btrfs: qgroup: Introduce new functions to reserve/free metadata
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
9ed0dea0 1319static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1320 struct btrfs_extent_inline_ref *iref)
15916de8 1321{
5d4f98a2
YZ
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1353#endif
5d4f98a2
YZ
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358}
15916de8 1359
5d4f98a2
YZ
1360static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1f3c79a2 1365{
5d4f98a2 1366 struct btrfs_key key;
1f3c79a2 1367 int ret;
1f3c79a2 1368
5d4f98a2
YZ
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1f3c79a2
LH
1376 }
1377
5d4f98a2
YZ
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
b3b4aa74 1383 btrfs_release_path(path);
5d4f98a2
YZ
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1f3c79a2 1389#endif
5d4f98a2 1390 return ret;
1f3c79a2
LH
1391}
1392
5d4f98a2
YZ
1393static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
31840ae1 1398{
5d4f98a2 1399 struct btrfs_key key;
31840ae1 1400 int ret;
31840ae1 1401
5d4f98a2
YZ
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1412 btrfs_release_path(path);
31840ae1
ZY
1413 return ret;
1414}
1415
5d4f98a2 1416static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1417{
5d4f98a2
YZ
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
31840ae1 1431}
56bec294 1432
2c47e605
YZ
1433static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
56bec294 1435
02217ed2 1436{
2c47e605 1437 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1438 if (!path->nodes[level])
1439 break;
5d4f98a2
YZ
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452}
037e6390 1453
5d4f98a2
YZ
1454/*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467static noinline_for_stack
1468int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475{
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
3173a18f
JB
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
26b8003f 1491
db94535d 1492 key.objectid = bytenr;
31840ae1 1493 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1494 key.offset = num_bytes;
31840ae1 1495
5d4f98a2
YZ
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1499 path->keep_locks = 1;
5d4f98a2
YZ
1500 } else
1501 extra_size = -1;
3173a18f
JB
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512again:
5d4f98a2 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1514 if (ret < 0) {
5d4f98a2
YZ
1515 err = ret;
1516 goto out;
1517 }
3173a18f
JB
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
9ce49a0b 1535 key.objectid = bytenr;
3173a18f
JB
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
79787eaa
JM
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
fae7f21c 1546 } else if (WARN_ON(ret)) {
492104c8 1547 err = -EIO;
492104c8 1548 goto out;
79787eaa 1549 }
5d4f98a2
YZ
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568#endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
5d4f98a2
YZ
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
3173a18f 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
5d4f98a2
YZ
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
2c47e605
YZ
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
85d4198e 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649out:
85d4198e 1650 if (insert) {
5d4f98a2
YZ
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655}
1656
1657/*
1658 * helper to add new inline back ref
1659 */
1660static noinline_for_stack
fd279fae 1661void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1667{
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
5d4f98a2
YZ
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
4b90c680 1684 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1719}
1720
1721static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727{
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
54aa1f4d 1734 return ret;
5d4f98a2 1735
b3b4aa74 1736 btrfs_release_path(path);
5d4f98a2
YZ
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
b9473439 1745 }
5d4f98a2
YZ
1746 return ret;
1747}
31840ae1 1748
5d4f98a2
YZ
1749/*
1750 * helper to update/remove inline back ref
1751 */
1752static noinline_for_stack
afe5fea7 1753void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
fcebe456
JB
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
5d4f98a2
YZ
1759{
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
5d4f98a2
YZ
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
56bec294 1791 }
31840ae1 1792
5d4f98a2
YZ
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
fcebe456 1802 *last_ref = 1;
5d4f98a2
YZ
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
afe5fea7 1811 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static noinline_for_stack
1817int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824{
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1833 update_inline_extent_backref(root, path, iref,
fcebe456 1834 refs_to_add, extent_op, NULL);
5d4f98a2 1835 } else if (ret == -ENOENT) {
fd279fae 1836 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
771ed689 1840 }
5d4f98a2
YZ
1841 return ret;
1842}
31840ae1 1843
5d4f98a2
YZ
1844static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849{
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861}
56bec294 1862
5d4f98a2
YZ
1863static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
fcebe456 1867 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1868{
143bede5 1869 int ret = 0;
b9473439 1870
5d4f98a2
YZ
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
afe5fea7 1873 update_inline_extent_backref(root, path, iref,
fcebe456 1874 -refs_to_drop, NULL, last_ref);
5d4f98a2 1875 } else if (is_data) {
fcebe456
JB
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
5d4f98a2 1878 } else {
fcebe456 1879 *last_ref = 1;
5d4f98a2
YZ
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883}
1884
86557861 1885#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1886static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
5d4f98a2 1888{
86557861
JM
1889 int j, ret = 0;
1890 u64 bytes_left, end;
4d89d377 1891 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1892
4d89d377
JM
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
d04c6b88 1898
4d89d377 1899 *discarded_bytes = 0;
86557861
JM
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1951 GFP_NOFS, 0);
1952 if (!ret)
86557861 1953 *discarded_bytes += bytes_left;
4d89d377 1954 }
d04c6b88 1955 return ret;
5d4f98a2 1956}
5d4f98a2 1957
1edb647b
FM
1958int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1960{
5d4f98a2 1961 int ret;
5378e607 1962 u64 discarded_bytes = 0;
a1d3c478 1963 struct btrfs_bio *bbio = NULL;
5d4f98a2 1964
e244a0ae 1965
5d4f98a2 1966 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1968 bytenr, &num_bytes, &bbio, 0);
79787eaa 1969 /* Error condition is -ENOMEM */
5d4f98a2 1970 if (!ret) {
a1d3c478 1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1972 int i;
1973
5d4f98a2 1974
a1d3c478 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1976 u64 bytes;
d5e2003c
JB
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
5378e607
LD
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
d04c6b88
JM
1982 stripe->length,
1983 &bytes);
5378e607 1984 if (!ret)
d04c6b88 1985 discarded_bytes += bytes;
5378e607 1986 else if (ret != -EOPNOTSUPP)
79787eaa 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
5d4f98a2 1995 }
6e9606d2 1996 btrfs_put_bbio(bbio);
5d4f98a2 1997 }
5378e607
LD
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
5d4f98a2 2002
53b381b3
DW
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
5d4f98a2 2005 return ret;
5d4f98a2
YZ
2006}
2007
79787eaa 2008/* Can return -ENOMEM */
5d4f98a2
YZ
2009int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
5d4f98a2
YZ
2014{
2015 int ret;
66d7e7f0
AJ
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
5d4f98a2
YZ
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
5d4f98a2 2024 parent, root_objectid, (int)owner,
fcebe456 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2026 } else {
66d7e7f0
AJ
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
5d4f98a2 2029 parent, root_objectid, owner, offset,
fcebe456 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2031 }
2032 return ret;
2033}
2034
2035static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
c682f9b3 2037 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041{
fcebe456 2042 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
fcebe456 2046 struct btrfs_key key;
c682f9b3
QW
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2049 u64 refs;
2050 int ret;
c682f9b3 2051 int no_quota = node->no_quota;
5d4f98a2
YZ
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
fcebe456
JB
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
5d4f98a2
YZ
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
5d4f98a2
YZ
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
0ed4792a 2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2068 goto out;
fcebe456
JB
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
5d4f98a2 2075 leaf = path->nodes[0];
fcebe456 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2082
5d4f98a2 2083 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2084 btrfs_release_path(path);
56bec294
CM
2085
2086 path->reada = 1;
b9473439 2087 path->leave_spinning = 1;
56bec294
CM
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
79787eaa
JM
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2094out:
56bec294 2095 btrfs_free_path(path);
30d133fc 2096 return ret;
56bec294
CM
2097}
2098
5d4f98a2
YZ
2099static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
56bec294 2104{
5d4f98a2
YZ
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
5d4f98a2
YZ
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
fcebe456 2121 ref_root = ref->root;
5d4f98a2
YZ
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2124 if (extent_op)
5d4f98a2 2125 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
5d4f98a2 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
c682f9b3 2134 extent_op);
5d4f98a2 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2136 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
c682f9b3 2139 extent_op);
5d4f98a2
YZ
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144}
2145
2146static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149{
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162}
2163
2164static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168{
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
56bec294 2174 int ret;
5d4f98a2 2175 int err = 0;
b1c79e09 2176 int metadata = !extent_op->is_data;
5d4f98a2 2177
79787eaa
JM
2178 if (trans->aborted)
2179 return 0;
2180
3173a18f
JB
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
5d4f98a2
YZ
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
5d4f98a2 2189
3173a18f 2190 if (metadata) {
3173a18f 2191 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2192 key.offset = extent_op->level;
3173a18f
JB
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198again:
5d4f98a2
YZ
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
3173a18f 2208 if (metadata) {
55994887
FDBM
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
3173a18f 2221
55994887
FDBM
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
3173a18f 2230 }
5d4f98a2
YZ
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246#endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2250
5d4f98a2
YZ
2251 btrfs_mark_buffer_dirty(leaf);
2252out:
2253 btrfs_free_path(path);
2254 return err;
56bec294
CM
2255}
2256
5d4f98a2
YZ
2257static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
56bec294
CM
2262{
2263 int ret = 0;
5d4f98a2
YZ
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
3173a18f
JB
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
56bec294 2270
5d4f98a2 2271 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
5d4f98a2
YZ
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
fcebe456 2276 ref_root = ref->root;
5d4f98a2 2277
3173a18f
JB
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
5d4f98a2
YZ
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2289 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
fcebe456
JB
2294 ref->level, &ins,
2295 node->no_quota);
5d4f98a2 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
fcebe456 2300 extent_op);
5d4f98a2 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2305 } else {
2306 BUG();
2307 }
56bec294
CM
2308 return ret;
2309}
2310
2311/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2312static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
56bec294 2317{
79787eaa
JM
2318 int ret = 0;
2319
857cc2fc
JB
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
79787eaa 2324 return 0;
857cc2fc 2325 }
79787eaa 2326
5d4f98a2 2327 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
5d4f98a2
YZ
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
56bec294 2339 if (insert_reserved) {
f0486c68
YZ
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
5d4f98a2
YZ
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
5d4f98a2 2346 }
56bec294 2347 }
297d750b
QW
2348
2349 /* Also free its reserved qgroup space */
2350 btrfs_qgroup_free_delayed_ref(root->fs_info,
2351 head->qgroup_ref_root,
2352 head->qgroup_reserved);
79787eaa 2353 return ret;
56bec294
CM
2354 }
2355
5d4f98a2
YZ
2356 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2357 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2358 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2359 insert_reserved);
2360 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2361 node->type == BTRFS_SHARED_DATA_REF_KEY)
2362 ret = run_delayed_data_ref(trans, root, node, extent_op,
2363 insert_reserved);
2364 else
2365 BUG();
2366 return ret;
56bec294
CM
2367}
2368
c6fc2454 2369static inline struct btrfs_delayed_ref_node *
56bec294
CM
2370select_delayed_ref(struct btrfs_delayed_ref_head *head)
2371{
cffc3374
FM
2372 struct btrfs_delayed_ref_node *ref;
2373
c6fc2454
QW
2374 if (list_empty(&head->ref_list))
2375 return NULL;
d7df2c79 2376
cffc3374
FM
2377 /*
2378 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2379 * This is to prevent a ref count from going down to zero, which deletes
2380 * the extent item from the extent tree, when there still are references
2381 * to add, which would fail because they would not find the extent item.
2382 */
2383 list_for_each_entry(ref, &head->ref_list, list) {
2384 if (ref->action == BTRFS_ADD_DELAYED_REF)
2385 return ref;
2386 }
2387
c6fc2454
QW
2388 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2389 list);
56bec294
CM
2390}
2391
79787eaa
JM
2392/*
2393 * Returns 0 on success or if called with an already aborted transaction.
2394 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2395 */
d7df2c79
JB
2396static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2397 struct btrfs_root *root,
2398 unsigned long nr)
56bec294 2399{
56bec294
CM
2400 struct btrfs_delayed_ref_root *delayed_refs;
2401 struct btrfs_delayed_ref_node *ref;
2402 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2403 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2404 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2405 ktime_t start = ktime_get();
56bec294 2406 int ret;
d7df2c79 2407 unsigned long count = 0;
0a2b2a84 2408 unsigned long actual_count = 0;
56bec294 2409 int must_insert_reserved = 0;
56bec294
CM
2410
2411 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2412 while (1) {
2413 if (!locked_ref) {
d7df2c79 2414 if (count >= nr)
56bec294 2415 break;
56bec294 2416
d7df2c79
JB
2417 spin_lock(&delayed_refs->lock);
2418 locked_ref = btrfs_select_ref_head(trans);
2419 if (!locked_ref) {
2420 spin_unlock(&delayed_refs->lock);
2421 break;
2422 }
c3e69d58
CM
2423
2424 /* grab the lock that says we are going to process
2425 * all the refs for this head */
2426 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2427 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2428 /*
2429 * we may have dropped the spin lock to get the head
2430 * mutex lock, and that might have given someone else
2431 * time to free the head. If that's true, it has been
2432 * removed from our list and we can move on.
2433 */
2434 if (ret == -EAGAIN) {
2435 locked_ref = NULL;
2436 count++;
2437 continue;
56bec294
CM
2438 }
2439 }
a28ec197 2440
d7df2c79 2441 spin_lock(&locked_ref->lock);
ae1e206b 2442
d1270cd9
AJ
2443 /*
2444 * locked_ref is the head node, so we have to go one
2445 * node back for any delayed ref updates
2446 */
2447 ref = select_delayed_ref(locked_ref);
2448
2449 if (ref && ref->seq &&
097b8a7c 2450 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2451 spin_unlock(&locked_ref->lock);
093486c4 2452 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2453 spin_lock(&delayed_refs->lock);
2454 locked_ref->processing = 0;
d1270cd9
AJ
2455 delayed_refs->num_heads_ready++;
2456 spin_unlock(&delayed_refs->lock);
d7df2c79 2457 locked_ref = NULL;
d1270cd9 2458 cond_resched();
27a377db 2459 count++;
d1270cd9
AJ
2460 continue;
2461 }
2462
56bec294
CM
2463 /*
2464 * record the must insert reserved flag before we
2465 * drop the spin lock.
2466 */
2467 must_insert_reserved = locked_ref->must_insert_reserved;
2468 locked_ref->must_insert_reserved = 0;
7bb86316 2469
5d4f98a2
YZ
2470 extent_op = locked_ref->extent_op;
2471 locked_ref->extent_op = NULL;
2472
56bec294 2473 if (!ref) {
d7df2c79
JB
2474
2475
56bec294
CM
2476 /* All delayed refs have been processed, Go ahead
2477 * and send the head node to run_one_delayed_ref,
2478 * so that any accounting fixes can happen
2479 */
2480 ref = &locked_ref->node;
5d4f98a2
YZ
2481
2482 if (extent_op && must_insert_reserved) {
78a6184a 2483 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2484 extent_op = NULL;
2485 }
2486
2487 if (extent_op) {
d7df2c79 2488 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2489 ret = run_delayed_extent_op(trans, root,
2490 ref, extent_op);
78a6184a 2491 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2492
79787eaa 2493 if (ret) {
857cc2fc
JB
2494 /*
2495 * Need to reset must_insert_reserved if
2496 * there was an error so the abort stuff
2497 * can cleanup the reserved space
2498 * properly.
2499 */
2500 if (must_insert_reserved)
2501 locked_ref->must_insert_reserved = 1;
d7df2c79 2502 locked_ref->processing = 0;
c2cf52eb 2503 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2504 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2505 return ret;
2506 }
d7df2c79 2507 continue;
5d4f98a2 2508 }
02217ed2 2509
d7df2c79
JB
2510 /*
2511 * Need to drop our head ref lock and re-aqcuire the
2512 * delayed ref lock and then re-check to make sure
2513 * nobody got added.
2514 */
2515 spin_unlock(&locked_ref->lock);
2516 spin_lock(&delayed_refs->lock);
2517 spin_lock(&locked_ref->lock);
c6fc2454 2518 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2519 locked_ref->extent_op) {
d7df2c79
JB
2520 spin_unlock(&locked_ref->lock);
2521 spin_unlock(&delayed_refs->lock);
2522 continue;
2523 }
2524 ref->in_tree = 0;
2525 delayed_refs->num_heads--;
c46effa6
LB
2526 rb_erase(&locked_ref->href_node,
2527 &delayed_refs->href_root);
d7df2c79
JB
2528 spin_unlock(&delayed_refs->lock);
2529 } else {
0a2b2a84 2530 actual_count++;
d7df2c79 2531 ref->in_tree = 0;
c6fc2454 2532 list_del(&ref->list);
c46effa6 2533 }
d7df2c79
JB
2534 atomic_dec(&delayed_refs->num_entries);
2535
093486c4 2536 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2537 /*
2538 * when we play the delayed ref, also correct the
2539 * ref_mod on head
2540 */
2541 switch (ref->action) {
2542 case BTRFS_ADD_DELAYED_REF:
2543 case BTRFS_ADD_DELAYED_EXTENT:
2544 locked_ref->node.ref_mod -= ref->ref_mod;
2545 break;
2546 case BTRFS_DROP_DELAYED_REF:
2547 locked_ref->node.ref_mod += ref->ref_mod;
2548 break;
2549 default:
2550 WARN_ON(1);
2551 }
2552 }
d7df2c79 2553 spin_unlock(&locked_ref->lock);
925baedd 2554
5d4f98a2 2555 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2556 must_insert_reserved);
eb099670 2557
78a6184a 2558 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2559 if (ret) {
d7df2c79 2560 locked_ref->processing = 0;
093486c4
MX
2561 btrfs_delayed_ref_unlock(locked_ref);
2562 btrfs_put_delayed_ref(ref);
c2cf52eb 2563 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2564 return ret;
2565 }
2566
093486c4
MX
2567 /*
2568 * If this node is a head, that means all the refs in this head
2569 * have been dealt with, and we will pick the next head to deal
2570 * with, so we must unlock the head and drop it from the cluster
2571 * list before we release it.
2572 */
2573 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2574 if (locked_ref->is_data &&
2575 locked_ref->total_ref_mod < 0) {
2576 spin_lock(&delayed_refs->lock);
2577 delayed_refs->pending_csums -= ref->num_bytes;
2578 spin_unlock(&delayed_refs->lock);
2579 }
093486c4
MX
2580 btrfs_delayed_ref_unlock(locked_ref);
2581 locked_ref = NULL;
2582 }
2583 btrfs_put_delayed_ref(ref);
2584 count++;
c3e69d58 2585 cond_resched();
c3e69d58 2586 }
0a2b2a84
JB
2587
2588 /*
2589 * We don't want to include ref heads since we can have empty ref heads
2590 * and those will drastically skew our runtime down since we just do
2591 * accounting, no actual extent tree updates.
2592 */
2593 if (actual_count > 0) {
2594 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2595 u64 avg;
2596
2597 /*
2598 * We weigh the current average higher than our current runtime
2599 * to avoid large swings in the average.
2600 */
2601 spin_lock(&delayed_refs->lock);
2602 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2603 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2604 spin_unlock(&delayed_refs->lock);
2605 }
d7df2c79 2606 return 0;
c3e69d58
CM
2607}
2608
709c0486
AJ
2609#ifdef SCRAMBLE_DELAYED_REFS
2610/*
2611 * Normally delayed refs get processed in ascending bytenr order. This
2612 * correlates in most cases to the order added. To expose dependencies on this
2613 * order, we start to process the tree in the middle instead of the beginning
2614 */
2615static u64 find_middle(struct rb_root *root)
2616{
2617 struct rb_node *n = root->rb_node;
2618 struct btrfs_delayed_ref_node *entry;
2619 int alt = 1;
2620 u64 middle;
2621 u64 first = 0, last = 0;
2622
2623 n = rb_first(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 first = entry->bytenr;
2627 }
2628 n = rb_last(root);
2629 if (n) {
2630 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2631 last = entry->bytenr;
2632 }
2633 n = root->rb_node;
2634
2635 while (n) {
2636 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2637 WARN_ON(!entry->in_tree);
2638
2639 middle = entry->bytenr;
2640
2641 if (alt)
2642 n = n->rb_left;
2643 else
2644 n = n->rb_right;
2645
2646 alt = 1 - alt;
2647 }
2648 return middle;
2649}
2650#endif
2651
1be41b78
JB
2652static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2653{
2654 u64 num_bytes;
2655
2656 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2657 sizeof(struct btrfs_extent_inline_ref));
2658 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2659 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2660
2661 /*
2662 * We don't ever fill up leaves all the way so multiply by 2 just to be
2663 * closer to what we're really going to want to ouse.
2664 */
f8c269d7 2665 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2666}
2667
1262133b
JB
2668/*
2669 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2670 * would require to store the csums for that many bytes.
2671 */
28f75a0e 2672u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2673{
2674 u64 csum_size;
2675 u64 num_csums_per_leaf;
2676 u64 num_csums;
2677
2678 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2679 num_csums_per_leaf = div64_u64(csum_size,
2680 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2681 num_csums = div64_u64(csum_bytes, root->sectorsize);
2682 num_csums += num_csums_per_leaf - 1;
2683 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2684 return num_csums;
2685}
2686
0a2b2a84 2687int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2688 struct btrfs_root *root)
2689{
2690 struct btrfs_block_rsv *global_rsv;
2691 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2692 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2693 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2694 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2695 int ret = 0;
2696
2697 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2698 num_heads = heads_to_leaves(root, num_heads);
2699 if (num_heads > 1)
707e8a07 2700 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2701 num_bytes <<= 1;
28f75a0e 2702 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2703 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2704 num_dirty_bgs);
1be41b78
JB
2705 global_rsv = &root->fs_info->global_block_rsv;
2706
2707 /*
2708 * If we can't allocate any more chunks lets make sure we have _lots_ of
2709 * wiggle room since running delayed refs can create more delayed refs.
2710 */
cb723e49
JB
2711 if (global_rsv->space_info->full) {
2712 num_dirty_bgs_bytes <<= 1;
1be41b78 2713 num_bytes <<= 1;
cb723e49 2714 }
1be41b78
JB
2715
2716 spin_lock(&global_rsv->lock);
cb723e49 2717 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2718 ret = 1;
2719 spin_unlock(&global_rsv->lock);
2720 return ret;
2721}
2722
0a2b2a84
JB
2723int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root)
2725{
2726 struct btrfs_fs_info *fs_info = root->fs_info;
2727 u64 num_entries =
2728 atomic_read(&trans->transaction->delayed_refs.num_entries);
2729 u64 avg_runtime;
a79b7d4b 2730 u64 val;
0a2b2a84
JB
2731
2732 smp_mb();
2733 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2734 val = num_entries * avg_runtime;
0a2b2a84
JB
2735 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2736 return 1;
a79b7d4b
CM
2737 if (val >= NSEC_PER_SEC / 2)
2738 return 2;
0a2b2a84
JB
2739
2740 return btrfs_check_space_for_delayed_refs(trans, root);
2741}
2742
a79b7d4b
CM
2743struct async_delayed_refs {
2744 struct btrfs_root *root;
2745 int count;
2746 int error;
2747 int sync;
2748 struct completion wait;
2749 struct btrfs_work work;
2750};
2751
2752static void delayed_ref_async_start(struct btrfs_work *work)
2753{
2754 struct async_delayed_refs *async;
2755 struct btrfs_trans_handle *trans;
2756 int ret;
2757
2758 async = container_of(work, struct async_delayed_refs, work);
2759
2760 trans = btrfs_join_transaction(async->root);
2761 if (IS_ERR(trans)) {
2762 async->error = PTR_ERR(trans);
2763 goto done;
2764 }
2765
2766 /*
2767 * trans->sync means that when we call end_transaciton, we won't
2768 * wait on delayed refs
2769 */
2770 trans->sync = true;
2771 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2772 if (ret)
2773 async->error = ret;
2774
2775 ret = btrfs_end_transaction(trans, async->root);
2776 if (ret && !async->error)
2777 async->error = ret;
2778done:
2779 if (async->sync)
2780 complete(&async->wait);
2781 else
2782 kfree(async);
2783}
2784
2785int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2786 unsigned long count, int wait)
2787{
2788 struct async_delayed_refs *async;
2789 int ret;
2790
2791 async = kmalloc(sizeof(*async), GFP_NOFS);
2792 if (!async)
2793 return -ENOMEM;
2794
2795 async->root = root->fs_info->tree_root;
2796 async->count = count;
2797 async->error = 0;
2798 if (wait)
2799 async->sync = 1;
2800 else
2801 async->sync = 0;
2802 init_completion(&async->wait);
2803
9e0af237
LB
2804 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2805 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2806
2807 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2808
2809 if (wait) {
2810 wait_for_completion(&async->wait);
2811 ret = async->error;
2812 kfree(async);
2813 return ret;
2814 }
2815 return 0;
2816}
2817
c3e69d58
CM
2818/*
2819 * this starts processing the delayed reference count updates and
2820 * extent insertions we have queued up so far. count can be
2821 * 0, which means to process everything in the tree at the start
2822 * of the run (but not newly added entries), or it can be some target
2823 * number you'd like to process.
79787eaa
JM
2824 *
2825 * Returns 0 on success or if called with an aborted transaction
2826 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2827 */
2828int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2829 struct btrfs_root *root, unsigned long count)
2830{
2831 struct rb_node *node;
2832 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2833 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2834 int ret;
2835 int run_all = count == (unsigned long)-1;
d9a0540a 2836 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2837
79787eaa
JM
2838 /* We'll clean this up in btrfs_cleanup_transaction */
2839 if (trans->aborted)
2840 return 0;
2841
c3e69d58
CM
2842 if (root == root->fs_info->extent_root)
2843 root = root->fs_info->tree_root;
2844
2845 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2846 if (count == 0)
d7df2c79 2847 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2848
c3e69d58 2849again:
709c0486
AJ
2850#ifdef SCRAMBLE_DELAYED_REFS
2851 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2852#endif
d9a0540a 2853 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2854 ret = __btrfs_run_delayed_refs(trans, root, count);
2855 if (ret < 0) {
2856 btrfs_abort_transaction(trans, root, ret);
2857 return ret;
eb099670 2858 }
c3e69d58 2859
56bec294 2860 if (run_all) {
d7df2c79 2861 if (!list_empty(&trans->new_bgs))
ea658bad 2862 btrfs_create_pending_block_groups(trans, root);
ea658bad 2863
d7df2c79 2864 spin_lock(&delayed_refs->lock);
c46effa6 2865 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2866 if (!node) {
2867 spin_unlock(&delayed_refs->lock);
56bec294 2868 goto out;
d7df2c79 2869 }
c3e69d58 2870 count = (unsigned long)-1;
e9d0b13b 2871
56bec294 2872 while (node) {
c46effa6
LB
2873 head = rb_entry(node, struct btrfs_delayed_ref_head,
2874 href_node);
2875 if (btrfs_delayed_ref_is_head(&head->node)) {
2876 struct btrfs_delayed_ref_node *ref;
5caf2a00 2877
c46effa6 2878 ref = &head->node;
56bec294
CM
2879 atomic_inc(&ref->refs);
2880
2881 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2882 /*
2883 * Mutex was contended, block until it's
2884 * released and try again
2885 */
56bec294
CM
2886 mutex_lock(&head->mutex);
2887 mutex_unlock(&head->mutex);
2888
2889 btrfs_put_delayed_ref(ref);
1887be66 2890 cond_resched();
56bec294 2891 goto again;
c46effa6
LB
2892 } else {
2893 WARN_ON(1);
56bec294
CM
2894 }
2895 node = rb_next(node);
2896 }
2897 spin_unlock(&delayed_refs->lock);
d7df2c79 2898 cond_resched();
56bec294 2899 goto again;
5f39d397 2900 }
54aa1f4d 2901out:
edf39272 2902 assert_qgroups_uptodate(trans);
d9a0540a 2903 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2904 return 0;
2905}
2906
5d4f98a2
YZ
2907int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2908 struct btrfs_root *root,
2909 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2910 int level, int is_data)
5d4f98a2
YZ
2911{
2912 struct btrfs_delayed_extent_op *extent_op;
2913 int ret;
2914
78a6184a 2915 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2916 if (!extent_op)
2917 return -ENOMEM;
2918
2919 extent_op->flags_to_set = flags;
2920 extent_op->update_flags = 1;
2921 extent_op->update_key = 0;
2922 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2923 extent_op->level = level;
5d4f98a2 2924
66d7e7f0
AJ
2925 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2926 num_bytes, extent_op);
5d4f98a2 2927 if (ret)
78a6184a 2928 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2929 return ret;
2930}
2931
2932static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root,
2934 struct btrfs_path *path,
2935 u64 objectid, u64 offset, u64 bytenr)
2936{
2937 struct btrfs_delayed_ref_head *head;
2938 struct btrfs_delayed_ref_node *ref;
2939 struct btrfs_delayed_data_ref *data_ref;
2940 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2941 int ret = 0;
2942
5d4f98a2
YZ
2943 delayed_refs = &trans->transaction->delayed_refs;
2944 spin_lock(&delayed_refs->lock);
2945 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2946 if (!head) {
2947 spin_unlock(&delayed_refs->lock);
2948 return 0;
2949 }
5d4f98a2
YZ
2950
2951 if (!mutex_trylock(&head->mutex)) {
2952 atomic_inc(&head->node.refs);
2953 spin_unlock(&delayed_refs->lock);
2954
b3b4aa74 2955 btrfs_release_path(path);
5d4f98a2 2956
8cc33e5c
DS
2957 /*
2958 * Mutex was contended, block until it's released and let
2959 * caller try again
2960 */
5d4f98a2
YZ
2961 mutex_lock(&head->mutex);
2962 mutex_unlock(&head->mutex);
2963 btrfs_put_delayed_ref(&head->node);
2964 return -EAGAIN;
2965 }
d7df2c79 2966 spin_unlock(&delayed_refs->lock);
5d4f98a2 2967
d7df2c79 2968 spin_lock(&head->lock);
c6fc2454 2969 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2970 /* If it's a shared ref we know a cross reference exists */
2971 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2972 ret = 1;
2973 break;
2974 }
5d4f98a2 2975
d7df2c79 2976 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2977
d7df2c79
JB
2978 /*
2979 * If our ref doesn't match the one we're currently looking at
2980 * then we have a cross reference.
2981 */
2982 if (data_ref->root != root->root_key.objectid ||
2983 data_ref->objectid != objectid ||
2984 data_ref->offset != offset) {
2985 ret = 1;
2986 break;
2987 }
5d4f98a2 2988 }
d7df2c79 2989 spin_unlock(&head->lock);
5d4f98a2 2990 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2991 return ret;
2992}
2993
2994static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2995 struct btrfs_root *root,
2996 struct btrfs_path *path,
2997 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2998{
2999 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3000 struct extent_buffer *leaf;
5d4f98a2
YZ
3001 struct btrfs_extent_data_ref *ref;
3002 struct btrfs_extent_inline_ref *iref;
3003 struct btrfs_extent_item *ei;
f321e491 3004 struct btrfs_key key;
5d4f98a2 3005 u32 item_size;
be20aa9d 3006 int ret;
925baedd 3007
be20aa9d 3008 key.objectid = bytenr;
31840ae1 3009 key.offset = (u64)-1;
f321e491 3010 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3011
be20aa9d
CM
3012 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3013 if (ret < 0)
3014 goto out;
79787eaa 3015 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3016
3017 ret = -ENOENT;
3018 if (path->slots[0] == 0)
31840ae1 3019 goto out;
be20aa9d 3020
31840ae1 3021 path->slots[0]--;
f321e491 3022 leaf = path->nodes[0];
5d4f98a2 3023 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3024
5d4f98a2 3025 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3026 goto out;
f321e491 3027
5d4f98a2
YZ
3028 ret = 1;
3029 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3030#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3031 if (item_size < sizeof(*ei)) {
3032 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3033 goto out;
3034 }
3035#endif
3036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3037
5d4f98a2
YZ
3038 if (item_size != sizeof(*ei) +
3039 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3040 goto out;
be20aa9d 3041
5d4f98a2
YZ
3042 if (btrfs_extent_generation(leaf, ei) <=
3043 btrfs_root_last_snapshot(&root->root_item))
3044 goto out;
3045
3046 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3047 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3048 BTRFS_EXTENT_DATA_REF_KEY)
3049 goto out;
3050
3051 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3052 if (btrfs_extent_refs(leaf, ei) !=
3053 btrfs_extent_data_ref_count(leaf, ref) ||
3054 btrfs_extent_data_ref_root(leaf, ref) !=
3055 root->root_key.objectid ||
3056 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3057 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3058 goto out;
3059
3060 ret = 0;
3061out:
3062 return ret;
3063}
3064
3065int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root,
3067 u64 objectid, u64 offset, u64 bytenr)
3068{
3069 struct btrfs_path *path;
3070 int ret;
3071 int ret2;
3072
3073 path = btrfs_alloc_path();
3074 if (!path)
3075 return -ENOENT;
3076
3077 do {
3078 ret = check_committed_ref(trans, root, path, objectid,
3079 offset, bytenr);
3080 if (ret && ret != -ENOENT)
f321e491 3081 goto out;
80ff3856 3082
5d4f98a2
YZ
3083 ret2 = check_delayed_ref(trans, root, path, objectid,
3084 offset, bytenr);
3085 } while (ret2 == -EAGAIN);
3086
3087 if (ret2 && ret2 != -ENOENT) {
3088 ret = ret2;
3089 goto out;
f321e491 3090 }
5d4f98a2
YZ
3091
3092 if (ret != -ENOENT || ret2 != -ENOENT)
3093 ret = 0;
be20aa9d 3094out:
80ff3856 3095 btrfs_free_path(path);
f0486c68
YZ
3096 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3097 WARN_ON(ret > 0);
f321e491 3098 return ret;
be20aa9d 3099}
c5739bba 3100
5d4f98a2 3101static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3102 struct btrfs_root *root,
5d4f98a2 3103 struct extent_buffer *buf,
e339a6b0 3104 int full_backref, int inc)
31840ae1
ZY
3105{
3106 u64 bytenr;
5d4f98a2
YZ
3107 u64 num_bytes;
3108 u64 parent;
31840ae1 3109 u64 ref_root;
31840ae1 3110 u32 nritems;
31840ae1
ZY
3111 struct btrfs_key key;
3112 struct btrfs_file_extent_item *fi;
3113 int i;
3114 int level;
3115 int ret = 0;
31840ae1 3116 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3117 u64, u64, u64, u64, u64, u64, int);
31840ae1 3118
fccb84c9
DS
3119
3120 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3121 return 0;
fccb84c9 3122
31840ae1 3123 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3124 nritems = btrfs_header_nritems(buf);
3125 level = btrfs_header_level(buf);
3126
27cdeb70 3127 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3128 return 0;
31840ae1 3129
5d4f98a2
YZ
3130 if (inc)
3131 process_func = btrfs_inc_extent_ref;
3132 else
3133 process_func = btrfs_free_extent;
31840ae1 3134
5d4f98a2
YZ
3135 if (full_backref)
3136 parent = buf->start;
3137 else
3138 parent = 0;
3139
3140 for (i = 0; i < nritems; i++) {
31840ae1 3141 if (level == 0) {
5d4f98a2 3142 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3143 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3144 continue;
5d4f98a2 3145 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3146 struct btrfs_file_extent_item);
3147 if (btrfs_file_extent_type(buf, fi) ==
3148 BTRFS_FILE_EXTENT_INLINE)
3149 continue;
3150 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3151 if (bytenr == 0)
3152 continue;
5d4f98a2
YZ
3153
3154 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3155 key.offset -= btrfs_file_extent_offset(buf, fi);
3156 ret = process_func(trans, root, bytenr, num_bytes,
3157 parent, ref_root, key.objectid,
e339a6b0 3158 key.offset, 1);
31840ae1
ZY
3159 if (ret)
3160 goto fail;
3161 } else {
5d4f98a2 3162 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3163 num_bytes = root->nodesize;
5d4f98a2 3164 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3165 parent, ref_root, level - 1, 0,
e339a6b0 3166 1);
31840ae1
ZY
3167 if (ret)
3168 goto fail;
3169 }
3170 }
3171 return 0;
3172fail:
5d4f98a2
YZ
3173 return ret;
3174}
3175
3176int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3177 struct extent_buffer *buf, int full_backref)
5d4f98a2 3178{
e339a6b0 3179 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3180}
3181
3182int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3183 struct extent_buffer *buf, int full_backref)
5d4f98a2 3184{
e339a6b0 3185 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3186}
3187
9078a3e1
CM
3188static int write_one_cache_group(struct btrfs_trans_handle *trans,
3189 struct btrfs_root *root,
3190 struct btrfs_path *path,
3191 struct btrfs_block_group_cache *cache)
3192{
3193 int ret;
9078a3e1 3194 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3195 unsigned long bi;
3196 struct extent_buffer *leaf;
9078a3e1 3197
9078a3e1 3198 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3199 if (ret) {
3200 if (ret > 0)
3201 ret = -ENOENT;
54aa1f4d 3202 goto fail;
df95e7f0 3203 }
5f39d397
CM
3204
3205 leaf = path->nodes[0];
3206 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3207 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3208 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3209fail:
24b89d08 3210 btrfs_release_path(path);
df95e7f0 3211 return ret;
9078a3e1
CM
3212
3213}
3214
4a8c9a62
YZ
3215static struct btrfs_block_group_cache *
3216next_block_group(struct btrfs_root *root,
3217 struct btrfs_block_group_cache *cache)
3218{
3219 struct rb_node *node;
292cbd51 3220
4a8c9a62 3221 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3222
3223 /* If our block group was removed, we need a full search. */
3224 if (RB_EMPTY_NODE(&cache->cache_node)) {
3225 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3226
3227 spin_unlock(&root->fs_info->block_group_cache_lock);
3228 btrfs_put_block_group(cache);
3229 cache = btrfs_lookup_first_block_group(root->fs_info,
3230 next_bytenr);
3231 return cache;
3232 }
4a8c9a62
YZ
3233 node = rb_next(&cache->cache_node);
3234 btrfs_put_block_group(cache);
3235 if (node) {
3236 cache = rb_entry(node, struct btrfs_block_group_cache,
3237 cache_node);
11dfe35a 3238 btrfs_get_block_group(cache);
4a8c9a62
YZ
3239 } else
3240 cache = NULL;
3241 spin_unlock(&root->fs_info->block_group_cache_lock);
3242 return cache;
3243}
3244
0af3d00b
JB
3245static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3246 struct btrfs_trans_handle *trans,
3247 struct btrfs_path *path)
3248{
3249 struct btrfs_root *root = block_group->fs_info->tree_root;
3250 struct inode *inode = NULL;
3251 u64 alloc_hint = 0;
2b20982e 3252 int dcs = BTRFS_DC_ERROR;
f8c269d7 3253 u64 num_pages = 0;
0af3d00b
JB
3254 int retries = 0;
3255 int ret = 0;
3256
3257 /*
3258 * If this block group is smaller than 100 megs don't bother caching the
3259 * block group.
3260 */
3261 if (block_group->key.offset < (100 * 1024 * 1024)) {
3262 spin_lock(&block_group->lock);
3263 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3264 spin_unlock(&block_group->lock);
3265 return 0;
3266 }
3267
0c0ef4bc
JB
3268 if (trans->aborted)
3269 return 0;
0af3d00b
JB
3270again:
3271 inode = lookup_free_space_inode(root, block_group, path);
3272 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3273 ret = PTR_ERR(inode);
b3b4aa74 3274 btrfs_release_path(path);
0af3d00b
JB
3275 goto out;
3276 }
3277
3278 if (IS_ERR(inode)) {
3279 BUG_ON(retries);
3280 retries++;
3281
3282 if (block_group->ro)
3283 goto out_free;
3284
3285 ret = create_free_space_inode(root, trans, block_group, path);
3286 if (ret)
3287 goto out_free;
3288 goto again;
3289 }
3290
5b0e95bf
JB
3291 /* We've already setup this transaction, go ahead and exit */
3292 if (block_group->cache_generation == trans->transid &&
3293 i_size_read(inode)) {
3294 dcs = BTRFS_DC_SETUP;
3295 goto out_put;
3296 }
3297
0af3d00b
JB
3298 /*
3299 * We want to set the generation to 0, that way if anything goes wrong
3300 * from here on out we know not to trust this cache when we load up next
3301 * time.
3302 */
3303 BTRFS_I(inode)->generation = 0;
3304 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3305 if (ret) {
3306 /*
3307 * So theoretically we could recover from this, simply set the
3308 * super cache generation to 0 so we know to invalidate the
3309 * cache, but then we'd have to keep track of the block groups
3310 * that fail this way so we know we _have_ to reset this cache
3311 * before the next commit or risk reading stale cache. So to
3312 * limit our exposure to horrible edge cases lets just abort the
3313 * transaction, this only happens in really bad situations
3314 * anyway.
3315 */
3316 btrfs_abort_transaction(trans, root, ret);
3317 goto out_put;
3318 }
0af3d00b
JB
3319 WARN_ON(ret);
3320
3321 if (i_size_read(inode) > 0) {
7b61cd92
MX
3322 ret = btrfs_check_trunc_cache_free_space(root,
3323 &root->fs_info->global_block_rsv);
3324 if (ret)
3325 goto out_put;
3326
1bbc621e 3327 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3328 if (ret)
3329 goto out_put;
3330 }
3331
3332 spin_lock(&block_group->lock);
cf7c1ef6 3333 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3334 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3335 /*
3336 * don't bother trying to write stuff out _if_
3337 * a) we're not cached,
3338 * b) we're with nospace_cache mount option.
3339 */
2b20982e 3340 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3341 spin_unlock(&block_group->lock);
3342 goto out_put;
3343 }
3344 spin_unlock(&block_group->lock);
3345
6fc823b1
JB
3346 /*
3347 * Try to preallocate enough space based on how big the block group is.
3348 * Keep in mind this has to include any pinned space which could end up
3349 * taking up quite a bit since it's not folded into the other space
3350 * cache.
3351 */
f8c269d7 3352 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3353 if (!num_pages)
3354 num_pages = 1;
3355
0af3d00b
JB
3356 num_pages *= 16;
3357 num_pages *= PAGE_CACHE_SIZE;
3358
e2d1f923 3359 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3360 if (ret)
3361 goto out_put;
3362
3363 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3364 num_pages, num_pages,
3365 &alloc_hint);
2b20982e
JB
3366 if (!ret)
3367 dcs = BTRFS_DC_SETUP;
0af3d00b 3368 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3369
0af3d00b
JB
3370out_put:
3371 iput(inode);
3372out_free:
b3b4aa74 3373 btrfs_release_path(path);
0af3d00b
JB
3374out:
3375 spin_lock(&block_group->lock);
e65cbb94 3376 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3377 block_group->cache_generation = trans->transid;
2b20982e 3378 block_group->disk_cache_state = dcs;
0af3d00b
JB
3379 spin_unlock(&block_group->lock);
3380
3381 return ret;
3382}
3383
dcdf7f6d
JB
3384int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3385 struct btrfs_root *root)
3386{
3387 struct btrfs_block_group_cache *cache, *tmp;
3388 struct btrfs_transaction *cur_trans = trans->transaction;
3389 struct btrfs_path *path;
3390
3391 if (list_empty(&cur_trans->dirty_bgs) ||
3392 !btrfs_test_opt(root, SPACE_CACHE))
3393 return 0;
3394
3395 path = btrfs_alloc_path();
3396 if (!path)
3397 return -ENOMEM;
3398
3399 /* Could add new block groups, use _safe just in case */
3400 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3401 dirty_list) {
3402 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3403 cache_save_setup(cache, trans, path);
3404 }
3405
3406 btrfs_free_path(path);
3407 return 0;
3408}
3409
1bbc621e
CM
3410/*
3411 * transaction commit does final block group cache writeback during a
3412 * critical section where nothing is allowed to change the FS. This is
3413 * required in order for the cache to actually match the block group,
3414 * but can introduce a lot of latency into the commit.
3415 *
3416 * So, btrfs_start_dirty_block_groups is here to kick off block group
3417 * cache IO. There's a chance we'll have to redo some of it if the
3418 * block group changes again during the commit, but it greatly reduces
3419 * the commit latency by getting rid of the easy block groups while
3420 * we're still allowing others to join the commit.
3421 */
3422int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3423 struct btrfs_root *root)
9078a3e1 3424{
4a8c9a62 3425 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3426 struct btrfs_transaction *cur_trans = trans->transaction;
3427 int ret = 0;
c9dc4c65 3428 int should_put;
1bbc621e
CM
3429 struct btrfs_path *path = NULL;
3430 LIST_HEAD(dirty);
3431 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3432 int num_started = 0;
1bbc621e
CM
3433 int loops = 0;
3434
3435 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3436 if (list_empty(&cur_trans->dirty_bgs)) {
3437 spin_unlock(&cur_trans->dirty_bgs_lock);
3438 return 0;
1bbc621e 3439 }
b58d1a9e 3440 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3441 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3442
1bbc621e 3443again:
1bbc621e
CM
3444 /*
3445 * make sure all the block groups on our dirty list actually
3446 * exist
3447 */
3448 btrfs_create_pending_block_groups(trans, root);
3449
3450 if (!path) {
3451 path = btrfs_alloc_path();
3452 if (!path)
3453 return -ENOMEM;
3454 }
3455
b58d1a9e
FM
3456 /*
3457 * cache_write_mutex is here only to save us from balance or automatic
3458 * removal of empty block groups deleting this block group while we are
3459 * writing out the cache
3460 */
3461 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3462 while (!list_empty(&dirty)) {
3463 cache = list_first_entry(&dirty,
3464 struct btrfs_block_group_cache,
3465 dirty_list);
1bbc621e
CM
3466 /*
3467 * this can happen if something re-dirties a block
3468 * group that is already under IO. Just wait for it to
3469 * finish and then do it all again
3470 */
3471 if (!list_empty(&cache->io_list)) {
3472 list_del_init(&cache->io_list);
3473 btrfs_wait_cache_io(root, trans, cache,
3474 &cache->io_ctl, path,
3475 cache->key.objectid);
3476 btrfs_put_block_group(cache);
3477 }
3478
3479
3480 /*
3481 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3482 * if it should update the cache_state. Don't delete
3483 * until after we wait.
3484 *
3485 * Since we're not running in the commit critical section
3486 * we need the dirty_bgs_lock to protect from update_block_group
3487 */
3488 spin_lock(&cur_trans->dirty_bgs_lock);
3489 list_del_init(&cache->dirty_list);
3490 spin_unlock(&cur_trans->dirty_bgs_lock);
3491
3492 should_put = 1;
3493
3494 cache_save_setup(cache, trans, path);
3495
3496 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3497 cache->io_ctl.inode = NULL;
3498 ret = btrfs_write_out_cache(root, trans, cache, path);
3499 if (ret == 0 && cache->io_ctl.inode) {
3500 num_started++;
3501 should_put = 0;
3502
3503 /*
3504 * the cache_write_mutex is protecting
3505 * the io_list
3506 */
3507 list_add_tail(&cache->io_list, io);
3508 } else {
3509 /*
3510 * if we failed to write the cache, the
3511 * generation will be bad and life goes on
3512 */
3513 ret = 0;
3514 }
3515 }
ff1f8250 3516 if (!ret) {
1bbc621e 3517 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3518 /*
3519 * Our block group might still be attached to the list
3520 * of new block groups in the transaction handle of some
3521 * other task (struct btrfs_trans_handle->new_bgs). This
3522 * means its block group item isn't yet in the extent
3523 * tree. If this happens ignore the error, as we will
3524 * try again later in the critical section of the
3525 * transaction commit.
3526 */
3527 if (ret == -ENOENT) {
3528 ret = 0;
3529 spin_lock(&cur_trans->dirty_bgs_lock);
3530 if (list_empty(&cache->dirty_list)) {
3531 list_add_tail(&cache->dirty_list,
3532 &cur_trans->dirty_bgs);
3533 btrfs_get_block_group(cache);
3534 }
3535 spin_unlock(&cur_trans->dirty_bgs_lock);
3536 } else if (ret) {
3537 btrfs_abort_transaction(trans, root, ret);
3538 }
3539 }
1bbc621e
CM
3540
3541 /* if its not on the io list, we need to put the block group */
3542 if (should_put)
3543 btrfs_put_block_group(cache);
3544
3545 if (ret)
3546 break;
b58d1a9e
FM
3547
3548 /*
3549 * Avoid blocking other tasks for too long. It might even save
3550 * us from writing caches for block groups that are going to be
3551 * removed.
3552 */
3553 mutex_unlock(&trans->transaction->cache_write_mutex);
3554 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3555 }
b58d1a9e 3556 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3557
3558 /*
3559 * go through delayed refs for all the stuff we've just kicked off
3560 * and then loop back (just once)
3561 */
3562 ret = btrfs_run_delayed_refs(trans, root, 0);
3563 if (!ret && loops == 0) {
3564 loops++;
3565 spin_lock(&cur_trans->dirty_bgs_lock);
3566 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3567 /*
3568 * dirty_bgs_lock protects us from concurrent block group
3569 * deletes too (not just cache_write_mutex).
3570 */
3571 if (!list_empty(&dirty)) {
3572 spin_unlock(&cur_trans->dirty_bgs_lock);
3573 goto again;
3574 }
1bbc621e 3575 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3576 }
3577
3578 btrfs_free_path(path);
3579 return ret;
3580}
3581
3582int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *root)
3584{
3585 struct btrfs_block_group_cache *cache;
3586 struct btrfs_transaction *cur_trans = trans->transaction;
3587 int ret = 0;
3588 int should_put;
3589 struct btrfs_path *path;
3590 struct list_head *io = &cur_trans->io_bgs;
3591 int num_started = 0;
9078a3e1
CM
3592
3593 path = btrfs_alloc_path();
3594 if (!path)
3595 return -ENOMEM;
3596
ce93ec54
JB
3597 /*
3598 * We don't need the lock here since we are protected by the transaction
3599 * commit. We want to do the cache_save_setup first and then run the
3600 * delayed refs to make sure we have the best chance at doing this all
3601 * in one shot.
3602 */
3603 while (!list_empty(&cur_trans->dirty_bgs)) {
3604 cache = list_first_entry(&cur_trans->dirty_bgs,
3605 struct btrfs_block_group_cache,
3606 dirty_list);
c9dc4c65
CM
3607
3608 /*
3609 * this can happen if cache_save_setup re-dirties a block
3610 * group that is already under IO. Just wait for it to
3611 * finish and then do it all again
3612 */
3613 if (!list_empty(&cache->io_list)) {
3614 list_del_init(&cache->io_list);
3615 btrfs_wait_cache_io(root, trans, cache,
3616 &cache->io_ctl, path,
3617 cache->key.objectid);
3618 btrfs_put_block_group(cache);
c9dc4c65
CM
3619 }
3620
1bbc621e
CM
3621 /*
3622 * don't remove from the dirty list until after we've waited
3623 * on any pending IO
3624 */
ce93ec54 3625 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3626 should_put = 1;
3627
1bbc621e 3628 cache_save_setup(cache, trans, path);
c9dc4c65 3629
ce93ec54 3630 if (!ret)
c9dc4c65
CM
3631 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3632
3633 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3634 cache->io_ctl.inode = NULL;
3635 ret = btrfs_write_out_cache(root, trans, cache, path);
3636 if (ret == 0 && cache->io_ctl.inode) {
3637 num_started++;
3638 should_put = 0;
1bbc621e 3639 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3640 } else {
3641 /*
3642 * if we failed to write the cache, the
3643 * generation will be bad and life goes on
3644 */
3645 ret = 0;
3646 }
3647 }
ff1f8250 3648 if (!ret) {
ce93ec54 3649 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3650 if (ret)
3651 btrfs_abort_transaction(trans, root, ret);
3652 }
c9dc4c65
CM
3653
3654 /* if its not on the io list, we need to put the block group */
3655 if (should_put)
3656 btrfs_put_block_group(cache);
3657 }
3658
1bbc621e
CM
3659 while (!list_empty(io)) {
3660 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3661 io_list);
3662 list_del_init(&cache->io_list);
c9dc4c65
CM
3663 btrfs_wait_cache_io(root, trans, cache,
3664 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3665 btrfs_put_block_group(cache);
3666 }
3667
9078a3e1 3668 btrfs_free_path(path);
ce93ec54 3669 return ret;
9078a3e1
CM
3670}
3671
d2fb3437
YZ
3672int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3673{
3674 struct btrfs_block_group_cache *block_group;
3675 int readonly = 0;
3676
3677 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3678 if (!block_group || block_group->ro)
3679 readonly = 1;
3680 if (block_group)
fa9c0d79 3681 btrfs_put_block_group(block_group);
d2fb3437
YZ
3682 return readonly;
3683}
3684
6ab0a202
JM
3685static const char *alloc_name(u64 flags)
3686{
3687 switch (flags) {
3688 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3689 return "mixed";
3690 case BTRFS_BLOCK_GROUP_METADATA:
3691 return "metadata";
3692 case BTRFS_BLOCK_GROUP_DATA:
3693 return "data";
3694 case BTRFS_BLOCK_GROUP_SYSTEM:
3695 return "system";
3696 default:
3697 WARN_ON(1);
3698 return "invalid-combination";
3699 };
3700}
3701
593060d7
CM
3702static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3703 u64 total_bytes, u64 bytes_used,
3704 struct btrfs_space_info **space_info)
3705{
3706 struct btrfs_space_info *found;
b742bb82
YZ
3707 int i;
3708 int factor;
b150a4f1 3709 int ret;
b742bb82
YZ
3710
3711 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3712 BTRFS_BLOCK_GROUP_RAID10))
3713 factor = 2;
3714 else
3715 factor = 1;
593060d7
CM
3716
3717 found = __find_space_info(info, flags);
3718 if (found) {
25179201 3719 spin_lock(&found->lock);
593060d7 3720 found->total_bytes += total_bytes;
89a55897 3721 found->disk_total += total_bytes * factor;
593060d7 3722 found->bytes_used += bytes_used;
b742bb82 3723 found->disk_used += bytes_used * factor;
2e6e5183
FM
3724 if (total_bytes > 0)
3725 found->full = 0;
25179201 3726 spin_unlock(&found->lock);
593060d7
CM
3727 *space_info = found;
3728 return 0;
3729 }
c146afad 3730 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3731 if (!found)
3732 return -ENOMEM;
3733
908c7f19 3734 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3735 if (ret) {
3736 kfree(found);
3737 return ret;
3738 }
3739
c1895442 3740 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3741 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3742 init_rwsem(&found->groups_sem);
0f9dd46c 3743 spin_lock_init(&found->lock);
52ba6929 3744 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3745 found->total_bytes = total_bytes;
89a55897 3746 found->disk_total = total_bytes * factor;
593060d7 3747 found->bytes_used = bytes_used;
b742bb82 3748 found->disk_used = bytes_used * factor;
593060d7 3749 found->bytes_pinned = 0;
e8569813 3750 found->bytes_reserved = 0;
c146afad 3751 found->bytes_readonly = 0;
f0486c68 3752 found->bytes_may_use = 0;
6af3e3ad 3753 found->full = 0;
0e4f8f88 3754 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3755 found->chunk_alloc = 0;
fdb5effd
JB
3756 found->flush = 0;
3757 init_waitqueue_head(&found->wait);
633c0aad 3758 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3759
3760 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3761 info->space_info_kobj, "%s",
3762 alloc_name(found->flags));
3763 if (ret) {
3764 kfree(found);
3765 return ret;
3766 }
3767
593060d7 3768 *space_info = found;
4184ea7f 3769 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3770 if (flags & BTRFS_BLOCK_GROUP_DATA)
3771 info->data_sinfo = found;
6ab0a202
JM
3772
3773 return ret;
593060d7
CM
3774}
3775
8790d502
CM
3776static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3777{
899c81ea
ID
3778 u64 extra_flags = chunk_to_extended(flags) &
3779 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3780
de98ced9 3781 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3782 if (flags & BTRFS_BLOCK_GROUP_DATA)
3783 fs_info->avail_data_alloc_bits |= extra_flags;
3784 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3785 fs_info->avail_metadata_alloc_bits |= extra_flags;
3786 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3787 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3788 write_sequnlock(&fs_info->profiles_lock);
8790d502 3789}
593060d7 3790
fc67c450
ID
3791/*
3792 * returns target flags in extended format or 0 if restripe for this
3793 * chunk_type is not in progress
c6664b42
ID
3794 *
3795 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3796 */
3797static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3798{
3799 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3800 u64 target = 0;
3801
fc67c450
ID
3802 if (!bctl)
3803 return 0;
3804
3805 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3806 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3807 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3808 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3809 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3810 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3811 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3812 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3813 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3814 }
3815
3816 return target;
3817}
3818
a46d11a8
ID
3819/*
3820 * @flags: available profiles in extended format (see ctree.h)
3821 *
e4d8ec0f
ID
3822 * Returns reduced profile in chunk format. If profile changing is in
3823 * progress (either running or paused) picks the target profile (if it's
3824 * already available), otherwise falls back to plain reducing.
a46d11a8 3825 */
48a3b636 3826static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3827{
95669976 3828 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3829 u64 target;
9c170b26
ZL
3830 u64 raid_type;
3831 u64 allowed = 0;
a061fc8d 3832
fc67c450
ID
3833 /*
3834 * see if restripe for this chunk_type is in progress, if so
3835 * try to reduce to the target profile
3836 */
e4d8ec0f 3837 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3838 target = get_restripe_target(root->fs_info, flags);
3839 if (target) {
3840 /* pick target profile only if it's already available */
3841 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3842 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3843 return extended_to_chunk(target);
e4d8ec0f
ID
3844 }
3845 }
3846 spin_unlock(&root->fs_info->balance_lock);
3847
53b381b3 3848 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3849 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3850 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3851 allowed |= btrfs_raid_group[raid_type];
3852 }
3853 allowed &= flags;
3854
3855 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3856 allowed = BTRFS_BLOCK_GROUP_RAID6;
3857 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3858 allowed = BTRFS_BLOCK_GROUP_RAID5;
3859 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3860 allowed = BTRFS_BLOCK_GROUP_RAID10;
3861 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3862 allowed = BTRFS_BLOCK_GROUP_RAID1;
3863 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3864 allowed = BTRFS_BLOCK_GROUP_RAID0;
3865
3866 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3867
3868 return extended_to_chunk(flags | allowed);
ec44a35c
CM
3869}
3870
f8213bdc 3871static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3872{
de98ced9 3873 unsigned seq;
f8213bdc 3874 u64 flags;
de98ced9
MX
3875
3876 do {
f8213bdc 3877 flags = orig_flags;
de98ced9
MX
3878 seq = read_seqbegin(&root->fs_info->profiles_lock);
3879
3880 if (flags & BTRFS_BLOCK_GROUP_DATA)
3881 flags |= root->fs_info->avail_data_alloc_bits;
3882 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3883 flags |= root->fs_info->avail_system_alloc_bits;
3884 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3885 flags |= root->fs_info->avail_metadata_alloc_bits;
3886 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3887
b742bb82 3888 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3889}
3890
6d07bcec 3891u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3892{
b742bb82 3893 u64 flags;
53b381b3 3894 u64 ret;
9ed74f2d 3895
b742bb82
YZ
3896 if (data)
3897 flags = BTRFS_BLOCK_GROUP_DATA;
3898 else if (root == root->fs_info->chunk_root)
3899 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3900 else
b742bb82 3901 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3902
53b381b3
DW
3903 ret = get_alloc_profile(root, flags);
3904 return ret;
6a63209f 3905}
9ed74f2d 3906
6a63209f 3907/*
6a63209f
JB
3908 * This will check the space that the inode allocates from to make sure we have
3909 * enough space for bytes.
6a63209f 3910 */
e2d1f923 3911int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3912{
6a63209f 3913 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3914 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3915 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3916 u64 used;
94b947b2 3917 int ret = 0;
c99f1b0c
ZL
3918 int need_commit = 2;
3919 int have_pinned_space;
6a63209f 3920
6a63209f 3921 /* make sure bytes are sectorsize aligned */
fda2832f 3922 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3923
9dced186 3924 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3925 need_commit = 0;
9dced186 3926 ASSERT(current->journal_info);
0af3d00b
JB
3927 }
3928
b4d7c3c9 3929 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3930 if (!data_sinfo)
3931 goto alloc;
9ed74f2d 3932
6a63209f
JB
3933again:
3934 /* make sure we have enough space to handle the data first */
3935 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3936 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3937 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3938 data_sinfo->bytes_may_use;
ab6e2410
JB
3939
3940 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3941 struct btrfs_trans_handle *trans;
9ed74f2d 3942
6a63209f
JB
3943 /*
3944 * if we don't have enough free bytes in this space then we need
3945 * to alloc a new chunk.
3946 */
b9fd47cd 3947 if (!data_sinfo->full) {
6a63209f 3948 u64 alloc_target;
9ed74f2d 3949
0e4f8f88 3950 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3951 spin_unlock(&data_sinfo->lock);
33b4d47f 3952alloc:
6a63209f 3953 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3954 /*
3955 * It is ugly that we don't call nolock join
3956 * transaction for the free space inode case here.
3957 * But it is safe because we only do the data space
3958 * reservation for the free space cache in the
3959 * transaction context, the common join transaction
3960 * just increase the counter of the current transaction
3961 * handler, doesn't try to acquire the trans_lock of
3962 * the fs.
3963 */
7a7eaa40 3964 trans = btrfs_join_transaction(root);
a22285a6
YZ
3965 if (IS_ERR(trans))
3966 return PTR_ERR(trans);
9ed74f2d 3967
6a63209f 3968 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3969 alloc_target,
3970 CHUNK_ALLOC_NO_FORCE);
6a63209f 3971 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3972 if (ret < 0) {
3973 if (ret != -ENOSPC)
3974 return ret;
c99f1b0c
ZL
3975 else {
3976 have_pinned_space = 1;
d52a5b5f 3977 goto commit_trans;
c99f1b0c 3978 }
d52a5b5f 3979 }
9ed74f2d 3980
b4d7c3c9
LZ
3981 if (!data_sinfo)
3982 data_sinfo = fs_info->data_sinfo;
3983
6a63209f
JB
3984 goto again;
3985 }
f2bb8f5c
JB
3986
3987 /*
b150a4f1 3988 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3989 * allocation, and no removed chunk in current transaction,
3990 * don't bother committing the transaction.
f2bb8f5c 3991 */
c99f1b0c
ZL
3992 have_pinned_space = percpu_counter_compare(
3993 &data_sinfo->total_bytes_pinned,
3994 used + bytes - data_sinfo->total_bytes);
6a63209f 3995 spin_unlock(&data_sinfo->lock);
6a63209f 3996
4e06bdd6 3997 /* commit the current transaction and try again */
d52a5b5f 3998commit_trans:
c99f1b0c 3999 if (need_commit &&
a4abeea4 4000 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4001 need_commit--;
b150a4f1 4002
9a4e7276
ZL
4003 if (need_commit > 0)
4004 btrfs_wait_ordered_roots(fs_info, -1);
4005
7a7eaa40 4006 trans = btrfs_join_transaction(root);
a22285a6
YZ
4007 if (IS_ERR(trans))
4008 return PTR_ERR(trans);
c99f1b0c
ZL
4009 if (have_pinned_space >= 0 ||
4010 trans->transaction->have_free_bgs ||
4011 need_commit > 0) {
94b947b2
ZL
4012 ret = btrfs_commit_transaction(trans, root);
4013 if (ret)
4014 return ret;
d7c15171
ZL
4015 /*
4016 * make sure that all running delayed iput are
4017 * done
4018 */
4019 down_write(&root->fs_info->delayed_iput_sem);
4020 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4021 goto again;
4022 } else {
4023 btrfs_end_transaction(trans, root);
4024 }
4e06bdd6 4025 }
9ed74f2d 4026
cab45e22
JM
4027 trace_btrfs_space_reservation(root->fs_info,
4028 "space_info:enospc",
4029 data_sinfo->flags, bytes, 1);
6a63209f
JB
4030 return -ENOSPC;
4031 }
e2d1f923 4032 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
4033 if (ret)
4034 goto out;
6a63209f 4035 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4036 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4037 data_sinfo->flags, bytes, 1);
237c0e9f 4038out:
6a63209f 4039 spin_unlock(&data_sinfo->lock);
6a63209f 4040
237c0e9f 4041 return ret;
9ed74f2d 4042}
6a63209f 4043
6a63209f 4044/*
fb25e914 4045 * Called if we need to clear a data reservation for this inode.
6a63209f 4046 */
0ca1f7ce 4047void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 4048{
0ca1f7ce 4049 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4050 struct btrfs_space_info *data_sinfo;
e3ccfa98 4051
6a63209f 4052 /* make sure bytes are sectorsize aligned */
fda2832f 4053 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4054
b4d7c3c9 4055 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4056 spin_lock(&data_sinfo->lock);
7ee9e440 4057 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4058 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4059 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4060 data_sinfo->flags, bytes, 0);
6a63209f 4061 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4062}
4063
97e728d4 4064static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4065{
97e728d4
JB
4066 struct list_head *head = &info->space_info;
4067 struct btrfs_space_info *found;
e3ccfa98 4068
97e728d4
JB
4069 rcu_read_lock();
4070 list_for_each_entry_rcu(found, head, list) {
4071 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4072 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4073 }
97e728d4 4074 rcu_read_unlock();
e3ccfa98
JB
4075}
4076
3c76cd84
MX
4077static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4078{
4079 return (global->size << 1);
4080}
4081
e5bc2458 4082static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4083 struct btrfs_space_info *sinfo, int force)
32c00aff 4084{
fb25e914 4085 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4086 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4087 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4088 u64 thresh;
e3ccfa98 4089
0e4f8f88
CM
4090 if (force == CHUNK_ALLOC_FORCE)
4091 return 1;
4092
fb25e914
JB
4093 /*
4094 * We need to take into account the global rsv because for all intents
4095 * and purposes it's used space. Don't worry about locking the
4096 * global_rsv, it doesn't change except when the transaction commits.
4097 */
54338b5c 4098 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4099 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4100
0e4f8f88
CM
4101 /*
4102 * in limited mode, we want to have some free space up to
4103 * about 1% of the FS size.
4104 */
4105 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4106 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4107 thresh = max_t(u64, 64 * 1024 * 1024,
4108 div_factor_fine(thresh, 1));
4109
4110 if (num_bytes - num_allocated < thresh)
4111 return 1;
4112 }
0e4f8f88 4113
698d0082 4114 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4115 return 0;
424499db 4116 return 1;
32c00aff
JB
4117}
4118
39c2d7fa 4119static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4120{
4121 u64 num_dev;
4122
53b381b3
DW
4123 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4124 BTRFS_BLOCK_GROUP_RAID0 |
4125 BTRFS_BLOCK_GROUP_RAID5 |
4126 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4127 num_dev = root->fs_info->fs_devices->rw_devices;
4128 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4129 num_dev = 2;
4130 else
4131 num_dev = 1; /* DUP or single */
4132
39c2d7fa 4133 return num_dev;
15d1ff81
LB
4134}
4135
39c2d7fa
FM
4136/*
4137 * If @is_allocation is true, reserve space in the system space info necessary
4138 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4139 * removing a chunk.
4140 */
4141void check_system_chunk(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *root,
4617ea3a 4143 u64 type)
15d1ff81
LB
4144{
4145 struct btrfs_space_info *info;
4146 u64 left;
4147 u64 thresh;
4fbcdf66 4148 int ret = 0;
39c2d7fa 4149 u64 num_devs;
4fbcdf66
FM
4150
4151 /*
4152 * Needed because we can end up allocating a system chunk and for an
4153 * atomic and race free space reservation in the chunk block reserve.
4154 */
4155 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4156
4157 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4158 spin_lock(&info->lock);
4159 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4160 info->bytes_reserved - info->bytes_readonly -
4161 info->bytes_may_use;
15d1ff81
LB
4162 spin_unlock(&info->lock);
4163
39c2d7fa
FM
4164 num_devs = get_profile_num_devs(root, type);
4165
4166 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4167 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4168 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4169
15d1ff81 4170 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4171 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4172 left, thresh, type);
15d1ff81
LB
4173 dump_space_info(info, 0, 0);
4174 }
4175
4176 if (left < thresh) {
4177 u64 flags;
4178
4179 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4180 /*
4181 * Ignore failure to create system chunk. We might end up not
4182 * needing it, as we might not need to COW all nodes/leafs from
4183 * the paths we visit in the chunk tree (they were already COWed
4184 * or created in the current transaction for example).
4185 */
4186 ret = btrfs_alloc_chunk(trans, root, flags);
4187 }
4188
4189 if (!ret) {
4190 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4191 &root->fs_info->chunk_block_rsv,
4192 thresh, BTRFS_RESERVE_NO_FLUSH);
4193 if (!ret)
4194 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4195 }
4196}
4197
6324fbf3 4198static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4199 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4200{
6324fbf3 4201 struct btrfs_space_info *space_info;
97e728d4 4202 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4203 int wait_for_alloc = 0;
9ed74f2d 4204 int ret = 0;
9ed74f2d 4205
c6b305a8
JB
4206 /* Don't re-enter if we're already allocating a chunk */
4207 if (trans->allocating_chunk)
4208 return -ENOSPC;
4209
6324fbf3 4210 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4211 if (!space_info) {
4212 ret = update_space_info(extent_root->fs_info, flags,
4213 0, 0, &space_info);
79787eaa 4214 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4215 }
79787eaa 4216 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4217
6d74119f 4218again:
25179201 4219 spin_lock(&space_info->lock);
9e622d6b 4220 if (force < space_info->force_alloc)
0e4f8f88 4221 force = space_info->force_alloc;
25179201 4222 if (space_info->full) {
09fb99a6
FDBM
4223 if (should_alloc_chunk(extent_root, space_info, force))
4224 ret = -ENOSPC;
4225 else
4226 ret = 0;
25179201 4227 spin_unlock(&space_info->lock);
09fb99a6 4228 return ret;
9ed74f2d
JB
4229 }
4230
698d0082 4231 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4232 spin_unlock(&space_info->lock);
6d74119f
JB
4233 return 0;
4234 } else if (space_info->chunk_alloc) {
4235 wait_for_alloc = 1;
4236 } else {
4237 space_info->chunk_alloc = 1;
9ed74f2d 4238 }
0e4f8f88 4239
25179201 4240 spin_unlock(&space_info->lock);
9ed74f2d 4241
6d74119f
JB
4242 mutex_lock(&fs_info->chunk_mutex);
4243
4244 /*
4245 * The chunk_mutex is held throughout the entirety of a chunk
4246 * allocation, so once we've acquired the chunk_mutex we know that the
4247 * other guy is done and we need to recheck and see if we should
4248 * allocate.
4249 */
4250 if (wait_for_alloc) {
4251 mutex_unlock(&fs_info->chunk_mutex);
4252 wait_for_alloc = 0;
4253 goto again;
4254 }
4255
c6b305a8
JB
4256 trans->allocating_chunk = true;
4257
67377734
JB
4258 /*
4259 * If we have mixed data/metadata chunks we want to make sure we keep
4260 * allocating mixed chunks instead of individual chunks.
4261 */
4262 if (btrfs_mixed_space_info(space_info))
4263 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4264
97e728d4
JB
4265 /*
4266 * if we're doing a data chunk, go ahead and make sure that
4267 * we keep a reasonable number of metadata chunks allocated in the
4268 * FS as well.
4269 */
9ed74f2d 4270 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4271 fs_info->data_chunk_allocations++;
4272 if (!(fs_info->data_chunk_allocations %
4273 fs_info->metadata_ratio))
4274 force_metadata_allocation(fs_info);
9ed74f2d
JB
4275 }
4276
15d1ff81
LB
4277 /*
4278 * Check if we have enough space in SYSTEM chunk because we may need
4279 * to update devices.
4280 */
4617ea3a 4281 check_system_chunk(trans, extent_root, flags);
15d1ff81 4282
2b82032c 4283 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4284 trans->allocating_chunk = false;
92b8e897 4285
9ed74f2d 4286 spin_lock(&space_info->lock);
a81cb9a2
AO
4287 if (ret < 0 && ret != -ENOSPC)
4288 goto out;
9ed74f2d 4289 if (ret)
6324fbf3 4290 space_info->full = 1;
424499db
YZ
4291 else
4292 ret = 1;
6d74119f 4293
0e4f8f88 4294 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4295out:
6d74119f 4296 space_info->chunk_alloc = 0;
9ed74f2d 4297 spin_unlock(&space_info->lock);
a25c75d5 4298 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4299 /*
4300 * When we allocate a new chunk we reserve space in the chunk block
4301 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4302 * add new nodes/leafs to it if we end up needing to do it when
4303 * inserting the chunk item and updating device items as part of the
4304 * second phase of chunk allocation, performed by
4305 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4306 * large number of new block groups to create in our transaction
4307 * handle's new_bgs list to avoid exhausting the chunk block reserve
4308 * in extreme cases - like having a single transaction create many new
4309 * block groups when starting to write out the free space caches of all
4310 * the block groups that were made dirty during the lifetime of the
4311 * transaction.
4312 */
d9a0540a
FM
4313 if (trans->can_flush_pending_bgs &&
4314 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4315 btrfs_create_pending_block_groups(trans, trans->root);
4316 btrfs_trans_release_chunk_metadata(trans);
4317 }
0f9dd46c 4318 return ret;
6324fbf3 4319}
9ed74f2d 4320
a80c8dcf
JB
4321static int can_overcommit(struct btrfs_root *root,
4322 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4323 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4324{
96f1bb57 4325 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4326 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4327 u64 space_size;
a80c8dcf
JB
4328 u64 avail;
4329 u64 used;
4330
4331 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4332 space_info->bytes_pinned + space_info->bytes_readonly;
4333
96f1bb57
JB
4334 /*
4335 * We only want to allow over committing if we have lots of actual space
4336 * free, but if we don't have enough space to handle the global reserve
4337 * space then we could end up having a real enospc problem when trying
4338 * to allocate a chunk or some other such important allocation.
4339 */
3c76cd84
MX
4340 spin_lock(&global_rsv->lock);
4341 space_size = calc_global_rsv_need_space(global_rsv);
4342 spin_unlock(&global_rsv->lock);
4343 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4344 return 0;
4345
4346 used += space_info->bytes_may_use;
a80c8dcf
JB
4347
4348 spin_lock(&root->fs_info->free_chunk_lock);
4349 avail = root->fs_info->free_chunk_space;
4350 spin_unlock(&root->fs_info->free_chunk_lock);
4351
4352 /*
4353 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4354 * space is actually useable. For raid56, the space info used
4355 * doesn't include the parity drive, so we don't have to
4356 * change the math
a80c8dcf
JB
4357 */
4358 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4359 BTRFS_BLOCK_GROUP_RAID1 |
4360 BTRFS_BLOCK_GROUP_RAID10))
4361 avail >>= 1;
4362
4363 /*
561c294d
MX
4364 * If we aren't flushing all things, let us overcommit up to
4365 * 1/2th of the space. If we can flush, don't let us overcommit
4366 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4367 */
08e007d2 4368 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4369 avail >>= 3;
a80c8dcf 4370 else
14575aef 4371 avail >>= 1;
a80c8dcf 4372
14575aef 4373 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4374 return 1;
4375 return 0;
4376}
4377
48a3b636 4378static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4379 unsigned long nr_pages, int nr_items)
da633a42
MX
4380{
4381 struct super_block *sb = root->fs_info->sb;
da633a42 4382
925a6efb
JB
4383 if (down_read_trylock(&sb->s_umount)) {
4384 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4385 up_read(&sb->s_umount);
4386 } else {
da633a42
MX
4387 /*
4388 * We needn't worry the filesystem going from r/w to r/o though
4389 * we don't acquire ->s_umount mutex, because the filesystem
4390 * should guarantee the delalloc inodes list be empty after
4391 * the filesystem is readonly(all dirty pages are written to
4392 * the disk).
4393 */
6c255e67 4394 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4395 if (!current->journal_info)
6c255e67 4396 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4397 }
4398}
4399
18cd8ea6
MX
4400static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4401{
4402 u64 bytes;
4403 int nr;
4404
4405 bytes = btrfs_calc_trans_metadata_size(root, 1);
4406 nr = (int)div64_u64(to_reclaim, bytes);
4407 if (!nr)
4408 nr = 1;
4409 return nr;
4410}
4411
c61a16a7
MX
4412#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4413
9ed74f2d 4414/*
5da9d01b 4415 * shrink metadata reservation for delalloc
9ed74f2d 4416 */
f4c738c2
JB
4417static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4418 bool wait_ordered)
5da9d01b 4419{
0ca1f7ce 4420 struct btrfs_block_rsv *block_rsv;
0019f10d 4421 struct btrfs_space_info *space_info;
663350ac 4422 struct btrfs_trans_handle *trans;
f4c738c2 4423 u64 delalloc_bytes;
5da9d01b 4424 u64 max_reclaim;
b1953bce 4425 long time_left;
d3ee29e3
MX
4426 unsigned long nr_pages;
4427 int loops;
b0244199 4428 int items;
08e007d2 4429 enum btrfs_reserve_flush_enum flush;
5da9d01b 4430
c61a16a7 4431 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4432 items = calc_reclaim_items_nr(root, to_reclaim);
4433 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4434
663350ac 4435 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4436 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4437 space_info = block_rsv->space_info;
bf9022e0 4438
963d678b
MX
4439 delalloc_bytes = percpu_counter_sum_positive(
4440 &root->fs_info->delalloc_bytes);
f4c738c2 4441 if (delalloc_bytes == 0) {
fdb5effd 4442 if (trans)
f4c738c2 4443 return;
38c135af 4444 if (wait_ordered)
b0244199 4445 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4446 return;
fdb5effd
JB
4447 }
4448
d3ee29e3 4449 loops = 0;
f4c738c2
JB
4450 while (delalloc_bytes && loops < 3) {
4451 max_reclaim = min(delalloc_bytes, to_reclaim);
4452 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4453 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4454 /*
4455 * We need to wait for the async pages to actually start before
4456 * we do anything.
4457 */
9f3a074d
MX
4458 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4459 if (!max_reclaim)
4460 goto skip_async;
4461
4462 if (max_reclaim <= nr_pages)
4463 max_reclaim = 0;
4464 else
4465 max_reclaim -= nr_pages;
dea31f52 4466
9f3a074d
MX
4467 wait_event(root->fs_info->async_submit_wait,
4468 atomic_read(&root->fs_info->async_delalloc_pages) <=
4469 (int)max_reclaim);
4470skip_async:
08e007d2
MX
4471 if (!trans)
4472 flush = BTRFS_RESERVE_FLUSH_ALL;
4473 else
4474 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4475 spin_lock(&space_info->lock);
08e007d2 4476 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4477 spin_unlock(&space_info->lock);
4478 break;
4479 }
0019f10d 4480 spin_unlock(&space_info->lock);
5da9d01b 4481
36e39c40 4482 loops++;
f104d044 4483 if (wait_ordered && !trans) {
b0244199 4484 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4485 } else {
f4c738c2 4486 time_left = schedule_timeout_killable(1);
f104d044
JB
4487 if (time_left)
4488 break;
4489 }
963d678b
MX
4490 delalloc_bytes = percpu_counter_sum_positive(
4491 &root->fs_info->delalloc_bytes);
5da9d01b 4492 }
5da9d01b
YZ
4493}
4494
663350ac
JB
4495/**
4496 * maybe_commit_transaction - possibly commit the transaction if its ok to
4497 * @root - the root we're allocating for
4498 * @bytes - the number of bytes we want to reserve
4499 * @force - force the commit
8bb8ab2e 4500 *
663350ac
JB
4501 * This will check to make sure that committing the transaction will actually
4502 * get us somewhere and then commit the transaction if it does. Otherwise it
4503 * will return -ENOSPC.
8bb8ab2e 4504 */
663350ac
JB
4505static int may_commit_transaction(struct btrfs_root *root,
4506 struct btrfs_space_info *space_info,
4507 u64 bytes, int force)
4508{
4509 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4510 struct btrfs_trans_handle *trans;
4511
4512 trans = (struct btrfs_trans_handle *)current->journal_info;
4513 if (trans)
4514 return -EAGAIN;
4515
4516 if (force)
4517 goto commit;
4518
4519 /* See if there is enough pinned space to make this reservation */
b150a4f1 4520 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4521 bytes) >= 0)
663350ac 4522 goto commit;
663350ac
JB
4523
4524 /*
4525 * See if there is some space in the delayed insertion reservation for
4526 * this reservation.
4527 */
4528 if (space_info != delayed_rsv->space_info)
4529 return -ENOSPC;
4530
4531 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4532 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4533 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4534 spin_unlock(&delayed_rsv->lock);
4535 return -ENOSPC;
4536 }
4537 spin_unlock(&delayed_rsv->lock);
4538
4539commit:
4540 trans = btrfs_join_transaction(root);
4541 if (IS_ERR(trans))
4542 return -ENOSPC;
4543
4544 return btrfs_commit_transaction(trans, root);
4545}
4546
96c3f433 4547enum flush_state {
67b0fd63
JB
4548 FLUSH_DELAYED_ITEMS_NR = 1,
4549 FLUSH_DELAYED_ITEMS = 2,
4550 FLUSH_DELALLOC = 3,
4551 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4552 ALLOC_CHUNK = 5,
4553 COMMIT_TRANS = 6,
96c3f433
JB
4554};
4555
4556static int flush_space(struct btrfs_root *root,
4557 struct btrfs_space_info *space_info, u64 num_bytes,
4558 u64 orig_bytes, int state)
4559{
4560 struct btrfs_trans_handle *trans;
4561 int nr;
f4c738c2 4562 int ret = 0;
96c3f433
JB
4563
4564 switch (state) {
96c3f433
JB
4565 case FLUSH_DELAYED_ITEMS_NR:
4566 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4567 if (state == FLUSH_DELAYED_ITEMS_NR)
4568 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4569 else
96c3f433 4570 nr = -1;
18cd8ea6 4571
96c3f433
JB
4572 trans = btrfs_join_transaction(root);
4573 if (IS_ERR(trans)) {
4574 ret = PTR_ERR(trans);
4575 break;
4576 }
4577 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4578 btrfs_end_transaction(trans, root);
4579 break;
67b0fd63
JB
4580 case FLUSH_DELALLOC:
4581 case FLUSH_DELALLOC_WAIT:
24af7dd1 4582 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4583 state == FLUSH_DELALLOC_WAIT);
4584 break;
ea658bad
JB
4585 case ALLOC_CHUNK:
4586 trans = btrfs_join_transaction(root);
4587 if (IS_ERR(trans)) {
4588 ret = PTR_ERR(trans);
4589 break;
4590 }
4591 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4592 btrfs_get_alloc_profile(root, 0),
4593 CHUNK_ALLOC_NO_FORCE);
4594 btrfs_end_transaction(trans, root);
4595 if (ret == -ENOSPC)
4596 ret = 0;
4597 break;
96c3f433
JB
4598 case COMMIT_TRANS:
4599 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4600 break;
4601 default:
4602 ret = -ENOSPC;
4603 break;
4604 }
4605
4606 return ret;
4607}
21c7e756
MX
4608
4609static inline u64
4610btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4611 struct btrfs_space_info *space_info)
4612{
4613 u64 used;
4614 u64 expected;
4615 u64 to_reclaim;
4616
4617 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4618 16 * 1024 * 1024);
4619 spin_lock(&space_info->lock);
4620 if (can_overcommit(root, space_info, to_reclaim,
4621 BTRFS_RESERVE_FLUSH_ALL)) {
4622 to_reclaim = 0;
4623 goto out;
4624 }
4625
4626 used = space_info->bytes_used + space_info->bytes_reserved +
4627 space_info->bytes_pinned + space_info->bytes_readonly +
4628 space_info->bytes_may_use;
4629 if (can_overcommit(root, space_info, 1024 * 1024,
4630 BTRFS_RESERVE_FLUSH_ALL))
4631 expected = div_factor_fine(space_info->total_bytes, 95);
4632 else
4633 expected = div_factor_fine(space_info->total_bytes, 90);
4634
4635 if (used > expected)
4636 to_reclaim = used - expected;
4637 else
4638 to_reclaim = 0;
4639 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4640 space_info->bytes_reserved);
4641out:
4642 spin_unlock(&space_info->lock);
4643
4644 return to_reclaim;
4645}
4646
4647static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4648 struct btrfs_fs_info *fs_info, u64 used)
4649{
365c5313
JB
4650 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4651
4652 /* If we're just plain full then async reclaim just slows us down. */
4653 if (space_info->bytes_used >= thresh)
4654 return 0;
4655
4656 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4657 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4658}
4659
4660static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4661 struct btrfs_fs_info *fs_info,
4662 int flush_state)
21c7e756
MX
4663{
4664 u64 used;
4665
4666 spin_lock(&space_info->lock);
25ce459c
LB
4667 /*
4668 * We run out of space and have not got any free space via flush_space,
4669 * so don't bother doing async reclaim.
4670 */
4671 if (flush_state > COMMIT_TRANS && space_info->full) {
4672 spin_unlock(&space_info->lock);
4673 return 0;
4674 }
4675
21c7e756
MX
4676 used = space_info->bytes_used + space_info->bytes_reserved +
4677 space_info->bytes_pinned + space_info->bytes_readonly +
4678 space_info->bytes_may_use;
4679 if (need_do_async_reclaim(space_info, fs_info, used)) {
4680 spin_unlock(&space_info->lock);
4681 return 1;
4682 }
4683 spin_unlock(&space_info->lock);
4684
4685 return 0;
4686}
4687
4688static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4689{
4690 struct btrfs_fs_info *fs_info;
4691 struct btrfs_space_info *space_info;
4692 u64 to_reclaim;
4693 int flush_state;
4694
4695 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4696 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4697
4698 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4699 space_info);
4700 if (!to_reclaim)
4701 return;
4702
4703 flush_state = FLUSH_DELAYED_ITEMS_NR;
4704 do {
4705 flush_space(fs_info->fs_root, space_info, to_reclaim,
4706 to_reclaim, flush_state);
4707 flush_state++;
25ce459c
LB
4708 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4709 flush_state))
21c7e756 4710 return;
365c5313 4711 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4712}
4713
4714void btrfs_init_async_reclaim_work(struct work_struct *work)
4715{
4716 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4717}
4718
4a92b1b8
JB
4719/**
4720 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4721 * @root - the root we're allocating for
4722 * @block_rsv - the block_rsv we're allocating for
4723 * @orig_bytes - the number of bytes we want
48fc7f7e 4724 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4725 *
4a92b1b8
JB
4726 * This will reserve orgi_bytes number of bytes from the space info associated
4727 * with the block_rsv. If there is not enough space it will make an attempt to
4728 * flush out space to make room. It will do this by flushing delalloc if
4729 * possible or committing the transaction. If flush is 0 then no attempts to
4730 * regain reservations will be made and this will fail if there is not enough
4731 * space already.
8bb8ab2e 4732 */
4a92b1b8 4733static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4734 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4735 u64 orig_bytes,
4736 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4737{
f0486c68 4738 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4739 u64 used;
8bb8ab2e 4740 u64 num_bytes = orig_bytes;
67b0fd63 4741 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4742 int ret = 0;
fdb5effd 4743 bool flushing = false;
9ed74f2d 4744
8bb8ab2e 4745again:
fdb5effd 4746 ret = 0;
8bb8ab2e 4747 spin_lock(&space_info->lock);
fdb5effd 4748 /*
08e007d2
MX
4749 * We only want to wait if somebody other than us is flushing and we
4750 * are actually allowed to flush all things.
fdb5effd 4751 */
08e007d2
MX
4752 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4753 space_info->flush) {
fdb5effd
JB
4754 spin_unlock(&space_info->lock);
4755 /*
4756 * If we have a trans handle we can't wait because the flusher
4757 * may have to commit the transaction, which would mean we would
4758 * deadlock since we are waiting for the flusher to finish, but
4759 * hold the current transaction open.
4760 */
663350ac 4761 if (current->journal_info)
fdb5effd 4762 return -EAGAIN;
b9688bb8
AJ
4763 ret = wait_event_killable(space_info->wait, !space_info->flush);
4764 /* Must have been killed, return */
4765 if (ret)
fdb5effd
JB
4766 return -EINTR;
4767
4768 spin_lock(&space_info->lock);
4769 }
4770
4771 ret = -ENOSPC;
2bf64758
JB
4772 used = space_info->bytes_used + space_info->bytes_reserved +
4773 space_info->bytes_pinned + space_info->bytes_readonly +
4774 space_info->bytes_may_use;
9ed74f2d 4775
8bb8ab2e
JB
4776 /*
4777 * The idea here is that we've not already over-reserved the block group
4778 * then we can go ahead and save our reservation first and then start
4779 * flushing if we need to. Otherwise if we've already overcommitted
4780 * lets start flushing stuff first and then come back and try to make
4781 * our reservation.
4782 */
2bf64758
JB
4783 if (used <= space_info->total_bytes) {
4784 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4785 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4786 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4787 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4788 ret = 0;
4789 } else {
4790 /*
4791 * Ok set num_bytes to orig_bytes since we aren't
4792 * overocmmitted, this way we only try and reclaim what
4793 * we need.
4794 */
4795 num_bytes = orig_bytes;
4796 }
4797 } else {
4798 /*
4799 * Ok we're over committed, set num_bytes to the overcommitted
4800 * amount plus the amount of bytes that we need for this
4801 * reservation.
4802 */
2bf64758 4803 num_bytes = used - space_info->total_bytes +
96c3f433 4804 (orig_bytes * 2);
8bb8ab2e 4805 }
9ed74f2d 4806
44734ed1
JB
4807 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4808 space_info->bytes_may_use += orig_bytes;
4809 trace_btrfs_space_reservation(root->fs_info, "space_info",
4810 space_info->flags, orig_bytes,
4811 1);
4812 ret = 0;
2bf64758
JB
4813 }
4814
8bb8ab2e
JB
4815 /*
4816 * Couldn't make our reservation, save our place so while we're trying
4817 * to reclaim space we can actually use it instead of somebody else
4818 * stealing it from us.
08e007d2
MX
4819 *
4820 * We make the other tasks wait for the flush only when we can flush
4821 * all things.
8bb8ab2e 4822 */
72bcd99d 4823 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4824 flushing = true;
4825 space_info->flush = 1;
21c7e756
MX
4826 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4827 used += orig_bytes;
f6acfd50
JB
4828 /*
4829 * We will do the space reservation dance during log replay,
4830 * which means we won't have fs_info->fs_root set, so don't do
4831 * the async reclaim as we will panic.
4832 */
4833 if (!root->fs_info->log_root_recovering &&
4834 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4835 !work_busy(&root->fs_info->async_reclaim_work))
4836 queue_work(system_unbound_wq,
4837 &root->fs_info->async_reclaim_work);
8bb8ab2e 4838 }
f0486c68 4839 spin_unlock(&space_info->lock);
9ed74f2d 4840
08e007d2 4841 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4842 goto out;
f0486c68 4843
96c3f433
JB
4844 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4845 flush_state);
4846 flush_state++;
08e007d2
MX
4847
4848 /*
4849 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4850 * would happen. So skip delalloc flush.
4851 */
4852 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4853 (flush_state == FLUSH_DELALLOC ||
4854 flush_state == FLUSH_DELALLOC_WAIT))
4855 flush_state = ALLOC_CHUNK;
4856
96c3f433 4857 if (!ret)
8bb8ab2e 4858 goto again;
08e007d2
MX
4859 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4860 flush_state < COMMIT_TRANS)
4861 goto again;
4862 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4863 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4864 goto again;
4865
4866out:
5d80366e
JB
4867 if (ret == -ENOSPC &&
4868 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4869 struct btrfs_block_rsv *global_rsv =
4870 &root->fs_info->global_block_rsv;
4871
4872 if (block_rsv != global_rsv &&
4873 !block_rsv_use_bytes(global_rsv, orig_bytes))
4874 ret = 0;
4875 }
cab45e22
JM
4876 if (ret == -ENOSPC)
4877 trace_btrfs_space_reservation(root->fs_info,
4878 "space_info:enospc",
4879 space_info->flags, orig_bytes, 1);
fdb5effd 4880 if (flushing) {
8bb8ab2e 4881 spin_lock(&space_info->lock);
fdb5effd
JB
4882 space_info->flush = 0;
4883 wake_up_all(&space_info->wait);
8bb8ab2e 4884 spin_unlock(&space_info->lock);
f0486c68 4885 }
f0486c68
YZ
4886 return ret;
4887}
4888
79787eaa
JM
4889static struct btrfs_block_rsv *get_block_rsv(
4890 const struct btrfs_trans_handle *trans,
4891 const struct btrfs_root *root)
f0486c68 4892{
4c13d758
JB
4893 struct btrfs_block_rsv *block_rsv = NULL;
4894
e9cf439f
AM
4895 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4896 (root == root->fs_info->csum_root && trans->adding_csums) ||
4897 (root == root->fs_info->uuid_root))
f7a81ea4
SB
4898 block_rsv = trans->block_rsv;
4899
4c13d758 4900 if (!block_rsv)
f0486c68
YZ
4901 block_rsv = root->block_rsv;
4902
4903 if (!block_rsv)
4904 block_rsv = &root->fs_info->empty_block_rsv;
4905
4906 return block_rsv;
4907}
4908
4909static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4910 u64 num_bytes)
4911{
4912 int ret = -ENOSPC;
4913 spin_lock(&block_rsv->lock);
4914 if (block_rsv->reserved >= num_bytes) {
4915 block_rsv->reserved -= num_bytes;
4916 if (block_rsv->reserved < block_rsv->size)
4917 block_rsv->full = 0;
4918 ret = 0;
4919 }
4920 spin_unlock(&block_rsv->lock);
4921 return ret;
4922}
4923
4924static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4925 u64 num_bytes, int update_size)
4926{
4927 spin_lock(&block_rsv->lock);
4928 block_rsv->reserved += num_bytes;
4929 if (update_size)
4930 block_rsv->size += num_bytes;
4931 else if (block_rsv->reserved >= block_rsv->size)
4932 block_rsv->full = 1;
4933 spin_unlock(&block_rsv->lock);
4934}
4935
d52be818
JB
4936int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4937 struct btrfs_block_rsv *dest, u64 num_bytes,
4938 int min_factor)
4939{
4940 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4941 u64 min_bytes;
4942
4943 if (global_rsv->space_info != dest->space_info)
4944 return -ENOSPC;
4945
4946 spin_lock(&global_rsv->lock);
4947 min_bytes = div_factor(global_rsv->size, min_factor);
4948 if (global_rsv->reserved < min_bytes + num_bytes) {
4949 spin_unlock(&global_rsv->lock);
4950 return -ENOSPC;
4951 }
4952 global_rsv->reserved -= num_bytes;
4953 if (global_rsv->reserved < global_rsv->size)
4954 global_rsv->full = 0;
4955 spin_unlock(&global_rsv->lock);
4956
4957 block_rsv_add_bytes(dest, num_bytes, 1);
4958 return 0;
4959}
4960
8c2a3ca2
JB
4961static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4962 struct btrfs_block_rsv *block_rsv,
62a45b60 4963 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4964{
4965 struct btrfs_space_info *space_info = block_rsv->space_info;
4966
4967 spin_lock(&block_rsv->lock);
4968 if (num_bytes == (u64)-1)
4969 num_bytes = block_rsv->size;
4970 block_rsv->size -= num_bytes;
4971 if (block_rsv->reserved >= block_rsv->size) {
4972 num_bytes = block_rsv->reserved - block_rsv->size;
4973 block_rsv->reserved = block_rsv->size;
4974 block_rsv->full = 1;
4975 } else {
4976 num_bytes = 0;
4977 }
4978 spin_unlock(&block_rsv->lock);
4979
4980 if (num_bytes > 0) {
4981 if (dest) {
e9e22899
JB
4982 spin_lock(&dest->lock);
4983 if (!dest->full) {
4984 u64 bytes_to_add;
4985
4986 bytes_to_add = dest->size - dest->reserved;
4987 bytes_to_add = min(num_bytes, bytes_to_add);
4988 dest->reserved += bytes_to_add;
4989 if (dest->reserved >= dest->size)
4990 dest->full = 1;
4991 num_bytes -= bytes_to_add;
4992 }
4993 spin_unlock(&dest->lock);
4994 }
4995 if (num_bytes) {
f0486c68 4996 spin_lock(&space_info->lock);
fb25e914 4997 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4998 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4999 space_info->flags, num_bytes, 0);
f0486c68 5000 spin_unlock(&space_info->lock);
4e06bdd6 5001 }
9ed74f2d 5002 }
f0486c68 5003}
4e06bdd6 5004
f0486c68
YZ
5005static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5006 struct btrfs_block_rsv *dst, u64 num_bytes)
5007{
5008 int ret;
9ed74f2d 5009
f0486c68
YZ
5010 ret = block_rsv_use_bytes(src, num_bytes);
5011 if (ret)
5012 return ret;
9ed74f2d 5013
f0486c68 5014 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5015 return 0;
5016}
5017
66d8f3dd 5018void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5019{
f0486c68
YZ
5020 memset(rsv, 0, sizeof(*rsv));
5021 spin_lock_init(&rsv->lock);
66d8f3dd 5022 rsv->type = type;
f0486c68
YZ
5023}
5024
66d8f3dd
MX
5025struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5026 unsigned short type)
f0486c68
YZ
5027{
5028 struct btrfs_block_rsv *block_rsv;
5029 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5030
f0486c68
YZ
5031 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5032 if (!block_rsv)
5033 return NULL;
9ed74f2d 5034
66d8f3dd 5035 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5036 block_rsv->space_info = __find_space_info(fs_info,
5037 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5038 return block_rsv;
5039}
9ed74f2d 5040
f0486c68
YZ
5041void btrfs_free_block_rsv(struct btrfs_root *root,
5042 struct btrfs_block_rsv *rsv)
5043{
2aaa6655
JB
5044 if (!rsv)
5045 return;
dabdb640
JB
5046 btrfs_block_rsv_release(root, rsv, (u64)-1);
5047 kfree(rsv);
9ed74f2d
JB
5048}
5049
cdfb080e
CM
5050void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5051{
5052 kfree(rsv);
5053}
5054
08e007d2
MX
5055int btrfs_block_rsv_add(struct btrfs_root *root,
5056 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5057 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5058{
f0486c68 5059 int ret;
9ed74f2d 5060
f0486c68
YZ
5061 if (num_bytes == 0)
5062 return 0;
8bb8ab2e 5063
61b520a9 5064 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5065 if (!ret) {
5066 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5067 return 0;
5068 }
9ed74f2d 5069
f0486c68 5070 return ret;
f0486c68 5071}
9ed74f2d 5072
4a92b1b8 5073int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5074 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5075{
5076 u64 num_bytes = 0;
f0486c68 5077 int ret = -ENOSPC;
9ed74f2d 5078
f0486c68
YZ
5079 if (!block_rsv)
5080 return 0;
9ed74f2d 5081
f0486c68 5082 spin_lock(&block_rsv->lock);
36ba022a
JB
5083 num_bytes = div_factor(block_rsv->size, min_factor);
5084 if (block_rsv->reserved >= num_bytes)
5085 ret = 0;
5086 spin_unlock(&block_rsv->lock);
9ed74f2d 5087
36ba022a
JB
5088 return ret;
5089}
5090
08e007d2
MX
5091int btrfs_block_rsv_refill(struct btrfs_root *root,
5092 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5093 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5094{
5095 u64 num_bytes = 0;
5096 int ret = -ENOSPC;
5097
5098 if (!block_rsv)
5099 return 0;
5100
5101 spin_lock(&block_rsv->lock);
5102 num_bytes = min_reserved;
13553e52 5103 if (block_rsv->reserved >= num_bytes)
f0486c68 5104 ret = 0;
13553e52 5105 else
f0486c68 5106 num_bytes -= block_rsv->reserved;
f0486c68 5107 spin_unlock(&block_rsv->lock);
13553e52 5108
f0486c68
YZ
5109 if (!ret)
5110 return 0;
5111
aa38a711 5112 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5113 if (!ret) {
5114 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5115 return 0;
6a63209f 5116 }
9ed74f2d 5117
13553e52 5118 return ret;
f0486c68
YZ
5119}
5120
5121int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5122 struct btrfs_block_rsv *dst_rsv,
5123 u64 num_bytes)
5124{
5125 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5126}
5127
5128void btrfs_block_rsv_release(struct btrfs_root *root,
5129 struct btrfs_block_rsv *block_rsv,
5130 u64 num_bytes)
5131{
5132 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5133 if (global_rsv == block_rsv ||
f0486c68
YZ
5134 block_rsv->space_info != global_rsv->space_info)
5135 global_rsv = NULL;
8c2a3ca2
JB
5136 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5137 num_bytes);
6a63209f
JB
5138}
5139
5140/*
8929ecfa
YZ
5141 * helper to calculate size of global block reservation.
5142 * the desired value is sum of space used by extent tree,
5143 * checksum tree and root tree
6a63209f 5144 */
8929ecfa 5145static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5146{
8929ecfa
YZ
5147 struct btrfs_space_info *sinfo;
5148 u64 num_bytes;
5149 u64 meta_used;
5150 u64 data_used;
6c41761f 5151 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5152
8929ecfa
YZ
5153 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5154 spin_lock(&sinfo->lock);
5155 data_used = sinfo->bytes_used;
5156 spin_unlock(&sinfo->lock);
33b4d47f 5157
8929ecfa
YZ
5158 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5159 spin_lock(&sinfo->lock);
6d48755d
JB
5160 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5161 data_used = 0;
8929ecfa
YZ
5162 meta_used = sinfo->bytes_used;
5163 spin_unlock(&sinfo->lock);
ab6e2410 5164
8929ecfa
YZ
5165 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5166 csum_size * 2;
f8c269d7 5167 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5168
8929ecfa 5169 if (num_bytes * 3 > meta_used)
f8c269d7 5170 num_bytes = div_u64(meta_used, 3);
ab6e2410 5171
707e8a07 5172 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5173}
6a63209f 5174
8929ecfa
YZ
5175static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5176{
5177 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5178 struct btrfs_space_info *sinfo = block_rsv->space_info;
5179 u64 num_bytes;
6a63209f 5180
8929ecfa 5181 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5182
8929ecfa 5183 spin_lock(&sinfo->lock);
1f699d38 5184 spin_lock(&block_rsv->lock);
4e06bdd6 5185
fdf30d1c 5186 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5187
8929ecfa 5188 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5189 sinfo->bytes_reserved + sinfo->bytes_readonly +
5190 sinfo->bytes_may_use;
8929ecfa
YZ
5191
5192 if (sinfo->total_bytes > num_bytes) {
5193 num_bytes = sinfo->total_bytes - num_bytes;
5194 block_rsv->reserved += num_bytes;
fb25e914 5195 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5196 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5197 sinfo->flags, num_bytes, 1);
6a63209f 5198 }
6a63209f 5199
8929ecfa
YZ
5200 if (block_rsv->reserved >= block_rsv->size) {
5201 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5202 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5203 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5204 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5205 block_rsv->reserved = block_rsv->size;
5206 block_rsv->full = 1;
5207 }
182608c8 5208
8929ecfa 5209 spin_unlock(&block_rsv->lock);
1f699d38 5210 spin_unlock(&sinfo->lock);
6a63209f
JB
5211}
5212
f0486c68 5213static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5214{
f0486c68 5215 struct btrfs_space_info *space_info;
6a63209f 5216
f0486c68
YZ
5217 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5218 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5219
f0486c68 5220 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5221 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5222 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5223 fs_info->trans_block_rsv.space_info = space_info;
5224 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5225 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5226
8929ecfa
YZ
5227 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5228 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5229 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5230 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5231 if (fs_info->quota_root)
5232 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5233 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5234
8929ecfa 5235 update_global_block_rsv(fs_info);
6a63209f
JB
5236}
5237
8929ecfa 5238static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5239{
8c2a3ca2
JB
5240 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5241 (u64)-1);
8929ecfa
YZ
5242 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5243 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5244 WARN_ON(fs_info->trans_block_rsv.size > 0);
5245 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5246 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5247 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5248 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5249 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5250}
5251
a22285a6
YZ
5252void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5253 struct btrfs_root *root)
6a63209f 5254{
0e721106
JB
5255 if (!trans->block_rsv)
5256 return;
5257
a22285a6
YZ
5258 if (!trans->bytes_reserved)
5259 return;
6a63209f 5260
e77266e4 5261 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5262 trans->transid, trans->bytes_reserved, 0);
b24e03db 5263 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5264 trans->bytes_reserved = 0;
5265}
6a63209f 5266
4fbcdf66
FM
5267/*
5268 * To be called after all the new block groups attached to the transaction
5269 * handle have been created (btrfs_create_pending_block_groups()).
5270 */
5271void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5272{
5273 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5274
5275 if (!trans->chunk_bytes_reserved)
5276 return;
5277
5278 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5279
5280 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5281 trans->chunk_bytes_reserved);
5282 trans->chunk_bytes_reserved = 0;
5283}
5284
79787eaa 5285/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5286int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5287 struct inode *inode)
5288{
5289 struct btrfs_root *root = BTRFS_I(inode)->root;
5290 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5291 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5292
5293 /*
fcb80c2a
JB
5294 * We need to hold space in order to delete our orphan item once we've
5295 * added it, so this takes the reservation so we can release it later
5296 * when we are truly done with the orphan item.
d68fc57b 5297 */
ff5714cc 5298 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5299 trace_btrfs_space_reservation(root->fs_info, "orphan",
5300 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5301 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5302}
5303
d68fc57b 5304void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5305{
d68fc57b 5306 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5307 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5308 trace_btrfs_space_reservation(root->fs_info, "orphan",
5309 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5310 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5311}
97e728d4 5312
d5c12070
MX
5313/*
5314 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5315 * root: the root of the parent directory
5316 * rsv: block reservation
5317 * items: the number of items that we need do reservation
5318 * qgroup_reserved: used to return the reserved size in qgroup
5319 *
5320 * This function is used to reserve the space for snapshot/subvolume
5321 * creation and deletion. Those operations are different with the
5322 * common file/directory operations, they change two fs/file trees
5323 * and root tree, the number of items that the qgroup reserves is
5324 * different with the free space reservation. So we can not use
5325 * the space reseravtion mechanism in start_transaction().
5326 */
5327int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5328 struct btrfs_block_rsv *rsv,
5329 int items,
ee3441b4
JM
5330 u64 *qgroup_reserved,
5331 bool use_global_rsv)
a22285a6 5332{
d5c12070
MX
5333 u64 num_bytes;
5334 int ret;
ee3441b4 5335 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5336
5337 if (root->fs_info->quota_enabled) {
5338 /* One for parent inode, two for dir entries */
707e8a07 5339 num_bytes = 3 * root->nodesize;
d5c12070
MX
5340 ret = btrfs_qgroup_reserve(root, num_bytes);
5341 if (ret)
5342 return ret;
5343 } else {
5344 num_bytes = 0;
5345 }
5346
5347 *qgroup_reserved = num_bytes;
5348
5349 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5350 rsv->space_info = __find_space_info(root->fs_info,
5351 BTRFS_BLOCK_GROUP_METADATA);
5352 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5353 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5354
5355 if (ret == -ENOSPC && use_global_rsv)
5356 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5357
d5c12070
MX
5358 if (ret) {
5359 if (*qgroup_reserved)
5360 btrfs_qgroup_free(root, *qgroup_reserved);
5361 }
5362
5363 return ret;
5364}
5365
5366void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5367 struct btrfs_block_rsv *rsv,
5368 u64 qgroup_reserved)
5369{
5370 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5371}
5372
7709cde3
JB
5373/**
5374 * drop_outstanding_extent - drop an outstanding extent
5375 * @inode: the inode we're dropping the extent for
dcab6a3b 5376 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5377 *
5378 * This is called when we are freeing up an outstanding extent, either called
5379 * after an error or after an extent is written. This will return the number of
5380 * reserved extents that need to be freed. This must be called with
5381 * BTRFS_I(inode)->lock held.
5382 */
dcab6a3b 5383static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5384{
7fd2ae21 5385 unsigned drop_inode_space = 0;
9e0baf60 5386 unsigned dropped_extents = 0;
dcab6a3b 5387 unsigned num_extents = 0;
9e0baf60 5388
dcab6a3b
JB
5389 num_extents = (unsigned)div64_u64(num_bytes +
5390 BTRFS_MAX_EXTENT_SIZE - 1,
5391 BTRFS_MAX_EXTENT_SIZE);
5392 ASSERT(num_extents);
5393 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5394 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5395
7fd2ae21 5396 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5397 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5398 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5399 drop_inode_space = 1;
7fd2ae21 5400
9e0baf60
JB
5401 /*
5402 * If we have more or the same amount of outsanding extents than we have
5403 * reserved then we need to leave the reserved extents count alone.
5404 */
5405 if (BTRFS_I(inode)->outstanding_extents >=
5406 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5407 return drop_inode_space;
9e0baf60
JB
5408
5409 dropped_extents = BTRFS_I(inode)->reserved_extents -
5410 BTRFS_I(inode)->outstanding_extents;
5411 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5412 return dropped_extents + drop_inode_space;
9e0baf60
JB
5413}
5414
7709cde3
JB
5415/**
5416 * calc_csum_metadata_size - return the amount of metada space that must be
5417 * reserved/free'd for the given bytes.
5418 * @inode: the inode we're manipulating
5419 * @num_bytes: the number of bytes in question
5420 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5421 *
5422 * This adjusts the number of csum_bytes in the inode and then returns the
5423 * correct amount of metadata that must either be reserved or freed. We
5424 * calculate how many checksums we can fit into one leaf and then divide the
5425 * number of bytes that will need to be checksumed by this value to figure out
5426 * how many checksums will be required. If we are adding bytes then the number
5427 * may go up and we will return the number of additional bytes that must be
5428 * reserved. If it is going down we will return the number of bytes that must
5429 * be freed.
5430 *
5431 * This must be called with BTRFS_I(inode)->lock held.
5432 */
5433static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5434 int reserve)
6324fbf3 5435{
7709cde3 5436 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5437 u64 old_csums, num_csums;
7709cde3
JB
5438
5439 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5440 BTRFS_I(inode)->csum_bytes == 0)
5441 return 0;
5442
28f75a0e 5443 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5444 if (reserve)
5445 BTRFS_I(inode)->csum_bytes += num_bytes;
5446 else
5447 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5448 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5449
5450 /* No change, no need to reserve more */
5451 if (old_csums == num_csums)
5452 return 0;
5453
5454 if (reserve)
5455 return btrfs_calc_trans_metadata_size(root,
5456 num_csums - old_csums);
5457
5458 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5459}
c146afad 5460
0ca1f7ce
YZ
5461int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5462{
5463 struct btrfs_root *root = BTRFS_I(inode)->root;
5464 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5465 u64 to_reserve = 0;
660d3f6c 5466 u64 csum_bytes;
9e0baf60 5467 unsigned nr_extents = 0;
660d3f6c 5468 int extra_reserve = 0;
08e007d2 5469 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5470 int ret = 0;
c64c2bd8 5471 bool delalloc_lock = true;
88e081bf
WS
5472 u64 to_free = 0;
5473 unsigned dropped;
6324fbf3 5474
c64c2bd8
JB
5475 /* If we are a free space inode we need to not flush since we will be in
5476 * the middle of a transaction commit. We also don't need the delalloc
5477 * mutex since we won't race with anybody. We need this mostly to make
5478 * lockdep shut its filthy mouth.
5479 */
5480 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5481 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5482 delalloc_lock = false;
5483 }
c09544e0 5484
08e007d2
MX
5485 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5486 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5487 schedule_timeout(1);
ec44a35c 5488
c64c2bd8
JB
5489 if (delalloc_lock)
5490 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5491
0ca1f7ce 5492 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5493
9e0baf60 5494 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5495 nr_extents = (unsigned)div64_u64(num_bytes +
5496 BTRFS_MAX_EXTENT_SIZE - 1,
5497 BTRFS_MAX_EXTENT_SIZE);
5498 BTRFS_I(inode)->outstanding_extents += nr_extents;
5499 nr_extents = 0;
9e0baf60
JB
5500
5501 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5502 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5503 nr_extents = BTRFS_I(inode)->outstanding_extents -
5504 BTRFS_I(inode)->reserved_extents;
57a45ced 5505
7fd2ae21
JB
5506 /*
5507 * Add an item to reserve for updating the inode when we complete the
5508 * delalloc io.
5509 */
72ac3c0d
JB
5510 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5511 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5512 nr_extents++;
660d3f6c 5513 extra_reserve = 1;
593060d7 5514 }
7fd2ae21
JB
5515
5516 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5517 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5518 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5519 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5520
88e081bf 5521 if (root->fs_info->quota_enabled) {
237c0e9f 5522 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5523 if (ret)
5524 goto out_fail;
5525 }
c5567237 5526
88e081bf
WS
5527 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5528 if (unlikely(ret)) {
5529 if (root->fs_info->quota_enabled)
237c0e9f 5530 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5531 goto out_fail;
9e0baf60 5532 }
25179201 5533
660d3f6c
JB
5534 spin_lock(&BTRFS_I(inode)->lock);
5535 if (extra_reserve) {
72ac3c0d
JB
5536 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5537 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5538 nr_extents--;
5539 }
5540 BTRFS_I(inode)->reserved_extents += nr_extents;
5541 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5542
5543 if (delalloc_lock)
5544 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5545
8c2a3ca2 5546 if (to_reserve)
67871254 5547 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5548 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5549 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5550
0ca1f7ce 5551 return 0;
88e081bf
WS
5552
5553out_fail:
5554 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5555 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5556 /*
5557 * If the inodes csum_bytes is the same as the original
5558 * csum_bytes then we know we haven't raced with any free()ers
5559 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5560 */
f4881bc7 5561 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5562 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5563 } else {
5564 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5565 u64 bytes;
5566
5567 /*
5568 * This is tricky, but first we need to figure out how much we
5569 * free'd from any free-ers that occured during this
5570 * reservation, so we reset ->csum_bytes to the csum_bytes
5571 * before we dropped our lock, and then call the free for the
5572 * number of bytes that were freed while we were trying our
5573 * reservation.
5574 */
5575 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5576 BTRFS_I(inode)->csum_bytes = csum_bytes;
5577 to_free = calc_csum_metadata_size(inode, bytes, 0);
5578
5579
5580 /*
5581 * Now we need to see how much we would have freed had we not
5582 * been making this reservation and our ->csum_bytes were not
5583 * artificially inflated.
5584 */
5585 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5586 bytes = csum_bytes - orig_csum_bytes;
5587 bytes = calc_csum_metadata_size(inode, bytes, 0);
5588
5589 /*
5590 * Now reset ->csum_bytes to what it should be. If bytes is
5591 * more than to_free then we would have free'd more space had we
5592 * not had an artificially high ->csum_bytes, so we need to free
5593 * the remainder. If bytes is the same or less then we don't
5594 * need to do anything, the other free-ers did the correct
5595 * thing.
5596 */
5597 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5598 if (bytes > to_free)
5599 to_free = bytes - to_free;
5600 else
5601 to_free = 0;
5602 }
88e081bf 5603 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5604 if (dropped)
88e081bf
WS
5605 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5606
5607 if (to_free) {
5608 btrfs_block_rsv_release(root, block_rsv, to_free);
5609 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5610 btrfs_ino(inode), to_free, 0);
5611 }
5612 if (delalloc_lock)
5613 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5614 return ret;
0ca1f7ce
YZ
5615}
5616
7709cde3
JB
5617/**
5618 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5619 * @inode: the inode to release the reservation for
5620 * @num_bytes: the number of bytes we're releasing
5621 *
5622 * This will release the metadata reservation for an inode. This can be called
5623 * once we complete IO for a given set of bytes to release their metadata
5624 * reservations.
5625 */
0ca1f7ce
YZ
5626void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5627{
5628 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5629 u64 to_free = 0;
5630 unsigned dropped;
0ca1f7ce
YZ
5631
5632 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5633 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5634 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5635
0934856d
MX
5636 if (num_bytes)
5637 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5638 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5639 if (dropped > 0)
5640 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5641
6a3891c5
JB
5642 if (btrfs_test_is_dummy_root(root))
5643 return;
5644
8c2a3ca2
JB
5645 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5646 btrfs_ino(inode), to_free, 0);
c5567237 5647
0ca1f7ce
YZ
5648 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5649 to_free);
5650}
5651
7709cde3
JB
5652/**
5653 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5654 * @inode: inode we're writing to
5655 * @num_bytes: the number of bytes we want to allocate
5656 *
5657 * This will do the following things
5658 *
5659 * o reserve space in the data space info for num_bytes
5660 * o reserve space in the metadata space info based on number of outstanding
5661 * extents and how much csums will be needed
5662 * o add to the inodes ->delalloc_bytes
5663 * o add it to the fs_info's delalloc inodes list.
5664 *
5665 * This will return 0 for success and -ENOSPC if there is no space left.
5666 */
0ca1f7ce
YZ
5667int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5668{
5669 int ret;
5670
e2d1f923 5671 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5672 if (ret)
0ca1f7ce
YZ
5673 return ret;
5674
5675 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5676 if (ret) {
5677 btrfs_free_reserved_data_space(inode, num_bytes);
5678 return ret;
5679 }
5680
5681 return 0;
5682}
5683
7709cde3
JB
5684/**
5685 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5686 * @inode: inode we're releasing space for
5687 * @num_bytes: the number of bytes we want to free up
5688 *
5689 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5690 * called in the case that we don't need the metadata AND data reservations
5691 * anymore. So if there is an error or we insert an inline extent.
5692 *
5693 * This function will release the metadata space that was not used and will
5694 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5695 * list if there are no delalloc bytes left.
5696 */
0ca1f7ce
YZ
5697void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5698{
5699 btrfs_delalloc_release_metadata(inode, num_bytes);
5700 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5701}
5702
ce93ec54
JB
5703static int update_block_group(struct btrfs_trans_handle *trans,
5704 struct btrfs_root *root, u64 bytenr,
5705 u64 num_bytes, int alloc)
9078a3e1 5706{
0af3d00b 5707 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5708 struct btrfs_fs_info *info = root->fs_info;
db94535d 5709 u64 total = num_bytes;
9078a3e1 5710 u64 old_val;
db94535d 5711 u64 byte_in_group;
0af3d00b 5712 int factor;
3e1ad54f 5713
5d4f98a2 5714 /* block accounting for super block */
eb73c1b7 5715 spin_lock(&info->delalloc_root_lock);
6c41761f 5716 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5717 if (alloc)
5718 old_val += num_bytes;
5719 else
5720 old_val -= num_bytes;
6c41761f 5721 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5722 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5723
d397712b 5724 while (total) {
db94535d 5725 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5726 if (!cache)
79787eaa 5727 return -ENOENT;
b742bb82
YZ
5728 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5729 BTRFS_BLOCK_GROUP_RAID1 |
5730 BTRFS_BLOCK_GROUP_RAID10))
5731 factor = 2;
5732 else
5733 factor = 1;
9d66e233
JB
5734 /*
5735 * If this block group has free space cache written out, we
5736 * need to make sure to load it if we are removing space. This
5737 * is because we need the unpinning stage to actually add the
5738 * space back to the block group, otherwise we will leak space.
5739 */
5740 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5741 cache_block_group(cache, 1);
0af3d00b 5742
db94535d
CM
5743 byte_in_group = bytenr - cache->key.objectid;
5744 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5745
25179201 5746 spin_lock(&cache->space_info->lock);
c286ac48 5747 spin_lock(&cache->lock);
0af3d00b 5748
73bc1876 5749 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5750 cache->disk_cache_state < BTRFS_DC_CLEAR)
5751 cache->disk_cache_state = BTRFS_DC_CLEAR;
5752
9078a3e1 5753 old_val = btrfs_block_group_used(&cache->item);
db94535d 5754 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5755 if (alloc) {
db94535d 5756 old_val += num_bytes;
11833d66
YZ
5757 btrfs_set_block_group_used(&cache->item, old_val);
5758 cache->reserved -= num_bytes;
11833d66 5759 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5760 cache->space_info->bytes_used += num_bytes;
5761 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5762 spin_unlock(&cache->lock);
25179201 5763 spin_unlock(&cache->space_info->lock);
cd1bc465 5764 } else {
db94535d 5765 old_val -= num_bytes;
ae0ab003
FM
5766 btrfs_set_block_group_used(&cache->item, old_val);
5767 cache->pinned += num_bytes;
5768 cache->space_info->bytes_pinned += num_bytes;
5769 cache->space_info->bytes_used -= num_bytes;
5770 cache->space_info->disk_used -= num_bytes * factor;
5771 spin_unlock(&cache->lock);
5772 spin_unlock(&cache->space_info->lock);
47ab2a6c 5773
ae0ab003
FM
5774 set_extent_dirty(info->pinned_extents,
5775 bytenr, bytenr + num_bytes - 1,
5776 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5777 /*
5778 * No longer have used bytes in this block group, queue
5779 * it for deletion.
5780 */
5781 if (old_val == 0) {
5782 spin_lock(&info->unused_bgs_lock);
5783 if (list_empty(&cache->bg_list)) {
5784 btrfs_get_block_group(cache);
5785 list_add_tail(&cache->bg_list,
5786 &info->unused_bgs);
5787 }
5788 spin_unlock(&info->unused_bgs_lock);
5789 }
cd1bc465 5790 }
1bbc621e
CM
5791
5792 spin_lock(&trans->transaction->dirty_bgs_lock);
5793 if (list_empty(&cache->dirty_list)) {
5794 list_add_tail(&cache->dirty_list,
5795 &trans->transaction->dirty_bgs);
5796 trans->transaction->num_dirty_bgs++;
5797 btrfs_get_block_group(cache);
5798 }
5799 spin_unlock(&trans->transaction->dirty_bgs_lock);
5800
fa9c0d79 5801 btrfs_put_block_group(cache);
db94535d
CM
5802 total -= num_bytes;
5803 bytenr += num_bytes;
9078a3e1
CM
5804 }
5805 return 0;
5806}
6324fbf3 5807
a061fc8d
CM
5808static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5809{
0f9dd46c 5810 struct btrfs_block_group_cache *cache;
d2fb3437 5811 u64 bytenr;
0f9dd46c 5812
a1897fdd
LB
5813 spin_lock(&root->fs_info->block_group_cache_lock);
5814 bytenr = root->fs_info->first_logical_byte;
5815 spin_unlock(&root->fs_info->block_group_cache_lock);
5816
5817 if (bytenr < (u64)-1)
5818 return bytenr;
5819
0f9dd46c
JB
5820 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5821 if (!cache)
a061fc8d 5822 return 0;
0f9dd46c 5823
d2fb3437 5824 bytenr = cache->key.objectid;
fa9c0d79 5825 btrfs_put_block_group(cache);
d2fb3437
YZ
5826
5827 return bytenr;
a061fc8d
CM
5828}
5829
f0486c68
YZ
5830static int pin_down_extent(struct btrfs_root *root,
5831 struct btrfs_block_group_cache *cache,
5832 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5833{
11833d66
YZ
5834 spin_lock(&cache->space_info->lock);
5835 spin_lock(&cache->lock);
5836 cache->pinned += num_bytes;
5837 cache->space_info->bytes_pinned += num_bytes;
5838 if (reserved) {
5839 cache->reserved -= num_bytes;
5840 cache->space_info->bytes_reserved -= num_bytes;
5841 }
5842 spin_unlock(&cache->lock);
5843 spin_unlock(&cache->space_info->lock);
68b38550 5844
f0486c68
YZ
5845 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5846 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5847 if (reserved)
0be5dc67 5848 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5849 return 0;
5850}
68b38550 5851
f0486c68
YZ
5852/*
5853 * this function must be called within transaction
5854 */
5855int btrfs_pin_extent(struct btrfs_root *root,
5856 u64 bytenr, u64 num_bytes, int reserved)
5857{
5858 struct btrfs_block_group_cache *cache;
68b38550 5859
f0486c68 5860 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5861 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5862
5863 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5864
5865 btrfs_put_block_group(cache);
11833d66
YZ
5866 return 0;
5867}
5868
f0486c68 5869/*
e688b725
CM
5870 * this function must be called within transaction
5871 */
dcfac415 5872int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5873 u64 bytenr, u64 num_bytes)
5874{
5875 struct btrfs_block_group_cache *cache;
b50c6e25 5876 int ret;
e688b725
CM
5877
5878 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5879 if (!cache)
5880 return -EINVAL;
e688b725
CM
5881
5882 /*
5883 * pull in the free space cache (if any) so that our pin
5884 * removes the free space from the cache. We have load_only set
5885 * to one because the slow code to read in the free extents does check
5886 * the pinned extents.
5887 */
f6373bf3 5888 cache_block_group(cache, 1);
e688b725
CM
5889
5890 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5891
5892 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5893 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5894 btrfs_put_block_group(cache);
b50c6e25 5895 return ret;
e688b725
CM
5896}
5897
8c2a1a30
JB
5898static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5899{
5900 int ret;
5901 struct btrfs_block_group_cache *block_group;
5902 struct btrfs_caching_control *caching_ctl;
5903
5904 block_group = btrfs_lookup_block_group(root->fs_info, start);
5905 if (!block_group)
5906 return -EINVAL;
5907
5908 cache_block_group(block_group, 0);
5909 caching_ctl = get_caching_control(block_group);
5910
5911 if (!caching_ctl) {
5912 /* Logic error */
5913 BUG_ON(!block_group_cache_done(block_group));
5914 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5915 } else {
5916 mutex_lock(&caching_ctl->mutex);
5917
5918 if (start >= caching_ctl->progress) {
5919 ret = add_excluded_extent(root, start, num_bytes);
5920 } else if (start + num_bytes <= caching_ctl->progress) {
5921 ret = btrfs_remove_free_space(block_group,
5922 start, num_bytes);
5923 } else {
5924 num_bytes = caching_ctl->progress - start;
5925 ret = btrfs_remove_free_space(block_group,
5926 start, num_bytes);
5927 if (ret)
5928 goto out_lock;
5929
5930 num_bytes = (start + num_bytes) -
5931 caching_ctl->progress;
5932 start = caching_ctl->progress;
5933 ret = add_excluded_extent(root, start, num_bytes);
5934 }
5935out_lock:
5936 mutex_unlock(&caching_ctl->mutex);
5937 put_caching_control(caching_ctl);
5938 }
5939 btrfs_put_block_group(block_group);
5940 return ret;
5941}
5942
5943int btrfs_exclude_logged_extents(struct btrfs_root *log,
5944 struct extent_buffer *eb)
5945{
5946 struct btrfs_file_extent_item *item;
5947 struct btrfs_key key;
5948 int found_type;
5949 int i;
5950
5951 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5952 return 0;
5953
5954 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5955 btrfs_item_key_to_cpu(eb, &key, i);
5956 if (key.type != BTRFS_EXTENT_DATA_KEY)
5957 continue;
5958 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5959 found_type = btrfs_file_extent_type(eb, item);
5960 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5961 continue;
5962 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5963 continue;
5964 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5965 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5966 __exclude_logged_extent(log, key.objectid, key.offset);
5967 }
5968
5969 return 0;
5970}
5971
fb25e914
JB
5972/**
5973 * btrfs_update_reserved_bytes - update the block_group and space info counters
5974 * @cache: The cache we are manipulating
5975 * @num_bytes: The number of bytes in question
5976 * @reserve: One of the reservation enums
e570fd27 5977 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5978 *
5979 * This is called by the allocator when it reserves space, or by somebody who is
5980 * freeing space that was never actually used on disk. For example if you
5981 * reserve some space for a new leaf in transaction A and before transaction A
5982 * commits you free that leaf, you call this with reserve set to 0 in order to
5983 * clear the reservation.
5984 *
5985 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5986 * ENOSPC accounting. For data we handle the reservation through clearing the
5987 * delalloc bits in the io_tree. We have to do this since we could end up
5988 * allocating less disk space for the amount of data we have reserved in the
5989 * case of compression.
5990 *
5991 * If this is a reservation and the block group has become read only we cannot
5992 * make the reservation and return -EAGAIN, otherwise this function always
5993 * succeeds.
f0486c68 5994 */
fb25e914 5995static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5996 u64 num_bytes, int reserve, int delalloc)
11833d66 5997{
fb25e914 5998 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5999 int ret = 0;
79787eaa 6000
fb25e914
JB
6001 spin_lock(&space_info->lock);
6002 spin_lock(&cache->lock);
6003 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6004 if (cache->ro) {
6005 ret = -EAGAIN;
6006 } else {
fb25e914
JB
6007 cache->reserved += num_bytes;
6008 space_info->bytes_reserved += num_bytes;
6009 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6010 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6011 "space_info", space_info->flags,
6012 num_bytes, 0);
fb25e914
JB
6013 space_info->bytes_may_use -= num_bytes;
6014 }
e570fd27
MX
6015
6016 if (delalloc)
6017 cache->delalloc_bytes += num_bytes;
f0486c68 6018 }
fb25e914
JB
6019 } else {
6020 if (cache->ro)
6021 space_info->bytes_readonly += num_bytes;
6022 cache->reserved -= num_bytes;
6023 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6024
6025 if (delalloc)
6026 cache->delalloc_bytes -= num_bytes;
324ae4df 6027 }
fb25e914
JB
6028 spin_unlock(&cache->lock);
6029 spin_unlock(&space_info->lock);
f0486c68 6030 return ret;
324ae4df 6031}
9078a3e1 6032
143bede5 6033void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6034 struct btrfs_root *root)
e8569813 6035{
e8569813 6036 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6037 struct btrfs_caching_control *next;
6038 struct btrfs_caching_control *caching_ctl;
6039 struct btrfs_block_group_cache *cache;
e8569813 6040
9e351cc8 6041 down_write(&fs_info->commit_root_sem);
25179201 6042
11833d66
YZ
6043 list_for_each_entry_safe(caching_ctl, next,
6044 &fs_info->caching_block_groups, list) {
6045 cache = caching_ctl->block_group;
6046 if (block_group_cache_done(cache)) {
6047 cache->last_byte_to_unpin = (u64)-1;
6048 list_del_init(&caching_ctl->list);
6049 put_caching_control(caching_ctl);
e8569813 6050 } else {
11833d66 6051 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6052 }
e8569813 6053 }
11833d66
YZ
6054
6055 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6056 fs_info->pinned_extents = &fs_info->freed_extents[1];
6057 else
6058 fs_info->pinned_extents = &fs_info->freed_extents[0];
6059
9e351cc8 6060 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6061
6062 update_global_block_rsv(fs_info);
e8569813
ZY
6063}
6064
678886bd
FM
6065static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6066 const bool return_free_space)
ccd467d6 6067{
11833d66
YZ
6068 struct btrfs_fs_info *fs_info = root->fs_info;
6069 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6070 struct btrfs_space_info *space_info;
6071 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6072 u64 len;
7b398f8e 6073 bool readonly;
ccd467d6 6074
11833d66 6075 while (start <= end) {
7b398f8e 6076 readonly = false;
11833d66
YZ
6077 if (!cache ||
6078 start >= cache->key.objectid + cache->key.offset) {
6079 if (cache)
6080 btrfs_put_block_group(cache);
6081 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6082 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6083 }
6084
6085 len = cache->key.objectid + cache->key.offset - start;
6086 len = min(len, end + 1 - start);
6087
6088 if (start < cache->last_byte_to_unpin) {
6089 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6090 if (return_free_space)
6091 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6092 }
6093
f0486c68 6094 start += len;
7b398f8e 6095 space_info = cache->space_info;
f0486c68 6096
7b398f8e 6097 spin_lock(&space_info->lock);
11833d66
YZ
6098 spin_lock(&cache->lock);
6099 cache->pinned -= len;
7b398f8e 6100 space_info->bytes_pinned -= len;
d288db5d 6101 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6102 if (cache->ro) {
6103 space_info->bytes_readonly += len;
6104 readonly = true;
6105 }
11833d66 6106 spin_unlock(&cache->lock);
7b398f8e
JB
6107 if (!readonly && global_rsv->space_info == space_info) {
6108 spin_lock(&global_rsv->lock);
6109 if (!global_rsv->full) {
6110 len = min(len, global_rsv->size -
6111 global_rsv->reserved);
6112 global_rsv->reserved += len;
6113 space_info->bytes_may_use += len;
6114 if (global_rsv->reserved >= global_rsv->size)
6115 global_rsv->full = 1;
6116 }
6117 spin_unlock(&global_rsv->lock);
6118 }
6119 spin_unlock(&space_info->lock);
ccd467d6 6120 }
11833d66
YZ
6121
6122 if (cache)
6123 btrfs_put_block_group(cache);
ccd467d6
CM
6124 return 0;
6125}
6126
6127int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6128 struct btrfs_root *root)
a28ec197 6129{
11833d66 6130 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6131 struct btrfs_block_group_cache *block_group, *tmp;
6132 struct list_head *deleted_bgs;
11833d66 6133 struct extent_io_tree *unpin;
1a5bc167
CM
6134 u64 start;
6135 u64 end;
a28ec197 6136 int ret;
a28ec197 6137
11833d66
YZ
6138 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6139 unpin = &fs_info->freed_extents[1];
6140 else
6141 unpin = &fs_info->freed_extents[0];
6142
e33e17ee 6143 while (!trans->aborted) {
d4b450cd 6144 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6145 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6146 EXTENT_DIRTY, NULL);
d4b450cd
FM
6147 if (ret) {
6148 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6149 break;
d4b450cd 6150 }
1f3c79a2 6151
5378e607
LD
6152 if (btrfs_test_opt(root, DISCARD))
6153 ret = btrfs_discard_extent(root, start,
6154 end + 1 - start, NULL);
1f3c79a2 6155
1a5bc167 6156 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6157 unpin_extent_range(root, start, end, true);
d4b450cd 6158 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6159 cond_resched();
a28ec197 6160 }
817d52f8 6161
e33e17ee
JM
6162 /*
6163 * Transaction is finished. We don't need the lock anymore. We
6164 * do need to clean up the block groups in case of a transaction
6165 * abort.
6166 */
6167 deleted_bgs = &trans->transaction->deleted_bgs;
6168 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6169 u64 trimmed = 0;
6170
6171 ret = -EROFS;
6172 if (!trans->aborted)
6173 ret = btrfs_discard_extent(root,
6174 block_group->key.objectid,
6175 block_group->key.offset,
6176 &trimmed);
6177
6178 list_del_init(&block_group->bg_list);
6179 btrfs_put_block_group_trimming(block_group);
6180 btrfs_put_block_group(block_group);
6181
6182 if (ret) {
6183 const char *errstr = btrfs_decode_error(ret);
6184 btrfs_warn(fs_info,
6185 "Discard failed while removing blockgroup: errno=%d %s\n",
6186 ret, errstr);
6187 }
6188 }
6189
e20d96d6
CM
6190 return 0;
6191}
6192
b150a4f1
JB
6193static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6194 u64 owner, u64 root_objectid)
6195{
6196 struct btrfs_space_info *space_info;
6197 u64 flags;
6198
6199 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6200 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6201 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6202 else
6203 flags = BTRFS_BLOCK_GROUP_METADATA;
6204 } else {
6205 flags = BTRFS_BLOCK_GROUP_DATA;
6206 }
6207
6208 space_info = __find_space_info(fs_info, flags);
6209 BUG_ON(!space_info); /* Logic bug */
6210 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6211}
6212
6213
5d4f98a2
YZ
6214static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6215 struct btrfs_root *root,
c682f9b3 6216 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6217 u64 root_objectid, u64 owner_objectid,
6218 u64 owner_offset, int refs_to_drop,
c682f9b3 6219 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6220{
e2fa7227 6221 struct btrfs_key key;
5d4f98a2 6222 struct btrfs_path *path;
1261ec42
CM
6223 struct btrfs_fs_info *info = root->fs_info;
6224 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6225 struct extent_buffer *leaf;
5d4f98a2
YZ
6226 struct btrfs_extent_item *ei;
6227 struct btrfs_extent_inline_ref *iref;
a28ec197 6228 int ret;
5d4f98a2 6229 int is_data;
952fccac
CM
6230 int extent_slot = 0;
6231 int found_extent = 0;
6232 int num_to_del = 1;
c682f9b3 6233 int no_quota = node->no_quota;
5d4f98a2
YZ
6234 u32 item_size;
6235 u64 refs;
c682f9b3
QW
6236 u64 bytenr = node->bytenr;
6237 u64 num_bytes = node->num_bytes;
fcebe456 6238 int last_ref = 0;
3173a18f
JB
6239 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6240 SKINNY_METADATA);
037e6390 6241
fcebe456
JB
6242 if (!info->quota_enabled || !is_fstree(root_objectid))
6243 no_quota = 1;
6244
5caf2a00 6245 path = btrfs_alloc_path();
54aa1f4d
CM
6246 if (!path)
6247 return -ENOMEM;
5f26f772 6248
3c12ac72 6249 path->reada = 1;
b9473439 6250 path->leave_spinning = 1;
5d4f98a2
YZ
6251
6252 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6253 BUG_ON(!is_data && refs_to_drop != 1);
6254
3173a18f
JB
6255 if (is_data)
6256 skinny_metadata = 0;
6257
5d4f98a2
YZ
6258 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6259 bytenr, num_bytes, parent,
6260 root_objectid, owner_objectid,
6261 owner_offset);
7bb86316 6262 if (ret == 0) {
952fccac 6263 extent_slot = path->slots[0];
5d4f98a2
YZ
6264 while (extent_slot >= 0) {
6265 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6266 extent_slot);
5d4f98a2 6267 if (key.objectid != bytenr)
952fccac 6268 break;
5d4f98a2
YZ
6269 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6270 key.offset == num_bytes) {
952fccac
CM
6271 found_extent = 1;
6272 break;
6273 }
3173a18f
JB
6274 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6275 key.offset == owner_objectid) {
6276 found_extent = 1;
6277 break;
6278 }
952fccac
CM
6279 if (path->slots[0] - extent_slot > 5)
6280 break;
5d4f98a2 6281 extent_slot--;
952fccac 6282 }
5d4f98a2
YZ
6283#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6284 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6285 if (found_extent && item_size < sizeof(*ei))
6286 found_extent = 0;
6287#endif
31840ae1 6288 if (!found_extent) {
5d4f98a2 6289 BUG_ON(iref);
56bec294 6290 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6291 NULL, refs_to_drop,
fcebe456 6292 is_data, &last_ref);
005d6427
DS
6293 if (ret) {
6294 btrfs_abort_transaction(trans, extent_root, ret);
6295 goto out;
6296 }
b3b4aa74 6297 btrfs_release_path(path);
b9473439 6298 path->leave_spinning = 1;
5d4f98a2
YZ
6299
6300 key.objectid = bytenr;
6301 key.type = BTRFS_EXTENT_ITEM_KEY;
6302 key.offset = num_bytes;
6303
3173a18f
JB
6304 if (!is_data && skinny_metadata) {
6305 key.type = BTRFS_METADATA_ITEM_KEY;
6306 key.offset = owner_objectid;
6307 }
6308
31840ae1
ZY
6309 ret = btrfs_search_slot(trans, extent_root,
6310 &key, path, -1, 1);
3173a18f
JB
6311 if (ret > 0 && skinny_metadata && path->slots[0]) {
6312 /*
6313 * Couldn't find our skinny metadata item,
6314 * see if we have ye olde extent item.
6315 */
6316 path->slots[0]--;
6317 btrfs_item_key_to_cpu(path->nodes[0], &key,
6318 path->slots[0]);
6319 if (key.objectid == bytenr &&
6320 key.type == BTRFS_EXTENT_ITEM_KEY &&
6321 key.offset == num_bytes)
6322 ret = 0;
6323 }
6324
6325 if (ret > 0 && skinny_metadata) {
6326 skinny_metadata = false;
9ce49a0b 6327 key.objectid = bytenr;
3173a18f
JB
6328 key.type = BTRFS_EXTENT_ITEM_KEY;
6329 key.offset = num_bytes;
6330 btrfs_release_path(path);
6331 ret = btrfs_search_slot(trans, extent_root,
6332 &key, path, -1, 1);
6333 }
6334
f3465ca4 6335 if (ret) {
c2cf52eb 6336 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6337 ret, bytenr);
b783e62d
JB
6338 if (ret > 0)
6339 btrfs_print_leaf(extent_root,
6340 path->nodes[0]);
f3465ca4 6341 }
005d6427
DS
6342 if (ret < 0) {
6343 btrfs_abort_transaction(trans, extent_root, ret);
6344 goto out;
6345 }
31840ae1
ZY
6346 extent_slot = path->slots[0];
6347 }
fae7f21c 6348 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6349 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6350 btrfs_err(info,
6351 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6352 bytenr, parent, root_objectid, owner_objectid,
6353 owner_offset);
c4a050bb
JB
6354 btrfs_abort_transaction(trans, extent_root, ret);
6355 goto out;
79787eaa 6356 } else {
005d6427
DS
6357 btrfs_abort_transaction(trans, extent_root, ret);
6358 goto out;
7bb86316 6359 }
5f39d397
CM
6360
6361 leaf = path->nodes[0];
5d4f98a2
YZ
6362 item_size = btrfs_item_size_nr(leaf, extent_slot);
6363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6364 if (item_size < sizeof(*ei)) {
6365 BUG_ON(found_extent || extent_slot != path->slots[0]);
6366 ret = convert_extent_item_v0(trans, extent_root, path,
6367 owner_objectid, 0);
005d6427
DS
6368 if (ret < 0) {
6369 btrfs_abort_transaction(trans, extent_root, ret);
6370 goto out;
6371 }
5d4f98a2 6372
b3b4aa74 6373 btrfs_release_path(path);
5d4f98a2
YZ
6374 path->leave_spinning = 1;
6375
6376 key.objectid = bytenr;
6377 key.type = BTRFS_EXTENT_ITEM_KEY;
6378 key.offset = num_bytes;
6379
6380 ret = btrfs_search_slot(trans, extent_root, &key, path,
6381 -1, 1);
6382 if (ret) {
c2cf52eb 6383 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6384 ret, bytenr);
5d4f98a2
YZ
6385 btrfs_print_leaf(extent_root, path->nodes[0]);
6386 }
005d6427
DS
6387 if (ret < 0) {
6388 btrfs_abort_transaction(trans, extent_root, ret);
6389 goto out;
6390 }
6391
5d4f98a2
YZ
6392 extent_slot = path->slots[0];
6393 leaf = path->nodes[0];
6394 item_size = btrfs_item_size_nr(leaf, extent_slot);
6395 }
6396#endif
6397 BUG_ON(item_size < sizeof(*ei));
952fccac 6398 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6399 struct btrfs_extent_item);
3173a18f
JB
6400 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6401 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6402 struct btrfs_tree_block_info *bi;
6403 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6404 bi = (struct btrfs_tree_block_info *)(ei + 1);
6405 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6406 }
56bec294 6407
5d4f98a2 6408 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6409 if (refs < refs_to_drop) {
6410 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6411 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6412 ret = -EINVAL;
6413 btrfs_abort_transaction(trans, extent_root, ret);
6414 goto out;
6415 }
56bec294 6416 refs -= refs_to_drop;
5f39d397 6417
5d4f98a2
YZ
6418 if (refs > 0) {
6419 if (extent_op)
6420 __run_delayed_extent_op(extent_op, leaf, ei);
6421 /*
6422 * In the case of inline back ref, reference count will
6423 * be updated by remove_extent_backref
952fccac 6424 */
5d4f98a2
YZ
6425 if (iref) {
6426 BUG_ON(!found_extent);
6427 } else {
6428 btrfs_set_extent_refs(leaf, ei, refs);
6429 btrfs_mark_buffer_dirty(leaf);
6430 }
6431 if (found_extent) {
6432 ret = remove_extent_backref(trans, extent_root, path,
6433 iref, refs_to_drop,
fcebe456 6434 is_data, &last_ref);
005d6427
DS
6435 if (ret) {
6436 btrfs_abort_transaction(trans, extent_root, ret);
6437 goto out;
6438 }
952fccac 6439 }
b150a4f1
JB
6440 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6441 root_objectid);
5d4f98a2 6442 } else {
5d4f98a2
YZ
6443 if (found_extent) {
6444 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6445 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6446 if (iref) {
6447 BUG_ON(path->slots[0] != extent_slot);
6448 } else {
6449 BUG_ON(path->slots[0] != extent_slot + 1);
6450 path->slots[0] = extent_slot;
6451 num_to_del = 2;
6452 }
78fae27e 6453 }
b9473439 6454
fcebe456 6455 last_ref = 1;
952fccac
CM
6456 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6457 num_to_del);
005d6427
DS
6458 if (ret) {
6459 btrfs_abort_transaction(trans, extent_root, ret);
6460 goto out;
6461 }
b3b4aa74 6462 btrfs_release_path(path);
21af804c 6463
5d4f98a2 6464 if (is_data) {
459931ec 6465 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6466 if (ret) {
6467 btrfs_abort_transaction(trans, extent_root, ret);
6468 goto out;
6469 }
459931ec
CM
6470 }
6471
ce93ec54 6472 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6473 if (ret) {
6474 btrfs_abort_transaction(trans, extent_root, ret);
6475 goto out;
6476 }
a28ec197 6477 }
fcebe456
JB
6478 btrfs_release_path(path);
6479
79787eaa 6480out:
5caf2a00 6481 btrfs_free_path(path);
a28ec197
CM
6482 return ret;
6483}
6484
1887be66 6485/*
f0486c68 6486 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6487 * delayed ref for that extent as well. This searches the delayed ref tree for
6488 * a given extent, and if there are no other delayed refs to be processed, it
6489 * removes it from the tree.
6490 */
6491static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6492 struct btrfs_root *root, u64 bytenr)
6493{
6494 struct btrfs_delayed_ref_head *head;
6495 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6496 int ret = 0;
1887be66
CM
6497
6498 delayed_refs = &trans->transaction->delayed_refs;
6499 spin_lock(&delayed_refs->lock);
6500 head = btrfs_find_delayed_ref_head(trans, bytenr);
6501 if (!head)
cf93da7b 6502 goto out_delayed_unlock;
1887be66 6503
d7df2c79 6504 spin_lock(&head->lock);
c6fc2454 6505 if (!list_empty(&head->ref_list))
1887be66
CM
6506 goto out;
6507
5d4f98a2
YZ
6508 if (head->extent_op) {
6509 if (!head->must_insert_reserved)
6510 goto out;
78a6184a 6511 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6512 head->extent_op = NULL;
6513 }
6514
1887be66
CM
6515 /*
6516 * waiting for the lock here would deadlock. If someone else has it
6517 * locked they are already in the process of dropping it anyway
6518 */
6519 if (!mutex_trylock(&head->mutex))
6520 goto out;
6521
6522 /*
6523 * at this point we have a head with no other entries. Go
6524 * ahead and process it.
6525 */
6526 head->node.in_tree = 0;
c46effa6 6527 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6528
d7df2c79 6529 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6530
6531 /*
6532 * we don't take a ref on the node because we're removing it from the
6533 * tree, so we just steal the ref the tree was holding.
6534 */
c3e69d58 6535 delayed_refs->num_heads--;
d7df2c79 6536 if (head->processing == 0)
c3e69d58 6537 delayed_refs->num_heads_ready--;
d7df2c79
JB
6538 head->processing = 0;
6539 spin_unlock(&head->lock);
1887be66
CM
6540 spin_unlock(&delayed_refs->lock);
6541
f0486c68
YZ
6542 BUG_ON(head->extent_op);
6543 if (head->must_insert_reserved)
6544 ret = 1;
6545
6546 mutex_unlock(&head->mutex);
1887be66 6547 btrfs_put_delayed_ref(&head->node);
f0486c68 6548 return ret;
1887be66 6549out:
d7df2c79 6550 spin_unlock(&head->lock);
cf93da7b
CM
6551
6552out_delayed_unlock:
1887be66
CM
6553 spin_unlock(&delayed_refs->lock);
6554 return 0;
6555}
6556
f0486c68
YZ
6557void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6558 struct btrfs_root *root,
6559 struct extent_buffer *buf,
5581a51a 6560 u64 parent, int last_ref)
f0486c68 6561{
b150a4f1 6562 int pin = 1;
f0486c68
YZ
6563 int ret;
6564
6565 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6566 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6567 buf->start, buf->len,
6568 parent, root->root_key.objectid,
6569 btrfs_header_level(buf),
5581a51a 6570 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6571 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6572 }
6573
6574 if (!last_ref)
6575 return;
6576
f0486c68 6577 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6578 struct btrfs_block_group_cache *cache;
6579
f0486c68
YZ
6580 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6581 ret = check_ref_cleanup(trans, root, buf->start);
6582 if (!ret)
37be25bc 6583 goto out;
f0486c68
YZ
6584 }
6585
6219872d
FM
6586 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6587
f0486c68
YZ
6588 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6589 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6590 btrfs_put_block_group(cache);
37be25bc 6591 goto out;
f0486c68
YZ
6592 }
6593
6594 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6595
6596 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6597 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6598 btrfs_put_block_group(cache);
0be5dc67 6599 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6600 pin = 0;
f0486c68
YZ
6601 }
6602out:
b150a4f1
JB
6603 if (pin)
6604 add_pinned_bytes(root->fs_info, buf->len,
6605 btrfs_header_level(buf),
6606 root->root_key.objectid);
6607
a826d6dc
JB
6608 /*
6609 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6610 * anymore.
6611 */
6612 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6613}
6614
79787eaa 6615/* Can return -ENOMEM */
66d7e7f0
AJ
6616int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6617 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6618 u64 owner, u64 offset, int no_quota)
925baedd
CM
6619{
6620 int ret;
66d7e7f0 6621 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6622
fccb84c9 6623 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6624 return 0;
fccb84c9 6625
b150a4f1
JB
6626 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6627
56bec294
CM
6628 /*
6629 * tree log blocks never actually go into the extent allocation
6630 * tree, just update pinning info and exit early.
56bec294 6631 */
5d4f98a2
YZ
6632 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6633 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6634 /* unlocks the pinned mutex */
11833d66 6635 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6636 ret = 0;
5d4f98a2 6637 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6638 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6639 num_bytes,
5d4f98a2 6640 parent, root_objectid, (int)owner,
fcebe456 6641 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6642 } else {
66d7e7f0
AJ
6643 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6644 num_bytes,
6645 parent, root_objectid, owner,
6646 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6647 NULL, no_quota);
56bec294 6648 }
925baedd
CM
6649 return ret;
6650}
6651
817d52f8
JB
6652/*
6653 * when we wait for progress in the block group caching, its because
6654 * our allocation attempt failed at least once. So, we must sleep
6655 * and let some progress happen before we try again.
6656 *
6657 * This function will sleep at least once waiting for new free space to
6658 * show up, and then it will check the block group free space numbers
6659 * for our min num_bytes. Another option is to have it go ahead
6660 * and look in the rbtree for a free extent of a given size, but this
6661 * is a good start.
36cce922
JB
6662 *
6663 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6664 * any of the information in this block group.
817d52f8 6665 */
36cce922 6666static noinline void
817d52f8
JB
6667wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6668 u64 num_bytes)
6669{
11833d66 6670 struct btrfs_caching_control *caching_ctl;
817d52f8 6671
11833d66
YZ
6672 caching_ctl = get_caching_control(cache);
6673 if (!caching_ctl)
36cce922 6674 return;
817d52f8 6675
11833d66 6676 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6677 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6678
6679 put_caching_control(caching_ctl);
11833d66
YZ
6680}
6681
6682static noinline int
6683wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6684{
6685 struct btrfs_caching_control *caching_ctl;
36cce922 6686 int ret = 0;
11833d66
YZ
6687
6688 caching_ctl = get_caching_control(cache);
6689 if (!caching_ctl)
36cce922 6690 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6691
6692 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6693 if (cache->cached == BTRFS_CACHE_ERROR)
6694 ret = -EIO;
11833d66 6695 put_caching_control(caching_ctl);
36cce922 6696 return ret;
817d52f8
JB
6697}
6698
31e50229 6699int __get_raid_index(u64 flags)
b742bb82 6700{
7738a53a 6701 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6702 return BTRFS_RAID_RAID10;
7738a53a 6703 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6704 return BTRFS_RAID_RAID1;
7738a53a 6705 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6706 return BTRFS_RAID_DUP;
7738a53a 6707 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6708 return BTRFS_RAID_RAID0;
53b381b3 6709 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6710 return BTRFS_RAID_RAID5;
53b381b3 6711 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6712 return BTRFS_RAID_RAID6;
7738a53a 6713
e942f883 6714 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6715}
6716
6ab0a202 6717int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6718{
31e50229 6719 return __get_raid_index(cache->flags);
7738a53a
ID
6720}
6721
6ab0a202
JM
6722static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6723 [BTRFS_RAID_RAID10] = "raid10",
6724 [BTRFS_RAID_RAID1] = "raid1",
6725 [BTRFS_RAID_DUP] = "dup",
6726 [BTRFS_RAID_RAID0] = "raid0",
6727 [BTRFS_RAID_SINGLE] = "single",
6728 [BTRFS_RAID_RAID5] = "raid5",
6729 [BTRFS_RAID_RAID6] = "raid6",
6730};
6731
1b8e5df6 6732static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6733{
6734 if (type >= BTRFS_NR_RAID_TYPES)
6735 return NULL;
6736
6737 return btrfs_raid_type_names[type];
6738}
6739
817d52f8 6740enum btrfs_loop_type {
285ff5af
JB
6741 LOOP_CACHING_NOWAIT = 0,
6742 LOOP_CACHING_WAIT = 1,
6743 LOOP_ALLOC_CHUNK = 2,
6744 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6745};
6746
e570fd27
MX
6747static inline void
6748btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6749 int delalloc)
6750{
6751 if (delalloc)
6752 down_read(&cache->data_rwsem);
6753}
6754
6755static inline void
6756btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6757 int delalloc)
6758{
6759 btrfs_get_block_group(cache);
6760 if (delalloc)
6761 down_read(&cache->data_rwsem);
6762}
6763
6764static struct btrfs_block_group_cache *
6765btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6766 struct btrfs_free_cluster *cluster,
6767 int delalloc)
6768{
6769 struct btrfs_block_group_cache *used_bg;
6770 bool locked = false;
6771again:
6772 spin_lock(&cluster->refill_lock);
6773 if (locked) {
6774 if (used_bg == cluster->block_group)
6775 return used_bg;
6776
6777 up_read(&used_bg->data_rwsem);
6778 btrfs_put_block_group(used_bg);
6779 }
6780
6781 used_bg = cluster->block_group;
6782 if (!used_bg)
6783 return NULL;
6784
6785 if (used_bg == block_group)
6786 return used_bg;
6787
6788 btrfs_get_block_group(used_bg);
6789
6790 if (!delalloc)
6791 return used_bg;
6792
6793 if (down_read_trylock(&used_bg->data_rwsem))
6794 return used_bg;
6795
6796 spin_unlock(&cluster->refill_lock);
6797 down_read(&used_bg->data_rwsem);
6798 locked = true;
6799 goto again;
6800}
6801
6802static inline void
6803btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6804 int delalloc)
6805{
6806 if (delalloc)
6807 up_read(&cache->data_rwsem);
6808 btrfs_put_block_group(cache);
6809}
6810
fec577fb
CM
6811/*
6812 * walks the btree of allocated extents and find a hole of a given size.
6813 * The key ins is changed to record the hole:
a4820398 6814 * ins->objectid == start position
62e2749e 6815 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6816 * ins->offset == the size of the hole.
fec577fb 6817 * Any available blocks before search_start are skipped.
a4820398
MX
6818 *
6819 * If there is no suitable free space, we will record the max size of
6820 * the free space extent currently.
fec577fb 6821 */
00361589 6822static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6823 u64 num_bytes, u64 empty_size,
98ed5174 6824 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6825 u64 flags, int delalloc)
fec577fb 6826{
80eb234a 6827 int ret = 0;
d397712b 6828 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6829 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6830 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6831 u64 search_start = 0;
a4820398 6832 u64 max_extent_size = 0;
239b14b3 6833 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6834 struct btrfs_space_info *space_info;
fa9c0d79 6835 int loop = 0;
b6919a58
DS
6836 int index = __get_raid_index(flags);
6837 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6838 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6839 bool failed_cluster_refill = false;
1cdda9b8 6840 bool failed_alloc = false;
67377734 6841 bool use_cluster = true;
60d2adbb 6842 bool have_caching_bg = false;
fec577fb 6843
db94535d 6844 WARN_ON(num_bytes < root->sectorsize);
962a298f 6845 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6846 ins->objectid = 0;
6847 ins->offset = 0;
b1a4d965 6848
b6919a58 6849 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6850
b6919a58 6851 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6852 if (!space_info) {
b6919a58 6853 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6854 return -ENOSPC;
6855 }
2552d17e 6856
67377734
JB
6857 /*
6858 * If the space info is for both data and metadata it means we have a
6859 * small filesystem and we can't use the clustering stuff.
6860 */
6861 if (btrfs_mixed_space_info(space_info))
6862 use_cluster = false;
6863
b6919a58 6864 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6865 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6866 if (!btrfs_test_opt(root, SSD))
6867 empty_cluster = 64 * 1024;
239b14b3
CM
6868 }
6869
b6919a58 6870 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6871 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6872 last_ptr = &root->fs_info->data_alloc_cluster;
6873 }
0f9dd46c 6874
239b14b3 6875 if (last_ptr) {
fa9c0d79
CM
6876 spin_lock(&last_ptr->lock);
6877 if (last_ptr->block_group)
6878 hint_byte = last_ptr->window_start;
6879 spin_unlock(&last_ptr->lock);
239b14b3 6880 }
fa9c0d79 6881
a061fc8d 6882 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6883 search_start = max(search_start, hint_byte);
0b86a832 6884
817d52f8 6885 if (!last_ptr)
fa9c0d79 6886 empty_cluster = 0;
fa9c0d79 6887
2552d17e 6888 if (search_start == hint_byte) {
2552d17e
JB
6889 block_group = btrfs_lookup_block_group(root->fs_info,
6890 search_start);
817d52f8
JB
6891 /*
6892 * we don't want to use the block group if it doesn't match our
6893 * allocation bits, or if its not cached.
ccf0e725
JB
6894 *
6895 * However if we are re-searching with an ideal block group
6896 * picked out then we don't care that the block group is cached.
817d52f8 6897 */
b6919a58 6898 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6899 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6900 down_read(&space_info->groups_sem);
44fb5511
CM
6901 if (list_empty(&block_group->list) ||
6902 block_group->ro) {
6903 /*
6904 * someone is removing this block group,
6905 * we can't jump into the have_block_group
6906 * target because our list pointers are not
6907 * valid
6908 */
6909 btrfs_put_block_group(block_group);
6910 up_read(&space_info->groups_sem);
ccf0e725 6911 } else {
b742bb82 6912 index = get_block_group_index(block_group);
e570fd27 6913 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6914 goto have_block_group;
ccf0e725 6915 }
2552d17e 6916 } else if (block_group) {
fa9c0d79 6917 btrfs_put_block_group(block_group);
2552d17e 6918 }
42e70e7a 6919 }
2552d17e 6920search:
60d2adbb 6921 have_caching_bg = false;
80eb234a 6922 down_read(&space_info->groups_sem);
b742bb82
YZ
6923 list_for_each_entry(block_group, &space_info->block_groups[index],
6924 list) {
6226cb0a 6925 u64 offset;
817d52f8 6926 int cached;
8a1413a2 6927
e570fd27 6928 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6929 search_start = block_group->key.objectid;
42e70e7a 6930
83a50de9
CM
6931 /*
6932 * this can happen if we end up cycling through all the
6933 * raid types, but we want to make sure we only allocate
6934 * for the proper type.
6935 */
b6919a58 6936 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6937 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6938 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6939 BTRFS_BLOCK_GROUP_RAID5 |
6940 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6941 BTRFS_BLOCK_GROUP_RAID10;
6942
6943 /*
6944 * if they asked for extra copies and this block group
6945 * doesn't provide them, bail. This does allow us to
6946 * fill raid0 from raid1.
6947 */
b6919a58 6948 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6949 goto loop;
6950 }
6951
2552d17e 6952have_block_group:
291c7d2f
JB
6953 cached = block_group_cache_done(block_group);
6954 if (unlikely(!cached)) {
f6373bf3 6955 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6956 BUG_ON(ret < 0);
6957 ret = 0;
817d52f8
JB
6958 }
6959
36cce922
JB
6960 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6961 goto loop;
ea6a478e 6962 if (unlikely(block_group->ro))
2552d17e 6963 goto loop;
0f9dd46c 6964
0a24325e 6965 /*
062c05c4
AO
6966 * Ok we want to try and use the cluster allocator, so
6967 * lets look there
0a24325e 6968 */
062c05c4 6969 if (last_ptr) {
215a63d1 6970 struct btrfs_block_group_cache *used_block_group;
8de972b4 6971 unsigned long aligned_cluster;
fa9c0d79
CM
6972 /*
6973 * the refill lock keeps out other
6974 * people trying to start a new cluster
6975 */
e570fd27
MX
6976 used_block_group = btrfs_lock_cluster(block_group,
6977 last_ptr,
6978 delalloc);
6979 if (!used_block_group)
44fb5511 6980 goto refill_cluster;
274bd4fb 6981
e570fd27
MX
6982 if (used_block_group != block_group &&
6983 (used_block_group->ro ||
6984 !block_group_bits(used_block_group, flags)))
6985 goto release_cluster;
44fb5511 6986
274bd4fb 6987 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6988 last_ptr,
6989 num_bytes,
6990 used_block_group->key.objectid,
6991 &max_extent_size);
fa9c0d79
CM
6992 if (offset) {
6993 /* we have a block, we're done */
6994 spin_unlock(&last_ptr->refill_lock);
3f7de037 6995 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6996 used_block_group,
6997 search_start, num_bytes);
215a63d1 6998 if (used_block_group != block_group) {
e570fd27
MX
6999 btrfs_release_block_group(block_group,
7000 delalloc);
215a63d1
MX
7001 block_group = used_block_group;
7002 }
fa9c0d79
CM
7003 goto checks;
7004 }
7005
274bd4fb 7006 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7007release_cluster:
062c05c4
AO
7008 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7009 * set up a new clusters, so lets just skip it
7010 * and let the allocator find whatever block
7011 * it can find. If we reach this point, we
7012 * will have tried the cluster allocator
7013 * plenty of times and not have found
7014 * anything, so we are likely way too
7015 * fragmented for the clustering stuff to find
a5f6f719
AO
7016 * anything.
7017 *
7018 * However, if the cluster is taken from the
7019 * current block group, release the cluster
7020 * first, so that we stand a better chance of
7021 * succeeding in the unclustered
7022 * allocation. */
7023 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7024 used_block_group != block_group) {
062c05c4 7025 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7026 btrfs_release_block_group(used_block_group,
7027 delalloc);
062c05c4
AO
7028 goto unclustered_alloc;
7029 }
7030
fa9c0d79
CM
7031 /*
7032 * this cluster didn't work out, free it and
7033 * start over
7034 */
7035 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7036
e570fd27
MX
7037 if (used_block_group != block_group)
7038 btrfs_release_block_group(used_block_group,
7039 delalloc);
7040refill_cluster:
a5f6f719
AO
7041 if (loop >= LOOP_NO_EMPTY_SIZE) {
7042 spin_unlock(&last_ptr->refill_lock);
7043 goto unclustered_alloc;
7044 }
7045
8de972b4
CM
7046 aligned_cluster = max_t(unsigned long,
7047 empty_cluster + empty_size,
7048 block_group->full_stripe_len);
7049
fa9c0d79 7050 /* allocate a cluster in this block group */
00361589
JB
7051 ret = btrfs_find_space_cluster(root, block_group,
7052 last_ptr, search_start,
7053 num_bytes,
7054 aligned_cluster);
fa9c0d79
CM
7055 if (ret == 0) {
7056 /*
7057 * now pull our allocation out of this
7058 * cluster
7059 */
7060 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7061 last_ptr,
7062 num_bytes,
7063 search_start,
7064 &max_extent_size);
fa9c0d79
CM
7065 if (offset) {
7066 /* we found one, proceed */
7067 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7068 trace_btrfs_reserve_extent_cluster(root,
7069 block_group, search_start,
7070 num_bytes);
fa9c0d79
CM
7071 goto checks;
7072 }
0a24325e
JB
7073 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7074 && !failed_cluster_refill) {
817d52f8
JB
7075 spin_unlock(&last_ptr->refill_lock);
7076
0a24325e 7077 failed_cluster_refill = true;
817d52f8
JB
7078 wait_block_group_cache_progress(block_group,
7079 num_bytes + empty_cluster + empty_size);
7080 goto have_block_group;
fa9c0d79 7081 }
817d52f8 7082
fa9c0d79
CM
7083 /*
7084 * at this point we either didn't find a cluster
7085 * or we weren't able to allocate a block from our
7086 * cluster. Free the cluster we've been trying
7087 * to use, and go to the next block group
7088 */
0a24325e 7089 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7090 spin_unlock(&last_ptr->refill_lock);
0a24325e 7091 goto loop;
fa9c0d79
CM
7092 }
7093
062c05c4 7094unclustered_alloc:
a5f6f719
AO
7095 spin_lock(&block_group->free_space_ctl->tree_lock);
7096 if (cached &&
7097 block_group->free_space_ctl->free_space <
7098 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7099 if (block_group->free_space_ctl->free_space >
7100 max_extent_size)
7101 max_extent_size =
7102 block_group->free_space_ctl->free_space;
a5f6f719
AO
7103 spin_unlock(&block_group->free_space_ctl->tree_lock);
7104 goto loop;
7105 }
7106 spin_unlock(&block_group->free_space_ctl->tree_lock);
7107
6226cb0a 7108 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7109 num_bytes, empty_size,
7110 &max_extent_size);
1cdda9b8
JB
7111 /*
7112 * If we didn't find a chunk, and we haven't failed on this
7113 * block group before, and this block group is in the middle of
7114 * caching and we are ok with waiting, then go ahead and wait
7115 * for progress to be made, and set failed_alloc to true.
7116 *
7117 * If failed_alloc is true then we've already waited on this
7118 * block group once and should move on to the next block group.
7119 */
7120 if (!offset && !failed_alloc && !cached &&
7121 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7122 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7123 num_bytes + empty_size);
7124 failed_alloc = true;
817d52f8 7125 goto have_block_group;
1cdda9b8 7126 } else if (!offset) {
60d2adbb
MX
7127 if (!cached)
7128 have_caching_bg = true;
1cdda9b8 7129 goto loop;
817d52f8 7130 }
fa9c0d79 7131checks:
4e54b17a 7132 search_start = ALIGN(offset, root->stripesize);
25179201 7133
2552d17e
JB
7134 /* move on to the next group */
7135 if (search_start + num_bytes >
215a63d1
MX
7136 block_group->key.objectid + block_group->key.offset) {
7137 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7138 goto loop;
6226cb0a 7139 }
f5a31e16 7140
f0486c68 7141 if (offset < search_start)
215a63d1 7142 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7143 search_start - offset);
7144 BUG_ON(offset > search_start);
2552d17e 7145
215a63d1 7146 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7147 alloc_type, delalloc);
f0486c68 7148 if (ret == -EAGAIN) {
215a63d1 7149 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7150 goto loop;
0f9dd46c 7151 }
0b86a832 7152
f0486c68 7153 /* we are all good, lets return */
2552d17e
JB
7154 ins->objectid = search_start;
7155 ins->offset = num_bytes;
d2fb3437 7156
3f7de037
JB
7157 trace_btrfs_reserve_extent(orig_root, block_group,
7158 search_start, num_bytes);
e570fd27 7159 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7160 break;
7161loop:
0a24325e 7162 failed_cluster_refill = false;
1cdda9b8 7163 failed_alloc = false;
b742bb82 7164 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7165 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7166 }
7167 up_read(&space_info->groups_sem);
7168
60d2adbb
MX
7169 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7170 goto search;
7171
b742bb82
YZ
7172 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7173 goto search;
7174
285ff5af 7175 /*
ccf0e725
JB
7176 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7177 * caching kthreads as we move along
817d52f8
JB
7178 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7179 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7180 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7181 * again
fa9c0d79 7182 */
723bda20 7183 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7184 index = 0;
723bda20 7185 loop++;
817d52f8 7186 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7187 struct btrfs_trans_handle *trans;
f017f15f
WS
7188 int exist = 0;
7189
7190 trans = current->journal_info;
7191 if (trans)
7192 exist = 1;
7193 else
7194 trans = btrfs_join_transaction(root);
00361589 7195
00361589
JB
7196 if (IS_ERR(trans)) {
7197 ret = PTR_ERR(trans);
7198 goto out;
7199 }
7200
b6919a58 7201 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7202 CHUNK_ALLOC_FORCE);
7203 /*
7204 * Do not bail out on ENOSPC since we
7205 * can do more things.
7206 */
00361589 7207 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7208 btrfs_abort_transaction(trans,
7209 root, ret);
00361589
JB
7210 else
7211 ret = 0;
f017f15f
WS
7212 if (!exist)
7213 btrfs_end_transaction(trans, root);
00361589 7214 if (ret)
ea658bad 7215 goto out;
2552d17e
JB
7216 }
7217
723bda20
JB
7218 if (loop == LOOP_NO_EMPTY_SIZE) {
7219 empty_size = 0;
7220 empty_cluster = 0;
fa9c0d79 7221 }
723bda20
JB
7222
7223 goto search;
2552d17e
JB
7224 } else if (!ins->objectid) {
7225 ret = -ENOSPC;
d82a6f1d 7226 } else if (ins->objectid) {
80eb234a 7227 ret = 0;
be744175 7228 }
79787eaa 7229out:
a4820398
MX
7230 if (ret == -ENOSPC)
7231 ins->offset = max_extent_size;
0f70abe2 7232 return ret;
fec577fb 7233}
ec44a35c 7234
9ed74f2d
JB
7235static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7236 int dump_block_groups)
0f9dd46c
JB
7237{
7238 struct btrfs_block_group_cache *cache;
b742bb82 7239 int index = 0;
0f9dd46c 7240
9ed74f2d 7241 spin_lock(&info->lock);
efe120a0 7242 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7243 info->flags,
7244 info->total_bytes - info->bytes_used - info->bytes_pinned -
7245 info->bytes_reserved - info->bytes_readonly,
d397712b 7246 (info->full) ? "" : "not ");
efe120a0 7247 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7248 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7249 info->total_bytes, info->bytes_used, info->bytes_pinned,
7250 info->bytes_reserved, info->bytes_may_use,
7251 info->bytes_readonly);
9ed74f2d
JB
7252 spin_unlock(&info->lock);
7253
7254 if (!dump_block_groups)
7255 return;
0f9dd46c 7256
80eb234a 7257 down_read(&info->groups_sem);
b742bb82
YZ
7258again:
7259 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7260 spin_lock(&cache->lock);
efe120a0
FH
7261 printk(KERN_INFO "BTRFS: "
7262 "block group %llu has %llu bytes, "
7263 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7264 cache->key.objectid, cache->key.offset,
7265 btrfs_block_group_used(&cache->item), cache->pinned,
7266 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7267 btrfs_dump_free_space(cache, bytes);
7268 spin_unlock(&cache->lock);
7269 }
b742bb82
YZ
7270 if (++index < BTRFS_NR_RAID_TYPES)
7271 goto again;
80eb234a 7272 up_read(&info->groups_sem);
0f9dd46c 7273}
e8569813 7274
00361589 7275int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7276 u64 num_bytes, u64 min_alloc_size,
7277 u64 empty_size, u64 hint_byte,
e570fd27 7278 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7279{
9e622d6b 7280 bool final_tried = false;
b6919a58 7281 u64 flags;
fec577fb 7282 int ret;
925baedd 7283
b6919a58 7284 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7285again:
db94535d 7286 WARN_ON(num_bytes < root->sectorsize);
00361589 7287 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7288 flags, delalloc);
3b951516 7289
9e622d6b 7290 if (ret == -ENOSPC) {
a4820398
MX
7291 if (!final_tried && ins->offset) {
7292 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7293 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7294 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7295 if (num_bytes == min_alloc_size)
7296 final_tried = true;
7297 goto again;
7298 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7299 struct btrfs_space_info *sinfo;
7300
b6919a58 7301 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7302 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7303 flags, num_bytes);
53804280
JM
7304 if (sinfo)
7305 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7306 }
925baedd 7307 }
0f9dd46c
JB
7308
7309 return ret;
e6dcd2dc
CM
7310}
7311
e688b725 7312static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7313 u64 start, u64 len,
7314 int pin, int delalloc)
65b51a00 7315{
0f9dd46c 7316 struct btrfs_block_group_cache *cache;
1f3c79a2 7317 int ret = 0;
0f9dd46c 7318
0f9dd46c
JB
7319 cache = btrfs_lookup_block_group(root->fs_info, start);
7320 if (!cache) {
c2cf52eb 7321 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7322 start);
0f9dd46c
JB
7323 return -ENOSPC;
7324 }
1f3c79a2 7325
e688b725
CM
7326 if (pin)
7327 pin_down_extent(root, cache, start, len, 1);
7328 else {
dcc82f47
FM
7329 if (btrfs_test_opt(root, DISCARD))
7330 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7331 btrfs_add_free_space(cache, start, len);
e570fd27 7332 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7333 }
31193213 7334
fa9c0d79 7335 btrfs_put_block_group(cache);
817d52f8 7336
1abe9b8a 7337 trace_btrfs_reserved_extent_free(root, start, len);
7338
e6dcd2dc
CM
7339 return ret;
7340}
7341
e688b725 7342int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7343 u64 start, u64 len, int delalloc)
e688b725 7344{
e570fd27 7345 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7346}
7347
7348int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7349 u64 start, u64 len)
7350{
e570fd27 7351 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7352}
7353
5d4f98a2
YZ
7354static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7355 struct btrfs_root *root,
7356 u64 parent, u64 root_objectid,
7357 u64 flags, u64 owner, u64 offset,
7358 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7359{
7360 int ret;
5d4f98a2 7361 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7362 struct btrfs_extent_item *extent_item;
5d4f98a2 7363 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7364 struct btrfs_path *path;
5d4f98a2
YZ
7365 struct extent_buffer *leaf;
7366 int type;
7367 u32 size;
26b8003f 7368
5d4f98a2
YZ
7369 if (parent > 0)
7370 type = BTRFS_SHARED_DATA_REF_KEY;
7371 else
7372 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7373
5d4f98a2 7374 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7375
7376 path = btrfs_alloc_path();
db5b493a
TI
7377 if (!path)
7378 return -ENOMEM;
47e4bb98 7379
b9473439 7380 path->leave_spinning = 1;
5d4f98a2
YZ
7381 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7382 ins, size);
79787eaa
JM
7383 if (ret) {
7384 btrfs_free_path(path);
7385 return ret;
7386 }
0f9dd46c 7387
5d4f98a2
YZ
7388 leaf = path->nodes[0];
7389 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7390 struct btrfs_extent_item);
5d4f98a2
YZ
7391 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7392 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7393 btrfs_set_extent_flags(leaf, extent_item,
7394 flags | BTRFS_EXTENT_FLAG_DATA);
7395
7396 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7397 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7398 if (parent > 0) {
7399 struct btrfs_shared_data_ref *ref;
7400 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7401 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7402 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7403 } else {
7404 struct btrfs_extent_data_ref *ref;
7405 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7406 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7407 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7408 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7409 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7410 }
47e4bb98
CM
7411
7412 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7413 btrfs_free_path(path);
f510cfec 7414
ce93ec54 7415 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7416 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7417 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7418 ins->objectid, ins->offset);
f5947066
CM
7419 BUG();
7420 }
0be5dc67 7421 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7422 return ret;
7423}
7424
5d4f98a2
YZ
7425static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7426 struct btrfs_root *root,
7427 u64 parent, u64 root_objectid,
7428 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7429 int level, struct btrfs_key *ins,
7430 int no_quota)
e6dcd2dc
CM
7431{
7432 int ret;
5d4f98a2
YZ
7433 struct btrfs_fs_info *fs_info = root->fs_info;
7434 struct btrfs_extent_item *extent_item;
7435 struct btrfs_tree_block_info *block_info;
7436 struct btrfs_extent_inline_ref *iref;
7437 struct btrfs_path *path;
7438 struct extent_buffer *leaf;
3173a18f 7439 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7440 u64 num_bytes = ins->offset;
3173a18f
JB
7441 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7442 SKINNY_METADATA);
7443
7444 if (!skinny_metadata)
7445 size += sizeof(*block_info);
1c2308f8 7446
5d4f98a2 7447 path = btrfs_alloc_path();
857cc2fc
JB
7448 if (!path) {
7449 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7450 root->nodesize);
d8926bb3 7451 return -ENOMEM;
857cc2fc 7452 }
56bec294 7453
5d4f98a2
YZ
7454 path->leave_spinning = 1;
7455 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7456 ins, size);
79787eaa 7457 if (ret) {
dd825259 7458 btrfs_free_path(path);
857cc2fc 7459 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7460 root->nodesize);
79787eaa
JM
7461 return ret;
7462 }
5d4f98a2
YZ
7463
7464 leaf = path->nodes[0];
7465 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7466 struct btrfs_extent_item);
7467 btrfs_set_extent_refs(leaf, extent_item, 1);
7468 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7469 btrfs_set_extent_flags(leaf, extent_item,
7470 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7471
3173a18f
JB
7472 if (skinny_metadata) {
7473 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7474 num_bytes = root->nodesize;
3173a18f
JB
7475 } else {
7476 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7477 btrfs_set_tree_block_key(leaf, block_info, key);
7478 btrfs_set_tree_block_level(leaf, block_info, level);
7479 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7480 }
5d4f98a2 7481
5d4f98a2
YZ
7482 if (parent > 0) {
7483 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7484 btrfs_set_extent_inline_ref_type(leaf, iref,
7485 BTRFS_SHARED_BLOCK_REF_KEY);
7486 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7487 } else {
7488 btrfs_set_extent_inline_ref_type(leaf, iref,
7489 BTRFS_TREE_BLOCK_REF_KEY);
7490 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7491 }
7492
7493 btrfs_mark_buffer_dirty(leaf);
7494 btrfs_free_path(path);
7495
ce93ec54
JB
7496 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7497 1);
79787eaa 7498 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7499 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7500 ins->objectid, ins->offset);
5d4f98a2
YZ
7501 BUG();
7502 }
0be5dc67 7503
707e8a07 7504 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7505 return ret;
7506}
7507
7508int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7509 struct btrfs_root *root,
7510 u64 root_objectid, u64 owner,
7511 u64 offset, struct btrfs_key *ins)
7512{
7513 int ret;
7514
7515 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7516
66d7e7f0
AJ
7517 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7518 ins->offset, 0,
7519 root_objectid, owner, offset,
7520 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7521 return ret;
7522}
e02119d5
CM
7523
7524/*
7525 * this is used by the tree logging recovery code. It records that
7526 * an extent has been allocated and makes sure to clear the free
7527 * space cache bits as well
7528 */
5d4f98a2
YZ
7529int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7530 struct btrfs_root *root,
7531 u64 root_objectid, u64 owner, u64 offset,
7532 struct btrfs_key *ins)
e02119d5
CM
7533{
7534 int ret;
7535 struct btrfs_block_group_cache *block_group;
11833d66 7536
8c2a1a30
JB
7537 /*
7538 * Mixed block groups will exclude before processing the log so we only
7539 * need to do the exlude dance if this fs isn't mixed.
7540 */
7541 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7542 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7543 if (ret)
8c2a1a30 7544 return ret;
11833d66
YZ
7545 }
7546
8c2a1a30
JB
7547 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7548 if (!block_group)
7549 return -EINVAL;
7550
fb25e914 7551 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7552 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7553 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7554 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7555 0, owner, offset, ins, 1);
b50c6e25 7556 btrfs_put_block_group(block_group);
e02119d5
CM
7557 return ret;
7558}
7559
48a3b636
ES
7560static struct extent_buffer *
7561btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7562 u64 bytenr, int level)
65b51a00
CM
7563{
7564 struct extent_buffer *buf;
7565
a83fffb7 7566 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7567 if (!buf)
7568 return ERR_PTR(-ENOMEM);
7569 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7570 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7571 btrfs_tree_lock(buf);
01d58472 7572 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7573 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7574
7575 btrfs_set_lock_blocking(buf);
65b51a00 7576 btrfs_set_buffer_uptodate(buf);
b4ce94de 7577
d0c803c4 7578 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7579 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7580 /*
7581 * we allow two log transactions at a time, use different
7582 * EXENT bit to differentiate dirty pages.
7583 */
656f30db 7584 if (buf->log_index == 0)
8cef4e16
YZ
7585 set_extent_dirty(&root->dirty_log_pages, buf->start,
7586 buf->start + buf->len - 1, GFP_NOFS);
7587 else
7588 set_extent_new(&root->dirty_log_pages, buf->start,
7589 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7590 } else {
656f30db 7591 buf->log_index = -1;
d0c803c4 7592 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7593 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7594 }
65b51a00 7595 trans->blocks_used++;
b4ce94de 7596 /* this returns a buffer locked for blocking */
65b51a00
CM
7597 return buf;
7598}
7599
f0486c68
YZ
7600static struct btrfs_block_rsv *
7601use_block_rsv(struct btrfs_trans_handle *trans,
7602 struct btrfs_root *root, u32 blocksize)
7603{
7604 struct btrfs_block_rsv *block_rsv;
68a82277 7605 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7606 int ret;
d88033db 7607 bool global_updated = false;
f0486c68
YZ
7608
7609 block_rsv = get_block_rsv(trans, root);
7610
b586b323
MX
7611 if (unlikely(block_rsv->size == 0))
7612 goto try_reserve;
d88033db 7613again:
f0486c68
YZ
7614 ret = block_rsv_use_bytes(block_rsv, blocksize);
7615 if (!ret)
7616 return block_rsv;
7617
b586b323
MX
7618 if (block_rsv->failfast)
7619 return ERR_PTR(ret);
7620
d88033db
MX
7621 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7622 global_updated = true;
7623 update_global_block_rsv(root->fs_info);
7624 goto again;
7625 }
7626
b586b323
MX
7627 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7628 static DEFINE_RATELIMIT_STATE(_rs,
7629 DEFAULT_RATELIMIT_INTERVAL * 10,
7630 /*DEFAULT_RATELIMIT_BURST*/ 1);
7631 if (__ratelimit(&_rs))
7632 WARN(1, KERN_DEBUG
efe120a0 7633 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7634 }
7635try_reserve:
7636 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7637 BTRFS_RESERVE_NO_FLUSH);
7638 if (!ret)
7639 return block_rsv;
7640 /*
7641 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7642 * the global reserve if its space type is the same as the global
7643 * reservation.
b586b323 7644 */
5881cfc9
MX
7645 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7646 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7647 ret = block_rsv_use_bytes(global_rsv, blocksize);
7648 if (!ret)
7649 return global_rsv;
7650 }
7651 return ERR_PTR(ret);
f0486c68
YZ
7652}
7653
8c2a3ca2
JB
7654static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7655 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7656{
7657 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7658 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7659}
7660
fec577fb 7661/*
f0486c68 7662 * finds a free extent and does all the dirty work required for allocation
67b7859e 7663 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7664 */
4d75f8a9
DS
7665struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7666 struct btrfs_root *root,
5d4f98a2
YZ
7667 u64 parent, u64 root_objectid,
7668 struct btrfs_disk_key *key, int level,
5581a51a 7669 u64 hint, u64 empty_size)
fec577fb 7670{
e2fa7227 7671 struct btrfs_key ins;
f0486c68 7672 struct btrfs_block_rsv *block_rsv;
5f39d397 7673 struct extent_buffer *buf;
67b7859e 7674 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7675 u64 flags = 0;
7676 int ret;
4d75f8a9 7677 u32 blocksize = root->nodesize;
3173a18f
JB
7678 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7679 SKINNY_METADATA);
fec577fb 7680
fccb84c9 7681 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7682 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7683 level);
faa2dbf0
JB
7684 if (!IS_ERR(buf))
7685 root->alloc_bytenr += blocksize;
7686 return buf;
7687 }
fccb84c9 7688
f0486c68
YZ
7689 block_rsv = use_block_rsv(trans, root, blocksize);
7690 if (IS_ERR(block_rsv))
7691 return ERR_CAST(block_rsv);
7692
00361589 7693 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7694 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7695 if (ret)
7696 goto out_unuse;
55c69072 7697
fe864576 7698 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7699 if (IS_ERR(buf)) {
7700 ret = PTR_ERR(buf);
7701 goto out_free_reserved;
7702 }
f0486c68
YZ
7703
7704 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7705 if (parent == 0)
7706 parent = ins.objectid;
7707 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7708 } else
7709 BUG_ON(parent > 0);
7710
7711 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7712 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7713 if (!extent_op) {
7714 ret = -ENOMEM;
7715 goto out_free_buf;
7716 }
f0486c68
YZ
7717 if (key)
7718 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7719 else
7720 memset(&extent_op->key, 0, sizeof(extent_op->key));
7721 extent_op->flags_to_set = flags;
3173a18f
JB
7722 if (skinny_metadata)
7723 extent_op->update_key = 0;
7724 else
7725 extent_op->update_key = 1;
f0486c68
YZ
7726 extent_op->update_flags = 1;
7727 extent_op->is_data = 0;
b1c79e09 7728 extent_op->level = level;
f0486c68 7729
66d7e7f0 7730 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7731 ins.objectid, ins.offset,
7732 parent, root_objectid, level,
7733 BTRFS_ADD_DELAYED_EXTENT,
7734 extent_op, 0);
7735 if (ret)
7736 goto out_free_delayed;
f0486c68 7737 }
fec577fb 7738 return buf;
67b7859e
OS
7739
7740out_free_delayed:
7741 btrfs_free_delayed_extent_op(extent_op);
7742out_free_buf:
7743 free_extent_buffer(buf);
7744out_free_reserved:
7745 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7746out_unuse:
7747 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7748 return ERR_PTR(ret);
fec577fb 7749}
a28ec197 7750
2c47e605
YZ
7751struct walk_control {
7752 u64 refs[BTRFS_MAX_LEVEL];
7753 u64 flags[BTRFS_MAX_LEVEL];
7754 struct btrfs_key update_progress;
7755 int stage;
7756 int level;
7757 int shared_level;
7758 int update_ref;
7759 int keep_locks;
1c4850e2
YZ
7760 int reada_slot;
7761 int reada_count;
66d7e7f0 7762 int for_reloc;
2c47e605
YZ
7763};
7764
7765#define DROP_REFERENCE 1
7766#define UPDATE_BACKREF 2
7767
1c4850e2
YZ
7768static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7769 struct btrfs_root *root,
7770 struct walk_control *wc,
7771 struct btrfs_path *path)
6407bf6d 7772{
1c4850e2
YZ
7773 u64 bytenr;
7774 u64 generation;
7775 u64 refs;
94fcca9f 7776 u64 flags;
5d4f98a2 7777 u32 nritems;
1c4850e2
YZ
7778 u32 blocksize;
7779 struct btrfs_key key;
7780 struct extent_buffer *eb;
6407bf6d 7781 int ret;
1c4850e2
YZ
7782 int slot;
7783 int nread = 0;
6407bf6d 7784
1c4850e2
YZ
7785 if (path->slots[wc->level] < wc->reada_slot) {
7786 wc->reada_count = wc->reada_count * 2 / 3;
7787 wc->reada_count = max(wc->reada_count, 2);
7788 } else {
7789 wc->reada_count = wc->reada_count * 3 / 2;
7790 wc->reada_count = min_t(int, wc->reada_count,
7791 BTRFS_NODEPTRS_PER_BLOCK(root));
7792 }
7bb86316 7793
1c4850e2
YZ
7794 eb = path->nodes[wc->level];
7795 nritems = btrfs_header_nritems(eb);
707e8a07 7796 blocksize = root->nodesize;
bd56b302 7797
1c4850e2
YZ
7798 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7799 if (nread >= wc->reada_count)
7800 break;
bd56b302 7801
2dd3e67b 7802 cond_resched();
1c4850e2
YZ
7803 bytenr = btrfs_node_blockptr(eb, slot);
7804 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7805
1c4850e2
YZ
7806 if (slot == path->slots[wc->level])
7807 goto reada;
5d4f98a2 7808
1c4850e2
YZ
7809 if (wc->stage == UPDATE_BACKREF &&
7810 generation <= root->root_key.offset)
bd56b302
CM
7811 continue;
7812
94fcca9f 7813 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7814 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7815 wc->level - 1, 1, &refs,
7816 &flags);
79787eaa
JM
7817 /* We don't care about errors in readahead. */
7818 if (ret < 0)
7819 continue;
94fcca9f
YZ
7820 BUG_ON(refs == 0);
7821
1c4850e2 7822 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7823 if (refs == 1)
7824 goto reada;
bd56b302 7825
94fcca9f
YZ
7826 if (wc->level == 1 &&
7827 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7828 continue;
1c4850e2
YZ
7829 if (!wc->update_ref ||
7830 generation <= root->root_key.offset)
7831 continue;
7832 btrfs_node_key_to_cpu(eb, &key, slot);
7833 ret = btrfs_comp_cpu_keys(&key,
7834 &wc->update_progress);
7835 if (ret < 0)
7836 continue;
94fcca9f
YZ
7837 } else {
7838 if (wc->level == 1 &&
7839 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7840 continue;
6407bf6d 7841 }
1c4850e2 7842reada:
d3e46fea 7843 readahead_tree_block(root, bytenr);
1c4850e2 7844 nread++;
20524f02 7845 }
1c4850e2 7846 wc->reada_slot = slot;
20524f02 7847}
2c47e605 7848
0ed4792a
QW
7849/*
7850 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7851 * for later qgroup accounting.
7852 *
7853 * Current, this function does nothing.
7854 */
1152651a
MF
7855static int account_leaf_items(struct btrfs_trans_handle *trans,
7856 struct btrfs_root *root,
7857 struct extent_buffer *eb)
7858{
7859 int nr = btrfs_header_nritems(eb);
0ed4792a 7860 int i, extent_type;
1152651a
MF
7861 struct btrfs_key key;
7862 struct btrfs_file_extent_item *fi;
7863 u64 bytenr, num_bytes;
7864
7865 for (i = 0; i < nr; i++) {
7866 btrfs_item_key_to_cpu(eb, &key, i);
7867
7868 if (key.type != BTRFS_EXTENT_DATA_KEY)
7869 continue;
7870
7871 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7872 /* filter out non qgroup-accountable extents */
7873 extent_type = btrfs_file_extent_type(eb, fi);
7874
7875 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7876 continue;
7877
7878 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7879 if (!bytenr)
7880 continue;
7881
7882 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7883 }
7884 return 0;
7885}
7886
7887/*
7888 * Walk up the tree from the bottom, freeing leaves and any interior
7889 * nodes which have had all slots visited. If a node (leaf or
7890 * interior) is freed, the node above it will have it's slot
7891 * incremented. The root node will never be freed.
7892 *
7893 * At the end of this function, we should have a path which has all
7894 * slots incremented to the next position for a search. If we need to
7895 * read a new node it will be NULL and the node above it will have the
7896 * correct slot selected for a later read.
7897 *
7898 * If we increment the root nodes slot counter past the number of
7899 * elements, 1 is returned to signal completion of the search.
7900 */
7901static int adjust_slots_upwards(struct btrfs_root *root,
7902 struct btrfs_path *path, int root_level)
7903{
7904 int level = 0;
7905 int nr, slot;
7906 struct extent_buffer *eb;
7907
7908 if (root_level == 0)
7909 return 1;
7910
7911 while (level <= root_level) {
7912 eb = path->nodes[level];
7913 nr = btrfs_header_nritems(eb);
7914 path->slots[level]++;
7915 slot = path->slots[level];
7916 if (slot >= nr || level == 0) {
7917 /*
7918 * Don't free the root - we will detect this
7919 * condition after our loop and return a
7920 * positive value for caller to stop walking the tree.
7921 */
7922 if (level != root_level) {
7923 btrfs_tree_unlock_rw(eb, path->locks[level]);
7924 path->locks[level] = 0;
7925
7926 free_extent_buffer(eb);
7927 path->nodes[level] = NULL;
7928 path->slots[level] = 0;
7929 }
7930 } else {
7931 /*
7932 * We have a valid slot to walk back down
7933 * from. Stop here so caller can process these
7934 * new nodes.
7935 */
7936 break;
7937 }
7938
7939 level++;
7940 }
7941
7942 eb = path->nodes[root_level];
7943 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7944 return 1;
7945
7946 return 0;
7947}
7948
7949/*
7950 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7951 * TODO: Modify this function to mark all (including complete shared node)
7952 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7953 */
7954static int account_shared_subtree(struct btrfs_trans_handle *trans,
7955 struct btrfs_root *root,
7956 struct extent_buffer *root_eb,
7957 u64 root_gen,
7958 int root_level)
7959{
7960 int ret = 0;
7961 int level;
7962 struct extent_buffer *eb = root_eb;
7963 struct btrfs_path *path = NULL;
7964
7965 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7966 BUG_ON(root_eb == NULL);
7967
7968 if (!root->fs_info->quota_enabled)
7969 return 0;
7970
7971 if (!extent_buffer_uptodate(root_eb)) {
7972 ret = btrfs_read_buffer(root_eb, root_gen);
7973 if (ret)
7974 goto out;
7975 }
7976
7977 if (root_level == 0) {
7978 ret = account_leaf_items(trans, root, root_eb);
7979 goto out;
7980 }
7981
7982 path = btrfs_alloc_path();
7983 if (!path)
7984 return -ENOMEM;
7985
7986 /*
7987 * Walk down the tree. Missing extent blocks are filled in as
7988 * we go. Metadata is accounted every time we read a new
7989 * extent block.
7990 *
7991 * When we reach a leaf, we account for file extent items in it,
7992 * walk back up the tree (adjusting slot pointers as we go)
7993 * and restart the search process.
7994 */
7995 extent_buffer_get(root_eb); /* For path */
7996 path->nodes[root_level] = root_eb;
7997 path->slots[root_level] = 0;
7998 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7999walk_down:
8000 level = root_level;
8001 while (level >= 0) {
8002 if (path->nodes[level] == NULL) {
1152651a
MF
8003 int parent_slot;
8004 u64 child_gen;
8005 u64 child_bytenr;
8006
8007 /* We need to get child blockptr/gen from
8008 * parent before we can read it. */
8009 eb = path->nodes[level + 1];
8010 parent_slot = path->slots[level + 1];
8011 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8012 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8013
ce86cd59 8014 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8015 if (IS_ERR(eb)) {
8016 ret = PTR_ERR(eb);
8017 goto out;
8018 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8019 free_extent_buffer(eb);
64c043de 8020 ret = -EIO;
1152651a
MF
8021 goto out;
8022 }
8023
8024 path->nodes[level] = eb;
8025 path->slots[level] = 0;
8026
8027 btrfs_tree_read_lock(eb);
8028 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8029 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8030 }
8031
8032 if (level == 0) {
8033 ret = account_leaf_items(trans, root, path->nodes[level]);
8034 if (ret)
8035 goto out;
8036
8037 /* Nonzero return here means we completed our search */
8038 ret = adjust_slots_upwards(root, path, root_level);
8039 if (ret)
8040 break;
8041
8042 /* Restart search with new slots */
8043 goto walk_down;
8044 }
8045
8046 level--;
8047 }
8048
8049 ret = 0;
8050out:
8051 btrfs_free_path(path);
8052
8053 return ret;
8054}
8055
f82d02d9 8056/*
2c016dc2 8057 * helper to process tree block while walking down the tree.
2c47e605 8058 *
2c47e605
YZ
8059 * when wc->stage == UPDATE_BACKREF, this function updates
8060 * back refs for pointers in the block.
8061 *
8062 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8063 */
2c47e605 8064static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8065 struct btrfs_root *root,
2c47e605 8066 struct btrfs_path *path,
94fcca9f 8067 struct walk_control *wc, int lookup_info)
f82d02d9 8068{
2c47e605
YZ
8069 int level = wc->level;
8070 struct extent_buffer *eb = path->nodes[level];
2c47e605 8071 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8072 int ret;
8073
2c47e605
YZ
8074 if (wc->stage == UPDATE_BACKREF &&
8075 btrfs_header_owner(eb) != root->root_key.objectid)
8076 return 1;
f82d02d9 8077
2c47e605
YZ
8078 /*
8079 * when reference count of tree block is 1, it won't increase
8080 * again. once full backref flag is set, we never clear it.
8081 */
94fcca9f
YZ
8082 if (lookup_info &&
8083 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8084 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8085 BUG_ON(!path->locks[level]);
8086 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8087 eb->start, level, 1,
2c47e605
YZ
8088 &wc->refs[level],
8089 &wc->flags[level]);
79787eaa
JM
8090 BUG_ON(ret == -ENOMEM);
8091 if (ret)
8092 return ret;
2c47e605
YZ
8093 BUG_ON(wc->refs[level] == 0);
8094 }
5d4f98a2 8095
2c47e605
YZ
8096 if (wc->stage == DROP_REFERENCE) {
8097 if (wc->refs[level] > 1)
8098 return 1;
f82d02d9 8099
2c47e605 8100 if (path->locks[level] && !wc->keep_locks) {
bd681513 8101 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8102 path->locks[level] = 0;
8103 }
8104 return 0;
8105 }
f82d02d9 8106
2c47e605
YZ
8107 /* wc->stage == UPDATE_BACKREF */
8108 if (!(wc->flags[level] & flag)) {
8109 BUG_ON(!path->locks[level]);
e339a6b0 8110 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8111 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8112 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8113 BUG_ON(ret); /* -ENOMEM */
2c47e605 8114 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8115 eb->len, flag,
8116 btrfs_header_level(eb), 0);
79787eaa 8117 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8118 wc->flags[level] |= flag;
8119 }
8120
8121 /*
8122 * the block is shared by multiple trees, so it's not good to
8123 * keep the tree lock
8124 */
8125 if (path->locks[level] && level > 0) {
bd681513 8126 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8127 path->locks[level] = 0;
8128 }
8129 return 0;
8130}
8131
1c4850e2 8132/*
2c016dc2 8133 * helper to process tree block pointer.
1c4850e2
YZ
8134 *
8135 * when wc->stage == DROP_REFERENCE, this function checks
8136 * reference count of the block pointed to. if the block
8137 * is shared and we need update back refs for the subtree
8138 * rooted at the block, this function changes wc->stage to
8139 * UPDATE_BACKREF. if the block is shared and there is no
8140 * need to update back, this function drops the reference
8141 * to the block.
8142 *
8143 * NOTE: return value 1 means we should stop walking down.
8144 */
8145static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8146 struct btrfs_root *root,
8147 struct btrfs_path *path,
94fcca9f 8148 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8149{
8150 u64 bytenr;
8151 u64 generation;
8152 u64 parent;
8153 u32 blocksize;
8154 struct btrfs_key key;
8155 struct extent_buffer *next;
8156 int level = wc->level;
8157 int reada = 0;
8158 int ret = 0;
1152651a 8159 bool need_account = false;
1c4850e2
YZ
8160
8161 generation = btrfs_node_ptr_generation(path->nodes[level],
8162 path->slots[level]);
8163 /*
8164 * if the lower level block was created before the snapshot
8165 * was created, we know there is no need to update back refs
8166 * for the subtree
8167 */
8168 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8169 generation <= root->root_key.offset) {
8170 *lookup_info = 1;
1c4850e2 8171 return 1;
94fcca9f 8172 }
1c4850e2
YZ
8173
8174 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8175 blocksize = root->nodesize;
1c4850e2 8176
01d58472 8177 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8178 if (!next) {
a83fffb7 8179 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8180 if (!next)
8181 return -ENOMEM;
b2aaaa3b
JB
8182 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8183 level - 1);
1c4850e2
YZ
8184 reada = 1;
8185 }
8186 btrfs_tree_lock(next);
8187 btrfs_set_lock_blocking(next);
8188
3173a18f 8189 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8190 &wc->refs[level - 1],
8191 &wc->flags[level - 1]);
79787eaa
JM
8192 if (ret < 0) {
8193 btrfs_tree_unlock(next);
8194 return ret;
8195 }
8196
c2cf52eb
SK
8197 if (unlikely(wc->refs[level - 1] == 0)) {
8198 btrfs_err(root->fs_info, "Missing references.");
8199 BUG();
8200 }
94fcca9f 8201 *lookup_info = 0;
1c4850e2 8202
94fcca9f 8203 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8204 if (wc->refs[level - 1] > 1) {
1152651a 8205 need_account = true;
94fcca9f
YZ
8206 if (level == 1 &&
8207 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8208 goto skip;
8209
1c4850e2
YZ
8210 if (!wc->update_ref ||
8211 generation <= root->root_key.offset)
8212 goto skip;
8213
8214 btrfs_node_key_to_cpu(path->nodes[level], &key,
8215 path->slots[level]);
8216 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8217 if (ret < 0)
8218 goto skip;
8219
8220 wc->stage = UPDATE_BACKREF;
8221 wc->shared_level = level - 1;
8222 }
94fcca9f
YZ
8223 } else {
8224 if (level == 1 &&
8225 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8226 goto skip;
1c4850e2
YZ
8227 }
8228
b9fab919 8229 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8230 btrfs_tree_unlock(next);
8231 free_extent_buffer(next);
8232 next = NULL;
94fcca9f 8233 *lookup_info = 1;
1c4850e2
YZ
8234 }
8235
8236 if (!next) {
8237 if (reada && level == 1)
8238 reada_walk_down(trans, root, wc, path);
ce86cd59 8239 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8240 if (IS_ERR(next)) {
8241 return PTR_ERR(next);
8242 } else if (!extent_buffer_uptodate(next)) {
416bc658 8243 free_extent_buffer(next);
97d9a8a4 8244 return -EIO;
416bc658 8245 }
1c4850e2
YZ
8246 btrfs_tree_lock(next);
8247 btrfs_set_lock_blocking(next);
8248 }
8249
8250 level--;
8251 BUG_ON(level != btrfs_header_level(next));
8252 path->nodes[level] = next;
8253 path->slots[level] = 0;
bd681513 8254 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8255 wc->level = level;
8256 if (wc->level == 1)
8257 wc->reada_slot = 0;
8258 return 0;
8259skip:
8260 wc->refs[level - 1] = 0;
8261 wc->flags[level - 1] = 0;
94fcca9f
YZ
8262 if (wc->stage == DROP_REFERENCE) {
8263 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8264 parent = path->nodes[level]->start;
8265 } else {
8266 BUG_ON(root->root_key.objectid !=
8267 btrfs_header_owner(path->nodes[level]));
8268 parent = 0;
8269 }
1c4850e2 8270
1152651a
MF
8271 if (need_account) {
8272 ret = account_shared_subtree(trans, root, next,
8273 generation, level - 1);
8274 if (ret) {
94647322
DS
8275 btrfs_err_rl(root->fs_info,
8276 "Error "
1152651a 8277 "%d accounting shared subtree. Quota "
94647322
DS
8278 "is out of sync, rescan required.",
8279 ret);
1152651a
MF
8280 }
8281 }
94fcca9f 8282 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8283 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8284 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8285 }
1c4850e2
YZ
8286 btrfs_tree_unlock(next);
8287 free_extent_buffer(next);
94fcca9f 8288 *lookup_info = 1;
1c4850e2
YZ
8289 return 1;
8290}
8291
2c47e605 8292/*
2c016dc2 8293 * helper to process tree block while walking up the tree.
2c47e605
YZ
8294 *
8295 * when wc->stage == DROP_REFERENCE, this function drops
8296 * reference count on the block.
8297 *
8298 * when wc->stage == UPDATE_BACKREF, this function changes
8299 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8300 * to UPDATE_BACKREF previously while processing the block.
8301 *
8302 * NOTE: return value 1 means we should stop walking up.
8303 */
8304static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8305 struct btrfs_root *root,
8306 struct btrfs_path *path,
8307 struct walk_control *wc)
8308{
f0486c68 8309 int ret;
2c47e605
YZ
8310 int level = wc->level;
8311 struct extent_buffer *eb = path->nodes[level];
8312 u64 parent = 0;
8313
8314 if (wc->stage == UPDATE_BACKREF) {
8315 BUG_ON(wc->shared_level < level);
8316 if (level < wc->shared_level)
8317 goto out;
8318
2c47e605
YZ
8319 ret = find_next_key(path, level + 1, &wc->update_progress);
8320 if (ret > 0)
8321 wc->update_ref = 0;
8322
8323 wc->stage = DROP_REFERENCE;
8324 wc->shared_level = -1;
8325 path->slots[level] = 0;
8326
8327 /*
8328 * check reference count again if the block isn't locked.
8329 * we should start walking down the tree again if reference
8330 * count is one.
8331 */
8332 if (!path->locks[level]) {
8333 BUG_ON(level == 0);
8334 btrfs_tree_lock(eb);
8335 btrfs_set_lock_blocking(eb);
bd681513 8336 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8337
8338 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8339 eb->start, level, 1,
2c47e605
YZ
8340 &wc->refs[level],
8341 &wc->flags[level]);
79787eaa
JM
8342 if (ret < 0) {
8343 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8344 path->locks[level] = 0;
79787eaa
JM
8345 return ret;
8346 }
2c47e605
YZ
8347 BUG_ON(wc->refs[level] == 0);
8348 if (wc->refs[level] == 1) {
bd681513 8349 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8350 path->locks[level] = 0;
2c47e605
YZ
8351 return 1;
8352 }
f82d02d9 8353 }
2c47e605 8354 }
f82d02d9 8355
2c47e605
YZ
8356 /* wc->stage == DROP_REFERENCE */
8357 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8358
2c47e605
YZ
8359 if (wc->refs[level] == 1) {
8360 if (level == 0) {
8361 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8362 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8363 else
e339a6b0 8364 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8365 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8366 ret = account_leaf_items(trans, root, eb);
8367 if (ret) {
94647322
DS
8368 btrfs_err_rl(root->fs_info,
8369 "error "
1152651a 8370 "%d accounting leaf items. Quota "
94647322
DS
8371 "is out of sync, rescan required.",
8372 ret);
1152651a 8373 }
2c47e605
YZ
8374 }
8375 /* make block locked assertion in clean_tree_block happy */
8376 if (!path->locks[level] &&
8377 btrfs_header_generation(eb) == trans->transid) {
8378 btrfs_tree_lock(eb);
8379 btrfs_set_lock_blocking(eb);
bd681513 8380 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8381 }
01d58472 8382 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8383 }
8384
8385 if (eb == root->node) {
8386 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8387 parent = eb->start;
8388 else
8389 BUG_ON(root->root_key.objectid !=
8390 btrfs_header_owner(eb));
8391 } else {
8392 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8393 parent = path->nodes[level + 1]->start;
8394 else
8395 BUG_ON(root->root_key.objectid !=
8396 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8397 }
f82d02d9 8398
5581a51a 8399 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8400out:
8401 wc->refs[level] = 0;
8402 wc->flags[level] = 0;
f0486c68 8403 return 0;
2c47e605
YZ
8404}
8405
8406static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8407 struct btrfs_root *root,
8408 struct btrfs_path *path,
8409 struct walk_control *wc)
8410{
2c47e605 8411 int level = wc->level;
94fcca9f 8412 int lookup_info = 1;
2c47e605
YZ
8413 int ret;
8414
8415 while (level >= 0) {
94fcca9f 8416 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8417 if (ret > 0)
8418 break;
8419
8420 if (level == 0)
8421 break;
8422
7a7965f8
YZ
8423 if (path->slots[level] >=
8424 btrfs_header_nritems(path->nodes[level]))
8425 break;
8426
94fcca9f 8427 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8428 if (ret > 0) {
8429 path->slots[level]++;
8430 continue;
90d2c51d
MX
8431 } else if (ret < 0)
8432 return ret;
1c4850e2 8433 level = wc->level;
f82d02d9 8434 }
f82d02d9
YZ
8435 return 0;
8436}
8437
d397712b 8438static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8439 struct btrfs_root *root,
f82d02d9 8440 struct btrfs_path *path,
2c47e605 8441 struct walk_control *wc, int max_level)
20524f02 8442{
2c47e605 8443 int level = wc->level;
20524f02 8444 int ret;
9f3a7427 8445
2c47e605
YZ
8446 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8447 while (level < max_level && path->nodes[level]) {
8448 wc->level = level;
8449 if (path->slots[level] + 1 <
8450 btrfs_header_nritems(path->nodes[level])) {
8451 path->slots[level]++;
20524f02
CM
8452 return 0;
8453 } else {
2c47e605
YZ
8454 ret = walk_up_proc(trans, root, path, wc);
8455 if (ret > 0)
8456 return 0;
bd56b302 8457
2c47e605 8458 if (path->locks[level]) {
bd681513
CM
8459 btrfs_tree_unlock_rw(path->nodes[level],
8460 path->locks[level]);
2c47e605 8461 path->locks[level] = 0;
f82d02d9 8462 }
2c47e605
YZ
8463 free_extent_buffer(path->nodes[level]);
8464 path->nodes[level] = NULL;
8465 level++;
20524f02
CM
8466 }
8467 }
8468 return 1;
8469}
8470
9aca1d51 8471/*
2c47e605
YZ
8472 * drop a subvolume tree.
8473 *
8474 * this function traverses the tree freeing any blocks that only
8475 * referenced by the tree.
8476 *
8477 * when a shared tree block is found. this function decreases its
8478 * reference count by one. if update_ref is true, this function
8479 * also make sure backrefs for the shared block and all lower level
8480 * blocks are properly updated.
9d1a2a3a
DS
8481 *
8482 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8483 */
2c536799 8484int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8485 struct btrfs_block_rsv *block_rsv, int update_ref,
8486 int for_reloc)
20524f02 8487{
5caf2a00 8488 struct btrfs_path *path;
2c47e605
YZ
8489 struct btrfs_trans_handle *trans;
8490 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8491 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8492 struct walk_control *wc;
8493 struct btrfs_key key;
8494 int err = 0;
8495 int ret;
8496 int level;
d29a9f62 8497 bool root_dropped = false;
20524f02 8498
1152651a
MF
8499 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8500
5caf2a00 8501 path = btrfs_alloc_path();
cb1b69f4
TI
8502 if (!path) {
8503 err = -ENOMEM;
8504 goto out;
8505 }
20524f02 8506
2c47e605 8507 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8508 if (!wc) {
8509 btrfs_free_path(path);
cb1b69f4
TI
8510 err = -ENOMEM;
8511 goto out;
38a1a919 8512 }
2c47e605 8513
a22285a6 8514 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8515 if (IS_ERR(trans)) {
8516 err = PTR_ERR(trans);
8517 goto out_free;
8518 }
98d5dc13 8519
3fd0a558
YZ
8520 if (block_rsv)
8521 trans->block_rsv = block_rsv;
2c47e605 8522
9f3a7427 8523 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8524 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8525 path->nodes[level] = btrfs_lock_root_node(root);
8526 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8527 path->slots[level] = 0;
bd681513 8528 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8529 memset(&wc->update_progress, 0,
8530 sizeof(wc->update_progress));
9f3a7427 8531 } else {
9f3a7427 8532 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8533 memcpy(&wc->update_progress, &key,
8534 sizeof(wc->update_progress));
8535
6702ed49 8536 level = root_item->drop_level;
2c47e605 8537 BUG_ON(level == 0);
6702ed49 8538 path->lowest_level = level;
2c47e605
YZ
8539 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8540 path->lowest_level = 0;
8541 if (ret < 0) {
8542 err = ret;
79787eaa 8543 goto out_end_trans;
9f3a7427 8544 }
1c4850e2 8545 WARN_ON(ret > 0);
2c47e605 8546
7d9eb12c
CM
8547 /*
8548 * unlock our path, this is safe because only this
8549 * function is allowed to delete this snapshot
8550 */
5d4f98a2 8551 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8552
8553 level = btrfs_header_level(root->node);
8554 while (1) {
8555 btrfs_tree_lock(path->nodes[level]);
8556 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8557 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8558
8559 ret = btrfs_lookup_extent_info(trans, root,
8560 path->nodes[level]->start,
3173a18f 8561 level, 1, &wc->refs[level],
2c47e605 8562 &wc->flags[level]);
79787eaa
JM
8563 if (ret < 0) {
8564 err = ret;
8565 goto out_end_trans;
8566 }
2c47e605
YZ
8567 BUG_ON(wc->refs[level] == 0);
8568
8569 if (level == root_item->drop_level)
8570 break;
8571
8572 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8573 path->locks[level] = 0;
2c47e605
YZ
8574 WARN_ON(wc->refs[level] != 1);
8575 level--;
8576 }
9f3a7427 8577 }
2c47e605
YZ
8578
8579 wc->level = level;
8580 wc->shared_level = -1;
8581 wc->stage = DROP_REFERENCE;
8582 wc->update_ref = update_ref;
8583 wc->keep_locks = 0;
66d7e7f0 8584 wc->for_reloc = for_reloc;
1c4850e2 8585 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8586
d397712b 8587 while (1) {
9d1a2a3a 8588
2c47e605
YZ
8589 ret = walk_down_tree(trans, root, path, wc);
8590 if (ret < 0) {
8591 err = ret;
20524f02 8592 break;
2c47e605 8593 }
9aca1d51 8594
2c47e605
YZ
8595 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8596 if (ret < 0) {
8597 err = ret;
20524f02 8598 break;
2c47e605
YZ
8599 }
8600
8601 if (ret > 0) {
8602 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8603 break;
8604 }
2c47e605
YZ
8605
8606 if (wc->stage == DROP_REFERENCE) {
8607 level = wc->level;
8608 btrfs_node_key(path->nodes[level],
8609 &root_item->drop_progress,
8610 path->slots[level]);
8611 root_item->drop_level = level;
8612 }
8613
8614 BUG_ON(wc->level == 0);
3c8f2422
JB
8615 if (btrfs_should_end_transaction(trans, tree_root) ||
8616 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8617 ret = btrfs_update_root(trans, tree_root,
8618 &root->root_key,
8619 root_item);
79787eaa
JM
8620 if (ret) {
8621 btrfs_abort_transaction(trans, tree_root, ret);
8622 err = ret;
8623 goto out_end_trans;
8624 }
2c47e605 8625
3fd0a558 8626 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8627 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8628 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8629 err = -EAGAIN;
8630 goto out_free;
8631 }
8632
a22285a6 8633 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8634 if (IS_ERR(trans)) {
8635 err = PTR_ERR(trans);
8636 goto out_free;
8637 }
3fd0a558
YZ
8638 if (block_rsv)
8639 trans->block_rsv = block_rsv;
c3e69d58 8640 }
20524f02 8641 }
b3b4aa74 8642 btrfs_release_path(path);
79787eaa
JM
8643 if (err)
8644 goto out_end_trans;
2c47e605
YZ
8645
8646 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8647 if (ret) {
8648 btrfs_abort_transaction(trans, tree_root, ret);
8649 goto out_end_trans;
8650 }
2c47e605 8651
76dda93c 8652 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8653 ret = btrfs_find_root(tree_root, &root->root_key, path,
8654 NULL, NULL);
79787eaa
JM
8655 if (ret < 0) {
8656 btrfs_abort_transaction(trans, tree_root, ret);
8657 err = ret;
8658 goto out_end_trans;
8659 } else if (ret > 0) {
84cd948c
JB
8660 /* if we fail to delete the orphan item this time
8661 * around, it'll get picked up the next time.
8662 *
8663 * The most common failure here is just -ENOENT.
8664 */
8665 btrfs_del_orphan_item(trans, tree_root,
8666 root->root_key.objectid);
76dda93c
YZ
8667 }
8668 }
8669
27cdeb70 8670 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8671 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8672 } else {
8673 free_extent_buffer(root->node);
8674 free_extent_buffer(root->commit_root);
b0feb9d9 8675 btrfs_put_fs_root(root);
76dda93c 8676 }
d29a9f62 8677 root_dropped = true;
79787eaa 8678out_end_trans:
3fd0a558 8679 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8680out_free:
2c47e605 8681 kfree(wc);
5caf2a00 8682 btrfs_free_path(path);
cb1b69f4 8683out:
d29a9f62
JB
8684 /*
8685 * So if we need to stop dropping the snapshot for whatever reason we
8686 * need to make sure to add it back to the dead root list so that we
8687 * keep trying to do the work later. This also cleans up roots if we
8688 * don't have it in the radix (like when we recover after a power fail
8689 * or unmount) so we don't leak memory.
8690 */
b37b39cd 8691 if (!for_reloc && root_dropped == false)
d29a9f62 8692 btrfs_add_dead_root(root);
90515e7f 8693 if (err && err != -EAGAIN)
a4553fef 8694 btrfs_std_error(root->fs_info, err, NULL);
2c536799 8695 return err;
20524f02 8696}
9078a3e1 8697
2c47e605
YZ
8698/*
8699 * drop subtree rooted at tree block 'node'.
8700 *
8701 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8702 * only used by relocation code
2c47e605 8703 */
f82d02d9
YZ
8704int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8705 struct btrfs_root *root,
8706 struct extent_buffer *node,
8707 struct extent_buffer *parent)
8708{
8709 struct btrfs_path *path;
2c47e605 8710 struct walk_control *wc;
f82d02d9
YZ
8711 int level;
8712 int parent_level;
8713 int ret = 0;
8714 int wret;
8715
2c47e605
YZ
8716 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8717
f82d02d9 8718 path = btrfs_alloc_path();
db5b493a
TI
8719 if (!path)
8720 return -ENOMEM;
f82d02d9 8721
2c47e605 8722 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8723 if (!wc) {
8724 btrfs_free_path(path);
8725 return -ENOMEM;
8726 }
2c47e605 8727
b9447ef8 8728 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8729 parent_level = btrfs_header_level(parent);
8730 extent_buffer_get(parent);
8731 path->nodes[parent_level] = parent;
8732 path->slots[parent_level] = btrfs_header_nritems(parent);
8733
b9447ef8 8734 btrfs_assert_tree_locked(node);
f82d02d9 8735 level = btrfs_header_level(node);
f82d02d9
YZ
8736 path->nodes[level] = node;
8737 path->slots[level] = 0;
bd681513 8738 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8739
8740 wc->refs[parent_level] = 1;
8741 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8742 wc->level = level;
8743 wc->shared_level = -1;
8744 wc->stage = DROP_REFERENCE;
8745 wc->update_ref = 0;
8746 wc->keep_locks = 1;
66d7e7f0 8747 wc->for_reloc = 1;
1c4850e2 8748 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8749
8750 while (1) {
2c47e605
YZ
8751 wret = walk_down_tree(trans, root, path, wc);
8752 if (wret < 0) {
f82d02d9 8753 ret = wret;
f82d02d9 8754 break;
2c47e605 8755 }
f82d02d9 8756
2c47e605 8757 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8758 if (wret < 0)
8759 ret = wret;
8760 if (wret != 0)
8761 break;
8762 }
8763
2c47e605 8764 kfree(wc);
f82d02d9
YZ
8765 btrfs_free_path(path);
8766 return ret;
8767}
8768
ec44a35c
CM
8769static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8770{
8771 u64 num_devices;
fc67c450 8772 u64 stripped;
e4d8ec0f 8773
fc67c450
ID
8774 /*
8775 * if restripe for this chunk_type is on pick target profile and
8776 * return, otherwise do the usual balance
8777 */
8778 stripped = get_restripe_target(root->fs_info, flags);
8779 if (stripped)
8780 return extended_to_chunk(stripped);
e4d8ec0f 8781
95669976 8782 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8783
fc67c450 8784 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8785 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8786 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8787
ec44a35c
CM
8788 if (num_devices == 1) {
8789 stripped |= BTRFS_BLOCK_GROUP_DUP;
8790 stripped = flags & ~stripped;
8791
8792 /* turn raid0 into single device chunks */
8793 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8794 return stripped;
8795
8796 /* turn mirroring into duplication */
8797 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8798 BTRFS_BLOCK_GROUP_RAID10))
8799 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8800 } else {
8801 /* they already had raid on here, just return */
ec44a35c
CM
8802 if (flags & stripped)
8803 return flags;
8804
8805 stripped |= BTRFS_BLOCK_GROUP_DUP;
8806 stripped = flags & ~stripped;
8807
8808 /* switch duplicated blocks with raid1 */
8809 if (flags & BTRFS_BLOCK_GROUP_DUP)
8810 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8811
e3176ca2 8812 /* this is drive concat, leave it alone */
ec44a35c 8813 }
e3176ca2 8814
ec44a35c
CM
8815 return flags;
8816}
8817
868f401a 8818static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8819{
f0486c68
YZ
8820 struct btrfs_space_info *sinfo = cache->space_info;
8821 u64 num_bytes;
199c36ea 8822 u64 min_allocable_bytes;
f0486c68 8823 int ret = -ENOSPC;
0ef3e66b 8824
199c36ea
MX
8825 /*
8826 * We need some metadata space and system metadata space for
8827 * allocating chunks in some corner cases until we force to set
8828 * it to be readonly.
8829 */
8830 if ((sinfo->flags &
8831 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8832 !force)
8833 min_allocable_bytes = 1 * 1024 * 1024;
8834 else
8835 min_allocable_bytes = 0;
8836
f0486c68
YZ
8837 spin_lock(&sinfo->lock);
8838 spin_lock(&cache->lock);
61cfea9b
W
8839
8840 if (cache->ro) {
868f401a 8841 cache->ro++;
61cfea9b
W
8842 ret = 0;
8843 goto out;
8844 }
8845
f0486c68
YZ
8846 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8847 cache->bytes_super - btrfs_block_group_used(&cache->item);
8848
8849 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8850 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8851 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8852 sinfo->bytes_readonly += num_bytes;
868f401a 8853 cache->ro++;
633c0aad 8854 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8855 ret = 0;
8856 }
61cfea9b 8857out:
f0486c68
YZ
8858 spin_unlock(&cache->lock);
8859 spin_unlock(&sinfo->lock);
8860 return ret;
8861}
7d9eb12c 8862
868f401a 8863int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 8864 struct btrfs_block_group_cache *cache)
c286ac48 8865
f0486c68
YZ
8866{
8867 struct btrfs_trans_handle *trans;
8868 u64 alloc_flags;
8869 int ret;
7d9eb12c 8870
1bbc621e 8871again:
ff5714cc 8872 trans = btrfs_join_transaction(root);
79787eaa
JM
8873 if (IS_ERR(trans))
8874 return PTR_ERR(trans);
5d4f98a2 8875
1bbc621e
CM
8876 /*
8877 * we're not allowed to set block groups readonly after the dirty
8878 * block groups cache has started writing. If it already started,
8879 * back off and let this transaction commit
8880 */
8881 mutex_lock(&root->fs_info->ro_block_group_mutex);
8882 if (trans->transaction->dirty_bg_run) {
8883 u64 transid = trans->transid;
8884
8885 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8886 btrfs_end_transaction(trans, root);
8887
8888 ret = btrfs_wait_for_commit(root, transid);
8889 if (ret)
8890 return ret;
8891 goto again;
8892 }
8893
153c35b6
CM
8894 /*
8895 * if we are changing raid levels, try to allocate a corresponding
8896 * block group with the new raid level.
8897 */
8898 alloc_flags = update_block_group_flags(root, cache->flags);
8899 if (alloc_flags != cache->flags) {
8900 ret = do_chunk_alloc(trans, root, alloc_flags,
8901 CHUNK_ALLOC_FORCE);
8902 /*
8903 * ENOSPC is allowed here, we may have enough space
8904 * already allocated at the new raid level to
8905 * carry on
8906 */
8907 if (ret == -ENOSPC)
8908 ret = 0;
8909 if (ret < 0)
8910 goto out;
8911 }
1bbc621e 8912
868f401a 8913 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
8914 if (!ret)
8915 goto out;
8916 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8917 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8918 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8919 if (ret < 0)
8920 goto out;
868f401a 8921 ret = inc_block_group_ro(cache, 0);
f0486c68 8922out:
2f081088
SL
8923 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8924 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8925 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8926 check_system_chunk(trans, root, alloc_flags);
a9629596 8927 unlock_chunks(root->fs_info->chunk_root);
2f081088 8928 }
1bbc621e 8929 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8930
f0486c68
YZ
8931 btrfs_end_transaction(trans, root);
8932 return ret;
8933}
5d4f98a2 8934
c87f08ca
CM
8935int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8936 struct btrfs_root *root, u64 type)
8937{
8938 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8939 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8940 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8941}
8942
6d07bcec
MX
8943/*
8944 * helper to account the unused space of all the readonly block group in the
633c0aad 8945 * space_info. takes mirrors into account.
6d07bcec 8946 */
633c0aad 8947u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8948{
8949 struct btrfs_block_group_cache *block_group;
8950 u64 free_bytes = 0;
8951 int factor;
8952
633c0aad
JB
8953 /* It's df, we don't care if it's racey */
8954 if (list_empty(&sinfo->ro_bgs))
8955 return 0;
8956
8957 spin_lock(&sinfo->lock);
8958 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8959 spin_lock(&block_group->lock);
8960
8961 if (!block_group->ro) {
8962 spin_unlock(&block_group->lock);
8963 continue;
8964 }
8965
8966 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8967 BTRFS_BLOCK_GROUP_RAID10 |
8968 BTRFS_BLOCK_GROUP_DUP))
8969 factor = 2;
8970 else
8971 factor = 1;
8972
8973 free_bytes += (block_group->key.offset -
8974 btrfs_block_group_used(&block_group->item)) *
8975 factor;
8976
8977 spin_unlock(&block_group->lock);
8978 }
6d07bcec
MX
8979 spin_unlock(&sinfo->lock);
8980
8981 return free_bytes;
8982}
8983
868f401a 8984void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 8985 struct btrfs_block_group_cache *cache)
5d4f98a2 8986{
f0486c68
YZ
8987 struct btrfs_space_info *sinfo = cache->space_info;
8988 u64 num_bytes;
8989
8990 BUG_ON(!cache->ro);
8991
8992 spin_lock(&sinfo->lock);
8993 spin_lock(&cache->lock);
868f401a
Z
8994 if (!--cache->ro) {
8995 num_bytes = cache->key.offset - cache->reserved -
8996 cache->pinned - cache->bytes_super -
8997 btrfs_block_group_used(&cache->item);
8998 sinfo->bytes_readonly -= num_bytes;
8999 list_del_init(&cache->ro_list);
9000 }
f0486c68
YZ
9001 spin_unlock(&cache->lock);
9002 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9003}
9004
ba1bf481
JB
9005/*
9006 * checks to see if its even possible to relocate this block group.
9007 *
9008 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9009 * ok to go ahead and try.
9010 */
9011int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9012{
ba1bf481
JB
9013 struct btrfs_block_group_cache *block_group;
9014 struct btrfs_space_info *space_info;
9015 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9016 struct btrfs_device *device;
6df9a95e 9017 struct btrfs_trans_handle *trans;
cdcb725c 9018 u64 min_free;
6719db6a
JB
9019 u64 dev_min = 1;
9020 u64 dev_nr = 0;
4a5e98f5 9021 u64 target;
cdcb725c 9022 int index;
ba1bf481
JB
9023 int full = 0;
9024 int ret = 0;
1a40e23b 9025
ba1bf481 9026 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9027
ba1bf481
JB
9028 /* odd, couldn't find the block group, leave it alone */
9029 if (!block_group)
9030 return -1;
1a40e23b 9031
cdcb725c 9032 min_free = btrfs_block_group_used(&block_group->item);
9033
ba1bf481 9034 /* no bytes used, we're good */
cdcb725c 9035 if (!min_free)
1a40e23b
ZY
9036 goto out;
9037
ba1bf481
JB
9038 space_info = block_group->space_info;
9039 spin_lock(&space_info->lock);
17d217fe 9040
ba1bf481 9041 full = space_info->full;
17d217fe 9042
ba1bf481
JB
9043 /*
9044 * if this is the last block group we have in this space, we can't
7ce618db
CM
9045 * relocate it unless we're able to allocate a new chunk below.
9046 *
9047 * Otherwise, we need to make sure we have room in the space to handle
9048 * all of the extents from this block group. If we can, we're good
ba1bf481 9049 */
7ce618db 9050 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9051 (space_info->bytes_used + space_info->bytes_reserved +
9052 space_info->bytes_pinned + space_info->bytes_readonly +
9053 min_free < space_info->total_bytes)) {
ba1bf481
JB
9054 spin_unlock(&space_info->lock);
9055 goto out;
17d217fe 9056 }
ba1bf481 9057 spin_unlock(&space_info->lock);
ea8c2819 9058
ba1bf481
JB
9059 /*
9060 * ok we don't have enough space, but maybe we have free space on our
9061 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9062 * alloc devices and guess if we have enough space. if this block
9063 * group is going to be restriped, run checks against the target
9064 * profile instead of the current one.
ba1bf481
JB
9065 */
9066 ret = -1;
ea8c2819 9067
cdcb725c 9068 /*
9069 * index:
9070 * 0: raid10
9071 * 1: raid1
9072 * 2: dup
9073 * 3: raid0
9074 * 4: single
9075 */
4a5e98f5
ID
9076 target = get_restripe_target(root->fs_info, block_group->flags);
9077 if (target) {
31e50229 9078 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9079 } else {
9080 /*
9081 * this is just a balance, so if we were marked as full
9082 * we know there is no space for a new chunk
9083 */
9084 if (full)
9085 goto out;
9086
9087 index = get_block_group_index(block_group);
9088 }
9089
e6ec716f 9090 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9091 dev_min = 4;
6719db6a
JB
9092 /* Divide by 2 */
9093 min_free >>= 1;
e6ec716f 9094 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9095 dev_min = 2;
e6ec716f 9096 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9097 /* Multiply by 2 */
9098 min_free <<= 1;
e6ec716f 9099 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9100 dev_min = fs_devices->rw_devices;
47c5713f 9101 min_free = div64_u64(min_free, dev_min);
cdcb725c 9102 }
9103
6df9a95e
JB
9104 /* We need to do this so that we can look at pending chunks */
9105 trans = btrfs_join_transaction(root);
9106 if (IS_ERR(trans)) {
9107 ret = PTR_ERR(trans);
9108 goto out;
9109 }
9110
ba1bf481
JB
9111 mutex_lock(&root->fs_info->chunk_mutex);
9112 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9113 u64 dev_offset;
56bec294 9114
ba1bf481
JB
9115 /*
9116 * check to make sure we can actually find a chunk with enough
9117 * space to fit our block group in.
9118 */
63a212ab
SB
9119 if (device->total_bytes > device->bytes_used + min_free &&
9120 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9121 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9122 &dev_offset, NULL);
ba1bf481 9123 if (!ret)
cdcb725c 9124 dev_nr++;
9125
9126 if (dev_nr >= dev_min)
73e48b27 9127 break;
cdcb725c 9128
ba1bf481 9129 ret = -1;
725c8463 9130 }
edbd8d4e 9131 }
ba1bf481 9132 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9133 btrfs_end_transaction(trans, root);
edbd8d4e 9134out:
ba1bf481 9135 btrfs_put_block_group(block_group);
edbd8d4e
CM
9136 return ret;
9137}
9138
b2950863
CH
9139static int find_first_block_group(struct btrfs_root *root,
9140 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9141{
925baedd 9142 int ret = 0;
0b86a832
CM
9143 struct btrfs_key found_key;
9144 struct extent_buffer *leaf;
9145 int slot;
edbd8d4e 9146
0b86a832
CM
9147 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9148 if (ret < 0)
925baedd
CM
9149 goto out;
9150
d397712b 9151 while (1) {
0b86a832 9152 slot = path->slots[0];
edbd8d4e 9153 leaf = path->nodes[0];
0b86a832
CM
9154 if (slot >= btrfs_header_nritems(leaf)) {
9155 ret = btrfs_next_leaf(root, path);
9156 if (ret == 0)
9157 continue;
9158 if (ret < 0)
925baedd 9159 goto out;
0b86a832 9160 break;
edbd8d4e 9161 }
0b86a832 9162 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9163
0b86a832 9164 if (found_key.objectid >= key->objectid &&
925baedd
CM
9165 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9166 ret = 0;
9167 goto out;
9168 }
0b86a832 9169 path->slots[0]++;
edbd8d4e 9170 }
925baedd 9171out:
0b86a832 9172 return ret;
edbd8d4e
CM
9173}
9174
0af3d00b
JB
9175void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9176{
9177 struct btrfs_block_group_cache *block_group;
9178 u64 last = 0;
9179
9180 while (1) {
9181 struct inode *inode;
9182
9183 block_group = btrfs_lookup_first_block_group(info, last);
9184 while (block_group) {
9185 spin_lock(&block_group->lock);
9186 if (block_group->iref)
9187 break;
9188 spin_unlock(&block_group->lock);
9189 block_group = next_block_group(info->tree_root,
9190 block_group);
9191 }
9192 if (!block_group) {
9193 if (last == 0)
9194 break;
9195 last = 0;
9196 continue;
9197 }
9198
9199 inode = block_group->inode;
9200 block_group->iref = 0;
9201 block_group->inode = NULL;
9202 spin_unlock(&block_group->lock);
9203 iput(inode);
9204 last = block_group->key.objectid + block_group->key.offset;
9205 btrfs_put_block_group(block_group);
9206 }
9207}
9208
1a40e23b
ZY
9209int btrfs_free_block_groups(struct btrfs_fs_info *info)
9210{
9211 struct btrfs_block_group_cache *block_group;
4184ea7f 9212 struct btrfs_space_info *space_info;
11833d66 9213 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9214 struct rb_node *n;
9215
9e351cc8 9216 down_write(&info->commit_root_sem);
11833d66
YZ
9217 while (!list_empty(&info->caching_block_groups)) {
9218 caching_ctl = list_entry(info->caching_block_groups.next,
9219 struct btrfs_caching_control, list);
9220 list_del(&caching_ctl->list);
9221 put_caching_control(caching_ctl);
9222 }
9e351cc8 9223 up_write(&info->commit_root_sem);
11833d66 9224
47ab2a6c
JB
9225 spin_lock(&info->unused_bgs_lock);
9226 while (!list_empty(&info->unused_bgs)) {
9227 block_group = list_first_entry(&info->unused_bgs,
9228 struct btrfs_block_group_cache,
9229 bg_list);
9230 list_del_init(&block_group->bg_list);
9231 btrfs_put_block_group(block_group);
9232 }
9233 spin_unlock(&info->unused_bgs_lock);
9234
1a40e23b
ZY
9235 spin_lock(&info->block_group_cache_lock);
9236 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9237 block_group = rb_entry(n, struct btrfs_block_group_cache,
9238 cache_node);
1a40e23b
ZY
9239 rb_erase(&block_group->cache_node,
9240 &info->block_group_cache_tree);
01eacb27 9241 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9242 spin_unlock(&info->block_group_cache_lock);
9243
80eb234a 9244 down_write(&block_group->space_info->groups_sem);
1a40e23b 9245 list_del(&block_group->list);
80eb234a 9246 up_write(&block_group->space_info->groups_sem);
d2fb3437 9247
817d52f8 9248 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9249 wait_block_group_cache_done(block_group);
817d52f8 9250
3c14874a
JB
9251 /*
9252 * We haven't cached this block group, which means we could
9253 * possibly have excluded extents on this block group.
9254 */
36cce922
JB
9255 if (block_group->cached == BTRFS_CACHE_NO ||
9256 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9257 free_excluded_extents(info->extent_root, block_group);
9258
817d52f8 9259 btrfs_remove_free_space_cache(block_group);
11dfe35a 9260 btrfs_put_block_group(block_group);
d899e052
YZ
9261
9262 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9263 }
9264 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9265
9266 /* now that all the block groups are freed, go through and
9267 * free all the space_info structs. This is only called during
9268 * the final stages of unmount, and so we know nobody is
9269 * using them. We call synchronize_rcu() once before we start,
9270 * just to be on the safe side.
9271 */
9272 synchronize_rcu();
9273
8929ecfa
YZ
9274 release_global_block_rsv(info);
9275
67871254 9276 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9277 int i;
9278
4184ea7f
CM
9279 space_info = list_entry(info->space_info.next,
9280 struct btrfs_space_info,
9281 list);
b069e0c3 9282 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9283 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9284 space_info->bytes_reserved > 0 ||
fae7f21c 9285 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9286 dump_space_info(space_info, 0, 0);
9287 }
f0486c68 9288 }
4184ea7f 9289 list_del(&space_info->list);
6ab0a202
JM
9290 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9291 struct kobject *kobj;
c1895442
JM
9292 kobj = space_info->block_group_kobjs[i];
9293 space_info->block_group_kobjs[i] = NULL;
9294 if (kobj) {
6ab0a202
JM
9295 kobject_del(kobj);
9296 kobject_put(kobj);
9297 }
9298 }
9299 kobject_del(&space_info->kobj);
9300 kobject_put(&space_info->kobj);
4184ea7f 9301 }
1a40e23b
ZY
9302 return 0;
9303}
9304
b742bb82
YZ
9305static void __link_block_group(struct btrfs_space_info *space_info,
9306 struct btrfs_block_group_cache *cache)
9307{
9308 int index = get_block_group_index(cache);
ed55b6ac 9309 bool first = false;
b742bb82
YZ
9310
9311 down_write(&space_info->groups_sem);
ed55b6ac
JM
9312 if (list_empty(&space_info->block_groups[index]))
9313 first = true;
9314 list_add_tail(&cache->list, &space_info->block_groups[index]);
9315 up_write(&space_info->groups_sem);
9316
9317 if (first) {
c1895442 9318 struct raid_kobject *rkobj;
6ab0a202
JM
9319 int ret;
9320
c1895442
JM
9321 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9322 if (!rkobj)
9323 goto out_err;
9324 rkobj->raid_type = index;
9325 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9326 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9327 "%s", get_raid_name(index));
6ab0a202 9328 if (ret) {
c1895442
JM
9329 kobject_put(&rkobj->kobj);
9330 goto out_err;
6ab0a202 9331 }
c1895442 9332 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9333 }
c1895442
JM
9334
9335 return;
9336out_err:
9337 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9338}
9339
920e4a58
MX
9340static struct btrfs_block_group_cache *
9341btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9342{
9343 struct btrfs_block_group_cache *cache;
9344
9345 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9346 if (!cache)
9347 return NULL;
9348
9349 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9350 GFP_NOFS);
9351 if (!cache->free_space_ctl) {
9352 kfree(cache);
9353 return NULL;
9354 }
9355
9356 cache->key.objectid = start;
9357 cache->key.offset = size;
9358 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9359
9360 cache->sectorsize = root->sectorsize;
9361 cache->fs_info = root->fs_info;
9362 cache->full_stripe_len = btrfs_full_stripe_len(root,
9363 &root->fs_info->mapping_tree,
9364 start);
9365 atomic_set(&cache->count, 1);
9366 spin_lock_init(&cache->lock);
e570fd27 9367 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9368 INIT_LIST_HEAD(&cache->list);
9369 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9370 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9371 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9372 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9373 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9374 btrfs_init_free_space_ctl(cache);
04216820 9375 atomic_set(&cache->trimming, 0);
920e4a58
MX
9376
9377 return cache;
9378}
9379
9078a3e1
CM
9380int btrfs_read_block_groups(struct btrfs_root *root)
9381{
9382 struct btrfs_path *path;
9383 int ret;
9078a3e1 9384 struct btrfs_block_group_cache *cache;
be744175 9385 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9386 struct btrfs_space_info *space_info;
9078a3e1
CM
9387 struct btrfs_key key;
9388 struct btrfs_key found_key;
5f39d397 9389 struct extent_buffer *leaf;
0af3d00b
JB
9390 int need_clear = 0;
9391 u64 cache_gen;
96b5179d 9392
be744175 9393 root = info->extent_root;
9078a3e1 9394 key.objectid = 0;
0b86a832 9395 key.offset = 0;
962a298f 9396 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9397 path = btrfs_alloc_path();
9398 if (!path)
9399 return -ENOMEM;
026fd317 9400 path->reada = 1;
9078a3e1 9401
6c41761f 9402 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9403 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9404 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9405 need_clear = 1;
88c2ba3b
JB
9406 if (btrfs_test_opt(root, CLEAR_CACHE))
9407 need_clear = 1;
0af3d00b 9408
d397712b 9409 while (1) {
0b86a832 9410 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9411 if (ret > 0)
9412 break;
0b86a832
CM
9413 if (ret != 0)
9414 goto error;
920e4a58 9415
5f39d397
CM
9416 leaf = path->nodes[0];
9417 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9418
9419 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9420 found_key.offset);
9078a3e1 9421 if (!cache) {
0b86a832 9422 ret = -ENOMEM;
f0486c68 9423 goto error;
9078a3e1 9424 }
96303081 9425
cf7c1ef6
LB
9426 if (need_clear) {
9427 /*
9428 * When we mount with old space cache, we need to
9429 * set BTRFS_DC_CLEAR and set dirty flag.
9430 *
9431 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9432 * truncate the old free space cache inode and
9433 * setup a new one.
9434 * b) Setting 'dirty flag' makes sure that we flush
9435 * the new space cache info onto disk.
9436 */
cf7c1ef6 9437 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9438 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9439 }
0af3d00b 9440
5f39d397
CM
9441 read_extent_buffer(leaf, &cache->item,
9442 btrfs_item_ptr_offset(leaf, path->slots[0]),
9443 sizeof(cache->item));
920e4a58 9444 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9445
9078a3e1 9446 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9447 btrfs_release_path(path);
34d52cb6 9448
3c14874a
JB
9449 /*
9450 * We need to exclude the super stripes now so that the space
9451 * info has super bytes accounted for, otherwise we'll think
9452 * we have more space than we actually do.
9453 */
835d974f
JB
9454 ret = exclude_super_stripes(root, cache);
9455 if (ret) {
9456 /*
9457 * We may have excluded something, so call this just in
9458 * case.
9459 */
9460 free_excluded_extents(root, cache);
920e4a58 9461 btrfs_put_block_group(cache);
835d974f
JB
9462 goto error;
9463 }
3c14874a 9464
817d52f8
JB
9465 /*
9466 * check for two cases, either we are full, and therefore
9467 * don't need to bother with the caching work since we won't
9468 * find any space, or we are empty, and we can just add all
9469 * the space in and be done with it. This saves us _alot_ of
9470 * time, particularly in the full case.
9471 */
9472 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9473 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9474 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9475 free_excluded_extents(root, cache);
817d52f8 9476 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9477 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9478 cache->cached = BTRFS_CACHE_FINISHED;
9479 add_new_free_space(cache, root->fs_info,
9480 found_key.objectid,
9481 found_key.objectid +
9482 found_key.offset);
11833d66 9483 free_excluded_extents(root, cache);
817d52f8 9484 }
96b5179d 9485
8c579fe7
JB
9486 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9487 if (ret) {
9488 btrfs_remove_free_space_cache(cache);
9489 btrfs_put_block_group(cache);
9490 goto error;
9491 }
9492
6324fbf3
CM
9493 ret = update_space_info(info, cache->flags, found_key.offset,
9494 btrfs_block_group_used(&cache->item),
9495 &space_info);
8c579fe7
JB
9496 if (ret) {
9497 btrfs_remove_free_space_cache(cache);
9498 spin_lock(&info->block_group_cache_lock);
9499 rb_erase(&cache->cache_node,
9500 &info->block_group_cache_tree);
01eacb27 9501 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9502 spin_unlock(&info->block_group_cache_lock);
9503 btrfs_put_block_group(cache);
9504 goto error;
9505 }
9506
6324fbf3 9507 cache->space_info = space_info;
1b2da372 9508 spin_lock(&cache->space_info->lock);
f0486c68 9509 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9510 spin_unlock(&cache->space_info->lock);
9511
b742bb82 9512 __link_block_group(space_info, cache);
0f9dd46c 9513
75ccf47d 9514 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9515 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9516 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9517 } else if (btrfs_block_group_used(&cache->item) == 0) {
9518 spin_lock(&info->unused_bgs_lock);
9519 /* Should always be true but just in case. */
9520 if (list_empty(&cache->bg_list)) {
9521 btrfs_get_block_group(cache);
9522 list_add_tail(&cache->bg_list,
9523 &info->unused_bgs);
9524 }
9525 spin_unlock(&info->unused_bgs_lock);
9526 }
9078a3e1 9527 }
b742bb82
YZ
9528
9529 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9530 if (!(get_alloc_profile(root, space_info->flags) &
9531 (BTRFS_BLOCK_GROUP_RAID10 |
9532 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9533 BTRFS_BLOCK_GROUP_RAID5 |
9534 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9535 BTRFS_BLOCK_GROUP_DUP)))
9536 continue;
9537 /*
9538 * avoid allocating from un-mirrored block group if there are
9539 * mirrored block groups.
9540 */
1095cc0d 9541 list_for_each_entry(cache,
9542 &space_info->block_groups[BTRFS_RAID_RAID0],
9543 list)
868f401a 9544 inc_block_group_ro(cache, 1);
1095cc0d 9545 list_for_each_entry(cache,
9546 &space_info->block_groups[BTRFS_RAID_SINGLE],
9547 list)
868f401a 9548 inc_block_group_ro(cache, 1);
9078a3e1 9549 }
f0486c68
YZ
9550
9551 init_global_block_rsv(info);
0b86a832
CM
9552 ret = 0;
9553error:
9078a3e1 9554 btrfs_free_path(path);
0b86a832 9555 return ret;
9078a3e1 9556}
6324fbf3 9557
ea658bad
JB
9558void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9559 struct btrfs_root *root)
9560{
9561 struct btrfs_block_group_cache *block_group, *tmp;
9562 struct btrfs_root *extent_root = root->fs_info->extent_root;
9563 struct btrfs_block_group_item item;
9564 struct btrfs_key key;
9565 int ret = 0;
d9a0540a 9566 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9567
d9a0540a 9568 trans->can_flush_pending_bgs = false;
47ab2a6c 9569 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9570 if (ret)
c92f6be3 9571 goto next;
ea658bad
JB
9572
9573 spin_lock(&block_group->lock);
9574 memcpy(&item, &block_group->item, sizeof(item));
9575 memcpy(&key, &block_group->key, sizeof(key));
9576 spin_unlock(&block_group->lock);
9577
9578 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9579 sizeof(item));
9580 if (ret)
9581 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9582 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9583 key.objectid, key.offset);
9584 if (ret)
9585 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9586next:
9587 list_del_init(&block_group->bg_list);
ea658bad 9588 }
d9a0540a 9589 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9590}
9591
6324fbf3
CM
9592int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9593 struct btrfs_root *root, u64 bytes_used,
e17cade2 9594 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9595 u64 size)
9596{
9597 int ret;
6324fbf3
CM
9598 struct btrfs_root *extent_root;
9599 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9600
9601 extent_root = root->fs_info->extent_root;
6324fbf3 9602
995946dd 9603 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9604
920e4a58 9605 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9606 if (!cache)
9607 return -ENOMEM;
34d52cb6 9608
6324fbf3 9609 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9610 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9611 btrfs_set_block_group_flags(&cache->item, type);
9612
920e4a58 9613 cache->flags = type;
11833d66 9614 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9615 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9616 ret = exclude_super_stripes(root, cache);
9617 if (ret) {
9618 /*
9619 * We may have excluded something, so call this just in
9620 * case.
9621 */
9622 free_excluded_extents(root, cache);
920e4a58 9623 btrfs_put_block_group(cache);
835d974f
JB
9624 return ret;
9625 }
96303081 9626
817d52f8
JB
9627 add_new_free_space(cache, root->fs_info, chunk_offset,
9628 chunk_offset + size);
9629
11833d66
YZ
9630 free_excluded_extents(root, cache);
9631
2e6e5183
FM
9632 /*
9633 * Call to ensure the corresponding space_info object is created and
9634 * assigned to our block group, but don't update its counters just yet.
9635 * We want our bg to be added to the rbtree with its ->space_info set.
9636 */
9637 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9638 &cache->space_info);
9639 if (ret) {
9640 btrfs_remove_free_space_cache(cache);
9641 btrfs_put_block_group(cache);
9642 return ret;
9643 }
9644
8c579fe7
JB
9645 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9646 if (ret) {
9647 btrfs_remove_free_space_cache(cache);
9648 btrfs_put_block_group(cache);
9649 return ret;
9650 }
9651
2e6e5183
FM
9652 /*
9653 * Now that our block group has its ->space_info set and is inserted in
9654 * the rbtree, update the space info's counters.
9655 */
6324fbf3
CM
9656 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9657 &cache->space_info);
8c579fe7
JB
9658 if (ret) {
9659 btrfs_remove_free_space_cache(cache);
9660 spin_lock(&root->fs_info->block_group_cache_lock);
9661 rb_erase(&cache->cache_node,
9662 &root->fs_info->block_group_cache_tree);
01eacb27 9663 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9664 spin_unlock(&root->fs_info->block_group_cache_lock);
9665 btrfs_put_block_group(cache);
9666 return ret;
9667 }
c7c144db 9668 update_global_block_rsv(root->fs_info);
1b2da372
JB
9669
9670 spin_lock(&cache->space_info->lock);
f0486c68 9671 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9672 spin_unlock(&cache->space_info->lock);
9673
b742bb82 9674 __link_block_group(cache->space_info, cache);
6324fbf3 9675
47ab2a6c 9676 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9677
d18a2c44 9678 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9679
6324fbf3
CM
9680 return 0;
9681}
1a40e23b 9682
10ea00f5
ID
9683static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9684{
899c81ea
ID
9685 u64 extra_flags = chunk_to_extended(flags) &
9686 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9687
de98ced9 9688 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9689 if (flags & BTRFS_BLOCK_GROUP_DATA)
9690 fs_info->avail_data_alloc_bits &= ~extra_flags;
9691 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9692 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9693 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9694 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9695 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9696}
9697
1a40e23b 9698int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9699 struct btrfs_root *root, u64 group_start,
9700 struct extent_map *em)
1a40e23b
ZY
9701{
9702 struct btrfs_path *path;
9703 struct btrfs_block_group_cache *block_group;
44fb5511 9704 struct btrfs_free_cluster *cluster;
0af3d00b 9705 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9706 struct btrfs_key key;
0af3d00b 9707 struct inode *inode;
c1895442 9708 struct kobject *kobj = NULL;
1a40e23b 9709 int ret;
10ea00f5 9710 int index;
89a55897 9711 int factor;
4f69cb98 9712 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9713 bool remove_em;
1a40e23b 9714
1a40e23b
ZY
9715 root = root->fs_info->extent_root;
9716
9717 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9718 BUG_ON(!block_group);
c146afad 9719 BUG_ON(!block_group->ro);
1a40e23b 9720
9f7c43c9 9721 /*
9722 * Free the reserved super bytes from this block group before
9723 * remove it.
9724 */
9725 free_excluded_extents(root, block_group);
9726
1a40e23b 9727 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9728 index = get_block_group_index(block_group);
89a55897
JB
9729 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9730 BTRFS_BLOCK_GROUP_RAID1 |
9731 BTRFS_BLOCK_GROUP_RAID10))
9732 factor = 2;
9733 else
9734 factor = 1;
1a40e23b 9735
44fb5511
CM
9736 /* make sure this block group isn't part of an allocation cluster */
9737 cluster = &root->fs_info->data_alloc_cluster;
9738 spin_lock(&cluster->refill_lock);
9739 btrfs_return_cluster_to_free_space(block_group, cluster);
9740 spin_unlock(&cluster->refill_lock);
9741
9742 /*
9743 * make sure this block group isn't part of a metadata
9744 * allocation cluster
9745 */
9746 cluster = &root->fs_info->meta_alloc_cluster;
9747 spin_lock(&cluster->refill_lock);
9748 btrfs_return_cluster_to_free_space(block_group, cluster);
9749 spin_unlock(&cluster->refill_lock);
9750
1a40e23b 9751 path = btrfs_alloc_path();
d8926bb3
MF
9752 if (!path) {
9753 ret = -ENOMEM;
9754 goto out;
9755 }
1a40e23b 9756
1bbc621e
CM
9757 /*
9758 * get the inode first so any iput calls done for the io_list
9759 * aren't the final iput (no unlinks allowed now)
9760 */
10b2f34d 9761 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9762
9763 mutex_lock(&trans->transaction->cache_write_mutex);
9764 /*
9765 * make sure our free spache cache IO is done before remove the
9766 * free space inode
9767 */
9768 spin_lock(&trans->transaction->dirty_bgs_lock);
9769 if (!list_empty(&block_group->io_list)) {
9770 list_del_init(&block_group->io_list);
9771
9772 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9773
9774 spin_unlock(&trans->transaction->dirty_bgs_lock);
9775 btrfs_wait_cache_io(root, trans, block_group,
9776 &block_group->io_ctl, path,
9777 block_group->key.objectid);
9778 btrfs_put_block_group(block_group);
9779 spin_lock(&trans->transaction->dirty_bgs_lock);
9780 }
9781
9782 if (!list_empty(&block_group->dirty_list)) {
9783 list_del_init(&block_group->dirty_list);
9784 btrfs_put_block_group(block_group);
9785 }
9786 spin_unlock(&trans->transaction->dirty_bgs_lock);
9787 mutex_unlock(&trans->transaction->cache_write_mutex);
9788
0af3d00b 9789 if (!IS_ERR(inode)) {
b532402e 9790 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9791 if (ret) {
9792 btrfs_add_delayed_iput(inode);
9793 goto out;
9794 }
0af3d00b
JB
9795 clear_nlink(inode);
9796 /* One for the block groups ref */
9797 spin_lock(&block_group->lock);
9798 if (block_group->iref) {
9799 block_group->iref = 0;
9800 block_group->inode = NULL;
9801 spin_unlock(&block_group->lock);
9802 iput(inode);
9803 } else {
9804 spin_unlock(&block_group->lock);
9805 }
9806 /* One for our lookup ref */
455757c3 9807 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9808 }
9809
9810 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9811 key.offset = block_group->key.objectid;
9812 key.type = 0;
9813
9814 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9815 if (ret < 0)
9816 goto out;
9817 if (ret > 0)
b3b4aa74 9818 btrfs_release_path(path);
0af3d00b
JB
9819 if (ret == 0) {
9820 ret = btrfs_del_item(trans, tree_root, path);
9821 if (ret)
9822 goto out;
b3b4aa74 9823 btrfs_release_path(path);
0af3d00b
JB
9824 }
9825
3dfdb934 9826 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9827 rb_erase(&block_group->cache_node,
9828 &root->fs_info->block_group_cache_tree);
292cbd51 9829 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9830
9831 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9832 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9833 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9834
80eb234a 9835 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9836 /*
9837 * we must use list_del_init so people can check to see if they
9838 * are still on the list after taking the semaphore
9839 */
9840 list_del_init(&block_group->list);
6ab0a202 9841 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9842 kobj = block_group->space_info->block_group_kobjs[index];
9843 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9844 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9845 }
80eb234a 9846 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9847 if (kobj) {
9848 kobject_del(kobj);
9849 kobject_put(kobj);
9850 }
1a40e23b 9851
4f69cb98
FM
9852 if (block_group->has_caching_ctl)
9853 caching_ctl = get_caching_control(block_group);
817d52f8 9854 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9855 wait_block_group_cache_done(block_group);
4f69cb98
FM
9856 if (block_group->has_caching_ctl) {
9857 down_write(&root->fs_info->commit_root_sem);
9858 if (!caching_ctl) {
9859 struct btrfs_caching_control *ctl;
9860
9861 list_for_each_entry(ctl,
9862 &root->fs_info->caching_block_groups, list)
9863 if (ctl->block_group == block_group) {
9864 caching_ctl = ctl;
9865 atomic_inc(&caching_ctl->count);
9866 break;
9867 }
9868 }
9869 if (caching_ctl)
9870 list_del_init(&caching_ctl->list);
9871 up_write(&root->fs_info->commit_root_sem);
9872 if (caching_ctl) {
9873 /* Once for the caching bgs list and once for us. */
9874 put_caching_control(caching_ctl);
9875 put_caching_control(caching_ctl);
9876 }
9877 }
817d52f8 9878
ce93ec54
JB
9879 spin_lock(&trans->transaction->dirty_bgs_lock);
9880 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9881 WARN_ON(1);
9882 }
9883 if (!list_empty(&block_group->io_list)) {
9884 WARN_ON(1);
ce93ec54
JB
9885 }
9886 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9887 btrfs_remove_free_space_cache(block_group);
9888
c146afad 9889 spin_lock(&block_group->space_info->lock);
75c68e9f 9890 list_del_init(&block_group->ro_list);
18d018ad
ZL
9891
9892 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9893 WARN_ON(block_group->space_info->total_bytes
9894 < block_group->key.offset);
9895 WARN_ON(block_group->space_info->bytes_readonly
9896 < block_group->key.offset);
9897 WARN_ON(block_group->space_info->disk_total
9898 < block_group->key.offset * factor);
9899 }
c146afad
YZ
9900 block_group->space_info->total_bytes -= block_group->key.offset;
9901 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9902 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9903
c146afad 9904 spin_unlock(&block_group->space_info->lock);
283bb197 9905
0af3d00b
JB
9906 memcpy(&key, &block_group->key, sizeof(key));
9907
04216820 9908 lock_chunks(root);
495e64f4
FM
9909 if (!list_empty(&em->list)) {
9910 /* We're in the transaction->pending_chunks list. */
9911 free_extent_map(em);
9912 }
04216820
FM
9913 spin_lock(&block_group->lock);
9914 block_group->removed = 1;
9915 /*
9916 * At this point trimming can't start on this block group, because we
9917 * removed the block group from the tree fs_info->block_group_cache_tree
9918 * so no one can't find it anymore and even if someone already got this
9919 * block group before we removed it from the rbtree, they have already
9920 * incremented block_group->trimming - if they didn't, they won't find
9921 * any free space entries because we already removed them all when we
9922 * called btrfs_remove_free_space_cache().
9923 *
9924 * And we must not remove the extent map from the fs_info->mapping_tree
9925 * to prevent the same logical address range and physical device space
9926 * ranges from being reused for a new block group. This is because our
9927 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9928 * completely transactionless, so while it is trimming a range the
9929 * currently running transaction might finish and a new one start,
9930 * allowing for new block groups to be created that can reuse the same
9931 * physical device locations unless we take this special care.
e33e17ee
JM
9932 *
9933 * There may also be an implicit trim operation if the file system
9934 * is mounted with -odiscard. The same protections must remain
9935 * in place until the extents have been discarded completely when
9936 * the transaction commit has completed.
04216820
FM
9937 */
9938 remove_em = (atomic_read(&block_group->trimming) == 0);
9939 /*
9940 * Make sure a trimmer task always sees the em in the pinned_chunks list
9941 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9942 * before checking block_group->removed).
9943 */
9944 if (!remove_em) {
9945 /*
9946 * Our em might be in trans->transaction->pending_chunks which
9947 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9948 * and so is the fs_info->pinned_chunks list.
9949 *
9950 * So at this point we must be holding the chunk_mutex to avoid
9951 * any races with chunk allocation (more specifically at
9952 * volumes.c:contains_pending_extent()), to ensure it always
9953 * sees the em, either in the pending_chunks list or in the
9954 * pinned_chunks list.
9955 */
9956 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9957 }
9958 spin_unlock(&block_group->lock);
04216820
FM
9959
9960 if (remove_em) {
9961 struct extent_map_tree *em_tree;
9962
9963 em_tree = &root->fs_info->mapping_tree.map_tree;
9964 write_lock(&em_tree->lock);
8dbcd10f
FM
9965 /*
9966 * The em might be in the pending_chunks list, so make sure the
9967 * chunk mutex is locked, since remove_extent_mapping() will
9968 * delete us from that list.
9969 */
04216820
FM
9970 remove_extent_mapping(em_tree, em);
9971 write_unlock(&em_tree->lock);
9972 /* once for the tree */
9973 free_extent_map(em);
9974 }
9975
8dbcd10f
FM
9976 unlock_chunks(root);
9977
fa9c0d79
CM
9978 btrfs_put_block_group(block_group);
9979 btrfs_put_block_group(block_group);
1a40e23b
ZY
9980
9981 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9982 if (ret > 0)
9983 ret = -EIO;
9984 if (ret < 0)
9985 goto out;
9986
9987 ret = btrfs_del_item(trans, root, path);
9988out:
9989 btrfs_free_path(path);
9990 return ret;
9991}
acce952b 9992
47ab2a6c
JB
9993/*
9994 * Process the unused_bgs list and remove any that don't have any allocated
9995 * space inside of them.
9996 */
9997void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9998{
9999 struct btrfs_block_group_cache *block_group;
10000 struct btrfs_space_info *space_info;
10001 struct btrfs_root *root = fs_info->extent_root;
10002 struct btrfs_trans_handle *trans;
10003 int ret = 0;
10004
10005 if (!fs_info->open)
10006 return;
10007
10008 spin_lock(&fs_info->unused_bgs_lock);
10009 while (!list_empty(&fs_info->unused_bgs)) {
10010 u64 start, end;
e33e17ee 10011 int trimming;
47ab2a6c
JB
10012
10013 block_group = list_first_entry(&fs_info->unused_bgs,
10014 struct btrfs_block_group_cache,
10015 bg_list);
10016 space_info = block_group->space_info;
10017 list_del_init(&block_group->bg_list);
10018 if (ret || btrfs_mixed_space_info(space_info)) {
10019 btrfs_put_block_group(block_group);
10020 continue;
10021 }
10022 spin_unlock(&fs_info->unused_bgs_lock);
10023
67c5e7d4
FM
10024 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10025
47ab2a6c
JB
10026 /* Don't want to race with allocators so take the groups_sem */
10027 down_write(&space_info->groups_sem);
10028 spin_lock(&block_group->lock);
10029 if (block_group->reserved ||
10030 btrfs_block_group_used(&block_group->item) ||
10031 block_group->ro) {
10032 /*
10033 * We want to bail if we made new allocations or have
10034 * outstanding allocations in this block group. We do
10035 * the ro check in case balance is currently acting on
10036 * this block group.
10037 */
10038 spin_unlock(&block_group->lock);
10039 up_write(&space_info->groups_sem);
10040 goto next;
10041 }
10042 spin_unlock(&block_group->lock);
10043
10044 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10045 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10046 up_write(&space_info->groups_sem);
10047 if (ret < 0) {
10048 ret = 0;
10049 goto next;
10050 }
10051
10052 /*
10053 * Want to do this before we do anything else so we can recover
10054 * properly if we fail to join the transaction.
10055 */
3d84be79
FL
10056 /* 1 for btrfs_orphan_reserve_metadata() */
10057 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10058 if (IS_ERR(trans)) {
868f401a 10059 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10060 ret = PTR_ERR(trans);
10061 goto next;
10062 }
10063
10064 /*
10065 * We could have pending pinned extents for this block group,
10066 * just delete them, we don't care about them anymore.
10067 */
10068 start = block_group->key.objectid;
10069 end = start + block_group->key.offset - 1;
d4b450cd
FM
10070 /*
10071 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10072 * btrfs_finish_extent_commit(). If we are at transaction N,
10073 * another task might be running finish_extent_commit() for the
10074 * previous transaction N - 1, and have seen a range belonging
10075 * to the block group in freed_extents[] before we were able to
10076 * clear the whole block group range from freed_extents[]. This
10077 * means that task can lookup for the block group after we
10078 * unpinned it from freed_extents[] and removed it, leading to
10079 * a BUG_ON() at btrfs_unpin_extent_range().
10080 */
10081 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10082 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10083 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10084 if (ret) {
d4b450cd 10085 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10086 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10087 goto end_trans;
10088 }
10089 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10090 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10091 if (ret) {
d4b450cd 10092 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10093 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10094 goto end_trans;
10095 }
d4b450cd 10096 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10097
10098 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10099 spin_lock(&space_info->lock);
10100 spin_lock(&block_group->lock);
10101
10102 space_info->bytes_pinned -= block_group->pinned;
10103 space_info->bytes_readonly += block_group->pinned;
10104 percpu_counter_add(&space_info->total_bytes_pinned,
10105 -block_group->pinned);
47ab2a6c
JB
10106 block_group->pinned = 0;
10107
c30666d4
ZL
10108 spin_unlock(&block_group->lock);
10109 spin_unlock(&space_info->lock);
10110
e33e17ee
JM
10111 /* DISCARD can flip during remount */
10112 trimming = btrfs_test_opt(root, DISCARD);
10113
10114 /* Implicit trim during transaction commit. */
10115 if (trimming)
10116 btrfs_get_block_group_trimming(block_group);
10117
47ab2a6c
JB
10118 /*
10119 * Btrfs_remove_chunk will abort the transaction if things go
10120 * horribly wrong.
10121 */
10122 ret = btrfs_remove_chunk(trans, root,
10123 block_group->key.objectid);
e33e17ee
JM
10124
10125 if (ret) {
10126 if (trimming)
10127 btrfs_put_block_group_trimming(block_group);
10128 goto end_trans;
10129 }
10130
10131 /*
10132 * If we're not mounted with -odiscard, we can just forget
10133 * about this block group. Otherwise we'll need to wait
10134 * until transaction commit to do the actual discard.
10135 */
10136 if (trimming) {
10137 WARN_ON(!list_empty(&block_group->bg_list));
10138 spin_lock(&trans->transaction->deleted_bgs_lock);
10139 list_move(&block_group->bg_list,
10140 &trans->transaction->deleted_bgs);
10141 spin_unlock(&trans->transaction->deleted_bgs_lock);
10142 btrfs_get_block_group(block_group);
10143 }
758eb51e 10144end_trans:
47ab2a6c
JB
10145 btrfs_end_transaction(trans, root);
10146next:
67c5e7d4 10147 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10148 btrfs_put_block_group(block_group);
10149 spin_lock(&fs_info->unused_bgs_lock);
10150 }
10151 spin_unlock(&fs_info->unused_bgs_lock);
10152}
10153
c59021f8 10154int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10155{
10156 struct btrfs_space_info *space_info;
1aba86d6 10157 struct btrfs_super_block *disk_super;
10158 u64 features;
10159 u64 flags;
10160 int mixed = 0;
c59021f8 10161 int ret;
10162
6c41761f 10163 disk_super = fs_info->super_copy;
1aba86d6 10164 if (!btrfs_super_root(disk_super))
10165 return 1;
c59021f8 10166
1aba86d6 10167 features = btrfs_super_incompat_flags(disk_super);
10168 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10169 mixed = 1;
c59021f8 10170
1aba86d6 10171 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10172 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10173 if (ret)
1aba86d6 10174 goto out;
c59021f8 10175
1aba86d6 10176 if (mixed) {
10177 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10178 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10179 } else {
10180 flags = BTRFS_BLOCK_GROUP_METADATA;
10181 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10182 if (ret)
10183 goto out;
10184
10185 flags = BTRFS_BLOCK_GROUP_DATA;
10186 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10187 }
10188out:
c59021f8 10189 return ret;
10190}
10191
acce952b 10192int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10193{
678886bd 10194 return unpin_extent_range(root, start, end, false);
acce952b 10195}
10196
499f377f
JM
10197/*
10198 * It used to be that old block groups would be left around forever.
10199 * Iterating over them would be enough to trim unused space. Since we
10200 * now automatically remove them, we also need to iterate over unallocated
10201 * space.
10202 *
10203 * We don't want a transaction for this since the discard may take a
10204 * substantial amount of time. We don't require that a transaction be
10205 * running, but we do need to take a running transaction into account
10206 * to ensure that we're not discarding chunks that were released in
10207 * the current transaction.
10208 *
10209 * Holding the chunks lock will prevent other threads from allocating
10210 * or releasing chunks, but it won't prevent a running transaction
10211 * from committing and releasing the memory that the pending chunks
10212 * list head uses. For that, we need to take a reference to the
10213 * transaction.
10214 */
10215static int btrfs_trim_free_extents(struct btrfs_device *device,
10216 u64 minlen, u64 *trimmed)
10217{
10218 u64 start = 0, len = 0;
10219 int ret;
10220
10221 *trimmed = 0;
10222
10223 /* Not writeable = nothing to do. */
10224 if (!device->writeable)
10225 return 0;
10226
10227 /* No free space = nothing to do. */
10228 if (device->total_bytes <= device->bytes_used)
10229 return 0;
10230
10231 ret = 0;
10232
10233 while (1) {
10234 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10235 struct btrfs_transaction *trans;
10236 u64 bytes;
10237
10238 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10239 if (ret)
10240 return ret;
10241
10242 down_read(&fs_info->commit_root_sem);
10243
10244 spin_lock(&fs_info->trans_lock);
10245 trans = fs_info->running_transaction;
10246 if (trans)
10247 atomic_inc(&trans->use_count);
10248 spin_unlock(&fs_info->trans_lock);
10249
10250 ret = find_free_dev_extent_start(trans, device, minlen, start,
10251 &start, &len);
10252 if (trans)
10253 btrfs_put_transaction(trans);
10254
10255 if (ret) {
10256 up_read(&fs_info->commit_root_sem);
10257 mutex_unlock(&fs_info->chunk_mutex);
10258 if (ret == -ENOSPC)
10259 ret = 0;
10260 break;
10261 }
10262
10263 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10264 up_read(&fs_info->commit_root_sem);
10265 mutex_unlock(&fs_info->chunk_mutex);
10266
10267 if (ret)
10268 break;
10269
10270 start += len;
10271 *trimmed += bytes;
10272
10273 if (fatal_signal_pending(current)) {
10274 ret = -ERESTARTSYS;
10275 break;
10276 }
10277
10278 cond_resched();
10279 }
10280
10281 return ret;
10282}
10283
f7039b1d
LD
10284int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10285{
10286 struct btrfs_fs_info *fs_info = root->fs_info;
10287 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10288 struct btrfs_device *device;
10289 struct list_head *devices;
f7039b1d
LD
10290 u64 group_trimmed;
10291 u64 start;
10292 u64 end;
10293 u64 trimmed = 0;
2cac13e4 10294 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10295 int ret = 0;
10296
2cac13e4
LB
10297 /*
10298 * try to trim all FS space, our block group may start from non-zero.
10299 */
10300 if (range->len == total_bytes)
10301 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10302 else
10303 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10304
10305 while (cache) {
10306 if (cache->key.objectid >= (range->start + range->len)) {
10307 btrfs_put_block_group(cache);
10308 break;
10309 }
10310
10311 start = max(range->start, cache->key.objectid);
10312 end = min(range->start + range->len,
10313 cache->key.objectid + cache->key.offset);
10314
10315 if (end - start >= range->minlen) {
10316 if (!block_group_cache_done(cache)) {
f6373bf3 10317 ret = cache_block_group(cache, 0);
1be41b78
JB
10318 if (ret) {
10319 btrfs_put_block_group(cache);
10320 break;
10321 }
10322 ret = wait_block_group_cache_done(cache);
10323 if (ret) {
10324 btrfs_put_block_group(cache);
10325 break;
10326 }
f7039b1d
LD
10327 }
10328 ret = btrfs_trim_block_group(cache,
10329 &group_trimmed,
10330 start,
10331 end,
10332 range->minlen);
10333
10334 trimmed += group_trimmed;
10335 if (ret) {
10336 btrfs_put_block_group(cache);
10337 break;
10338 }
10339 }
10340
10341 cache = next_block_group(fs_info->tree_root, cache);
10342 }
10343
499f377f
JM
10344 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10345 devices = &root->fs_info->fs_devices->alloc_list;
10346 list_for_each_entry(device, devices, dev_alloc_list) {
10347 ret = btrfs_trim_free_extents(device, range->minlen,
10348 &group_trimmed);
10349 if (ret)
10350 break;
10351
10352 trimmed += group_trimmed;
10353 }
10354 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10355
f7039b1d
LD
10356 range->len = trimmed;
10357 return ret;
10358}
8257b2dc
MX
10359
10360/*
9ea24bbe
FM
10361 * btrfs_{start,end}_write_no_snapshoting() are similar to
10362 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10363 * data into the page cache through nocow before the subvolume is snapshoted,
10364 * but flush the data into disk after the snapshot creation, or to prevent
10365 * operations while snapshoting is ongoing and that cause the snapshot to be
10366 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10367 */
9ea24bbe 10368void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10369{
10370 percpu_counter_dec(&root->subv_writers->counter);
10371 /*
a83342aa 10372 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10373 */
10374 smp_mb();
10375 if (waitqueue_active(&root->subv_writers->wait))
10376 wake_up(&root->subv_writers->wait);
10377}
10378
9ea24bbe 10379int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10380{
ee39b432 10381 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10382 return 0;
10383
10384 percpu_counter_inc(&root->subv_writers->counter);
10385 /*
10386 * Make sure counter is updated before we check for snapshot creation.
10387 */
10388 smp_mb();
ee39b432 10389 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10390 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10391 return 0;
10392 }
10393 return 1;
10394}
This page took 1.586726 seconds and 5 git commands to generate.