btrfs: btrfs_issue_discard ensure offset/length are aligned to sector boundaries
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
5d4f98a2
YZ
1319static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
15916de8 1322{
5d4f98a2
YZ
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1354#endif
5d4f98a2
YZ
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359}
15916de8 1360
5d4f98a2
YZ
1361static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1f3c79a2 1366{
5d4f98a2 1367 struct btrfs_key key;
1f3c79a2 1368 int ret;
1f3c79a2 1369
5d4f98a2
YZ
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1f3c79a2
LH
1377 }
1378
5d4f98a2
YZ
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
b3b4aa74 1384 btrfs_release_path(path);
5d4f98a2
YZ
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1f3c79a2 1390#endif
5d4f98a2 1391 return ret;
1f3c79a2
LH
1392}
1393
5d4f98a2
YZ
1394static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
31840ae1 1399{
5d4f98a2 1400 struct btrfs_key key;
31840ae1 1401 int ret;
31840ae1 1402
5d4f98a2
YZ
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1413 btrfs_release_path(path);
31840ae1
ZY
1414 return ret;
1415}
1416
5d4f98a2 1417static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1418{
5d4f98a2
YZ
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
31840ae1 1432}
56bec294 1433
2c47e605
YZ
1434static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
56bec294 1436
02217ed2 1437{
2c47e605 1438 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1439 if (!path->nodes[level])
1440 break;
5d4f98a2
YZ
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453}
037e6390 1454
5d4f98a2
YZ
1455/*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468static noinline_for_stack
1469int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476{
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
3173a18f
JB
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
26b8003f 1492
db94535d 1493 key.objectid = bytenr;
31840ae1 1494 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1495 key.offset = num_bytes;
31840ae1 1496
5d4f98a2
YZ
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1500 path->keep_locks = 1;
5d4f98a2
YZ
1501 } else
1502 extra_size = -1;
3173a18f
JB
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513again:
5d4f98a2 1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1515 if (ret < 0) {
5d4f98a2
YZ
1516 err = ret;
1517 goto out;
1518 }
3173a18f
JB
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
9ce49a0b 1536 key.objectid = bytenr;
3173a18f
JB
1537 key.type = BTRFS_EXTENT_ITEM_KEY;
1538 key.offset = num_bytes;
1539 btrfs_release_path(path);
1540 goto again;
1541 }
1542 }
1543
79787eaa
JM
1544 if (ret && !insert) {
1545 err = -ENOENT;
1546 goto out;
fae7f21c 1547 } else if (WARN_ON(ret)) {
492104c8 1548 err = -EIO;
492104c8 1549 goto out;
79787eaa 1550 }
5d4f98a2
YZ
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569#endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
5d4f98a2
YZ
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
3173a18f 1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
5d4f98a2
YZ
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
2c47e605
YZ
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
85d4198e 1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650out:
85d4198e 1651 if (insert) {
5d4f98a2
YZ
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656}
1657
1658/*
1659 * helper to add new inline back ref
1660 */
1661static noinline_for_stack
fd279fae 1662void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref *iref,
1665 u64 parent, u64 root_objectid,
1666 u64 owner, u64 offset, int refs_to_add,
1667 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1668{
1669 struct extent_buffer *leaf;
1670 struct btrfs_extent_item *ei;
1671 unsigned long ptr;
1672 unsigned long end;
1673 unsigned long item_offset;
1674 u64 refs;
1675 int size;
1676 int type;
5d4f98a2
YZ
1677
1678 leaf = path->nodes[0];
1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 item_offset = (unsigned long)iref - (unsigned long)ei;
1681
1682 type = extent_ref_type(parent, owner);
1683 size = btrfs_extent_inline_ref_size(type);
1684
4b90c680 1685 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1686
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 refs = btrfs_extent_refs(leaf, ei);
1689 refs += refs_to_add;
1690 btrfs_set_extent_refs(leaf, ei, refs);
1691 if (extent_op)
1692 __run_delayed_extent_op(extent_op, leaf, ei);
1693
1694 ptr = (unsigned long)ei + item_offset;
1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 if (ptr < end - size)
1697 memmove_extent_buffer(leaf, ptr + size, ptr,
1698 end - size - ptr);
1699
1700 iref = (struct btrfs_extent_inline_ref *)ptr;
1701 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 struct btrfs_extent_data_ref *dref;
1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 struct btrfs_shared_data_ref *sref;
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 }
1719 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1720}
1721
1722static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 struct btrfs_root *root,
1724 struct btrfs_path *path,
1725 struct btrfs_extent_inline_ref **ref_ret,
1726 u64 bytenr, u64 num_bytes, u64 parent,
1727 u64 root_objectid, u64 owner, u64 offset)
1728{
1729 int ret;
1730
1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 bytenr, num_bytes, parent,
1733 root_objectid, owner, offset, 0);
1734 if (ret != -ENOENT)
54aa1f4d 1735 return ret;
5d4f98a2 1736
b3b4aa74 1737 btrfs_release_path(path);
5d4f98a2
YZ
1738 *ref_ret = NULL;
1739
1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 root_objectid);
1743 } else {
1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 root_objectid, owner, offset);
b9473439 1746 }
5d4f98a2
YZ
1747 return ret;
1748}
31840ae1 1749
5d4f98a2
YZ
1750/*
1751 * helper to update/remove inline back ref
1752 */
1753static noinline_for_stack
afe5fea7 1754void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1755 struct btrfs_path *path,
1756 struct btrfs_extent_inline_ref *iref,
1757 int refs_to_mod,
fcebe456
JB
1758 struct btrfs_delayed_extent_op *extent_op,
1759 int *last_ref)
5d4f98a2
YZ
1760{
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *ei;
1763 struct btrfs_extent_data_ref *dref = NULL;
1764 struct btrfs_shared_data_ref *sref = NULL;
1765 unsigned long ptr;
1766 unsigned long end;
1767 u32 item_size;
1768 int size;
1769 int type;
5d4f98a2
YZ
1770 u64 refs;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 refs = btrfs_extent_refs(leaf, ei);
1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 refs += refs_to_mod;
1777 btrfs_set_extent_refs(leaf, ei, refs);
1778 if (extent_op)
1779 __run_delayed_extent_op(extent_op, leaf, ei);
1780
1781 type = btrfs_extent_inline_ref_type(leaf, iref);
1782
1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 refs = btrfs_extent_data_ref_count(leaf, dref);
1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 refs = btrfs_shared_data_ref_count(leaf, sref);
1789 } else {
1790 refs = 1;
1791 BUG_ON(refs_to_mod != -1);
56bec294 1792 }
31840ae1 1793
5d4f98a2
YZ
1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 refs += refs_to_mod;
1796
1797 if (refs > 0) {
1798 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 else
1801 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 } else {
fcebe456 1803 *last_ref = 1;
5d4f98a2
YZ
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
afe5fea7 1812 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1815}
1816
1817static noinline_for_stack
1818int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825{
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1834 update_inline_extent_backref(root, path, iref,
fcebe456 1835 refs_to_add, extent_op, NULL);
5d4f98a2 1836 } else if (ret == -ENOENT) {
fd279fae 1837 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
771ed689 1841 }
5d4f98a2
YZ
1842 return ret;
1843}
31840ae1 1844
5d4f98a2
YZ
1845static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850{
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862}
56bec294 1863
5d4f98a2
YZ
1864static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
fcebe456 1868 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1869{
143bede5 1870 int ret = 0;
b9473439 1871
5d4f98a2
YZ
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
afe5fea7 1874 update_inline_extent_backref(root, path, iref,
fcebe456 1875 -refs_to_drop, NULL, last_ref);
5d4f98a2 1876 } else if (is_data) {
fcebe456
JB
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 last_ref);
5d4f98a2 1879 } else {
fcebe456 1880 *last_ref = 1;
5d4f98a2
YZ
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884}
1885
d04c6b88
JM
1886static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
5d4f98a2 1888{
d04c6b88 1889 int ret = 0;
4d89d377 1890 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1891
4d89d377
JM
1892 if (WARN_ON(start != aligned_start)) {
1893 len -= aligned_start - start;
1894 len = round_down(len, 1 << 9);
1895 start = aligned_start;
1896 }
d04c6b88 1897
4d89d377
JM
1898 *discarded_bytes = 0;
1899 if (len) {
1900 ret = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1901 GFP_NOFS, 0);
1902 if (!ret)
1903 *discarded_bytes = len;
1904 }
d04c6b88 1905 return ret;
5d4f98a2 1906}
5d4f98a2 1907
1edb647b
FM
1908int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1909 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1910{
5d4f98a2 1911 int ret;
5378e607 1912 u64 discarded_bytes = 0;
a1d3c478 1913 struct btrfs_bio *bbio = NULL;
5d4f98a2 1914
e244a0ae 1915
5d4f98a2 1916 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1917 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1918 bytenr, &num_bytes, &bbio, 0);
79787eaa 1919 /* Error condition is -ENOMEM */
5d4f98a2 1920 if (!ret) {
a1d3c478 1921 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1922 int i;
1923
5d4f98a2 1924
a1d3c478 1925 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1926 u64 bytes;
d5e2003c
JB
1927 if (!stripe->dev->can_discard)
1928 continue;
1929
5378e607
LD
1930 ret = btrfs_issue_discard(stripe->dev->bdev,
1931 stripe->physical,
d04c6b88
JM
1932 stripe->length,
1933 &bytes);
5378e607 1934 if (!ret)
d04c6b88 1935 discarded_bytes += bytes;
5378e607 1936 else if (ret != -EOPNOTSUPP)
79787eaa 1937 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1938
1939 /*
1940 * Just in case we get back EOPNOTSUPP for some reason,
1941 * just ignore the return value so we don't screw up
1942 * people calling discard_extent.
1943 */
1944 ret = 0;
5d4f98a2 1945 }
6e9606d2 1946 btrfs_put_bbio(bbio);
5d4f98a2 1947 }
5378e607
LD
1948
1949 if (actual_bytes)
1950 *actual_bytes = discarded_bytes;
1951
5d4f98a2 1952
53b381b3
DW
1953 if (ret == -EOPNOTSUPP)
1954 ret = 0;
5d4f98a2 1955 return ret;
5d4f98a2
YZ
1956}
1957
79787eaa 1958/* Can return -ENOMEM */
5d4f98a2
YZ
1959int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1960 struct btrfs_root *root,
1961 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
1962 u64 root_objectid, u64 owner, u64 offset,
1963 int no_quota)
5d4f98a2
YZ
1964{
1965 int ret;
66d7e7f0
AJ
1966 struct btrfs_fs_info *fs_info = root->fs_info;
1967
5d4f98a2
YZ
1968 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1969 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1970
1971 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
1972 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1973 num_bytes,
5d4f98a2 1974 parent, root_objectid, (int)owner,
fcebe456 1975 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 1976 } else {
66d7e7f0
AJ
1977 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1978 num_bytes,
5d4f98a2 1979 parent, root_objectid, owner, offset,
fcebe456 1980 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
1981 }
1982 return ret;
1983}
1984
1985static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1986 struct btrfs_root *root,
c682f9b3 1987 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
1988 u64 parent, u64 root_objectid,
1989 u64 owner, u64 offset, int refs_to_add,
1990 struct btrfs_delayed_extent_op *extent_op)
1991{
fcebe456 1992 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
1993 struct btrfs_path *path;
1994 struct extent_buffer *leaf;
1995 struct btrfs_extent_item *item;
fcebe456 1996 struct btrfs_key key;
c682f9b3
QW
1997 u64 bytenr = node->bytenr;
1998 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
1999 u64 refs;
2000 int ret;
c682f9b3 2001 int no_quota = node->no_quota;
5d4f98a2
YZ
2002
2003 path = btrfs_alloc_path();
2004 if (!path)
2005 return -ENOMEM;
2006
fcebe456
JB
2007 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2008 no_quota = 1;
2009
5d4f98a2
YZ
2010 path->reada = 1;
2011 path->leave_spinning = 1;
2012 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2013 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2014 bytenr, num_bytes, parent,
5d4f98a2
YZ
2015 root_objectid, owner, offset,
2016 refs_to_add, extent_op);
0ed4792a 2017 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2018 goto out;
fcebe456
JB
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
5d4f98a2 2025 leaf = path->nodes[0];
fcebe456 2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2030 if (extent_op)
2031 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2032
5d4f98a2 2033 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2034 btrfs_release_path(path);
56bec294
CM
2035
2036 path->reada = 1;
b9473439 2037 path->leave_spinning = 1;
56bec294
CM
2038 /* now insert the actual backref */
2039 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2040 path, bytenr, parent, root_objectid,
2041 owner, offset, refs_to_add);
79787eaa
JM
2042 if (ret)
2043 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2044out:
56bec294 2045 btrfs_free_path(path);
30d133fc 2046 return ret;
56bec294
CM
2047}
2048
5d4f98a2
YZ
2049static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2050 struct btrfs_root *root,
2051 struct btrfs_delayed_ref_node *node,
2052 struct btrfs_delayed_extent_op *extent_op,
2053 int insert_reserved)
56bec294 2054{
5d4f98a2
YZ
2055 int ret = 0;
2056 struct btrfs_delayed_data_ref *ref;
2057 struct btrfs_key ins;
2058 u64 parent = 0;
2059 u64 ref_root = 0;
2060 u64 flags = 0;
2061
2062 ins.objectid = node->bytenr;
2063 ins.offset = node->num_bytes;
2064 ins.type = BTRFS_EXTENT_ITEM_KEY;
2065
2066 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2067 trace_run_delayed_data_ref(node, ref, node->action);
2068
5d4f98a2
YZ
2069 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2070 parent = ref->parent;
fcebe456 2071 ref_root = ref->root;
5d4f98a2
YZ
2072
2073 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2074 if (extent_op)
5d4f98a2 2075 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2076 ret = alloc_reserved_file_extent(trans, root,
2077 parent, ref_root, flags,
2078 ref->objectid, ref->offset,
2079 &ins, node->ref_mod);
5d4f98a2 2080 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2081 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2082 ref_root, ref->objectid,
2083 ref->offset, node->ref_mod,
c682f9b3 2084 extent_op);
5d4f98a2 2085 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2086 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2087 ref_root, ref->objectid,
2088 ref->offset, node->ref_mod,
c682f9b3 2089 extent_op);
5d4f98a2
YZ
2090 } else {
2091 BUG();
2092 }
2093 return ret;
2094}
2095
2096static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2097 struct extent_buffer *leaf,
2098 struct btrfs_extent_item *ei)
2099{
2100 u64 flags = btrfs_extent_flags(leaf, ei);
2101 if (extent_op->update_flags) {
2102 flags |= extent_op->flags_to_set;
2103 btrfs_set_extent_flags(leaf, ei, flags);
2104 }
2105
2106 if (extent_op->update_key) {
2107 struct btrfs_tree_block_info *bi;
2108 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2109 bi = (struct btrfs_tree_block_info *)(ei + 1);
2110 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2111 }
2112}
2113
2114static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2115 struct btrfs_root *root,
2116 struct btrfs_delayed_ref_node *node,
2117 struct btrfs_delayed_extent_op *extent_op)
2118{
2119 struct btrfs_key key;
2120 struct btrfs_path *path;
2121 struct btrfs_extent_item *ei;
2122 struct extent_buffer *leaf;
2123 u32 item_size;
56bec294 2124 int ret;
5d4f98a2 2125 int err = 0;
b1c79e09 2126 int metadata = !extent_op->is_data;
5d4f98a2 2127
79787eaa
JM
2128 if (trans->aborted)
2129 return 0;
2130
3173a18f
JB
2131 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2132 metadata = 0;
2133
5d4f98a2
YZ
2134 path = btrfs_alloc_path();
2135 if (!path)
2136 return -ENOMEM;
2137
2138 key.objectid = node->bytenr;
5d4f98a2 2139
3173a18f 2140 if (metadata) {
3173a18f 2141 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2142 key.offset = extent_op->level;
3173a18f
JB
2143 } else {
2144 key.type = BTRFS_EXTENT_ITEM_KEY;
2145 key.offset = node->num_bytes;
2146 }
2147
2148again:
5d4f98a2
YZ
2149 path->reada = 1;
2150 path->leave_spinning = 1;
2151 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2152 path, 0, 1);
2153 if (ret < 0) {
2154 err = ret;
2155 goto out;
2156 }
2157 if (ret > 0) {
3173a18f 2158 if (metadata) {
55994887
FDBM
2159 if (path->slots[0] > 0) {
2160 path->slots[0]--;
2161 btrfs_item_key_to_cpu(path->nodes[0], &key,
2162 path->slots[0]);
2163 if (key.objectid == node->bytenr &&
2164 key.type == BTRFS_EXTENT_ITEM_KEY &&
2165 key.offset == node->num_bytes)
2166 ret = 0;
2167 }
2168 if (ret > 0) {
2169 btrfs_release_path(path);
2170 metadata = 0;
3173a18f 2171
55994887
FDBM
2172 key.objectid = node->bytenr;
2173 key.offset = node->num_bytes;
2174 key.type = BTRFS_EXTENT_ITEM_KEY;
2175 goto again;
2176 }
2177 } else {
2178 err = -EIO;
2179 goto out;
3173a18f 2180 }
5d4f98a2
YZ
2181 }
2182
2183 leaf = path->nodes[0];
2184 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2185#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2186 if (item_size < sizeof(*ei)) {
2187 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2188 path, (u64)-1, 0);
2189 if (ret < 0) {
2190 err = ret;
2191 goto out;
2192 }
2193 leaf = path->nodes[0];
2194 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2195 }
2196#endif
2197 BUG_ON(item_size < sizeof(*ei));
2198 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2199 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2200
5d4f98a2
YZ
2201 btrfs_mark_buffer_dirty(leaf);
2202out:
2203 btrfs_free_path(path);
2204 return err;
56bec294
CM
2205}
2206
5d4f98a2
YZ
2207static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2208 struct btrfs_root *root,
2209 struct btrfs_delayed_ref_node *node,
2210 struct btrfs_delayed_extent_op *extent_op,
2211 int insert_reserved)
56bec294
CM
2212{
2213 int ret = 0;
5d4f98a2
YZ
2214 struct btrfs_delayed_tree_ref *ref;
2215 struct btrfs_key ins;
2216 u64 parent = 0;
2217 u64 ref_root = 0;
3173a18f
JB
2218 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2219 SKINNY_METADATA);
56bec294 2220
5d4f98a2 2221 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2222 trace_run_delayed_tree_ref(node, ref, node->action);
2223
5d4f98a2
YZ
2224 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2225 parent = ref->parent;
fcebe456 2226 ref_root = ref->root;
5d4f98a2 2227
3173a18f
JB
2228 ins.objectid = node->bytenr;
2229 if (skinny_metadata) {
2230 ins.offset = ref->level;
2231 ins.type = BTRFS_METADATA_ITEM_KEY;
2232 } else {
2233 ins.offset = node->num_bytes;
2234 ins.type = BTRFS_EXTENT_ITEM_KEY;
2235 }
2236
5d4f98a2
YZ
2237 BUG_ON(node->ref_mod != 1);
2238 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2239 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2240 ret = alloc_reserved_tree_block(trans, root,
2241 parent, ref_root,
2242 extent_op->flags_to_set,
2243 &extent_op->key,
fcebe456
JB
2244 ref->level, &ins,
2245 node->no_quota);
5d4f98a2 2246 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2247 ret = __btrfs_inc_extent_ref(trans, root, node,
2248 parent, ref_root,
2249 ref->level, 0, 1,
fcebe456 2250 extent_op);
5d4f98a2 2251 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2252 ret = __btrfs_free_extent(trans, root, node,
2253 parent, ref_root,
2254 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2255 } else {
2256 BUG();
2257 }
56bec294
CM
2258 return ret;
2259}
2260
2261/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2262static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2263 struct btrfs_root *root,
2264 struct btrfs_delayed_ref_node *node,
2265 struct btrfs_delayed_extent_op *extent_op,
2266 int insert_reserved)
56bec294 2267{
79787eaa
JM
2268 int ret = 0;
2269
857cc2fc
JB
2270 if (trans->aborted) {
2271 if (insert_reserved)
2272 btrfs_pin_extent(root, node->bytenr,
2273 node->num_bytes, 1);
79787eaa 2274 return 0;
857cc2fc 2275 }
79787eaa 2276
5d4f98a2 2277 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2278 struct btrfs_delayed_ref_head *head;
2279 /*
2280 * we've hit the end of the chain and we were supposed
2281 * to insert this extent into the tree. But, it got
2282 * deleted before we ever needed to insert it, so all
2283 * we have to do is clean up the accounting
2284 */
5d4f98a2
YZ
2285 BUG_ON(extent_op);
2286 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2287 trace_run_delayed_ref_head(node, head, node->action);
2288
56bec294 2289 if (insert_reserved) {
f0486c68
YZ
2290 btrfs_pin_extent(root, node->bytenr,
2291 node->num_bytes, 1);
5d4f98a2
YZ
2292 if (head->is_data) {
2293 ret = btrfs_del_csums(trans, root,
2294 node->bytenr,
2295 node->num_bytes);
5d4f98a2 2296 }
56bec294 2297 }
79787eaa 2298 return ret;
56bec294
CM
2299 }
2300
5d4f98a2
YZ
2301 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2302 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2303 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2304 insert_reserved);
2305 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2306 node->type == BTRFS_SHARED_DATA_REF_KEY)
2307 ret = run_delayed_data_ref(trans, root, node, extent_op,
2308 insert_reserved);
2309 else
2310 BUG();
2311 return ret;
56bec294
CM
2312}
2313
c6fc2454 2314static inline struct btrfs_delayed_ref_node *
56bec294
CM
2315select_delayed_ref(struct btrfs_delayed_ref_head *head)
2316{
cffc3374
FM
2317 struct btrfs_delayed_ref_node *ref;
2318
c6fc2454
QW
2319 if (list_empty(&head->ref_list))
2320 return NULL;
d7df2c79 2321
cffc3374
FM
2322 /*
2323 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2324 * This is to prevent a ref count from going down to zero, which deletes
2325 * the extent item from the extent tree, when there still are references
2326 * to add, which would fail because they would not find the extent item.
2327 */
2328 list_for_each_entry(ref, &head->ref_list, list) {
2329 if (ref->action == BTRFS_ADD_DELAYED_REF)
2330 return ref;
2331 }
2332
c6fc2454
QW
2333 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2334 list);
56bec294
CM
2335}
2336
79787eaa
JM
2337/*
2338 * Returns 0 on success or if called with an already aborted transaction.
2339 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2340 */
d7df2c79
JB
2341static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2342 struct btrfs_root *root,
2343 unsigned long nr)
56bec294 2344{
56bec294
CM
2345 struct btrfs_delayed_ref_root *delayed_refs;
2346 struct btrfs_delayed_ref_node *ref;
2347 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2348 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2349 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2350 ktime_t start = ktime_get();
56bec294 2351 int ret;
d7df2c79 2352 unsigned long count = 0;
0a2b2a84 2353 unsigned long actual_count = 0;
56bec294 2354 int must_insert_reserved = 0;
56bec294
CM
2355
2356 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2357 while (1) {
2358 if (!locked_ref) {
d7df2c79 2359 if (count >= nr)
56bec294 2360 break;
56bec294 2361
d7df2c79
JB
2362 spin_lock(&delayed_refs->lock);
2363 locked_ref = btrfs_select_ref_head(trans);
2364 if (!locked_ref) {
2365 spin_unlock(&delayed_refs->lock);
2366 break;
2367 }
c3e69d58
CM
2368
2369 /* grab the lock that says we are going to process
2370 * all the refs for this head */
2371 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2372 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2373 /*
2374 * we may have dropped the spin lock to get the head
2375 * mutex lock, and that might have given someone else
2376 * time to free the head. If that's true, it has been
2377 * removed from our list and we can move on.
2378 */
2379 if (ret == -EAGAIN) {
2380 locked_ref = NULL;
2381 count++;
2382 continue;
56bec294
CM
2383 }
2384 }
a28ec197 2385
d7df2c79 2386 spin_lock(&locked_ref->lock);
ae1e206b 2387
d1270cd9
AJ
2388 /*
2389 * locked_ref is the head node, so we have to go one
2390 * node back for any delayed ref updates
2391 */
2392 ref = select_delayed_ref(locked_ref);
2393
2394 if (ref && ref->seq &&
097b8a7c 2395 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2396 spin_unlock(&locked_ref->lock);
093486c4 2397 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2398 spin_lock(&delayed_refs->lock);
2399 locked_ref->processing = 0;
d1270cd9
AJ
2400 delayed_refs->num_heads_ready++;
2401 spin_unlock(&delayed_refs->lock);
d7df2c79 2402 locked_ref = NULL;
d1270cd9 2403 cond_resched();
27a377db 2404 count++;
d1270cd9
AJ
2405 continue;
2406 }
2407
56bec294
CM
2408 /*
2409 * record the must insert reserved flag before we
2410 * drop the spin lock.
2411 */
2412 must_insert_reserved = locked_ref->must_insert_reserved;
2413 locked_ref->must_insert_reserved = 0;
7bb86316 2414
5d4f98a2
YZ
2415 extent_op = locked_ref->extent_op;
2416 locked_ref->extent_op = NULL;
2417
56bec294 2418 if (!ref) {
d7df2c79
JB
2419
2420
56bec294
CM
2421 /* All delayed refs have been processed, Go ahead
2422 * and send the head node to run_one_delayed_ref,
2423 * so that any accounting fixes can happen
2424 */
2425 ref = &locked_ref->node;
5d4f98a2
YZ
2426
2427 if (extent_op && must_insert_reserved) {
78a6184a 2428 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2429 extent_op = NULL;
2430 }
2431
2432 if (extent_op) {
d7df2c79 2433 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2434 ret = run_delayed_extent_op(trans, root,
2435 ref, extent_op);
78a6184a 2436 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2437
79787eaa 2438 if (ret) {
857cc2fc
JB
2439 /*
2440 * Need to reset must_insert_reserved if
2441 * there was an error so the abort stuff
2442 * can cleanup the reserved space
2443 * properly.
2444 */
2445 if (must_insert_reserved)
2446 locked_ref->must_insert_reserved = 1;
d7df2c79 2447 locked_ref->processing = 0;
c2cf52eb 2448 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2449 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2450 return ret;
2451 }
d7df2c79 2452 continue;
5d4f98a2 2453 }
02217ed2 2454
d7df2c79
JB
2455 /*
2456 * Need to drop our head ref lock and re-aqcuire the
2457 * delayed ref lock and then re-check to make sure
2458 * nobody got added.
2459 */
2460 spin_unlock(&locked_ref->lock);
2461 spin_lock(&delayed_refs->lock);
2462 spin_lock(&locked_ref->lock);
c6fc2454 2463 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2464 locked_ref->extent_op) {
d7df2c79
JB
2465 spin_unlock(&locked_ref->lock);
2466 spin_unlock(&delayed_refs->lock);
2467 continue;
2468 }
2469 ref->in_tree = 0;
2470 delayed_refs->num_heads--;
c46effa6
LB
2471 rb_erase(&locked_ref->href_node,
2472 &delayed_refs->href_root);
d7df2c79
JB
2473 spin_unlock(&delayed_refs->lock);
2474 } else {
0a2b2a84 2475 actual_count++;
d7df2c79 2476 ref->in_tree = 0;
c6fc2454 2477 list_del(&ref->list);
c46effa6 2478 }
d7df2c79
JB
2479 atomic_dec(&delayed_refs->num_entries);
2480
093486c4 2481 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2482 /*
2483 * when we play the delayed ref, also correct the
2484 * ref_mod on head
2485 */
2486 switch (ref->action) {
2487 case BTRFS_ADD_DELAYED_REF:
2488 case BTRFS_ADD_DELAYED_EXTENT:
2489 locked_ref->node.ref_mod -= ref->ref_mod;
2490 break;
2491 case BTRFS_DROP_DELAYED_REF:
2492 locked_ref->node.ref_mod += ref->ref_mod;
2493 break;
2494 default:
2495 WARN_ON(1);
2496 }
2497 }
d7df2c79 2498 spin_unlock(&locked_ref->lock);
925baedd 2499
5d4f98a2 2500 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2501 must_insert_reserved);
eb099670 2502
78a6184a 2503 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2504 if (ret) {
d7df2c79 2505 locked_ref->processing = 0;
093486c4
MX
2506 btrfs_delayed_ref_unlock(locked_ref);
2507 btrfs_put_delayed_ref(ref);
c2cf52eb 2508 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2509 return ret;
2510 }
2511
093486c4
MX
2512 /*
2513 * If this node is a head, that means all the refs in this head
2514 * have been dealt with, and we will pick the next head to deal
2515 * with, so we must unlock the head and drop it from the cluster
2516 * list before we release it.
2517 */
2518 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2519 if (locked_ref->is_data &&
2520 locked_ref->total_ref_mod < 0) {
2521 spin_lock(&delayed_refs->lock);
2522 delayed_refs->pending_csums -= ref->num_bytes;
2523 spin_unlock(&delayed_refs->lock);
2524 }
093486c4
MX
2525 btrfs_delayed_ref_unlock(locked_ref);
2526 locked_ref = NULL;
2527 }
2528 btrfs_put_delayed_ref(ref);
2529 count++;
c3e69d58 2530 cond_resched();
c3e69d58 2531 }
0a2b2a84
JB
2532
2533 /*
2534 * We don't want to include ref heads since we can have empty ref heads
2535 * and those will drastically skew our runtime down since we just do
2536 * accounting, no actual extent tree updates.
2537 */
2538 if (actual_count > 0) {
2539 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2540 u64 avg;
2541
2542 /*
2543 * We weigh the current average higher than our current runtime
2544 * to avoid large swings in the average.
2545 */
2546 spin_lock(&delayed_refs->lock);
2547 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2548 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2549 spin_unlock(&delayed_refs->lock);
2550 }
d7df2c79 2551 return 0;
c3e69d58
CM
2552}
2553
709c0486
AJ
2554#ifdef SCRAMBLE_DELAYED_REFS
2555/*
2556 * Normally delayed refs get processed in ascending bytenr order. This
2557 * correlates in most cases to the order added. To expose dependencies on this
2558 * order, we start to process the tree in the middle instead of the beginning
2559 */
2560static u64 find_middle(struct rb_root *root)
2561{
2562 struct rb_node *n = root->rb_node;
2563 struct btrfs_delayed_ref_node *entry;
2564 int alt = 1;
2565 u64 middle;
2566 u64 first = 0, last = 0;
2567
2568 n = rb_first(root);
2569 if (n) {
2570 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2571 first = entry->bytenr;
2572 }
2573 n = rb_last(root);
2574 if (n) {
2575 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2576 last = entry->bytenr;
2577 }
2578 n = root->rb_node;
2579
2580 while (n) {
2581 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2582 WARN_ON(!entry->in_tree);
2583
2584 middle = entry->bytenr;
2585
2586 if (alt)
2587 n = n->rb_left;
2588 else
2589 n = n->rb_right;
2590
2591 alt = 1 - alt;
2592 }
2593 return middle;
2594}
2595#endif
2596
1be41b78
JB
2597static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2598{
2599 u64 num_bytes;
2600
2601 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2602 sizeof(struct btrfs_extent_inline_ref));
2603 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2604 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2605
2606 /*
2607 * We don't ever fill up leaves all the way so multiply by 2 just to be
2608 * closer to what we're really going to want to ouse.
2609 */
f8c269d7 2610 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2611}
2612
1262133b
JB
2613/*
2614 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2615 * would require to store the csums for that many bytes.
2616 */
28f75a0e 2617u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2618{
2619 u64 csum_size;
2620 u64 num_csums_per_leaf;
2621 u64 num_csums;
2622
2623 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2624 num_csums_per_leaf = div64_u64(csum_size,
2625 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2626 num_csums = div64_u64(csum_bytes, root->sectorsize);
2627 num_csums += num_csums_per_leaf - 1;
2628 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2629 return num_csums;
2630}
2631
0a2b2a84 2632int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2633 struct btrfs_root *root)
2634{
2635 struct btrfs_block_rsv *global_rsv;
2636 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2637 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2638 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2639 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2640 int ret = 0;
2641
2642 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2643 num_heads = heads_to_leaves(root, num_heads);
2644 if (num_heads > 1)
707e8a07 2645 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2646 num_bytes <<= 1;
28f75a0e 2647 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2648 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2649 num_dirty_bgs);
1be41b78
JB
2650 global_rsv = &root->fs_info->global_block_rsv;
2651
2652 /*
2653 * If we can't allocate any more chunks lets make sure we have _lots_ of
2654 * wiggle room since running delayed refs can create more delayed refs.
2655 */
cb723e49
JB
2656 if (global_rsv->space_info->full) {
2657 num_dirty_bgs_bytes <<= 1;
1be41b78 2658 num_bytes <<= 1;
cb723e49 2659 }
1be41b78
JB
2660
2661 spin_lock(&global_rsv->lock);
cb723e49 2662 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2663 ret = 1;
2664 spin_unlock(&global_rsv->lock);
2665 return ret;
2666}
2667
0a2b2a84
JB
2668int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2669 struct btrfs_root *root)
2670{
2671 struct btrfs_fs_info *fs_info = root->fs_info;
2672 u64 num_entries =
2673 atomic_read(&trans->transaction->delayed_refs.num_entries);
2674 u64 avg_runtime;
a79b7d4b 2675 u64 val;
0a2b2a84
JB
2676
2677 smp_mb();
2678 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2679 val = num_entries * avg_runtime;
0a2b2a84
JB
2680 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2681 return 1;
a79b7d4b
CM
2682 if (val >= NSEC_PER_SEC / 2)
2683 return 2;
0a2b2a84
JB
2684
2685 return btrfs_check_space_for_delayed_refs(trans, root);
2686}
2687
a79b7d4b
CM
2688struct async_delayed_refs {
2689 struct btrfs_root *root;
2690 int count;
2691 int error;
2692 int sync;
2693 struct completion wait;
2694 struct btrfs_work work;
2695};
2696
2697static void delayed_ref_async_start(struct btrfs_work *work)
2698{
2699 struct async_delayed_refs *async;
2700 struct btrfs_trans_handle *trans;
2701 int ret;
2702
2703 async = container_of(work, struct async_delayed_refs, work);
2704
2705 trans = btrfs_join_transaction(async->root);
2706 if (IS_ERR(trans)) {
2707 async->error = PTR_ERR(trans);
2708 goto done;
2709 }
2710
2711 /*
2712 * trans->sync means that when we call end_transaciton, we won't
2713 * wait on delayed refs
2714 */
2715 trans->sync = true;
2716 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2717 if (ret)
2718 async->error = ret;
2719
2720 ret = btrfs_end_transaction(trans, async->root);
2721 if (ret && !async->error)
2722 async->error = ret;
2723done:
2724 if (async->sync)
2725 complete(&async->wait);
2726 else
2727 kfree(async);
2728}
2729
2730int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2731 unsigned long count, int wait)
2732{
2733 struct async_delayed_refs *async;
2734 int ret;
2735
2736 async = kmalloc(sizeof(*async), GFP_NOFS);
2737 if (!async)
2738 return -ENOMEM;
2739
2740 async->root = root->fs_info->tree_root;
2741 async->count = count;
2742 async->error = 0;
2743 if (wait)
2744 async->sync = 1;
2745 else
2746 async->sync = 0;
2747 init_completion(&async->wait);
2748
9e0af237
LB
2749 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2750 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2751
2752 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2753
2754 if (wait) {
2755 wait_for_completion(&async->wait);
2756 ret = async->error;
2757 kfree(async);
2758 return ret;
2759 }
2760 return 0;
2761}
2762
c3e69d58
CM
2763/*
2764 * this starts processing the delayed reference count updates and
2765 * extent insertions we have queued up so far. count can be
2766 * 0, which means to process everything in the tree at the start
2767 * of the run (but not newly added entries), or it can be some target
2768 * number you'd like to process.
79787eaa
JM
2769 *
2770 * Returns 0 on success or if called with an aborted transaction
2771 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2772 */
2773int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2774 struct btrfs_root *root, unsigned long count)
2775{
2776 struct rb_node *node;
2777 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2778 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2779 int ret;
2780 int run_all = count == (unsigned long)-1;
c3e69d58 2781
79787eaa
JM
2782 /* We'll clean this up in btrfs_cleanup_transaction */
2783 if (trans->aborted)
2784 return 0;
2785
c3e69d58
CM
2786 if (root == root->fs_info->extent_root)
2787 root = root->fs_info->tree_root;
2788
2789 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2790 if (count == 0)
d7df2c79 2791 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2792
c3e69d58 2793again:
709c0486
AJ
2794#ifdef SCRAMBLE_DELAYED_REFS
2795 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2796#endif
d7df2c79
JB
2797 ret = __btrfs_run_delayed_refs(trans, root, count);
2798 if (ret < 0) {
2799 btrfs_abort_transaction(trans, root, ret);
2800 return ret;
eb099670 2801 }
c3e69d58 2802
56bec294 2803 if (run_all) {
d7df2c79 2804 if (!list_empty(&trans->new_bgs))
ea658bad 2805 btrfs_create_pending_block_groups(trans, root);
ea658bad 2806
d7df2c79 2807 spin_lock(&delayed_refs->lock);
c46effa6 2808 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2809 if (!node) {
2810 spin_unlock(&delayed_refs->lock);
56bec294 2811 goto out;
d7df2c79 2812 }
c3e69d58 2813 count = (unsigned long)-1;
e9d0b13b 2814
56bec294 2815 while (node) {
c46effa6
LB
2816 head = rb_entry(node, struct btrfs_delayed_ref_head,
2817 href_node);
2818 if (btrfs_delayed_ref_is_head(&head->node)) {
2819 struct btrfs_delayed_ref_node *ref;
5caf2a00 2820
c46effa6 2821 ref = &head->node;
56bec294
CM
2822 atomic_inc(&ref->refs);
2823
2824 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2825 /*
2826 * Mutex was contended, block until it's
2827 * released and try again
2828 */
56bec294
CM
2829 mutex_lock(&head->mutex);
2830 mutex_unlock(&head->mutex);
2831
2832 btrfs_put_delayed_ref(ref);
1887be66 2833 cond_resched();
56bec294 2834 goto again;
c46effa6
LB
2835 } else {
2836 WARN_ON(1);
56bec294
CM
2837 }
2838 node = rb_next(node);
2839 }
2840 spin_unlock(&delayed_refs->lock);
d7df2c79 2841 cond_resched();
56bec294 2842 goto again;
5f39d397 2843 }
54aa1f4d 2844out:
edf39272 2845 assert_qgroups_uptodate(trans);
a28ec197
CM
2846 return 0;
2847}
2848
5d4f98a2
YZ
2849int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2850 struct btrfs_root *root,
2851 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2852 int level, int is_data)
5d4f98a2
YZ
2853{
2854 struct btrfs_delayed_extent_op *extent_op;
2855 int ret;
2856
78a6184a 2857 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2858 if (!extent_op)
2859 return -ENOMEM;
2860
2861 extent_op->flags_to_set = flags;
2862 extent_op->update_flags = 1;
2863 extent_op->update_key = 0;
2864 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2865 extent_op->level = level;
5d4f98a2 2866
66d7e7f0
AJ
2867 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2868 num_bytes, extent_op);
5d4f98a2 2869 if (ret)
78a6184a 2870 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2871 return ret;
2872}
2873
2874static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 struct btrfs_path *path,
2877 u64 objectid, u64 offset, u64 bytenr)
2878{
2879 struct btrfs_delayed_ref_head *head;
2880 struct btrfs_delayed_ref_node *ref;
2881 struct btrfs_delayed_data_ref *data_ref;
2882 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2883 int ret = 0;
2884
5d4f98a2
YZ
2885 delayed_refs = &trans->transaction->delayed_refs;
2886 spin_lock(&delayed_refs->lock);
2887 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2888 if (!head) {
2889 spin_unlock(&delayed_refs->lock);
2890 return 0;
2891 }
5d4f98a2
YZ
2892
2893 if (!mutex_trylock(&head->mutex)) {
2894 atomic_inc(&head->node.refs);
2895 spin_unlock(&delayed_refs->lock);
2896
b3b4aa74 2897 btrfs_release_path(path);
5d4f98a2 2898
8cc33e5c
DS
2899 /*
2900 * Mutex was contended, block until it's released and let
2901 * caller try again
2902 */
5d4f98a2
YZ
2903 mutex_lock(&head->mutex);
2904 mutex_unlock(&head->mutex);
2905 btrfs_put_delayed_ref(&head->node);
2906 return -EAGAIN;
2907 }
d7df2c79 2908 spin_unlock(&delayed_refs->lock);
5d4f98a2 2909
d7df2c79 2910 spin_lock(&head->lock);
c6fc2454 2911 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2912 /* If it's a shared ref we know a cross reference exists */
2913 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2914 ret = 1;
2915 break;
2916 }
5d4f98a2 2917
d7df2c79 2918 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2919
d7df2c79
JB
2920 /*
2921 * If our ref doesn't match the one we're currently looking at
2922 * then we have a cross reference.
2923 */
2924 if (data_ref->root != root->root_key.objectid ||
2925 data_ref->objectid != objectid ||
2926 data_ref->offset != offset) {
2927 ret = 1;
2928 break;
2929 }
5d4f98a2 2930 }
d7df2c79 2931 spin_unlock(&head->lock);
5d4f98a2 2932 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2933 return ret;
2934}
2935
2936static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2937 struct btrfs_root *root,
2938 struct btrfs_path *path,
2939 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2940{
2941 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2942 struct extent_buffer *leaf;
5d4f98a2
YZ
2943 struct btrfs_extent_data_ref *ref;
2944 struct btrfs_extent_inline_ref *iref;
2945 struct btrfs_extent_item *ei;
f321e491 2946 struct btrfs_key key;
5d4f98a2 2947 u32 item_size;
be20aa9d 2948 int ret;
925baedd 2949
be20aa9d 2950 key.objectid = bytenr;
31840ae1 2951 key.offset = (u64)-1;
f321e491 2952 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 2953
be20aa9d
CM
2954 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2955 if (ret < 0)
2956 goto out;
79787eaa 2957 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
2958
2959 ret = -ENOENT;
2960 if (path->slots[0] == 0)
31840ae1 2961 goto out;
be20aa9d 2962
31840ae1 2963 path->slots[0]--;
f321e491 2964 leaf = path->nodes[0];
5d4f98a2 2965 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 2966
5d4f98a2 2967 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 2968 goto out;
f321e491 2969
5d4f98a2
YZ
2970 ret = 1;
2971 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2972#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2973 if (item_size < sizeof(*ei)) {
2974 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2975 goto out;
2976 }
2977#endif
2978 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 2979
5d4f98a2
YZ
2980 if (item_size != sizeof(*ei) +
2981 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2982 goto out;
be20aa9d 2983
5d4f98a2
YZ
2984 if (btrfs_extent_generation(leaf, ei) <=
2985 btrfs_root_last_snapshot(&root->root_item))
2986 goto out;
2987
2988 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2989 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2990 BTRFS_EXTENT_DATA_REF_KEY)
2991 goto out;
2992
2993 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2994 if (btrfs_extent_refs(leaf, ei) !=
2995 btrfs_extent_data_ref_count(leaf, ref) ||
2996 btrfs_extent_data_ref_root(leaf, ref) !=
2997 root->root_key.objectid ||
2998 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2999 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3000 goto out;
3001
3002 ret = 0;
3003out:
3004 return ret;
3005}
3006
3007int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3008 struct btrfs_root *root,
3009 u64 objectid, u64 offset, u64 bytenr)
3010{
3011 struct btrfs_path *path;
3012 int ret;
3013 int ret2;
3014
3015 path = btrfs_alloc_path();
3016 if (!path)
3017 return -ENOENT;
3018
3019 do {
3020 ret = check_committed_ref(trans, root, path, objectid,
3021 offset, bytenr);
3022 if (ret && ret != -ENOENT)
f321e491 3023 goto out;
80ff3856 3024
5d4f98a2
YZ
3025 ret2 = check_delayed_ref(trans, root, path, objectid,
3026 offset, bytenr);
3027 } while (ret2 == -EAGAIN);
3028
3029 if (ret2 && ret2 != -ENOENT) {
3030 ret = ret2;
3031 goto out;
f321e491 3032 }
5d4f98a2
YZ
3033
3034 if (ret != -ENOENT || ret2 != -ENOENT)
3035 ret = 0;
be20aa9d 3036out:
80ff3856 3037 btrfs_free_path(path);
f0486c68
YZ
3038 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3039 WARN_ON(ret > 0);
f321e491 3040 return ret;
be20aa9d 3041}
c5739bba 3042
5d4f98a2 3043static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3044 struct btrfs_root *root,
5d4f98a2 3045 struct extent_buffer *buf,
e339a6b0 3046 int full_backref, int inc)
31840ae1
ZY
3047{
3048 u64 bytenr;
5d4f98a2
YZ
3049 u64 num_bytes;
3050 u64 parent;
31840ae1 3051 u64 ref_root;
31840ae1 3052 u32 nritems;
31840ae1
ZY
3053 struct btrfs_key key;
3054 struct btrfs_file_extent_item *fi;
3055 int i;
3056 int level;
3057 int ret = 0;
31840ae1 3058 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3059 u64, u64, u64, u64, u64, u64, int);
31840ae1 3060
fccb84c9
DS
3061
3062 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3063 return 0;
fccb84c9 3064
31840ae1 3065 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3066 nritems = btrfs_header_nritems(buf);
3067 level = btrfs_header_level(buf);
3068
27cdeb70 3069 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3070 return 0;
31840ae1 3071
5d4f98a2
YZ
3072 if (inc)
3073 process_func = btrfs_inc_extent_ref;
3074 else
3075 process_func = btrfs_free_extent;
31840ae1 3076
5d4f98a2
YZ
3077 if (full_backref)
3078 parent = buf->start;
3079 else
3080 parent = 0;
3081
3082 for (i = 0; i < nritems; i++) {
31840ae1 3083 if (level == 0) {
5d4f98a2 3084 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3085 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3086 continue;
5d4f98a2 3087 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3088 struct btrfs_file_extent_item);
3089 if (btrfs_file_extent_type(buf, fi) ==
3090 BTRFS_FILE_EXTENT_INLINE)
3091 continue;
3092 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3093 if (bytenr == 0)
3094 continue;
5d4f98a2
YZ
3095
3096 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3097 key.offset -= btrfs_file_extent_offset(buf, fi);
3098 ret = process_func(trans, root, bytenr, num_bytes,
3099 parent, ref_root, key.objectid,
e339a6b0 3100 key.offset, 1);
31840ae1
ZY
3101 if (ret)
3102 goto fail;
3103 } else {
5d4f98a2 3104 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3105 num_bytes = root->nodesize;
5d4f98a2 3106 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3107 parent, ref_root, level - 1, 0,
e339a6b0 3108 1);
31840ae1
ZY
3109 if (ret)
3110 goto fail;
3111 }
3112 }
3113 return 0;
3114fail:
5d4f98a2
YZ
3115 return ret;
3116}
3117
3118int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3119 struct extent_buffer *buf, int full_backref)
5d4f98a2 3120{
e339a6b0 3121 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3122}
3123
3124int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3125 struct extent_buffer *buf, int full_backref)
5d4f98a2 3126{
e339a6b0 3127 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3128}
3129
9078a3e1
CM
3130static int write_one_cache_group(struct btrfs_trans_handle *trans,
3131 struct btrfs_root *root,
3132 struct btrfs_path *path,
3133 struct btrfs_block_group_cache *cache)
3134{
3135 int ret;
9078a3e1 3136 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3137 unsigned long bi;
3138 struct extent_buffer *leaf;
9078a3e1 3139
9078a3e1 3140 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3141 if (ret) {
3142 if (ret > 0)
3143 ret = -ENOENT;
54aa1f4d 3144 goto fail;
df95e7f0 3145 }
5f39d397
CM
3146
3147 leaf = path->nodes[0];
3148 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3149 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3150 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3151fail:
24b89d08 3152 btrfs_release_path(path);
df95e7f0 3153 return ret;
9078a3e1
CM
3154
3155}
3156
4a8c9a62
YZ
3157static struct btrfs_block_group_cache *
3158next_block_group(struct btrfs_root *root,
3159 struct btrfs_block_group_cache *cache)
3160{
3161 struct rb_node *node;
292cbd51 3162
4a8c9a62 3163 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3164
3165 /* If our block group was removed, we need a full search. */
3166 if (RB_EMPTY_NODE(&cache->cache_node)) {
3167 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3168
3169 spin_unlock(&root->fs_info->block_group_cache_lock);
3170 btrfs_put_block_group(cache);
3171 cache = btrfs_lookup_first_block_group(root->fs_info,
3172 next_bytenr);
3173 return cache;
3174 }
4a8c9a62
YZ
3175 node = rb_next(&cache->cache_node);
3176 btrfs_put_block_group(cache);
3177 if (node) {
3178 cache = rb_entry(node, struct btrfs_block_group_cache,
3179 cache_node);
11dfe35a 3180 btrfs_get_block_group(cache);
4a8c9a62
YZ
3181 } else
3182 cache = NULL;
3183 spin_unlock(&root->fs_info->block_group_cache_lock);
3184 return cache;
3185}
3186
0af3d00b
JB
3187static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3188 struct btrfs_trans_handle *trans,
3189 struct btrfs_path *path)
3190{
3191 struct btrfs_root *root = block_group->fs_info->tree_root;
3192 struct inode *inode = NULL;
3193 u64 alloc_hint = 0;
2b20982e 3194 int dcs = BTRFS_DC_ERROR;
f8c269d7 3195 u64 num_pages = 0;
0af3d00b
JB
3196 int retries = 0;
3197 int ret = 0;
3198
3199 /*
3200 * If this block group is smaller than 100 megs don't bother caching the
3201 * block group.
3202 */
3203 if (block_group->key.offset < (100 * 1024 * 1024)) {
3204 spin_lock(&block_group->lock);
3205 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3206 spin_unlock(&block_group->lock);
3207 return 0;
3208 }
3209
0c0ef4bc
JB
3210 if (trans->aborted)
3211 return 0;
0af3d00b
JB
3212again:
3213 inode = lookup_free_space_inode(root, block_group, path);
3214 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3215 ret = PTR_ERR(inode);
b3b4aa74 3216 btrfs_release_path(path);
0af3d00b
JB
3217 goto out;
3218 }
3219
3220 if (IS_ERR(inode)) {
3221 BUG_ON(retries);
3222 retries++;
3223
3224 if (block_group->ro)
3225 goto out_free;
3226
3227 ret = create_free_space_inode(root, trans, block_group, path);
3228 if (ret)
3229 goto out_free;
3230 goto again;
3231 }
3232
5b0e95bf
JB
3233 /* We've already setup this transaction, go ahead and exit */
3234 if (block_group->cache_generation == trans->transid &&
3235 i_size_read(inode)) {
3236 dcs = BTRFS_DC_SETUP;
3237 goto out_put;
3238 }
3239
0af3d00b
JB
3240 /*
3241 * We want to set the generation to 0, that way if anything goes wrong
3242 * from here on out we know not to trust this cache when we load up next
3243 * time.
3244 */
3245 BTRFS_I(inode)->generation = 0;
3246 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3247 if (ret) {
3248 /*
3249 * So theoretically we could recover from this, simply set the
3250 * super cache generation to 0 so we know to invalidate the
3251 * cache, but then we'd have to keep track of the block groups
3252 * that fail this way so we know we _have_ to reset this cache
3253 * before the next commit or risk reading stale cache. So to
3254 * limit our exposure to horrible edge cases lets just abort the
3255 * transaction, this only happens in really bad situations
3256 * anyway.
3257 */
3258 btrfs_abort_transaction(trans, root, ret);
3259 goto out_put;
3260 }
0af3d00b
JB
3261 WARN_ON(ret);
3262
3263 if (i_size_read(inode) > 0) {
7b61cd92
MX
3264 ret = btrfs_check_trunc_cache_free_space(root,
3265 &root->fs_info->global_block_rsv);
3266 if (ret)
3267 goto out_put;
3268
1bbc621e 3269 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3270 if (ret)
3271 goto out_put;
3272 }
3273
3274 spin_lock(&block_group->lock);
cf7c1ef6 3275 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3276 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3277 /*
3278 * don't bother trying to write stuff out _if_
3279 * a) we're not cached,
3280 * b) we're with nospace_cache mount option.
3281 */
2b20982e 3282 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3283 spin_unlock(&block_group->lock);
3284 goto out_put;
3285 }
3286 spin_unlock(&block_group->lock);
3287
6fc823b1
JB
3288 /*
3289 * Try to preallocate enough space based on how big the block group is.
3290 * Keep in mind this has to include any pinned space which could end up
3291 * taking up quite a bit since it's not folded into the other space
3292 * cache.
3293 */
f8c269d7 3294 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3295 if (!num_pages)
3296 num_pages = 1;
3297
0af3d00b
JB
3298 num_pages *= 16;
3299 num_pages *= PAGE_CACHE_SIZE;
3300
e2d1f923 3301 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3302 if (ret)
3303 goto out_put;
3304
3305 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3306 num_pages, num_pages,
3307 &alloc_hint);
2b20982e
JB
3308 if (!ret)
3309 dcs = BTRFS_DC_SETUP;
0af3d00b 3310 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3311
0af3d00b
JB
3312out_put:
3313 iput(inode);
3314out_free:
b3b4aa74 3315 btrfs_release_path(path);
0af3d00b
JB
3316out:
3317 spin_lock(&block_group->lock);
e65cbb94 3318 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3319 block_group->cache_generation = trans->transid;
2b20982e 3320 block_group->disk_cache_state = dcs;
0af3d00b
JB
3321 spin_unlock(&block_group->lock);
3322
3323 return ret;
3324}
3325
dcdf7f6d
JB
3326int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3327 struct btrfs_root *root)
3328{
3329 struct btrfs_block_group_cache *cache, *tmp;
3330 struct btrfs_transaction *cur_trans = trans->transaction;
3331 struct btrfs_path *path;
3332
3333 if (list_empty(&cur_trans->dirty_bgs) ||
3334 !btrfs_test_opt(root, SPACE_CACHE))
3335 return 0;
3336
3337 path = btrfs_alloc_path();
3338 if (!path)
3339 return -ENOMEM;
3340
3341 /* Could add new block groups, use _safe just in case */
3342 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3343 dirty_list) {
3344 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3345 cache_save_setup(cache, trans, path);
3346 }
3347
3348 btrfs_free_path(path);
3349 return 0;
3350}
3351
1bbc621e
CM
3352/*
3353 * transaction commit does final block group cache writeback during a
3354 * critical section where nothing is allowed to change the FS. This is
3355 * required in order for the cache to actually match the block group,
3356 * but can introduce a lot of latency into the commit.
3357 *
3358 * So, btrfs_start_dirty_block_groups is here to kick off block group
3359 * cache IO. There's a chance we'll have to redo some of it if the
3360 * block group changes again during the commit, but it greatly reduces
3361 * the commit latency by getting rid of the easy block groups while
3362 * we're still allowing others to join the commit.
3363 */
3364int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3365 struct btrfs_root *root)
9078a3e1 3366{
4a8c9a62 3367 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3368 struct btrfs_transaction *cur_trans = trans->transaction;
3369 int ret = 0;
c9dc4c65 3370 int should_put;
1bbc621e
CM
3371 struct btrfs_path *path = NULL;
3372 LIST_HEAD(dirty);
3373 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3374 int num_started = 0;
1bbc621e
CM
3375 int loops = 0;
3376
3377 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3378 if (list_empty(&cur_trans->dirty_bgs)) {
3379 spin_unlock(&cur_trans->dirty_bgs_lock);
3380 return 0;
1bbc621e 3381 }
b58d1a9e 3382 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3383 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3384
1bbc621e 3385again:
1bbc621e
CM
3386 /*
3387 * make sure all the block groups on our dirty list actually
3388 * exist
3389 */
3390 btrfs_create_pending_block_groups(trans, root);
3391
3392 if (!path) {
3393 path = btrfs_alloc_path();
3394 if (!path)
3395 return -ENOMEM;
3396 }
3397
b58d1a9e
FM
3398 /*
3399 * cache_write_mutex is here only to save us from balance or automatic
3400 * removal of empty block groups deleting this block group while we are
3401 * writing out the cache
3402 */
3403 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3404 while (!list_empty(&dirty)) {
3405 cache = list_first_entry(&dirty,
3406 struct btrfs_block_group_cache,
3407 dirty_list);
1bbc621e
CM
3408 /*
3409 * this can happen if something re-dirties a block
3410 * group that is already under IO. Just wait for it to
3411 * finish and then do it all again
3412 */
3413 if (!list_empty(&cache->io_list)) {
3414 list_del_init(&cache->io_list);
3415 btrfs_wait_cache_io(root, trans, cache,
3416 &cache->io_ctl, path,
3417 cache->key.objectid);
3418 btrfs_put_block_group(cache);
3419 }
3420
3421
3422 /*
3423 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3424 * if it should update the cache_state. Don't delete
3425 * until after we wait.
3426 *
3427 * Since we're not running in the commit critical section
3428 * we need the dirty_bgs_lock to protect from update_block_group
3429 */
3430 spin_lock(&cur_trans->dirty_bgs_lock);
3431 list_del_init(&cache->dirty_list);
3432 spin_unlock(&cur_trans->dirty_bgs_lock);
3433
3434 should_put = 1;
3435
3436 cache_save_setup(cache, trans, path);
3437
3438 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3439 cache->io_ctl.inode = NULL;
3440 ret = btrfs_write_out_cache(root, trans, cache, path);
3441 if (ret == 0 && cache->io_ctl.inode) {
3442 num_started++;
3443 should_put = 0;
3444
3445 /*
3446 * the cache_write_mutex is protecting
3447 * the io_list
3448 */
3449 list_add_tail(&cache->io_list, io);
3450 } else {
3451 /*
3452 * if we failed to write the cache, the
3453 * generation will be bad and life goes on
3454 */
3455 ret = 0;
3456 }
3457 }
ff1f8250 3458 if (!ret) {
1bbc621e 3459 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3460 /*
3461 * Our block group might still be attached to the list
3462 * of new block groups in the transaction handle of some
3463 * other task (struct btrfs_trans_handle->new_bgs). This
3464 * means its block group item isn't yet in the extent
3465 * tree. If this happens ignore the error, as we will
3466 * try again later in the critical section of the
3467 * transaction commit.
3468 */
3469 if (ret == -ENOENT) {
3470 ret = 0;
3471 spin_lock(&cur_trans->dirty_bgs_lock);
3472 if (list_empty(&cache->dirty_list)) {
3473 list_add_tail(&cache->dirty_list,
3474 &cur_trans->dirty_bgs);
3475 btrfs_get_block_group(cache);
3476 }
3477 spin_unlock(&cur_trans->dirty_bgs_lock);
3478 } else if (ret) {
3479 btrfs_abort_transaction(trans, root, ret);
3480 }
3481 }
1bbc621e
CM
3482
3483 /* if its not on the io list, we need to put the block group */
3484 if (should_put)
3485 btrfs_put_block_group(cache);
3486
3487 if (ret)
3488 break;
b58d1a9e
FM
3489
3490 /*
3491 * Avoid blocking other tasks for too long. It might even save
3492 * us from writing caches for block groups that are going to be
3493 * removed.
3494 */
3495 mutex_unlock(&trans->transaction->cache_write_mutex);
3496 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3497 }
b58d1a9e 3498 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3499
3500 /*
3501 * go through delayed refs for all the stuff we've just kicked off
3502 * and then loop back (just once)
3503 */
3504 ret = btrfs_run_delayed_refs(trans, root, 0);
3505 if (!ret && loops == 0) {
3506 loops++;
3507 spin_lock(&cur_trans->dirty_bgs_lock);
3508 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3509 /*
3510 * dirty_bgs_lock protects us from concurrent block group
3511 * deletes too (not just cache_write_mutex).
3512 */
3513 if (!list_empty(&dirty)) {
3514 spin_unlock(&cur_trans->dirty_bgs_lock);
3515 goto again;
3516 }
1bbc621e 3517 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3518 }
3519
3520 btrfs_free_path(path);
3521 return ret;
3522}
3523
3524int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3525 struct btrfs_root *root)
3526{
3527 struct btrfs_block_group_cache *cache;
3528 struct btrfs_transaction *cur_trans = trans->transaction;
3529 int ret = 0;
3530 int should_put;
3531 struct btrfs_path *path;
3532 struct list_head *io = &cur_trans->io_bgs;
3533 int num_started = 0;
9078a3e1
CM
3534
3535 path = btrfs_alloc_path();
3536 if (!path)
3537 return -ENOMEM;
3538
ce93ec54
JB
3539 /*
3540 * We don't need the lock here since we are protected by the transaction
3541 * commit. We want to do the cache_save_setup first and then run the
3542 * delayed refs to make sure we have the best chance at doing this all
3543 * in one shot.
3544 */
3545 while (!list_empty(&cur_trans->dirty_bgs)) {
3546 cache = list_first_entry(&cur_trans->dirty_bgs,
3547 struct btrfs_block_group_cache,
3548 dirty_list);
c9dc4c65
CM
3549
3550 /*
3551 * this can happen if cache_save_setup re-dirties a block
3552 * group that is already under IO. Just wait for it to
3553 * finish and then do it all again
3554 */
3555 if (!list_empty(&cache->io_list)) {
3556 list_del_init(&cache->io_list);
3557 btrfs_wait_cache_io(root, trans, cache,
3558 &cache->io_ctl, path,
3559 cache->key.objectid);
3560 btrfs_put_block_group(cache);
c9dc4c65
CM
3561 }
3562
1bbc621e
CM
3563 /*
3564 * don't remove from the dirty list until after we've waited
3565 * on any pending IO
3566 */
ce93ec54 3567 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3568 should_put = 1;
3569
1bbc621e 3570 cache_save_setup(cache, trans, path);
c9dc4c65 3571
ce93ec54 3572 if (!ret)
c9dc4c65
CM
3573 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3574
3575 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3576 cache->io_ctl.inode = NULL;
3577 ret = btrfs_write_out_cache(root, trans, cache, path);
3578 if (ret == 0 && cache->io_ctl.inode) {
3579 num_started++;
3580 should_put = 0;
1bbc621e 3581 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3582 } else {
3583 /*
3584 * if we failed to write the cache, the
3585 * generation will be bad and life goes on
3586 */
3587 ret = 0;
3588 }
3589 }
ff1f8250 3590 if (!ret) {
ce93ec54 3591 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3592 if (ret)
3593 btrfs_abort_transaction(trans, root, ret);
3594 }
c9dc4c65
CM
3595
3596 /* if its not on the io list, we need to put the block group */
3597 if (should_put)
3598 btrfs_put_block_group(cache);
3599 }
3600
1bbc621e
CM
3601 while (!list_empty(io)) {
3602 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3603 io_list);
3604 list_del_init(&cache->io_list);
c9dc4c65
CM
3605 btrfs_wait_cache_io(root, trans, cache,
3606 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3607 btrfs_put_block_group(cache);
3608 }
3609
9078a3e1 3610 btrfs_free_path(path);
ce93ec54 3611 return ret;
9078a3e1
CM
3612}
3613
d2fb3437
YZ
3614int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3615{
3616 struct btrfs_block_group_cache *block_group;
3617 int readonly = 0;
3618
3619 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3620 if (!block_group || block_group->ro)
3621 readonly = 1;
3622 if (block_group)
fa9c0d79 3623 btrfs_put_block_group(block_group);
d2fb3437
YZ
3624 return readonly;
3625}
3626
6ab0a202
JM
3627static const char *alloc_name(u64 flags)
3628{
3629 switch (flags) {
3630 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3631 return "mixed";
3632 case BTRFS_BLOCK_GROUP_METADATA:
3633 return "metadata";
3634 case BTRFS_BLOCK_GROUP_DATA:
3635 return "data";
3636 case BTRFS_BLOCK_GROUP_SYSTEM:
3637 return "system";
3638 default:
3639 WARN_ON(1);
3640 return "invalid-combination";
3641 };
3642}
3643
593060d7
CM
3644static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3645 u64 total_bytes, u64 bytes_used,
3646 struct btrfs_space_info **space_info)
3647{
3648 struct btrfs_space_info *found;
b742bb82
YZ
3649 int i;
3650 int factor;
b150a4f1 3651 int ret;
b742bb82
YZ
3652
3653 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3654 BTRFS_BLOCK_GROUP_RAID10))
3655 factor = 2;
3656 else
3657 factor = 1;
593060d7
CM
3658
3659 found = __find_space_info(info, flags);
3660 if (found) {
25179201 3661 spin_lock(&found->lock);
593060d7 3662 found->total_bytes += total_bytes;
89a55897 3663 found->disk_total += total_bytes * factor;
593060d7 3664 found->bytes_used += bytes_used;
b742bb82 3665 found->disk_used += bytes_used * factor;
2e6e5183
FM
3666 if (total_bytes > 0)
3667 found->full = 0;
25179201 3668 spin_unlock(&found->lock);
593060d7
CM
3669 *space_info = found;
3670 return 0;
3671 }
c146afad 3672 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3673 if (!found)
3674 return -ENOMEM;
3675
908c7f19 3676 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3677 if (ret) {
3678 kfree(found);
3679 return ret;
3680 }
3681
c1895442 3682 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3683 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3684 init_rwsem(&found->groups_sem);
0f9dd46c 3685 spin_lock_init(&found->lock);
52ba6929 3686 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3687 found->total_bytes = total_bytes;
89a55897 3688 found->disk_total = total_bytes * factor;
593060d7 3689 found->bytes_used = bytes_used;
b742bb82 3690 found->disk_used = bytes_used * factor;
593060d7 3691 found->bytes_pinned = 0;
e8569813 3692 found->bytes_reserved = 0;
c146afad 3693 found->bytes_readonly = 0;
f0486c68 3694 found->bytes_may_use = 0;
2e6e5183
FM
3695 if (total_bytes > 0)
3696 found->full = 0;
3697 else
3698 found->full = 1;
0e4f8f88 3699 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3700 found->chunk_alloc = 0;
fdb5effd
JB
3701 found->flush = 0;
3702 init_waitqueue_head(&found->wait);
633c0aad 3703 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3704
3705 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3706 info->space_info_kobj, "%s",
3707 alloc_name(found->flags));
3708 if (ret) {
3709 kfree(found);
3710 return ret;
3711 }
3712
593060d7 3713 *space_info = found;
4184ea7f 3714 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3715 if (flags & BTRFS_BLOCK_GROUP_DATA)
3716 info->data_sinfo = found;
6ab0a202
JM
3717
3718 return ret;
593060d7
CM
3719}
3720
8790d502
CM
3721static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3722{
899c81ea
ID
3723 u64 extra_flags = chunk_to_extended(flags) &
3724 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3725
de98ced9 3726 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3727 if (flags & BTRFS_BLOCK_GROUP_DATA)
3728 fs_info->avail_data_alloc_bits |= extra_flags;
3729 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3730 fs_info->avail_metadata_alloc_bits |= extra_flags;
3731 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3732 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3733 write_sequnlock(&fs_info->profiles_lock);
8790d502 3734}
593060d7 3735
fc67c450
ID
3736/*
3737 * returns target flags in extended format or 0 if restripe for this
3738 * chunk_type is not in progress
c6664b42
ID
3739 *
3740 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3741 */
3742static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3743{
3744 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3745 u64 target = 0;
3746
fc67c450
ID
3747 if (!bctl)
3748 return 0;
3749
3750 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3751 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3752 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3753 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3754 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3755 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3756 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3757 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3758 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3759 }
3760
3761 return target;
3762}
3763
a46d11a8
ID
3764/*
3765 * @flags: available profiles in extended format (see ctree.h)
3766 *
e4d8ec0f
ID
3767 * Returns reduced profile in chunk format. If profile changing is in
3768 * progress (either running or paused) picks the target profile (if it's
3769 * already available), otherwise falls back to plain reducing.
a46d11a8 3770 */
48a3b636 3771static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3772{
95669976 3773 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3774 u64 target;
53b381b3 3775 u64 tmp;
a061fc8d 3776
fc67c450
ID
3777 /*
3778 * see if restripe for this chunk_type is in progress, if so
3779 * try to reduce to the target profile
3780 */
e4d8ec0f 3781 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3782 target = get_restripe_target(root->fs_info, flags);
3783 if (target) {
3784 /* pick target profile only if it's already available */
3785 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3786 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3787 return extended_to_chunk(target);
e4d8ec0f
ID
3788 }
3789 }
3790 spin_unlock(&root->fs_info->balance_lock);
3791
53b381b3 3792 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3793 if (num_devices == 1)
53b381b3
DW
3794 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3795 BTRFS_BLOCK_GROUP_RAID5);
3796 if (num_devices < 3)
3797 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3798 if (num_devices < 4)
3799 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3800
53b381b3
DW
3801 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3802 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3803 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3804 flags &= ~tmp;
ec44a35c 3805
53b381b3
DW
3806 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3807 tmp = BTRFS_BLOCK_GROUP_RAID6;
3808 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3809 tmp = BTRFS_BLOCK_GROUP_RAID5;
3810 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3811 tmp = BTRFS_BLOCK_GROUP_RAID10;
3812 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3813 tmp = BTRFS_BLOCK_GROUP_RAID1;
3814 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3815 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3816
53b381b3 3817 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3818}
3819
f8213bdc 3820static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3821{
de98ced9 3822 unsigned seq;
f8213bdc 3823 u64 flags;
de98ced9
MX
3824
3825 do {
f8213bdc 3826 flags = orig_flags;
de98ced9
MX
3827 seq = read_seqbegin(&root->fs_info->profiles_lock);
3828
3829 if (flags & BTRFS_BLOCK_GROUP_DATA)
3830 flags |= root->fs_info->avail_data_alloc_bits;
3831 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3832 flags |= root->fs_info->avail_system_alloc_bits;
3833 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3834 flags |= root->fs_info->avail_metadata_alloc_bits;
3835 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3836
b742bb82 3837 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3838}
3839
6d07bcec 3840u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3841{
b742bb82 3842 u64 flags;
53b381b3 3843 u64 ret;
9ed74f2d 3844
b742bb82
YZ
3845 if (data)
3846 flags = BTRFS_BLOCK_GROUP_DATA;
3847 else if (root == root->fs_info->chunk_root)
3848 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3849 else
b742bb82 3850 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3851
53b381b3
DW
3852 ret = get_alloc_profile(root, flags);
3853 return ret;
6a63209f 3854}
9ed74f2d 3855
6a63209f 3856/*
6a63209f
JB
3857 * This will check the space that the inode allocates from to make sure we have
3858 * enough space for bytes.
6a63209f 3859 */
e2d1f923 3860int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3861{
6a63209f 3862 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3863 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3864 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3865 u64 used;
94b947b2 3866 int ret = 0;
c99f1b0c
ZL
3867 int need_commit = 2;
3868 int have_pinned_space;
6a63209f 3869
6a63209f 3870 /* make sure bytes are sectorsize aligned */
fda2832f 3871 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3872
9dced186 3873 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3874 need_commit = 0;
9dced186 3875 ASSERT(current->journal_info);
0af3d00b
JB
3876 }
3877
b4d7c3c9 3878 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3879 if (!data_sinfo)
3880 goto alloc;
9ed74f2d 3881
6a63209f
JB
3882again:
3883 /* make sure we have enough space to handle the data first */
3884 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3885 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3886 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3887 data_sinfo->bytes_may_use;
ab6e2410
JB
3888
3889 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3890 struct btrfs_trans_handle *trans;
9ed74f2d 3891
6a63209f
JB
3892 /*
3893 * if we don't have enough free bytes in this space then we need
3894 * to alloc a new chunk.
3895 */
b9fd47cd 3896 if (!data_sinfo->full) {
6a63209f 3897 u64 alloc_target;
9ed74f2d 3898
0e4f8f88 3899 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3900 spin_unlock(&data_sinfo->lock);
33b4d47f 3901alloc:
6a63209f 3902 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3903 /*
3904 * It is ugly that we don't call nolock join
3905 * transaction for the free space inode case here.
3906 * But it is safe because we only do the data space
3907 * reservation for the free space cache in the
3908 * transaction context, the common join transaction
3909 * just increase the counter of the current transaction
3910 * handler, doesn't try to acquire the trans_lock of
3911 * the fs.
3912 */
7a7eaa40 3913 trans = btrfs_join_transaction(root);
a22285a6
YZ
3914 if (IS_ERR(trans))
3915 return PTR_ERR(trans);
9ed74f2d 3916
6a63209f 3917 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3918 alloc_target,
3919 CHUNK_ALLOC_NO_FORCE);
6a63209f 3920 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3921 if (ret < 0) {
3922 if (ret != -ENOSPC)
3923 return ret;
c99f1b0c
ZL
3924 else {
3925 have_pinned_space = 1;
d52a5b5f 3926 goto commit_trans;
c99f1b0c 3927 }
d52a5b5f 3928 }
9ed74f2d 3929
b4d7c3c9
LZ
3930 if (!data_sinfo)
3931 data_sinfo = fs_info->data_sinfo;
3932
6a63209f
JB
3933 goto again;
3934 }
f2bb8f5c
JB
3935
3936 /*
b150a4f1 3937 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3938 * allocation, and no removed chunk in current transaction,
3939 * don't bother committing the transaction.
f2bb8f5c 3940 */
c99f1b0c
ZL
3941 have_pinned_space = percpu_counter_compare(
3942 &data_sinfo->total_bytes_pinned,
3943 used + bytes - data_sinfo->total_bytes);
6a63209f 3944 spin_unlock(&data_sinfo->lock);
6a63209f 3945
4e06bdd6 3946 /* commit the current transaction and try again */
d52a5b5f 3947commit_trans:
c99f1b0c 3948 if (need_commit &&
a4abeea4 3949 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3950 need_commit--;
b150a4f1 3951
9a4e7276
ZL
3952 if (need_commit > 0)
3953 btrfs_wait_ordered_roots(fs_info, -1);
3954
7a7eaa40 3955 trans = btrfs_join_transaction(root);
a22285a6
YZ
3956 if (IS_ERR(trans))
3957 return PTR_ERR(trans);
c99f1b0c
ZL
3958 if (have_pinned_space >= 0 ||
3959 trans->transaction->have_free_bgs ||
3960 need_commit > 0) {
94b947b2
ZL
3961 ret = btrfs_commit_transaction(trans, root);
3962 if (ret)
3963 return ret;
d7c15171
ZL
3964 /*
3965 * make sure that all running delayed iput are
3966 * done
3967 */
3968 down_write(&root->fs_info->delayed_iput_sem);
3969 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
3970 goto again;
3971 } else {
3972 btrfs_end_transaction(trans, root);
3973 }
4e06bdd6 3974 }
9ed74f2d 3975
cab45e22
JM
3976 trace_btrfs_space_reservation(root->fs_info,
3977 "space_info:enospc",
3978 data_sinfo->flags, bytes, 1);
6a63209f
JB
3979 return -ENOSPC;
3980 }
e2d1f923 3981 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
3982 if (ret)
3983 goto out;
6a63209f 3984 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 3985 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3986 data_sinfo->flags, bytes, 1);
237c0e9f 3987out:
6a63209f 3988 spin_unlock(&data_sinfo->lock);
6a63209f 3989
237c0e9f 3990 return ret;
9ed74f2d 3991}
6a63209f 3992
6a63209f 3993/*
fb25e914 3994 * Called if we need to clear a data reservation for this inode.
6a63209f 3995 */
0ca1f7ce 3996void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 3997{
0ca1f7ce 3998 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 3999 struct btrfs_space_info *data_sinfo;
e3ccfa98 4000
6a63209f 4001 /* make sure bytes are sectorsize aligned */
fda2832f 4002 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4003
b4d7c3c9 4004 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4005 spin_lock(&data_sinfo->lock);
7ee9e440 4006 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4007 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4008 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4009 data_sinfo->flags, bytes, 0);
6a63209f 4010 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4011}
4012
97e728d4 4013static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4014{
97e728d4
JB
4015 struct list_head *head = &info->space_info;
4016 struct btrfs_space_info *found;
e3ccfa98 4017
97e728d4
JB
4018 rcu_read_lock();
4019 list_for_each_entry_rcu(found, head, list) {
4020 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4021 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4022 }
97e728d4 4023 rcu_read_unlock();
e3ccfa98
JB
4024}
4025
3c76cd84
MX
4026static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4027{
4028 return (global->size << 1);
4029}
4030
e5bc2458 4031static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4032 struct btrfs_space_info *sinfo, int force)
32c00aff 4033{
fb25e914 4034 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4035 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4036 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4037 u64 thresh;
e3ccfa98 4038
0e4f8f88
CM
4039 if (force == CHUNK_ALLOC_FORCE)
4040 return 1;
4041
fb25e914
JB
4042 /*
4043 * We need to take into account the global rsv because for all intents
4044 * and purposes it's used space. Don't worry about locking the
4045 * global_rsv, it doesn't change except when the transaction commits.
4046 */
54338b5c 4047 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4048 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4049
0e4f8f88
CM
4050 /*
4051 * in limited mode, we want to have some free space up to
4052 * about 1% of the FS size.
4053 */
4054 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4055 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4056 thresh = max_t(u64, 64 * 1024 * 1024,
4057 div_factor_fine(thresh, 1));
4058
4059 if (num_bytes - num_allocated < thresh)
4060 return 1;
4061 }
0e4f8f88 4062
698d0082 4063 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4064 return 0;
424499db 4065 return 1;
32c00aff
JB
4066}
4067
39c2d7fa 4068static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4069{
4070 u64 num_dev;
4071
53b381b3
DW
4072 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4073 BTRFS_BLOCK_GROUP_RAID0 |
4074 BTRFS_BLOCK_GROUP_RAID5 |
4075 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4076 num_dev = root->fs_info->fs_devices->rw_devices;
4077 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4078 num_dev = 2;
4079 else
4080 num_dev = 1; /* DUP or single */
4081
39c2d7fa 4082 return num_dev;
15d1ff81
LB
4083}
4084
39c2d7fa
FM
4085/*
4086 * If @is_allocation is true, reserve space in the system space info necessary
4087 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4088 * removing a chunk.
4089 */
4090void check_system_chunk(struct btrfs_trans_handle *trans,
4091 struct btrfs_root *root,
4617ea3a 4092 u64 type)
15d1ff81
LB
4093{
4094 struct btrfs_space_info *info;
4095 u64 left;
4096 u64 thresh;
4fbcdf66 4097 int ret = 0;
39c2d7fa 4098 u64 num_devs;
4fbcdf66
FM
4099
4100 /*
4101 * Needed because we can end up allocating a system chunk and for an
4102 * atomic and race free space reservation in the chunk block reserve.
4103 */
4104 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4105
4106 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4107 spin_lock(&info->lock);
4108 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4109 info->bytes_reserved - info->bytes_readonly -
4110 info->bytes_may_use;
15d1ff81
LB
4111 spin_unlock(&info->lock);
4112
39c2d7fa
FM
4113 num_devs = get_profile_num_devs(root, type);
4114
4115 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4116 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4117 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4118
15d1ff81 4119 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4120 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4121 left, thresh, type);
15d1ff81
LB
4122 dump_space_info(info, 0, 0);
4123 }
4124
4125 if (left < thresh) {
4126 u64 flags;
4127
4128 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4129 /*
4130 * Ignore failure to create system chunk. We might end up not
4131 * needing it, as we might not need to COW all nodes/leafs from
4132 * the paths we visit in the chunk tree (they were already COWed
4133 * or created in the current transaction for example).
4134 */
4135 ret = btrfs_alloc_chunk(trans, root, flags);
4136 }
4137
4138 if (!ret) {
4139 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4140 &root->fs_info->chunk_block_rsv,
4141 thresh, BTRFS_RESERVE_NO_FLUSH);
4142 if (!ret)
4143 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4144 }
4145}
4146
6324fbf3 4147static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4148 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4149{
6324fbf3 4150 struct btrfs_space_info *space_info;
97e728d4 4151 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4152 int wait_for_alloc = 0;
9ed74f2d 4153 int ret = 0;
9ed74f2d 4154
c6b305a8
JB
4155 /* Don't re-enter if we're already allocating a chunk */
4156 if (trans->allocating_chunk)
4157 return -ENOSPC;
4158
6324fbf3 4159 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4160 if (!space_info) {
4161 ret = update_space_info(extent_root->fs_info, flags,
4162 0, 0, &space_info);
79787eaa 4163 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4164 }
79787eaa 4165 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4166
6d74119f 4167again:
25179201 4168 spin_lock(&space_info->lock);
9e622d6b 4169 if (force < space_info->force_alloc)
0e4f8f88 4170 force = space_info->force_alloc;
25179201 4171 if (space_info->full) {
09fb99a6
FDBM
4172 if (should_alloc_chunk(extent_root, space_info, force))
4173 ret = -ENOSPC;
4174 else
4175 ret = 0;
25179201 4176 spin_unlock(&space_info->lock);
09fb99a6 4177 return ret;
9ed74f2d
JB
4178 }
4179
698d0082 4180 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4181 spin_unlock(&space_info->lock);
6d74119f
JB
4182 return 0;
4183 } else if (space_info->chunk_alloc) {
4184 wait_for_alloc = 1;
4185 } else {
4186 space_info->chunk_alloc = 1;
9ed74f2d 4187 }
0e4f8f88 4188
25179201 4189 spin_unlock(&space_info->lock);
9ed74f2d 4190
6d74119f
JB
4191 mutex_lock(&fs_info->chunk_mutex);
4192
4193 /*
4194 * The chunk_mutex is held throughout the entirety of a chunk
4195 * allocation, so once we've acquired the chunk_mutex we know that the
4196 * other guy is done and we need to recheck and see if we should
4197 * allocate.
4198 */
4199 if (wait_for_alloc) {
4200 mutex_unlock(&fs_info->chunk_mutex);
4201 wait_for_alloc = 0;
4202 goto again;
4203 }
4204
c6b305a8
JB
4205 trans->allocating_chunk = true;
4206
67377734
JB
4207 /*
4208 * If we have mixed data/metadata chunks we want to make sure we keep
4209 * allocating mixed chunks instead of individual chunks.
4210 */
4211 if (btrfs_mixed_space_info(space_info))
4212 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4213
97e728d4
JB
4214 /*
4215 * if we're doing a data chunk, go ahead and make sure that
4216 * we keep a reasonable number of metadata chunks allocated in the
4217 * FS as well.
4218 */
9ed74f2d 4219 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4220 fs_info->data_chunk_allocations++;
4221 if (!(fs_info->data_chunk_allocations %
4222 fs_info->metadata_ratio))
4223 force_metadata_allocation(fs_info);
9ed74f2d
JB
4224 }
4225
15d1ff81
LB
4226 /*
4227 * Check if we have enough space in SYSTEM chunk because we may need
4228 * to update devices.
4229 */
4617ea3a 4230 check_system_chunk(trans, extent_root, flags);
15d1ff81 4231
2b82032c 4232 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4233 trans->allocating_chunk = false;
92b8e897 4234
9ed74f2d 4235 spin_lock(&space_info->lock);
a81cb9a2
AO
4236 if (ret < 0 && ret != -ENOSPC)
4237 goto out;
9ed74f2d 4238 if (ret)
6324fbf3 4239 space_info->full = 1;
424499db
YZ
4240 else
4241 ret = 1;
6d74119f 4242
0e4f8f88 4243 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4244out:
6d74119f 4245 space_info->chunk_alloc = 0;
9ed74f2d 4246 spin_unlock(&space_info->lock);
a25c75d5 4247 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4248 /*
4249 * When we allocate a new chunk we reserve space in the chunk block
4250 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4251 * add new nodes/leafs to it if we end up needing to do it when
4252 * inserting the chunk item and updating device items as part of the
4253 * second phase of chunk allocation, performed by
4254 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4255 * large number of new block groups to create in our transaction
4256 * handle's new_bgs list to avoid exhausting the chunk block reserve
4257 * in extreme cases - like having a single transaction create many new
4258 * block groups when starting to write out the free space caches of all
4259 * the block groups that were made dirty during the lifetime of the
4260 * transaction.
4261 */
4262 if (trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4263 btrfs_create_pending_block_groups(trans, trans->root);
4264 btrfs_trans_release_chunk_metadata(trans);
4265 }
0f9dd46c 4266 return ret;
6324fbf3 4267}
9ed74f2d 4268
a80c8dcf
JB
4269static int can_overcommit(struct btrfs_root *root,
4270 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4271 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4272{
96f1bb57 4273 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4274 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4275 u64 space_size;
a80c8dcf
JB
4276 u64 avail;
4277 u64 used;
4278
4279 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4280 space_info->bytes_pinned + space_info->bytes_readonly;
4281
96f1bb57
JB
4282 /*
4283 * We only want to allow over committing if we have lots of actual space
4284 * free, but if we don't have enough space to handle the global reserve
4285 * space then we could end up having a real enospc problem when trying
4286 * to allocate a chunk or some other such important allocation.
4287 */
3c76cd84
MX
4288 spin_lock(&global_rsv->lock);
4289 space_size = calc_global_rsv_need_space(global_rsv);
4290 spin_unlock(&global_rsv->lock);
4291 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4292 return 0;
4293
4294 used += space_info->bytes_may_use;
a80c8dcf
JB
4295
4296 spin_lock(&root->fs_info->free_chunk_lock);
4297 avail = root->fs_info->free_chunk_space;
4298 spin_unlock(&root->fs_info->free_chunk_lock);
4299
4300 /*
4301 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4302 * space is actually useable. For raid56, the space info used
4303 * doesn't include the parity drive, so we don't have to
4304 * change the math
a80c8dcf
JB
4305 */
4306 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4307 BTRFS_BLOCK_GROUP_RAID1 |
4308 BTRFS_BLOCK_GROUP_RAID10))
4309 avail >>= 1;
4310
4311 /*
561c294d
MX
4312 * If we aren't flushing all things, let us overcommit up to
4313 * 1/2th of the space. If we can flush, don't let us overcommit
4314 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4315 */
08e007d2 4316 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4317 avail >>= 3;
a80c8dcf 4318 else
14575aef 4319 avail >>= 1;
a80c8dcf 4320
14575aef 4321 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4322 return 1;
4323 return 0;
4324}
4325
48a3b636 4326static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4327 unsigned long nr_pages, int nr_items)
da633a42
MX
4328{
4329 struct super_block *sb = root->fs_info->sb;
da633a42 4330
925a6efb
JB
4331 if (down_read_trylock(&sb->s_umount)) {
4332 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4333 up_read(&sb->s_umount);
4334 } else {
da633a42
MX
4335 /*
4336 * We needn't worry the filesystem going from r/w to r/o though
4337 * we don't acquire ->s_umount mutex, because the filesystem
4338 * should guarantee the delalloc inodes list be empty after
4339 * the filesystem is readonly(all dirty pages are written to
4340 * the disk).
4341 */
6c255e67 4342 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4343 if (!current->journal_info)
6c255e67 4344 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4345 }
4346}
4347
18cd8ea6
MX
4348static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4349{
4350 u64 bytes;
4351 int nr;
4352
4353 bytes = btrfs_calc_trans_metadata_size(root, 1);
4354 nr = (int)div64_u64(to_reclaim, bytes);
4355 if (!nr)
4356 nr = 1;
4357 return nr;
4358}
4359
c61a16a7
MX
4360#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4361
9ed74f2d 4362/*
5da9d01b 4363 * shrink metadata reservation for delalloc
9ed74f2d 4364 */
f4c738c2
JB
4365static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4366 bool wait_ordered)
5da9d01b 4367{
0ca1f7ce 4368 struct btrfs_block_rsv *block_rsv;
0019f10d 4369 struct btrfs_space_info *space_info;
663350ac 4370 struct btrfs_trans_handle *trans;
f4c738c2 4371 u64 delalloc_bytes;
5da9d01b 4372 u64 max_reclaim;
b1953bce 4373 long time_left;
d3ee29e3
MX
4374 unsigned long nr_pages;
4375 int loops;
b0244199 4376 int items;
08e007d2 4377 enum btrfs_reserve_flush_enum flush;
5da9d01b 4378
c61a16a7 4379 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4380 items = calc_reclaim_items_nr(root, to_reclaim);
4381 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4382
663350ac 4383 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4384 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4385 space_info = block_rsv->space_info;
bf9022e0 4386
963d678b
MX
4387 delalloc_bytes = percpu_counter_sum_positive(
4388 &root->fs_info->delalloc_bytes);
f4c738c2 4389 if (delalloc_bytes == 0) {
fdb5effd 4390 if (trans)
f4c738c2 4391 return;
38c135af 4392 if (wait_ordered)
b0244199 4393 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4394 return;
fdb5effd
JB
4395 }
4396
d3ee29e3 4397 loops = 0;
f4c738c2
JB
4398 while (delalloc_bytes && loops < 3) {
4399 max_reclaim = min(delalloc_bytes, to_reclaim);
4400 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4401 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4402 /*
4403 * We need to wait for the async pages to actually start before
4404 * we do anything.
4405 */
9f3a074d
MX
4406 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4407 if (!max_reclaim)
4408 goto skip_async;
4409
4410 if (max_reclaim <= nr_pages)
4411 max_reclaim = 0;
4412 else
4413 max_reclaim -= nr_pages;
dea31f52 4414
9f3a074d
MX
4415 wait_event(root->fs_info->async_submit_wait,
4416 atomic_read(&root->fs_info->async_delalloc_pages) <=
4417 (int)max_reclaim);
4418skip_async:
08e007d2
MX
4419 if (!trans)
4420 flush = BTRFS_RESERVE_FLUSH_ALL;
4421 else
4422 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4423 spin_lock(&space_info->lock);
08e007d2 4424 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4425 spin_unlock(&space_info->lock);
4426 break;
4427 }
0019f10d 4428 spin_unlock(&space_info->lock);
5da9d01b 4429
36e39c40 4430 loops++;
f104d044 4431 if (wait_ordered && !trans) {
b0244199 4432 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4433 } else {
f4c738c2 4434 time_left = schedule_timeout_killable(1);
f104d044
JB
4435 if (time_left)
4436 break;
4437 }
963d678b
MX
4438 delalloc_bytes = percpu_counter_sum_positive(
4439 &root->fs_info->delalloc_bytes);
5da9d01b 4440 }
5da9d01b
YZ
4441}
4442
663350ac
JB
4443/**
4444 * maybe_commit_transaction - possibly commit the transaction if its ok to
4445 * @root - the root we're allocating for
4446 * @bytes - the number of bytes we want to reserve
4447 * @force - force the commit
8bb8ab2e 4448 *
663350ac
JB
4449 * This will check to make sure that committing the transaction will actually
4450 * get us somewhere and then commit the transaction if it does. Otherwise it
4451 * will return -ENOSPC.
8bb8ab2e 4452 */
663350ac
JB
4453static int may_commit_transaction(struct btrfs_root *root,
4454 struct btrfs_space_info *space_info,
4455 u64 bytes, int force)
4456{
4457 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4458 struct btrfs_trans_handle *trans;
4459
4460 trans = (struct btrfs_trans_handle *)current->journal_info;
4461 if (trans)
4462 return -EAGAIN;
4463
4464 if (force)
4465 goto commit;
4466
4467 /* See if there is enough pinned space to make this reservation */
b150a4f1 4468 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4469 bytes) >= 0)
663350ac 4470 goto commit;
663350ac
JB
4471
4472 /*
4473 * See if there is some space in the delayed insertion reservation for
4474 * this reservation.
4475 */
4476 if (space_info != delayed_rsv->space_info)
4477 return -ENOSPC;
4478
4479 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4480 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4481 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4482 spin_unlock(&delayed_rsv->lock);
4483 return -ENOSPC;
4484 }
4485 spin_unlock(&delayed_rsv->lock);
4486
4487commit:
4488 trans = btrfs_join_transaction(root);
4489 if (IS_ERR(trans))
4490 return -ENOSPC;
4491
4492 return btrfs_commit_transaction(trans, root);
4493}
4494
96c3f433 4495enum flush_state {
67b0fd63
JB
4496 FLUSH_DELAYED_ITEMS_NR = 1,
4497 FLUSH_DELAYED_ITEMS = 2,
4498 FLUSH_DELALLOC = 3,
4499 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4500 ALLOC_CHUNK = 5,
4501 COMMIT_TRANS = 6,
96c3f433
JB
4502};
4503
4504static int flush_space(struct btrfs_root *root,
4505 struct btrfs_space_info *space_info, u64 num_bytes,
4506 u64 orig_bytes, int state)
4507{
4508 struct btrfs_trans_handle *trans;
4509 int nr;
f4c738c2 4510 int ret = 0;
96c3f433
JB
4511
4512 switch (state) {
96c3f433
JB
4513 case FLUSH_DELAYED_ITEMS_NR:
4514 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4515 if (state == FLUSH_DELAYED_ITEMS_NR)
4516 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4517 else
96c3f433 4518 nr = -1;
18cd8ea6 4519
96c3f433
JB
4520 trans = btrfs_join_transaction(root);
4521 if (IS_ERR(trans)) {
4522 ret = PTR_ERR(trans);
4523 break;
4524 }
4525 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4526 btrfs_end_transaction(trans, root);
4527 break;
67b0fd63
JB
4528 case FLUSH_DELALLOC:
4529 case FLUSH_DELALLOC_WAIT:
24af7dd1 4530 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4531 state == FLUSH_DELALLOC_WAIT);
4532 break;
ea658bad
JB
4533 case ALLOC_CHUNK:
4534 trans = btrfs_join_transaction(root);
4535 if (IS_ERR(trans)) {
4536 ret = PTR_ERR(trans);
4537 break;
4538 }
4539 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4540 btrfs_get_alloc_profile(root, 0),
4541 CHUNK_ALLOC_NO_FORCE);
4542 btrfs_end_transaction(trans, root);
4543 if (ret == -ENOSPC)
4544 ret = 0;
4545 break;
96c3f433
JB
4546 case COMMIT_TRANS:
4547 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4548 break;
4549 default:
4550 ret = -ENOSPC;
4551 break;
4552 }
4553
4554 return ret;
4555}
21c7e756
MX
4556
4557static inline u64
4558btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4559 struct btrfs_space_info *space_info)
4560{
4561 u64 used;
4562 u64 expected;
4563 u64 to_reclaim;
4564
4565 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4566 16 * 1024 * 1024);
4567 spin_lock(&space_info->lock);
4568 if (can_overcommit(root, space_info, to_reclaim,
4569 BTRFS_RESERVE_FLUSH_ALL)) {
4570 to_reclaim = 0;
4571 goto out;
4572 }
4573
4574 used = space_info->bytes_used + space_info->bytes_reserved +
4575 space_info->bytes_pinned + space_info->bytes_readonly +
4576 space_info->bytes_may_use;
4577 if (can_overcommit(root, space_info, 1024 * 1024,
4578 BTRFS_RESERVE_FLUSH_ALL))
4579 expected = div_factor_fine(space_info->total_bytes, 95);
4580 else
4581 expected = div_factor_fine(space_info->total_bytes, 90);
4582
4583 if (used > expected)
4584 to_reclaim = used - expected;
4585 else
4586 to_reclaim = 0;
4587 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4588 space_info->bytes_reserved);
4589out:
4590 spin_unlock(&space_info->lock);
4591
4592 return to_reclaim;
4593}
4594
4595static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4596 struct btrfs_fs_info *fs_info, u64 used)
4597{
365c5313
JB
4598 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4599
4600 /* If we're just plain full then async reclaim just slows us down. */
4601 if (space_info->bytes_used >= thresh)
4602 return 0;
4603
4604 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4605 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4606}
4607
4608static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4609 struct btrfs_fs_info *fs_info,
4610 int flush_state)
21c7e756
MX
4611{
4612 u64 used;
4613
4614 spin_lock(&space_info->lock);
25ce459c
LB
4615 /*
4616 * We run out of space and have not got any free space via flush_space,
4617 * so don't bother doing async reclaim.
4618 */
4619 if (flush_state > COMMIT_TRANS && space_info->full) {
4620 spin_unlock(&space_info->lock);
4621 return 0;
4622 }
4623
21c7e756
MX
4624 used = space_info->bytes_used + space_info->bytes_reserved +
4625 space_info->bytes_pinned + space_info->bytes_readonly +
4626 space_info->bytes_may_use;
4627 if (need_do_async_reclaim(space_info, fs_info, used)) {
4628 spin_unlock(&space_info->lock);
4629 return 1;
4630 }
4631 spin_unlock(&space_info->lock);
4632
4633 return 0;
4634}
4635
4636static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4637{
4638 struct btrfs_fs_info *fs_info;
4639 struct btrfs_space_info *space_info;
4640 u64 to_reclaim;
4641 int flush_state;
4642
4643 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4644 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4645
4646 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4647 space_info);
4648 if (!to_reclaim)
4649 return;
4650
4651 flush_state = FLUSH_DELAYED_ITEMS_NR;
4652 do {
4653 flush_space(fs_info->fs_root, space_info, to_reclaim,
4654 to_reclaim, flush_state);
4655 flush_state++;
25ce459c
LB
4656 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4657 flush_state))
21c7e756 4658 return;
365c5313 4659 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4660}
4661
4662void btrfs_init_async_reclaim_work(struct work_struct *work)
4663{
4664 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4665}
4666
4a92b1b8
JB
4667/**
4668 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4669 * @root - the root we're allocating for
4670 * @block_rsv - the block_rsv we're allocating for
4671 * @orig_bytes - the number of bytes we want
48fc7f7e 4672 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4673 *
4a92b1b8
JB
4674 * This will reserve orgi_bytes number of bytes from the space info associated
4675 * with the block_rsv. If there is not enough space it will make an attempt to
4676 * flush out space to make room. It will do this by flushing delalloc if
4677 * possible or committing the transaction. If flush is 0 then no attempts to
4678 * regain reservations will be made and this will fail if there is not enough
4679 * space already.
8bb8ab2e 4680 */
4a92b1b8 4681static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4682 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4683 u64 orig_bytes,
4684 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4685{
f0486c68 4686 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4687 u64 used;
8bb8ab2e 4688 u64 num_bytes = orig_bytes;
67b0fd63 4689 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4690 int ret = 0;
fdb5effd 4691 bool flushing = false;
9ed74f2d 4692
8bb8ab2e 4693again:
fdb5effd 4694 ret = 0;
8bb8ab2e 4695 spin_lock(&space_info->lock);
fdb5effd 4696 /*
08e007d2
MX
4697 * We only want to wait if somebody other than us is flushing and we
4698 * are actually allowed to flush all things.
fdb5effd 4699 */
08e007d2
MX
4700 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4701 space_info->flush) {
fdb5effd
JB
4702 spin_unlock(&space_info->lock);
4703 /*
4704 * If we have a trans handle we can't wait because the flusher
4705 * may have to commit the transaction, which would mean we would
4706 * deadlock since we are waiting for the flusher to finish, but
4707 * hold the current transaction open.
4708 */
663350ac 4709 if (current->journal_info)
fdb5effd 4710 return -EAGAIN;
b9688bb8
AJ
4711 ret = wait_event_killable(space_info->wait, !space_info->flush);
4712 /* Must have been killed, return */
4713 if (ret)
fdb5effd
JB
4714 return -EINTR;
4715
4716 spin_lock(&space_info->lock);
4717 }
4718
4719 ret = -ENOSPC;
2bf64758
JB
4720 used = space_info->bytes_used + space_info->bytes_reserved +
4721 space_info->bytes_pinned + space_info->bytes_readonly +
4722 space_info->bytes_may_use;
9ed74f2d 4723
8bb8ab2e
JB
4724 /*
4725 * The idea here is that we've not already over-reserved the block group
4726 * then we can go ahead and save our reservation first and then start
4727 * flushing if we need to. Otherwise if we've already overcommitted
4728 * lets start flushing stuff first and then come back and try to make
4729 * our reservation.
4730 */
2bf64758
JB
4731 if (used <= space_info->total_bytes) {
4732 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4733 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4734 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4735 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4736 ret = 0;
4737 } else {
4738 /*
4739 * Ok set num_bytes to orig_bytes since we aren't
4740 * overocmmitted, this way we only try and reclaim what
4741 * we need.
4742 */
4743 num_bytes = orig_bytes;
4744 }
4745 } else {
4746 /*
4747 * Ok we're over committed, set num_bytes to the overcommitted
4748 * amount plus the amount of bytes that we need for this
4749 * reservation.
4750 */
2bf64758 4751 num_bytes = used - space_info->total_bytes +
96c3f433 4752 (orig_bytes * 2);
8bb8ab2e 4753 }
9ed74f2d 4754
44734ed1
JB
4755 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4756 space_info->bytes_may_use += orig_bytes;
4757 trace_btrfs_space_reservation(root->fs_info, "space_info",
4758 space_info->flags, orig_bytes,
4759 1);
4760 ret = 0;
2bf64758
JB
4761 }
4762
8bb8ab2e
JB
4763 /*
4764 * Couldn't make our reservation, save our place so while we're trying
4765 * to reclaim space we can actually use it instead of somebody else
4766 * stealing it from us.
08e007d2
MX
4767 *
4768 * We make the other tasks wait for the flush only when we can flush
4769 * all things.
8bb8ab2e 4770 */
72bcd99d 4771 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4772 flushing = true;
4773 space_info->flush = 1;
21c7e756
MX
4774 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4775 used += orig_bytes;
f6acfd50
JB
4776 /*
4777 * We will do the space reservation dance during log replay,
4778 * which means we won't have fs_info->fs_root set, so don't do
4779 * the async reclaim as we will panic.
4780 */
4781 if (!root->fs_info->log_root_recovering &&
4782 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4783 !work_busy(&root->fs_info->async_reclaim_work))
4784 queue_work(system_unbound_wq,
4785 &root->fs_info->async_reclaim_work);
8bb8ab2e 4786 }
f0486c68 4787 spin_unlock(&space_info->lock);
9ed74f2d 4788
08e007d2 4789 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4790 goto out;
f0486c68 4791
96c3f433
JB
4792 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4793 flush_state);
4794 flush_state++;
08e007d2
MX
4795
4796 /*
4797 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4798 * would happen. So skip delalloc flush.
4799 */
4800 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4801 (flush_state == FLUSH_DELALLOC ||
4802 flush_state == FLUSH_DELALLOC_WAIT))
4803 flush_state = ALLOC_CHUNK;
4804
96c3f433 4805 if (!ret)
8bb8ab2e 4806 goto again;
08e007d2
MX
4807 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4808 flush_state < COMMIT_TRANS)
4809 goto again;
4810 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4811 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4812 goto again;
4813
4814out:
5d80366e
JB
4815 if (ret == -ENOSPC &&
4816 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4817 struct btrfs_block_rsv *global_rsv =
4818 &root->fs_info->global_block_rsv;
4819
4820 if (block_rsv != global_rsv &&
4821 !block_rsv_use_bytes(global_rsv, orig_bytes))
4822 ret = 0;
4823 }
cab45e22
JM
4824 if (ret == -ENOSPC)
4825 trace_btrfs_space_reservation(root->fs_info,
4826 "space_info:enospc",
4827 space_info->flags, orig_bytes, 1);
fdb5effd 4828 if (flushing) {
8bb8ab2e 4829 spin_lock(&space_info->lock);
fdb5effd
JB
4830 space_info->flush = 0;
4831 wake_up_all(&space_info->wait);
8bb8ab2e 4832 spin_unlock(&space_info->lock);
f0486c68 4833 }
f0486c68
YZ
4834 return ret;
4835}
4836
79787eaa
JM
4837static struct btrfs_block_rsv *get_block_rsv(
4838 const struct btrfs_trans_handle *trans,
4839 const struct btrfs_root *root)
f0486c68 4840{
4c13d758
JB
4841 struct btrfs_block_rsv *block_rsv = NULL;
4842
27cdeb70 4843 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4844 block_rsv = trans->block_rsv;
4845
4846 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4847 block_rsv = trans->block_rsv;
4c13d758 4848
f7a81ea4
SB
4849 if (root == root->fs_info->uuid_root)
4850 block_rsv = trans->block_rsv;
4851
4c13d758 4852 if (!block_rsv)
f0486c68
YZ
4853 block_rsv = root->block_rsv;
4854
4855 if (!block_rsv)
4856 block_rsv = &root->fs_info->empty_block_rsv;
4857
4858 return block_rsv;
4859}
4860
4861static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4862 u64 num_bytes)
4863{
4864 int ret = -ENOSPC;
4865 spin_lock(&block_rsv->lock);
4866 if (block_rsv->reserved >= num_bytes) {
4867 block_rsv->reserved -= num_bytes;
4868 if (block_rsv->reserved < block_rsv->size)
4869 block_rsv->full = 0;
4870 ret = 0;
4871 }
4872 spin_unlock(&block_rsv->lock);
4873 return ret;
4874}
4875
4876static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4877 u64 num_bytes, int update_size)
4878{
4879 spin_lock(&block_rsv->lock);
4880 block_rsv->reserved += num_bytes;
4881 if (update_size)
4882 block_rsv->size += num_bytes;
4883 else if (block_rsv->reserved >= block_rsv->size)
4884 block_rsv->full = 1;
4885 spin_unlock(&block_rsv->lock);
4886}
4887
d52be818
JB
4888int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4889 struct btrfs_block_rsv *dest, u64 num_bytes,
4890 int min_factor)
4891{
4892 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4893 u64 min_bytes;
4894
4895 if (global_rsv->space_info != dest->space_info)
4896 return -ENOSPC;
4897
4898 spin_lock(&global_rsv->lock);
4899 min_bytes = div_factor(global_rsv->size, min_factor);
4900 if (global_rsv->reserved < min_bytes + num_bytes) {
4901 spin_unlock(&global_rsv->lock);
4902 return -ENOSPC;
4903 }
4904 global_rsv->reserved -= num_bytes;
4905 if (global_rsv->reserved < global_rsv->size)
4906 global_rsv->full = 0;
4907 spin_unlock(&global_rsv->lock);
4908
4909 block_rsv_add_bytes(dest, num_bytes, 1);
4910 return 0;
4911}
4912
8c2a3ca2
JB
4913static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4914 struct btrfs_block_rsv *block_rsv,
62a45b60 4915 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4916{
4917 struct btrfs_space_info *space_info = block_rsv->space_info;
4918
4919 spin_lock(&block_rsv->lock);
4920 if (num_bytes == (u64)-1)
4921 num_bytes = block_rsv->size;
4922 block_rsv->size -= num_bytes;
4923 if (block_rsv->reserved >= block_rsv->size) {
4924 num_bytes = block_rsv->reserved - block_rsv->size;
4925 block_rsv->reserved = block_rsv->size;
4926 block_rsv->full = 1;
4927 } else {
4928 num_bytes = 0;
4929 }
4930 spin_unlock(&block_rsv->lock);
4931
4932 if (num_bytes > 0) {
4933 if (dest) {
e9e22899
JB
4934 spin_lock(&dest->lock);
4935 if (!dest->full) {
4936 u64 bytes_to_add;
4937
4938 bytes_to_add = dest->size - dest->reserved;
4939 bytes_to_add = min(num_bytes, bytes_to_add);
4940 dest->reserved += bytes_to_add;
4941 if (dest->reserved >= dest->size)
4942 dest->full = 1;
4943 num_bytes -= bytes_to_add;
4944 }
4945 spin_unlock(&dest->lock);
4946 }
4947 if (num_bytes) {
f0486c68 4948 spin_lock(&space_info->lock);
fb25e914 4949 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4950 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4951 space_info->flags, num_bytes, 0);
f0486c68 4952 spin_unlock(&space_info->lock);
4e06bdd6 4953 }
9ed74f2d 4954 }
f0486c68 4955}
4e06bdd6 4956
f0486c68
YZ
4957static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4958 struct btrfs_block_rsv *dst, u64 num_bytes)
4959{
4960 int ret;
9ed74f2d 4961
f0486c68
YZ
4962 ret = block_rsv_use_bytes(src, num_bytes);
4963 if (ret)
4964 return ret;
9ed74f2d 4965
f0486c68 4966 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
4967 return 0;
4968}
4969
66d8f3dd 4970void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 4971{
f0486c68
YZ
4972 memset(rsv, 0, sizeof(*rsv));
4973 spin_lock_init(&rsv->lock);
66d8f3dd 4974 rsv->type = type;
f0486c68
YZ
4975}
4976
66d8f3dd
MX
4977struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4978 unsigned short type)
f0486c68
YZ
4979{
4980 struct btrfs_block_rsv *block_rsv;
4981 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 4982
f0486c68
YZ
4983 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4984 if (!block_rsv)
4985 return NULL;
9ed74f2d 4986
66d8f3dd 4987 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
4988 block_rsv->space_info = __find_space_info(fs_info,
4989 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
4990 return block_rsv;
4991}
9ed74f2d 4992
f0486c68
YZ
4993void btrfs_free_block_rsv(struct btrfs_root *root,
4994 struct btrfs_block_rsv *rsv)
4995{
2aaa6655
JB
4996 if (!rsv)
4997 return;
dabdb640
JB
4998 btrfs_block_rsv_release(root, rsv, (u64)-1);
4999 kfree(rsv);
9ed74f2d
JB
5000}
5001
cdfb080e
CM
5002void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5003{
5004 kfree(rsv);
5005}
5006
08e007d2
MX
5007int btrfs_block_rsv_add(struct btrfs_root *root,
5008 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5009 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5010{
f0486c68 5011 int ret;
9ed74f2d 5012
f0486c68
YZ
5013 if (num_bytes == 0)
5014 return 0;
8bb8ab2e 5015
61b520a9 5016 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5017 if (!ret) {
5018 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5019 return 0;
5020 }
9ed74f2d 5021
f0486c68 5022 return ret;
f0486c68 5023}
9ed74f2d 5024
4a92b1b8 5025int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5026 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5027{
5028 u64 num_bytes = 0;
f0486c68 5029 int ret = -ENOSPC;
9ed74f2d 5030
f0486c68
YZ
5031 if (!block_rsv)
5032 return 0;
9ed74f2d 5033
f0486c68 5034 spin_lock(&block_rsv->lock);
36ba022a
JB
5035 num_bytes = div_factor(block_rsv->size, min_factor);
5036 if (block_rsv->reserved >= num_bytes)
5037 ret = 0;
5038 spin_unlock(&block_rsv->lock);
9ed74f2d 5039
36ba022a
JB
5040 return ret;
5041}
5042
08e007d2
MX
5043int btrfs_block_rsv_refill(struct btrfs_root *root,
5044 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5045 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5046{
5047 u64 num_bytes = 0;
5048 int ret = -ENOSPC;
5049
5050 if (!block_rsv)
5051 return 0;
5052
5053 spin_lock(&block_rsv->lock);
5054 num_bytes = min_reserved;
13553e52 5055 if (block_rsv->reserved >= num_bytes)
f0486c68 5056 ret = 0;
13553e52 5057 else
f0486c68 5058 num_bytes -= block_rsv->reserved;
f0486c68 5059 spin_unlock(&block_rsv->lock);
13553e52 5060
f0486c68
YZ
5061 if (!ret)
5062 return 0;
5063
aa38a711 5064 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5065 if (!ret) {
5066 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5067 return 0;
6a63209f 5068 }
9ed74f2d 5069
13553e52 5070 return ret;
f0486c68
YZ
5071}
5072
5073int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5074 struct btrfs_block_rsv *dst_rsv,
5075 u64 num_bytes)
5076{
5077 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5078}
5079
5080void btrfs_block_rsv_release(struct btrfs_root *root,
5081 struct btrfs_block_rsv *block_rsv,
5082 u64 num_bytes)
5083{
5084 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5085 if (global_rsv == block_rsv ||
f0486c68
YZ
5086 block_rsv->space_info != global_rsv->space_info)
5087 global_rsv = NULL;
8c2a3ca2
JB
5088 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5089 num_bytes);
6a63209f
JB
5090}
5091
5092/*
8929ecfa
YZ
5093 * helper to calculate size of global block reservation.
5094 * the desired value is sum of space used by extent tree,
5095 * checksum tree and root tree
6a63209f 5096 */
8929ecfa 5097static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5098{
8929ecfa
YZ
5099 struct btrfs_space_info *sinfo;
5100 u64 num_bytes;
5101 u64 meta_used;
5102 u64 data_used;
6c41761f 5103 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5104
8929ecfa
YZ
5105 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5106 spin_lock(&sinfo->lock);
5107 data_used = sinfo->bytes_used;
5108 spin_unlock(&sinfo->lock);
33b4d47f 5109
8929ecfa
YZ
5110 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5111 spin_lock(&sinfo->lock);
6d48755d
JB
5112 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5113 data_used = 0;
8929ecfa
YZ
5114 meta_used = sinfo->bytes_used;
5115 spin_unlock(&sinfo->lock);
ab6e2410 5116
8929ecfa
YZ
5117 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5118 csum_size * 2;
f8c269d7 5119 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5120
8929ecfa 5121 if (num_bytes * 3 > meta_used)
f8c269d7 5122 num_bytes = div_u64(meta_used, 3);
ab6e2410 5123
707e8a07 5124 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5125}
6a63209f 5126
8929ecfa
YZ
5127static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5128{
5129 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5130 struct btrfs_space_info *sinfo = block_rsv->space_info;
5131 u64 num_bytes;
6a63209f 5132
8929ecfa 5133 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5134
8929ecfa 5135 spin_lock(&sinfo->lock);
1f699d38 5136 spin_lock(&block_rsv->lock);
4e06bdd6 5137
fdf30d1c 5138 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5139
8929ecfa 5140 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5141 sinfo->bytes_reserved + sinfo->bytes_readonly +
5142 sinfo->bytes_may_use;
8929ecfa
YZ
5143
5144 if (sinfo->total_bytes > num_bytes) {
5145 num_bytes = sinfo->total_bytes - num_bytes;
5146 block_rsv->reserved += num_bytes;
fb25e914 5147 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5148 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5149 sinfo->flags, num_bytes, 1);
6a63209f 5150 }
6a63209f 5151
8929ecfa
YZ
5152 if (block_rsv->reserved >= block_rsv->size) {
5153 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5154 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5155 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5156 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5157 block_rsv->reserved = block_rsv->size;
5158 block_rsv->full = 1;
5159 }
182608c8 5160
8929ecfa 5161 spin_unlock(&block_rsv->lock);
1f699d38 5162 spin_unlock(&sinfo->lock);
6a63209f
JB
5163}
5164
f0486c68 5165static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5166{
f0486c68 5167 struct btrfs_space_info *space_info;
6a63209f 5168
f0486c68
YZ
5169 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5170 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5171
f0486c68 5172 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5173 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5174 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5175 fs_info->trans_block_rsv.space_info = space_info;
5176 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5177 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5178
8929ecfa
YZ
5179 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5180 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5181 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5182 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5183 if (fs_info->quota_root)
5184 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5185 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5186
8929ecfa 5187 update_global_block_rsv(fs_info);
6a63209f
JB
5188}
5189
8929ecfa 5190static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5191{
8c2a3ca2
JB
5192 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5193 (u64)-1);
8929ecfa
YZ
5194 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5195 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5196 WARN_ON(fs_info->trans_block_rsv.size > 0);
5197 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5198 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5199 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5200 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5201 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5202}
5203
a22285a6
YZ
5204void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5205 struct btrfs_root *root)
6a63209f 5206{
0e721106
JB
5207 if (!trans->block_rsv)
5208 return;
5209
a22285a6
YZ
5210 if (!trans->bytes_reserved)
5211 return;
6a63209f 5212
e77266e4 5213 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5214 trans->transid, trans->bytes_reserved, 0);
b24e03db 5215 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5216 trans->bytes_reserved = 0;
5217}
6a63209f 5218
4fbcdf66
FM
5219/*
5220 * To be called after all the new block groups attached to the transaction
5221 * handle have been created (btrfs_create_pending_block_groups()).
5222 */
5223void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5224{
5225 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5226
5227 if (!trans->chunk_bytes_reserved)
5228 return;
5229
5230 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5231
5232 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5233 trans->chunk_bytes_reserved);
5234 trans->chunk_bytes_reserved = 0;
5235}
5236
79787eaa 5237/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5238int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5239 struct inode *inode)
5240{
5241 struct btrfs_root *root = BTRFS_I(inode)->root;
5242 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5243 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5244
5245 /*
fcb80c2a
JB
5246 * We need to hold space in order to delete our orphan item once we've
5247 * added it, so this takes the reservation so we can release it later
5248 * when we are truly done with the orphan item.
d68fc57b 5249 */
ff5714cc 5250 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5251 trace_btrfs_space_reservation(root->fs_info, "orphan",
5252 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5253 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5254}
5255
d68fc57b 5256void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5257{
d68fc57b 5258 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5259 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5260 trace_btrfs_space_reservation(root->fs_info, "orphan",
5261 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5262 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5263}
97e728d4 5264
d5c12070
MX
5265/*
5266 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5267 * root: the root of the parent directory
5268 * rsv: block reservation
5269 * items: the number of items that we need do reservation
5270 * qgroup_reserved: used to return the reserved size in qgroup
5271 *
5272 * This function is used to reserve the space for snapshot/subvolume
5273 * creation and deletion. Those operations are different with the
5274 * common file/directory operations, they change two fs/file trees
5275 * and root tree, the number of items that the qgroup reserves is
5276 * different with the free space reservation. So we can not use
5277 * the space reseravtion mechanism in start_transaction().
5278 */
5279int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5280 struct btrfs_block_rsv *rsv,
5281 int items,
ee3441b4
JM
5282 u64 *qgroup_reserved,
5283 bool use_global_rsv)
a22285a6 5284{
d5c12070
MX
5285 u64 num_bytes;
5286 int ret;
ee3441b4 5287 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5288
5289 if (root->fs_info->quota_enabled) {
5290 /* One for parent inode, two for dir entries */
707e8a07 5291 num_bytes = 3 * root->nodesize;
d5c12070
MX
5292 ret = btrfs_qgroup_reserve(root, num_bytes);
5293 if (ret)
5294 return ret;
5295 } else {
5296 num_bytes = 0;
5297 }
5298
5299 *qgroup_reserved = num_bytes;
5300
5301 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5302 rsv->space_info = __find_space_info(root->fs_info,
5303 BTRFS_BLOCK_GROUP_METADATA);
5304 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5305 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5306
5307 if (ret == -ENOSPC && use_global_rsv)
5308 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5309
d5c12070
MX
5310 if (ret) {
5311 if (*qgroup_reserved)
5312 btrfs_qgroup_free(root, *qgroup_reserved);
5313 }
5314
5315 return ret;
5316}
5317
5318void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5319 struct btrfs_block_rsv *rsv,
5320 u64 qgroup_reserved)
5321{
5322 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5323}
5324
7709cde3
JB
5325/**
5326 * drop_outstanding_extent - drop an outstanding extent
5327 * @inode: the inode we're dropping the extent for
dcab6a3b 5328 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5329 *
5330 * This is called when we are freeing up an outstanding extent, either called
5331 * after an error or after an extent is written. This will return the number of
5332 * reserved extents that need to be freed. This must be called with
5333 * BTRFS_I(inode)->lock held.
5334 */
dcab6a3b 5335static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5336{
7fd2ae21 5337 unsigned drop_inode_space = 0;
9e0baf60 5338 unsigned dropped_extents = 0;
dcab6a3b 5339 unsigned num_extents = 0;
9e0baf60 5340
dcab6a3b
JB
5341 num_extents = (unsigned)div64_u64(num_bytes +
5342 BTRFS_MAX_EXTENT_SIZE - 1,
5343 BTRFS_MAX_EXTENT_SIZE);
5344 ASSERT(num_extents);
5345 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5346 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5347
7fd2ae21 5348 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5349 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5350 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5351 drop_inode_space = 1;
7fd2ae21 5352
9e0baf60
JB
5353 /*
5354 * If we have more or the same amount of outsanding extents than we have
5355 * reserved then we need to leave the reserved extents count alone.
5356 */
5357 if (BTRFS_I(inode)->outstanding_extents >=
5358 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5359 return drop_inode_space;
9e0baf60
JB
5360
5361 dropped_extents = BTRFS_I(inode)->reserved_extents -
5362 BTRFS_I(inode)->outstanding_extents;
5363 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5364 return dropped_extents + drop_inode_space;
9e0baf60
JB
5365}
5366
7709cde3
JB
5367/**
5368 * calc_csum_metadata_size - return the amount of metada space that must be
5369 * reserved/free'd for the given bytes.
5370 * @inode: the inode we're manipulating
5371 * @num_bytes: the number of bytes in question
5372 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5373 *
5374 * This adjusts the number of csum_bytes in the inode and then returns the
5375 * correct amount of metadata that must either be reserved or freed. We
5376 * calculate how many checksums we can fit into one leaf and then divide the
5377 * number of bytes that will need to be checksumed by this value to figure out
5378 * how many checksums will be required. If we are adding bytes then the number
5379 * may go up and we will return the number of additional bytes that must be
5380 * reserved. If it is going down we will return the number of bytes that must
5381 * be freed.
5382 *
5383 * This must be called with BTRFS_I(inode)->lock held.
5384 */
5385static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5386 int reserve)
6324fbf3 5387{
7709cde3 5388 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5389 u64 old_csums, num_csums;
7709cde3
JB
5390
5391 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5392 BTRFS_I(inode)->csum_bytes == 0)
5393 return 0;
5394
28f75a0e 5395 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5396 if (reserve)
5397 BTRFS_I(inode)->csum_bytes += num_bytes;
5398 else
5399 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5400 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5401
5402 /* No change, no need to reserve more */
5403 if (old_csums == num_csums)
5404 return 0;
5405
5406 if (reserve)
5407 return btrfs_calc_trans_metadata_size(root,
5408 num_csums - old_csums);
5409
5410 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5411}
c146afad 5412
0ca1f7ce
YZ
5413int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5414{
5415 struct btrfs_root *root = BTRFS_I(inode)->root;
5416 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5417 u64 to_reserve = 0;
660d3f6c 5418 u64 csum_bytes;
9e0baf60 5419 unsigned nr_extents = 0;
660d3f6c 5420 int extra_reserve = 0;
08e007d2 5421 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5422 int ret = 0;
c64c2bd8 5423 bool delalloc_lock = true;
88e081bf
WS
5424 u64 to_free = 0;
5425 unsigned dropped;
6324fbf3 5426
c64c2bd8
JB
5427 /* If we are a free space inode we need to not flush since we will be in
5428 * the middle of a transaction commit. We also don't need the delalloc
5429 * mutex since we won't race with anybody. We need this mostly to make
5430 * lockdep shut its filthy mouth.
5431 */
5432 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5433 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5434 delalloc_lock = false;
5435 }
c09544e0 5436
08e007d2
MX
5437 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5438 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5439 schedule_timeout(1);
ec44a35c 5440
c64c2bd8
JB
5441 if (delalloc_lock)
5442 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5443
0ca1f7ce 5444 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5445
9e0baf60 5446 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5447 nr_extents = (unsigned)div64_u64(num_bytes +
5448 BTRFS_MAX_EXTENT_SIZE - 1,
5449 BTRFS_MAX_EXTENT_SIZE);
5450 BTRFS_I(inode)->outstanding_extents += nr_extents;
5451 nr_extents = 0;
9e0baf60
JB
5452
5453 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5454 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5455 nr_extents = BTRFS_I(inode)->outstanding_extents -
5456 BTRFS_I(inode)->reserved_extents;
57a45ced 5457
7fd2ae21
JB
5458 /*
5459 * Add an item to reserve for updating the inode when we complete the
5460 * delalloc io.
5461 */
72ac3c0d
JB
5462 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5463 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5464 nr_extents++;
660d3f6c 5465 extra_reserve = 1;
593060d7 5466 }
7fd2ae21
JB
5467
5468 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5469 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5470 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5471 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5472
88e081bf 5473 if (root->fs_info->quota_enabled) {
237c0e9f 5474 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5475 if (ret)
5476 goto out_fail;
5477 }
c5567237 5478
88e081bf
WS
5479 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5480 if (unlikely(ret)) {
5481 if (root->fs_info->quota_enabled)
237c0e9f 5482 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5483 goto out_fail;
9e0baf60 5484 }
25179201 5485
660d3f6c
JB
5486 spin_lock(&BTRFS_I(inode)->lock);
5487 if (extra_reserve) {
72ac3c0d
JB
5488 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5489 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5490 nr_extents--;
5491 }
5492 BTRFS_I(inode)->reserved_extents += nr_extents;
5493 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5494
5495 if (delalloc_lock)
5496 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5497
8c2a3ca2 5498 if (to_reserve)
67871254 5499 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5500 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5501 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5502
0ca1f7ce 5503 return 0;
88e081bf
WS
5504
5505out_fail:
5506 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5507 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5508 /*
5509 * If the inodes csum_bytes is the same as the original
5510 * csum_bytes then we know we haven't raced with any free()ers
5511 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5512 */
f4881bc7 5513 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5514 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5515 } else {
5516 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5517 u64 bytes;
5518
5519 /*
5520 * This is tricky, but first we need to figure out how much we
5521 * free'd from any free-ers that occured during this
5522 * reservation, so we reset ->csum_bytes to the csum_bytes
5523 * before we dropped our lock, and then call the free for the
5524 * number of bytes that were freed while we were trying our
5525 * reservation.
5526 */
5527 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5528 BTRFS_I(inode)->csum_bytes = csum_bytes;
5529 to_free = calc_csum_metadata_size(inode, bytes, 0);
5530
5531
5532 /*
5533 * Now we need to see how much we would have freed had we not
5534 * been making this reservation and our ->csum_bytes were not
5535 * artificially inflated.
5536 */
5537 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5538 bytes = csum_bytes - orig_csum_bytes;
5539 bytes = calc_csum_metadata_size(inode, bytes, 0);
5540
5541 /*
5542 * Now reset ->csum_bytes to what it should be. If bytes is
5543 * more than to_free then we would have free'd more space had we
5544 * not had an artificially high ->csum_bytes, so we need to free
5545 * the remainder. If bytes is the same or less then we don't
5546 * need to do anything, the other free-ers did the correct
5547 * thing.
5548 */
5549 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5550 if (bytes > to_free)
5551 to_free = bytes - to_free;
5552 else
5553 to_free = 0;
5554 }
88e081bf 5555 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5556 if (dropped)
88e081bf
WS
5557 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5558
5559 if (to_free) {
5560 btrfs_block_rsv_release(root, block_rsv, to_free);
5561 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5562 btrfs_ino(inode), to_free, 0);
5563 }
5564 if (delalloc_lock)
5565 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5566 return ret;
0ca1f7ce
YZ
5567}
5568
7709cde3
JB
5569/**
5570 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5571 * @inode: the inode to release the reservation for
5572 * @num_bytes: the number of bytes we're releasing
5573 *
5574 * This will release the metadata reservation for an inode. This can be called
5575 * once we complete IO for a given set of bytes to release their metadata
5576 * reservations.
5577 */
0ca1f7ce
YZ
5578void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5579{
5580 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5581 u64 to_free = 0;
5582 unsigned dropped;
0ca1f7ce
YZ
5583
5584 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5585 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5586 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5587
0934856d
MX
5588 if (num_bytes)
5589 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5590 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5591 if (dropped > 0)
5592 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5593
6a3891c5
JB
5594 if (btrfs_test_is_dummy_root(root))
5595 return;
5596
8c2a3ca2
JB
5597 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5598 btrfs_ino(inode), to_free, 0);
c5567237 5599
0ca1f7ce
YZ
5600 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5601 to_free);
5602}
5603
7709cde3
JB
5604/**
5605 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5606 * @inode: inode we're writing to
5607 * @num_bytes: the number of bytes we want to allocate
5608 *
5609 * This will do the following things
5610 *
5611 * o reserve space in the data space info for num_bytes
5612 * o reserve space in the metadata space info based on number of outstanding
5613 * extents and how much csums will be needed
5614 * o add to the inodes ->delalloc_bytes
5615 * o add it to the fs_info's delalloc inodes list.
5616 *
5617 * This will return 0 for success and -ENOSPC if there is no space left.
5618 */
0ca1f7ce
YZ
5619int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5620{
5621 int ret;
5622
e2d1f923 5623 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5624 if (ret)
0ca1f7ce
YZ
5625 return ret;
5626
5627 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5628 if (ret) {
5629 btrfs_free_reserved_data_space(inode, num_bytes);
5630 return ret;
5631 }
5632
5633 return 0;
5634}
5635
7709cde3
JB
5636/**
5637 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5638 * @inode: inode we're releasing space for
5639 * @num_bytes: the number of bytes we want to free up
5640 *
5641 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5642 * called in the case that we don't need the metadata AND data reservations
5643 * anymore. So if there is an error or we insert an inline extent.
5644 *
5645 * This function will release the metadata space that was not used and will
5646 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5647 * list if there are no delalloc bytes left.
5648 */
0ca1f7ce
YZ
5649void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5650{
5651 btrfs_delalloc_release_metadata(inode, num_bytes);
5652 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5653}
5654
ce93ec54
JB
5655static int update_block_group(struct btrfs_trans_handle *trans,
5656 struct btrfs_root *root, u64 bytenr,
5657 u64 num_bytes, int alloc)
9078a3e1 5658{
0af3d00b 5659 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5660 struct btrfs_fs_info *info = root->fs_info;
db94535d 5661 u64 total = num_bytes;
9078a3e1 5662 u64 old_val;
db94535d 5663 u64 byte_in_group;
0af3d00b 5664 int factor;
3e1ad54f 5665
5d4f98a2 5666 /* block accounting for super block */
eb73c1b7 5667 spin_lock(&info->delalloc_root_lock);
6c41761f 5668 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5669 if (alloc)
5670 old_val += num_bytes;
5671 else
5672 old_val -= num_bytes;
6c41761f 5673 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5674 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5675
d397712b 5676 while (total) {
db94535d 5677 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5678 if (!cache)
79787eaa 5679 return -ENOENT;
b742bb82
YZ
5680 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5681 BTRFS_BLOCK_GROUP_RAID1 |
5682 BTRFS_BLOCK_GROUP_RAID10))
5683 factor = 2;
5684 else
5685 factor = 1;
9d66e233
JB
5686 /*
5687 * If this block group has free space cache written out, we
5688 * need to make sure to load it if we are removing space. This
5689 * is because we need the unpinning stage to actually add the
5690 * space back to the block group, otherwise we will leak space.
5691 */
5692 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5693 cache_block_group(cache, 1);
0af3d00b 5694
db94535d
CM
5695 byte_in_group = bytenr - cache->key.objectid;
5696 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5697
25179201 5698 spin_lock(&cache->space_info->lock);
c286ac48 5699 spin_lock(&cache->lock);
0af3d00b 5700
73bc1876 5701 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5702 cache->disk_cache_state < BTRFS_DC_CLEAR)
5703 cache->disk_cache_state = BTRFS_DC_CLEAR;
5704
9078a3e1 5705 old_val = btrfs_block_group_used(&cache->item);
db94535d 5706 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5707 if (alloc) {
db94535d 5708 old_val += num_bytes;
11833d66
YZ
5709 btrfs_set_block_group_used(&cache->item, old_val);
5710 cache->reserved -= num_bytes;
11833d66 5711 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5712 cache->space_info->bytes_used += num_bytes;
5713 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5714 spin_unlock(&cache->lock);
25179201 5715 spin_unlock(&cache->space_info->lock);
cd1bc465 5716 } else {
db94535d 5717 old_val -= num_bytes;
ae0ab003
FM
5718 btrfs_set_block_group_used(&cache->item, old_val);
5719 cache->pinned += num_bytes;
5720 cache->space_info->bytes_pinned += num_bytes;
5721 cache->space_info->bytes_used -= num_bytes;
5722 cache->space_info->disk_used -= num_bytes * factor;
5723 spin_unlock(&cache->lock);
5724 spin_unlock(&cache->space_info->lock);
47ab2a6c 5725
ae0ab003
FM
5726 set_extent_dirty(info->pinned_extents,
5727 bytenr, bytenr + num_bytes - 1,
5728 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5729 /*
5730 * No longer have used bytes in this block group, queue
5731 * it for deletion.
5732 */
5733 if (old_val == 0) {
5734 spin_lock(&info->unused_bgs_lock);
5735 if (list_empty(&cache->bg_list)) {
5736 btrfs_get_block_group(cache);
5737 list_add_tail(&cache->bg_list,
5738 &info->unused_bgs);
5739 }
5740 spin_unlock(&info->unused_bgs_lock);
5741 }
cd1bc465 5742 }
1bbc621e
CM
5743
5744 spin_lock(&trans->transaction->dirty_bgs_lock);
5745 if (list_empty(&cache->dirty_list)) {
5746 list_add_tail(&cache->dirty_list,
5747 &trans->transaction->dirty_bgs);
5748 trans->transaction->num_dirty_bgs++;
5749 btrfs_get_block_group(cache);
5750 }
5751 spin_unlock(&trans->transaction->dirty_bgs_lock);
5752
fa9c0d79 5753 btrfs_put_block_group(cache);
db94535d
CM
5754 total -= num_bytes;
5755 bytenr += num_bytes;
9078a3e1
CM
5756 }
5757 return 0;
5758}
6324fbf3 5759
a061fc8d
CM
5760static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5761{
0f9dd46c 5762 struct btrfs_block_group_cache *cache;
d2fb3437 5763 u64 bytenr;
0f9dd46c 5764
a1897fdd
LB
5765 spin_lock(&root->fs_info->block_group_cache_lock);
5766 bytenr = root->fs_info->first_logical_byte;
5767 spin_unlock(&root->fs_info->block_group_cache_lock);
5768
5769 if (bytenr < (u64)-1)
5770 return bytenr;
5771
0f9dd46c
JB
5772 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5773 if (!cache)
a061fc8d 5774 return 0;
0f9dd46c 5775
d2fb3437 5776 bytenr = cache->key.objectid;
fa9c0d79 5777 btrfs_put_block_group(cache);
d2fb3437
YZ
5778
5779 return bytenr;
a061fc8d
CM
5780}
5781
f0486c68
YZ
5782static int pin_down_extent(struct btrfs_root *root,
5783 struct btrfs_block_group_cache *cache,
5784 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5785{
11833d66
YZ
5786 spin_lock(&cache->space_info->lock);
5787 spin_lock(&cache->lock);
5788 cache->pinned += num_bytes;
5789 cache->space_info->bytes_pinned += num_bytes;
5790 if (reserved) {
5791 cache->reserved -= num_bytes;
5792 cache->space_info->bytes_reserved -= num_bytes;
5793 }
5794 spin_unlock(&cache->lock);
5795 spin_unlock(&cache->space_info->lock);
68b38550 5796
f0486c68
YZ
5797 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5798 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5799 if (reserved)
0be5dc67 5800 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5801 return 0;
5802}
68b38550 5803
f0486c68
YZ
5804/*
5805 * this function must be called within transaction
5806 */
5807int btrfs_pin_extent(struct btrfs_root *root,
5808 u64 bytenr, u64 num_bytes, int reserved)
5809{
5810 struct btrfs_block_group_cache *cache;
68b38550 5811
f0486c68 5812 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5813 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5814
5815 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5816
5817 btrfs_put_block_group(cache);
11833d66
YZ
5818 return 0;
5819}
5820
f0486c68 5821/*
e688b725
CM
5822 * this function must be called within transaction
5823 */
dcfac415 5824int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5825 u64 bytenr, u64 num_bytes)
5826{
5827 struct btrfs_block_group_cache *cache;
b50c6e25 5828 int ret;
e688b725
CM
5829
5830 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5831 if (!cache)
5832 return -EINVAL;
e688b725
CM
5833
5834 /*
5835 * pull in the free space cache (if any) so that our pin
5836 * removes the free space from the cache. We have load_only set
5837 * to one because the slow code to read in the free extents does check
5838 * the pinned extents.
5839 */
f6373bf3 5840 cache_block_group(cache, 1);
e688b725
CM
5841
5842 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5843
5844 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5845 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5846 btrfs_put_block_group(cache);
b50c6e25 5847 return ret;
e688b725
CM
5848}
5849
8c2a1a30
JB
5850static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5851{
5852 int ret;
5853 struct btrfs_block_group_cache *block_group;
5854 struct btrfs_caching_control *caching_ctl;
5855
5856 block_group = btrfs_lookup_block_group(root->fs_info, start);
5857 if (!block_group)
5858 return -EINVAL;
5859
5860 cache_block_group(block_group, 0);
5861 caching_ctl = get_caching_control(block_group);
5862
5863 if (!caching_ctl) {
5864 /* Logic error */
5865 BUG_ON(!block_group_cache_done(block_group));
5866 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5867 } else {
5868 mutex_lock(&caching_ctl->mutex);
5869
5870 if (start >= caching_ctl->progress) {
5871 ret = add_excluded_extent(root, start, num_bytes);
5872 } else if (start + num_bytes <= caching_ctl->progress) {
5873 ret = btrfs_remove_free_space(block_group,
5874 start, num_bytes);
5875 } else {
5876 num_bytes = caching_ctl->progress - start;
5877 ret = btrfs_remove_free_space(block_group,
5878 start, num_bytes);
5879 if (ret)
5880 goto out_lock;
5881
5882 num_bytes = (start + num_bytes) -
5883 caching_ctl->progress;
5884 start = caching_ctl->progress;
5885 ret = add_excluded_extent(root, start, num_bytes);
5886 }
5887out_lock:
5888 mutex_unlock(&caching_ctl->mutex);
5889 put_caching_control(caching_ctl);
5890 }
5891 btrfs_put_block_group(block_group);
5892 return ret;
5893}
5894
5895int btrfs_exclude_logged_extents(struct btrfs_root *log,
5896 struct extent_buffer *eb)
5897{
5898 struct btrfs_file_extent_item *item;
5899 struct btrfs_key key;
5900 int found_type;
5901 int i;
5902
5903 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5904 return 0;
5905
5906 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5907 btrfs_item_key_to_cpu(eb, &key, i);
5908 if (key.type != BTRFS_EXTENT_DATA_KEY)
5909 continue;
5910 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5911 found_type = btrfs_file_extent_type(eb, item);
5912 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5913 continue;
5914 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5915 continue;
5916 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5917 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5918 __exclude_logged_extent(log, key.objectid, key.offset);
5919 }
5920
5921 return 0;
5922}
5923
fb25e914
JB
5924/**
5925 * btrfs_update_reserved_bytes - update the block_group and space info counters
5926 * @cache: The cache we are manipulating
5927 * @num_bytes: The number of bytes in question
5928 * @reserve: One of the reservation enums
e570fd27 5929 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5930 *
5931 * This is called by the allocator when it reserves space, or by somebody who is
5932 * freeing space that was never actually used on disk. For example if you
5933 * reserve some space for a new leaf in transaction A and before transaction A
5934 * commits you free that leaf, you call this with reserve set to 0 in order to
5935 * clear the reservation.
5936 *
5937 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5938 * ENOSPC accounting. For data we handle the reservation through clearing the
5939 * delalloc bits in the io_tree. We have to do this since we could end up
5940 * allocating less disk space for the amount of data we have reserved in the
5941 * case of compression.
5942 *
5943 * If this is a reservation and the block group has become read only we cannot
5944 * make the reservation and return -EAGAIN, otherwise this function always
5945 * succeeds.
f0486c68 5946 */
fb25e914 5947static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5948 u64 num_bytes, int reserve, int delalloc)
11833d66 5949{
fb25e914 5950 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5951 int ret = 0;
79787eaa 5952
fb25e914
JB
5953 spin_lock(&space_info->lock);
5954 spin_lock(&cache->lock);
5955 if (reserve != RESERVE_FREE) {
f0486c68
YZ
5956 if (cache->ro) {
5957 ret = -EAGAIN;
5958 } else {
fb25e914
JB
5959 cache->reserved += num_bytes;
5960 space_info->bytes_reserved += num_bytes;
5961 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 5962 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
5963 "space_info", space_info->flags,
5964 num_bytes, 0);
fb25e914
JB
5965 space_info->bytes_may_use -= num_bytes;
5966 }
e570fd27
MX
5967
5968 if (delalloc)
5969 cache->delalloc_bytes += num_bytes;
f0486c68 5970 }
fb25e914
JB
5971 } else {
5972 if (cache->ro)
5973 space_info->bytes_readonly += num_bytes;
5974 cache->reserved -= num_bytes;
5975 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
5976
5977 if (delalloc)
5978 cache->delalloc_bytes -= num_bytes;
324ae4df 5979 }
fb25e914
JB
5980 spin_unlock(&cache->lock);
5981 spin_unlock(&space_info->lock);
f0486c68 5982 return ret;
324ae4df 5983}
9078a3e1 5984
143bede5 5985void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 5986 struct btrfs_root *root)
e8569813 5987{
e8569813 5988 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
5989 struct btrfs_caching_control *next;
5990 struct btrfs_caching_control *caching_ctl;
5991 struct btrfs_block_group_cache *cache;
e8569813 5992
9e351cc8 5993 down_write(&fs_info->commit_root_sem);
25179201 5994
11833d66
YZ
5995 list_for_each_entry_safe(caching_ctl, next,
5996 &fs_info->caching_block_groups, list) {
5997 cache = caching_ctl->block_group;
5998 if (block_group_cache_done(cache)) {
5999 cache->last_byte_to_unpin = (u64)-1;
6000 list_del_init(&caching_ctl->list);
6001 put_caching_control(caching_ctl);
e8569813 6002 } else {
11833d66 6003 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6004 }
e8569813 6005 }
11833d66
YZ
6006
6007 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6008 fs_info->pinned_extents = &fs_info->freed_extents[1];
6009 else
6010 fs_info->pinned_extents = &fs_info->freed_extents[0];
6011
9e351cc8 6012 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6013
6014 update_global_block_rsv(fs_info);
e8569813
ZY
6015}
6016
678886bd
FM
6017static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6018 const bool return_free_space)
ccd467d6 6019{
11833d66
YZ
6020 struct btrfs_fs_info *fs_info = root->fs_info;
6021 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6022 struct btrfs_space_info *space_info;
6023 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6024 u64 len;
7b398f8e 6025 bool readonly;
ccd467d6 6026
11833d66 6027 while (start <= end) {
7b398f8e 6028 readonly = false;
11833d66
YZ
6029 if (!cache ||
6030 start >= cache->key.objectid + cache->key.offset) {
6031 if (cache)
6032 btrfs_put_block_group(cache);
6033 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6034 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6035 }
6036
6037 len = cache->key.objectid + cache->key.offset - start;
6038 len = min(len, end + 1 - start);
6039
6040 if (start < cache->last_byte_to_unpin) {
6041 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6042 if (return_free_space)
6043 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6044 }
6045
f0486c68 6046 start += len;
7b398f8e 6047 space_info = cache->space_info;
f0486c68 6048
7b398f8e 6049 spin_lock(&space_info->lock);
11833d66
YZ
6050 spin_lock(&cache->lock);
6051 cache->pinned -= len;
7b398f8e 6052 space_info->bytes_pinned -= len;
d288db5d 6053 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6054 if (cache->ro) {
6055 space_info->bytes_readonly += len;
6056 readonly = true;
6057 }
11833d66 6058 spin_unlock(&cache->lock);
7b398f8e
JB
6059 if (!readonly && global_rsv->space_info == space_info) {
6060 spin_lock(&global_rsv->lock);
6061 if (!global_rsv->full) {
6062 len = min(len, global_rsv->size -
6063 global_rsv->reserved);
6064 global_rsv->reserved += len;
6065 space_info->bytes_may_use += len;
6066 if (global_rsv->reserved >= global_rsv->size)
6067 global_rsv->full = 1;
6068 }
6069 spin_unlock(&global_rsv->lock);
6070 }
6071 spin_unlock(&space_info->lock);
ccd467d6 6072 }
11833d66
YZ
6073
6074 if (cache)
6075 btrfs_put_block_group(cache);
ccd467d6
CM
6076 return 0;
6077}
6078
6079int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6080 struct btrfs_root *root)
a28ec197 6081{
11833d66
YZ
6082 struct btrfs_fs_info *fs_info = root->fs_info;
6083 struct extent_io_tree *unpin;
1a5bc167
CM
6084 u64 start;
6085 u64 end;
a28ec197 6086 int ret;
a28ec197 6087
79787eaa
JM
6088 if (trans->aborted)
6089 return 0;
6090
11833d66
YZ
6091 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6092 unpin = &fs_info->freed_extents[1];
6093 else
6094 unpin = &fs_info->freed_extents[0];
6095
d397712b 6096 while (1) {
d4b450cd 6097 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6098 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6099 EXTENT_DIRTY, NULL);
d4b450cd
FM
6100 if (ret) {
6101 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6102 break;
d4b450cd 6103 }
1f3c79a2 6104
5378e607
LD
6105 if (btrfs_test_opt(root, DISCARD))
6106 ret = btrfs_discard_extent(root, start,
6107 end + 1 - start, NULL);
1f3c79a2 6108
1a5bc167 6109 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6110 unpin_extent_range(root, start, end, true);
d4b450cd 6111 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6112 cond_resched();
a28ec197 6113 }
817d52f8 6114
e20d96d6
CM
6115 return 0;
6116}
6117
b150a4f1
JB
6118static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6119 u64 owner, u64 root_objectid)
6120{
6121 struct btrfs_space_info *space_info;
6122 u64 flags;
6123
6124 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6125 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6126 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6127 else
6128 flags = BTRFS_BLOCK_GROUP_METADATA;
6129 } else {
6130 flags = BTRFS_BLOCK_GROUP_DATA;
6131 }
6132
6133 space_info = __find_space_info(fs_info, flags);
6134 BUG_ON(!space_info); /* Logic bug */
6135 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6136}
6137
6138
5d4f98a2
YZ
6139static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6140 struct btrfs_root *root,
c682f9b3 6141 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6142 u64 root_objectid, u64 owner_objectid,
6143 u64 owner_offset, int refs_to_drop,
c682f9b3 6144 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6145{
e2fa7227 6146 struct btrfs_key key;
5d4f98a2 6147 struct btrfs_path *path;
1261ec42
CM
6148 struct btrfs_fs_info *info = root->fs_info;
6149 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6150 struct extent_buffer *leaf;
5d4f98a2
YZ
6151 struct btrfs_extent_item *ei;
6152 struct btrfs_extent_inline_ref *iref;
a28ec197 6153 int ret;
5d4f98a2 6154 int is_data;
952fccac
CM
6155 int extent_slot = 0;
6156 int found_extent = 0;
6157 int num_to_del = 1;
c682f9b3 6158 int no_quota = node->no_quota;
5d4f98a2
YZ
6159 u32 item_size;
6160 u64 refs;
c682f9b3
QW
6161 u64 bytenr = node->bytenr;
6162 u64 num_bytes = node->num_bytes;
fcebe456 6163 int last_ref = 0;
3173a18f
JB
6164 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6165 SKINNY_METADATA);
037e6390 6166
fcebe456
JB
6167 if (!info->quota_enabled || !is_fstree(root_objectid))
6168 no_quota = 1;
6169
5caf2a00 6170 path = btrfs_alloc_path();
54aa1f4d
CM
6171 if (!path)
6172 return -ENOMEM;
5f26f772 6173
3c12ac72 6174 path->reada = 1;
b9473439 6175 path->leave_spinning = 1;
5d4f98a2
YZ
6176
6177 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6178 BUG_ON(!is_data && refs_to_drop != 1);
6179
3173a18f
JB
6180 if (is_data)
6181 skinny_metadata = 0;
6182
5d4f98a2
YZ
6183 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6184 bytenr, num_bytes, parent,
6185 root_objectid, owner_objectid,
6186 owner_offset);
7bb86316 6187 if (ret == 0) {
952fccac 6188 extent_slot = path->slots[0];
5d4f98a2
YZ
6189 while (extent_slot >= 0) {
6190 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6191 extent_slot);
5d4f98a2 6192 if (key.objectid != bytenr)
952fccac 6193 break;
5d4f98a2
YZ
6194 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6195 key.offset == num_bytes) {
952fccac
CM
6196 found_extent = 1;
6197 break;
6198 }
3173a18f
JB
6199 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6200 key.offset == owner_objectid) {
6201 found_extent = 1;
6202 break;
6203 }
952fccac
CM
6204 if (path->slots[0] - extent_slot > 5)
6205 break;
5d4f98a2 6206 extent_slot--;
952fccac 6207 }
5d4f98a2
YZ
6208#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6209 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6210 if (found_extent && item_size < sizeof(*ei))
6211 found_extent = 0;
6212#endif
31840ae1 6213 if (!found_extent) {
5d4f98a2 6214 BUG_ON(iref);
56bec294 6215 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6216 NULL, refs_to_drop,
fcebe456 6217 is_data, &last_ref);
005d6427
DS
6218 if (ret) {
6219 btrfs_abort_transaction(trans, extent_root, ret);
6220 goto out;
6221 }
b3b4aa74 6222 btrfs_release_path(path);
b9473439 6223 path->leave_spinning = 1;
5d4f98a2
YZ
6224
6225 key.objectid = bytenr;
6226 key.type = BTRFS_EXTENT_ITEM_KEY;
6227 key.offset = num_bytes;
6228
3173a18f
JB
6229 if (!is_data && skinny_metadata) {
6230 key.type = BTRFS_METADATA_ITEM_KEY;
6231 key.offset = owner_objectid;
6232 }
6233
31840ae1
ZY
6234 ret = btrfs_search_slot(trans, extent_root,
6235 &key, path, -1, 1);
3173a18f
JB
6236 if (ret > 0 && skinny_metadata && path->slots[0]) {
6237 /*
6238 * Couldn't find our skinny metadata item,
6239 * see if we have ye olde extent item.
6240 */
6241 path->slots[0]--;
6242 btrfs_item_key_to_cpu(path->nodes[0], &key,
6243 path->slots[0]);
6244 if (key.objectid == bytenr &&
6245 key.type == BTRFS_EXTENT_ITEM_KEY &&
6246 key.offset == num_bytes)
6247 ret = 0;
6248 }
6249
6250 if (ret > 0 && skinny_metadata) {
6251 skinny_metadata = false;
9ce49a0b 6252 key.objectid = bytenr;
3173a18f
JB
6253 key.type = BTRFS_EXTENT_ITEM_KEY;
6254 key.offset = num_bytes;
6255 btrfs_release_path(path);
6256 ret = btrfs_search_slot(trans, extent_root,
6257 &key, path, -1, 1);
6258 }
6259
f3465ca4 6260 if (ret) {
c2cf52eb 6261 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6262 ret, bytenr);
b783e62d
JB
6263 if (ret > 0)
6264 btrfs_print_leaf(extent_root,
6265 path->nodes[0]);
f3465ca4 6266 }
005d6427
DS
6267 if (ret < 0) {
6268 btrfs_abort_transaction(trans, extent_root, ret);
6269 goto out;
6270 }
31840ae1
ZY
6271 extent_slot = path->slots[0];
6272 }
fae7f21c 6273 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6274 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6275 btrfs_err(info,
6276 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6277 bytenr, parent, root_objectid, owner_objectid,
6278 owner_offset);
c4a050bb
JB
6279 btrfs_abort_transaction(trans, extent_root, ret);
6280 goto out;
79787eaa 6281 } else {
005d6427
DS
6282 btrfs_abort_transaction(trans, extent_root, ret);
6283 goto out;
7bb86316 6284 }
5f39d397
CM
6285
6286 leaf = path->nodes[0];
5d4f98a2
YZ
6287 item_size = btrfs_item_size_nr(leaf, extent_slot);
6288#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6289 if (item_size < sizeof(*ei)) {
6290 BUG_ON(found_extent || extent_slot != path->slots[0]);
6291 ret = convert_extent_item_v0(trans, extent_root, path,
6292 owner_objectid, 0);
005d6427
DS
6293 if (ret < 0) {
6294 btrfs_abort_transaction(trans, extent_root, ret);
6295 goto out;
6296 }
5d4f98a2 6297
b3b4aa74 6298 btrfs_release_path(path);
5d4f98a2
YZ
6299 path->leave_spinning = 1;
6300
6301 key.objectid = bytenr;
6302 key.type = BTRFS_EXTENT_ITEM_KEY;
6303 key.offset = num_bytes;
6304
6305 ret = btrfs_search_slot(trans, extent_root, &key, path,
6306 -1, 1);
6307 if (ret) {
c2cf52eb 6308 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6309 ret, bytenr);
5d4f98a2
YZ
6310 btrfs_print_leaf(extent_root, path->nodes[0]);
6311 }
005d6427
DS
6312 if (ret < 0) {
6313 btrfs_abort_transaction(trans, extent_root, ret);
6314 goto out;
6315 }
6316
5d4f98a2
YZ
6317 extent_slot = path->slots[0];
6318 leaf = path->nodes[0];
6319 item_size = btrfs_item_size_nr(leaf, extent_slot);
6320 }
6321#endif
6322 BUG_ON(item_size < sizeof(*ei));
952fccac 6323 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6324 struct btrfs_extent_item);
3173a18f
JB
6325 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6326 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6327 struct btrfs_tree_block_info *bi;
6328 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6329 bi = (struct btrfs_tree_block_info *)(ei + 1);
6330 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6331 }
56bec294 6332
5d4f98a2 6333 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6334 if (refs < refs_to_drop) {
6335 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6336 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6337 ret = -EINVAL;
6338 btrfs_abort_transaction(trans, extent_root, ret);
6339 goto out;
6340 }
56bec294 6341 refs -= refs_to_drop;
5f39d397 6342
5d4f98a2
YZ
6343 if (refs > 0) {
6344 if (extent_op)
6345 __run_delayed_extent_op(extent_op, leaf, ei);
6346 /*
6347 * In the case of inline back ref, reference count will
6348 * be updated by remove_extent_backref
952fccac 6349 */
5d4f98a2
YZ
6350 if (iref) {
6351 BUG_ON(!found_extent);
6352 } else {
6353 btrfs_set_extent_refs(leaf, ei, refs);
6354 btrfs_mark_buffer_dirty(leaf);
6355 }
6356 if (found_extent) {
6357 ret = remove_extent_backref(trans, extent_root, path,
6358 iref, refs_to_drop,
fcebe456 6359 is_data, &last_ref);
005d6427
DS
6360 if (ret) {
6361 btrfs_abort_transaction(trans, extent_root, ret);
6362 goto out;
6363 }
952fccac 6364 }
b150a4f1
JB
6365 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6366 root_objectid);
5d4f98a2 6367 } else {
5d4f98a2
YZ
6368 if (found_extent) {
6369 BUG_ON(is_data && refs_to_drop !=
6370 extent_data_ref_count(root, path, iref));
6371 if (iref) {
6372 BUG_ON(path->slots[0] != extent_slot);
6373 } else {
6374 BUG_ON(path->slots[0] != extent_slot + 1);
6375 path->slots[0] = extent_slot;
6376 num_to_del = 2;
6377 }
78fae27e 6378 }
b9473439 6379
fcebe456 6380 last_ref = 1;
952fccac
CM
6381 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6382 num_to_del);
005d6427
DS
6383 if (ret) {
6384 btrfs_abort_transaction(trans, extent_root, ret);
6385 goto out;
6386 }
b3b4aa74 6387 btrfs_release_path(path);
21af804c 6388
5d4f98a2 6389 if (is_data) {
459931ec 6390 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6391 if (ret) {
6392 btrfs_abort_transaction(trans, extent_root, ret);
6393 goto out;
6394 }
459931ec
CM
6395 }
6396
ce93ec54 6397 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6398 if (ret) {
6399 btrfs_abort_transaction(trans, extent_root, ret);
6400 goto out;
6401 }
a28ec197 6402 }
fcebe456
JB
6403 btrfs_release_path(path);
6404
79787eaa 6405out:
5caf2a00 6406 btrfs_free_path(path);
a28ec197
CM
6407 return ret;
6408}
6409
1887be66 6410/*
f0486c68 6411 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6412 * delayed ref for that extent as well. This searches the delayed ref tree for
6413 * a given extent, and if there are no other delayed refs to be processed, it
6414 * removes it from the tree.
6415 */
6416static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6417 struct btrfs_root *root, u64 bytenr)
6418{
6419 struct btrfs_delayed_ref_head *head;
6420 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6421 int ret = 0;
1887be66
CM
6422
6423 delayed_refs = &trans->transaction->delayed_refs;
6424 spin_lock(&delayed_refs->lock);
6425 head = btrfs_find_delayed_ref_head(trans, bytenr);
6426 if (!head)
cf93da7b 6427 goto out_delayed_unlock;
1887be66 6428
d7df2c79 6429 spin_lock(&head->lock);
c6fc2454 6430 if (!list_empty(&head->ref_list))
1887be66
CM
6431 goto out;
6432
5d4f98a2
YZ
6433 if (head->extent_op) {
6434 if (!head->must_insert_reserved)
6435 goto out;
78a6184a 6436 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6437 head->extent_op = NULL;
6438 }
6439
1887be66
CM
6440 /*
6441 * waiting for the lock here would deadlock. If someone else has it
6442 * locked they are already in the process of dropping it anyway
6443 */
6444 if (!mutex_trylock(&head->mutex))
6445 goto out;
6446
6447 /*
6448 * at this point we have a head with no other entries. Go
6449 * ahead and process it.
6450 */
6451 head->node.in_tree = 0;
c46effa6 6452 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6453
d7df2c79 6454 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6455
6456 /*
6457 * we don't take a ref on the node because we're removing it from the
6458 * tree, so we just steal the ref the tree was holding.
6459 */
c3e69d58 6460 delayed_refs->num_heads--;
d7df2c79 6461 if (head->processing == 0)
c3e69d58 6462 delayed_refs->num_heads_ready--;
d7df2c79
JB
6463 head->processing = 0;
6464 spin_unlock(&head->lock);
1887be66
CM
6465 spin_unlock(&delayed_refs->lock);
6466
f0486c68
YZ
6467 BUG_ON(head->extent_op);
6468 if (head->must_insert_reserved)
6469 ret = 1;
6470
6471 mutex_unlock(&head->mutex);
1887be66 6472 btrfs_put_delayed_ref(&head->node);
f0486c68 6473 return ret;
1887be66 6474out:
d7df2c79 6475 spin_unlock(&head->lock);
cf93da7b
CM
6476
6477out_delayed_unlock:
1887be66
CM
6478 spin_unlock(&delayed_refs->lock);
6479 return 0;
6480}
6481
f0486c68
YZ
6482void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6483 struct btrfs_root *root,
6484 struct extent_buffer *buf,
5581a51a 6485 u64 parent, int last_ref)
f0486c68 6486{
b150a4f1 6487 int pin = 1;
f0486c68
YZ
6488 int ret;
6489
6490 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6491 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6492 buf->start, buf->len,
6493 parent, root->root_key.objectid,
6494 btrfs_header_level(buf),
5581a51a 6495 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6496 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6497 }
6498
6499 if (!last_ref)
6500 return;
6501
f0486c68 6502 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6503 struct btrfs_block_group_cache *cache;
6504
f0486c68
YZ
6505 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6506 ret = check_ref_cleanup(trans, root, buf->start);
6507 if (!ret)
37be25bc 6508 goto out;
f0486c68
YZ
6509 }
6510
6219872d
FM
6511 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6512
f0486c68
YZ
6513 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6514 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6515 btrfs_put_block_group(cache);
37be25bc 6516 goto out;
f0486c68
YZ
6517 }
6518
6519 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6520
6521 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6522 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6523 btrfs_put_block_group(cache);
0be5dc67 6524 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6525 pin = 0;
f0486c68
YZ
6526 }
6527out:
b150a4f1
JB
6528 if (pin)
6529 add_pinned_bytes(root->fs_info, buf->len,
6530 btrfs_header_level(buf),
6531 root->root_key.objectid);
6532
a826d6dc
JB
6533 /*
6534 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6535 * anymore.
6536 */
6537 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6538}
6539
79787eaa 6540/* Can return -ENOMEM */
66d7e7f0
AJ
6541int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6542 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6543 u64 owner, u64 offset, int no_quota)
925baedd
CM
6544{
6545 int ret;
66d7e7f0 6546 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6547
fccb84c9 6548 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6549 return 0;
fccb84c9 6550
b150a4f1
JB
6551 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6552
56bec294
CM
6553 /*
6554 * tree log blocks never actually go into the extent allocation
6555 * tree, just update pinning info and exit early.
56bec294 6556 */
5d4f98a2
YZ
6557 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6558 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6559 /* unlocks the pinned mutex */
11833d66 6560 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6561 ret = 0;
5d4f98a2 6562 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6563 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6564 num_bytes,
5d4f98a2 6565 parent, root_objectid, (int)owner,
fcebe456 6566 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6567 } else {
66d7e7f0
AJ
6568 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6569 num_bytes,
6570 parent, root_objectid, owner,
6571 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6572 NULL, no_quota);
56bec294 6573 }
925baedd
CM
6574 return ret;
6575}
6576
817d52f8
JB
6577/*
6578 * when we wait for progress in the block group caching, its because
6579 * our allocation attempt failed at least once. So, we must sleep
6580 * and let some progress happen before we try again.
6581 *
6582 * This function will sleep at least once waiting for new free space to
6583 * show up, and then it will check the block group free space numbers
6584 * for our min num_bytes. Another option is to have it go ahead
6585 * and look in the rbtree for a free extent of a given size, but this
6586 * is a good start.
36cce922
JB
6587 *
6588 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6589 * any of the information in this block group.
817d52f8 6590 */
36cce922 6591static noinline void
817d52f8
JB
6592wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6593 u64 num_bytes)
6594{
11833d66 6595 struct btrfs_caching_control *caching_ctl;
817d52f8 6596
11833d66
YZ
6597 caching_ctl = get_caching_control(cache);
6598 if (!caching_ctl)
36cce922 6599 return;
817d52f8 6600
11833d66 6601 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6602 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6603
6604 put_caching_control(caching_ctl);
11833d66
YZ
6605}
6606
6607static noinline int
6608wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6609{
6610 struct btrfs_caching_control *caching_ctl;
36cce922 6611 int ret = 0;
11833d66
YZ
6612
6613 caching_ctl = get_caching_control(cache);
6614 if (!caching_ctl)
36cce922 6615 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6616
6617 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6618 if (cache->cached == BTRFS_CACHE_ERROR)
6619 ret = -EIO;
11833d66 6620 put_caching_control(caching_ctl);
36cce922 6621 return ret;
817d52f8
JB
6622}
6623
31e50229 6624int __get_raid_index(u64 flags)
b742bb82 6625{
7738a53a 6626 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6627 return BTRFS_RAID_RAID10;
7738a53a 6628 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6629 return BTRFS_RAID_RAID1;
7738a53a 6630 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6631 return BTRFS_RAID_DUP;
7738a53a 6632 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6633 return BTRFS_RAID_RAID0;
53b381b3 6634 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6635 return BTRFS_RAID_RAID5;
53b381b3 6636 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6637 return BTRFS_RAID_RAID6;
7738a53a 6638
e942f883 6639 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6640}
6641
6ab0a202 6642int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6643{
31e50229 6644 return __get_raid_index(cache->flags);
7738a53a
ID
6645}
6646
6ab0a202
JM
6647static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6648 [BTRFS_RAID_RAID10] = "raid10",
6649 [BTRFS_RAID_RAID1] = "raid1",
6650 [BTRFS_RAID_DUP] = "dup",
6651 [BTRFS_RAID_RAID0] = "raid0",
6652 [BTRFS_RAID_SINGLE] = "single",
6653 [BTRFS_RAID_RAID5] = "raid5",
6654 [BTRFS_RAID_RAID6] = "raid6",
6655};
6656
1b8e5df6 6657static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6658{
6659 if (type >= BTRFS_NR_RAID_TYPES)
6660 return NULL;
6661
6662 return btrfs_raid_type_names[type];
6663}
6664
817d52f8 6665enum btrfs_loop_type {
285ff5af
JB
6666 LOOP_CACHING_NOWAIT = 0,
6667 LOOP_CACHING_WAIT = 1,
6668 LOOP_ALLOC_CHUNK = 2,
6669 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6670};
6671
e570fd27
MX
6672static inline void
6673btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6674 int delalloc)
6675{
6676 if (delalloc)
6677 down_read(&cache->data_rwsem);
6678}
6679
6680static inline void
6681btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6682 int delalloc)
6683{
6684 btrfs_get_block_group(cache);
6685 if (delalloc)
6686 down_read(&cache->data_rwsem);
6687}
6688
6689static struct btrfs_block_group_cache *
6690btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6691 struct btrfs_free_cluster *cluster,
6692 int delalloc)
6693{
6694 struct btrfs_block_group_cache *used_bg;
6695 bool locked = false;
6696again:
6697 spin_lock(&cluster->refill_lock);
6698 if (locked) {
6699 if (used_bg == cluster->block_group)
6700 return used_bg;
6701
6702 up_read(&used_bg->data_rwsem);
6703 btrfs_put_block_group(used_bg);
6704 }
6705
6706 used_bg = cluster->block_group;
6707 if (!used_bg)
6708 return NULL;
6709
6710 if (used_bg == block_group)
6711 return used_bg;
6712
6713 btrfs_get_block_group(used_bg);
6714
6715 if (!delalloc)
6716 return used_bg;
6717
6718 if (down_read_trylock(&used_bg->data_rwsem))
6719 return used_bg;
6720
6721 spin_unlock(&cluster->refill_lock);
6722 down_read(&used_bg->data_rwsem);
6723 locked = true;
6724 goto again;
6725}
6726
6727static inline void
6728btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6729 int delalloc)
6730{
6731 if (delalloc)
6732 up_read(&cache->data_rwsem);
6733 btrfs_put_block_group(cache);
6734}
6735
fec577fb
CM
6736/*
6737 * walks the btree of allocated extents and find a hole of a given size.
6738 * The key ins is changed to record the hole:
a4820398 6739 * ins->objectid == start position
62e2749e 6740 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6741 * ins->offset == the size of the hole.
fec577fb 6742 * Any available blocks before search_start are skipped.
a4820398
MX
6743 *
6744 * If there is no suitable free space, we will record the max size of
6745 * the free space extent currently.
fec577fb 6746 */
00361589 6747static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6748 u64 num_bytes, u64 empty_size,
98ed5174 6749 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6750 u64 flags, int delalloc)
fec577fb 6751{
80eb234a 6752 int ret = 0;
d397712b 6753 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6754 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6755 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6756 u64 search_start = 0;
a4820398 6757 u64 max_extent_size = 0;
239b14b3 6758 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6759 struct btrfs_space_info *space_info;
fa9c0d79 6760 int loop = 0;
b6919a58
DS
6761 int index = __get_raid_index(flags);
6762 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6763 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6764 bool failed_cluster_refill = false;
1cdda9b8 6765 bool failed_alloc = false;
67377734 6766 bool use_cluster = true;
60d2adbb 6767 bool have_caching_bg = false;
fec577fb 6768
db94535d 6769 WARN_ON(num_bytes < root->sectorsize);
962a298f 6770 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6771 ins->objectid = 0;
6772 ins->offset = 0;
b1a4d965 6773
b6919a58 6774 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6775
b6919a58 6776 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6777 if (!space_info) {
b6919a58 6778 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6779 return -ENOSPC;
6780 }
2552d17e 6781
67377734
JB
6782 /*
6783 * If the space info is for both data and metadata it means we have a
6784 * small filesystem and we can't use the clustering stuff.
6785 */
6786 if (btrfs_mixed_space_info(space_info))
6787 use_cluster = false;
6788
b6919a58 6789 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6790 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6791 if (!btrfs_test_opt(root, SSD))
6792 empty_cluster = 64 * 1024;
239b14b3
CM
6793 }
6794
b6919a58 6795 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6796 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6797 last_ptr = &root->fs_info->data_alloc_cluster;
6798 }
0f9dd46c 6799
239b14b3 6800 if (last_ptr) {
fa9c0d79
CM
6801 spin_lock(&last_ptr->lock);
6802 if (last_ptr->block_group)
6803 hint_byte = last_ptr->window_start;
6804 spin_unlock(&last_ptr->lock);
239b14b3 6805 }
fa9c0d79 6806
a061fc8d 6807 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6808 search_start = max(search_start, hint_byte);
0b86a832 6809
817d52f8 6810 if (!last_ptr)
fa9c0d79 6811 empty_cluster = 0;
fa9c0d79 6812
2552d17e 6813 if (search_start == hint_byte) {
2552d17e
JB
6814 block_group = btrfs_lookup_block_group(root->fs_info,
6815 search_start);
817d52f8
JB
6816 /*
6817 * we don't want to use the block group if it doesn't match our
6818 * allocation bits, or if its not cached.
ccf0e725
JB
6819 *
6820 * However if we are re-searching with an ideal block group
6821 * picked out then we don't care that the block group is cached.
817d52f8 6822 */
b6919a58 6823 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6824 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6825 down_read(&space_info->groups_sem);
44fb5511
CM
6826 if (list_empty(&block_group->list) ||
6827 block_group->ro) {
6828 /*
6829 * someone is removing this block group,
6830 * we can't jump into the have_block_group
6831 * target because our list pointers are not
6832 * valid
6833 */
6834 btrfs_put_block_group(block_group);
6835 up_read(&space_info->groups_sem);
ccf0e725 6836 } else {
b742bb82 6837 index = get_block_group_index(block_group);
e570fd27 6838 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6839 goto have_block_group;
ccf0e725 6840 }
2552d17e 6841 } else if (block_group) {
fa9c0d79 6842 btrfs_put_block_group(block_group);
2552d17e 6843 }
42e70e7a 6844 }
2552d17e 6845search:
60d2adbb 6846 have_caching_bg = false;
80eb234a 6847 down_read(&space_info->groups_sem);
b742bb82
YZ
6848 list_for_each_entry(block_group, &space_info->block_groups[index],
6849 list) {
6226cb0a 6850 u64 offset;
817d52f8 6851 int cached;
8a1413a2 6852
e570fd27 6853 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6854 search_start = block_group->key.objectid;
42e70e7a 6855
83a50de9
CM
6856 /*
6857 * this can happen if we end up cycling through all the
6858 * raid types, but we want to make sure we only allocate
6859 * for the proper type.
6860 */
b6919a58 6861 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6862 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6863 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6864 BTRFS_BLOCK_GROUP_RAID5 |
6865 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6866 BTRFS_BLOCK_GROUP_RAID10;
6867
6868 /*
6869 * if they asked for extra copies and this block group
6870 * doesn't provide them, bail. This does allow us to
6871 * fill raid0 from raid1.
6872 */
b6919a58 6873 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6874 goto loop;
6875 }
6876
2552d17e 6877have_block_group:
291c7d2f
JB
6878 cached = block_group_cache_done(block_group);
6879 if (unlikely(!cached)) {
f6373bf3 6880 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6881 BUG_ON(ret < 0);
6882 ret = 0;
817d52f8
JB
6883 }
6884
36cce922
JB
6885 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6886 goto loop;
ea6a478e 6887 if (unlikely(block_group->ro))
2552d17e 6888 goto loop;
0f9dd46c 6889
0a24325e 6890 /*
062c05c4
AO
6891 * Ok we want to try and use the cluster allocator, so
6892 * lets look there
0a24325e 6893 */
062c05c4 6894 if (last_ptr) {
215a63d1 6895 struct btrfs_block_group_cache *used_block_group;
8de972b4 6896 unsigned long aligned_cluster;
fa9c0d79
CM
6897 /*
6898 * the refill lock keeps out other
6899 * people trying to start a new cluster
6900 */
e570fd27
MX
6901 used_block_group = btrfs_lock_cluster(block_group,
6902 last_ptr,
6903 delalloc);
6904 if (!used_block_group)
44fb5511 6905 goto refill_cluster;
274bd4fb 6906
e570fd27
MX
6907 if (used_block_group != block_group &&
6908 (used_block_group->ro ||
6909 !block_group_bits(used_block_group, flags)))
6910 goto release_cluster;
44fb5511 6911
274bd4fb 6912 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6913 last_ptr,
6914 num_bytes,
6915 used_block_group->key.objectid,
6916 &max_extent_size);
fa9c0d79
CM
6917 if (offset) {
6918 /* we have a block, we're done */
6919 spin_unlock(&last_ptr->refill_lock);
3f7de037 6920 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6921 used_block_group,
6922 search_start, num_bytes);
215a63d1 6923 if (used_block_group != block_group) {
e570fd27
MX
6924 btrfs_release_block_group(block_group,
6925 delalloc);
215a63d1
MX
6926 block_group = used_block_group;
6927 }
fa9c0d79
CM
6928 goto checks;
6929 }
6930
274bd4fb 6931 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 6932release_cluster:
062c05c4
AO
6933 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6934 * set up a new clusters, so lets just skip it
6935 * and let the allocator find whatever block
6936 * it can find. If we reach this point, we
6937 * will have tried the cluster allocator
6938 * plenty of times and not have found
6939 * anything, so we are likely way too
6940 * fragmented for the clustering stuff to find
a5f6f719
AO
6941 * anything.
6942 *
6943 * However, if the cluster is taken from the
6944 * current block group, release the cluster
6945 * first, so that we stand a better chance of
6946 * succeeding in the unclustered
6947 * allocation. */
6948 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 6949 used_block_group != block_group) {
062c05c4 6950 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
6951 btrfs_release_block_group(used_block_group,
6952 delalloc);
062c05c4
AO
6953 goto unclustered_alloc;
6954 }
6955
fa9c0d79
CM
6956 /*
6957 * this cluster didn't work out, free it and
6958 * start over
6959 */
6960 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6961
e570fd27
MX
6962 if (used_block_group != block_group)
6963 btrfs_release_block_group(used_block_group,
6964 delalloc);
6965refill_cluster:
a5f6f719
AO
6966 if (loop >= LOOP_NO_EMPTY_SIZE) {
6967 spin_unlock(&last_ptr->refill_lock);
6968 goto unclustered_alloc;
6969 }
6970
8de972b4
CM
6971 aligned_cluster = max_t(unsigned long,
6972 empty_cluster + empty_size,
6973 block_group->full_stripe_len);
6974
fa9c0d79 6975 /* allocate a cluster in this block group */
00361589
JB
6976 ret = btrfs_find_space_cluster(root, block_group,
6977 last_ptr, search_start,
6978 num_bytes,
6979 aligned_cluster);
fa9c0d79
CM
6980 if (ret == 0) {
6981 /*
6982 * now pull our allocation out of this
6983 * cluster
6984 */
6985 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
6986 last_ptr,
6987 num_bytes,
6988 search_start,
6989 &max_extent_size);
fa9c0d79
CM
6990 if (offset) {
6991 /* we found one, proceed */
6992 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
6993 trace_btrfs_reserve_extent_cluster(root,
6994 block_group, search_start,
6995 num_bytes);
fa9c0d79
CM
6996 goto checks;
6997 }
0a24325e
JB
6998 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6999 && !failed_cluster_refill) {
817d52f8
JB
7000 spin_unlock(&last_ptr->refill_lock);
7001
0a24325e 7002 failed_cluster_refill = true;
817d52f8
JB
7003 wait_block_group_cache_progress(block_group,
7004 num_bytes + empty_cluster + empty_size);
7005 goto have_block_group;
fa9c0d79 7006 }
817d52f8 7007
fa9c0d79
CM
7008 /*
7009 * at this point we either didn't find a cluster
7010 * or we weren't able to allocate a block from our
7011 * cluster. Free the cluster we've been trying
7012 * to use, and go to the next block group
7013 */
0a24325e 7014 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7015 spin_unlock(&last_ptr->refill_lock);
0a24325e 7016 goto loop;
fa9c0d79
CM
7017 }
7018
062c05c4 7019unclustered_alloc:
a5f6f719
AO
7020 spin_lock(&block_group->free_space_ctl->tree_lock);
7021 if (cached &&
7022 block_group->free_space_ctl->free_space <
7023 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7024 if (block_group->free_space_ctl->free_space >
7025 max_extent_size)
7026 max_extent_size =
7027 block_group->free_space_ctl->free_space;
a5f6f719
AO
7028 spin_unlock(&block_group->free_space_ctl->tree_lock);
7029 goto loop;
7030 }
7031 spin_unlock(&block_group->free_space_ctl->tree_lock);
7032
6226cb0a 7033 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7034 num_bytes, empty_size,
7035 &max_extent_size);
1cdda9b8
JB
7036 /*
7037 * If we didn't find a chunk, and we haven't failed on this
7038 * block group before, and this block group is in the middle of
7039 * caching and we are ok with waiting, then go ahead and wait
7040 * for progress to be made, and set failed_alloc to true.
7041 *
7042 * If failed_alloc is true then we've already waited on this
7043 * block group once and should move on to the next block group.
7044 */
7045 if (!offset && !failed_alloc && !cached &&
7046 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7047 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7048 num_bytes + empty_size);
7049 failed_alloc = true;
817d52f8 7050 goto have_block_group;
1cdda9b8 7051 } else if (!offset) {
60d2adbb
MX
7052 if (!cached)
7053 have_caching_bg = true;
1cdda9b8 7054 goto loop;
817d52f8 7055 }
fa9c0d79 7056checks:
4e54b17a 7057 search_start = ALIGN(offset, root->stripesize);
25179201 7058
2552d17e
JB
7059 /* move on to the next group */
7060 if (search_start + num_bytes >
215a63d1
MX
7061 block_group->key.objectid + block_group->key.offset) {
7062 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7063 goto loop;
6226cb0a 7064 }
f5a31e16 7065
f0486c68 7066 if (offset < search_start)
215a63d1 7067 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7068 search_start - offset);
7069 BUG_ON(offset > search_start);
2552d17e 7070
215a63d1 7071 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7072 alloc_type, delalloc);
f0486c68 7073 if (ret == -EAGAIN) {
215a63d1 7074 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7075 goto loop;
0f9dd46c 7076 }
0b86a832 7077
f0486c68 7078 /* we are all good, lets return */
2552d17e
JB
7079 ins->objectid = search_start;
7080 ins->offset = num_bytes;
d2fb3437 7081
3f7de037
JB
7082 trace_btrfs_reserve_extent(orig_root, block_group,
7083 search_start, num_bytes);
e570fd27 7084 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7085 break;
7086loop:
0a24325e 7087 failed_cluster_refill = false;
1cdda9b8 7088 failed_alloc = false;
b742bb82 7089 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7090 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7091 }
7092 up_read(&space_info->groups_sem);
7093
60d2adbb
MX
7094 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7095 goto search;
7096
b742bb82
YZ
7097 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7098 goto search;
7099
285ff5af 7100 /*
ccf0e725
JB
7101 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7102 * caching kthreads as we move along
817d52f8
JB
7103 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7104 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7105 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7106 * again
fa9c0d79 7107 */
723bda20 7108 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7109 index = 0;
723bda20 7110 loop++;
817d52f8 7111 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7112 struct btrfs_trans_handle *trans;
f017f15f
WS
7113 int exist = 0;
7114
7115 trans = current->journal_info;
7116 if (trans)
7117 exist = 1;
7118 else
7119 trans = btrfs_join_transaction(root);
00361589 7120
00361589
JB
7121 if (IS_ERR(trans)) {
7122 ret = PTR_ERR(trans);
7123 goto out;
7124 }
7125
b6919a58 7126 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7127 CHUNK_ALLOC_FORCE);
7128 /*
7129 * Do not bail out on ENOSPC since we
7130 * can do more things.
7131 */
00361589 7132 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7133 btrfs_abort_transaction(trans,
7134 root, ret);
00361589
JB
7135 else
7136 ret = 0;
f017f15f
WS
7137 if (!exist)
7138 btrfs_end_transaction(trans, root);
00361589 7139 if (ret)
ea658bad 7140 goto out;
2552d17e
JB
7141 }
7142
723bda20
JB
7143 if (loop == LOOP_NO_EMPTY_SIZE) {
7144 empty_size = 0;
7145 empty_cluster = 0;
fa9c0d79 7146 }
723bda20
JB
7147
7148 goto search;
2552d17e
JB
7149 } else if (!ins->objectid) {
7150 ret = -ENOSPC;
d82a6f1d 7151 } else if (ins->objectid) {
80eb234a 7152 ret = 0;
be744175 7153 }
79787eaa 7154out:
a4820398
MX
7155 if (ret == -ENOSPC)
7156 ins->offset = max_extent_size;
0f70abe2 7157 return ret;
fec577fb 7158}
ec44a35c 7159
9ed74f2d
JB
7160static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7161 int dump_block_groups)
0f9dd46c
JB
7162{
7163 struct btrfs_block_group_cache *cache;
b742bb82 7164 int index = 0;
0f9dd46c 7165
9ed74f2d 7166 spin_lock(&info->lock);
efe120a0 7167 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7168 info->flags,
7169 info->total_bytes - info->bytes_used - info->bytes_pinned -
7170 info->bytes_reserved - info->bytes_readonly,
d397712b 7171 (info->full) ? "" : "not ");
efe120a0 7172 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7173 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7174 info->total_bytes, info->bytes_used, info->bytes_pinned,
7175 info->bytes_reserved, info->bytes_may_use,
7176 info->bytes_readonly);
9ed74f2d
JB
7177 spin_unlock(&info->lock);
7178
7179 if (!dump_block_groups)
7180 return;
0f9dd46c 7181
80eb234a 7182 down_read(&info->groups_sem);
b742bb82
YZ
7183again:
7184 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7185 spin_lock(&cache->lock);
efe120a0
FH
7186 printk(KERN_INFO "BTRFS: "
7187 "block group %llu has %llu bytes, "
7188 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7189 cache->key.objectid, cache->key.offset,
7190 btrfs_block_group_used(&cache->item), cache->pinned,
7191 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7192 btrfs_dump_free_space(cache, bytes);
7193 spin_unlock(&cache->lock);
7194 }
b742bb82
YZ
7195 if (++index < BTRFS_NR_RAID_TYPES)
7196 goto again;
80eb234a 7197 up_read(&info->groups_sem);
0f9dd46c 7198}
e8569813 7199
00361589 7200int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7201 u64 num_bytes, u64 min_alloc_size,
7202 u64 empty_size, u64 hint_byte,
e570fd27 7203 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7204{
9e622d6b 7205 bool final_tried = false;
b6919a58 7206 u64 flags;
fec577fb 7207 int ret;
925baedd 7208
b6919a58 7209 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7210again:
db94535d 7211 WARN_ON(num_bytes < root->sectorsize);
00361589 7212 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7213 flags, delalloc);
3b951516 7214
9e622d6b 7215 if (ret == -ENOSPC) {
a4820398
MX
7216 if (!final_tried && ins->offset) {
7217 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7218 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7219 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7220 if (num_bytes == min_alloc_size)
7221 final_tried = true;
7222 goto again;
7223 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7224 struct btrfs_space_info *sinfo;
7225
b6919a58 7226 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7227 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7228 flags, num_bytes);
53804280
JM
7229 if (sinfo)
7230 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7231 }
925baedd 7232 }
0f9dd46c
JB
7233
7234 return ret;
e6dcd2dc
CM
7235}
7236
e688b725 7237static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7238 u64 start, u64 len,
7239 int pin, int delalloc)
65b51a00 7240{
0f9dd46c 7241 struct btrfs_block_group_cache *cache;
1f3c79a2 7242 int ret = 0;
0f9dd46c 7243
0f9dd46c
JB
7244 cache = btrfs_lookup_block_group(root->fs_info, start);
7245 if (!cache) {
c2cf52eb 7246 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7247 start);
0f9dd46c
JB
7248 return -ENOSPC;
7249 }
1f3c79a2 7250
e688b725
CM
7251 if (pin)
7252 pin_down_extent(root, cache, start, len, 1);
7253 else {
dcc82f47
FM
7254 if (btrfs_test_opt(root, DISCARD))
7255 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7256 btrfs_add_free_space(cache, start, len);
e570fd27 7257 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7258 }
31193213 7259
fa9c0d79 7260 btrfs_put_block_group(cache);
817d52f8 7261
1abe9b8a 7262 trace_btrfs_reserved_extent_free(root, start, len);
7263
e6dcd2dc
CM
7264 return ret;
7265}
7266
e688b725 7267int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7268 u64 start, u64 len, int delalloc)
e688b725 7269{
e570fd27 7270 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7271}
7272
7273int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7274 u64 start, u64 len)
7275{
e570fd27 7276 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7277}
7278
5d4f98a2
YZ
7279static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7280 struct btrfs_root *root,
7281 u64 parent, u64 root_objectid,
7282 u64 flags, u64 owner, u64 offset,
7283 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7284{
7285 int ret;
5d4f98a2 7286 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7287 struct btrfs_extent_item *extent_item;
5d4f98a2 7288 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7289 struct btrfs_path *path;
5d4f98a2
YZ
7290 struct extent_buffer *leaf;
7291 int type;
7292 u32 size;
26b8003f 7293
5d4f98a2
YZ
7294 if (parent > 0)
7295 type = BTRFS_SHARED_DATA_REF_KEY;
7296 else
7297 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7298
5d4f98a2 7299 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7300
7301 path = btrfs_alloc_path();
db5b493a
TI
7302 if (!path)
7303 return -ENOMEM;
47e4bb98 7304
b9473439 7305 path->leave_spinning = 1;
5d4f98a2
YZ
7306 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7307 ins, size);
79787eaa
JM
7308 if (ret) {
7309 btrfs_free_path(path);
7310 return ret;
7311 }
0f9dd46c 7312
5d4f98a2
YZ
7313 leaf = path->nodes[0];
7314 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7315 struct btrfs_extent_item);
5d4f98a2
YZ
7316 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7317 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7318 btrfs_set_extent_flags(leaf, extent_item,
7319 flags | BTRFS_EXTENT_FLAG_DATA);
7320
7321 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7322 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7323 if (parent > 0) {
7324 struct btrfs_shared_data_ref *ref;
7325 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7326 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7327 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7328 } else {
7329 struct btrfs_extent_data_ref *ref;
7330 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7331 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7332 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7333 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7334 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7335 }
47e4bb98
CM
7336
7337 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7338 btrfs_free_path(path);
f510cfec 7339
ce93ec54 7340 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7341 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7342 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7343 ins->objectid, ins->offset);
f5947066
CM
7344 BUG();
7345 }
0be5dc67 7346 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7347 return ret;
7348}
7349
5d4f98a2
YZ
7350static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7351 struct btrfs_root *root,
7352 u64 parent, u64 root_objectid,
7353 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7354 int level, struct btrfs_key *ins,
7355 int no_quota)
e6dcd2dc
CM
7356{
7357 int ret;
5d4f98a2
YZ
7358 struct btrfs_fs_info *fs_info = root->fs_info;
7359 struct btrfs_extent_item *extent_item;
7360 struct btrfs_tree_block_info *block_info;
7361 struct btrfs_extent_inline_ref *iref;
7362 struct btrfs_path *path;
7363 struct extent_buffer *leaf;
3173a18f 7364 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7365 u64 num_bytes = ins->offset;
3173a18f
JB
7366 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7367 SKINNY_METADATA);
7368
7369 if (!skinny_metadata)
7370 size += sizeof(*block_info);
1c2308f8 7371
5d4f98a2 7372 path = btrfs_alloc_path();
857cc2fc
JB
7373 if (!path) {
7374 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7375 root->nodesize);
d8926bb3 7376 return -ENOMEM;
857cc2fc 7377 }
56bec294 7378
5d4f98a2
YZ
7379 path->leave_spinning = 1;
7380 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7381 ins, size);
79787eaa 7382 if (ret) {
dd825259 7383 btrfs_free_path(path);
857cc2fc 7384 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7385 root->nodesize);
79787eaa
JM
7386 return ret;
7387 }
5d4f98a2
YZ
7388
7389 leaf = path->nodes[0];
7390 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7391 struct btrfs_extent_item);
7392 btrfs_set_extent_refs(leaf, extent_item, 1);
7393 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7394 btrfs_set_extent_flags(leaf, extent_item,
7395 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7396
3173a18f
JB
7397 if (skinny_metadata) {
7398 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7399 num_bytes = root->nodesize;
3173a18f
JB
7400 } else {
7401 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7402 btrfs_set_tree_block_key(leaf, block_info, key);
7403 btrfs_set_tree_block_level(leaf, block_info, level);
7404 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7405 }
5d4f98a2 7406
5d4f98a2
YZ
7407 if (parent > 0) {
7408 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7409 btrfs_set_extent_inline_ref_type(leaf, iref,
7410 BTRFS_SHARED_BLOCK_REF_KEY);
7411 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7412 } else {
7413 btrfs_set_extent_inline_ref_type(leaf, iref,
7414 BTRFS_TREE_BLOCK_REF_KEY);
7415 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7416 }
7417
7418 btrfs_mark_buffer_dirty(leaf);
7419 btrfs_free_path(path);
7420
ce93ec54
JB
7421 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7422 1);
79787eaa 7423 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7424 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7425 ins->objectid, ins->offset);
5d4f98a2
YZ
7426 BUG();
7427 }
0be5dc67 7428
707e8a07 7429 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7430 return ret;
7431}
7432
7433int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7434 struct btrfs_root *root,
7435 u64 root_objectid, u64 owner,
7436 u64 offset, struct btrfs_key *ins)
7437{
7438 int ret;
7439
7440 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7441
66d7e7f0
AJ
7442 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7443 ins->offset, 0,
7444 root_objectid, owner, offset,
7445 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7446 return ret;
7447}
e02119d5
CM
7448
7449/*
7450 * this is used by the tree logging recovery code. It records that
7451 * an extent has been allocated and makes sure to clear the free
7452 * space cache bits as well
7453 */
5d4f98a2
YZ
7454int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7455 struct btrfs_root *root,
7456 u64 root_objectid, u64 owner, u64 offset,
7457 struct btrfs_key *ins)
e02119d5
CM
7458{
7459 int ret;
7460 struct btrfs_block_group_cache *block_group;
11833d66 7461
8c2a1a30
JB
7462 /*
7463 * Mixed block groups will exclude before processing the log so we only
7464 * need to do the exlude dance if this fs isn't mixed.
7465 */
7466 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7467 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7468 if (ret)
8c2a1a30 7469 return ret;
11833d66
YZ
7470 }
7471
8c2a1a30
JB
7472 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7473 if (!block_group)
7474 return -EINVAL;
7475
fb25e914 7476 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7477 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7478 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7479 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7480 0, owner, offset, ins, 1);
b50c6e25 7481 btrfs_put_block_group(block_group);
e02119d5
CM
7482 return ret;
7483}
7484
48a3b636
ES
7485static struct extent_buffer *
7486btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7487 u64 bytenr, int level)
65b51a00
CM
7488{
7489 struct extent_buffer *buf;
7490
a83fffb7 7491 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7492 if (!buf)
7493 return ERR_PTR(-ENOMEM);
7494 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7495 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7496 btrfs_tree_lock(buf);
01d58472 7497 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7498 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7499
7500 btrfs_set_lock_blocking(buf);
65b51a00 7501 btrfs_set_buffer_uptodate(buf);
b4ce94de 7502
d0c803c4 7503 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7504 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7505 /*
7506 * we allow two log transactions at a time, use different
7507 * EXENT bit to differentiate dirty pages.
7508 */
656f30db 7509 if (buf->log_index == 0)
8cef4e16
YZ
7510 set_extent_dirty(&root->dirty_log_pages, buf->start,
7511 buf->start + buf->len - 1, GFP_NOFS);
7512 else
7513 set_extent_new(&root->dirty_log_pages, buf->start,
7514 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7515 } else {
656f30db 7516 buf->log_index = -1;
d0c803c4 7517 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7518 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7519 }
65b51a00 7520 trans->blocks_used++;
b4ce94de 7521 /* this returns a buffer locked for blocking */
65b51a00
CM
7522 return buf;
7523}
7524
f0486c68
YZ
7525static struct btrfs_block_rsv *
7526use_block_rsv(struct btrfs_trans_handle *trans,
7527 struct btrfs_root *root, u32 blocksize)
7528{
7529 struct btrfs_block_rsv *block_rsv;
68a82277 7530 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7531 int ret;
d88033db 7532 bool global_updated = false;
f0486c68
YZ
7533
7534 block_rsv = get_block_rsv(trans, root);
7535
b586b323
MX
7536 if (unlikely(block_rsv->size == 0))
7537 goto try_reserve;
d88033db 7538again:
f0486c68
YZ
7539 ret = block_rsv_use_bytes(block_rsv, blocksize);
7540 if (!ret)
7541 return block_rsv;
7542
b586b323
MX
7543 if (block_rsv->failfast)
7544 return ERR_PTR(ret);
7545
d88033db
MX
7546 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7547 global_updated = true;
7548 update_global_block_rsv(root->fs_info);
7549 goto again;
7550 }
7551
b586b323
MX
7552 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7553 static DEFINE_RATELIMIT_STATE(_rs,
7554 DEFAULT_RATELIMIT_INTERVAL * 10,
7555 /*DEFAULT_RATELIMIT_BURST*/ 1);
7556 if (__ratelimit(&_rs))
7557 WARN(1, KERN_DEBUG
efe120a0 7558 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7559 }
7560try_reserve:
7561 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7562 BTRFS_RESERVE_NO_FLUSH);
7563 if (!ret)
7564 return block_rsv;
7565 /*
7566 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7567 * the global reserve if its space type is the same as the global
7568 * reservation.
b586b323 7569 */
5881cfc9
MX
7570 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7571 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7572 ret = block_rsv_use_bytes(global_rsv, blocksize);
7573 if (!ret)
7574 return global_rsv;
7575 }
7576 return ERR_PTR(ret);
f0486c68
YZ
7577}
7578
8c2a3ca2
JB
7579static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7580 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7581{
7582 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7583 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7584}
7585
fec577fb 7586/*
f0486c68
YZ
7587 * finds a free extent and does all the dirty work required for allocation
7588 * returns the key for the extent through ins, and a tree buffer for
7589 * the first block of the extent through buf.
7590 *
67b7859e 7591 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7592 */
4d75f8a9
DS
7593struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7594 struct btrfs_root *root,
5d4f98a2
YZ
7595 u64 parent, u64 root_objectid,
7596 struct btrfs_disk_key *key, int level,
5581a51a 7597 u64 hint, u64 empty_size)
fec577fb 7598{
e2fa7227 7599 struct btrfs_key ins;
f0486c68 7600 struct btrfs_block_rsv *block_rsv;
5f39d397 7601 struct extent_buffer *buf;
67b7859e 7602 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7603 u64 flags = 0;
7604 int ret;
4d75f8a9 7605 u32 blocksize = root->nodesize;
3173a18f
JB
7606 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7607 SKINNY_METADATA);
fec577fb 7608
fccb84c9 7609 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7610 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7611 level);
faa2dbf0
JB
7612 if (!IS_ERR(buf))
7613 root->alloc_bytenr += blocksize;
7614 return buf;
7615 }
fccb84c9 7616
f0486c68
YZ
7617 block_rsv = use_block_rsv(trans, root, blocksize);
7618 if (IS_ERR(block_rsv))
7619 return ERR_CAST(block_rsv);
7620
00361589 7621 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7622 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7623 if (ret)
7624 goto out_unuse;
55c69072 7625
fe864576 7626 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7627 if (IS_ERR(buf)) {
7628 ret = PTR_ERR(buf);
7629 goto out_free_reserved;
7630 }
f0486c68
YZ
7631
7632 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7633 if (parent == 0)
7634 parent = ins.objectid;
7635 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7636 } else
7637 BUG_ON(parent > 0);
7638
7639 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7640 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7641 if (!extent_op) {
7642 ret = -ENOMEM;
7643 goto out_free_buf;
7644 }
f0486c68
YZ
7645 if (key)
7646 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7647 else
7648 memset(&extent_op->key, 0, sizeof(extent_op->key));
7649 extent_op->flags_to_set = flags;
3173a18f
JB
7650 if (skinny_metadata)
7651 extent_op->update_key = 0;
7652 else
7653 extent_op->update_key = 1;
f0486c68
YZ
7654 extent_op->update_flags = 1;
7655 extent_op->is_data = 0;
b1c79e09 7656 extent_op->level = level;
f0486c68 7657
66d7e7f0 7658 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7659 ins.objectid, ins.offset,
7660 parent, root_objectid, level,
7661 BTRFS_ADD_DELAYED_EXTENT,
7662 extent_op, 0);
7663 if (ret)
7664 goto out_free_delayed;
f0486c68 7665 }
fec577fb 7666 return buf;
67b7859e
OS
7667
7668out_free_delayed:
7669 btrfs_free_delayed_extent_op(extent_op);
7670out_free_buf:
7671 free_extent_buffer(buf);
7672out_free_reserved:
7673 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7674out_unuse:
7675 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7676 return ERR_PTR(ret);
fec577fb 7677}
a28ec197 7678
2c47e605
YZ
7679struct walk_control {
7680 u64 refs[BTRFS_MAX_LEVEL];
7681 u64 flags[BTRFS_MAX_LEVEL];
7682 struct btrfs_key update_progress;
7683 int stage;
7684 int level;
7685 int shared_level;
7686 int update_ref;
7687 int keep_locks;
1c4850e2
YZ
7688 int reada_slot;
7689 int reada_count;
66d7e7f0 7690 int for_reloc;
2c47e605
YZ
7691};
7692
7693#define DROP_REFERENCE 1
7694#define UPDATE_BACKREF 2
7695
1c4850e2
YZ
7696static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7697 struct btrfs_root *root,
7698 struct walk_control *wc,
7699 struct btrfs_path *path)
6407bf6d 7700{
1c4850e2
YZ
7701 u64 bytenr;
7702 u64 generation;
7703 u64 refs;
94fcca9f 7704 u64 flags;
5d4f98a2 7705 u32 nritems;
1c4850e2
YZ
7706 u32 blocksize;
7707 struct btrfs_key key;
7708 struct extent_buffer *eb;
6407bf6d 7709 int ret;
1c4850e2
YZ
7710 int slot;
7711 int nread = 0;
6407bf6d 7712
1c4850e2
YZ
7713 if (path->slots[wc->level] < wc->reada_slot) {
7714 wc->reada_count = wc->reada_count * 2 / 3;
7715 wc->reada_count = max(wc->reada_count, 2);
7716 } else {
7717 wc->reada_count = wc->reada_count * 3 / 2;
7718 wc->reada_count = min_t(int, wc->reada_count,
7719 BTRFS_NODEPTRS_PER_BLOCK(root));
7720 }
7bb86316 7721
1c4850e2
YZ
7722 eb = path->nodes[wc->level];
7723 nritems = btrfs_header_nritems(eb);
707e8a07 7724 blocksize = root->nodesize;
bd56b302 7725
1c4850e2
YZ
7726 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7727 if (nread >= wc->reada_count)
7728 break;
bd56b302 7729
2dd3e67b 7730 cond_resched();
1c4850e2
YZ
7731 bytenr = btrfs_node_blockptr(eb, slot);
7732 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7733
1c4850e2
YZ
7734 if (slot == path->slots[wc->level])
7735 goto reada;
5d4f98a2 7736
1c4850e2
YZ
7737 if (wc->stage == UPDATE_BACKREF &&
7738 generation <= root->root_key.offset)
bd56b302
CM
7739 continue;
7740
94fcca9f 7741 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7742 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7743 wc->level - 1, 1, &refs,
7744 &flags);
79787eaa
JM
7745 /* We don't care about errors in readahead. */
7746 if (ret < 0)
7747 continue;
94fcca9f
YZ
7748 BUG_ON(refs == 0);
7749
1c4850e2 7750 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7751 if (refs == 1)
7752 goto reada;
bd56b302 7753
94fcca9f
YZ
7754 if (wc->level == 1 &&
7755 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7756 continue;
1c4850e2
YZ
7757 if (!wc->update_ref ||
7758 generation <= root->root_key.offset)
7759 continue;
7760 btrfs_node_key_to_cpu(eb, &key, slot);
7761 ret = btrfs_comp_cpu_keys(&key,
7762 &wc->update_progress);
7763 if (ret < 0)
7764 continue;
94fcca9f
YZ
7765 } else {
7766 if (wc->level == 1 &&
7767 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7768 continue;
6407bf6d 7769 }
1c4850e2 7770reada:
d3e46fea 7771 readahead_tree_block(root, bytenr);
1c4850e2 7772 nread++;
20524f02 7773 }
1c4850e2 7774 wc->reada_slot = slot;
20524f02 7775}
2c47e605 7776
0ed4792a
QW
7777/*
7778 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7779 * for later qgroup accounting.
7780 *
7781 * Current, this function does nothing.
7782 */
1152651a
MF
7783static int account_leaf_items(struct btrfs_trans_handle *trans,
7784 struct btrfs_root *root,
7785 struct extent_buffer *eb)
7786{
7787 int nr = btrfs_header_nritems(eb);
0ed4792a 7788 int i, extent_type;
1152651a
MF
7789 struct btrfs_key key;
7790 struct btrfs_file_extent_item *fi;
7791 u64 bytenr, num_bytes;
7792
7793 for (i = 0; i < nr; i++) {
7794 btrfs_item_key_to_cpu(eb, &key, i);
7795
7796 if (key.type != BTRFS_EXTENT_DATA_KEY)
7797 continue;
7798
7799 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7800 /* filter out non qgroup-accountable extents */
7801 extent_type = btrfs_file_extent_type(eb, fi);
7802
7803 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7804 continue;
7805
7806 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7807 if (!bytenr)
7808 continue;
7809
7810 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7811 }
7812 return 0;
7813}
7814
7815/*
7816 * Walk up the tree from the bottom, freeing leaves and any interior
7817 * nodes which have had all slots visited. If a node (leaf or
7818 * interior) is freed, the node above it will have it's slot
7819 * incremented. The root node will never be freed.
7820 *
7821 * At the end of this function, we should have a path which has all
7822 * slots incremented to the next position for a search. If we need to
7823 * read a new node it will be NULL and the node above it will have the
7824 * correct slot selected for a later read.
7825 *
7826 * If we increment the root nodes slot counter past the number of
7827 * elements, 1 is returned to signal completion of the search.
7828 */
7829static int adjust_slots_upwards(struct btrfs_root *root,
7830 struct btrfs_path *path, int root_level)
7831{
7832 int level = 0;
7833 int nr, slot;
7834 struct extent_buffer *eb;
7835
7836 if (root_level == 0)
7837 return 1;
7838
7839 while (level <= root_level) {
7840 eb = path->nodes[level];
7841 nr = btrfs_header_nritems(eb);
7842 path->slots[level]++;
7843 slot = path->slots[level];
7844 if (slot >= nr || level == 0) {
7845 /*
7846 * Don't free the root - we will detect this
7847 * condition after our loop and return a
7848 * positive value for caller to stop walking the tree.
7849 */
7850 if (level != root_level) {
7851 btrfs_tree_unlock_rw(eb, path->locks[level]);
7852 path->locks[level] = 0;
7853
7854 free_extent_buffer(eb);
7855 path->nodes[level] = NULL;
7856 path->slots[level] = 0;
7857 }
7858 } else {
7859 /*
7860 * We have a valid slot to walk back down
7861 * from. Stop here so caller can process these
7862 * new nodes.
7863 */
7864 break;
7865 }
7866
7867 level++;
7868 }
7869
7870 eb = path->nodes[root_level];
7871 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7872 return 1;
7873
7874 return 0;
7875}
7876
7877/*
7878 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7879 * TODO: Modify this function to mark all (including complete shared node)
7880 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7881 */
7882static int account_shared_subtree(struct btrfs_trans_handle *trans,
7883 struct btrfs_root *root,
7884 struct extent_buffer *root_eb,
7885 u64 root_gen,
7886 int root_level)
7887{
7888 int ret = 0;
7889 int level;
7890 struct extent_buffer *eb = root_eb;
7891 struct btrfs_path *path = NULL;
7892
7893 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7894 BUG_ON(root_eb == NULL);
7895
7896 if (!root->fs_info->quota_enabled)
7897 return 0;
7898
7899 if (!extent_buffer_uptodate(root_eb)) {
7900 ret = btrfs_read_buffer(root_eb, root_gen);
7901 if (ret)
7902 goto out;
7903 }
7904
7905 if (root_level == 0) {
7906 ret = account_leaf_items(trans, root, root_eb);
7907 goto out;
7908 }
7909
7910 path = btrfs_alloc_path();
7911 if (!path)
7912 return -ENOMEM;
7913
7914 /*
7915 * Walk down the tree. Missing extent blocks are filled in as
7916 * we go. Metadata is accounted every time we read a new
7917 * extent block.
7918 *
7919 * When we reach a leaf, we account for file extent items in it,
7920 * walk back up the tree (adjusting slot pointers as we go)
7921 * and restart the search process.
7922 */
7923 extent_buffer_get(root_eb); /* For path */
7924 path->nodes[root_level] = root_eb;
7925 path->slots[root_level] = 0;
7926 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7927walk_down:
7928 level = root_level;
7929 while (level >= 0) {
7930 if (path->nodes[level] == NULL) {
1152651a
MF
7931 int parent_slot;
7932 u64 child_gen;
7933 u64 child_bytenr;
7934
7935 /* We need to get child blockptr/gen from
7936 * parent before we can read it. */
7937 eb = path->nodes[level + 1];
7938 parent_slot = path->slots[level + 1];
7939 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7940 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7941
ce86cd59 7942 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
7943 if (IS_ERR(eb)) {
7944 ret = PTR_ERR(eb);
7945 goto out;
7946 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 7947 free_extent_buffer(eb);
64c043de 7948 ret = -EIO;
1152651a
MF
7949 goto out;
7950 }
7951
7952 path->nodes[level] = eb;
7953 path->slots[level] = 0;
7954
7955 btrfs_tree_read_lock(eb);
7956 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7957 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
7958 }
7959
7960 if (level == 0) {
7961 ret = account_leaf_items(trans, root, path->nodes[level]);
7962 if (ret)
7963 goto out;
7964
7965 /* Nonzero return here means we completed our search */
7966 ret = adjust_slots_upwards(root, path, root_level);
7967 if (ret)
7968 break;
7969
7970 /* Restart search with new slots */
7971 goto walk_down;
7972 }
7973
7974 level--;
7975 }
7976
7977 ret = 0;
7978out:
7979 btrfs_free_path(path);
7980
7981 return ret;
7982}
7983
f82d02d9 7984/*
2c016dc2 7985 * helper to process tree block while walking down the tree.
2c47e605 7986 *
2c47e605
YZ
7987 * when wc->stage == UPDATE_BACKREF, this function updates
7988 * back refs for pointers in the block.
7989 *
7990 * NOTE: return value 1 means we should stop walking down.
f82d02d9 7991 */
2c47e605 7992static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 7993 struct btrfs_root *root,
2c47e605 7994 struct btrfs_path *path,
94fcca9f 7995 struct walk_control *wc, int lookup_info)
f82d02d9 7996{
2c47e605
YZ
7997 int level = wc->level;
7998 struct extent_buffer *eb = path->nodes[level];
2c47e605 7999 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8000 int ret;
8001
2c47e605
YZ
8002 if (wc->stage == UPDATE_BACKREF &&
8003 btrfs_header_owner(eb) != root->root_key.objectid)
8004 return 1;
f82d02d9 8005
2c47e605
YZ
8006 /*
8007 * when reference count of tree block is 1, it won't increase
8008 * again. once full backref flag is set, we never clear it.
8009 */
94fcca9f
YZ
8010 if (lookup_info &&
8011 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8012 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8013 BUG_ON(!path->locks[level]);
8014 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8015 eb->start, level, 1,
2c47e605
YZ
8016 &wc->refs[level],
8017 &wc->flags[level]);
79787eaa
JM
8018 BUG_ON(ret == -ENOMEM);
8019 if (ret)
8020 return ret;
2c47e605
YZ
8021 BUG_ON(wc->refs[level] == 0);
8022 }
5d4f98a2 8023
2c47e605
YZ
8024 if (wc->stage == DROP_REFERENCE) {
8025 if (wc->refs[level] > 1)
8026 return 1;
f82d02d9 8027
2c47e605 8028 if (path->locks[level] && !wc->keep_locks) {
bd681513 8029 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8030 path->locks[level] = 0;
8031 }
8032 return 0;
8033 }
f82d02d9 8034
2c47e605
YZ
8035 /* wc->stage == UPDATE_BACKREF */
8036 if (!(wc->flags[level] & flag)) {
8037 BUG_ON(!path->locks[level]);
e339a6b0 8038 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8039 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8040 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8041 BUG_ON(ret); /* -ENOMEM */
2c47e605 8042 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8043 eb->len, flag,
8044 btrfs_header_level(eb), 0);
79787eaa 8045 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8046 wc->flags[level] |= flag;
8047 }
8048
8049 /*
8050 * the block is shared by multiple trees, so it's not good to
8051 * keep the tree lock
8052 */
8053 if (path->locks[level] && level > 0) {
bd681513 8054 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8055 path->locks[level] = 0;
8056 }
8057 return 0;
8058}
8059
1c4850e2 8060/*
2c016dc2 8061 * helper to process tree block pointer.
1c4850e2
YZ
8062 *
8063 * when wc->stage == DROP_REFERENCE, this function checks
8064 * reference count of the block pointed to. if the block
8065 * is shared and we need update back refs for the subtree
8066 * rooted at the block, this function changes wc->stage to
8067 * UPDATE_BACKREF. if the block is shared and there is no
8068 * need to update back, this function drops the reference
8069 * to the block.
8070 *
8071 * NOTE: return value 1 means we should stop walking down.
8072 */
8073static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8074 struct btrfs_root *root,
8075 struct btrfs_path *path,
94fcca9f 8076 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8077{
8078 u64 bytenr;
8079 u64 generation;
8080 u64 parent;
8081 u32 blocksize;
8082 struct btrfs_key key;
8083 struct extent_buffer *next;
8084 int level = wc->level;
8085 int reada = 0;
8086 int ret = 0;
1152651a 8087 bool need_account = false;
1c4850e2
YZ
8088
8089 generation = btrfs_node_ptr_generation(path->nodes[level],
8090 path->slots[level]);
8091 /*
8092 * if the lower level block was created before the snapshot
8093 * was created, we know there is no need to update back refs
8094 * for the subtree
8095 */
8096 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8097 generation <= root->root_key.offset) {
8098 *lookup_info = 1;
1c4850e2 8099 return 1;
94fcca9f 8100 }
1c4850e2
YZ
8101
8102 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8103 blocksize = root->nodesize;
1c4850e2 8104
01d58472 8105 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8106 if (!next) {
a83fffb7 8107 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8108 if (!next)
8109 return -ENOMEM;
b2aaaa3b
JB
8110 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8111 level - 1);
1c4850e2
YZ
8112 reada = 1;
8113 }
8114 btrfs_tree_lock(next);
8115 btrfs_set_lock_blocking(next);
8116
3173a18f 8117 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8118 &wc->refs[level - 1],
8119 &wc->flags[level - 1]);
79787eaa
JM
8120 if (ret < 0) {
8121 btrfs_tree_unlock(next);
8122 return ret;
8123 }
8124
c2cf52eb
SK
8125 if (unlikely(wc->refs[level - 1] == 0)) {
8126 btrfs_err(root->fs_info, "Missing references.");
8127 BUG();
8128 }
94fcca9f 8129 *lookup_info = 0;
1c4850e2 8130
94fcca9f 8131 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8132 if (wc->refs[level - 1] > 1) {
1152651a 8133 need_account = true;
94fcca9f
YZ
8134 if (level == 1 &&
8135 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8136 goto skip;
8137
1c4850e2
YZ
8138 if (!wc->update_ref ||
8139 generation <= root->root_key.offset)
8140 goto skip;
8141
8142 btrfs_node_key_to_cpu(path->nodes[level], &key,
8143 path->slots[level]);
8144 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8145 if (ret < 0)
8146 goto skip;
8147
8148 wc->stage = UPDATE_BACKREF;
8149 wc->shared_level = level - 1;
8150 }
94fcca9f
YZ
8151 } else {
8152 if (level == 1 &&
8153 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8154 goto skip;
1c4850e2
YZ
8155 }
8156
b9fab919 8157 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8158 btrfs_tree_unlock(next);
8159 free_extent_buffer(next);
8160 next = NULL;
94fcca9f 8161 *lookup_info = 1;
1c4850e2
YZ
8162 }
8163
8164 if (!next) {
8165 if (reada && level == 1)
8166 reada_walk_down(trans, root, wc, path);
ce86cd59 8167 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8168 if (IS_ERR(next)) {
8169 return PTR_ERR(next);
8170 } else if (!extent_buffer_uptodate(next)) {
416bc658 8171 free_extent_buffer(next);
97d9a8a4 8172 return -EIO;
416bc658 8173 }
1c4850e2
YZ
8174 btrfs_tree_lock(next);
8175 btrfs_set_lock_blocking(next);
8176 }
8177
8178 level--;
8179 BUG_ON(level != btrfs_header_level(next));
8180 path->nodes[level] = next;
8181 path->slots[level] = 0;
bd681513 8182 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8183 wc->level = level;
8184 if (wc->level == 1)
8185 wc->reada_slot = 0;
8186 return 0;
8187skip:
8188 wc->refs[level - 1] = 0;
8189 wc->flags[level - 1] = 0;
94fcca9f
YZ
8190 if (wc->stage == DROP_REFERENCE) {
8191 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8192 parent = path->nodes[level]->start;
8193 } else {
8194 BUG_ON(root->root_key.objectid !=
8195 btrfs_header_owner(path->nodes[level]));
8196 parent = 0;
8197 }
1c4850e2 8198
1152651a
MF
8199 if (need_account) {
8200 ret = account_shared_subtree(trans, root, next,
8201 generation, level - 1);
8202 if (ret) {
8203 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8204 "%d accounting shared subtree. Quota "
8205 "is out of sync, rescan required.\n",
8206 root->fs_info->sb->s_id, ret);
8207 }
8208 }
94fcca9f 8209 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8210 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8211 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8212 }
1c4850e2
YZ
8213 btrfs_tree_unlock(next);
8214 free_extent_buffer(next);
94fcca9f 8215 *lookup_info = 1;
1c4850e2
YZ
8216 return 1;
8217}
8218
2c47e605 8219/*
2c016dc2 8220 * helper to process tree block while walking up the tree.
2c47e605
YZ
8221 *
8222 * when wc->stage == DROP_REFERENCE, this function drops
8223 * reference count on the block.
8224 *
8225 * when wc->stage == UPDATE_BACKREF, this function changes
8226 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8227 * to UPDATE_BACKREF previously while processing the block.
8228 *
8229 * NOTE: return value 1 means we should stop walking up.
8230 */
8231static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8232 struct btrfs_root *root,
8233 struct btrfs_path *path,
8234 struct walk_control *wc)
8235{
f0486c68 8236 int ret;
2c47e605
YZ
8237 int level = wc->level;
8238 struct extent_buffer *eb = path->nodes[level];
8239 u64 parent = 0;
8240
8241 if (wc->stage == UPDATE_BACKREF) {
8242 BUG_ON(wc->shared_level < level);
8243 if (level < wc->shared_level)
8244 goto out;
8245
2c47e605
YZ
8246 ret = find_next_key(path, level + 1, &wc->update_progress);
8247 if (ret > 0)
8248 wc->update_ref = 0;
8249
8250 wc->stage = DROP_REFERENCE;
8251 wc->shared_level = -1;
8252 path->slots[level] = 0;
8253
8254 /*
8255 * check reference count again if the block isn't locked.
8256 * we should start walking down the tree again if reference
8257 * count is one.
8258 */
8259 if (!path->locks[level]) {
8260 BUG_ON(level == 0);
8261 btrfs_tree_lock(eb);
8262 btrfs_set_lock_blocking(eb);
bd681513 8263 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8264
8265 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8266 eb->start, level, 1,
2c47e605
YZ
8267 &wc->refs[level],
8268 &wc->flags[level]);
79787eaa
JM
8269 if (ret < 0) {
8270 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8271 path->locks[level] = 0;
79787eaa
JM
8272 return ret;
8273 }
2c47e605
YZ
8274 BUG_ON(wc->refs[level] == 0);
8275 if (wc->refs[level] == 1) {
bd681513 8276 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8277 path->locks[level] = 0;
2c47e605
YZ
8278 return 1;
8279 }
f82d02d9 8280 }
2c47e605 8281 }
f82d02d9 8282
2c47e605
YZ
8283 /* wc->stage == DROP_REFERENCE */
8284 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8285
2c47e605
YZ
8286 if (wc->refs[level] == 1) {
8287 if (level == 0) {
8288 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8289 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8290 else
e339a6b0 8291 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8292 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8293 ret = account_leaf_items(trans, root, eb);
8294 if (ret) {
8295 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8296 "%d accounting leaf items. Quota "
8297 "is out of sync, rescan required.\n",
8298 root->fs_info->sb->s_id, ret);
8299 }
2c47e605
YZ
8300 }
8301 /* make block locked assertion in clean_tree_block happy */
8302 if (!path->locks[level] &&
8303 btrfs_header_generation(eb) == trans->transid) {
8304 btrfs_tree_lock(eb);
8305 btrfs_set_lock_blocking(eb);
bd681513 8306 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8307 }
01d58472 8308 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8309 }
8310
8311 if (eb == root->node) {
8312 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8313 parent = eb->start;
8314 else
8315 BUG_ON(root->root_key.objectid !=
8316 btrfs_header_owner(eb));
8317 } else {
8318 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8319 parent = path->nodes[level + 1]->start;
8320 else
8321 BUG_ON(root->root_key.objectid !=
8322 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8323 }
f82d02d9 8324
5581a51a 8325 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8326out:
8327 wc->refs[level] = 0;
8328 wc->flags[level] = 0;
f0486c68 8329 return 0;
2c47e605
YZ
8330}
8331
8332static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8333 struct btrfs_root *root,
8334 struct btrfs_path *path,
8335 struct walk_control *wc)
8336{
2c47e605 8337 int level = wc->level;
94fcca9f 8338 int lookup_info = 1;
2c47e605
YZ
8339 int ret;
8340
8341 while (level >= 0) {
94fcca9f 8342 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8343 if (ret > 0)
8344 break;
8345
8346 if (level == 0)
8347 break;
8348
7a7965f8
YZ
8349 if (path->slots[level] >=
8350 btrfs_header_nritems(path->nodes[level]))
8351 break;
8352
94fcca9f 8353 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8354 if (ret > 0) {
8355 path->slots[level]++;
8356 continue;
90d2c51d
MX
8357 } else if (ret < 0)
8358 return ret;
1c4850e2 8359 level = wc->level;
f82d02d9 8360 }
f82d02d9
YZ
8361 return 0;
8362}
8363
d397712b 8364static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8365 struct btrfs_root *root,
f82d02d9 8366 struct btrfs_path *path,
2c47e605 8367 struct walk_control *wc, int max_level)
20524f02 8368{
2c47e605 8369 int level = wc->level;
20524f02 8370 int ret;
9f3a7427 8371
2c47e605
YZ
8372 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8373 while (level < max_level && path->nodes[level]) {
8374 wc->level = level;
8375 if (path->slots[level] + 1 <
8376 btrfs_header_nritems(path->nodes[level])) {
8377 path->slots[level]++;
20524f02
CM
8378 return 0;
8379 } else {
2c47e605
YZ
8380 ret = walk_up_proc(trans, root, path, wc);
8381 if (ret > 0)
8382 return 0;
bd56b302 8383
2c47e605 8384 if (path->locks[level]) {
bd681513
CM
8385 btrfs_tree_unlock_rw(path->nodes[level],
8386 path->locks[level]);
2c47e605 8387 path->locks[level] = 0;
f82d02d9 8388 }
2c47e605
YZ
8389 free_extent_buffer(path->nodes[level]);
8390 path->nodes[level] = NULL;
8391 level++;
20524f02
CM
8392 }
8393 }
8394 return 1;
8395}
8396
9aca1d51 8397/*
2c47e605
YZ
8398 * drop a subvolume tree.
8399 *
8400 * this function traverses the tree freeing any blocks that only
8401 * referenced by the tree.
8402 *
8403 * when a shared tree block is found. this function decreases its
8404 * reference count by one. if update_ref is true, this function
8405 * also make sure backrefs for the shared block and all lower level
8406 * blocks are properly updated.
9d1a2a3a
DS
8407 *
8408 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8409 */
2c536799 8410int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8411 struct btrfs_block_rsv *block_rsv, int update_ref,
8412 int for_reloc)
20524f02 8413{
5caf2a00 8414 struct btrfs_path *path;
2c47e605
YZ
8415 struct btrfs_trans_handle *trans;
8416 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8417 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8418 struct walk_control *wc;
8419 struct btrfs_key key;
8420 int err = 0;
8421 int ret;
8422 int level;
d29a9f62 8423 bool root_dropped = false;
20524f02 8424
1152651a
MF
8425 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8426
5caf2a00 8427 path = btrfs_alloc_path();
cb1b69f4
TI
8428 if (!path) {
8429 err = -ENOMEM;
8430 goto out;
8431 }
20524f02 8432
2c47e605 8433 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8434 if (!wc) {
8435 btrfs_free_path(path);
cb1b69f4
TI
8436 err = -ENOMEM;
8437 goto out;
38a1a919 8438 }
2c47e605 8439
a22285a6 8440 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8441 if (IS_ERR(trans)) {
8442 err = PTR_ERR(trans);
8443 goto out_free;
8444 }
98d5dc13 8445
3fd0a558
YZ
8446 if (block_rsv)
8447 trans->block_rsv = block_rsv;
2c47e605 8448
9f3a7427 8449 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8450 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8451 path->nodes[level] = btrfs_lock_root_node(root);
8452 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8453 path->slots[level] = 0;
bd681513 8454 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8455 memset(&wc->update_progress, 0,
8456 sizeof(wc->update_progress));
9f3a7427 8457 } else {
9f3a7427 8458 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8459 memcpy(&wc->update_progress, &key,
8460 sizeof(wc->update_progress));
8461
6702ed49 8462 level = root_item->drop_level;
2c47e605 8463 BUG_ON(level == 0);
6702ed49 8464 path->lowest_level = level;
2c47e605
YZ
8465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8466 path->lowest_level = 0;
8467 if (ret < 0) {
8468 err = ret;
79787eaa 8469 goto out_end_trans;
9f3a7427 8470 }
1c4850e2 8471 WARN_ON(ret > 0);
2c47e605 8472
7d9eb12c
CM
8473 /*
8474 * unlock our path, this is safe because only this
8475 * function is allowed to delete this snapshot
8476 */
5d4f98a2 8477 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8478
8479 level = btrfs_header_level(root->node);
8480 while (1) {
8481 btrfs_tree_lock(path->nodes[level]);
8482 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8483 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8484
8485 ret = btrfs_lookup_extent_info(trans, root,
8486 path->nodes[level]->start,
3173a18f 8487 level, 1, &wc->refs[level],
2c47e605 8488 &wc->flags[level]);
79787eaa
JM
8489 if (ret < 0) {
8490 err = ret;
8491 goto out_end_trans;
8492 }
2c47e605
YZ
8493 BUG_ON(wc->refs[level] == 0);
8494
8495 if (level == root_item->drop_level)
8496 break;
8497
8498 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8499 path->locks[level] = 0;
2c47e605
YZ
8500 WARN_ON(wc->refs[level] != 1);
8501 level--;
8502 }
9f3a7427 8503 }
2c47e605
YZ
8504
8505 wc->level = level;
8506 wc->shared_level = -1;
8507 wc->stage = DROP_REFERENCE;
8508 wc->update_ref = update_ref;
8509 wc->keep_locks = 0;
66d7e7f0 8510 wc->for_reloc = for_reloc;
1c4850e2 8511 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8512
d397712b 8513 while (1) {
9d1a2a3a 8514
2c47e605
YZ
8515 ret = walk_down_tree(trans, root, path, wc);
8516 if (ret < 0) {
8517 err = ret;
20524f02 8518 break;
2c47e605 8519 }
9aca1d51 8520
2c47e605
YZ
8521 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8522 if (ret < 0) {
8523 err = ret;
20524f02 8524 break;
2c47e605
YZ
8525 }
8526
8527 if (ret > 0) {
8528 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8529 break;
8530 }
2c47e605
YZ
8531
8532 if (wc->stage == DROP_REFERENCE) {
8533 level = wc->level;
8534 btrfs_node_key(path->nodes[level],
8535 &root_item->drop_progress,
8536 path->slots[level]);
8537 root_item->drop_level = level;
8538 }
8539
8540 BUG_ON(wc->level == 0);
3c8f2422
JB
8541 if (btrfs_should_end_transaction(trans, tree_root) ||
8542 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8543 ret = btrfs_update_root(trans, tree_root,
8544 &root->root_key,
8545 root_item);
79787eaa
JM
8546 if (ret) {
8547 btrfs_abort_transaction(trans, tree_root, ret);
8548 err = ret;
8549 goto out_end_trans;
8550 }
2c47e605 8551
3fd0a558 8552 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8553 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8554 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8555 err = -EAGAIN;
8556 goto out_free;
8557 }
8558
a22285a6 8559 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8560 if (IS_ERR(trans)) {
8561 err = PTR_ERR(trans);
8562 goto out_free;
8563 }
3fd0a558
YZ
8564 if (block_rsv)
8565 trans->block_rsv = block_rsv;
c3e69d58 8566 }
20524f02 8567 }
b3b4aa74 8568 btrfs_release_path(path);
79787eaa
JM
8569 if (err)
8570 goto out_end_trans;
2c47e605
YZ
8571
8572 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8573 if (ret) {
8574 btrfs_abort_transaction(trans, tree_root, ret);
8575 goto out_end_trans;
8576 }
2c47e605 8577
76dda93c 8578 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8579 ret = btrfs_find_root(tree_root, &root->root_key, path,
8580 NULL, NULL);
79787eaa
JM
8581 if (ret < 0) {
8582 btrfs_abort_transaction(trans, tree_root, ret);
8583 err = ret;
8584 goto out_end_trans;
8585 } else if (ret > 0) {
84cd948c
JB
8586 /* if we fail to delete the orphan item this time
8587 * around, it'll get picked up the next time.
8588 *
8589 * The most common failure here is just -ENOENT.
8590 */
8591 btrfs_del_orphan_item(trans, tree_root,
8592 root->root_key.objectid);
76dda93c
YZ
8593 }
8594 }
8595
27cdeb70 8596 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
cb517eab 8597 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
76dda93c
YZ
8598 } else {
8599 free_extent_buffer(root->node);
8600 free_extent_buffer(root->commit_root);
b0feb9d9 8601 btrfs_put_fs_root(root);
76dda93c 8602 }
d29a9f62 8603 root_dropped = true;
79787eaa 8604out_end_trans:
3fd0a558 8605 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8606out_free:
2c47e605 8607 kfree(wc);
5caf2a00 8608 btrfs_free_path(path);
cb1b69f4 8609out:
d29a9f62
JB
8610 /*
8611 * So if we need to stop dropping the snapshot for whatever reason we
8612 * need to make sure to add it back to the dead root list so that we
8613 * keep trying to do the work later. This also cleans up roots if we
8614 * don't have it in the radix (like when we recover after a power fail
8615 * or unmount) so we don't leak memory.
8616 */
b37b39cd 8617 if (!for_reloc && root_dropped == false)
d29a9f62 8618 btrfs_add_dead_root(root);
90515e7f 8619 if (err && err != -EAGAIN)
cb1b69f4 8620 btrfs_std_error(root->fs_info, err);
2c536799 8621 return err;
20524f02 8622}
9078a3e1 8623
2c47e605
YZ
8624/*
8625 * drop subtree rooted at tree block 'node'.
8626 *
8627 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8628 * only used by relocation code
2c47e605 8629 */
f82d02d9
YZ
8630int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8631 struct btrfs_root *root,
8632 struct extent_buffer *node,
8633 struct extent_buffer *parent)
8634{
8635 struct btrfs_path *path;
2c47e605 8636 struct walk_control *wc;
f82d02d9
YZ
8637 int level;
8638 int parent_level;
8639 int ret = 0;
8640 int wret;
8641
2c47e605
YZ
8642 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8643
f82d02d9 8644 path = btrfs_alloc_path();
db5b493a
TI
8645 if (!path)
8646 return -ENOMEM;
f82d02d9 8647
2c47e605 8648 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8649 if (!wc) {
8650 btrfs_free_path(path);
8651 return -ENOMEM;
8652 }
2c47e605 8653
b9447ef8 8654 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8655 parent_level = btrfs_header_level(parent);
8656 extent_buffer_get(parent);
8657 path->nodes[parent_level] = parent;
8658 path->slots[parent_level] = btrfs_header_nritems(parent);
8659
b9447ef8 8660 btrfs_assert_tree_locked(node);
f82d02d9 8661 level = btrfs_header_level(node);
f82d02d9
YZ
8662 path->nodes[level] = node;
8663 path->slots[level] = 0;
bd681513 8664 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8665
8666 wc->refs[parent_level] = 1;
8667 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8668 wc->level = level;
8669 wc->shared_level = -1;
8670 wc->stage = DROP_REFERENCE;
8671 wc->update_ref = 0;
8672 wc->keep_locks = 1;
66d7e7f0 8673 wc->for_reloc = 1;
1c4850e2 8674 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8675
8676 while (1) {
2c47e605
YZ
8677 wret = walk_down_tree(trans, root, path, wc);
8678 if (wret < 0) {
f82d02d9 8679 ret = wret;
f82d02d9 8680 break;
2c47e605 8681 }
f82d02d9 8682
2c47e605 8683 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8684 if (wret < 0)
8685 ret = wret;
8686 if (wret != 0)
8687 break;
8688 }
8689
2c47e605 8690 kfree(wc);
f82d02d9
YZ
8691 btrfs_free_path(path);
8692 return ret;
8693}
8694
ec44a35c
CM
8695static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8696{
8697 u64 num_devices;
fc67c450 8698 u64 stripped;
e4d8ec0f 8699
fc67c450
ID
8700 /*
8701 * if restripe for this chunk_type is on pick target profile and
8702 * return, otherwise do the usual balance
8703 */
8704 stripped = get_restripe_target(root->fs_info, flags);
8705 if (stripped)
8706 return extended_to_chunk(stripped);
e4d8ec0f 8707
95669976 8708 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8709
fc67c450 8710 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8711 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8712 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8713
ec44a35c
CM
8714 if (num_devices == 1) {
8715 stripped |= BTRFS_BLOCK_GROUP_DUP;
8716 stripped = flags & ~stripped;
8717
8718 /* turn raid0 into single device chunks */
8719 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8720 return stripped;
8721
8722 /* turn mirroring into duplication */
8723 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8724 BTRFS_BLOCK_GROUP_RAID10))
8725 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8726 } else {
8727 /* they already had raid on here, just return */
ec44a35c
CM
8728 if (flags & stripped)
8729 return flags;
8730
8731 stripped |= BTRFS_BLOCK_GROUP_DUP;
8732 stripped = flags & ~stripped;
8733
8734 /* switch duplicated blocks with raid1 */
8735 if (flags & BTRFS_BLOCK_GROUP_DUP)
8736 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8737
e3176ca2 8738 /* this is drive concat, leave it alone */
ec44a35c 8739 }
e3176ca2 8740
ec44a35c
CM
8741 return flags;
8742}
8743
199c36ea 8744static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8745{
f0486c68
YZ
8746 struct btrfs_space_info *sinfo = cache->space_info;
8747 u64 num_bytes;
199c36ea 8748 u64 min_allocable_bytes;
f0486c68 8749 int ret = -ENOSPC;
0ef3e66b 8750
c286ac48 8751
199c36ea
MX
8752 /*
8753 * We need some metadata space and system metadata space for
8754 * allocating chunks in some corner cases until we force to set
8755 * it to be readonly.
8756 */
8757 if ((sinfo->flags &
8758 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8759 !force)
8760 min_allocable_bytes = 1 * 1024 * 1024;
8761 else
8762 min_allocable_bytes = 0;
8763
f0486c68
YZ
8764 spin_lock(&sinfo->lock);
8765 spin_lock(&cache->lock);
61cfea9b
W
8766
8767 if (cache->ro) {
8768 ret = 0;
8769 goto out;
8770 }
8771
f0486c68
YZ
8772 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8773 cache->bytes_super - btrfs_block_group_used(&cache->item);
8774
8775 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8776 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8777 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8778 sinfo->bytes_readonly += num_bytes;
f0486c68 8779 cache->ro = 1;
633c0aad 8780 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8781 ret = 0;
8782 }
61cfea9b 8783out:
f0486c68
YZ
8784 spin_unlock(&cache->lock);
8785 spin_unlock(&sinfo->lock);
8786 return ret;
8787}
7d9eb12c 8788
f0486c68
YZ
8789int btrfs_set_block_group_ro(struct btrfs_root *root,
8790 struct btrfs_block_group_cache *cache)
c286ac48 8791
f0486c68
YZ
8792{
8793 struct btrfs_trans_handle *trans;
8794 u64 alloc_flags;
8795 int ret;
7d9eb12c 8796
f0486c68 8797 BUG_ON(cache->ro);
0ef3e66b 8798
1bbc621e 8799again:
ff5714cc 8800 trans = btrfs_join_transaction(root);
79787eaa
JM
8801 if (IS_ERR(trans))
8802 return PTR_ERR(trans);
5d4f98a2 8803
1bbc621e
CM
8804 /*
8805 * we're not allowed to set block groups readonly after the dirty
8806 * block groups cache has started writing. If it already started,
8807 * back off and let this transaction commit
8808 */
8809 mutex_lock(&root->fs_info->ro_block_group_mutex);
8810 if (trans->transaction->dirty_bg_run) {
8811 u64 transid = trans->transid;
8812
8813 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8814 btrfs_end_transaction(trans, root);
8815
8816 ret = btrfs_wait_for_commit(root, transid);
8817 if (ret)
8818 return ret;
8819 goto again;
8820 }
8821
153c35b6
CM
8822 /*
8823 * if we are changing raid levels, try to allocate a corresponding
8824 * block group with the new raid level.
8825 */
8826 alloc_flags = update_block_group_flags(root, cache->flags);
8827 if (alloc_flags != cache->flags) {
8828 ret = do_chunk_alloc(trans, root, alloc_flags,
8829 CHUNK_ALLOC_FORCE);
8830 /*
8831 * ENOSPC is allowed here, we may have enough space
8832 * already allocated at the new raid level to
8833 * carry on
8834 */
8835 if (ret == -ENOSPC)
8836 ret = 0;
8837 if (ret < 0)
8838 goto out;
8839 }
1bbc621e 8840
199c36ea 8841 ret = set_block_group_ro(cache, 0);
f0486c68
YZ
8842 if (!ret)
8843 goto out;
8844 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8845 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8846 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8847 if (ret < 0)
8848 goto out;
199c36ea 8849 ret = set_block_group_ro(cache, 0);
f0486c68 8850out:
2f081088
SL
8851 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8852 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8853 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8854 check_system_chunk(trans, root, alloc_flags);
a9629596 8855 unlock_chunks(root->fs_info->chunk_root);
2f081088 8856 }
1bbc621e 8857 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8858
f0486c68
YZ
8859 btrfs_end_transaction(trans, root);
8860 return ret;
8861}
5d4f98a2 8862
c87f08ca
CM
8863int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8864 struct btrfs_root *root, u64 type)
8865{
8866 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8867 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8868 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8869}
8870
6d07bcec
MX
8871/*
8872 * helper to account the unused space of all the readonly block group in the
633c0aad 8873 * space_info. takes mirrors into account.
6d07bcec 8874 */
633c0aad 8875u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8876{
8877 struct btrfs_block_group_cache *block_group;
8878 u64 free_bytes = 0;
8879 int factor;
8880
633c0aad
JB
8881 /* It's df, we don't care if it's racey */
8882 if (list_empty(&sinfo->ro_bgs))
8883 return 0;
8884
8885 spin_lock(&sinfo->lock);
8886 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8887 spin_lock(&block_group->lock);
8888
8889 if (!block_group->ro) {
8890 spin_unlock(&block_group->lock);
8891 continue;
8892 }
8893
8894 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8895 BTRFS_BLOCK_GROUP_RAID10 |
8896 BTRFS_BLOCK_GROUP_DUP))
8897 factor = 2;
8898 else
8899 factor = 1;
8900
8901 free_bytes += (block_group->key.offset -
8902 btrfs_block_group_used(&block_group->item)) *
8903 factor;
8904
8905 spin_unlock(&block_group->lock);
8906 }
6d07bcec
MX
8907 spin_unlock(&sinfo->lock);
8908
8909 return free_bytes;
8910}
8911
143bede5 8912void btrfs_set_block_group_rw(struct btrfs_root *root,
f0486c68 8913 struct btrfs_block_group_cache *cache)
5d4f98a2 8914{
f0486c68
YZ
8915 struct btrfs_space_info *sinfo = cache->space_info;
8916 u64 num_bytes;
8917
8918 BUG_ON(!cache->ro);
8919
8920 spin_lock(&sinfo->lock);
8921 spin_lock(&cache->lock);
8922 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8923 cache->bytes_super - btrfs_block_group_used(&cache->item);
8924 sinfo->bytes_readonly -= num_bytes;
8925 cache->ro = 0;
633c0aad 8926 list_del_init(&cache->ro_list);
f0486c68
YZ
8927 spin_unlock(&cache->lock);
8928 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
8929}
8930
ba1bf481
JB
8931/*
8932 * checks to see if its even possible to relocate this block group.
8933 *
8934 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8935 * ok to go ahead and try.
8936 */
8937int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 8938{
ba1bf481
JB
8939 struct btrfs_block_group_cache *block_group;
8940 struct btrfs_space_info *space_info;
8941 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8942 struct btrfs_device *device;
6df9a95e 8943 struct btrfs_trans_handle *trans;
cdcb725c 8944 u64 min_free;
6719db6a
JB
8945 u64 dev_min = 1;
8946 u64 dev_nr = 0;
4a5e98f5 8947 u64 target;
cdcb725c 8948 int index;
ba1bf481
JB
8949 int full = 0;
8950 int ret = 0;
1a40e23b 8951
ba1bf481 8952 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 8953
ba1bf481
JB
8954 /* odd, couldn't find the block group, leave it alone */
8955 if (!block_group)
8956 return -1;
1a40e23b 8957
cdcb725c 8958 min_free = btrfs_block_group_used(&block_group->item);
8959
ba1bf481 8960 /* no bytes used, we're good */
cdcb725c 8961 if (!min_free)
1a40e23b
ZY
8962 goto out;
8963
ba1bf481
JB
8964 space_info = block_group->space_info;
8965 spin_lock(&space_info->lock);
17d217fe 8966
ba1bf481 8967 full = space_info->full;
17d217fe 8968
ba1bf481
JB
8969 /*
8970 * if this is the last block group we have in this space, we can't
7ce618db
CM
8971 * relocate it unless we're able to allocate a new chunk below.
8972 *
8973 * Otherwise, we need to make sure we have room in the space to handle
8974 * all of the extents from this block group. If we can, we're good
ba1bf481 8975 */
7ce618db 8976 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 8977 (space_info->bytes_used + space_info->bytes_reserved +
8978 space_info->bytes_pinned + space_info->bytes_readonly +
8979 min_free < space_info->total_bytes)) {
ba1bf481
JB
8980 spin_unlock(&space_info->lock);
8981 goto out;
17d217fe 8982 }
ba1bf481 8983 spin_unlock(&space_info->lock);
ea8c2819 8984
ba1bf481
JB
8985 /*
8986 * ok we don't have enough space, but maybe we have free space on our
8987 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
8988 * alloc devices and guess if we have enough space. if this block
8989 * group is going to be restriped, run checks against the target
8990 * profile instead of the current one.
ba1bf481
JB
8991 */
8992 ret = -1;
ea8c2819 8993
cdcb725c 8994 /*
8995 * index:
8996 * 0: raid10
8997 * 1: raid1
8998 * 2: dup
8999 * 3: raid0
9000 * 4: single
9001 */
4a5e98f5
ID
9002 target = get_restripe_target(root->fs_info, block_group->flags);
9003 if (target) {
31e50229 9004 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9005 } else {
9006 /*
9007 * this is just a balance, so if we were marked as full
9008 * we know there is no space for a new chunk
9009 */
9010 if (full)
9011 goto out;
9012
9013 index = get_block_group_index(block_group);
9014 }
9015
e6ec716f 9016 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9017 dev_min = 4;
6719db6a
JB
9018 /* Divide by 2 */
9019 min_free >>= 1;
e6ec716f 9020 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9021 dev_min = 2;
e6ec716f 9022 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9023 /* Multiply by 2 */
9024 min_free <<= 1;
e6ec716f 9025 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9026 dev_min = fs_devices->rw_devices;
47c5713f 9027 min_free = div64_u64(min_free, dev_min);
cdcb725c 9028 }
9029
6df9a95e
JB
9030 /* We need to do this so that we can look at pending chunks */
9031 trans = btrfs_join_transaction(root);
9032 if (IS_ERR(trans)) {
9033 ret = PTR_ERR(trans);
9034 goto out;
9035 }
9036
ba1bf481
JB
9037 mutex_lock(&root->fs_info->chunk_mutex);
9038 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9039 u64 dev_offset;
56bec294 9040
ba1bf481
JB
9041 /*
9042 * check to make sure we can actually find a chunk with enough
9043 * space to fit our block group in.
9044 */
63a212ab
SB
9045 if (device->total_bytes > device->bytes_used + min_free &&
9046 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9047 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9048 &dev_offset, NULL);
ba1bf481 9049 if (!ret)
cdcb725c 9050 dev_nr++;
9051
9052 if (dev_nr >= dev_min)
73e48b27 9053 break;
cdcb725c 9054
ba1bf481 9055 ret = -1;
725c8463 9056 }
edbd8d4e 9057 }
ba1bf481 9058 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9059 btrfs_end_transaction(trans, root);
edbd8d4e 9060out:
ba1bf481 9061 btrfs_put_block_group(block_group);
edbd8d4e
CM
9062 return ret;
9063}
9064
b2950863
CH
9065static int find_first_block_group(struct btrfs_root *root,
9066 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9067{
925baedd 9068 int ret = 0;
0b86a832
CM
9069 struct btrfs_key found_key;
9070 struct extent_buffer *leaf;
9071 int slot;
edbd8d4e 9072
0b86a832
CM
9073 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9074 if (ret < 0)
925baedd
CM
9075 goto out;
9076
d397712b 9077 while (1) {
0b86a832 9078 slot = path->slots[0];
edbd8d4e 9079 leaf = path->nodes[0];
0b86a832
CM
9080 if (slot >= btrfs_header_nritems(leaf)) {
9081 ret = btrfs_next_leaf(root, path);
9082 if (ret == 0)
9083 continue;
9084 if (ret < 0)
925baedd 9085 goto out;
0b86a832 9086 break;
edbd8d4e 9087 }
0b86a832 9088 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9089
0b86a832 9090 if (found_key.objectid >= key->objectid &&
925baedd
CM
9091 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9092 ret = 0;
9093 goto out;
9094 }
0b86a832 9095 path->slots[0]++;
edbd8d4e 9096 }
925baedd 9097out:
0b86a832 9098 return ret;
edbd8d4e
CM
9099}
9100
0af3d00b
JB
9101void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9102{
9103 struct btrfs_block_group_cache *block_group;
9104 u64 last = 0;
9105
9106 while (1) {
9107 struct inode *inode;
9108
9109 block_group = btrfs_lookup_first_block_group(info, last);
9110 while (block_group) {
9111 spin_lock(&block_group->lock);
9112 if (block_group->iref)
9113 break;
9114 spin_unlock(&block_group->lock);
9115 block_group = next_block_group(info->tree_root,
9116 block_group);
9117 }
9118 if (!block_group) {
9119 if (last == 0)
9120 break;
9121 last = 0;
9122 continue;
9123 }
9124
9125 inode = block_group->inode;
9126 block_group->iref = 0;
9127 block_group->inode = NULL;
9128 spin_unlock(&block_group->lock);
9129 iput(inode);
9130 last = block_group->key.objectid + block_group->key.offset;
9131 btrfs_put_block_group(block_group);
9132 }
9133}
9134
1a40e23b
ZY
9135int btrfs_free_block_groups(struct btrfs_fs_info *info)
9136{
9137 struct btrfs_block_group_cache *block_group;
4184ea7f 9138 struct btrfs_space_info *space_info;
11833d66 9139 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9140 struct rb_node *n;
9141
9e351cc8 9142 down_write(&info->commit_root_sem);
11833d66
YZ
9143 while (!list_empty(&info->caching_block_groups)) {
9144 caching_ctl = list_entry(info->caching_block_groups.next,
9145 struct btrfs_caching_control, list);
9146 list_del(&caching_ctl->list);
9147 put_caching_control(caching_ctl);
9148 }
9e351cc8 9149 up_write(&info->commit_root_sem);
11833d66 9150
47ab2a6c
JB
9151 spin_lock(&info->unused_bgs_lock);
9152 while (!list_empty(&info->unused_bgs)) {
9153 block_group = list_first_entry(&info->unused_bgs,
9154 struct btrfs_block_group_cache,
9155 bg_list);
9156 list_del_init(&block_group->bg_list);
9157 btrfs_put_block_group(block_group);
9158 }
9159 spin_unlock(&info->unused_bgs_lock);
9160
1a40e23b
ZY
9161 spin_lock(&info->block_group_cache_lock);
9162 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9163 block_group = rb_entry(n, struct btrfs_block_group_cache,
9164 cache_node);
1a40e23b
ZY
9165 rb_erase(&block_group->cache_node,
9166 &info->block_group_cache_tree);
01eacb27 9167 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9168 spin_unlock(&info->block_group_cache_lock);
9169
80eb234a 9170 down_write(&block_group->space_info->groups_sem);
1a40e23b 9171 list_del(&block_group->list);
80eb234a 9172 up_write(&block_group->space_info->groups_sem);
d2fb3437 9173
817d52f8 9174 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9175 wait_block_group_cache_done(block_group);
817d52f8 9176
3c14874a
JB
9177 /*
9178 * We haven't cached this block group, which means we could
9179 * possibly have excluded extents on this block group.
9180 */
36cce922
JB
9181 if (block_group->cached == BTRFS_CACHE_NO ||
9182 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9183 free_excluded_extents(info->extent_root, block_group);
9184
817d52f8 9185 btrfs_remove_free_space_cache(block_group);
11dfe35a 9186 btrfs_put_block_group(block_group);
d899e052
YZ
9187
9188 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9189 }
9190 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9191
9192 /* now that all the block groups are freed, go through and
9193 * free all the space_info structs. This is only called during
9194 * the final stages of unmount, and so we know nobody is
9195 * using them. We call synchronize_rcu() once before we start,
9196 * just to be on the safe side.
9197 */
9198 synchronize_rcu();
9199
8929ecfa
YZ
9200 release_global_block_rsv(info);
9201
67871254 9202 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9203 int i;
9204
4184ea7f
CM
9205 space_info = list_entry(info->space_info.next,
9206 struct btrfs_space_info,
9207 list);
b069e0c3 9208 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9209 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9210 space_info->bytes_reserved > 0 ||
fae7f21c 9211 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9212 dump_space_info(space_info, 0, 0);
9213 }
f0486c68 9214 }
4184ea7f 9215 list_del(&space_info->list);
6ab0a202
JM
9216 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9217 struct kobject *kobj;
c1895442
JM
9218 kobj = space_info->block_group_kobjs[i];
9219 space_info->block_group_kobjs[i] = NULL;
9220 if (kobj) {
6ab0a202
JM
9221 kobject_del(kobj);
9222 kobject_put(kobj);
9223 }
9224 }
9225 kobject_del(&space_info->kobj);
9226 kobject_put(&space_info->kobj);
4184ea7f 9227 }
1a40e23b
ZY
9228 return 0;
9229}
9230
b742bb82
YZ
9231static void __link_block_group(struct btrfs_space_info *space_info,
9232 struct btrfs_block_group_cache *cache)
9233{
9234 int index = get_block_group_index(cache);
ed55b6ac 9235 bool first = false;
b742bb82
YZ
9236
9237 down_write(&space_info->groups_sem);
ed55b6ac
JM
9238 if (list_empty(&space_info->block_groups[index]))
9239 first = true;
9240 list_add_tail(&cache->list, &space_info->block_groups[index]);
9241 up_write(&space_info->groups_sem);
9242
9243 if (first) {
c1895442 9244 struct raid_kobject *rkobj;
6ab0a202
JM
9245 int ret;
9246
c1895442
JM
9247 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9248 if (!rkobj)
9249 goto out_err;
9250 rkobj->raid_type = index;
9251 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9252 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9253 "%s", get_raid_name(index));
6ab0a202 9254 if (ret) {
c1895442
JM
9255 kobject_put(&rkobj->kobj);
9256 goto out_err;
6ab0a202 9257 }
c1895442 9258 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9259 }
c1895442
JM
9260
9261 return;
9262out_err:
9263 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9264}
9265
920e4a58
MX
9266static struct btrfs_block_group_cache *
9267btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9268{
9269 struct btrfs_block_group_cache *cache;
9270
9271 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9272 if (!cache)
9273 return NULL;
9274
9275 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9276 GFP_NOFS);
9277 if (!cache->free_space_ctl) {
9278 kfree(cache);
9279 return NULL;
9280 }
9281
9282 cache->key.objectid = start;
9283 cache->key.offset = size;
9284 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9285
9286 cache->sectorsize = root->sectorsize;
9287 cache->fs_info = root->fs_info;
9288 cache->full_stripe_len = btrfs_full_stripe_len(root,
9289 &root->fs_info->mapping_tree,
9290 start);
9291 atomic_set(&cache->count, 1);
9292 spin_lock_init(&cache->lock);
e570fd27 9293 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9294 INIT_LIST_HEAD(&cache->list);
9295 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9296 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9297 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9298 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9299 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9300 btrfs_init_free_space_ctl(cache);
04216820 9301 atomic_set(&cache->trimming, 0);
920e4a58
MX
9302
9303 return cache;
9304}
9305
9078a3e1
CM
9306int btrfs_read_block_groups(struct btrfs_root *root)
9307{
9308 struct btrfs_path *path;
9309 int ret;
9078a3e1 9310 struct btrfs_block_group_cache *cache;
be744175 9311 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9312 struct btrfs_space_info *space_info;
9078a3e1
CM
9313 struct btrfs_key key;
9314 struct btrfs_key found_key;
5f39d397 9315 struct extent_buffer *leaf;
0af3d00b
JB
9316 int need_clear = 0;
9317 u64 cache_gen;
96b5179d 9318
be744175 9319 root = info->extent_root;
9078a3e1 9320 key.objectid = 0;
0b86a832 9321 key.offset = 0;
962a298f 9322 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9323 path = btrfs_alloc_path();
9324 if (!path)
9325 return -ENOMEM;
026fd317 9326 path->reada = 1;
9078a3e1 9327
6c41761f 9328 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9329 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9330 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9331 need_clear = 1;
88c2ba3b
JB
9332 if (btrfs_test_opt(root, CLEAR_CACHE))
9333 need_clear = 1;
0af3d00b 9334
d397712b 9335 while (1) {
0b86a832 9336 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9337 if (ret > 0)
9338 break;
0b86a832
CM
9339 if (ret != 0)
9340 goto error;
920e4a58 9341
5f39d397
CM
9342 leaf = path->nodes[0];
9343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9344
9345 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9346 found_key.offset);
9078a3e1 9347 if (!cache) {
0b86a832 9348 ret = -ENOMEM;
f0486c68 9349 goto error;
9078a3e1 9350 }
96303081 9351
cf7c1ef6
LB
9352 if (need_clear) {
9353 /*
9354 * When we mount with old space cache, we need to
9355 * set BTRFS_DC_CLEAR and set dirty flag.
9356 *
9357 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9358 * truncate the old free space cache inode and
9359 * setup a new one.
9360 * b) Setting 'dirty flag' makes sure that we flush
9361 * the new space cache info onto disk.
9362 */
cf7c1ef6 9363 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9364 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9365 }
0af3d00b 9366
5f39d397
CM
9367 read_extent_buffer(leaf, &cache->item,
9368 btrfs_item_ptr_offset(leaf, path->slots[0]),
9369 sizeof(cache->item));
920e4a58 9370 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9371
9078a3e1 9372 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9373 btrfs_release_path(path);
34d52cb6 9374
3c14874a
JB
9375 /*
9376 * We need to exclude the super stripes now so that the space
9377 * info has super bytes accounted for, otherwise we'll think
9378 * we have more space than we actually do.
9379 */
835d974f
JB
9380 ret = exclude_super_stripes(root, cache);
9381 if (ret) {
9382 /*
9383 * We may have excluded something, so call this just in
9384 * case.
9385 */
9386 free_excluded_extents(root, cache);
920e4a58 9387 btrfs_put_block_group(cache);
835d974f
JB
9388 goto error;
9389 }
3c14874a 9390
817d52f8
JB
9391 /*
9392 * check for two cases, either we are full, and therefore
9393 * don't need to bother with the caching work since we won't
9394 * find any space, or we are empty, and we can just add all
9395 * the space in and be done with it. This saves us _alot_ of
9396 * time, particularly in the full case.
9397 */
9398 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9399 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9400 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9401 free_excluded_extents(root, cache);
817d52f8 9402 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9403 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9404 cache->cached = BTRFS_CACHE_FINISHED;
9405 add_new_free_space(cache, root->fs_info,
9406 found_key.objectid,
9407 found_key.objectid +
9408 found_key.offset);
11833d66 9409 free_excluded_extents(root, cache);
817d52f8 9410 }
96b5179d 9411
8c579fe7
JB
9412 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9413 if (ret) {
9414 btrfs_remove_free_space_cache(cache);
9415 btrfs_put_block_group(cache);
9416 goto error;
9417 }
9418
6324fbf3
CM
9419 ret = update_space_info(info, cache->flags, found_key.offset,
9420 btrfs_block_group_used(&cache->item),
9421 &space_info);
8c579fe7
JB
9422 if (ret) {
9423 btrfs_remove_free_space_cache(cache);
9424 spin_lock(&info->block_group_cache_lock);
9425 rb_erase(&cache->cache_node,
9426 &info->block_group_cache_tree);
01eacb27 9427 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9428 spin_unlock(&info->block_group_cache_lock);
9429 btrfs_put_block_group(cache);
9430 goto error;
9431 }
9432
6324fbf3 9433 cache->space_info = space_info;
1b2da372 9434 spin_lock(&cache->space_info->lock);
f0486c68 9435 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9436 spin_unlock(&cache->space_info->lock);
9437
b742bb82 9438 __link_block_group(space_info, cache);
0f9dd46c 9439
75ccf47d 9440 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9441 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
199c36ea 9442 set_block_group_ro(cache, 1);
47ab2a6c
JB
9443 } else if (btrfs_block_group_used(&cache->item) == 0) {
9444 spin_lock(&info->unused_bgs_lock);
9445 /* Should always be true but just in case. */
9446 if (list_empty(&cache->bg_list)) {
9447 btrfs_get_block_group(cache);
9448 list_add_tail(&cache->bg_list,
9449 &info->unused_bgs);
9450 }
9451 spin_unlock(&info->unused_bgs_lock);
9452 }
9078a3e1 9453 }
b742bb82
YZ
9454
9455 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9456 if (!(get_alloc_profile(root, space_info->flags) &
9457 (BTRFS_BLOCK_GROUP_RAID10 |
9458 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9459 BTRFS_BLOCK_GROUP_RAID5 |
9460 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9461 BTRFS_BLOCK_GROUP_DUP)))
9462 continue;
9463 /*
9464 * avoid allocating from un-mirrored block group if there are
9465 * mirrored block groups.
9466 */
1095cc0d 9467 list_for_each_entry(cache,
9468 &space_info->block_groups[BTRFS_RAID_RAID0],
9469 list)
199c36ea 9470 set_block_group_ro(cache, 1);
1095cc0d 9471 list_for_each_entry(cache,
9472 &space_info->block_groups[BTRFS_RAID_SINGLE],
9473 list)
199c36ea 9474 set_block_group_ro(cache, 1);
9078a3e1 9475 }
f0486c68
YZ
9476
9477 init_global_block_rsv(info);
0b86a832
CM
9478 ret = 0;
9479error:
9078a3e1 9480 btrfs_free_path(path);
0b86a832 9481 return ret;
9078a3e1 9482}
6324fbf3 9483
ea658bad
JB
9484void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9485 struct btrfs_root *root)
9486{
9487 struct btrfs_block_group_cache *block_group, *tmp;
9488 struct btrfs_root *extent_root = root->fs_info->extent_root;
9489 struct btrfs_block_group_item item;
9490 struct btrfs_key key;
9491 int ret = 0;
9492
47ab2a6c 9493 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9494 if (ret)
c92f6be3 9495 goto next;
ea658bad
JB
9496
9497 spin_lock(&block_group->lock);
9498 memcpy(&item, &block_group->item, sizeof(item));
9499 memcpy(&key, &block_group->key, sizeof(key));
9500 spin_unlock(&block_group->lock);
9501
9502 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9503 sizeof(item));
9504 if (ret)
9505 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9506 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9507 key.objectid, key.offset);
9508 if (ret)
9509 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9510next:
9511 list_del_init(&block_group->bg_list);
ea658bad
JB
9512 }
9513}
9514
6324fbf3
CM
9515int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9516 struct btrfs_root *root, u64 bytes_used,
e17cade2 9517 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9518 u64 size)
9519{
9520 int ret;
6324fbf3
CM
9521 struct btrfs_root *extent_root;
9522 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9523
9524 extent_root = root->fs_info->extent_root;
6324fbf3 9525
995946dd 9526 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9527
920e4a58 9528 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9529 if (!cache)
9530 return -ENOMEM;
34d52cb6 9531
6324fbf3 9532 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9533 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9534 btrfs_set_block_group_flags(&cache->item, type);
9535
920e4a58 9536 cache->flags = type;
11833d66 9537 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9538 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9539 ret = exclude_super_stripes(root, cache);
9540 if (ret) {
9541 /*
9542 * We may have excluded something, so call this just in
9543 * case.
9544 */
9545 free_excluded_extents(root, cache);
920e4a58 9546 btrfs_put_block_group(cache);
835d974f
JB
9547 return ret;
9548 }
96303081 9549
817d52f8
JB
9550 add_new_free_space(cache, root->fs_info, chunk_offset,
9551 chunk_offset + size);
9552
11833d66
YZ
9553 free_excluded_extents(root, cache);
9554
2e6e5183
FM
9555 /*
9556 * Call to ensure the corresponding space_info object is created and
9557 * assigned to our block group, but don't update its counters just yet.
9558 * We want our bg to be added to the rbtree with its ->space_info set.
9559 */
9560 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9561 &cache->space_info);
9562 if (ret) {
9563 btrfs_remove_free_space_cache(cache);
9564 btrfs_put_block_group(cache);
9565 return ret;
9566 }
9567
8c579fe7
JB
9568 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9569 if (ret) {
9570 btrfs_remove_free_space_cache(cache);
9571 btrfs_put_block_group(cache);
9572 return ret;
9573 }
9574
2e6e5183
FM
9575 /*
9576 * Now that our block group has its ->space_info set and is inserted in
9577 * the rbtree, update the space info's counters.
9578 */
6324fbf3
CM
9579 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9580 &cache->space_info);
8c579fe7
JB
9581 if (ret) {
9582 btrfs_remove_free_space_cache(cache);
9583 spin_lock(&root->fs_info->block_group_cache_lock);
9584 rb_erase(&cache->cache_node,
9585 &root->fs_info->block_group_cache_tree);
01eacb27 9586 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9587 spin_unlock(&root->fs_info->block_group_cache_lock);
9588 btrfs_put_block_group(cache);
9589 return ret;
9590 }
c7c144db 9591 update_global_block_rsv(root->fs_info);
1b2da372
JB
9592
9593 spin_lock(&cache->space_info->lock);
f0486c68 9594 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9595 spin_unlock(&cache->space_info->lock);
9596
b742bb82 9597 __link_block_group(cache->space_info, cache);
6324fbf3 9598
47ab2a6c 9599 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9600
d18a2c44 9601 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9602
6324fbf3
CM
9603 return 0;
9604}
1a40e23b 9605
10ea00f5
ID
9606static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9607{
899c81ea
ID
9608 u64 extra_flags = chunk_to_extended(flags) &
9609 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9610
de98ced9 9611 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9612 if (flags & BTRFS_BLOCK_GROUP_DATA)
9613 fs_info->avail_data_alloc_bits &= ~extra_flags;
9614 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9615 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9616 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9617 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9618 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9619}
9620
1a40e23b 9621int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9622 struct btrfs_root *root, u64 group_start,
9623 struct extent_map *em)
1a40e23b
ZY
9624{
9625 struct btrfs_path *path;
9626 struct btrfs_block_group_cache *block_group;
44fb5511 9627 struct btrfs_free_cluster *cluster;
0af3d00b 9628 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9629 struct btrfs_key key;
0af3d00b 9630 struct inode *inode;
c1895442 9631 struct kobject *kobj = NULL;
1a40e23b 9632 int ret;
10ea00f5 9633 int index;
89a55897 9634 int factor;
4f69cb98 9635 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9636 bool remove_em;
1a40e23b 9637
1a40e23b
ZY
9638 root = root->fs_info->extent_root;
9639
9640 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9641 BUG_ON(!block_group);
c146afad 9642 BUG_ON(!block_group->ro);
1a40e23b 9643
9f7c43c9 9644 /*
9645 * Free the reserved super bytes from this block group before
9646 * remove it.
9647 */
9648 free_excluded_extents(root, block_group);
9649
1a40e23b 9650 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9651 index = get_block_group_index(block_group);
89a55897
JB
9652 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9653 BTRFS_BLOCK_GROUP_RAID1 |
9654 BTRFS_BLOCK_GROUP_RAID10))
9655 factor = 2;
9656 else
9657 factor = 1;
1a40e23b 9658
44fb5511
CM
9659 /* make sure this block group isn't part of an allocation cluster */
9660 cluster = &root->fs_info->data_alloc_cluster;
9661 spin_lock(&cluster->refill_lock);
9662 btrfs_return_cluster_to_free_space(block_group, cluster);
9663 spin_unlock(&cluster->refill_lock);
9664
9665 /*
9666 * make sure this block group isn't part of a metadata
9667 * allocation cluster
9668 */
9669 cluster = &root->fs_info->meta_alloc_cluster;
9670 spin_lock(&cluster->refill_lock);
9671 btrfs_return_cluster_to_free_space(block_group, cluster);
9672 spin_unlock(&cluster->refill_lock);
9673
1a40e23b 9674 path = btrfs_alloc_path();
d8926bb3
MF
9675 if (!path) {
9676 ret = -ENOMEM;
9677 goto out;
9678 }
1a40e23b 9679
1bbc621e
CM
9680 /*
9681 * get the inode first so any iput calls done for the io_list
9682 * aren't the final iput (no unlinks allowed now)
9683 */
10b2f34d 9684 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9685
9686 mutex_lock(&trans->transaction->cache_write_mutex);
9687 /*
9688 * make sure our free spache cache IO is done before remove the
9689 * free space inode
9690 */
9691 spin_lock(&trans->transaction->dirty_bgs_lock);
9692 if (!list_empty(&block_group->io_list)) {
9693 list_del_init(&block_group->io_list);
9694
9695 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9696
9697 spin_unlock(&trans->transaction->dirty_bgs_lock);
9698 btrfs_wait_cache_io(root, trans, block_group,
9699 &block_group->io_ctl, path,
9700 block_group->key.objectid);
9701 btrfs_put_block_group(block_group);
9702 spin_lock(&trans->transaction->dirty_bgs_lock);
9703 }
9704
9705 if (!list_empty(&block_group->dirty_list)) {
9706 list_del_init(&block_group->dirty_list);
9707 btrfs_put_block_group(block_group);
9708 }
9709 spin_unlock(&trans->transaction->dirty_bgs_lock);
9710 mutex_unlock(&trans->transaction->cache_write_mutex);
9711
0af3d00b 9712 if (!IS_ERR(inode)) {
b532402e 9713 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9714 if (ret) {
9715 btrfs_add_delayed_iput(inode);
9716 goto out;
9717 }
0af3d00b
JB
9718 clear_nlink(inode);
9719 /* One for the block groups ref */
9720 spin_lock(&block_group->lock);
9721 if (block_group->iref) {
9722 block_group->iref = 0;
9723 block_group->inode = NULL;
9724 spin_unlock(&block_group->lock);
9725 iput(inode);
9726 } else {
9727 spin_unlock(&block_group->lock);
9728 }
9729 /* One for our lookup ref */
455757c3 9730 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9731 }
9732
9733 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9734 key.offset = block_group->key.objectid;
9735 key.type = 0;
9736
9737 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9738 if (ret < 0)
9739 goto out;
9740 if (ret > 0)
b3b4aa74 9741 btrfs_release_path(path);
0af3d00b
JB
9742 if (ret == 0) {
9743 ret = btrfs_del_item(trans, tree_root, path);
9744 if (ret)
9745 goto out;
b3b4aa74 9746 btrfs_release_path(path);
0af3d00b
JB
9747 }
9748
3dfdb934 9749 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9750 rb_erase(&block_group->cache_node,
9751 &root->fs_info->block_group_cache_tree);
292cbd51 9752 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9753
9754 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9755 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9756 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9757
80eb234a 9758 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9759 /*
9760 * we must use list_del_init so people can check to see if they
9761 * are still on the list after taking the semaphore
9762 */
9763 list_del_init(&block_group->list);
6ab0a202 9764 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9765 kobj = block_group->space_info->block_group_kobjs[index];
9766 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9767 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9768 }
80eb234a 9769 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9770 if (kobj) {
9771 kobject_del(kobj);
9772 kobject_put(kobj);
9773 }
1a40e23b 9774
4f69cb98
FM
9775 if (block_group->has_caching_ctl)
9776 caching_ctl = get_caching_control(block_group);
817d52f8 9777 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9778 wait_block_group_cache_done(block_group);
4f69cb98
FM
9779 if (block_group->has_caching_ctl) {
9780 down_write(&root->fs_info->commit_root_sem);
9781 if (!caching_ctl) {
9782 struct btrfs_caching_control *ctl;
9783
9784 list_for_each_entry(ctl,
9785 &root->fs_info->caching_block_groups, list)
9786 if (ctl->block_group == block_group) {
9787 caching_ctl = ctl;
9788 atomic_inc(&caching_ctl->count);
9789 break;
9790 }
9791 }
9792 if (caching_ctl)
9793 list_del_init(&caching_ctl->list);
9794 up_write(&root->fs_info->commit_root_sem);
9795 if (caching_ctl) {
9796 /* Once for the caching bgs list and once for us. */
9797 put_caching_control(caching_ctl);
9798 put_caching_control(caching_ctl);
9799 }
9800 }
817d52f8 9801
ce93ec54
JB
9802 spin_lock(&trans->transaction->dirty_bgs_lock);
9803 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9804 WARN_ON(1);
9805 }
9806 if (!list_empty(&block_group->io_list)) {
9807 WARN_ON(1);
ce93ec54
JB
9808 }
9809 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9810 btrfs_remove_free_space_cache(block_group);
9811
c146afad 9812 spin_lock(&block_group->space_info->lock);
75c68e9f 9813 list_del_init(&block_group->ro_list);
18d018ad
ZL
9814
9815 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9816 WARN_ON(block_group->space_info->total_bytes
9817 < block_group->key.offset);
9818 WARN_ON(block_group->space_info->bytes_readonly
9819 < block_group->key.offset);
9820 WARN_ON(block_group->space_info->disk_total
9821 < block_group->key.offset * factor);
9822 }
c146afad
YZ
9823 block_group->space_info->total_bytes -= block_group->key.offset;
9824 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9825 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9826
c146afad 9827 spin_unlock(&block_group->space_info->lock);
283bb197 9828
0af3d00b
JB
9829 memcpy(&key, &block_group->key, sizeof(key));
9830
04216820 9831 lock_chunks(root);
495e64f4
FM
9832 if (!list_empty(&em->list)) {
9833 /* We're in the transaction->pending_chunks list. */
9834 free_extent_map(em);
9835 }
04216820
FM
9836 spin_lock(&block_group->lock);
9837 block_group->removed = 1;
9838 /*
9839 * At this point trimming can't start on this block group, because we
9840 * removed the block group from the tree fs_info->block_group_cache_tree
9841 * so no one can't find it anymore and even if someone already got this
9842 * block group before we removed it from the rbtree, they have already
9843 * incremented block_group->trimming - if they didn't, they won't find
9844 * any free space entries because we already removed them all when we
9845 * called btrfs_remove_free_space_cache().
9846 *
9847 * And we must not remove the extent map from the fs_info->mapping_tree
9848 * to prevent the same logical address range and physical device space
9849 * ranges from being reused for a new block group. This is because our
9850 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9851 * completely transactionless, so while it is trimming a range the
9852 * currently running transaction might finish and a new one start,
9853 * allowing for new block groups to be created that can reuse the same
9854 * physical device locations unless we take this special care.
9855 */
9856 remove_em = (atomic_read(&block_group->trimming) == 0);
9857 /*
9858 * Make sure a trimmer task always sees the em in the pinned_chunks list
9859 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9860 * before checking block_group->removed).
9861 */
9862 if (!remove_em) {
9863 /*
9864 * Our em might be in trans->transaction->pending_chunks which
9865 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9866 * and so is the fs_info->pinned_chunks list.
9867 *
9868 * So at this point we must be holding the chunk_mutex to avoid
9869 * any races with chunk allocation (more specifically at
9870 * volumes.c:contains_pending_extent()), to ensure it always
9871 * sees the em, either in the pending_chunks list or in the
9872 * pinned_chunks list.
9873 */
9874 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9875 }
9876 spin_unlock(&block_group->lock);
04216820
FM
9877
9878 if (remove_em) {
9879 struct extent_map_tree *em_tree;
9880
9881 em_tree = &root->fs_info->mapping_tree.map_tree;
9882 write_lock(&em_tree->lock);
8dbcd10f
FM
9883 /*
9884 * The em might be in the pending_chunks list, so make sure the
9885 * chunk mutex is locked, since remove_extent_mapping() will
9886 * delete us from that list.
9887 */
04216820
FM
9888 remove_extent_mapping(em_tree, em);
9889 write_unlock(&em_tree->lock);
9890 /* once for the tree */
9891 free_extent_map(em);
9892 }
9893
8dbcd10f
FM
9894 unlock_chunks(root);
9895
fa9c0d79
CM
9896 btrfs_put_block_group(block_group);
9897 btrfs_put_block_group(block_group);
1a40e23b
ZY
9898
9899 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9900 if (ret > 0)
9901 ret = -EIO;
9902 if (ret < 0)
9903 goto out;
9904
9905 ret = btrfs_del_item(trans, root, path);
9906out:
9907 btrfs_free_path(path);
9908 return ret;
9909}
acce952b 9910
47ab2a6c
JB
9911/*
9912 * Process the unused_bgs list and remove any that don't have any allocated
9913 * space inside of them.
9914 */
9915void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9916{
9917 struct btrfs_block_group_cache *block_group;
9918 struct btrfs_space_info *space_info;
9919 struct btrfs_root *root = fs_info->extent_root;
9920 struct btrfs_trans_handle *trans;
9921 int ret = 0;
9922
9923 if (!fs_info->open)
9924 return;
9925
9926 spin_lock(&fs_info->unused_bgs_lock);
9927 while (!list_empty(&fs_info->unused_bgs)) {
9928 u64 start, end;
9929
9930 block_group = list_first_entry(&fs_info->unused_bgs,
9931 struct btrfs_block_group_cache,
9932 bg_list);
9933 space_info = block_group->space_info;
9934 list_del_init(&block_group->bg_list);
9935 if (ret || btrfs_mixed_space_info(space_info)) {
9936 btrfs_put_block_group(block_group);
9937 continue;
9938 }
9939 spin_unlock(&fs_info->unused_bgs_lock);
9940
67c5e7d4
FM
9941 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
9942
47ab2a6c
JB
9943 /* Don't want to race with allocators so take the groups_sem */
9944 down_write(&space_info->groups_sem);
9945 spin_lock(&block_group->lock);
9946 if (block_group->reserved ||
9947 btrfs_block_group_used(&block_group->item) ||
9948 block_group->ro) {
9949 /*
9950 * We want to bail if we made new allocations or have
9951 * outstanding allocations in this block group. We do
9952 * the ro check in case balance is currently acting on
9953 * this block group.
9954 */
9955 spin_unlock(&block_group->lock);
9956 up_write(&space_info->groups_sem);
9957 goto next;
9958 }
9959 spin_unlock(&block_group->lock);
9960
9961 /* We don't want to force the issue, only flip if it's ok. */
9962 ret = set_block_group_ro(block_group, 0);
9963 up_write(&space_info->groups_sem);
9964 if (ret < 0) {
9965 ret = 0;
9966 goto next;
9967 }
9968
9969 /*
9970 * Want to do this before we do anything else so we can recover
9971 * properly if we fail to join the transaction.
9972 */
3d84be79
FL
9973 /* 1 for btrfs_orphan_reserve_metadata() */
9974 trans = btrfs_start_transaction(root, 1);
47ab2a6c
JB
9975 if (IS_ERR(trans)) {
9976 btrfs_set_block_group_rw(root, block_group);
9977 ret = PTR_ERR(trans);
9978 goto next;
9979 }
9980
9981 /*
9982 * We could have pending pinned extents for this block group,
9983 * just delete them, we don't care about them anymore.
9984 */
9985 start = block_group->key.objectid;
9986 end = start + block_group->key.offset - 1;
d4b450cd
FM
9987 /*
9988 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9989 * btrfs_finish_extent_commit(). If we are at transaction N,
9990 * another task might be running finish_extent_commit() for the
9991 * previous transaction N - 1, and have seen a range belonging
9992 * to the block group in freed_extents[] before we were able to
9993 * clear the whole block group range from freed_extents[]. This
9994 * means that task can lookup for the block group after we
9995 * unpinned it from freed_extents[] and removed it, leading to
9996 * a BUG_ON() at btrfs_unpin_extent_range().
9997 */
9998 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 9999 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10000 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10001 if (ret) {
d4b450cd 10002 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
10003 btrfs_set_block_group_rw(root, block_group);
10004 goto end_trans;
10005 }
10006 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10007 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10008 if (ret) {
d4b450cd 10009 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
10010 btrfs_set_block_group_rw(root, block_group);
10011 goto end_trans;
10012 }
d4b450cd 10013 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10014
10015 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10016 spin_lock(&space_info->lock);
10017 spin_lock(&block_group->lock);
10018
10019 space_info->bytes_pinned -= block_group->pinned;
10020 space_info->bytes_readonly += block_group->pinned;
10021 percpu_counter_add(&space_info->total_bytes_pinned,
10022 -block_group->pinned);
47ab2a6c
JB
10023 block_group->pinned = 0;
10024
c30666d4
ZL
10025 spin_unlock(&block_group->lock);
10026 spin_unlock(&space_info->lock);
10027
47ab2a6c
JB
10028 /*
10029 * Btrfs_remove_chunk will abort the transaction if things go
10030 * horribly wrong.
10031 */
10032 ret = btrfs_remove_chunk(trans, root,
10033 block_group->key.objectid);
758eb51e 10034end_trans:
47ab2a6c
JB
10035 btrfs_end_transaction(trans, root);
10036next:
67c5e7d4 10037 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10038 btrfs_put_block_group(block_group);
10039 spin_lock(&fs_info->unused_bgs_lock);
10040 }
10041 spin_unlock(&fs_info->unused_bgs_lock);
10042}
10043
c59021f8 10044int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10045{
10046 struct btrfs_space_info *space_info;
1aba86d6 10047 struct btrfs_super_block *disk_super;
10048 u64 features;
10049 u64 flags;
10050 int mixed = 0;
c59021f8 10051 int ret;
10052
6c41761f 10053 disk_super = fs_info->super_copy;
1aba86d6 10054 if (!btrfs_super_root(disk_super))
10055 return 1;
c59021f8 10056
1aba86d6 10057 features = btrfs_super_incompat_flags(disk_super);
10058 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10059 mixed = 1;
c59021f8 10060
1aba86d6 10061 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10062 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10063 if (ret)
1aba86d6 10064 goto out;
c59021f8 10065
1aba86d6 10066 if (mixed) {
10067 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10068 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10069 } else {
10070 flags = BTRFS_BLOCK_GROUP_METADATA;
10071 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10072 if (ret)
10073 goto out;
10074
10075 flags = BTRFS_BLOCK_GROUP_DATA;
10076 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10077 }
10078out:
c59021f8 10079 return ret;
10080}
10081
acce952b 10082int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10083{
678886bd 10084 return unpin_extent_range(root, start, end, false);
acce952b 10085}
10086
f7039b1d
LD
10087int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10088{
10089 struct btrfs_fs_info *fs_info = root->fs_info;
10090 struct btrfs_block_group_cache *cache = NULL;
10091 u64 group_trimmed;
10092 u64 start;
10093 u64 end;
10094 u64 trimmed = 0;
2cac13e4 10095 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10096 int ret = 0;
10097
2cac13e4
LB
10098 /*
10099 * try to trim all FS space, our block group may start from non-zero.
10100 */
10101 if (range->len == total_bytes)
10102 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10103 else
10104 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10105
10106 while (cache) {
10107 if (cache->key.objectid >= (range->start + range->len)) {
10108 btrfs_put_block_group(cache);
10109 break;
10110 }
10111
10112 start = max(range->start, cache->key.objectid);
10113 end = min(range->start + range->len,
10114 cache->key.objectid + cache->key.offset);
10115
10116 if (end - start >= range->minlen) {
10117 if (!block_group_cache_done(cache)) {
f6373bf3 10118 ret = cache_block_group(cache, 0);
1be41b78
JB
10119 if (ret) {
10120 btrfs_put_block_group(cache);
10121 break;
10122 }
10123 ret = wait_block_group_cache_done(cache);
10124 if (ret) {
10125 btrfs_put_block_group(cache);
10126 break;
10127 }
f7039b1d
LD
10128 }
10129 ret = btrfs_trim_block_group(cache,
10130 &group_trimmed,
10131 start,
10132 end,
10133 range->minlen);
10134
10135 trimmed += group_trimmed;
10136 if (ret) {
10137 btrfs_put_block_group(cache);
10138 break;
10139 }
10140 }
10141
10142 cache = next_block_group(fs_info->tree_root, cache);
10143 }
10144
10145 range->len = trimmed;
10146 return ret;
10147}
8257b2dc
MX
10148
10149/*
9ea24bbe
FM
10150 * btrfs_{start,end}_write_no_snapshoting() are similar to
10151 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10152 * data into the page cache through nocow before the subvolume is snapshoted,
10153 * but flush the data into disk after the snapshot creation, or to prevent
10154 * operations while snapshoting is ongoing and that cause the snapshot to be
10155 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10156 */
9ea24bbe 10157void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10158{
10159 percpu_counter_dec(&root->subv_writers->counter);
10160 /*
10161 * Make sure counter is updated before we wake up
10162 * waiters.
10163 */
10164 smp_mb();
10165 if (waitqueue_active(&root->subv_writers->wait))
10166 wake_up(&root->subv_writers->wait);
10167}
10168
9ea24bbe 10169int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10170{
ee39b432 10171 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10172 return 0;
10173
10174 percpu_counter_inc(&root->subv_writers->counter);
10175 /*
10176 * Make sure counter is updated before we check for snapshot creation.
10177 */
10178 smp_mb();
ee39b432 10179 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10180 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10181 return 0;
10182 }
10183 return 1;
10184}
This page took 1.394375 seconds and 5 git commands to generate.