btrfs: qgroup: Use new metadata reservation.
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
9ed0dea0 1319static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1320 struct btrfs_extent_inline_ref *iref)
15916de8 1321{
5d4f98a2
YZ
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1353#endif
5d4f98a2
YZ
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358}
15916de8 1359
5d4f98a2
YZ
1360static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1f3c79a2 1365{
5d4f98a2 1366 struct btrfs_key key;
1f3c79a2 1367 int ret;
1f3c79a2 1368
5d4f98a2
YZ
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1f3c79a2
LH
1376 }
1377
5d4f98a2
YZ
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
b3b4aa74 1383 btrfs_release_path(path);
5d4f98a2
YZ
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1f3c79a2 1389#endif
5d4f98a2 1390 return ret;
1f3c79a2
LH
1391}
1392
5d4f98a2
YZ
1393static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
31840ae1 1398{
5d4f98a2 1399 struct btrfs_key key;
31840ae1 1400 int ret;
31840ae1 1401
5d4f98a2
YZ
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1412 btrfs_release_path(path);
31840ae1
ZY
1413 return ret;
1414}
1415
5d4f98a2 1416static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1417{
5d4f98a2
YZ
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
31840ae1 1431}
56bec294 1432
2c47e605
YZ
1433static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
56bec294 1435
02217ed2 1436{
2c47e605 1437 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1438 if (!path->nodes[level])
1439 break;
5d4f98a2
YZ
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452}
037e6390 1453
5d4f98a2
YZ
1454/*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467static noinline_for_stack
1468int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475{
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
3173a18f
JB
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
26b8003f 1491
db94535d 1492 key.objectid = bytenr;
31840ae1 1493 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1494 key.offset = num_bytes;
31840ae1 1495
5d4f98a2
YZ
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1499 path->keep_locks = 1;
5d4f98a2
YZ
1500 } else
1501 extra_size = -1;
3173a18f
JB
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512again:
5d4f98a2 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1514 if (ret < 0) {
5d4f98a2
YZ
1515 err = ret;
1516 goto out;
1517 }
3173a18f
JB
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
9ce49a0b 1535 key.objectid = bytenr;
3173a18f
JB
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
79787eaa
JM
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
fae7f21c 1546 } else if (WARN_ON(ret)) {
492104c8 1547 err = -EIO;
492104c8 1548 goto out;
79787eaa 1549 }
5d4f98a2
YZ
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568#endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
5d4f98a2
YZ
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
3173a18f 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
5d4f98a2
YZ
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
2c47e605
YZ
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
85d4198e 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649out:
85d4198e 1650 if (insert) {
5d4f98a2
YZ
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655}
1656
1657/*
1658 * helper to add new inline back ref
1659 */
1660static noinline_for_stack
fd279fae 1661void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1667{
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
5d4f98a2
YZ
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
4b90c680 1684 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1719}
1720
1721static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727{
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
54aa1f4d 1734 return ret;
5d4f98a2 1735
b3b4aa74 1736 btrfs_release_path(path);
5d4f98a2
YZ
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
b9473439 1745 }
5d4f98a2
YZ
1746 return ret;
1747}
31840ae1 1748
5d4f98a2
YZ
1749/*
1750 * helper to update/remove inline back ref
1751 */
1752static noinline_for_stack
afe5fea7 1753void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
fcebe456
JB
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
5d4f98a2
YZ
1759{
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
5d4f98a2
YZ
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
56bec294 1791 }
31840ae1 1792
5d4f98a2
YZ
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
fcebe456 1802 *last_ref = 1;
5d4f98a2
YZ
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
afe5fea7 1811 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static noinline_for_stack
1817int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824{
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1833 update_inline_extent_backref(root, path, iref,
fcebe456 1834 refs_to_add, extent_op, NULL);
5d4f98a2 1835 } else if (ret == -ENOENT) {
fd279fae 1836 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
771ed689 1840 }
5d4f98a2
YZ
1841 return ret;
1842}
31840ae1 1843
5d4f98a2
YZ
1844static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849{
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861}
56bec294 1862
5d4f98a2
YZ
1863static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
fcebe456 1867 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1868{
143bede5 1869 int ret = 0;
b9473439 1870
5d4f98a2
YZ
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
afe5fea7 1873 update_inline_extent_backref(root, path, iref,
fcebe456 1874 -refs_to_drop, NULL, last_ref);
5d4f98a2 1875 } else if (is_data) {
fcebe456
JB
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
5d4f98a2 1878 } else {
fcebe456 1879 *last_ref = 1;
5d4f98a2
YZ
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883}
1884
86557861 1885#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1886static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
5d4f98a2 1888{
86557861
JM
1889 int j, ret = 0;
1890 u64 bytes_left, end;
4d89d377 1891 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1892
4d89d377
JM
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
d04c6b88 1898
4d89d377 1899 *discarded_bytes = 0;
86557861
JM
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1951 GFP_NOFS, 0);
1952 if (!ret)
86557861 1953 *discarded_bytes += bytes_left;
4d89d377 1954 }
d04c6b88 1955 return ret;
5d4f98a2 1956}
5d4f98a2 1957
1edb647b
FM
1958int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1960{
5d4f98a2 1961 int ret;
5378e607 1962 u64 discarded_bytes = 0;
a1d3c478 1963 struct btrfs_bio *bbio = NULL;
5d4f98a2 1964
e244a0ae 1965
5d4f98a2 1966 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1968 bytenr, &num_bytes, &bbio, 0);
79787eaa 1969 /* Error condition is -ENOMEM */
5d4f98a2 1970 if (!ret) {
a1d3c478 1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1972 int i;
1973
5d4f98a2 1974
a1d3c478 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1976 u64 bytes;
d5e2003c
JB
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
5378e607
LD
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
d04c6b88
JM
1982 stripe->length,
1983 &bytes);
5378e607 1984 if (!ret)
d04c6b88 1985 discarded_bytes += bytes;
5378e607 1986 else if (ret != -EOPNOTSUPP)
79787eaa 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
5d4f98a2 1995 }
6e9606d2 1996 btrfs_put_bbio(bbio);
5d4f98a2 1997 }
5378e607
LD
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
5d4f98a2 2002
53b381b3
DW
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
5d4f98a2 2005 return ret;
5d4f98a2
YZ
2006}
2007
79787eaa 2008/* Can return -ENOMEM */
5d4f98a2
YZ
2009int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
5d4f98a2
YZ
2014{
2015 int ret;
66d7e7f0
AJ
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
5d4f98a2
YZ
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
5d4f98a2 2024 parent, root_objectid, (int)owner,
fcebe456 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2026 } else {
66d7e7f0
AJ
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
5d4f98a2 2029 parent, root_objectid, owner, offset,
fcebe456 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2031 }
2032 return ret;
2033}
2034
2035static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
c682f9b3 2037 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041{
fcebe456 2042 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
fcebe456 2046 struct btrfs_key key;
c682f9b3
QW
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2049 u64 refs;
2050 int ret;
c682f9b3 2051 int no_quota = node->no_quota;
5d4f98a2
YZ
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
fcebe456
JB
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
5d4f98a2
YZ
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
5d4f98a2
YZ
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
0ed4792a 2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2068 goto out;
fcebe456
JB
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
5d4f98a2 2075 leaf = path->nodes[0];
fcebe456 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2082
5d4f98a2 2083 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2084 btrfs_release_path(path);
56bec294
CM
2085
2086 path->reada = 1;
b9473439 2087 path->leave_spinning = 1;
56bec294
CM
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
79787eaa
JM
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2094out:
56bec294 2095 btrfs_free_path(path);
30d133fc 2096 return ret;
56bec294
CM
2097}
2098
5d4f98a2
YZ
2099static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
56bec294 2104{
5d4f98a2
YZ
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
5d4f98a2
YZ
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
fcebe456 2121 ref_root = ref->root;
5d4f98a2
YZ
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2124 if (extent_op)
5d4f98a2 2125 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
5d4f98a2 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
c682f9b3 2134 extent_op);
5d4f98a2 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2136 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
c682f9b3 2139 extent_op);
5d4f98a2
YZ
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144}
2145
2146static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149{
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162}
2163
2164static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168{
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
56bec294 2174 int ret;
5d4f98a2 2175 int err = 0;
b1c79e09 2176 int metadata = !extent_op->is_data;
5d4f98a2 2177
79787eaa
JM
2178 if (trans->aborted)
2179 return 0;
2180
3173a18f
JB
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
5d4f98a2
YZ
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
5d4f98a2 2189
3173a18f 2190 if (metadata) {
3173a18f 2191 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2192 key.offset = extent_op->level;
3173a18f
JB
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198again:
5d4f98a2
YZ
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
3173a18f 2208 if (metadata) {
55994887
FDBM
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
3173a18f 2221
55994887
FDBM
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
3173a18f 2230 }
5d4f98a2
YZ
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246#endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2250
5d4f98a2
YZ
2251 btrfs_mark_buffer_dirty(leaf);
2252out:
2253 btrfs_free_path(path);
2254 return err;
56bec294
CM
2255}
2256
5d4f98a2
YZ
2257static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
56bec294
CM
2262{
2263 int ret = 0;
5d4f98a2
YZ
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
3173a18f
JB
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
56bec294 2270
5d4f98a2 2271 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
5d4f98a2
YZ
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
fcebe456 2276 ref_root = ref->root;
5d4f98a2 2277
3173a18f
JB
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
5d4f98a2
YZ
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2289 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
fcebe456
JB
2294 ref->level, &ins,
2295 node->no_quota);
5d4f98a2 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
fcebe456 2300 extent_op);
5d4f98a2 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2305 } else {
2306 BUG();
2307 }
56bec294
CM
2308 return ret;
2309}
2310
2311/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2312static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
56bec294 2317{
79787eaa
JM
2318 int ret = 0;
2319
857cc2fc
JB
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
79787eaa 2324 return 0;
857cc2fc 2325 }
79787eaa 2326
5d4f98a2 2327 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
5d4f98a2
YZ
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
56bec294 2339 if (insert_reserved) {
f0486c68
YZ
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
5d4f98a2
YZ
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
5d4f98a2 2346 }
56bec294 2347 }
297d750b
QW
2348
2349 /* Also free its reserved qgroup space */
2350 btrfs_qgroup_free_delayed_ref(root->fs_info,
2351 head->qgroup_ref_root,
2352 head->qgroup_reserved);
79787eaa 2353 return ret;
56bec294
CM
2354 }
2355
5d4f98a2
YZ
2356 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2357 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2358 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2359 insert_reserved);
2360 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2361 node->type == BTRFS_SHARED_DATA_REF_KEY)
2362 ret = run_delayed_data_ref(trans, root, node, extent_op,
2363 insert_reserved);
2364 else
2365 BUG();
2366 return ret;
56bec294
CM
2367}
2368
c6fc2454 2369static inline struct btrfs_delayed_ref_node *
56bec294
CM
2370select_delayed_ref(struct btrfs_delayed_ref_head *head)
2371{
cffc3374
FM
2372 struct btrfs_delayed_ref_node *ref;
2373
c6fc2454
QW
2374 if (list_empty(&head->ref_list))
2375 return NULL;
d7df2c79 2376
cffc3374
FM
2377 /*
2378 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2379 * This is to prevent a ref count from going down to zero, which deletes
2380 * the extent item from the extent tree, when there still are references
2381 * to add, which would fail because they would not find the extent item.
2382 */
2383 list_for_each_entry(ref, &head->ref_list, list) {
2384 if (ref->action == BTRFS_ADD_DELAYED_REF)
2385 return ref;
2386 }
2387
c6fc2454
QW
2388 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2389 list);
56bec294
CM
2390}
2391
79787eaa
JM
2392/*
2393 * Returns 0 on success or if called with an already aborted transaction.
2394 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2395 */
d7df2c79
JB
2396static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2397 struct btrfs_root *root,
2398 unsigned long nr)
56bec294 2399{
56bec294
CM
2400 struct btrfs_delayed_ref_root *delayed_refs;
2401 struct btrfs_delayed_ref_node *ref;
2402 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2403 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2404 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2405 ktime_t start = ktime_get();
56bec294 2406 int ret;
d7df2c79 2407 unsigned long count = 0;
0a2b2a84 2408 unsigned long actual_count = 0;
56bec294 2409 int must_insert_reserved = 0;
56bec294
CM
2410
2411 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2412 while (1) {
2413 if (!locked_ref) {
d7df2c79 2414 if (count >= nr)
56bec294 2415 break;
56bec294 2416
d7df2c79
JB
2417 spin_lock(&delayed_refs->lock);
2418 locked_ref = btrfs_select_ref_head(trans);
2419 if (!locked_ref) {
2420 spin_unlock(&delayed_refs->lock);
2421 break;
2422 }
c3e69d58
CM
2423
2424 /* grab the lock that says we are going to process
2425 * all the refs for this head */
2426 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2427 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2428 /*
2429 * we may have dropped the spin lock to get the head
2430 * mutex lock, and that might have given someone else
2431 * time to free the head. If that's true, it has been
2432 * removed from our list and we can move on.
2433 */
2434 if (ret == -EAGAIN) {
2435 locked_ref = NULL;
2436 count++;
2437 continue;
56bec294
CM
2438 }
2439 }
a28ec197 2440
d7df2c79 2441 spin_lock(&locked_ref->lock);
ae1e206b 2442
d1270cd9
AJ
2443 /*
2444 * locked_ref is the head node, so we have to go one
2445 * node back for any delayed ref updates
2446 */
2447 ref = select_delayed_ref(locked_ref);
2448
2449 if (ref && ref->seq &&
097b8a7c 2450 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2451 spin_unlock(&locked_ref->lock);
093486c4 2452 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2453 spin_lock(&delayed_refs->lock);
2454 locked_ref->processing = 0;
d1270cd9
AJ
2455 delayed_refs->num_heads_ready++;
2456 spin_unlock(&delayed_refs->lock);
d7df2c79 2457 locked_ref = NULL;
d1270cd9 2458 cond_resched();
27a377db 2459 count++;
d1270cd9
AJ
2460 continue;
2461 }
2462
56bec294
CM
2463 /*
2464 * record the must insert reserved flag before we
2465 * drop the spin lock.
2466 */
2467 must_insert_reserved = locked_ref->must_insert_reserved;
2468 locked_ref->must_insert_reserved = 0;
7bb86316 2469
5d4f98a2
YZ
2470 extent_op = locked_ref->extent_op;
2471 locked_ref->extent_op = NULL;
2472
56bec294 2473 if (!ref) {
d7df2c79
JB
2474
2475
56bec294
CM
2476 /* All delayed refs have been processed, Go ahead
2477 * and send the head node to run_one_delayed_ref,
2478 * so that any accounting fixes can happen
2479 */
2480 ref = &locked_ref->node;
5d4f98a2
YZ
2481
2482 if (extent_op && must_insert_reserved) {
78a6184a 2483 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2484 extent_op = NULL;
2485 }
2486
2487 if (extent_op) {
d7df2c79 2488 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2489 ret = run_delayed_extent_op(trans, root,
2490 ref, extent_op);
78a6184a 2491 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2492
79787eaa 2493 if (ret) {
857cc2fc
JB
2494 /*
2495 * Need to reset must_insert_reserved if
2496 * there was an error so the abort stuff
2497 * can cleanup the reserved space
2498 * properly.
2499 */
2500 if (must_insert_reserved)
2501 locked_ref->must_insert_reserved = 1;
d7df2c79 2502 locked_ref->processing = 0;
c2cf52eb 2503 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2504 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2505 return ret;
2506 }
d7df2c79 2507 continue;
5d4f98a2 2508 }
02217ed2 2509
d7df2c79
JB
2510 /*
2511 * Need to drop our head ref lock and re-aqcuire the
2512 * delayed ref lock and then re-check to make sure
2513 * nobody got added.
2514 */
2515 spin_unlock(&locked_ref->lock);
2516 spin_lock(&delayed_refs->lock);
2517 spin_lock(&locked_ref->lock);
c6fc2454 2518 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2519 locked_ref->extent_op) {
d7df2c79
JB
2520 spin_unlock(&locked_ref->lock);
2521 spin_unlock(&delayed_refs->lock);
2522 continue;
2523 }
2524 ref->in_tree = 0;
2525 delayed_refs->num_heads--;
c46effa6
LB
2526 rb_erase(&locked_ref->href_node,
2527 &delayed_refs->href_root);
d7df2c79
JB
2528 spin_unlock(&delayed_refs->lock);
2529 } else {
0a2b2a84 2530 actual_count++;
d7df2c79 2531 ref->in_tree = 0;
c6fc2454 2532 list_del(&ref->list);
c46effa6 2533 }
d7df2c79
JB
2534 atomic_dec(&delayed_refs->num_entries);
2535
093486c4 2536 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2537 /*
2538 * when we play the delayed ref, also correct the
2539 * ref_mod on head
2540 */
2541 switch (ref->action) {
2542 case BTRFS_ADD_DELAYED_REF:
2543 case BTRFS_ADD_DELAYED_EXTENT:
2544 locked_ref->node.ref_mod -= ref->ref_mod;
2545 break;
2546 case BTRFS_DROP_DELAYED_REF:
2547 locked_ref->node.ref_mod += ref->ref_mod;
2548 break;
2549 default:
2550 WARN_ON(1);
2551 }
2552 }
d7df2c79 2553 spin_unlock(&locked_ref->lock);
925baedd 2554
5d4f98a2 2555 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2556 must_insert_reserved);
eb099670 2557
78a6184a 2558 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2559 if (ret) {
d7df2c79 2560 locked_ref->processing = 0;
093486c4
MX
2561 btrfs_delayed_ref_unlock(locked_ref);
2562 btrfs_put_delayed_ref(ref);
c2cf52eb 2563 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2564 return ret;
2565 }
2566
093486c4
MX
2567 /*
2568 * If this node is a head, that means all the refs in this head
2569 * have been dealt with, and we will pick the next head to deal
2570 * with, so we must unlock the head and drop it from the cluster
2571 * list before we release it.
2572 */
2573 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2574 if (locked_ref->is_data &&
2575 locked_ref->total_ref_mod < 0) {
2576 spin_lock(&delayed_refs->lock);
2577 delayed_refs->pending_csums -= ref->num_bytes;
2578 spin_unlock(&delayed_refs->lock);
2579 }
093486c4
MX
2580 btrfs_delayed_ref_unlock(locked_ref);
2581 locked_ref = NULL;
2582 }
2583 btrfs_put_delayed_ref(ref);
2584 count++;
c3e69d58 2585 cond_resched();
c3e69d58 2586 }
0a2b2a84
JB
2587
2588 /*
2589 * We don't want to include ref heads since we can have empty ref heads
2590 * and those will drastically skew our runtime down since we just do
2591 * accounting, no actual extent tree updates.
2592 */
2593 if (actual_count > 0) {
2594 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2595 u64 avg;
2596
2597 /*
2598 * We weigh the current average higher than our current runtime
2599 * to avoid large swings in the average.
2600 */
2601 spin_lock(&delayed_refs->lock);
2602 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2603 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2604 spin_unlock(&delayed_refs->lock);
2605 }
d7df2c79 2606 return 0;
c3e69d58
CM
2607}
2608
709c0486
AJ
2609#ifdef SCRAMBLE_DELAYED_REFS
2610/*
2611 * Normally delayed refs get processed in ascending bytenr order. This
2612 * correlates in most cases to the order added. To expose dependencies on this
2613 * order, we start to process the tree in the middle instead of the beginning
2614 */
2615static u64 find_middle(struct rb_root *root)
2616{
2617 struct rb_node *n = root->rb_node;
2618 struct btrfs_delayed_ref_node *entry;
2619 int alt = 1;
2620 u64 middle;
2621 u64 first = 0, last = 0;
2622
2623 n = rb_first(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 first = entry->bytenr;
2627 }
2628 n = rb_last(root);
2629 if (n) {
2630 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2631 last = entry->bytenr;
2632 }
2633 n = root->rb_node;
2634
2635 while (n) {
2636 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2637 WARN_ON(!entry->in_tree);
2638
2639 middle = entry->bytenr;
2640
2641 if (alt)
2642 n = n->rb_left;
2643 else
2644 n = n->rb_right;
2645
2646 alt = 1 - alt;
2647 }
2648 return middle;
2649}
2650#endif
2651
1be41b78
JB
2652static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2653{
2654 u64 num_bytes;
2655
2656 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2657 sizeof(struct btrfs_extent_inline_ref));
2658 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2659 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2660
2661 /*
2662 * We don't ever fill up leaves all the way so multiply by 2 just to be
2663 * closer to what we're really going to want to ouse.
2664 */
f8c269d7 2665 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2666}
2667
1262133b
JB
2668/*
2669 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2670 * would require to store the csums for that many bytes.
2671 */
28f75a0e 2672u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2673{
2674 u64 csum_size;
2675 u64 num_csums_per_leaf;
2676 u64 num_csums;
2677
2678 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2679 num_csums_per_leaf = div64_u64(csum_size,
2680 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2681 num_csums = div64_u64(csum_bytes, root->sectorsize);
2682 num_csums += num_csums_per_leaf - 1;
2683 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2684 return num_csums;
2685}
2686
0a2b2a84 2687int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2688 struct btrfs_root *root)
2689{
2690 struct btrfs_block_rsv *global_rsv;
2691 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2692 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2693 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2694 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2695 int ret = 0;
2696
2697 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2698 num_heads = heads_to_leaves(root, num_heads);
2699 if (num_heads > 1)
707e8a07 2700 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2701 num_bytes <<= 1;
28f75a0e 2702 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2703 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2704 num_dirty_bgs);
1be41b78
JB
2705 global_rsv = &root->fs_info->global_block_rsv;
2706
2707 /*
2708 * If we can't allocate any more chunks lets make sure we have _lots_ of
2709 * wiggle room since running delayed refs can create more delayed refs.
2710 */
cb723e49
JB
2711 if (global_rsv->space_info->full) {
2712 num_dirty_bgs_bytes <<= 1;
1be41b78 2713 num_bytes <<= 1;
cb723e49 2714 }
1be41b78
JB
2715
2716 spin_lock(&global_rsv->lock);
cb723e49 2717 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2718 ret = 1;
2719 spin_unlock(&global_rsv->lock);
2720 return ret;
2721}
2722
0a2b2a84
JB
2723int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root)
2725{
2726 struct btrfs_fs_info *fs_info = root->fs_info;
2727 u64 num_entries =
2728 atomic_read(&trans->transaction->delayed_refs.num_entries);
2729 u64 avg_runtime;
a79b7d4b 2730 u64 val;
0a2b2a84
JB
2731
2732 smp_mb();
2733 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2734 val = num_entries * avg_runtime;
0a2b2a84
JB
2735 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2736 return 1;
a79b7d4b
CM
2737 if (val >= NSEC_PER_SEC / 2)
2738 return 2;
0a2b2a84
JB
2739
2740 return btrfs_check_space_for_delayed_refs(trans, root);
2741}
2742
a79b7d4b
CM
2743struct async_delayed_refs {
2744 struct btrfs_root *root;
2745 int count;
2746 int error;
2747 int sync;
2748 struct completion wait;
2749 struct btrfs_work work;
2750};
2751
2752static void delayed_ref_async_start(struct btrfs_work *work)
2753{
2754 struct async_delayed_refs *async;
2755 struct btrfs_trans_handle *trans;
2756 int ret;
2757
2758 async = container_of(work, struct async_delayed_refs, work);
2759
2760 trans = btrfs_join_transaction(async->root);
2761 if (IS_ERR(trans)) {
2762 async->error = PTR_ERR(trans);
2763 goto done;
2764 }
2765
2766 /*
2767 * trans->sync means that when we call end_transaciton, we won't
2768 * wait on delayed refs
2769 */
2770 trans->sync = true;
2771 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2772 if (ret)
2773 async->error = ret;
2774
2775 ret = btrfs_end_transaction(trans, async->root);
2776 if (ret && !async->error)
2777 async->error = ret;
2778done:
2779 if (async->sync)
2780 complete(&async->wait);
2781 else
2782 kfree(async);
2783}
2784
2785int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2786 unsigned long count, int wait)
2787{
2788 struct async_delayed_refs *async;
2789 int ret;
2790
2791 async = kmalloc(sizeof(*async), GFP_NOFS);
2792 if (!async)
2793 return -ENOMEM;
2794
2795 async->root = root->fs_info->tree_root;
2796 async->count = count;
2797 async->error = 0;
2798 if (wait)
2799 async->sync = 1;
2800 else
2801 async->sync = 0;
2802 init_completion(&async->wait);
2803
9e0af237
LB
2804 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2805 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2806
2807 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2808
2809 if (wait) {
2810 wait_for_completion(&async->wait);
2811 ret = async->error;
2812 kfree(async);
2813 return ret;
2814 }
2815 return 0;
2816}
2817
c3e69d58
CM
2818/*
2819 * this starts processing the delayed reference count updates and
2820 * extent insertions we have queued up so far. count can be
2821 * 0, which means to process everything in the tree at the start
2822 * of the run (but not newly added entries), or it can be some target
2823 * number you'd like to process.
79787eaa
JM
2824 *
2825 * Returns 0 on success or if called with an aborted transaction
2826 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2827 */
2828int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2829 struct btrfs_root *root, unsigned long count)
2830{
2831 struct rb_node *node;
2832 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2833 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2834 int ret;
2835 int run_all = count == (unsigned long)-1;
d9a0540a 2836 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2837
79787eaa
JM
2838 /* We'll clean this up in btrfs_cleanup_transaction */
2839 if (trans->aborted)
2840 return 0;
2841
c3e69d58
CM
2842 if (root == root->fs_info->extent_root)
2843 root = root->fs_info->tree_root;
2844
2845 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2846 if (count == 0)
d7df2c79 2847 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2848
c3e69d58 2849again:
709c0486
AJ
2850#ifdef SCRAMBLE_DELAYED_REFS
2851 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2852#endif
d9a0540a 2853 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2854 ret = __btrfs_run_delayed_refs(trans, root, count);
2855 if (ret < 0) {
2856 btrfs_abort_transaction(trans, root, ret);
2857 return ret;
eb099670 2858 }
c3e69d58 2859
56bec294 2860 if (run_all) {
d7df2c79 2861 if (!list_empty(&trans->new_bgs))
ea658bad 2862 btrfs_create_pending_block_groups(trans, root);
ea658bad 2863
d7df2c79 2864 spin_lock(&delayed_refs->lock);
c46effa6 2865 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2866 if (!node) {
2867 spin_unlock(&delayed_refs->lock);
56bec294 2868 goto out;
d7df2c79 2869 }
c3e69d58 2870 count = (unsigned long)-1;
e9d0b13b 2871
56bec294 2872 while (node) {
c46effa6
LB
2873 head = rb_entry(node, struct btrfs_delayed_ref_head,
2874 href_node);
2875 if (btrfs_delayed_ref_is_head(&head->node)) {
2876 struct btrfs_delayed_ref_node *ref;
5caf2a00 2877
c46effa6 2878 ref = &head->node;
56bec294
CM
2879 atomic_inc(&ref->refs);
2880
2881 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2882 /*
2883 * Mutex was contended, block until it's
2884 * released and try again
2885 */
56bec294
CM
2886 mutex_lock(&head->mutex);
2887 mutex_unlock(&head->mutex);
2888
2889 btrfs_put_delayed_ref(ref);
1887be66 2890 cond_resched();
56bec294 2891 goto again;
c46effa6
LB
2892 } else {
2893 WARN_ON(1);
56bec294
CM
2894 }
2895 node = rb_next(node);
2896 }
2897 spin_unlock(&delayed_refs->lock);
d7df2c79 2898 cond_resched();
56bec294 2899 goto again;
5f39d397 2900 }
54aa1f4d 2901out:
edf39272 2902 assert_qgroups_uptodate(trans);
d9a0540a 2903 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2904 return 0;
2905}
2906
5d4f98a2
YZ
2907int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2908 struct btrfs_root *root,
2909 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2910 int level, int is_data)
5d4f98a2
YZ
2911{
2912 struct btrfs_delayed_extent_op *extent_op;
2913 int ret;
2914
78a6184a 2915 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2916 if (!extent_op)
2917 return -ENOMEM;
2918
2919 extent_op->flags_to_set = flags;
2920 extent_op->update_flags = 1;
2921 extent_op->update_key = 0;
2922 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2923 extent_op->level = level;
5d4f98a2 2924
66d7e7f0
AJ
2925 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2926 num_bytes, extent_op);
5d4f98a2 2927 if (ret)
78a6184a 2928 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2929 return ret;
2930}
2931
2932static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root,
2934 struct btrfs_path *path,
2935 u64 objectid, u64 offset, u64 bytenr)
2936{
2937 struct btrfs_delayed_ref_head *head;
2938 struct btrfs_delayed_ref_node *ref;
2939 struct btrfs_delayed_data_ref *data_ref;
2940 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2941 int ret = 0;
2942
5d4f98a2
YZ
2943 delayed_refs = &trans->transaction->delayed_refs;
2944 spin_lock(&delayed_refs->lock);
2945 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2946 if (!head) {
2947 spin_unlock(&delayed_refs->lock);
2948 return 0;
2949 }
5d4f98a2
YZ
2950
2951 if (!mutex_trylock(&head->mutex)) {
2952 atomic_inc(&head->node.refs);
2953 spin_unlock(&delayed_refs->lock);
2954
b3b4aa74 2955 btrfs_release_path(path);
5d4f98a2 2956
8cc33e5c
DS
2957 /*
2958 * Mutex was contended, block until it's released and let
2959 * caller try again
2960 */
5d4f98a2
YZ
2961 mutex_lock(&head->mutex);
2962 mutex_unlock(&head->mutex);
2963 btrfs_put_delayed_ref(&head->node);
2964 return -EAGAIN;
2965 }
d7df2c79 2966 spin_unlock(&delayed_refs->lock);
5d4f98a2 2967
d7df2c79 2968 spin_lock(&head->lock);
c6fc2454 2969 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2970 /* If it's a shared ref we know a cross reference exists */
2971 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2972 ret = 1;
2973 break;
2974 }
5d4f98a2 2975
d7df2c79 2976 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2977
d7df2c79
JB
2978 /*
2979 * If our ref doesn't match the one we're currently looking at
2980 * then we have a cross reference.
2981 */
2982 if (data_ref->root != root->root_key.objectid ||
2983 data_ref->objectid != objectid ||
2984 data_ref->offset != offset) {
2985 ret = 1;
2986 break;
2987 }
5d4f98a2 2988 }
d7df2c79 2989 spin_unlock(&head->lock);
5d4f98a2 2990 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2991 return ret;
2992}
2993
2994static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2995 struct btrfs_root *root,
2996 struct btrfs_path *path,
2997 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2998{
2999 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3000 struct extent_buffer *leaf;
5d4f98a2
YZ
3001 struct btrfs_extent_data_ref *ref;
3002 struct btrfs_extent_inline_ref *iref;
3003 struct btrfs_extent_item *ei;
f321e491 3004 struct btrfs_key key;
5d4f98a2 3005 u32 item_size;
be20aa9d 3006 int ret;
925baedd 3007
be20aa9d 3008 key.objectid = bytenr;
31840ae1 3009 key.offset = (u64)-1;
f321e491 3010 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3011
be20aa9d
CM
3012 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3013 if (ret < 0)
3014 goto out;
79787eaa 3015 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3016
3017 ret = -ENOENT;
3018 if (path->slots[0] == 0)
31840ae1 3019 goto out;
be20aa9d 3020
31840ae1 3021 path->slots[0]--;
f321e491 3022 leaf = path->nodes[0];
5d4f98a2 3023 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3024
5d4f98a2 3025 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3026 goto out;
f321e491 3027
5d4f98a2
YZ
3028 ret = 1;
3029 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3030#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3031 if (item_size < sizeof(*ei)) {
3032 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3033 goto out;
3034 }
3035#endif
3036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3037
5d4f98a2
YZ
3038 if (item_size != sizeof(*ei) +
3039 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3040 goto out;
be20aa9d 3041
5d4f98a2
YZ
3042 if (btrfs_extent_generation(leaf, ei) <=
3043 btrfs_root_last_snapshot(&root->root_item))
3044 goto out;
3045
3046 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3047 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3048 BTRFS_EXTENT_DATA_REF_KEY)
3049 goto out;
3050
3051 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3052 if (btrfs_extent_refs(leaf, ei) !=
3053 btrfs_extent_data_ref_count(leaf, ref) ||
3054 btrfs_extent_data_ref_root(leaf, ref) !=
3055 root->root_key.objectid ||
3056 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3057 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3058 goto out;
3059
3060 ret = 0;
3061out:
3062 return ret;
3063}
3064
3065int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root,
3067 u64 objectid, u64 offset, u64 bytenr)
3068{
3069 struct btrfs_path *path;
3070 int ret;
3071 int ret2;
3072
3073 path = btrfs_alloc_path();
3074 if (!path)
3075 return -ENOENT;
3076
3077 do {
3078 ret = check_committed_ref(trans, root, path, objectid,
3079 offset, bytenr);
3080 if (ret && ret != -ENOENT)
f321e491 3081 goto out;
80ff3856 3082
5d4f98a2
YZ
3083 ret2 = check_delayed_ref(trans, root, path, objectid,
3084 offset, bytenr);
3085 } while (ret2 == -EAGAIN);
3086
3087 if (ret2 && ret2 != -ENOENT) {
3088 ret = ret2;
3089 goto out;
f321e491 3090 }
5d4f98a2
YZ
3091
3092 if (ret != -ENOENT || ret2 != -ENOENT)
3093 ret = 0;
be20aa9d 3094out:
80ff3856 3095 btrfs_free_path(path);
f0486c68
YZ
3096 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3097 WARN_ON(ret > 0);
f321e491 3098 return ret;
be20aa9d 3099}
c5739bba 3100
5d4f98a2 3101static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3102 struct btrfs_root *root,
5d4f98a2 3103 struct extent_buffer *buf,
e339a6b0 3104 int full_backref, int inc)
31840ae1
ZY
3105{
3106 u64 bytenr;
5d4f98a2
YZ
3107 u64 num_bytes;
3108 u64 parent;
31840ae1 3109 u64 ref_root;
31840ae1 3110 u32 nritems;
31840ae1
ZY
3111 struct btrfs_key key;
3112 struct btrfs_file_extent_item *fi;
3113 int i;
3114 int level;
3115 int ret = 0;
31840ae1 3116 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3117 u64, u64, u64, u64, u64, u64, int);
31840ae1 3118
fccb84c9
DS
3119
3120 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3121 return 0;
fccb84c9 3122
31840ae1 3123 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3124 nritems = btrfs_header_nritems(buf);
3125 level = btrfs_header_level(buf);
3126
27cdeb70 3127 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3128 return 0;
31840ae1 3129
5d4f98a2
YZ
3130 if (inc)
3131 process_func = btrfs_inc_extent_ref;
3132 else
3133 process_func = btrfs_free_extent;
31840ae1 3134
5d4f98a2
YZ
3135 if (full_backref)
3136 parent = buf->start;
3137 else
3138 parent = 0;
3139
3140 for (i = 0; i < nritems; i++) {
31840ae1 3141 if (level == 0) {
5d4f98a2 3142 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3143 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3144 continue;
5d4f98a2 3145 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3146 struct btrfs_file_extent_item);
3147 if (btrfs_file_extent_type(buf, fi) ==
3148 BTRFS_FILE_EXTENT_INLINE)
3149 continue;
3150 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3151 if (bytenr == 0)
3152 continue;
5d4f98a2
YZ
3153
3154 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3155 key.offset -= btrfs_file_extent_offset(buf, fi);
3156 ret = process_func(trans, root, bytenr, num_bytes,
3157 parent, ref_root, key.objectid,
e339a6b0 3158 key.offset, 1);
31840ae1
ZY
3159 if (ret)
3160 goto fail;
3161 } else {
5d4f98a2 3162 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3163 num_bytes = root->nodesize;
5d4f98a2 3164 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3165 parent, ref_root, level - 1, 0,
e339a6b0 3166 1);
31840ae1
ZY
3167 if (ret)
3168 goto fail;
3169 }
3170 }
3171 return 0;
3172fail:
5d4f98a2
YZ
3173 return ret;
3174}
3175
3176int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3177 struct extent_buffer *buf, int full_backref)
5d4f98a2 3178{
e339a6b0 3179 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3180}
3181
3182int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3183 struct extent_buffer *buf, int full_backref)
5d4f98a2 3184{
e339a6b0 3185 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3186}
3187
9078a3e1
CM
3188static int write_one_cache_group(struct btrfs_trans_handle *trans,
3189 struct btrfs_root *root,
3190 struct btrfs_path *path,
3191 struct btrfs_block_group_cache *cache)
3192{
3193 int ret;
9078a3e1 3194 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3195 unsigned long bi;
3196 struct extent_buffer *leaf;
9078a3e1 3197
9078a3e1 3198 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3199 if (ret) {
3200 if (ret > 0)
3201 ret = -ENOENT;
54aa1f4d 3202 goto fail;
df95e7f0 3203 }
5f39d397
CM
3204
3205 leaf = path->nodes[0];
3206 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3207 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3208 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3209fail:
24b89d08 3210 btrfs_release_path(path);
df95e7f0 3211 return ret;
9078a3e1
CM
3212
3213}
3214
4a8c9a62
YZ
3215static struct btrfs_block_group_cache *
3216next_block_group(struct btrfs_root *root,
3217 struct btrfs_block_group_cache *cache)
3218{
3219 struct rb_node *node;
292cbd51 3220
4a8c9a62 3221 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3222
3223 /* If our block group was removed, we need a full search. */
3224 if (RB_EMPTY_NODE(&cache->cache_node)) {
3225 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3226
3227 spin_unlock(&root->fs_info->block_group_cache_lock);
3228 btrfs_put_block_group(cache);
3229 cache = btrfs_lookup_first_block_group(root->fs_info,
3230 next_bytenr);
3231 return cache;
3232 }
4a8c9a62
YZ
3233 node = rb_next(&cache->cache_node);
3234 btrfs_put_block_group(cache);
3235 if (node) {
3236 cache = rb_entry(node, struct btrfs_block_group_cache,
3237 cache_node);
11dfe35a 3238 btrfs_get_block_group(cache);
4a8c9a62
YZ
3239 } else
3240 cache = NULL;
3241 spin_unlock(&root->fs_info->block_group_cache_lock);
3242 return cache;
3243}
3244
0af3d00b
JB
3245static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3246 struct btrfs_trans_handle *trans,
3247 struct btrfs_path *path)
3248{
3249 struct btrfs_root *root = block_group->fs_info->tree_root;
3250 struct inode *inode = NULL;
3251 u64 alloc_hint = 0;
2b20982e 3252 int dcs = BTRFS_DC_ERROR;
f8c269d7 3253 u64 num_pages = 0;
0af3d00b
JB
3254 int retries = 0;
3255 int ret = 0;
3256
3257 /*
3258 * If this block group is smaller than 100 megs don't bother caching the
3259 * block group.
3260 */
3261 if (block_group->key.offset < (100 * 1024 * 1024)) {
3262 spin_lock(&block_group->lock);
3263 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3264 spin_unlock(&block_group->lock);
3265 return 0;
3266 }
3267
0c0ef4bc
JB
3268 if (trans->aborted)
3269 return 0;
0af3d00b
JB
3270again:
3271 inode = lookup_free_space_inode(root, block_group, path);
3272 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3273 ret = PTR_ERR(inode);
b3b4aa74 3274 btrfs_release_path(path);
0af3d00b
JB
3275 goto out;
3276 }
3277
3278 if (IS_ERR(inode)) {
3279 BUG_ON(retries);
3280 retries++;
3281
3282 if (block_group->ro)
3283 goto out_free;
3284
3285 ret = create_free_space_inode(root, trans, block_group, path);
3286 if (ret)
3287 goto out_free;
3288 goto again;
3289 }
3290
5b0e95bf
JB
3291 /* We've already setup this transaction, go ahead and exit */
3292 if (block_group->cache_generation == trans->transid &&
3293 i_size_read(inode)) {
3294 dcs = BTRFS_DC_SETUP;
3295 goto out_put;
3296 }
3297
0af3d00b
JB
3298 /*
3299 * We want to set the generation to 0, that way if anything goes wrong
3300 * from here on out we know not to trust this cache when we load up next
3301 * time.
3302 */
3303 BTRFS_I(inode)->generation = 0;
3304 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3305 if (ret) {
3306 /*
3307 * So theoretically we could recover from this, simply set the
3308 * super cache generation to 0 so we know to invalidate the
3309 * cache, but then we'd have to keep track of the block groups
3310 * that fail this way so we know we _have_ to reset this cache
3311 * before the next commit or risk reading stale cache. So to
3312 * limit our exposure to horrible edge cases lets just abort the
3313 * transaction, this only happens in really bad situations
3314 * anyway.
3315 */
3316 btrfs_abort_transaction(trans, root, ret);
3317 goto out_put;
3318 }
0af3d00b
JB
3319 WARN_ON(ret);
3320
3321 if (i_size_read(inode) > 0) {
7b61cd92
MX
3322 ret = btrfs_check_trunc_cache_free_space(root,
3323 &root->fs_info->global_block_rsv);
3324 if (ret)
3325 goto out_put;
3326
1bbc621e 3327 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3328 if (ret)
3329 goto out_put;
3330 }
3331
3332 spin_lock(&block_group->lock);
cf7c1ef6 3333 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3334 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3335 /*
3336 * don't bother trying to write stuff out _if_
3337 * a) we're not cached,
3338 * b) we're with nospace_cache mount option.
3339 */
2b20982e 3340 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3341 spin_unlock(&block_group->lock);
3342 goto out_put;
3343 }
3344 spin_unlock(&block_group->lock);
3345
6fc823b1
JB
3346 /*
3347 * Try to preallocate enough space based on how big the block group is.
3348 * Keep in mind this has to include any pinned space which could end up
3349 * taking up quite a bit since it's not folded into the other space
3350 * cache.
3351 */
f8c269d7 3352 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3353 if (!num_pages)
3354 num_pages = 1;
3355
0af3d00b
JB
3356 num_pages *= 16;
3357 num_pages *= PAGE_CACHE_SIZE;
3358
e2d1f923 3359 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3360 if (ret)
3361 goto out_put;
3362
3363 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3364 num_pages, num_pages,
3365 &alloc_hint);
2b20982e
JB
3366 if (!ret)
3367 dcs = BTRFS_DC_SETUP;
0af3d00b 3368 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3369
0af3d00b
JB
3370out_put:
3371 iput(inode);
3372out_free:
b3b4aa74 3373 btrfs_release_path(path);
0af3d00b
JB
3374out:
3375 spin_lock(&block_group->lock);
e65cbb94 3376 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3377 block_group->cache_generation = trans->transid;
2b20982e 3378 block_group->disk_cache_state = dcs;
0af3d00b
JB
3379 spin_unlock(&block_group->lock);
3380
3381 return ret;
3382}
3383
dcdf7f6d
JB
3384int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3385 struct btrfs_root *root)
3386{
3387 struct btrfs_block_group_cache *cache, *tmp;
3388 struct btrfs_transaction *cur_trans = trans->transaction;
3389 struct btrfs_path *path;
3390
3391 if (list_empty(&cur_trans->dirty_bgs) ||
3392 !btrfs_test_opt(root, SPACE_CACHE))
3393 return 0;
3394
3395 path = btrfs_alloc_path();
3396 if (!path)
3397 return -ENOMEM;
3398
3399 /* Could add new block groups, use _safe just in case */
3400 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3401 dirty_list) {
3402 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3403 cache_save_setup(cache, trans, path);
3404 }
3405
3406 btrfs_free_path(path);
3407 return 0;
3408}
3409
1bbc621e
CM
3410/*
3411 * transaction commit does final block group cache writeback during a
3412 * critical section where nothing is allowed to change the FS. This is
3413 * required in order for the cache to actually match the block group,
3414 * but can introduce a lot of latency into the commit.
3415 *
3416 * So, btrfs_start_dirty_block_groups is here to kick off block group
3417 * cache IO. There's a chance we'll have to redo some of it if the
3418 * block group changes again during the commit, but it greatly reduces
3419 * the commit latency by getting rid of the easy block groups while
3420 * we're still allowing others to join the commit.
3421 */
3422int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3423 struct btrfs_root *root)
9078a3e1 3424{
4a8c9a62 3425 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3426 struct btrfs_transaction *cur_trans = trans->transaction;
3427 int ret = 0;
c9dc4c65 3428 int should_put;
1bbc621e
CM
3429 struct btrfs_path *path = NULL;
3430 LIST_HEAD(dirty);
3431 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3432 int num_started = 0;
1bbc621e
CM
3433 int loops = 0;
3434
3435 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3436 if (list_empty(&cur_trans->dirty_bgs)) {
3437 spin_unlock(&cur_trans->dirty_bgs_lock);
3438 return 0;
1bbc621e 3439 }
b58d1a9e 3440 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3441 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3442
1bbc621e 3443again:
1bbc621e
CM
3444 /*
3445 * make sure all the block groups on our dirty list actually
3446 * exist
3447 */
3448 btrfs_create_pending_block_groups(trans, root);
3449
3450 if (!path) {
3451 path = btrfs_alloc_path();
3452 if (!path)
3453 return -ENOMEM;
3454 }
3455
b58d1a9e
FM
3456 /*
3457 * cache_write_mutex is here only to save us from balance or automatic
3458 * removal of empty block groups deleting this block group while we are
3459 * writing out the cache
3460 */
3461 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3462 while (!list_empty(&dirty)) {
3463 cache = list_first_entry(&dirty,
3464 struct btrfs_block_group_cache,
3465 dirty_list);
1bbc621e
CM
3466 /*
3467 * this can happen if something re-dirties a block
3468 * group that is already under IO. Just wait for it to
3469 * finish and then do it all again
3470 */
3471 if (!list_empty(&cache->io_list)) {
3472 list_del_init(&cache->io_list);
3473 btrfs_wait_cache_io(root, trans, cache,
3474 &cache->io_ctl, path,
3475 cache->key.objectid);
3476 btrfs_put_block_group(cache);
3477 }
3478
3479
3480 /*
3481 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3482 * if it should update the cache_state. Don't delete
3483 * until after we wait.
3484 *
3485 * Since we're not running in the commit critical section
3486 * we need the dirty_bgs_lock to protect from update_block_group
3487 */
3488 spin_lock(&cur_trans->dirty_bgs_lock);
3489 list_del_init(&cache->dirty_list);
3490 spin_unlock(&cur_trans->dirty_bgs_lock);
3491
3492 should_put = 1;
3493
3494 cache_save_setup(cache, trans, path);
3495
3496 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3497 cache->io_ctl.inode = NULL;
3498 ret = btrfs_write_out_cache(root, trans, cache, path);
3499 if (ret == 0 && cache->io_ctl.inode) {
3500 num_started++;
3501 should_put = 0;
3502
3503 /*
3504 * the cache_write_mutex is protecting
3505 * the io_list
3506 */
3507 list_add_tail(&cache->io_list, io);
3508 } else {
3509 /*
3510 * if we failed to write the cache, the
3511 * generation will be bad and life goes on
3512 */
3513 ret = 0;
3514 }
3515 }
ff1f8250 3516 if (!ret) {
1bbc621e 3517 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3518 /*
3519 * Our block group might still be attached to the list
3520 * of new block groups in the transaction handle of some
3521 * other task (struct btrfs_trans_handle->new_bgs). This
3522 * means its block group item isn't yet in the extent
3523 * tree. If this happens ignore the error, as we will
3524 * try again later in the critical section of the
3525 * transaction commit.
3526 */
3527 if (ret == -ENOENT) {
3528 ret = 0;
3529 spin_lock(&cur_trans->dirty_bgs_lock);
3530 if (list_empty(&cache->dirty_list)) {
3531 list_add_tail(&cache->dirty_list,
3532 &cur_trans->dirty_bgs);
3533 btrfs_get_block_group(cache);
3534 }
3535 spin_unlock(&cur_trans->dirty_bgs_lock);
3536 } else if (ret) {
3537 btrfs_abort_transaction(trans, root, ret);
3538 }
3539 }
1bbc621e
CM
3540
3541 /* if its not on the io list, we need to put the block group */
3542 if (should_put)
3543 btrfs_put_block_group(cache);
3544
3545 if (ret)
3546 break;
b58d1a9e
FM
3547
3548 /*
3549 * Avoid blocking other tasks for too long. It might even save
3550 * us from writing caches for block groups that are going to be
3551 * removed.
3552 */
3553 mutex_unlock(&trans->transaction->cache_write_mutex);
3554 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3555 }
b58d1a9e 3556 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3557
3558 /*
3559 * go through delayed refs for all the stuff we've just kicked off
3560 * and then loop back (just once)
3561 */
3562 ret = btrfs_run_delayed_refs(trans, root, 0);
3563 if (!ret && loops == 0) {
3564 loops++;
3565 spin_lock(&cur_trans->dirty_bgs_lock);
3566 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3567 /*
3568 * dirty_bgs_lock protects us from concurrent block group
3569 * deletes too (not just cache_write_mutex).
3570 */
3571 if (!list_empty(&dirty)) {
3572 spin_unlock(&cur_trans->dirty_bgs_lock);
3573 goto again;
3574 }
1bbc621e 3575 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3576 }
3577
3578 btrfs_free_path(path);
3579 return ret;
3580}
3581
3582int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *root)
3584{
3585 struct btrfs_block_group_cache *cache;
3586 struct btrfs_transaction *cur_trans = trans->transaction;
3587 int ret = 0;
3588 int should_put;
3589 struct btrfs_path *path;
3590 struct list_head *io = &cur_trans->io_bgs;
3591 int num_started = 0;
9078a3e1
CM
3592
3593 path = btrfs_alloc_path();
3594 if (!path)
3595 return -ENOMEM;
3596
ce93ec54
JB
3597 /*
3598 * We don't need the lock here since we are protected by the transaction
3599 * commit. We want to do the cache_save_setup first and then run the
3600 * delayed refs to make sure we have the best chance at doing this all
3601 * in one shot.
3602 */
3603 while (!list_empty(&cur_trans->dirty_bgs)) {
3604 cache = list_first_entry(&cur_trans->dirty_bgs,
3605 struct btrfs_block_group_cache,
3606 dirty_list);
c9dc4c65
CM
3607
3608 /*
3609 * this can happen if cache_save_setup re-dirties a block
3610 * group that is already under IO. Just wait for it to
3611 * finish and then do it all again
3612 */
3613 if (!list_empty(&cache->io_list)) {
3614 list_del_init(&cache->io_list);
3615 btrfs_wait_cache_io(root, trans, cache,
3616 &cache->io_ctl, path,
3617 cache->key.objectid);
3618 btrfs_put_block_group(cache);
c9dc4c65
CM
3619 }
3620
1bbc621e
CM
3621 /*
3622 * don't remove from the dirty list until after we've waited
3623 * on any pending IO
3624 */
ce93ec54 3625 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3626 should_put = 1;
3627
1bbc621e 3628 cache_save_setup(cache, trans, path);
c9dc4c65 3629
ce93ec54 3630 if (!ret)
c9dc4c65
CM
3631 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3632
3633 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3634 cache->io_ctl.inode = NULL;
3635 ret = btrfs_write_out_cache(root, trans, cache, path);
3636 if (ret == 0 && cache->io_ctl.inode) {
3637 num_started++;
3638 should_put = 0;
1bbc621e 3639 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3640 } else {
3641 /*
3642 * if we failed to write the cache, the
3643 * generation will be bad and life goes on
3644 */
3645 ret = 0;
3646 }
3647 }
ff1f8250 3648 if (!ret) {
ce93ec54 3649 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3650 if (ret)
3651 btrfs_abort_transaction(trans, root, ret);
3652 }
c9dc4c65
CM
3653
3654 /* if its not on the io list, we need to put the block group */
3655 if (should_put)
3656 btrfs_put_block_group(cache);
3657 }
3658
1bbc621e
CM
3659 while (!list_empty(io)) {
3660 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3661 io_list);
3662 list_del_init(&cache->io_list);
c9dc4c65
CM
3663 btrfs_wait_cache_io(root, trans, cache,
3664 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3665 btrfs_put_block_group(cache);
3666 }
3667
9078a3e1 3668 btrfs_free_path(path);
ce93ec54 3669 return ret;
9078a3e1
CM
3670}
3671
d2fb3437
YZ
3672int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3673{
3674 struct btrfs_block_group_cache *block_group;
3675 int readonly = 0;
3676
3677 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3678 if (!block_group || block_group->ro)
3679 readonly = 1;
3680 if (block_group)
fa9c0d79 3681 btrfs_put_block_group(block_group);
d2fb3437
YZ
3682 return readonly;
3683}
3684
6ab0a202
JM
3685static const char *alloc_name(u64 flags)
3686{
3687 switch (flags) {
3688 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3689 return "mixed";
3690 case BTRFS_BLOCK_GROUP_METADATA:
3691 return "metadata";
3692 case BTRFS_BLOCK_GROUP_DATA:
3693 return "data";
3694 case BTRFS_BLOCK_GROUP_SYSTEM:
3695 return "system";
3696 default:
3697 WARN_ON(1);
3698 return "invalid-combination";
3699 };
3700}
3701
593060d7
CM
3702static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3703 u64 total_bytes, u64 bytes_used,
3704 struct btrfs_space_info **space_info)
3705{
3706 struct btrfs_space_info *found;
b742bb82
YZ
3707 int i;
3708 int factor;
b150a4f1 3709 int ret;
b742bb82
YZ
3710
3711 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3712 BTRFS_BLOCK_GROUP_RAID10))
3713 factor = 2;
3714 else
3715 factor = 1;
593060d7
CM
3716
3717 found = __find_space_info(info, flags);
3718 if (found) {
25179201 3719 spin_lock(&found->lock);
593060d7 3720 found->total_bytes += total_bytes;
89a55897 3721 found->disk_total += total_bytes * factor;
593060d7 3722 found->bytes_used += bytes_used;
b742bb82 3723 found->disk_used += bytes_used * factor;
2e6e5183
FM
3724 if (total_bytes > 0)
3725 found->full = 0;
25179201 3726 spin_unlock(&found->lock);
593060d7
CM
3727 *space_info = found;
3728 return 0;
3729 }
c146afad 3730 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3731 if (!found)
3732 return -ENOMEM;
3733
908c7f19 3734 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3735 if (ret) {
3736 kfree(found);
3737 return ret;
3738 }
3739
c1895442 3740 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3741 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3742 init_rwsem(&found->groups_sem);
0f9dd46c 3743 spin_lock_init(&found->lock);
52ba6929 3744 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3745 found->total_bytes = total_bytes;
89a55897 3746 found->disk_total = total_bytes * factor;
593060d7 3747 found->bytes_used = bytes_used;
b742bb82 3748 found->disk_used = bytes_used * factor;
593060d7 3749 found->bytes_pinned = 0;
e8569813 3750 found->bytes_reserved = 0;
c146afad 3751 found->bytes_readonly = 0;
f0486c68 3752 found->bytes_may_use = 0;
6af3e3ad 3753 found->full = 0;
0e4f8f88 3754 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3755 found->chunk_alloc = 0;
fdb5effd
JB
3756 found->flush = 0;
3757 init_waitqueue_head(&found->wait);
633c0aad 3758 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3759
3760 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3761 info->space_info_kobj, "%s",
3762 alloc_name(found->flags));
3763 if (ret) {
3764 kfree(found);
3765 return ret;
3766 }
3767
593060d7 3768 *space_info = found;
4184ea7f 3769 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3770 if (flags & BTRFS_BLOCK_GROUP_DATA)
3771 info->data_sinfo = found;
6ab0a202
JM
3772
3773 return ret;
593060d7
CM
3774}
3775
8790d502
CM
3776static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3777{
899c81ea
ID
3778 u64 extra_flags = chunk_to_extended(flags) &
3779 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3780
de98ced9 3781 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3782 if (flags & BTRFS_BLOCK_GROUP_DATA)
3783 fs_info->avail_data_alloc_bits |= extra_flags;
3784 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3785 fs_info->avail_metadata_alloc_bits |= extra_flags;
3786 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3787 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3788 write_sequnlock(&fs_info->profiles_lock);
8790d502 3789}
593060d7 3790
fc67c450
ID
3791/*
3792 * returns target flags in extended format or 0 if restripe for this
3793 * chunk_type is not in progress
c6664b42
ID
3794 *
3795 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3796 */
3797static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3798{
3799 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3800 u64 target = 0;
3801
fc67c450
ID
3802 if (!bctl)
3803 return 0;
3804
3805 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3806 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3807 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3808 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3809 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3810 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3811 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3812 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3813 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3814 }
3815
3816 return target;
3817}
3818
a46d11a8
ID
3819/*
3820 * @flags: available profiles in extended format (see ctree.h)
3821 *
e4d8ec0f
ID
3822 * Returns reduced profile in chunk format. If profile changing is in
3823 * progress (either running or paused) picks the target profile (if it's
3824 * already available), otherwise falls back to plain reducing.
a46d11a8 3825 */
48a3b636 3826static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3827{
95669976 3828 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3829 u64 target;
9c170b26
ZL
3830 u64 raid_type;
3831 u64 allowed = 0;
a061fc8d 3832
fc67c450
ID
3833 /*
3834 * see if restripe for this chunk_type is in progress, if so
3835 * try to reduce to the target profile
3836 */
e4d8ec0f 3837 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3838 target = get_restripe_target(root->fs_info, flags);
3839 if (target) {
3840 /* pick target profile only if it's already available */
3841 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3842 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3843 return extended_to_chunk(target);
e4d8ec0f
ID
3844 }
3845 }
3846 spin_unlock(&root->fs_info->balance_lock);
3847
53b381b3 3848 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3849 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3850 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3851 allowed |= btrfs_raid_group[raid_type];
3852 }
3853 allowed &= flags;
3854
3855 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3856 allowed = BTRFS_BLOCK_GROUP_RAID6;
3857 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3858 allowed = BTRFS_BLOCK_GROUP_RAID5;
3859 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3860 allowed = BTRFS_BLOCK_GROUP_RAID10;
3861 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3862 allowed = BTRFS_BLOCK_GROUP_RAID1;
3863 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3864 allowed = BTRFS_BLOCK_GROUP_RAID0;
3865
3866 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3867
3868 return extended_to_chunk(flags | allowed);
ec44a35c
CM
3869}
3870
f8213bdc 3871static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3872{
de98ced9 3873 unsigned seq;
f8213bdc 3874 u64 flags;
de98ced9
MX
3875
3876 do {
f8213bdc 3877 flags = orig_flags;
de98ced9
MX
3878 seq = read_seqbegin(&root->fs_info->profiles_lock);
3879
3880 if (flags & BTRFS_BLOCK_GROUP_DATA)
3881 flags |= root->fs_info->avail_data_alloc_bits;
3882 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3883 flags |= root->fs_info->avail_system_alloc_bits;
3884 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3885 flags |= root->fs_info->avail_metadata_alloc_bits;
3886 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3887
b742bb82 3888 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3889}
3890
6d07bcec 3891u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3892{
b742bb82 3893 u64 flags;
53b381b3 3894 u64 ret;
9ed74f2d 3895
b742bb82
YZ
3896 if (data)
3897 flags = BTRFS_BLOCK_GROUP_DATA;
3898 else if (root == root->fs_info->chunk_root)
3899 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3900 else
b742bb82 3901 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3902
53b381b3
DW
3903 ret = get_alloc_profile(root, flags);
3904 return ret;
6a63209f 3905}
9ed74f2d 3906
6a63209f 3907/*
6a63209f
JB
3908 * This will check the space that the inode allocates from to make sure we have
3909 * enough space for bytes.
6a63209f 3910 */
e2d1f923 3911int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3912{
6a63209f 3913 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3914 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3915 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3916 u64 used;
94b947b2 3917 int ret = 0;
c99f1b0c
ZL
3918 int need_commit = 2;
3919 int have_pinned_space;
6a63209f 3920
6a63209f 3921 /* make sure bytes are sectorsize aligned */
fda2832f 3922 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3923
9dced186 3924 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3925 need_commit = 0;
9dced186 3926 ASSERT(current->journal_info);
0af3d00b
JB
3927 }
3928
b4d7c3c9 3929 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3930 if (!data_sinfo)
3931 goto alloc;
9ed74f2d 3932
6a63209f
JB
3933again:
3934 /* make sure we have enough space to handle the data first */
3935 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3936 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3937 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3938 data_sinfo->bytes_may_use;
ab6e2410
JB
3939
3940 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3941 struct btrfs_trans_handle *trans;
9ed74f2d 3942
6a63209f
JB
3943 /*
3944 * if we don't have enough free bytes in this space then we need
3945 * to alloc a new chunk.
3946 */
b9fd47cd 3947 if (!data_sinfo->full) {
6a63209f 3948 u64 alloc_target;
9ed74f2d 3949
0e4f8f88 3950 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3951 spin_unlock(&data_sinfo->lock);
33b4d47f 3952alloc:
6a63209f 3953 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3954 /*
3955 * It is ugly that we don't call nolock join
3956 * transaction for the free space inode case here.
3957 * But it is safe because we only do the data space
3958 * reservation for the free space cache in the
3959 * transaction context, the common join transaction
3960 * just increase the counter of the current transaction
3961 * handler, doesn't try to acquire the trans_lock of
3962 * the fs.
3963 */
7a7eaa40 3964 trans = btrfs_join_transaction(root);
a22285a6
YZ
3965 if (IS_ERR(trans))
3966 return PTR_ERR(trans);
9ed74f2d 3967
6a63209f 3968 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3969 alloc_target,
3970 CHUNK_ALLOC_NO_FORCE);
6a63209f 3971 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3972 if (ret < 0) {
3973 if (ret != -ENOSPC)
3974 return ret;
c99f1b0c
ZL
3975 else {
3976 have_pinned_space = 1;
d52a5b5f 3977 goto commit_trans;
c99f1b0c 3978 }
d52a5b5f 3979 }
9ed74f2d 3980
b4d7c3c9
LZ
3981 if (!data_sinfo)
3982 data_sinfo = fs_info->data_sinfo;
3983
6a63209f
JB
3984 goto again;
3985 }
f2bb8f5c
JB
3986
3987 /*
b150a4f1 3988 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3989 * allocation, and no removed chunk in current transaction,
3990 * don't bother committing the transaction.
f2bb8f5c 3991 */
c99f1b0c
ZL
3992 have_pinned_space = percpu_counter_compare(
3993 &data_sinfo->total_bytes_pinned,
3994 used + bytes - data_sinfo->total_bytes);
6a63209f 3995 spin_unlock(&data_sinfo->lock);
6a63209f 3996
4e06bdd6 3997 /* commit the current transaction and try again */
d52a5b5f 3998commit_trans:
c99f1b0c 3999 if (need_commit &&
a4abeea4 4000 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4001 need_commit--;
b150a4f1 4002
9a4e7276
ZL
4003 if (need_commit > 0)
4004 btrfs_wait_ordered_roots(fs_info, -1);
4005
7a7eaa40 4006 trans = btrfs_join_transaction(root);
a22285a6
YZ
4007 if (IS_ERR(trans))
4008 return PTR_ERR(trans);
c99f1b0c
ZL
4009 if (have_pinned_space >= 0 ||
4010 trans->transaction->have_free_bgs ||
4011 need_commit > 0) {
94b947b2
ZL
4012 ret = btrfs_commit_transaction(trans, root);
4013 if (ret)
4014 return ret;
d7c15171
ZL
4015 /*
4016 * make sure that all running delayed iput are
4017 * done
4018 */
4019 down_write(&root->fs_info->delayed_iput_sem);
4020 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4021 goto again;
4022 } else {
4023 btrfs_end_transaction(trans, root);
4024 }
4e06bdd6 4025 }
9ed74f2d 4026
cab45e22
JM
4027 trace_btrfs_space_reservation(root->fs_info,
4028 "space_info:enospc",
4029 data_sinfo->flags, bytes, 1);
6a63209f
JB
4030 return -ENOSPC;
4031 }
e2d1f923 4032 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
4033 if (ret)
4034 goto out;
6a63209f 4035 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4036 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4037 data_sinfo->flags, bytes, 1);
237c0e9f 4038out:
6a63209f 4039 spin_unlock(&data_sinfo->lock);
6a63209f 4040
237c0e9f 4041 return ret;
9ed74f2d 4042}
6a63209f 4043
6a63209f 4044/*
fb25e914 4045 * Called if we need to clear a data reservation for this inode.
6a63209f 4046 */
0ca1f7ce 4047void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 4048{
0ca1f7ce 4049 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4050 struct btrfs_space_info *data_sinfo;
e3ccfa98 4051
6a63209f 4052 /* make sure bytes are sectorsize aligned */
fda2832f 4053 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4054
b4d7c3c9 4055 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4056 spin_lock(&data_sinfo->lock);
7ee9e440 4057 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4058 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4059 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4060 data_sinfo->flags, bytes, 0);
6a63209f 4061 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4062}
4063
97e728d4 4064static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4065{
97e728d4
JB
4066 struct list_head *head = &info->space_info;
4067 struct btrfs_space_info *found;
e3ccfa98 4068
97e728d4
JB
4069 rcu_read_lock();
4070 list_for_each_entry_rcu(found, head, list) {
4071 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4072 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4073 }
97e728d4 4074 rcu_read_unlock();
e3ccfa98
JB
4075}
4076
3c76cd84
MX
4077static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4078{
4079 return (global->size << 1);
4080}
4081
e5bc2458 4082static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4083 struct btrfs_space_info *sinfo, int force)
32c00aff 4084{
fb25e914 4085 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4086 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4087 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4088 u64 thresh;
e3ccfa98 4089
0e4f8f88
CM
4090 if (force == CHUNK_ALLOC_FORCE)
4091 return 1;
4092
fb25e914
JB
4093 /*
4094 * We need to take into account the global rsv because for all intents
4095 * and purposes it's used space. Don't worry about locking the
4096 * global_rsv, it doesn't change except when the transaction commits.
4097 */
54338b5c 4098 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4099 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4100
0e4f8f88
CM
4101 /*
4102 * in limited mode, we want to have some free space up to
4103 * about 1% of the FS size.
4104 */
4105 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4106 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4107 thresh = max_t(u64, 64 * 1024 * 1024,
4108 div_factor_fine(thresh, 1));
4109
4110 if (num_bytes - num_allocated < thresh)
4111 return 1;
4112 }
0e4f8f88 4113
698d0082 4114 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4115 return 0;
424499db 4116 return 1;
32c00aff
JB
4117}
4118
39c2d7fa 4119static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4120{
4121 u64 num_dev;
4122
53b381b3
DW
4123 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4124 BTRFS_BLOCK_GROUP_RAID0 |
4125 BTRFS_BLOCK_GROUP_RAID5 |
4126 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4127 num_dev = root->fs_info->fs_devices->rw_devices;
4128 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4129 num_dev = 2;
4130 else
4131 num_dev = 1; /* DUP or single */
4132
39c2d7fa 4133 return num_dev;
15d1ff81
LB
4134}
4135
39c2d7fa
FM
4136/*
4137 * If @is_allocation is true, reserve space in the system space info necessary
4138 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4139 * removing a chunk.
4140 */
4141void check_system_chunk(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *root,
4617ea3a 4143 u64 type)
15d1ff81
LB
4144{
4145 struct btrfs_space_info *info;
4146 u64 left;
4147 u64 thresh;
4fbcdf66 4148 int ret = 0;
39c2d7fa 4149 u64 num_devs;
4fbcdf66
FM
4150
4151 /*
4152 * Needed because we can end up allocating a system chunk and for an
4153 * atomic and race free space reservation in the chunk block reserve.
4154 */
4155 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4156
4157 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4158 spin_lock(&info->lock);
4159 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4160 info->bytes_reserved - info->bytes_readonly -
4161 info->bytes_may_use;
15d1ff81
LB
4162 spin_unlock(&info->lock);
4163
39c2d7fa
FM
4164 num_devs = get_profile_num_devs(root, type);
4165
4166 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4167 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4168 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4169
15d1ff81 4170 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4171 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4172 left, thresh, type);
15d1ff81
LB
4173 dump_space_info(info, 0, 0);
4174 }
4175
4176 if (left < thresh) {
4177 u64 flags;
4178
4179 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4180 /*
4181 * Ignore failure to create system chunk. We might end up not
4182 * needing it, as we might not need to COW all nodes/leafs from
4183 * the paths we visit in the chunk tree (they were already COWed
4184 * or created in the current transaction for example).
4185 */
4186 ret = btrfs_alloc_chunk(trans, root, flags);
4187 }
4188
4189 if (!ret) {
4190 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4191 &root->fs_info->chunk_block_rsv,
4192 thresh, BTRFS_RESERVE_NO_FLUSH);
4193 if (!ret)
4194 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4195 }
4196}
4197
6324fbf3 4198static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4199 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4200{
6324fbf3 4201 struct btrfs_space_info *space_info;
97e728d4 4202 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4203 int wait_for_alloc = 0;
9ed74f2d 4204 int ret = 0;
9ed74f2d 4205
c6b305a8
JB
4206 /* Don't re-enter if we're already allocating a chunk */
4207 if (trans->allocating_chunk)
4208 return -ENOSPC;
4209
6324fbf3 4210 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4211 if (!space_info) {
4212 ret = update_space_info(extent_root->fs_info, flags,
4213 0, 0, &space_info);
79787eaa 4214 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4215 }
79787eaa 4216 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4217
6d74119f 4218again:
25179201 4219 spin_lock(&space_info->lock);
9e622d6b 4220 if (force < space_info->force_alloc)
0e4f8f88 4221 force = space_info->force_alloc;
25179201 4222 if (space_info->full) {
09fb99a6
FDBM
4223 if (should_alloc_chunk(extent_root, space_info, force))
4224 ret = -ENOSPC;
4225 else
4226 ret = 0;
25179201 4227 spin_unlock(&space_info->lock);
09fb99a6 4228 return ret;
9ed74f2d
JB
4229 }
4230
698d0082 4231 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4232 spin_unlock(&space_info->lock);
6d74119f
JB
4233 return 0;
4234 } else if (space_info->chunk_alloc) {
4235 wait_for_alloc = 1;
4236 } else {
4237 space_info->chunk_alloc = 1;
9ed74f2d 4238 }
0e4f8f88 4239
25179201 4240 spin_unlock(&space_info->lock);
9ed74f2d 4241
6d74119f
JB
4242 mutex_lock(&fs_info->chunk_mutex);
4243
4244 /*
4245 * The chunk_mutex is held throughout the entirety of a chunk
4246 * allocation, so once we've acquired the chunk_mutex we know that the
4247 * other guy is done and we need to recheck and see if we should
4248 * allocate.
4249 */
4250 if (wait_for_alloc) {
4251 mutex_unlock(&fs_info->chunk_mutex);
4252 wait_for_alloc = 0;
4253 goto again;
4254 }
4255
c6b305a8
JB
4256 trans->allocating_chunk = true;
4257
67377734
JB
4258 /*
4259 * If we have mixed data/metadata chunks we want to make sure we keep
4260 * allocating mixed chunks instead of individual chunks.
4261 */
4262 if (btrfs_mixed_space_info(space_info))
4263 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4264
97e728d4
JB
4265 /*
4266 * if we're doing a data chunk, go ahead and make sure that
4267 * we keep a reasonable number of metadata chunks allocated in the
4268 * FS as well.
4269 */
9ed74f2d 4270 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4271 fs_info->data_chunk_allocations++;
4272 if (!(fs_info->data_chunk_allocations %
4273 fs_info->metadata_ratio))
4274 force_metadata_allocation(fs_info);
9ed74f2d
JB
4275 }
4276
15d1ff81
LB
4277 /*
4278 * Check if we have enough space in SYSTEM chunk because we may need
4279 * to update devices.
4280 */
4617ea3a 4281 check_system_chunk(trans, extent_root, flags);
15d1ff81 4282
2b82032c 4283 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4284 trans->allocating_chunk = false;
92b8e897 4285
9ed74f2d 4286 spin_lock(&space_info->lock);
a81cb9a2
AO
4287 if (ret < 0 && ret != -ENOSPC)
4288 goto out;
9ed74f2d 4289 if (ret)
6324fbf3 4290 space_info->full = 1;
424499db
YZ
4291 else
4292 ret = 1;
6d74119f 4293
0e4f8f88 4294 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4295out:
6d74119f 4296 space_info->chunk_alloc = 0;
9ed74f2d 4297 spin_unlock(&space_info->lock);
a25c75d5 4298 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4299 /*
4300 * When we allocate a new chunk we reserve space in the chunk block
4301 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4302 * add new nodes/leafs to it if we end up needing to do it when
4303 * inserting the chunk item and updating device items as part of the
4304 * second phase of chunk allocation, performed by
4305 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4306 * large number of new block groups to create in our transaction
4307 * handle's new_bgs list to avoid exhausting the chunk block reserve
4308 * in extreme cases - like having a single transaction create many new
4309 * block groups when starting to write out the free space caches of all
4310 * the block groups that were made dirty during the lifetime of the
4311 * transaction.
4312 */
d9a0540a
FM
4313 if (trans->can_flush_pending_bgs &&
4314 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4315 btrfs_create_pending_block_groups(trans, trans->root);
4316 btrfs_trans_release_chunk_metadata(trans);
4317 }
0f9dd46c 4318 return ret;
6324fbf3 4319}
9ed74f2d 4320
a80c8dcf
JB
4321static int can_overcommit(struct btrfs_root *root,
4322 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4323 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4324{
96f1bb57 4325 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4326 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4327 u64 space_size;
a80c8dcf
JB
4328 u64 avail;
4329 u64 used;
4330
4331 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4332 space_info->bytes_pinned + space_info->bytes_readonly;
4333
96f1bb57
JB
4334 /*
4335 * We only want to allow over committing if we have lots of actual space
4336 * free, but if we don't have enough space to handle the global reserve
4337 * space then we could end up having a real enospc problem when trying
4338 * to allocate a chunk or some other such important allocation.
4339 */
3c76cd84
MX
4340 spin_lock(&global_rsv->lock);
4341 space_size = calc_global_rsv_need_space(global_rsv);
4342 spin_unlock(&global_rsv->lock);
4343 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4344 return 0;
4345
4346 used += space_info->bytes_may_use;
a80c8dcf
JB
4347
4348 spin_lock(&root->fs_info->free_chunk_lock);
4349 avail = root->fs_info->free_chunk_space;
4350 spin_unlock(&root->fs_info->free_chunk_lock);
4351
4352 /*
4353 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4354 * space is actually useable. For raid56, the space info used
4355 * doesn't include the parity drive, so we don't have to
4356 * change the math
a80c8dcf
JB
4357 */
4358 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4359 BTRFS_BLOCK_GROUP_RAID1 |
4360 BTRFS_BLOCK_GROUP_RAID10))
4361 avail >>= 1;
4362
4363 /*
561c294d
MX
4364 * If we aren't flushing all things, let us overcommit up to
4365 * 1/2th of the space. If we can flush, don't let us overcommit
4366 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4367 */
08e007d2 4368 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4369 avail >>= 3;
a80c8dcf 4370 else
14575aef 4371 avail >>= 1;
a80c8dcf 4372
14575aef 4373 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4374 return 1;
4375 return 0;
4376}
4377
48a3b636 4378static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4379 unsigned long nr_pages, int nr_items)
da633a42
MX
4380{
4381 struct super_block *sb = root->fs_info->sb;
da633a42 4382
925a6efb
JB
4383 if (down_read_trylock(&sb->s_umount)) {
4384 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4385 up_read(&sb->s_umount);
4386 } else {
da633a42
MX
4387 /*
4388 * We needn't worry the filesystem going from r/w to r/o though
4389 * we don't acquire ->s_umount mutex, because the filesystem
4390 * should guarantee the delalloc inodes list be empty after
4391 * the filesystem is readonly(all dirty pages are written to
4392 * the disk).
4393 */
6c255e67 4394 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4395 if (!current->journal_info)
6c255e67 4396 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4397 }
4398}
4399
18cd8ea6
MX
4400static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4401{
4402 u64 bytes;
4403 int nr;
4404
4405 bytes = btrfs_calc_trans_metadata_size(root, 1);
4406 nr = (int)div64_u64(to_reclaim, bytes);
4407 if (!nr)
4408 nr = 1;
4409 return nr;
4410}
4411
c61a16a7
MX
4412#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4413
9ed74f2d 4414/*
5da9d01b 4415 * shrink metadata reservation for delalloc
9ed74f2d 4416 */
f4c738c2
JB
4417static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4418 bool wait_ordered)
5da9d01b 4419{
0ca1f7ce 4420 struct btrfs_block_rsv *block_rsv;
0019f10d 4421 struct btrfs_space_info *space_info;
663350ac 4422 struct btrfs_trans_handle *trans;
f4c738c2 4423 u64 delalloc_bytes;
5da9d01b 4424 u64 max_reclaim;
b1953bce 4425 long time_left;
d3ee29e3
MX
4426 unsigned long nr_pages;
4427 int loops;
b0244199 4428 int items;
08e007d2 4429 enum btrfs_reserve_flush_enum flush;
5da9d01b 4430
c61a16a7 4431 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4432 items = calc_reclaim_items_nr(root, to_reclaim);
4433 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4434
663350ac 4435 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4436 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4437 space_info = block_rsv->space_info;
bf9022e0 4438
963d678b
MX
4439 delalloc_bytes = percpu_counter_sum_positive(
4440 &root->fs_info->delalloc_bytes);
f4c738c2 4441 if (delalloc_bytes == 0) {
fdb5effd 4442 if (trans)
f4c738c2 4443 return;
38c135af 4444 if (wait_ordered)
b0244199 4445 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4446 return;
fdb5effd
JB
4447 }
4448
d3ee29e3 4449 loops = 0;
f4c738c2
JB
4450 while (delalloc_bytes && loops < 3) {
4451 max_reclaim = min(delalloc_bytes, to_reclaim);
4452 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4453 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4454 /*
4455 * We need to wait for the async pages to actually start before
4456 * we do anything.
4457 */
9f3a074d
MX
4458 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4459 if (!max_reclaim)
4460 goto skip_async;
4461
4462 if (max_reclaim <= nr_pages)
4463 max_reclaim = 0;
4464 else
4465 max_reclaim -= nr_pages;
dea31f52 4466
9f3a074d
MX
4467 wait_event(root->fs_info->async_submit_wait,
4468 atomic_read(&root->fs_info->async_delalloc_pages) <=
4469 (int)max_reclaim);
4470skip_async:
08e007d2
MX
4471 if (!trans)
4472 flush = BTRFS_RESERVE_FLUSH_ALL;
4473 else
4474 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4475 spin_lock(&space_info->lock);
08e007d2 4476 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4477 spin_unlock(&space_info->lock);
4478 break;
4479 }
0019f10d 4480 spin_unlock(&space_info->lock);
5da9d01b 4481
36e39c40 4482 loops++;
f104d044 4483 if (wait_ordered && !trans) {
b0244199 4484 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4485 } else {
f4c738c2 4486 time_left = schedule_timeout_killable(1);
f104d044
JB
4487 if (time_left)
4488 break;
4489 }
963d678b
MX
4490 delalloc_bytes = percpu_counter_sum_positive(
4491 &root->fs_info->delalloc_bytes);
5da9d01b 4492 }
5da9d01b
YZ
4493}
4494
663350ac
JB
4495/**
4496 * maybe_commit_transaction - possibly commit the transaction if its ok to
4497 * @root - the root we're allocating for
4498 * @bytes - the number of bytes we want to reserve
4499 * @force - force the commit
8bb8ab2e 4500 *
663350ac
JB
4501 * This will check to make sure that committing the transaction will actually
4502 * get us somewhere and then commit the transaction if it does. Otherwise it
4503 * will return -ENOSPC.
8bb8ab2e 4504 */
663350ac
JB
4505static int may_commit_transaction(struct btrfs_root *root,
4506 struct btrfs_space_info *space_info,
4507 u64 bytes, int force)
4508{
4509 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4510 struct btrfs_trans_handle *trans;
4511
4512 trans = (struct btrfs_trans_handle *)current->journal_info;
4513 if (trans)
4514 return -EAGAIN;
4515
4516 if (force)
4517 goto commit;
4518
4519 /* See if there is enough pinned space to make this reservation */
b150a4f1 4520 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4521 bytes) >= 0)
663350ac 4522 goto commit;
663350ac
JB
4523
4524 /*
4525 * See if there is some space in the delayed insertion reservation for
4526 * this reservation.
4527 */
4528 if (space_info != delayed_rsv->space_info)
4529 return -ENOSPC;
4530
4531 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4532 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4533 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4534 spin_unlock(&delayed_rsv->lock);
4535 return -ENOSPC;
4536 }
4537 spin_unlock(&delayed_rsv->lock);
4538
4539commit:
4540 trans = btrfs_join_transaction(root);
4541 if (IS_ERR(trans))
4542 return -ENOSPC;
4543
4544 return btrfs_commit_transaction(trans, root);
4545}
4546
96c3f433 4547enum flush_state {
67b0fd63
JB
4548 FLUSH_DELAYED_ITEMS_NR = 1,
4549 FLUSH_DELAYED_ITEMS = 2,
4550 FLUSH_DELALLOC = 3,
4551 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4552 ALLOC_CHUNK = 5,
4553 COMMIT_TRANS = 6,
96c3f433
JB
4554};
4555
4556static int flush_space(struct btrfs_root *root,
4557 struct btrfs_space_info *space_info, u64 num_bytes,
4558 u64 orig_bytes, int state)
4559{
4560 struct btrfs_trans_handle *trans;
4561 int nr;
f4c738c2 4562 int ret = 0;
96c3f433
JB
4563
4564 switch (state) {
96c3f433
JB
4565 case FLUSH_DELAYED_ITEMS_NR:
4566 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4567 if (state == FLUSH_DELAYED_ITEMS_NR)
4568 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4569 else
96c3f433 4570 nr = -1;
18cd8ea6 4571
96c3f433
JB
4572 trans = btrfs_join_transaction(root);
4573 if (IS_ERR(trans)) {
4574 ret = PTR_ERR(trans);
4575 break;
4576 }
4577 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4578 btrfs_end_transaction(trans, root);
4579 break;
67b0fd63
JB
4580 case FLUSH_DELALLOC:
4581 case FLUSH_DELALLOC_WAIT:
24af7dd1 4582 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4583 state == FLUSH_DELALLOC_WAIT);
4584 break;
ea658bad
JB
4585 case ALLOC_CHUNK:
4586 trans = btrfs_join_transaction(root);
4587 if (IS_ERR(trans)) {
4588 ret = PTR_ERR(trans);
4589 break;
4590 }
4591 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4592 btrfs_get_alloc_profile(root, 0),
4593 CHUNK_ALLOC_NO_FORCE);
4594 btrfs_end_transaction(trans, root);
4595 if (ret == -ENOSPC)
4596 ret = 0;
4597 break;
96c3f433
JB
4598 case COMMIT_TRANS:
4599 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4600 break;
4601 default:
4602 ret = -ENOSPC;
4603 break;
4604 }
4605
4606 return ret;
4607}
21c7e756
MX
4608
4609static inline u64
4610btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4611 struct btrfs_space_info *space_info)
4612{
4613 u64 used;
4614 u64 expected;
4615 u64 to_reclaim;
4616
4617 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4618 16 * 1024 * 1024);
4619 spin_lock(&space_info->lock);
4620 if (can_overcommit(root, space_info, to_reclaim,
4621 BTRFS_RESERVE_FLUSH_ALL)) {
4622 to_reclaim = 0;
4623 goto out;
4624 }
4625
4626 used = space_info->bytes_used + space_info->bytes_reserved +
4627 space_info->bytes_pinned + space_info->bytes_readonly +
4628 space_info->bytes_may_use;
4629 if (can_overcommit(root, space_info, 1024 * 1024,
4630 BTRFS_RESERVE_FLUSH_ALL))
4631 expected = div_factor_fine(space_info->total_bytes, 95);
4632 else
4633 expected = div_factor_fine(space_info->total_bytes, 90);
4634
4635 if (used > expected)
4636 to_reclaim = used - expected;
4637 else
4638 to_reclaim = 0;
4639 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4640 space_info->bytes_reserved);
4641out:
4642 spin_unlock(&space_info->lock);
4643
4644 return to_reclaim;
4645}
4646
4647static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4648 struct btrfs_fs_info *fs_info, u64 used)
4649{
365c5313
JB
4650 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4651
4652 /* If we're just plain full then async reclaim just slows us down. */
4653 if (space_info->bytes_used >= thresh)
4654 return 0;
4655
4656 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4657 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4658}
4659
4660static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4661 struct btrfs_fs_info *fs_info,
4662 int flush_state)
21c7e756
MX
4663{
4664 u64 used;
4665
4666 spin_lock(&space_info->lock);
25ce459c
LB
4667 /*
4668 * We run out of space and have not got any free space via flush_space,
4669 * so don't bother doing async reclaim.
4670 */
4671 if (flush_state > COMMIT_TRANS && space_info->full) {
4672 spin_unlock(&space_info->lock);
4673 return 0;
4674 }
4675
21c7e756
MX
4676 used = space_info->bytes_used + space_info->bytes_reserved +
4677 space_info->bytes_pinned + space_info->bytes_readonly +
4678 space_info->bytes_may_use;
4679 if (need_do_async_reclaim(space_info, fs_info, used)) {
4680 spin_unlock(&space_info->lock);
4681 return 1;
4682 }
4683 spin_unlock(&space_info->lock);
4684
4685 return 0;
4686}
4687
4688static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4689{
4690 struct btrfs_fs_info *fs_info;
4691 struct btrfs_space_info *space_info;
4692 u64 to_reclaim;
4693 int flush_state;
4694
4695 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4696 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4697
4698 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4699 space_info);
4700 if (!to_reclaim)
4701 return;
4702
4703 flush_state = FLUSH_DELAYED_ITEMS_NR;
4704 do {
4705 flush_space(fs_info->fs_root, space_info, to_reclaim,
4706 to_reclaim, flush_state);
4707 flush_state++;
25ce459c
LB
4708 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4709 flush_state))
21c7e756 4710 return;
365c5313 4711 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4712}
4713
4714void btrfs_init_async_reclaim_work(struct work_struct *work)
4715{
4716 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4717}
4718
4a92b1b8
JB
4719/**
4720 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4721 * @root - the root we're allocating for
4722 * @block_rsv - the block_rsv we're allocating for
4723 * @orig_bytes - the number of bytes we want
48fc7f7e 4724 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4725 *
4a92b1b8
JB
4726 * This will reserve orgi_bytes number of bytes from the space info associated
4727 * with the block_rsv. If there is not enough space it will make an attempt to
4728 * flush out space to make room. It will do this by flushing delalloc if
4729 * possible or committing the transaction. If flush is 0 then no attempts to
4730 * regain reservations will be made and this will fail if there is not enough
4731 * space already.
8bb8ab2e 4732 */
4a92b1b8 4733static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4734 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4735 u64 orig_bytes,
4736 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4737{
f0486c68 4738 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4739 u64 used;
8bb8ab2e 4740 u64 num_bytes = orig_bytes;
67b0fd63 4741 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4742 int ret = 0;
fdb5effd 4743 bool flushing = false;
9ed74f2d 4744
8bb8ab2e 4745again:
fdb5effd 4746 ret = 0;
8bb8ab2e 4747 spin_lock(&space_info->lock);
fdb5effd 4748 /*
08e007d2
MX
4749 * We only want to wait if somebody other than us is flushing and we
4750 * are actually allowed to flush all things.
fdb5effd 4751 */
08e007d2
MX
4752 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4753 space_info->flush) {
fdb5effd
JB
4754 spin_unlock(&space_info->lock);
4755 /*
4756 * If we have a trans handle we can't wait because the flusher
4757 * may have to commit the transaction, which would mean we would
4758 * deadlock since we are waiting for the flusher to finish, but
4759 * hold the current transaction open.
4760 */
663350ac 4761 if (current->journal_info)
fdb5effd 4762 return -EAGAIN;
b9688bb8
AJ
4763 ret = wait_event_killable(space_info->wait, !space_info->flush);
4764 /* Must have been killed, return */
4765 if (ret)
fdb5effd
JB
4766 return -EINTR;
4767
4768 spin_lock(&space_info->lock);
4769 }
4770
4771 ret = -ENOSPC;
2bf64758
JB
4772 used = space_info->bytes_used + space_info->bytes_reserved +
4773 space_info->bytes_pinned + space_info->bytes_readonly +
4774 space_info->bytes_may_use;
9ed74f2d 4775
8bb8ab2e
JB
4776 /*
4777 * The idea here is that we've not already over-reserved the block group
4778 * then we can go ahead and save our reservation first and then start
4779 * flushing if we need to. Otherwise if we've already overcommitted
4780 * lets start flushing stuff first and then come back and try to make
4781 * our reservation.
4782 */
2bf64758
JB
4783 if (used <= space_info->total_bytes) {
4784 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4785 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4786 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4787 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4788 ret = 0;
4789 } else {
4790 /*
4791 * Ok set num_bytes to orig_bytes since we aren't
4792 * overocmmitted, this way we only try and reclaim what
4793 * we need.
4794 */
4795 num_bytes = orig_bytes;
4796 }
4797 } else {
4798 /*
4799 * Ok we're over committed, set num_bytes to the overcommitted
4800 * amount plus the amount of bytes that we need for this
4801 * reservation.
4802 */
2bf64758 4803 num_bytes = used - space_info->total_bytes +
96c3f433 4804 (orig_bytes * 2);
8bb8ab2e 4805 }
9ed74f2d 4806
44734ed1
JB
4807 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4808 space_info->bytes_may_use += orig_bytes;
4809 trace_btrfs_space_reservation(root->fs_info, "space_info",
4810 space_info->flags, orig_bytes,
4811 1);
4812 ret = 0;
2bf64758
JB
4813 }
4814
8bb8ab2e
JB
4815 /*
4816 * Couldn't make our reservation, save our place so while we're trying
4817 * to reclaim space we can actually use it instead of somebody else
4818 * stealing it from us.
08e007d2
MX
4819 *
4820 * We make the other tasks wait for the flush only when we can flush
4821 * all things.
8bb8ab2e 4822 */
72bcd99d 4823 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4824 flushing = true;
4825 space_info->flush = 1;
21c7e756
MX
4826 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4827 used += orig_bytes;
f6acfd50
JB
4828 /*
4829 * We will do the space reservation dance during log replay,
4830 * which means we won't have fs_info->fs_root set, so don't do
4831 * the async reclaim as we will panic.
4832 */
4833 if (!root->fs_info->log_root_recovering &&
4834 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4835 !work_busy(&root->fs_info->async_reclaim_work))
4836 queue_work(system_unbound_wq,
4837 &root->fs_info->async_reclaim_work);
8bb8ab2e 4838 }
f0486c68 4839 spin_unlock(&space_info->lock);
9ed74f2d 4840
08e007d2 4841 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4842 goto out;
f0486c68 4843
96c3f433
JB
4844 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4845 flush_state);
4846 flush_state++;
08e007d2
MX
4847
4848 /*
4849 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4850 * would happen. So skip delalloc flush.
4851 */
4852 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4853 (flush_state == FLUSH_DELALLOC ||
4854 flush_state == FLUSH_DELALLOC_WAIT))
4855 flush_state = ALLOC_CHUNK;
4856
96c3f433 4857 if (!ret)
8bb8ab2e 4858 goto again;
08e007d2
MX
4859 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4860 flush_state < COMMIT_TRANS)
4861 goto again;
4862 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4863 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4864 goto again;
4865
4866out:
5d80366e
JB
4867 if (ret == -ENOSPC &&
4868 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4869 struct btrfs_block_rsv *global_rsv =
4870 &root->fs_info->global_block_rsv;
4871
4872 if (block_rsv != global_rsv &&
4873 !block_rsv_use_bytes(global_rsv, orig_bytes))
4874 ret = 0;
4875 }
cab45e22
JM
4876 if (ret == -ENOSPC)
4877 trace_btrfs_space_reservation(root->fs_info,
4878 "space_info:enospc",
4879 space_info->flags, orig_bytes, 1);
fdb5effd 4880 if (flushing) {
8bb8ab2e 4881 spin_lock(&space_info->lock);
fdb5effd
JB
4882 space_info->flush = 0;
4883 wake_up_all(&space_info->wait);
8bb8ab2e 4884 spin_unlock(&space_info->lock);
f0486c68 4885 }
f0486c68
YZ
4886 return ret;
4887}
4888
79787eaa
JM
4889static struct btrfs_block_rsv *get_block_rsv(
4890 const struct btrfs_trans_handle *trans,
4891 const struct btrfs_root *root)
f0486c68 4892{
4c13d758
JB
4893 struct btrfs_block_rsv *block_rsv = NULL;
4894
e9cf439f
AM
4895 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4896 (root == root->fs_info->csum_root && trans->adding_csums) ||
4897 (root == root->fs_info->uuid_root))
f7a81ea4
SB
4898 block_rsv = trans->block_rsv;
4899
4c13d758 4900 if (!block_rsv)
f0486c68
YZ
4901 block_rsv = root->block_rsv;
4902
4903 if (!block_rsv)
4904 block_rsv = &root->fs_info->empty_block_rsv;
4905
4906 return block_rsv;
4907}
4908
4909static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4910 u64 num_bytes)
4911{
4912 int ret = -ENOSPC;
4913 spin_lock(&block_rsv->lock);
4914 if (block_rsv->reserved >= num_bytes) {
4915 block_rsv->reserved -= num_bytes;
4916 if (block_rsv->reserved < block_rsv->size)
4917 block_rsv->full = 0;
4918 ret = 0;
4919 }
4920 spin_unlock(&block_rsv->lock);
4921 return ret;
4922}
4923
4924static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4925 u64 num_bytes, int update_size)
4926{
4927 spin_lock(&block_rsv->lock);
4928 block_rsv->reserved += num_bytes;
4929 if (update_size)
4930 block_rsv->size += num_bytes;
4931 else if (block_rsv->reserved >= block_rsv->size)
4932 block_rsv->full = 1;
4933 spin_unlock(&block_rsv->lock);
4934}
4935
d52be818
JB
4936int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4937 struct btrfs_block_rsv *dest, u64 num_bytes,
4938 int min_factor)
4939{
4940 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4941 u64 min_bytes;
4942
4943 if (global_rsv->space_info != dest->space_info)
4944 return -ENOSPC;
4945
4946 spin_lock(&global_rsv->lock);
4947 min_bytes = div_factor(global_rsv->size, min_factor);
4948 if (global_rsv->reserved < min_bytes + num_bytes) {
4949 spin_unlock(&global_rsv->lock);
4950 return -ENOSPC;
4951 }
4952 global_rsv->reserved -= num_bytes;
4953 if (global_rsv->reserved < global_rsv->size)
4954 global_rsv->full = 0;
4955 spin_unlock(&global_rsv->lock);
4956
4957 block_rsv_add_bytes(dest, num_bytes, 1);
4958 return 0;
4959}
4960
8c2a3ca2
JB
4961static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4962 struct btrfs_block_rsv *block_rsv,
62a45b60 4963 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4964{
4965 struct btrfs_space_info *space_info = block_rsv->space_info;
4966
4967 spin_lock(&block_rsv->lock);
4968 if (num_bytes == (u64)-1)
4969 num_bytes = block_rsv->size;
4970 block_rsv->size -= num_bytes;
4971 if (block_rsv->reserved >= block_rsv->size) {
4972 num_bytes = block_rsv->reserved - block_rsv->size;
4973 block_rsv->reserved = block_rsv->size;
4974 block_rsv->full = 1;
4975 } else {
4976 num_bytes = 0;
4977 }
4978 spin_unlock(&block_rsv->lock);
4979
4980 if (num_bytes > 0) {
4981 if (dest) {
e9e22899
JB
4982 spin_lock(&dest->lock);
4983 if (!dest->full) {
4984 u64 bytes_to_add;
4985
4986 bytes_to_add = dest->size - dest->reserved;
4987 bytes_to_add = min(num_bytes, bytes_to_add);
4988 dest->reserved += bytes_to_add;
4989 if (dest->reserved >= dest->size)
4990 dest->full = 1;
4991 num_bytes -= bytes_to_add;
4992 }
4993 spin_unlock(&dest->lock);
4994 }
4995 if (num_bytes) {
f0486c68 4996 spin_lock(&space_info->lock);
fb25e914 4997 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4998 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4999 space_info->flags, num_bytes, 0);
f0486c68 5000 spin_unlock(&space_info->lock);
4e06bdd6 5001 }
9ed74f2d 5002 }
f0486c68 5003}
4e06bdd6 5004
f0486c68
YZ
5005static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5006 struct btrfs_block_rsv *dst, u64 num_bytes)
5007{
5008 int ret;
9ed74f2d 5009
f0486c68
YZ
5010 ret = block_rsv_use_bytes(src, num_bytes);
5011 if (ret)
5012 return ret;
9ed74f2d 5013
f0486c68 5014 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5015 return 0;
5016}
5017
66d8f3dd 5018void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5019{
f0486c68
YZ
5020 memset(rsv, 0, sizeof(*rsv));
5021 spin_lock_init(&rsv->lock);
66d8f3dd 5022 rsv->type = type;
f0486c68
YZ
5023}
5024
66d8f3dd
MX
5025struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5026 unsigned short type)
f0486c68
YZ
5027{
5028 struct btrfs_block_rsv *block_rsv;
5029 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5030
f0486c68
YZ
5031 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5032 if (!block_rsv)
5033 return NULL;
9ed74f2d 5034
66d8f3dd 5035 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5036 block_rsv->space_info = __find_space_info(fs_info,
5037 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5038 return block_rsv;
5039}
9ed74f2d 5040
f0486c68
YZ
5041void btrfs_free_block_rsv(struct btrfs_root *root,
5042 struct btrfs_block_rsv *rsv)
5043{
2aaa6655
JB
5044 if (!rsv)
5045 return;
dabdb640
JB
5046 btrfs_block_rsv_release(root, rsv, (u64)-1);
5047 kfree(rsv);
9ed74f2d
JB
5048}
5049
cdfb080e
CM
5050void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5051{
5052 kfree(rsv);
5053}
5054
08e007d2
MX
5055int btrfs_block_rsv_add(struct btrfs_root *root,
5056 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5057 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5058{
f0486c68 5059 int ret;
9ed74f2d 5060
f0486c68
YZ
5061 if (num_bytes == 0)
5062 return 0;
8bb8ab2e 5063
61b520a9 5064 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5065 if (!ret) {
5066 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5067 return 0;
5068 }
9ed74f2d 5069
f0486c68 5070 return ret;
f0486c68 5071}
9ed74f2d 5072
4a92b1b8 5073int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5074 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5075{
5076 u64 num_bytes = 0;
f0486c68 5077 int ret = -ENOSPC;
9ed74f2d 5078
f0486c68
YZ
5079 if (!block_rsv)
5080 return 0;
9ed74f2d 5081
f0486c68 5082 spin_lock(&block_rsv->lock);
36ba022a
JB
5083 num_bytes = div_factor(block_rsv->size, min_factor);
5084 if (block_rsv->reserved >= num_bytes)
5085 ret = 0;
5086 spin_unlock(&block_rsv->lock);
9ed74f2d 5087
36ba022a
JB
5088 return ret;
5089}
5090
08e007d2
MX
5091int btrfs_block_rsv_refill(struct btrfs_root *root,
5092 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5093 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5094{
5095 u64 num_bytes = 0;
5096 int ret = -ENOSPC;
5097
5098 if (!block_rsv)
5099 return 0;
5100
5101 spin_lock(&block_rsv->lock);
5102 num_bytes = min_reserved;
13553e52 5103 if (block_rsv->reserved >= num_bytes)
f0486c68 5104 ret = 0;
13553e52 5105 else
f0486c68 5106 num_bytes -= block_rsv->reserved;
f0486c68 5107 spin_unlock(&block_rsv->lock);
13553e52 5108
f0486c68
YZ
5109 if (!ret)
5110 return 0;
5111
aa38a711 5112 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5113 if (!ret) {
5114 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5115 return 0;
6a63209f 5116 }
9ed74f2d 5117
13553e52 5118 return ret;
f0486c68
YZ
5119}
5120
5121int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5122 struct btrfs_block_rsv *dst_rsv,
5123 u64 num_bytes)
5124{
5125 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5126}
5127
5128void btrfs_block_rsv_release(struct btrfs_root *root,
5129 struct btrfs_block_rsv *block_rsv,
5130 u64 num_bytes)
5131{
5132 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5133 if (global_rsv == block_rsv ||
f0486c68
YZ
5134 block_rsv->space_info != global_rsv->space_info)
5135 global_rsv = NULL;
8c2a3ca2
JB
5136 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5137 num_bytes);
6a63209f
JB
5138}
5139
5140/*
8929ecfa
YZ
5141 * helper to calculate size of global block reservation.
5142 * the desired value is sum of space used by extent tree,
5143 * checksum tree and root tree
6a63209f 5144 */
8929ecfa 5145static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5146{
8929ecfa
YZ
5147 struct btrfs_space_info *sinfo;
5148 u64 num_bytes;
5149 u64 meta_used;
5150 u64 data_used;
6c41761f 5151 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5152
8929ecfa
YZ
5153 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5154 spin_lock(&sinfo->lock);
5155 data_used = sinfo->bytes_used;
5156 spin_unlock(&sinfo->lock);
33b4d47f 5157
8929ecfa
YZ
5158 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5159 spin_lock(&sinfo->lock);
6d48755d
JB
5160 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5161 data_used = 0;
8929ecfa
YZ
5162 meta_used = sinfo->bytes_used;
5163 spin_unlock(&sinfo->lock);
ab6e2410 5164
8929ecfa
YZ
5165 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5166 csum_size * 2;
f8c269d7 5167 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5168
8929ecfa 5169 if (num_bytes * 3 > meta_used)
f8c269d7 5170 num_bytes = div_u64(meta_used, 3);
ab6e2410 5171
707e8a07 5172 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5173}
6a63209f 5174
8929ecfa
YZ
5175static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5176{
5177 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5178 struct btrfs_space_info *sinfo = block_rsv->space_info;
5179 u64 num_bytes;
6a63209f 5180
8929ecfa 5181 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5182
8929ecfa 5183 spin_lock(&sinfo->lock);
1f699d38 5184 spin_lock(&block_rsv->lock);
4e06bdd6 5185
fdf30d1c 5186 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5187
8929ecfa 5188 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5189 sinfo->bytes_reserved + sinfo->bytes_readonly +
5190 sinfo->bytes_may_use;
8929ecfa
YZ
5191
5192 if (sinfo->total_bytes > num_bytes) {
5193 num_bytes = sinfo->total_bytes - num_bytes;
5194 block_rsv->reserved += num_bytes;
fb25e914 5195 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5196 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5197 sinfo->flags, num_bytes, 1);
6a63209f 5198 }
6a63209f 5199
8929ecfa
YZ
5200 if (block_rsv->reserved >= block_rsv->size) {
5201 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5202 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5203 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5204 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5205 block_rsv->reserved = block_rsv->size;
5206 block_rsv->full = 1;
5207 }
182608c8 5208
8929ecfa 5209 spin_unlock(&block_rsv->lock);
1f699d38 5210 spin_unlock(&sinfo->lock);
6a63209f
JB
5211}
5212
f0486c68 5213static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5214{
f0486c68 5215 struct btrfs_space_info *space_info;
6a63209f 5216
f0486c68
YZ
5217 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5218 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5219
f0486c68 5220 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5221 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5222 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5223 fs_info->trans_block_rsv.space_info = space_info;
5224 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5225 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5226
8929ecfa
YZ
5227 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5228 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5229 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5230 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5231 if (fs_info->quota_root)
5232 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5233 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5234
8929ecfa 5235 update_global_block_rsv(fs_info);
6a63209f
JB
5236}
5237
8929ecfa 5238static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5239{
8c2a3ca2
JB
5240 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5241 (u64)-1);
8929ecfa
YZ
5242 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5243 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5244 WARN_ON(fs_info->trans_block_rsv.size > 0);
5245 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5246 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5247 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5248 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5249 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5250}
5251
a22285a6
YZ
5252void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5253 struct btrfs_root *root)
6a63209f 5254{
0e721106
JB
5255 if (!trans->block_rsv)
5256 return;
5257
a22285a6
YZ
5258 if (!trans->bytes_reserved)
5259 return;
6a63209f 5260
e77266e4 5261 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5262 trans->transid, trans->bytes_reserved, 0);
b24e03db 5263 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5264 trans->bytes_reserved = 0;
5265}
6a63209f 5266
4fbcdf66
FM
5267/*
5268 * To be called after all the new block groups attached to the transaction
5269 * handle have been created (btrfs_create_pending_block_groups()).
5270 */
5271void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5272{
5273 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5274
5275 if (!trans->chunk_bytes_reserved)
5276 return;
5277
5278 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5279
5280 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5281 trans->chunk_bytes_reserved);
5282 trans->chunk_bytes_reserved = 0;
5283}
5284
79787eaa 5285/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5286int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5287 struct inode *inode)
5288{
5289 struct btrfs_root *root = BTRFS_I(inode)->root;
5290 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5291 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5292
5293 /*
fcb80c2a
JB
5294 * We need to hold space in order to delete our orphan item once we've
5295 * added it, so this takes the reservation so we can release it later
5296 * when we are truly done with the orphan item.
d68fc57b 5297 */
ff5714cc 5298 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5299 trace_btrfs_space_reservation(root->fs_info, "orphan",
5300 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5301 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5302}
5303
d68fc57b 5304void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5305{
d68fc57b 5306 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5307 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5308 trace_btrfs_space_reservation(root->fs_info, "orphan",
5309 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5310 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5311}
97e728d4 5312
d5c12070
MX
5313/*
5314 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5315 * root: the root of the parent directory
5316 * rsv: block reservation
5317 * items: the number of items that we need do reservation
5318 * qgroup_reserved: used to return the reserved size in qgroup
5319 *
5320 * This function is used to reserve the space for snapshot/subvolume
5321 * creation and deletion. Those operations are different with the
5322 * common file/directory operations, they change two fs/file trees
5323 * and root tree, the number of items that the qgroup reserves is
5324 * different with the free space reservation. So we can not use
5325 * the space reseravtion mechanism in start_transaction().
5326 */
5327int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5328 struct btrfs_block_rsv *rsv,
5329 int items,
ee3441b4
JM
5330 u64 *qgroup_reserved,
5331 bool use_global_rsv)
a22285a6 5332{
d5c12070
MX
5333 u64 num_bytes;
5334 int ret;
ee3441b4 5335 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5336
5337 if (root->fs_info->quota_enabled) {
5338 /* One for parent inode, two for dir entries */
707e8a07 5339 num_bytes = 3 * root->nodesize;
7174109c 5340 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5341 if (ret)
5342 return ret;
5343 } else {
5344 num_bytes = 0;
5345 }
5346
5347 *qgroup_reserved = num_bytes;
5348
5349 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5350 rsv->space_info = __find_space_info(root->fs_info,
5351 BTRFS_BLOCK_GROUP_METADATA);
5352 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5353 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5354
5355 if (ret == -ENOSPC && use_global_rsv)
5356 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5357
7174109c
QW
5358 if (ret && *qgroup_reserved)
5359 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5360
5361 return ret;
5362}
5363
5364void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5365 struct btrfs_block_rsv *rsv,
5366 u64 qgroup_reserved)
5367{
5368 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5369}
5370
7709cde3
JB
5371/**
5372 * drop_outstanding_extent - drop an outstanding extent
5373 * @inode: the inode we're dropping the extent for
dcab6a3b 5374 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5375 *
5376 * This is called when we are freeing up an outstanding extent, either called
5377 * after an error or after an extent is written. This will return the number of
5378 * reserved extents that need to be freed. This must be called with
5379 * BTRFS_I(inode)->lock held.
5380 */
dcab6a3b 5381static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5382{
7fd2ae21 5383 unsigned drop_inode_space = 0;
9e0baf60 5384 unsigned dropped_extents = 0;
dcab6a3b 5385 unsigned num_extents = 0;
9e0baf60 5386
dcab6a3b
JB
5387 num_extents = (unsigned)div64_u64(num_bytes +
5388 BTRFS_MAX_EXTENT_SIZE - 1,
5389 BTRFS_MAX_EXTENT_SIZE);
5390 ASSERT(num_extents);
5391 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5392 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5393
7fd2ae21 5394 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5395 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5396 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5397 drop_inode_space = 1;
7fd2ae21 5398
9e0baf60
JB
5399 /*
5400 * If we have more or the same amount of outsanding extents than we have
5401 * reserved then we need to leave the reserved extents count alone.
5402 */
5403 if (BTRFS_I(inode)->outstanding_extents >=
5404 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5405 return drop_inode_space;
9e0baf60
JB
5406
5407 dropped_extents = BTRFS_I(inode)->reserved_extents -
5408 BTRFS_I(inode)->outstanding_extents;
5409 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5410 return dropped_extents + drop_inode_space;
9e0baf60
JB
5411}
5412
7709cde3
JB
5413/**
5414 * calc_csum_metadata_size - return the amount of metada space that must be
5415 * reserved/free'd for the given bytes.
5416 * @inode: the inode we're manipulating
5417 * @num_bytes: the number of bytes in question
5418 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5419 *
5420 * This adjusts the number of csum_bytes in the inode and then returns the
5421 * correct amount of metadata that must either be reserved or freed. We
5422 * calculate how many checksums we can fit into one leaf and then divide the
5423 * number of bytes that will need to be checksumed by this value to figure out
5424 * how many checksums will be required. If we are adding bytes then the number
5425 * may go up and we will return the number of additional bytes that must be
5426 * reserved. If it is going down we will return the number of bytes that must
5427 * be freed.
5428 *
5429 * This must be called with BTRFS_I(inode)->lock held.
5430 */
5431static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5432 int reserve)
6324fbf3 5433{
7709cde3 5434 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5435 u64 old_csums, num_csums;
7709cde3
JB
5436
5437 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5438 BTRFS_I(inode)->csum_bytes == 0)
5439 return 0;
5440
28f75a0e 5441 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5442 if (reserve)
5443 BTRFS_I(inode)->csum_bytes += num_bytes;
5444 else
5445 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5446 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5447
5448 /* No change, no need to reserve more */
5449 if (old_csums == num_csums)
5450 return 0;
5451
5452 if (reserve)
5453 return btrfs_calc_trans_metadata_size(root,
5454 num_csums - old_csums);
5455
5456 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5457}
c146afad 5458
0ca1f7ce
YZ
5459int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5460{
5461 struct btrfs_root *root = BTRFS_I(inode)->root;
5462 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5463 u64 to_reserve = 0;
660d3f6c 5464 u64 csum_bytes;
9e0baf60 5465 unsigned nr_extents = 0;
660d3f6c 5466 int extra_reserve = 0;
08e007d2 5467 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5468 int ret = 0;
c64c2bd8 5469 bool delalloc_lock = true;
88e081bf
WS
5470 u64 to_free = 0;
5471 unsigned dropped;
6324fbf3 5472
c64c2bd8
JB
5473 /* If we are a free space inode we need to not flush since we will be in
5474 * the middle of a transaction commit. We also don't need the delalloc
5475 * mutex since we won't race with anybody. We need this mostly to make
5476 * lockdep shut its filthy mouth.
5477 */
5478 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5479 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5480 delalloc_lock = false;
5481 }
c09544e0 5482
08e007d2
MX
5483 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5484 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5485 schedule_timeout(1);
ec44a35c 5486
c64c2bd8
JB
5487 if (delalloc_lock)
5488 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5489
0ca1f7ce 5490 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5491
9e0baf60 5492 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5493 nr_extents = (unsigned)div64_u64(num_bytes +
5494 BTRFS_MAX_EXTENT_SIZE - 1,
5495 BTRFS_MAX_EXTENT_SIZE);
5496 BTRFS_I(inode)->outstanding_extents += nr_extents;
5497 nr_extents = 0;
9e0baf60
JB
5498
5499 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5500 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5501 nr_extents = BTRFS_I(inode)->outstanding_extents -
5502 BTRFS_I(inode)->reserved_extents;
57a45ced 5503
7fd2ae21
JB
5504 /*
5505 * Add an item to reserve for updating the inode when we complete the
5506 * delalloc io.
5507 */
72ac3c0d
JB
5508 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5509 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5510 nr_extents++;
660d3f6c 5511 extra_reserve = 1;
593060d7 5512 }
7fd2ae21
JB
5513
5514 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5515 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5516 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5517 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5518
88e081bf 5519 if (root->fs_info->quota_enabled) {
7174109c
QW
5520 ret = btrfs_qgroup_reserve_meta(root,
5521 nr_extents * root->nodesize);
88e081bf
WS
5522 if (ret)
5523 goto out_fail;
5524 }
c5567237 5525
88e081bf
WS
5526 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5527 if (unlikely(ret)) {
7174109c 5528 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5529 goto out_fail;
9e0baf60 5530 }
25179201 5531
660d3f6c
JB
5532 spin_lock(&BTRFS_I(inode)->lock);
5533 if (extra_reserve) {
72ac3c0d
JB
5534 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5535 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5536 nr_extents--;
5537 }
5538 BTRFS_I(inode)->reserved_extents += nr_extents;
5539 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5540
5541 if (delalloc_lock)
5542 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5543
8c2a3ca2 5544 if (to_reserve)
67871254 5545 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5546 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5547 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5548
0ca1f7ce 5549 return 0;
88e081bf
WS
5550
5551out_fail:
5552 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5553 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5554 /*
5555 * If the inodes csum_bytes is the same as the original
5556 * csum_bytes then we know we haven't raced with any free()ers
5557 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5558 */
f4881bc7 5559 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5560 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5561 } else {
5562 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5563 u64 bytes;
5564
5565 /*
5566 * This is tricky, but first we need to figure out how much we
5567 * free'd from any free-ers that occured during this
5568 * reservation, so we reset ->csum_bytes to the csum_bytes
5569 * before we dropped our lock, and then call the free for the
5570 * number of bytes that were freed while we were trying our
5571 * reservation.
5572 */
5573 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5574 BTRFS_I(inode)->csum_bytes = csum_bytes;
5575 to_free = calc_csum_metadata_size(inode, bytes, 0);
5576
5577
5578 /*
5579 * Now we need to see how much we would have freed had we not
5580 * been making this reservation and our ->csum_bytes were not
5581 * artificially inflated.
5582 */
5583 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5584 bytes = csum_bytes - orig_csum_bytes;
5585 bytes = calc_csum_metadata_size(inode, bytes, 0);
5586
5587 /*
5588 * Now reset ->csum_bytes to what it should be. If bytes is
5589 * more than to_free then we would have free'd more space had we
5590 * not had an artificially high ->csum_bytes, so we need to free
5591 * the remainder. If bytes is the same or less then we don't
5592 * need to do anything, the other free-ers did the correct
5593 * thing.
5594 */
5595 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5596 if (bytes > to_free)
5597 to_free = bytes - to_free;
5598 else
5599 to_free = 0;
5600 }
88e081bf 5601 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5602 if (dropped)
88e081bf
WS
5603 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5604
5605 if (to_free) {
5606 btrfs_block_rsv_release(root, block_rsv, to_free);
5607 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5608 btrfs_ino(inode), to_free, 0);
5609 }
5610 if (delalloc_lock)
5611 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5612 return ret;
0ca1f7ce
YZ
5613}
5614
7709cde3
JB
5615/**
5616 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5617 * @inode: the inode to release the reservation for
5618 * @num_bytes: the number of bytes we're releasing
5619 *
5620 * This will release the metadata reservation for an inode. This can be called
5621 * once we complete IO for a given set of bytes to release their metadata
5622 * reservations.
5623 */
0ca1f7ce
YZ
5624void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5625{
5626 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5627 u64 to_free = 0;
5628 unsigned dropped;
0ca1f7ce
YZ
5629
5630 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5631 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5632 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5633
0934856d
MX
5634 if (num_bytes)
5635 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5636 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5637 if (dropped > 0)
5638 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5639
6a3891c5
JB
5640 if (btrfs_test_is_dummy_root(root))
5641 return;
5642
8c2a3ca2
JB
5643 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5644 btrfs_ino(inode), to_free, 0);
c5567237 5645
0ca1f7ce
YZ
5646 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5647 to_free);
5648}
5649
7709cde3
JB
5650/**
5651 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5652 * @inode: inode we're writing to
5653 * @num_bytes: the number of bytes we want to allocate
5654 *
5655 * This will do the following things
5656 *
5657 * o reserve space in the data space info for num_bytes
5658 * o reserve space in the metadata space info based on number of outstanding
5659 * extents and how much csums will be needed
5660 * o add to the inodes ->delalloc_bytes
5661 * o add it to the fs_info's delalloc inodes list.
5662 *
5663 * This will return 0 for success and -ENOSPC if there is no space left.
5664 */
0ca1f7ce
YZ
5665int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5666{
5667 int ret;
5668
e2d1f923 5669 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5670 if (ret)
0ca1f7ce
YZ
5671 return ret;
5672
5673 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5674 if (ret) {
5675 btrfs_free_reserved_data_space(inode, num_bytes);
5676 return ret;
5677 }
5678
5679 return 0;
5680}
5681
7709cde3
JB
5682/**
5683 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5684 * @inode: inode we're releasing space for
5685 * @num_bytes: the number of bytes we want to free up
5686 *
5687 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5688 * called in the case that we don't need the metadata AND data reservations
5689 * anymore. So if there is an error or we insert an inline extent.
5690 *
5691 * This function will release the metadata space that was not used and will
5692 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5693 * list if there are no delalloc bytes left.
5694 */
0ca1f7ce
YZ
5695void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5696{
5697 btrfs_delalloc_release_metadata(inode, num_bytes);
5698 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5699}
5700
ce93ec54
JB
5701static int update_block_group(struct btrfs_trans_handle *trans,
5702 struct btrfs_root *root, u64 bytenr,
5703 u64 num_bytes, int alloc)
9078a3e1 5704{
0af3d00b 5705 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5706 struct btrfs_fs_info *info = root->fs_info;
db94535d 5707 u64 total = num_bytes;
9078a3e1 5708 u64 old_val;
db94535d 5709 u64 byte_in_group;
0af3d00b 5710 int factor;
3e1ad54f 5711
5d4f98a2 5712 /* block accounting for super block */
eb73c1b7 5713 spin_lock(&info->delalloc_root_lock);
6c41761f 5714 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5715 if (alloc)
5716 old_val += num_bytes;
5717 else
5718 old_val -= num_bytes;
6c41761f 5719 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5720 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5721
d397712b 5722 while (total) {
db94535d 5723 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5724 if (!cache)
79787eaa 5725 return -ENOENT;
b742bb82
YZ
5726 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5727 BTRFS_BLOCK_GROUP_RAID1 |
5728 BTRFS_BLOCK_GROUP_RAID10))
5729 factor = 2;
5730 else
5731 factor = 1;
9d66e233
JB
5732 /*
5733 * If this block group has free space cache written out, we
5734 * need to make sure to load it if we are removing space. This
5735 * is because we need the unpinning stage to actually add the
5736 * space back to the block group, otherwise we will leak space.
5737 */
5738 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5739 cache_block_group(cache, 1);
0af3d00b 5740
db94535d
CM
5741 byte_in_group = bytenr - cache->key.objectid;
5742 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5743
25179201 5744 spin_lock(&cache->space_info->lock);
c286ac48 5745 spin_lock(&cache->lock);
0af3d00b 5746
73bc1876 5747 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5748 cache->disk_cache_state < BTRFS_DC_CLEAR)
5749 cache->disk_cache_state = BTRFS_DC_CLEAR;
5750
9078a3e1 5751 old_val = btrfs_block_group_used(&cache->item);
db94535d 5752 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5753 if (alloc) {
db94535d 5754 old_val += num_bytes;
11833d66
YZ
5755 btrfs_set_block_group_used(&cache->item, old_val);
5756 cache->reserved -= num_bytes;
11833d66 5757 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5758 cache->space_info->bytes_used += num_bytes;
5759 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5760 spin_unlock(&cache->lock);
25179201 5761 spin_unlock(&cache->space_info->lock);
cd1bc465 5762 } else {
db94535d 5763 old_val -= num_bytes;
ae0ab003
FM
5764 btrfs_set_block_group_used(&cache->item, old_val);
5765 cache->pinned += num_bytes;
5766 cache->space_info->bytes_pinned += num_bytes;
5767 cache->space_info->bytes_used -= num_bytes;
5768 cache->space_info->disk_used -= num_bytes * factor;
5769 spin_unlock(&cache->lock);
5770 spin_unlock(&cache->space_info->lock);
47ab2a6c 5771
ae0ab003
FM
5772 set_extent_dirty(info->pinned_extents,
5773 bytenr, bytenr + num_bytes - 1,
5774 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5775 /*
5776 * No longer have used bytes in this block group, queue
5777 * it for deletion.
5778 */
5779 if (old_val == 0) {
5780 spin_lock(&info->unused_bgs_lock);
5781 if (list_empty(&cache->bg_list)) {
5782 btrfs_get_block_group(cache);
5783 list_add_tail(&cache->bg_list,
5784 &info->unused_bgs);
5785 }
5786 spin_unlock(&info->unused_bgs_lock);
5787 }
cd1bc465 5788 }
1bbc621e
CM
5789
5790 spin_lock(&trans->transaction->dirty_bgs_lock);
5791 if (list_empty(&cache->dirty_list)) {
5792 list_add_tail(&cache->dirty_list,
5793 &trans->transaction->dirty_bgs);
5794 trans->transaction->num_dirty_bgs++;
5795 btrfs_get_block_group(cache);
5796 }
5797 spin_unlock(&trans->transaction->dirty_bgs_lock);
5798
fa9c0d79 5799 btrfs_put_block_group(cache);
db94535d
CM
5800 total -= num_bytes;
5801 bytenr += num_bytes;
9078a3e1
CM
5802 }
5803 return 0;
5804}
6324fbf3 5805
a061fc8d
CM
5806static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5807{
0f9dd46c 5808 struct btrfs_block_group_cache *cache;
d2fb3437 5809 u64 bytenr;
0f9dd46c 5810
a1897fdd
LB
5811 spin_lock(&root->fs_info->block_group_cache_lock);
5812 bytenr = root->fs_info->first_logical_byte;
5813 spin_unlock(&root->fs_info->block_group_cache_lock);
5814
5815 if (bytenr < (u64)-1)
5816 return bytenr;
5817
0f9dd46c
JB
5818 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5819 if (!cache)
a061fc8d 5820 return 0;
0f9dd46c 5821
d2fb3437 5822 bytenr = cache->key.objectid;
fa9c0d79 5823 btrfs_put_block_group(cache);
d2fb3437
YZ
5824
5825 return bytenr;
a061fc8d
CM
5826}
5827
f0486c68
YZ
5828static int pin_down_extent(struct btrfs_root *root,
5829 struct btrfs_block_group_cache *cache,
5830 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5831{
11833d66
YZ
5832 spin_lock(&cache->space_info->lock);
5833 spin_lock(&cache->lock);
5834 cache->pinned += num_bytes;
5835 cache->space_info->bytes_pinned += num_bytes;
5836 if (reserved) {
5837 cache->reserved -= num_bytes;
5838 cache->space_info->bytes_reserved -= num_bytes;
5839 }
5840 spin_unlock(&cache->lock);
5841 spin_unlock(&cache->space_info->lock);
68b38550 5842
f0486c68
YZ
5843 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5844 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5845 if (reserved)
0be5dc67 5846 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5847 return 0;
5848}
68b38550 5849
f0486c68
YZ
5850/*
5851 * this function must be called within transaction
5852 */
5853int btrfs_pin_extent(struct btrfs_root *root,
5854 u64 bytenr, u64 num_bytes, int reserved)
5855{
5856 struct btrfs_block_group_cache *cache;
68b38550 5857
f0486c68 5858 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5859 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5860
5861 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5862
5863 btrfs_put_block_group(cache);
11833d66
YZ
5864 return 0;
5865}
5866
f0486c68 5867/*
e688b725
CM
5868 * this function must be called within transaction
5869 */
dcfac415 5870int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5871 u64 bytenr, u64 num_bytes)
5872{
5873 struct btrfs_block_group_cache *cache;
b50c6e25 5874 int ret;
e688b725
CM
5875
5876 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5877 if (!cache)
5878 return -EINVAL;
e688b725
CM
5879
5880 /*
5881 * pull in the free space cache (if any) so that our pin
5882 * removes the free space from the cache. We have load_only set
5883 * to one because the slow code to read in the free extents does check
5884 * the pinned extents.
5885 */
f6373bf3 5886 cache_block_group(cache, 1);
e688b725
CM
5887
5888 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5889
5890 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5891 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5892 btrfs_put_block_group(cache);
b50c6e25 5893 return ret;
e688b725
CM
5894}
5895
8c2a1a30
JB
5896static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5897{
5898 int ret;
5899 struct btrfs_block_group_cache *block_group;
5900 struct btrfs_caching_control *caching_ctl;
5901
5902 block_group = btrfs_lookup_block_group(root->fs_info, start);
5903 if (!block_group)
5904 return -EINVAL;
5905
5906 cache_block_group(block_group, 0);
5907 caching_ctl = get_caching_control(block_group);
5908
5909 if (!caching_ctl) {
5910 /* Logic error */
5911 BUG_ON(!block_group_cache_done(block_group));
5912 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5913 } else {
5914 mutex_lock(&caching_ctl->mutex);
5915
5916 if (start >= caching_ctl->progress) {
5917 ret = add_excluded_extent(root, start, num_bytes);
5918 } else if (start + num_bytes <= caching_ctl->progress) {
5919 ret = btrfs_remove_free_space(block_group,
5920 start, num_bytes);
5921 } else {
5922 num_bytes = caching_ctl->progress - start;
5923 ret = btrfs_remove_free_space(block_group,
5924 start, num_bytes);
5925 if (ret)
5926 goto out_lock;
5927
5928 num_bytes = (start + num_bytes) -
5929 caching_ctl->progress;
5930 start = caching_ctl->progress;
5931 ret = add_excluded_extent(root, start, num_bytes);
5932 }
5933out_lock:
5934 mutex_unlock(&caching_ctl->mutex);
5935 put_caching_control(caching_ctl);
5936 }
5937 btrfs_put_block_group(block_group);
5938 return ret;
5939}
5940
5941int btrfs_exclude_logged_extents(struct btrfs_root *log,
5942 struct extent_buffer *eb)
5943{
5944 struct btrfs_file_extent_item *item;
5945 struct btrfs_key key;
5946 int found_type;
5947 int i;
5948
5949 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5950 return 0;
5951
5952 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5953 btrfs_item_key_to_cpu(eb, &key, i);
5954 if (key.type != BTRFS_EXTENT_DATA_KEY)
5955 continue;
5956 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5957 found_type = btrfs_file_extent_type(eb, item);
5958 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5959 continue;
5960 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5961 continue;
5962 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5963 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5964 __exclude_logged_extent(log, key.objectid, key.offset);
5965 }
5966
5967 return 0;
5968}
5969
fb25e914
JB
5970/**
5971 * btrfs_update_reserved_bytes - update the block_group and space info counters
5972 * @cache: The cache we are manipulating
5973 * @num_bytes: The number of bytes in question
5974 * @reserve: One of the reservation enums
e570fd27 5975 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5976 *
5977 * This is called by the allocator when it reserves space, or by somebody who is
5978 * freeing space that was never actually used on disk. For example if you
5979 * reserve some space for a new leaf in transaction A and before transaction A
5980 * commits you free that leaf, you call this with reserve set to 0 in order to
5981 * clear the reservation.
5982 *
5983 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5984 * ENOSPC accounting. For data we handle the reservation through clearing the
5985 * delalloc bits in the io_tree. We have to do this since we could end up
5986 * allocating less disk space for the amount of data we have reserved in the
5987 * case of compression.
5988 *
5989 * If this is a reservation and the block group has become read only we cannot
5990 * make the reservation and return -EAGAIN, otherwise this function always
5991 * succeeds.
f0486c68 5992 */
fb25e914 5993static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5994 u64 num_bytes, int reserve, int delalloc)
11833d66 5995{
fb25e914 5996 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5997 int ret = 0;
79787eaa 5998
fb25e914
JB
5999 spin_lock(&space_info->lock);
6000 spin_lock(&cache->lock);
6001 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6002 if (cache->ro) {
6003 ret = -EAGAIN;
6004 } else {
fb25e914
JB
6005 cache->reserved += num_bytes;
6006 space_info->bytes_reserved += num_bytes;
6007 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6008 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6009 "space_info", space_info->flags,
6010 num_bytes, 0);
fb25e914
JB
6011 space_info->bytes_may_use -= num_bytes;
6012 }
e570fd27
MX
6013
6014 if (delalloc)
6015 cache->delalloc_bytes += num_bytes;
f0486c68 6016 }
fb25e914
JB
6017 } else {
6018 if (cache->ro)
6019 space_info->bytes_readonly += num_bytes;
6020 cache->reserved -= num_bytes;
6021 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6022
6023 if (delalloc)
6024 cache->delalloc_bytes -= num_bytes;
324ae4df 6025 }
fb25e914
JB
6026 spin_unlock(&cache->lock);
6027 spin_unlock(&space_info->lock);
f0486c68 6028 return ret;
324ae4df 6029}
9078a3e1 6030
143bede5 6031void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6032 struct btrfs_root *root)
e8569813 6033{
e8569813 6034 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6035 struct btrfs_caching_control *next;
6036 struct btrfs_caching_control *caching_ctl;
6037 struct btrfs_block_group_cache *cache;
e8569813 6038
9e351cc8 6039 down_write(&fs_info->commit_root_sem);
25179201 6040
11833d66
YZ
6041 list_for_each_entry_safe(caching_ctl, next,
6042 &fs_info->caching_block_groups, list) {
6043 cache = caching_ctl->block_group;
6044 if (block_group_cache_done(cache)) {
6045 cache->last_byte_to_unpin = (u64)-1;
6046 list_del_init(&caching_ctl->list);
6047 put_caching_control(caching_ctl);
e8569813 6048 } else {
11833d66 6049 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6050 }
e8569813 6051 }
11833d66
YZ
6052
6053 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6054 fs_info->pinned_extents = &fs_info->freed_extents[1];
6055 else
6056 fs_info->pinned_extents = &fs_info->freed_extents[0];
6057
9e351cc8 6058 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6059
6060 update_global_block_rsv(fs_info);
e8569813
ZY
6061}
6062
678886bd
FM
6063static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6064 const bool return_free_space)
ccd467d6 6065{
11833d66
YZ
6066 struct btrfs_fs_info *fs_info = root->fs_info;
6067 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6068 struct btrfs_space_info *space_info;
6069 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6070 u64 len;
7b398f8e 6071 bool readonly;
ccd467d6 6072
11833d66 6073 while (start <= end) {
7b398f8e 6074 readonly = false;
11833d66
YZ
6075 if (!cache ||
6076 start >= cache->key.objectid + cache->key.offset) {
6077 if (cache)
6078 btrfs_put_block_group(cache);
6079 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6080 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6081 }
6082
6083 len = cache->key.objectid + cache->key.offset - start;
6084 len = min(len, end + 1 - start);
6085
6086 if (start < cache->last_byte_to_unpin) {
6087 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6088 if (return_free_space)
6089 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6090 }
6091
f0486c68 6092 start += len;
7b398f8e 6093 space_info = cache->space_info;
f0486c68 6094
7b398f8e 6095 spin_lock(&space_info->lock);
11833d66
YZ
6096 spin_lock(&cache->lock);
6097 cache->pinned -= len;
7b398f8e 6098 space_info->bytes_pinned -= len;
d288db5d 6099 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6100 if (cache->ro) {
6101 space_info->bytes_readonly += len;
6102 readonly = true;
6103 }
11833d66 6104 spin_unlock(&cache->lock);
7b398f8e
JB
6105 if (!readonly && global_rsv->space_info == space_info) {
6106 spin_lock(&global_rsv->lock);
6107 if (!global_rsv->full) {
6108 len = min(len, global_rsv->size -
6109 global_rsv->reserved);
6110 global_rsv->reserved += len;
6111 space_info->bytes_may_use += len;
6112 if (global_rsv->reserved >= global_rsv->size)
6113 global_rsv->full = 1;
6114 }
6115 spin_unlock(&global_rsv->lock);
6116 }
6117 spin_unlock(&space_info->lock);
ccd467d6 6118 }
11833d66
YZ
6119
6120 if (cache)
6121 btrfs_put_block_group(cache);
ccd467d6
CM
6122 return 0;
6123}
6124
6125int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6126 struct btrfs_root *root)
a28ec197 6127{
11833d66 6128 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6129 struct btrfs_block_group_cache *block_group, *tmp;
6130 struct list_head *deleted_bgs;
11833d66 6131 struct extent_io_tree *unpin;
1a5bc167
CM
6132 u64 start;
6133 u64 end;
a28ec197 6134 int ret;
a28ec197 6135
11833d66
YZ
6136 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6137 unpin = &fs_info->freed_extents[1];
6138 else
6139 unpin = &fs_info->freed_extents[0];
6140
e33e17ee 6141 while (!trans->aborted) {
d4b450cd 6142 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6143 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6144 EXTENT_DIRTY, NULL);
d4b450cd
FM
6145 if (ret) {
6146 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6147 break;
d4b450cd 6148 }
1f3c79a2 6149
5378e607
LD
6150 if (btrfs_test_opt(root, DISCARD))
6151 ret = btrfs_discard_extent(root, start,
6152 end + 1 - start, NULL);
1f3c79a2 6153
1a5bc167 6154 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6155 unpin_extent_range(root, start, end, true);
d4b450cd 6156 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6157 cond_resched();
a28ec197 6158 }
817d52f8 6159
e33e17ee
JM
6160 /*
6161 * Transaction is finished. We don't need the lock anymore. We
6162 * do need to clean up the block groups in case of a transaction
6163 * abort.
6164 */
6165 deleted_bgs = &trans->transaction->deleted_bgs;
6166 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6167 u64 trimmed = 0;
6168
6169 ret = -EROFS;
6170 if (!trans->aborted)
6171 ret = btrfs_discard_extent(root,
6172 block_group->key.objectid,
6173 block_group->key.offset,
6174 &trimmed);
6175
6176 list_del_init(&block_group->bg_list);
6177 btrfs_put_block_group_trimming(block_group);
6178 btrfs_put_block_group(block_group);
6179
6180 if (ret) {
6181 const char *errstr = btrfs_decode_error(ret);
6182 btrfs_warn(fs_info,
6183 "Discard failed while removing blockgroup: errno=%d %s\n",
6184 ret, errstr);
6185 }
6186 }
6187
e20d96d6
CM
6188 return 0;
6189}
6190
b150a4f1
JB
6191static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6192 u64 owner, u64 root_objectid)
6193{
6194 struct btrfs_space_info *space_info;
6195 u64 flags;
6196
6197 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6198 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6199 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6200 else
6201 flags = BTRFS_BLOCK_GROUP_METADATA;
6202 } else {
6203 flags = BTRFS_BLOCK_GROUP_DATA;
6204 }
6205
6206 space_info = __find_space_info(fs_info, flags);
6207 BUG_ON(!space_info); /* Logic bug */
6208 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6209}
6210
6211
5d4f98a2
YZ
6212static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6213 struct btrfs_root *root,
c682f9b3 6214 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6215 u64 root_objectid, u64 owner_objectid,
6216 u64 owner_offset, int refs_to_drop,
c682f9b3 6217 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6218{
e2fa7227 6219 struct btrfs_key key;
5d4f98a2 6220 struct btrfs_path *path;
1261ec42
CM
6221 struct btrfs_fs_info *info = root->fs_info;
6222 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6223 struct extent_buffer *leaf;
5d4f98a2
YZ
6224 struct btrfs_extent_item *ei;
6225 struct btrfs_extent_inline_ref *iref;
a28ec197 6226 int ret;
5d4f98a2 6227 int is_data;
952fccac
CM
6228 int extent_slot = 0;
6229 int found_extent = 0;
6230 int num_to_del = 1;
c682f9b3 6231 int no_quota = node->no_quota;
5d4f98a2
YZ
6232 u32 item_size;
6233 u64 refs;
c682f9b3
QW
6234 u64 bytenr = node->bytenr;
6235 u64 num_bytes = node->num_bytes;
fcebe456 6236 int last_ref = 0;
3173a18f
JB
6237 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6238 SKINNY_METADATA);
037e6390 6239
fcebe456
JB
6240 if (!info->quota_enabled || !is_fstree(root_objectid))
6241 no_quota = 1;
6242
5caf2a00 6243 path = btrfs_alloc_path();
54aa1f4d
CM
6244 if (!path)
6245 return -ENOMEM;
5f26f772 6246
3c12ac72 6247 path->reada = 1;
b9473439 6248 path->leave_spinning = 1;
5d4f98a2
YZ
6249
6250 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6251 BUG_ON(!is_data && refs_to_drop != 1);
6252
3173a18f
JB
6253 if (is_data)
6254 skinny_metadata = 0;
6255
5d4f98a2
YZ
6256 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6257 bytenr, num_bytes, parent,
6258 root_objectid, owner_objectid,
6259 owner_offset);
7bb86316 6260 if (ret == 0) {
952fccac 6261 extent_slot = path->slots[0];
5d4f98a2
YZ
6262 while (extent_slot >= 0) {
6263 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6264 extent_slot);
5d4f98a2 6265 if (key.objectid != bytenr)
952fccac 6266 break;
5d4f98a2
YZ
6267 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6268 key.offset == num_bytes) {
952fccac
CM
6269 found_extent = 1;
6270 break;
6271 }
3173a18f
JB
6272 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6273 key.offset == owner_objectid) {
6274 found_extent = 1;
6275 break;
6276 }
952fccac
CM
6277 if (path->slots[0] - extent_slot > 5)
6278 break;
5d4f98a2 6279 extent_slot--;
952fccac 6280 }
5d4f98a2
YZ
6281#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6282 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6283 if (found_extent && item_size < sizeof(*ei))
6284 found_extent = 0;
6285#endif
31840ae1 6286 if (!found_extent) {
5d4f98a2 6287 BUG_ON(iref);
56bec294 6288 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6289 NULL, refs_to_drop,
fcebe456 6290 is_data, &last_ref);
005d6427
DS
6291 if (ret) {
6292 btrfs_abort_transaction(trans, extent_root, ret);
6293 goto out;
6294 }
b3b4aa74 6295 btrfs_release_path(path);
b9473439 6296 path->leave_spinning = 1;
5d4f98a2
YZ
6297
6298 key.objectid = bytenr;
6299 key.type = BTRFS_EXTENT_ITEM_KEY;
6300 key.offset = num_bytes;
6301
3173a18f
JB
6302 if (!is_data && skinny_metadata) {
6303 key.type = BTRFS_METADATA_ITEM_KEY;
6304 key.offset = owner_objectid;
6305 }
6306
31840ae1
ZY
6307 ret = btrfs_search_slot(trans, extent_root,
6308 &key, path, -1, 1);
3173a18f
JB
6309 if (ret > 0 && skinny_metadata && path->slots[0]) {
6310 /*
6311 * Couldn't find our skinny metadata item,
6312 * see if we have ye olde extent item.
6313 */
6314 path->slots[0]--;
6315 btrfs_item_key_to_cpu(path->nodes[0], &key,
6316 path->slots[0]);
6317 if (key.objectid == bytenr &&
6318 key.type == BTRFS_EXTENT_ITEM_KEY &&
6319 key.offset == num_bytes)
6320 ret = 0;
6321 }
6322
6323 if (ret > 0 && skinny_metadata) {
6324 skinny_metadata = false;
9ce49a0b 6325 key.objectid = bytenr;
3173a18f
JB
6326 key.type = BTRFS_EXTENT_ITEM_KEY;
6327 key.offset = num_bytes;
6328 btrfs_release_path(path);
6329 ret = btrfs_search_slot(trans, extent_root,
6330 &key, path, -1, 1);
6331 }
6332
f3465ca4 6333 if (ret) {
c2cf52eb 6334 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6335 ret, bytenr);
b783e62d
JB
6336 if (ret > 0)
6337 btrfs_print_leaf(extent_root,
6338 path->nodes[0]);
f3465ca4 6339 }
005d6427
DS
6340 if (ret < 0) {
6341 btrfs_abort_transaction(trans, extent_root, ret);
6342 goto out;
6343 }
31840ae1
ZY
6344 extent_slot = path->slots[0];
6345 }
fae7f21c 6346 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6347 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6348 btrfs_err(info,
6349 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6350 bytenr, parent, root_objectid, owner_objectid,
6351 owner_offset);
c4a050bb
JB
6352 btrfs_abort_transaction(trans, extent_root, ret);
6353 goto out;
79787eaa 6354 } else {
005d6427
DS
6355 btrfs_abort_transaction(trans, extent_root, ret);
6356 goto out;
7bb86316 6357 }
5f39d397
CM
6358
6359 leaf = path->nodes[0];
5d4f98a2
YZ
6360 item_size = btrfs_item_size_nr(leaf, extent_slot);
6361#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6362 if (item_size < sizeof(*ei)) {
6363 BUG_ON(found_extent || extent_slot != path->slots[0]);
6364 ret = convert_extent_item_v0(trans, extent_root, path,
6365 owner_objectid, 0);
005d6427
DS
6366 if (ret < 0) {
6367 btrfs_abort_transaction(trans, extent_root, ret);
6368 goto out;
6369 }
5d4f98a2 6370
b3b4aa74 6371 btrfs_release_path(path);
5d4f98a2
YZ
6372 path->leave_spinning = 1;
6373
6374 key.objectid = bytenr;
6375 key.type = BTRFS_EXTENT_ITEM_KEY;
6376 key.offset = num_bytes;
6377
6378 ret = btrfs_search_slot(trans, extent_root, &key, path,
6379 -1, 1);
6380 if (ret) {
c2cf52eb 6381 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6382 ret, bytenr);
5d4f98a2
YZ
6383 btrfs_print_leaf(extent_root, path->nodes[0]);
6384 }
005d6427
DS
6385 if (ret < 0) {
6386 btrfs_abort_transaction(trans, extent_root, ret);
6387 goto out;
6388 }
6389
5d4f98a2
YZ
6390 extent_slot = path->slots[0];
6391 leaf = path->nodes[0];
6392 item_size = btrfs_item_size_nr(leaf, extent_slot);
6393 }
6394#endif
6395 BUG_ON(item_size < sizeof(*ei));
952fccac 6396 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6397 struct btrfs_extent_item);
3173a18f
JB
6398 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6399 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6400 struct btrfs_tree_block_info *bi;
6401 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6402 bi = (struct btrfs_tree_block_info *)(ei + 1);
6403 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6404 }
56bec294 6405
5d4f98a2 6406 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6407 if (refs < refs_to_drop) {
6408 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6409 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6410 ret = -EINVAL;
6411 btrfs_abort_transaction(trans, extent_root, ret);
6412 goto out;
6413 }
56bec294 6414 refs -= refs_to_drop;
5f39d397 6415
5d4f98a2
YZ
6416 if (refs > 0) {
6417 if (extent_op)
6418 __run_delayed_extent_op(extent_op, leaf, ei);
6419 /*
6420 * In the case of inline back ref, reference count will
6421 * be updated by remove_extent_backref
952fccac 6422 */
5d4f98a2
YZ
6423 if (iref) {
6424 BUG_ON(!found_extent);
6425 } else {
6426 btrfs_set_extent_refs(leaf, ei, refs);
6427 btrfs_mark_buffer_dirty(leaf);
6428 }
6429 if (found_extent) {
6430 ret = remove_extent_backref(trans, extent_root, path,
6431 iref, refs_to_drop,
fcebe456 6432 is_data, &last_ref);
005d6427
DS
6433 if (ret) {
6434 btrfs_abort_transaction(trans, extent_root, ret);
6435 goto out;
6436 }
952fccac 6437 }
b150a4f1
JB
6438 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6439 root_objectid);
5d4f98a2 6440 } else {
5d4f98a2
YZ
6441 if (found_extent) {
6442 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6443 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6444 if (iref) {
6445 BUG_ON(path->slots[0] != extent_slot);
6446 } else {
6447 BUG_ON(path->slots[0] != extent_slot + 1);
6448 path->slots[0] = extent_slot;
6449 num_to_del = 2;
6450 }
78fae27e 6451 }
b9473439 6452
fcebe456 6453 last_ref = 1;
952fccac
CM
6454 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6455 num_to_del);
005d6427
DS
6456 if (ret) {
6457 btrfs_abort_transaction(trans, extent_root, ret);
6458 goto out;
6459 }
b3b4aa74 6460 btrfs_release_path(path);
21af804c 6461
5d4f98a2 6462 if (is_data) {
459931ec 6463 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6464 if (ret) {
6465 btrfs_abort_transaction(trans, extent_root, ret);
6466 goto out;
6467 }
459931ec
CM
6468 }
6469
ce93ec54 6470 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6471 if (ret) {
6472 btrfs_abort_transaction(trans, extent_root, ret);
6473 goto out;
6474 }
a28ec197 6475 }
fcebe456
JB
6476 btrfs_release_path(path);
6477
79787eaa 6478out:
5caf2a00 6479 btrfs_free_path(path);
a28ec197
CM
6480 return ret;
6481}
6482
1887be66 6483/*
f0486c68 6484 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6485 * delayed ref for that extent as well. This searches the delayed ref tree for
6486 * a given extent, and if there are no other delayed refs to be processed, it
6487 * removes it from the tree.
6488 */
6489static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6490 struct btrfs_root *root, u64 bytenr)
6491{
6492 struct btrfs_delayed_ref_head *head;
6493 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6494 int ret = 0;
1887be66
CM
6495
6496 delayed_refs = &trans->transaction->delayed_refs;
6497 spin_lock(&delayed_refs->lock);
6498 head = btrfs_find_delayed_ref_head(trans, bytenr);
6499 if (!head)
cf93da7b 6500 goto out_delayed_unlock;
1887be66 6501
d7df2c79 6502 spin_lock(&head->lock);
c6fc2454 6503 if (!list_empty(&head->ref_list))
1887be66
CM
6504 goto out;
6505
5d4f98a2
YZ
6506 if (head->extent_op) {
6507 if (!head->must_insert_reserved)
6508 goto out;
78a6184a 6509 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6510 head->extent_op = NULL;
6511 }
6512
1887be66
CM
6513 /*
6514 * waiting for the lock here would deadlock. If someone else has it
6515 * locked they are already in the process of dropping it anyway
6516 */
6517 if (!mutex_trylock(&head->mutex))
6518 goto out;
6519
6520 /*
6521 * at this point we have a head with no other entries. Go
6522 * ahead and process it.
6523 */
6524 head->node.in_tree = 0;
c46effa6 6525 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6526
d7df2c79 6527 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6528
6529 /*
6530 * we don't take a ref on the node because we're removing it from the
6531 * tree, so we just steal the ref the tree was holding.
6532 */
c3e69d58 6533 delayed_refs->num_heads--;
d7df2c79 6534 if (head->processing == 0)
c3e69d58 6535 delayed_refs->num_heads_ready--;
d7df2c79
JB
6536 head->processing = 0;
6537 spin_unlock(&head->lock);
1887be66
CM
6538 spin_unlock(&delayed_refs->lock);
6539
f0486c68
YZ
6540 BUG_ON(head->extent_op);
6541 if (head->must_insert_reserved)
6542 ret = 1;
6543
6544 mutex_unlock(&head->mutex);
1887be66 6545 btrfs_put_delayed_ref(&head->node);
f0486c68 6546 return ret;
1887be66 6547out:
d7df2c79 6548 spin_unlock(&head->lock);
cf93da7b
CM
6549
6550out_delayed_unlock:
1887be66
CM
6551 spin_unlock(&delayed_refs->lock);
6552 return 0;
6553}
6554
f0486c68
YZ
6555void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6556 struct btrfs_root *root,
6557 struct extent_buffer *buf,
5581a51a 6558 u64 parent, int last_ref)
f0486c68 6559{
b150a4f1 6560 int pin = 1;
f0486c68
YZ
6561 int ret;
6562
6563 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6564 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6565 buf->start, buf->len,
6566 parent, root->root_key.objectid,
6567 btrfs_header_level(buf),
5581a51a 6568 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6569 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6570 }
6571
6572 if (!last_ref)
6573 return;
6574
f0486c68 6575 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6576 struct btrfs_block_group_cache *cache;
6577
f0486c68
YZ
6578 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6579 ret = check_ref_cleanup(trans, root, buf->start);
6580 if (!ret)
37be25bc 6581 goto out;
f0486c68
YZ
6582 }
6583
6219872d
FM
6584 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6585
f0486c68
YZ
6586 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6587 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6588 btrfs_put_block_group(cache);
37be25bc 6589 goto out;
f0486c68
YZ
6590 }
6591
6592 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6593
6594 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6595 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6596 btrfs_put_block_group(cache);
0be5dc67 6597 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6598 pin = 0;
f0486c68
YZ
6599 }
6600out:
b150a4f1
JB
6601 if (pin)
6602 add_pinned_bytes(root->fs_info, buf->len,
6603 btrfs_header_level(buf),
6604 root->root_key.objectid);
6605
a826d6dc
JB
6606 /*
6607 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6608 * anymore.
6609 */
6610 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6611}
6612
79787eaa 6613/* Can return -ENOMEM */
66d7e7f0
AJ
6614int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6615 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6616 u64 owner, u64 offset, int no_quota)
925baedd
CM
6617{
6618 int ret;
66d7e7f0 6619 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6620
fccb84c9 6621 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6622 return 0;
fccb84c9 6623
b150a4f1
JB
6624 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6625
56bec294
CM
6626 /*
6627 * tree log blocks never actually go into the extent allocation
6628 * tree, just update pinning info and exit early.
56bec294 6629 */
5d4f98a2
YZ
6630 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6631 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6632 /* unlocks the pinned mutex */
11833d66 6633 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6634 ret = 0;
5d4f98a2 6635 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6636 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6637 num_bytes,
5d4f98a2 6638 parent, root_objectid, (int)owner,
fcebe456 6639 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6640 } else {
66d7e7f0
AJ
6641 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6642 num_bytes,
6643 parent, root_objectid, owner,
6644 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6645 NULL, no_quota);
56bec294 6646 }
925baedd
CM
6647 return ret;
6648}
6649
817d52f8
JB
6650/*
6651 * when we wait for progress in the block group caching, its because
6652 * our allocation attempt failed at least once. So, we must sleep
6653 * and let some progress happen before we try again.
6654 *
6655 * This function will sleep at least once waiting for new free space to
6656 * show up, and then it will check the block group free space numbers
6657 * for our min num_bytes. Another option is to have it go ahead
6658 * and look in the rbtree for a free extent of a given size, but this
6659 * is a good start.
36cce922
JB
6660 *
6661 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6662 * any of the information in this block group.
817d52f8 6663 */
36cce922 6664static noinline void
817d52f8
JB
6665wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6666 u64 num_bytes)
6667{
11833d66 6668 struct btrfs_caching_control *caching_ctl;
817d52f8 6669
11833d66
YZ
6670 caching_ctl = get_caching_control(cache);
6671 if (!caching_ctl)
36cce922 6672 return;
817d52f8 6673
11833d66 6674 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6675 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6676
6677 put_caching_control(caching_ctl);
11833d66
YZ
6678}
6679
6680static noinline int
6681wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6682{
6683 struct btrfs_caching_control *caching_ctl;
36cce922 6684 int ret = 0;
11833d66
YZ
6685
6686 caching_ctl = get_caching_control(cache);
6687 if (!caching_ctl)
36cce922 6688 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6689
6690 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6691 if (cache->cached == BTRFS_CACHE_ERROR)
6692 ret = -EIO;
11833d66 6693 put_caching_control(caching_ctl);
36cce922 6694 return ret;
817d52f8
JB
6695}
6696
31e50229 6697int __get_raid_index(u64 flags)
b742bb82 6698{
7738a53a 6699 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6700 return BTRFS_RAID_RAID10;
7738a53a 6701 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6702 return BTRFS_RAID_RAID1;
7738a53a 6703 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6704 return BTRFS_RAID_DUP;
7738a53a 6705 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6706 return BTRFS_RAID_RAID0;
53b381b3 6707 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6708 return BTRFS_RAID_RAID5;
53b381b3 6709 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6710 return BTRFS_RAID_RAID6;
7738a53a 6711
e942f883 6712 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6713}
6714
6ab0a202 6715int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6716{
31e50229 6717 return __get_raid_index(cache->flags);
7738a53a
ID
6718}
6719
6ab0a202
JM
6720static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6721 [BTRFS_RAID_RAID10] = "raid10",
6722 [BTRFS_RAID_RAID1] = "raid1",
6723 [BTRFS_RAID_DUP] = "dup",
6724 [BTRFS_RAID_RAID0] = "raid0",
6725 [BTRFS_RAID_SINGLE] = "single",
6726 [BTRFS_RAID_RAID5] = "raid5",
6727 [BTRFS_RAID_RAID6] = "raid6",
6728};
6729
1b8e5df6 6730static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6731{
6732 if (type >= BTRFS_NR_RAID_TYPES)
6733 return NULL;
6734
6735 return btrfs_raid_type_names[type];
6736}
6737
817d52f8 6738enum btrfs_loop_type {
285ff5af
JB
6739 LOOP_CACHING_NOWAIT = 0,
6740 LOOP_CACHING_WAIT = 1,
6741 LOOP_ALLOC_CHUNK = 2,
6742 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6743};
6744
e570fd27
MX
6745static inline void
6746btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6747 int delalloc)
6748{
6749 if (delalloc)
6750 down_read(&cache->data_rwsem);
6751}
6752
6753static inline void
6754btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6755 int delalloc)
6756{
6757 btrfs_get_block_group(cache);
6758 if (delalloc)
6759 down_read(&cache->data_rwsem);
6760}
6761
6762static struct btrfs_block_group_cache *
6763btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6764 struct btrfs_free_cluster *cluster,
6765 int delalloc)
6766{
6767 struct btrfs_block_group_cache *used_bg;
6768 bool locked = false;
6769again:
6770 spin_lock(&cluster->refill_lock);
6771 if (locked) {
6772 if (used_bg == cluster->block_group)
6773 return used_bg;
6774
6775 up_read(&used_bg->data_rwsem);
6776 btrfs_put_block_group(used_bg);
6777 }
6778
6779 used_bg = cluster->block_group;
6780 if (!used_bg)
6781 return NULL;
6782
6783 if (used_bg == block_group)
6784 return used_bg;
6785
6786 btrfs_get_block_group(used_bg);
6787
6788 if (!delalloc)
6789 return used_bg;
6790
6791 if (down_read_trylock(&used_bg->data_rwsem))
6792 return used_bg;
6793
6794 spin_unlock(&cluster->refill_lock);
6795 down_read(&used_bg->data_rwsem);
6796 locked = true;
6797 goto again;
6798}
6799
6800static inline void
6801btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6802 int delalloc)
6803{
6804 if (delalloc)
6805 up_read(&cache->data_rwsem);
6806 btrfs_put_block_group(cache);
6807}
6808
fec577fb
CM
6809/*
6810 * walks the btree of allocated extents and find a hole of a given size.
6811 * The key ins is changed to record the hole:
a4820398 6812 * ins->objectid == start position
62e2749e 6813 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6814 * ins->offset == the size of the hole.
fec577fb 6815 * Any available blocks before search_start are skipped.
a4820398
MX
6816 *
6817 * If there is no suitable free space, we will record the max size of
6818 * the free space extent currently.
fec577fb 6819 */
00361589 6820static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6821 u64 num_bytes, u64 empty_size,
98ed5174 6822 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6823 u64 flags, int delalloc)
fec577fb 6824{
80eb234a 6825 int ret = 0;
d397712b 6826 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6827 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6828 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6829 u64 search_start = 0;
a4820398 6830 u64 max_extent_size = 0;
239b14b3 6831 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6832 struct btrfs_space_info *space_info;
fa9c0d79 6833 int loop = 0;
b6919a58
DS
6834 int index = __get_raid_index(flags);
6835 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6836 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6837 bool failed_cluster_refill = false;
1cdda9b8 6838 bool failed_alloc = false;
67377734 6839 bool use_cluster = true;
60d2adbb 6840 bool have_caching_bg = false;
fec577fb 6841
db94535d 6842 WARN_ON(num_bytes < root->sectorsize);
962a298f 6843 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6844 ins->objectid = 0;
6845 ins->offset = 0;
b1a4d965 6846
b6919a58 6847 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6848
b6919a58 6849 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6850 if (!space_info) {
b6919a58 6851 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6852 return -ENOSPC;
6853 }
2552d17e 6854
67377734
JB
6855 /*
6856 * If the space info is for both data and metadata it means we have a
6857 * small filesystem and we can't use the clustering stuff.
6858 */
6859 if (btrfs_mixed_space_info(space_info))
6860 use_cluster = false;
6861
b6919a58 6862 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6863 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6864 if (!btrfs_test_opt(root, SSD))
6865 empty_cluster = 64 * 1024;
239b14b3
CM
6866 }
6867
b6919a58 6868 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6869 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6870 last_ptr = &root->fs_info->data_alloc_cluster;
6871 }
0f9dd46c 6872
239b14b3 6873 if (last_ptr) {
fa9c0d79
CM
6874 spin_lock(&last_ptr->lock);
6875 if (last_ptr->block_group)
6876 hint_byte = last_ptr->window_start;
6877 spin_unlock(&last_ptr->lock);
239b14b3 6878 }
fa9c0d79 6879
a061fc8d 6880 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6881 search_start = max(search_start, hint_byte);
0b86a832 6882
817d52f8 6883 if (!last_ptr)
fa9c0d79 6884 empty_cluster = 0;
fa9c0d79 6885
2552d17e 6886 if (search_start == hint_byte) {
2552d17e
JB
6887 block_group = btrfs_lookup_block_group(root->fs_info,
6888 search_start);
817d52f8
JB
6889 /*
6890 * we don't want to use the block group if it doesn't match our
6891 * allocation bits, or if its not cached.
ccf0e725
JB
6892 *
6893 * However if we are re-searching with an ideal block group
6894 * picked out then we don't care that the block group is cached.
817d52f8 6895 */
b6919a58 6896 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6897 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6898 down_read(&space_info->groups_sem);
44fb5511
CM
6899 if (list_empty(&block_group->list) ||
6900 block_group->ro) {
6901 /*
6902 * someone is removing this block group,
6903 * we can't jump into the have_block_group
6904 * target because our list pointers are not
6905 * valid
6906 */
6907 btrfs_put_block_group(block_group);
6908 up_read(&space_info->groups_sem);
ccf0e725 6909 } else {
b742bb82 6910 index = get_block_group_index(block_group);
e570fd27 6911 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6912 goto have_block_group;
ccf0e725 6913 }
2552d17e 6914 } else if (block_group) {
fa9c0d79 6915 btrfs_put_block_group(block_group);
2552d17e 6916 }
42e70e7a 6917 }
2552d17e 6918search:
60d2adbb 6919 have_caching_bg = false;
80eb234a 6920 down_read(&space_info->groups_sem);
b742bb82
YZ
6921 list_for_each_entry(block_group, &space_info->block_groups[index],
6922 list) {
6226cb0a 6923 u64 offset;
817d52f8 6924 int cached;
8a1413a2 6925
e570fd27 6926 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6927 search_start = block_group->key.objectid;
42e70e7a 6928
83a50de9
CM
6929 /*
6930 * this can happen if we end up cycling through all the
6931 * raid types, but we want to make sure we only allocate
6932 * for the proper type.
6933 */
b6919a58 6934 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6935 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6936 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6937 BTRFS_BLOCK_GROUP_RAID5 |
6938 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6939 BTRFS_BLOCK_GROUP_RAID10;
6940
6941 /*
6942 * if they asked for extra copies and this block group
6943 * doesn't provide them, bail. This does allow us to
6944 * fill raid0 from raid1.
6945 */
b6919a58 6946 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6947 goto loop;
6948 }
6949
2552d17e 6950have_block_group:
291c7d2f
JB
6951 cached = block_group_cache_done(block_group);
6952 if (unlikely(!cached)) {
f6373bf3 6953 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6954 BUG_ON(ret < 0);
6955 ret = 0;
817d52f8
JB
6956 }
6957
36cce922
JB
6958 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6959 goto loop;
ea6a478e 6960 if (unlikely(block_group->ro))
2552d17e 6961 goto loop;
0f9dd46c 6962
0a24325e 6963 /*
062c05c4
AO
6964 * Ok we want to try and use the cluster allocator, so
6965 * lets look there
0a24325e 6966 */
062c05c4 6967 if (last_ptr) {
215a63d1 6968 struct btrfs_block_group_cache *used_block_group;
8de972b4 6969 unsigned long aligned_cluster;
fa9c0d79
CM
6970 /*
6971 * the refill lock keeps out other
6972 * people trying to start a new cluster
6973 */
e570fd27
MX
6974 used_block_group = btrfs_lock_cluster(block_group,
6975 last_ptr,
6976 delalloc);
6977 if (!used_block_group)
44fb5511 6978 goto refill_cluster;
274bd4fb 6979
e570fd27
MX
6980 if (used_block_group != block_group &&
6981 (used_block_group->ro ||
6982 !block_group_bits(used_block_group, flags)))
6983 goto release_cluster;
44fb5511 6984
274bd4fb 6985 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6986 last_ptr,
6987 num_bytes,
6988 used_block_group->key.objectid,
6989 &max_extent_size);
fa9c0d79
CM
6990 if (offset) {
6991 /* we have a block, we're done */
6992 spin_unlock(&last_ptr->refill_lock);
3f7de037 6993 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6994 used_block_group,
6995 search_start, num_bytes);
215a63d1 6996 if (used_block_group != block_group) {
e570fd27
MX
6997 btrfs_release_block_group(block_group,
6998 delalloc);
215a63d1
MX
6999 block_group = used_block_group;
7000 }
fa9c0d79
CM
7001 goto checks;
7002 }
7003
274bd4fb 7004 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7005release_cluster:
062c05c4
AO
7006 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7007 * set up a new clusters, so lets just skip it
7008 * and let the allocator find whatever block
7009 * it can find. If we reach this point, we
7010 * will have tried the cluster allocator
7011 * plenty of times and not have found
7012 * anything, so we are likely way too
7013 * fragmented for the clustering stuff to find
a5f6f719
AO
7014 * anything.
7015 *
7016 * However, if the cluster is taken from the
7017 * current block group, release the cluster
7018 * first, so that we stand a better chance of
7019 * succeeding in the unclustered
7020 * allocation. */
7021 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7022 used_block_group != block_group) {
062c05c4 7023 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7024 btrfs_release_block_group(used_block_group,
7025 delalloc);
062c05c4
AO
7026 goto unclustered_alloc;
7027 }
7028
fa9c0d79
CM
7029 /*
7030 * this cluster didn't work out, free it and
7031 * start over
7032 */
7033 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7034
e570fd27
MX
7035 if (used_block_group != block_group)
7036 btrfs_release_block_group(used_block_group,
7037 delalloc);
7038refill_cluster:
a5f6f719
AO
7039 if (loop >= LOOP_NO_EMPTY_SIZE) {
7040 spin_unlock(&last_ptr->refill_lock);
7041 goto unclustered_alloc;
7042 }
7043
8de972b4
CM
7044 aligned_cluster = max_t(unsigned long,
7045 empty_cluster + empty_size,
7046 block_group->full_stripe_len);
7047
fa9c0d79 7048 /* allocate a cluster in this block group */
00361589
JB
7049 ret = btrfs_find_space_cluster(root, block_group,
7050 last_ptr, search_start,
7051 num_bytes,
7052 aligned_cluster);
fa9c0d79
CM
7053 if (ret == 0) {
7054 /*
7055 * now pull our allocation out of this
7056 * cluster
7057 */
7058 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7059 last_ptr,
7060 num_bytes,
7061 search_start,
7062 &max_extent_size);
fa9c0d79
CM
7063 if (offset) {
7064 /* we found one, proceed */
7065 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7066 trace_btrfs_reserve_extent_cluster(root,
7067 block_group, search_start,
7068 num_bytes);
fa9c0d79
CM
7069 goto checks;
7070 }
0a24325e
JB
7071 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7072 && !failed_cluster_refill) {
817d52f8
JB
7073 spin_unlock(&last_ptr->refill_lock);
7074
0a24325e 7075 failed_cluster_refill = true;
817d52f8
JB
7076 wait_block_group_cache_progress(block_group,
7077 num_bytes + empty_cluster + empty_size);
7078 goto have_block_group;
fa9c0d79 7079 }
817d52f8 7080
fa9c0d79
CM
7081 /*
7082 * at this point we either didn't find a cluster
7083 * or we weren't able to allocate a block from our
7084 * cluster. Free the cluster we've been trying
7085 * to use, and go to the next block group
7086 */
0a24325e 7087 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7088 spin_unlock(&last_ptr->refill_lock);
0a24325e 7089 goto loop;
fa9c0d79
CM
7090 }
7091
062c05c4 7092unclustered_alloc:
a5f6f719
AO
7093 spin_lock(&block_group->free_space_ctl->tree_lock);
7094 if (cached &&
7095 block_group->free_space_ctl->free_space <
7096 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7097 if (block_group->free_space_ctl->free_space >
7098 max_extent_size)
7099 max_extent_size =
7100 block_group->free_space_ctl->free_space;
a5f6f719
AO
7101 spin_unlock(&block_group->free_space_ctl->tree_lock);
7102 goto loop;
7103 }
7104 spin_unlock(&block_group->free_space_ctl->tree_lock);
7105
6226cb0a 7106 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7107 num_bytes, empty_size,
7108 &max_extent_size);
1cdda9b8
JB
7109 /*
7110 * If we didn't find a chunk, and we haven't failed on this
7111 * block group before, and this block group is in the middle of
7112 * caching and we are ok with waiting, then go ahead and wait
7113 * for progress to be made, and set failed_alloc to true.
7114 *
7115 * If failed_alloc is true then we've already waited on this
7116 * block group once and should move on to the next block group.
7117 */
7118 if (!offset && !failed_alloc && !cached &&
7119 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7120 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7121 num_bytes + empty_size);
7122 failed_alloc = true;
817d52f8 7123 goto have_block_group;
1cdda9b8 7124 } else if (!offset) {
60d2adbb
MX
7125 if (!cached)
7126 have_caching_bg = true;
1cdda9b8 7127 goto loop;
817d52f8 7128 }
fa9c0d79 7129checks:
4e54b17a 7130 search_start = ALIGN(offset, root->stripesize);
25179201 7131
2552d17e
JB
7132 /* move on to the next group */
7133 if (search_start + num_bytes >
215a63d1
MX
7134 block_group->key.objectid + block_group->key.offset) {
7135 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7136 goto loop;
6226cb0a 7137 }
f5a31e16 7138
f0486c68 7139 if (offset < search_start)
215a63d1 7140 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7141 search_start - offset);
7142 BUG_ON(offset > search_start);
2552d17e 7143
215a63d1 7144 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7145 alloc_type, delalloc);
f0486c68 7146 if (ret == -EAGAIN) {
215a63d1 7147 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7148 goto loop;
0f9dd46c 7149 }
0b86a832 7150
f0486c68 7151 /* we are all good, lets return */
2552d17e
JB
7152 ins->objectid = search_start;
7153 ins->offset = num_bytes;
d2fb3437 7154
3f7de037
JB
7155 trace_btrfs_reserve_extent(orig_root, block_group,
7156 search_start, num_bytes);
e570fd27 7157 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7158 break;
7159loop:
0a24325e 7160 failed_cluster_refill = false;
1cdda9b8 7161 failed_alloc = false;
b742bb82 7162 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7163 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7164 }
7165 up_read(&space_info->groups_sem);
7166
60d2adbb
MX
7167 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7168 goto search;
7169
b742bb82
YZ
7170 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7171 goto search;
7172
285ff5af 7173 /*
ccf0e725
JB
7174 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7175 * caching kthreads as we move along
817d52f8
JB
7176 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7177 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7178 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7179 * again
fa9c0d79 7180 */
723bda20 7181 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7182 index = 0;
723bda20 7183 loop++;
817d52f8 7184 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7185 struct btrfs_trans_handle *trans;
f017f15f
WS
7186 int exist = 0;
7187
7188 trans = current->journal_info;
7189 if (trans)
7190 exist = 1;
7191 else
7192 trans = btrfs_join_transaction(root);
00361589 7193
00361589
JB
7194 if (IS_ERR(trans)) {
7195 ret = PTR_ERR(trans);
7196 goto out;
7197 }
7198
b6919a58 7199 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7200 CHUNK_ALLOC_FORCE);
7201 /*
7202 * Do not bail out on ENOSPC since we
7203 * can do more things.
7204 */
00361589 7205 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7206 btrfs_abort_transaction(trans,
7207 root, ret);
00361589
JB
7208 else
7209 ret = 0;
f017f15f
WS
7210 if (!exist)
7211 btrfs_end_transaction(trans, root);
00361589 7212 if (ret)
ea658bad 7213 goto out;
2552d17e
JB
7214 }
7215
723bda20
JB
7216 if (loop == LOOP_NO_EMPTY_SIZE) {
7217 empty_size = 0;
7218 empty_cluster = 0;
fa9c0d79 7219 }
723bda20
JB
7220
7221 goto search;
2552d17e
JB
7222 } else if (!ins->objectid) {
7223 ret = -ENOSPC;
d82a6f1d 7224 } else if (ins->objectid) {
80eb234a 7225 ret = 0;
be744175 7226 }
79787eaa 7227out:
a4820398
MX
7228 if (ret == -ENOSPC)
7229 ins->offset = max_extent_size;
0f70abe2 7230 return ret;
fec577fb 7231}
ec44a35c 7232
9ed74f2d
JB
7233static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7234 int dump_block_groups)
0f9dd46c
JB
7235{
7236 struct btrfs_block_group_cache *cache;
b742bb82 7237 int index = 0;
0f9dd46c 7238
9ed74f2d 7239 spin_lock(&info->lock);
efe120a0 7240 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7241 info->flags,
7242 info->total_bytes - info->bytes_used - info->bytes_pinned -
7243 info->bytes_reserved - info->bytes_readonly,
d397712b 7244 (info->full) ? "" : "not ");
efe120a0 7245 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7246 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7247 info->total_bytes, info->bytes_used, info->bytes_pinned,
7248 info->bytes_reserved, info->bytes_may_use,
7249 info->bytes_readonly);
9ed74f2d
JB
7250 spin_unlock(&info->lock);
7251
7252 if (!dump_block_groups)
7253 return;
0f9dd46c 7254
80eb234a 7255 down_read(&info->groups_sem);
b742bb82
YZ
7256again:
7257 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7258 spin_lock(&cache->lock);
efe120a0
FH
7259 printk(KERN_INFO "BTRFS: "
7260 "block group %llu has %llu bytes, "
7261 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7262 cache->key.objectid, cache->key.offset,
7263 btrfs_block_group_used(&cache->item), cache->pinned,
7264 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7265 btrfs_dump_free_space(cache, bytes);
7266 spin_unlock(&cache->lock);
7267 }
b742bb82
YZ
7268 if (++index < BTRFS_NR_RAID_TYPES)
7269 goto again;
80eb234a 7270 up_read(&info->groups_sem);
0f9dd46c 7271}
e8569813 7272
00361589 7273int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7274 u64 num_bytes, u64 min_alloc_size,
7275 u64 empty_size, u64 hint_byte,
e570fd27 7276 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7277{
9e622d6b 7278 bool final_tried = false;
b6919a58 7279 u64 flags;
fec577fb 7280 int ret;
925baedd 7281
b6919a58 7282 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7283again:
db94535d 7284 WARN_ON(num_bytes < root->sectorsize);
00361589 7285 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7286 flags, delalloc);
3b951516 7287
9e622d6b 7288 if (ret == -ENOSPC) {
a4820398
MX
7289 if (!final_tried && ins->offset) {
7290 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7291 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7292 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7293 if (num_bytes == min_alloc_size)
7294 final_tried = true;
7295 goto again;
7296 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7297 struct btrfs_space_info *sinfo;
7298
b6919a58 7299 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7300 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7301 flags, num_bytes);
53804280
JM
7302 if (sinfo)
7303 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7304 }
925baedd 7305 }
0f9dd46c
JB
7306
7307 return ret;
e6dcd2dc
CM
7308}
7309
e688b725 7310static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7311 u64 start, u64 len,
7312 int pin, int delalloc)
65b51a00 7313{
0f9dd46c 7314 struct btrfs_block_group_cache *cache;
1f3c79a2 7315 int ret = 0;
0f9dd46c 7316
0f9dd46c
JB
7317 cache = btrfs_lookup_block_group(root->fs_info, start);
7318 if (!cache) {
c2cf52eb 7319 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7320 start);
0f9dd46c
JB
7321 return -ENOSPC;
7322 }
1f3c79a2 7323
e688b725
CM
7324 if (pin)
7325 pin_down_extent(root, cache, start, len, 1);
7326 else {
dcc82f47
FM
7327 if (btrfs_test_opt(root, DISCARD))
7328 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7329 btrfs_add_free_space(cache, start, len);
e570fd27 7330 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7331 }
31193213 7332
fa9c0d79 7333 btrfs_put_block_group(cache);
817d52f8 7334
1abe9b8a 7335 trace_btrfs_reserved_extent_free(root, start, len);
7336
e6dcd2dc
CM
7337 return ret;
7338}
7339
e688b725 7340int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7341 u64 start, u64 len, int delalloc)
e688b725 7342{
e570fd27 7343 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7344}
7345
7346int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7347 u64 start, u64 len)
7348{
e570fd27 7349 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7350}
7351
5d4f98a2
YZ
7352static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7353 struct btrfs_root *root,
7354 u64 parent, u64 root_objectid,
7355 u64 flags, u64 owner, u64 offset,
7356 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7357{
7358 int ret;
5d4f98a2 7359 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7360 struct btrfs_extent_item *extent_item;
5d4f98a2 7361 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7362 struct btrfs_path *path;
5d4f98a2
YZ
7363 struct extent_buffer *leaf;
7364 int type;
7365 u32 size;
26b8003f 7366
5d4f98a2
YZ
7367 if (parent > 0)
7368 type = BTRFS_SHARED_DATA_REF_KEY;
7369 else
7370 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7371
5d4f98a2 7372 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7373
7374 path = btrfs_alloc_path();
db5b493a
TI
7375 if (!path)
7376 return -ENOMEM;
47e4bb98 7377
b9473439 7378 path->leave_spinning = 1;
5d4f98a2
YZ
7379 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7380 ins, size);
79787eaa
JM
7381 if (ret) {
7382 btrfs_free_path(path);
7383 return ret;
7384 }
0f9dd46c 7385
5d4f98a2
YZ
7386 leaf = path->nodes[0];
7387 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7388 struct btrfs_extent_item);
5d4f98a2
YZ
7389 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7390 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7391 btrfs_set_extent_flags(leaf, extent_item,
7392 flags | BTRFS_EXTENT_FLAG_DATA);
7393
7394 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7395 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7396 if (parent > 0) {
7397 struct btrfs_shared_data_ref *ref;
7398 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7399 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7400 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7401 } else {
7402 struct btrfs_extent_data_ref *ref;
7403 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7404 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7405 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7406 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7407 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7408 }
47e4bb98
CM
7409
7410 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7411 btrfs_free_path(path);
f510cfec 7412
ce93ec54 7413 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7414 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7415 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7416 ins->objectid, ins->offset);
f5947066
CM
7417 BUG();
7418 }
0be5dc67 7419 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7420 return ret;
7421}
7422
5d4f98a2
YZ
7423static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7424 struct btrfs_root *root,
7425 u64 parent, u64 root_objectid,
7426 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7427 int level, struct btrfs_key *ins,
7428 int no_quota)
e6dcd2dc
CM
7429{
7430 int ret;
5d4f98a2
YZ
7431 struct btrfs_fs_info *fs_info = root->fs_info;
7432 struct btrfs_extent_item *extent_item;
7433 struct btrfs_tree_block_info *block_info;
7434 struct btrfs_extent_inline_ref *iref;
7435 struct btrfs_path *path;
7436 struct extent_buffer *leaf;
3173a18f 7437 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7438 u64 num_bytes = ins->offset;
3173a18f
JB
7439 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7440 SKINNY_METADATA);
7441
7442 if (!skinny_metadata)
7443 size += sizeof(*block_info);
1c2308f8 7444
5d4f98a2 7445 path = btrfs_alloc_path();
857cc2fc
JB
7446 if (!path) {
7447 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7448 root->nodesize);
d8926bb3 7449 return -ENOMEM;
857cc2fc 7450 }
56bec294 7451
5d4f98a2
YZ
7452 path->leave_spinning = 1;
7453 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7454 ins, size);
79787eaa 7455 if (ret) {
dd825259 7456 btrfs_free_path(path);
857cc2fc 7457 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7458 root->nodesize);
79787eaa
JM
7459 return ret;
7460 }
5d4f98a2
YZ
7461
7462 leaf = path->nodes[0];
7463 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7464 struct btrfs_extent_item);
7465 btrfs_set_extent_refs(leaf, extent_item, 1);
7466 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7467 btrfs_set_extent_flags(leaf, extent_item,
7468 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7469
3173a18f
JB
7470 if (skinny_metadata) {
7471 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7472 num_bytes = root->nodesize;
3173a18f
JB
7473 } else {
7474 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7475 btrfs_set_tree_block_key(leaf, block_info, key);
7476 btrfs_set_tree_block_level(leaf, block_info, level);
7477 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7478 }
5d4f98a2 7479
5d4f98a2
YZ
7480 if (parent > 0) {
7481 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7482 btrfs_set_extent_inline_ref_type(leaf, iref,
7483 BTRFS_SHARED_BLOCK_REF_KEY);
7484 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7485 } else {
7486 btrfs_set_extent_inline_ref_type(leaf, iref,
7487 BTRFS_TREE_BLOCK_REF_KEY);
7488 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7489 }
7490
7491 btrfs_mark_buffer_dirty(leaf);
7492 btrfs_free_path(path);
7493
ce93ec54
JB
7494 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7495 1);
79787eaa 7496 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7497 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7498 ins->objectid, ins->offset);
5d4f98a2
YZ
7499 BUG();
7500 }
0be5dc67 7501
707e8a07 7502 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7503 return ret;
7504}
7505
7506int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7507 struct btrfs_root *root,
7508 u64 root_objectid, u64 owner,
7509 u64 offset, struct btrfs_key *ins)
7510{
7511 int ret;
7512
7513 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7514
66d7e7f0
AJ
7515 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7516 ins->offset, 0,
7517 root_objectid, owner, offset,
7518 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7519 return ret;
7520}
e02119d5
CM
7521
7522/*
7523 * this is used by the tree logging recovery code. It records that
7524 * an extent has been allocated and makes sure to clear the free
7525 * space cache bits as well
7526 */
5d4f98a2
YZ
7527int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7528 struct btrfs_root *root,
7529 u64 root_objectid, u64 owner, u64 offset,
7530 struct btrfs_key *ins)
e02119d5
CM
7531{
7532 int ret;
7533 struct btrfs_block_group_cache *block_group;
11833d66 7534
8c2a1a30
JB
7535 /*
7536 * Mixed block groups will exclude before processing the log so we only
7537 * need to do the exlude dance if this fs isn't mixed.
7538 */
7539 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7540 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7541 if (ret)
8c2a1a30 7542 return ret;
11833d66
YZ
7543 }
7544
8c2a1a30
JB
7545 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7546 if (!block_group)
7547 return -EINVAL;
7548
fb25e914 7549 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7550 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7551 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7552 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7553 0, owner, offset, ins, 1);
b50c6e25 7554 btrfs_put_block_group(block_group);
e02119d5
CM
7555 return ret;
7556}
7557
48a3b636
ES
7558static struct extent_buffer *
7559btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7560 u64 bytenr, int level)
65b51a00
CM
7561{
7562 struct extent_buffer *buf;
7563
a83fffb7 7564 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7565 if (!buf)
7566 return ERR_PTR(-ENOMEM);
7567 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7568 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7569 btrfs_tree_lock(buf);
01d58472 7570 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7571 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7572
7573 btrfs_set_lock_blocking(buf);
65b51a00 7574 btrfs_set_buffer_uptodate(buf);
b4ce94de 7575
d0c803c4 7576 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7577 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7578 /*
7579 * we allow two log transactions at a time, use different
7580 * EXENT bit to differentiate dirty pages.
7581 */
656f30db 7582 if (buf->log_index == 0)
8cef4e16
YZ
7583 set_extent_dirty(&root->dirty_log_pages, buf->start,
7584 buf->start + buf->len - 1, GFP_NOFS);
7585 else
7586 set_extent_new(&root->dirty_log_pages, buf->start,
7587 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7588 } else {
656f30db 7589 buf->log_index = -1;
d0c803c4 7590 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7591 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7592 }
65b51a00 7593 trans->blocks_used++;
b4ce94de 7594 /* this returns a buffer locked for blocking */
65b51a00
CM
7595 return buf;
7596}
7597
f0486c68
YZ
7598static struct btrfs_block_rsv *
7599use_block_rsv(struct btrfs_trans_handle *trans,
7600 struct btrfs_root *root, u32 blocksize)
7601{
7602 struct btrfs_block_rsv *block_rsv;
68a82277 7603 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7604 int ret;
d88033db 7605 bool global_updated = false;
f0486c68
YZ
7606
7607 block_rsv = get_block_rsv(trans, root);
7608
b586b323
MX
7609 if (unlikely(block_rsv->size == 0))
7610 goto try_reserve;
d88033db 7611again:
f0486c68
YZ
7612 ret = block_rsv_use_bytes(block_rsv, blocksize);
7613 if (!ret)
7614 return block_rsv;
7615
b586b323
MX
7616 if (block_rsv->failfast)
7617 return ERR_PTR(ret);
7618
d88033db
MX
7619 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7620 global_updated = true;
7621 update_global_block_rsv(root->fs_info);
7622 goto again;
7623 }
7624
b586b323
MX
7625 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7626 static DEFINE_RATELIMIT_STATE(_rs,
7627 DEFAULT_RATELIMIT_INTERVAL * 10,
7628 /*DEFAULT_RATELIMIT_BURST*/ 1);
7629 if (__ratelimit(&_rs))
7630 WARN(1, KERN_DEBUG
efe120a0 7631 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7632 }
7633try_reserve:
7634 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7635 BTRFS_RESERVE_NO_FLUSH);
7636 if (!ret)
7637 return block_rsv;
7638 /*
7639 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7640 * the global reserve if its space type is the same as the global
7641 * reservation.
b586b323 7642 */
5881cfc9
MX
7643 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7644 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7645 ret = block_rsv_use_bytes(global_rsv, blocksize);
7646 if (!ret)
7647 return global_rsv;
7648 }
7649 return ERR_PTR(ret);
f0486c68
YZ
7650}
7651
8c2a3ca2
JB
7652static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7653 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7654{
7655 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7656 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7657}
7658
fec577fb 7659/*
f0486c68 7660 * finds a free extent and does all the dirty work required for allocation
67b7859e 7661 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7662 */
4d75f8a9
DS
7663struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7664 struct btrfs_root *root,
5d4f98a2
YZ
7665 u64 parent, u64 root_objectid,
7666 struct btrfs_disk_key *key, int level,
5581a51a 7667 u64 hint, u64 empty_size)
fec577fb 7668{
e2fa7227 7669 struct btrfs_key ins;
f0486c68 7670 struct btrfs_block_rsv *block_rsv;
5f39d397 7671 struct extent_buffer *buf;
67b7859e 7672 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7673 u64 flags = 0;
7674 int ret;
4d75f8a9 7675 u32 blocksize = root->nodesize;
3173a18f
JB
7676 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7677 SKINNY_METADATA);
fec577fb 7678
fccb84c9 7679 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7680 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7681 level);
faa2dbf0
JB
7682 if (!IS_ERR(buf))
7683 root->alloc_bytenr += blocksize;
7684 return buf;
7685 }
fccb84c9 7686
f0486c68
YZ
7687 block_rsv = use_block_rsv(trans, root, blocksize);
7688 if (IS_ERR(block_rsv))
7689 return ERR_CAST(block_rsv);
7690
00361589 7691 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7692 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7693 if (ret)
7694 goto out_unuse;
55c69072 7695
fe864576 7696 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7697 if (IS_ERR(buf)) {
7698 ret = PTR_ERR(buf);
7699 goto out_free_reserved;
7700 }
f0486c68
YZ
7701
7702 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7703 if (parent == 0)
7704 parent = ins.objectid;
7705 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7706 } else
7707 BUG_ON(parent > 0);
7708
7709 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7710 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7711 if (!extent_op) {
7712 ret = -ENOMEM;
7713 goto out_free_buf;
7714 }
f0486c68
YZ
7715 if (key)
7716 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7717 else
7718 memset(&extent_op->key, 0, sizeof(extent_op->key));
7719 extent_op->flags_to_set = flags;
3173a18f
JB
7720 if (skinny_metadata)
7721 extent_op->update_key = 0;
7722 else
7723 extent_op->update_key = 1;
f0486c68
YZ
7724 extent_op->update_flags = 1;
7725 extent_op->is_data = 0;
b1c79e09 7726 extent_op->level = level;
f0486c68 7727
66d7e7f0 7728 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7729 ins.objectid, ins.offset,
7730 parent, root_objectid, level,
7731 BTRFS_ADD_DELAYED_EXTENT,
7732 extent_op, 0);
7733 if (ret)
7734 goto out_free_delayed;
f0486c68 7735 }
fec577fb 7736 return buf;
67b7859e
OS
7737
7738out_free_delayed:
7739 btrfs_free_delayed_extent_op(extent_op);
7740out_free_buf:
7741 free_extent_buffer(buf);
7742out_free_reserved:
7743 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7744out_unuse:
7745 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7746 return ERR_PTR(ret);
fec577fb 7747}
a28ec197 7748
2c47e605
YZ
7749struct walk_control {
7750 u64 refs[BTRFS_MAX_LEVEL];
7751 u64 flags[BTRFS_MAX_LEVEL];
7752 struct btrfs_key update_progress;
7753 int stage;
7754 int level;
7755 int shared_level;
7756 int update_ref;
7757 int keep_locks;
1c4850e2
YZ
7758 int reada_slot;
7759 int reada_count;
66d7e7f0 7760 int for_reloc;
2c47e605
YZ
7761};
7762
7763#define DROP_REFERENCE 1
7764#define UPDATE_BACKREF 2
7765
1c4850e2
YZ
7766static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7767 struct btrfs_root *root,
7768 struct walk_control *wc,
7769 struct btrfs_path *path)
6407bf6d 7770{
1c4850e2
YZ
7771 u64 bytenr;
7772 u64 generation;
7773 u64 refs;
94fcca9f 7774 u64 flags;
5d4f98a2 7775 u32 nritems;
1c4850e2
YZ
7776 u32 blocksize;
7777 struct btrfs_key key;
7778 struct extent_buffer *eb;
6407bf6d 7779 int ret;
1c4850e2
YZ
7780 int slot;
7781 int nread = 0;
6407bf6d 7782
1c4850e2
YZ
7783 if (path->slots[wc->level] < wc->reada_slot) {
7784 wc->reada_count = wc->reada_count * 2 / 3;
7785 wc->reada_count = max(wc->reada_count, 2);
7786 } else {
7787 wc->reada_count = wc->reada_count * 3 / 2;
7788 wc->reada_count = min_t(int, wc->reada_count,
7789 BTRFS_NODEPTRS_PER_BLOCK(root));
7790 }
7bb86316 7791
1c4850e2
YZ
7792 eb = path->nodes[wc->level];
7793 nritems = btrfs_header_nritems(eb);
707e8a07 7794 blocksize = root->nodesize;
bd56b302 7795
1c4850e2
YZ
7796 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7797 if (nread >= wc->reada_count)
7798 break;
bd56b302 7799
2dd3e67b 7800 cond_resched();
1c4850e2
YZ
7801 bytenr = btrfs_node_blockptr(eb, slot);
7802 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7803
1c4850e2
YZ
7804 if (slot == path->slots[wc->level])
7805 goto reada;
5d4f98a2 7806
1c4850e2
YZ
7807 if (wc->stage == UPDATE_BACKREF &&
7808 generation <= root->root_key.offset)
bd56b302
CM
7809 continue;
7810
94fcca9f 7811 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7812 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7813 wc->level - 1, 1, &refs,
7814 &flags);
79787eaa
JM
7815 /* We don't care about errors in readahead. */
7816 if (ret < 0)
7817 continue;
94fcca9f
YZ
7818 BUG_ON(refs == 0);
7819
1c4850e2 7820 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7821 if (refs == 1)
7822 goto reada;
bd56b302 7823
94fcca9f
YZ
7824 if (wc->level == 1 &&
7825 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7826 continue;
1c4850e2
YZ
7827 if (!wc->update_ref ||
7828 generation <= root->root_key.offset)
7829 continue;
7830 btrfs_node_key_to_cpu(eb, &key, slot);
7831 ret = btrfs_comp_cpu_keys(&key,
7832 &wc->update_progress);
7833 if (ret < 0)
7834 continue;
94fcca9f
YZ
7835 } else {
7836 if (wc->level == 1 &&
7837 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7838 continue;
6407bf6d 7839 }
1c4850e2 7840reada:
d3e46fea 7841 readahead_tree_block(root, bytenr);
1c4850e2 7842 nread++;
20524f02 7843 }
1c4850e2 7844 wc->reada_slot = slot;
20524f02 7845}
2c47e605 7846
0ed4792a
QW
7847/*
7848 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7849 * for later qgroup accounting.
7850 *
7851 * Current, this function does nothing.
7852 */
1152651a
MF
7853static int account_leaf_items(struct btrfs_trans_handle *trans,
7854 struct btrfs_root *root,
7855 struct extent_buffer *eb)
7856{
7857 int nr = btrfs_header_nritems(eb);
0ed4792a 7858 int i, extent_type;
1152651a
MF
7859 struct btrfs_key key;
7860 struct btrfs_file_extent_item *fi;
7861 u64 bytenr, num_bytes;
7862
7863 for (i = 0; i < nr; i++) {
7864 btrfs_item_key_to_cpu(eb, &key, i);
7865
7866 if (key.type != BTRFS_EXTENT_DATA_KEY)
7867 continue;
7868
7869 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7870 /* filter out non qgroup-accountable extents */
7871 extent_type = btrfs_file_extent_type(eb, fi);
7872
7873 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7874 continue;
7875
7876 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7877 if (!bytenr)
7878 continue;
7879
7880 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7881 }
7882 return 0;
7883}
7884
7885/*
7886 * Walk up the tree from the bottom, freeing leaves and any interior
7887 * nodes which have had all slots visited. If a node (leaf or
7888 * interior) is freed, the node above it will have it's slot
7889 * incremented. The root node will never be freed.
7890 *
7891 * At the end of this function, we should have a path which has all
7892 * slots incremented to the next position for a search. If we need to
7893 * read a new node it will be NULL and the node above it will have the
7894 * correct slot selected for a later read.
7895 *
7896 * If we increment the root nodes slot counter past the number of
7897 * elements, 1 is returned to signal completion of the search.
7898 */
7899static int adjust_slots_upwards(struct btrfs_root *root,
7900 struct btrfs_path *path, int root_level)
7901{
7902 int level = 0;
7903 int nr, slot;
7904 struct extent_buffer *eb;
7905
7906 if (root_level == 0)
7907 return 1;
7908
7909 while (level <= root_level) {
7910 eb = path->nodes[level];
7911 nr = btrfs_header_nritems(eb);
7912 path->slots[level]++;
7913 slot = path->slots[level];
7914 if (slot >= nr || level == 0) {
7915 /*
7916 * Don't free the root - we will detect this
7917 * condition after our loop and return a
7918 * positive value for caller to stop walking the tree.
7919 */
7920 if (level != root_level) {
7921 btrfs_tree_unlock_rw(eb, path->locks[level]);
7922 path->locks[level] = 0;
7923
7924 free_extent_buffer(eb);
7925 path->nodes[level] = NULL;
7926 path->slots[level] = 0;
7927 }
7928 } else {
7929 /*
7930 * We have a valid slot to walk back down
7931 * from. Stop here so caller can process these
7932 * new nodes.
7933 */
7934 break;
7935 }
7936
7937 level++;
7938 }
7939
7940 eb = path->nodes[root_level];
7941 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7942 return 1;
7943
7944 return 0;
7945}
7946
7947/*
7948 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7949 * TODO: Modify this function to mark all (including complete shared node)
7950 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7951 */
7952static int account_shared_subtree(struct btrfs_trans_handle *trans,
7953 struct btrfs_root *root,
7954 struct extent_buffer *root_eb,
7955 u64 root_gen,
7956 int root_level)
7957{
7958 int ret = 0;
7959 int level;
7960 struct extent_buffer *eb = root_eb;
7961 struct btrfs_path *path = NULL;
7962
7963 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7964 BUG_ON(root_eb == NULL);
7965
7966 if (!root->fs_info->quota_enabled)
7967 return 0;
7968
7969 if (!extent_buffer_uptodate(root_eb)) {
7970 ret = btrfs_read_buffer(root_eb, root_gen);
7971 if (ret)
7972 goto out;
7973 }
7974
7975 if (root_level == 0) {
7976 ret = account_leaf_items(trans, root, root_eb);
7977 goto out;
7978 }
7979
7980 path = btrfs_alloc_path();
7981 if (!path)
7982 return -ENOMEM;
7983
7984 /*
7985 * Walk down the tree. Missing extent blocks are filled in as
7986 * we go. Metadata is accounted every time we read a new
7987 * extent block.
7988 *
7989 * When we reach a leaf, we account for file extent items in it,
7990 * walk back up the tree (adjusting slot pointers as we go)
7991 * and restart the search process.
7992 */
7993 extent_buffer_get(root_eb); /* For path */
7994 path->nodes[root_level] = root_eb;
7995 path->slots[root_level] = 0;
7996 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7997walk_down:
7998 level = root_level;
7999 while (level >= 0) {
8000 if (path->nodes[level] == NULL) {
1152651a
MF
8001 int parent_slot;
8002 u64 child_gen;
8003 u64 child_bytenr;
8004
8005 /* We need to get child blockptr/gen from
8006 * parent before we can read it. */
8007 eb = path->nodes[level + 1];
8008 parent_slot = path->slots[level + 1];
8009 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8010 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8011
ce86cd59 8012 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8013 if (IS_ERR(eb)) {
8014 ret = PTR_ERR(eb);
8015 goto out;
8016 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8017 free_extent_buffer(eb);
64c043de 8018 ret = -EIO;
1152651a
MF
8019 goto out;
8020 }
8021
8022 path->nodes[level] = eb;
8023 path->slots[level] = 0;
8024
8025 btrfs_tree_read_lock(eb);
8026 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8027 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8028 }
8029
8030 if (level == 0) {
8031 ret = account_leaf_items(trans, root, path->nodes[level]);
8032 if (ret)
8033 goto out;
8034
8035 /* Nonzero return here means we completed our search */
8036 ret = adjust_slots_upwards(root, path, root_level);
8037 if (ret)
8038 break;
8039
8040 /* Restart search with new slots */
8041 goto walk_down;
8042 }
8043
8044 level--;
8045 }
8046
8047 ret = 0;
8048out:
8049 btrfs_free_path(path);
8050
8051 return ret;
8052}
8053
f82d02d9 8054/*
2c016dc2 8055 * helper to process tree block while walking down the tree.
2c47e605 8056 *
2c47e605
YZ
8057 * when wc->stage == UPDATE_BACKREF, this function updates
8058 * back refs for pointers in the block.
8059 *
8060 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8061 */
2c47e605 8062static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8063 struct btrfs_root *root,
2c47e605 8064 struct btrfs_path *path,
94fcca9f 8065 struct walk_control *wc, int lookup_info)
f82d02d9 8066{
2c47e605
YZ
8067 int level = wc->level;
8068 struct extent_buffer *eb = path->nodes[level];
2c47e605 8069 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8070 int ret;
8071
2c47e605
YZ
8072 if (wc->stage == UPDATE_BACKREF &&
8073 btrfs_header_owner(eb) != root->root_key.objectid)
8074 return 1;
f82d02d9 8075
2c47e605
YZ
8076 /*
8077 * when reference count of tree block is 1, it won't increase
8078 * again. once full backref flag is set, we never clear it.
8079 */
94fcca9f
YZ
8080 if (lookup_info &&
8081 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8082 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8083 BUG_ON(!path->locks[level]);
8084 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8085 eb->start, level, 1,
2c47e605
YZ
8086 &wc->refs[level],
8087 &wc->flags[level]);
79787eaa
JM
8088 BUG_ON(ret == -ENOMEM);
8089 if (ret)
8090 return ret;
2c47e605
YZ
8091 BUG_ON(wc->refs[level] == 0);
8092 }
5d4f98a2 8093
2c47e605
YZ
8094 if (wc->stage == DROP_REFERENCE) {
8095 if (wc->refs[level] > 1)
8096 return 1;
f82d02d9 8097
2c47e605 8098 if (path->locks[level] && !wc->keep_locks) {
bd681513 8099 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8100 path->locks[level] = 0;
8101 }
8102 return 0;
8103 }
f82d02d9 8104
2c47e605
YZ
8105 /* wc->stage == UPDATE_BACKREF */
8106 if (!(wc->flags[level] & flag)) {
8107 BUG_ON(!path->locks[level]);
e339a6b0 8108 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8109 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8110 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8111 BUG_ON(ret); /* -ENOMEM */
2c47e605 8112 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8113 eb->len, flag,
8114 btrfs_header_level(eb), 0);
79787eaa 8115 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8116 wc->flags[level] |= flag;
8117 }
8118
8119 /*
8120 * the block is shared by multiple trees, so it's not good to
8121 * keep the tree lock
8122 */
8123 if (path->locks[level] && level > 0) {
bd681513 8124 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8125 path->locks[level] = 0;
8126 }
8127 return 0;
8128}
8129
1c4850e2 8130/*
2c016dc2 8131 * helper to process tree block pointer.
1c4850e2
YZ
8132 *
8133 * when wc->stage == DROP_REFERENCE, this function checks
8134 * reference count of the block pointed to. if the block
8135 * is shared and we need update back refs for the subtree
8136 * rooted at the block, this function changes wc->stage to
8137 * UPDATE_BACKREF. if the block is shared and there is no
8138 * need to update back, this function drops the reference
8139 * to the block.
8140 *
8141 * NOTE: return value 1 means we should stop walking down.
8142 */
8143static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8144 struct btrfs_root *root,
8145 struct btrfs_path *path,
94fcca9f 8146 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8147{
8148 u64 bytenr;
8149 u64 generation;
8150 u64 parent;
8151 u32 blocksize;
8152 struct btrfs_key key;
8153 struct extent_buffer *next;
8154 int level = wc->level;
8155 int reada = 0;
8156 int ret = 0;
1152651a 8157 bool need_account = false;
1c4850e2
YZ
8158
8159 generation = btrfs_node_ptr_generation(path->nodes[level],
8160 path->slots[level]);
8161 /*
8162 * if the lower level block was created before the snapshot
8163 * was created, we know there is no need to update back refs
8164 * for the subtree
8165 */
8166 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8167 generation <= root->root_key.offset) {
8168 *lookup_info = 1;
1c4850e2 8169 return 1;
94fcca9f 8170 }
1c4850e2
YZ
8171
8172 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8173 blocksize = root->nodesize;
1c4850e2 8174
01d58472 8175 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8176 if (!next) {
a83fffb7 8177 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8178 if (!next)
8179 return -ENOMEM;
b2aaaa3b
JB
8180 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8181 level - 1);
1c4850e2
YZ
8182 reada = 1;
8183 }
8184 btrfs_tree_lock(next);
8185 btrfs_set_lock_blocking(next);
8186
3173a18f 8187 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8188 &wc->refs[level - 1],
8189 &wc->flags[level - 1]);
79787eaa
JM
8190 if (ret < 0) {
8191 btrfs_tree_unlock(next);
8192 return ret;
8193 }
8194
c2cf52eb
SK
8195 if (unlikely(wc->refs[level - 1] == 0)) {
8196 btrfs_err(root->fs_info, "Missing references.");
8197 BUG();
8198 }
94fcca9f 8199 *lookup_info = 0;
1c4850e2 8200
94fcca9f 8201 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8202 if (wc->refs[level - 1] > 1) {
1152651a 8203 need_account = true;
94fcca9f
YZ
8204 if (level == 1 &&
8205 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8206 goto skip;
8207
1c4850e2
YZ
8208 if (!wc->update_ref ||
8209 generation <= root->root_key.offset)
8210 goto skip;
8211
8212 btrfs_node_key_to_cpu(path->nodes[level], &key,
8213 path->slots[level]);
8214 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8215 if (ret < 0)
8216 goto skip;
8217
8218 wc->stage = UPDATE_BACKREF;
8219 wc->shared_level = level - 1;
8220 }
94fcca9f
YZ
8221 } else {
8222 if (level == 1 &&
8223 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8224 goto skip;
1c4850e2
YZ
8225 }
8226
b9fab919 8227 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8228 btrfs_tree_unlock(next);
8229 free_extent_buffer(next);
8230 next = NULL;
94fcca9f 8231 *lookup_info = 1;
1c4850e2
YZ
8232 }
8233
8234 if (!next) {
8235 if (reada && level == 1)
8236 reada_walk_down(trans, root, wc, path);
ce86cd59 8237 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8238 if (IS_ERR(next)) {
8239 return PTR_ERR(next);
8240 } else if (!extent_buffer_uptodate(next)) {
416bc658 8241 free_extent_buffer(next);
97d9a8a4 8242 return -EIO;
416bc658 8243 }
1c4850e2
YZ
8244 btrfs_tree_lock(next);
8245 btrfs_set_lock_blocking(next);
8246 }
8247
8248 level--;
8249 BUG_ON(level != btrfs_header_level(next));
8250 path->nodes[level] = next;
8251 path->slots[level] = 0;
bd681513 8252 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8253 wc->level = level;
8254 if (wc->level == 1)
8255 wc->reada_slot = 0;
8256 return 0;
8257skip:
8258 wc->refs[level - 1] = 0;
8259 wc->flags[level - 1] = 0;
94fcca9f
YZ
8260 if (wc->stage == DROP_REFERENCE) {
8261 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8262 parent = path->nodes[level]->start;
8263 } else {
8264 BUG_ON(root->root_key.objectid !=
8265 btrfs_header_owner(path->nodes[level]));
8266 parent = 0;
8267 }
1c4850e2 8268
1152651a
MF
8269 if (need_account) {
8270 ret = account_shared_subtree(trans, root, next,
8271 generation, level - 1);
8272 if (ret) {
94647322
DS
8273 btrfs_err_rl(root->fs_info,
8274 "Error "
1152651a 8275 "%d accounting shared subtree. Quota "
94647322
DS
8276 "is out of sync, rescan required.",
8277 ret);
1152651a
MF
8278 }
8279 }
94fcca9f 8280 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8281 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8282 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8283 }
1c4850e2
YZ
8284 btrfs_tree_unlock(next);
8285 free_extent_buffer(next);
94fcca9f 8286 *lookup_info = 1;
1c4850e2
YZ
8287 return 1;
8288}
8289
2c47e605 8290/*
2c016dc2 8291 * helper to process tree block while walking up the tree.
2c47e605
YZ
8292 *
8293 * when wc->stage == DROP_REFERENCE, this function drops
8294 * reference count on the block.
8295 *
8296 * when wc->stage == UPDATE_BACKREF, this function changes
8297 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8298 * to UPDATE_BACKREF previously while processing the block.
8299 *
8300 * NOTE: return value 1 means we should stop walking up.
8301 */
8302static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8303 struct btrfs_root *root,
8304 struct btrfs_path *path,
8305 struct walk_control *wc)
8306{
f0486c68 8307 int ret;
2c47e605
YZ
8308 int level = wc->level;
8309 struct extent_buffer *eb = path->nodes[level];
8310 u64 parent = 0;
8311
8312 if (wc->stage == UPDATE_BACKREF) {
8313 BUG_ON(wc->shared_level < level);
8314 if (level < wc->shared_level)
8315 goto out;
8316
2c47e605
YZ
8317 ret = find_next_key(path, level + 1, &wc->update_progress);
8318 if (ret > 0)
8319 wc->update_ref = 0;
8320
8321 wc->stage = DROP_REFERENCE;
8322 wc->shared_level = -1;
8323 path->slots[level] = 0;
8324
8325 /*
8326 * check reference count again if the block isn't locked.
8327 * we should start walking down the tree again if reference
8328 * count is one.
8329 */
8330 if (!path->locks[level]) {
8331 BUG_ON(level == 0);
8332 btrfs_tree_lock(eb);
8333 btrfs_set_lock_blocking(eb);
bd681513 8334 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8335
8336 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8337 eb->start, level, 1,
2c47e605
YZ
8338 &wc->refs[level],
8339 &wc->flags[level]);
79787eaa
JM
8340 if (ret < 0) {
8341 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8342 path->locks[level] = 0;
79787eaa
JM
8343 return ret;
8344 }
2c47e605
YZ
8345 BUG_ON(wc->refs[level] == 0);
8346 if (wc->refs[level] == 1) {
bd681513 8347 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8348 path->locks[level] = 0;
2c47e605
YZ
8349 return 1;
8350 }
f82d02d9 8351 }
2c47e605 8352 }
f82d02d9 8353
2c47e605
YZ
8354 /* wc->stage == DROP_REFERENCE */
8355 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8356
2c47e605
YZ
8357 if (wc->refs[level] == 1) {
8358 if (level == 0) {
8359 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8360 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8361 else
e339a6b0 8362 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8363 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8364 ret = account_leaf_items(trans, root, eb);
8365 if (ret) {
94647322
DS
8366 btrfs_err_rl(root->fs_info,
8367 "error "
1152651a 8368 "%d accounting leaf items. Quota "
94647322
DS
8369 "is out of sync, rescan required.",
8370 ret);
1152651a 8371 }
2c47e605
YZ
8372 }
8373 /* make block locked assertion in clean_tree_block happy */
8374 if (!path->locks[level] &&
8375 btrfs_header_generation(eb) == trans->transid) {
8376 btrfs_tree_lock(eb);
8377 btrfs_set_lock_blocking(eb);
bd681513 8378 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8379 }
01d58472 8380 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8381 }
8382
8383 if (eb == root->node) {
8384 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8385 parent = eb->start;
8386 else
8387 BUG_ON(root->root_key.objectid !=
8388 btrfs_header_owner(eb));
8389 } else {
8390 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8391 parent = path->nodes[level + 1]->start;
8392 else
8393 BUG_ON(root->root_key.objectid !=
8394 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8395 }
f82d02d9 8396
5581a51a 8397 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8398out:
8399 wc->refs[level] = 0;
8400 wc->flags[level] = 0;
f0486c68 8401 return 0;
2c47e605
YZ
8402}
8403
8404static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8405 struct btrfs_root *root,
8406 struct btrfs_path *path,
8407 struct walk_control *wc)
8408{
2c47e605 8409 int level = wc->level;
94fcca9f 8410 int lookup_info = 1;
2c47e605
YZ
8411 int ret;
8412
8413 while (level >= 0) {
94fcca9f 8414 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8415 if (ret > 0)
8416 break;
8417
8418 if (level == 0)
8419 break;
8420
7a7965f8
YZ
8421 if (path->slots[level] >=
8422 btrfs_header_nritems(path->nodes[level]))
8423 break;
8424
94fcca9f 8425 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8426 if (ret > 0) {
8427 path->slots[level]++;
8428 continue;
90d2c51d
MX
8429 } else if (ret < 0)
8430 return ret;
1c4850e2 8431 level = wc->level;
f82d02d9 8432 }
f82d02d9
YZ
8433 return 0;
8434}
8435
d397712b 8436static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8437 struct btrfs_root *root,
f82d02d9 8438 struct btrfs_path *path,
2c47e605 8439 struct walk_control *wc, int max_level)
20524f02 8440{
2c47e605 8441 int level = wc->level;
20524f02 8442 int ret;
9f3a7427 8443
2c47e605
YZ
8444 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8445 while (level < max_level && path->nodes[level]) {
8446 wc->level = level;
8447 if (path->slots[level] + 1 <
8448 btrfs_header_nritems(path->nodes[level])) {
8449 path->slots[level]++;
20524f02
CM
8450 return 0;
8451 } else {
2c47e605
YZ
8452 ret = walk_up_proc(trans, root, path, wc);
8453 if (ret > 0)
8454 return 0;
bd56b302 8455
2c47e605 8456 if (path->locks[level]) {
bd681513
CM
8457 btrfs_tree_unlock_rw(path->nodes[level],
8458 path->locks[level]);
2c47e605 8459 path->locks[level] = 0;
f82d02d9 8460 }
2c47e605
YZ
8461 free_extent_buffer(path->nodes[level]);
8462 path->nodes[level] = NULL;
8463 level++;
20524f02
CM
8464 }
8465 }
8466 return 1;
8467}
8468
9aca1d51 8469/*
2c47e605
YZ
8470 * drop a subvolume tree.
8471 *
8472 * this function traverses the tree freeing any blocks that only
8473 * referenced by the tree.
8474 *
8475 * when a shared tree block is found. this function decreases its
8476 * reference count by one. if update_ref is true, this function
8477 * also make sure backrefs for the shared block and all lower level
8478 * blocks are properly updated.
9d1a2a3a
DS
8479 *
8480 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8481 */
2c536799 8482int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8483 struct btrfs_block_rsv *block_rsv, int update_ref,
8484 int for_reloc)
20524f02 8485{
5caf2a00 8486 struct btrfs_path *path;
2c47e605
YZ
8487 struct btrfs_trans_handle *trans;
8488 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8489 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8490 struct walk_control *wc;
8491 struct btrfs_key key;
8492 int err = 0;
8493 int ret;
8494 int level;
d29a9f62 8495 bool root_dropped = false;
20524f02 8496
1152651a
MF
8497 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8498
5caf2a00 8499 path = btrfs_alloc_path();
cb1b69f4
TI
8500 if (!path) {
8501 err = -ENOMEM;
8502 goto out;
8503 }
20524f02 8504
2c47e605 8505 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8506 if (!wc) {
8507 btrfs_free_path(path);
cb1b69f4
TI
8508 err = -ENOMEM;
8509 goto out;
38a1a919 8510 }
2c47e605 8511
a22285a6 8512 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8513 if (IS_ERR(trans)) {
8514 err = PTR_ERR(trans);
8515 goto out_free;
8516 }
98d5dc13 8517
3fd0a558
YZ
8518 if (block_rsv)
8519 trans->block_rsv = block_rsv;
2c47e605 8520
9f3a7427 8521 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8522 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8523 path->nodes[level] = btrfs_lock_root_node(root);
8524 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8525 path->slots[level] = 0;
bd681513 8526 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8527 memset(&wc->update_progress, 0,
8528 sizeof(wc->update_progress));
9f3a7427 8529 } else {
9f3a7427 8530 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8531 memcpy(&wc->update_progress, &key,
8532 sizeof(wc->update_progress));
8533
6702ed49 8534 level = root_item->drop_level;
2c47e605 8535 BUG_ON(level == 0);
6702ed49 8536 path->lowest_level = level;
2c47e605
YZ
8537 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8538 path->lowest_level = 0;
8539 if (ret < 0) {
8540 err = ret;
79787eaa 8541 goto out_end_trans;
9f3a7427 8542 }
1c4850e2 8543 WARN_ON(ret > 0);
2c47e605 8544
7d9eb12c
CM
8545 /*
8546 * unlock our path, this is safe because only this
8547 * function is allowed to delete this snapshot
8548 */
5d4f98a2 8549 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8550
8551 level = btrfs_header_level(root->node);
8552 while (1) {
8553 btrfs_tree_lock(path->nodes[level]);
8554 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8555 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8556
8557 ret = btrfs_lookup_extent_info(trans, root,
8558 path->nodes[level]->start,
3173a18f 8559 level, 1, &wc->refs[level],
2c47e605 8560 &wc->flags[level]);
79787eaa
JM
8561 if (ret < 0) {
8562 err = ret;
8563 goto out_end_trans;
8564 }
2c47e605
YZ
8565 BUG_ON(wc->refs[level] == 0);
8566
8567 if (level == root_item->drop_level)
8568 break;
8569
8570 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8571 path->locks[level] = 0;
2c47e605
YZ
8572 WARN_ON(wc->refs[level] != 1);
8573 level--;
8574 }
9f3a7427 8575 }
2c47e605
YZ
8576
8577 wc->level = level;
8578 wc->shared_level = -1;
8579 wc->stage = DROP_REFERENCE;
8580 wc->update_ref = update_ref;
8581 wc->keep_locks = 0;
66d7e7f0 8582 wc->for_reloc = for_reloc;
1c4850e2 8583 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8584
d397712b 8585 while (1) {
9d1a2a3a 8586
2c47e605
YZ
8587 ret = walk_down_tree(trans, root, path, wc);
8588 if (ret < 0) {
8589 err = ret;
20524f02 8590 break;
2c47e605 8591 }
9aca1d51 8592
2c47e605
YZ
8593 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8594 if (ret < 0) {
8595 err = ret;
20524f02 8596 break;
2c47e605
YZ
8597 }
8598
8599 if (ret > 0) {
8600 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8601 break;
8602 }
2c47e605
YZ
8603
8604 if (wc->stage == DROP_REFERENCE) {
8605 level = wc->level;
8606 btrfs_node_key(path->nodes[level],
8607 &root_item->drop_progress,
8608 path->slots[level]);
8609 root_item->drop_level = level;
8610 }
8611
8612 BUG_ON(wc->level == 0);
3c8f2422
JB
8613 if (btrfs_should_end_transaction(trans, tree_root) ||
8614 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8615 ret = btrfs_update_root(trans, tree_root,
8616 &root->root_key,
8617 root_item);
79787eaa
JM
8618 if (ret) {
8619 btrfs_abort_transaction(trans, tree_root, ret);
8620 err = ret;
8621 goto out_end_trans;
8622 }
2c47e605 8623
3fd0a558 8624 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8625 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8626 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8627 err = -EAGAIN;
8628 goto out_free;
8629 }
8630
a22285a6 8631 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8632 if (IS_ERR(trans)) {
8633 err = PTR_ERR(trans);
8634 goto out_free;
8635 }
3fd0a558
YZ
8636 if (block_rsv)
8637 trans->block_rsv = block_rsv;
c3e69d58 8638 }
20524f02 8639 }
b3b4aa74 8640 btrfs_release_path(path);
79787eaa
JM
8641 if (err)
8642 goto out_end_trans;
2c47e605
YZ
8643
8644 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8645 if (ret) {
8646 btrfs_abort_transaction(trans, tree_root, ret);
8647 goto out_end_trans;
8648 }
2c47e605 8649
76dda93c 8650 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8651 ret = btrfs_find_root(tree_root, &root->root_key, path,
8652 NULL, NULL);
79787eaa
JM
8653 if (ret < 0) {
8654 btrfs_abort_transaction(trans, tree_root, ret);
8655 err = ret;
8656 goto out_end_trans;
8657 } else if (ret > 0) {
84cd948c
JB
8658 /* if we fail to delete the orphan item this time
8659 * around, it'll get picked up the next time.
8660 *
8661 * The most common failure here is just -ENOENT.
8662 */
8663 btrfs_del_orphan_item(trans, tree_root,
8664 root->root_key.objectid);
76dda93c
YZ
8665 }
8666 }
8667
27cdeb70 8668 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8669 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8670 } else {
8671 free_extent_buffer(root->node);
8672 free_extent_buffer(root->commit_root);
b0feb9d9 8673 btrfs_put_fs_root(root);
76dda93c 8674 }
d29a9f62 8675 root_dropped = true;
79787eaa 8676out_end_trans:
3fd0a558 8677 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8678out_free:
2c47e605 8679 kfree(wc);
5caf2a00 8680 btrfs_free_path(path);
cb1b69f4 8681out:
d29a9f62
JB
8682 /*
8683 * So if we need to stop dropping the snapshot for whatever reason we
8684 * need to make sure to add it back to the dead root list so that we
8685 * keep trying to do the work later. This also cleans up roots if we
8686 * don't have it in the radix (like when we recover after a power fail
8687 * or unmount) so we don't leak memory.
8688 */
b37b39cd 8689 if (!for_reloc && root_dropped == false)
d29a9f62 8690 btrfs_add_dead_root(root);
90515e7f 8691 if (err && err != -EAGAIN)
a4553fef 8692 btrfs_std_error(root->fs_info, err, NULL);
2c536799 8693 return err;
20524f02 8694}
9078a3e1 8695
2c47e605
YZ
8696/*
8697 * drop subtree rooted at tree block 'node'.
8698 *
8699 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8700 * only used by relocation code
2c47e605 8701 */
f82d02d9
YZ
8702int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8703 struct btrfs_root *root,
8704 struct extent_buffer *node,
8705 struct extent_buffer *parent)
8706{
8707 struct btrfs_path *path;
2c47e605 8708 struct walk_control *wc;
f82d02d9
YZ
8709 int level;
8710 int parent_level;
8711 int ret = 0;
8712 int wret;
8713
2c47e605
YZ
8714 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8715
f82d02d9 8716 path = btrfs_alloc_path();
db5b493a
TI
8717 if (!path)
8718 return -ENOMEM;
f82d02d9 8719
2c47e605 8720 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8721 if (!wc) {
8722 btrfs_free_path(path);
8723 return -ENOMEM;
8724 }
2c47e605 8725
b9447ef8 8726 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8727 parent_level = btrfs_header_level(parent);
8728 extent_buffer_get(parent);
8729 path->nodes[parent_level] = parent;
8730 path->slots[parent_level] = btrfs_header_nritems(parent);
8731
b9447ef8 8732 btrfs_assert_tree_locked(node);
f82d02d9 8733 level = btrfs_header_level(node);
f82d02d9
YZ
8734 path->nodes[level] = node;
8735 path->slots[level] = 0;
bd681513 8736 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8737
8738 wc->refs[parent_level] = 1;
8739 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8740 wc->level = level;
8741 wc->shared_level = -1;
8742 wc->stage = DROP_REFERENCE;
8743 wc->update_ref = 0;
8744 wc->keep_locks = 1;
66d7e7f0 8745 wc->for_reloc = 1;
1c4850e2 8746 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8747
8748 while (1) {
2c47e605
YZ
8749 wret = walk_down_tree(trans, root, path, wc);
8750 if (wret < 0) {
f82d02d9 8751 ret = wret;
f82d02d9 8752 break;
2c47e605 8753 }
f82d02d9 8754
2c47e605 8755 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8756 if (wret < 0)
8757 ret = wret;
8758 if (wret != 0)
8759 break;
8760 }
8761
2c47e605 8762 kfree(wc);
f82d02d9
YZ
8763 btrfs_free_path(path);
8764 return ret;
8765}
8766
ec44a35c
CM
8767static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8768{
8769 u64 num_devices;
fc67c450 8770 u64 stripped;
e4d8ec0f 8771
fc67c450
ID
8772 /*
8773 * if restripe for this chunk_type is on pick target profile and
8774 * return, otherwise do the usual balance
8775 */
8776 stripped = get_restripe_target(root->fs_info, flags);
8777 if (stripped)
8778 return extended_to_chunk(stripped);
e4d8ec0f 8779
95669976 8780 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8781
fc67c450 8782 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8783 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8784 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8785
ec44a35c
CM
8786 if (num_devices == 1) {
8787 stripped |= BTRFS_BLOCK_GROUP_DUP;
8788 stripped = flags & ~stripped;
8789
8790 /* turn raid0 into single device chunks */
8791 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8792 return stripped;
8793
8794 /* turn mirroring into duplication */
8795 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8796 BTRFS_BLOCK_GROUP_RAID10))
8797 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8798 } else {
8799 /* they already had raid on here, just return */
ec44a35c
CM
8800 if (flags & stripped)
8801 return flags;
8802
8803 stripped |= BTRFS_BLOCK_GROUP_DUP;
8804 stripped = flags & ~stripped;
8805
8806 /* switch duplicated blocks with raid1 */
8807 if (flags & BTRFS_BLOCK_GROUP_DUP)
8808 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8809
e3176ca2 8810 /* this is drive concat, leave it alone */
ec44a35c 8811 }
e3176ca2 8812
ec44a35c
CM
8813 return flags;
8814}
8815
868f401a 8816static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8817{
f0486c68
YZ
8818 struct btrfs_space_info *sinfo = cache->space_info;
8819 u64 num_bytes;
199c36ea 8820 u64 min_allocable_bytes;
f0486c68 8821 int ret = -ENOSPC;
0ef3e66b 8822
199c36ea
MX
8823 /*
8824 * We need some metadata space and system metadata space for
8825 * allocating chunks in some corner cases until we force to set
8826 * it to be readonly.
8827 */
8828 if ((sinfo->flags &
8829 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8830 !force)
8831 min_allocable_bytes = 1 * 1024 * 1024;
8832 else
8833 min_allocable_bytes = 0;
8834
f0486c68
YZ
8835 spin_lock(&sinfo->lock);
8836 spin_lock(&cache->lock);
61cfea9b
W
8837
8838 if (cache->ro) {
868f401a 8839 cache->ro++;
61cfea9b
W
8840 ret = 0;
8841 goto out;
8842 }
8843
f0486c68
YZ
8844 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8845 cache->bytes_super - btrfs_block_group_used(&cache->item);
8846
8847 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8848 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8849 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8850 sinfo->bytes_readonly += num_bytes;
868f401a 8851 cache->ro++;
633c0aad 8852 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8853 ret = 0;
8854 }
61cfea9b 8855out:
f0486c68
YZ
8856 spin_unlock(&cache->lock);
8857 spin_unlock(&sinfo->lock);
8858 return ret;
8859}
7d9eb12c 8860
868f401a 8861int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 8862 struct btrfs_block_group_cache *cache)
c286ac48 8863
f0486c68
YZ
8864{
8865 struct btrfs_trans_handle *trans;
8866 u64 alloc_flags;
8867 int ret;
7d9eb12c 8868
1bbc621e 8869again:
ff5714cc 8870 trans = btrfs_join_transaction(root);
79787eaa
JM
8871 if (IS_ERR(trans))
8872 return PTR_ERR(trans);
5d4f98a2 8873
1bbc621e
CM
8874 /*
8875 * we're not allowed to set block groups readonly after the dirty
8876 * block groups cache has started writing. If it already started,
8877 * back off and let this transaction commit
8878 */
8879 mutex_lock(&root->fs_info->ro_block_group_mutex);
8880 if (trans->transaction->dirty_bg_run) {
8881 u64 transid = trans->transid;
8882
8883 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8884 btrfs_end_transaction(trans, root);
8885
8886 ret = btrfs_wait_for_commit(root, transid);
8887 if (ret)
8888 return ret;
8889 goto again;
8890 }
8891
153c35b6
CM
8892 /*
8893 * if we are changing raid levels, try to allocate a corresponding
8894 * block group with the new raid level.
8895 */
8896 alloc_flags = update_block_group_flags(root, cache->flags);
8897 if (alloc_flags != cache->flags) {
8898 ret = do_chunk_alloc(trans, root, alloc_flags,
8899 CHUNK_ALLOC_FORCE);
8900 /*
8901 * ENOSPC is allowed here, we may have enough space
8902 * already allocated at the new raid level to
8903 * carry on
8904 */
8905 if (ret == -ENOSPC)
8906 ret = 0;
8907 if (ret < 0)
8908 goto out;
8909 }
1bbc621e 8910
868f401a 8911 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
8912 if (!ret)
8913 goto out;
8914 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8915 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8916 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8917 if (ret < 0)
8918 goto out;
868f401a 8919 ret = inc_block_group_ro(cache, 0);
f0486c68 8920out:
2f081088
SL
8921 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8922 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8923 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8924 check_system_chunk(trans, root, alloc_flags);
a9629596 8925 unlock_chunks(root->fs_info->chunk_root);
2f081088 8926 }
1bbc621e 8927 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8928
f0486c68
YZ
8929 btrfs_end_transaction(trans, root);
8930 return ret;
8931}
5d4f98a2 8932
c87f08ca
CM
8933int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8934 struct btrfs_root *root, u64 type)
8935{
8936 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8937 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8938 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8939}
8940
6d07bcec
MX
8941/*
8942 * helper to account the unused space of all the readonly block group in the
633c0aad 8943 * space_info. takes mirrors into account.
6d07bcec 8944 */
633c0aad 8945u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8946{
8947 struct btrfs_block_group_cache *block_group;
8948 u64 free_bytes = 0;
8949 int factor;
8950
633c0aad
JB
8951 /* It's df, we don't care if it's racey */
8952 if (list_empty(&sinfo->ro_bgs))
8953 return 0;
8954
8955 spin_lock(&sinfo->lock);
8956 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8957 spin_lock(&block_group->lock);
8958
8959 if (!block_group->ro) {
8960 spin_unlock(&block_group->lock);
8961 continue;
8962 }
8963
8964 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8965 BTRFS_BLOCK_GROUP_RAID10 |
8966 BTRFS_BLOCK_GROUP_DUP))
8967 factor = 2;
8968 else
8969 factor = 1;
8970
8971 free_bytes += (block_group->key.offset -
8972 btrfs_block_group_used(&block_group->item)) *
8973 factor;
8974
8975 spin_unlock(&block_group->lock);
8976 }
6d07bcec
MX
8977 spin_unlock(&sinfo->lock);
8978
8979 return free_bytes;
8980}
8981
868f401a 8982void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 8983 struct btrfs_block_group_cache *cache)
5d4f98a2 8984{
f0486c68
YZ
8985 struct btrfs_space_info *sinfo = cache->space_info;
8986 u64 num_bytes;
8987
8988 BUG_ON(!cache->ro);
8989
8990 spin_lock(&sinfo->lock);
8991 spin_lock(&cache->lock);
868f401a
Z
8992 if (!--cache->ro) {
8993 num_bytes = cache->key.offset - cache->reserved -
8994 cache->pinned - cache->bytes_super -
8995 btrfs_block_group_used(&cache->item);
8996 sinfo->bytes_readonly -= num_bytes;
8997 list_del_init(&cache->ro_list);
8998 }
f0486c68
YZ
8999 spin_unlock(&cache->lock);
9000 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9001}
9002
ba1bf481
JB
9003/*
9004 * checks to see if its even possible to relocate this block group.
9005 *
9006 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9007 * ok to go ahead and try.
9008 */
9009int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9010{
ba1bf481
JB
9011 struct btrfs_block_group_cache *block_group;
9012 struct btrfs_space_info *space_info;
9013 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9014 struct btrfs_device *device;
6df9a95e 9015 struct btrfs_trans_handle *trans;
cdcb725c 9016 u64 min_free;
6719db6a
JB
9017 u64 dev_min = 1;
9018 u64 dev_nr = 0;
4a5e98f5 9019 u64 target;
cdcb725c 9020 int index;
ba1bf481
JB
9021 int full = 0;
9022 int ret = 0;
1a40e23b 9023
ba1bf481 9024 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9025
ba1bf481
JB
9026 /* odd, couldn't find the block group, leave it alone */
9027 if (!block_group)
9028 return -1;
1a40e23b 9029
cdcb725c 9030 min_free = btrfs_block_group_used(&block_group->item);
9031
ba1bf481 9032 /* no bytes used, we're good */
cdcb725c 9033 if (!min_free)
1a40e23b
ZY
9034 goto out;
9035
ba1bf481
JB
9036 space_info = block_group->space_info;
9037 spin_lock(&space_info->lock);
17d217fe 9038
ba1bf481 9039 full = space_info->full;
17d217fe 9040
ba1bf481
JB
9041 /*
9042 * if this is the last block group we have in this space, we can't
7ce618db
CM
9043 * relocate it unless we're able to allocate a new chunk below.
9044 *
9045 * Otherwise, we need to make sure we have room in the space to handle
9046 * all of the extents from this block group. If we can, we're good
ba1bf481 9047 */
7ce618db 9048 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9049 (space_info->bytes_used + space_info->bytes_reserved +
9050 space_info->bytes_pinned + space_info->bytes_readonly +
9051 min_free < space_info->total_bytes)) {
ba1bf481
JB
9052 spin_unlock(&space_info->lock);
9053 goto out;
17d217fe 9054 }
ba1bf481 9055 spin_unlock(&space_info->lock);
ea8c2819 9056
ba1bf481
JB
9057 /*
9058 * ok we don't have enough space, but maybe we have free space on our
9059 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9060 * alloc devices and guess if we have enough space. if this block
9061 * group is going to be restriped, run checks against the target
9062 * profile instead of the current one.
ba1bf481
JB
9063 */
9064 ret = -1;
ea8c2819 9065
cdcb725c 9066 /*
9067 * index:
9068 * 0: raid10
9069 * 1: raid1
9070 * 2: dup
9071 * 3: raid0
9072 * 4: single
9073 */
4a5e98f5
ID
9074 target = get_restripe_target(root->fs_info, block_group->flags);
9075 if (target) {
31e50229 9076 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9077 } else {
9078 /*
9079 * this is just a balance, so if we were marked as full
9080 * we know there is no space for a new chunk
9081 */
9082 if (full)
9083 goto out;
9084
9085 index = get_block_group_index(block_group);
9086 }
9087
e6ec716f 9088 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9089 dev_min = 4;
6719db6a
JB
9090 /* Divide by 2 */
9091 min_free >>= 1;
e6ec716f 9092 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9093 dev_min = 2;
e6ec716f 9094 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9095 /* Multiply by 2 */
9096 min_free <<= 1;
e6ec716f 9097 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9098 dev_min = fs_devices->rw_devices;
47c5713f 9099 min_free = div64_u64(min_free, dev_min);
cdcb725c 9100 }
9101
6df9a95e
JB
9102 /* We need to do this so that we can look at pending chunks */
9103 trans = btrfs_join_transaction(root);
9104 if (IS_ERR(trans)) {
9105 ret = PTR_ERR(trans);
9106 goto out;
9107 }
9108
ba1bf481
JB
9109 mutex_lock(&root->fs_info->chunk_mutex);
9110 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9111 u64 dev_offset;
56bec294 9112
ba1bf481
JB
9113 /*
9114 * check to make sure we can actually find a chunk with enough
9115 * space to fit our block group in.
9116 */
63a212ab
SB
9117 if (device->total_bytes > device->bytes_used + min_free &&
9118 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9119 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9120 &dev_offset, NULL);
ba1bf481 9121 if (!ret)
cdcb725c 9122 dev_nr++;
9123
9124 if (dev_nr >= dev_min)
73e48b27 9125 break;
cdcb725c 9126
ba1bf481 9127 ret = -1;
725c8463 9128 }
edbd8d4e 9129 }
ba1bf481 9130 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9131 btrfs_end_transaction(trans, root);
edbd8d4e 9132out:
ba1bf481 9133 btrfs_put_block_group(block_group);
edbd8d4e
CM
9134 return ret;
9135}
9136
b2950863
CH
9137static int find_first_block_group(struct btrfs_root *root,
9138 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9139{
925baedd 9140 int ret = 0;
0b86a832
CM
9141 struct btrfs_key found_key;
9142 struct extent_buffer *leaf;
9143 int slot;
edbd8d4e 9144
0b86a832
CM
9145 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9146 if (ret < 0)
925baedd
CM
9147 goto out;
9148
d397712b 9149 while (1) {
0b86a832 9150 slot = path->slots[0];
edbd8d4e 9151 leaf = path->nodes[0];
0b86a832
CM
9152 if (slot >= btrfs_header_nritems(leaf)) {
9153 ret = btrfs_next_leaf(root, path);
9154 if (ret == 0)
9155 continue;
9156 if (ret < 0)
925baedd 9157 goto out;
0b86a832 9158 break;
edbd8d4e 9159 }
0b86a832 9160 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9161
0b86a832 9162 if (found_key.objectid >= key->objectid &&
925baedd
CM
9163 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9164 ret = 0;
9165 goto out;
9166 }
0b86a832 9167 path->slots[0]++;
edbd8d4e 9168 }
925baedd 9169out:
0b86a832 9170 return ret;
edbd8d4e
CM
9171}
9172
0af3d00b
JB
9173void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9174{
9175 struct btrfs_block_group_cache *block_group;
9176 u64 last = 0;
9177
9178 while (1) {
9179 struct inode *inode;
9180
9181 block_group = btrfs_lookup_first_block_group(info, last);
9182 while (block_group) {
9183 spin_lock(&block_group->lock);
9184 if (block_group->iref)
9185 break;
9186 spin_unlock(&block_group->lock);
9187 block_group = next_block_group(info->tree_root,
9188 block_group);
9189 }
9190 if (!block_group) {
9191 if (last == 0)
9192 break;
9193 last = 0;
9194 continue;
9195 }
9196
9197 inode = block_group->inode;
9198 block_group->iref = 0;
9199 block_group->inode = NULL;
9200 spin_unlock(&block_group->lock);
9201 iput(inode);
9202 last = block_group->key.objectid + block_group->key.offset;
9203 btrfs_put_block_group(block_group);
9204 }
9205}
9206
1a40e23b
ZY
9207int btrfs_free_block_groups(struct btrfs_fs_info *info)
9208{
9209 struct btrfs_block_group_cache *block_group;
4184ea7f 9210 struct btrfs_space_info *space_info;
11833d66 9211 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9212 struct rb_node *n;
9213
9e351cc8 9214 down_write(&info->commit_root_sem);
11833d66
YZ
9215 while (!list_empty(&info->caching_block_groups)) {
9216 caching_ctl = list_entry(info->caching_block_groups.next,
9217 struct btrfs_caching_control, list);
9218 list_del(&caching_ctl->list);
9219 put_caching_control(caching_ctl);
9220 }
9e351cc8 9221 up_write(&info->commit_root_sem);
11833d66 9222
47ab2a6c
JB
9223 spin_lock(&info->unused_bgs_lock);
9224 while (!list_empty(&info->unused_bgs)) {
9225 block_group = list_first_entry(&info->unused_bgs,
9226 struct btrfs_block_group_cache,
9227 bg_list);
9228 list_del_init(&block_group->bg_list);
9229 btrfs_put_block_group(block_group);
9230 }
9231 spin_unlock(&info->unused_bgs_lock);
9232
1a40e23b
ZY
9233 spin_lock(&info->block_group_cache_lock);
9234 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9235 block_group = rb_entry(n, struct btrfs_block_group_cache,
9236 cache_node);
1a40e23b
ZY
9237 rb_erase(&block_group->cache_node,
9238 &info->block_group_cache_tree);
01eacb27 9239 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9240 spin_unlock(&info->block_group_cache_lock);
9241
80eb234a 9242 down_write(&block_group->space_info->groups_sem);
1a40e23b 9243 list_del(&block_group->list);
80eb234a 9244 up_write(&block_group->space_info->groups_sem);
d2fb3437 9245
817d52f8 9246 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9247 wait_block_group_cache_done(block_group);
817d52f8 9248
3c14874a
JB
9249 /*
9250 * We haven't cached this block group, which means we could
9251 * possibly have excluded extents on this block group.
9252 */
36cce922
JB
9253 if (block_group->cached == BTRFS_CACHE_NO ||
9254 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9255 free_excluded_extents(info->extent_root, block_group);
9256
817d52f8 9257 btrfs_remove_free_space_cache(block_group);
11dfe35a 9258 btrfs_put_block_group(block_group);
d899e052
YZ
9259
9260 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9261 }
9262 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9263
9264 /* now that all the block groups are freed, go through and
9265 * free all the space_info structs. This is only called during
9266 * the final stages of unmount, and so we know nobody is
9267 * using them. We call synchronize_rcu() once before we start,
9268 * just to be on the safe side.
9269 */
9270 synchronize_rcu();
9271
8929ecfa
YZ
9272 release_global_block_rsv(info);
9273
67871254 9274 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9275 int i;
9276
4184ea7f
CM
9277 space_info = list_entry(info->space_info.next,
9278 struct btrfs_space_info,
9279 list);
b069e0c3 9280 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9281 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9282 space_info->bytes_reserved > 0 ||
fae7f21c 9283 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9284 dump_space_info(space_info, 0, 0);
9285 }
f0486c68 9286 }
4184ea7f 9287 list_del(&space_info->list);
6ab0a202
JM
9288 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9289 struct kobject *kobj;
c1895442
JM
9290 kobj = space_info->block_group_kobjs[i];
9291 space_info->block_group_kobjs[i] = NULL;
9292 if (kobj) {
6ab0a202
JM
9293 kobject_del(kobj);
9294 kobject_put(kobj);
9295 }
9296 }
9297 kobject_del(&space_info->kobj);
9298 kobject_put(&space_info->kobj);
4184ea7f 9299 }
1a40e23b
ZY
9300 return 0;
9301}
9302
b742bb82
YZ
9303static void __link_block_group(struct btrfs_space_info *space_info,
9304 struct btrfs_block_group_cache *cache)
9305{
9306 int index = get_block_group_index(cache);
ed55b6ac 9307 bool first = false;
b742bb82
YZ
9308
9309 down_write(&space_info->groups_sem);
ed55b6ac
JM
9310 if (list_empty(&space_info->block_groups[index]))
9311 first = true;
9312 list_add_tail(&cache->list, &space_info->block_groups[index]);
9313 up_write(&space_info->groups_sem);
9314
9315 if (first) {
c1895442 9316 struct raid_kobject *rkobj;
6ab0a202
JM
9317 int ret;
9318
c1895442
JM
9319 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9320 if (!rkobj)
9321 goto out_err;
9322 rkobj->raid_type = index;
9323 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9324 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9325 "%s", get_raid_name(index));
6ab0a202 9326 if (ret) {
c1895442
JM
9327 kobject_put(&rkobj->kobj);
9328 goto out_err;
6ab0a202 9329 }
c1895442 9330 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9331 }
c1895442
JM
9332
9333 return;
9334out_err:
9335 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9336}
9337
920e4a58
MX
9338static struct btrfs_block_group_cache *
9339btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9340{
9341 struct btrfs_block_group_cache *cache;
9342
9343 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9344 if (!cache)
9345 return NULL;
9346
9347 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9348 GFP_NOFS);
9349 if (!cache->free_space_ctl) {
9350 kfree(cache);
9351 return NULL;
9352 }
9353
9354 cache->key.objectid = start;
9355 cache->key.offset = size;
9356 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9357
9358 cache->sectorsize = root->sectorsize;
9359 cache->fs_info = root->fs_info;
9360 cache->full_stripe_len = btrfs_full_stripe_len(root,
9361 &root->fs_info->mapping_tree,
9362 start);
9363 atomic_set(&cache->count, 1);
9364 spin_lock_init(&cache->lock);
e570fd27 9365 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9366 INIT_LIST_HEAD(&cache->list);
9367 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9368 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9369 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9370 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9371 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9372 btrfs_init_free_space_ctl(cache);
04216820 9373 atomic_set(&cache->trimming, 0);
920e4a58
MX
9374
9375 return cache;
9376}
9377
9078a3e1
CM
9378int btrfs_read_block_groups(struct btrfs_root *root)
9379{
9380 struct btrfs_path *path;
9381 int ret;
9078a3e1 9382 struct btrfs_block_group_cache *cache;
be744175 9383 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9384 struct btrfs_space_info *space_info;
9078a3e1
CM
9385 struct btrfs_key key;
9386 struct btrfs_key found_key;
5f39d397 9387 struct extent_buffer *leaf;
0af3d00b
JB
9388 int need_clear = 0;
9389 u64 cache_gen;
96b5179d 9390
be744175 9391 root = info->extent_root;
9078a3e1 9392 key.objectid = 0;
0b86a832 9393 key.offset = 0;
962a298f 9394 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9395 path = btrfs_alloc_path();
9396 if (!path)
9397 return -ENOMEM;
026fd317 9398 path->reada = 1;
9078a3e1 9399
6c41761f 9400 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9401 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9402 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9403 need_clear = 1;
88c2ba3b
JB
9404 if (btrfs_test_opt(root, CLEAR_CACHE))
9405 need_clear = 1;
0af3d00b 9406
d397712b 9407 while (1) {
0b86a832 9408 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9409 if (ret > 0)
9410 break;
0b86a832
CM
9411 if (ret != 0)
9412 goto error;
920e4a58 9413
5f39d397
CM
9414 leaf = path->nodes[0];
9415 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9416
9417 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9418 found_key.offset);
9078a3e1 9419 if (!cache) {
0b86a832 9420 ret = -ENOMEM;
f0486c68 9421 goto error;
9078a3e1 9422 }
96303081 9423
cf7c1ef6
LB
9424 if (need_clear) {
9425 /*
9426 * When we mount with old space cache, we need to
9427 * set BTRFS_DC_CLEAR and set dirty flag.
9428 *
9429 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9430 * truncate the old free space cache inode and
9431 * setup a new one.
9432 * b) Setting 'dirty flag' makes sure that we flush
9433 * the new space cache info onto disk.
9434 */
cf7c1ef6 9435 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9436 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9437 }
0af3d00b 9438
5f39d397
CM
9439 read_extent_buffer(leaf, &cache->item,
9440 btrfs_item_ptr_offset(leaf, path->slots[0]),
9441 sizeof(cache->item));
920e4a58 9442 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9443
9078a3e1 9444 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9445 btrfs_release_path(path);
34d52cb6 9446
3c14874a
JB
9447 /*
9448 * We need to exclude the super stripes now so that the space
9449 * info has super bytes accounted for, otherwise we'll think
9450 * we have more space than we actually do.
9451 */
835d974f
JB
9452 ret = exclude_super_stripes(root, cache);
9453 if (ret) {
9454 /*
9455 * We may have excluded something, so call this just in
9456 * case.
9457 */
9458 free_excluded_extents(root, cache);
920e4a58 9459 btrfs_put_block_group(cache);
835d974f
JB
9460 goto error;
9461 }
3c14874a 9462
817d52f8
JB
9463 /*
9464 * check for two cases, either we are full, and therefore
9465 * don't need to bother with the caching work since we won't
9466 * find any space, or we are empty, and we can just add all
9467 * the space in and be done with it. This saves us _alot_ of
9468 * time, particularly in the full case.
9469 */
9470 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9471 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9472 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9473 free_excluded_extents(root, cache);
817d52f8 9474 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9475 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9476 cache->cached = BTRFS_CACHE_FINISHED;
9477 add_new_free_space(cache, root->fs_info,
9478 found_key.objectid,
9479 found_key.objectid +
9480 found_key.offset);
11833d66 9481 free_excluded_extents(root, cache);
817d52f8 9482 }
96b5179d 9483
8c579fe7
JB
9484 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9485 if (ret) {
9486 btrfs_remove_free_space_cache(cache);
9487 btrfs_put_block_group(cache);
9488 goto error;
9489 }
9490
6324fbf3
CM
9491 ret = update_space_info(info, cache->flags, found_key.offset,
9492 btrfs_block_group_used(&cache->item),
9493 &space_info);
8c579fe7
JB
9494 if (ret) {
9495 btrfs_remove_free_space_cache(cache);
9496 spin_lock(&info->block_group_cache_lock);
9497 rb_erase(&cache->cache_node,
9498 &info->block_group_cache_tree);
01eacb27 9499 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9500 spin_unlock(&info->block_group_cache_lock);
9501 btrfs_put_block_group(cache);
9502 goto error;
9503 }
9504
6324fbf3 9505 cache->space_info = space_info;
1b2da372 9506 spin_lock(&cache->space_info->lock);
f0486c68 9507 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9508 spin_unlock(&cache->space_info->lock);
9509
b742bb82 9510 __link_block_group(space_info, cache);
0f9dd46c 9511
75ccf47d 9512 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9513 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9514 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9515 } else if (btrfs_block_group_used(&cache->item) == 0) {
9516 spin_lock(&info->unused_bgs_lock);
9517 /* Should always be true but just in case. */
9518 if (list_empty(&cache->bg_list)) {
9519 btrfs_get_block_group(cache);
9520 list_add_tail(&cache->bg_list,
9521 &info->unused_bgs);
9522 }
9523 spin_unlock(&info->unused_bgs_lock);
9524 }
9078a3e1 9525 }
b742bb82
YZ
9526
9527 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9528 if (!(get_alloc_profile(root, space_info->flags) &
9529 (BTRFS_BLOCK_GROUP_RAID10 |
9530 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9531 BTRFS_BLOCK_GROUP_RAID5 |
9532 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9533 BTRFS_BLOCK_GROUP_DUP)))
9534 continue;
9535 /*
9536 * avoid allocating from un-mirrored block group if there are
9537 * mirrored block groups.
9538 */
1095cc0d 9539 list_for_each_entry(cache,
9540 &space_info->block_groups[BTRFS_RAID_RAID0],
9541 list)
868f401a 9542 inc_block_group_ro(cache, 1);
1095cc0d 9543 list_for_each_entry(cache,
9544 &space_info->block_groups[BTRFS_RAID_SINGLE],
9545 list)
868f401a 9546 inc_block_group_ro(cache, 1);
9078a3e1 9547 }
f0486c68
YZ
9548
9549 init_global_block_rsv(info);
0b86a832
CM
9550 ret = 0;
9551error:
9078a3e1 9552 btrfs_free_path(path);
0b86a832 9553 return ret;
9078a3e1 9554}
6324fbf3 9555
ea658bad
JB
9556void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9557 struct btrfs_root *root)
9558{
9559 struct btrfs_block_group_cache *block_group, *tmp;
9560 struct btrfs_root *extent_root = root->fs_info->extent_root;
9561 struct btrfs_block_group_item item;
9562 struct btrfs_key key;
9563 int ret = 0;
d9a0540a 9564 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9565
d9a0540a 9566 trans->can_flush_pending_bgs = false;
47ab2a6c 9567 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9568 if (ret)
c92f6be3 9569 goto next;
ea658bad
JB
9570
9571 spin_lock(&block_group->lock);
9572 memcpy(&item, &block_group->item, sizeof(item));
9573 memcpy(&key, &block_group->key, sizeof(key));
9574 spin_unlock(&block_group->lock);
9575
9576 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9577 sizeof(item));
9578 if (ret)
9579 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9580 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9581 key.objectid, key.offset);
9582 if (ret)
9583 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9584next:
9585 list_del_init(&block_group->bg_list);
ea658bad 9586 }
d9a0540a 9587 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9588}
9589
6324fbf3
CM
9590int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9591 struct btrfs_root *root, u64 bytes_used,
e17cade2 9592 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9593 u64 size)
9594{
9595 int ret;
6324fbf3
CM
9596 struct btrfs_root *extent_root;
9597 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9598
9599 extent_root = root->fs_info->extent_root;
6324fbf3 9600
995946dd 9601 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9602
920e4a58 9603 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9604 if (!cache)
9605 return -ENOMEM;
34d52cb6 9606
6324fbf3 9607 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9608 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9609 btrfs_set_block_group_flags(&cache->item, type);
9610
920e4a58 9611 cache->flags = type;
11833d66 9612 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9613 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9614 ret = exclude_super_stripes(root, cache);
9615 if (ret) {
9616 /*
9617 * We may have excluded something, so call this just in
9618 * case.
9619 */
9620 free_excluded_extents(root, cache);
920e4a58 9621 btrfs_put_block_group(cache);
835d974f
JB
9622 return ret;
9623 }
96303081 9624
817d52f8
JB
9625 add_new_free_space(cache, root->fs_info, chunk_offset,
9626 chunk_offset + size);
9627
11833d66
YZ
9628 free_excluded_extents(root, cache);
9629
2e6e5183
FM
9630 /*
9631 * Call to ensure the corresponding space_info object is created and
9632 * assigned to our block group, but don't update its counters just yet.
9633 * We want our bg to be added to the rbtree with its ->space_info set.
9634 */
9635 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9636 &cache->space_info);
9637 if (ret) {
9638 btrfs_remove_free_space_cache(cache);
9639 btrfs_put_block_group(cache);
9640 return ret;
9641 }
9642
8c579fe7
JB
9643 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9644 if (ret) {
9645 btrfs_remove_free_space_cache(cache);
9646 btrfs_put_block_group(cache);
9647 return ret;
9648 }
9649
2e6e5183
FM
9650 /*
9651 * Now that our block group has its ->space_info set and is inserted in
9652 * the rbtree, update the space info's counters.
9653 */
6324fbf3
CM
9654 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9655 &cache->space_info);
8c579fe7
JB
9656 if (ret) {
9657 btrfs_remove_free_space_cache(cache);
9658 spin_lock(&root->fs_info->block_group_cache_lock);
9659 rb_erase(&cache->cache_node,
9660 &root->fs_info->block_group_cache_tree);
01eacb27 9661 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9662 spin_unlock(&root->fs_info->block_group_cache_lock);
9663 btrfs_put_block_group(cache);
9664 return ret;
9665 }
c7c144db 9666 update_global_block_rsv(root->fs_info);
1b2da372
JB
9667
9668 spin_lock(&cache->space_info->lock);
f0486c68 9669 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9670 spin_unlock(&cache->space_info->lock);
9671
b742bb82 9672 __link_block_group(cache->space_info, cache);
6324fbf3 9673
47ab2a6c 9674 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9675
d18a2c44 9676 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9677
6324fbf3
CM
9678 return 0;
9679}
1a40e23b 9680
10ea00f5
ID
9681static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9682{
899c81ea
ID
9683 u64 extra_flags = chunk_to_extended(flags) &
9684 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9685
de98ced9 9686 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9687 if (flags & BTRFS_BLOCK_GROUP_DATA)
9688 fs_info->avail_data_alloc_bits &= ~extra_flags;
9689 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9690 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9691 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9692 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9693 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9694}
9695
1a40e23b 9696int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9697 struct btrfs_root *root, u64 group_start,
9698 struct extent_map *em)
1a40e23b
ZY
9699{
9700 struct btrfs_path *path;
9701 struct btrfs_block_group_cache *block_group;
44fb5511 9702 struct btrfs_free_cluster *cluster;
0af3d00b 9703 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9704 struct btrfs_key key;
0af3d00b 9705 struct inode *inode;
c1895442 9706 struct kobject *kobj = NULL;
1a40e23b 9707 int ret;
10ea00f5 9708 int index;
89a55897 9709 int factor;
4f69cb98 9710 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9711 bool remove_em;
1a40e23b 9712
1a40e23b
ZY
9713 root = root->fs_info->extent_root;
9714
9715 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9716 BUG_ON(!block_group);
c146afad 9717 BUG_ON(!block_group->ro);
1a40e23b 9718
9f7c43c9 9719 /*
9720 * Free the reserved super bytes from this block group before
9721 * remove it.
9722 */
9723 free_excluded_extents(root, block_group);
9724
1a40e23b 9725 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9726 index = get_block_group_index(block_group);
89a55897
JB
9727 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9728 BTRFS_BLOCK_GROUP_RAID1 |
9729 BTRFS_BLOCK_GROUP_RAID10))
9730 factor = 2;
9731 else
9732 factor = 1;
1a40e23b 9733
44fb5511
CM
9734 /* make sure this block group isn't part of an allocation cluster */
9735 cluster = &root->fs_info->data_alloc_cluster;
9736 spin_lock(&cluster->refill_lock);
9737 btrfs_return_cluster_to_free_space(block_group, cluster);
9738 spin_unlock(&cluster->refill_lock);
9739
9740 /*
9741 * make sure this block group isn't part of a metadata
9742 * allocation cluster
9743 */
9744 cluster = &root->fs_info->meta_alloc_cluster;
9745 spin_lock(&cluster->refill_lock);
9746 btrfs_return_cluster_to_free_space(block_group, cluster);
9747 spin_unlock(&cluster->refill_lock);
9748
1a40e23b 9749 path = btrfs_alloc_path();
d8926bb3
MF
9750 if (!path) {
9751 ret = -ENOMEM;
9752 goto out;
9753 }
1a40e23b 9754
1bbc621e
CM
9755 /*
9756 * get the inode first so any iput calls done for the io_list
9757 * aren't the final iput (no unlinks allowed now)
9758 */
10b2f34d 9759 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9760
9761 mutex_lock(&trans->transaction->cache_write_mutex);
9762 /*
9763 * make sure our free spache cache IO is done before remove the
9764 * free space inode
9765 */
9766 spin_lock(&trans->transaction->dirty_bgs_lock);
9767 if (!list_empty(&block_group->io_list)) {
9768 list_del_init(&block_group->io_list);
9769
9770 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9771
9772 spin_unlock(&trans->transaction->dirty_bgs_lock);
9773 btrfs_wait_cache_io(root, trans, block_group,
9774 &block_group->io_ctl, path,
9775 block_group->key.objectid);
9776 btrfs_put_block_group(block_group);
9777 spin_lock(&trans->transaction->dirty_bgs_lock);
9778 }
9779
9780 if (!list_empty(&block_group->dirty_list)) {
9781 list_del_init(&block_group->dirty_list);
9782 btrfs_put_block_group(block_group);
9783 }
9784 spin_unlock(&trans->transaction->dirty_bgs_lock);
9785 mutex_unlock(&trans->transaction->cache_write_mutex);
9786
0af3d00b 9787 if (!IS_ERR(inode)) {
b532402e 9788 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9789 if (ret) {
9790 btrfs_add_delayed_iput(inode);
9791 goto out;
9792 }
0af3d00b
JB
9793 clear_nlink(inode);
9794 /* One for the block groups ref */
9795 spin_lock(&block_group->lock);
9796 if (block_group->iref) {
9797 block_group->iref = 0;
9798 block_group->inode = NULL;
9799 spin_unlock(&block_group->lock);
9800 iput(inode);
9801 } else {
9802 spin_unlock(&block_group->lock);
9803 }
9804 /* One for our lookup ref */
455757c3 9805 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9806 }
9807
9808 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9809 key.offset = block_group->key.objectid;
9810 key.type = 0;
9811
9812 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9813 if (ret < 0)
9814 goto out;
9815 if (ret > 0)
b3b4aa74 9816 btrfs_release_path(path);
0af3d00b
JB
9817 if (ret == 0) {
9818 ret = btrfs_del_item(trans, tree_root, path);
9819 if (ret)
9820 goto out;
b3b4aa74 9821 btrfs_release_path(path);
0af3d00b
JB
9822 }
9823
3dfdb934 9824 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9825 rb_erase(&block_group->cache_node,
9826 &root->fs_info->block_group_cache_tree);
292cbd51 9827 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9828
9829 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9830 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9831 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9832
80eb234a 9833 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9834 /*
9835 * we must use list_del_init so people can check to see if they
9836 * are still on the list after taking the semaphore
9837 */
9838 list_del_init(&block_group->list);
6ab0a202 9839 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9840 kobj = block_group->space_info->block_group_kobjs[index];
9841 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9842 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9843 }
80eb234a 9844 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9845 if (kobj) {
9846 kobject_del(kobj);
9847 kobject_put(kobj);
9848 }
1a40e23b 9849
4f69cb98
FM
9850 if (block_group->has_caching_ctl)
9851 caching_ctl = get_caching_control(block_group);
817d52f8 9852 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9853 wait_block_group_cache_done(block_group);
4f69cb98
FM
9854 if (block_group->has_caching_ctl) {
9855 down_write(&root->fs_info->commit_root_sem);
9856 if (!caching_ctl) {
9857 struct btrfs_caching_control *ctl;
9858
9859 list_for_each_entry(ctl,
9860 &root->fs_info->caching_block_groups, list)
9861 if (ctl->block_group == block_group) {
9862 caching_ctl = ctl;
9863 atomic_inc(&caching_ctl->count);
9864 break;
9865 }
9866 }
9867 if (caching_ctl)
9868 list_del_init(&caching_ctl->list);
9869 up_write(&root->fs_info->commit_root_sem);
9870 if (caching_ctl) {
9871 /* Once for the caching bgs list and once for us. */
9872 put_caching_control(caching_ctl);
9873 put_caching_control(caching_ctl);
9874 }
9875 }
817d52f8 9876
ce93ec54
JB
9877 spin_lock(&trans->transaction->dirty_bgs_lock);
9878 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9879 WARN_ON(1);
9880 }
9881 if (!list_empty(&block_group->io_list)) {
9882 WARN_ON(1);
ce93ec54
JB
9883 }
9884 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9885 btrfs_remove_free_space_cache(block_group);
9886
c146afad 9887 spin_lock(&block_group->space_info->lock);
75c68e9f 9888 list_del_init(&block_group->ro_list);
18d018ad
ZL
9889
9890 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9891 WARN_ON(block_group->space_info->total_bytes
9892 < block_group->key.offset);
9893 WARN_ON(block_group->space_info->bytes_readonly
9894 < block_group->key.offset);
9895 WARN_ON(block_group->space_info->disk_total
9896 < block_group->key.offset * factor);
9897 }
c146afad
YZ
9898 block_group->space_info->total_bytes -= block_group->key.offset;
9899 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9900 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9901
c146afad 9902 spin_unlock(&block_group->space_info->lock);
283bb197 9903
0af3d00b
JB
9904 memcpy(&key, &block_group->key, sizeof(key));
9905
04216820 9906 lock_chunks(root);
495e64f4
FM
9907 if (!list_empty(&em->list)) {
9908 /* We're in the transaction->pending_chunks list. */
9909 free_extent_map(em);
9910 }
04216820
FM
9911 spin_lock(&block_group->lock);
9912 block_group->removed = 1;
9913 /*
9914 * At this point trimming can't start on this block group, because we
9915 * removed the block group from the tree fs_info->block_group_cache_tree
9916 * so no one can't find it anymore and even if someone already got this
9917 * block group before we removed it from the rbtree, they have already
9918 * incremented block_group->trimming - if they didn't, they won't find
9919 * any free space entries because we already removed them all when we
9920 * called btrfs_remove_free_space_cache().
9921 *
9922 * And we must not remove the extent map from the fs_info->mapping_tree
9923 * to prevent the same logical address range and physical device space
9924 * ranges from being reused for a new block group. This is because our
9925 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9926 * completely transactionless, so while it is trimming a range the
9927 * currently running transaction might finish and a new one start,
9928 * allowing for new block groups to be created that can reuse the same
9929 * physical device locations unless we take this special care.
e33e17ee
JM
9930 *
9931 * There may also be an implicit trim operation if the file system
9932 * is mounted with -odiscard. The same protections must remain
9933 * in place until the extents have been discarded completely when
9934 * the transaction commit has completed.
04216820
FM
9935 */
9936 remove_em = (atomic_read(&block_group->trimming) == 0);
9937 /*
9938 * Make sure a trimmer task always sees the em in the pinned_chunks list
9939 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9940 * before checking block_group->removed).
9941 */
9942 if (!remove_em) {
9943 /*
9944 * Our em might be in trans->transaction->pending_chunks which
9945 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9946 * and so is the fs_info->pinned_chunks list.
9947 *
9948 * So at this point we must be holding the chunk_mutex to avoid
9949 * any races with chunk allocation (more specifically at
9950 * volumes.c:contains_pending_extent()), to ensure it always
9951 * sees the em, either in the pending_chunks list or in the
9952 * pinned_chunks list.
9953 */
9954 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9955 }
9956 spin_unlock(&block_group->lock);
04216820
FM
9957
9958 if (remove_em) {
9959 struct extent_map_tree *em_tree;
9960
9961 em_tree = &root->fs_info->mapping_tree.map_tree;
9962 write_lock(&em_tree->lock);
8dbcd10f
FM
9963 /*
9964 * The em might be in the pending_chunks list, so make sure the
9965 * chunk mutex is locked, since remove_extent_mapping() will
9966 * delete us from that list.
9967 */
04216820
FM
9968 remove_extent_mapping(em_tree, em);
9969 write_unlock(&em_tree->lock);
9970 /* once for the tree */
9971 free_extent_map(em);
9972 }
9973
8dbcd10f
FM
9974 unlock_chunks(root);
9975
fa9c0d79
CM
9976 btrfs_put_block_group(block_group);
9977 btrfs_put_block_group(block_group);
1a40e23b
ZY
9978
9979 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9980 if (ret > 0)
9981 ret = -EIO;
9982 if (ret < 0)
9983 goto out;
9984
9985 ret = btrfs_del_item(trans, root, path);
9986out:
9987 btrfs_free_path(path);
9988 return ret;
9989}
acce952b 9990
47ab2a6c
JB
9991/*
9992 * Process the unused_bgs list and remove any that don't have any allocated
9993 * space inside of them.
9994 */
9995void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9996{
9997 struct btrfs_block_group_cache *block_group;
9998 struct btrfs_space_info *space_info;
9999 struct btrfs_root *root = fs_info->extent_root;
10000 struct btrfs_trans_handle *trans;
10001 int ret = 0;
10002
10003 if (!fs_info->open)
10004 return;
10005
10006 spin_lock(&fs_info->unused_bgs_lock);
10007 while (!list_empty(&fs_info->unused_bgs)) {
10008 u64 start, end;
e33e17ee 10009 int trimming;
47ab2a6c
JB
10010
10011 block_group = list_first_entry(&fs_info->unused_bgs,
10012 struct btrfs_block_group_cache,
10013 bg_list);
10014 space_info = block_group->space_info;
10015 list_del_init(&block_group->bg_list);
10016 if (ret || btrfs_mixed_space_info(space_info)) {
10017 btrfs_put_block_group(block_group);
10018 continue;
10019 }
10020 spin_unlock(&fs_info->unused_bgs_lock);
10021
67c5e7d4
FM
10022 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10023
47ab2a6c
JB
10024 /* Don't want to race with allocators so take the groups_sem */
10025 down_write(&space_info->groups_sem);
10026 spin_lock(&block_group->lock);
10027 if (block_group->reserved ||
10028 btrfs_block_group_used(&block_group->item) ||
10029 block_group->ro) {
10030 /*
10031 * We want to bail if we made new allocations or have
10032 * outstanding allocations in this block group. We do
10033 * the ro check in case balance is currently acting on
10034 * this block group.
10035 */
10036 spin_unlock(&block_group->lock);
10037 up_write(&space_info->groups_sem);
10038 goto next;
10039 }
10040 spin_unlock(&block_group->lock);
10041
10042 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10043 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10044 up_write(&space_info->groups_sem);
10045 if (ret < 0) {
10046 ret = 0;
10047 goto next;
10048 }
10049
10050 /*
10051 * Want to do this before we do anything else so we can recover
10052 * properly if we fail to join the transaction.
10053 */
3d84be79
FL
10054 /* 1 for btrfs_orphan_reserve_metadata() */
10055 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10056 if (IS_ERR(trans)) {
868f401a 10057 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10058 ret = PTR_ERR(trans);
10059 goto next;
10060 }
10061
10062 /*
10063 * We could have pending pinned extents for this block group,
10064 * just delete them, we don't care about them anymore.
10065 */
10066 start = block_group->key.objectid;
10067 end = start + block_group->key.offset - 1;
d4b450cd
FM
10068 /*
10069 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10070 * btrfs_finish_extent_commit(). If we are at transaction N,
10071 * another task might be running finish_extent_commit() for the
10072 * previous transaction N - 1, and have seen a range belonging
10073 * to the block group in freed_extents[] before we were able to
10074 * clear the whole block group range from freed_extents[]. This
10075 * means that task can lookup for the block group after we
10076 * unpinned it from freed_extents[] and removed it, leading to
10077 * a BUG_ON() at btrfs_unpin_extent_range().
10078 */
10079 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10080 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10081 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10082 if (ret) {
d4b450cd 10083 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10084 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10085 goto end_trans;
10086 }
10087 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10088 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10089 if (ret) {
d4b450cd 10090 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10091 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10092 goto end_trans;
10093 }
d4b450cd 10094 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10095
10096 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10097 spin_lock(&space_info->lock);
10098 spin_lock(&block_group->lock);
10099
10100 space_info->bytes_pinned -= block_group->pinned;
10101 space_info->bytes_readonly += block_group->pinned;
10102 percpu_counter_add(&space_info->total_bytes_pinned,
10103 -block_group->pinned);
47ab2a6c
JB
10104 block_group->pinned = 0;
10105
c30666d4
ZL
10106 spin_unlock(&block_group->lock);
10107 spin_unlock(&space_info->lock);
10108
e33e17ee
JM
10109 /* DISCARD can flip during remount */
10110 trimming = btrfs_test_opt(root, DISCARD);
10111
10112 /* Implicit trim during transaction commit. */
10113 if (trimming)
10114 btrfs_get_block_group_trimming(block_group);
10115
47ab2a6c
JB
10116 /*
10117 * Btrfs_remove_chunk will abort the transaction if things go
10118 * horribly wrong.
10119 */
10120 ret = btrfs_remove_chunk(trans, root,
10121 block_group->key.objectid);
e33e17ee
JM
10122
10123 if (ret) {
10124 if (trimming)
10125 btrfs_put_block_group_trimming(block_group);
10126 goto end_trans;
10127 }
10128
10129 /*
10130 * If we're not mounted with -odiscard, we can just forget
10131 * about this block group. Otherwise we'll need to wait
10132 * until transaction commit to do the actual discard.
10133 */
10134 if (trimming) {
10135 WARN_ON(!list_empty(&block_group->bg_list));
10136 spin_lock(&trans->transaction->deleted_bgs_lock);
10137 list_move(&block_group->bg_list,
10138 &trans->transaction->deleted_bgs);
10139 spin_unlock(&trans->transaction->deleted_bgs_lock);
10140 btrfs_get_block_group(block_group);
10141 }
758eb51e 10142end_trans:
47ab2a6c
JB
10143 btrfs_end_transaction(trans, root);
10144next:
67c5e7d4 10145 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10146 btrfs_put_block_group(block_group);
10147 spin_lock(&fs_info->unused_bgs_lock);
10148 }
10149 spin_unlock(&fs_info->unused_bgs_lock);
10150}
10151
c59021f8 10152int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10153{
10154 struct btrfs_space_info *space_info;
1aba86d6 10155 struct btrfs_super_block *disk_super;
10156 u64 features;
10157 u64 flags;
10158 int mixed = 0;
c59021f8 10159 int ret;
10160
6c41761f 10161 disk_super = fs_info->super_copy;
1aba86d6 10162 if (!btrfs_super_root(disk_super))
10163 return 1;
c59021f8 10164
1aba86d6 10165 features = btrfs_super_incompat_flags(disk_super);
10166 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10167 mixed = 1;
c59021f8 10168
1aba86d6 10169 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10170 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10171 if (ret)
1aba86d6 10172 goto out;
c59021f8 10173
1aba86d6 10174 if (mixed) {
10175 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10176 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10177 } else {
10178 flags = BTRFS_BLOCK_GROUP_METADATA;
10179 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10180 if (ret)
10181 goto out;
10182
10183 flags = BTRFS_BLOCK_GROUP_DATA;
10184 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10185 }
10186out:
c59021f8 10187 return ret;
10188}
10189
acce952b 10190int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10191{
678886bd 10192 return unpin_extent_range(root, start, end, false);
acce952b 10193}
10194
499f377f
JM
10195/*
10196 * It used to be that old block groups would be left around forever.
10197 * Iterating over them would be enough to trim unused space. Since we
10198 * now automatically remove them, we also need to iterate over unallocated
10199 * space.
10200 *
10201 * We don't want a transaction for this since the discard may take a
10202 * substantial amount of time. We don't require that a transaction be
10203 * running, but we do need to take a running transaction into account
10204 * to ensure that we're not discarding chunks that were released in
10205 * the current transaction.
10206 *
10207 * Holding the chunks lock will prevent other threads from allocating
10208 * or releasing chunks, but it won't prevent a running transaction
10209 * from committing and releasing the memory that the pending chunks
10210 * list head uses. For that, we need to take a reference to the
10211 * transaction.
10212 */
10213static int btrfs_trim_free_extents(struct btrfs_device *device,
10214 u64 minlen, u64 *trimmed)
10215{
10216 u64 start = 0, len = 0;
10217 int ret;
10218
10219 *trimmed = 0;
10220
10221 /* Not writeable = nothing to do. */
10222 if (!device->writeable)
10223 return 0;
10224
10225 /* No free space = nothing to do. */
10226 if (device->total_bytes <= device->bytes_used)
10227 return 0;
10228
10229 ret = 0;
10230
10231 while (1) {
10232 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10233 struct btrfs_transaction *trans;
10234 u64 bytes;
10235
10236 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10237 if (ret)
10238 return ret;
10239
10240 down_read(&fs_info->commit_root_sem);
10241
10242 spin_lock(&fs_info->trans_lock);
10243 trans = fs_info->running_transaction;
10244 if (trans)
10245 atomic_inc(&trans->use_count);
10246 spin_unlock(&fs_info->trans_lock);
10247
10248 ret = find_free_dev_extent_start(trans, device, minlen, start,
10249 &start, &len);
10250 if (trans)
10251 btrfs_put_transaction(trans);
10252
10253 if (ret) {
10254 up_read(&fs_info->commit_root_sem);
10255 mutex_unlock(&fs_info->chunk_mutex);
10256 if (ret == -ENOSPC)
10257 ret = 0;
10258 break;
10259 }
10260
10261 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10262 up_read(&fs_info->commit_root_sem);
10263 mutex_unlock(&fs_info->chunk_mutex);
10264
10265 if (ret)
10266 break;
10267
10268 start += len;
10269 *trimmed += bytes;
10270
10271 if (fatal_signal_pending(current)) {
10272 ret = -ERESTARTSYS;
10273 break;
10274 }
10275
10276 cond_resched();
10277 }
10278
10279 return ret;
10280}
10281
f7039b1d
LD
10282int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10283{
10284 struct btrfs_fs_info *fs_info = root->fs_info;
10285 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10286 struct btrfs_device *device;
10287 struct list_head *devices;
f7039b1d
LD
10288 u64 group_trimmed;
10289 u64 start;
10290 u64 end;
10291 u64 trimmed = 0;
2cac13e4 10292 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10293 int ret = 0;
10294
2cac13e4
LB
10295 /*
10296 * try to trim all FS space, our block group may start from non-zero.
10297 */
10298 if (range->len == total_bytes)
10299 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10300 else
10301 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10302
10303 while (cache) {
10304 if (cache->key.objectid >= (range->start + range->len)) {
10305 btrfs_put_block_group(cache);
10306 break;
10307 }
10308
10309 start = max(range->start, cache->key.objectid);
10310 end = min(range->start + range->len,
10311 cache->key.objectid + cache->key.offset);
10312
10313 if (end - start >= range->minlen) {
10314 if (!block_group_cache_done(cache)) {
f6373bf3 10315 ret = cache_block_group(cache, 0);
1be41b78
JB
10316 if (ret) {
10317 btrfs_put_block_group(cache);
10318 break;
10319 }
10320 ret = wait_block_group_cache_done(cache);
10321 if (ret) {
10322 btrfs_put_block_group(cache);
10323 break;
10324 }
f7039b1d
LD
10325 }
10326 ret = btrfs_trim_block_group(cache,
10327 &group_trimmed,
10328 start,
10329 end,
10330 range->minlen);
10331
10332 trimmed += group_trimmed;
10333 if (ret) {
10334 btrfs_put_block_group(cache);
10335 break;
10336 }
10337 }
10338
10339 cache = next_block_group(fs_info->tree_root, cache);
10340 }
10341
499f377f
JM
10342 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10343 devices = &root->fs_info->fs_devices->alloc_list;
10344 list_for_each_entry(device, devices, dev_alloc_list) {
10345 ret = btrfs_trim_free_extents(device, range->minlen,
10346 &group_trimmed);
10347 if (ret)
10348 break;
10349
10350 trimmed += group_trimmed;
10351 }
10352 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10353
f7039b1d
LD
10354 range->len = trimmed;
10355 return ret;
10356}
8257b2dc
MX
10357
10358/*
9ea24bbe
FM
10359 * btrfs_{start,end}_write_no_snapshoting() are similar to
10360 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10361 * data into the page cache through nocow before the subvolume is snapshoted,
10362 * but flush the data into disk after the snapshot creation, or to prevent
10363 * operations while snapshoting is ongoing and that cause the snapshot to be
10364 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10365 */
9ea24bbe 10366void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10367{
10368 percpu_counter_dec(&root->subv_writers->counter);
10369 /*
a83342aa 10370 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10371 */
10372 smp_mb();
10373 if (waitqueue_active(&root->subv_writers->wait))
10374 wake_up(&root->subv_writers->wait);
10375}
10376
9ea24bbe 10377int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10378{
ee39b432 10379 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10380 return 0;
10381
10382 percpu_counter_inc(&root->subv_writers->counter);
10383 /*
10384 * Make sure counter is updated before we check for snapshot creation.
10385 */
10386 smp_mb();
ee39b432 10387 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10388 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10389 return 0;
10390 }
10391 return 1;
10392}
This page took 1.376383 seconds and 5 git commands to generate.