;
7bb86316 2559
5d4f98a2
YZ
2560 extent_op = locked_ref->extent_op;
2561 locked_ref->extent_op = NULL;
2562
56bec294 2563 if (!ref) {
d7df2c79
JB
2564
2565
56bec294
CM
2566 /* All delayed refs have been processed, Go ahead
2567 * and send the head node to run_one_delayed_ref,
2568 * so that any accounting fixes can happen
2569 */
2570 ref = &locked_ref->node;
5d4f98a2
YZ
2571
2572 if (extent_op && must_insert_reserved) {
78a6184a 2573 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2574 extent_op = NULL;
2575 }
2576
2577 if (extent_op) {
d7df2c79 2578 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2579 ret = run_delayed_extent_op(trans, root,
2580 ref, extent_op);
78a6184a 2581 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2582
79787eaa 2583 if (ret) {
857cc2fc
JB
2584 /*
2585 * Need to reset must_insert_reserved if
2586 * there was an error so the abort stuff
2587 * can cleanup the reserved space
2588 * properly.
2589 */
2590 if (must_insert_reserved)
2591 locked_ref->must_insert_reserved = 1;
d7df2c79 2592 locked_ref->processing = 0;
c2cf52eb 2593 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2594 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2595 return ret;
2596 }
d7df2c79 2597 continue;
5d4f98a2 2598 }
02217ed2 2599
d7df2c79 2600 /*
01327610 2601 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2602 * delayed ref lock and then re-check to make sure
2603 * nobody got added.
2604 */
2605 spin_unlock(&locked_ref->lock);
2606 spin_lock(&delayed_refs->lock);
2607 spin_lock(&locked_ref->lock);
c6fc2454 2608 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2609 locked_ref->extent_op) {
d7df2c79
JB
2610 spin_unlock(&locked_ref->lock);
2611 spin_unlock(&delayed_refs->lock);
2612 continue;
2613 }
2614 ref->in_tree = 0;
2615 delayed_refs->num_heads--;
c46effa6
LB
2616 rb_erase(&locked_ref->href_node,
2617 &delayed_refs->href_root);
d7df2c79
JB
2618 spin_unlock(&delayed_refs->lock);
2619 } else {
0a2b2a84 2620 actual_count++;
d7df2c79 2621 ref->in_tree = 0;
c6fc2454 2622 list_del(&ref->list);
c46effa6 2623 }
d7df2c79
JB
2624 atomic_dec(&delayed_refs->num_entries);
2625
093486c4 2626 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2627 /*
2628 * when we play the delayed ref, also correct the
2629 * ref_mod on head
2630 */
2631 switch (ref->action) {
2632 case BTRFS_ADD_DELAYED_REF:
2633 case BTRFS_ADD_DELAYED_EXTENT:
2634 locked_ref->node.ref_mod -= ref->ref_mod;
2635 break;
2636 case BTRFS_DROP_DELAYED_REF:
2637 locked_ref->node.ref_mod += ref->ref_mod;
2638 break;
2639 default:
2640 WARN_ON(1);
2641 }
2642 }
d7df2c79 2643 spin_unlock(&locked_ref->lock);
925baedd 2644
5d4f98a2 2645 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2646 must_insert_reserved);
eb099670 2647
78a6184a 2648 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2649 if (ret) {
465a5081 2650 spin_lock(&delayed_refs->lock);
d7df2c79 2651 locked_ref->processing = 0;
465a5081
WX
2652 delayed_refs->num_heads_ready++;
2653 spin_unlock(&delayed_refs->lock);
093486c4
MX
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
c2cf52eb 2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2657 return ret;
2658 }
2659
093486c4
MX
2660 /*
2661 * If this node is a head, that means all the refs in this head
2662 * have been dealt with, and we will pick the next head to deal
2663 * with, so we must unlock the head and drop it from the cluster
2664 * list before we release it.
2665 */
2666 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2667 if (locked_ref->is_data &&
2668 locked_ref->total_ref_mod < 0) {
2669 spin_lock(&delayed_refs->lock);
2670 delayed_refs->pending_csums -= ref->num_bytes;
2671 spin_unlock(&delayed_refs->lock);
2672 }
093486c4
MX
2673 btrfs_delayed_ref_unlock(locked_ref);
2674 locked_ref = NULL;
2675 }
2676 btrfs_put_delayed_ref(ref);
2677 count++;
c3e69d58 2678 cond_resched();
c3e69d58 2679 }
0a2b2a84
JB
2680
2681 /*
2682 * We don't want to include ref heads since we can have empty ref heads
2683 * and those will drastically skew our runtime down since we just do
2684 * accounting, no actual extent tree updates.
2685 */
2686 if (actual_count > 0) {
2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 u64 avg;
2689
2690 /*
2691 * We weigh the current average higher than our current runtime
2692 * to avoid large swings in the average.
2693 */
2694 spin_lock(&delayed_refs->lock);
2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2697 spin_unlock(&delayed_refs->lock);
2698 }
d7df2c79 2699 return 0;
c3e69d58
CM
2700}
2701
709c0486
AJ
2702#ifdef SCRAMBLE_DELAYED_REFS
2703/*
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2707 */
2708static u64 find_middle(struct rb_root *root)
2709{
2710 struct rb_node *n = root->rb_node;
2711 struct btrfs_delayed_ref_node *entry;
2712 int alt = 1;
2713 u64 middle;
2714 u64 first = 0, last = 0;
2715
2716 n = rb_first(root);
2717 if (n) {
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 first = entry->bytenr;
2720 }
2721 n = rb_last(root);
2722 if (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 last = entry->bytenr;
2725 }
2726 n = root->rb_node;
2727
2728 while (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 WARN_ON(!entry->in_tree);
2731
2732 middle = entry->bytenr;
2733
2734 if (alt)
2735 n = n->rb_left;
2736 else
2737 n = n->rb_right;
2738
2739 alt = 1 - alt;
2740 }
2741 return middle;
2742}
2743#endif
2744
1be41b78
JB
2745static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746{
2747 u64 num_bytes;
2748
2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 sizeof(struct btrfs_extent_inline_ref));
2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754 /*
2755 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2756 * closer to what we're really going to want to use.
1be41b78 2757 */
f8c269d7 2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2759}
2760
1262133b
JB
2761/*
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2764 */
28f75a0e 2765u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2766{
2767 u64 csum_size;
2768 u64 num_csums_per_leaf;
2769 u64 num_csums;
2770
14a1e067 2771 csum_size = BTRFS_MAX_ITEM_SIZE(root);
1262133b
JB
2772 num_csums_per_leaf = div64_u64(csum_size,
2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 num_csums += num_csums_per_leaf - 1;
2776 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 return num_csums;
2778}
2779
0a2b2a84 2780int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2781 struct btrfs_root *root)
2782{
2783 struct btrfs_block_rsv *global_rsv;
2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2788 int ret = 0;
2789
2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 num_heads = heads_to_leaves(root, num_heads);
2792 if (num_heads > 1)
707e8a07 2793 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2794 num_bytes <<= 1;
28f75a0e 2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 num_dirty_bgs);
1be41b78
JB
2798 global_rsv = &root->fs_info->global_block_rsv;
2799
2800 /*
2801 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 * wiggle room since running delayed refs can create more delayed refs.
2803 */
cb723e49
JB
2804 if (global_rsv->space_info->full) {
2805 num_dirty_bgs_bytes <<= 1;
1be41b78 2806 num_bytes <<= 1;
cb723e49 2807 }
1be41b78
JB
2808
2809 spin_lock(&global_rsv->lock);
cb723e49 2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2811 ret = 1;
2812 spin_unlock(&global_rsv->lock);
2813 return ret;
2814}
2815
0a2b2a84
JB
2816int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root)
2818{
2819 struct btrfs_fs_info *fs_info = root->fs_info;
2820 u64 num_entries =
2821 atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 u64 avg_runtime;
a79b7d4b 2823 u64 val;
0a2b2a84
JB
2824
2825 smp_mb();
2826 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2827 val = num_entries * avg_runtime;
0a2b2a84
JB
2828 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 return 1;
a79b7d4b
CM
2830 if (val >= NSEC_PER_SEC / 2)
2831 return 2;
0a2b2a84
JB
2832
2833 return btrfs_check_space_for_delayed_refs(trans, root);
2834}
2835
a79b7d4b
CM
2836struct async_delayed_refs {
2837 struct btrfs_root *root;
31b9655f 2838 u64 transid;
a79b7d4b
CM
2839 int count;
2840 int error;
2841 int sync;
2842 struct completion wait;
2843 struct btrfs_work work;
2844};
2845
2846static void delayed_ref_async_start(struct btrfs_work *work)
2847{
2848 struct async_delayed_refs *async;
2849 struct btrfs_trans_handle *trans;
2850 int ret;
2851
2852 async = container_of(work, struct async_delayed_refs, work);
2853
0f873eca
CM
2854 /* if the commit is already started, we don't need to wait here */
2855 if (btrfs_transaction_blocked(async->root->fs_info))
31b9655f 2856 goto done;
31b9655f 2857
0f873eca
CM
2858 trans = btrfs_join_transaction(async->root);
2859 if (IS_ERR(trans)) {
2860 async->error = PTR_ERR(trans);
a79b7d4b
CM
2861 goto done;
2862 }
2863
2864 /*
01327610 2865 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2866 * wait on delayed refs
2867 */
2868 trans->sync = true;
0f873eca
CM
2869
2870 /* Don't bother flushing if we got into a different transaction */
2871 if (trans->transid > async->transid)
2872 goto end;
2873
a79b7d4b
CM
2874 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2875 if (ret)
2876 async->error = ret;
0f873eca 2877end:
a79b7d4b
CM
2878 ret = btrfs_end_transaction(trans, async->root);
2879 if (ret && !async->error)
2880 async->error = ret;
2881done:
2882 if (async->sync)
2883 complete(&async->wait);
2884 else
2885 kfree(async);
2886}
2887
2888int btrfs_async_run_delayed_refs(struct btrfs_root *root,
31b9655f 2889 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2890{
2891 struct async_delayed_refs *async;
2892 int ret;
2893
2894 async = kmalloc(sizeof(*async), GFP_NOFS);
2895 if (!async)
2896 return -ENOMEM;
2897
2898 async->root = root->fs_info->tree_root;
2899 async->count = count;
2900 async->error = 0;
31b9655f 2901 async->transid = transid;
a79b7d4b
CM
2902 if (wait)
2903 async->sync = 1;
2904 else
2905 async->sync = 0;
2906 init_completion(&async->wait);
2907
9e0af237
LB
2908 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2910
2911 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2912
2913 if (wait) {
2914 wait_for_completion(&async->wait);
2915 ret = async->error;
2916 kfree(async);
2917 return ret;
2918 }
2919 return 0;
2920}
2921
c3e69d58
CM
2922/*
2923 * this starts processing the delayed reference count updates and
2924 * extent insertions we have queued up so far. count can be
2925 * 0, which means to process everything in the tree at the start
2926 * of the run (but not newly added entries), or it can be some target
2927 * number you'd like to process.
79787eaa
JM
2928 *
2929 * Returns 0 on success or if called with an aborted transaction
2930 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2931 */
2932int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root, unsigned long count)
2934{
2935 struct rb_node *node;
2936 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2937 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2938 int ret;
2939 int run_all = count == (unsigned long)-1;
d9a0540a 2940 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2941
79787eaa
JM
2942 /* We'll clean this up in btrfs_cleanup_transaction */
2943 if (trans->aborted)
2944 return 0;
2945
43cad371 2946 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags))
511711af
CM
2947 return 0;
2948
c3e69d58
CM
2949 if (root == root->fs_info->extent_root)
2950 root = root->fs_info->tree_root;
2951
2952 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2953 if (count == 0)
d7df2c79 2954 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2955
c3e69d58 2956again:
709c0486
AJ
2957#ifdef SCRAMBLE_DELAYED_REFS
2958 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2959#endif
d9a0540a 2960 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2961 ret = __btrfs_run_delayed_refs(trans, root, count);
2962 if (ret < 0) {
66642832 2963 btrfs_abort_transaction(trans, ret);
d7df2c79 2964 return ret;
eb099670 2965 }
c3e69d58 2966
56bec294 2967 if (run_all) {
d7df2c79 2968 if (!list_empty(&trans->new_bgs))
ea658bad 2969 btrfs_create_pending_block_groups(trans, root);
ea658bad 2970
d7df2c79 2971 spin_lock(&delayed_refs->lock);
c46effa6 2972 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2973 if (!node) {
2974 spin_unlock(&delayed_refs->lock);
56bec294 2975 goto out;
d7df2c79 2976 }
c3e69d58 2977 count = (unsigned long)-1;
e9d0b13b 2978
56bec294 2979 while (node) {
c46effa6
LB
2980 head = rb_entry(node, struct btrfs_delayed_ref_head,
2981 href_node);
2982 if (btrfs_delayed_ref_is_head(&head->node)) {
2983 struct btrfs_delayed_ref_node *ref;
5caf2a00 2984
c46effa6 2985 ref = &head->node;
56bec294
CM
2986 atomic_inc(&ref->refs);
2987
2988 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2989 /*
2990 * Mutex was contended, block until it's
2991 * released and try again
2992 */
56bec294
CM
2993 mutex_lock(&head->mutex);
2994 mutex_unlock(&head->mutex);
2995
2996 btrfs_put_delayed_ref(ref);
1887be66 2997 cond_resched();
56bec294 2998 goto again;
c46effa6
LB
2999 } else {
3000 WARN_ON(1);
56bec294
CM
3001 }
3002 node = rb_next(node);
3003 }
3004 spin_unlock(&delayed_refs->lock);
d7df2c79 3005 cond_resched();
56bec294 3006 goto again;
5f39d397 3007 }
54aa1f4d 3008out:
edf39272 3009 assert_qgroups_uptodate(trans);
d9a0540a 3010 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3011 return 0;
3012}
3013
5d4f98a2
YZ
3014int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015 struct btrfs_root *root,
3016 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3017 int level, int is_data)
5d4f98a2
YZ
3018{
3019 struct btrfs_delayed_extent_op *extent_op;
3020 int ret;
3021
78a6184a 3022 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3023 if (!extent_op)
3024 return -ENOMEM;
3025
3026 extent_op->flags_to_set = flags;
35b3ad50
DS
3027 extent_op->update_flags = true;
3028 extent_op->update_key = false;
3029 extent_op->is_data = is_data ? true : false;
b1c79e09 3030 extent_op->level = level;
5d4f98a2 3031
66d7e7f0
AJ
3032 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033 num_bytes, extent_op);
5d4f98a2 3034 if (ret)
78a6184a 3035 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3036 return ret;
3037}
3038
3039static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root,
3041 struct btrfs_path *path,
3042 u64 objectid, u64 offset, u64 bytenr)
3043{
3044 struct btrfs_delayed_ref_head *head;
3045 struct btrfs_delayed_ref_node *ref;
3046 struct btrfs_delayed_data_ref *data_ref;
3047 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3048 int ret = 0;
3049
5d4f98a2
YZ
3050 delayed_refs = &trans->transaction->delayed_refs;
3051 spin_lock(&delayed_refs->lock);
3052 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3053 if (!head) {
3054 spin_unlock(&delayed_refs->lock);
3055 return 0;
3056 }
5d4f98a2
YZ
3057
3058 if (!mutex_trylock(&head->mutex)) {
3059 atomic_inc(&head->node.refs);
3060 spin_unlock(&delayed_refs->lock);
3061
b3b4aa74 3062 btrfs_release_path(path);
5d4f98a2 3063
8cc33e5c
DS
3064 /*
3065 * Mutex was contended, block until it's released and let
3066 * caller try again
3067 */
5d4f98a2
YZ
3068 mutex_lock(&head->mutex);
3069 mutex_unlock(&head->mutex);
3070 btrfs_put_delayed_ref(&head->node);
3071 return -EAGAIN;
3072 }
d7df2c79 3073 spin_unlock(&delayed_refs->lock);
5d4f98a2 3074
d7df2c79 3075 spin_lock(&head->lock);
c6fc2454 3076 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3077 /* If it's a shared ref we know a cross reference exists */
3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 ret = 1;
3080 break;
3081 }
5d4f98a2 3082
d7df2c79 3083 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3084
d7df2c79
JB
3085 /*
3086 * If our ref doesn't match the one we're currently looking at
3087 * then we have a cross reference.
3088 */
3089 if (data_ref->root != root->root_key.objectid ||
3090 data_ref->objectid != objectid ||
3091 data_ref->offset != offset) {
3092 ret = 1;
3093 break;
3094 }
5d4f98a2 3095 }
d7df2c79 3096 spin_unlock(&head->lock);
5d4f98a2 3097 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3098 return ret;
3099}
3100
3101static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct btrfs_path *path,
3104 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3105{
3106 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3107 struct extent_buffer *leaf;
5d4f98a2
YZ
3108 struct btrfs_extent_data_ref *ref;
3109 struct btrfs_extent_inline_ref *iref;
3110 struct btrfs_extent_item *ei;
f321e491 3111 struct btrfs_key key;
5d4f98a2 3112 u32 item_size;
be20aa9d 3113 int ret;
925baedd 3114
be20aa9d 3115 key.objectid = bytenr;
31840ae1 3116 key.offset = (u64)-1;
f321e491 3117 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3118
be20aa9d
CM
3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 if (ret < 0)
3121 goto out;
79787eaa 3122 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3123
3124 ret = -ENOENT;
3125 if (path->slots[0] == 0)
31840ae1 3126 goto out;
be20aa9d 3127
31840ae1 3128 path->slots[0]--;
f321e491 3129 leaf = path->nodes[0];
5d4f98a2 3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3131
5d4f98a2 3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3133 goto out;
f321e491 3134
5d4f98a2
YZ
3135 ret = 1;
3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 if (item_size < sizeof(*ei)) {
3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 goto out;
3141 }
3142#endif
3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3144
5d4f98a2
YZ
3145 if (item_size != sizeof(*ei) +
3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 goto out;
be20aa9d 3148
5d4f98a2
YZ
3149 if (btrfs_extent_generation(leaf, ei) <=
3150 btrfs_root_last_snapshot(&root->root_item))
3151 goto out;
3152
3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 BTRFS_EXTENT_DATA_REF_KEY)
3156 goto out;
3157
3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 if (btrfs_extent_refs(leaf, ei) !=
3160 btrfs_extent_data_ref_count(leaf, ref) ||
3161 btrfs_extent_data_ref_root(leaf, ref) !=
3162 root->root_key.objectid ||
3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 goto out;
3166
3167 ret = 0;
3168out:
3169 return ret;
3170}
3171
3172int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 u64 objectid, u64 offset, u64 bytenr)
3175{
3176 struct btrfs_path *path;
3177 int ret;
3178 int ret2;
3179
3180 path = btrfs_alloc_path();
3181 if (!path)
3182 return -ENOENT;
3183
3184 do {
3185 ret = check_committed_ref(trans, root, path, objectid,
3186 offset, bytenr);
3187 if (ret && ret != -ENOENT)
f321e491 3188 goto out;
80ff3856 3189
5d4f98a2
YZ
3190 ret2 = check_delayed_ref(trans, root, path, objectid,
3191 offset, bytenr);
3192 } while (ret2 == -EAGAIN);
3193
3194 if (ret2 && ret2 != -ENOENT) {
3195 ret = ret2;
3196 goto out;
f321e491 3197 }
5d4f98a2
YZ
3198
3199 if (ret != -ENOENT || ret2 != -ENOENT)
3200 ret = 0;
be20aa9d 3201out:
80ff3856 3202 btrfs_free_path(path);
f0486c68
YZ
3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204 WARN_ON(ret > 0);
f321e491 3205 return ret;
be20aa9d 3206}
c5739bba 3207
5d4f98a2 3208static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3209 struct btrfs_root *root,
5d4f98a2 3210 struct extent_buffer *buf,
e339a6b0 3211 int full_backref, int inc)
31840ae1
ZY
3212{
3213 u64 bytenr;
5d4f98a2
YZ
3214 u64 num_bytes;
3215 u64 parent;
31840ae1 3216 u64 ref_root;
31840ae1 3217 u32 nritems;
31840ae1
ZY
3218 struct btrfs_key key;
3219 struct btrfs_file_extent_item *fi;
3220 int i;
3221 int level;
3222 int ret = 0;
31840ae1 3223 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3224 u64, u64, u64, u64, u64, u64);
31840ae1 3225
fccb84c9 3226
f5ee5c9a 3227 if (btrfs_is_testing(root->fs_info))
faa2dbf0 3228 return 0;
fccb84c9 3229
31840ae1 3230 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3231 nritems = btrfs_header_nritems(buf);
3232 level = btrfs_header_level(buf);
3233
27cdeb70 3234 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3235 return 0;
31840ae1 3236
5d4f98a2
YZ
3237 if (inc)
3238 process_func = btrfs_inc_extent_ref;
3239 else
3240 process_func = btrfs_free_extent;
31840ae1 3241
5d4f98a2
YZ
3242 if (full_backref)
3243 parent = buf->start;
3244 else
3245 parent = 0;
3246
3247 for (i = 0; i < nritems; i++) {
31840ae1 3248 if (level == 0) {
5d4f98a2 3249 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3250 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3251 continue;
5d4f98a2 3252 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3253 struct btrfs_file_extent_item);
3254 if (btrfs_file_extent_type(buf, fi) ==
3255 BTRFS_FILE_EXTENT_INLINE)
3256 continue;
3257 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258 if (bytenr == 0)
3259 continue;
5d4f98a2
YZ
3260
3261 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3262 key.offset -= btrfs_file_extent_offset(buf, fi);
3263 ret = process_func(trans, root, bytenr, num_bytes,
3264 parent, ref_root, key.objectid,
b06c4bf5 3265 key.offset);
31840ae1
ZY
3266 if (ret)
3267 goto fail;
3268 } else {
5d4f98a2 3269 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3270 num_bytes = root->nodesize;
5d4f98a2 3271 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3272 parent, ref_root, level - 1, 0);
31840ae1
ZY
3273 if (ret)
3274 goto fail;
3275 }
3276 }
3277 return 0;
3278fail:
5d4f98a2
YZ
3279 return ret;
3280}
3281
3282int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3283 struct extent_buffer *buf, int full_backref)
5d4f98a2 3284{
e339a6b0 3285 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3286}
3287
3288int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3289 struct extent_buffer *buf, int full_backref)
5d4f98a2 3290{
e339a6b0 3291 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3292}
3293
9078a3e1
CM
3294static int write_one_cache_group(struct btrfs_trans_handle *trans,
3295 struct btrfs_root *root,
3296 struct btrfs_path *path,
3297 struct btrfs_block_group_cache *cache)
3298{
3299 int ret;
9078a3e1 3300 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3301 unsigned long bi;
3302 struct extent_buffer *leaf;
9078a3e1 3303
9078a3e1 3304 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3305 if (ret) {
3306 if (ret > 0)
3307 ret = -ENOENT;
54aa1f4d 3308 goto fail;
df95e7f0 3309 }
5f39d397
CM
3310
3311 leaf = path->nodes[0];
3312 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3313 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3314 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3315fail:
24b89d08 3316 btrfs_release_path(path);
df95e7f0 3317 return ret;
9078a3e1
CM
3318
3319}
3320
4a8c9a62
YZ
3321static struct btrfs_block_group_cache *
3322next_block_group(struct btrfs_root *root,
3323 struct btrfs_block_group_cache *cache)
3324{
3325 struct rb_node *node;
292cbd51 3326
4a8c9a62 3327 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3328
3329 /* If our block group was removed, we need a full search. */
3330 if (RB_EMPTY_NODE(&cache->cache_node)) {
3331 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3332
3333 spin_unlock(&root->fs_info->block_group_cache_lock);
3334 btrfs_put_block_group(cache);
3335 cache = btrfs_lookup_first_block_group(root->fs_info,
3336 next_bytenr);
3337 return cache;
3338 }
4a8c9a62
YZ
3339 node = rb_next(&cache->cache_node);
3340 btrfs_put_block_group(cache);
3341 if (node) {
3342 cache = rb_entry(node, struct btrfs_block_group_cache,
3343 cache_node);
11dfe35a 3344 btrfs_get_block_group(cache);
4a8c9a62
YZ
3345 } else
3346 cache = NULL;
3347 spin_unlock(&root->fs_info->block_group_cache_lock);
3348 return cache;
3349}
3350
0af3d00b
JB
3351static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352 struct btrfs_trans_handle *trans,
3353 struct btrfs_path *path)
3354{
3355 struct btrfs_root *root = block_group->fs_info->tree_root;
3356 struct inode *inode = NULL;
3357 u64 alloc_hint = 0;
2b20982e 3358 int dcs = BTRFS_DC_ERROR;
f8c269d7 3359 u64 num_pages = 0;
0af3d00b
JB
3360 int retries = 0;
3361 int ret = 0;
3362
3363 /*
3364 * If this block group is smaller than 100 megs don't bother caching the
3365 * block group.
3366 */
ee22184b 3367 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3368 spin_lock(&block_group->lock);
3369 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 spin_unlock(&block_group->lock);
3371 return 0;
3372 }
3373
0c0ef4bc
JB
3374 if (trans->aborted)
3375 return 0;
0af3d00b
JB
3376again:
3377 inode = lookup_free_space_inode(root, block_group, path);
3378 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 ret = PTR_ERR(inode);
b3b4aa74 3380 btrfs_release_path(path);
0af3d00b
JB
3381 goto out;
3382 }
3383
3384 if (IS_ERR(inode)) {
3385 BUG_ON(retries);
3386 retries++;
3387
3388 if (block_group->ro)
3389 goto out_free;
3390
3391 ret = create_free_space_inode(root, trans, block_group, path);
3392 if (ret)
3393 goto out_free;
3394 goto again;
3395 }
3396
5b0e95bf
JB
3397 /* We've already setup this transaction, go ahead and exit */
3398 if (block_group->cache_generation == trans->transid &&
3399 i_size_read(inode)) {
3400 dcs = BTRFS_DC_SETUP;
3401 goto out_put;
3402 }
3403
0af3d00b
JB
3404 /*
3405 * We want to set the generation to 0, that way if anything goes wrong
3406 * from here on out we know not to trust this cache when we load up next
3407 * time.
3408 */
3409 BTRFS_I(inode)->generation = 0;
3410 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3411 if (ret) {
3412 /*
3413 * So theoretically we could recover from this, simply set the
3414 * super cache generation to 0 so we know to invalidate the
3415 * cache, but then we'd have to keep track of the block groups
3416 * that fail this way so we know we _have_ to reset this cache
3417 * before the next commit or risk reading stale cache. So to
3418 * limit our exposure to horrible edge cases lets just abort the
3419 * transaction, this only happens in really bad situations
3420 * anyway.
3421 */
66642832 3422 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3423 goto out_put;
3424 }
0af3d00b
JB
3425 WARN_ON(ret);
3426
3427 if (i_size_read(inode) > 0) {
7b61cd92
MX
3428 ret = btrfs_check_trunc_cache_free_space(root,
3429 &root->fs_info->global_block_rsv);
3430 if (ret)
3431 goto out_put;
3432
1bbc621e 3433 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3434 if (ret)
3435 goto out_put;
3436 }
3437
3438 spin_lock(&block_group->lock);
cf7c1ef6 3439 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3cdde224 3440 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3441 /*
3442 * don't bother trying to write stuff out _if_
3443 * a) we're not cached,
3444 * b) we're with nospace_cache mount option.
3445 */
2b20982e 3446 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3447 spin_unlock(&block_group->lock);
3448 goto out_put;
3449 }
3450 spin_unlock(&block_group->lock);
3451
2968b1f4
JB
3452 /*
3453 * We hit an ENOSPC when setting up the cache in this transaction, just
3454 * skip doing the setup, we've already cleared the cache so we're safe.
3455 */
3456 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3457 ret = -ENOSPC;
3458 goto out_put;
3459 }
3460
6fc823b1
JB
3461 /*
3462 * Try to preallocate enough space based on how big the block group is.
3463 * Keep in mind this has to include any pinned space which could end up
3464 * taking up quite a bit since it's not folded into the other space
3465 * cache.
3466 */
ee22184b 3467 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3468 if (!num_pages)
3469 num_pages = 1;
3470
0af3d00b 3471 num_pages *= 16;
09cbfeaf 3472 num_pages *= PAGE_SIZE;
0af3d00b 3473
7cf5b976 3474 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3475 if (ret)
3476 goto out_put;
3477
3478 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3479 num_pages, num_pages,
3480 &alloc_hint);
2968b1f4
JB
3481 /*
3482 * Our cache requires contiguous chunks so that we don't modify a bunch
3483 * of metadata or split extents when writing the cache out, which means
3484 * we can enospc if we are heavily fragmented in addition to just normal
3485 * out of space conditions. So if we hit this just skip setting up any
3486 * other block groups for this transaction, maybe we'll unpin enough
3487 * space the next time around.
3488 */
2b20982e
JB
3489 if (!ret)
3490 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3491 else if (ret == -ENOSPC)
3492 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3493
0af3d00b
JB
3494out_put:
3495 iput(inode);
3496out_free:
b3b4aa74 3497 btrfs_release_path(path);
0af3d00b
JB
3498out:
3499 spin_lock(&block_group->lock);
e65cbb94 3500 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3501 block_group->cache_generation = trans->transid;
2b20982e 3502 block_group->disk_cache_state = dcs;
0af3d00b
JB
3503 spin_unlock(&block_group->lock);
3504
3505 return ret;
3506}
3507
dcdf7f6d
JB
3508int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3509 struct btrfs_root *root)
3510{
3511 struct btrfs_block_group_cache *cache, *tmp;
3512 struct btrfs_transaction *cur_trans = trans->transaction;
3513 struct btrfs_path *path;
3514
3515 if (list_empty(&cur_trans->dirty_bgs) ||
3cdde224 3516 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
dcdf7f6d
JB
3517 return 0;
3518
3519 path = btrfs_alloc_path();
3520 if (!path)
3521 return -ENOMEM;
3522
3523 /* Could add new block groups, use _safe just in case */
3524 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3525 dirty_list) {
3526 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3527 cache_save_setup(cache, trans, path);
3528 }
3529
3530 btrfs_free_path(path);
3531 return 0;
3532}
3533
1bbc621e
CM
3534/*
3535 * transaction commit does final block group cache writeback during a
3536 * critical section where nothing is allowed to change the FS. This is
3537 * required in order for the cache to actually match the block group,
3538 * but can introduce a lot of latency into the commit.
3539 *
3540 * So, btrfs_start_dirty_block_groups is here to kick off block group
3541 * cache IO. There's a chance we'll have to redo some of it if the
3542 * block group changes again during the commit, but it greatly reduces
3543 * the commit latency by getting rid of the easy block groups while
3544 * we're still allowing others to join the commit.
3545 */
3546int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3547 struct btrfs_root *root)
9078a3e1 3548{
4a8c9a62 3549 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3550 struct btrfs_transaction *cur_trans = trans->transaction;
3551 int ret = 0;
c9dc4c65 3552 int should_put;
1bbc621e
CM
3553 struct btrfs_path *path = NULL;
3554 LIST_HEAD(dirty);
3555 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3556 int num_started = 0;
1bbc621e
CM
3557 int loops = 0;
3558
3559 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3560 if (list_empty(&cur_trans->dirty_bgs)) {
3561 spin_unlock(&cur_trans->dirty_bgs_lock);
3562 return 0;
1bbc621e 3563 }
b58d1a9e 3564 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3565 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3566
1bbc621e 3567again:
1bbc621e
CM
3568 /*
3569 * make sure all the block groups on our dirty list actually
3570 * exist
3571 */
3572 btrfs_create_pending_block_groups(trans, root);
3573
3574 if (!path) {
3575 path = btrfs_alloc_path();
3576 if (!path)
3577 return -ENOMEM;
3578 }
3579
b58d1a9e
FM
3580 /*
3581 * cache_write_mutex is here only to save us from balance or automatic
3582 * removal of empty block groups deleting this block group while we are
3583 * writing out the cache
3584 */
3585 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3586 while (!list_empty(&dirty)) {
3587 cache = list_first_entry(&dirty,
3588 struct btrfs_block_group_cache,
3589 dirty_list);
1bbc621e
CM
3590 /*
3591 * this can happen if something re-dirties a block
3592 * group that is already under IO. Just wait for it to
3593 * finish and then do it all again
3594 */
3595 if (!list_empty(&cache->io_list)) {
3596 list_del_init(&cache->io_list);
3597 btrfs_wait_cache_io(root, trans, cache,
3598 &cache->io_ctl, path,
3599 cache->key.objectid);
3600 btrfs_put_block_group(cache);
3601 }
3602
3603
3604 /*
3605 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3606 * if it should update the cache_state. Don't delete
3607 * until after we wait.
3608 *
3609 * Since we're not running in the commit critical section
3610 * we need the dirty_bgs_lock to protect from update_block_group
3611 */
3612 spin_lock(&cur_trans->dirty_bgs_lock);
3613 list_del_init(&cache->dirty_list);
3614 spin_unlock(&cur_trans->dirty_bgs_lock);
3615
3616 should_put = 1;
3617
3618 cache_save_setup(cache, trans, path);
3619
3620 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3621 cache->io_ctl.inode = NULL;
3622 ret = btrfs_write_out_cache(root, trans, cache, path);
3623 if (ret == 0 && cache->io_ctl.inode) {
3624 num_started++;
3625 should_put = 0;
3626
3627 /*
3628 * the cache_write_mutex is protecting
3629 * the io_list
3630 */
3631 list_add_tail(&cache->io_list, io);
3632 } else {
3633 /*
3634 * if we failed to write the cache, the
3635 * generation will be bad and life goes on
3636 */
3637 ret = 0;
3638 }
3639 }
ff1f8250 3640 if (!ret) {
1bbc621e 3641 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3642 /*
3643 * Our block group might still be attached to the list
3644 * of new block groups in the transaction handle of some
3645 * other task (struct btrfs_trans_handle->new_bgs). This
3646 * means its block group item isn't yet in the extent
3647 * tree. If this happens ignore the error, as we will
3648 * try again later in the critical section of the
3649 * transaction commit.
3650 */
3651 if (ret == -ENOENT) {
3652 ret = 0;
3653 spin_lock(&cur_trans->dirty_bgs_lock);
3654 if (list_empty(&cache->dirty_list)) {
3655 list_add_tail(&cache->dirty_list,
3656 &cur_trans->dirty_bgs);
3657 btrfs_get_block_group(cache);
3658 }
3659 spin_unlock(&cur_trans->dirty_bgs_lock);
3660 } else if (ret) {
66642832 3661 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3662 }
3663 }
1bbc621e
CM
3664
3665 /* if its not on the io list, we need to put the block group */
3666 if (should_put)
3667 btrfs_put_block_group(cache);
3668
3669 if (ret)
3670 break;
b58d1a9e
FM
3671
3672 /*
3673 * Avoid blocking other tasks for too long. It might even save
3674 * us from writing caches for block groups that are going to be
3675 * removed.
3676 */
3677 mutex_unlock(&trans->transaction->cache_write_mutex);
3678 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3679 }
b58d1a9e 3680 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3681
3682 /*
3683 * go through delayed refs for all the stuff we've just kicked off
3684 * and then loop back (just once)
3685 */
3686 ret = btrfs_run_delayed_refs(trans, root, 0);
3687 if (!ret && loops == 0) {
3688 loops++;
3689 spin_lock(&cur_trans->dirty_bgs_lock);
3690 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3691 /*
3692 * dirty_bgs_lock protects us from concurrent block group
3693 * deletes too (not just cache_write_mutex).
3694 */
3695 if (!list_empty(&dirty)) {
3696 spin_unlock(&cur_trans->dirty_bgs_lock);
3697 goto again;
3698 }
1bbc621e 3699 spin_unlock(&cur_trans->dirty_bgs_lock);
de26dfde
LB
3700 } else if (ret < 0) {
3701 btrfs_cleanup_dirty_bgs(cur_trans, root);
1bbc621e
CM
3702 }
3703
3704 btrfs_free_path(path);
3705 return ret;
3706}
3707
3708int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3709 struct btrfs_root *root)
3710{
3711 struct btrfs_block_group_cache *cache;
3712 struct btrfs_transaction *cur_trans = trans->transaction;
3713 int ret = 0;
3714 int should_put;
3715 struct btrfs_path *path;
3716 struct list_head *io = &cur_trans->io_bgs;
3717 int num_started = 0;
9078a3e1
CM
3718
3719 path = btrfs_alloc_path();
3720 if (!path)
3721 return -ENOMEM;
3722
ce93ec54 3723 /*
e44081ef
FM
3724 * Even though we are in the critical section of the transaction commit,
3725 * we can still have concurrent tasks adding elements to this
3726 * transaction's list of dirty block groups. These tasks correspond to
3727 * endio free space workers started when writeback finishes for a
3728 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3729 * allocate new block groups as a result of COWing nodes of the root
3730 * tree when updating the free space inode. The writeback for the space
3731 * caches is triggered by an earlier call to
3732 * btrfs_start_dirty_block_groups() and iterations of the following
3733 * loop.
3734 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3735 * delayed refs to make sure we have the best chance at doing this all
3736 * in one shot.
3737 */
e44081ef 3738 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3739 while (!list_empty(&cur_trans->dirty_bgs)) {
3740 cache = list_first_entry(&cur_trans->dirty_bgs,
3741 struct btrfs_block_group_cache,
3742 dirty_list);
c9dc4c65
CM
3743
3744 /*
3745 * this can happen if cache_save_setup re-dirties a block
3746 * group that is already under IO. Just wait for it to
3747 * finish and then do it all again
3748 */
3749 if (!list_empty(&cache->io_list)) {
e44081ef 3750 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3751 list_del_init(&cache->io_list);
3752 btrfs_wait_cache_io(root, trans, cache,
3753 &cache->io_ctl, path,
3754 cache->key.objectid);
3755 btrfs_put_block_group(cache);
e44081ef 3756 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3757 }
3758
1bbc621e
CM
3759 /*
3760 * don't remove from the dirty list until after we've waited
3761 * on any pending IO
3762 */
ce93ec54 3763 list_del_init(&cache->dirty_list);
e44081ef 3764 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3765 should_put = 1;
3766
1bbc621e 3767 cache_save_setup(cache, trans, path);
c9dc4c65 3768
ce93ec54 3769 if (!ret)
c9dc4c65
CM
3770 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3771
3772 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3773 cache->io_ctl.inode = NULL;
3774 ret = btrfs_write_out_cache(root, trans, cache, path);
3775 if (ret == 0 && cache->io_ctl.inode) {
3776 num_started++;
3777 should_put = 0;
1bbc621e 3778 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3779 } else {
3780 /*
3781 * if we failed to write the cache, the
3782 * generation will be bad and life goes on
3783 */
3784 ret = 0;
3785 }
3786 }
ff1f8250 3787 if (!ret) {
ce93ec54 3788 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3789 /*
3790 * One of the free space endio workers might have
3791 * created a new block group while updating a free space
3792 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3793 * and hasn't released its transaction handle yet, in
3794 * which case the new block group is still attached to
3795 * its transaction handle and its creation has not
3796 * finished yet (no block group item in the extent tree
3797 * yet, etc). If this is the case, wait for all free
3798 * space endio workers to finish and retry. This is a
3799 * a very rare case so no need for a more efficient and
3800 * complex approach.
3801 */
3802 if (ret == -ENOENT) {
3803 wait_event(cur_trans->writer_wait,
3804 atomic_read(&cur_trans->num_writers) == 1);
3805 ret = write_one_cache_group(trans, root, path,
3806 cache);
3807 }
ff1f8250 3808 if (ret)
66642832 3809 btrfs_abort_transaction(trans, ret);
ff1f8250 3810 }
c9dc4c65
CM
3811
3812 /* if its not on the io list, we need to put the block group */
3813 if (should_put)
3814 btrfs_put_block_group(cache);
e44081ef 3815 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3816 }
e44081ef 3817 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3818
1bbc621e
CM
3819 while (!list_empty(io)) {
3820 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3821 io_list);
3822 list_del_init(&cache->io_list);
c9dc4c65
CM
3823 btrfs_wait_cache_io(root, trans, cache,
3824 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3825 btrfs_put_block_group(cache);
3826 }
3827
9078a3e1 3828 btrfs_free_path(path);
ce93ec54 3829 return ret;
9078a3e1
CM
3830}
3831
d2fb3437
YZ
3832int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3833{
3834 struct btrfs_block_group_cache *block_group;
3835 int readonly = 0;
3836
3837 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3838 if (!block_group || block_group->ro)
3839 readonly = 1;
3840 if (block_group)
fa9c0d79 3841 btrfs_put_block_group(block_group);
d2fb3437
YZ
3842 return readonly;
3843}
3844
f78c436c
FM
3845bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3846{
3847 struct btrfs_block_group_cache *bg;
3848 bool ret = true;
3849
3850 bg = btrfs_lookup_block_group(fs_info, bytenr);
3851 if (!bg)
3852 return false;
3853
3854 spin_lock(&bg->lock);
3855 if (bg->ro)
3856 ret = false;
3857 else
3858 atomic_inc(&bg->nocow_writers);
3859 spin_unlock(&bg->lock);
3860
3861 /* no put on block group, done by btrfs_dec_nocow_writers */
3862 if (!ret)
3863 btrfs_put_block_group(bg);
3864
3865 return ret;
3866
3867}
3868
3869void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3870{
3871 struct btrfs_block_group_cache *bg;
3872
3873 bg = btrfs_lookup_block_group(fs_info, bytenr);
3874 ASSERT(bg);
3875 if (atomic_dec_and_test(&bg->nocow_writers))
3876 wake_up_atomic_t(&bg->nocow_writers);
3877 /*
3878 * Once for our lookup and once for the lookup done by a previous call
3879 * to btrfs_inc_nocow_writers()
3880 */
3881 btrfs_put_block_group(bg);
3882 btrfs_put_block_group(bg);
3883}
3884
3885static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3886{
3887 schedule();
3888 return 0;
3889}
3890
3891void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3892{
3893 wait_on_atomic_t(&bg->nocow_writers,
3894 btrfs_wait_nocow_writers_atomic_t,
3895 TASK_UNINTERRUPTIBLE);
3896}
3897
6ab0a202
JM
3898static const char *alloc_name(u64 flags)
3899{
3900 switch (flags) {
3901 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3902 return "mixed";
3903 case BTRFS_BLOCK_GROUP_METADATA:
3904 return "metadata";
3905 case BTRFS_BLOCK_GROUP_DATA:
3906 return "data";
3907 case BTRFS_BLOCK_GROUP_SYSTEM:
3908 return "system";
3909 default:
3910 WARN_ON(1);
3911 return "invalid-combination";
3912 };
3913}
3914
593060d7
CM
3915static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3916 u64 total_bytes, u64 bytes_used,
e40edf2d 3917 u64 bytes_readonly,
593060d7
CM
3918 struct btrfs_space_info **space_info)
3919{
3920 struct btrfs_space_info *found;
b742bb82
YZ
3921 int i;
3922 int factor;
b150a4f1 3923 int ret;
b742bb82
YZ
3924
3925 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3926 BTRFS_BLOCK_GROUP_RAID10))
3927 factor = 2;
3928 else
3929 factor = 1;
593060d7
CM
3930
3931 found = __find_space_info(info, flags);
3932 if (found) {
25179201 3933 spin_lock(&found->lock);
593060d7 3934 found->total_bytes += total_bytes;
89a55897 3935 found->disk_total += total_bytes * factor;
593060d7 3936 found->bytes_used += bytes_used;
b742bb82 3937 found->disk_used += bytes_used * factor;
e40edf2d 3938 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3939 if (total_bytes > 0)
3940 found->full = 0;
957780eb
JB
3941 space_info_add_new_bytes(info, found, total_bytes -
3942 bytes_used - bytes_readonly);
25179201 3943 spin_unlock(&found->lock);
593060d7
CM
3944 *space_info = found;
3945 return 0;
3946 }
c146afad 3947 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3948 if (!found)
3949 return -ENOMEM;
3950
908c7f19 3951 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3952 if (ret) {
3953 kfree(found);
3954 return ret;
3955 }
3956
c1895442 3957 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3958 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3959 init_rwsem(&found->groups_sem);
0f9dd46c 3960 spin_lock_init(&found->lock);
52ba6929 3961 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3962 found->total_bytes = total_bytes;
89a55897 3963 found->disk_total = total_bytes * factor;
593060d7 3964 found->bytes_used = bytes_used;
b742bb82 3965 found->disk_used = bytes_used * factor;
593060d7 3966 found->bytes_pinned = 0;
e8569813 3967 found->bytes_reserved = 0;
e40edf2d 3968 found->bytes_readonly = bytes_readonly;
f0486c68 3969 found->bytes_may_use = 0;
6af3e3ad 3970 found->full = 0;
4f4db217 3971 found->max_extent_size = 0;
0e4f8f88 3972 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3973 found->chunk_alloc = 0;
fdb5effd
JB
3974 found->flush = 0;
3975 init_waitqueue_head(&found->wait);
633c0aad 3976 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3977 INIT_LIST_HEAD(&found->tickets);
3978 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3979
3980 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3981 info->space_info_kobj, "%s",
3982 alloc_name(found->flags));
3983 if (ret) {
3984 kfree(found);
3985 return ret;
3986 }
3987
593060d7 3988 *space_info = found;
4184ea7f 3989 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3990 if (flags & BTRFS_BLOCK_GROUP_DATA)
3991 info->data_sinfo = found;
6ab0a202
JM
3992
3993 return ret;
593060d7
CM
3994}
3995
8790d502
CM
3996static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3997{
899c81ea
ID
3998 u64 extra_flags = chunk_to_extended(flags) &
3999 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4000
de98ced9 4001 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4002 if (flags & BTRFS_BLOCK_GROUP_DATA)
4003 fs_info->avail_data_alloc_bits |= extra_flags;
4004 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4005 fs_info->avail_metadata_alloc_bits |= extra_flags;
4006 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4007 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4008 write_sequnlock(&fs_info->profiles_lock);
8790d502 4009}
593060d7 4010
fc67c450
ID
4011/*
4012 * returns target flags in extended format or 0 if restripe for this
4013 * chunk_type is not in progress
c6664b42
ID
4014 *
4015 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4016 */
4017static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4018{
4019 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4020 u64 target = 0;
4021
fc67c450
ID
4022 if (!bctl)
4023 return 0;
4024
4025 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4026 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4027 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4028 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4029 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4030 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4031 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4032 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4033 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4034 }
4035
4036 return target;
4037}
4038
a46d11a8
ID
4039/*
4040 * @flags: available profiles in extended format (see ctree.h)
4041 *
e4d8ec0f
ID
4042 * Returns reduced profile in chunk format. If profile changing is in
4043 * progress (either running or paused) picks the target profile (if it's
4044 * already available), otherwise falls back to plain reducing.
a46d11a8 4045 */
48a3b636 4046static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4047{
95669976 4048 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4049 u64 target;
9c170b26
ZL
4050 u64 raid_type;
4051 u64 allowed = 0;
a061fc8d 4052
fc67c450
ID
4053 /*
4054 * see if restripe for this chunk_type is in progress, if so
4055 * try to reduce to the target profile
4056 */
e4d8ec0f 4057 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4058 target = get_restripe_target(root->fs_info, flags);
4059 if (target) {
4060 /* pick target profile only if it's already available */
4061 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4062 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4063 return extended_to_chunk(target);
e4d8ec0f
ID
4064 }
4065 }
4066 spin_unlock(&root->fs_info->balance_lock);
4067
53b381b3 4068 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4069 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4070 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4071 allowed |= btrfs_raid_group[raid_type];
4072 }
4073 allowed &= flags;
4074
4075 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4076 allowed = BTRFS_BLOCK_GROUP_RAID6;
4077 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4078 allowed = BTRFS_BLOCK_GROUP_RAID5;
4079 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4080 allowed = BTRFS_BLOCK_GROUP_RAID10;
4081 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4082 allowed = BTRFS_BLOCK_GROUP_RAID1;
4083 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4084 allowed = BTRFS_BLOCK_GROUP_RAID0;
4085
4086 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4087
4088 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4089}
4090
f8213bdc 4091static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4092{
de98ced9 4093 unsigned seq;
f8213bdc 4094 u64 flags;
de98ced9
MX
4095
4096 do {
f8213bdc 4097 flags = orig_flags;
de98ced9
MX
4098 seq = read_seqbegin(&root->fs_info->profiles_lock);
4099
4100 if (flags & BTRFS_BLOCK_GROUP_DATA)
4101 flags |= root->fs_info->avail_data_alloc_bits;
4102 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4103 flags |= root->fs_info->avail_system_alloc_bits;
4104 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4105 flags |= root->fs_info->avail_metadata_alloc_bits;
4106 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4107
b742bb82 4108 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4109}
4110
6d07bcec 4111u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4112{
b742bb82 4113 u64 flags;
53b381b3 4114 u64 ret;
9ed74f2d 4115
b742bb82
YZ
4116 if (data)
4117 flags = BTRFS_BLOCK_GROUP_DATA;
4118 else if (root == root->fs_info->chunk_root)
4119 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4120 else
b742bb82 4121 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4122
53b381b3
DW
4123 ret = get_alloc_profile(root, flags);
4124 return ret;
6a63209f 4125}
9ed74f2d 4126
4ceff079 4127int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4128{
6a63209f 4129 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4130 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4131 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4132 u64 used;
94b947b2 4133 int ret = 0;
c99f1b0c
ZL
4134 int need_commit = 2;
4135 int have_pinned_space;
6a63209f 4136
6a63209f 4137 /* make sure bytes are sectorsize aligned */
fda2832f 4138 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4139
9dced186 4140 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4141 need_commit = 0;
9dced186 4142 ASSERT(current->journal_info);
0af3d00b
JB
4143 }
4144
b4d7c3c9 4145 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4146 if (!data_sinfo)
4147 goto alloc;
9ed74f2d 4148
6a63209f
JB
4149again:
4150 /* make sure we have enough space to handle the data first */
4151 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4152 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4153 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4154 data_sinfo->bytes_may_use;
ab6e2410
JB
4155
4156 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4157 struct btrfs_trans_handle *trans;
9ed74f2d 4158
6a63209f
JB
4159 /*
4160 * if we don't have enough free bytes in this space then we need
4161 * to alloc a new chunk.
4162 */
b9fd47cd 4163 if (!data_sinfo->full) {
6a63209f 4164 u64 alloc_target;
9ed74f2d 4165
0e4f8f88 4166 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4167 spin_unlock(&data_sinfo->lock);
33b4d47f 4168alloc:
6a63209f 4169 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4170 /*
4171 * It is ugly that we don't call nolock join
4172 * transaction for the free space inode case here.
4173 * But it is safe because we only do the data space
4174 * reservation for the free space cache in the
4175 * transaction context, the common join transaction
4176 * just increase the counter of the current transaction
4177 * handler, doesn't try to acquire the trans_lock of
4178 * the fs.
4179 */
7a7eaa40 4180 trans = btrfs_join_transaction(root);
a22285a6
YZ
4181 if (IS_ERR(trans))
4182 return PTR_ERR(trans);
9ed74f2d 4183
6a63209f 4184 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4185 alloc_target,
4186 CHUNK_ALLOC_NO_FORCE);
6a63209f 4187 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4188 if (ret < 0) {
4189 if (ret != -ENOSPC)
4190 return ret;
c99f1b0c
ZL
4191 else {
4192 have_pinned_space = 1;
d52a5b5f 4193 goto commit_trans;
c99f1b0c 4194 }
d52a5b5f 4195 }
9ed74f2d 4196
b4d7c3c9
LZ
4197 if (!data_sinfo)
4198 data_sinfo = fs_info->data_sinfo;
4199
6a63209f
JB
4200 goto again;
4201 }
f2bb8f5c
JB
4202
4203 /*
b150a4f1 4204 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4205 * allocation, and no removed chunk in current transaction,
4206 * don't bother committing the transaction.
f2bb8f5c 4207 */
c99f1b0c
ZL
4208 have_pinned_space = percpu_counter_compare(
4209 &data_sinfo->total_bytes_pinned,
4210 used + bytes - data_sinfo->total_bytes);
6a63209f 4211 spin_unlock(&data_sinfo->lock);
6a63209f 4212
4e06bdd6 4213 /* commit the current transaction and try again */
d52a5b5f 4214commit_trans:
c99f1b0c 4215 if (need_commit &&
a4abeea4 4216 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4217 need_commit--;
b150a4f1 4218
e1746e83
ZL
4219 if (need_commit > 0) {
4220 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4221 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4222 }
9a4e7276 4223
7a7eaa40 4224 trans = btrfs_join_transaction(root);
a22285a6
YZ
4225 if (IS_ERR(trans))
4226 return PTR_ERR(trans);
c99f1b0c 4227 if (have_pinned_space >= 0 ||
3204d33c
JB
4228 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4229 &trans->transaction->flags) ||
c99f1b0c 4230 need_commit > 0) {
94b947b2
ZL
4231 ret = btrfs_commit_transaction(trans, root);
4232 if (ret)
4233 return ret;
d7c15171 4234 /*
c2d6cb16
FM
4235 * The cleaner kthread might still be doing iput
4236 * operations. Wait for it to finish so that
4237 * more space is released.
d7c15171 4238 */
c2d6cb16
FM
4239 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4240 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4241 goto again;
4242 } else {
4243 btrfs_end_transaction(trans, root);
4244 }
4e06bdd6 4245 }
9ed74f2d 4246
cab45e22
JM
4247 trace_btrfs_space_reservation(root->fs_info,
4248 "space_info:enospc",
4249 data_sinfo->flags, bytes, 1);
6a63209f
JB
4250 return -ENOSPC;
4251 }
4252 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4253 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4254 data_sinfo->flags, bytes, 1);
6a63209f 4255 spin_unlock(&data_sinfo->lock);
6a63209f 4256
237c0e9f 4257 return ret;
9ed74f2d 4258}
6a63209f 4259
4ceff079
QW
4260/*
4261 * New check_data_free_space() with ability for precious data reservation
4262 * Will replace old btrfs_check_data_free_space(), but for patch split,
4263 * add a new function first and then replace it.
4264 */
7cf5b976 4265int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4266{
4267 struct btrfs_root *root = BTRFS_I(inode)->root;
4268 int ret;
4269
4270 /* align the range */
4271 len = round_up(start + len, root->sectorsize) -
4272 round_down(start, root->sectorsize);
4273 start = round_down(start, root->sectorsize);
4274
4275 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4276 if (ret < 0)
4277 return ret;
4278
94ed938a
QW
4279 /*
4280 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4281 *
4282 * TODO: Find a good method to avoid reserve data space for NOCOW
4283 * range, but don't impact performance on quota disable case.
4284 */
4ceff079 4285 ret = btrfs_qgroup_reserve_data(inode, start, len);
3c8bf926
QW
4286 if (ret < 0)
4287 /* Qgroup reserve failed, need to cleanup reserved data space */
4288 btrfs_free_reserved_data_space(inode, start, len);
4ceff079
QW
4289 return ret;
4290}
4291
4ceff079
QW
4292/*
4293 * Called if we need to clear a data reservation for this inode
4294 * Normally in a error case.
4295 *
51773bec
QW
4296 * This one will *NOT* use accurate qgroup reserved space API, just for case
4297 * which we can't sleep and is sure it won't affect qgroup reserved space.
4298 * Like clear_bit_hook().
4ceff079 4299 */
51773bec
QW
4300void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4301 u64 len)
4ceff079
QW
4302{
4303 struct btrfs_root *root = BTRFS_I(inode)->root;
4304 struct btrfs_space_info *data_sinfo;
4305
4306 /* Make sure the range is aligned to sectorsize */
4307 len = round_up(start + len, root->sectorsize) -
4308 round_down(start, root->sectorsize);
4309 start = round_down(start, root->sectorsize);
4310
4ceff079
QW
4311 data_sinfo = root->fs_info->data_sinfo;
4312 spin_lock(&data_sinfo->lock);
4313 if (WARN_ON(data_sinfo->bytes_may_use < len))
4314 data_sinfo->bytes_may_use = 0;
4315 else
4316 data_sinfo->bytes_may_use -= len;
4317 trace_btrfs_space_reservation(root->fs_info, "space_info",
4318 data_sinfo->flags, len, 0);
4319 spin_unlock(&data_sinfo->lock);
4320}
4321
51773bec
QW
4322/*
4323 * Called if we need to clear a data reservation for this inode
4324 * Normally in a error case.
4325 *
01327610 4326 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4327 * space framework.
4328 */
4329void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4330{
4331 btrfs_free_reserved_data_space_noquota(inode, start, len);
4332 btrfs_qgroup_free_data(inode, start, len);
4333}
4334
97e728d4 4335static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4336{
97e728d4
JB
4337 struct list_head *head = &info->space_info;
4338 struct btrfs_space_info *found;
e3ccfa98 4339
97e728d4
JB
4340 rcu_read_lock();
4341 list_for_each_entry_rcu(found, head, list) {
4342 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4343 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4344 }
97e728d4 4345 rcu_read_unlock();
e3ccfa98
JB
4346}
4347
3c76cd84
MX
4348static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4349{
4350 return (global->size << 1);
4351}
4352
e5bc2458 4353static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4354 struct btrfs_space_info *sinfo, int force)
32c00aff 4355{
fb25e914 4356 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4357 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4358 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4359 u64 thresh;
e3ccfa98 4360
0e4f8f88
CM
4361 if (force == CHUNK_ALLOC_FORCE)
4362 return 1;
4363
fb25e914
JB
4364 /*
4365 * We need to take into account the global rsv because for all intents
4366 * and purposes it's used space. Don't worry about locking the
4367 * global_rsv, it doesn't change except when the transaction commits.
4368 */
54338b5c 4369 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4370 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4371
0e4f8f88
CM
4372 /*
4373 * in limited mode, we want to have some free space up to
4374 * about 1% of the FS size.
4375 */
4376 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4377 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4378 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4379
4380 if (num_bytes - num_allocated < thresh)
4381 return 1;
4382 }
0e4f8f88 4383
ee22184b 4384 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4385 return 0;
424499db 4386 return 1;
32c00aff
JB
4387}
4388
39c2d7fa 4389static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4390{
4391 u64 num_dev;
4392
53b381b3
DW
4393 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4394 BTRFS_BLOCK_GROUP_RAID0 |
4395 BTRFS_BLOCK_GROUP_RAID5 |
4396 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4397 num_dev = root->fs_info->fs_devices->rw_devices;
4398 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4399 num_dev = 2;
4400 else
4401 num_dev = 1; /* DUP or single */
4402
39c2d7fa 4403 return num_dev;
15d1ff81
LB
4404}
4405
39c2d7fa
FM
4406/*
4407 * If @is_allocation is true, reserve space in the system space info necessary
4408 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4409 * removing a chunk.
4410 */
4411void check_system_chunk(struct btrfs_trans_handle *trans,
4412 struct btrfs_root *root,
4617ea3a 4413 u64 type)
15d1ff81
LB
4414{
4415 struct btrfs_space_info *info;
4416 u64 left;
4417 u64 thresh;
4fbcdf66 4418 int ret = 0;
39c2d7fa 4419 u64 num_devs;
4fbcdf66
FM
4420
4421 /*
4422 * Needed because we can end up allocating a system chunk and for an
4423 * atomic and race free space reservation in the chunk block reserve.
4424 */
4425 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4426
4427 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4428 spin_lock(&info->lock);
4429 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4430 info->bytes_reserved - info->bytes_readonly -
4431 info->bytes_may_use;
15d1ff81
LB
4432 spin_unlock(&info->lock);
4433
39c2d7fa
FM
4434 num_devs = get_profile_num_devs(root, type);
4435
4436 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4437 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4438 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4439
3cdde224 4440 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
c2cf52eb
SK
4441 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4442 left, thresh, type);
15d1ff81
LB
4443 dump_space_info(info, 0, 0);
4444 }
4445
4446 if (left < thresh) {
4447 u64 flags;
4448
4449 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4450 /*
4451 * Ignore failure to create system chunk. We might end up not
4452 * needing it, as we might not need to COW all nodes/leafs from
4453 * the paths we visit in the chunk tree (they were already COWed
4454 * or created in the current transaction for example).
4455 */
4456 ret = btrfs_alloc_chunk(trans, root, flags);
4457 }
4458
4459 if (!ret) {
4460 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4461 &root->fs_info->chunk_block_rsv,
4462 thresh, BTRFS_RESERVE_NO_FLUSH);
4463 if (!ret)
4464 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4465 }
4466}
4467
28b737f6
LB
4468/*
4469 * If force is CHUNK_ALLOC_FORCE:
4470 * - return 1 if it successfully allocates a chunk,
4471 * - return errors including -ENOSPC otherwise.
4472 * If force is NOT CHUNK_ALLOC_FORCE:
4473 * - return 0 if it doesn't need to allocate a new chunk,
4474 * - return 1 if it successfully allocates a chunk,
4475 * - return errors including -ENOSPC otherwise.
4476 */
6324fbf3 4477static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4478 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4479{
6324fbf3 4480 struct btrfs_space_info *space_info;
97e728d4 4481 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4482 int wait_for_alloc = 0;
9ed74f2d 4483 int ret = 0;
9ed74f2d 4484
c6b305a8
JB
4485 /* Don't re-enter if we're already allocating a chunk */
4486 if (trans->allocating_chunk)
4487 return -ENOSPC;
4488
6324fbf3 4489 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4490 if (!space_info) {
4491 ret = update_space_info(extent_root->fs_info, flags,
e40edf2d 4492 0, 0, 0, &space_info);
79787eaa 4493 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4494 }
79787eaa 4495 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4496
6d74119f 4497again:
25179201 4498 spin_lock(&space_info->lock);
9e622d6b 4499 if (force < space_info->force_alloc)
0e4f8f88 4500 force = space_info->force_alloc;
25179201 4501 if (space_info->full) {
09fb99a6
FDBM
4502 if (should_alloc_chunk(extent_root, space_info, force))
4503 ret = -ENOSPC;
4504 else
4505 ret = 0;
25179201 4506 spin_unlock(&space_info->lock);
09fb99a6 4507 return ret;
9ed74f2d
JB
4508 }
4509
698d0082 4510 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4511 spin_unlock(&space_info->lock);
6d74119f
JB
4512 return 0;
4513 } else if (space_info->chunk_alloc) {
4514 wait_for_alloc = 1;
4515 } else {
4516 space_info->chunk_alloc = 1;
9ed74f2d 4517 }
0e4f8f88 4518
25179201 4519 spin_unlock(&space_info->lock);
9ed74f2d 4520
6d74119f
JB
4521 mutex_lock(&fs_info->chunk_mutex);
4522
4523 /*
4524 * The chunk_mutex is held throughout the entirety of a chunk
4525 * allocation, so once we've acquired the chunk_mutex we know that the
4526 * other guy is done and we need to recheck and see if we should
4527 * allocate.
4528 */
4529 if (wait_for_alloc) {
4530 mutex_unlock(&fs_info->chunk_mutex);
4531 wait_for_alloc = 0;
4532 goto again;
4533 }
4534
c6b305a8
JB
4535 trans->allocating_chunk = true;
4536
67377734
JB
4537 /*
4538 * If we have mixed data/metadata chunks we want to make sure we keep
4539 * allocating mixed chunks instead of individual chunks.
4540 */
4541 if (btrfs_mixed_space_info(space_info))
4542 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4543
97e728d4
JB
4544 /*
4545 * if we're doing a data chunk, go ahead and make sure that
4546 * we keep a reasonable number of metadata chunks allocated in the
4547 * FS as well.
4548 */
9ed74f2d 4549 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4550 fs_info->data_chunk_allocations++;
4551 if (!(fs_info->data_chunk_allocations %
4552 fs_info->metadata_ratio))
4553 force_metadata_allocation(fs_info);
9ed74f2d
JB
4554 }
4555
15d1ff81
LB
4556 /*
4557 * Check if we have enough space in SYSTEM chunk because we may need
4558 * to update devices.
4559 */
4617ea3a 4560 check_system_chunk(trans, extent_root, flags);
15d1ff81 4561
2b82032c 4562 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4563 trans->allocating_chunk = false;
92b8e897 4564
9ed74f2d 4565 spin_lock(&space_info->lock);
a81cb9a2
AO
4566 if (ret < 0 && ret != -ENOSPC)
4567 goto out;
9ed74f2d 4568 if (ret)
6324fbf3 4569 space_info->full = 1;
424499db
YZ
4570 else
4571 ret = 1;
6d74119f 4572
0e4f8f88 4573 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4574out:
6d74119f 4575 space_info->chunk_alloc = 0;
9ed74f2d 4576 spin_unlock(&space_info->lock);
a25c75d5 4577 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4578 /*
4579 * When we allocate a new chunk we reserve space in the chunk block
4580 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4581 * add new nodes/leafs to it if we end up needing to do it when
4582 * inserting the chunk item and updating device items as part of the
4583 * second phase of chunk allocation, performed by
4584 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4585 * large number of new block groups to create in our transaction
4586 * handle's new_bgs list to avoid exhausting the chunk block reserve
4587 * in extreme cases - like having a single transaction create many new
4588 * block groups when starting to write out the free space caches of all
4589 * the block groups that were made dirty during the lifetime of the
4590 * transaction.
4591 */
d9a0540a 4592 if (trans->can_flush_pending_bgs &&
ee22184b 4593 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
64b63580 4594 btrfs_create_pending_block_groups(trans, extent_root);
00d80e34
FM
4595 btrfs_trans_release_chunk_metadata(trans);
4596 }
0f9dd46c 4597 return ret;
6324fbf3 4598}
9ed74f2d 4599
a80c8dcf
JB
4600static int can_overcommit(struct btrfs_root *root,
4601 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4602 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4603{
957780eb
JB
4604 struct btrfs_block_rsv *global_rsv;
4605 u64 profile;
3c76cd84 4606 u64 space_size;
a80c8dcf
JB
4607 u64 avail;
4608 u64 used;
4609
957780eb
JB
4610 /* Don't overcommit when in mixed mode. */
4611 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4612 return 0;
4613
4614 BUG_ON(root->fs_info == NULL);
4615 global_rsv = &root->fs_info->global_block_rsv;
4616 profile = btrfs_get_alloc_profile(root, 0);
a80c8dcf 4617 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4618 space_info->bytes_pinned + space_info->bytes_readonly;
4619
96f1bb57
JB
4620 /*
4621 * We only want to allow over committing if we have lots of actual space
4622 * free, but if we don't have enough space to handle the global reserve
4623 * space then we could end up having a real enospc problem when trying
4624 * to allocate a chunk or some other such important allocation.
4625 */
3c76cd84
MX
4626 spin_lock(&global_rsv->lock);
4627 space_size = calc_global_rsv_need_space(global_rsv);
4628 spin_unlock(&global_rsv->lock);
4629 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4630 return 0;
4631
4632 used += space_info->bytes_may_use;
a80c8dcf
JB
4633
4634 spin_lock(&root->fs_info->free_chunk_lock);
4635 avail = root->fs_info->free_chunk_space;
4636 spin_unlock(&root->fs_info->free_chunk_lock);
4637
4638 /*
4639 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4640 * space is actually useable. For raid56, the space info used
4641 * doesn't include the parity drive, so we don't have to
4642 * change the math
a80c8dcf
JB
4643 */
4644 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4645 BTRFS_BLOCK_GROUP_RAID1 |
4646 BTRFS_BLOCK_GROUP_RAID10))
4647 avail >>= 1;
4648
4649 /*
561c294d
MX
4650 * If we aren't flushing all things, let us overcommit up to
4651 * 1/2th of the space. If we can flush, don't let us overcommit
4652 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4653 */
08e007d2 4654 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4655 avail >>= 3;
a80c8dcf 4656 else
14575aef 4657 avail >>= 1;
a80c8dcf 4658
14575aef 4659 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4660 return 1;
4661 return 0;
4662}
4663
48a3b636 4664static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4665 unsigned long nr_pages, int nr_items)
da633a42
MX
4666{
4667 struct super_block *sb = root->fs_info->sb;
da633a42 4668
925a6efb
JB
4669 if (down_read_trylock(&sb->s_umount)) {
4670 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4671 up_read(&sb->s_umount);
4672 } else {
da633a42
MX
4673 /*
4674 * We needn't worry the filesystem going from r/w to r/o though
4675 * we don't acquire ->s_umount mutex, because the filesystem
4676 * should guarantee the delalloc inodes list be empty after
4677 * the filesystem is readonly(all dirty pages are written to
4678 * the disk).
4679 */
6c255e67 4680 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4681 if (!current->journal_info)
578def7c
FM
4682 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4683 0, (u64)-1);
da633a42
MX
4684 }
4685}
4686
18cd8ea6
MX
4687static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4688{
4689 u64 bytes;
4690 int nr;
4691
4692 bytes = btrfs_calc_trans_metadata_size(root, 1);
4693 nr = (int)div64_u64(to_reclaim, bytes);
4694 if (!nr)
4695 nr = 1;
4696 return nr;
4697}
4698
ee22184b 4699#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4700
9ed74f2d 4701/*
5da9d01b 4702 * shrink metadata reservation for delalloc
9ed74f2d 4703 */
f4c738c2
JB
4704static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4705 bool wait_ordered)
5da9d01b 4706{
0ca1f7ce 4707 struct btrfs_block_rsv *block_rsv;
0019f10d 4708 struct btrfs_space_info *space_info;
663350ac 4709 struct btrfs_trans_handle *trans;
f4c738c2 4710 u64 delalloc_bytes;
5da9d01b 4711 u64 max_reclaim;
b1953bce 4712 long time_left;
d3ee29e3
MX
4713 unsigned long nr_pages;
4714 int loops;
b0244199 4715 int items;
08e007d2 4716 enum btrfs_reserve_flush_enum flush;
5da9d01b 4717
c61a16a7 4718 /* Calc the number of the pages we need flush for space reservation */
b0244199 4719 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4720 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4721
663350ac 4722 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4723 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4724 space_info = block_rsv->space_info;
bf9022e0 4725
963d678b
MX
4726 delalloc_bytes = percpu_counter_sum_positive(
4727 &root->fs_info->delalloc_bytes);
f4c738c2 4728 if (delalloc_bytes == 0) {
fdb5effd 4729 if (trans)
f4c738c2 4730 return;
38c135af 4731 if (wait_ordered)
578def7c
FM
4732 btrfs_wait_ordered_roots(root->fs_info, items,
4733 0, (u64)-1);
f4c738c2 4734 return;
fdb5effd
JB
4735 }
4736
d3ee29e3 4737 loops = 0;
f4c738c2
JB
4738 while (delalloc_bytes && loops < 3) {
4739 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4740 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4741 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4742 /*
4743 * We need to wait for the async pages to actually start before
4744 * we do anything.
4745 */
9f3a074d
MX
4746 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4747 if (!max_reclaim)
4748 goto skip_async;
4749
4750 if (max_reclaim <= nr_pages)
4751 max_reclaim = 0;
4752 else
4753 max_reclaim -= nr_pages;
dea31f52 4754
9f3a074d
MX
4755 wait_event(root->fs_info->async_submit_wait,
4756 atomic_read(&root->fs_info->async_delalloc_pages) <=
4757 (int)max_reclaim);
4758skip_async:
08e007d2
MX
4759 if (!trans)
4760 flush = BTRFS_RESERVE_FLUSH_ALL;
4761 else
4762 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4763 spin_lock(&space_info->lock);
08e007d2 4764 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4765 spin_unlock(&space_info->lock);
4766 break;
4767 }
957780eb
JB
4768 if (list_empty(&space_info->tickets) &&
4769 list_empty(&space_info->priority_tickets)) {
4770 spin_unlock(&space_info->lock);
4771 break;
4772 }
0019f10d 4773 spin_unlock(&space_info->lock);
5da9d01b 4774
36e39c40 4775 loops++;
f104d044 4776 if (wait_ordered && !trans) {
578def7c
FM
4777 btrfs_wait_ordered_roots(root->fs_info, items,
4778 0, (u64)-1);
f104d044 4779 } else {
f4c738c2 4780 time_left = schedule_timeout_killable(1);
f104d044
JB
4781 if (time_left)
4782 break;
4783 }
963d678b
MX
4784 delalloc_bytes = percpu_counter_sum_positive(
4785 &root->fs_info->delalloc_bytes);
5da9d01b 4786 }
5da9d01b
YZ
4787}
4788
663350ac
JB
4789/**
4790 * maybe_commit_transaction - possibly commit the transaction if its ok to
4791 * @root - the root we're allocating for
4792 * @bytes - the number of bytes we want to reserve
4793 * @force - force the commit
8bb8ab2e 4794 *
663350ac
JB
4795 * This will check to make sure that committing the transaction will actually
4796 * get us somewhere and then commit the transaction if it does. Otherwise it
4797 * will return -ENOSPC.
8bb8ab2e 4798 */
663350ac
JB
4799static int may_commit_transaction(struct btrfs_root *root,
4800 struct btrfs_space_info *space_info,
4801 u64 bytes, int force)
4802{
4803 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4804 struct btrfs_trans_handle *trans;
4805
4806 trans = (struct btrfs_trans_handle *)current->journal_info;
4807 if (trans)
4808 return -EAGAIN;
4809
4810 if (force)
4811 goto commit;
4812
4813 /* See if there is enough pinned space to make this reservation */
b150a4f1 4814 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4815 bytes) >= 0)
663350ac 4816 goto commit;
663350ac
JB
4817
4818 /*
4819 * See if there is some space in the delayed insertion reservation for
4820 * this reservation.
4821 */
4822 if (space_info != delayed_rsv->space_info)
4823 return -ENOSPC;
4824
4825 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4826 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4827 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4828 spin_unlock(&delayed_rsv->lock);
4829 return -ENOSPC;
4830 }
4831 spin_unlock(&delayed_rsv->lock);
4832
4833commit:
4834 trans = btrfs_join_transaction(root);
4835 if (IS_ERR(trans))
4836 return -ENOSPC;
4837
4838 return btrfs_commit_transaction(trans, root);
4839}
4840
957780eb
JB
4841struct reserve_ticket {
4842 u64 bytes;
4843 int error;
4844 struct list_head list;
4845 wait_queue_head_t wait;
96c3f433
JB
4846};
4847
4848static int flush_space(struct btrfs_root *root,
4849 struct btrfs_space_info *space_info, u64 num_bytes,
4850 u64 orig_bytes, int state)
4851{
4852 struct btrfs_trans_handle *trans;
4853 int nr;
f4c738c2 4854 int ret = 0;
96c3f433
JB
4855
4856 switch (state) {
96c3f433
JB
4857 case FLUSH_DELAYED_ITEMS_NR:
4858 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4859 if (state == FLUSH_DELAYED_ITEMS_NR)
4860 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4861 else
96c3f433 4862 nr = -1;
18cd8ea6 4863
96c3f433
JB
4864 trans = btrfs_join_transaction(root);
4865 if (IS_ERR(trans)) {
4866 ret = PTR_ERR(trans);
4867 break;
4868 }
4869 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4870 btrfs_end_transaction(trans, root);
4871 break;
67b0fd63
JB
4872 case FLUSH_DELALLOC:
4873 case FLUSH_DELALLOC_WAIT:
24af7dd1 4874 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4875 state == FLUSH_DELALLOC_WAIT);
4876 break;
ea658bad
JB
4877 case ALLOC_CHUNK:
4878 trans = btrfs_join_transaction(root);
4879 if (IS_ERR(trans)) {
4880 ret = PTR_ERR(trans);
4881 break;
4882 }
4883 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4884 btrfs_get_alloc_profile(root, 0),
4885 CHUNK_ALLOC_NO_FORCE);
4886 btrfs_end_transaction(trans, root);
eecba891 4887 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4888 ret = 0;
4889 break;
96c3f433
JB
4890 case COMMIT_TRANS:
4891 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4892 break;
4893 default:
4894 ret = -ENOSPC;
4895 break;
4896 }
4897
f376df2b
JB
4898 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4899 orig_bytes, state, ret);
96c3f433
JB
4900 return ret;
4901}
21c7e756
MX
4902
4903static inline u64
4904btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4905 struct btrfs_space_info *space_info)
4906{
957780eb 4907 struct reserve_ticket *ticket;
21c7e756
MX
4908 u64 used;
4909 u64 expected;
957780eb 4910 u64 to_reclaim = 0;
21c7e756 4911
957780eb
JB
4912 list_for_each_entry(ticket, &space_info->tickets, list)
4913 to_reclaim += ticket->bytes;
4914 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4915 to_reclaim += ticket->bytes;
4916 if (to_reclaim)
4917 return to_reclaim;
21c7e756 4918
e0af2484
WX
4919 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4920 if (can_overcommit(root, space_info, to_reclaim,
4921 BTRFS_RESERVE_FLUSH_ALL))
4922 return 0;
4923
21c7e756
MX
4924 used = space_info->bytes_used + space_info->bytes_reserved +
4925 space_info->bytes_pinned + space_info->bytes_readonly +
4926 space_info->bytes_may_use;
ee22184b 4927 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4928 expected = div_factor_fine(space_info->total_bytes, 95);
4929 else
4930 expected = div_factor_fine(space_info->total_bytes, 90);
4931
4932 if (used > expected)
4933 to_reclaim = used - expected;
4934 else
4935 to_reclaim = 0;
4936 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4937 space_info->bytes_reserved);
21c7e756
MX
4938 return to_reclaim;
4939}
4940
4941static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4942 struct btrfs_root *root, u64 used)
21c7e756 4943{
365c5313
JB
4944 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4945
4946 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4947 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4948 return 0;
4949
87241c2e 4950 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4951 return 0;
4952
87241c2e
JB
4953 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4954 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4955 &root->fs_info->fs_state));
21c7e756
MX
4956}
4957
957780eb 4958static void wake_all_tickets(struct list_head *head)
21c7e756 4959{
957780eb 4960 struct reserve_ticket *ticket;
25ce459c 4961
957780eb
JB
4962 while (!list_empty(head)) {
4963 ticket = list_first_entry(head, struct reserve_ticket, list);
4964 list_del_init(&ticket->list);
4965 ticket->error = -ENOSPC;
4966 wake_up(&ticket->wait);
21c7e756 4967 }
21c7e756
MX
4968}
4969
957780eb
JB
4970/*
4971 * This is for normal flushers, we can wait all goddamned day if we want to. We
4972 * will loop and continuously try to flush as long as we are making progress.
4973 * We count progress as clearing off tickets each time we have to loop.
4974 */
21c7e756
MX
4975static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4976{
957780eb 4977 struct reserve_ticket *last_ticket = NULL;
21c7e756
MX
4978 struct btrfs_fs_info *fs_info;
4979 struct btrfs_space_info *space_info;
4980 u64 to_reclaim;
4981 int flush_state;
957780eb 4982 int commit_cycles = 0;
21c7e756
MX
4983
4984 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4985 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4986
957780eb 4987 spin_lock(&space_info->lock);
21c7e756
MX
4988 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4989 space_info);
957780eb
JB
4990 if (!to_reclaim) {
4991 space_info->flush = 0;
4992 spin_unlock(&space_info->lock);
21c7e756 4993 return;
957780eb
JB
4994 }
4995 last_ticket = list_first_entry(&space_info->tickets,
4996 struct reserve_ticket, list);
4997 spin_unlock(&space_info->lock);
21c7e756
MX
4998
4999 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
5000 do {
5001 struct reserve_ticket *ticket;
5002 int ret;
5003
5004 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
5005 to_reclaim, flush_state);
5006 spin_lock(&space_info->lock);
5007 if (list_empty(&space_info->tickets)) {
5008 space_info->flush = 0;
5009 spin_unlock(&space_info->lock);
5010 return;
5011 }
5012 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5013 space_info);
5014 ticket = list_first_entry(&space_info->tickets,
5015 struct reserve_ticket, list);
5016 if (last_ticket == ticket) {
5017 flush_state++;
5018 } else {
5019 last_ticket = ticket;
5020 flush_state = FLUSH_DELAYED_ITEMS_NR;
5021 if (commit_cycles)
5022 commit_cycles--;
5023 }
5024
5025 if (flush_state > COMMIT_TRANS) {
5026 commit_cycles++;
5027 if (commit_cycles > 2) {
5028 wake_all_tickets(&space_info->tickets);
5029 space_info->flush = 0;
5030 } else {
5031 flush_state = FLUSH_DELAYED_ITEMS_NR;
5032 }
5033 }
5034 spin_unlock(&space_info->lock);
5035 } while (flush_state <= COMMIT_TRANS);
5036}
5037
5038void btrfs_init_async_reclaim_work(struct work_struct *work)
5039{
5040 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5041}
5042
5043static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5044 struct btrfs_space_info *space_info,
5045 struct reserve_ticket *ticket)
5046{
5047 u64 to_reclaim;
5048 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5049
5050 spin_lock(&space_info->lock);
5051 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5052 space_info);
5053 if (!to_reclaim) {
5054 spin_unlock(&space_info->lock);
5055 return;
5056 }
5057 spin_unlock(&space_info->lock);
5058
21c7e756
MX
5059 do {
5060 flush_space(fs_info->fs_root, space_info, to_reclaim,
5061 to_reclaim, flush_state);
5062 flush_state++;
957780eb
JB
5063 spin_lock(&space_info->lock);
5064 if (ticket->bytes == 0) {
5065 spin_unlock(&space_info->lock);
21c7e756 5066 return;
957780eb
JB
5067 }
5068 spin_unlock(&space_info->lock);
5069
5070 /*
5071 * Priority flushers can't wait on delalloc without
5072 * deadlocking.
5073 */
5074 if (flush_state == FLUSH_DELALLOC ||
5075 flush_state == FLUSH_DELALLOC_WAIT)
5076 flush_state = ALLOC_CHUNK;
365c5313 5077 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5078}
5079
957780eb
JB
5080static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5081 struct btrfs_space_info *space_info,
5082 struct reserve_ticket *ticket, u64 orig_bytes)
5083
21c7e756 5084{
957780eb
JB
5085 DEFINE_WAIT(wait);
5086 int ret = 0;
5087
5088 spin_lock(&space_info->lock);
5089 while (ticket->bytes > 0 && ticket->error == 0) {
5090 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5091 if (ret) {
5092 ret = -EINTR;
5093 break;
5094 }
5095 spin_unlock(&space_info->lock);
5096
5097 schedule();
5098
5099 finish_wait(&ticket->wait, &wait);
5100 spin_lock(&space_info->lock);
5101 }
5102 if (!ret)
5103 ret = ticket->error;
5104 if (!list_empty(&ticket->list))
5105 list_del_init(&ticket->list);
5106 if (ticket->bytes && ticket->bytes < orig_bytes) {
5107 u64 num_bytes = orig_bytes - ticket->bytes;
5108 space_info->bytes_may_use -= num_bytes;
5109 trace_btrfs_space_reservation(fs_info, "space_info",
5110 space_info->flags, num_bytes, 0);
5111 }
5112 spin_unlock(&space_info->lock);
5113
5114 return ret;
21c7e756
MX
5115}
5116
4a92b1b8
JB
5117/**
5118 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5119 * @root - the root we're allocating for
957780eb 5120 * @space_info - the space info we want to allocate from
4a92b1b8 5121 * @orig_bytes - the number of bytes we want
48fc7f7e 5122 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5123 *
01327610 5124 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5125 * with the block_rsv. If there is not enough space it will make an attempt to
5126 * flush out space to make room. It will do this by flushing delalloc if
5127 * possible or committing the transaction. If flush is 0 then no attempts to
5128 * regain reservations will be made and this will fail if there is not enough
5129 * space already.
8bb8ab2e 5130 */
957780eb
JB
5131static int __reserve_metadata_bytes(struct btrfs_root *root,
5132 struct btrfs_space_info *space_info,
5133 u64 orig_bytes,
5134 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5135{
957780eb 5136 struct reserve_ticket ticket;
2bf64758 5137 u64 used;
8bb8ab2e 5138 int ret = 0;
9ed74f2d 5139
957780eb 5140 ASSERT(orig_bytes);
8ca17f0f 5141 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5142
8bb8ab2e 5143 spin_lock(&space_info->lock);
fdb5effd 5144 ret = -ENOSPC;
2bf64758
JB
5145 used = space_info->bytes_used + space_info->bytes_reserved +
5146 space_info->bytes_pinned + space_info->bytes_readonly +
5147 space_info->bytes_may_use;
9ed74f2d 5148
8bb8ab2e 5149 /*
957780eb
JB
5150 * If we have enough space then hooray, make our reservation and carry
5151 * on. If not see if we can overcommit, and if we can, hooray carry on.
5152 * If not things get more complicated.
8bb8ab2e 5153 */
957780eb
JB
5154 if (used + orig_bytes <= space_info->total_bytes) {
5155 space_info->bytes_may_use += orig_bytes;
5156 trace_btrfs_space_reservation(root->fs_info, "space_info",
5157 space_info->flags, orig_bytes,
5158 1);
5159 ret = 0;
5160 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1
JB
5161 space_info->bytes_may_use += orig_bytes;
5162 trace_btrfs_space_reservation(root->fs_info, "space_info",
5163 space_info->flags, orig_bytes,
5164 1);
5165 ret = 0;
2bf64758
JB
5166 }
5167
8bb8ab2e 5168 /*
957780eb
JB
5169 * If we couldn't make a reservation then setup our reservation ticket
5170 * and kick the async worker if it's not already running.
08e007d2 5171 *
957780eb
JB
5172 * If we are a priority flusher then we just need to add our ticket to
5173 * the list and we will do our own flushing further down.
8bb8ab2e 5174 */
72bcd99d 5175 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5176 ticket.bytes = orig_bytes;
5177 ticket.error = 0;
5178 init_waitqueue_head(&ticket.wait);
5179 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5180 list_add_tail(&ticket.list, &space_info->tickets);
5181 if (!space_info->flush) {
5182 space_info->flush = 1;
f376df2b
JB
5183 trace_btrfs_trigger_flush(root->fs_info,
5184 space_info->flags,
5185 orig_bytes, flush,
5186 "enospc");
957780eb
JB
5187 queue_work(system_unbound_wq,
5188 &root->fs_info->async_reclaim_work);
5189 }
5190 } else {
5191 list_add_tail(&ticket.list,
5192 &space_info->priority_tickets);
5193 }
21c7e756
MX
5194 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5195 used += orig_bytes;
f6acfd50
JB
5196 /*
5197 * We will do the space reservation dance during log replay,
5198 * which means we won't have fs_info->fs_root set, so don't do
5199 * the async reclaim as we will panic.
5200 */
43cad371 5201 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags) &&
87241c2e 5202 need_do_async_reclaim(space_info, root, used) &&
f376df2b
JB
5203 !work_busy(&root->fs_info->async_reclaim_work)) {
5204 trace_btrfs_trigger_flush(root->fs_info,
5205 space_info->flags,
5206 orig_bytes, flush,
5207 "preempt");
21c7e756
MX
5208 queue_work(system_unbound_wq,
5209 &root->fs_info->async_reclaim_work);
f376df2b 5210 }
8bb8ab2e 5211 }
f0486c68 5212 spin_unlock(&space_info->lock);
08e007d2 5213 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5214 return ret;
f0486c68 5215
957780eb
JB
5216 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5217 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5218 orig_bytes);
08e007d2 5219
957780eb
JB
5220 ret = 0;
5221 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5222 spin_lock(&space_info->lock);
5223 if (ticket.bytes) {
5224 if (ticket.bytes < orig_bytes) {
5225 u64 num_bytes = orig_bytes - ticket.bytes;
5226 space_info->bytes_may_use -= num_bytes;
5227 trace_btrfs_space_reservation(root->fs_info,
5228 "space_info", space_info->flags,
5229 num_bytes, 0);
08e007d2 5230
957780eb
JB
5231 }
5232 list_del_init(&ticket.list);
5233 ret = -ENOSPC;
5234 }
5235 spin_unlock(&space_info->lock);
5236 ASSERT(list_empty(&ticket.list));
5237 return ret;
5238}
8bb8ab2e 5239
957780eb
JB
5240/**
5241 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5242 * @root - the root we're allocating for
5243 * @block_rsv - the block_rsv we're allocating for
5244 * @orig_bytes - the number of bytes we want
5245 * @flush - whether or not we can flush to make our reservation
5246 *
5247 * This will reserve orgi_bytes number of bytes from the space info associated
5248 * with the block_rsv. If there is not enough space it will make an attempt to
5249 * flush out space to make room. It will do this by flushing delalloc if
5250 * possible or committing the transaction. If flush is 0 then no attempts to
5251 * regain reservations will be made and this will fail if there is not enough
5252 * space already.
5253 */
5254static int reserve_metadata_bytes(struct btrfs_root *root,
5255 struct btrfs_block_rsv *block_rsv,
5256 u64 orig_bytes,
5257 enum btrfs_reserve_flush_enum flush)
5258{
5259 int ret;
5260
5261 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5262 flush);
5d80366e
JB
5263 if (ret == -ENOSPC &&
5264 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5265 struct btrfs_block_rsv *global_rsv =
5266 &root->fs_info->global_block_rsv;
5267
5268 if (block_rsv != global_rsv &&
5269 !block_rsv_use_bytes(global_rsv, orig_bytes))
5270 ret = 0;
5271 }
cab45e22
JM
5272 if (ret == -ENOSPC)
5273 trace_btrfs_space_reservation(root->fs_info,
5274 "space_info:enospc",
957780eb
JB
5275 block_rsv->space_info->flags,
5276 orig_bytes, 1);
f0486c68
YZ
5277 return ret;
5278}
5279
79787eaa
JM
5280static struct btrfs_block_rsv *get_block_rsv(
5281 const struct btrfs_trans_handle *trans,
5282 const struct btrfs_root *root)
f0486c68 5283{
4c13d758
JB
5284 struct btrfs_block_rsv *block_rsv = NULL;
5285
e9cf439f
AM
5286 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5287 (root == root->fs_info->csum_root && trans->adding_csums) ||
5288 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5289 block_rsv = trans->block_rsv;
5290
4c13d758 5291 if (!block_rsv)
f0486c68
YZ
5292 block_rsv = root->block_rsv;
5293
5294 if (!block_rsv)
5295 block_rsv = &root->fs_info->empty_block_rsv;
5296
5297 return block_rsv;
5298}
5299
5300static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5301 u64 num_bytes)
5302{
5303 int ret = -ENOSPC;
5304 spin_lock(&block_rsv->lock);
5305 if (block_rsv->reserved >= num_bytes) {
5306 block_rsv->reserved -= num_bytes;
5307 if (block_rsv->reserved < block_rsv->size)
5308 block_rsv->full = 0;
5309 ret = 0;
5310 }
5311 spin_unlock(&block_rsv->lock);
5312 return ret;
5313}
5314
5315static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5316 u64 num_bytes, int update_size)
5317{
5318 spin_lock(&block_rsv->lock);
5319 block_rsv->reserved += num_bytes;
5320 if (update_size)
5321 block_rsv->size += num_bytes;
5322 else if (block_rsv->reserved >= block_rsv->size)
5323 block_rsv->full = 1;
5324 spin_unlock(&block_rsv->lock);
5325}
5326
d52be818
JB
5327int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5328 struct btrfs_block_rsv *dest, u64 num_bytes,
5329 int min_factor)
5330{
5331 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5332 u64 min_bytes;
5333
5334 if (global_rsv->space_info != dest->space_info)
5335 return -ENOSPC;
5336
5337 spin_lock(&global_rsv->lock);
5338 min_bytes = div_factor(global_rsv->size, min_factor);
5339 if (global_rsv->reserved < min_bytes + num_bytes) {
5340 spin_unlock(&global_rsv->lock);
5341 return -ENOSPC;
5342 }
5343 global_rsv->reserved -= num_bytes;
5344 if (global_rsv->reserved < global_rsv->size)
5345 global_rsv->full = 0;
5346 spin_unlock(&global_rsv->lock);
5347
5348 block_rsv_add_bytes(dest, num_bytes, 1);
5349 return 0;
5350}
5351
957780eb
JB
5352/*
5353 * This is for space we already have accounted in space_info->bytes_may_use, so
5354 * basically when we're returning space from block_rsv's.
5355 */
5356static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5357 struct btrfs_space_info *space_info,
5358 u64 num_bytes)
5359{
5360 struct reserve_ticket *ticket;
5361 struct list_head *head;
5362 u64 used;
5363 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5364 bool check_overcommit = false;
5365
5366 spin_lock(&space_info->lock);
5367 head = &space_info->priority_tickets;
5368
5369 /*
5370 * If we are over our limit then we need to check and see if we can
5371 * overcommit, and if we can't then we just need to free up our space
5372 * and not satisfy any requests.
5373 */
5374 used = space_info->bytes_used + space_info->bytes_reserved +
5375 space_info->bytes_pinned + space_info->bytes_readonly +
5376 space_info->bytes_may_use;
5377 if (used - num_bytes >= space_info->total_bytes)
5378 check_overcommit = true;
5379again:
5380 while (!list_empty(head) && num_bytes) {
5381 ticket = list_first_entry(head, struct reserve_ticket,
5382 list);
5383 /*
5384 * We use 0 bytes because this space is already reserved, so
5385 * adding the ticket space would be a double count.
5386 */
5387 if (check_overcommit &&
5388 !can_overcommit(fs_info->extent_root, space_info, 0,
5389 flush))
5390 break;
5391 if (num_bytes >= ticket->bytes) {
5392 list_del_init(&ticket->list);
5393 num_bytes -= ticket->bytes;
5394 ticket->bytes = 0;
5395 wake_up(&ticket->wait);
5396 } else {
5397 ticket->bytes -= num_bytes;
5398 num_bytes = 0;
5399 }
5400 }
5401
5402 if (num_bytes && head == &space_info->priority_tickets) {
5403 head = &space_info->tickets;
5404 flush = BTRFS_RESERVE_FLUSH_ALL;
5405 goto again;
5406 }
5407 space_info->bytes_may_use -= num_bytes;
5408 trace_btrfs_space_reservation(fs_info, "space_info",
5409 space_info->flags, num_bytes, 0);
5410 spin_unlock(&space_info->lock);
5411}
5412
5413/*
5414 * This is for newly allocated space that isn't accounted in
5415 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5416 * we use this helper.
5417 */
5418static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5419 struct btrfs_space_info *space_info,
5420 u64 num_bytes)
5421{
5422 struct reserve_ticket *ticket;
5423 struct list_head *head = &space_info->priority_tickets;
5424
5425again:
5426 while (!list_empty(head) && num_bytes) {
5427 ticket = list_first_entry(head, struct reserve_ticket,
5428 list);
5429 if (num_bytes >= ticket->bytes) {
5430 trace_btrfs_space_reservation(fs_info, "space_info",
5431 space_info->flags,
5432 ticket->bytes, 1);
5433 list_del_init(&ticket->list);
5434 num_bytes -= ticket->bytes;
5435 space_info->bytes_may_use += ticket->bytes;
5436 ticket->bytes = 0;
5437 wake_up(&ticket->wait);
5438 } else {
5439 trace_btrfs_space_reservation(fs_info, "space_info",
5440 space_info->flags,
5441 num_bytes, 1);
5442 space_info->bytes_may_use += num_bytes;
5443 ticket->bytes -= num_bytes;
5444 num_bytes = 0;
5445 }
5446 }
5447
5448 if (num_bytes && head == &space_info->priority_tickets) {
5449 head = &space_info->tickets;
5450 goto again;
5451 }
5452}
5453
8c2a3ca2
JB
5454static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5455 struct btrfs_block_rsv *block_rsv,
62a45b60 5456 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5457{
5458 struct btrfs_space_info *space_info = block_rsv->space_info;
5459
5460 spin_lock(&block_rsv->lock);
5461 if (num_bytes == (u64)-1)
5462 num_bytes = block_rsv->size;
5463 block_rsv->size -= num_bytes;
5464 if (block_rsv->reserved >= block_rsv->size) {
5465 num_bytes = block_rsv->reserved - block_rsv->size;
5466 block_rsv->reserved = block_rsv->size;
5467 block_rsv->full = 1;
5468 } else {
5469 num_bytes = 0;
5470 }
5471 spin_unlock(&block_rsv->lock);
5472
5473 if (num_bytes > 0) {
5474 if (dest) {
e9e22899
JB
5475 spin_lock(&dest->lock);
5476 if (!dest->full) {
5477 u64 bytes_to_add;
5478
5479 bytes_to_add = dest->size - dest->reserved;
5480 bytes_to_add = min(num_bytes, bytes_to_add);
5481 dest->reserved += bytes_to_add;
5482 if (dest->reserved >= dest->size)
5483 dest->full = 1;
5484 num_bytes -= bytes_to_add;
5485 }
5486 spin_unlock(&dest->lock);
5487 }
957780eb
JB
5488 if (num_bytes)
5489 space_info_add_old_bytes(fs_info, space_info,
5490 num_bytes);
9ed74f2d 5491 }
f0486c68 5492}
4e06bdd6 5493
25d609f8
JB
5494int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5495 struct btrfs_block_rsv *dst, u64 num_bytes,
5496 int update_size)
f0486c68
YZ
5497{
5498 int ret;
9ed74f2d 5499
f0486c68
YZ
5500 ret = block_rsv_use_bytes(src, num_bytes);
5501 if (ret)
5502 return ret;
9ed74f2d 5503
25d609f8 5504 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5505 return 0;
5506}
5507
66d8f3dd 5508void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5509{
f0486c68
YZ
5510 memset(rsv, 0, sizeof(*rsv));
5511 spin_lock_init(&rsv->lock);
66d8f3dd 5512 rsv->type = type;
f0486c68
YZ
5513}
5514
66d8f3dd
MX
5515struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5516 unsigned short type)
f0486c68
YZ
5517{
5518 struct btrfs_block_rsv *block_rsv;
5519 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5520
f0486c68
YZ
5521 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5522 if (!block_rsv)
5523 return NULL;
9ed74f2d 5524
66d8f3dd 5525 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5526 block_rsv->space_info = __find_space_info(fs_info,
5527 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5528 return block_rsv;
5529}
9ed74f2d 5530
f0486c68
YZ
5531void btrfs_free_block_rsv(struct btrfs_root *root,
5532 struct btrfs_block_rsv *rsv)
5533{
2aaa6655
JB
5534 if (!rsv)
5535 return;
dabdb640
JB
5536 btrfs_block_rsv_release(root, rsv, (u64)-1);
5537 kfree(rsv);
9ed74f2d
JB
5538}
5539
cdfb080e
CM
5540void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5541{
5542 kfree(rsv);
5543}
5544
08e007d2
MX
5545int btrfs_block_rsv_add(struct btrfs_root *root,
5546 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5547 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5548{
f0486c68 5549 int ret;
9ed74f2d 5550
f0486c68
YZ
5551 if (num_bytes == 0)
5552 return 0;
8bb8ab2e 5553
61b520a9 5554 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5555 if (!ret) {
5556 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5557 return 0;
5558 }
9ed74f2d 5559
f0486c68 5560 return ret;
f0486c68 5561}
9ed74f2d 5562
4a92b1b8 5563int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5564 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5565{
5566 u64 num_bytes = 0;
f0486c68 5567 int ret = -ENOSPC;
9ed74f2d 5568
f0486c68
YZ
5569 if (!block_rsv)
5570 return 0;
9ed74f2d 5571
f0486c68 5572 spin_lock(&block_rsv->lock);
36ba022a
JB
5573 num_bytes = div_factor(block_rsv->size, min_factor);
5574 if (block_rsv->reserved >= num_bytes)
5575 ret = 0;
5576 spin_unlock(&block_rsv->lock);
9ed74f2d 5577
36ba022a
JB
5578 return ret;
5579}
5580
08e007d2
MX
5581int btrfs_block_rsv_refill(struct btrfs_root *root,
5582 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5583 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5584{
5585 u64 num_bytes = 0;
5586 int ret = -ENOSPC;
5587
5588 if (!block_rsv)
5589 return 0;
5590
5591 spin_lock(&block_rsv->lock);
5592 num_bytes = min_reserved;
13553e52 5593 if (block_rsv->reserved >= num_bytes)
f0486c68 5594 ret = 0;
13553e52 5595 else
f0486c68 5596 num_bytes -= block_rsv->reserved;
f0486c68 5597 spin_unlock(&block_rsv->lock);
13553e52 5598
f0486c68
YZ
5599 if (!ret)
5600 return 0;
5601
aa38a711 5602 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5603 if (!ret) {
5604 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5605 return 0;
6a63209f 5606 }
9ed74f2d 5607
13553e52 5608 return ret;
f0486c68
YZ
5609}
5610
f0486c68
YZ
5611void btrfs_block_rsv_release(struct btrfs_root *root,
5612 struct btrfs_block_rsv *block_rsv,
5613 u64 num_bytes)
5614{
5615 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5616 if (global_rsv == block_rsv ||
f0486c68
YZ
5617 block_rsv->space_info != global_rsv->space_info)
5618 global_rsv = NULL;
8c2a3ca2
JB
5619 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5620 num_bytes);
6a63209f
JB
5621}
5622
8929ecfa
YZ
5623static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5624{
5625 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5626 struct btrfs_space_info *sinfo = block_rsv->space_info;
5627 u64 num_bytes;
6a63209f 5628
ae2e4728
JB
5629 /*
5630 * The global block rsv is based on the size of the extent tree, the
5631 * checksum tree and the root tree. If the fs is empty we want to set
5632 * it to a minimal amount for safety.
5633 */
5634 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5635 btrfs_root_used(&fs_info->csum_root->root_item) +
5636 btrfs_root_used(&fs_info->tree_root->root_item);
5637 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5638
8929ecfa 5639 spin_lock(&sinfo->lock);
1f699d38 5640 spin_lock(&block_rsv->lock);
4e06bdd6 5641
ee22184b 5642 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5643
fb4b10e5
JB
5644 if (block_rsv->reserved < block_rsv->size) {
5645 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5646 sinfo->bytes_reserved + sinfo->bytes_readonly +
5647 sinfo->bytes_may_use;
5648 if (sinfo->total_bytes > num_bytes) {
5649 num_bytes = sinfo->total_bytes - num_bytes;
5650 num_bytes = min(num_bytes,
5651 block_rsv->size - block_rsv->reserved);
5652 block_rsv->reserved += num_bytes;
5653 sinfo->bytes_may_use += num_bytes;
5654 trace_btrfs_space_reservation(fs_info, "space_info",
5655 sinfo->flags, num_bytes,
5656 1);
5657 }
5658 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5659 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5660 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5661 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5662 sinfo->flags, num_bytes, 0);
8929ecfa 5663 block_rsv->reserved = block_rsv->size;
8929ecfa 5664 }
182608c8 5665
fb4b10e5
JB
5666 if (block_rsv->reserved == block_rsv->size)
5667 block_rsv->full = 1;
5668 else
5669 block_rsv->full = 0;
5670
8929ecfa 5671 spin_unlock(&block_rsv->lock);
1f699d38 5672 spin_unlock(&sinfo->lock);
6a63209f
JB
5673}
5674
f0486c68 5675static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5676{
f0486c68 5677 struct btrfs_space_info *space_info;
6a63209f 5678
f0486c68
YZ
5679 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5680 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5681
f0486c68 5682 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5683 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5684 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5685 fs_info->trans_block_rsv.space_info = space_info;
5686 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5687 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5688
8929ecfa
YZ
5689 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5690 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5691 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5692 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5693 if (fs_info->quota_root)
5694 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5695 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5696
8929ecfa 5697 update_global_block_rsv(fs_info);
6a63209f
JB
5698}
5699
8929ecfa 5700static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5701{
8c2a3ca2
JB
5702 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5703 (u64)-1);
8929ecfa
YZ
5704 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5705 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5706 WARN_ON(fs_info->trans_block_rsv.size > 0);
5707 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5708 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5709 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5710 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5711 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5712}
5713
a22285a6
YZ
5714void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5715 struct btrfs_root *root)
6a63209f 5716{
0e721106
JB
5717 if (!trans->block_rsv)
5718 return;
5719
a22285a6
YZ
5720 if (!trans->bytes_reserved)
5721 return;
6a63209f 5722
e77266e4 5723 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5724 trans->transid, trans->bytes_reserved, 0);
b24e03db 5725 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5726 trans->bytes_reserved = 0;
5727}
6a63209f 5728
4fbcdf66
FM
5729/*
5730 * To be called after all the new block groups attached to the transaction
5731 * handle have been created (btrfs_create_pending_block_groups()).
5732 */
5733void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5734{
64b63580 5735 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5736
5737 if (!trans->chunk_bytes_reserved)
5738 return;
5739
5740 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5741
5742 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5743 trans->chunk_bytes_reserved);
5744 trans->chunk_bytes_reserved = 0;
5745}
5746
79787eaa 5747/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5748int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5749 struct inode *inode)
5750{
5751 struct btrfs_root *root = BTRFS_I(inode)->root;
40acc3ee
JB
5752 /*
5753 * We always use trans->block_rsv here as we will have reserved space
5754 * for our orphan when starting the transaction, using get_block_rsv()
5755 * here will sometimes make us choose the wrong block rsv as we could be
5756 * doing a reloc inode for a non refcounted root.
5757 */
5758 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5759 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5760
5761 /*
fcb80c2a
JB
5762 * We need to hold space in order to delete our orphan item once we've
5763 * added it, so this takes the reservation so we can release it later
5764 * when we are truly done with the orphan item.
d68fc57b 5765 */
ff5714cc 5766 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5767 trace_btrfs_space_reservation(root->fs_info, "orphan",
5768 btrfs_ino(inode), num_bytes, 1);
25d609f8 5769 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5770}
5771
d68fc57b 5772void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5773{
d68fc57b 5774 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5775 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5776 trace_btrfs_space_reservation(root->fs_info, "orphan",
5777 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5778 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5779}
97e728d4 5780
d5c12070
MX
5781/*
5782 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5783 * root: the root of the parent directory
5784 * rsv: block reservation
5785 * items: the number of items that we need do reservation
5786 * qgroup_reserved: used to return the reserved size in qgroup
5787 *
5788 * This function is used to reserve the space for snapshot/subvolume
5789 * creation and deletion. Those operations are different with the
5790 * common file/directory operations, they change two fs/file trees
5791 * and root tree, the number of items that the qgroup reserves is
5792 * different with the free space reservation. So we can not use
01327610 5793 * the space reservation mechanism in start_transaction().
d5c12070
MX
5794 */
5795int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5796 struct btrfs_block_rsv *rsv,
5797 int items,
ee3441b4
JM
5798 u64 *qgroup_reserved,
5799 bool use_global_rsv)
a22285a6 5800{
d5c12070
MX
5801 u64 num_bytes;
5802 int ret;
ee3441b4 5803 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070 5804
43cad371 5805 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
d5c12070 5806 /* One for parent inode, two for dir entries */
707e8a07 5807 num_bytes = 3 * root->nodesize;
7174109c 5808 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5809 if (ret)
5810 return ret;
5811 } else {
5812 num_bytes = 0;
5813 }
5814
5815 *qgroup_reserved = num_bytes;
5816
5817 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5818 rsv->space_info = __find_space_info(root->fs_info,
5819 BTRFS_BLOCK_GROUP_METADATA);
5820 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5821 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5822
5823 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5824 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5825
7174109c
QW
5826 if (ret && *qgroup_reserved)
5827 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5828
5829 return ret;
5830}
5831
5832void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5833 struct btrfs_block_rsv *rsv,
5834 u64 qgroup_reserved)
5835{
5836 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5837}
5838
7709cde3
JB
5839/**
5840 * drop_outstanding_extent - drop an outstanding extent
5841 * @inode: the inode we're dropping the extent for
01327610 5842 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5843 *
5844 * This is called when we are freeing up an outstanding extent, either called
5845 * after an error or after an extent is written. This will return the number of
5846 * reserved extents that need to be freed. This must be called with
5847 * BTRFS_I(inode)->lock held.
5848 */
dcab6a3b 5849static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5850{
7fd2ae21 5851 unsigned drop_inode_space = 0;
9e0baf60 5852 unsigned dropped_extents = 0;
dcab6a3b 5853 unsigned num_extents = 0;
9e0baf60 5854
dcab6a3b
JB
5855 num_extents = (unsigned)div64_u64(num_bytes +
5856 BTRFS_MAX_EXTENT_SIZE - 1,
5857 BTRFS_MAX_EXTENT_SIZE);
5858 ASSERT(num_extents);
5859 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5860 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5861
7fd2ae21 5862 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5863 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5864 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5865 drop_inode_space = 1;
7fd2ae21 5866
9e0baf60 5867 /*
01327610 5868 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5869 * reserved then we need to leave the reserved extents count alone.
5870 */
5871 if (BTRFS_I(inode)->outstanding_extents >=
5872 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5873 return drop_inode_space;
9e0baf60
JB
5874
5875 dropped_extents = BTRFS_I(inode)->reserved_extents -
5876 BTRFS_I(inode)->outstanding_extents;
5877 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5878 return dropped_extents + drop_inode_space;
9e0baf60
JB
5879}
5880
7709cde3 5881/**
01327610
NS
5882 * calc_csum_metadata_size - return the amount of metadata space that must be
5883 * reserved/freed for the given bytes.
7709cde3
JB
5884 * @inode: the inode we're manipulating
5885 * @num_bytes: the number of bytes in question
5886 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5887 *
5888 * This adjusts the number of csum_bytes in the inode and then returns the
5889 * correct amount of metadata that must either be reserved or freed. We
5890 * calculate how many checksums we can fit into one leaf and then divide the
5891 * number of bytes that will need to be checksumed by this value to figure out
5892 * how many checksums will be required. If we are adding bytes then the number
5893 * may go up and we will return the number of additional bytes that must be
5894 * reserved. If it is going down we will return the number of bytes that must
5895 * be freed.
5896 *
5897 * This must be called with BTRFS_I(inode)->lock held.
5898 */
5899static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5900 int reserve)
6324fbf3 5901{
7709cde3 5902 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5903 u64 old_csums, num_csums;
7709cde3
JB
5904
5905 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5906 BTRFS_I(inode)->csum_bytes == 0)
5907 return 0;
5908
28f75a0e 5909 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5910 if (reserve)
5911 BTRFS_I(inode)->csum_bytes += num_bytes;
5912 else
5913 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5914 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5915
5916 /* No change, no need to reserve more */
5917 if (old_csums == num_csums)
5918 return 0;
5919
5920 if (reserve)
5921 return btrfs_calc_trans_metadata_size(root,
5922 num_csums - old_csums);
5923
5924 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5925}
c146afad 5926
0ca1f7ce
YZ
5927int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5928{
5929 struct btrfs_root *root = BTRFS_I(inode)->root;
5930 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5931 u64 to_reserve = 0;
660d3f6c 5932 u64 csum_bytes;
9e0baf60 5933 unsigned nr_extents = 0;
08e007d2 5934 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5935 int ret = 0;
c64c2bd8 5936 bool delalloc_lock = true;
88e081bf
WS
5937 u64 to_free = 0;
5938 unsigned dropped;
48c3d480 5939 bool release_extra = false;
6324fbf3 5940
c64c2bd8
JB
5941 /* If we are a free space inode we need to not flush since we will be in
5942 * the middle of a transaction commit. We also don't need the delalloc
5943 * mutex since we won't race with anybody. We need this mostly to make
5944 * lockdep shut its filthy mouth.
bac357dc
JB
5945 *
5946 * If we have a transaction open (can happen if we call truncate_block
5947 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5948 */
5949 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5950 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5951 delalloc_lock = false;
bac357dc
JB
5952 } else if (current->journal_info) {
5953 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5954 }
c09544e0 5955
08e007d2
MX
5956 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5957 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5958 schedule_timeout(1);
ec44a35c 5959
c64c2bd8
JB
5960 if (delalloc_lock)
5961 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5962
0ca1f7ce 5963 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5964
9e0baf60 5965 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5966 nr_extents = (unsigned)div64_u64(num_bytes +
5967 BTRFS_MAX_EXTENT_SIZE - 1,
5968 BTRFS_MAX_EXTENT_SIZE);
5969 BTRFS_I(inode)->outstanding_extents += nr_extents;
9e0baf60 5970
48c3d480 5971 nr_extents = 0;
9e0baf60 5972 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5973 BTRFS_I(inode)->reserved_extents)
48c3d480 5974 nr_extents += BTRFS_I(inode)->outstanding_extents -
9e0baf60 5975 BTRFS_I(inode)->reserved_extents;
57a45ced 5976
48c3d480
JB
5977 /* We always want to reserve a slot for updating the inode. */
5978 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
7709cde3 5979 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5980 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5981 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5982
43cad371 5983 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
7174109c
QW
5984 ret = btrfs_qgroup_reserve_meta(root,
5985 nr_extents * root->nodesize);
88e081bf
WS
5986 if (ret)
5987 goto out_fail;
5988 }
c5567237 5989
48c3d480 5990 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 5991 if (unlikely(ret)) {
7174109c 5992 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5993 goto out_fail;
9e0baf60 5994 }
25179201 5995
660d3f6c 5996 spin_lock(&BTRFS_I(inode)->lock);
48c3d480 5997 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
f485c9ee
JB
5998 &BTRFS_I(inode)->runtime_flags)) {
5999 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
48c3d480 6000 release_extra = true;
660d3f6c
JB
6001 }
6002 BTRFS_I(inode)->reserved_extents += nr_extents;
6003 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
6004
6005 if (delalloc_lock)
6006 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 6007
8c2a3ca2 6008 if (to_reserve)
67871254 6009 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 6010 btrfs_ino(inode), to_reserve, 1);
48c3d480
JB
6011 if (release_extra)
6012 btrfs_block_rsv_release(root, block_rsv,
6013 btrfs_calc_trans_metadata_size(root,
6014 1));
0ca1f7ce 6015 return 0;
88e081bf
WS
6016
6017out_fail:
6018 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6019 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6020 /*
6021 * If the inodes csum_bytes is the same as the original
6022 * csum_bytes then we know we haven't raced with any free()ers
6023 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6024 */
f4881bc7 6025 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 6026 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
6027 } else {
6028 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6029 u64 bytes;
6030
6031 /*
6032 * This is tricky, but first we need to figure out how much we
01327610 6033 * freed from any free-ers that occurred during this
f4881bc7
JB
6034 * reservation, so we reset ->csum_bytes to the csum_bytes
6035 * before we dropped our lock, and then call the free for the
6036 * number of bytes that were freed while we were trying our
6037 * reservation.
6038 */
6039 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6040 BTRFS_I(inode)->csum_bytes = csum_bytes;
6041 to_free = calc_csum_metadata_size(inode, bytes, 0);
6042
6043
6044 /*
6045 * Now we need to see how much we would have freed had we not
6046 * been making this reservation and our ->csum_bytes were not
6047 * artificially inflated.
6048 */
6049 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6050 bytes = csum_bytes - orig_csum_bytes;
6051 bytes = calc_csum_metadata_size(inode, bytes, 0);
6052
6053 /*
6054 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6055 * more than to_free then we would have freed more space had we
f4881bc7
JB
6056 * not had an artificially high ->csum_bytes, so we need to free
6057 * the remainder. If bytes is the same or less then we don't
6058 * need to do anything, the other free-ers did the correct
6059 * thing.
6060 */
6061 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6062 if (bytes > to_free)
6063 to_free = bytes - to_free;
6064 else
6065 to_free = 0;
6066 }
88e081bf 6067 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 6068 if (dropped)
88e081bf
WS
6069 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6070
6071 if (to_free) {
6072 btrfs_block_rsv_release(root, block_rsv, to_free);
6073 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6074 btrfs_ino(inode), to_free, 0);
6075 }
6076 if (delalloc_lock)
6077 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6078 return ret;
0ca1f7ce
YZ
6079}
6080
7709cde3
JB
6081/**
6082 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6083 * @inode: the inode to release the reservation for
6084 * @num_bytes: the number of bytes we're releasing
6085 *
6086 * This will release the metadata reservation for an inode. This can be called
6087 * once we complete IO for a given set of bytes to release their metadata
6088 * reservations.
6089 */
0ca1f7ce
YZ
6090void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6091{
6092 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
6093 u64 to_free = 0;
6094 unsigned dropped;
0ca1f7ce
YZ
6095
6096 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 6097 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6098 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6099
0934856d
MX
6100 if (num_bytes)
6101 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 6102 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
6103 if (dropped > 0)
6104 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 6105
f5ee5c9a 6106 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
6107 return;
6108
8c2a3ca2
JB
6109 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6110 btrfs_ino(inode), to_free, 0);
c5567237 6111
0ca1f7ce
YZ
6112 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6113 to_free);
6114}
6115
1ada3a62 6116/**
7cf5b976 6117 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6118 * delalloc
6119 * @inode: inode we're writing to
6120 * @start: start range we are writing to
6121 * @len: how long the range we are writing to
6122 *
6123 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6124 *
6125 * This will do the following things
6126 *
6127 * o reserve space in data space info for num bytes
6128 * and reserve precious corresponding qgroup space
6129 * (Done in check_data_free_space)
6130 *
6131 * o reserve space for metadata space, based on the number of outstanding
6132 * extents and how much csums will be needed
6133 * also reserve metadata space in a per root over-reserve method.
6134 * o add to the inodes->delalloc_bytes
6135 * o add it to the fs_info's delalloc inodes list.
6136 * (Above 3 all done in delalloc_reserve_metadata)
6137 *
6138 * Return 0 for success
6139 * Return <0 for error(-ENOSPC or -EQUOT)
6140 */
7cf5b976 6141int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6142{
6143 int ret;
6144
7cf5b976 6145 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6146 if (ret < 0)
6147 return ret;
6148 ret = btrfs_delalloc_reserve_metadata(inode, len);
6149 if (ret < 0)
7cf5b976 6150 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6151 return ret;
6152}
6153
7709cde3 6154/**
7cf5b976 6155 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6156 * @inode: inode we're releasing space for
6157 * @start: start position of the space already reserved
6158 * @len: the len of the space already reserved
6159 *
6160 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6161 * called in the case that we don't need the metadata AND data reservations
6162 * anymore. So if there is an error or we insert an inline extent.
6163 *
6164 * This function will release the metadata space that was not used and will
6165 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6166 * list if there are no delalloc bytes left.
6167 * Also it will handle the qgroup reserved space.
6168 */
7cf5b976 6169void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6170{
6171 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 6172 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6173}
6174
ce93ec54
JB
6175static int update_block_group(struct btrfs_trans_handle *trans,
6176 struct btrfs_root *root, u64 bytenr,
6177 u64 num_bytes, int alloc)
9078a3e1 6178{
0af3d00b 6179 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 6180 struct btrfs_fs_info *info = root->fs_info;
db94535d 6181 u64 total = num_bytes;
9078a3e1 6182 u64 old_val;
db94535d 6183 u64 byte_in_group;
0af3d00b 6184 int factor;
3e1ad54f 6185
5d4f98a2 6186 /* block accounting for super block */
eb73c1b7 6187 spin_lock(&info->delalloc_root_lock);
6c41761f 6188 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6189 if (alloc)
6190 old_val += num_bytes;
6191 else
6192 old_val -= num_bytes;
6c41761f 6193 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6194 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6195
d397712b 6196 while (total) {
db94535d 6197 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6198 if (!cache)
79787eaa 6199 return -ENOENT;
b742bb82
YZ
6200 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6201 BTRFS_BLOCK_GROUP_RAID1 |
6202 BTRFS_BLOCK_GROUP_RAID10))
6203 factor = 2;
6204 else
6205 factor = 1;
9d66e233
JB
6206 /*
6207 * If this block group has free space cache written out, we
6208 * need to make sure to load it if we are removing space. This
6209 * is because we need the unpinning stage to actually add the
6210 * space back to the block group, otherwise we will leak space.
6211 */
6212 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6213 cache_block_group(cache, 1);
0af3d00b 6214
db94535d
CM
6215 byte_in_group = bytenr - cache->key.objectid;
6216 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6217
25179201 6218 spin_lock(&cache->space_info->lock);
c286ac48 6219 spin_lock(&cache->lock);
0af3d00b 6220
3cdde224 6221 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
0af3d00b
JB
6222 cache->disk_cache_state < BTRFS_DC_CLEAR)
6223 cache->disk_cache_state = BTRFS_DC_CLEAR;
6224
9078a3e1 6225 old_val = btrfs_block_group_used(&cache->item);
db94535d 6226 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6227 if (alloc) {
db94535d 6228 old_val += num_bytes;
11833d66
YZ
6229 btrfs_set_block_group_used(&cache->item, old_val);
6230 cache->reserved -= num_bytes;
11833d66 6231 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6232 cache->space_info->bytes_used += num_bytes;
6233 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6234 spin_unlock(&cache->lock);
25179201 6235 spin_unlock(&cache->space_info->lock);
cd1bc465 6236 } else {
db94535d 6237 old_val -= num_bytes;
ae0ab003
FM
6238 btrfs_set_block_group_used(&cache->item, old_val);
6239 cache->pinned += num_bytes;
6240 cache->space_info->bytes_pinned += num_bytes;
6241 cache->space_info->bytes_used -= num_bytes;
6242 cache->space_info->disk_used -= num_bytes * factor;
6243 spin_unlock(&cache->lock);
6244 spin_unlock(&cache->space_info->lock);
47ab2a6c 6245
c51e7bb1
JB
6246 trace_btrfs_space_reservation(root->fs_info, "pinned",
6247 cache->space_info->flags,
6248 num_bytes, 1);
ae0ab003
FM
6249 set_extent_dirty(info->pinned_extents,
6250 bytenr, bytenr + num_bytes - 1,
6251 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6252 }
1bbc621e
CM
6253
6254 spin_lock(&trans->transaction->dirty_bgs_lock);
6255 if (list_empty(&cache->dirty_list)) {
6256 list_add_tail(&cache->dirty_list,
6257 &trans->transaction->dirty_bgs);
6258 trans->transaction->num_dirty_bgs++;
6259 btrfs_get_block_group(cache);
6260 }
6261 spin_unlock(&trans->transaction->dirty_bgs_lock);
6262
036a9348
FM
6263 /*
6264 * No longer have used bytes in this block group, queue it for
6265 * deletion. We do this after adding the block group to the
6266 * dirty list to avoid races between cleaner kthread and space
6267 * cache writeout.
6268 */
6269 if (!alloc && old_val == 0) {
6270 spin_lock(&info->unused_bgs_lock);
6271 if (list_empty(&cache->bg_list)) {
6272 btrfs_get_block_group(cache);
6273 list_add_tail(&cache->bg_list,
6274 &info->unused_bgs);
6275 }
6276 spin_unlock(&info->unused_bgs_lock);
6277 }
6278
fa9c0d79 6279 btrfs_put_block_group(cache);
db94535d
CM
6280 total -= num_bytes;
6281 bytenr += num_bytes;
9078a3e1
CM
6282 }
6283 return 0;
6284}
6324fbf3 6285
a061fc8d
CM
6286static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6287{
0f9dd46c 6288 struct btrfs_block_group_cache *cache;
d2fb3437 6289 u64 bytenr;
0f9dd46c 6290
a1897fdd
LB
6291 spin_lock(&root->fs_info->block_group_cache_lock);
6292 bytenr = root->fs_info->first_logical_byte;
6293 spin_unlock(&root->fs_info->block_group_cache_lock);
6294
6295 if (bytenr < (u64)-1)
6296 return bytenr;
6297
0f9dd46c
JB
6298 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6299 if (!cache)
a061fc8d 6300 return 0;
0f9dd46c 6301
d2fb3437 6302 bytenr = cache->key.objectid;
fa9c0d79 6303 btrfs_put_block_group(cache);
d2fb3437
YZ
6304
6305 return bytenr;
a061fc8d
CM
6306}
6307
f0486c68
YZ
6308static int pin_down_extent(struct btrfs_root *root,
6309 struct btrfs_block_group_cache *cache,
6310 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6311{
11833d66
YZ
6312 spin_lock(&cache->space_info->lock);
6313 spin_lock(&cache->lock);
6314 cache->pinned += num_bytes;
6315 cache->space_info->bytes_pinned += num_bytes;
6316 if (reserved) {
6317 cache->reserved -= num_bytes;
6318 cache->space_info->bytes_reserved -= num_bytes;
6319 }
6320 spin_unlock(&cache->lock);
6321 spin_unlock(&cache->space_info->lock);
68b38550 6322
c51e7bb1
JB
6323 trace_btrfs_space_reservation(root->fs_info, "pinned",
6324 cache->space_info->flags, num_bytes, 1);
f0486c68
YZ
6325 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6326 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6327 return 0;
6328}
68b38550 6329
f0486c68
YZ
6330/*
6331 * this function must be called within transaction
6332 */
6333int btrfs_pin_extent(struct btrfs_root *root,
6334 u64 bytenr, u64 num_bytes, int reserved)
6335{
6336 struct btrfs_block_group_cache *cache;
68b38550 6337
f0486c68 6338 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6339 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6340
6341 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6342
6343 btrfs_put_block_group(cache);
11833d66
YZ
6344 return 0;
6345}
6346
f0486c68 6347/*
e688b725
CM
6348 * this function must be called within transaction
6349 */
dcfac415 6350int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6351 u64 bytenr, u64 num_bytes)
6352{
6353 struct btrfs_block_group_cache *cache;
b50c6e25 6354 int ret;
e688b725
CM
6355
6356 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6357 if (!cache)
6358 return -EINVAL;
e688b725
CM
6359
6360 /*
6361 * pull in the free space cache (if any) so that our pin
6362 * removes the free space from the cache. We have load_only set
6363 * to one because the slow code to read in the free extents does check
6364 * the pinned extents.
6365 */
f6373bf3 6366 cache_block_group(cache, 1);
e688b725
CM
6367
6368 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6369
6370 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6371 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6372 btrfs_put_block_group(cache);
b50c6e25 6373 return ret;
e688b725
CM
6374}
6375
8c2a1a30
JB
6376static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6377{
6378 int ret;
6379 struct btrfs_block_group_cache *block_group;
6380 struct btrfs_caching_control *caching_ctl;
6381
6382 block_group = btrfs_lookup_block_group(root->fs_info, start);
6383 if (!block_group)
6384 return -EINVAL;
6385
6386 cache_block_group(block_group, 0);
6387 caching_ctl = get_caching_control(block_group);
6388
6389 if (!caching_ctl) {
6390 /* Logic error */
6391 BUG_ON(!block_group_cache_done(block_group));
6392 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6393 } else {
6394 mutex_lock(&caching_ctl->mutex);
6395
6396 if (start >= caching_ctl->progress) {
6397 ret = add_excluded_extent(root, start, num_bytes);
6398 } else if (start + num_bytes <= caching_ctl->progress) {
6399 ret = btrfs_remove_free_space(block_group,
6400 start, num_bytes);
6401 } else {
6402 num_bytes = caching_ctl->progress - start;
6403 ret = btrfs_remove_free_space(block_group,
6404 start, num_bytes);
6405 if (ret)
6406 goto out_lock;
6407
6408 num_bytes = (start + num_bytes) -
6409 caching_ctl->progress;
6410 start = caching_ctl->progress;
6411 ret = add_excluded_extent(root, start, num_bytes);
6412 }
6413out_lock:
6414 mutex_unlock(&caching_ctl->mutex);
6415 put_caching_control(caching_ctl);
6416 }
6417 btrfs_put_block_group(block_group);
6418 return ret;
6419}
6420
6421int btrfs_exclude_logged_extents(struct btrfs_root *log,
6422 struct extent_buffer *eb)
6423{
6424 struct btrfs_file_extent_item *item;
6425 struct btrfs_key key;
6426 int found_type;
6427 int i;
6428
6429 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6430 return 0;
6431
6432 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6433 btrfs_item_key_to_cpu(eb, &key, i);
6434 if (key.type != BTRFS_EXTENT_DATA_KEY)
6435 continue;
6436 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6437 found_type = btrfs_file_extent_type(eb, item);
6438 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6439 continue;
6440 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6441 continue;
6442 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6443 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6444 __exclude_logged_extent(log, key.objectid, key.offset);
6445 }
6446
6447 return 0;
6448}
6449
9cfa3e34
FM
6450static void
6451btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6452{
6453 atomic_inc(&bg->reservations);
6454}
6455
6456void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6457 const u64 start)
6458{
6459 struct btrfs_block_group_cache *bg;
6460
6461 bg = btrfs_lookup_block_group(fs_info, start);
6462 ASSERT(bg);
6463 if (atomic_dec_and_test(&bg->reservations))
6464 wake_up_atomic_t(&bg->reservations);
6465 btrfs_put_block_group(bg);
6466}
6467
6468static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6469{
6470 schedule();
6471 return 0;
6472}
6473
6474void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6475{
6476 struct btrfs_space_info *space_info = bg->space_info;
6477
6478 ASSERT(bg->ro);
6479
6480 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6481 return;
6482
6483 /*
6484 * Our block group is read only but before we set it to read only,
6485 * some task might have had allocated an extent from it already, but it
6486 * has not yet created a respective ordered extent (and added it to a
6487 * root's list of ordered extents).
6488 * Therefore wait for any task currently allocating extents, since the
6489 * block group's reservations counter is incremented while a read lock
6490 * on the groups' semaphore is held and decremented after releasing
6491 * the read access on that semaphore and creating the ordered extent.
6492 */
6493 down_write(&space_info->groups_sem);
6494 up_write(&space_info->groups_sem);
6495
6496 wait_on_atomic_t(&bg->reservations,
6497 btrfs_wait_bg_reservations_atomic_t,
6498 TASK_UNINTERRUPTIBLE);
6499}
6500
fb25e914 6501/**
4824f1f4 6502 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6503 * @cache: The cache we are manipulating
18513091
WX
6504 * @ram_bytes: The number of bytes of file content, and will be same to
6505 * @num_bytes except for the compress path.
fb25e914 6506 * @num_bytes: The number of bytes in question
e570fd27 6507 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6508 *
4824f1f4
WX
6509 * This is called by the allocator when it reserves space. Metadata
6510 * reservations should be called with RESERVE_ALLOC so we do the proper
fb25e914
JB
6511 * ENOSPC accounting. For data we handle the reservation through clearing the
6512 * delalloc bits in the io_tree. We have to do this since we could end up
6513 * allocating less disk space for the amount of data we have reserved in the
6514 * case of compression.
6515 *
6516 * If this is a reservation and the block group has become read only we cannot
6517 * make the reservation and return -EAGAIN, otherwise this function always
6518 * succeeds.
f0486c68 6519 */
4824f1f4 6520static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6521 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6522{
fb25e914 6523 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6524 int ret = 0;
79787eaa 6525
fb25e914
JB
6526 spin_lock(&space_info->lock);
6527 spin_lock(&cache->lock);
4824f1f4
WX
6528 if (cache->ro) {
6529 ret = -EAGAIN;
fb25e914 6530 } else {
4824f1f4
WX
6531 cache->reserved += num_bytes;
6532 space_info->bytes_reserved += num_bytes;
e570fd27 6533
18513091
WX
6534 trace_btrfs_space_reservation(cache->fs_info,
6535 "space_info", space_info->flags,
6536 ram_bytes, 0);
6537 space_info->bytes_may_use -= ram_bytes;
e570fd27 6538 if (delalloc)
4824f1f4 6539 cache->delalloc_bytes += num_bytes;
324ae4df 6540 }
fb25e914
JB
6541 spin_unlock(&cache->lock);
6542 spin_unlock(&space_info->lock);
f0486c68 6543 return ret;
324ae4df 6544}
9078a3e1 6545
4824f1f4
WX
6546/**
6547 * btrfs_free_reserved_bytes - update the block_group and space info counters
6548 * @cache: The cache we are manipulating
6549 * @num_bytes: The number of bytes in question
6550 * @delalloc: The blocks are allocated for the delalloc write
6551 *
6552 * This is called by somebody who is freeing space that was never actually used
6553 * on disk. For example if you reserve some space for a new leaf in transaction
6554 * A and before transaction A commits you free that leaf, you call this with
6555 * reserve set to 0 in order to clear the reservation.
6556 */
6557
6558static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6559 u64 num_bytes, int delalloc)
6560{
6561 struct btrfs_space_info *space_info = cache->space_info;
6562 int ret = 0;
6563
6564 spin_lock(&space_info->lock);
6565 spin_lock(&cache->lock);
6566 if (cache->ro)
6567 space_info->bytes_readonly += num_bytes;
6568 cache->reserved -= num_bytes;
6569 space_info->bytes_reserved -= num_bytes;
6570
6571 if (delalloc)
6572 cache->delalloc_bytes -= num_bytes;
6573 spin_unlock(&cache->lock);
6574 spin_unlock(&space_info->lock);
6575 return ret;
6576}
143bede5 6577void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6578 struct btrfs_root *root)
e8569813 6579{
e8569813 6580 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6581 struct btrfs_caching_control *next;
6582 struct btrfs_caching_control *caching_ctl;
6583 struct btrfs_block_group_cache *cache;
e8569813 6584
9e351cc8 6585 down_write(&fs_info->commit_root_sem);
25179201 6586
11833d66
YZ
6587 list_for_each_entry_safe(caching_ctl, next,
6588 &fs_info->caching_block_groups, list) {
6589 cache = caching_ctl->block_group;
6590 if (block_group_cache_done(cache)) {
6591 cache->last_byte_to_unpin = (u64)-1;
6592 list_del_init(&caching_ctl->list);
6593 put_caching_control(caching_ctl);
e8569813 6594 } else {
11833d66 6595 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6596 }
e8569813 6597 }
11833d66
YZ
6598
6599 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6600 fs_info->pinned_extents = &fs_info->freed_extents[1];
6601 else
6602 fs_info->pinned_extents = &fs_info->freed_extents[0];
6603
9e351cc8 6604 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6605
6606 update_global_block_rsv(fs_info);
e8569813
ZY
6607}
6608
c759c4e1
JB
6609/*
6610 * Returns the free cluster for the given space info and sets empty_cluster to
6611 * what it should be based on the mount options.
6612 */
6613static struct btrfs_free_cluster *
6614fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6615 u64 *empty_cluster)
6616{
6617 struct btrfs_free_cluster *ret = NULL;
3cdde224 6618 bool ssd = btrfs_test_opt(root->fs_info, SSD);
c759c4e1
JB
6619
6620 *empty_cluster = 0;
6621 if (btrfs_mixed_space_info(space_info))
6622 return ret;
6623
6624 if (ssd)
ee22184b 6625 *empty_cluster = SZ_2M;
c759c4e1
JB
6626 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6627 ret = &root->fs_info->meta_alloc_cluster;
6628 if (!ssd)
ee22184b 6629 *empty_cluster = SZ_64K;
c759c4e1
JB
6630 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6631 ret = &root->fs_info->data_alloc_cluster;
6632 }
6633
6634 return ret;
6635}
6636
678886bd
FM
6637static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6638 const bool return_free_space)
ccd467d6 6639{
11833d66
YZ
6640 struct btrfs_fs_info *fs_info = root->fs_info;
6641 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6642 struct btrfs_space_info *space_info;
6643 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6644 struct btrfs_free_cluster *cluster = NULL;
11833d66 6645 u64 len;
c759c4e1
JB
6646 u64 total_unpinned = 0;
6647 u64 empty_cluster = 0;
7b398f8e 6648 bool readonly;
ccd467d6 6649
11833d66 6650 while (start <= end) {
7b398f8e 6651 readonly = false;
11833d66
YZ
6652 if (!cache ||
6653 start >= cache->key.objectid + cache->key.offset) {
6654 if (cache)
6655 btrfs_put_block_group(cache);
c759c4e1 6656 total_unpinned = 0;
11833d66 6657 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6658 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6659
6660 cluster = fetch_cluster_info(root,
6661 cache->space_info,
6662 &empty_cluster);
6663 empty_cluster <<= 1;
11833d66
YZ
6664 }
6665
6666 len = cache->key.objectid + cache->key.offset - start;
6667 len = min(len, end + 1 - start);
6668
6669 if (start < cache->last_byte_to_unpin) {
6670 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6671 if (return_free_space)
6672 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6673 }
6674
f0486c68 6675 start += len;
c759c4e1 6676 total_unpinned += len;
7b398f8e 6677 space_info = cache->space_info;
f0486c68 6678
c759c4e1
JB
6679 /*
6680 * If this space cluster has been marked as fragmented and we've
6681 * unpinned enough in this block group to potentially allow a
6682 * cluster to be created inside of it go ahead and clear the
6683 * fragmented check.
6684 */
6685 if (cluster && cluster->fragmented &&
6686 total_unpinned > empty_cluster) {
6687 spin_lock(&cluster->lock);
6688 cluster->fragmented = 0;
6689 spin_unlock(&cluster->lock);
6690 }
6691
7b398f8e 6692 spin_lock(&space_info->lock);
11833d66
YZ
6693 spin_lock(&cache->lock);
6694 cache->pinned -= len;
7b398f8e 6695 space_info->bytes_pinned -= len;
c51e7bb1
JB
6696
6697 trace_btrfs_space_reservation(fs_info, "pinned",
6698 space_info->flags, len, 0);
4f4db217 6699 space_info->max_extent_size = 0;
d288db5d 6700 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6701 if (cache->ro) {
6702 space_info->bytes_readonly += len;
6703 readonly = true;
6704 }
11833d66 6705 spin_unlock(&cache->lock);
957780eb
JB
6706 if (!readonly && return_free_space &&
6707 global_rsv->space_info == space_info) {
6708 u64 to_add = len;
6709 WARN_ON(!return_free_space);
7b398f8e
JB
6710 spin_lock(&global_rsv->lock);
6711 if (!global_rsv->full) {
957780eb
JB
6712 to_add = min(len, global_rsv->size -
6713 global_rsv->reserved);
6714 global_rsv->reserved += to_add;
6715 space_info->bytes_may_use += to_add;
7b398f8e
JB
6716 if (global_rsv->reserved >= global_rsv->size)
6717 global_rsv->full = 1;
957780eb
JB
6718 trace_btrfs_space_reservation(fs_info,
6719 "space_info",
6720 space_info->flags,
6721 to_add, 1);
6722 len -= to_add;
7b398f8e
JB
6723 }
6724 spin_unlock(&global_rsv->lock);
957780eb
JB
6725 /* Add to any tickets we may have */
6726 if (len)
6727 space_info_add_new_bytes(fs_info, space_info,
6728 len);
7b398f8e
JB
6729 }
6730 spin_unlock(&space_info->lock);
ccd467d6 6731 }
11833d66
YZ
6732
6733 if (cache)
6734 btrfs_put_block_group(cache);
ccd467d6
CM
6735 return 0;
6736}
6737
6738int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6739 struct btrfs_root *root)
a28ec197 6740{
11833d66 6741 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6742 struct btrfs_block_group_cache *block_group, *tmp;
6743 struct list_head *deleted_bgs;
11833d66 6744 struct extent_io_tree *unpin;
1a5bc167
CM
6745 u64 start;
6746 u64 end;
a28ec197 6747 int ret;
a28ec197 6748
11833d66
YZ
6749 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6750 unpin = &fs_info->freed_extents[1];
6751 else
6752 unpin = &fs_info->freed_extents[0];
6753
e33e17ee 6754 while (!trans->aborted) {
d4b450cd 6755 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6756 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6757 EXTENT_DIRTY, NULL);
d4b450cd
FM
6758 if (ret) {
6759 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6760 break;
d4b450cd 6761 }
1f3c79a2 6762
3cdde224 6763 if (btrfs_test_opt(root->fs_info, DISCARD))
5378e607
LD
6764 ret = btrfs_discard_extent(root, start,
6765 end + 1 - start, NULL);
1f3c79a2 6766
af6f8f60 6767 clear_extent_dirty(unpin, start, end);
678886bd 6768 unpin_extent_range(root, start, end, true);
d4b450cd 6769 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6770 cond_resched();
a28ec197 6771 }
817d52f8 6772
e33e17ee
JM
6773 /*
6774 * Transaction is finished. We don't need the lock anymore. We
6775 * do need to clean up the block groups in case of a transaction
6776 * abort.
6777 */
6778 deleted_bgs = &trans->transaction->deleted_bgs;
6779 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6780 u64 trimmed = 0;
6781
6782 ret = -EROFS;
6783 if (!trans->aborted)
6784 ret = btrfs_discard_extent(root,
6785 block_group->key.objectid,
6786 block_group->key.offset,
6787 &trimmed);
6788
6789 list_del_init(&block_group->bg_list);
6790 btrfs_put_block_group_trimming(block_group);
6791 btrfs_put_block_group(block_group);
6792
6793 if (ret) {
6794 const char *errstr = btrfs_decode_error(ret);
6795 btrfs_warn(fs_info,
6796 "Discard failed while removing blockgroup: errno=%d %s\n",
6797 ret, errstr);
6798 }
6799 }
6800
e20d96d6
CM
6801 return 0;
6802}
6803
b150a4f1
JB
6804static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6805 u64 owner, u64 root_objectid)
6806{
6807 struct btrfs_space_info *space_info;
6808 u64 flags;
6809
6810 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6811 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6812 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6813 else
6814 flags = BTRFS_BLOCK_GROUP_METADATA;
6815 } else {
6816 flags = BTRFS_BLOCK_GROUP_DATA;
6817 }
6818
6819 space_info = __find_space_info(fs_info, flags);
6820 BUG_ON(!space_info); /* Logic bug */
6821 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6822}
6823
6824
5d4f98a2
YZ
6825static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6826 struct btrfs_root *root,
c682f9b3 6827 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6828 u64 root_objectid, u64 owner_objectid,
6829 u64 owner_offset, int refs_to_drop,
c682f9b3 6830 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6831{
e2fa7227 6832 struct btrfs_key key;
5d4f98a2 6833 struct btrfs_path *path;
1261ec42
CM
6834 struct btrfs_fs_info *info = root->fs_info;
6835 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6836 struct extent_buffer *leaf;
5d4f98a2
YZ
6837 struct btrfs_extent_item *ei;
6838 struct btrfs_extent_inline_ref *iref;
a28ec197 6839 int ret;
5d4f98a2 6840 int is_data;
952fccac
CM
6841 int extent_slot = 0;
6842 int found_extent = 0;
6843 int num_to_del = 1;
5d4f98a2
YZ
6844 u32 item_size;
6845 u64 refs;
c682f9b3
QW
6846 u64 bytenr = node->bytenr;
6847 u64 num_bytes = node->num_bytes;
fcebe456 6848 int last_ref = 0;
3173a18f
JB
6849 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6850 SKINNY_METADATA);
037e6390 6851
5caf2a00 6852 path = btrfs_alloc_path();
54aa1f4d
CM
6853 if (!path)
6854 return -ENOMEM;
5f26f772 6855
e4058b54 6856 path->reada = READA_FORWARD;
b9473439 6857 path->leave_spinning = 1;
5d4f98a2
YZ
6858
6859 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6860 BUG_ON(!is_data && refs_to_drop != 1);
6861
3173a18f
JB
6862 if (is_data)
6863 skinny_metadata = 0;
6864
5d4f98a2
YZ
6865 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6866 bytenr, num_bytes, parent,
6867 root_objectid, owner_objectid,
6868 owner_offset);
7bb86316 6869 if (ret == 0) {
952fccac 6870 extent_slot = path->slots[0];
5d4f98a2
YZ
6871 while (extent_slot >= 0) {
6872 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6873 extent_slot);
5d4f98a2 6874 if (key.objectid != bytenr)
952fccac 6875 break;
5d4f98a2
YZ
6876 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6877 key.offset == num_bytes) {
952fccac
CM
6878 found_extent = 1;
6879 break;
6880 }
3173a18f
JB
6881 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6882 key.offset == owner_objectid) {
6883 found_extent = 1;
6884 break;
6885 }
952fccac
CM
6886 if (path->slots[0] - extent_slot > 5)
6887 break;
5d4f98a2 6888 extent_slot--;
952fccac 6889 }
5d4f98a2
YZ
6890#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6891 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6892 if (found_extent && item_size < sizeof(*ei))
6893 found_extent = 0;
6894#endif
31840ae1 6895 if (!found_extent) {
5d4f98a2 6896 BUG_ON(iref);
56bec294 6897 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6898 NULL, refs_to_drop,
fcebe456 6899 is_data, &last_ref);
005d6427 6900 if (ret) {
66642832 6901 btrfs_abort_transaction(trans, ret);
005d6427
DS
6902 goto out;
6903 }
b3b4aa74 6904 btrfs_release_path(path);
b9473439 6905 path->leave_spinning = 1;
5d4f98a2
YZ
6906
6907 key.objectid = bytenr;
6908 key.type = BTRFS_EXTENT_ITEM_KEY;
6909 key.offset = num_bytes;
6910
3173a18f
JB
6911 if (!is_data && skinny_metadata) {
6912 key.type = BTRFS_METADATA_ITEM_KEY;
6913 key.offset = owner_objectid;
6914 }
6915
31840ae1
ZY
6916 ret = btrfs_search_slot(trans, extent_root,
6917 &key, path, -1, 1);
3173a18f
JB
6918 if (ret > 0 && skinny_metadata && path->slots[0]) {
6919 /*
6920 * Couldn't find our skinny metadata item,
6921 * see if we have ye olde extent item.
6922 */
6923 path->slots[0]--;
6924 btrfs_item_key_to_cpu(path->nodes[0], &key,
6925 path->slots[0]);
6926 if (key.objectid == bytenr &&
6927 key.type == BTRFS_EXTENT_ITEM_KEY &&
6928 key.offset == num_bytes)
6929 ret = 0;
6930 }
6931
6932 if (ret > 0 && skinny_metadata) {
6933 skinny_metadata = false;
9ce49a0b 6934 key.objectid = bytenr;
3173a18f
JB
6935 key.type = BTRFS_EXTENT_ITEM_KEY;
6936 key.offset = num_bytes;
6937 btrfs_release_path(path);
6938 ret = btrfs_search_slot(trans, extent_root,
6939 &key, path, -1, 1);
6940 }
6941
f3465ca4 6942 if (ret) {
c2cf52eb 6943 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6944 ret, bytenr);
b783e62d
JB
6945 if (ret > 0)
6946 btrfs_print_leaf(extent_root,
6947 path->nodes[0]);
f3465ca4 6948 }
005d6427 6949 if (ret < 0) {
66642832 6950 btrfs_abort_transaction(trans, ret);
005d6427
DS
6951 goto out;
6952 }
31840ae1
ZY
6953 extent_slot = path->slots[0];
6954 }
fae7f21c 6955 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6956 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6957 btrfs_err(info,
6958 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6959 bytenr, parent, root_objectid, owner_objectid,
6960 owner_offset);
66642832 6961 btrfs_abort_transaction(trans, ret);
c4a050bb 6962 goto out;
79787eaa 6963 } else {
66642832 6964 btrfs_abort_transaction(trans, ret);
005d6427 6965 goto out;
7bb86316 6966 }
5f39d397
CM
6967
6968 leaf = path->nodes[0];
5d4f98a2
YZ
6969 item_size = btrfs_item_size_nr(leaf, extent_slot);
6970#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6971 if (item_size < sizeof(*ei)) {
6972 BUG_ON(found_extent || extent_slot != path->slots[0]);
6973 ret = convert_extent_item_v0(trans, extent_root, path,
6974 owner_objectid, 0);
005d6427 6975 if (ret < 0) {
66642832 6976 btrfs_abort_transaction(trans, ret);
005d6427
DS
6977 goto out;
6978 }
5d4f98a2 6979
b3b4aa74 6980 btrfs_release_path(path);
5d4f98a2
YZ
6981 path->leave_spinning = 1;
6982
6983 key.objectid = bytenr;
6984 key.type = BTRFS_EXTENT_ITEM_KEY;
6985 key.offset = num_bytes;
6986
6987 ret = btrfs_search_slot(trans, extent_root, &key, path,
6988 -1, 1);
6989 if (ret) {
c2cf52eb 6990 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6991 ret, bytenr);
5d4f98a2
YZ
6992 btrfs_print_leaf(extent_root, path->nodes[0]);
6993 }
005d6427 6994 if (ret < 0) {
66642832 6995 btrfs_abort_transaction(trans, ret);
005d6427
DS
6996 goto out;
6997 }
6998
5d4f98a2
YZ
6999 extent_slot = path->slots[0];
7000 leaf = path->nodes[0];
7001 item_size = btrfs_item_size_nr(leaf, extent_slot);
7002 }
7003#endif
7004 BUG_ON(item_size < sizeof(*ei));
952fccac 7005 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7006 struct btrfs_extent_item);
3173a18f
JB
7007 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7008 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7009 struct btrfs_tree_block_info *bi;
7010 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7011 bi = (struct btrfs_tree_block_info *)(ei + 1);
7012 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7013 }
56bec294 7014
5d4f98a2 7015 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
7016 if (refs < refs_to_drop) {
7017 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 7018 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538 7019 ret = -EINVAL;
66642832 7020 btrfs_abort_transaction(trans, ret);
32b02538
JB
7021 goto out;
7022 }
56bec294 7023 refs -= refs_to_drop;
5f39d397 7024
5d4f98a2
YZ
7025 if (refs > 0) {
7026 if (extent_op)
7027 __run_delayed_extent_op(extent_op, leaf, ei);
7028 /*
7029 * In the case of inline back ref, reference count will
7030 * be updated by remove_extent_backref
952fccac 7031 */
5d4f98a2
YZ
7032 if (iref) {
7033 BUG_ON(!found_extent);
7034 } else {
7035 btrfs_set_extent_refs(leaf, ei, refs);
7036 btrfs_mark_buffer_dirty(leaf);
7037 }
7038 if (found_extent) {
7039 ret = remove_extent_backref(trans, extent_root, path,
7040 iref, refs_to_drop,
fcebe456 7041 is_data, &last_ref);
005d6427 7042 if (ret) {
66642832 7043 btrfs_abort_transaction(trans, ret);
005d6427
DS
7044 goto out;
7045 }
952fccac 7046 }
b150a4f1
JB
7047 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7048 root_objectid);
5d4f98a2 7049 } else {
5d4f98a2
YZ
7050 if (found_extent) {
7051 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7052 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7053 if (iref) {
7054 BUG_ON(path->slots[0] != extent_slot);
7055 } else {
7056 BUG_ON(path->slots[0] != extent_slot + 1);
7057 path->slots[0] = extent_slot;
7058 num_to_del = 2;
7059 }
78fae27e 7060 }
b9473439 7061
fcebe456 7062 last_ref = 1;
952fccac
CM
7063 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7064 num_to_del);
005d6427 7065 if (ret) {
66642832 7066 btrfs_abort_transaction(trans, ret);
005d6427
DS
7067 goto out;
7068 }
b3b4aa74 7069 btrfs_release_path(path);
21af804c 7070
5d4f98a2 7071 if (is_data) {
459931ec 7072 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427 7073 if (ret) {
66642832 7074 btrfs_abort_transaction(trans, ret);
005d6427
DS
7075 goto out;
7076 }
459931ec
CM
7077 }
7078
1e144fb8
OS
7079 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7080 num_bytes);
7081 if (ret) {
66642832 7082 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7083 goto out;
7084 }
7085
ce93ec54 7086 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427 7087 if (ret) {
66642832 7088 btrfs_abort_transaction(trans, ret);
005d6427
DS
7089 goto out;
7090 }
a28ec197 7091 }
fcebe456
JB
7092 btrfs_release_path(path);
7093
79787eaa 7094out:
5caf2a00 7095 btrfs_free_path(path);
a28ec197
CM
7096 return ret;
7097}
7098
1887be66 7099/*
f0486c68 7100 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7101 * delayed ref for that extent as well. This searches the delayed ref tree for
7102 * a given extent, and if there are no other delayed refs to be processed, it
7103 * removes it from the tree.
7104 */
7105static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7106 struct btrfs_root *root, u64 bytenr)
7107{
7108 struct btrfs_delayed_ref_head *head;
7109 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7110 int ret = 0;
1887be66
CM
7111
7112 delayed_refs = &trans->transaction->delayed_refs;
7113 spin_lock(&delayed_refs->lock);
7114 head = btrfs_find_delayed_ref_head(trans, bytenr);
7115 if (!head)
cf93da7b 7116 goto out_delayed_unlock;
1887be66 7117
d7df2c79 7118 spin_lock(&head->lock);
c6fc2454 7119 if (!list_empty(&head->ref_list))
1887be66
CM
7120 goto out;
7121
5d4f98a2
YZ
7122 if (head->extent_op) {
7123 if (!head->must_insert_reserved)
7124 goto out;
78a6184a 7125 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7126 head->extent_op = NULL;
7127 }
7128
1887be66
CM
7129 /*
7130 * waiting for the lock here would deadlock. If someone else has it
7131 * locked they are already in the process of dropping it anyway
7132 */
7133 if (!mutex_trylock(&head->mutex))
7134 goto out;
7135
7136 /*
7137 * at this point we have a head with no other entries. Go
7138 * ahead and process it.
7139 */
7140 head->node.in_tree = 0;
c46effa6 7141 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7142
d7df2c79 7143 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7144
7145 /*
7146 * we don't take a ref on the node because we're removing it from the
7147 * tree, so we just steal the ref the tree was holding.
7148 */
c3e69d58 7149 delayed_refs->num_heads--;
d7df2c79 7150 if (head->processing == 0)
c3e69d58 7151 delayed_refs->num_heads_ready--;
d7df2c79
JB
7152 head->processing = 0;
7153 spin_unlock(&head->lock);
1887be66
CM
7154 spin_unlock(&delayed_refs->lock);
7155
f0486c68
YZ
7156 BUG_ON(head->extent_op);
7157 if (head->must_insert_reserved)
7158 ret = 1;
7159
7160 mutex_unlock(&head->mutex);
1887be66 7161 btrfs_put_delayed_ref(&head->node);
f0486c68 7162 return ret;
1887be66 7163out:
d7df2c79 7164 spin_unlock(&head->lock);
cf93da7b
CM
7165
7166out_delayed_unlock:
1887be66
CM
7167 spin_unlock(&delayed_refs->lock);
7168 return 0;
7169}
7170
f0486c68
YZ
7171void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7172 struct btrfs_root *root,
7173 struct extent_buffer *buf,
5581a51a 7174 u64 parent, int last_ref)
f0486c68 7175{
b150a4f1 7176 int pin = 1;
f0486c68
YZ
7177 int ret;
7178
7179 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
7180 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7181 buf->start, buf->len,
7182 parent, root->root_key.objectid,
7183 btrfs_header_level(buf),
b06c4bf5 7184 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7185 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7186 }
7187
7188 if (!last_ref)
7189 return;
7190
f0486c68 7191 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7192 struct btrfs_block_group_cache *cache;
7193
f0486c68
YZ
7194 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7195 ret = check_ref_cleanup(trans, root, buf->start);
7196 if (!ret)
37be25bc 7197 goto out;
f0486c68
YZ
7198 }
7199
6219872d
FM
7200 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7201
f0486c68
YZ
7202 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7203 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 7204 btrfs_put_block_group(cache);
37be25bc 7205 goto out;
f0486c68
YZ
7206 }
7207
7208 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7209
7210 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7211 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7212 btrfs_put_block_group(cache);
0be5dc67 7213 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 7214 pin = 0;
f0486c68
YZ
7215 }
7216out:
b150a4f1
JB
7217 if (pin)
7218 add_pinned_bytes(root->fs_info, buf->len,
7219 btrfs_header_level(buf),
7220 root->root_key.objectid);
7221
a826d6dc
JB
7222 /*
7223 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7224 * anymore.
7225 */
7226 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7227}
7228
79787eaa 7229/* Can return -ENOMEM */
66d7e7f0
AJ
7230int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7231 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7232 u64 owner, u64 offset)
925baedd
CM
7233{
7234 int ret;
66d7e7f0 7235 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 7236
f5ee5c9a 7237 if (btrfs_is_testing(fs_info))
faa2dbf0 7238 return 0;
fccb84c9 7239
b150a4f1
JB
7240 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7241
56bec294
CM
7242 /*
7243 * tree log blocks never actually go into the extent allocation
7244 * tree, just update pinning info and exit early.
56bec294 7245 */
5d4f98a2
YZ
7246 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7247 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7248 /* unlocks the pinned mutex */
11833d66 7249 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7250 ret = 0;
5d4f98a2 7251 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7252 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7253 num_bytes,
5d4f98a2 7254 parent, root_objectid, (int)owner,
b06c4bf5 7255 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7256 } else {
66d7e7f0
AJ
7257 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7258 num_bytes,
7259 parent, root_objectid, owner,
5846a3c2
QW
7260 offset, 0,
7261 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7262 }
925baedd
CM
7263 return ret;
7264}
7265
817d52f8
JB
7266/*
7267 * when we wait for progress in the block group caching, its because
7268 * our allocation attempt failed at least once. So, we must sleep
7269 * and let some progress happen before we try again.
7270 *
7271 * This function will sleep at least once waiting for new free space to
7272 * show up, and then it will check the block group free space numbers
7273 * for our min num_bytes. Another option is to have it go ahead
7274 * and look in the rbtree for a free extent of a given size, but this
7275 * is a good start.
36cce922
JB
7276 *
7277 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7278 * any of the information in this block group.
817d52f8 7279 */
36cce922 7280static noinline void
817d52f8
JB
7281wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7282 u64 num_bytes)
7283{
11833d66 7284 struct btrfs_caching_control *caching_ctl;
817d52f8 7285
11833d66
YZ
7286 caching_ctl = get_caching_control(cache);
7287 if (!caching_ctl)
36cce922 7288 return;
817d52f8 7289
11833d66 7290 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7291 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7292
7293 put_caching_control(caching_ctl);
11833d66
YZ
7294}
7295
7296static noinline int
7297wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7298{
7299 struct btrfs_caching_control *caching_ctl;
36cce922 7300 int ret = 0;
11833d66
YZ
7301
7302 caching_ctl = get_caching_control(cache);
7303 if (!caching_ctl)
36cce922 7304 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7305
7306 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7307 if (cache->cached == BTRFS_CACHE_ERROR)
7308 ret = -EIO;
11833d66 7309 put_caching_control(caching_ctl);
36cce922 7310 return ret;
817d52f8
JB
7311}
7312
31e50229 7313int __get_raid_index(u64 flags)
b742bb82 7314{
7738a53a 7315 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7316 return BTRFS_RAID_RAID10;
7738a53a 7317 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7318 return BTRFS_RAID_RAID1;
7738a53a 7319 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7320 return BTRFS_RAID_DUP;
7738a53a 7321 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7322 return BTRFS_RAID_RAID0;
53b381b3 7323 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7324 return BTRFS_RAID_RAID5;
53b381b3 7325 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7326 return BTRFS_RAID_RAID6;
7738a53a 7327
e942f883 7328 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7329}
7330
6ab0a202 7331int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7332{
31e50229 7333 return __get_raid_index(cache->flags);
7738a53a
ID
7334}
7335
6ab0a202
JM
7336static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7337 [BTRFS_RAID_RAID10] = "raid10",
7338 [BTRFS_RAID_RAID1] = "raid1",
7339 [BTRFS_RAID_DUP] = "dup",
7340 [BTRFS_RAID_RAID0] = "raid0",
7341 [BTRFS_RAID_SINGLE] = "single",
7342 [BTRFS_RAID_RAID5] = "raid5",
7343 [BTRFS_RAID_RAID6] = "raid6",
7344};
7345
1b8e5df6 7346static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7347{
7348 if (type >= BTRFS_NR_RAID_TYPES)
7349 return NULL;
7350
7351 return btrfs_raid_type_names[type];
7352}
7353
817d52f8 7354enum btrfs_loop_type {
285ff5af
JB
7355 LOOP_CACHING_NOWAIT = 0,
7356 LOOP_CACHING_WAIT = 1,
7357 LOOP_ALLOC_CHUNK = 2,
7358 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7359};
7360
e570fd27
MX
7361static inline void
7362btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7363 int delalloc)
7364{
7365 if (delalloc)
7366 down_read(&cache->data_rwsem);
7367}
7368
7369static inline void
7370btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7371 int delalloc)
7372{
7373 btrfs_get_block_group(cache);
7374 if (delalloc)
7375 down_read(&cache->data_rwsem);
7376}
7377
7378static struct btrfs_block_group_cache *
7379btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7380 struct btrfs_free_cluster *cluster,
7381 int delalloc)
7382{
89771cc9 7383 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7384
e570fd27 7385 spin_lock(&cluster->refill_lock);
6719afdc
GU
7386 while (1) {
7387 used_bg = cluster->block_group;
7388 if (!used_bg)
7389 return NULL;
7390
7391 if (used_bg == block_group)
e570fd27
MX
7392 return used_bg;
7393
6719afdc 7394 btrfs_get_block_group(used_bg);
e570fd27 7395
6719afdc
GU
7396 if (!delalloc)
7397 return used_bg;
e570fd27 7398
6719afdc
GU
7399 if (down_read_trylock(&used_bg->data_rwsem))
7400 return used_bg;
e570fd27 7401
6719afdc 7402 spin_unlock(&cluster->refill_lock);
e570fd27 7403
6719afdc 7404 down_read(&used_bg->data_rwsem);
e570fd27 7405
6719afdc
GU
7406 spin_lock(&cluster->refill_lock);
7407 if (used_bg == cluster->block_group)
7408 return used_bg;
e570fd27 7409
6719afdc
GU
7410 up_read(&used_bg->data_rwsem);
7411 btrfs_put_block_group(used_bg);
7412 }
e570fd27
MX
7413}
7414
7415static inline void
7416btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7417 int delalloc)
7418{
7419 if (delalloc)
7420 up_read(&cache->data_rwsem);
7421 btrfs_put_block_group(cache);
7422}
7423
fec577fb
CM
7424/*
7425 * walks the btree of allocated extents and find a hole of a given size.
7426 * The key ins is changed to record the hole:
a4820398 7427 * ins->objectid == start position
62e2749e 7428 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7429 * ins->offset == the size of the hole.
fec577fb 7430 * Any available blocks before search_start are skipped.
a4820398
MX
7431 *
7432 * If there is no suitable free space, we will record the max size of
7433 * the free space extent currently.
fec577fb 7434 */
00361589 7435static noinline int find_free_extent(struct btrfs_root *orig_root,
18513091
WX
7436 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7437 u64 hint_byte, struct btrfs_key *ins,
7438 u64 flags, int delalloc)
fec577fb 7439{
80eb234a 7440 int ret = 0;
d397712b 7441 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7442 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7443 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7444 u64 search_start = 0;
a4820398 7445 u64 max_extent_size = 0;
c759c4e1 7446 u64 empty_cluster = 0;
80eb234a 7447 struct btrfs_space_info *space_info;
fa9c0d79 7448 int loop = 0;
b6919a58 7449 int index = __get_raid_index(flags);
0a24325e 7450 bool failed_cluster_refill = false;
1cdda9b8 7451 bool failed_alloc = false;
67377734 7452 bool use_cluster = true;
60d2adbb 7453 bool have_caching_bg = false;
13a0db5a 7454 bool orig_have_caching_bg = false;
a5e681d9 7455 bool full_search = false;
fec577fb 7456
db94535d 7457 WARN_ON(num_bytes < root->sectorsize);
962a298f 7458 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7459 ins->objectid = 0;
7460 ins->offset = 0;
b1a4d965 7461
b6919a58 7462 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7463
b6919a58 7464 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7465 if (!space_info) {
b6919a58 7466 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7467 return -ENOSPC;
7468 }
2552d17e 7469
67377734 7470 /*
4f4db217
JB
7471 * If our free space is heavily fragmented we may not be able to make
7472 * big contiguous allocations, so instead of doing the expensive search
7473 * for free space, simply return ENOSPC with our max_extent_size so we
7474 * can go ahead and search for a more manageable chunk.
7475 *
7476 * If our max_extent_size is large enough for our allocation simply
7477 * disable clustering since we will likely not be able to find enough
7478 * space to create a cluster and induce latency trying.
67377734 7479 */
4f4db217
JB
7480 if (unlikely(space_info->max_extent_size)) {
7481 spin_lock(&space_info->lock);
7482 if (space_info->max_extent_size &&
7483 num_bytes > space_info->max_extent_size) {
7484 ins->offset = space_info->max_extent_size;
7485 spin_unlock(&space_info->lock);
7486 return -ENOSPC;
7487 } else if (space_info->max_extent_size) {
7488 use_cluster = false;
7489 }
7490 spin_unlock(&space_info->lock);
fa9c0d79 7491 }
0f9dd46c 7492
c759c4e1 7493 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7494 if (last_ptr) {
fa9c0d79
CM
7495 spin_lock(&last_ptr->lock);
7496 if (last_ptr->block_group)
7497 hint_byte = last_ptr->window_start;
c759c4e1
JB
7498 if (last_ptr->fragmented) {
7499 /*
7500 * We still set window_start so we can keep track of the
7501 * last place we found an allocation to try and save
7502 * some time.
7503 */
7504 hint_byte = last_ptr->window_start;
7505 use_cluster = false;
7506 }
fa9c0d79 7507 spin_unlock(&last_ptr->lock);
239b14b3 7508 }
fa9c0d79 7509
a061fc8d 7510 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7511 search_start = max(search_start, hint_byte);
2552d17e 7512 if (search_start == hint_byte) {
2552d17e
JB
7513 block_group = btrfs_lookup_block_group(root->fs_info,
7514 search_start);
817d52f8
JB
7515 /*
7516 * we don't want to use the block group if it doesn't match our
7517 * allocation bits, or if its not cached.
ccf0e725
JB
7518 *
7519 * However if we are re-searching with an ideal block group
7520 * picked out then we don't care that the block group is cached.
817d52f8 7521 */
b6919a58 7522 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7523 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7524 down_read(&space_info->groups_sem);
44fb5511
CM
7525 if (list_empty(&block_group->list) ||
7526 block_group->ro) {
7527 /*
7528 * someone is removing this block group,
7529 * we can't jump into the have_block_group
7530 * target because our list pointers are not
7531 * valid
7532 */
7533 btrfs_put_block_group(block_group);
7534 up_read(&space_info->groups_sem);
ccf0e725 7535 } else {
b742bb82 7536 index = get_block_group_index(block_group);
e570fd27 7537 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7538 goto have_block_group;
ccf0e725 7539 }
2552d17e 7540 } else if (block_group) {
fa9c0d79 7541 btrfs_put_block_group(block_group);
2552d17e 7542 }
42e70e7a 7543 }
2552d17e 7544search:
60d2adbb 7545 have_caching_bg = false;
a5e681d9
JB
7546 if (index == 0 || index == __get_raid_index(flags))
7547 full_search = true;
80eb234a 7548 down_read(&space_info->groups_sem);
b742bb82
YZ
7549 list_for_each_entry(block_group, &space_info->block_groups[index],
7550 list) {
6226cb0a 7551 u64 offset;
817d52f8 7552 int cached;
8a1413a2 7553
e570fd27 7554 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7555 search_start = block_group->key.objectid;
42e70e7a 7556
83a50de9
CM
7557 /*
7558 * this can happen if we end up cycling through all the
7559 * raid types, but we want to make sure we only allocate
7560 * for the proper type.
7561 */
b6919a58 7562 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7563 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7564 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7565 BTRFS_BLOCK_GROUP_RAID5 |
7566 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7567 BTRFS_BLOCK_GROUP_RAID10;
7568
7569 /*
7570 * if they asked for extra copies and this block group
7571 * doesn't provide them, bail. This does allow us to
7572 * fill raid0 from raid1.
7573 */
b6919a58 7574 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7575 goto loop;
7576 }
7577
2552d17e 7578have_block_group:
291c7d2f
JB
7579 cached = block_group_cache_done(block_group);
7580 if (unlikely(!cached)) {
a5e681d9 7581 have_caching_bg = true;
f6373bf3 7582 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7583 BUG_ON(ret < 0);
7584 ret = 0;
817d52f8
JB
7585 }
7586
36cce922
JB
7587 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7588 goto loop;
ea6a478e 7589 if (unlikely(block_group->ro))
2552d17e 7590 goto loop;
0f9dd46c 7591
0a24325e 7592 /*
062c05c4
AO
7593 * Ok we want to try and use the cluster allocator, so
7594 * lets look there
0a24325e 7595 */
c759c4e1 7596 if (last_ptr && use_cluster) {
215a63d1 7597 struct btrfs_block_group_cache *used_block_group;
8de972b4 7598 unsigned long aligned_cluster;
fa9c0d79
CM
7599 /*
7600 * the refill lock keeps out other
7601 * people trying to start a new cluster
7602 */
e570fd27
MX
7603 used_block_group = btrfs_lock_cluster(block_group,
7604 last_ptr,
7605 delalloc);
7606 if (!used_block_group)
44fb5511 7607 goto refill_cluster;
274bd4fb 7608
e570fd27
MX
7609 if (used_block_group != block_group &&
7610 (used_block_group->ro ||
7611 !block_group_bits(used_block_group, flags)))
7612 goto release_cluster;
44fb5511 7613
274bd4fb 7614 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7615 last_ptr,
7616 num_bytes,
7617 used_block_group->key.objectid,
7618 &max_extent_size);
fa9c0d79
CM
7619 if (offset) {
7620 /* we have a block, we're done */
7621 spin_unlock(&last_ptr->refill_lock);
3f7de037 7622 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7623 used_block_group,
7624 search_start, num_bytes);
215a63d1 7625 if (used_block_group != block_group) {
e570fd27
MX
7626 btrfs_release_block_group(block_group,
7627 delalloc);
215a63d1
MX
7628 block_group = used_block_group;
7629 }
fa9c0d79
CM
7630 goto checks;
7631 }
7632
274bd4fb 7633 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7634release_cluster:
062c05c4
AO
7635 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7636 * set up a new clusters, so lets just skip it
7637 * and let the allocator find whatever block
7638 * it can find. If we reach this point, we
7639 * will have tried the cluster allocator
7640 * plenty of times and not have found
7641 * anything, so we are likely way too
7642 * fragmented for the clustering stuff to find
a5f6f719
AO
7643 * anything.
7644 *
7645 * However, if the cluster is taken from the
7646 * current block group, release the cluster
7647 * first, so that we stand a better chance of
7648 * succeeding in the unclustered
7649 * allocation. */
7650 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7651 used_block_group != block_group) {
062c05c4 7652 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7653 btrfs_release_block_group(used_block_group,
7654 delalloc);
062c05c4
AO
7655 goto unclustered_alloc;
7656 }
7657
fa9c0d79
CM
7658 /*
7659 * this cluster didn't work out, free it and
7660 * start over
7661 */
7662 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7663
e570fd27
MX
7664 if (used_block_group != block_group)
7665 btrfs_release_block_group(used_block_group,
7666 delalloc);
7667refill_cluster:
a5f6f719
AO
7668 if (loop >= LOOP_NO_EMPTY_SIZE) {
7669 spin_unlock(&last_ptr->refill_lock);
7670 goto unclustered_alloc;
7671 }
7672
8de972b4
CM
7673 aligned_cluster = max_t(unsigned long,
7674 empty_cluster + empty_size,
7675 block_group->full_stripe_len);
7676
fa9c0d79 7677 /* allocate a cluster in this block group */
00361589
JB
7678 ret = btrfs_find_space_cluster(root, block_group,
7679 last_ptr, search_start,
7680 num_bytes,
7681 aligned_cluster);
fa9c0d79
CM
7682 if (ret == 0) {
7683 /*
7684 * now pull our allocation out of this
7685 * cluster
7686 */
7687 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7688 last_ptr,
7689 num_bytes,
7690 search_start,
7691 &max_extent_size);
fa9c0d79
CM
7692 if (offset) {
7693 /* we found one, proceed */
7694 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7695 trace_btrfs_reserve_extent_cluster(root,
7696 block_group, search_start,
7697 num_bytes);
fa9c0d79
CM
7698 goto checks;
7699 }
0a24325e
JB
7700 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7701 && !failed_cluster_refill) {
817d52f8
JB
7702 spin_unlock(&last_ptr->refill_lock);
7703
0a24325e 7704 failed_cluster_refill = true;
817d52f8
JB
7705 wait_block_group_cache_progress(block_group,
7706 num_bytes + empty_cluster + empty_size);
7707 goto have_block_group;
fa9c0d79 7708 }
817d52f8 7709
fa9c0d79
CM
7710 /*
7711 * at this point we either didn't find a cluster
7712 * or we weren't able to allocate a block from our
7713 * cluster. Free the cluster we've been trying
7714 * to use, and go to the next block group
7715 */
0a24325e 7716 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7717 spin_unlock(&last_ptr->refill_lock);
0a24325e 7718 goto loop;
fa9c0d79
CM
7719 }
7720
062c05c4 7721unclustered_alloc:
c759c4e1
JB
7722 /*
7723 * We are doing an unclustered alloc, set the fragmented flag so
7724 * we don't bother trying to setup a cluster again until we get
7725 * more space.
7726 */
7727 if (unlikely(last_ptr)) {
7728 spin_lock(&last_ptr->lock);
7729 last_ptr->fragmented = 1;
7730 spin_unlock(&last_ptr->lock);
7731 }
a5f6f719
AO
7732 spin_lock(&block_group->free_space_ctl->tree_lock);
7733 if (cached &&
7734 block_group->free_space_ctl->free_space <
7735 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7736 if (block_group->free_space_ctl->free_space >
7737 max_extent_size)
7738 max_extent_size =
7739 block_group->free_space_ctl->free_space;
a5f6f719
AO
7740 spin_unlock(&block_group->free_space_ctl->tree_lock);
7741 goto loop;
7742 }
7743 spin_unlock(&block_group->free_space_ctl->tree_lock);
7744
6226cb0a 7745 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7746 num_bytes, empty_size,
7747 &max_extent_size);
1cdda9b8
JB
7748 /*
7749 * If we didn't find a chunk, and we haven't failed on this
7750 * block group before, and this block group is in the middle of
7751 * caching and we are ok with waiting, then go ahead and wait
7752 * for progress to be made, and set failed_alloc to true.
7753 *
7754 * If failed_alloc is true then we've already waited on this
7755 * block group once and should move on to the next block group.
7756 */
7757 if (!offset && !failed_alloc && !cached &&
7758 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7759 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7760 num_bytes + empty_size);
7761 failed_alloc = true;
817d52f8 7762 goto have_block_group;
1cdda9b8
JB
7763 } else if (!offset) {
7764 goto loop;
817d52f8 7765 }
fa9c0d79 7766checks:
4e54b17a 7767 search_start = ALIGN(offset, root->stripesize);
25179201 7768
2552d17e
JB
7769 /* move on to the next group */
7770 if (search_start + num_bytes >
215a63d1
MX
7771 block_group->key.objectid + block_group->key.offset) {
7772 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7773 goto loop;
6226cb0a 7774 }
f5a31e16 7775
f0486c68 7776 if (offset < search_start)
215a63d1 7777 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7778 search_start - offset);
7779 BUG_ON(offset > search_start);
2552d17e 7780
18513091
WX
7781 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7782 num_bytes, delalloc);
f0486c68 7783 if (ret == -EAGAIN) {
215a63d1 7784 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7785 goto loop;
0f9dd46c 7786 }
9cfa3e34 7787 btrfs_inc_block_group_reservations(block_group);
0b86a832 7788
f0486c68 7789 /* we are all good, lets return */
2552d17e
JB
7790 ins->objectid = search_start;
7791 ins->offset = num_bytes;
d2fb3437 7792
3f7de037
JB
7793 trace_btrfs_reserve_extent(orig_root, block_group,
7794 search_start, num_bytes);
e570fd27 7795 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7796 break;
7797loop:
0a24325e 7798 failed_cluster_refill = false;
1cdda9b8 7799 failed_alloc = false;
b742bb82 7800 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7801 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7802 }
7803 up_read(&space_info->groups_sem);
7804
13a0db5a 7805 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7806 && !orig_have_caching_bg)
7807 orig_have_caching_bg = true;
7808
60d2adbb
MX
7809 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7810 goto search;
7811
b742bb82
YZ
7812 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7813 goto search;
7814
285ff5af 7815 /*
ccf0e725
JB
7816 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7817 * caching kthreads as we move along
817d52f8
JB
7818 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7819 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7820 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7821 * again
fa9c0d79 7822 */
723bda20 7823 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7824 index = 0;
a5e681d9
JB
7825 if (loop == LOOP_CACHING_NOWAIT) {
7826 /*
7827 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7828 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7829 * full search through.
7830 */
13a0db5a 7831 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7832 loop = LOOP_CACHING_WAIT;
7833 else
7834 loop = LOOP_ALLOC_CHUNK;
7835 } else {
7836 loop++;
7837 }
7838
817d52f8 7839 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7840 struct btrfs_trans_handle *trans;
f017f15f
WS
7841 int exist = 0;
7842
7843 trans = current->journal_info;
7844 if (trans)
7845 exist = 1;
7846 else
7847 trans = btrfs_join_transaction(root);
00361589 7848
00361589
JB
7849 if (IS_ERR(trans)) {
7850 ret = PTR_ERR(trans);
7851 goto out;
7852 }
7853
b6919a58 7854 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7855 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7856
7857 /*
7858 * If we can't allocate a new chunk we've already looped
7859 * through at least once, move on to the NO_EMPTY_SIZE
7860 * case.
7861 */
7862 if (ret == -ENOSPC)
7863 loop = LOOP_NO_EMPTY_SIZE;
7864
ea658bad
JB
7865 /*
7866 * Do not bail out on ENOSPC since we
7867 * can do more things.
7868 */
00361589 7869 if (ret < 0 && ret != -ENOSPC)
66642832 7870 btrfs_abort_transaction(trans, ret);
00361589
JB
7871 else
7872 ret = 0;
f017f15f
WS
7873 if (!exist)
7874 btrfs_end_transaction(trans, root);
00361589 7875 if (ret)
ea658bad 7876 goto out;
2552d17e
JB
7877 }
7878
723bda20 7879 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7880 /*
7881 * Don't loop again if we already have no empty_size and
7882 * no empty_cluster.
7883 */
7884 if (empty_size == 0 &&
7885 empty_cluster == 0) {
7886 ret = -ENOSPC;
7887 goto out;
7888 }
723bda20
JB
7889 empty_size = 0;
7890 empty_cluster = 0;
fa9c0d79 7891 }
723bda20
JB
7892
7893 goto search;
2552d17e
JB
7894 } else if (!ins->objectid) {
7895 ret = -ENOSPC;
d82a6f1d 7896 } else if (ins->objectid) {
c759c4e1
JB
7897 if (!use_cluster && last_ptr) {
7898 spin_lock(&last_ptr->lock);
7899 last_ptr->window_start = ins->objectid;
7900 spin_unlock(&last_ptr->lock);
7901 }
80eb234a 7902 ret = 0;
be744175 7903 }
79787eaa 7904out:
4f4db217
JB
7905 if (ret == -ENOSPC) {
7906 spin_lock(&space_info->lock);
7907 space_info->max_extent_size = max_extent_size;
7908 spin_unlock(&space_info->lock);
a4820398 7909 ins->offset = max_extent_size;
4f4db217 7910 }
0f70abe2 7911 return ret;
fec577fb 7912}
ec44a35c 7913
9ed74f2d
JB
7914static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7915 int dump_block_groups)
0f9dd46c
JB
7916{
7917 struct btrfs_block_group_cache *cache;
b742bb82 7918 int index = 0;
0f9dd46c 7919
9ed74f2d 7920 spin_lock(&info->lock);
efe120a0 7921 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7922 info->flags,
7923 info->total_bytes - info->bytes_used - info->bytes_pinned -
39581a3a
WX
7924 info->bytes_reserved - info->bytes_readonly -
7925 info->bytes_may_use, (info->full) ? "" : "not ");
efe120a0 7926 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7927 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7928 info->total_bytes, info->bytes_used, info->bytes_pinned,
7929 info->bytes_reserved, info->bytes_may_use,
7930 info->bytes_readonly);
9ed74f2d
JB
7931 spin_unlock(&info->lock);
7932
7933 if (!dump_block_groups)
7934 return;
0f9dd46c 7935
80eb234a 7936 down_read(&info->groups_sem);
b742bb82
YZ
7937again:
7938 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7939 spin_lock(&cache->lock);
efe120a0
FH
7940 printk(KERN_INFO "BTRFS: "
7941 "block group %llu has %llu bytes, "
7942 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7943 cache->key.objectid, cache->key.offset,
7944 btrfs_block_group_used(&cache->item), cache->pinned,
7945 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7946 btrfs_dump_free_space(cache, bytes);
7947 spin_unlock(&cache->lock);
7948 }
b742bb82
YZ
7949 if (++index < BTRFS_NR_RAID_TYPES)
7950 goto again;
80eb234a 7951 up_read(&info->groups_sem);
0f9dd46c 7952}
e8569813 7953
18513091 7954int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7955 u64 num_bytes, u64 min_alloc_size,
7956 u64 empty_size, u64 hint_byte,
e570fd27 7957 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7958{
36af4e07 7959 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7960 u64 flags;
fec577fb 7961 int ret;
925baedd 7962
b6919a58 7963 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7964again:
db94535d 7965 WARN_ON(num_bytes < root->sectorsize);
18513091
WX
7966 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7967 hint_byte, ins, flags, delalloc);
9cfa3e34
FM
7968 if (!ret && !is_data) {
7969 btrfs_dec_block_group_reservations(root->fs_info,
7970 ins->objectid);
7971 } else if (ret == -ENOSPC) {
a4820398
MX
7972 if (!final_tried && ins->offset) {
7973 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7974 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7975 num_bytes = max(num_bytes, min_alloc_size);
18513091 7976 ram_bytes = num_bytes;
9e622d6b
MX
7977 if (num_bytes == min_alloc_size)
7978 final_tried = true;
7979 goto again;
3cdde224 7980 } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7981 struct btrfs_space_info *sinfo;
7982
b6919a58 7983 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7984 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7985 flags, num_bytes);
53804280
JM
7986 if (sinfo)
7987 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7988 }
925baedd 7989 }
0f9dd46c
JB
7990
7991 return ret;
e6dcd2dc
CM
7992}
7993
e688b725 7994static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7995 u64 start, u64 len,
7996 int pin, int delalloc)
65b51a00 7997{
0f9dd46c 7998 struct btrfs_block_group_cache *cache;
1f3c79a2 7999 int ret = 0;
0f9dd46c 8000
0f9dd46c
JB
8001 cache = btrfs_lookup_block_group(root->fs_info, start);
8002 if (!cache) {
c2cf52eb 8003 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 8004 start);
0f9dd46c
JB
8005 return -ENOSPC;
8006 }
1f3c79a2 8007
e688b725
CM
8008 if (pin)
8009 pin_down_extent(root, cache, start, len, 1);
8010 else {
3cdde224 8011 if (btrfs_test_opt(root->fs_info, DISCARD))
dcc82f47 8012 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 8013 btrfs_add_free_space(cache, start, len);
4824f1f4 8014 btrfs_free_reserved_bytes(cache, len, delalloc);
31bada7c 8015 trace_btrfs_reserved_extent_free(root, start, len);
e688b725 8016 }
31193213 8017
fa9c0d79 8018 btrfs_put_block_group(cache);
e6dcd2dc
CM
8019 return ret;
8020}
8021
e688b725 8022int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 8023 u64 start, u64 len, int delalloc)
e688b725 8024{
e570fd27 8025 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
8026}
8027
8028int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8029 u64 start, u64 len)
8030{
e570fd27 8031 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
8032}
8033
5d4f98a2
YZ
8034static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8035 struct btrfs_root *root,
8036 u64 parent, u64 root_objectid,
8037 u64 flags, u64 owner, u64 offset,
8038 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8039{
8040 int ret;
5d4f98a2 8041 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 8042 struct btrfs_extent_item *extent_item;
5d4f98a2 8043 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8044 struct btrfs_path *path;
5d4f98a2
YZ
8045 struct extent_buffer *leaf;
8046 int type;
8047 u32 size;
26b8003f 8048
5d4f98a2
YZ
8049 if (parent > 0)
8050 type = BTRFS_SHARED_DATA_REF_KEY;
8051 else
8052 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8053
5d4f98a2 8054 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8055
8056 path = btrfs_alloc_path();
db5b493a
TI
8057 if (!path)
8058 return -ENOMEM;
47e4bb98 8059
b9473439 8060 path->leave_spinning = 1;
5d4f98a2
YZ
8061 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8062 ins, size);
79787eaa
JM
8063 if (ret) {
8064 btrfs_free_path(path);
8065 return ret;
8066 }
0f9dd46c 8067
5d4f98a2
YZ
8068 leaf = path->nodes[0];
8069 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8070 struct btrfs_extent_item);
5d4f98a2
YZ
8071 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8072 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8073 btrfs_set_extent_flags(leaf, extent_item,
8074 flags | BTRFS_EXTENT_FLAG_DATA);
8075
8076 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8077 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8078 if (parent > 0) {
8079 struct btrfs_shared_data_ref *ref;
8080 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8081 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8082 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8083 } else {
8084 struct btrfs_extent_data_ref *ref;
8085 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8086 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8087 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8088 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8089 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8090 }
47e4bb98
CM
8091
8092 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8093 btrfs_free_path(path);
f510cfec 8094
1e144fb8
OS
8095 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8096 ins->offset);
8097 if (ret)
8098 return ret;
8099
ce93ec54 8100 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 8101 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8102 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8103 ins->objectid, ins->offset);
f5947066
CM
8104 BUG();
8105 }
0be5dc67 8106 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
8107 return ret;
8108}
8109
5d4f98a2
YZ
8110static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8111 struct btrfs_root *root,
8112 u64 parent, u64 root_objectid,
8113 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8114 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8115{
8116 int ret;
5d4f98a2
YZ
8117 struct btrfs_fs_info *fs_info = root->fs_info;
8118 struct btrfs_extent_item *extent_item;
8119 struct btrfs_tree_block_info *block_info;
8120 struct btrfs_extent_inline_ref *iref;
8121 struct btrfs_path *path;
8122 struct extent_buffer *leaf;
3173a18f 8123 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8124 u64 num_bytes = ins->offset;
3173a18f
JB
8125 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8126 SKINNY_METADATA);
8127
8128 if (!skinny_metadata)
8129 size += sizeof(*block_info);
1c2308f8 8130
5d4f98a2 8131 path = btrfs_alloc_path();
857cc2fc
JB
8132 if (!path) {
8133 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8134 root->nodesize);
d8926bb3 8135 return -ENOMEM;
857cc2fc 8136 }
56bec294 8137
5d4f98a2
YZ
8138 path->leave_spinning = 1;
8139 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8140 ins, size);
79787eaa 8141 if (ret) {
dd825259 8142 btrfs_free_path(path);
857cc2fc 8143 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8144 root->nodesize);
79787eaa
JM
8145 return ret;
8146 }
5d4f98a2
YZ
8147
8148 leaf = path->nodes[0];
8149 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8150 struct btrfs_extent_item);
8151 btrfs_set_extent_refs(leaf, extent_item, 1);
8152 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8153 btrfs_set_extent_flags(leaf, extent_item,
8154 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8155
3173a18f
JB
8156 if (skinny_metadata) {
8157 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 8158 num_bytes = root->nodesize;
3173a18f
JB
8159 } else {
8160 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8161 btrfs_set_tree_block_key(leaf, block_info, key);
8162 btrfs_set_tree_block_level(leaf, block_info, level);
8163 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8164 }
5d4f98a2 8165
5d4f98a2
YZ
8166 if (parent > 0) {
8167 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8168 btrfs_set_extent_inline_ref_type(leaf, iref,
8169 BTRFS_SHARED_BLOCK_REF_KEY);
8170 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8171 } else {
8172 btrfs_set_extent_inline_ref_type(leaf, iref,
8173 BTRFS_TREE_BLOCK_REF_KEY);
8174 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8175 }
8176
8177 btrfs_mark_buffer_dirty(leaf);
8178 btrfs_free_path(path);
8179
1e144fb8
OS
8180 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8181 num_bytes);
8182 if (ret)
8183 return ret;
8184
ce93ec54
JB
8185 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8186 1);
79787eaa 8187 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8188 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8189 ins->objectid, ins->offset);
5d4f98a2
YZ
8190 BUG();
8191 }
0be5dc67 8192
707e8a07 8193 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
8194 return ret;
8195}
8196
8197int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8198 struct btrfs_root *root,
8199 u64 root_objectid, u64 owner,
5846a3c2
QW
8200 u64 offset, u64 ram_bytes,
8201 struct btrfs_key *ins)
5d4f98a2
YZ
8202{
8203 int ret;
8204
8205 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8206
66d7e7f0
AJ
8207 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8208 ins->offset, 0,
8209 root_objectid, owner, offset,
5846a3c2
QW
8210 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8211 NULL);
e6dcd2dc
CM
8212 return ret;
8213}
e02119d5
CM
8214
8215/*
8216 * this is used by the tree logging recovery code. It records that
8217 * an extent has been allocated and makes sure to clear the free
8218 * space cache bits as well
8219 */
5d4f98a2
YZ
8220int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8221 struct btrfs_root *root,
8222 u64 root_objectid, u64 owner, u64 offset,
8223 struct btrfs_key *ins)
e02119d5
CM
8224{
8225 int ret;
8226 struct btrfs_block_group_cache *block_group;
11833d66 8227
8c2a1a30
JB
8228 /*
8229 * Mixed block groups will exclude before processing the log so we only
01327610 8230 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
8231 */
8232 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8233 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 8234 if (ret)
8c2a1a30 8235 return ret;
11833d66
YZ
8236 }
8237
8c2a1a30
JB
8238 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8239 if (!block_group)
8240 return -EINVAL;
8241
4824f1f4 8242 ret = btrfs_add_reserved_bytes(block_group, ins->offset,
18513091 8243 ins->offset, 0);
79787eaa 8244 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
8245 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8246 0, owner, offset, ins, 1);
b50c6e25 8247 btrfs_put_block_group(block_group);
e02119d5
CM
8248 return ret;
8249}
8250
48a3b636
ES
8251static struct extent_buffer *
8252btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8253 u64 bytenr, int level)
65b51a00
CM
8254{
8255 struct extent_buffer *buf;
8256
a83fffb7 8257 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8258 if (IS_ERR(buf))
8259 return buf;
8260
65b51a00 8261 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8262 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8263 btrfs_tree_lock(buf);
01d58472 8264 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8265 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8266
8267 btrfs_set_lock_blocking(buf);
4db8c528 8268 set_extent_buffer_uptodate(buf);
b4ce94de 8269
d0c803c4 8270 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8271 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8272 /*
8273 * we allow two log transactions at a time, use different
8274 * EXENT bit to differentiate dirty pages.
8275 */
656f30db 8276 if (buf->log_index == 0)
8cef4e16
YZ
8277 set_extent_dirty(&root->dirty_log_pages, buf->start,
8278 buf->start + buf->len - 1, GFP_NOFS);
8279 else
8280 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8281 buf->start + buf->len - 1);
d0c803c4 8282 } else {
656f30db 8283 buf->log_index = -1;
d0c803c4 8284 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8285 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8286 }
64c12921 8287 trans->dirty = true;
b4ce94de 8288 /* this returns a buffer locked for blocking */
65b51a00
CM
8289 return buf;
8290}
8291
f0486c68
YZ
8292static struct btrfs_block_rsv *
8293use_block_rsv(struct btrfs_trans_handle *trans,
8294 struct btrfs_root *root, u32 blocksize)
8295{
8296 struct btrfs_block_rsv *block_rsv;
68a82277 8297 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8298 int ret;
d88033db 8299 bool global_updated = false;
f0486c68
YZ
8300
8301 block_rsv = get_block_rsv(trans, root);
8302
b586b323
MX
8303 if (unlikely(block_rsv->size == 0))
8304 goto try_reserve;
d88033db 8305again:
f0486c68
YZ
8306 ret = block_rsv_use_bytes(block_rsv, blocksize);
8307 if (!ret)
8308 return block_rsv;
8309
b586b323
MX
8310 if (block_rsv->failfast)
8311 return ERR_PTR(ret);
8312
d88033db
MX
8313 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8314 global_updated = true;
8315 update_global_block_rsv(root->fs_info);
8316 goto again;
8317 }
8318
3cdde224 8319 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8320 static DEFINE_RATELIMIT_STATE(_rs,
8321 DEFAULT_RATELIMIT_INTERVAL * 10,
8322 /*DEFAULT_RATELIMIT_BURST*/ 1);
8323 if (__ratelimit(&_rs))
8324 WARN(1, KERN_DEBUG
efe120a0 8325 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8326 }
8327try_reserve:
8328 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8329 BTRFS_RESERVE_NO_FLUSH);
8330 if (!ret)
8331 return block_rsv;
8332 /*
8333 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8334 * the global reserve if its space type is the same as the global
8335 * reservation.
b586b323 8336 */
5881cfc9
MX
8337 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8338 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8339 ret = block_rsv_use_bytes(global_rsv, blocksize);
8340 if (!ret)
8341 return global_rsv;
8342 }
8343 return ERR_PTR(ret);
f0486c68
YZ
8344}
8345
8c2a3ca2
JB
8346static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8347 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8348{
8349 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8350 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8351}
8352
fec577fb 8353/*
f0486c68 8354 * finds a free extent and does all the dirty work required for allocation
67b7859e 8355 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8356 */
4d75f8a9
DS
8357struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8358 struct btrfs_root *root,
5d4f98a2
YZ
8359 u64 parent, u64 root_objectid,
8360 struct btrfs_disk_key *key, int level,
5581a51a 8361 u64 hint, u64 empty_size)
fec577fb 8362{
e2fa7227 8363 struct btrfs_key ins;
f0486c68 8364 struct btrfs_block_rsv *block_rsv;
5f39d397 8365 struct extent_buffer *buf;
67b7859e 8366 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8367 u64 flags = 0;
8368 int ret;
4d75f8a9 8369 u32 blocksize = root->nodesize;
3173a18f
JB
8370 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8371 SKINNY_METADATA);
fec577fb 8372
05653ef3 8373#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
f5ee5c9a 8374 if (btrfs_is_testing(root->fs_info)) {
faa2dbf0 8375 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8376 level);
faa2dbf0
JB
8377 if (!IS_ERR(buf))
8378 root->alloc_bytenr += blocksize;
8379 return buf;
8380 }
05653ef3 8381#endif
fccb84c9 8382
f0486c68
YZ
8383 block_rsv = use_block_rsv(trans, root, blocksize);
8384 if (IS_ERR(block_rsv))
8385 return ERR_CAST(block_rsv);
8386
18513091 8387 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8388 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8389 if (ret)
8390 goto out_unuse;
55c69072 8391
fe864576 8392 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8393 if (IS_ERR(buf)) {
8394 ret = PTR_ERR(buf);
8395 goto out_free_reserved;
8396 }
f0486c68
YZ
8397
8398 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8399 if (parent == 0)
8400 parent = ins.objectid;
8401 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8402 } else
8403 BUG_ON(parent > 0);
8404
8405 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8406 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8407 if (!extent_op) {
8408 ret = -ENOMEM;
8409 goto out_free_buf;
8410 }
f0486c68
YZ
8411 if (key)
8412 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8413 else
8414 memset(&extent_op->key, 0, sizeof(extent_op->key));
8415 extent_op->flags_to_set = flags;
35b3ad50
DS
8416 extent_op->update_key = skinny_metadata ? false : true;
8417 extent_op->update_flags = true;
8418 extent_op->is_data = false;
b1c79e09 8419 extent_op->level = level;
f0486c68 8420
66d7e7f0 8421 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8422 ins.objectid, ins.offset,
8423 parent, root_objectid, level,
8424 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8425 extent_op);
67b7859e
OS
8426 if (ret)
8427 goto out_free_delayed;
f0486c68 8428 }
fec577fb 8429 return buf;
67b7859e
OS
8430
8431out_free_delayed:
8432 btrfs_free_delayed_extent_op(extent_op);
8433out_free_buf:
8434 free_extent_buffer(buf);
8435out_free_reserved:
8436 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8437out_unuse:
8438 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8439 return ERR_PTR(ret);
fec577fb 8440}
a28ec197 8441
2c47e605
YZ
8442struct walk_control {
8443 u64 refs[BTRFS_MAX_LEVEL];
8444 u64 flags[BTRFS_MAX_LEVEL];
8445 struct btrfs_key update_progress;
8446 int stage;
8447 int level;
8448 int shared_level;
8449 int update_ref;
8450 int keep_locks;
1c4850e2
YZ
8451 int reada_slot;
8452 int reada_count;
66d7e7f0 8453 int for_reloc;
2c47e605
YZ
8454};
8455
8456#define DROP_REFERENCE 1
8457#define UPDATE_BACKREF 2
8458
1c4850e2
YZ
8459static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8460 struct btrfs_root *root,
8461 struct walk_control *wc,
8462 struct btrfs_path *path)
6407bf6d 8463{
1c4850e2
YZ
8464 u64 bytenr;
8465 u64 generation;
8466 u64 refs;
94fcca9f 8467 u64 flags;
5d4f98a2 8468 u32 nritems;
1c4850e2
YZ
8469 struct btrfs_key key;
8470 struct extent_buffer *eb;
6407bf6d 8471 int ret;
1c4850e2
YZ
8472 int slot;
8473 int nread = 0;
6407bf6d 8474
1c4850e2
YZ
8475 if (path->slots[wc->level] < wc->reada_slot) {
8476 wc->reada_count = wc->reada_count * 2 / 3;
8477 wc->reada_count = max(wc->reada_count, 2);
8478 } else {
8479 wc->reada_count = wc->reada_count * 3 / 2;
8480 wc->reada_count = min_t(int, wc->reada_count,
8481 BTRFS_NODEPTRS_PER_BLOCK(root));
8482 }
7bb86316 8483
1c4850e2
YZ
8484 eb = path->nodes[wc->level];
8485 nritems = btrfs_header_nritems(eb);
bd56b302 8486
1c4850e2
YZ
8487 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8488 if (nread >= wc->reada_count)
8489 break;
bd56b302 8490
2dd3e67b 8491 cond_resched();
1c4850e2
YZ
8492 bytenr = btrfs_node_blockptr(eb, slot);
8493 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8494
1c4850e2
YZ
8495 if (slot == path->slots[wc->level])
8496 goto reada;
5d4f98a2 8497
1c4850e2
YZ
8498 if (wc->stage == UPDATE_BACKREF &&
8499 generation <= root->root_key.offset)
bd56b302
CM
8500 continue;
8501
94fcca9f 8502 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8503 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8504 wc->level - 1, 1, &refs,
8505 &flags);
79787eaa
JM
8506 /* We don't care about errors in readahead. */
8507 if (ret < 0)
8508 continue;
94fcca9f
YZ
8509 BUG_ON(refs == 0);
8510
1c4850e2 8511 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8512 if (refs == 1)
8513 goto reada;
bd56b302 8514
94fcca9f
YZ
8515 if (wc->level == 1 &&
8516 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8517 continue;
1c4850e2
YZ
8518 if (!wc->update_ref ||
8519 generation <= root->root_key.offset)
8520 continue;
8521 btrfs_node_key_to_cpu(eb, &key, slot);
8522 ret = btrfs_comp_cpu_keys(&key,
8523 &wc->update_progress);
8524 if (ret < 0)
8525 continue;
94fcca9f
YZ
8526 } else {
8527 if (wc->level == 1 &&
8528 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8529 continue;
6407bf6d 8530 }
1c4850e2 8531reada:
d3e46fea 8532 readahead_tree_block(root, bytenr);
1c4850e2 8533 nread++;
20524f02 8534 }
1c4850e2 8535 wc->reada_slot = slot;
20524f02 8536}
2c47e605 8537
1152651a
MF
8538static int account_leaf_items(struct btrfs_trans_handle *trans,
8539 struct btrfs_root *root,
8540 struct extent_buffer *eb)
8541{
8542 int nr = btrfs_header_nritems(eb);
82bd101b 8543 int i, extent_type, ret;
1152651a
MF
8544 struct btrfs_key key;
8545 struct btrfs_file_extent_item *fi;
8546 u64 bytenr, num_bytes;
8547
82bd101b 8548 /* We can be called directly from walk_up_proc() */
43cad371 8549 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
82bd101b
MF
8550 return 0;
8551
1152651a
MF
8552 for (i = 0; i < nr; i++) {
8553 btrfs_item_key_to_cpu(eb, &key, i);
8554
8555 if (key.type != BTRFS_EXTENT_DATA_KEY)
8556 continue;
8557
8558 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8559 /* filter out non qgroup-accountable extents */
8560 extent_type = btrfs_file_extent_type(eb, fi);
8561
8562 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8563 continue;
8564
8565 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8566 if (!bytenr)
8567 continue;
8568
8569 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b 8570
cb93b52c
QW
8571 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8572 bytenr, num_bytes, GFP_NOFS);
82bd101b
MF
8573 if (ret)
8574 return ret;
1152651a
MF
8575 }
8576 return 0;
8577}
8578
8579/*
8580 * Walk up the tree from the bottom, freeing leaves and any interior
8581 * nodes which have had all slots visited. If a node (leaf or
8582 * interior) is freed, the node above it will have it's slot
8583 * incremented. The root node will never be freed.
8584 *
8585 * At the end of this function, we should have a path which has all
8586 * slots incremented to the next position for a search. If we need to
8587 * read a new node it will be NULL and the node above it will have the
8588 * correct slot selected for a later read.
8589 *
8590 * If we increment the root nodes slot counter past the number of
8591 * elements, 1 is returned to signal completion of the search.
8592 */
8593static int adjust_slots_upwards(struct btrfs_root *root,
8594 struct btrfs_path *path, int root_level)
8595{
8596 int level = 0;
8597 int nr, slot;
8598 struct extent_buffer *eb;
8599
8600 if (root_level == 0)
8601 return 1;
8602
8603 while (level <= root_level) {
8604 eb = path->nodes[level];
8605 nr = btrfs_header_nritems(eb);
8606 path->slots[level]++;
8607 slot = path->slots[level];
8608 if (slot >= nr || level == 0) {
8609 /*
8610 * Don't free the root - we will detect this
8611 * condition after our loop and return a
8612 * positive value for caller to stop walking the tree.
8613 */
8614 if (level != root_level) {
8615 btrfs_tree_unlock_rw(eb, path->locks[level]);
8616 path->locks[level] = 0;
8617
8618 free_extent_buffer(eb);
8619 path->nodes[level] = NULL;
8620 path->slots[level] = 0;
8621 }
8622 } else {
8623 /*
8624 * We have a valid slot to walk back down
8625 * from. Stop here so caller can process these
8626 * new nodes.
8627 */
8628 break;
8629 }
8630
8631 level++;
8632 }
8633
8634 eb = path->nodes[root_level];
8635 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8636 return 1;
8637
8638 return 0;
8639}
8640
8641/*
8642 * root_eb is the subtree root and is locked before this function is called.
8643 */
8644static int account_shared_subtree(struct btrfs_trans_handle *trans,
8645 struct btrfs_root *root,
8646 struct extent_buffer *root_eb,
8647 u64 root_gen,
8648 int root_level)
8649{
8650 int ret = 0;
8651 int level;
8652 struct extent_buffer *eb = root_eb;
8653 struct btrfs_path *path = NULL;
8654
8655 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8656 BUG_ON(root_eb == NULL);
8657
43cad371 8658 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
1152651a
MF
8659 return 0;
8660
8661 if (!extent_buffer_uptodate(root_eb)) {
8662 ret = btrfs_read_buffer(root_eb, root_gen);
8663 if (ret)
8664 goto out;
8665 }
8666
8667 if (root_level == 0) {
8668 ret = account_leaf_items(trans, root, root_eb);
8669 goto out;
8670 }
8671
8672 path = btrfs_alloc_path();
8673 if (!path)
8674 return -ENOMEM;
8675
8676 /*
8677 * Walk down the tree. Missing extent blocks are filled in as
8678 * we go. Metadata is accounted every time we read a new
8679 * extent block.
8680 *
8681 * When we reach a leaf, we account for file extent items in it,
8682 * walk back up the tree (adjusting slot pointers as we go)
8683 * and restart the search process.
8684 */
8685 extent_buffer_get(root_eb); /* For path */
8686 path->nodes[root_level] = root_eb;
8687 path->slots[root_level] = 0;
8688 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8689walk_down:
8690 level = root_level;
8691 while (level >= 0) {
8692 if (path->nodes[level] == NULL) {
1152651a
MF
8693 int parent_slot;
8694 u64 child_gen;
8695 u64 child_bytenr;
8696
8697 /* We need to get child blockptr/gen from
8698 * parent before we can read it. */
8699 eb = path->nodes[level + 1];
8700 parent_slot = path->slots[level + 1];
8701 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8702 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8703
ce86cd59 8704 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8705 if (IS_ERR(eb)) {
8706 ret = PTR_ERR(eb);
8707 goto out;
8708 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8709 free_extent_buffer(eb);
64c043de 8710 ret = -EIO;
1152651a
MF
8711 goto out;
8712 }
8713
8714 path->nodes[level] = eb;
8715 path->slots[level] = 0;
8716
8717 btrfs_tree_read_lock(eb);
8718 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8719 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b 8720
cb93b52c
QW
8721 ret = btrfs_qgroup_insert_dirty_extent(trans,
8722 root->fs_info, child_bytenr,
8723 root->nodesize, GFP_NOFS);
82bd101b
MF
8724 if (ret)
8725 goto out;
1152651a
MF
8726 }
8727
8728 if (level == 0) {
8729 ret = account_leaf_items(trans, root, path->nodes[level]);
8730 if (ret)
8731 goto out;
8732
8733 /* Nonzero return here means we completed our search */
8734 ret = adjust_slots_upwards(root, path, root_level);
8735 if (ret)
8736 break;
8737
8738 /* Restart search with new slots */
8739 goto walk_down;
8740 }
8741
8742 level--;
8743 }
8744
8745 ret = 0;
8746out:
8747 btrfs_free_path(path);
8748
8749 return ret;
8750}
8751
f82d02d9 8752/*
2c016dc2 8753 * helper to process tree block while walking down the tree.
2c47e605 8754 *
2c47e605
YZ
8755 * when wc->stage == UPDATE_BACKREF, this function updates
8756 * back refs for pointers in the block.
8757 *
8758 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8759 */
2c47e605 8760static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8761 struct btrfs_root *root,
2c47e605 8762 struct btrfs_path *path,
94fcca9f 8763 struct walk_control *wc, int lookup_info)
f82d02d9 8764{
2c47e605
YZ
8765 int level = wc->level;
8766 struct extent_buffer *eb = path->nodes[level];
2c47e605 8767 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8768 int ret;
8769
2c47e605
YZ
8770 if (wc->stage == UPDATE_BACKREF &&
8771 btrfs_header_owner(eb) != root->root_key.objectid)
8772 return 1;
f82d02d9 8773
2c47e605
YZ
8774 /*
8775 * when reference count of tree block is 1, it won't increase
8776 * again. once full backref flag is set, we never clear it.
8777 */
94fcca9f
YZ
8778 if (lookup_info &&
8779 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8780 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8781 BUG_ON(!path->locks[level]);
8782 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8783 eb->start, level, 1,
2c47e605
YZ
8784 &wc->refs[level],
8785 &wc->flags[level]);
79787eaa
JM
8786 BUG_ON(ret == -ENOMEM);
8787 if (ret)
8788 return ret;
2c47e605
YZ
8789 BUG_ON(wc->refs[level] == 0);
8790 }
5d4f98a2 8791
2c47e605
YZ
8792 if (wc->stage == DROP_REFERENCE) {
8793 if (wc->refs[level] > 1)
8794 return 1;
f82d02d9 8795
2c47e605 8796 if (path->locks[level] && !wc->keep_locks) {
bd681513 8797 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8798 path->locks[level] = 0;
8799 }
8800 return 0;
8801 }
f82d02d9 8802
2c47e605
YZ
8803 /* wc->stage == UPDATE_BACKREF */
8804 if (!(wc->flags[level] & flag)) {
8805 BUG_ON(!path->locks[level]);
e339a6b0 8806 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8807 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8808 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8809 BUG_ON(ret); /* -ENOMEM */
2c47e605 8810 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8811 eb->len, flag,
8812 btrfs_header_level(eb), 0);
79787eaa 8813 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8814 wc->flags[level] |= flag;
8815 }
8816
8817 /*
8818 * the block is shared by multiple trees, so it's not good to
8819 * keep the tree lock
8820 */
8821 if (path->locks[level] && level > 0) {
bd681513 8822 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8823 path->locks[level] = 0;
8824 }
8825 return 0;
8826}
8827
1c4850e2 8828/*
2c016dc2 8829 * helper to process tree block pointer.
1c4850e2
YZ
8830 *
8831 * when wc->stage == DROP_REFERENCE, this function checks
8832 * reference count of the block pointed to. if the block
8833 * is shared and we need update back refs for the subtree
8834 * rooted at the block, this function changes wc->stage to
8835 * UPDATE_BACKREF. if the block is shared and there is no
8836 * need to update back, this function drops the reference
8837 * to the block.
8838 *
8839 * NOTE: return value 1 means we should stop walking down.
8840 */
8841static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8842 struct btrfs_root *root,
8843 struct btrfs_path *path,
94fcca9f 8844 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8845{
8846 u64 bytenr;
8847 u64 generation;
8848 u64 parent;
8849 u32 blocksize;
8850 struct btrfs_key key;
8851 struct extent_buffer *next;
8852 int level = wc->level;
8853 int reada = 0;
8854 int ret = 0;
1152651a 8855 bool need_account = false;
1c4850e2
YZ
8856
8857 generation = btrfs_node_ptr_generation(path->nodes[level],
8858 path->slots[level]);
8859 /*
8860 * if the lower level block was created before the snapshot
8861 * was created, we know there is no need to update back refs
8862 * for the subtree
8863 */
8864 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8865 generation <= root->root_key.offset) {
8866 *lookup_info = 1;
1c4850e2 8867 return 1;
94fcca9f 8868 }
1c4850e2
YZ
8869
8870 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8871 blocksize = root->nodesize;
1c4850e2 8872
01d58472 8873 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8874 if (!next) {
a83fffb7 8875 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8876 if (IS_ERR(next))
8877 return PTR_ERR(next);
8878
b2aaaa3b
JB
8879 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8880 level - 1);
1c4850e2
YZ
8881 reada = 1;
8882 }
8883 btrfs_tree_lock(next);
8884 btrfs_set_lock_blocking(next);
8885
3173a18f 8886 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8887 &wc->refs[level - 1],
8888 &wc->flags[level - 1]);
79787eaa
JM
8889 if (ret < 0) {
8890 btrfs_tree_unlock(next);
8891 return ret;
8892 }
8893
c2cf52eb
SK
8894 if (unlikely(wc->refs[level - 1] == 0)) {
8895 btrfs_err(root->fs_info, "Missing references.");
8896 BUG();
8897 }
94fcca9f 8898 *lookup_info = 0;
1c4850e2 8899
94fcca9f 8900 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8901 if (wc->refs[level - 1] > 1) {
1152651a 8902 need_account = true;
94fcca9f
YZ
8903 if (level == 1 &&
8904 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8905 goto skip;
8906
1c4850e2
YZ
8907 if (!wc->update_ref ||
8908 generation <= root->root_key.offset)
8909 goto skip;
8910
8911 btrfs_node_key_to_cpu(path->nodes[level], &key,
8912 path->slots[level]);
8913 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8914 if (ret < 0)
8915 goto skip;
8916
8917 wc->stage = UPDATE_BACKREF;
8918 wc->shared_level = level - 1;
8919 }
94fcca9f
YZ
8920 } else {
8921 if (level == 1 &&
8922 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8923 goto skip;
1c4850e2
YZ
8924 }
8925
b9fab919 8926 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8927 btrfs_tree_unlock(next);
8928 free_extent_buffer(next);
8929 next = NULL;
94fcca9f 8930 *lookup_info = 1;
1c4850e2
YZ
8931 }
8932
8933 if (!next) {
8934 if (reada && level == 1)
8935 reada_walk_down(trans, root, wc, path);
ce86cd59 8936 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8937 if (IS_ERR(next)) {
8938 return PTR_ERR(next);
8939 } else if (!extent_buffer_uptodate(next)) {
416bc658 8940 free_extent_buffer(next);
97d9a8a4 8941 return -EIO;
416bc658 8942 }
1c4850e2
YZ
8943 btrfs_tree_lock(next);
8944 btrfs_set_lock_blocking(next);
8945 }
8946
8947 level--;
8948 BUG_ON(level != btrfs_header_level(next));
8949 path->nodes[level] = next;
8950 path->slots[level] = 0;
bd681513 8951 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8952 wc->level = level;
8953 if (wc->level == 1)
8954 wc->reada_slot = 0;
8955 return 0;
8956skip:
8957 wc->refs[level - 1] = 0;
8958 wc->flags[level - 1] = 0;
94fcca9f
YZ
8959 if (wc->stage == DROP_REFERENCE) {
8960 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8961 parent = path->nodes[level]->start;
8962 } else {
8963 BUG_ON(root->root_key.objectid !=
8964 btrfs_header_owner(path->nodes[level]));
8965 parent = 0;
8966 }
1c4850e2 8967
1152651a
MF
8968 if (need_account) {
8969 ret = account_shared_subtree(trans, root, next,
8970 generation, level - 1);
8971 if (ret) {
94647322
DS
8972 btrfs_err_rl(root->fs_info,
8973 "Error "
1152651a 8974 "%d accounting shared subtree. Quota "
94647322
DS
8975 "is out of sync, rescan required.",
8976 ret);
1152651a
MF
8977 }
8978 }
94fcca9f 8979 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8980 root->root_key.objectid, level - 1, 0);
79787eaa 8981 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8982 }
1c4850e2
YZ
8983 btrfs_tree_unlock(next);
8984 free_extent_buffer(next);
94fcca9f 8985 *lookup_info = 1;
1c4850e2
YZ
8986 return 1;
8987}
8988
2c47e605 8989/*
2c016dc2 8990 * helper to process tree block while walking up the tree.
2c47e605
YZ
8991 *
8992 * when wc->stage == DROP_REFERENCE, this function drops
8993 * reference count on the block.
8994 *
8995 * when wc->stage == UPDATE_BACKREF, this function changes
8996 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8997 * to UPDATE_BACKREF previously while processing the block.
8998 *
8999 * NOTE: return value 1 means we should stop walking up.
9000 */
9001static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9002 struct btrfs_root *root,
9003 struct btrfs_path *path,
9004 struct walk_control *wc)
9005{
f0486c68 9006 int ret;
2c47e605
YZ
9007 int level = wc->level;
9008 struct extent_buffer *eb = path->nodes[level];
9009 u64 parent = 0;
9010
9011 if (wc->stage == UPDATE_BACKREF) {
9012 BUG_ON(wc->shared_level < level);
9013 if (level < wc->shared_level)
9014 goto out;
9015
2c47e605
YZ
9016 ret = find_next_key(path, level + 1, &wc->update_progress);
9017 if (ret > 0)
9018 wc->update_ref = 0;
9019
9020 wc->stage = DROP_REFERENCE;
9021 wc->shared_level = -1;
9022 path->slots[level] = 0;
9023
9024 /*
9025 * check reference count again if the block isn't locked.
9026 * we should start walking down the tree again if reference
9027 * count is one.
9028 */
9029 if (!path->locks[level]) {
9030 BUG_ON(level == 0);
9031 btrfs_tree_lock(eb);
9032 btrfs_set_lock_blocking(eb);
bd681513 9033 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9034
9035 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 9036 eb->start, level, 1,
2c47e605
YZ
9037 &wc->refs[level],
9038 &wc->flags[level]);
79787eaa
JM
9039 if (ret < 0) {
9040 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9041 path->locks[level] = 0;
79787eaa
JM
9042 return ret;
9043 }
2c47e605
YZ
9044 BUG_ON(wc->refs[level] == 0);
9045 if (wc->refs[level] == 1) {
bd681513 9046 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9047 path->locks[level] = 0;
2c47e605
YZ
9048 return 1;
9049 }
f82d02d9 9050 }
2c47e605 9051 }
f82d02d9 9052
2c47e605
YZ
9053 /* wc->stage == DROP_REFERENCE */
9054 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9055
2c47e605
YZ
9056 if (wc->refs[level] == 1) {
9057 if (level == 0) {
9058 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9059 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9060 else
e339a6b0 9061 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9062 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
9063 ret = account_leaf_items(trans, root, eb);
9064 if (ret) {
94647322
DS
9065 btrfs_err_rl(root->fs_info,
9066 "error "
1152651a 9067 "%d accounting leaf items. Quota "
94647322
DS
9068 "is out of sync, rescan required.",
9069 ret);
1152651a 9070 }
2c47e605
YZ
9071 }
9072 /* make block locked assertion in clean_tree_block happy */
9073 if (!path->locks[level] &&
9074 btrfs_header_generation(eb) == trans->transid) {
9075 btrfs_tree_lock(eb);
9076 btrfs_set_lock_blocking(eb);
bd681513 9077 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9078 }
01d58472 9079 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
9080 }
9081
9082 if (eb == root->node) {
9083 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9084 parent = eb->start;
9085 else
9086 BUG_ON(root->root_key.objectid !=
9087 btrfs_header_owner(eb));
9088 } else {
9089 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9090 parent = path->nodes[level + 1]->start;
9091 else
9092 BUG_ON(root->root_key.objectid !=
9093 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 9094 }
f82d02d9 9095
5581a51a 9096 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9097out:
9098 wc->refs[level] = 0;
9099 wc->flags[level] = 0;
f0486c68 9100 return 0;
2c47e605
YZ
9101}
9102
9103static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9104 struct btrfs_root *root,
9105 struct btrfs_path *path,
9106 struct walk_control *wc)
9107{
2c47e605 9108 int level = wc->level;
94fcca9f 9109 int lookup_info = 1;
2c47e605
YZ
9110 int ret;
9111
9112 while (level >= 0) {
94fcca9f 9113 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9114 if (ret > 0)
9115 break;
9116
9117 if (level == 0)
9118 break;
9119
7a7965f8
YZ
9120 if (path->slots[level] >=
9121 btrfs_header_nritems(path->nodes[level]))
9122 break;
9123
94fcca9f 9124 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9125 if (ret > 0) {
9126 path->slots[level]++;
9127 continue;
90d2c51d
MX
9128 } else if (ret < 0)
9129 return ret;
1c4850e2 9130 level = wc->level;
f82d02d9 9131 }
f82d02d9
YZ
9132 return 0;
9133}
9134
d397712b 9135static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9136 struct btrfs_root *root,
f82d02d9 9137 struct btrfs_path *path,
2c47e605 9138 struct walk_control *wc, int max_level)
20524f02 9139{
2c47e605 9140 int level = wc->level;
20524f02 9141 int ret;
9f3a7427 9142
2c47e605
YZ
9143 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9144 while (level < max_level && path->nodes[level]) {
9145 wc->level = level;
9146 if (path->slots[level] + 1 <
9147 btrfs_header_nritems(path->nodes[level])) {
9148 path->slots[level]++;
20524f02
CM
9149 return 0;
9150 } else {
2c47e605
YZ
9151 ret = walk_up_proc(trans, root, path, wc);
9152 if (ret > 0)
9153 return 0;
bd56b302 9154
2c47e605 9155 if (path->locks[level]) {
bd681513
CM
9156 btrfs_tree_unlock_rw(path->nodes[level],
9157 path->locks[level]);
2c47e605 9158 path->locks[level] = 0;
f82d02d9 9159 }
2c47e605
YZ
9160 free_extent_buffer(path->nodes[level]);
9161 path->nodes[level] = NULL;
9162 level++;
20524f02
CM
9163 }
9164 }
9165 return 1;
9166}
9167
9aca1d51 9168/*
2c47e605
YZ
9169 * drop a subvolume tree.
9170 *
9171 * this function traverses the tree freeing any blocks that only
9172 * referenced by the tree.
9173 *
9174 * when a shared tree block is found. this function decreases its
9175 * reference count by one. if update_ref is true, this function
9176 * also make sure backrefs for the shared block and all lower level
9177 * blocks are properly updated.
9d1a2a3a
DS
9178 *
9179 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9180 */
2c536799 9181int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9182 struct btrfs_block_rsv *block_rsv, int update_ref,
9183 int for_reloc)
20524f02 9184{
5caf2a00 9185 struct btrfs_path *path;
2c47e605
YZ
9186 struct btrfs_trans_handle *trans;
9187 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 9188 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9189 struct walk_control *wc;
9190 struct btrfs_key key;
9191 int err = 0;
9192 int ret;
9193 int level;
d29a9f62 9194 bool root_dropped = false;
20524f02 9195
1152651a
MF
9196 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9197
5caf2a00 9198 path = btrfs_alloc_path();
cb1b69f4
TI
9199 if (!path) {
9200 err = -ENOMEM;
9201 goto out;
9202 }
20524f02 9203
2c47e605 9204 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9205 if (!wc) {
9206 btrfs_free_path(path);
cb1b69f4
TI
9207 err = -ENOMEM;
9208 goto out;
38a1a919 9209 }
2c47e605 9210
a22285a6 9211 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9212 if (IS_ERR(trans)) {
9213 err = PTR_ERR(trans);
9214 goto out_free;
9215 }
98d5dc13 9216
3fd0a558
YZ
9217 if (block_rsv)
9218 trans->block_rsv = block_rsv;
2c47e605 9219
9f3a7427 9220 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9221 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9222 path->nodes[level] = btrfs_lock_root_node(root);
9223 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9224 path->slots[level] = 0;
bd681513 9225 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9226 memset(&wc->update_progress, 0,
9227 sizeof(wc->update_progress));
9f3a7427 9228 } else {
9f3a7427 9229 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9230 memcpy(&wc->update_progress, &key,
9231 sizeof(wc->update_progress));
9232
6702ed49 9233 level = root_item->drop_level;
2c47e605 9234 BUG_ON(level == 0);
6702ed49 9235 path->lowest_level = level;
2c47e605
YZ
9236 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9237 path->lowest_level = 0;
9238 if (ret < 0) {
9239 err = ret;
79787eaa 9240 goto out_end_trans;
9f3a7427 9241 }
1c4850e2 9242 WARN_ON(ret > 0);
2c47e605 9243
7d9eb12c
CM
9244 /*
9245 * unlock our path, this is safe because only this
9246 * function is allowed to delete this snapshot
9247 */
5d4f98a2 9248 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9249
9250 level = btrfs_header_level(root->node);
9251 while (1) {
9252 btrfs_tree_lock(path->nodes[level]);
9253 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9254 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9255
9256 ret = btrfs_lookup_extent_info(trans, root,
9257 path->nodes[level]->start,
3173a18f 9258 level, 1, &wc->refs[level],
2c47e605 9259 &wc->flags[level]);
79787eaa
JM
9260 if (ret < 0) {
9261 err = ret;
9262 goto out_end_trans;
9263 }
2c47e605
YZ
9264 BUG_ON(wc->refs[level] == 0);
9265
9266 if (level == root_item->drop_level)
9267 break;
9268
9269 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9270 path->locks[level] = 0;
2c47e605
YZ
9271 WARN_ON(wc->refs[level] != 1);
9272 level--;
9273 }
9f3a7427 9274 }
2c47e605
YZ
9275
9276 wc->level = level;
9277 wc->shared_level = -1;
9278 wc->stage = DROP_REFERENCE;
9279 wc->update_ref = update_ref;
9280 wc->keep_locks = 0;
66d7e7f0 9281 wc->for_reloc = for_reloc;
1c4850e2 9282 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9283
d397712b 9284 while (1) {
9d1a2a3a 9285
2c47e605
YZ
9286 ret = walk_down_tree(trans, root, path, wc);
9287 if (ret < 0) {
9288 err = ret;
20524f02 9289 break;
2c47e605 9290 }
9aca1d51 9291
2c47e605
YZ
9292 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9293 if (ret < 0) {
9294 err = ret;
20524f02 9295 break;
2c47e605
YZ
9296 }
9297
9298 if (ret > 0) {
9299 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9300 break;
9301 }
2c47e605
YZ
9302
9303 if (wc->stage == DROP_REFERENCE) {
9304 level = wc->level;
9305 btrfs_node_key(path->nodes[level],
9306 &root_item->drop_progress,
9307 path->slots[level]);
9308 root_item->drop_level = level;
9309 }
9310
9311 BUG_ON(wc->level == 0);
3c8f2422
JB
9312 if (btrfs_should_end_transaction(trans, tree_root) ||
9313 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9314 ret = btrfs_update_root(trans, tree_root,
9315 &root->root_key,
9316 root_item);
79787eaa 9317 if (ret) {
66642832 9318 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9319 err = ret;
9320 goto out_end_trans;
9321 }
2c47e605 9322
3fd0a558 9323 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9324 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 9325 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
9326 err = -EAGAIN;
9327 goto out_free;
9328 }
9329
a22285a6 9330 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9331 if (IS_ERR(trans)) {
9332 err = PTR_ERR(trans);
9333 goto out_free;
9334 }
3fd0a558
YZ
9335 if (block_rsv)
9336 trans->block_rsv = block_rsv;
c3e69d58 9337 }
20524f02 9338 }
b3b4aa74 9339 btrfs_release_path(path);
79787eaa
JM
9340 if (err)
9341 goto out_end_trans;
2c47e605
YZ
9342
9343 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9344 if (ret) {
66642832 9345 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9346 goto out_end_trans;
9347 }
2c47e605 9348
76dda93c 9349 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9350 ret = btrfs_find_root(tree_root, &root->root_key, path,
9351 NULL, NULL);
79787eaa 9352 if (ret < 0) {
66642832 9353 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9354 err = ret;
9355 goto out_end_trans;
9356 } else if (ret > 0) {
84cd948c
JB
9357 /* if we fail to delete the orphan item this time
9358 * around, it'll get picked up the next time.
9359 *
9360 * The most common failure here is just -ENOENT.
9361 */
9362 btrfs_del_orphan_item(trans, tree_root,
9363 root->root_key.objectid);
76dda93c
YZ
9364 }
9365 }
9366
27cdeb70 9367 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9368 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9369 } else {
9370 free_extent_buffer(root->node);
9371 free_extent_buffer(root->commit_root);
b0feb9d9 9372 btrfs_put_fs_root(root);
76dda93c 9373 }
d29a9f62 9374 root_dropped = true;
79787eaa 9375out_end_trans:
3fd0a558 9376 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9377out_free:
2c47e605 9378 kfree(wc);
5caf2a00 9379 btrfs_free_path(path);
cb1b69f4 9380out:
d29a9f62
JB
9381 /*
9382 * So if we need to stop dropping the snapshot for whatever reason we
9383 * need to make sure to add it back to the dead root list so that we
9384 * keep trying to do the work later. This also cleans up roots if we
9385 * don't have it in the radix (like when we recover after a power fail
9386 * or unmount) so we don't leak memory.
9387 */
b37b39cd 9388 if (!for_reloc && root_dropped == false)
d29a9f62 9389 btrfs_add_dead_root(root);
90515e7f 9390 if (err && err != -EAGAIN)
34d97007 9391 btrfs_handle_fs_error(root->fs_info, err, NULL);
2c536799 9392 return err;
20524f02 9393}
9078a3e1 9394
2c47e605
YZ
9395/*
9396 * drop subtree rooted at tree block 'node'.
9397 *
9398 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9399 * only used by relocation code
2c47e605 9400 */
f82d02d9
YZ
9401int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9402 struct btrfs_root *root,
9403 struct extent_buffer *node,
9404 struct extent_buffer *parent)
9405{
9406 struct btrfs_path *path;
2c47e605 9407 struct walk_control *wc;
f82d02d9
YZ
9408 int level;
9409 int parent_level;
9410 int ret = 0;
9411 int wret;
9412
2c47e605
YZ
9413 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9414
f82d02d9 9415 path = btrfs_alloc_path();
db5b493a
TI
9416 if (!path)
9417 return -ENOMEM;
f82d02d9 9418
2c47e605 9419 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9420 if (!wc) {
9421 btrfs_free_path(path);
9422 return -ENOMEM;
9423 }
2c47e605 9424
b9447ef8 9425 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9426 parent_level = btrfs_header_level(parent);
9427 extent_buffer_get(parent);
9428 path->nodes[parent_level] = parent;
9429 path->slots[parent_level] = btrfs_header_nritems(parent);
9430
b9447ef8 9431 btrfs_assert_tree_locked(node);
f82d02d9 9432 level = btrfs_header_level(node);
f82d02d9
YZ
9433 path->nodes[level] = node;
9434 path->slots[level] = 0;
bd681513 9435 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9436
9437 wc->refs[parent_level] = 1;
9438 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9439 wc->level = level;
9440 wc->shared_level = -1;
9441 wc->stage = DROP_REFERENCE;
9442 wc->update_ref = 0;
9443 wc->keep_locks = 1;
66d7e7f0 9444 wc->for_reloc = 1;
1c4850e2 9445 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9446
9447 while (1) {
2c47e605
YZ
9448 wret = walk_down_tree(trans, root, path, wc);
9449 if (wret < 0) {
f82d02d9 9450 ret = wret;
f82d02d9 9451 break;
2c47e605 9452 }
f82d02d9 9453
2c47e605 9454 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9455 if (wret < 0)
9456 ret = wret;
9457 if (wret != 0)
9458 break;
9459 }
9460
2c47e605 9461 kfree(wc);
f82d02d9
YZ
9462 btrfs_free_path(path);
9463 return ret;
9464}
9465
ec44a35c
CM
9466static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9467{
9468 u64 num_devices;
fc67c450 9469 u64 stripped;
e4d8ec0f 9470
fc67c450
ID
9471 /*
9472 * if restripe for this chunk_type is on pick target profile and
9473 * return, otherwise do the usual balance
9474 */
9475 stripped = get_restripe_target(root->fs_info, flags);
9476 if (stripped)
9477 return extended_to_chunk(stripped);
e4d8ec0f 9478
95669976 9479 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9480
fc67c450 9481 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9482 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9483 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9484
ec44a35c
CM
9485 if (num_devices == 1) {
9486 stripped |= BTRFS_BLOCK_GROUP_DUP;
9487 stripped = flags & ~stripped;
9488
9489 /* turn raid0 into single device chunks */
9490 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9491 return stripped;
9492
9493 /* turn mirroring into duplication */
9494 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9495 BTRFS_BLOCK_GROUP_RAID10))
9496 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9497 } else {
9498 /* they already had raid on here, just return */
ec44a35c
CM
9499 if (flags & stripped)
9500 return flags;
9501
9502 stripped |= BTRFS_BLOCK_GROUP_DUP;
9503 stripped = flags & ~stripped;
9504
9505 /* switch duplicated blocks with raid1 */
9506 if (flags & BTRFS_BLOCK_GROUP_DUP)
9507 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9508
e3176ca2 9509 /* this is drive concat, leave it alone */
ec44a35c 9510 }
e3176ca2 9511
ec44a35c
CM
9512 return flags;
9513}
9514
868f401a 9515static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9516{
f0486c68
YZ
9517 struct btrfs_space_info *sinfo = cache->space_info;
9518 u64 num_bytes;
199c36ea 9519 u64 min_allocable_bytes;
f0486c68 9520 int ret = -ENOSPC;
0ef3e66b 9521
199c36ea
MX
9522 /*
9523 * We need some metadata space and system metadata space for
9524 * allocating chunks in some corner cases until we force to set
9525 * it to be readonly.
9526 */
9527 if ((sinfo->flags &
9528 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9529 !force)
ee22184b 9530 min_allocable_bytes = SZ_1M;
199c36ea
MX
9531 else
9532 min_allocable_bytes = 0;
9533
f0486c68
YZ
9534 spin_lock(&sinfo->lock);
9535 spin_lock(&cache->lock);
61cfea9b
W
9536
9537 if (cache->ro) {
868f401a 9538 cache->ro++;
61cfea9b
W
9539 ret = 0;
9540 goto out;
9541 }
9542
f0486c68
YZ
9543 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9544 cache->bytes_super - btrfs_block_group_used(&cache->item);
9545
9546 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9547 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9548 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9549 sinfo->bytes_readonly += num_bytes;
868f401a 9550 cache->ro++;
633c0aad 9551 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9552 ret = 0;
9553 }
61cfea9b 9554out:
f0486c68
YZ
9555 spin_unlock(&cache->lock);
9556 spin_unlock(&sinfo->lock);
9557 return ret;
9558}
7d9eb12c 9559
868f401a 9560int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9561 struct btrfs_block_group_cache *cache)
c286ac48 9562
f0486c68
YZ
9563{
9564 struct btrfs_trans_handle *trans;
9565 u64 alloc_flags;
9566 int ret;
7d9eb12c 9567
1bbc621e 9568again:
ff5714cc 9569 trans = btrfs_join_transaction(root);
79787eaa
JM
9570 if (IS_ERR(trans))
9571 return PTR_ERR(trans);
5d4f98a2 9572
1bbc621e
CM
9573 /*
9574 * we're not allowed to set block groups readonly after the dirty
9575 * block groups cache has started writing. If it already started,
9576 * back off and let this transaction commit
9577 */
9578 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9579 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9580 u64 transid = trans->transid;
9581
9582 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9583 btrfs_end_transaction(trans, root);
9584
9585 ret = btrfs_wait_for_commit(root, transid);
9586 if (ret)
9587 return ret;
9588 goto again;
9589 }
9590
153c35b6
CM
9591 /*
9592 * if we are changing raid levels, try to allocate a corresponding
9593 * block group with the new raid level.
9594 */
9595 alloc_flags = update_block_group_flags(root, cache->flags);
9596 if (alloc_flags != cache->flags) {
9597 ret = do_chunk_alloc(trans, root, alloc_flags,
9598 CHUNK_ALLOC_FORCE);
9599 /*
9600 * ENOSPC is allowed here, we may have enough space
9601 * already allocated at the new raid level to
9602 * carry on
9603 */
9604 if (ret == -ENOSPC)
9605 ret = 0;
9606 if (ret < 0)
9607 goto out;
9608 }
1bbc621e 9609
868f401a 9610 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9611 if (!ret)
9612 goto out;
9613 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9614 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9615 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9616 if (ret < 0)
9617 goto out;
868f401a 9618 ret = inc_block_group_ro(cache, 0);
f0486c68 9619out:
2f081088
SL
9620 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9621 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9622 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9623 check_system_chunk(trans, root, alloc_flags);
a9629596 9624 unlock_chunks(root->fs_info->chunk_root);
2f081088 9625 }
1bbc621e 9626 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9627
f0486c68
YZ
9628 btrfs_end_transaction(trans, root);
9629 return ret;
9630}
5d4f98a2 9631
c87f08ca
CM
9632int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9633 struct btrfs_root *root, u64 type)
9634{
9635 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9636 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9637 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9638}
9639
6d07bcec
MX
9640/*
9641 * helper to account the unused space of all the readonly block group in the
633c0aad 9642 * space_info. takes mirrors into account.
6d07bcec 9643 */
633c0aad 9644u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9645{
9646 struct btrfs_block_group_cache *block_group;
9647 u64 free_bytes = 0;
9648 int factor;
9649
01327610 9650 /* It's df, we don't care if it's racy */
633c0aad
JB
9651 if (list_empty(&sinfo->ro_bgs))
9652 return 0;
9653
9654 spin_lock(&sinfo->lock);
9655 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9656 spin_lock(&block_group->lock);
9657
9658 if (!block_group->ro) {
9659 spin_unlock(&block_group->lock);
9660 continue;
9661 }
9662
9663 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9664 BTRFS_BLOCK_GROUP_RAID10 |
9665 BTRFS_BLOCK_GROUP_DUP))
9666 factor = 2;
9667 else
9668 factor = 1;
9669
9670 free_bytes += (block_group->key.offset -
9671 btrfs_block_group_used(&block_group->item)) *
9672 factor;
9673
9674 spin_unlock(&block_group->lock);
9675 }
6d07bcec
MX
9676 spin_unlock(&sinfo->lock);
9677
9678 return free_bytes;
9679}
9680
868f401a 9681void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9682 struct btrfs_block_group_cache *cache)
5d4f98a2 9683{
f0486c68
YZ
9684 struct btrfs_space_info *sinfo = cache->space_info;
9685 u64 num_bytes;
9686
9687 BUG_ON(!cache->ro);
9688
9689 spin_lock(&sinfo->lock);
9690 spin_lock(&cache->lock);
868f401a
Z
9691 if (!--cache->ro) {
9692 num_bytes = cache->key.offset - cache->reserved -
9693 cache->pinned - cache->bytes_super -
9694 btrfs_block_group_used(&cache->item);
9695 sinfo->bytes_readonly -= num_bytes;
9696 list_del_init(&cache->ro_list);
9697 }
f0486c68
YZ
9698 spin_unlock(&cache->lock);
9699 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9700}
9701
ba1bf481
JB
9702/*
9703 * checks to see if its even possible to relocate this block group.
9704 *
9705 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9706 * ok to go ahead and try.
9707 */
9708int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9709{
ba1bf481
JB
9710 struct btrfs_block_group_cache *block_group;
9711 struct btrfs_space_info *space_info;
9712 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9713 struct btrfs_device *device;
6df9a95e 9714 struct btrfs_trans_handle *trans;
cdcb725c 9715 u64 min_free;
6719db6a
JB
9716 u64 dev_min = 1;
9717 u64 dev_nr = 0;
4a5e98f5 9718 u64 target;
0305bc27 9719 int debug;
cdcb725c 9720 int index;
ba1bf481
JB
9721 int full = 0;
9722 int ret = 0;
1a40e23b 9723
3cdde224 9724 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
0305bc27 9725
ba1bf481 9726 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9727
ba1bf481 9728 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9729 if (!block_group) {
9730 if (debug)
9731 btrfs_warn(root->fs_info,
9732 "can't find block group for bytenr %llu",
9733 bytenr);
ba1bf481 9734 return -1;
0305bc27 9735 }
1a40e23b 9736
cdcb725c 9737 min_free = btrfs_block_group_used(&block_group->item);
9738
ba1bf481 9739 /* no bytes used, we're good */
cdcb725c 9740 if (!min_free)
1a40e23b
ZY
9741 goto out;
9742
ba1bf481
JB
9743 space_info = block_group->space_info;
9744 spin_lock(&space_info->lock);
17d217fe 9745
ba1bf481 9746 full = space_info->full;
17d217fe 9747
ba1bf481
JB
9748 /*
9749 * if this is the last block group we have in this space, we can't
7ce618db
CM
9750 * relocate it unless we're able to allocate a new chunk below.
9751 *
9752 * Otherwise, we need to make sure we have room in the space to handle
9753 * all of the extents from this block group. If we can, we're good
ba1bf481 9754 */
7ce618db 9755 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9756 (space_info->bytes_used + space_info->bytes_reserved +
9757 space_info->bytes_pinned + space_info->bytes_readonly +
9758 min_free < space_info->total_bytes)) {
ba1bf481
JB
9759 spin_unlock(&space_info->lock);
9760 goto out;
17d217fe 9761 }
ba1bf481 9762 spin_unlock(&space_info->lock);
ea8c2819 9763
ba1bf481
JB
9764 /*
9765 * ok we don't have enough space, but maybe we have free space on our
9766 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9767 * alloc devices and guess if we have enough space. if this block
9768 * group is going to be restriped, run checks against the target
9769 * profile instead of the current one.
ba1bf481
JB
9770 */
9771 ret = -1;
ea8c2819 9772
cdcb725c 9773 /*
9774 * index:
9775 * 0: raid10
9776 * 1: raid1
9777 * 2: dup
9778 * 3: raid0
9779 * 4: single
9780 */
4a5e98f5
ID
9781 target = get_restripe_target(root->fs_info, block_group->flags);
9782 if (target) {
31e50229 9783 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9784 } else {
9785 /*
9786 * this is just a balance, so if we were marked as full
9787 * we know there is no space for a new chunk
9788 */
0305bc27
QW
9789 if (full) {
9790 if (debug)
9791 btrfs_warn(root->fs_info,
9792 "no space to alloc new chunk for block group %llu",
9793 block_group->key.objectid);
4a5e98f5 9794 goto out;
0305bc27 9795 }
4a5e98f5
ID
9796
9797 index = get_block_group_index(block_group);
9798 }
9799
e6ec716f 9800 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9801 dev_min = 4;
6719db6a
JB
9802 /* Divide by 2 */
9803 min_free >>= 1;
e6ec716f 9804 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9805 dev_min = 2;
e6ec716f 9806 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9807 /* Multiply by 2 */
9808 min_free <<= 1;
e6ec716f 9809 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9810 dev_min = fs_devices->rw_devices;
47c5713f 9811 min_free = div64_u64(min_free, dev_min);
cdcb725c 9812 }
9813
6df9a95e
JB
9814 /* We need to do this so that we can look at pending chunks */
9815 trans = btrfs_join_transaction(root);
9816 if (IS_ERR(trans)) {
9817 ret = PTR_ERR(trans);
9818 goto out;
9819 }
9820
ba1bf481
JB
9821 mutex_lock(&root->fs_info->chunk_mutex);
9822 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9823 u64 dev_offset;
56bec294 9824
ba1bf481
JB
9825 /*
9826 * check to make sure we can actually find a chunk with enough
9827 * space to fit our block group in.
9828 */
63a212ab
SB
9829 if (device->total_bytes > device->bytes_used + min_free &&
9830 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9831 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9832 &dev_offset, NULL);
ba1bf481 9833 if (!ret)
cdcb725c 9834 dev_nr++;
9835
9836 if (dev_nr >= dev_min)
73e48b27 9837 break;
cdcb725c 9838
ba1bf481 9839 ret = -1;
725c8463 9840 }
edbd8d4e 9841 }
0305bc27
QW
9842 if (debug && ret == -1)
9843 btrfs_warn(root->fs_info,
9844 "no space to allocate a new chunk for block group %llu",
9845 block_group->key.objectid);
ba1bf481 9846 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9847 btrfs_end_transaction(trans, root);
edbd8d4e 9848out:
ba1bf481 9849 btrfs_put_block_group(block_group);
edbd8d4e
CM
9850 return ret;
9851}
9852
b2950863
CH
9853static int find_first_block_group(struct btrfs_root *root,
9854 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9855{
925baedd 9856 int ret = 0;
0b86a832
CM
9857 struct btrfs_key found_key;
9858 struct extent_buffer *leaf;
9859 int slot;
edbd8d4e 9860
0b86a832
CM
9861 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9862 if (ret < 0)
925baedd
CM
9863 goto out;
9864
d397712b 9865 while (1) {
0b86a832 9866 slot = path->slots[0];
edbd8d4e 9867 leaf = path->nodes[0];
0b86a832
CM
9868 if (slot >= btrfs_header_nritems(leaf)) {
9869 ret = btrfs_next_leaf(root, path);
9870 if (ret == 0)
9871 continue;
9872 if (ret < 0)
925baedd 9873 goto out;
0b86a832 9874 break;
edbd8d4e 9875 }
0b86a832 9876 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9877
0b86a832 9878 if (found_key.objectid >= key->objectid &&
925baedd 9879 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9880 struct extent_map_tree *em_tree;
9881 struct extent_map *em;
9882
9883 em_tree = &root->fs_info->mapping_tree.map_tree;
9884 read_lock(&em_tree->lock);
9885 em = lookup_extent_mapping(em_tree, found_key.objectid,
9886 found_key.offset);
9887 read_unlock(&em_tree->lock);
9888 if (!em) {
9889 btrfs_err(root->fs_info,
9890 "logical %llu len %llu found bg but no related chunk",
9891 found_key.objectid, found_key.offset);
9892 ret = -ENOENT;
9893 } else {
9894 ret = 0;
9895 }
187ee58c 9896 free_extent_map(em);
925baedd
CM
9897 goto out;
9898 }
0b86a832 9899 path->slots[0]++;
edbd8d4e 9900 }
925baedd 9901out:
0b86a832 9902 return ret;
edbd8d4e
CM
9903}
9904
0af3d00b
JB
9905void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9906{
9907 struct btrfs_block_group_cache *block_group;
9908 u64 last = 0;
9909
9910 while (1) {
9911 struct inode *inode;
9912
9913 block_group = btrfs_lookup_first_block_group(info, last);
9914 while (block_group) {
9915 spin_lock(&block_group->lock);
9916 if (block_group->iref)
9917 break;
9918 spin_unlock(&block_group->lock);
9919 block_group = next_block_group(info->tree_root,
9920 block_group);
9921 }
9922 if (!block_group) {
9923 if (last == 0)
9924 break;
9925 last = 0;
9926 continue;
9927 }
9928
9929 inode = block_group->inode;
9930 block_group->iref = 0;
9931 block_group->inode = NULL;
9932 spin_unlock(&block_group->lock);
f3bca802 9933 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9934 iput(inode);
9935 last = block_group->key.objectid + block_group->key.offset;
9936 btrfs_put_block_group(block_group);
9937 }
9938}
9939
1a40e23b
ZY
9940int btrfs_free_block_groups(struct btrfs_fs_info *info)
9941{
9942 struct btrfs_block_group_cache *block_group;
4184ea7f 9943 struct btrfs_space_info *space_info;
11833d66 9944 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9945 struct rb_node *n;
9946
9e351cc8 9947 down_write(&info->commit_root_sem);
11833d66
YZ
9948 while (!list_empty(&info->caching_block_groups)) {
9949 caching_ctl = list_entry(info->caching_block_groups.next,
9950 struct btrfs_caching_control, list);
9951 list_del(&caching_ctl->list);
9952 put_caching_control(caching_ctl);
9953 }
9e351cc8 9954 up_write(&info->commit_root_sem);
11833d66 9955
47ab2a6c
JB
9956 spin_lock(&info->unused_bgs_lock);
9957 while (!list_empty(&info->unused_bgs)) {
9958 block_group = list_first_entry(&info->unused_bgs,
9959 struct btrfs_block_group_cache,
9960 bg_list);
9961 list_del_init(&block_group->bg_list);
9962 btrfs_put_block_group(block_group);
9963 }
9964 spin_unlock(&info->unused_bgs_lock);
9965
1a40e23b
ZY
9966 spin_lock(&info->block_group_cache_lock);
9967 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9968 block_group = rb_entry(n, struct btrfs_block_group_cache,
9969 cache_node);
1a40e23b
ZY
9970 rb_erase(&block_group->cache_node,
9971 &info->block_group_cache_tree);
01eacb27 9972 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9973 spin_unlock(&info->block_group_cache_lock);
9974
80eb234a 9975 down_write(&block_group->space_info->groups_sem);
1a40e23b 9976 list_del(&block_group->list);
80eb234a 9977 up_write(&block_group->space_info->groups_sem);
d2fb3437 9978
817d52f8 9979 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9980 wait_block_group_cache_done(block_group);
817d52f8 9981
3c14874a
JB
9982 /*
9983 * We haven't cached this block group, which means we could
9984 * possibly have excluded extents on this block group.
9985 */
36cce922
JB
9986 if (block_group->cached == BTRFS_CACHE_NO ||
9987 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9988 free_excluded_extents(info->extent_root, block_group);
9989
817d52f8 9990 btrfs_remove_free_space_cache(block_group);
f3bca802
LB
9991 ASSERT(list_empty(&block_group->dirty_list));
9992 ASSERT(list_empty(&block_group->io_list));
9993 ASSERT(list_empty(&block_group->bg_list));
9994 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9995 btrfs_put_block_group(block_group);
d899e052
YZ
9996
9997 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9998 }
9999 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
10000
10001 /* now that all the block groups are freed, go through and
10002 * free all the space_info structs. This is only called during
10003 * the final stages of unmount, and so we know nobody is
10004 * using them. We call synchronize_rcu() once before we start,
10005 * just to be on the safe side.
10006 */
10007 synchronize_rcu();
10008
8929ecfa
YZ
10009 release_global_block_rsv(info);
10010
67871254 10011 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10012 int i;
10013
4184ea7f
CM
10014 space_info = list_entry(info->space_info.next,
10015 struct btrfs_space_info,
10016 list);
d555b6c3
JB
10017
10018 /*
10019 * Do not hide this behind enospc_debug, this is actually
10020 * important and indicates a real bug if this happens.
10021 */
10022 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10023 space_info->bytes_reserved > 0 ||
d555b6c3
JB
10024 space_info->bytes_may_use > 0))
10025 dump_space_info(space_info, 0, 0);
4184ea7f 10026 list_del(&space_info->list);
6ab0a202
JM
10027 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10028 struct kobject *kobj;
c1895442
JM
10029 kobj = space_info->block_group_kobjs[i];
10030 space_info->block_group_kobjs[i] = NULL;
10031 if (kobj) {
6ab0a202
JM
10032 kobject_del(kobj);
10033 kobject_put(kobj);
10034 }
10035 }
10036 kobject_del(&space_info->kobj);
10037 kobject_put(&space_info->kobj);
4184ea7f 10038 }
1a40e23b
ZY
10039 return 0;
10040}
10041
b742bb82
YZ
10042static void __link_block_group(struct btrfs_space_info *space_info,
10043 struct btrfs_block_group_cache *cache)
10044{
10045 int index = get_block_group_index(cache);
ed55b6ac 10046 bool first = false;
b742bb82
YZ
10047
10048 down_write(&space_info->groups_sem);
ed55b6ac
JM
10049 if (list_empty(&space_info->block_groups[index]))
10050 first = true;
10051 list_add_tail(&cache->list, &space_info->block_groups[index]);
10052 up_write(&space_info->groups_sem);
10053
10054 if (first) {
c1895442 10055 struct raid_kobject *rkobj;
6ab0a202
JM
10056 int ret;
10057
c1895442
JM
10058 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10059 if (!rkobj)
10060 goto out_err;
10061 rkobj->raid_type = index;
10062 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10063 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10064 "%s", get_raid_name(index));
6ab0a202 10065 if (ret) {
c1895442
JM
10066 kobject_put(&rkobj->kobj);
10067 goto out_err;
6ab0a202 10068 }
c1895442 10069 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10070 }
c1895442
JM
10071
10072 return;
10073out_err:
10074 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
10075}
10076
920e4a58
MX
10077static struct btrfs_block_group_cache *
10078btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10079{
10080 struct btrfs_block_group_cache *cache;
10081
10082 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10083 if (!cache)
10084 return NULL;
10085
10086 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10087 GFP_NOFS);
10088 if (!cache->free_space_ctl) {
10089 kfree(cache);
10090 return NULL;
10091 }
10092
10093 cache->key.objectid = start;
10094 cache->key.offset = size;
10095 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10096
10097 cache->sectorsize = root->sectorsize;
10098 cache->fs_info = root->fs_info;
10099 cache->full_stripe_len = btrfs_full_stripe_len(root,
10100 &root->fs_info->mapping_tree,
10101 start);
1e144fb8
OS
10102 set_free_space_tree_thresholds(cache);
10103
920e4a58
MX
10104 atomic_set(&cache->count, 1);
10105 spin_lock_init(&cache->lock);
e570fd27 10106 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10107 INIT_LIST_HEAD(&cache->list);
10108 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10109 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10110 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10111 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10112 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10113 btrfs_init_free_space_ctl(cache);
04216820 10114 atomic_set(&cache->trimming, 0);
a5ed9182 10115 mutex_init(&cache->free_space_lock);
920e4a58
MX
10116
10117 return cache;
10118}
10119
9078a3e1
CM
10120int btrfs_read_block_groups(struct btrfs_root *root)
10121{
10122 struct btrfs_path *path;
10123 int ret;
9078a3e1 10124 struct btrfs_block_group_cache *cache;
be744175 10125 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 10126 struct btrfs_space_info *space_info;
9078a3e1
CM
10127 struct btrfs_key key;
10128 struct btrfs_key found_key;
5f39d397 10129 struct extent_buffer *leaf;
0af3d00b
JB
10130 int need_clear = 0;
10131 u64 cache_gen;
a4a56312
LB
10132 u64 feature;
10133 int mixed;
10134
10135 feature = btrfs_super_incompat_flags(info->super_copy);
10136 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10137
be744175 10138 root = info->extent_root;
9078a3e1 10139 key.objectid = 0;
0b86a832 10140 key.offset = 0;
962a298f 10141 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10142 path = btrfs_alloc_path();
10143 if (!path)
10144 return -ENOMEM;
e4058b54 10145 path->reada = READA_FORWARD;
9078a3e1 10146
6c41761f 10147 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
3cdde224 10148 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6c41761f 10149 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 10150 need_clear = 1;
3cdde224 10151 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
88c2ba3b 10152 need_clear = 1;
0af3d00b 10153
d397712b 10154 while (1) {
0b86a832 10155 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
10156 if (ret > 0)
10157 break;
0b86a832
CM
10158 if (ret != 0)
10159 goto error;
920e4a58 10160
5f39d397
CM
10161 leaf = path->nodes[0];
10162 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
10163
10164 cache = btrfs_create_block_group_cache(root, found_key.objectid,
10165 found_key.offset);
9078a3e1 10166 if (!cache) {
0b86a832 10167 ret = -ENOMEM;
f0486c68 10168 goto error;
9078a3e1 10169 }
96303081 10170
cf7c1ef6
LB
10171 if (need_clear) {
10172 /*
10173 * When we mount with old space cache, we need to
10174 * set BTRFS_DC_CLEAR and set dirty flag.
10175 *
10176 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10177 * truncate the old free space cache inode and
10178 * setup a new one.
10179 * b) Setting 'dirty flag' makes sure that we flush
10180 * the new space cache info onto disk.
10181 */
3cdde224 10182 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
ce93ec54 10183 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10184 }
0af3d00b 10185
5f39d397
CM
10186 read_extent_buffer(leaf, &cache->item,
10187 btrfs_item_ptr_offset(leaf, path->slots[0]),
10188 sizeof(cache->item));
920e4a58 10189 cache->flags = btrfs_block_group_flags(&cache->item);
a4a56312
LB
10190 if (!mixed &&
10191 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10192 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10193 btrfs_err(info,
10194"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10195 cache->key.objectid);
10196 ret = -EINVAL;
10197 goto error;
10198 }
0b86a832 10199
9078a3e1 10200 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10201 btrfs_release_path(path);
34d52cb6 10202
3c14874a
JB
10203 /*
10204 * We need to exclude the super stripes now so that the space
10205 * info has super bytes accounted for, otherwise we'll think
10206 * we have more space than we actually do.
10207 */
835d974f
JB
10208 ret = exclude_super_stripes(root, cache);
10209 if (ret) {
10210 /*
10211 * We may have excluded something, so call this just in
10212 * case.
10213 */
10214 free_excluded_extents(root, cache);
920e4a58 10215 btrfs_put_block_group(cache);
835d974f
JB
10216 goto error;
10217 }
3c14874a 10218
817d52f8
JB
10219 /*
10220 * check for two cases, either we are full, and therefore
10221 * don't need to bother with the caching work since we won't
10222 * find any space, or we are empty, and we can just add all
10223 * the space in and be done with it. This saves us _alot_ of
10224 * time, particularly in the full case.
10225 */
10226 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10227 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10228 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 10229 free_excluded_extents(root, cache);
817d52f8 10230 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10231 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
10232 cache->cached = BTRFS_CACHE_FINISHED;
10233 add_new_free_space(cache, root->fs_info,
10234 found_key.objectid,
10235 found_key.objectid +
10236 found_key.offset);
11833d66 10237 free_excluded_extents(root, cache);
817d52f8 10238 }
96b5179d 10239
8c579fe7
JB
10240 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10241 if (ret) {
10242 btrfs_remove_free_space_cache(cache);
10243 btrfs_put_block_group(cache);
10244 goto error;
10245 }
10246
c83f8eff 10247 trace_btrfs_add_block_group(root->fs_info, cache, 0);
6324fbf3
CM
10248 ret = update_space_info(info, cache->flags, found_key.offset,
10249 btrfs_block_group_used(&cache->item),
e40edf2d 10250 cache->bytes_super, &space_info);
8c579fe7
JB
10251 if (ret) {
10252 btrfs_remove_free_space_cache(cache);
10253 spin_lock(&info->block_group_cache_lock);
10254 rb_erase(&cache->cache_node,
10255 &info->block_group_cache_tree);
01eacb27 10256 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10257 spin_unlock(&info->block_group_cache_lock);
10258 btrfs_put_block_group(cache);
10259 goto error;
10260 }
10261
6324fbf3 10262 cache->space_info = space_info;
1b2da372 10263
b742bb82 10264 __link_block_group(space_info, cache);
0f9dd46c 10265
75ccf47d 10266 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10267 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10268 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10269 } else if (btrfs_block_group_used(&cache->item) == 0) {
10270 spin_lock(&info->unused_bgs_lock);
10271 /* Should always be true but just in case. */
10272 if (list_empty(&cache->bg_list)) {
10273 btrfs_get_block_group(cache);
10274 list_add_tail(&cache->bg_list,
10275 &info->unused_bgs);
10276 }
10277 spin_unlock(&info->unused_bgs_lock);
10278 }
9078a3e1 10279 }
b742bb82
YZ
10280
10281 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10282 if (!(get_alloc_profile(root, space_info->flags) &
10283 (BTRFS_BLOCK_GROUP_RAID10 |
10284 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10285 BTRFS_BLOCK_GROUP_RAID5 |
10286 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10287 BTRFS_BLOCK_GROUP_DUP)))
10288 continue;
10289 /*
10290 * avoid allocating from un-mirrored block group if there are
10291 * mirrored block groups.
10292 */
1095cc0d 10293 list_for_each_entry(cache,
10294 &space_info->block_groups[BTRFS_RAID_RAID0],
10295 list)
868f401a 10296 inc_block_group_ro(cache, 1);
1095cc0d 10297 list_for_each_entry(cache,
10298 &space_info->block_groups[BTRFS_RAID_SINGLE],
10299 list)
868f401a 10300 inc_block_group_ro(cache, 1);
9078a3e1 10301 }
f0486c68
YZ
10302
10303 init_global_block_rsv(info);
0b86a832
CM
10304 ret = 0;
10305error:
9078a3e1 10306 btrfs_free_path(path);
0b86a832 10307 return ret;
9078a3e1 10308}
6324fbf3 10309
ea658bad
JB
10310void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10311 struct btrfs_root *root)
10312{
10313 struct btrfs_block_group_cache *block_group, *tmp;
10314 struct btrfs_root *extent_root = root->fs_info->extent_root;
10315 struct btrfs_block_group_item item;
10316 struct btrfs_key key;
10317 int ret = 0;
d9a0540a 10318 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10319
d9a0540a 10320 trans->can_flush_pending_bgs = false;
47ab2a6c 10321 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10322 if (ret)
c92f6be3 10323 goto next;
ea658bad
JB
10324
10325 spin_lock(&block_group->lock);
10326 memcpy(&item, &block_group->item, sizeof(item));
10327 memcpy(&key, &block_group->key, sizeof(key));
10328 spin_unlock(&block_group->lock);
10329
10330 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10331 sizeof(item));
10332 if (ret)
66642832 10333 btrfs_abort_transaction(trans, ret);
6df9a95e
JB
10334 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10335 key.objectid, key.offset);
10336 if (ret)
66642832 10337 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
10338 add_block_group_free_space(trans, root->fs_info, block_group);
10339 /* already aborted the transaction if it failed. */
c92f6be3
FM
10340next:
10341 list_del_init(&block_group->bg_list);
ea658bad 10342 }
d9a0540a 10343 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10344}
10345
6324fbf3
CM
10346int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10347 struct btrfs_root *root, u64 bytes_used,
e17cade2 10348 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10349 u64 size)
10350{
10351 int ret;
6324fbf3
CM
10352 struct btrfs_root *extent_root;
10353 struct btrfs_block_group_cache *cache;
6324fbf3 10354 extent_root = root->fs_info->extent_root;
6324fbf3 10355
995946dd 10356 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10357
920e4a58 10358 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10359 if (!cache)
10360 return -ENOMEM;
34d52cb6 10361
6324fbf3 10362 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10363 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10364 btrfs_set_block_group_flags(&cache->item, type);
10365
920e4a58 10366 cache->flags = type;
11833d66 10367 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10368 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10369 cache->needs_free_space = 1;
835d974f
JB
10370 ret = exclude_super_stripes(root, cache);
10371 if (ret) {
10372 /*
10373 * We may have excluded something, so call this just in
10374 * case.
10375 */
10376 free_excluded_extents(root, cache);
920e4a58 10377 btrfs_put_block_group(cache);
835d974f
JB
10378 return ret;
10379 }
96303081 10380
817d52f8
JB
10381 add_new_free_space(cache, root->fs_info, chunk_offset,
10382 chunk_offset + size);
10383
11833d66
YZ
10384 free_excluded_extents(root, cache);
10385
d0bd4560
JB
10386#ifdef CONFIG_BTRFS_DEBUG
10387 if (btrfs_should_fragment_free_space(root, cache)) {
10388 u64 new_bytes_used = size - bytes_used;
10389
10390 bytes_used += new_bytes_used >> 1;
10391 fragment_free_space(root, cache);
10392 }
10393#endif
2e6e5183
FM
10394 /*
10395 * Call to ensure the corresponding space_info object is created and
10396 * assigned to our block group, but don't update its counters just yet.
10397 * We want our bg to be added to the rbtree with its ->space_info set.
10398 */
e40edf2d 10399 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10400 &cache->space_info);
10401 if (ret) {
10402 btrfs_remove_free_space_cache(cache);
10403 btrfs_put_block_group(cache);
10404 return ret;
10405 }
10406
8c579fe7
JB
10407 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10408 if (ret) {
10409 btrfs_remove_free_space_cache(cache);
10410 btrfs_put_block_group(cache);
10411 return ret;
10412 }
10413
2e6e5183
FM
10414 /*
10415 * Now that our block group has its ->space_info set and is inserted in
10416 * the rbtree, update the space info's counters.
10417 */
c83f8eff 10418 trace_btrfs_add_block_group(root->fs_info, cache, 1);
6324fbf3 10419 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
e40edf2d 10420 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10421 if (ret) {
10422 btrfs_remove_free_space_cache(cache);
10423 spin_lock(&root->fs_info->block_group_cache_lock);
10424 rb_erase(&cache->cache_node,
10425 &root->fs_info->block_group_cache_tree);
01eacb27 10426 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10427 spin_unlock(&root->fs_info->block_group_cache_lock);
10428 btrfs_put_block_group(cache);
10429 return ret;
10430 }
c7c144db 10431 update_global_block_rsv(root->fs_info);
1b2da372 10432
b742bb82 10433 __link_block_group(cache->space_info, cache);
6324fbf3 10434
47ab2a6c 10435 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10436
d18a2c44 10437 set_avail_alloc_bits(extent_root->fs_info, type);
6324fbf3
CM
10438 return 0;
10439}
1a40e23b 10440
10ea00f5
ID
10441static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10442{
899c81ea
ID
10443 u64 extra_flags = chunk_to_extended(flags) &
10444 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10445
de98ced9 10446 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10447 if (flags & BTRFS_BLOCK_GROUP_DATA)
10448 fs_info->avail_data_alloc_bits &= ~extra_flags;
10449 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10450 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10451 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10452 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10453 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10454}
10455
1a40e23b 10456int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10457 struct btrfs_root *root, u64 group_start,
10458 struct extent_map *em)
1a40e23b
ZY
10459{
10460 struct btrfs_path *path;
10461 struct btrfs_block_group_cache *block_group;
44fb5511 10462 struct btrfs_free_cluster *cluster;
0af3d00b 10463 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10464 struct btrfs_key key;
0af3d00b 10465 struct inode *inode;
c1895442 10466 struct kobject *kobj = NULL;
1a40e23b 10467 int ret;
10ea00f5 10468 int index;
89a55897 10469 int factor;
4f69cb98 10470 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10471 bool remove_em;
1a40e23b 10472
1a40e23b
ZY
10473 root = root->fs_info->extent_root;
10474
10475 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10476 BUG_ON(!block_group);
c146afad 10477 BUG_ON(!block_group->ro);
1a40e23b 10478
9f7c43c9 10479 /*
10480 * Free the reserved super bytes from this block group before
10481 * remove it.
10482 */
10483 free_excluded_extents(root, block_group);
10484
1a40e23b 10485 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10486 index = get_block_group_index(block_group);
89a55897
JB
10487 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10488 BTRFS_BLOCK_GROUP_RAID1 |
10489 BTRFS_BLOCK_GROUP_RAID10))
10490 factor = 2;
10491 else
10492 factor = 1;
1a40e23b 10493
44fb5511
CM
10494 /* make sure this block group isn't part of an allocation cluster */
10495 cluster = &root->fs_info->data_alloc_cluster;
10496 spin_lock(&cluster->refill_lock);
10497 btrfs_return_cluster_to_free_space(block_group, cluster);
10498 spin_unlock(&cluster->refill_lock);
10499
10500 /*
10501 * make sure this block group isn't part of a metadata
10502 * allocation cluster
10503 */
10504 cluster = &root->fs_info->meta_alloc_cluster;
10505 spin_lock(&cluster->refill_lock);
10506 btrfs_return_cluster_to_free_space(block_group, cluster);
10507 spin_unlock(&cluster->refill_lock);
10508
1a40e23b 10509 path = btrfs_alloc_path();
d8926bb3
MF
10510 if (!path) {
10511 ret = -ENOMEM;
10512 goto out;
10513 }
1a40e23b 10514
1bbc621e
CM
10515 /*
10516 * get the inode first so any iput calls done for the io_list
10517 * aren't the final iput (no unlinks allowed now)
10518 */
10b2f34d 10519 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10520
10521 mutex_lock(&trans->transaction->cache_write_mutex);
10522 /*
10523 * make sure our free spache cache IO is done before remove the
10524 * free space inode
10525 */
10526 spin_lock(&trans->transaction->dirty_bgs_lock);
10527 if (!list_empty(&block_group->io_list)) {
10528 list_del_init(&block_group->io_list);
10529
10530 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10531
10532 spin_unlock(&trans->transaction->dirty_bgs_lock);
10533 btrfs_wait_cache_io(root, trans, block_group,
10534 &block_group->io_ctl, path,
10535 block_group->key.objectid);
10536 btrfs_put_block_group(block_group);
10537 spin_lock(&trans->transaction->dirty_bgs_lock);
10538 }
10539
10540 if (!list_empty(&block_group->dirty_list)) {
10541 list_del_init(&block_group->dirty_list);
10542 btrfs_put_block_group(block_group);
10543 }
10544 spin_unlock(&trans->transaction->dirty_bgs_lock);
10545 mutex_unlock(&trans->transaction->cache_write_mutex);
10546
0af3d00b 10547 if (!IS_ERR(inode)) {
b532402e 10548 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10549 if (ret) {
10550 btrfs_add_delayed_iput(inode);
10551 goto out;
10552 }
0af3d00b
JB
10553 clear_nlink(inode);
10554 /* One for the block groups ref */
10555 spin_lock(&block_group->lock);
10556 if (block_group->iref) {
10557 block_group->iref = 0;
10558 block_group->inode = NULL;
10559 spin_unlock(&block_group->lock);
10560 iput(inode);
10561 } else {
10562 spin_unlock(&block_group->lock);
10563 }
10564 /* One for our lookup ref */
455757c3 10565 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10566 }
10567
10568 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10569 key.offset = block_group->key.objectid;
10570 key.type = 0;
10571
10572 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10573 if (ret < 0)
10574 goto out;
10575 if (ret > 0)
b3b4aa74 10576 btrfs_release_path(path);
0af3d00b
JB
10577 if (ret == 0) {
10578 ret = btrfs_del_item(trans, tree_root, path);
10579 if (ret)
10580 goto out;
b3b4aa74 10581 btrfs_release_path(path);
0af3d00b
JB
10582 }
10583
3dfdb934 10584 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10585 rb_erase(&block_group->cache_node,
10586 &root->fs_info->block_group_cache_tree);
292cbd51 10587 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10588
10589 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10590 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10591 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10592
80eb234a 10593 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10594 /*
10595 * we must use list_del_init so people can check to see if they
10596 * are still on the list after taking the semaphore
10597 */
10598 list_del_init(&block_group->list);
6ab0a202 10599 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10600 kobj = block_group->space_info->block_group_kobjs[index];
10601 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10602 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10603 }
80eb234a 10604 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10605 if (kobj) {
10606 kobject_del(kobj);
10607 kobject_put(kobj);
10608 }
1a40e23b 10609
4f69cb98
FM
10610 if (block_group->has_caching_ctl)
10611 caching_ctl = get_caching_control(block_group);
817d52f8 10612 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10613 wait_block_group_cache_done(block_group);
4f69cb98
FM
10614 if (block_group->has_caching_ctl) {
10615 down_write(&root->fs_info->commit_root_sem);
10616 if (!caching_ctl) {
10617 struct btrfs_caching_control *ctl;
10618
10619 list_for_each_entry(ctl,
10620 &root->fs_info->caching_block_groups, list)
10621 if (ctl->block_group == block_group) {
10622 caching_ctl = ctl;
10623 atomic_inc(&caching_ctl->count);
10624 break;
10625 }
10626 }
10627 if (caching_ctl)
10628 list_del_init(&caching_ctl->list);
10629 up_write(&root->fs_info->commit_root_sem);
10630 if (caching_ctl) {
10631 /* Once for the caching bgs list and once for us. */
10632 put_caching_control(caching_ctl);
10633 put_caching_control(caching_ctl);
10634 }
10635 }
817d52f8 10636
ce93ec54
JB
10637 spin_lock(&trans->transaction->dirty_bgs_lock);
10638 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10639 WARN_ON(1);
10640 }
10641 if (!list_empty(&block_group->io_list)) {
10642 WARN_ON(1);
ce93ec54
JB
10643 }
10644 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10645 btrfs_remove_free_space_cache(block_group);
10646
c146afad 10647 spin_lock(&block_group->space_info->lock);
75c68e9f 10648 list_del_init(&block_group->ro_list);
18d018ad 10649
3cdde224 10650 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10651 WARN_ON(block_group->space_info->total_bytes
10652 < block_group->key.offset);
10653 WARN_ON(block_group->space_info->bytes_readonly
10654 < block_group->key.offset);
10655 WARN_ON(block_group->space_info->disk_total
10656 < block_group->key.offset * factor);
10657 }
c146afad
YZ
10658 block_group->space_info->total_bytes -= block_group->key.offset;
10659 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10660 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10661
c146afad 10662 spin_unlock(&block_group->space_info->lock);
283bb197 10663
0af3d00b
JB
10664 memcpy(&key, &block_group->key, sizeof(key));
10665
04216820 10666 lock_chunks(root);
495e64f4
FM
10667 if (!list_empty(&em->list)) {
10668 /* We're in the transaction->pending_chunks list. */
10669 free_extent_map(em);
10670 }
04216820
FM
10671 spin_lock(&block_group->lock);
10672 block_group->removed = 1;
10673 /*
10674 * At this point trimming can't start on this block group, because we
10675 * removed the block group from the tree fs_info->block_group_cache_tree
10676 * so no one can't find it anymore and even if someone already got this
10677 * block group before we removed it from the rbtree, they have already
10678 * incremented block_group->trimming - if they didn't, they won't find
10679 * any free space entries because we already removed them all when we
10680 * called btrfs_remove_free_space_cache().
10681 *
10682 * And we must not remove the extent map from the fs_info->mapping_tree
10683 * to prevent the same logical address range and physical device space
10684 * ranges from being reused for a new block group. This is because our
10685 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10686 * completely transactionless, so while it is trimming a range the
10687 * currently running transaction might finish and a new one start,
10688 * allowing for new block groups to be created that can reuse the same
10689 * physical device locations unless we take this special care.
e33e17ee
JM
10690 *
10691 * There may also be an implicit trim operation if the file system
10692 * is mounted with -odiscard. The same protections must remain
10693 * in place until the extents have been discarded completely when
10694 * the transaction commit has completed.
04216820
FM
10695 */
10696 remove_em = (atomic_read(&block_group->trimming) == 0);
10697 /*
10698 * Make sure a trimmer task always sees the em in the pinned_chunks list
10699 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10700 * before checking block_group->removed).
10701 */
10702 if (!remove_em) {
10703 /*
10704 * Our em might be in trans->transaction->pending_chunks which
10705 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10706 * and so is the fs_info->pinned_chunks list.
10707 *
10708 * So at this point we must be holding the chunk_mutex to avoid
10709 * any races with chunk allocation (more specifically at
10710 * volumes.c:contains_pending_extent()), to ensure it always
10711 * sees the em, either in the pending_chunks list or in the
10712 * pinned_chunks list.
10713 */
10714 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10715 }
10716 spin_unlock(&block_group->lock);
04216820
FM
10717
10718 if (remove_em) {
10719 struct extent_map_tree *em_tree;
10720
10721 em_tree = &root->fs_info->mapping_tree.map_tree;
10722 write_lock(&em_tree->lock);
8dbcd10f
FM
10723 /*
10724 * The em might be in the pending_chunks list, so make sure the
10725 * chunk mutex is locked, since remove_extent_mapping() will
10726 * delete us from that list.
10727 */
04216820
FM
10728 remove_extent_mapping(em_tree, em);
10729 write_unlock(&em_tree->lock);
10730 /* once for the tree */
10731 free_extent_map(em);
10732 }
10733
8dbcd10f
FM
10734 unlock_chunks(root);
10735
1e144fb8
OS
10736 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10737 if (ret)
10738 goto out;
10739
fa9c0d79
CM
10740 btrfs_put_block_group(block_group);
10741 btrfs_put_block_group(block_group);
1a40e23b
ZY
10742
10743 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10744 if (ret > 0)
10745 ret = -EIO;
10746 if (ret < 0)
10747 goto out;
10748
10749 ret = btrfs_del_item(trans, root, path);
10750out:
10751 btrfs_free_path(path);
10752 return ret;
10753}
acce952b 10754
8eab77ff 10755struct btrfs_trans_handle *
7fd01182
FM
10756btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10757 const u64 chunk_offset)
8eab77ff 10758{
7fd01182
FM
10759 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10760 struct extent_map *em;
10761 struct map_lookup *map;
10762 unsigned int num_items;
10763
10764 read_lock(&em_tree->lock);
10765 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10766 read_unlock(&em_tree->lock);
10767 ASSERT(em && em->start == chunk_offset);
10768
8eab77ff 10769 /*
7fd01182
FM
10770 * We need to reserve 3 + N units from the metadata space info in order
10771 * to remove a block group (done at btrfs_remove_chunk() and at
10772 * btrfs_remove_block_group()), which are used for:
10773 *
8eab77ff
FM
10774 * 1 unit for adding the free space inode's orphan (located in the tree
10775 * of tree roots).
7fd01182
FM
10776 * 1 unit for deleting the block group item (located in the extent
10777 * tree).
10778 * 1 unit for deleting the free space item (located in tree of tree
10779 * roots).
10780 * N units for deleting N device extent items corresponding to each
10781 * stripe (located in the device tree).
10782 *
10783 * In order to remove a block group we also need to reserve units in the
10784 * system space info in order to update the chunk tree (update one or
10785 * more device items and remove one chunk item), but this is done at
10786 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10787 */
95617d69 10788 map = em->map_lookup;
7fd01182
FM
10789 num_items = 3 + map->num_stripes;
10790 free_extent_map(em);
10791
8eab77ff 10792 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10793 num_items, 1);
8eab77ff
FM
10794}
10795
47ab2a6c
JB
10796/*
10797 * Process the unused_bgs list and remove any that don't have any allocated
10798 * space inside of them.
10799 */
10800void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10801{
10802 struct btrfs_block_group_cache *block_group;
10803 struct btrfs_space_info *space_info;
10804 struct btrfs_root *root = fs_info->extent_root;
10805 struct btrfs_trans_handle *trans;
10806 int ret = 0;
10807
43cad371 10808 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10809 return;
10810
10811 spin_lock(&fs_info->unused_bgs_lock);
10812 while (!list_empty(&fs_info->unused_bgs)) {
10813 u64 start, end;
e33e17ee 10814 int trimming;
47ab2a6c
JB
10815
10816 block_group = list_first_entry(&fs_info->unused_bgs,
10817 struct btrfs_block_group_cache,
10818 bg_list);
47ab2a6c 10819 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10820
10821 space_info = block_group->space_info;
10822
47ab2a6c
JB
10823 if (ret || btrfs_mixed_space_info(space_info)) {
10824 btrfs_put_block_group(block_group);
10825 continue;
10826 }
10827 spin_unlock(&fs_info->unused_bgs_lock);
10828
d5f2e33b 10829 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10830
47ab2a6c
JB
10831 /* Don't want to race with allocators so take the groups_sem */
10832 down_write(&space_info->groups_sem);
10833 spin_lock(&block_group->lock);
10834 if (block_group->reserved ||
10835 btrfs_block_group_used(&block_group->item) ||
ff682817 10836 (block_group->ro && !block_group->removed) ||
aefbe9a6 10837 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10838 /*
10839 * We want to bail if we made new allocations or have
10840 * outstanding allocations in this block group. We do
10841 * the ro check in case balance is currently acting on
10842 * this block group.
10843 */
10844 spin_unlock(&block_group->lock);
10845 up_write(&space_info->groups_sem);
10846 goto next;
10847 }
10848 spin_unlock(&block_group->lock);
10849
10850 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10851 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10852 up_write(&space_info->groups_sem);
10853 if (ret < 0) {
10854 ret = 0;
10855 goto next;
10856 }
10857
10858 /*
10859 * Want to do this before we do anything else so we can recover
10860 * properly if we fail to join the transaction.
10861 */
7fd01182
FM
10862 trans = btrfs_start_trans_remove_block_group(fs_info,
10863 block_group->key.objectid);
47ab2a6c 10864 if (IS_ERR(trans)) {
868f401a 10865 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10866 ret = PTR_ERR(trans);
10867 goto next;
10868 }
10869
10870 /*
10871 * We could have pending pinned extents for this block group,
10872 * just delete them, we don't care about them anymore.
10873 */
10874 start = block_group->key.objectid;
10875 end = start + block_group->key.offset - 1;
d4b450cd
FM
10876 /*
10877 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10878 * btrfs_finish_extent_commit(). If we are at transaction N,
10879 * another task might be running finish_extent_commit() for the
10880 * previous transaction N - 1, and have seen a range belonging
10881 * to the block group in freed_extents[] before we were able to
10882 * clear the whole block group range from freed_extents[]. This
10883 * means that task can lookup for the block group after we
10884 * unpinned it from freed_extents[] and removed it, leading to
10885 * a BUG_ON() at btrfs_unpin_extent_range().
10886 */
10887 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10888 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10889 EXTENT_DIRTY);
758eb51e 10890 if (ret) {
d4b450cd 10891 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10892 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10893 goto end_trans;
10894 }
10895 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10896 EXTENT_DIRTY);
758eb51e 10897 if (ret) {
d4b450cd 10898 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10899 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10900 goto end_trans;
10901 }
d4b450cd 10902 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10903
10904 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10905 spin_lock(&space_info->lock);
10906 spin_lock(&block_group->lock);
10907
10908 space_info->bytes_pinned -= block_group->pinned;
10909 space_info->bytes_readonly += block_group->pinned;
10910 percpu_counter_add(&space_info->total_bytes_pinned,
10911 -block_group->pinned);
47ab2a6c
JB
10912 block_group->pinned = 0;
10913
c30666d4
ZL
10914 spin_unlock(&block_group->lock);
10915 spin_unlock(&space_info->lock);
10916
e33e17ee 10917 /* DISCARD can flip during remount */
3cdde224 10918 trimming = btrfs_test_opt(root->fs_info, DISCARD);
e33e17ee
JM
10919
10920 /* Implicit trim during transaction commit. */
10921 if (trimming)
10922 btrfs_get_block_group_trimming(block_group);
10923
47ab2a6c
JB
10924 /*
10925 * Btrfs_remove_chunk will abort the transaction if things go
10926 * horribly wrong.
10927 */
10928 ret = btrfs_remove_chunk(trans, root,
10929 block_group->key.objectid);
e33e17ee
JM
10930
10931 if (ret) {
10932 if (trimming)
10933 btrfs_put_block_group_trimming(block_group);
10934 goto end_trans;
10935 }
10936
10937 /*
10938 * If we're not mounted with -odiscard, we can just forget
10939 * about this block group. Otherwise we'll need to wait
10940 * until transaction commit to do the actual discard.
10941 */
10942 if (trimming) {
348a0013
FM
10943 spin_lock(&fs_info->unused_bgs_lock);
10944 /*
10945 * A concurrent scrub might have added us to the list
10946 * fs_info->unused_bgs, so use a list_move operation
10947 * to add the block group to the deleted_bgs list.
10948 */
e33e17ee
JM
10949 list_move(&block_group->bg_list,
10950 &trans->transaction->deleted_bgs);
348a0013 10951 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10952 btrfs_get_block_group(block_group);
10953 }
758eb51e 10954end_trans:
47ab2a6c
JB
10955 btrfs_end_transaction(trans, root);
10956next:
d5f2e33b 10957 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10958 btrfs_put_block_group(block_group);
10959 spin_lock(&fs_info->unused_bgs_lock);
10960 }
10961 spin_unlock(&fs_info->unused_bgs_lock);
10962}
10963
c59021f8 10964int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10965{
10966 struct btrfs_space_info *space_info;
1aba86d6 10967 struct btrfs_super_block *disk_super;
10968 u64 features;
10969 u64 flags;
10970 int mixed = 0;
c59021f8 10971 int ret;
10972
6c41761f 10973 disk_super = fs_info->super_copy;
1aba86d6 10974 if (!btrfs_super_root(disk_super))
0dc924c5 10975 return -EINVAL;
c59021f8 10976
1aba86d6 10977 features = btrfs_super_incompat_flags(disk_super);
10978 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10979 mixed = 1;
c59021f8 10980
1aba86d6 10981 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10982 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10983 if (ret)
1aba86d6 10984 goto out;
c59021f8 10985
1aba86d6 10986 if (mixed) {
10987 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10988 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10989 } else {
10990 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10991 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10992 if (ret)
10993 goto out;
10994
10995 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10996 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10997 }
10998out:
c59021f8 10999 return ret;
11000}
11001
acce952b 11002int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
11003{
678886bd 11004 return unpin_extent_range(root, start, end, false);
acce952b 11005}
11006
499f377f
JM
11007/*
11008 * It used to be that old block groups would be left around forever.
11009 * Iterating over them would be enough to trim unused space. Since we
11010 * now automatically remove them, we also need to iterate over unallocated
11011 * space.
11012 *
11013 * We don't want a transaction for this since the discard may take a
11014 * substantial amount of time. We don't require that a transaction be
11015 * running, but we do need to take a running transaction into account
11016 * to ensure that we're not discarding chunks that were released in
11017 * the current transaction.
11018 *
11019 * Holding the chunks lock will prevent other threads from allocating
11020 * or releasing chunks, but it won't prevent a running transaction
11021 * from committing and releasing the memory that the pending chunks
11022 * list head uses. For that, we need to take a reference to the
11023 * transaction.
11024 */
11025static int btrfs_trim_free_extents(struct btrfs_device *device,
11026 u64 minlen, u64 *trimmed)
11027{
11028 u64 start = 0, len = 0;
11029 int ret;
11030
11031 *trimmed = 0;
11032
11033 /* Not writeable = nothing to do. */
11034 if (!device->writeable)
11035 return 0;
11036
11037 /* No free space = nothing to do. */
11038 if (device->total_bytes <= device->bytes_used)
11039 return 0;
11040
11041 ret = 0;
11042
11043 while (1) {
11044 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11045 struct btrfs_transaction *trans;
11046 u64 bytes;
11047
11048 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11049 if (ret)
11050 return ret;
11051
11052 down_read(&fs_info->commit_root_sem);
11053
11054 spin_lock(&fs_info->trans_lock);
11055 trans = fs_info->running_transaction;
11056 if (trans)
11057 atomic_inc(&trans->use_count);
11058 spin_unlock(&fs_info->trans_lock);
11059
11060 ret = find_free_dev_extent_start(trans, device, minlen, start,
11061 &start, &len);
11062 if (trans)
11063 btrfs_put_transaction(trans);
11064
11065 if (ret) {
11066 up_read(&fs_info->commit_root_sem);
11067 mutex_unlock(&fs_info->chunk_mutex);
11068 if (ret == -ENOSPC)
11069 ret = 0;
11070 break;
11071 }
11072
11073 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11074 up_read(&fs_info->commit_root_sem);
11075 mutex_unlock(&fs_info->chunk_mutex);
11076
11077 if (ret)
11078 break;
11079
11080 start += len;
11081 *trimmed += bytes;
11082
11083 if (fatal_signal_pending(current)) {
11084 ret = -ERESTARTSYS;
11085 break;
11086 }
11087
11088 cond_resched();
11089 }
11090
11091 return ret;
11092}
11093
f7039b1d
LD
11094int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11095{
11096 struct btrfs_fs_info *fs_info = root->fs_info;
11097 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11098 struct btrfs_device *device;
11099 struct list_head *devices;
f7039b1d
LD
11100 u64 group_trimmed;
11101 u64 start;
11102 u64 end;
11103 u64 trimmed = 0;
2cac13e4 11104 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
11105 int ret = 0;
11106
2cac13e4
LB
11107 /*
11108 * try to trim all FS space, our block group may start from non-zero.
11109 */
11110 if (range->len == total_bytes)
11111 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11112 else
11113 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
11114
11115 while (cache) {
11116 if (cache->key.objectid >= (range->start + range->len)) {
11117 btrfs_put_block_group(cache);
11118 break;
11119 }
11120
11121 start = max(range->start, cache->key.objectid);
11122 end = min(range->start + range->len,
11123 cache->key.objectid + cache->key.offset);
11124
11125 if (end - start >= range->minlen) {
11126 if (!block_group_cache_done(cache)) {
f6373bf3 11127 ret = cache_block_group(cache, 0);
1be41b78
JB
11128 if (ret) {
11129 btrfs_put_block_group(cache);
11130 break;
11131 }
11132 ret = wait_block_group_cache_done(cache);
11133 if (ret) {
11134 btrfs_put_block_group(cache);
11135 break;
11136 }
f7039b1d
LD
11137 }
11138 ret = btrfs_trim_block_group(cache,
11139 &group_trimmed,
11140 start,
11141 end,
11142 range->minlen);
11143
11144 trimmed += group_trimmed;
11145 if (ret) {
11146 btrfs_put_block_group(cache);
11147 break;
11148 }
11149 }
11150
11151 cache = next_block_group(fs_info->tree_root, cache);
11152 }
11153
499f377f
JM
11154 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11155 devices = &root->fs_info->fs_devices->alloc_list;
11156 list_for_each_entry(device, devices, dev_alloc_list) {
11157 ret = btrfs_trim_free_extents(device, range->minlen,
11158 &group_trimmed);
11159 if (ret)
11160 break;
11161
11162 trimmed += group_trimmed;
11163 }
11164 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11165
f7039b1d
LD
11166 range->len = trimmed;
11167 return ret;
11168}
8257b2dc
MX
11169
11170/*
9ea24bbe
FM
11171 * btrfs_{start,end}_write_no_snapshoting() are similar to
11172 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11173 * data into the page cache through nocow before the subvolume is snapshoted,
11174 * but flush the data into disk after the snapshot creation, or to prevent
11175 * operations while snapshoting is ongoing and that cause the snapshot to be
11176 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11177 */
9ea24bbe 11178void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
11179{
11180 percpu_counter_dec(&root->subv_writers->counter);
11181 /*
a83342aa 11182 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11183 */
11184 smp_mb();
11185 if (waitqueue_active(&root->subv_writers->wait))
11186 wake_up(&root->subv_writers->wait);
11187}
11188
9ea24bbe 11189int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 11190{
ee39b432 11191 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
11192 return 0;
11193
11194 percpu_counter_inc(&root->subv_writers->counter);
11195 /*
11196 * Make sure counter is updated before we check for snapshot creation.
11197 */
11198 smp_mb();
ee39b432 11199 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11200 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11201 return 0;
11202 }
11203 return 1;
11204}
0bc19f90
ZL
11205
11206static int wait_snapshoting_atomic_t(atomic_t *a)
11207{
11208 schedule();
11209 return 0;
11210}
11211
11212void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11213{
11214 while (true) {
11215 int ret;
11216
11217 ret = btrfs_start_write_no_snapshoting(root);
11218 if (ret)
11219 break;
11220 wait_on_atomic_t(&root->will_be_snapshoted,
11221 wait_snapshoting_atomic_t,
11222 TASK_UNINTERRUPTIBLE);
11223 }
11224}
This page took 1.857843 seconds and 5 git commands to generate.