Merge branch 'allocator-fixes' into for-linus-4.4
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
d0bd4560
JB
335#ifdef CONFIG_BTRFS_DEBUG
336static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338{
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353}
354#endif
355
0f9dd46c
JB
356/*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
817d52f8 361static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
362 struct btrfs_fs_info *info, u64 start, u64 end)
363{
817d52f8 364 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
365 int ret;
366
367 while (start < end) {
11833d66 368 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 369 &extent_start, &extent_end,
e6138876
JB
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
0f9dd46c
JB
372 if (ret)
373 break;
374
06b2331f 375 if (extent_start <= start) {
0f9dd46c
JB
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
817d52f8 379 total_added += size;
ea6a478e
JB
380 ret = btrfs_add_free_space(block_group, start,
381 size);
79787eaa 382 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
817d52f8 391 total_added += size;
ea6a478e 392 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 393 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
394 }
395
817d52f8 396 return total_added;
0f9dd46c
JB
397}
398
d458b054 399static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 400{
bab39bf9
JB
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_caching_control *caching_ctl;
404 struct btrfs_root *extent_root;
e37c9e69 405 struct btrfs_path *path;
5f39d397 406 struct extent_buffer *leaf;
11833d66 407 struct btrfs_key key;
817d52f8 408 u64 total_found = 0;
11833d66
YZ
409 u64 last = 0;
410 u32 nritems;
36cce922 411 int ret = -ENOMEM;
d0bd4560 412 bool wakeup = true;
f510cfec 413
bab39bf9
JB
414 caching_ctl = container_of(work, struct btrfs_caching_control, work);
415 block_group = caching_ctl->block_group;
416 fs_info = block_group->fs_info;
417 extent_root = fs_info->extent_root;
418
e37c9e69
CM
419 path = btrfs_alloc_path();
420 if (!path)
bab39bf9 421 goto out;
7d7d6068 422
817d52f8 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 424
d0bd4560
JB
425#ifdef CONFIG_BTRFS_DEBUG
426 /*
427 * If we're fragmenting we don't want to make anybody think we can
428 * allocate from this block group until we've had a chance to fragment
429 * the free space.
430 */
431 if (btrfs_should_fragment_free_space(extent_root, block_group))
432 wakeup = false;
433#endif
5cd57b2c 434 /*
817d52f8
JB
435 * We don't want to deadlock with somebody trying to allocate a new
436 * extent for the extent root while also trying to search the extent
437 * root to add free space. So we skip locking and search the commit
438 * root, since its read-only
5cd57b2c
CM
439 */
440 path->skip_locking = 1;
817d52f8 441 path->search_commit_root = 1;
026fd317 442 path->reada = 1;
817d52f8 443
e4404d6e 444 key.objectid = last;
e37c9e69 445 key.offset = 0;
11833d66 446 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 447again:
11833d66 448 mutex_lock(&caching_ctl->mutex);
013f1b12 449 /* need to make sure the commit_root doesn't disappear */
9e351cc8 450 down_read(&fs_info->commit_root_sem);
013f1b12 451
52ee28d2 452next:
11833d66 453 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 454 if (ret < 0)
ef8bbdfe 455 goto err;
a512bbf8 456
11833d66
YZ
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459
d397712b 460 while (1) {
7841cb28 461 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 462 last = (u64)-1;
817d52f8 463 break;
f25784b3 464 }
817d52f8 465
11833d66
YZ
466 if (path->slots[0] < nritems) {
467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
468 } else {
469 ret = find_next_key(path, 0, &key);
470 if (ret)
e37c9e69 471 break;
817d52f8 472
c9ea7b24 473 if (need_resched() ||
9e351cc8 474 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
475 if (wakeup)
476 caching_ctl->progress = last;
ff5714cc 477 btrfs_release_path(path);
9e351cc8 478 up_read(&fs_info->commit_root_sem);
589d8ade 479 mutex_unlock(&caching_ctl->mutex);
11833d66 480 cond_resched();
589d8ade
JB
481 goto again;
482 }
0a3896d0
JB
483
484 ret = btrfs_next_leaf(extent_root, path);
485 if (ret < 0)
486 goto err;
487 if (ret)
488 break;
589d8ade
JB
489 leaf = path->nodes[0];
490 nritems = btrfs_header_nritems(leaf);
491 continue;
11833d66 492 }
817d52f8 493
52ee28d2
LB
494 if (key.objectid < last) {
495 key.objectid = last;
496 key.offset = 0;
497 key.type = BTRFS_EXTENT_ITEM_KEY;
498
d0bd4560
JB
499 if (wakeup)
500 caching_ctl->progress = last;
52ee28d2
LB
501 btrfs_release_path(path);
502 goto next;
503 }
504
11833d66
YZ
505 if (key.objectid < block_group->key.objectid) {
506 path->slots[0]++;
817d52f8 507 continue;
e37c9e69 508 }
0f9dd46c 509
e37c9e69 510 if (key.objectid >= block_group->key.objectid +
0f9dd46c 511 block_group->key.offset)
e37c9e69 512 break;
7d7d6068 513
3173a18f
JB
514 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
515 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
516 total_found += add_new_free_space(block_group,
517 fs_info, last,
518 key.objectid);
3173a18f
JB
519 if (key.type == BTRFS_METADATA_ITEM_KEY)
520 last = key.objectid +
707e8a07 521 fs_info->tree_root->nodesize;
3173a18f
JB
522 else
523 last = key.objectid + key.offset;
817d52f8 524
11833d66
YZ
525 if (total_found > (1024 * 1024 * 2)) {
526 total_found = 0;
d0bd4560
JB
527 if (wakeup)
528 wake_up(&caching_ctl->wait);
11833d66 529 }
817d52f8 530 }
e37c9e69
CM
531 path->slots[0]++;
532 }
817d52f8 533 ret = 0;
e37c9e69 534
817d52f8
JB
535 total_found += add_new_free_space(block_group, fs_info, last,
536 block_group->key.objectid +
537 block_group->key.offset);
817d52f8 538 spin_lock(&block_group->lock);
11833d66 539 block_group->caching_ctl = NULL;
817d52f8
JB
540 block_group->cached = BTRFS_CACHE_FINISHED;
541 spin_unlock(&block_group->lock);
0f9dd46c 542
d0bd4560
JB
543#ifdef CONFIG_BTRFS_DEBUG
544 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
545 u64 bytes_used;
546
547 spin_lock(&block_group->space_info->lock);
548 spin_lock(&block_group->lock);
549 bytes_used = block_group->key.offset -
550 btrfs_block_group_used(&block_group->item);
551 block_group->space_info->bytes_used += bytes_used >> 1;
552 spin_unlock(&block_group->lock);
553 spin_unlock(&block_group->space_info->lock);
554 fragment_free_space(extent_root, block_group);
555 }
556#endif
557
558 caching_ctl->progress = (u64)-1;
54aa1f4d 559err:
e37c9e69 560 btrfs_free_path(path);
9e351cc8 561 up_read(&fs_info->commit_root_sem);
817d52f8 562
11833d66
YZ
563 free_excluded_extents(extent_root, block_group);
564
565 mutex_unlock(&caching_ctl->mutex);
bab39bf9 566out:
36cce922
JB
567 if (ret) {
568 spin_lock(&block_group->lock);
569 block_group->caching_ctl = NULL;
570 block_group->cached = BTRFS_CACHE_ERROR;
571 spin_unlock(&block_group->lock);
572 }
11833d66
YZ
573 wake_up(&caching_ctl->wait);
574
575 put_caching_control(caching_ctl);
11dfe35a 576 btrfs_put_block_group(block_group);
817d52f8
JB
577}
578
9d66e233 579static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 580 int load_cache_only)
817d52f8 581{
291c7d2f 582 DEFINE_WAIT(wait);
11833d66
YZ
583 struct btrfs_fs_info *fs_info = cache->fs_info;
584 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
585 int ret = 0;
586
291c7d2f 587 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
588 if (!caching_ctl)
589 return -ENOMEM;
291c7d2f
JB
590
591 INIT_LIST_HEAD(&caching_ctl->list);
592 mutex_init(&caching_ctl->mutex);
593 init_waitqueue_head(&caching_ctl->wait);
594 caching_ctl->block_group = cache;
595 caching_ctl->progress = cache->key.objectid;
596 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
597 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
598 caching_thread, NULL, NULL);
291c7d2f
JB
599
600 spin_lock(&cache->lock);
601 /*
602 * This should be a rare occasion, but this could happen I think in the
603 * case where one thread starts to load the space cache info, and then
604 * some other thread starts a transaction commit which tries to do an
605 * allocation while the other thread is still loading the space cache
606 * info. The previous loop should have kept us from choosing this block
607 * group, but if we've moved to the state where we will wait on caching
608 * block groups we need to first check if we're doing a fast load here,
609 * so we can wait for it to finish, otherwise we could end up allocating
610 * from a block group who's cache gets evicted for one reason or
611 * another.
612 */
613 while (cache->cached == BTRFS_CACHE_FAST) {
614 struct btrfs_caching_control *ctl;
615
616 ctl = cache->caching_ctl;
617 atomic_inc(&ctl->count);
618 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
619 spin_unlock(&cache->lock);
620
621 schedule();
622
623 finish_wait(&ctl->wait, &wait);
624 put_caching_control(ctl);
625 spin_lock(&cache->lock);
626 }
627
628 if (cache->cached != BTRFS_CACHE_NO) {
629 spin_unlock(&cache->lock);
630 kfree(caching_ctl);
11833d66 631 return 0;
291c7d2f
JB
632 }
633 WARN_ON(cache->caching_ctl);
634 cache->caching_ctl = caching_ctl;
635 cache->cached = BTRFS_CACHE_FAST;
636 spin_unlock(&cache->lock);
11833d66 637
d53ba474 638 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 639 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
640 ret = load_free_space_cache(fs_info, cache);
641
642 spin_lock(&cache->lock);
643 if (ret == 1) {
291c7d2f 644 cache->caching_ctl = NULL;
9d66e233
JB
645 cache->cached = BTRFS_CACHE_FINISHED;
646 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 647 caching_ctl->progress = (u64)-1;
9d66e233 648 } else {
291c7d2f
JB
649 if (load_cache_only) {
650 cache->caching_ctl = NULL;
651 cache->cached = BTRFS_CACHE_NO;
652 } else {
653 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 654 cache->has_caching_ctl = 1;
291c7d2f 655 }
9d66e233
JB
656 }
657 spin_unlock(&cache->lock);
d0bd4560
JB
658#ifdef CONFIG_BTRFS_DEBUG
659 if (ret == 1 &&
660 btrfs_should_fragment_free_space(fs_info->extent_root,
661 cache)) {
662 u64 bytes_used;
663
664 spin_lock(&cache->space_info->lock);
665 spin_lock(&cache->lock);
666 bytes_used = cache->key.offset -
667 btrfs_block_group_used(&cache->item);
668 cache->space_info->bytes_used += bytes_used >> 1;
669 spin_unlock(&cache->lock);
670 spin_unlock(&cache->space_info->lock);
671 fragment_free_space(fs_info->extent_root, cache);
672 }
673#endif
cb83b7b8
JB
674 mutex_unlock(&caching_ctl->mutex);
675
291c7d2f 676 wake_up(&caching_ctl->wait);
3c14874a 677 if (ret == 1) {
291c7d2f 678 put_caching_control(caching_ctl);
3c14874a 679 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 680 return 0;
3c14874a 681 }
291c7d2f
JB
682 } else {
683 /*
684 * We are not going to do the fast caching, set cached to the
685 * appropriate value and wakeup any waiters.
686 */
687 spin_lock(&cache->lock);
688 if (load_cache_only) {
689 cache->caching_ctl = NULL;
690 cache->cached = BTRFS_CACHE_NO;
691 } else {
692 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 693 cache->has_caching_ctl = 1;
291c7d2f
JB
694 }
695 spin_unlock(&cache->lock);
696 wake_up(&caching_ctl->wait);
9d66e233
JB
697 }
698
291c7d2f
JB
699 if (load_cache_only) {
700 put_caching_control(caching_ctl);
11833d66 701 return 0;
817d52f8 702 }
817d52f8 703
9e351cc8 704 down_write(&fs_info->commit_root_sem);
291c7d2f 705 atomic_inc(&caching_ctl->count);
11833d66 706 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 707 up_write(&fs_info->commit_root_sem);
11833d66 708
11dfe35a 709 btrfs_get_block_group(cache);
11833d66 710
e66f0bb1 711 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 712
ef8bbdfe 713 return ret;
e37c9e69
CM
714}
715
0f9dd46c
JB
716/*
717 * return the block group that starts at or after bytenr
718 */
d397712b
CM
719static struct btrfs_block_group_cache *
720btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 721{
0f9dd46c 722 struct btrfs_block_group_cache *cache;
0ef3e66b 723
0f9dd46c 724 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 725
0f9dd46c 726 return cache;
0ef3e66b
CM
727}
728
0f9dd46c 729/*
9f55684c 730 * return the block group that contains the given bytenr
0f9dd46c 731 */
d397712b
CM
732struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 struct btrfs_fs_info *info,
734 u64 bytenr)
be744175 735{
0f9dd46c 736 struct btrfs_block_group_cache *cache;
be744175 737
0f9dd46c 738 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 739
0f9dd46c 740 return cache;
be744175 741}
0b86a832 742
0f9dd46c
JB
743static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
744 u64 flags)
6324fbf3 745{
0f9dd46c 746 struct list_head *head = &info->space_info;
0f9dd46c 747 struct btrfs_space_info *found;
4184ea7f 748
52ba6929 749 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 750
4184ea7f
CM
751 rcu_read_lock();
752 list_for_each_entry_rcu(found, head, list) {
67377734 753 if (found->flags & flags) {
4184ea7f 754 rcu_read_unlock();
0f9dd46c 755 return found;
4184ea7f 756 }
0f9dd46c 757 }
4184ea7f 758 rcu_read_unlock();
0f9dd46c 759 return NULL;
6324fbf3
CM
760}
761
4184ea7f
CM
762/*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767{
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775}
776
1a4ed8fd
FM
777/* simple helper to search for an existing data extent at a given offset */
778int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
779{
780 int ret;
781 struct btrfs_key key;
31840ae1 782 struct btrfs_path *path;
e02119d5 783
31840ae1 784 path = btrfs_alloc_path();
d8926bb3
MF
785 if (!path)
786 return -ENOMEM;
787
e02119d5
CM
788 key.objectid = start;
789 key.offset = len;
3173a18f 790 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
791 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
792 0, 0);
31840ae1 793 btrfs_free_path(path);
7bb86316
CM
794 return ret;
795}
796
a22285a6 797/*
3173a18f 798 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
799 *
800 * the head node for delayed ref is used to store the sum of all the
801 * reference count modifications queued up in the rbtree. the head
802 * node may also store the extent flags to set. This way you can check
803 * to see what the reference count and extent flags would be if all of
804 * the delayed refs are not processed.
805 */
806int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
807 struct btrfs_root *root, u64 bytenr,
3173a18f 808 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
809{
810 struct btrfs_delayed_ref_head *head;
811 struct btrfs_delayed_ref_root *delayed_refs;
812 struct btrfs_path *path;
813 struct btrfs_extent_item *ei;
814 struct extent_buffer *leaf;
815 struct btrfs_key key;
816 u32 item_size;
817 u64 num_refs;
818 u64 extent_flags;
819 int ret;
820
3173a18f
JB
821 /*
822 * If we don't have skinny metadata, don't bother doing anything
823 * different
824 */
825 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 826 offset = root->nodesize;
3173a18f
JB
827 metadata = 0;
828 }
829
a22285a6
YZ
830 path = btrfs_alloc_path();
831 if (!path)
832 return -ENOMEM;
833
a22285a6
YZ
834 if (!trans) {
835 path->skip_locking = 1;
836 path->search_commit_root = 1;
837 }
639eefc8
FDBM
838
839search_again:
840 key.objectid = bytenr;
841 key.offset = offset;
842 if (metadata)
843 key.type = BTRFS_METADATA_ITEM_KEY;
844 else
845 key.type = BTRFS_EXTENT_ITEM_KEY;
846
a22285a6
YZ
847 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
848 &key, path, 0, 0);
849 if (ret < 0)
850 goto out_free;
851
3173a18f 852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
853 if (path->slots[0]) {
854 path->slots[0]--;
855 btrfs_item_key_to_cpu(path->nodes[0], &key,
856 path->slots[0]);
857 if (key.objectid == bytenr &&
858 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 859 key.offset == root->nodesize)
74be9510
FDBM
860 ret = 0;
861 }
3173a18f
JB
862 }
863
a22285a6
YZ
864 if (ret == 0) {
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
867 if (item_size >= sizeof(*ei)) {
868 ei = btrfs_item_ptr(leaf, path->slots[0],
869 struct btrfs_extent_item);
870 num_refs = btrfs_extent_refs(leaf, ei);
871 extent_flags = btrfs_extent_flags(leaf, ei);
872 } else {
873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 struct btrfs_extent_item_v0 *ei0;
875 BUG_ON(item_size != sizeof(*ei0));
876 ei0 = btrfs_item_ptr(leaf, path->slots[0],
877 struct btrfs_extent_item_v0);
878 num_refs = btrfs_extent_refs_v0(leaf, ei0);
879 /* FIXME: this isn't correct for data */
880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881#else
882 BUG();
883#endif
884 }
885 BUG_ON(num_refs == 0);
886 } else {
887 num_refs = 0;
888 extent_flags = 0;
889 ret = 0;
890 }
891
892 if (!trans)
893 goto out;
894
895 delayed_refs = &trans->transaction->delayed_refs;
896 spin_lock(&delayed_refs->lock);
897 head = btrfs_find_delayed_ref_head(trans, bytenr);
898 if (head) {
899 if (!mutex_trylock(&head->mutex)) {
900 atomic_inc(&head->node.refs);
901 spin_unlock(&delayed_refs->lock);
902
b3b4aa74 903 btrfs_release_path(path);
a22285a6 904
8cc33e5c
DS
905 /*
906 * Mutex was contended, block until it's released and try
907 * again
908 */
a22285a6
YZ
909 mutex_lock(&head->mutex);
910 mutex_unlock(&head->mutex);
911 btrfs_put_delayed_ref(&head->node);
639eefc8 912 goto search_again;
a22285a6 913 }
d7df2c79 914 spin_lock(&head->lock);
a22285a6
YZ
915 if (head->extent_op && head->extent_op->update_flags)
916 extent_flags |= head->extent_op->flags_to_set;
917 else
918 BUG_ON(num_refs == 0);
919
920 num_refs += head->node.ref_mod;
d7df2c79 921 spin_unlock(&head->lock);
a22285a6
YZ
922 mutex_unlock(&head->mutex);
923 }
924 spin_unlock(&delayed_refs->lock);
925out:
926 WARN_ON(num_refs == 0);
927 if (refs)
928 *refs = num_refs;
929 if (flags)
930 *flags = extent_flags;
931out_free:
932 btrfs_free_path(path);
933 return ret;
934}
935
d8d5f3e1
CM
936/*
937 * Back reference rules. Back refs have three main goals:
938 *
939 * 1) differentiate between all holders of references to an extent so that
940 * when a reference is dropped we can make sure it was a valid reference
941 * before freeing the extent.
942 *
943 * 2) Provide enough information to quickly find the holders of an extent
944 * if we notice a given block is corrupted or bad.
945 *
946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
947 * maintenance. This is actually the same as #2, but with a slightly
948 * different use case.
949 *
5d4f98a2
YZ
950 * There are two kinds of back refs. The implicit back refs is optimized
951 * for pointers in non-shared tree blocks. For a given pointer in a block,
952 * back refs of this kind provide information about the block's owner tree
953 * and the pointer's key. These information allow us to find the block by
954 * b-tree searching. The full back refs is for pointers in tree blocks not
955 * referenced by their owner trees. The location of tree block is recorded
956 * in the back refs. Actually the full back refs is generic, and can be
957 * used in all cases the implicit back refs is used. The major shortcoming
958 * of the full back refs is its overhead. Every time a tree block gets
959 * COWed, we have to update back refs entry for all pointers in it.
960 *
961 * For a newly allocated tree block, we use implicit back refs for
962 * pointers in it. This means most tree related operations only involve
963 * implicit back refs. For a tree block created in old transaction, the
964 * only way to drop a reference to it is COW it. So we can detect the
965 * event that tree block loses its owner tree's reference and do the
966 * back refs conversion.
967 *
968 * When a tree block is COW'd through a tree, there are four cases:
969 *
970 * The reference count of the block is one and the tree is the block's
971 * owner tree. Nothing to do in this case.
972 *
973 * The reference count of the block is one and the tree is not the
974 * block's owner tree. In this case, full back refs is used for pointers
975 * in the block. Remove these full back refs, add implicit back refs for
976 * every pointers in the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * the block's owner tree. In this case, implicit back refs is used for
980 * pointers in the block. Add full back refs for every pointers in the
981 * block, increase lower level extents' reference counts. The original
982 * implicit back refs are entailed to the new block.
983 *
984 * The reference count of the block is greater than one and the tree is
985 * not the block's owner tree. Add implicit back refs for every pointer in
986 * the new block, increase lower level extents' reference count.
987 *
988 * Back Reference Key composing:
989 *
990 * The key objectid corresponds to the first byte in the extent,
991 * The key type is used to differentiate between types of back refs.
992 * There are different meanings of the key offset for different types
993 * of back refs.
994 *
d8d5f3e1
CM
995 * File extents can be referenced by:
996 *
997 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 998 * - different files inside a single subvolume
d8d5f3e1
CM
999 * - different offsets inside a file (bookend extents in file.c)
1000 *
5d4f98a2 1001 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1002 *
1003 * - Objectid of the subvolume root
d8d5f3e1 1004 * - objectid of the file holding the reference
5d4f98a2
YZ
1005 * - original offset in the file
1006 * - how many bookend extents
d8d5f3e1 1007 *
5d4f98a2
YZ
1008 * The key offset for the implicit back refs is hash of the first
1009 * three fields.
d8d5f3e1 1010 *
5d4f98a2 1011 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1012 *
5d4f98a2 1013 * - number of pointers in the tree leaf
d8d5f3e1 1014 *
5d4f98a2
YZ
1015 * The key offset for the implicit back refs is the first byte of
1016 * the tree leaf
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * When a file extent is allocated, The implicit back refs is used.
1019 * the fields are filled in:
d8d5f3e1 1020 *
5d4f98a2 1021 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * When a file extent is removed file truncation, we find the
1024 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1025 *
5d4f98a2 1026 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1027 *
5d4f98a2 1028 * Btree extents can be referenced by:
d8d5f3e1 1029 *
5d4f98a2 1030 * - Different subvolumes
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * Both the implicit back refs and the full back refs for tree blocks
1033 * only consist of key. The key offset for the implicit back refs is
1034 * objectid of block's owner tree. The key offset for the full back refs
1035 * is the first byte of parent block.
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When implicit back refs is used, information about the lowest key and
1038 * level of the tree block are required. These information are stored in
1039 * tree block info structure.
d8d5f3e1 1040 */
31840ae1 1041
5d4f98a2
YZ
1042#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1043static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1044 struct btrfs_root *root,
1045 struct btrfs_path *path,
1046 u64 owner, u32 extra_size)
7bb86316 1047{
5d4f98a2
YZ
1048 struct btrfs_extent_item *item;
1049 struct btrfs_extent_item_v0 *ei0;
1050 struct btrfs_extent_ref_v0 *ref0;
1051 struct btrfs_tree_block_info *bi;
1052 struct extent_buffer *leaf;
7bb86316 1053 struct btrfs_key key;
5d4f98a2
YZ
1054 struct btrfs_key found_key;
1055 u32 new_size = sizeof(*item);
1056 u64 refs;
1057 int ret;
1058
1059 leaf = path->nodes[0];
1060 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1061
1062 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1063 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1064 struct btrfs_extent_item_v0);
1065 refs = btrfs_extent_refs_v0(leaf, ei0);
1066
1067 if (owner == (u64)-1) {
1068 while (1) {
1069 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1070 ret = btrfs_next_leaf(root, path);
1071 if (ret < 0)
1072 return ret;
79787eaa 1073 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1074 leaf = path->nodes[0];
1075 }
1076 btrfs_item_key_to_cpu(leaf, &found_key,
1077 path->slots[0]);
1078 BUG_ON(key.objectid != found_key.objectid);
1079 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1080 path->slots[0]++;
1081 continue;
1082 }
1083 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1084 struct btrfs_extent_ref_v0);
1085 owner = btrfs_ref_objectid_v0(leaf, ref0);
1086 break;
1087 }
1088 }
b3b4aa74 1089 btrfs_release_path(path);
5d4f98a2
YZ
1090
1091 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1092 new_size += sizeof(*bi);
1093
1094 new_size -= sizeof(*ei0);
1095 ret = btrfs_search_slot(trans, root, &key, path,
1096 new_size + extra_size, 1);
1097 if (ret < 0)
1098 return ret;
79787eaa 1099 BUG_ON(ret); /* Corruption */
5d4f98a2 1100
4b90c680 1101 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1102
1103 leaf = path->nodes[0];
1104 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1105 btrfs_set_extent_refs(leaf, item, refs);
1106 /* FIXME: get real generation */
1107 btrfs_set_extent_generation(leaf, item, 0);
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1109 btrfs_set_extent_flags(leaf, item,
1110 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1111 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1112 bi = (struct btrfs_tree_block_info *)(item + 1);
1113 /* FIXME: get first key of the block */
1114 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1115 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1116 } else {
1117 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1118 }
1119 btrfs_mark_buffer_dirty(leaf);
1120 return 0;
1121}
1122#endif
1123
1124static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1125{
1126 u32 high_crc = ~(u32)0;
1127 u32 low_crc = ~(u32)0;
1128 __le64 lenum;
1129
1130 lenum = cpu_to_le64(root_objectid);
14a958e6 1131 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1132 lenum = cpu_to_le64(owner);
14a958e6 1133 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1134 lenum = cpu_to_le64(offset);
14a958e6 1135 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1136
1137 return ((u64)high_crc << 31) ^ (u64)low_crc;
1138}
1139
1140static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1141 struct btrfs_extent_data_ref *ref)
1142{
1143 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1144 btrfs_extent_data_ref_objectid(leaf, ref),
1145 btrfs_extent_data_ref_offset(leaf, ref));
1146}
1147
1148static int match_extent_data_ref(struct extent_buffer *leaf,
1149 struct btrfs_extent_data_ref *ref,
1150 u64 root_objectid, u64 owner, u64 offset)
1151{
1152 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1153 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1154 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1155 return 0;
1156 return 1;
1157}
1158
1159static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid,
1164 u64 owner, u64 offset)
1165{
1166 struct btrfs_key key;
1167 struct btrfs_extent_data_ref *ref;
31840ae1 1168 struct extent_buffer *leaf;
5d4f98a2 1169 u32 nritems;
74493f7a 1170 int ret;
5d4f98a2
YZ
1171 int recow;
1172 int err = -ENOENT;
74493f7a 1173
31840ae1 1174 key.objectid = bytenr;
5d4f98a2
YZ
1175 if (parent) {
1176 key.type = BTRFS_SHARED_DATA_REF_KEY;
1177 key.offset = parent;
1178 } else {
1179 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1180 key.offset = hash_extent_data_ref(root_objectid,
1181 owner, offset);
1182 }
1183again:
1184 recow = 0;
1185 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1186 if (ret < 0) {
1187 err = ret;
1188 goto fail;
1189 }
31840ae1 1190
5d4f98a2
YZ
1191 if (parent) {
1192 if (!ret)
1193 return 0;
1194#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1195 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1196 btrfs_release_path(path);
5d4f98a2
YZ
1197 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1198 if (ret < 0) {
1199 err = ret;
1200 goto fail;
1201 }
1202 if (!ret)
1203 return 0;
1204#endif
1205 goto fail;
31840ae1
ZY
1206 }
1207
1208 leaf = path->nodes[0];
5d4f98a2
YZ
1209 nritems = btrfs_header_nritems(leaf);
1210 while (1) {
1211 if (path->slots[0] >= nritems) {
1212 ret = btrfs_next_leaf(root, path);
1213 if (ret < 0)
1214 err = ret;
1215 if (ret)
1216 goto fail;
1217
1218 leaf = path->nodes[0];
1219 nritems = btrfs_header_nritems(leaf);
1220 recow = 1;
1221 }
1222
1223 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1224 if (key.objectid != bytenr ||
1225 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1226 goto fail;
1227
1228 ref = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_extent_data_ref);
1230
1231 if (match_extent_data_ref(leaf, ref, root_objectid,
1232 owner, offset)) {
1233 if (recow) {
b3b4aa74 1234 btrfs_release_path(path);
5d4f98a2
YZ
1235 goto again;
1236 }
1237 err = 0;
1238 break;
1239 }
1240 path->slots[0]++;
31840ae1 1241 }
5d4f98a2
YZ
1242fail:
1243 return err;
31840ae1
ZY
1244}
1245
5d4f98a2
YZ
1246static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1247 struct btrfs_root *root,
1248 struct btrfs_path *path,
1249 u64 bytenr, u64 parent,
1250 u64 root_objectid, u64 owner,
1251 u64 offset, int refs_to_add)
31840ae1
ZY
1252{
1253 struct btrfs_key key;
1254 struct extent_buffer *leaf;
5d4f98a2 1255 u32 size;
31840ae1
ZY
1256 u32 num_refs;
1257 int ret;
74493f7a 1258
74493f7a 1259 key.objectid = bytenr;
5d4f98a2
YZ
1260 if (parent) {
1261 key.type = BTRFS_SHARED_DATA_REF_KEY;
1262 key.offset = parent;
1263 size = sizeof(struct btrfs_shared_data_ref);
1264 } else {
1265 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1266 key.offset = hash_extent_data_ref(root_objectid,
1267 owner, offset);
1268 size = sizeof(struct btrfs_extent_data_ref);
1269 }
74493f7a 1270
5d4f98a2
YZ
1271 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1272 if (ret && ret != -EEXIST)
1273 goto fail;
1274
1275 leaf = path->nodes[0];
1276 if (parent) {
1277 struct btrfs_shared_data_ref *ref;
31840ae1 1278 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1279 struct btrfs_shared_data_ref);
1280 if (ret == 0) {
1281 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1282 } else {
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1284 num_refs += refs_to_add;
1285 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1286 }
5d4f98a2
YZ
1287 } else {
1288 struct btrfs_extent_data_ref *ref;
1289 while (ret == -EEXIST) {
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1292 if (match_extent_data_ref(leaf, ref, root_objectid,
1293 owner, offset))
1294 break;
b3b4aa74 1295 btrfs_release_path(path);
5d4f98a2
YZ
1296 key.offset++;
1297 ret = btrfs_insert_empty_item(trans, root, path, &key,
1298 size);
1299 if (ret && ret != -EEXIST)
1300 goto fail;
31840ae1 1301
5d4f98a2
YZ
1302 leaf = path->nodes[0];
1303 }
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306 if (ret == 0) {
1307 btrfs_set_extent_data_ref_root(leaf, ref,
1308 root_objectid);
1309 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1310 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1311 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1312 } else {
1313 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1314 num_refs += refs_to_add;
1315 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1316 }
31840ae1 1317 }
5d4f98a2
YZ
1318 btrfs_mark_buffer_dirty(leaf);
1319 ret = 0;
1320fail:
b3b4aa74 1321 btrfs_release_path(path);
7bb86316 1322 return ret;
74493f7a
CM
1323}
1324
5d4f98a2
YZ
1325static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *root,
1327 struct btrfs_path *path,
fcebe456 1328 int refs_to_drop, int *last_ref)
31840ae1 1329{
5d4f98a2
YZ
1330 struct btrfs_key key;
1331 struct btrfs_extent_data_ref *ref1 = NULL;
1332 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1333 struct extent_buffer *leaf;
5d4f98a2 1334 u32 num_refs = 0;
31840ae1
ZY
1335 int ret = 0;
1336
1337 leaf = path->nodes[0];
5d4f98a2
YZ
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339
1340 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354#endif
1355 } else {
1356 BUG();
1357 }
1358
56bec294
CM
1359 BUG_ON(num_refs < refs_to_drop);
1360 num_refs -= refs_to_drop;
5d4f98a2 1361
31840ae1
ZY
1362 if (num_refs == 0) {
1363 ret = btrfs_del_item(trans, root, path);
fcebe456 1364 *last_ref = 1;
31840ae1 1365 } else {
5d4f98a2
YZ
1366 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1367 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1368 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1369 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1370#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1371 else {
1372 struct btrfs_extent_ref_v0 *ref0;
1373 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1374 struct btrfs_extent_ref_v0);
1375 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1376 }
1377#endif
31840ae1
ZY
1378 btrfs_mark_buffer_dirty(leaf);
1379 }
31840ae1
ZY
1380 return ret;
1381}
1382
9ed0dea0 1383static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1384 struct btrfs_extent_inline_ref *iref)
15916de8 1385{
5d4f98a2
YZ
1386 struct btrfs_key key;
1387 struct extent_buffer *leaf;
1388 struct btrfs_extent_data_ref *ref1;
1389 struct btrfs_shared_data_ref *ref2;
1390 u32 num_refs = 0;
1391
1392 leaf = path->nodes[0];
1393 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1394 if (iref) {
1395 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1396 BTRFS_EXTENT_DATA_REF_KEY) {
1397 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1398 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1399 } else {
1400 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1401 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1402 }
1403 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1417#endif
5d4f98a2
YZ
1418 } else {
1419 WARN_ON(1);
1420 }
1421 return num_refs;
1422}
15916de8 1423
5d4f98a2
YZ
1424static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root,
1426 struct btrfs_path *path,
1427 u64 bytenr, u64 parent,
1428 u64 root_objectid)
1f3c79a2 1429{
5d4f98a2 1430 struct btrfs_key key;
1f3c79a2 1431 int ret;
1f3c79a2 1432
5d4f98a2
YZ
1433 key.objectid = bytenr;
1434 if (parent) {
1435 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1436 key.offset = parent;
1437 } else {
1438 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1439 key.offset = root_objectid;
1f3c79a2
LH
1440 }
1441
5d4f98a2
YZ
1442 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1443 if (ret > 0)
1444 ret = -ENOENT;
1445#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1446 if (ret == -ENOENT && parent) {
b3b4aa74 1447 btrfs_release_path(path);
5d4f98a2
YZ
1448 key.type = BTRFS_EXTENT_REF_V0_KEY;
1449 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1450 if (ret > 0)
1451 ret = -ENOENT;
1452 }
1f3c79a2 1453#endif
5d4f98a2 1454 return ret;
1f3c79a2
LH
1455}
1456
5d4f98a2
YZ
1457static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root,
1459 struct btrfs_path *path,
1460 u64 bytenr, u64 parent,
1461 u64 root_objectid)
31840ae1 1462{
5d4f98a2 1463 struct btrfs_key key;
31840ae1 1464 int ret;
31840ae1 1465
5d4f98a2
YZ
1466 key.objectid = bytenr;
1467 if (parent) {
1468 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1469 key.offset = parent;
1470 } else {
1471 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1472 key.offset = root_objectid;
1473 }
1474
1475 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1476 btrfs_release_path(path);
31840ae1
ZY
1477 return ret;
1478}
1479
5d4f98a2 1480static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1481{
5d4f98a2
YZ
1482 int type;
1483 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1484 if (parent > 0)
1485 type = BTRFS_SHARED_BLOCK_REF_KEY;
1486 else
1487 type = BTRFS_TREE_BLOCK_REF_KEY;
1488 } else {
1489 if (parent > 0)
1490 type = BTRFS_SHARED_DATA_REF_KEY;
1491 else
1492 type = BTRFS_EXTENT_DATA_REF_KEY;
1493 }
1494 return type;
31840ae1 1495}
56bec294 1496
2c47e605
YZ
1497static int find_next_key(struct btrfs_path *path, int level,
1498 struct btrfs_key *key)
56bec294 1499
02217ed2 1500{
2c47e605 1501 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1502 if (!path->nodes[level])
1503 break;
5d4f98a2
YZ
1504 if (path->slots[level] + 1 >=
1505 btrfs_header_nritems(path->nodes[level]))
1506 continue;
1507 if (level == 0)
1508 btrfs_item_key_to_cpu(path->nodes[level], key,
1509 path->slots[level] + 1);
1510 else
1511 btrfs_node_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 return 0;
1514 }
1515 return 1;
1516}
037e6390 1517
5d4f98a2
YZ
1518/*
1519 * look for inline back ref. if back ref is found, *ref_ret is set
1520 * to the address of inline back ref, and 0 is returned.
1521 *
1522 * if back ref isn't found, *ref_ret is set to the address where it
1523 * should be inserted, and -ENOENT is returned.
1524 *
1525 * if insert is true and there are too many inline back refs, the path
1526 * points to the extent item, and -EAGAIN is returned.
1527 *
1528 * NOTE: inline back refs are ordered in the same way that back ref
1529 * items in the tree are ordered.
1530 */
1531static noinline_for_stack
1532int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1533 struct btrfs_root *root,
1534 struct btrfs_path *path,
1535 struct btrfs_extent_inline_ref **ref_ret,
1536 u64 bytenr, u64 num_bytes,
1537 u64 parent, u64 root_objectid,
1538 u64 owner, u64 offset, int insert)
1539{
1540 struct btrfs_key key;
1541 struct extent_buffer *leaf;
1542 struct btrfs_extent_item *ei;
1543 struct btrfs_extent_inline_ref *iref;
1544 u64 flags;
1545 u64 item_size;
1546 unsigned long ptr;
1547 unsigned long end;
1548 int extra_size;
1549 int type;
1550 int want;
1551 int ret;
1552 int err = 0;
3173a18f
JB
1553 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1554 SKINNY_METADATA);
26b8003f 1555
db94535d 1556 key.objectid = bytenr;
31840ae1 1557 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1558 key.offset = num_bytes;
31840ae1 1559
5d4f98a2
YZ
1560 want = extent_ref_type(parent, owner);
1561 if (insert) {
1562 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1563 path->keep_locks = 1;
5d4f98a2
YZ
1564 } else
1565 extra_size = -1;
3173a18f
JB
1566
1567 /*
1568 * Owner is our parent level, so we can just add one to get the level
1569 * for the block we are interested in.
1570 */
1571 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1572 key.type = BTRFS_METADATA_ITEM_KEY;
1573 key.offset = owner;
1574 }
1575
1576again:
5d4f98a2 1577 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1578 if (ret < 0) {
5d4f98a2
YZ
1579 err = ret;
1580 goto out;
1581 }
3173a18f
JB
1582
1583 /*
1584 * We may be a newly converted file system which still has the old fat
1585 * extent entries for metadata, so try and see if we have one of those.
1586 */
1587 if (ret > 0 && skinny_metadata) {
1588 skinny_metadata = false;
1589 if (path->slots[0]) {
1590 path->slots[0]--;
1591 btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 path->slots[0]);
1593 if (key.objectid == bytenr &&
1594 key.type == BTRFS_EXTENT_ITEM_KEY &&
1595 key.offset == num_bytes)
1596 ret = 0;
1597 }
1598 if (ret) {
9ce49a0b 1599 key.objectid = bytenr;
3173a18f
JB
1600 key.type = BTRFS_EXTENT_ITEM_KEY;
1601 key.offset = num_bytes;
1602 btrfs_release_path(path);
1603 goto again;
1604 }
1605 }
1606
79787eaa
JM
1607 if (ret && !insert) {
1608 err = -ENOENT;
1609 goto out;
fae7f21c 1610 } else if (WARN_ON(ret)) {
492104c8 1611 err = -EIO;
492104c8 1612 goto out;
79787eaa 1613 }
5d4f98a2
YZ
1614
1615 leaf = path->nodes[0];
1616 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1617#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1618 if (item_size < sizeof(*ei)) {
1619 if (!insert) {
1620 err = -ENOENT;
1621 goto out;
1622 }
1623 ret = convert_extent_item_v0(trans, root, path, owner,
1624 extra_size);
1625 if (ret < 0) {
1626 err = ret;
1627 goto out;
1628 }
1629 leaf = path->nodes[0];
1630 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1631 }
1632#endif
1633 BUG_ON(item_size < sizeof(*ei));
1634
5d4f98a2
YZ
1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 flags = btrfs_extent_flags(leaf, ei);
1637
1638 ptr = (unsigned long)(ei + 1);
1639 end = (unsigned long)ei + item_size;
1640
3173a18f 1641 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1642 ptr += sizeof(struct btrfs_tree_block_info);
1643 BUG_ON(ptr > end);
5d4f98a2
YZ
1644 }
1645
1646 err = -ENOENT;
1647 while (1) {
1648 if (ptr >= end) {
1649 WARN_ON(ptr > end);
1650 break;
1651 }
1652 iref = (struct btrfs_extent_inline_ref *)ptr;
1653 type = btrfs_extent_inline_ref_type(leaf, iref);
1654 if (want < type)
1655 break;
1656 if (want > type) {
1657 ptr += btrfs_extent_inline_ref_size(type);
1658 continue;
1659 }
1660
1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 struct btrfs_extent_data_ref *dref;
1663 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1664 if (match_extent_data_ref(leaf, dref, root_objectid,
1665 owner, offset)) {
1666 err = 0;
1667 break;
1668 }
1669 if (hash_extent_data_ref_item(leaf, dref) <
1670 hash_extent_data_ref(root_objectid, owner, offset))
1671 break;
1672 } else {
1673 u64 ref_offset;
1674 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1675 if (parent > 0) {
1676 if (parent == ref_offset) {
1677 err = 0;
1678 break;
1679 }
1680 if (ref_offset < parent)
1681 break;
1682 } else {
1683 if (root_objectid == ref_offset) {
1684 err = 0;
1685 break;
1686 }
1687 if (ref_offset < root_objectid)
1688 break;
1689 }
1690 }
1691 ptr += btrfs_extent_inline_ref_size(type);
1692 }
1693 if (err == -ENOENT && insert) {
1694 if (item_size + extra_size >=
1695 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1696 err = -EAGAIN;
1697 goto out;
1698 }
1699 /*
1700 * To add new inline back ref, we have to make sure
1701 * there is no corresponding back ref item.
1702 * For simplicity, we just do not add new inline back
1703 * ref if there is any kind of item for this block
1704 */
2c47e605
YZ
1705 if (find_next_key(path, 0, &key) == 0 &&
1706 key.objectid == bytenr &&
85d4198e 1707 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1708 err = -EAGAIN;
1709 goto out;
1710 }
1711 }
1712 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1713out:
85d4198e 1714 if (insert) {
5d4f98a2
YZ
1715 path->keep_locks = 0;
1716 btrfs_unlock_up_safe(path, 1);
1717 }
1718 return err;
1719}
1720
1721/*
1722 * helper to add new inline back ref
1723 */
1724static noinline_for_stack
fd279fae 1725void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref *iref,
1728 u64 parent, u64 root_objectid,
1729 u64 owner, u64 offset, int refs_to_add,
1730 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1731{
1732 struct extent_buffer *leaf;
1733 struct btrfs_extent_item *ei;
1734 unsigned long ptr;
1735 unsigned long end;
1736 unsigned long item_offset;
1737 u64 refs;
1738 int size;
1739 int type;
5d4f98a2
YZ
1740
1741 leaf = path->nodes[0];
1742 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1743 item_offset = (unsigned long)iref - (unsigned long)ei;
1744
1745 type = extent_ref_type(parent, owner);
1746 size = btrfs_extent_inline_ref_size(type);
1747
4b90c680 1748 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1749
1750 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1751 refs = btrfs_extent_refs(leaf, ei);
1752 refs += refs_to_add;
1753 btrfs_set_extent_refs(leaf, ei, refs);
1754 if (extent_op)
1755 __run_delayed_extent_op(extent_op, leaf, ei);
1756
1757 ptr = (unsigned long)ei + item_offset;
1758 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1759 if (ptr < end - size)
1760 memmove_extent_buffer(leaf, ptr + size, ptr,
1761 end - size - ptr);
1762
1763 iref = (struct btrfs_extent_inline_ref *)ptr;
1764 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1765 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1766 struct btrfs_extent_data_ref *dref;
1767 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1768 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1769 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1770 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1771 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1772 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1773 struct btrfs_shared_data_ref *sref;
1774 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1775 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1776 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1777 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1778 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1779 } else {
1780 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1781 }
1782 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1783}
1784
1785static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1786 struct btrfs_root *root,
1787 struct btrfs_path *path,
1788 struct btrfs_extent_inline_ref **ref_ret,
1789 u64 bytenr, u64 num_bytes, u64 parent,
1790 u64 root_objectid, u64 owner, u64 offset)
1791{
1792 int ret;
1793
1794 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1795 bytenr, num_bytes, parent,
1796 root_objectid, owner, offset, 0);
1797 if (ret != -ENOENT)
54aa1f4d 1798 return ret;
5d4f98a2 1799
b3b4aa74 1800 btrfs_release_path(path);
5d4f98a2
YZ
1801 *ref_ret = NULL;
1802
1803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1804 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1805 root_objectid);
1806 } else {
1807 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1808 root_objectid, owner, offset);
b9473439 1809 }
5d4f98a2
YZ
1810 return ret;
1811}
31840ae1 1812
5d4f98a2
YZ
1813/*
1814 * helper to update/remove inline back ref
1815 */
1816static noinline_for_stack
afe5fea7 1817void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1818 struct btrfs_path *path,
1819 struct btrfs_extent_inline_ref *iref,
1820 int refs_to_mod,
fcebe456
JB
1821 struct btrfs_delayed_extent_op *extent_op,
1822 int *last_ref)
5d4f98a2
YZ
1823{
1824 struct extent_buffer *leaf;
1825 struct btrfs_extent_item *ei;
1826 struct btrfs_extent_data_ref *dref = NULL;
1827 struct btrfs_shared_data_ref *sref = NULL;
1828 unsigned long ptr;
1829 unsigned long end;
1830 u32 item_size;
1831 int size;
1832 int type;
5d4f98a2
YZ
1833 u64 refs;
1834
1835 leaf = path->nodes[0];
1836 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1837 refs = btrfs_extent_refs(leaf, ei);
1838 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1839 refs += refs_to_mod;
1840 btrfs_set_extent_refs(leaf, ei, refs);
1841 if (extent_op)
1842 __run_delayed_extent_op(extent_op, leaf, ei);
1843
1844 type = btrfs_extent_inline_ref_type(leaf, iref);
1845
1846 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1847 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1848 refs = btrfs_extent_data_ref_count(leaf, dref);
1849 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1850 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1851 refs = btrfs_shared_data_ref_count(leaf, sref);
1852 } else {
1853 refs = 1;
1854 BUG_ON(refs_to_mod != -1);
56bec294 1855 }
31840ae1 1856
5d4f98a2
YZ
1857 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1858 refs += refs_to_mod;
1859
1860 if (refs > 0) {
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1862 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1863 else
1864 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1865 } else {
fcebe456 1866 *last_ref = 1;
5d4f98a2
YZ
1867 size = btrfs_extent_inline_ref_size(type);
1868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1869 ptr = (unsigned long)iref;
1870 end = (unsigned long)ei + item_size;
1871 if (ptr + size < end)
1872 memmove_extent_buffer(leaf, ptr, ptr + size,
1873 end - ptr - size);
1874 item_size -= size;
afe5fea7 1875 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1876 }
1877 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1878}
1879
1880static noinline_for_stack
1881int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1882 struct btrfs_root *root,
1883 struct btrfs_path *path,
1884 u64 bytenr, u64 num_bytes, u64 parent,
1885 u64 root_objectid, u64 owner,
1886 u64 offset, int refs_to_add,
1887 struct btrfs_delayed_extent_op *extent_op)
1888{
1889 struct btrfs_extent_inline_ref *iref;
1890 int ret;
1891
1892 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1893 bytenr, num_bytes, parent,
1894 root_objectid, owner, offset, 1);
1895 if (ret == 0) {
1896 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1897 update_inline_extent_backref(root, path, iref,
fcebe456 1898 refs_to_add, extent_op, NULL);
5d4f98a2 1899 } else if (ret == -ENOENT) {
fd279fae 1900 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1901 root_objectid, owner, offset,
1902 refs_to_add, extent_op);
1903 ret = 0;
771ed689 1904 }
5d4f98a2
YZ
1905 return ret;
1906}
31840ae1 1907
5d4f98a2
YZ
1908static int insert_extent_backref(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *root,
1910 struct btrfs_path *path,
1911 u64 bytenr, u64 parent, u64 root_objectid,
1912 u64 owner, u64 offset, int refs_to_add)
1913{
1914 int ret;
1915 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1916 BUG_ON(refs_to_add != 1);
1917 ret = insert_tree_block_ref(trans, root, path, bytenr,
1918 parent, root_objectid);
1919 } else {
1920 ret = insert_extent_data_ref(trans, root, path, bytenr,
1921 parent, root_objectid,
1922 owner, offset, refs_to_add);
1923 }
1924 return ret;
1925}
56bec294 1926
5d4f98a2
YZ
1927static int remove_extent_backref(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct btrfs_extent_inline_ref *iref,
fcebe456 1931 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1932{
143bede5 1933 int ret = 0;
b9473439 1934
5d4f98a2
YZ
1935 BUG_ON(!is_data && refs_to_drop != 1);
1936 if (iref) {
afe5fea7 1937 update_inline_extent_backref(root, path, iref,
fcebe456 1938 -refs_to_drop, NULL, last_ref);
5d4f98a2 1939 } else if (is_data) {
fcebe456
JB
1940 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1941 last_ref);
5d4f98a2 1942 } else {
fcebe456 1943 *last_ref = 1;
5d4f98a2
YZ
1944 ret = btrfs_del_item(trans, root, path);
1945 }
1946 return ret;
1947}
1948
86557861 1949#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1950static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1951 u64 *discarded_bytes)
5d4f98a2 1952{
86557861
JM
1953 int j, ret = 0;
1954 u64 bytes_left, end;
4d89d377 1955 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1956
4d89d377
JM
1957 if (WARN_ON(start != aligned_start)) {
1958 len -= aligned_start - start;
1959 len = round_down(len, 1 << 9);
1960 start = aligned_start;
1961 }
d04c6b88 1962
4d89d377 1963 *discarded_bytes = 0;
86557861
JM
1964
1965 if (!len)
1966 return 0;
1967
1968 end = start + len;
1969 bytes_left = len;
1970
1971 /* Skip any superblocks on this device. */
1972 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1973 u64 sb_start = btrfs_sb_offset(j);
1974 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1975 u64 size = sb_start - start;
1976
1977 if (!in_range(sb_start, start, bytes_left) &&
1978 !in_range(sb_end, start, bytes_left) &&
1979 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1980 continue;
1981
1982 /*
1983 * Superblock spans beginning of range. Adjust start and
1984 * try again.
1985 */
1986 if (sb_start <= start) {
1987 start += sb_end - start;
1988 if (start > end) {
1989 bytes_left = 0;
1990 break;
1991 }
1992 bytes_left = end - start;
1993 continue;
1994 }
1995
1996 if (size) {
1997 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1998 GFP_NOFS, 0);
1999 if (!ret)
2000 *discarded_bytes += size;
2001 else if (ret != -EOPNOTSUPP)
2002 return ret;
2003 }
2004
2005 start = sb_end;
2006 if (start > end) {
2007 bytes_left = 0;
2008 break;
2009 }
2010 bytes_left = end - start;
2011 }
2012
2013 if (bytes_left) {
2014 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2015 GFP_NOFS, 0);
2016 if (!ret)
86557861 2017 *discarded_bytes += bytes_left;
4d89d377 2018 }
d04c6b88 2019 return ret;
5d4f98a2 2020}
5d4f98a2 2021
1edb647b
FM
2022int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2023 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2024{
5d4f98a2 2025 int ret;
5378e607 2026 u64 discarded_bytes = 0;
a1d3c478 2027 struct btrfs_bio *bbio = NULL;
5d4f98a2 2028
e244a0ae 2029
5d4f98a2 2030 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2031 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2032 bytenr, &num_bytes, &bbio, 0);
79787eaa 2033 /* Error condition is -ENOMEM */
5d4f98a2 2034 if (!ret) {
a1d3c478 2035 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2036 int i;
2037
5d4f98a2 2038
a1d3c478 2039 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2040 u64 bytes;
d5e2003c
JB
2041 if (!stripe->dev->can_discard)
2042 continue;
2043
5378e607
LD
2044 ret = btrfs_issue_discard(stripe->dev->bdev,
2045 stripe->physical,
d04c6b88
JM
2046 stripe->length,
2047 &bytes);
5378e607 2048 if (!ret)
d04c6b88 2049 discarded_bytes += bytes;
5378e607 2050 else if (ret != -EOPNOTSUPP)
79787eaa 2051 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2052
2053 /*
2054 * Just in case we get back EOPNOTSUPP for some reason,
2055 * just ignore the return value so we don't screw up
2056 * people calling discard_extent.
2057 */
2058 ret = 0;
5d4f98a2 2059 }
6e9606d2 2060 btrfs_put_bbio(bbio);
5d4f98a2 2061 }
5378e607
LD
2062
2063 if (actual_bytes)
2064 *actual_bytes = discarded_bytes;
2065
5d4f98a2 2066
53b381b3
DW
2067 if (ret == -EOPNOTSUPP)
2068 ret = 0;
5d4f98a2 2069 return ret;
5d4f98a2
YZ
2070}
2071
79787eaa 2072/* Can return -ENOMEM */
5d4f98a2
YZ
2073int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2074 struct btrfs_root *root,
2075 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2076 u64 root_objectid, u64 owner, u64 offset,
2077 int no_quota)
5d4f98a2
YZ
2078{
2079 int ret;
66d7e7f0
AJ
2080 struct btrfs_fs_info *fs_info = root->fs_info;
2081
5d4f98a2
YZ
2082 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2083 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2084
2085 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2086 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2087 num_bytes,
5d4f98a2 2088 parent, root_objectid, (int)owner,
fcebe456 2089 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2090 } else {
66d7e7f0
AJ
2091 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2092 num_bytes,
5d4f98a2 2093 parent, root_objectid, owner, offset,
fcebe456 2094 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2095 }
2096 return ret;
2097}
2098
2099static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
c682f9b3 2101 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2102 u64 parent, u64 root_objectid,
2103 u64 owner, u64 offset, int refs_to_add,
2104 struct btrfs_delayed_extent_op *extent_op)
2105{
fcebe456 2106 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2107 struct btrfs_path *path;
2108 struct extent_buffer *leaf;
2109 struct btrfs_extent_item *item;
fcebe456 2110 struct btrfs_key key;
c682f9b3
QW
2111 u64 bytenr = node->bytenr;
2112 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2113 u64 refs;
2114 int ret;
c682f9b3 2115 int no_quota = node->no_quota;
5d4f98a2
YZ
2116
2117 path = btrfs_alloc_path();
2118 if (!path)
2119 return -ENOMEM;
2120
fcebe456
JB
2121 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2122 no_quota = 1;
2123
5d4f98a2
YZ
2124 path->reada = 1;
2125 path->leave_spinning = 1;
2126 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2127 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2128 bytenr, num_bytes, parent,
5d4f98a2
YZ
2129 root_objectid, owner, offset,
2130 refs_to_add, extent_op);
0ed4792a 2131 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2132 goto out;
fcebe456
JB
2133
2134 /*
2135 * Ok we had -EAGAIN which means we didn't have space to insert and
2136 * inline extent ref, so just update the reference count and add a
2137 * normal backref.
2138 */
5d4f98a2 2139 leaf = path->nodes[0];
fcebe456 2140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2141 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2142 refs = btrfs_extent_refs(leaf, item);
2143 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2144 if (extent_op)
2145 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2146
5d4f98a2 2147 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2148 btrfs_release_path(path);
56bec294
CM
2149
2150 path->reada = 1;
b9473439 2151 path->leave_spinning = 1;
56bec294
CM
2152 /* now insert the actual backref */
2153 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2154 path, bytenr, parent, root_objectid,
2155 owner, offset, refs_to_add);
79787eaa
JM
2156 if (ret)
2157 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2158out:
56bec294 2159 btrfs_free_path(path);
30d133fc 2160 return ret;
56bec294
CM
2161}
2162
5d4f98a2
YZ
2163static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2164 struct btrfs_root *root,
2165 struct btrfs_delayed_ref_node *node,
2166 struct btrfs_delayed_extent_op *extent_op,
2167 int insert_reserved)
56bec294 2168{
5d4f98a2
YZ
2169 int ret = 0;
2170 struct btrfs_delayed_data_ref *ref;
2171 struct btrfs_key ins;
2172 u64 parent = 0;
2173 u64 ref_root = 0;
2174 u64 flags = 0;
2175
2176 ins.objectid = node->bytenr;
2177 ins.offset = node->num_bytes;
2178 ins.type = BTRFS_EXTENT_ITEM_KEY;
2179
2180 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2181 trace_run_delayed_data_ref(node, ref, node->action);
2182
5d4f98a2
YZ
2183 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2184 parent = ref->parent;
fcebe456 2185 ref_root = ref->root;
5d4f98a2
YZ
2186
2187 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2188 if (extent_op)
5d4f98a2 2189 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2190 ret = alloc_reserved_file_extent(trans, root,
2191 parent, ref_root, flags,
2192 ref->objectid, ref->offset,
2193 &ins, node->ref_mod);
5d4f98a2 2194 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2195 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2196 ref_root, ref->objectid,
2197 ref->offset, node->ref_mod,
c682f9b3 2198 extent_op);
5d4f98a2 2199 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2200 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2201 ref_root, ref->objectid,
2202 ref->offset, node->ref_mod,
c682f9b3 2203 extent_op);
5d4f98a2
YZ
2204 } else {
2205 BUG();
2206 }
2207 return ret;
2208}
2209
2210static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2211 struct extent_buffer *leaf,
2212 struct btrfs_extent_item *ei)
2213{
2214 u64 flags = btrfs_extent_flags(leaf, ei);
2215 if (extent_op->update_flags) {
2216 flags |= extent_op->flags_to_set;
2217 btrfs_set_extent_flags(leaf, ei, flags);
2218 }
2219
2220 if (extent_op->update_key) {
2221 struct btrfs_tree_block_info *bi;
2222 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2223 bi = (struct btrfs_tree_block_info *)(ei + 1);
2224 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2225 }
2226}
2227
2228static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2229 struct btrfs_root *root,
2230 struct btrfs_delayed_ref_node *node,
2231 struct btrfs_delayed_extent_op *extent_op)
2232{
2233 struct btrfs_key key;
2234 struct btrfs_path *path;
2235 struct btrfs_extent_item *ei;
2236 struct extent_buffer *leaf;
2237 u32 item_size;
56bec294 2238 int ret;
5d4f98a2 2239 int err = 0;
b1c79e09 2240 int metadata = !extent_op->is_data;
5d4f98a2 2241
79787eaa
JM
2242 if (trans->aborted)
2243 return 0;
2244
3173a18f
JB
2245 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2246 metadata = 0;
2247
5d4f98a2
YZ
2248 path = btrfs_alloc_path();
2249 if (!path)
2250 return -ENOMEM;
2251
2252 key.objectid = node->bytenr;
5d4f98a2 2253
3173a18f 2254 if (metadata) {
3173a18f 2255 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2256 key.offset = extent_op->level;
3173a18f
JB
2257 } else {
2258 key.type = BTRFS_EXTENT_ITEM_KEY;
2259 key.offset = node->num_bytes;
2260 }
2261
2262again:
5d4f98a2
YZ
2263 path->reada = 1;
2264 path->leave_spinning = 1;
2265 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2266 path, 0, 1);
2267 if (ret < 0) {
2268 err = ret;
2269 goto out;
2270 }
2271 if (ret > 0) {
3173a18f 2272 if (metadata) {
55994887
FDBM
2273 if (path->slots[0] > 0) {
2274 path->slots[0]--;
2275 btrfs_item_key_to_cpu(path->nodes[0], &key,
2276 path->slots[0]);
2277 if (key.objectid == node->bytenr &&
2278 key.type == BTRFS_EXTENT_ITEM_KEY &&
2279 key.offset == node->num_bytes)
2280 ret = 0;
2281 }
2282 if (ret > 0) {
2283 btrfs_release_path(path);
2284 metadata = 0;
3173a18f 2285
55994887
FDBM
2286 key.objectid = node->bytenr;
2287 key.offset = node->num_bytes;
2288 key.type = BTRFS_EXTENT_ITEM_KEY;
2289 goto again;
2290 }
2291 } else {
2292 err = -EIO;
2293 goto out;
3173a18f 2294 }
5d4f98a2
YZ
2295 }
2296
2297 leaf = path->nodes[0];
2298 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2299#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2300 if (item_size < sizeof(*ei)) {
2301 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2302 path, (u64)-1, 0);
2303 if (ret < 0) {
2304 err = ret;
2305 goto out;
2306 }
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309 }
2310#endif
2311 BUG_ON(item_size < sizeof(*ei));
2312 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2313 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2314
5d4f98a2
YZ
2315 btrfs_mark_buffer_dirty(leaf);
2316out:
2317 btrfs_free_path(path);
2318 return err;
56bec294
CM
2319}
2320
5d4f98a2
YZ
2321static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 struct btrfs_delayed_ref_node *node,
2324 struct btrfs_delayed_extent_op *extent_op,
2325 int insert_reserved)
56bec294
CM
2326{
2327 int ret = 0;
5d4f98a2
YZ
2328 struct btrfs_delayed_tree_ref *ref;
2329 struct btrfs_key ins;
2330 u64 parent = 0;
2331 u64 ref_root = 0;
3173a18f
JB
2332 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2333 SKINNY_METADATA);
56bec294 2334
5d4f98a2 2335 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2336 trace_run_delayed_tree_ref(node, ref, node->action);
2337
5d4f98a2
YZ
2338 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2339 parent = ref->parent;
fcebe456 2340 ref_root = ref->root;
5d4f98a2 2341
3173a18f
JB
2342 ins.objectid = node->bytenr;
2343 if (skinny_metadata) {
2344 ins.offset = ref->level;
2345 ins.type = BTRFS_METADATA_ITEM_KEY;
2346 } else {
2347 ins.offset = node->num_bytes;
2348 ins.type = BTRFS_EXTENT_ITEM_KEY;
2349 }
2350
5d4f98a2
YZ
2351 BUG_ON(node->ref_mod != 1);
2352 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2353 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2354 ret = alloc_reserved_tree_block(trans, root,
2355 parent, ref_root,
2356 extent_op->flags_to_set,
2357 &extent_op->key,
fcebe456
JB
2358 ref->level, &ins,
2359 node->no_quota);
5d4f98a2 2360 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2361 ret = __btrfs_inc_extent_ref(trans, root, node,
2362 parent, ref_root,
2363 ref->level, 0, 1,
fcebe456 2364 extent_op);
5d4f98a2 2365 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2366 ret = __btrfs_free_extent(trans, root, node,
2367 parent, ref_root,
2368 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2369 } else {
2370 BUG();
2371 }
56bec294
CM
2372 return ret;
2373}
2374
2375/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2376static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2377 struct btrfs_root *root,
2378 struct btrfs_delayed_ref_node *node,
2379 struct btrfs_delayed_extent_op *extent_op,
2380 int insert_reserved)
56bec294 2381{
79787eaa
JM
2382 int ret = 0;
2383
857cc2fc
JB
2384 if (trans->aborted) {
2385 if (insert_reserved)
2386 btrfs_pin_extent(root, node->bytenr,
2387 node->num_bytes, 1);
79787eaa 2388 return 0;
857cc2fc 2389 }
79787eaa 2390
5d4f98a2 2391 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2392 struct btrfs_delayed_ref_head *head;
2393 /*
2394 * we've hit the end of the chain and we were supposed
2395 * to insert this extent into the tree. But, it got
2396 * deleted before we ever needed to insert it, so all
2397 * we have to do is clean up the accounting
2398 */
5d4f98a2
YZ
2399 BUG_ON(extent_op);
2400 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2401 trace_run_delayed_ref_head(node, head, node->action);
2402
56bec294 2403 if (insert_reserved) {
f0486c68
YZ
2404 btrfs_pin_extent(root, node->bytenr,
2405 node->num_bytes, 1);
5d4f98a2
YZ
2406 if (head->is_data) {
2407 ret = btrfs_del_csums(trans, root,
2408 node->bytenr,
2409 node->num_bytes);
5d4f98a2 2410 }
56bec294 2411 }
297d750b
QW
2412
2413 /* Also free its reserved qgroup space */
2414 btrfs_qgroup_free_delayed_ref(root->fs_info,
2415 head->qgroup_ref_root,
2416 head->qgroup_reserved);
79787eaa 2417 return ret;
56bec294
CM
2418 }
2419
5d4f98a2
YZ
2420 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2421 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2422 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2423 insert_reserved);
2424 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2425 node->type == BTRFS_SHARED_DATA_REF_KEY)
2426 ret = run_delayed_data_ref(trans, root, node, extent_op,
2427 insert_reserved);
2428 else
2429 BUG();
2430 return ret;
56bec294
CM
2431}
2432
c6fc2454 2433static inline struct btrfs_delayed_ref_node *
56bec294
CM
2434select_delayed_ref(struct btrfs_delayed_ref_head *head)
2435{
cffc3374
FM
2436 struct btrfs_delayed_ref_node *ref;
2437
c6fc2454
QW
2438 if (list_empty(&head->ref_list))
2439 return NULL;
d7df2c79 2440
cffc3374
FM
2441 /*
2442 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2443 * This is to prevent a ref count from going down to zero, which deletes
2444 * the extent item from the extent tree, when there still are references
2445 * to add, which would fail because they would not find the extent item.
2446 */
2447 list_for_each_entry(ref, &head->ref_list, list) {
2448 if (ref->action == BTRFS_ADD_DELAYED_REF)
2449 return ref;
2450 }
2451
c6fc2454
QW
2452 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2453 list);
56bec294
CM
2454}
2455
79787eaa
JM
2456/*
2457 * Returns 0 on success or if called with an already aborted transaction.
2458 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2459 */
d7df2c79
JB
2460static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2461 struct btrfs_root *root,
2462 unsigned long nr)
56bec294 2463{
56bec294
CM
2464 struct btrfs_delayed_ref_root *delayed_refs;
2465 struct btrfs_delayed_ref_node *ref;
2466 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2467 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2468 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2469 ktime_t start = ktime_get();
56bec294 2470 int ret;
d7df2c79 2471 unsigned long count = 0;
0a2b2a84 2472 unsigned long actual_count = 0;
56bec294 2473 int must_insert_reserved = 0;
56bec294
CM
2474
2475 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2476 while (1) {
2477 if (!locked_ref) {
d7df2c79 2478 if (count >= nr)
56bec294 2479 break;
56bec294 2480
d7df2c79
JB
2481 spin_lock(&delayed_refs->lock);
2482 locked_ref = btrfs_select_ref_head(trans);
2483 if (!locked_ref) {
2484 spin_unlock(&delayed_refs->lock);
2485 break;
2486 }
c3e69d58
CM
2487
2488 /* grab the lock that says we are going to process
2489 * all the refs for this head */
2490 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2491 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2492 /*
2493 * we may have dropped the spin lock to get the head
2494 * mutex lock, and that might have given someone else
2495 * time to free the head. If that's true, it has been
2496 * removed from our list and we can move on.
2497 */
2498 if (ret == -EAGAIN) {
2499 locked_ref = NULL;
2500 count++;
2501 continue;
56bec294
CM
2502 }
2503 }
a28ec197 2504
d7df2c79 2505 spin_lock(&locked_ref->lock);
ae1e206b 2506
d1270cd9
AJ
2507 /*
2508 * locked_ref is the head node, so we have to go one
2509 * node back for any delayed ref updates
2510 */
2511 ref = select_delayed_ref(locked_ref);
2512
2513 if (ref && ref->seq &&
097b8a7c 2514 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2515 spin_unlock(&locked_ref->lock);
093486c4 2516 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2517 spin_lock(&delayed_refs->lock);
2518 locked_ref->processing = 0;
d1270cd9
AJ
2519 delayed_refs->num_heads_ready++;
2520 spin_unlock(&delayed_refs->lock);
d7df2c79 2521 locked_ref = NULL;
d1270cd9 2522 cond_resched();
27a377db 2523 count++;
d1270cd9
AJ
2524 continue;
2525 }
2526
56bec294
CM
2527 /*
2528 * record the must insert reserved flag before we
2529 * drop the spin lock.
2530 */
2531 must_insert_reserved = locked_ref->must_insert_reserved;
2532 locked_ref->must_insert_reserved = 0;
7bb86316 2533
5d4f98a2
YZ
2534 extent_op = locked_ref->extent_op;
2535 locked_ref->extent_op = NULL;
2536
56bec294 2537 if (!ref) {
d7df2c79
JB
2538
2539
56bec294
CM
2540 /* All delayed refs have been processed, Go ahead
2541 * and send the head node to run_one_delayed_ref,
2542 * so that any accounting fixes can happen
2543 */
2544 ref = &locked_ref->node;
5d4f98a2
YZ
2545
2546 if (extent_op && must_insert_reserved) {
78a6184a 2547 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2548 extent_op = NULL;
2549 }
2550
2551 if (extent_op) {
d7df2c79 2552 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2553 ret = run_delayed_extent_op(trans, root,
2554 ref, extent_op);
78a6184a 2555 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2556
79787eaa 2557 if (ret) {
857cc2fc
JB
2558 /*
2559 * Need to reset must_insert_reserved if
2560 * there was an error so the abort stuff
2561 * can cleanup the reserved space
2562 * properly.
2563 */
2564 if (must_insert_reserved)
2565 locked_ref->must_insert_reserved = 1;
d7df2c79 2566 locked_ref->processing = 0;
c2cf52eb 2567 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2568 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2569 return ret;
2570 }
d7df2c79 2571 continue;
5d4f98a2 2572 }
02217ed2 2573
d7df2c79
JB
2574 /*
2575 * Need to drop our head ref lock and re-aqcuire the
2576 * delayed ref lock and then re-check to make sure
2577 * nobody got added.
2578 */
2579 spin_unlock(&locked_ref->lock);
2580 spin_lock(&delayed_refs->lock);
2581 spin_lock(&locked_ref->lock);
c6fc2454 2582 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2583 locked_ref->extent_op) {
d7df2c79
JB
2584 spin_unlock(&locked_ref->lock);
2585 spin_unlock(&delayed_refs->lock);
2586 continue;
2587 }
2588 ref->in_tree = 0;
2589 delayed_refs->num_heads--;
c46effa6
LB
2590 rb_erase(&locked_ref->href_node,
2591 &delayed_refs->href_root);
d7df2c79
JB
2592 spin_unlock(&delayed_refs->lock);
2593 } else {
0a2b2a84 2594 actual_count++;
d7df2c79 2595 ref->in_tree = 0;
c6fc2454 2596 list_del(&ref->list);
c46effa6 2597 }
d7df2c79
JB
2598 atomic_dec(&delayed_refs->num_entries);
2599
093486c4 2600 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2601 /*
2602 * when we play the delayed ref, also correct the
2603 * ref_mod on head
2604 */
2605 switch (ref->action) {
2606 case BTRFS_ADD_DELAYED_REF:
2607 case BTRFS_ADD_DELAYED_EXTENT:
2608 locked_ref->node.ref_mod -= ref->ref_mod;
2609 break;
2610 case BTRFS_DROP_DELAYED_REF:
2611 locked_ref->node.ref_mod += ref->ref_mod;
2612 break;
2613 default:
2614 WARN_ON(1);
2615 }
2616 }
d7df2c79 2617 spin_unlock(&locked_ref->lock);
925baedd 2618
5d4f98a2 2619 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2620 must_insert_reserved);
eb099670 2621
78a6184a 2622 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2623 if (ret) {
d7df2c79 2624 locked_ref->processing = 0;
093486c4
MX
2625 btrfs_delayed_ref_unlock(locked_ref);
2626 btrfs_put_delayed_ref(ref);
c2cf52eb 2627 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2628 return ret;
2629 }
2630
093486c4
MX
2631 /*
2632 * If this node is a head, that means all the refs in this head
2633 * have been dealt with, and we will pick the next head to deal
2634 * with, so we must unlock the head and drop it from the cluster
2635 * list before we release it.
2636 */
2637 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2638 if (locked_ref->is_data &&
2639 locked_ref->total_ref_mod < 0) {
2640 spin_lock(&delayed_refs->lock);
2641 delayed_refs->pending_csums -= ref->num_bytes;
2642 spin_unlock(&delayed_refs->lock);
2643 }
093486c4
MX
2644 btrfs_delayed_ref_unlock(locked_ref);
2645 locked_ref = NULL;
2646 }
2647 btrfs_put_delayed_ref(ref);
2648 count++;
c3e69d58 2649 cond_resched();
c3e69d58 2650 }
0a2b2a84
JB
2651
2652 /*
2653 * We don't want to include ref heads since we can have empty ref heads
2654 * and those will drastically skew our runtime down since we just do
2655 * accounting, no actual extent tree updates.
2656 */
2657 if (actual_count > 0) {
2658 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2659 u64 avg;
2660
2661 /*
2662 * We weigh the current average higher than our current runtime
2663 * to avoid large swings in the average.
2664 */
2665 spin_lock(&delayed_refs->lock);
2666 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2667 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2668 spin_unlock(&delayed_refs->lock);
2669 }
d7df2c79 2670 return 0;
c3e69d58
CM
2671}
2672
709c0486
AJ
2673#ifdef SCRAMBLE_DELAYED_REFS
2674/*
2675 * Normally delayed refs get processed in ascending bytenr order. This
2676 * correlates in most cases to the order added. To expose dependencies on this
2677 * order, we start to process the tree in the middle instead of the beginning
2678 */
2679static u64 find_middle(struct rb_root *root)
2680{
2681 struct rb_node *n = root->rb_node;
2682 struct btrfs_delayed_ref_node *entry;
2683 int alt = 1;
2684 u64 middle;
2685 u64 first = 0, last = 0;
2686
2687 n = rb_first(root);
2688 if (n) {
2689 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2690 first = entry->bytenr;
2691 }
2692 n = rb_last(root);
2693 if (n) {
2694 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2695 last = entry->bytenr;
2696 }
2697 n = root->rb_node;
2698
2699 while (n) {
2700 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2701 WARN_ON(!entry->in_tree);
2702
2703 middle = entry->bytenr;
2704
2705 if (alt)
2706 n = n->rb_left;
2707 else
2708 n = n->rb_right;
2709
2710 alt = 1 - alt;
2711 }
2712 return middle;
2713}
2714#endif
2715
1be41b78
JB
2716static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2717{
2718 u64 num_bytes;
2719
2720 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2721 sizeof(struct btrfs_extent_inline_ref));
2722 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2723 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2724
2725 /*
2726 * We don't ever fill up leaves all the way so multiply by 2 just to be
2727 * closer to what we're really going to want to ouse.
2728 */
f8c269d7 2729 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2730}
2731
1262133b
JB
2732/*
2733 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2734 * would require to store the csums for that many bytes.
2735 */
28f75a0e 2736u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2737{
2738 u64 csum_size;
2739 u64 num_csums_per_leaf;
2740 u64 num_csums;
2741
2742 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2743 num_csums_per_leaf = div64_u64(csum_size,
2744 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2745 num_csums = div64_u64(csum_bytes, root->sectorsize);
2746 num_csums += num_csums_per_leaf - 1;
2747 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2748 return num_csums;
2749}
2750
0a2b2a84 2751int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2752 struct btrfs_root *root)
2753{
2754 struct btrfs_block_rsv *global_rsv;
2755 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2756 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2757 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2758 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2759 int ret = 0;
2760
2761 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2762 num_heads = heads_to_leaves(root, num_heads);
2763 if (num_heads > 1)
707e8a07 2764 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2765 num_bytes <<= 1;
28f75a0e 2766 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2767 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2768 num_dirty_bgs);
1be41b78
JB
2769 global_rsv = &root->fs_info->global_block_rsv;
2770
2771 /*
2772 * If we can't allocate any more chunks lets make sure we have _lots_ of
2773 * wiggle room since running delayed refs can create more delayed refs.
2774 */
cb723e49
JB
2775 if (global_rsv->space_info->full) {
2776 num_dirty_bgs_bytes <<= 1;
1be41b78 2777 num_bytes <<= 1;
cb723e49 2778 }
1be41b78
JB
2779
2780 spin_lock(&global_rsv->lock);
cb723e49 2781 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2782 ret = 1;
2783 spin_unlock(&global_rsv->lock);
2784 return ret;
2785}
2786
0a2b2a84
JB
2787int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2788 struct btrfs_root *root)
2789{
2790 struct btrfs_fs_info *fs_info = root->fs_info;
2791 u64 num_entries =
2792 atomic_read(&trans->transaction->delayed_refs.num_entries);
2793 u64 avg_runtime;
a79b7d4b 2794 u64 val;
0a2b2a84
JB
2795
2796 smp_mb();
2797 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2798 val = num_entries * avg_runtime;
0a2b2a84
JB
2799 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2800 return 1;
a79b7d4b
CM
2801 if (val >= NSEC_PER_SEC / 2)
2802 return 2;
0a2b2a84
JB
2803
2804 return btrfs_check_space_for_delayed_refs(trans, root);
2805}
2806
a79b7d4b
CM
2807struct async_delayed_refs {
2808 struct btrfs_root *root;
2809 int count;
2810 int error;
2811 int sync;
2812 struct completion wait;
2813 struct btrfs_work work;
2814};
2815
2816static void delayed_ref_async_start(struct btrfs_work *work)
2817{
2818 struct async_delayed_refs *async;
2819 struct btrfs_trans_handle *trans;
2820 int ret;
2821
2822 async = container_of(work, struct async_delayed_refs, work);
2823
2824 trans = btrfs_join_transaction(async->root);
2825 if (IS_ERR(trans)) {
2826 async->error = PTR_ERR(trans);
2827 goto done;
2828 }
2829
2830 /*
2831 * trans->sync means that when we call end_transaciton, we won't
2832 * wait on delayed refs
2833 */
2834 trans->sync = true;
2835 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2836 if (ret)
2837 async->error = ret;
2838
2839 ret = btrfs_end_transaction(trans, async->root);
2840 if (ret && !async->error)
2841 async->error = ret;
2842done:
2843 if (async->sync)
2844 complete(&async->wait);
2845 else
2846 kfree(async);
2847}
2848
2849int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2850 unsigned long count, int wait)
2851{
2852 struct async_delayed_refs *async;
2853 int ret;
2854
2855 async = kmalloc(sizeof(*async), GFP_NOFS);
2856 if (!async)
2857 return -ENOMEM;
2858
2859 async->root = root->fs_info->tree_root;
2860 async->count = count;
2861 async->error = 0;
2862 if (wait)
2863 async->sync = 1;
2864 else
2865 async->sync = 0;
2866 init_completion(&async->wait);
2867
9e0af237
LB
2868 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2869 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2870
2871 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2872
2873 if (wait) {
2874 wait_for_completion(&async->wait);
2875 ret = async->error;
2876 kfree(async);
2877 return ret;
2878 }
2879 return 0;
2880}
2881
c3e69d58
CM
2882/*
2883 * this starts processing the delayed reference count updates and
2884 * extent insertions we have queued up so far. count can be
2885 * 0, which means to process everything in the tree at the start
2886 * of the run (but not newly added entries), or it can be some target
2887 * number you'd like to process.
79787eaa
JM
2888 *
2889 * Returns 0 on success or if called with an aborted transaction
2890 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2891 */
2892int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2893 struct btrfs_root *root, unsigned long count)
2894{
2895 struct rb_node *node;
2896 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2897 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2898 int ret;
2899 int run_all = count == (unsigned long)-1;
d9a0540a 2900 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2901
79787eaa
JM
2902 /* We'll clean this up in btrfs_cleanup_transaction */
2903 if (trans->aborted)
2904 return 0;
2905
c3e69d58
CM
2906 if (root == root->fs_info->extent_root)
2907 root = root->fs_info->tree_root;
2908
2909 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2910 if (count == 0)
d7df2c79 2911 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2912
c3e69d58 2913again:
709c0486
AJ
2914#ifdef SCRAMBLE_DELAYED_REFS
2915 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2916#endif
d9a0540a 2917 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2918 ret = __btrfs_run_delayed_refs(trans, root, count);
2919 if (ret < 0) {
2920 btrfs_abort_transaction(trans, root, ret);
2921 return ret;
eb099670 2922 }
c3e69d58 2923
56bec294 2924 if (run_all) {
d7df2c79 2925 if (!list_empty(&trans->new_bgs))
ea658bad 2926 btrfs_create_pending_block_groups(trans, root);
ea658bad 2927
d7df2c79 2928 spin_lock(&delayed_refs->lock);
c46effa6 2929 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2930 if (!node) {
2931 spin_unlock(&delayed_refs->lock);
56bec294 2932 goto out;
d7df2c79 2933 }
c3e69d58 2934 count = (unsigned long)-1;
e9d0b13b 2935
56bec294 2936 while (node) {
c46effa6
LB
2937 head = rb_entry(node, struct btrfs_delayed_ref_head,
2938 href_node);
2939 if (btrfs_delayed_ref_is_head(&head->node)) {
2940 struct btrfs_delayed_ref_node *ref;
5caf2a00 2941
c46effa6 2942 ref = &head->node;
56bec294
CM
2943 atomic_inc(&ref->refs);
2944
2945 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2946 /*
2947 * Mutex was contended, block until it's
2948 * released and try again
2949 */
56bec294
CM
2950 mutex_lock(&head->mutex);
2951 mutex_unlock(&head->mutex);
2952
2953 btrfs_put_delayed_ref(ref);
1887be66 2954 cond_resched();
56bec294 2955 goto again;
c46effa6
LB
2956 } else {
2957 WARN_ON(1);
56bec294
CM
2958 }
2959 node = rb_next(node);
2960 }
2961 spin_unlock(&delayed_refs->lock);
d7df2c79 2962 cond_resched();
56bec294 2963 goto again;
5f39d397 2964 }
54aa1f4d 2965out:
edf39272 2966 assert_qgroups_uptodate(trans);
d9a0540a 2967 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2968 return 0;
2969}
2970
5d4f98a2
YZ
2971int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2972 struct btrfs_root *root,
2973 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2974 int level, int is_data)
5d4f98a2
YZ
2975{
2976 struct btrfs_delayed_extent_op *extent_op;
2977 int ret;
2978
78a6184a 2979 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2980 if (!extent_op)
2981 return -ENOMEM;
2982
2983 extent_op->flags_to_set = flags;
2984 extent_op->update_flags = 1;
2985 extent_op->update_key = 0;
2986 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2987 extent_op->level = level;
5d4f98a2 2988
66d7e7f0
AJ
2989 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2990 num_bytes, extent_op);
5d4f98a2 2991 if (ret)
78a6184a 2992 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2993 return ret;
2994}
2995
2996static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2997 struct btrfs_root *root,
2998 struct btrfs_path *path,
2999 u64 objectid, u64 offset, u64 bytenr)
3000{
3001 struct btrfs_delayed_ref_head *head;
3002 struct btrfs_delayed_ref_node *ref;
3003 struct btrfs_delayed_data_ref *data_ref;
3004 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3005 int ret = 0;
3006
5d4f98a2
YZ
3007 delayed_refs = &trans->transaction->delayed_refs;
3008 spin_lock(&delayed_refs->lock);
3009 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3010 if (!head) {
3011 spin_unlock(&delayed_refs->lock);
3012 return 0;
3013 }
5d4f98a2
YZ
3014
3015 if (!mutex_trylock(&head->mutex)) {
3016 atomic_inc(&head->node.refs);
3017 spin_unlock(&delayed_refs->lock);
3018
b3b4aa74 3019 btrfs_release_path(path);
5d4f98a2 3020
8cc33e5c
DS
3021 /*
3022 * Mutex was contended, block until it's released and let
3023 * caller try again
3024 */
5d4f98a2
YZ
3025 mutex_lock(&head->mutex);
3026 mutex_unlock(&head->mutex);
3027 btrfs_put_delayed_ref(&head->node);
3028 return -EAGAIN;
3029 }
d7df2c79 3030 spin_unlock(&delayed_refs->lock);
5d4f98a2 3031
d7df2c79 3032 spin_lock(&head->lock);
c6fc2454 3033 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3034 /* If it's a shared ref we know a cross reference exists */
3035 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3036 ret = 1;
3037 break;
3038 }
5d4f98a2 3039
d7df2c79 3040 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3041
d7df2c79
JB
3042 /*
3043 * If our ref doesn't match the one we're currently looking at
3044 * then we have a cross reference.
3045 */
3046 if (data_ref->root != root->root_key.objectid ||
3047 data_ref->objectid != objectid ||
3048 data_ref->offset != offset) {
3049 ret = 1;
3050 break;
3051 }
5d4f98a2 3052 }
d7df2c79 3053 spin_unlock(&head->lock);
5d4f98a2 3054 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3055 return ret;
3056}
3057
3058static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3059 struct btrfs_root *root,
3060 struct btrfs_path *path,
3061 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3062{
3063 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3064 struct extent_buffer *leaf;
5d4f98a2
YZ
3065 struct btrfs_extent_data_ref *ref;
3066 struct btrfs_extent_inline_ref *iref;
3067 struct btrfs_extent_item *ei;
f321e491 3068 struct btrfs_key key;
5d4f98a2 3069 u32 item_size;
be20aa9d 3070 int ret;
925baedd 3071
be20aa9d 3072 key.objectid = bytenr;
31840ae1 3073 key.offset = (u64)-1;
f321e491 3074 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3075
be20aa9d
CM
3076 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3077 if (ret < 0)
3078 goto out;
79787eaa 3079 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3080
3081 ret = -ENOENT;
3082 if (path->slots[0] == 0)
31840ae1 3083 goto out;
be20aa9d 3084
31840ae1 3085 path->slots[0]--;
f321e491 3086 leaf = path->nodes[0];
5d4f98a2 3087 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3088
5d4f98a2 3089 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3090 goto out;
f321e491 3091
5d4f98a2
YZ
3092 ret = 1;
3093 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3094#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3095 if (item_size < sizeof(*ei)) {
3096 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3097 goto out;
3098 }
3099#endif
3100 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3101
5d4f98a2
YZ
3102 if (item_size != sizeof(*ei) +
3103 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3104 goto out;
be20aa9d 3105
5d4f98a2
YZ
3106 if (btrfs_extent_generation(leaf, ei) <=
3107 btrfs_root_last_snapshot(&root->root_item))
3108 goto out;
3109
3110 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3111 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3112 BTRFS_EXTENT_DATA_REF_KEY)
3113 goto out;
3114
3115 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3116 if (btrfs_extent_refs(leaf, ei) !=
3117 btrfs_extent_data_ref_count(leaf, ref) ||
3118 btrfs_extent_data_ref_root(leaf, ref) !=
3119 root->root_key.objectid ||
3120 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3121 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3122 goto out;
3123
3124 ret = 0;
3125out:
3126 return ret;
3127}
3128
3129int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root,
3131 u64 objectid, u64 offset, u64 bytenr)
3132{
3133 struct btrfs_path *path;
3134 int ret;
3135 int ret2;
3136
3137 path = btrfs_alloc_path();
3138 if (!path)
3139 return -ENOENT;
3140
3141 do {
3142 ret = check_committed_ref(trans, root, path, objectid,
3143 offset, bytenr);
3144 if (ret && ret != -ENOENT)
f321e491 3145 goto out;
80ff3856 3146
5d4f98a2
YZ
3147 ret2 = check_delayed_ref(trans, root, path, objectid,
3148 offset, bytenr);
3149 } while (ret2 == -EAGAIN);
3150
3151 if (ret2 && ret2 != -ENOENT) {
3152 ret = ret2;
3153 goto out;
f321e491 3154 }
5d4f98a2
YZ
3155
3156 if (ret != -ENOENT || ret2 != -ENOENT)
3157 ret = 0;
be20aa9d 3158out:
80ff3856 3159 btrfs_free_path(path);
f0486c68
YZ
3160 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3161 WARN_ON(ret > 0);
f321e491 3162 return ret;
be20aa9d 3163}
c5739bba 3164
5d4f98a2 3165static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3166 struct btrfs_root *root,
5d4f98a2 3167 struct extent_buffer *buf,
e339a6b0 3168 int full_backref, int inc)
31840ae1
ZY
3169{
3170 u64 bytenr;
5d4f98a2
YZ
3171 u64 num_bytes;
3172 u64 parent;
31840ae1 3173 u64 ref_root;
31840ae1 3174 u32 nritems;
31840ae1
ZY
3175 struct btrfs_key key;
3176 struct btrfs_file_extent_item *fi;
3177 int i;
3178 int level;
3179 int ret = 0;
31840ae1 3180 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3181 u64, u64, u64, u64, u64, u64, int);
31840ae1 3182
fccb84c9
DS
3183
3184 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3185 return 0;
fccb84c9 3186
31840ae1 3187 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3188 nritems = btrfs_header_nritems(buf);
3189 level = btrfs_header_level(buf);
3190
27cdeb70 3191 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3192 return 0;
31840ae1 3193
5d4f98a2
YZ
3194 if (inc)
3195 process_func = btrfs_inc_extent_ref;
3196 else
3197 process_func = btrfs_free_extent;
31840ae1 3198
5d4f98a2
YZ
3199 if (full_backref)
3200 parent = buf->start;
3201 else
3202 parent = 0;
3203
3204 for (i = 0; i < nritems; i++) {
31840ae1 3205 if (level == 0) {
5d4f98a2 3206 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3207 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3208 continue;
5d4f98a2 3209 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3210 struct btrfs_file_extent_item);
3211 if (btrfs_file_extent_type(buf, fi) ==
3212 BTRFS_FILE_EXTENT_INLINE)
3213 continue;
3214 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3215 if (bytenr == 0)
3216 continue;
5d4f98a2
YZ
3217
3218 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3219 key.offset -= btrfs_file_extent_offset(buf, fi);
3220 ret = process_func(trans, root, bytenr, num_bytes,
3221 parent, ref_root, key.objectid,
e339a6b0 3222 key.offset, 1);
31840ae1
ZY
3223 if (ret)
3224 goto fail;
3225 } else {
5d4f98a2 3226 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3227 num_bytes = root->nodesize;
5d4f98a2 3228 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3229 parent, ref_root, level - 1, 0,
e339a6b0 3230 1);
31840ae1
ZY
3231 if (ret)
3232 goto fail;
3233 }
3234 }
3235 return 0;
3236fail:
5d4f98a2
YZ
3237 return ret;
3238}
3239
3240int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3241 struct extent_buffer *buf, int full_backref)
5d4f98a2 3242{
e339a6b0 3243 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3244}
3245
3246int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3247 struct extent_buffer *buf, int full_backref)
5d4f98a2 3248{
e339a6b0 3249 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3250}
3251
9078a3e1
CM
3252static int write_one_cache_group(struct btrfs_trans_handle *trans,
3253 struct btrfs_root *root,
3254 struct btrfs_path *path,
3255 struct btrfs_block_group_cache *cache)
3256{
3257 int ret;
9078a3e1 3258 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3259 unsigned long bi;
3260 struct extent_buffer *leaf;
9078a3e1 3261
9078a3e1 3262 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3263 if (ret) {
3264 if (ret > 0)
3265 ret = -ENOENT;
54aa1f4d 3266 goto fail;
df95e7f0 3267 }
5f39d397
CM
3268
3269 leaf = path->nodes[0];
3270 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3271 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3272 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3273fail:
24b89d08 3274 btrfs_release_path(path);
df95e7f0 3275 return ret;
9078a3e1
CM
3276
3277}
3278
4a8c9a62
YZ
3279static struct btrfs_block_group_cache *
3280next_block_group(struct btrfs_root *root,
3281 struct btrfs_block_group_cache *cache)
3282{
3283 struct rb_node *node;
292cbd51 3284
4a8c9a62 3285 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3286
3287 /* If our block group was removed, we need a full search. */
3288 if (RB_EMPTY_NODE(&cache->cache_node)) {
3289 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3290
3291 spin_unlock(&root->fs_info->block_group_cache_lock);
3292 btrfs_put_block_group(cache);
3293 cache = btrfs_lookup_first_block_group(root->fs_info,
3294 next_bytenr);
3295 return cache;
3296 }
4a8c9a62
YZ
3297 node = rb_next(&cache->cache_node);
3298 btrfs_put_block_group(cache);
3299 if (node) {
3300 cache = rb_entry(node, struct btrfs_block_group_cache,
3301 cache_node);
11dfe35a 3302 btrfs_get_block_group(cache);
4a8c9a62
YZ
3303 } else
3304 cache = NULL;
3305 spin_unlock(&root->fs_info->block_group_cache_lock);
3306 return cache;
3307}
3308
0af3d00b
JB
3309static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3310 struct btrfs_trans_handle *trans,
3311 struct btrfs_path *path)
3312{
3313 struct btrfs_root *root = block_group->fs_info->tree_root;
3314 struct inode *inode = NULL;
3315 u64 alloc_hint = 0;
2b20982e 3316 int dcs = BTRFS_DC_ERROR;
f8c269d7 3317 u64 num_pages = 0;
0af3d00b
JB
3318 int retries = 0;
3319 int ret = 0;
3320
3321 /*
3322 * If this block group is smaller than 100 megs don't bother caching the
3323 * block group.
3324 */
3325 if (block_group->key.offset < (100 * 1024 * 1024)) {
3326 spin_lock(&block_group->lock);
3327 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3328 spin_unlock(&block_group->lock);
3329 return 0;
3330 }
3331
0c0ef4bc
JB
3332 if (trans->aborted)
3333 return 0;
0af3d00b
JB
3334again:
3335 inode = lookup_free_space_inode(root, block_group, path);
3336 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3337 ret = PTR_ERR(inode);
b3b4aa74 3338 btrfs_release_path(path);
0af3d00b
JB
3339 goto out;
3340 }
3341
3342 if (IS_ERR(inode)) {
3343 BUG_ON(retries);
3344 retries++;
3345
3346 if (block_group->ro)
3347 goto out_free;
3348
3349 ret = create_free_space_inode(root, trans, block_group, path);
3350 if (ret)
3351 goto out_free;
3352 goto again;
3353 }
3354
5b0e95bf
JB
3355 /* We've already setup this transaction, go ahead and exit */
3356 if (block_group->cache_generation == trans->transid &&
3357 i_size_read(inode)) {
3358 dcs = BTRFS_DC_SETUP;
3359 goto out_put;
3360 }
3361
0af3d00b
JB
3362 /*
3363 * We want to set the generation to 0, that way if anything goes wrong
3364 * from here on out we know not to trust this cache when we load up next
3365 * time.
3366 */
3367 BTRFS_I(inode)->generation = 0;
3368 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3369 if (ret) {
3370 /*
3371 * So theoretically we could recover from this, simply set the
3372 * super cache generation to 0 so we know to invalidate the
3373 * cache, but then we'd have to keep track of the block groups
3374 * that fail this way so we know we _have_ to reset this cache
3375 * before the next commit or risk reading stale cache. So to
3376 * limit our exposure to horrible edge cases lets just abort the
3377 * transaction, this only happens in really bad situations
3378 * anyway.
3379 */
3380 btrfs_abort_transaction(trans, root, ret);
3381 goto out_put;
3382 }
0af3d00b
JB
3383 WARN_ON(ret);
3384
3385 if (i_size_read(inode) > 0) {
7b61cd92
MX
3386 ret = btrfs_check_trunc_cache_free_space(root,
3387 &root->fs_info->global_block_rsv);
3388 if (ret)
3389 goto out_put;
3390
1bbc621e 3391 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3392 if (ret)
3393 goto out_put;
3394 }
3395
3396 spin_lock(&block_group->lock);
cf7c1ef6 3397 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3398 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3399 /*
3400 * don't bother trying to write stuff out _if_
3401 * a) we're not cached,
3402 * b) we're with nospace_cache mount option.
3403 */
2b20982e 3404 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3405 spin_unlock(&block_group->lock);
3406 goto out_put;
3407 }
3408 spin_unlock(&block_group->lock);
3409
2968b1f4
JB
3410 /*
3411 * We hit an ENOSPC when setting up the cache in this transaction, just
3412 * skip doing the setup, we've already cleared the cache so we're safe.
3413 */
3414 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3415 ret = -ENOSPC;
3416 goto out_put;
3417 }
3418
6fc823b1
JB
3419 /*
3420 * Try to preallocate enough space based on how big the block group is.
3421 * Keep in mind this has to include any pinned space which could end up
3422 * taking up quite a bit since it's not folded into the other space
3423 * cache.
3424 */
f8c269d7 3425 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3426 if (!num_pages)
3427 num_pages = 1;
3428
0af3d00b
JB
3429 num_pages *= 16;
3430 num_pages *= PAGE_CACHE_SIZE;
3431
7cf5b976 3432 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3433 if (ret)
3434 goto out_put;
3435
3436 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3437 num_pages, num_pages,
3438 &alloc_hint);
2968b1f4
JB
3439 /*
3440 * Our cache requires contiguous chunks so that we don't modify a bunch
3441 * of metadata or split extents when writing the cache out, which means
3442 * we can enospc if we are heavily fragmented in addition to just normal
3443 * out of space conditions. So if we hit this just skip setting up any
3444 * other block groups for this transaction, maybe we'll unpin enough
3445 * space the next time around.
3446 */
2b20982e
JB
3447 if (!ret)
3448 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3449 else if (ret == -ENOSPC)
3450 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3451 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3452
0af3d00b
JB
3453out_put:
3454 iput(inode);
3455out_free:
b3b4aa74 3456 btrfs_release_path(path);
0af3d00b
JB
3457out:
3458 spin_lock(&block_group->lock);
e65cbb94 3459 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3460 block_group->cache_generation = trans->transid;
2b20982e 3461 block_group->disk_cache_state = dcs;
0af3d00b
JB
3462 spin_unlock(&block_group->lock);
3463
3464 return ret;
3465}
3466
dcdf7f6d
JB
3467int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3468 struct btrfs_root *root)
3469{
3470 struct btrfs_block_group_cache *cache, *tmp;
3471 struct btrfs_transaction *cur_trans = trans->transaction;
3472 struct btrfs_path *path;
3473
3474 if (list_empty(&cur_trans->dirty_bgs) ||
3475 !btrfs_test_opt(root, SPACE_CACHE))
3476 return 0;
3477
3478 path = btrfs_alloc_path();
3479 if (!path)
3480 return -ENOMEM;
3481
3482 /* Could add new block groups, use _safe just in case */
3483 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3484 dirty_list) {
3485 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3486 cache_save_setup(cache, trans, path);
3487 }
3488
3489 btrfs_free_path(path);
3490 return 0;
3491}
3492
1bbc621e
CM
3493/*
3494 * transaction commit does final block group cache writeback during a
3495 * critical section where nothing is allowed to change the FS. This is
3496 * required in order for the cache to actually match the block group,
3497 * but can introduce a lot of latency into the commit.
3498 *
3499 * So, btrfs_start_dirty_block_groups is here to kick off block group
3500 * cache IO. There's a chance we'll have to redo some of it if the
3501 * block group changes again during the commit, but it greatly reduces
3502 * the commit latency by getting rid of the easy block groups while
3503 * we're still allowing others to join the commit.
3504 */
3505int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3506 struct btrfs_root *root)
9078a3e1 3507{
4a8c9a62 3508 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3509 struct btrfs_transaction *cur_trans = trans->transaction;
3510 int ret = 0;
c9dc4c65 3511 int should_put;
1bbc621e
CM
3512 struct btrfs_path *path = NULL;
3513 LIST_HEAD(dirty);
3514 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3515 int num_started = 0;
1bbc621e
CM
3516 int loops = 0;
3517
3518 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3519 if (list_empty(&cur_trans->dirty_bgs)) {
3520 spin_unlock(&cur_trans->dirty_bgs_lock);
3521 return 0;
1bbc621e 3522 }
b58d1a9e 3523 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3524 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3525
1bbc621e 3526again:
1bbc621e
CM
3527 /*
3528 * make sure all the block groups on our dirty list actually
3529 * exist
3530 */
3531 btrfs_create_pending_block_groups(trans, root);
3532
3533 if (!path) {
3534 path = btrfs_alloc_path();
3535 if (!path)
3536 return -ENOMEM;
3537 }
3538
b58d1a9e
FM
3539 /*
3540 * cache_write_mutex is here only to save us from balance or automatic
3541 * removal of empty block groups deleting this block group while we are
3542 * writing out the cache
3543 */
3544 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3545 while (!list_empty(&dirty)) {
3546 cache = list_first_entry(&dirty,
3547 struct btrfs_block_group_cache,
3548 dirty_list);
1bbc621e
CM
3549 /*
3550 * this can happen if something re-dirties a block
3551 * group that is already under IO. Just wait for it to
3552 * finish and then do it all again
3553 */
3554 if (!list_empty(&cache->io_list)) {
3555 list_del_init(&cache->io_list);
3556 btrfs_wait_cache_io(root, trans, cache,
3557 &cache->io_ctl, path,
3558 cache->key.objectid);
3559 btrfs_put_block_group(cache);
3560 }
3561
3562
3563 /*
3564 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3565 * if it should update the cache_state. Don't delete
3566 * until after we wait.
3567 *
3568 * Since we're not running in the commit critical section
3569 * we need the dirty_bgs_lock to protect from update_block_group
3570 */
3571 spin_lock(&cur_trans->dirty_bgs_lock);
3572 list_del_init(&cache->dirty_list);
3573 spin_unlock(&cur_trans->dirty_bgs_lock);
3574
3575 should_put = 1;
3576
3577 cache_save_setup(cache, trans, path);
3578
3579 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3580 cache->io_ctl.inode = NULL;
3581 ret = btrfs_write_out_cache(root, trans, cache, path);
3582 if (ret == 0 && cache->io_ctl.inode) {
3583 num_started++;
3584 should_put = 0;
3585
3586 /*
3587 * the cache_write_mutex is protecting
3588 * the io_list
3589 */
3590 list_add_tail(&cache->io_list, io);
3591 } else {
3592 /*
3593 * if we failed to write the cache, the
3594 * generation will be bad and life goes on
3595 */
3596 ret = 0;
3597 }
3598 }
ff1f8250 3599 if (!ret) {
1bbc621e 3600 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3601 /*
3602 * Our block group might still be attached to the list
3603 * of new block groups in the transaction handle of some
3604 * other task (struct btrfs_trans_handle->new_bgs). This
3605 * means its block group item isn't yet in the extent
3606 * tree. If this happens ignore the error, as we will
3607 * try again later in the critical section of the
3608 * transaction commit.
3609 */
3610 if (ret == -ENOENT) {
3611 ret = 0;
3612 spin_lock(&cur_trans->dirty_bgs_lock);
3613 if (list_empty(&cache->dirty_list)) {
3614 list_add_tail(&cache->dirty_list,
3615 &cur_trans->dirty_bgs);
3616 btrfs_get_block_group(cache);
3617 }
3618 spin_unlock(&cur_trans->dirty_bgs_lock);
3619 } else if (ret) {
3620 btrfs_abort_transaction(trans, root, ret);
3621 }
3622 }
1bbc621e
CM
3623
3624 /* if its not on the io list, we need to put the block group */
3625 if (should_put)
3626 btrfs_put_block_group(cache);
3627
3628 if (ret)
3629 break;
b58d1a9e
FM
3630
3631 /*
3632 * Avoid blocking other tasks for too long. It might even save
3633 * us from writing caches for block groups that are going to be
3634 * removed.
3635 */
3636 mutex_unlock(&trans->transaction->cache_write_mutex);
3637 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3638 }
b58d1a9e 3639 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3640
3641 /*
3642 * go through delayed refs for all the stuff we've just kicked off
3643 * and then loop back (just once)
3644 */
3645 ret = btrfs_run_delayed_refs(trans, root, 0);
3646 if (!ret && loops == 0) {
3647 loops++;
3648 spin_lock(&cur_trans->dirty_bgs_lock);
3649 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3650 /*
3651 * dirty_bgs_lock protects us from concurrent block group
3652 * deletes too (not just cache_write_mutex).
3653 */
3654 if (!list_empty(&dirty)) {
3655 spin_unlock(&cur_trans->dirty_bgs_lock);
3656 goto again;
3657 }
1bbc621e 3658 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3659 }
3660
3661 btrfs_free_path(path);
3662 return ret;
3663}
3664
3665int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3666 struct btrfs_root *root)
3667{
3668 struct btrfs_block_group_cache *cache;
3669 struct btrfs_transaction *cur_trans = trans->transaction;
3670 int ret = 0;
3671 int should_put;
3672 struct btrfs_path *path;
3673 struct list_head *io = &cur_trans->io_bgs;
3674 int num_started = 0;
9078a3e1
CM
3675
3676 path = btrfs_alloc_path();
3677 if (!path)
3678 return -ENOMEM;
3679
ce93ec54
JB
3680 /*
3681 * We don't need the lock here since we are protected by the transaction
3682 * commit. We want to do the cache_save_setup first and then run the
3683 * delayed refs to make sure we have the best chance at doing this all
3684 * in one shot.
3685 */
3686 while (!list_empty(&cur_trans->dirty_bgs)) {
3687 cache = list_first_entry(&cur_trans->dirty_bgs,
3688 struct btrfs_block_group_cache,
3689 dirty_list);
c9dc4c65
CM
3690
3691 /*
3692 * this can happen if cache_save_setup re-dirties a block
3693 * group that is already under IO. Just wait for it to
3694 * finish and then do it all again
3695 */
3696 if (!list_empty(&cache->io_list)) {
3697 list_del_init(&cache->io_list);
3698 btrfs_wait_cache_io(root, trans, cache,
3699 &cache->io_ctl, path,
3700 cache->key.objectid);
3701 btrfs_put_block_group(cache);
c9dc4c65
CM
3702 }
3703
1bbc621e
CM
3704 /*
3705 * don't remove from the dirty list until after we've waited
3706 * on any pending IO
3707 */
ce93ec54 3708 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3709 should_put = 1;
3710
1bbc621e 3711 cache_save_setup(cache, trans, path);
c9dc4c65 3712
ce93ec54 3713 if (!ret)
c9dc4c65
CM
3714 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3715
3716 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3717 cache->io_ctl.inode = NULL;
3718 ret = btrfs_write_out_cache(root, trans, cache, path);
3719 if (ret == 0 && cache->io_ctl.inode) {
3720 num_started++;
3721 should_put = 0;
1bbc621e 3722 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3723 } else {
3724 /*
3725 * if we failed to write the cache, the
3726 * generation will be bad and life goes on
3727 */
3728 ret = 0;
3729 }
3730 }
ff1f8250 3731 if (!ret) {
ce93ec54 3732 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3733 if (ret)
3734 btrfs_abort_transaction(trans, root, ret);
3735 }
c9dc4c65
CM
3736
3737 /* if its not on the io list, we need to put the block group */
3738 if (should_put)
3739 btrfs_put_block_group(cache);
3740 }
3741
1bbc621e
CM
3742 while (!list_empty(io)) {
3743 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3744 io_list);
3745 list_del_init(&cache->io_list);
c9dc4c65
CM
3746 btrfs_wait_cache_io(root, trans, cache,
3747 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3748 btrfs_put_block_group(cache);
3749 }
3750
9078a3e1 3751 btrfs_free_path(path);
ce93ec54 3752 return ret;
9078a3e1
CM
3753}
3754
d2fb3437
YZ
3755int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3756{
3757 struct btrfs_block_group_cache *block_group;
3758 int readonly = 0;
3759
3760 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3761 if (!block_group || block_group->ro)
3762 readonly = 1;
3763 if (block_group)
fa9c0d79 3764 btrfs_put_block_group(block_group);
d2fb3437
YZ
3765 return readonly;
3766}
3767
6ab0a202
JM
3768static const char *alloc_name(u64 flags)
3769{
3770 switch (flags) {
3771 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3772 return "mixed";
3773 case BTRFS_BLOCK_GROUP_METADATA:
3774 return "metadata";
3775 case BTRFS_BLOCK_GROUP_DATA:
3776 return "data";
3777 case BTRFS_BLOCK_GROUP_SYSTEM:
3778 return "system";
3779 default:
3780 WARN_ON(1);
3781 return "invalid-combination";
3782 };
3783}
3784
593060d7
CM
3785static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3786 u64 total_bytes, u64 bytes_used,
3787 struct btrfs_space_info **space_info)
3788{
3789 struct btrfs_space_info *found;
b742bb82
YZ
3790 int i;
3791 int factor;
b150a4f1 3792 int ret;
b742bb82
YZ
3793
3794 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3795 BTRFS_BLOCK_GROUP_RAID10))
3796 factor = 2;
3797 else
3798 factor = 1;
593060d7
CM
3799
3800 found = __find_space_info(info, flags);
3801 if (found) {
25179201 3802 spin_lock(&found->lock);
593060d7 3803 found->total_bytes += total_bytes;
89a55897 3804 found->disk_total += total_bytes * factor;
593060d7 3805 found->bytes_used += bytes_used;
b742bb82 3806 found->disk_used += bytes_used * factor;
2e6e5183
FM
3807 if (total_bytes > 0)
3808 found->full = 0;
25179201 3809 spin_unlock(&found->lock);
593060d7
CM
3810 *space_info = found;
3811 return 0;
3812 }
c146afad 3813 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3814 if (!found)
3815 return -ENOMEM;
3816
908c7f19 3817 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3818 if (ret) {
3819 kfree(found);
3820 return ret;
3821 }
3822
c1895442 3823 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3824 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3825 init_rwsem(&found->groups_sem);
0f9dd46c 3826 spin_lock_init(&found->lock);
52ba6929 3827 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3828 found->total_bytes = total_bytes;
89a55897 3829 found->disk_total = total_bytes * factor;
593060d7 3830 found->bytes_used = bytes_used;
b742bb82 3831 found->disk_used = bytes_used * factor;
593060d7 3832 found->bytes_pinned = 0;
e8569813 3833 found->bytes_reserved = 0;
c146afad 3834 found->bytes_readonly = 0;
f0486c68 3835 found->bytes_may_use = 0;
6af3e3ad 3836 found->full = 0;
4f4db217 3837 found->max_extent_size = 0;
0e4f8f88 3838 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3839 found->chunk_alloc = 0;
fdb5effd
JB
3840 found->flush = 0;
3841 init_waitqueue_head(&found->wait);
633c0aad 3842 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3843
3844 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3845 info->space_info_kobj, "%s",
3846 alloc_name(found->flags));
3847 if (ret) {
3848 kfree(found);
3849 return ret;
3850 }
3851
593060d7 3852 *space_info = found;
4184ea7f 3853 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3854 if (flags & BTRFS_BLOCK_GROUP_DATA)
3855 info->data_sinfo = found;
6ab0a202
JM
3856
3857 return ret;
593060d7
CM
3858}
3859
8790d502
CM
3860static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3861{
899c81ea
ID
3862 u64 extra_flags = chunk_to_extended(flags) &
3863 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3864
de98ced9 3865 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3866 if (flags & BTRFS_BLOCK_GROUP_DATA)
3867 fs_info->avail_data_alloc_bits |= extra_flags;
3868 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3869 fs_info->avail_metadata_alloc_bits |= extra_flags;
3870 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3871 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3872 write_sequnlock(&fs_info->profiles_lock);
8790d502 3873}
593060d7 3874
fc67c450
ID
3875/*
3876 * returns target flags in extended format or 0 if restripe for this
3877 * chunk_type is not in progress
c6664b42
ID
3878 *
3879 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3880 */
3881static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3882{
3883 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3884 u64 target = 0;
3885
fc67c450
ID
3886 if (!bctl)
3887 return 0;
3888
3889 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3890 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3891 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3892 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3893 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3894 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3895 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3896 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3897 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3898 }
3899
3900 return target;
3901}
3902
a46d11a8
ID
3903/*
3904 * @flags: available profiles in extended format (see ctree.h)
3905 *
e4d8ec0f
ID
3906 * Returns reduced profile in chunk format. If profile changing is in
3907 * progress (either running or paused) picks the target profile (if it's
3908 * already available), otherwise falls back to plain reducing.
a46d11a8 3909 */
48a3b636 3910static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3911{
95669976 3912 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3913 u64 target;
9c170b26
ZL
3914 u64 raid_type;
3915 u64 allowed = 0;
a061fc8d 3916
fc67c450
ID
3917 /*
3918 * see if restripe for this chunk_type is in progress, if so
3919 * try to reduce to the target profile
3920 */
e4d8ec0f 3921 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3922 target = get_restripe_target(root->fs_info, flags);
3923 if (target) {
3924 /* pick target profile only if it's already available */
3925 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3926 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3927 return extended_to_chunk(target);
e4d8ec0f
ID
3928 }
3929 }
3930 spin_unlock(&root->fs_info->balance_lock);
3931
53b381b3 3932 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3933 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3934 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3935 allowed |= btrfs_raid_group[raid_type];
3936 }
3937 allowed &= flags;
3938
3939 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3940 allowed = BTRFS_BLOCK_GROUP_RAID6;
3941 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3942 allowed = BTRFS_BLOCK_GROUP_RAID5;
3943 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3944 allowed = BTRFS_BLOCK_GROUP_RAID10;
3945 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3946 allowed = BTRFS_BLOCK_GROUP_RAID1;
3947 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3948 allowed = BTRFS_BLOCK_GROUP_RAID0;
3949
3950 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3951
3952 return extended_to_chunk(flags | allowed);
ec44a35c
CM
3953}
3954
f8213bdc 3955static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3956{
de98ced9 3957 unsigned seq;
f8213bdc 3958 u64 flags;
de98ced9
MX
3959
3960 do {
f8213bdc 3961 flags = orig_flags;
de98ced9
MX
3962 seq = read_seqbegin(&root->fs_info->profiles_lock);
3963
3964 if (flags & BTRFS_BLOCK_GROUP_DATA)
3965 flags |= root->fs_info->avail_data_alloc_bits;
3966 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3967 flags |= root->fs_info->avail_system_alloc_bits;
3968 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3969 flags |= root->fs_info->avail_metadata_alloc_bits;
3970 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3971
b742bb82 3972 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3973}
3974
6d07bcec 3975u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3976{
b742bb82 3977 u64 flags;
53b381b3 3978 u64 ret;
9ed74f2d 3979
b742bb82
YZ
3980 if (data)
3981 flags = BTRFS_BLOCK_GROUP_DATA;
3982 else if (root == root->fs_info->chunk_root)
3983 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3984 else
b742bb82 3985 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3986
53b381b3
DW
3987 ret = get_alloc_profile(root, flags);
3988 return ret;
6a63209f 3989}
9ed74f2d 3990
4ceff079 3991int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 3992{
6a63209f 3993 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3994 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3995 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3996 u64 used;
94b947b2 3997 int ret = 0;
c99f1b0c
ZL
3998 int need_commit = 2;
3999 int have_pinned_space;
6a63209f 4000
6a63209f 4001 /* make sure bytes are sectorsize aligned */
fda2832f 4002 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4003
9dced186 4004 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4005 need_commit = 0;
9dced186 4006 ASSERT(current->journal_info);
0af3d00b
JB
4007 }
4008
b4d7c3c9 4009 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4010 if (!data_sinfo)
4011 goto alloc;
9ed74f2d 4012
6a63209f
JB
4013again:
4014 /* make sure we have enough space to handle the data first */
4015 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4016 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4017 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4018 data_sinfo->bytes_may_use;
ab6e2410
JB
4019
4020 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4021 struct btrfs_trans_handle *trans;
9ed74f2d 4022
6a63209f
JB
4023 /*
4024 * if we don't have enough free bytes in this space then we need
4025 * to alloc a new chunk.
4026 */
b9fd47cd 4027 if (!data_sinfo->full) {
6a63209f 4028 u64 alloc_target;
9ed74f2d 4029
0e4f8f88 4030 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4031 spin_unlock(&data_sinfo->lock);
33b4d47f 4032alloc:
6a63209f 4033 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4034 /*
4035 * It is ugly that we don't call nolock join
4036 * transaction for the free space inode case here.
4037 * But it is safe because we only do the data space
4038 * reservation for the free space cache in the
4039 * transaction context, the common join transaction
4040 * just increase the counter of the current transaction
4041 * handler, doesn't try to acquire the trans_lock of
4042 * the fs.
4043 */
7a7eaa40 4044 trans = btrfs_join_transaction(root);
a22285a6
YZ
4045 if (IS_ERR(trans))
4046 return PTR_ERR(trans);
9ed74f2d 4047
6a63209f 4048 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4049 alloc_target,
4050 CHUNK_ALLOC_NO_FORCE);
6a63209f 4051 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4052 if (ret < 0) {
4053 if (ret != -ENOSPC)
4054 return ret;
c99f1b0c
ZL
4055 else {
4056 have_pinned_space = 1;
d52a5b5f 4057 goto commit_trans;
c99f1b0c 4058 }
d52a5b5f 4059 }
9ed74f2d 4060
b4d7c3c9
LZ
4061 if (!data_sinfo)
4062 data_sinfo = fs_info->data_sinfo;
4063
6a63209f
JB
4064 goto again;
4065 }
f2bb8f5c
JB
4066
4067 /*
b150a4f1 4068 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4069 * allocation, and no removed chunk in current transaction,
4070 * don't bother committing the transaction.
f2bb8f5c 4071 */
c99f1b0c
ZL
4072 have_pinned_space = percpu_counter_compare(
4073 &data_sinfo->total_bytes_pinned,
4074 used + bytes - data_sinfo->total_bytes);
6a63209f 4075 spin_unlock(&data_sinfo->lock);
6a63209f 4076
4e06bdd6 4077 /* commit the current transaction and try again */
d52a5b5f 4078commit_trans:
c99f1b0c 4079 if (need_commit &&
a4abeea4 4080 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4081 need_commit--;
b150a4f1 4082
9a4e7276
ZL
4083 if (need_commit > 0)
4084 btrfs_wait_ordered_roots(fs_info, -1);
4085
7a7eaa40 4086 trans = btrfs_join_transaction(root);
a22285a6
YZ
4087 if (IS_ERR(trans))
4088 return PTR_ERR(trans);
c99f1b0c 4089 if (have_pinned_space >= 0 ||
3204d33c
JB
4090 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4091 &trans->transaction->flags) ||
c99f1b0c 4092 need_commit > 0) {
94b947b2
ZL
4093 ret = btrfs_commit_transaction(trans, root);
4094 if (ret)
4095 return ret;
d7c15171
ZL
4096 /*
4097 * make sure that all running delayed iput are
4098 * done
4099 */
4100 down_write(&root->fs_info->delayed_iput_sem);
4101 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4102 goto again;
4103 } else {
4104 btrfs_end_transaction(trans, root);
4105 }
4e06bdd6 4106 }
9ed74f2d 4107
cab45e22
JM
4108 trace_btrfs_space_reservation(root->fs_info,
4109 "space_info:enospc",
4110 data_sinfo->flags, bytes, 1);
6a63209f
JB
4111 return -ENOSPC;
4112 }
4113 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4114 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4115 data_sinfo->flags, bytes, 1);
6a63209f 4116 spin_unlock(&data_sinfo->lock);
6a63209f 4117
237c0e9f 4118 return ret;
9ed74f2d 4119}
6a63209f 4120
4ceff079
QW
4121/*
4122 * New check_data_free_space() with ability for precious data reservation
4123 * Will replace old btrfs_check_data_free_space(), but for patch split,
4124 * add a new function first and then replace it.
4125 */
7cf5b976 4126int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4127{
4128 struct btrfs_root *root = BTRFS_I(inode)->root;
4129 int ret;
4130
4131 /* align the range */
4132 len = round_up(start + len, root->sectorsize) -
4133 round_down(start, root->sectorsize);
4134 start = round_down(start, root->sectorsize);
4135
4136 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4137 if (ret < 0)
4138 return ret;
4139
94ed938a
QW
4140 /*
4141 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4142 *
4143 * TODO: Find a good method to avoid reserve data space for NOCOW
4144 * range, but don't impact performance on quota disable case.
4145 */
4ceff079
QW
4146 ret = btrfs_qgroup_reserve_data(inode, start, len);
4147 return ret;
4148}
4149
4ceff079
QW
4150/*
4151 * Called if we need to clear a data reservation for this inode
4152 * Normally in a error case.
4153 *
51773bec
QW
4154 * This one will *NOT* use accurate qgroup reserved space API, just for case
4155 * which we can't sleep and is sure it won't affect qgroup reserved space.
4156 * Like clear_bit_hook().
4ceff079 4157 */
51773bec
QW
4158void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4159 u64 len)
4ceff079
QW
4160{
4161 struct btrfs_root *root = BTRFS_I(inode)->root;
4162 struct btrfs_space_info *data_sinfo;
4163
4164 /* Make sure the range is aligned to sectorsize */
4165 len = round_up(start + len, root->sectorsize) -
4166 round_down(start, root->sectorsize);
4167 start = round_down(start, root->sectorsize);
4168
4ceff079
QW
4169 data_sinfo = root->fs_info->data_sinfo;
4170 spin_lock(&data_sinfo->lock);
4171 if (WARN_ON(data_sinfo->bytes_may_use < len))
4172 data_sinfo->bytes_may_use = 0;
4173 else
4174 data_sinfo->bytes_may_use -= len;
4175 trace_btrfs_space_reservation(root->fs_info, "space_info",
4176 data_sinfo->flags, len, 0);
4177 spin_unlock(&data_sinfo->lock);
4178}
4179
51773bec
QW
4180/*
4181 * Called if we need to clear a data reservation for this inode
4182 * Normally in a error case.
4183 *
4184 * This one will handle the per-indoe data rsv map for accurate reserved
4185 * space framework.
4186 */
4187void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4188{
4189 btrfs_free_reserved_data_space_noquota(inode, start, len);
4190 btrfs_qgroup_free_data(inode, start, len);
4191}
4192
97e728d4 4193static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4194{
97e728d4
JB
4195 struct list_head *head = &info->space_info;
4196 struct btrfs_space_info *found;
e3ccfa98 4197
97e728d4
JB
4198 rcu_read_lock();
4199 list_for_each_entry_rcu(found, head, list) {
4200 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4201 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4202 }
97e728d4 4203 rcu_read_unlock();
e3ccfa98
JB
4204}
4205
3c76cd84
MX
4206static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4207{
4208 return (global->size << 1);
4209}
4210
e5bc2458 4211static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4212 struct btrfs_space_info *sinfo, int force)
32c00aff 4213{
fb25e914 4214 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4215 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4216 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4217 u64 thresh;
e3ccfa98 4218
0e4f8f88
CM
4219 if (force == CHUNK_ALLOC_FORCE)
4220 return 1;
4221
fb25e914
JB
4222 /*
4223 * We need to take into account the global rsv because for all intents
4224 * and purposes it's used space. Don't worry about locking the
4225 * global_rsv, it doesn't change except when the transaction commits.
4226 */
54338b5c 4227 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4228 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4229
0e4f8f88
CM
4230 /*
4231 * in limited mode, we want to have some free space up to
4232 * about 1% of the FS size.
4233 */
4234 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4235 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4236 thresh = max_t(u64, 64 * 1024 * 1024,
4237 div_factor_fine(thresh, 1));
4238
4239 if (num_bytes - num_allocated < thresh)
4240 return 1;
4241 }
0e4f8f88 4242
698d0082 4243 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4244 return 0;
424499db 4245 return 1;
32c00aff
JB
4246}
4247
39c2d7fa 4248static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4249{
4250 u64 num_dev;
4251
53b381b3
DW
4252 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4253 BTRFS_BLOCK_GROUP_RAID0 |
4254 BTRFS_BLOCK_GROUP_RAID5 |
4255 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4256 num_dev = root->fs_info->fs_devices->rw_devices;
4257 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4258 num_dev = 2;
4259 else
4260 num_dev = 1; /* DUP or single */
4261
39c2d7fa 4262 return num_dev;
15d1ff81
LB
4263}
4264
39c2d7fa
FM
4265/*
4266 * If @is_allocation is true, reserve space in the system space info necessary
4267 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4268 * removing a chunk.
4269 */
4270void check_system_chunk(struct btrfs_trans_handle *trans,
4271 struct btrfs_root *root,
4617ea3a 4272 u64 type)
15d1ff81
LB
4273{
4274 struct btrfs_space_info *info;
4275 u64 left;
4276 u64 thresh;
4fbcdf66 4277 int ret = 0;
39c2d7fa 4278 u64 num_devs;
4fbcdf66
FM
4279
4280 /*
4281 * Needed because we can end up allocating a system chunk and for an
4282 * atomic and race free space reservation in the chunk block reserve.
4283 */
4284 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4285
4286 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4287 spin_lock(&info->lock);
4288 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4289 info->bytes_reserved - info->bytes_readonly -
4290 info->bytes_may_use;
15d1ff81
LB
4291 spin_unlock(&info->lock);
4292
39c2d7fa
FM
4293 num_devs = get_profile_num_devs(root, type);
4294
4295 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4296 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4297 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4298
15d1ff81 4299 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4300 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4301 left, thresh, type);
15d1ff81
LB
4302 dump_space_info(info, 0, 0);
4303 }
4304
4305 if (left < thresh) {
4306 u64 flags;
4307
4308 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4309 /*
4310 * Ignore failure to create system chunk. We might end up not
4311 * needing it, as we might not need to COW all nodes/leafs from
4312 * the paths we visit in the chunk tree (they were already COWed
4313 * or created in the current transaction for example).
4314 */
4315 ret = btrfs_alloc_chunk(trans, root, flags);
4316 }
4317
4318 if (!ret) {
4319 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4320 &root->fs_info->chunk_block_rsv,
4321 thresh, BTRFS_RESERVE_NO_FLUSH);
4322 if (!ret)
4323 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4324 }
4325}
4326
6324fbf3 4327static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4328 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4329{
6324fbf3 4330 struct btrfs_space_info *space_info;
97e728d4 4331 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4332 int wait_for_alloc = 0;
9ed74f2d 4333 int ret = 0;
9ed74f2d 4334
c6b305a8
JB
4335 /* Don't re-enter if we're already allocating a chunk */
4336 if (trans->allocating_chunk)
4337 return -ENOSPC;
4338
6324fbf3 4339 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4340 if (!space_info) {
4341 ret = update_space_info(extent_root->fs_info, flags,
4342 0, 0, &space_info);
79787eaa 4343 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4344 }
79787eaa 4345 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4346
6d74119f 4347again:
25179201 4348 spin_lock(&space_info->lock);
9e622d6b 4349 if (force < space_info->force_alloc)
0e4f8f88 4350 force = space_info->force_alloc;
25179201 4351 if (space_info->full) {
09fb99a6
FDBM
4352 if (should_alloc_chunk(extent_root, space_info, force))
4353 ret = -ENOSPC;
4354 else
4355 ret = 0;
25179201 4356 spin_unlock(&space_info->lock);
09fb99a6 4357 return ret;
9ed74f2d
JB
4358 }
4359
698d0082 4360 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4361 spin_unlock(&space_info->lock);
6d74119f
JB
4362 return 0;
4363 } else if (space_info->chunk_alloc) {
4364 wait_for_alloc = 1;
4365 } else {
4366 space_info->chunk_alloc = 1;
9ed74f2d 4367 }
0e4f8f88 4368
25179201 4369 spin_unlock(&space_info->lock);
9ed74f2d 4370
6d74119f
JB
4371 mutex_lock(&fs_info->chunk_mutex);
4372
4373 /*
4374 * The chunk_mutex is held throughout the entirety of a chunk
4375 * allocation, so once we've acquired the chunk_mutex we know that the
4376 * other guy is done and we need to recheck and see if we should
4377 * allocate.
4378 */
4379 if (wait_for_alloc) {
4380 mutex_unlock(&fs_info->chunk_mutex);
4381 wait_for_alloc = 0;
4382 goto again;
4383 }
4384
c6b305a8
JB
4385 trans->allocating_chunk = true;
4386
67377734
JB
4387 /*
4388 * If we have mixed data/metadata chunks we want to make sure we keep
4389 * allocating mixed chunks instead of individual chunks.
4390 */
4391 if (btrfs_mixed_space_info(space_info))
4392 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4393
97e728d4
JB
4394 /*
4395 * if we're doing a data chunk, go ahead and make sure that
4396 * we keep a reasonable number of metadata chunks allocated in the
4397 * FS as well.
4398 */
9ed74f2d 4399 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4400 fs_info->data_chunk_allocations++;
4401 if (!(fs_info->data_chunk_allocations %
4402 fs_info->metadata_ratio))
4403 force_metadata_allocation(fs_info);
9ed74f2d
JB
4404 }
4405
15d1ff81
LB
4406 /*
4407 * Check if we have enough space in SYSTEM chunk because we may need
4408 * to update devices.
4409 */
4617ea3a 4410 check_system_chunk(trans, extent_root, flags);
15d1ff81 4411
2b82032c 4412 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4413 trans->allocating_chunk = false;
92b8e897 4414
9ed74f2d 4415 spin_lock(&space_info->lock);
a81cb9a2
AO
4416 if (ret < 0 && ret != -ENOSPC)
4417 goto out;
9ed74f2d 4418 if (ret)
6324fbf3 4419 space_info->full = 1;
424499db
YZ
4420 else
4421 ret = 1;
6d74119f 4422
0e4f8f88 4423 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4424out:
6d74119f 4425 space_info->chunk_alloc = 0;
9ed74f2d 4426 spin_unlock(&space_info->lock);
a25c75d5 4427 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4428 /*
4429 * When we allocate a new chunk we reserve space in the chunk block
4430 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4431 * add new nodes/leafs to it if we end up needing to do it when
4432 * inserting the chunk item and updating device items as part of the
4433 * second phase of chunk allocation, performed by
4434 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4435 * large number of new block groups to create in our transaction
4436 * handle's new_bgs list to avoid exhausting the chunk block reserve
4437 * in extreme cases - like having a single transaction create many new
4438 * block groups when starting to write out the free space caches of all
4439 * the block groups that were made dirty during the lifetime of the
4440 * transaction.
4441 */
d9a0540a
FM
4442 if (trans->can_flush_pending_bgs &&
4443 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4444 btrfs_create_pending_block_groups(trans, trans->root);
4445 btrfs_trans_release_chunk_metadata(trans);
4446 }
0f9dd46c 4447 return ret;
6324fbf3 4448}
9ed74f2d 4449
a80c8dcf
JB
4450static int can_overcommit(struct btrfs_root *root,
4451 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4452 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4453{
96f1bb57 4454 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4455 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4456 u64 space_size;
a80c8dcf
JB
4457 u64 avail;
4458 u64 used;
4459
4460 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4461 space_info->bytes_pinned + space_info->bytes_readonly;
4462
96f1bb57
JB
4463 /*
4464 * We only want to allow over committing if we have lots of actual space
4465 * free, but if we don't have enough space to handle the global reserve
4466 * space then we could end up having a real enospc problem when trying
4467 * to allocate a chunk or some other such important allocation.
4468 */
3c76cd84
MX
4469 spin_lock(&global_rsv->lock);
4470 space_size = calc_global_rsv_need_space(global_rsv);
4471 spin_unlock(&global_rsv->lock);
4472 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4473 return 0;
4474
4475 used += space_info->bytes_may_use;
a80c8dcf
JB
4476
4477 spin_lock(&root->fs_info->free_chunk_lock);
4478 avail = root->fs_info->free_chunk_space;
4479 spin_unlock(&root->fs_info->free_chunk_lock);
4480
4481 /*
4482 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4483 * space is actually useable. For raid56, the space info used
4484 * doesn't include the parity drive, so we don't have to
4485 * change the math
a80c8dcf
JB
4486 */
4487 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4488 BTRFS_BLOCK_GROUP_RAID1 |
4489 BTRFS_BLOCK_GROUP_RAID10))
4490 avail >>= 1;
4491
4492 /*
561c294d
MX
4493 * If we aren't flushing all things, let us overcommit up to
4494 * 1/2th of the space. If we can flush, don't let us overcommit
4495 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4496 */
08e007d2 4497 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4498 avail >>= 3;
a80c8dcf 4499 else
14575aef 4500 avail >>= 1;
a80c8dcf 4501
14575aef 4502 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4503 return 1;
4504 return 0;
4505}
4506
48a3b636 4507static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4508 unsigned long nr_pages, int nr_items)
da633a42
MX
4509{
4510 struct super_block *sb = root->fs_info->sb;
da633a42 4511
925a6efb
JB
4512 if (down_read_trylock(&sb->s_umount)) {
4513 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4514 up_read(&sb->s_umount);
4515 } else {
da633a42
MX
4516 /*
4517 * We needn't worry the filesystem going from r/w to r/o though
4518 * we don't acquire ->s_umount mutex, because the filesystem
4519 * should guarantee the delalloc inodes list be empty after
4520 * the filesystem is readonly(all dirty pages are written to
4521 * the disk).
4522 */
6c255e67 4523 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4524 if (!current->journal_info)
6c255e67 4525 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4526 }
4527}
4528
18cd8ea6
MX
4529static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4530{
4531 u64 bytes;
4532 int nr;
4533
4534 bytes = btrfs_calc_trans_metadata_size(root, 1);
4535 nr = (int)div64_u64(to_reclaim, bytes);
4536 if (!nr)
4537 nr = 1;
4538 return nr;
4539}
4540
c61a16a7
MX
4541#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4542
9ed74f2d 4543/*
5da9d01b 4544 * shrink metadata reservation for delalloc
9ed74f2d 4545 */
f4c738c2
JB
4546static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4547 bool wait_ordered)
5da9d01b 4548{
0ca1f7ce 4549 struct btrfs_block_rsv *block_rsv;
0019f10d 4550 struct btrfs_space_info *space_info;
663350ac 4551 struct btrfs_trans_handle *trans;
f4c738c2 4552 u64 delalloc_bytes;
5da9d01b 4553 u64 max_reclaim;
b1953bce 4554 long time_left;
d3ee29e3
MX
4555 unsigned long nr_pages;
4556 int loops;
b0244199 4557 int items;
08e007d2 4558 enum btrfs_reserve_flush_enum flush;
5da9d01b 4559
c61a16a7 4560 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4561 items = calc_reclaim_items_nr(root, to_reclaim);
4562 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4563
663350ac 4564 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4565 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4566 space_info = block_rsv->space_info;
bf9022e0 4567
963d678b
MX
4568 delalloc_bytes = percpu_counter_sum_positive(
4569 &root->fs_info->delalloc_bytes);
f4c738c2 4570 if (delalloc_bytes == 0) {
fdb5effd 4571 if (trans)
f4c738c2 4572 return;
38c135af 4573 if (wait_ordered)
b0244199 4574 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4575 return;
fdb5effd
JB
4576 }
4577
d3ee29e3 4578 loops = 0;
f4c738c2
JB
4579 while (delalloc_bytes && loops < 3) {
4580 max_reclaim = min(delalloc_bytes, to_reclaim);
4581 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4582 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4583 /*
4584 * We need to wait for the async pages to actually start before
4585 * we do anything.
4586 */
9f3a074d
MX
4587 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4588 if (!max_reclaim)
4589 goto skip_async;
4590
4591 if (max_reclaim <= nr_pages)
4592 max_reclaim = 0;
4593 else
4594 max_reclaim -= nr_pages;
dea31f52 4595
9f3a074d
MX
4596 wait_event(root->fs_info->async_submit_wait,
4597 atomic_read(&root->fs_info->async_delalloc_pages) <=
4598 (int)max_reclaim);
4599skip_async:
08e007d2
MX
4600 if (!trans)
4601 flush = BTRFS_RESERVE_FLUSH_ALL;
4602 else
4603 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4604 spin_lock(&space_info->lock);
08e007d2 4605 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4606 spin_unlock(&space_info->lock);
4607 break;
4608 }
0019f10d 4609 spin_unlock(&space_info->lock);
5da9d01b 4610
36e39c40 4611 loops++;
f104d044 4612 if (wait_ordered && !trans) {
b0244199 4613 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4614 } else {
f4c738c2 4615 time_left = schedule_timeout_killable(1);
f104d044
JB
4616 if (time_left)
4617 break;
4618 }
963d678b
MX
4619 delalloc_bytes = percpu_counter_sum_positive(
4620 &root->fs_info->delalloc_bytes);
5da9d01b 4621 }
5da9d01b
YZ
4622}
4623
663350ac
JB
4624/**
4625 * maybe_commit_transaction - possibly commit the transaction if its ok to
4626 * @root - the root we're allocating for
4627 * @bytes - the number of bytes we want to reserve
4628 * @force - force the commit
8bb8ab2e 4629 *
663350ac
JB
4630 * This will check to make sure that committing the transaction will actually
4631 * get us somewhere and then commit the transaction if it does. Otherwise it
4632 * will return -ENOSPC.
8bb8ab2e 4633 */
663350ac
JB
4634static int may_commit_transaction(struct btrfs_root *root,
4635 struct btrfs_space_info *space_info,
4636 u64 bytes, int force)
4637{
4638 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4639 struct btrfs_trans_handle *trans;
4640
4641 trans = (struct btrfs_trans_handle *)current->journal_info;
4642 if (trans)
4643 return -EAGAIN;
4644
4645 if (force)
4646 goto commit;
4647
4648 /* See if there is enough pinned space to make this reservation */
b150a4f1 4649 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4650 bytes) >= 0)
663350ac 4651 goto commit;
663350ac
JB
4652
4653 /*
4654 * See if there is some space in the delayed insertion reservation for
4655 * this reservation.
4656 */
4657 if (space_info != delayed_rsv->space_info)
4658 return -ENOSPC;
4659
4660 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4661 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4662 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4663 spin_unlock(&delayed_rsv->lock);
4664 return -ENOSPC;
4665 }
4666 spin_unlock(&delayed_rsv->lock);
4667
4668commit:
4669 trans = btrfs_join_transaction(root);
4670 if (IS_ERR(trans))
4671 return -ENOSPC;
4672
4673 return btrfs_commit_transaction(trans, root);
4674}
4675
96c3f433 4676enum flush_state {
67b0fd63
JB
4677 FLUSH_DELAYED_ITEMS_NR = 1,
4678 FLUSH_DELAYED_ITEMS = 2,
4679 FLUSH_DELALLOC = 3,
4680 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4681 ALLOC_CHUNK = 5,
4682 COMMIT_TRANS = 6,
96c3f433
JB
4683};
4684
4685static int flush_space(struct btrfs_root *root,
4686 struct btrfs_space_info *space_info, u64 num_bytes,
4687 u64 orig_bytes, int state)
4688{
4689 struct btrfs_trans_handle *trans;
4690 int nr;
f4c738c2 4691 int ret = 0;
96c3f433
JB
4692
4693 switch (state) {
96c3f433
JB
4694 case FLUSH_DELAYED_ITEMS_NR:
4695 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4696 if (state == FLUSH_DELAYED_ITEMS_NR)
4697 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4698 else
96c3f433 4699 nr = -1;
18cd8ea6 4700
96c3f433
JB
4701 trans = btrfs_join_transaction(root);
4702 if (IS_ERR(trans)) {
4703 ret = PTR_ERR(trans);
4704 break;
4705 }
4706 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4707 btrfs_end_transaction(trans, root);
4708 break;
67b0fd63
JB
4709 case FLUSH_DELALLOC:
4710 case FLUSH_DELALLOC_WAIT:
24af7dd1 4711 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4712 state == FLUSH_DELALLOC_WAIT);
4713 break;
ea658bad
JB
4714 case ALLOC_CHUNK:
4715 trans = btrfs_join_transaction(root);
4716 if (IS_ERR(trans)) {
4717 ret = PTR_ERR(trans);
4718 break;
4719 }
4720 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4721 btrfs_get_alloc_profile(root, 0),
4722 CHUNK_ALLOC_NO_FORCE);
4723 btrfs_end_transaction(trans, root);
4724 if (ret == -ENOSPC)
4725 ret = 0;
4726 break;
96c3f433
JB
4727 case COMMIT_TRANS:
4728 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4729 break;
4730 default:
4731 ret = -ENOSPC;
4732 break;
4733 }
4734
4735 return ret;
4736}
21c7e756
MX
4737
4738static inline u64
4739btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4740 struct btrfs_space_info *space_info)
4741{
4742 u64 used;
4743 u64 expected;
4744 u64 to_reclaim;
4745
4746 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4747 16 * 1024 * 1024);
4748 spin_lock(&space_info->lock);
4749 if (can_overcommit(root, space_info, to_reclaim,
4750 BTRFS_RESERVE_FLUSH_ALL)) {
4751 to_reclaim = 0;
4752 goto out;
4753 }
4754
4755 used = space_info->bytes_used + space_info->bytes_reserved +
4756 space_info->bytes_pinned + space_info->bytes_readonly +
4757 space_info->bytes_may_use;
4758 if (can_overcommit(root, space_info, 1024 * 1024,
4759 BTRFS_RESERVE_FLUSH_ALL))
4760 expected = div_factor_fine(space_info->total_bytes, 95);
4761 else
4762 expected = div_factor_fine(space_info->total_bytes, 90);
4763
4764 if (used > expected)
4765 to_reclaim = used - expected;
4766 else
4767 to_reclaim = 0;
4768 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4769 space_info->bytes_reserved);
4770out:
4771 spin_unlock(&space_info->lock);
4772
4773 return to_reclaim;
4774}
4775
4776static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4777 struct btrfs_fs_info *fs_info, u64 used)
4778{
365c5313
JB
4779 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4780
4781 /* If we're just plain full then async reclaim just slows us down. */
4782 if (space_info->bytes_used >= thresh)
4783 return 0;
4784
4785 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4786 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4787}
4788
4789static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4790 struct btrfs_fs_info *fs_info,
4791 int flush_state)
21c7e756
MX
4792{
4793 u64 used;
4794
4795 spin_lock(&space_info->lock);
25ce459c
LB
4796 /*
4797 * We run out of space and have not got any free space via flush_space,
4798 * so don't bother doing async reclaim.
4799 */
4800 if (flush_state > COMMIT_TRANS && space_info->full) {
4801 spin_unlock(&space_info->lock);
4802 return 0;
4803 }
4804
21c7e756
MX
4805 used = space_info->bytes_used + space_info->bytes_reserved +
4806 space_info->bytes_pinned + space_info->bytes_readonly +
4807 space_info->bytes_may_use;
4808 if (need_do_async_reclaim(space_info, fs_info, used)) {
4809 spin_unlock(&space_info->lock);
4810 return 1;
4811 }
4812 spin_unlock(&space_info->lock);
4813
4814 return 0;
4815}
4816
4817static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4818{
4819 struct btrfs_fs_info *fs_info;
4820 struct btrfs_space_info *space_info;
4821 u64 to_reclaim;
4822 int flush_state;
4823
4824 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4825 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4826
4827 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4828 space_info);
4829 if (!to_reclaim)
4830 return;
4831
4832 flush_state = FLUSH_DELAYED_ITEMS_NR;
4833 do {
4834 flush_space(fs_info->fs_root, space_info, to_reclaim,
4835 to_reclaim, flush_state);
4836 flush_state++;
25ce459c
LB
4837 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4838 flush_state))
21c7e756 4839 return;
365c5313 4840 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4841}
4842
4843void btrfs_init_async_reclaim_work(struct work_struct *work)
4844{
4845 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4846}
4847
4a92b1b8
JB
4848/**
4849 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4850 * @root - the root we're allocating for
4851 * @block_rsv - the block_rsv we're allocating for
4852 * @orig_bytes - the number of bytes we want
48fc7f7e 4853 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4854 *
4a92b1b8
JB
4855 * This will reserve orgi_bytes number of bytes from the space info associated
4856 * with the block_rsv. If there is not enough space it will make an attempt to
4857 * flush out space to make room. It will do this by flushing delalloc if
4858 * possible or committing the transaction. If flush is 0 then no attempts to
4859 * regain reservations will be made and this will fail if there is not enough
4860 * space already.
8bb8ab2e 4861 */
4a92b1b8 4862static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4863 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4864 u64 orig_bytes,
4865 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4866{
f0486c68 4867 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4868 u64 used;
8bb8ab2e 4869 u64 num_bytes = orig_bytes;
67b0fd63 4870 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4871 int ret = 0;
fdb5effd 4872 bool flushing = false;
9ed74f2d 4873
8bb8ab2e 4874again:
fdb5effd 4875 ret = 0;
8bb8ab2e 4876 spin_lock(&space_info->lock);
fdb5effd 4877 /*
08e007d2
MX
4878 * We only want to wait if somebody other than us is flushing and we
4879 * are actually allowed to flush all things.
fdb5effd 4880 */
08e007d2
MX
4881 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4882 space_info->flush) {
fdb5effd
JB
4883 spin_unlock(&space_info->lock);
4884 /*
4885 * If we have a trans handle we can't wait because the flusher
4886 * may have to commit the transaction, which would mean we would
4887 * deadlock since we are waiting for the flusher to finish, but
4888 * hold the current transaction open.
4889 */
663350ac 4890 if (current->journal_info)
fdb5effd 4891 return -EAGAIN;
b9688bb8
AJ
4892 ret = wait_event_killable(space_info->wait, !space_info->flush);
4893 /* Must have been killed, return */
4894 if (ret)
fdb5effd
JB
4895 return -EINTR;
4896
4897 spin_lock(&space_info->lock);
4898 }
4899
4900 ret = -ENOSPC;
2bf64758
JB
4901 used = space_info->bytes_used + space_info->bytes_reserved +
4902 space_info->bytes_pinned + space_info->bytes_readonly +
4903 space_info->bytes_may_use;
9ed74f2d 4904
8bb8ab2e
JB
4905 /*
4906 * The idea here is that we've not already over-reserved the block group
4907 * then we can go ahead and save our reservation first and then start
4908 * flushing if we need to. Otherwise if we've already overcommitted
4909 * lets start flushing stuff first and then come back and try to make
4910 * our reservation.
4911 */
2bf64758
JB
4912 if (used <= space_info->total_bytes) {
4913 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4914 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4915 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4916 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4917 ret = 0;
4918 } else {
4919 /*
4920 * Ok set num_bytes to orig_bytes since we aren't
4921 * overocmmitted, this way we only try and reclaim what
4922 * we need.
4923 */
4924 num_bytes = orig_bytes;
4925 }
4926 } else {
4927 /*
4928 * Ok we're over committed, set num_bytes to the overcommitted
4929 * amount plus the amount of bytes that we need for this
4930 * reservation.
4931 */
2bf64758 4932 num_bytes = used - space_info->total_bytes +
96c3f433 4933 (orig_bytes * 2);
8bb8ab2e 4934 }
9ed74f2d 4935
44734ed1
JB
4936 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4937 space_info->bytes_may_use += orig_bytes;
4938 trace_btrfs_space_reservation(root->fs_info, "space_info",
4939 space_info->flags, orig_bytes,
4940 1);
4941 ret = 0;
2bf64758
JB
4942 }
4943
8bb8ab2e
JB
4944 /*
4945 * Couldn't make our reservation, save our place so while we're trying
4946 * to reclaim space we can actually use it instead of somebody else
4947 * stealing it from us.
08e007d2
MX
4948 *
4949 * We make the other tasks wait for the flush only when we can flush
4950 * all things.
8bb8ab2e 4951 */
72bcd99d 4952 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4953 flushing = true;
4954 space_info->flush = 1;
21c7e756
MX
4955 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4956 used += orig_bytes;
f6acfd50
JB
4957 /*
4958 * We will do the space reservation dance during log replay,
4959 * which means we won't have fs_info->fs_root set, so don't do
4960 * the async reclaim as we will panic.
4961 */
4962 if (!root->fs_info->log_root_recovering &&
4963 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4964 !work_busy(&root->fs_info->async_reclaim_work))
4965 queue_work(system_unbound_wq,
4966 &root->fs_info->async_reclaim_work);
8bb8ab2e 4967 }
f0486c68 4968 spin_unlock(&space_info->lock);
9ed74f2d 4969
08e007d2 4970 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4971 goto out;
f0486c68 4972
96c3f433
JB
4973 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4974 flush_state);
4975 flush_state++;
08e007d2
MX
4976
4977 /*
4978 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4979 * would happen. So skip delalloc flush.
4980 */
4981 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4982 (flush_state == FLUSH_DELALLOC ||
4983 flush_state == FLUSH_DELALLOC_WAIT))
4984 flush_state = ALLOC_CHUNK;
4985
96c3f433 4986 if (!ret)
8bb8ab2e 4987 goto again;
08e007d2
MX
4988 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4989 flush_state < COMMIT_TRANS)
4990 goto again;
4991 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4992 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4993 goto again;
4994
4995out:
5d80366e
JB
4996 if (ret == -ENOSPC &&
4997 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4998 struct btrfs_block_rsv *global_rsv =
4999 &root->fs_info->global_block_rsv;
5000
5001 if (block_rsv != global_rsv &&
5002 !block_rsv_use_bytes(global_rsv, orig_bytes))
5003 ret = 0;
5004 }
cab45e22
JM
5005 if (ret == -ENOSPC)
5006 trace_btrfs_space_reservation(root->fs_info,
5007 "space_info:enospc",
5008 space_info->flags, orig_bytes, 1);
fdb5effd 5009 if (flushing) {
8bb8ab2e 5010 spin_lock(&space_info->lock);
fdb5effd
JB
5011 space_info->flush = 0;
5012 wake_up_all(&space_info->wait);
8bb8ab2e 5013 spin_unlock(&space_info->lock);
f0486c68 5014 }
f0486c68
YZ
5015 return ret;
5016}
5017
79787eaa
JM
5018static struct btrfs_block_rsv *get_block_rsv(
5019 const struct btrfs_trans_handle *trans,
5020 const struct btrfs_root *root)
f0486c68 5021{
4c13d758
JB
5022 struct btrfs_block_rsv *block_rsv = NULL;
5023
e9cf439f
AM
5024 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5025 (root == root->fs_info->csum_root && trans->adding_csums) ||
5026 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5027 block_rsv = trans->block_rsv;
5028
4c13d758 5029 if (!block_rsv)
f0486c68
YZ
5030 block_rsv = root->block_rsv;
5031
5032 if (!block_rsv)
5033 block_rsv = &root->fs_info->empty_block_rsv;
5034
5035 return block_rsv;
5036}
5037
5038static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5039 u64 num_bytes)
5040{
5041 int ret = -ENOSPC;
5042 spin_lock(&block_rsv->lock);
5043 if (block_rsv->reserved >= num_bytes) {
5044 block_rsv->reserved -= num_bytes;
5045 if (block_rsv->reserved < block_rsv->size)
5046 block_rsv->full = 0;
5047 ret = 0;
5048 }
5049 spin_unlock(&block_rsv->lock);
5050 return ret;
5051}
5052
5053static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5054 u64 num_bytes, int update_size)
5055{
5056 spin_lock(&block_rsv->lock);
5057 block_rsv->reserved += num_bytes;
5058 if (update_size)
5059 block_rsv->size += num_bytes;
5060 else if (block_rsv->reserved >= block_rsv->size)
5061 block_rsv->full = 1;
5062 spin_unlock(&block_rsv->lock);
5063}
5064
d52be818
JB
5065int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5066 struct btrfs_block_rsv *dest, u64 num_bytes,
5067 int min_factor)
5068{
5069 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5070 u64 min_bytes;
5071
5072 if (global_rsv->space_info != dest->space_info)
5073 return -ENOSPC;
5074
5075 spin_lock(&global_rsv->lock);
5076 min_bytes = div_factor(global_rsv->size, min_factor);
5077 if (global_rsv->reserved < min_bytes + num_bytes) {
5078 spin_unlock(&global_rsv->lock);
5079 return -ENOSPC;
5080 }
5081 global_rsv->reserved -= num_bytes;
5082 if (global_rsv->reserved < global_rsv->size)
5083 global_rsv->full = 0;
5084 spin_unlock(&global_rsv->lock);
5085
5086 block_rsv_add_bytes(dest, num_bytes, 1);
5087 return 0;
5088}
5089
8c2a3ca2
JB
5090static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5091 struct btrfs_block_rsv *block_rsv,
62a45b60 5092 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5093{
5094 struct btrfs_space_info *space_info = block_rsv->space_info;
5095
5096 spin_lock(&block_rsv->lock);
5097 if (num_bytes == (u64)-1)
5098 num_bytes = block_rsv->size;
5099 block_rsv->size -= num_bytes;
5100 if (block_rsv->reserved >= block_rsv->size) {
5101 num_bytes = block_rsv->reserved - block_rsv->size;
5102 block_rsv->reserved = block_rsv->size;
5103 block_rsv->full = 1;
5104 } else {
5105 num_bytes = 0;
5106 }
5107 spin_unlock(&block_rsv->lock);
5108
5109 if (num_bytes > 0) {
5110 if (dest) {
e9e22899
JB
5111 spin_lock(&dest->lock);
5112 if (!dest->full) {
5113 u64 bytes_to_add;
5114
5115 bytes_to_add = dest->size - dest->reserved;
5116 bytes_to_add = min(num_bytes, bytes_to_add);
5117 dest->reserved += bytes_to_add;
5118 if (dest->reserved >= dest->size)
5119 dest->full = 1;
5120 num_bytes -= bytes_to_add;
5121 }
5122 spin_unlock(&dest->lock);
5123 }
5124 if (num_bytes) {
f0486c68 5125 spin_lock(&space_info->lock);
fb25e914 5126 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5127 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5128 space_info->flags, num_bytes, 0);
f0486c68 5129 spin_unlock(&space_info->lock);
4e06bdd6 5130 }
9ed74f2d 5131 }
f0486c68 5132}
4e06bdd6 5133
f0486c68
YZ
5134static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5135 struct btrfs_block_rsv *dst, u64 num_bytes)
5136{
5137 int ret;
9ed74f2d 5138
f0486c68
YZ
5139 ret = block_rsv_use_bytes(src, num_bytes);
5140 if (ret)
5141 return ret;
9ed74f2d 5142
f0486c68 5143 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5144 return 0;
5145}
5146
66d8f3dd 5147void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5148{
f0486c68
YZ
5149 memset(rsv, 0, sizeof(*rsv));
5150 spin_lock_init(&rsv->lock);
66d8f3dd 5151 rsv->type = type;
f0486c68
YZ
5152}
5153
66d8f3dd
MX
5154struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5155 unsigned short type)
f0486c68
YZ
5156{
5157 struct btrfs_block_rsv *block_rsv;
5158 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5159
f0486c68
YZ
5160 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5161 if (!block_rsv)
5162 return NULL;
9ed74f2d 5163
66d8f3dd 5164 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5165 block_rsv->space_info = __find_space_info(fs_info,
5166 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5167 return block_rsv;
5168}
9ed74f2d 5169
f0486c68
YZ
5170void btrfs_free_block_rsv(struct btrfs_root *root,
5171 struct btrfs_block_rsv *rsv)
5172{
2aaa6655
JB
5173 if (!rsv)
5174 return;
dabdb640
JB
5175 btrfs_block_rsv_release(root, rsv, (u64)-1);
5176 kfree(rsv);
9ed74f2d
JB
5177}
5178
cdfb080e
CM
5179void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5180{
5181 kfree(rsv);
5182}
5183
08e007d2
MX
5184int btrfs_block_rsv_add(struct btrfs_root *root,
5185 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5186 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5187{
f0486c68 5188 int ret;
9ed74f2d 5189
f0486c68
YZ
5190 if (num_bytes == 0)
5191 return 0;
8bb8ab2e 5192
61b520a9 5193 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5194 if (!ret) {
5195 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5196 return 0;
5197 }
9ed74f2d 5198
f0486c68 5199 return ret;
f0486c68 5200}
9ed74f2d 5201
4a92b1b8 5202int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5203 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5204{
5205 u64 num_bytes = 0;
f0486c68 5206 int ret = -ENOSPC;
9ed74f2d 5207
f0486c68
YZ
5208 if (!block_rsv)
5209 return 0;
9ed74f2d 5210
f0486c68 5211 spin_lock(&block_rsv->lock);
36ba022a
JB
5212 num_bytes = div_factor(block_rsv->size, min_factor);
5213 if (block_rsv->reserved >= num_bytes)
5214 ret = 0;
5215 spin_unlock(&block_rsv->lock);
9ed74f2d 5216
36ba022a
JB
5217 return ret;
5218}
5219
08e007d2
MX
5220int btrfs_block_rsv_refill(struct btrfs_root *root,
5221 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5222 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5223{
5224 u64 num_bytes = 0;
5225 int ret = -ENOSPC;
5226
5227 if (!block_rsv)
5228 return 0;
5229
5230 spin_lock(&block_rsv->lock);
5231 num_bytes = min_reserved;
13553e52 5232 if (block_rsv->reserved >= num_bytes)
f0486c68 5233 ret = 0;
13553e52 5234 else
f0486c68 5235 num_bytes -= block_rsv->reserved;
f0486c68 5236 spin_unlock(&block_rsv->lock);
13553e52 5237
f0486c68
YZ
5238 if (!ret)
5239 return 0;
5240
aa38a711 5241 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5242 if (!ret) {
5243 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5244 return 0;
6a63209f 5245 }
9ed74f2d 5246
13553e52 5247 return ret;
f0486c68
YZ
5248}
5249
5250int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5251 struct btrfs_block_rsv *dst_rsv,
5252 u64 num_bytes)
5253{
5254 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5255}
5256
5257void btrfs_block_rsv_release(struct btrfs_root *root,
5258 struct btrfs_block_rsv *block_rsv,
5259 u64 num_bytes)
5260{
5261 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5262 if (global_rsv == block_rsv ||
f0486c68
YZ
5263 block_rsv->space_info != global_rsv->space_info)
5264 global_rsv = NULL;
8c2a3ca2
JB
5265 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5266 num_bytes);
6a63209f
JB
5267}
5268
5269/*
8929ecfa
YZ
5270 * helper to calculate size of global block reservation.
5271 * the desired value is sum of space used by extent tree,
5272 * checksum tree and root tree
6a63209f 5273 */
8929ecfa 5274static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5275{
8929ecfa
YZ
5276 struct btrfs_space_info *sinfo;
5277 u64 num_bytes;
5278 u64 meta_used;
5279 u64 data_used;
6c41761f 5280 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5281
8929ecfa
YZ
5282 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5283 spin_lock(&sinfo->lock);
5284 data_used = sinfo->bytes_used;
5285 spin_unlock(&sinfo->lock);
33b4d47f 5286
8929ecfa
YZ
5287 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5288 spin_lock(&sinfo->lock);
6d48755d
JB
5289 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5290 data_used = 0;
8929ecfa
YZ
5291 meta_used = sinfo->bytes_used;
5292 spin_unlock(&sinfo->lock);
ab6e2410 5293
8929ecfa
YZ
5294 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5295 csum_size * 2;
f8c269d7 5296 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5297
8929ecfa 5298 if (num_bytes * 3 > meta_used)
f8c269d7 5299 num_bytes = div_u64(meta_used, 3);
ab6e2410 5300
707e8a07 5301 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5302}
6a63209f 5303
8929ecfa
YZ
5304static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5305{
5306 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5307 struct btrfs_space_info *sinfo = block_rsv->space_info;
5308 u64 num_bytes;
6a63209f 5309
8929ecfa 5310 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5311
8929ecfa 5312 spin_lock(&sinfo->lock);
1f699d38 5313 spin_lock(&block_rsv->lock);
4e06bdd6 5314
fdf30d1c 5315 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5316
8929ecfa 5317 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5318 sinfo->bytes_reserved + sinfo->bytes_readonly +
5319 sinfo->bytes_may_use;
8929ecfa
YZ
5320
5321 if (sinfo->total_bytes > num_bytes) {
5322 num_bytes = sinfo->total_bytes - num_bytes;
5323 block_rsv->reserved += num_bytes;
fb25e914 5324 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5325 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5326 sinfo->flags, num_bytes, 1);
6a63209f 5327 }
6a63209f 5328
8929ecfa
YZ
5329 if (block_rsv->reserved >= block_rsv->size) {
5330 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5331 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5332 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5333 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5334 block_rsv->reserved = block_rsv->size;
5335 block_rsv->full = 1;
5336 }
182608c8 5337
8929ecfa 5338 spin_unlock(&block_rsv->lock);
1f699d38 5339 spin_unlock(&sinfo->lock);
6a63209f
JB
5340}
5341
f0486c68 5342static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5343{
f0486c68 5344 struct btrfs_space_info *space_info;
6a63209f 5345
f0486c68
YZ
5346 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5347 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5348
f0486c68 5349 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5350 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5351 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5352 fs_info->trans_block_rsv.space_info = space_info;
5353 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5354 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5355
8929ecfa
YZ
5356 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5357 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5358 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5359 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5360 if (fs_info->quota_root)
5361 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5362 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5363
8929ecfa 5364 update_global_block_rsv(fs_info);
6a63209f
JB
5365}
5366
8929ecfa 5367static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5368{
8c2a3ca2
JB
5369 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5370 (u64)-1);
8929ecfa
YZ
5371 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5372 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5373 WARN_ON(fs_info->trans_block_rsv.size > 0);
5374 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5375 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5376 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5377 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5378 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5379}
5380
a22285a6
YZ
5381void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5382 struct btrfs_root *root)
6a63209f 5383{
0e721106
JB
5384 if (!trans->block_rsv)
5385 return;
5386
a22285a6
YZ
5387 if (!trans->bytes_reserved)
5388 return;
6a63209f 5389
e77266e4 5390 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5391 trans->transid, trans->bytes_reserved, 0);
b24e03db 5392 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5393 trans->bytes_reserved = 0;
5394}
6a63209f 5395
4fbcdf66
FM
5396/*
5397 * To be called after all the new block groups attached to the transaction
5398 * handle have been created (btrfs_create_pending_block_groups()).
5399 */
5400void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5401{
5402 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5403
5404 if (!trans->chunk_bytes_reserved)
5405 return;
5406
5407 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5408
5409 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5410 trans->chunk_bytes_reserved);
5411 trans->chunk_bytes_reserved = 0;
5412}
5413
79787eaa 5414/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5415int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5416 struct inode *inode)
5417{
5418 struct btrfs_root *root = BTRFS_I(inode)->root;
5419 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5420 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5421
5422 /*
fcb80c2a
JB
5423 * We need to hold space in order to delete our orphan item once we've
5424 * added it, so this takes the reservation so we can release it later
5425 * when we are truly done with the orphan item.
d68fc57b 5426 */
ff5714cc 5427 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5428 trace_btrfs_space_reservation(root->fs_info, "orphan",
5429 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5430 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5431}
5432
d68fc57b 5433void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5434{
d68fc57b 5435 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5436 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5437 trace_btrfs_space_reservation(root->fs_info, "orphan",
5438 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5439 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5440}
97e728d4 5441
d5c12070
MX
5442/*
5443 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5444 * root: the root of the parent directory
5445 * rsv: block reservation
5446 * items: the number of items that we need do reservation
5447 * qgroup_reserved: used to return the reserved size in qgroup
5448 *
5449 * This function is used to reserve the space for snapshot/subvolume
5450 * creation and deletion. Those operations are different with the
5451 * common file/directory operations, they change two fs/file trees
5452 * and root tree, the number of items that the qgroup reserves is
5453 * different with the free space reservation. So we can not use
5454 * the space reseravtion mechanism in start_transaction().
5455 */
5456int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5457 struct btrfs_block_rsv *rsv,
5458 int items,
ee3441b4
JM
5459 u64 *qgroup_reserved,
5460 bool use_global_rsv)
a22285a6 5461{
d5c12070
MX
5462 u64 num_bytes;
5463 int ret;
ee3441b4 5464 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5465
5466 if (root->fs_info->quota_enabled) {
5467 /* One for parent inode, two for dir entries */
707e8a07 5468 num_bytes = 3 * root->nodesize;
7174109c 5469 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5470 if (ret)
5471 return ret;
5472 } else {
5473 num_bytes = 0;
5474 }
5475
5476 *qgroup_reserved = num_bytes;
5477
5478 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5479 rsv->space_info = __find_space_info(root->fs_info,
5480 BTRFS_BLOCK_GROUP_METADATA);
5481 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5482 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5483
5484 if (ret == -ENOSPC && use_global_rsv)
5485 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5486
7174109c
QW
5487 if (ret && *qgroup_reserved)
5488 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5489
5490 return ret;
5491}
5492
5493void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5494 struct btrfs_block_rsv *rsv,
5495 u64 qgroup_reserved)
5496{
5497 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5498}
5499
7709cde3
JB
5500/**
5501 * drop_outstanding_extent - drop an outstanding extent
5502 * @inode: the inode we're dropping the extent for
dcab6a3b 5503 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5504 *
5505 * This is called when we are freeing up an outstanding extent, either called
5506 * after an error or after an extent is written. This will return the number of
5507 * reserved extents that need to be freed. This must be called with
5508 * BTRFS_I(inode)->lock held.
5509 */
dcab6a3b 5510static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5511{
7fd2ae21 5512 unsigned drop_inode_space = 0;
9e0baf60 5513 unsigned dropped_extents = 0;
dcab6a3b 5514 unsigned num_extents = 0;
9e0baf60 5515
dcab6a3b
JB
5516 num_extents = (unsigned)div64_u64(num_bytes +
5517 BTRFS_MAX_EXTENT_SIZE - 1,
5518 BTRFS_MAX_EXTENT_SIZE);
5519 ASSERT(num_extents);
5520 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5521 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5522
7fd2ae21 5523 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5524 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5525 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5526 drop_inode_space = 1;
7fd2ae21 5527
9e0baf60
JB
5528 /*
5529 * If we have more or the same amount of outsanding extents than we have
5530 * reserved then we need to leave the reserved extents count alone.
5531 */
5532 if (BTRFS_I(inode)->outstanding_extents >=
5533 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5534 return drop_inode_space;
9e0baf60
JB
5535
5536 dropped_extents = BTRFS_I(inode)->reserved_extents -
5537 BTRFS_I(inode)->outstanding_extents;
5538 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5539 return dropped_extents + drop_inode_space;
9e0baf60
JB
5540}
5541
7709cde3
JB
5542/**
5543 * calc_csum_metadata_size - return the amount of metada space that must be
5544 * reserved/free'd for the given bytes.
5545 * @inode: the inode we're manipulating
5546 * @num_bytes: the number of bytes in question
5547 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5548 *
5549 * This adjusts the number of csum_bytes in the inode and then returns the
5550 * correct amount of metadata that must either be reserved or freed. We
5551 * calculate how many checksums we can fit into one leaf and then divide the
5552 * number of bytes that will need to be checksumed by this value to figure out
5553 * how many checksums will be required. If we are adding bytes then the number
5554 * may go up and we will return the number of additional bytes that must be
5555 * reserved. If it is going down we will return the number of bytes that must
5556 * be freed.
5557 *
5558 * This must be called with BTRFS_I(inode)->lock held.
5559 */
5560static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5561 int reserve)
6324fbf3 5562{
7709cde3 5563 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5564 u64 old_csums, num_csums;
7709cde3
JB
5565
5566 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5567 BTRFS_I(inode)->csum_bytes == 0)
5568 return 0;
5569
28f75a0e 5570 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5571 if (reserve)
5572 BTRFS_I(inode)->csum_bytes += num_bytes;
5573 else
5574 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5575 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5576
5577 /* No change, no need to reserve more */
5578 if (old_csums == num_csums)
5579 return 0;
5580
5581 if (reserve)
5582 return btrfs_calc_trans_metadata_size(root,
5583 num_csums - old_csums);
5584
5585 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5586}
c146afad 5587
0ca1f7ce
YZ
5588int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5589{
5590 struct btrfs_root *root = BTRFS_I(inode)->root;
5591 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5592 u64 to_reserve = 0;
660d3f6c 5593 u64 csum_bytes;
9e0baf60 5594 unsigned nr_extents = 0;
660d3f6c 5595 int extra_reserve = 0;
08e007d2 5596 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5597 int ret = 0;
c64c2bd8 5598 bool delalloc_lock = true;
88e081bf
WS
5599 u64 to_free = 0;
5600 unsigned dropped;
6324fbf3 5601
c64c2bd8
JB
5602 /* If we are a free space inode we need to not flush since we will be in
5603 * the middle of a transaction commit. We also don't need the delalloc
5604 * mutex since we won't race with anybody. We need this mostly to make
5605 * lockdep shut its filthy mouth.
5606 */
5607 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5608 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5609 delalloc_lock = false;
5610 }
c09544e0 5611
08e007d2
MX
5612 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5613 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5614 schedule_timeout(1);
ec44a35c 5615
c64c2bd8
JB
5616 if (delalloc_lock)
5617 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5618
0ca1f7ce 5619 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5620
9e0baf60 5621 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5622 nr_extents = (unsigned)div64_u64(num_bytes +
5623 BTRFS_MAX_EXTENT_SIZE - 1,
5624 BTRFS_MAX_EXTENT_SIZE);
5625 BTRFS_I(inode)->outstanding_extents += nr_extents;
5626 nr_extents = 0;
9e0baf60
JB
5627
5628 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5629 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5630 nr_extents = BTRFS_I(inode)->outstanding_extents -
5631 BTRFS_I(inode)->reserved_extents;
57a45ced 5632
7fd2ae21
JB
5633 /*
5634 * Add an item to reserve for updating the inode when we complete the
5635 * delalloc io.
5636 */
72ac3c0d
JB
5637 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5638 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5639 nr_extents++;
660d3f6c 5640 extra_reserve = 1;
593060d7 5641 }
7fd2ae21
JB
5642
5643 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5644 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5645 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5646 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5647
88e081bf 5648 if (root->fs_info->quota_enabled) {
7174109c
QW
5649 ret = btrfs_qgroup_reserve_meta(root,
5650 nr_extents * root->nodesize);
88e081bf
WS
5651 if (ret)
5652 goto out_fail;
5653 }
c5567237 5654
88e081bf
WS
5655 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5656 if (unlikely(ret)) {
7174109c 5657 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5658 goto out_fail;
9e0baf60 5659 }
25179201 5660
660d3f6c
JB
5661 spin_lock(&BTRFS_I(inode)->lock);
5662 if (extra_reserve) {
72ac3c0d
JB
5663 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5664 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5665 nr_extents--;
5666 }
5667 BTRFS_I(inode)->reserved_extents += nr_extents;
5668 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5669
5670 if (delalloc_lock)
5671 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5672
8c2a3ca2 5673 if (to_reserve)
67871254 5674 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5675 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5676 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5677
0ca1f7ce 5678 return 0;
88e081bf
WS
5679
5680out_fail:
5681 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5682 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5683 /*
5684 * If the inodes csum_bytes is the same as the original
5685 * csum_bytes then we know we haven't raced with any free()ers
5686 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5687 */
f4881bc7 5688 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5689 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5690 } else {
5691 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5692 u64 bytes;
5693
5694 /*
5695 * This is tricky, but first we need to figure out how much we
5696 * free'd from any free-ers that occured during this
5697 * reservation, so we reset ->csum_bytes to the csum_bytes
5698 * before we dropped our lock, and then call the free for the
5699 * number of bytes that were freed while we were trying our
5700 * reservation.
5701 */
5702 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5703 BTRFS_I(inode)->csum_bytes = csum_bytes;
5704 to_free = calc_csum_metadata_size(inode, bytes, 0);
5705
5706
5707 /*
5708 * Now we need to see how much we would have freed had we not
5709 * been making this reservation and our ->csum_bytes were not
5710 * artificially inflated.
5711 */
5712 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5713 bytes = csum_bytes - orig_csum_bytes;
5714 bytes = calc_csum_metadata_size(inode, bytes, 0);
5715
5716 /*
5717 * Now reset ->csum_bytes to what it should be. If bytes is
5718 * more than to_free then we would have free'd more space had we
5719 * not had an artificially high ->csum_bytes, so we need to free
5720 * the remainder. If bytes is the same or less then we don't
5721 * need to do anything, the other free-ers did the correct
5722 * thing.
5723 */
5724 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5725 if (bytes > to_free)
5726 to_free = bytes - to_free;
5727 else
5728 to_free = 0;
5729 }
88e081bf 5730 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5731 if (dropped)
88e081bf
WS
5732 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5733
5734 if (to_free) {
5735 btrfs_block_rsv_release(root, block_rsv, to_free);
5736 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5737 btrfs_ino(inode), to_free, 0);
5738 }
5739 if (delalloc_lock)
5740 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5741 return ret;
0ca1f7ce
YZ
5742}
5743
7709cde3
JB
5744/**
5745 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5746 * @inode: the inode to release the reservation for
5747 * @num_bytes: the number of bytes we're releasing
5748 *
5749 * This will release the metadata reservation for an inode. This can be called
5750 * once we complete IO for a given set of bytes to release their metadata
5751 * reservations.
5752 */
0ca1f7ce
YZ
5753void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5754{
5755 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5756 u64 to_free = 0;
5757 unsigned dropped;
0ca1f7ce
YZ
5758
5759 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5760 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5761 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5762
0934856d
MX
5763 if (num_bytes)
5764 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5765 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5766 if (dropped > 0)
5767 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5768
6a3891c5
JB
5769 if (btrfs_test_is_dummy_root(root))
5770 return;
5771
8c2a3ca2
JB
5772 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5773 btrfs_ino(inode), to_free, 0);
c5567237 5774
0ca1f7ce
YZ
5775 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5776 to_free);
5777}
5778
1ada3a62 5779/**
7cf5b976 5780 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
5781 * delalloc
5782 * @inode: inode we're writing to
5783 * @start: start range we are writing to
5784 * @len: how long the range we are writing to
5785 *
5786 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5787 *
5788 * This will do the following things
5789 *
5790 * o reserve space in data space info for num bytes
5791 * and reserve precious corresponding qgroup space
5792 * (Done in check_data_free_space)
5793 *
5794 * o reserve space for metadata space, based on the number of outstanding
5795 * extents and how much csums will be needed
5796 * also reserve metadata space in a per root over-reserve method.
5797 * o add to the inodes->delalloc_bytes
5798 * o add it to the fs_info's delalloc inodes list.
5799 * (Above 3 all done in delalloc_reserve_metadata)
5800 *
5801 * Return 0 for success
5802 * Return <0 for error(-ENOSPC or -EQUOT)
5803 */
7cf5b976 5804int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5805{
5806 int ret;
5807
7cf5b976 5808 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
5809 if (ret < 0)
5810 return ret;
5811 ret = btrfs_delalloc_reserve_metadata(inode, len);
5812 if (ret < 0)
7cf5b976 5813 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
5814 return ret;
5815}
5816
7709cde3 5817/**
7cf5b976 5818 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
5819 * @inode: inode we're releasing space for
5820 * @start: start position of the space already reserved
5821 * @len: the len of the space already reserved
5822 *
5823 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5824 * called in the case that we don't need the metadata AND data reservations
5825 * anymore. So if there is an error or we insert an inline extent.
5826 *
5827 * This function will release the metadata space that was not used and will
5828 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5829 * list if there are no delalloc bytes left.
5830 * Also it will handle the qgroup reserved space.
5831 */
7cf5b976 5832void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
5833{
5834 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 5835 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
5836}
5837
ce93ec54
JB
5838static int update_block_group(struct btrfs_trans_handle *trans,
5839 struct btrfs_root *root, u64 bytenr,
5840 u64 num_bytes, int alloc)
9078a3e1 5841{
0af3d00b 5842 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5843 struct btrfs_fs_info *info = root->fs_info;
db94535d 5844 u64 total = num_bytes;
9078a3e1 5845 u64 old_val;
db94535d 5846 u64 byte_in_group;
0af3d00b 5847 int factor;
3e1ad54f 5848
5d4f98a2 5849 /* block accounting for super block */
eb73c1b7 5850 spin_lock(&info->delalloc_root_lock);
6c41761f 5851 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5852 if (alloc)
5853 old_val += num_bytes;
5854 else
5855 old_val -= num_bytes;
6c41761f 5856 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5857 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5858
d397712b 5859 while (total) {
db94535d 5860 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5861 if (!cache)
79787eaa 5862 return -ENOENT;
b742bb82
YZ
5863 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5864 BTRFS_BLOCK_GROUP_RAID1 |
5865 BTRFS_BLOCK_GROUP_RAID10))
5866 factor = 2;
5867 else
5868 factor = 1;
9d66e233
JB
5869 /*
5870 * If this block group has free space cache written out, we
5871 * need to make sure to load it if we are removing space. This
5872 * is because we need the unpinning stage to actually add the
5873 * space back to the block group, otherwise we will leak space.
5874 */
5875 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5876 cache_block_group(cache, 1);
0af3d00b 5877
db94535d
CM
5878 byte_in_group = bytenr - cache->key.objectid;
5879 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5880
25179201 5881 spin_lock(&cache->space_info->lock);
c286ac48 5882 spin_lock(&cache->lock);
0af3d00b 5883
73bc1876 5884 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5885 cache->disk_cache_state < BTRFS_DC_CLEAR)
5886 cache->disk_cache_state = BTRFS_DC_CLEAR;
5887
9078a3e1 5888 old_val = btrfs_block_group_used(&cache->item);
db94535d 5889 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5890 if (alloc) {
db94535d 5891 old_val += num_bytes;
11833d66
YZ
5892 btrfs_set_block_group_used(&cache->item, old_val);
5893 cache->reserved -= num_bytes;
11833d66 5894 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5895 cache->space_info->bytes_used += num_bytes;
5896 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5897 spin_unlock(&cache->lock);
25179201 5898 spin_unlock(&cache->space_info->lock);
cd1bc465 5899 } else {
db94535d 5900 old_val -= num_bytes;
ae0ab003
FM
5901 btrfs_set_block_group_used(&cache->item, old_val);
5902 cache->pinned += num_bytes;
5903 cache->space_info->bytes_pinned += num_bytes;
5904 cache->space_info->bytes_used -= num_bytes;
5905 cache->space_info->disk_used -= num_bytes * factor;
5906 spin_unlock(&cache->lock);
5907 spin_unlock(&cache->space_info->lock);
47ab2a6c 5908
ae0ab003
FM
5909 set_extent_dirty(info->pinned_extents,
5910 bytenr, bytenr + num_bytes - 1,
5911 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5912 /*
5913 * No longer have used bytes in this block group, queue
5914 * it for deletion.
5915 */
5916 if (old_val == 0) {
5917 spin_lock(&info->unused_bgs_lock);
5918 if (list_empty(&cache->bg_list)) {
5919 btrfs_get_block_group(cache);
5920 list_add_tail(&cache->bg_list,
5921 &info->unused_bgs);
5922 }
5923 spin_unlock(&info->unused_bgs_lock);
5924 }
cd1bc465 5925 }
1bbc621e
CM
5926
5927 spin_lock(&trans->transaction->dirty_bgs_lock);
5928 if (list_empty(&cache->dirty_list)) {
5929 list_add_tail(&cache->dirty_list,
5930 &trans->transaction->dirty_bgs);
5931 trans->transaction->num_dirty_bgs++;
5932 btrfs_get_block_group(cache);
5933 }
5934 spin_unlock(&trans->transaction->dirty_bgs_lock);
5935
fa9c0d79 5936 btrfs_put_block_group(cache);
db94535d
CM
5937 total -= num_bytes;
5938 bytenr += num_bytes;
9078a3e1
CM
5939 }
5940 return 0;
5941}
6324fbf3 5942
a061fc8d
CM
5943static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5944{
0f9dd46c 5945 struct btrfs_block_group_cache *cache;
d2fb3437 5946 u64 bytenr;
0f9dd46c 5947
a1897fdd
LB
5948 spin_lock(&root->fs_info->block_group_cache_lock);
5949 bytenr = root->fs_info->first_logical_byte;
5950 spin_unlock(&root->fs_info->block_group_cache_lock);
5951
5952 if (bytenr < (u64)-1)
5953 return bytenr;
5954
0f9dd46c
JB
5955 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5956 if (!cache)
a061fc8d 5957 return 0;
0f9dd46c 5958
d2fb3437 5959 bytenr = cache->key.objectid;
fa9c0d79 5960 btrfs_put_block_group(cache);
d2fb3437
YZ
5961
5962 return bytenr;
a061fc8d
CM
5963}
5964
f0486c68
YZ
5965static int pin_down_extent(struct btrfs_root *root,
5966 struct btrfs_block_group_cache *cache,
5967 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5968{
11833d66
YZ
5969 spin_lock(&cache->space_info->lock);
5970 spin_lock(&cache->lock);
5971 cache->pinned += num_bytes;
5972 cache->space_info->bytes_pinned += num_bytes;
5973 if (reserved) {
5974 cache->reserved -= num_bytes;
5975 cache->space_info->bytes_reserved -= num_bytes;
5976 }
5977 spin_unlock(&cache->lock);
5978 spin_unlock(&cache->space_info->lock);
68b38550 5979
f0486c68
YZ
5980 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5981 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5982 if (reserved)
0be5dc67 5983 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5984 return 0;
5985}
68b38550 5986
f0486c68
YZ
5987/*
5988 * this function must be called within transaction
5989 */
5990int btrfs_pin_extent(struct btrfs_root *root,
5991 u64 bytenr, u64 num_bytes, int reserved)
5992{
5993 struct btrfs_block_group_cache *cache;
68b38550 5994
f0486c68 5995 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5996 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5997
5998 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5999
6000 btrfs_put_block_group(cache);
11833d66
YZ
6001 return 0;
6002}
6003
f0486c68 6004/*
e688b725
CM
6005 * this function must be called within transaction
6006 */
dcfac415 6007int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6008 u64 bytenr, u64 num_bytes)
6009{
6010 struct btrfs_block_group_cache *cache;
b50c6e25 6011 int ret;
e688b725
CM
6012
6013 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6014 if (!cache)
6015 return -EINVAL;
e688b725
CM
6016
6017 /*
6018 * pull in the free space cache (if any) so that our pin
6019 * removes the free space from the cache. We have load_only set
6020 * to one because the slow code to read in the free extents does check
6021 * the pinned extents.
6022 */
f6373bf3 6023 cache_block_group(cache, 1);
e688b725
CM
6024
6025 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6026
6027 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6028 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6029 btrfs_put_block_group(cache);
b50c6e25 6030 return ret;
e688b725
CM
6031}
6032
8c2a1a30
JB
6033static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6034{
6035 int ret;
6036 struct btrfs_block_group_cache *block_group;
6037 struct btrfs_caching_control *caching_ctl;
6038
6039 block_group = btrfs_lookup_block_group(root->fs_info, start);
6040 if (!block_group)
6041 return -EINVAL;
6042
6043 cache_block_group(block_group, 0);
6044 caching_ctl = get_caching_control(block_group);
6045
6046 if (!caching_ctl) {
6047 /* Logic error */
6048 BUG_ON(!block_group_cache_done(block_group));
6049 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6050 } else {
6051 mutex_lock(&caching_ctl->mutex);
6052
6053 if (start >= caching_ctl->progress) {
6054 ret = add_excluded_extent(root, start, num_bytes);
6055 } else if (start + num_bytes <= caching_ctl->progress) {
6056 ret = btrfs_remove_free_space(block_group,
6057 start, num_bytes);
6058 } else {
6059 num_bytes = caching_ctl->progress - start;
6060 ret = btrfs_remove_free_space(block_group,
6061 start, num_bytes);
6062 if (ret)
6063 goto out_lock;
6064
6065 num_bytes = (start + num_bytes) -
6066 caching_ctl->progress;
6067 start = caching_ctl->progress;
6068 ret = add_excluded_extent(root, start, num_bytes);
6069 }
6070out_lock:
6071 mutex_unlock(&caching_ctl->mutex);
6072 put_caching_control(caching_ctl);
6073 }
6074 btrfs_put_block_group(block_group);
6075 return ret;
6076}
6077
6078int btrfs_exclude_logged_extents(struct btrfs_root *log,
6079 struct extent_buffer *eb)
6080{
6081 struct btrfs_file_extent_item *item;
6082 struct btrfs_key key;
6083 int found_type;
6084 int i;
6085
6086 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6087 return 0;
6088
6089 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6090 btrfs_item_key_to_cpu(eb, &key, i);
6091 if (key.type != BTRFS_EXTENT_DATA_KEY)
6092 continue;
6093 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6094 found_type = btrfs_file_extent_type(eb, item);
6095 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6096 continue;
6097 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6098 continue;
6099 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6100 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6101 __exclude_logged_extent(log, key.objectid, key.offset);
6102 }
6103
6104 return 0;
6105}
6106
fb25e914
JB
6107/**
6108 * btrfs_update_reserved_bytes - update the block_group and space info counters
6109 * @cache: The cache we are manipulating
6110 * @num_bytes: The number of bytes in question
6111 * @reserve: One of the reservation enums
e570fd27 6112 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6113 *
6114 * This is called by the allocator when it reserves space, or by somebody who is
6115 * freeing space that was never actually used on disk. For example if you
6116 * reserve some space for a new leaf in transaction A and before transaction A
6117 * commits you free that leaf, you call this with reserve set to 0 in order to
6118 * clear the reservation.
6119 *
6120 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6121 * ENOSPC accounting. For data we handle the reservation through clearing the
6122 * delalloc bits in the io_tree. We have to do this since we could end up
6123 * allocating less disk space for the amount of data we have reserved in the
6124 * case of compression.
6125 *
6126 * If this is a reservation and the block group has become read only we cannot
6127 * make the reservation and return -EAGAIN, otherwise this function always
6128 * succeeds.
f0486c68 6129 */
fb25e914 6130static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6131 u64 num_bytes, int reserve, int delalloc)
11833d66 6132{
fb25e914 6133 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6134 int ret = 0;
79787eaa 6135
fb25e914
JB
6136 spin_lock(&space_info->lock);
6137 spin_lock(&cache->lock);
6138 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6139 if (cache->ro) {
6140 ret = -EAGAIN;
6141 } else {
fb25e914
JB
6142 cache->reserved += num_bytes;
6143 space_info->bytes_reserved += num_bytes;
6144 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6145 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6146 "space_info", space_info->flags,
6147 num_bytes, 0);
fb25e914
JB
6148 space_info->bytes_may_use -= num_bytes;
6149 }
e570fd27
MX
6150
6151 if (delalloc)
6152 cache->delalloc_bytes += num_bytes;
f0486c68 6153 }
fb25e914
JB
6154 } else {
6155 if (cache->ro)
6156 space_info->bytes_readonly += num_bytes;
6157 cache->reserved -= num_bytes;
6158 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6159
6160 if (delalloc)
6161 cache->delalloc_bytes -= num_bytes;
324ae4df 6162 }
fb25e914
JB
6163 spin_unlock(&cache->lock);
6164 spin_unlock(&space_info->lock);
f0486c68 6165 return ret;
324ae4df 6166}
9078a3e1 6167
143bede5 6168void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6169 struct btrfs_root *root)
e8569813 6170{
e8569813 6171 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6172 struct btrfs_caching_control *next;
6173 struct btrfs_caching_control *caching_ctl;
6174 struct btrfs_block_group_cache *cache;
e8569813 6175
9e351cc8 6176 down_write(&fs_info->commit_root_sem);
25179201 6177
11833d66
YZ
6178 list_for_each_entry_safe(caching_ctl, next,
6179 &fs_info->caching_block_groups, list) {
6180 cache = caching_ctl->block_group;
6181 if (block_group_cache_done(cache)) {
6182 cache->last_byte_to_unpin = (u64)-1;
6183 list_del_init(&caching_ctl->list);
6184 put_caching_control(caching_ctl);
e8569813 6185 } else {
11833d66 6186 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6187 }
e8569813 6188 }
11833d66
YZ
6189
6190 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6191 fs_info->pinned_extents = &fs_info->freed_extents[1];
6192 else
6193 fs_info->pinned_extents = &fs_info->freed_extents[0];
6194
9e351cc8 6195 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6196
6197 update_global_block_rsv(fs_info);
e8569813
ZY
6198}
6199
c759c4e1
JB
6200/*
6201 * Returns the free cluster for the given space info and sets empty_cluster to
6202 * what it should be based on the mount options.
6203 */
6204static struct btrfs_free_cluster *
6205fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6206 u64 *empty_cluster)
6207{
6208 struct btrfs_free_cluster *ret = NULL;
6209 bool ssd = btrfs_test_opt(root, SSD);
6210
6211 *empty_cluster = 0;
6212 if (btrfs_mixed_space_info(space_info))
6213 return ret;
6214
6215 if (ssd)
6216 *empty_cluster = 2 * 1024 * 1024;
6217 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6218 ret = &root->fs_info->meta_alloc_cluster;
6219 if (!ssd)
6220 *empty_cluster = 64 * 1024;
6221 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6222 ret = &root->fs_info->data_alloc_cluster;
6223 }
6224
6225 return ret;
6226}
6227
678886bd
FM
6228static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6229 const bool return_free_space)
ccd467d6 6230{
11833d66
YZ
6231 struct btrfs_fs_info *fs_info = root->fs_info;
6232 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6233 struct btrfs_space_info *space_info;
6234 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6235 struct btrfs_free_cluster *cluster = NULL;
11833d66 6236 u64 len;
c759c4e1
JB
6237 u64 total_unpinned = 0;
6238 u64 empty_cluster = 0;
7b398f8e 6239 bool readonly;
ccd467d6 6240
11833d66 6241 while (start <= end) {
7b398f8e 6242 readonly = false;
11833d66
YZ
6243 if (!cache ||
6244 start >= cache->key.objectid + cache->key.offset) {
6245 if (cache)
6246 btrfs_put_block_group(cache);
c759c4e1 6247 total_unpinned = 0;
11833d66 6248 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6249 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6250
6251 cluster = fetch_cluster_info(root,
6252 cache->space_info,
6253 &empty_cluster);
6254 empty_cluster <<= 1;
11833d66
YZ
6255 }
6256
6257 len = cache->key.objectid + cache->key.offset - start;
6258 len = min(len, end + 1 - start);
6259
6260 if (start < cache->last_byte_to_unpin) {
6261 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6262 if (return_free_space)
6263 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6264 }
6265
f0486c68 6266 start += len;
c759c4e1 6267 total_unpinned += len;
7b398f8e 6268 space_info = cache->space_info;
f0486c68 6269
c759c4e1
JB
6270 /*
6271 * If this space cluster has been marked as fragmented and we've
6272 * unpinned enough in this block group to potentially allow a
6273 * cluster to be created inside of it go ahead and clear the
6274 * fragmented check.
6275 */
6276 if (cluster && cluster->fragmented &&
6277 total_unpinned > empty_cluster) {
6278 spin_lock(&cluster->lock);
6279 cluster->fragmented = 0;
6280 spin_unlock(&cluster->lock);
6281 }
6282
7b398f8e 6283 spin_lock(&space_info->lock);
11833d66
YZ
6284 spin_lock(&cache->lock);
6285 cache->pinned -= len;
7b398f8e 6286 space_info->bytes_pinned -= len;
4f4db217 6287 space_info->max_extent_size = 0;
d288db5d 6288 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6289 if (cache->ro) {
6290 space_info->bytes_readonly += len;
6291 readonly = true;
6292 }
11833d66 6293 spin_unlock(&cache->lock);
7b398f8e
JB
6294 if (!readonly && global_rsv->space_info == space_info) {
6295 spin_lock(&global_rsv->lock);
6296 if (!global_rsv->full) {
6297 len = min(len, global_rsv->size -
6298 global_rsv->reserved);
6299 global_rsv->reserved += len;
6300 space_info->bytes_may_use += len;
6301 if (global_rsv->reserved >= global_rsv->size)
6302 global_rsv->full = 1;
6303 }
6304 spin_unlock(&global_rsv->lock);
6305 }
6306 spin_unlock(&space_info->lock);
ccd467d6 6307 }
11833d66
YZ
6308
6309 if (cache)
6310 btrfs_put_block_group(cache);
ccd467d6
CM
6311 return 0;
6312}
6313
6314int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6315 struct btrfs_root *root)
a28ec197 6316{
11833d66 6317 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6318 struct btrfs_block_group_cache *block_group, *tmp;
6319 struct list_head *deleted_bgs;
11833d66 6320 struct extent_io_tree *unpin;
1a5bc167
CM
6321 u64 start;
6322 u64 end;
a28ec197 6323 int ret;
a28ec197 6324
11833d66
YZ
6325 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6326 unpin = &fs_info->freed_extents[1];
6327 else
6328 unpin = &fs_info->freed_extents[0];
6329
e33e17ee 6330 while (!trans->aborted) {
d4b450cd 6331 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6332 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6333 EXTENT_DIRTY, NULL);
d4b450cd
FM
6334 if (ret) {
6335 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6336 break;
d4b450cd 6337 }
1f3c79a2 6338
5378e607
LD
6339 if (btrfs_test_opt(root, DISCARD))
6340 ret = btrfs_discard_extent(root, start,
6341 end + 1 - start, NULL);
1f3c79a2 6342
1a5bc167 6343 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6344 unpin_extent_range(root, start, end, true);
d4b450cd 6345 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6346 cond_resched();
a28ec197 6347 }
817d52f8 6348
e33e17ee
JM
6349 /*
6350 * Transaction is finished. We don't need the lock anymore. We
6351 * do need to clean up the block groups in case of a transaction
6352 * abort.
6353 */
6354 deleted_bgs = &trans->transaction->deleted_bgs;
6355 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6356 u64 trimmed = 0;
6357
6358 ret = -EROFS;
6359 if (!trans->aborted)
6360 ret = btrfs_discard_extent(root,
6361 block_group->key.objectid,
6362 block_group->key.offset,
6363 &trimmed);
6364
6365 list_del_init(&block_group->bg_list);
6366 btrfs_put_block_group_trimming(block_group);
6367 btrfs_put_block_group(block_group);
6368
6369 if (ret) {
6370 const char *errstr = btrfs_decode_error(ret);
6371 btrfs_warn(fs_info,
6372 "Discard failed while removing blockgroup: errno=%d %s\n",
6373 ret, errstr);
6374 }
6375 }
6376
e20d96d6
CM
6377 return 0;
6378}
6379
b150a4f1
JB
6380static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6381 u64 owner, u64 root_objectid)
6382{
6383 struct btrfs_space_info *space_info;
6384 u64 flags;
6385
6386 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6387 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6388 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6389 else
6390 flags = BTRFS_BLOCK_GROUP_METADATA;
6391 } else {
6392 flags = BTRFS_BLOCK_GROUP_DATA;
6393 }
6394
6395 space_info = __find_space_info(fs_info, flags);
6396 BUG_ON(!space_info); /* Logic bug */
6397 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6398}
6399
6400
5d4f98a2
YZ
6401static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6402 struct btrfs_root *root,
c682f9b3 6403 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6404 u64 root_objectid, u64 owner_objectid,
6405 u64 owner_offset, int refs_to_drop,
c682f9b3 6406 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6407{
e2fa7227 6408 struct btrfs_key key;
5d4f98a2 6409 struct btrfs_path *path;
1261ec42
CM
6410 struct btrfs_fs_info *info = root->fs_info;
6411 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6412 struct extent_buffer *leaf;
5d4f98a2
YZ
6413 struct btrfs_extent_item *ei;
6414 struct btrfs_extent_inline_ref *iref;
a28ec197 6415 int ret;
5d4f98a2 6416 int is_data;
952fccac
CM
6417 int extent_slot = 0;
6418 int found_extent = 0;
6419 int num_to_del = 1;
c682f9b3 6420 int no_quota = node->no_quota;
5d4f98a2
YZ
6421 u32 item_size;
6422 u64 refs;
c682f9b3
QW
6423 u64 bytenr = node->bytenr;
6424 u64 num_bytes = node->num_bytes;
fcebe456 6425 int last_ref = 0;
3173a18f
JB
6426 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6427 SKINNY_METADATA);
037e6390 6428
fcebe456
JB
6429 if (!info->quota_enabled || !is_fstree(root_objectid))
6430 no_quota = 1;
6431
5caf2a00 6432 path = btrfs_alloc_path();
54aa1f4d
CM
6433 if (!path)
6434 return -ENOMEM;
5f26f772 6435
3c12ac72 6436 path->reada = 1;
b9473439 6437 path->leave_spinning = 1;
5d4f98a2
YZ
6438
6439 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6440 BUG_ON(!is_data && refs_to_drop != 1);
6441
3173a18f
JB
6442 if (is_data)
6443 skinny_metadata = 0;
6444
5d4f98a2
YZ
6445 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6446 bytenr, num_bytes, parent,
6447 root_objectid, owner_objectid,
6448 owner_offset);
7bb86316 6449 if (ret == 0) {
952fccac 6450 extent_slot = path->slots[0];
5d4f98a2
YZ
6451 while (extent_slot >= 0) {
6452 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6453 extent_slot);
5d4f98a2 6454 if (key.objectid != bytenr)
952fccac 6455 break;
5d4f98a2
YZ
6456 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6457 key.offset == num_bytes) {
952fccac
CM
6458 found_extent = 1;
6459 break;
6460 }
3173a18f
JB
6461 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6462 key.offset == owner_objectid) {
6463 found_extent = 1;
6464 break;
6465 }
952fccac
CM
6466 if (path->slots[0] - extent_slot > 5)
6467 break;
5d4f98a2 6468 extent_slot--;
952fccac 6469 }
5d4f98a2
YZ
6470#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6471 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6472 if (found_extent && item_size < sizeof(*ei))
6473 found_extent = 0;
6474#endif
31840ae1 6475 if (!found_extent) {
5d4f98a2 6476 BUG_ON(iref);
56bec294 6477 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6478 NULL, refs_to_drop,
fcebe456 6479 is_data, &last_ref);
005d6427
DS
6480 if (ret) {
6481 btrfs_abort_transaction(trans, extent_root, ret);
6482 goto out;
6483 }
b3b4aa74 6484 btrfs_release_path(path);
b9473439 6485 path->leave_spinning = 1;
5d4f98a2
YZ
6486
6487 key.objectid = bytenr;
6488 key.type = BTRFS_EXTENT_ITEM_KEY;
6489 key.offset = num_bytes;
6490
3173a18f
JB
6491 if (!is_data && skinny_metadata) {
6492 key.type = BTRFS_METADATA_ITEM_KEY;
6493 key.offset = owner_objectid;
6494 }
6495
31840ae1
ZY
6496 ret = btrfs_search_slot(trans, extent_root,
6497 &key, path, -1, 1);
3173a18f
JB
6498 if (ret > 0 && skinny_metadata && path->slots[0]) {
6499 /*
6500 * Couldn't find our skinny metadata item,
6501 * see if we have ye olde extent item.
6502 */
6503 path->slots[0]--;
6504 btrfs_item_key_to_cpu(path->nodes[0], &key,
6505 path->slots[0]);
6506 if (key.objectid == bytenr &&
6507 key.type == BTRFS_EXTENT_ITEM_KEY &&
6508 key.offset == num_bytes)
6509 ret = 0;
6510 }
6511
6512 if (ret > 0 && skinny_metadata) {
6513 skinny_metadata = false;
9ce49a0b 6514 key.objectid = bytenr;
3173a18f
JB
6515 key.type = BTRFS_EXTENT_ITEM_KEY;
6516 key.offset = num_bytes;
6517 btrfs_release_path(path);
6518 ret = btrfs_search_slot(trans, extent_root,
6519 &key, path, -1, 1);
6520 }
6521
f3465ca4 6522 if (ret) {
c2cf52eb 6523 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6524 ret, bytenr);
b783e62d
JB
6525 if (ret > 0)
6526 btrfs_print_leaf(extent_root,
6527 path->nodes[0]);
f3465ca4 6528 }
005d6427
DS
6529 if (ret < 0) {
6530 btrfs_abort_transaction(trans, extent_root, ret);
6531 goto out;
6532 }
31840ae1
ZY
6533 extent_slot = path->slots[0];
6534 }
fae7f21c 6535 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6536 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6537 btrfs_err(info,
6538 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6539 bytenr, parent, root_objectid, owner_objectid,
6540 owner_offset);
c4a050bb
JB
6541 btrfs_abort_transaction(trans, extent_root, ret);
6542 goto out;
79787eaa 6543 } else {
005d6427
DS
6544 btrfs_abort_transaction(trans, extent_root, ret);
6545 goto out;
7bb86316 6546 }
5f39d397
CM
6547
6548 leaf = path->nodes[0];
5d4f98a2
YZ
6549 item_size = btrfs_item_size_nr(leaf, extent_slot);
6550#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6551 if (item_size < sizeof(*ei)) {
6552 BUG_ON(found_extent || extent_slot != path->slots[0]);
6553 ret = convert_extent_item_v0(trans, extent_root, path,
6554 owner_objectid, 0);
005d6427
DS
6555 if (ret < 0) {
6556 btrfs_abort_transaction(trans, extent_root, ret);
6557 goto out;
6558 }
5d4f98a2 6559
b3b4aa74 6560 btrfs_release_path(path);
5d4f98a2
YZ
6561 path->leave_spinning = 1;
6562
6563 key.objectid = bytenr;
6564 key.type = BTRFS_EXTENT_ITEM_KEY;
6565 key.offset = num_bytes;
6566
6567 ret = btrfs_search_slot(trans, extent_root, &key, path,
6568 -1, 1);
6569 if (ret) {
c2cf52eb 6570 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6571 ret, bytenr);
5d4f98a2
YZ
6572 btrfs_print_leaf(extent_root, path->nodes[0]);
6573 }
005d6427
DS
6574 if (ret < 0) {
6575 btrfs_abort_transaction(trans, extent_root, ret);
6576 goto out;
6577 }
6578
5d4f98a2
YZ
6579 extent_slot = path->slots[0];
6580 leaf = path->nodes[0];
6581 item_size = btrfs_item_size_nr(leaf, extent_slot);
6582 }
6583#endif
6584 BUG_ON(item_size < sizeof(*ei));
952fccac 6585 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6586 struct btrfs_extent_item);
3173a18f
JB
6587 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6588 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6589 struct btrfs_tree_block_info *bi;
6590 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6591 bi = (struct btrfs_tree_block_info *)(ei + 1);
6592 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6593 }
56bec294 6594
5d4f98a2 6595 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6596 if (refs < refs_to_drop) {
6597 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6598 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6599 ret = -EINVAL;
6600 btrfs_abort_transaction(trans, extent_root, ret);
6601 goto out;
6602 }
56bec294 6603 refs -= refs_to_drop;
5f39d397 6604
5d4f98a2
YZ
6605 if (refs > 0) {
6606 if (extent_op)
6607 __run_delayed_extent_op(extent_op, leaf, ei);
6608 /*
6609 * In the case of inline back ref, reference count will
6610 * be updated by remove_extent_backref
952fccac 6611 */
5d4f98a2
YZ
6612 if (iref) {
6613 BUG_ON(!found_extent);
6614 } else {
6615 btrfs_set_extent_refs(leaf, ei, refs);
6616 btrfs_mark_buffer_dirty(leaf);
6617 }
6618 if (found_extent) {
6619 ret = remove_extent_backref(trans, extent_root, path,
6620 iref, refs_to_drop,
fcebe456 6621 is_data, &last_ref);
005d6427
DS
6622 if (ret) {
6623 btrfs_abort_transaction(trans, extent_root, ret);
6624 goto out;
6625 }
952fccac 6626 }
b150a4f1
JB
6627 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6628 root_objectid);
5d4f98a2 6629 } else {
5d4f98a2
YZ
6630 if (found_extent) {
6631 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6632 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6633 if (iref) {
6634 BUG_ON(path->slots[0] != extent_slot);
6635 } else {
6636 BUG_ON(path->slots[0] != extent_slot + 1);
6637 path->slots[0] = extent_slot;
6638 num_to_del = 2;
6639 }
78fae27e 6640 }
b9473439 6641
fcebe456 6642 last_ref = 1;
952fccac
CM
6643 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6644 num_to_del);
005d6427
DS
6645 if (ret) {
6646 btrfs_abort_transaction(trans, extent_root, ret);
6647 goto out;
6648 }
b3b4aa74 6649 btrfs_release_path(path);
21af804c 6650
5d4f98a2 6651 if (is_data) {
459931ec 6652 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6653 if (ret) {
6654 btrfs_abort_transaction(trans, extent_root, ret);
6655 goto out;
6656 }
459931ec
CM
6657 }
6658
ce93ec54 6659 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6660 if (ret) {
6661 btrfs_abort_transaction(trans, extent_root, ret);
6662 goto out;
6663 }
a28ec197 6664 }
fcebe456
JB
6665 btrfs_release_path(path);
6666
79787eaa 6667out:
5caf2a00 6668 btrfs_free_path(path);
a28ec197
CM
6669 return ret;
6670}
6671
1887be66 6672/*
f0486c68 6673 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6674 * delayed ref for that extent as well. This searches the delayed ref tree for
6675 * a given extent, and if there are no other delayed refs to be processed, it
6676 * removes it from the tree.
6677 */
6678static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6679 struct btrfs_root *root, u64 bytenr)
6680{
6681 struct btrfs_delayed_ref_head *head;
6682 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6683 int ret = 0;
1887be66
CM
6684
6685 delayed_refs = &trans->transaction->delayed_refs;
6686 spin_lock(&delayed_refs->lock);
6687 head = btrfs_find_delayed_ref_head(trans, bytenr);
6688 if (!head)
cf93da7b 6689 goto out_delayed_unlock;
1887be66 6690
d7df2c79 6691 spin_lock(&head->lock);
c6fc2454 6692 if (!list_empty(&head->ref_list))
1887be66
CM
6693 goto out;
6694
5d4f98a2
YZ
6695 if (head->extent_op) {
6696 if (!head->must_insert_reserved)
6697 goto out;
78a6184a 6698 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6699 head->extent_op = NULL;
6700 }
6701
1887be66
CM
6702 /*
6703 * waiting for the lock here would deadlock. If someone else has it
6704 * locked they are already in the process of dropping it anyway
6705 */
6706 if (!mutex_trylock(&head->mutex))
6707 goto out;
6708
6709 /*
6710 * at this point we have a head with no other entries. Go
6711 * ahead and process it.
6712 */
6713 head->node.in_tree = 0;
c46effa6 6714 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6715
d7df2c79 6716 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6717
6718 /*
6719 * we don't take a ref on the node because we're removing it from the
6720 * tree, so we just steal the ref the tree was holding.
6721 */
c3e69d58 6722 delayed_refs->num_heads--;
d7df2c79 6723 if (head->processing == 0)
c3e69d58 6724 delayed_refs->num_heads_ready--;
d7df2c79
JB
6725 head->processing = 0;
6726 spin_unlock(&head->lock);
1887be66
CM
6727 spin_unlock(&delayed_refs->lock);
6728
f0486c68
YZ
6729 BUG_ON(head->extent_op);
6730 if (head->must_insert_reserved)
6731 ret = 1;
6732
6733 mutex_unlock(&head->mutex);
1887be66 6734 btrfs_put_delayed_ref(&head->node);
f0486c68 6735 return ret;
1887be66 6736out:
d7df2c79 6737 spin_unlock(&head->lock);
cf93da7b
CM
6738
6739out_delayed_unlock:
1887be66
CM
6740 spin_unlock(&delayed_refs->lock);
6741 return 0;
6742}
6743
f0486c68
YZ
6744void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6745 struct btrfs_root *root,
6746 struct extent_buffer *buf,
5581a51a 6747 u64 parent, int last_ref)
f0486c68 6748{
b150a4f1 6749 int pin = 1;
f0486c68
YZ
6750 int ret;
6751
6752 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6753 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6754 buf->start, buf->len,
6755 parent, root->root_key.objectid,
6756 btrfs_header_level(buf),
5581a51a 6757 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6758 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6759 }
6760
6761 if (!last_ref)
6762 return;
6763
f0486c68 6764 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6765 struct btrfs_block_group_cache *cache;
6766
f0486c68
YZ
6767 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6768 ret = check_ref_cleanup(trans, root, buf->start);
6769 if (!ret)
37be25bc 6770 goto out;
f0486c68
YZ
6771 }
6772
6219872d
FM
6773 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6774
f0486c68
YZ
6775 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6776 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6777 btrfs_put_block_group(cache);
37be25bc 6778 goto out;
f0486c68
YZ
6779 }
6780
6781 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6782
6783 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6784 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6785 btrfs_put_block_group(cache);
0be5dc67 6786 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6787 pin = 0;
f0486c68
YZ
6788 }
6789out:
b150a4f1
JB
6790 if (pin)
6791 add_pinned_bytes(root->fs_info, buf->len,
6792 btrfs_header_level(buf),
6793 root->root_key.objectid);
6794
a826d6dc
JB
6795 /*
6796 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6797 * anymore.
6798 */
6799 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6800}
6801
79787eaa 6802/* Can return -ENOMEM */
66d7e7f0
AJ
6803int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6804 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6805 u64 owner, u64 offset, int no_quota)
925baedd
CM
6806{
6807 int ret;
66d7e7f0 6808 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6809
fccb84c9 6810 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6811 return 0;
fccb84c9 6812
b150a4f1
JB
6813 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6814
56bec294
CM
6815 /*
6816 * tree log blocks never actually go into the extent allocation
6817 * tree, just update pinning info and exit early.
56bec294 6818 */
5d4f98a2
YZ
6819 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6820 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6821 /* unlocks the pinned mutex */
11833d66 6822 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6823 ret = 0;
5d4f98a2 6824 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6825 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6826 num_bytes,
5d4f98a2 6827 parent, root_objectid, (int)owner,
fcebe456 6828 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6829 } else {
66d7e7f0
AJ
6830 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6831 num_bytes,
6832 parent, root_objectid, owner,
6833 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6834 NULL, no_quota);
56bec294 6835 }
925baedd
CM
6836 return ret;
6837}
6838
817d52f8
JB
6839/*
6840 * when we wait for progress in the block group caching, its because
6841 * our allocation attempt failed at least once. So, we must sleep
6842 * and let some progress happen before we try again.
6843 *
6844 * This function will sleep at least once waiting for new free space to
6845 * show up, and then it will check the block group free space numbers
6846 * for our min num_bytes. Another option is to have it go ahead
6847 * and look in the rbtree for a free extent of a given size, but this
6848 * is a good start.
36cce922
JB
6849 *
6850 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6851 * any of the information in this block group.
817d52f8 6852 */
36cce922 6853static noinline void
817d52f8
JB
6854wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6855 u64 num_bytes)
6856{
11833d66 6857 struct btrfs_caching_control *caching_ctl;
817d52f8 6858
11833d66
YZ
6859 caching_ctl = get_caching_control(cache);
6860 if (!caching_ctl)
36cce922 6861 return;
817d52f8 6862
11833d66 6863 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6864 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6865
6866 put_caching_control(caching_ctl);
11833d66
YZ
6867}
6868
6869static noinline int
6870wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6871{
6872 struct btrfs_caching_control *caching_ctl;
36cce922 6873 int ret = 0;
11833d66
YZ
6874
6875 caching_ctl = get_caching_control(cache);
6876 if (!caching_ctl)
36cce922 6877 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6878
6879 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6880 if (cache->cached == BTRFS_CACHE_ERROR)
6881 ret = -EIO;
11833d66 6882 put_caching_control(caching_ctl);
36cce922 6883 return ret;
817d52f8
JB
6884}
6885
31e50229 6886int __get_raid_index(u64 flags)
b742bb82 6887{
7738a53a 6888 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6889 return BTRFS_RAID_RAID10;
7738a53a 6890 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6891 return BTRFS_RAID_RAID1;
7738a53a 6892 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6893 return BTRFS_RAID_DUP;
7738a53a 6894 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6895 return BTRFS_RAID_RAID0;
53b381b3 6896 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6897 return BTRFS_RAID_RAID5;
53b381b3 6898 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6899 return BTRFS_RAID_RAID6;
7738a53a 6900
e942f883 6901 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6902}
6903
6ab0a202 6904int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6905{
31e50229 6906 return __get_raid_index(cache->flags);
7738a53a
ID
6907}
6908
6ab0a202
JM
6909static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6910 [BTRFS_RAID_RAID10] = "raid10",
6911 [BTRFS_RAID_RAID1] = "raid1",
6912 [BTRFS_RAID_DUP] = "dup",
6913 [BTRFS_RAID_RAID0] = "raid0",
6914 [BTRFS_RAID_SINGLE] = "single",
6915 [BTRFS_RAID_RAID5] = "raid5",
6916 [BTRFS_RAID_RAID6] = "raid6",
6917};
6918
1b8e5df6 6919static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6920{
6921 if (type >= BTRFS_NR_RAID_TYPES)
6922 return NULL;
6923
6924 return btrfs_raid_type_names[type];
6925}
6926
817d52f8 6927enum btrfs_loop_type {
285ff5af
JB
6928 LOOP_CACHING_NOWAIT = 0,
6929 LOOP_CACHING_WAIT = 1,
6930 LOOP_ALLOC_CHUNK = 2,
6931 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6932};
6933
e570fd27
MX
6934static inline void
6935btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6936 int delalloc)
6937{
6938 if (delalloc)
6939 down_read(&cache->data_rwsem);
6940}
6941
6942static inline void
6943btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6944 int delalloc)
6945{
6946 btrfs_get_block_group(cache);
6947 if (delalloc)
6948 down_read(&cache->data_rwsem);
6949}
6950
6951static struct btrfs_block_group_cache *
6952btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6953 struct btrfs_free_cluster *cluster,
6954 int delalloc)
6955{
6956 struct btrfs_block_group_cache *used_bg;
6957 bool locked = false;
6958again:
6959 spin_lock(&cluster->refill_lock);
6960 if (locked) {
6961 if (used_bg == cluster->block_group)
6962 return used_bg;
6963
6964 up_read(&used_bg->data_rwsem);
6965 btrfs_put_block_group(used_bg);
6966 }
6967
6968 used_bg = cluster->block_group;
6969 if (!used_bg)
6970 return NULL;
6971
6972 if (used_bg == block_group)
6973 return used_bg;
6974
6975 btrfs_get_block_group(used_bg);
6976
6977 if (!delalloc)
6978 return used_bg;
6979
6980 if (down_read_trylock(&used_bg->data_rwsem))
6981 return used_bg;
6982
6983 spin_unlock(&cluster->refill_lock);
6984 down_read(&used_bg->data_rwsem);
6985 locked = true;
6986 goto again;
6987}
6988
6989static inline void
6990btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6991 int delalloc)
6992{
6993 if (delalloc)
6994 up_read(&cache->data_rwsem);
6995 btrfs_put_block_group(cache);
6996}
6997
fec577fb
CM
6998/*
6999 * walks the btree of allocated extents and find a hole of a given size.
7000 * The key ins is changed to record the hole:
a4820398 7001 * ins->objectid == start position
62e2749e 7002 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7003 * ins->offset == the size of the hole.
fec577fb 7004 * Any available blocks before search_start are skipped.
a4820398
MX
7005 *
7006 * If there is no suitable free space, we will record the max size of
7007 * the free space extent currently.
fec577fb 7008 */
00361589 7009static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7010 u64 num_bytes, u64 empty_size,
98ed5174 7011 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7012 u64 flags, int delalloc)
fec577fb 7013{
80eb234a 7014 int ret = 0;
d397712b 7015 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7016 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7017 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7018 u64 search_start = 0;
a4820398 7019 u64 max_extent_size = 0;
c759c4e1 7020 u64 empty_cluster = 0;
80eb234a 7021 struct btrfs_space_info *space_info;
fa9c0d79 7022 int loop = 0;
b6919a58
DS
7023 int index = __get_raid_index(flags);
7024 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7025 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7026 bool failed_cluster_refill = false;
1cdda9b8 7027 bool failed_alloc = false;
67377734 7028 bool use_cluster = true;
60d2adbb 7029 bool have_caching_bg = false;
a5e681d9 7030 bool full_search = false;
fec577fb 7031
db94535d 7032 WARN_ON(num_bytes < root->sectorsize);
962a298f 7033 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7034 ins->objectid = 0;
7035 ins->offset = 0;
b1a4d965 7036
b6919a58 7037 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7038
b6919a58 7039 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7040 if (!space_info) {
b6919a58 7041 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7042 return -ENOSPC;
7043 }
2552d17e 7044
67377734 7045 /*
4f4db217
JB
7046 * If our free space is heavily fragmented we may not be able to make
7047 * big contiguous allocations, so instead of doing the expensive search
7048 * for free space, simply return ENOSPC with our max_extent_size so we
7049 * can go ahead and search for a more manageable chunk.
7050 *
7051 * If our max_extent_size is large enough for our allocation simply
7052 * disable clustering since we will likely not be able to find enough
7053 * space to create a cluster and induce latency trying.
67377734 7054 */
4f4db217
JB
7055 if (unlikely(space_info->max_extent_size)) {
7056 spin_lock(&space_info->lock);
7057 if (space_info->max_extent_size &&
7058 num_bytes > space_info->max_extent_size) {
7059 ins->offset = space_info->max_extent_size;
7060 spin_unlock(&space_info->lock);
7061 return -ENOSPC;
7062 } else if (space_info->max_extent_size) {
7063 use_cluster = false;
7064 }
7065 spin_unlock(&space_info->lock);
fa9c0d79 7066 }
0f9dd46c 7067
c759c4e1 7068 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7069 if (last_ptr) {
fa9c0d79
CM
7070 spin_lock(&last_ptr->lock);
7071 if (last_ptr->block_group)
7072 hint_byte = last_ptr->window_start;
c759c4e1
JB
7073 if (last_ptr->fragmented) {
7074 /*
7075 * We still set window_start so we can keep track of the
7076 * last place we found an allocation to try and save
7077 * some time.
7078 */
7079 hint_byte = last_ptr->window_start;
7080 use_cluster = false;
7081 }
fa9c0d79 7082 spin_unlock(&last_ptr->lock);
239b14b3 7083 }
fa9c0d79 7084
a061fc8d 7085 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7086 search_start = max(search_start, hint_byte);
2552d17e 7087 if (search_start == hint_byte) {
2552d17e
JB
7088 block_group = btrfs_lookup_block_group(root->fs_info,
7089 search_start);
817d52f8
JB
7090 /*
7091 * we don't want to use the block group if it doesn't match our
7092 * allocation bits, or if its not cached.
ccf0e725
JB
7093 *
7094 * However if we are re-searching with an ideal block group
7095 * picked out then we don't care that the block group is cached.
817d52f8 7096 */
b6919a58 7097 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7098 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7099 down_read(&space_info->groups_sem);
44fb5511
CM
7100 if (list_empty(&block_group->list) ||
7101 block_group->ro) {
7102 /*
7103 * someone is removing this block group,
7104 * we can't jump into the have_block_group
7105 * target because our list pointers are not
7106 * valid
7107 */
7108 btrfs_put_block_group(block_group);
7109 up_read(&space_info->groups_sem);
ccf0e725 7110 } else {
b742bb82 7111 index = get_block_group_index(block_group);
e570fd27 7112 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7113 goto have_block_group;
ccf0e725 7114 }
2552d17e 7115 } else if (block_group) {
fa9c0d79 7116 btrfs_put_block_group(block_group);
2552d17e 7117 }
42e70e7a 7118 }
2552d17e 7119search:
60d2adbb 7120 have_caching_bg = false;
a5e681d9
JB
7121 if (index == 0 || index == __get_raid_index(flags))
7122 full_search = true;
80eb234a 7123 down_read(&space_info->groups_sem);
b742bb82
YZ
7124 list_for_each_entry(block_group, &space_info->block_groups[index],
7125 list) {
6226cb0a 7126 u64 offset;
817d52f8 7127 int cached;
8a1413a2 7128
e570fd27 7129 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7130 search_start = block_group->key.objectid;
42e70e7a 7131
83a50de9
CM
7132 /*
7133 * this can happen if we end up cycling through all the
7134 * raid types, but we want to make sure we only allocate
7135 * for the proper type.
7136 */
b6919a58 7137 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7138 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7139 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7140 BTRFS_BLOCK_GROUP_RAID5 |
7141 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7142 BTRFS_BLOCK_GROUP_RAID10;
7143
7144 /*
7145 * if they asked for extra copies and this block group
7146 * doesn't provide them, bail. This does allow us to
7147 * fill raid0 from raid1.
7148 */
b6919a58 7149 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7150 goto loop;
7151 }
7152
2552d17e 7153have_block_group:
291c7d2f
JB
7154 cached = block_group_cache_done(block_group);
7155 if (unlikely(!cached)) {
a5e681d9 7156 have_caching_bg = true;
f6373bf3 7157 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7158 BUG_ON(ret < 0);
7159 ret = 0;
817d52f8
JB
7160 }
7161
36cce922
JB
7162 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7163 goto loop;
ea6a478e 7164 if (unlikely(block_group->ro))
2552d17e 7165 goto loop;
0f9dd46c 7166
0a24325e 7167 /*
062c05c4
AO
7168 * Ok we want to try and use the cluster allocator, so
7169 * lets look there
0a24325e 7170 */
c759c4e1 7171 if (last_ptr && use_cluster) {
215a63d1 7172 struct btrfs_block_group_cache *used_block_group;
8de972b4 7173 unsigned long aligned_cluster;
fa9c0d79
CM
7174 /*
7175 * the refill lock keeps out other
7176 * people trying to start a new cluster
7177 */
e570fd27
MX
7178 used_block_group = btrfs_lock_cluster(block_group,
7179 last_ptr,
7180 delalloc);
7181 if (!used_block_group)
44fb5511 7182 goto refill_cluster;
274bd4fb 7183
e570fd27
MX
7184 if (used_block_group != block_group &&
7185 (used_block_group->ro ||
7186 !block_group_bits(used_block_group, flags)))
7187 goto release_cluster;
44fb5511 7188
274bd4fb 7189 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7190 last_ptr,
7191 num_bytes,
7192 used_block_group->key.objectid,
7193 &max_extent_size);
fa9c0d79
CM
7194 if (offset) {
7195 /* we have a block, we're done */
7196 spin_unlock(&last_ptr->refill_lock);
3f7de037 7197 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7198 used_block_group,
7199 search_start, num_bytes);
215a63d1 7200 if (used_block_group != block_group) {
e570fd27
MX
7201 btrfs_release_block_group(block_group,
7202 delalloc);
215a63d1
MX
7203 block_group = used_block_group;
7204 }
fa9c0d79
CM
7205 goto checks;
7206 }
7207
274bd4fb 7208 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7209release_cluster:
062c05c4
AO
7210 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7211 * set up a new clusters, so lets just skip it
7212 * and let the allocator find whatever block
7213 * it can find. If we reach this point, we
7214 * will have tried the cluster allocator
7215 * plenty of times and not have found
7216 * anything, so we are likely way too
7217 * fragmented for the clustering stuff to find
a5f6f719
AO
7218 * anything.
7219 *
7220 * However, if the cluster is taken from the
7221 * current block group, release the cluster
7222 * first, so that we stand a better chance of
7223 * succeeding in the unclustered
7224 * allocation. */
7225 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7226 used_block_group != block_group) {
062c05c4 7227 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7228 btrfs_release_block_group(used_block_group,
7229 delalloc);
062c05c4
AO
7230 goto unclustered_alloc;
7231 }
7232
fa9c0d79
CM
7233 /*
7234 * this cluster didn't work out, free it and
7235 * start over
7236 */
7237 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7238
e570fd27
MX
7239 if (used_block_group != block_group)
7240 btrfs_release_block_group(used_block_group,
7241 delalloc);
7242refill_cluster:
a5f6f719
AO
7243 if (loop >= LOOP_NO_EMPTY_SIZE) {
7244 spin_unlock(&last_ptr->refill_lock);
7245 goto unclustered_alloc;
7246 }
7247
8de972b4
CM
7248 aligned_cluster = max_t(unsigned long,
7249 empty_cluster + empty_size,
7250 block_group->full_stripe_len);
7251
fa9c0d79 7252 /* allocate a cluster in this block group */
00361589
JB
7253 ret = btrfs_find_space_cluster(root, block_group,
7254 last_ptr, search_start,
7255 num_bytes,
7256 aligned_cluster);
fa9c0d79
CM
7257 if (ret == 0) {
7258 /*
7259 * now pull our allocation out of this
7260 * cluster
7261 */
7262 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7263 last_ptr,
7264 num_bytes,
7265 search_start,
7266 &max_extent_size);
fa9c0d79
CM
7267 if (offset) {
7268 /* we found one, proceed */
7269 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7270 trace_btrfs_reserve_extent_cluster(root,
7271 block_group, search_start,
7272 num_bytes);
fa9c0d79
CM
7273 goto checks;
7274 }
0a24325e
JB
7275 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7276 && !failed_cluster_refill) {
817d52f8
JB
7277 spin_unlock(&last_ptr->refill_lock);
7278
0a24325e 7279 failed_cluster_refill = true;
817d52f8
JB
7280 wait_block_group_cache_progress(block_group,
7281 num_bytes + empty_cluster + empty_size);
7282 goto have_block_group;
fa9c0d79 7283 }
817d52f8 7284
fa9c0d79
CM
7285 /*
7286 * at this point we either didn't find a cluster
7287 * or we weren't able to allocate a block from our
7288 * cluster. Free the cluster we've been trying
7289 * to use, and go to the next block group
7290 */
0a24325e 7291 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7292 spin_unlock(&last_ptr->refill_lock);
0a24325e 7293 goto loop;
fa9c0d79
CM
7294 }
7295
062c05c4 7296unclustered_alloc:
c759c4e1
JB
7297 /*
7298 * We are doing an unclustered alloc, set the fragmented flag so
7299 * we don't bother trying to setup a cluster again until we get
7300 * more space.
7301 */
7302 if (unlikely(last_ptr)) {
7303 spin_lock(&last_ptr->lock);
7304 last_ptr->fragmented = 1;
7305 spin_unlock(&last_ptr->lock);
7306 }
a5f6f719
AO
7307 spin_lock(&block_group->free_space_ctl->tree_lock);
7308 if (cached &&
7309 block_group->free_space_ctl->free_space <
7310 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7311 if (block_group->free_space_ctl->free_space >
7312 max_extent_size)
7313 max_extent_size =
7314 block_group->free_space_ctl->free_space;
a5f6f719
AO
7315 spin_unlock(&block_group->free_space_ctl->tree_lock);
7316 goto loop;
7317 }
7318 spin_unlock(&block_group->free_space_ctl->tree_lock);
7319
6226cb0a 7320 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7321 num_bytes, empty_size,
7322 &max_extent_size);
1cdda9b8
JB
7323 /*
7324 * If we didn't find a chunk, and we haven't failed on this
7325 * block group before, and this block group is in the middle of
7326 * caching and we are ok with waiting, then go ahead and wait
7327 * for progress to be made, and set failed_alloc to true.
7328 *
7329 * If failed_alloc is true then we've already waited on this
7330 * block group once and should move on to the next block group.
7331 */
7332 if (!offset && !failed_alloc && !cached &&
7333 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7334 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7335 num_bytes + empty_size);
7336 failed_alloc = true;
817d52f8 7337 goto have_block_group;
1cdda9b8
JB
7338 } else if (!offset) {
7339 goto loop;
817d52f8 7340 }
fa9c0d79 7341checks:
4e54b17a 7342 search_start = ALIGN(offset, root->stripesize);
25179201 7343
2552d17e
JB
7344 /* move on to the next group */
7345 if (search_start + num_bytes >
215a63d1
MX
7346 block_group->key.objectid + block_group->key.offset) {
7347 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7348 goto loop;
6226cb0a 7349 }
f5a31e16 7350
f0486c68 7351 if (offset < search_start)
215a63d1 7352 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7353 search_start - offset);
7354 BUG_ON(offset > search_start);
2552d17e 7355
215a63d1 7356 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7357 alloc_type, delalloc);
f0486c68 7358 if (ret == -EAGAIN) {
215a63d1 7359 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7360 goto loop;
0f9dd46c 7361 }
0b86a832 7362
f0486c68 7363 /* we are all good, lets return */
2552d17e
JB
7364 ins->objectid = search_start;
7365 ins->offset = num_bytes;
d2fb3437 7366
3f7de037
JB
7367 trace_btrfs_reserve_extent(orig_root, block_group,
7368 search_start, num_bytes);
e570fd27 7369 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7370 break;
7371loop:
0a24325e 7372 failed_cluster_refill = false;
1cdda9b8 7373 failed_alloc = false;
b742bb82 7374 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7375 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7376 }
7377 up_read(&space_info->groups_sem);
7378
60d2adbb
MX
7379 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7380 goto search;
7381
b742bb82
YZ
7382 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7383 goto search;
7384
285ff5af 7385 /*
ccf0e725
JB
7386 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7387 * caching kthreads as we move along
817d52f8
JB
7388 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7389 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7390 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7391 * again
fa9c0d79 7392 */
723bda20 7393 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7394 index = 0;
a5e681d9
JB
7395 if (loop == LOOP_CACHING_NOWAIT) {
7396 /*
7397 * We want to skip the LOOP_CACHING_WAIT step if we
7398 * don't have any unached bgs and we've alrelady done a
7399 * full search through.
7400 */
7401 if (have_caching_bg || !full_search)
7402 loop = LOOP_CACHING_WAIT;
7403 else
7404 loop = LOOP_ALLOC_CHUNK;
7405 } else {
7406 loop++;
7407 }
7408
817d52f8 7409 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7410 struct btrfs_trans_handle *trans;
f017f15f
WS
7411 int exist = 0;
7412
7413 trans = current->journal_info;
7414 if (trans)
7415 exist = 1;
7416 else
7417 trans = btrfs_join_transaction(root);
00361589 7418
00361589
JB
7419 if (IS_ERR(trans)) {
7420 ret = PTR_ERR(trans);
7421 goto out;
7422 }
7423
b6919a58 7424 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7425 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7426
7427 /*
7428 * If we can't allocate a new chunk we've already looped
7429 * through at least once, move on to the NO_EMPTY_SIZE
7430 * case.
7431 */
7432 if (ret == -ENOSPC)
7433 loop = LOOP_NO_EMPTY_SIZE;
7434
ea658bad
JB
7435 /*
7436 * Do not bail out on ENOSPC since we
7437 * can do more things.
7438 */
00361589 7439 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7440 btrfs_abort_transaction(trans,
7441 root, ret);
00361589
JB
7442 else
7443 ret = 0;
f017f15f
WS
7444 if (!exist)
7445 btrfs_end_transaction(trans, root);
00361589 7446 if (ret)
ea658bad 7447 goto out;
2552d17e
JB
7448 }
7449
723bda20 7450 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7451 /*
7452 * Don't loop again if we already have no empty_size and
7453 * no empty_cluster.
7454 */
7455 if (empty_size == 0 &&
7456 empty_cluster == 0) {
7457 ret = -ENOSPC;
7458 goto out;
7459 }
723bda20
JB
7460 empty_size = 0;
7461 empty_cluster = 0;
fa9c0d79 7462 }
723bda20
JB
7463
7464 goto search;
2552d17e
JB
7465 } else if (!ins->objectid) {
7466 ret = -ENOSPC;
d82a6f1d 7467 } else if (ins->objectid) {
c759c4e1
JB
7468 if (!use_cluster && last_ptr) {
7469 spin_lock(&last_ptr->lock);
7470 last_ptr->window_start = ins->objectid;
7471 spin_unlock(&last_ptr->lock);
7472 }
80eb234a 7473 ret = 0;
be744175 7474 }
79787eaa 7475out:
4f4db217
JB
7476 if (ret == -ENOSPC) {
7477 spin_lock(&space_info->lock);
7478 space_info->max_extent_size = max_extent_size;
7479 spin_unlock(&space_info->lock);
a4820398 7480 ins->offset = max_extent_size;
4f4db217 7481 }
0f70abe2 7482 return ret;
fec577fb 7483}
ec44a35c 7484
9ed74f2d
JB
7485static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7486 int dump_block_groups)
0f9dd46c
JB
7487{
7488 struct btrfs_block_group_cache *cache;
b742bb82 7489 int index = 0;
0f9dd46c 7490
9ed74f2d 7491 spin_lock(&info->lock);
efe120a0 7492 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7493 info->flags,
7494 info->total_bytes - info->bytes_used - info->bytes_pinned -
7495 info->bytes_reserved - info->bytes_readonly,
d397712b 7496 (info->full) ? "" : "not ");
efe120a0 7497 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7498 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7499 info->total_bytes, info->bytes_used, info->bytes_pinned,
7500 info->bytes_reserved, info->bytes_may_use,
7501 info->bytes_readonly);
9ed74f2d
JB
7502 spin_unlock(&info->lock);
7503
7504 if (!dump_block_groups)
7505 return;
0f9dd46c 7506
80eb234a 7507 down_read(&info->groups_sem);
b742bb82
YZ
7508again:
7509 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7510 spin_lock(&cache->lock);
efe120a0
FH
7511 printk(KERN_INFO "BTRFS: "
7512 "block group %llu has %llu bytes, "
7513 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7514 cache->key.objectid, cache->key.offset,
7515 btrfs_block_group_used(&cache->item), cache->pinned,
7516 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7517 btrfs_dump_free_space(cache, bytes);
7518 spin_unlock(&cache->lock);
7519 }
b742bb82
YZ
7520 if (++index < BTRFS_NR_RAID_TYPES)
7521 goto again;
80eb234a 7522 up_read(&info->groups_sem);
0f9dd46c 7523}
e8569813 7524
00361589 7525int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7526 u64 num_bytes, u64 min_alloc_size,
7527 u64 empty_size, u64 hint_byte,
e570fd27 7528 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7529{
36af4e07 7530 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7531 u64 flags;
fec577fb 7532 int ret;
925baedd 7533
b6919a58 7534 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7535again:
db94535d 7536 WARN_ON(num_bytes < root->sectorsize);
00361589 7537 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7538 flags, delalloc);
3b951516 7539
9e622d6b 7540 if (ret == -ENOSPC) {
a4820398
MX
7541 if (!final_tried && ins->offset) {
7542 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7543 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7544 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7545 if (num_bytes == min_alloc_size)
7546 final_tried = true;
7547 goto again;
7548 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7549 struct btrfs_space_info *sinfo;
7550
b6919a58 7551 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7552 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7553 flags, num_bytes);
53804280
JM
7554 if (sinfo)
7555 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7556 }
925baedd 7557 }
0f9dd46c
JB
7558
7559 return ret;
e6dcd2dc
CM
7560}
7561
e688b725 7562static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7563 u64 start, u64 len,
7564 int pin, int delalloc)
65b51a00 7565{
0f9dd46c 7566 struct btrfs_block_group_cache *cache;
1f3c79a2 7567 int ret = 0;
0f9dd46c 7568
0f9dd46c
JB
7569 cache = btrfs_lookup_block_group(root->fs_info, start);
7570 if (!cache) {
c2cf52eb 7571 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7572 start);
0f9dd46c
JB
7573 return -ENOSPC;
7574 }
1f3c79a2 7575
e688b725
CM
7576 if (pin)
7577 pin_down_extent(root, cache, start, len, 1);
7578 else {
dcc82f47
FM
7579 if (btrfs_test_opt(root, DISCARD))
7580 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7581 btrfs_add_free_space(cache, start, len);
e570fd27 7582 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7583 }
31193213 7584
fa9c0d79 7585 btrfs_put_block_group(cache);
817d52f8 7586
1abe9b8a 7587 trace_btrfs_reserved_extent_free(root, start, len);
7588
e6dcd2dc
CM
7589 return ret;
7590}
7591
e688b725 7592int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7593 u64 start, u64 len, int delalloc)
e688b725 7594{
e570fd27 7595 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7596}
7597
7598int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7599 u64 start, u64 len)
7600{
e570fd27 7601 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7602}
7603
5d4f98a2
YZ
7604static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7605 struct btrfs_root *root,
7606 u64 parent, u64 root_objectid,
7607 u64 flags, u64 owner, u64 offset,
7608 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7609{
7610 int ret;
5d4f98a2 7611 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7612 struct btrfs_extent_item *extent_item;
5d4f98a2 7613 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7614 struct btrfs_path *path;
5d4f98a2
YZ
7615 struct extent_buffer *leaf;
7616 int type;
7617 u32 size;
26b8003f 7618
5d4f98a2
YZ
7619 if (parent > 0)
7620 type = BTRFS_SHARED_DATA_REF_KEY;
7621 else
7622 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7623
5d4f98a2 7624 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7625
7626 path = btrfs_alloc_path();
db5b493a
TI
7627 if (!path)
7628 return -ENOMEM;
47e4bb98 7629
b9473439 7630 path->leave_spinning = 1;
5d4f98a2
YZ
7631 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7632 ins, size);
79787eaa
JM
7633 if (ret) {
7634 btrfs_free_path(path);
7635 return ret;
7636 }
0f9dd46c 7637
5d4f98a2
YZ
7638 leaf = path->nodes[0];
7639 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7640 struct btrfs_extent_item);
5d4f98a2
YZ
7641 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7642 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7643 btrfs_set_extent_flags(leaf, extent_item,
7644 flags | BTRFS_EXTENT_FLAG_DATA);
7645
7646 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7647 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7648 if (parent > 0) {
7649 struct btrfs_shared_data_ref *ref;
7650 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7651 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7652 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7653 } else {
7654 struct btrfs_extent_data_ref *ref;
7655 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7656 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7657 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7658 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7659 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7660 }
47e4bb98
CM
7661
7662 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7663 btrfs_free_path(path);
f510cfec 7664
ce93ec54 7665 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7666 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7667 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7668 ins->objectid, ins->offset);
f5947066
CM
7669 BUG();
7670 }
0be5dc67 7671 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7672 return ret;
7673}
7674
5d4f98a2
YZ
7675static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7676 struct btrfs_root *root,
7677 u64 parent, u64 root_objectid,
7678 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7679 int level, struct btrfs_key *ins,
7680 int no_quota)
e6dcd2dc
CM
7681{
7682 int ret;
5d4f98a2
YZ
7683 struct btrfs_fs_info *fs_info = root->fs_info;
7684 struct btrfs_extent_item *extent_item;
7685 struct btrfs_tree_block_info *block_info;
7686 struct btrfs_extent_inline_ref *iref;
7687 struct btrfs_path *path;
7688 struct extent_buffer *leaf;
3173a18f 7689 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7690 u64 num_bytes = ins->offset;
3173a18f
JB
7691 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7692 SKINNY_METADATA);
7693
7694 if (!skinny_metadata)
7695 size += sizeof(*block_info);
1c2308f8 7696
5d4f98a2 7697 path = btrfs_alloc_path();
857cc2fc
JB
7698 if (!path) {
7699 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7700 root->nodesize);
d8926bb3 7701 return -ENOMEM;
857cc2fc 7702 }
56bec294 7703
5d4f98a2
YZ
7704 path->leave_spinning = 1;
7705 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7706 ins, size);
79787eaa 7707 if (ret) {
dd825259 7708 btrfs_free_path(path);
857cc2fc 7709 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7710 root->nodesize);
79787eaa
JM
7711 return ret;
7712 }
5d4f98a2
YZ
7713
7714 leaf = path->nodes[0];
7715 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7716 struct btrfs_extent_item);
7717 btrfs_set_extent_refs(leaf, extent_item, 1);
7718 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7719 btrfs_set_extent_flags(leaf, extent_item,
7720 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7721
3173a18f
JB
7722 if (skinny_metadata) {
7723 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7724 num_bytes = root->nodesize;
3173a18f
JB
7725 } else {
7726 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7727 btrfs_set_tree_block_key(leaf, block_info, key);
7728 btrfs_set_tree_block_level(leaf, block_info, level);
7729 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7730 }
5d4f98a2 7731
5d4f98a2
YZ
7732 if (parent > 0) {
7733 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7734 btrfs_set_extent_inline_ref_type(leaf, iref,
7735 BTRFS_SHARED_BLOCK_REF_KEY);
7736 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7737 } else {
7738 btrfs_set_extent_inline_ref_type(leaf, iref,
7739 BTRFS_TREE_BLOCK_REF_KEY);
7740 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7741 }
7742
7743 btrfs_mark_buffer_dirty(leaf);
7744 btrfs_free_path(path);
7745
ce93ec54
JB
7746 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7747 1);
79787eaa 7748 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7749 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7750 ins->objectid, ins->offset);
5d4f98a2
YZ
7751 BUG();
7752 }
0be5dc67 7753
707e8a07 7754 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7755 return ret;
7756}
7757
7758int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7759 struct btrfs_root *root,
7760 u64 root_objectid, u64 owner,
7761 u64 offset, struct btrfs_key *ins)
7762{
7763 int ret;
7764
7765 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7766
66d7e7f0
AJ
7767 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7768 ins->offset, 0,
7769 root_objectid, owner, offset,
7770 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7771 return ret;
7772}
e02119d5
CM
7773
7774/*
7775 * this is used by the tree logging recovery code. It records that
7776 * an extent has been allocated and makes sure to clear the free
7777 * space cache bits as well
7778 */
5d4f98a2
YZ
7779int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7780 struct btrfs_root *root,
7781 u64 root_objectid, u64 owner, u64 offset,
7782 struct btrfs_key *ins)
e02119d5
CM
7783{
7784 int ret;
7785 struct btrfs_block_group_cache *block_group;
11833d66 7786
8c2a1a30
JB
7787 /*
7788 * Mixed block groups will exclude before processing the log so we only
7789 * need to do the exlude dance if this fs isn't mixed.
7790 */
7791 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7792 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7793 if (ret)
8c2a1a30 7794 return ret;
11833d66
YZ
7795 }
7796
8c2a1a30
JB
7797 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7798 if (!block_group)
7799 return -EINVAL;
7800
fb25e914 7801 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7802 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7803 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7804 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7805 0, owner, offset, ins, 1);
b50c6e25 7806 btrfs_put_block_group(block_group);
e02119d5
CM
7807 return ret;
7808}
7809
48a3b636
ES
7810static struct extent_buffer *
7811btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7812 u64 bytenr, int level)
65b51a00
CM
7813{
7814 struct extent_buffer *buf;
7815
a83fffb7 7816 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7817 if (!buf)
7818 return ERR_PTR(-ENOMEM);
7819 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7820 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7821 btrfs_tree_lock(buf);
01d58472 7822 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7823 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7824
7825 btrfs_set_lock_blocking(buf);
65b51a00 7826 btrfs_set_buffer_uptodate(buf);
b4ce94de 7827
d0c803c4 7828 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7829 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7830 /*
7831 * we allow two log transactions at a time, use different
7832 * EXENT bit to differentiate dirty pages.
7833 */
656f30db 7834 if (buf->log_index == 0)
8cef4e16
YZ
7835 set_extent_dirty(&root->dirty_log_pages, buf->start,
7836 buf->start + buf->len - 1, GFP_NOFS);
7837 else
7838 set_extent_new(&root->dirty_log_pages, buf->start,
7839 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7840 } else {
656f30db 7841 buf->log_index = -1;
d0c803c4 7842 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7843 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7844 }
65b51a00 7845 trans->blocks_used++;
b4ce94de 7846 /* this returns a buffer locked for blocking */
65b51a00
CM
7847 return buf;
7848}
7849
f0486c68
YZ
7850static struct btrfs_block_rsv *
7851use_block_rsv(struct btrfs_trans_handle *trans,
7852 struct btrfs_root *root, u32 blocksize)
7853{
7854 struct btrfs_block_rsv *block_rsv;
68a82277 7855 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7856 int ret;
d88033db 7857 bool global_updated = false;
f0486c68
YZ
7858
7859 block_rsv = get_block_rsv(trans, root);
7860
b586b323
MX
7861 if (unlikely(block_rsv->size == 0))
7862 goto try_reserve;
d88033db 7863again:
f0486c68
YZ
7864 ret = block_rsv_use_bytes(block_rsv, blocksize);
7865 if (!ret)
7866 return block_rsv;
7867
b586b323
MX
7868 if (block_rsv->failfast)
7869 return ERR_PTR(ret);
7870
d88033db
MX
7871 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7872 global_updated = true;
7873 update_global_block_rsv(root->fs_info);
7874 goto again;
7875 }
7876
b586b323
MX
7877 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7878 static DEFINE_RATELIMIT_STATE(_rs,
7879 DEFAULT_RATELIMIT_INTERVAL * 10,
7880 /*DEFAULT_RATELIMIT_BURST*/ 1);
7881 if (__ratelimit(&_rs))
7882 WARN(1, KERN_DEBUG
efe120a0 7883 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7884 }
7885try_reserve:
7886 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7887 BTRFS_RESERVE_NO_FLUSH);
7888 if (!ret)
7889 return block_rsv;
7890 /*
7891 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7892 * the global reserve if its space type is the same as the global
7893 * reservation.
b586b323 7894 */
5881cfc9
MX
7895 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7896 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7897 ret = block_rsv_use_bytes(global_rsv, blocksize);
7898 if (!ret)
7899 return global_rsv;
7900 }
7901 return ERR_PTR(ret);
f0486c68
YZ
7902}
7903
8c2a3ca2
JB
7904static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7905 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7906{
7907 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7908 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7909}
7910
fec577fb 7911/*
f0486c68 7912 * finds a free extent and does all the dirty work required for allocation
67b7859e 7913 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7914 */
4d75f8a9
DS
7915struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7916 struct btrfs_root *root,
5d4f98a2
YZ
7917 u64 parent, u64 root_objectid,
7918 struct btrfs_disk_key *key, int level,
5581a51a 7919 u64 hint, u64 empty_size)
fec577fb 7920{
e2fa7227 7921 struct btrfs_key ins;
f0486c68 7922 struct btrfs_block_rsv *block_rsv;
5f39d397 7923 struct extent_buffer *buf;
67b7859e 7924 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7925 u64 flags = 0;
7926 int ret;
4d75f8a9 7927 u32 blocksize = root->nodesize;
3173a18f
JB
7928 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7929 SKINNY_METADATA);
fec577fb 7930
fccb84c9 7931 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7932 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7933 level);
faa2dbf0
JB
7934 if (!IS_ERR(buf))
7935 root->alloc_bytenr += blocksize;
7936 return buf;
7937 }
fccb84c9 7938
f0486c68
YZ
7939 block_rsv = use_block_rsv(trans, root, blocksize);
7940 if (IS_ERR(block_rsv))
7941 return ERR_CAST(block_rsv);
7942
00361589 7943 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7944 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7945 if (ret)
7946 goto out_unuse;
55c69072 7947
fe864576 7948 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7949 if (IS_ERR(buf)) {
7950 ret = PTR_ERR(buf);
7951 goto out_free_reserved;
7952 }
f0486c68
YZ
7953
7954 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7955 if (parent == 0)
7956 parent = ins.objectid;
7957 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7958 } else
7959 BUG_ON(parent > 0);
7960
7961 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7962 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7963 if (!extent_op) {
7964 ret = -ENOMEM;
7965 goto out_free_buf;
7966 }
f0486c68
YZ
7967 if (key)
7968 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7969 else
7970 memset(&extent_op->key, 0, sizeof(extent_op->key));
7971 extent_op->flags_to_set = flags;
3173a18f
JB
7972 if (skinny_metadata)
7973 extent_op->update_key = 0;
7974 else
7975 extent_op->update_key = 1;
f0486c68
YZ
7976 extent_op->update_flags = 1;
7977 extent_op->is_data = 0;
b1c79e09 7978 extent_op->level = level;
f0486c68 7979
66d7e7f0 7980 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7981 ins.objectid, ins.offset,
7982 parent, root_objectid, level,
7983 BTRFS_ADD_DELAYED_EXTENT,
7984 extent_op, 0);
7985 if (ret)
7986 goto out_free_delayed;
f0486c68 7987 }
fec577fb 7988 return buf;
67b7859e
OS
7989
7990out_free_delayed:
7991 btrfs_free_delayed_extent_op(extent_op);
7992out_free_buf:
7993 free_extent_buffer(buf);
7994out_free_reserved:
7995 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7996out_unuse:
7997 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7998 return ERR_PTR(ret);
fec577fb 7999}
a28ec197 8000
2c47e605
YZ
8001struct walk_control {
8002 u64 refs[BTRFS_MAX_LEVEL];
8003 u64 flags[BTRFS_MAX_LEVEL];
8004 struct btrfs_key update_progress;
8005 int stage;
8006 int level;
8007 int shared_level;
8008 int update_ref;
8009 int keep_locks;
1c4850e2
YZ
8010 int reada_slot;
8011 int reada_count;
66d7e7f0 8012 int for_reloc;
2c47e605
YZ
8013};
8014
8015#define DROP_REFERENCE 1
8016#define UPDATE_BACKREF 2
8017
1c4850e2
YZ
8018static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8019 struct btrfs_root *root,
8020 struct walk_control *wc,
8021 struct btrfs_path *path)
6407bf6d 8022{
1c4850e2
YZ
8023 u64 bytenr;
8024 u64 generation;
8025 u64 refs;
94fcca9f 8026 u64 flags;
5d4f98a2 8027 u32 nritems;
1c4850e2
YZ
8028 u32 blocksize;
8029 struct btrfs_key key;
8030 struct extent_buffer *eb;
6407bf6d 8031 int ret;
1c4850e2
YZ
8032 int slot;
8033 int nread = 0;
6407bf6d 8034
1c4850e2
YZ
8035 if (path->slots[wc->level] < wc->reada_slot) {
8036 wc->reada_count = wc->reada_count * 2 / 3;
8037 wc->reada_count = max(wc->reada_count, 2);
8038 } else {
8039 wc->reada_count = wc->reada_count * 3 / 2;
8040 wc->reada_count = min_t(int, wc->reada_count,
8041 BTRFS_NODEPTRS_PER_BLOCK(root));
8042 }
7bb86316 8043
1c4850e2
YZ
8044 eb = path->nodes[wc->level];
8045 nritems = btrfs_header_nritems(eb);
707e8a07 8046 blocksize = root->nodesize;
bd56b302 8047
1c4850e2
YZ
8048 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8049 if (nread >= wc->reada_count)
8050 break;
bd56b302 8051
2dd3e67b 8052 cond_resched();
1c4850e2
YZ
8053 bytenr = btrfs_node_blockptr(eb, slot);
8054 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8055
1c4850e2
YZ
8056 if (slot == path->slots[wc->level])
8057 goto reada;
5d4f98a2 8058
1c4850e2
YZ
8059 if (wc->stage == UPDATE_BACKREF &&
8060 generation <= root->root_key.offset)
bd56b302
CM
8061 continue;
8062
94fcca9f 8063 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8064 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8065 wc->level - 1, 1, &refs,
8066 &flags);
79787eaa
JM
8067 /* We don't care about errors in readahead. */
8068 if (ret < 0)
8069 continue;
94fcca9f
YZ
8070 BUG_ON(refs == 0);
8071
1c4850e2 8072 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8073 if (refs == 1)
8074 goto reada;
bd56b302 8075
94fcca9f
YZ
8076 if (wc->level == 1 &&
8077 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8078 continue;
1c4850e2
YZ
8079 if (!wc->update_ref ||
8080 generation <= root->root_key.offset)
8081 continue;
8082 btrfs_node_key_to_cpu(eb, &key, slot);
8083 ret = btrfs_comp_cpu_keys(&key,
8084 &wc->update_progress);
8085 if (ret < 0)
8086 continue;
94fcca9f
YZ
8087 } else {
8088 if (wc->level == 1 &&
8089 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8090 continue;
6407bf6d 8091 }
1c4850e2 8092reada:
d3e46fea 8093 readahead_tree_block(root, bytenr);
1c4850e2 8094 nread++;
20524f02 8095 }
1c4850e2 8096 wc->reada_slot = slot;
20524f02 8097}
2c47e605 8098
0ed4792a
QW
8099/*
8100 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
8101 * for later qgroup accounting.
8102 *
8103 * Current, this function does nothing.
8104 */
1152651a
MF
8105static int account_leaf_items(struct btrfs_trans_handle *trans,
8106 struct btrfs_root *root,
8107 struct extent_buffer *eb)
8108{
8109 int nr = btrfs_header_nritems(eb);
0ed4792a 8110 int i, extent_type;
1152651a
MF
8111 struct btrfs_key key;
8112 struct btrfs_file_extent_item *fi;
8113 u64 bytenr, num_bytes;
8114
8115 for (i = 0; i < nr; i++) {
8116 btrfs_item_key_to_cpu(eb, &key, i);
8117
8118 if (key.type != BTRFS_EXTENT_DATA_KEY)
8119 continue;
8120
8121 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8122 /* filter out non qgroup-accountable extents */
8123 extent_type = btrfs_file_extent_type(eb, fi);
8124
8125 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8126 continue;
8127
8128 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8129 if (!bytenr)
8130 continue;
8131
8132 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
8133 }
8134 return 0;
8135}
8136
8137/*
8138 * Walk up the tree from the bottom, freeing leaves and any interior
8139 * nodes which have had all slots visited. If a node (leaf or
8140 * interior) is freed, the node above it will have it's slot
8141 * incremented. The root node will never be freed.
8142 *
8143 * At the end of this function, we should have a path which has all
8144 * slots incremented to the next position for a search. If we need to
8145 * read a new node it will be NULL and the node above it will have the
8146 * correct slot selected for a later read.
8147 *
8148 * If we increment the root nodes slot counter past the number of
8149 * elements, 1 is returned to signal completion of the search.
8150 */
8151static int adjust_slots_upwards(struct btrfs_root *root,
8152 struct btrfs_path *path, int root_level)
8153{
8154 int level = 0;
8155 int nr, slot;
8156 struct extent_buffer *eb;
8157
8158 if (root_level == 0)
8159 return 1;
8160
8161 while (level <= root_level) {
8162 eb = path->nodes[level];
8163 nr = btrfs_header_nritems(eb);
8164 path->slots[level]++;
8165 slot = path->slots[level];
8166 if (slot >= nr || level == 0) {
8167 /*
8168 * Don't free the root - we will detect this
8169 * condition after our loop and return a
8170 * positive value for caller to stop walking the tree.
8171 */
8172 if (level != root_level) {
8173 btrfs_tree_unlock_rw(eb, path->locks[level]);
8174 path->locks[level] = 0;
8175
8176 free_extent_buffer(eb);
8177 path->nodes[level] = NULL;
8178 path->slots[level] = 0;
8179 }
8180 } else {
8181 /*
8182 * We have a valid slot to walk back down
8183 * from. Stop here so caller can process these
8184 * new nodes.
8185 */
8186 break;
8187 }
8188
8189 level++;
8190 }
8191
8192 eb = path->nodes[root_level];
8193 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8194 return 1;
8195
8196 return 0;
8197}
8198
8199/*
8200 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
8201 * TODO: Modify this function to mark all (including complete shared node)
8202 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
8203 */
8204static int account_shared_subtree(struct btrfs_trans_handle *trans,
8205 struct btrfs_root *root,
8206 struct extent_buffer *root_eb,
8207 u64 root_gen,
8208 int root_level)
8209{
8210 int ret = 0;
8211 int level;
8212 struct extent_buffer *eb = root_eb;
8213 struct btrfs_path *path = NULL;
8214
8215 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8216 BUG_ON(root_eb == NULL);
8217
8218 if (!root->fs_info->quota_enabled)
8219 return 0;
8220
8221 if (!extent_buffer_uptodate(root_eb)) {
8222 ret = btrfs_read_buffer(root_eb, root_gen);
8223 if (ret)
8224 goto out;
8225 }
8226
8227 if (root_level == 0) {
8228 ret = account_leaf_items(trans, root, root_eb);
8229 goto out;
8230 }
8231
8232 path = btrfs_alloc_path();
8233 if (!path)
8234 return -ENOMEM;
8235
8236 /*
8237 * Walk down the tree. Missing extent blocks are filled in as
8238 * we go. Metadata is accounted every time we read a new
8239 * extent block.
8240 *
8241 * When we reach a leaf, we account for file extent items in it,
8242 * walk back up the tree (adjusting slot pointers as we go)
8243 * and restart the search process.
8244 */
8245 extent_buffer_get(root_eb); /* For path */
8246 path->nodes[root_level] = root_eb;
8247 path->slots[root_level] = 0;
8248 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8249walk_down:
8250 level = root_level;
8251 while (level >= 0) {
8252 if (path->nodes[level] == NULL) {
1152651a
MF
8253 int parent_slot;
8254 u64 child_gen;
8255 u64 child_bytenr;
8256
8257 /* We need to get child blockptr/gen from
8258 * parent before we can read it. */
8259 eb = path->nodes[level + 1];
8260 parent_slot = path->slots[level + 1];
8261 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8262 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8263
ce86cd59 8264 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8265 if (IS_ERR(eb)) {
8266 ret = PTR_ERR(eb);
8267 goto out;
8268 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8269 free_extent_buffer(eb);
64c043de 8270 ret = -EIO;
1152651a
MF
8271 goto out;
8272 }
8273
8274 path->nodes[level] = eb;
8275 path->slots[level] = 0;
8276
8277 btrfs_tree_read_lock(eb);
8278 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8279 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8280 }
8281
8282 if (level == 0) {
8283 ret = account_leaf_items(trans, root, path->nodes[level]);
8284 if (ret)
8285 goto out;
8286
8287 /* Nonzero return here means we completed our search */
8288 ret = adjust_slots_upwards(root, path, root_level);
8289 if (ret)
8290 break;
8291
8292 /* Restart search with new slots */
8293 goto walk_down;
8294 }
8295
8296 level--;
8297 }
8298
8299 ret = 0;
8300out:
8301 btrfs_free_path(path);
8302
8303 return ret;
8304}
8305
f82d02d9 8306/*
2c016dc2 8307 * helper to process tree block while walking down the tree.
2c47e605 8308 *
2c47e605
YZ
8309 * when wc->stage == UPDATE_BACKREF, this function updates
8310 * back refs for pointers in the block.
8311 *
8312 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8313 */
2c47e605 8314static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8315 struct btrfs_root *root,
2c47e605 8316 struct btrfs_path *path,
94fcca9f 8317 struct walk_control *wc, int lookup_info)
f82d02d9 8318{
2c47e605
YZ
8319 int level = wc->level;
8320 struct extent_buffer *eb = path->nodes[level];
2c47e605 8321 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8322 int ret;
8323
2c47e605
YZ
8324 if (wc->stage == UPDATE_BACKREF &&
8325 btrfs_header_owner(eb) != root->root_key.objectid)
8326 return 1;
f82d02d9 8327
2c47e605
YZ
8328 /*
8329 * when reference count of tree block is 1, it won't increase
8330 * again. once full backref flag is set, we never clear it.
8331 */
94fcca9f
YZ
8332 if (lookup_info &&
8333 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8334 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8335 BUG_ON(!path->locks[level]);
8336 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8337 eb->start, level, 1,
2c47e605
YZ
8338 &wc->refs[level],
8339 &wc->flags[level]);
79787eaa
JM
8340 BUG_ON(ret == -ENOMEM);
8341 if (ret)
8342 return ret;
2c47e605
YZ
8343 BUG_ON(wc->refs[level] == 0);
8344 }
5d4f98a2 8345
2c47e605
YZ
8346 if (wc->stage == DROP_REFERENCE) {
8347 if (wc->refs[level] > 1)
8348 return 1;
f82d02d9 8349
2c47e605 8350 if (path->locks[level] && !wc->keep_locks) {
bd681513 8351 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8352 path->locks[level] = 0;
8353 }
8354 return 0;
8355 }
f82d02d9 8356
2c47e605
YZ
8357 /* wc->stage == UPDATE_BACKREF */
8358 if (!(wc->flags[level] & flag)) {
8359 BUG_ON(!path->locks[level]);
e339a6b0 8360 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8361 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8362 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8363 BUG_ON(ret); /* -ENOMEM */
2c47e605 8364 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8365 eb->len, flag,
8366 btrfs_header_level(eb), 0);
79787eaa 8367 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8368 wc->flags[level] |= flag;
8369 }
8370
8371 /*
8372 * the block is shared by multiple trees, so it's not good to
8373 * keep the tree lock
8374 */
8375 if (path->locks[level] && level > 0) {
bd681513 8376 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8377 path->locks[level] = 0;
8378 }
8379 return 0;
8380}
8381
1c4850e2 8382/*
2c016dc2 8383 * helper to process tree block pointer.
1c4850e2
YZ
8384 *
8385 * when wc->stage == DROP_REFERENCE, this function checks
8386 * reference count of the block pointed to. if the block
8387 * is shared and we need update back refs for the subtree
8388 * rooted at the block, this function changes wc->stage to
8389 * UPDATE_BACKREF. if the block is shared and there is no
8390 * need to update back, this function drops the reference
8391 * to the block.
8392 *
8393 * NOTE: return value 1 means we should stop walking down.
8394 */
8395static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8396 struct btrfs_root *root,
8397 struct btrfs_path *path,
94fcca9f 8398 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8399{
8400 u64 bytenr;
8401 u64 generation;
8402 u64 parent;
8403 u32 blocksize;
8404 struct btrfs_key key;
8405 struct extent_buffer *next;
8406 int level = wc->level;
8407 int reada = 0;
8408 int ret = 0;
1152651a 8409 bool need_account = false;
1c4850e2
YZ
8410
8411 generation = btrfs_node_ptr_generation(path->nodes[level],
8412 path->slots[level]);
8413 /*
8414 * if the lower level block was created before the snapshot
8415 * was created, we know there is no need to update back refs
8416 * for the subtree
8417 */
8418 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8419 generation <= root->root_key.offset) {
8420 *lookup_info = 1;
1c4850e2 8421 return 1;
94fcca9f 8422 }
1c4850e2
YZ
8423
8424 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8425 blocksize = root->nodesize;
1c4850e2 8426
01d58472 8427 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8428 if (!next) {
a83fffb7 8429 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8430 if (!next)
8431 return -ENOMEM;
b2aaaa3b
JB
8432 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8433 level - 1);
1c4850e2
YZ
8434 reada = 1;
8435 }
8436 btrfs_tree_lock(next);
8437 btrfs_set_lock_blocking(next);
8438
3173a18f 8439 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8440 &wc->refs[level - 1],
8441 &wc->flags[level - 1]);
79787eaa
JM
8442 if (ret < 0) {
8443 btrfs_tree_unlock(next);
8444 return ret;
8445 }
8446
c2cf52eb
SK
8447 if (unlikely(wc->refs[level - 1] == 0)) {
8448 btrfs_err(root->fs_info, "Missing references.");
8449 BUG();
8450 }
94fcca9f 8451 *lookup_info = 0;
1c4850e2 8452
94fcca9f 8453 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8454 if (wc->refs[level - 1] > 1) {
1152651a 8455 need_account = true;
94fcca9f
YZ
8456 if (level == 1 &&
8457 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8458 goto skip;
8459
1c4850e2
YZ
8460 if (!wc->update_ref ||
8461 generation <= root->root_key.offset)
8462 goto skip;
8463
8464 btrfs_node_key_to_cpu(path->nodes[level], &key,
8465 path->slots[level]);
8466 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8467 if (ret < 0)
8468 goto skip;
8469
8470 wc->stage = UPDATE_BACKREF;
8471 wc->shared_level = level - 1;
8472 }
94fcca9f
YZ
8473 } else {
8474 if (level == 1 &&
8475 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8476 goto skip;
1c4850e2
YZ
8477 }
8478
b9fab919 8479 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8480 btrfs_tree_unlock(next);
8481 free_extent_buffer(next);
8482 next = NULL;
94fcca9f 8483 *lookup_info = 1;
1c4850e2
YZ
8484 }
8485
8486 if (!next) {
8487 if (reada && level == 1)
8488 reada_walk_down(trans, root, wc, path);
ce86cd59 8489 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8490 if (IS_ERR(next)) {
8491 return PTR_ERR(next);
8492 } else if (!extent_buffer_uptodate(next)) {
416bc658 8493 free_extent_buffer(next);
97d9a8a4 8494 return -EIO;
416bc658 8495 }
1c4850e2
YZ
8496 btrfs_tree_lock(next);
8497 btrfs_set_lock_blocking(next);
8498 }
8499
8500 level--;
8501 BUG_ON(level != btrfs_header_level(next));
8502 path->nodes[level] = next;
8503 path->slots[level] = 0;
bd681513 8504 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8505 wc->level = level;
8506 if (wc->level == 1)
8507 wc->reada_slot = 0;
8508 return 0;
8509skip:
8510 wc->refs[level - 1] = 0;
8511 wc->flags[level - 1] = 0;
94fcca9f
YZ
8512 if (wc->stage == DROP_REFERENCE) {
8513 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8514 parent = path->nodes[level]->start;
8515 } else {
8516 BUG_ON(root->root_key.objectid !=
8517 btrfs_header_owner(path->nodes[level]));
8518 parent = 0;
8519 }
1c4850e2 8520
1152651a
MF
8521 if (need_account) {
8522 ret = account_shared_subtree(trans, root, next,
8523 generation, level - 1);
8524 if (ret) {
94647322
DS
8525 btrfs_err_rl(root->fs_info,
8526 "Error "
1152651a 8527 "%d accounting shared subtree. Quota "
94647322
DS
8528 "is out of sync, rescan required.",
8529 ret);
1152651a
MF
8530 }
8531 }
94fcca9f 8532 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8533 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8534 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8535 }
1c4850e2
YZ
8536 btrfs_tree_unlock(next);
8537 free_extent_buffer(next);
94fcca9f 8538 *lookup_info = 1;
1c4850e2
YZ
8539 return 1;
8540}
8541
2c47e605 8542/*
2c016dc2 8543 * helper to process tree block while walking up the tree.
2c47e605
YZ
8544 *
8545 * when wc->stage == DROP_REFERENCE, this function drops
8546 * reference count on the block.
8547 *
8548 * when wc->stage == UPDATE_BACKREF, this function changes
8549 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8550 * to UPDATE_BACKREF previously while processing the block.
8551 *
8552 * NOTE: return value 1 means we should stop walking up.
8553 */
8554static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8555 struct btrfs_root *root,
8556 struct btrfs_path *path,
8557 struct walk_control *wc)
8558{
f0486c68 8559 int ret;
2c47e605
YZ
8560 int level = wc->level;
8561 struct extent_buffer *eb = path->nodes[level];
8562 u64 parent = 0;
8563
8564 if (wc->stage == UPDATE_BACKREF) {
8565 BUG_ON(wc->shared_level < level);
8566 if (level < wc->shared_level)
8567 goto out;
8568
2c47e605
YZ
8569 ret = find_next_key(path, level + 1, &wc->update_progress);
8570 if (ret > 0)
8571 wc->update_ref = 0;
8572
8573 wc->stage = DROP_REFERENCE;
8574 wc->shared_level = -1;
8575 path->slots[level] = 0;
8576
8577 /*
8578 * check reference count again if the block isn't locked.
8579 * we should start walking down the tree again if reference
8580 * count is one.
8581 */
8582 if (!path->locks[level]) {
8583 BUG_ON(level == 0);
8584 btrfs_tree_lock(eb);
8585 btrfs_set_lock_blocking(eb);
bd681513 8586 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8587
8588 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8589 eb->start, level, 1,
2c47e605
YZ
8590 &wc->refs[level],
8591 &wc->flags[level]);
79787eaa
JM
8592 if (ret < 0) {
8593 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8594 path->locks[level] = 0;
79787eaa
JM
8595 return ret;
8596 }
2c47e605
YZ
8597 BUG_ON(wc->refs[level] == 0);
8598 if (wc->refs[level] == 1) {
bd681513 8599 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8600 path->locks[level] = 0;
2c47e605
YZ
8601 return 1;
8602 }
f82d02d9 8603 }
2c47e605 8604 }
f82d02d9 8605
2c47e605
YZ
8606 /* wc->stage == DROP_REFERENCE */
8607 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8608
2c47e605
YZ
8609 if (wc->refs[level] == 1) {
8610 if (level == 0) {
8611 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8612 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8613 else
e339a6b0 8614 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8615 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8616 ret = account_leaf_items(trans, root, eb);
8617 if (ret) {
94647322
DS
8618 btrfs_err_rl(root->fs_info,
8619 "error "
1152651a 8620 "%d accounting leaf items. Quota "
94647322
DS
8621 "is out of sync, rescan required.",
8622 ret);
1152651a 8623 }
2c47e605
YZ
8624 }
8625 /* make block locked assertion in clean_tree_block happy */
8626 if (!path->locks[level] &&
8627 btrfs_header_generation(eb) == trans->transid) {
8628 btrfs_tree_lock(eb);
8629 btrfs_set_lock_blocking(eb);
bd681513 8630 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8631 }
01d58472 8632 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8633 }
8634
8635 if (eb == root->node) {
8636 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8637 parent = eb->start;
8638 else
8639 BUG_ON(root->root_key.objectid !=
8640 btrfs_header_owner(eb));
8641 } else {
8642 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8643 parent = path->nodes[level + 1]->start;
8644 else
8645 BUG_ON(root->root_key.objectid !=
8646 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8647 }
f82d02d9 8648
5581a51a 8649 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8650out:
8651 wc->refs[level] = 0;
8652 wc->flags[level] = 0;
f0486c68 8653 return 0;
2c47e605
YZ
8654}
8655
8656static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8657 struct btrfs_root *root,
8658 struct btrfs_path *path,
8659 struct walk_control *wc)
8660{
2c47e605 8661 int level = wc->level;
94fcca9f 8662 int lookup_info = 1;
2c47e605
YZ
8663 int ret;
8664
8665 while (level >= 0) {
94fcca9f 8666 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8667 if (ret > 0)
8668 break;
8669
8670 if (level == 0)
8671 break;
8672
7a7965f8
YZ
8673 if (path->slots[level] >=
8674 btrfs_header_nritems(path->nodes[level]))
8675 break;
8676
94fcca9f 8677 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8678 if (ret > 0) {
8679 path->slots[level]++;
8680 continue;
90d2c51d
MX
8681 } else if (ret < 0)
8682 return ret;
1c4850e2 8683 level = wc->level;
f82d02d9 8684 }
f82d02d9
YZ
8685 return 0;
8686}
8687
d397712b 8688static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8689 struct btrfs_root *root,
f82d02d9 8690 struct btrfs_path *path,
2c47e605 8691 struct walk_control *wc, int max_level)
20524f02 8692{
2c47e605 8693 int level = wc->level;
20524f02 8694 int ret;
9f3a7427 8695
2c47e605
YZ
8696 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8697 while (level < max_level && path->nodes[level]) {
8698 wc->level = level;
8699 if (path->slots[level] + 1 <
8700 btrfs_header_nritems(path->nodes[level])) {
8701 path->slots[level]++;
20524f02
CM
8702 return 0;
8703 } else {
2c47e605
YZ
8704 ret = walk_up_proc(trans, root, path, wc);
8705 if (ret > 0)
8706 return 0;
bd56b302 8707
2c47e605 8708 if (path->locks[level]) {
bd681513
CM
8709 btrfs_tree_unlock_rw(path->nodes[level],
8710 path->locks[level]);
2c47e605 8711 path->locks[level] = 0;
f82d02d9 8712 }
2c47e605
YZ
8713 free_extent_buffer(path->nodes[level]);
8714 path->nodes[level] = NULL;
8715 level++;
20524f02
CM
8716 }
8717 }
8718 return 1;
8719}
8720
9aca1d51 8721/*
2c47e605
YZ
8722 * drop a subvolume tree.
8723 *
8724 * this function traverses the tree freeing any blocks that only
8725 * referenced by the tree.
8726 *
8727 * when a shared tree block is found. this function decreases its
8728 * reference count by one. if update_ref is true, this function
8729 * also make sure backrefs for the shared block and all lower level
8730 * blocks are properly updated.
9d1a2a3a
DS
8731 *
8732 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8733 */
2c536799 8734int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8735 struct btrfs_block_rsv *block_rsv, int update_ref,
8736 int for_reloc)
20524f02 8737{
5caf2a00 8738 struct btrfs_path *path;
2c47e605
YZ
8739 struct btrfs_trans_handle *trans;
8740 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8741 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8742 struct walk_control *wc;
8743 struct btrfs_key key;
8744 int err = 0;
8745 int ret;
8746 int level;
d29a9f62 8747 bool root_dropped = false;
20524f02 8748
1152651a
MF
8749 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8750
5caf2a00 8751 path = btrfs_alloc_path();
cb1b69f4
TI
8752 if (!path) {
8753 err = -ENOMEM;
8754 goto out;
8755 }
20524f02 8756
2c47e605 8757 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8758 if (!wc) {
8759 btrfs_free_path(path);
cb1b69f4
TI
8760 err = -ENOMEM;
8761 goto out;
38a1a919 8762 }
2c47e605 8763
a22285a6 8764 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8765 if (IS_ERR(trans)) {
8766 err = PTR_ERR(trans);
8767 goto out_free;
8768 }
98d5dc13 8769
3fd0a558
YZ
8770 if (block_rsv)
8771 trans->block_rsv = block_rsv;
2c47e605 8772
9f3a7427 8773 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8774 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8775 path->nodes[level] = btrfs_lock_root_node(root);
8776 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8777 path->slots[level] = 0;
bd681513 8778 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8779 memset(&wc->update_progress, 0,
8780 sizeof(wc->update_progress));
9f3a7427 8781 } else {
9f3a7427 8782 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8783 memcpy(&wc->update_progress, &key,
8784 sizeof(wc->update_progress));
8785
6702ed49 8786 level = root_item->drop_level;
2c47e605 8787 BUG_ON(level == 0);
6702ed49 8788 path->lowest_level = level;
2c47e605
YZ
8789 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8790 path->lowest_level = 0;
8791 if (ret < 0) {
8792 err = ret;
79787eaa 8793 goto out_end_trans;
9f3a7427 8794 }
1c4850e2 8795 WARN_ON(ret > 0);
2c47e605 8796
7d9eb12c
CM
8797 /*
8798 * unlock our path, this is safe because only this
8799 * function is allowed to delete this snapshot
8800 */
5d4f98a2 8801 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8802
8803 level = btrfs_header_level(root->node);
8804 while (1) {
8805 btrfs_tree_lock(path->nodes[level]);
8806 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8807 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8808
8809 ret = btrfs_lookup_extent_info(trans, root,
8810 path->nodes[level]->start,
3173a18f 8811 level, 1, &wc->refs[level],
2c47e605 8812 &wc->flags[level]);
79787eaa
JM
8813 if (ret < 0) {
8814 err = ret;
8815 goto out_end_trans;
8816 }
2c47e605
YZ
8817 BUG_ON(wc->refs[level] == 0);
8818
8819 if (level == root_item->drop_level)
8820 break;
8821
8822 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8823 path->locks[level] = 0;
2c47e605
YZ
8824 WARN_ON(wc->refs[level] != 1);
8825 level--;
8826 }
9f3a7427 8827 }
2c47e605
YZ
8828
8829 wc->level = level;
8830 wc->shared_level = -1;
8831 wc->stage = DROP_REFERENCE;
8832 wc->update_ref = update_ref;
8833 wc->keep_locks = 0;
66d7e7f0 8834 wc->for_reloc = for_reloc;
1c4850e2 8835 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8836
d397712b 8837 while (1) {
9d1a2a3a 8838
2c47e605
YZ
8839 ret = walk_down_tree(trans, root, path, wc);
8840 if (ret < 0) {
8841 err = ret;
20524f02 8842 break;
2c47e605 8843 }
9aca1d51 8844
2c47e605
YZ
8845 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8846 if (ret < 0) {
8847 err = ret;
20524f02 8848 break;
2c47e605
YZ
8849 }
8850
8851 if (ret > 0) {
8852 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8853 break;
8854 }
2c47e605
YZ
8855
8856 if (wc->stage == DROP_REFERENCE) {
8857 level = wc->level;
8858 btrfs_node_key(path->nodes[level],
8859 &root_item->drop_progress,
8860 path->slots[level]);
8861 root_item->drop_level = level;
8862 }
8863
8864 BUG_ON(wc->level == 0);
3c8f2422
JB
8865 if (btrfs_should_end_transaction(trans, tree_root) ||
8866 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8867 ret = btrfs_update_root(trans, tree_root,
8868 &root->root_key,
8869 root_item);
79787eaa
JM
8870 if (ret) {
8871 btrfs_abort_transaction(trans, tree_root, ret);
8872 err = ret;
8873 goto out_end_trans;
8874 }
2c47e605 8875
3fd0a558 8876 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8877 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8878 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8879 err = -EAGAIN;
8880 goto out_free;
8881 }
8882
a22285a6 8883 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8884 if (IS_ERR(trans)) {
8885 err = PTR_ERR(trans);
8886 goto out_free;
8887 }
3fd0a558
YZ
8888 if (block_rsv)
8889 trans->block_rsv = block_rsv;
c3e69d58 8890 }
20524f02 8891 }
b3b4aa74 8892 btrfs_release_path(path);
79787eaa
JM
8893 if (err)
8894 goto out_end_trans;
2c47e605
YZ
8895
8896 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8897 if (ret) {
8898 btrfs_abort_transaction(trans, tree_root, ret);
8899 goto out_end_trans;
8900 }
2c47e605 8901
76dda93c 8902 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8903 ret = btrfs_find_root(tree_root, &root->root_key, path,
8904 NULL, NULL);
79787eaa
JM
8905 if (ret < 0) {
8906 btrfs_abort_transaction(trans, tree_root, ret);
8907 err = ret;
8908 goto out_end_trans;
8909 } else if (ret > 0) {
84cd948c
JB
8910 /* if we fail to delete the orphan item this time
8911 * around, it'll get picked up the next time.
8912 *
8913 * The most common failure here is just -ENOENT.
8914 */
8915 btrfs_del_orphan_item(trans, tree_root,
8916 root->root_key.objectid);
76dda93c
YZ
8917 }
8918 }
8919
27cdeb70 8920 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8921 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8922 } else {
8923 free_extent_buffer(root->node);
8924 free_extent_buffer(root->commit_root);
b0feb9d9 8925 btrfs_put_fs_root(root);
76dda93c 8926 }
d29a9f62 8927 root_dropped = true;
79787eaa 8928out_end_trans:
3fd0a558 8929 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8930out_free:
2c47e605 8931 kfree(wc);
5caf2a00 8932 btrfs_free_path(path);
cb1b69f4 8933out:
d29a9f62
JB
8934 /*
8935 * So if we need to stop dropping the snapshot for whatever reason we
8936 * need to make sure to add it back to the dead root list so that we
8937 * keep trying to do the work later. This also cleans up roots if we
8938 * don't have it in the radix (like when we recover after a power fail
8939 * or unmount) so we don't leak memory.
8940 */
b37b39cd 8941 if (!for_reloc && root_dropped == false)
d29a9f62 8942 btrfs_add_dead_root(root);
90515e7f 8943 if (err && err != -EAGAIN)
a4553fef 8944 btrfs_std_error(root->fs_info, err, NULL);
2c536799 8945 return err;
20524f02 8946}
9078a3e1 8947
2c47e605
YZ
8948/*
8949 * drop subtree rooted at tree block 'node'.
8950 *
8951 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8952 * only used by relocation code
2c47e605 8953 */
f82d02d9
YZ
8954int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8955 struct btrfs_root *root,
8956 struct extent_buffer *node,
8957 struct extent_buffer *parent)
8958{
8959 struct btrfs_path *path;
2c47e605 8960 struct walk_control *wc;
f82d02d9
YZ
8961 int level;
8962 int parent_level;
8963 int ret = 0;
8964 int wret;
8965
2c47e605
YZ
8966 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8967
f82d02d9 8968 path = btrfs_alloc_path();
db5b493a
TI
8969 if (!path)
8970 return -ENOMEM;
f82d02d9 8971
2c47e605 8972 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8973 if (!wc) {
8974 btrfs_free_path(path);
8975 return -ENOMEM;
8976 }
2c47e605 8977
b9447ef8 8978 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8979 parent_level = btrfs_header_level(parent);
8980 extent_buffer_get(parent);
8981 path->nodes[parent_level] = parent;
8982 path->slots[parent_level] = btrfs_header_nritems(parent);
8983
b9447ef8 8984 btrfs_assert_tree_locked(node);
f82d02d9 8985 level = btrfs_header_level(node);
f82d02d9
YZ
8986 path->nodes[level] = node;
8987 path->slots[level] = 0;
bd681513 8988 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8989
8990 wc->refs[parent_level] = 1;
8991 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8992 wc->level = level;
8993 wc->shared_level = -1;
8994 wc->stage = DROP_REFERENCE;
8995 wc->update_ref = 0;
8996 wc->keep_locks = 1;
66d7e7f0 8997 wc->for_reloc = 1;
1c4850e2 8998 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8999
9000 while (1) {
2c47e605
YZ
9001 wret = walk_down_tree(trans, root, path, wc);
9002 if (wret < 0) {
f82d02d9 9003 ret = wret;
f82d02d9 9004 break;
2c47e605 9005 }
f82d02d9 9006
2c47e605 9007 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9008 if (wret < 0)
9009 ret = wret;
9010 if (wret != 0)
9011 break;
9012 }
9013
2c47e605 9014 kfree(wc);
f82d02d9
YZ
9015 btrfs_free_path(path);
9016 return ret;
9017}
9018
ec44a35c
CM
9019static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9020{
9021 u64 num_devices;
fc67c450 9022 u64 stripped;
e4d8ec0f 9023
fc67c450
ID
9024 /*
9025 * if restripe for this chunk_type is on pick target profile and
9026 * return, otherwise do the usual balance
9027 */
9028 stripped = get_restripe_target(root->fs_info, flags);
9029 if (stripped)
9030 return extended_to_chunk(stripped);
e4d8ec0f 9031
95669976 9032 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9033
fc67c450 9034 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9035 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9036 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9037
ec44a35c
CM
9038 if (num_devices == 1) {
9039 stripped |= BTRFS_BLOCK_GROUP_DUP;
9040 stripped = flags & ~stripped;
9041
9042 /* turn raid0 into single device chunks */
9043 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9044 return stripped;
9045
9046 /* turn mirroring into duplication */
9047 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9048 BTRFS_BLOCK_GROUP_RAID10))
9049 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9050 } else {
9051 /* they already had raid on here, just return */
ec44a35c
CM
9052 if (flags & stripped)
9053 return flags;
9054
9055 stripped |= BTRFS_BLOCK_GROUP_DUP;
9056 stripped = flags & ~stripped;
9057
9058 /* switch duplicated blocks with raid1 */
9059 if (flags & BTRFS_BLOCK_GROUP_DUP)
9060 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9061
e3176ca2 9062 /* this is drive concat, leave it alone */
ec44a35c 9063 }
e3176ca2 9064
ec44a35c
CM
9065 return flags;
9066}
9067
868f401a 9068static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9069{
f0486c68
YZ
9070 struct btrfs_space_info *sinfo = cache->space_info;
9071 u64 num_bytes;
199c36ea 9072 u64 min_allocable_bytes;
f0486c68 9073 int ret = -ENOSPC;
0ef3e66b 9074
199c36ea
MX
9075 /*
9076 * We need some metadata space and system metadata space for
9077 * allocating chunks in some corner cases until we force to set
9078 * it to be readonly.
9079 */
9080 if ((sinfo->flags &
9081 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9082 !force)
9083 min_allocable_bytes = 1 * 1024 * 1024;
9084 else
9085 min_allocable_bytes = 0;
9086
f0486c68
YZ
9087 spin_lock(&sinfo->lock);
9088 spin_lock(&cache->lock);
61cfea9b
W
9089
9090 if (cache->ro) {
868f401a 9091 cache->ro++;
61cfea9b
W
9092 ret = 0;
9093 goto out;
9094 }
9095
f0486c68
YZ
9096 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9097 cache->bytes_super - btrfs_block_group_used(&cache->item);
9098
9099 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9100 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9101 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9102 sinfo->bytes_readonly += num_bytes;
868f401a 9103 cache->ro++;
633c0aad 9104 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9105 ret = 0;
9106 }
61cfea9b 9107out:
f0486c68
YZ
9108 spin_unlock(&cache->lock);
9109 spin_unlock(&sinfo->lock);
9110 return ret;
9111}
7d9eb12c 9112
868f401a 9113int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9114 struct btrfs_block_group_cache *cache)
c286ac48 9115
f0486c68
YZ
9116{
9117 struct btrfs_trans_handle *trans;
9118 u64 alloc_flags;
9119 int ret;
7d9eb12c 9120
1bbc621e 9121again:
ff5714cc 9122 trans = btrfs_join_transaction(root);
79787eaa
JM
9123 if (IS_ERR(trans))
9124 return PTR_ERR(trans);
5d4f98a2 9125
1bbc621e
CM
9126 /*
9127 * we're not allowed to set block groups readonly after the dirty
9128 * block groups cache has started writing. If it already started,
9129 * back off and let this transaction commit
9130 */
9131 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9132 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9133 u64 transid = trans->transid;
9134
9135 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9136 btrfs_end_transaction(trans, root);
9137
9138 ret = btrfs_wait_for_commit(root, transid);
9139 if (ret)
9140 return ret;
9141 goto again;
9142 }
9143
153c35b6
CM
9144 /*
9145 * if we are changing raid levels, try to allocate a corresponding
9146 * block group with the new raid level.
9147 */
9148 alloc_flags = update_block_group_flags(root, cache->flags);
9149 if (alloc_flags != cache->flags) {
9150 ret = do_chunk_alloc(trans, root, alloc_flags,
9151 CHUNK_ALLOC_FORCE);
9152 /*
9153 * ENOSPC is allowed here, we may have enough space
9154 * already allocated at the new raid level to
9155 * carry on
9156 */
9157 if (ret == -ENOSPC)
9158 ret = 0;
9159 if (ret < 0)
9160 goto out;
9161 }
1bbc621e 9162
868f401a 9163 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9164 if (!ret)
9165 goto out;
9166 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9167 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9168 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9169 if (ret < 0)
9170 goto out;
868f401a 9171 ret = inc_block_group_ro(cache, 0);
f0486c68 9172out:
2f081088
SL
9173 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9174 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9175 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9176 check_system_chunk(trans, root, alloc_flags);
a9629596 9177 unlock_chunks(root->fs_info->chunk_root);
2f081088 9178 }
1bbc621e 9179 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9180
f0486c68
YZ
9181 btrfs_end_transaction(trans, root);
9182 return ret;
9183}
5d4f98a2 9184
c87f08ca
CM
9185int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9186 struct btrfs_root *root, u64 type)
9187{
9188 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9189 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9190 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9191}
9192
6d07bcec
MX
9193/*
9194 * helper to account the unused space of all the readonly block group in the
633c0aad 9195 * space_info. takes mirrors into account.
6d07bcec 9196 */
633c0aad 9197u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9198{
9199 struct btrfs_block_group_cache *block_group;
9200 u64 free_bytes = 0;
9201 int factor;
9202
633c0aad
JB
9203 /* It's df, we don't care if it's racey */
9204 if (list_empty(&sinfo->ro_bgs))
9205 return 0;
9206
9207 spin_lock(&sinfo->lock);
9208 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9209 spin_lock(&block_group->lock);
9210
9211 if (!block_group->ro) {
9212 spin_unlock(&block_group->lock);
9213 continue;
9214 }
9215
9216 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9217 BTRFS_BLOCK_GROUP_RAID10 |
9218 BTRFS_BLOCK_GROUP_DUP))
9219 factor = 2;
9220 else
9221 factor = 1;
9222
9223 free_bytes += (block_group->key.offset -
9224 btrfs_block_group_used(&block_group->item)) *
9225 factor;
9226
9227 spin_unlock(&block_group->lock);
9228 }
6d07bcec
MX
9229 spin_unlock(&sinfo->lock);
9230
9231 return free_bytes;
9232}
9233
868f401a 9234void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9235 struct btrfs_block_group_cache *cache)
5d4f98a2 9236{
f0486c68
YZ
9237 struct btrfs_space_info *sinfo = cache->space_info;
9238 u64 num_bytes;
9239
9240 BUG_ON(!cache->ro);
9241
9242 spin_lock(&sinfo->lock);
9243 spin_lock(&cache->lock);
868f401a
Z
9244 if (!--cache->ro) {
9245 num_bytes = cache->key.offset - cache->reserved -
9246 cache->pinned - cache->bytes_super -
9247 btrfs_block_group_used(&cache->item);
9248 sinfo->bytes_readonly -= num_bytes;
9249 list_del_init(&cache->ro_list);
9250 }
f0486c68
YZ
9251 spin_unlock(&cache->lock);
9252 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9253}
9254
ba1bf481
JB
9255/*
9256 * checks to see if its even possible to relocate this block group.
9257 *
9258 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9259 * ok to go ahead and try.
9260 */
9261int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9262{
ba1bf481
JB
9263 struct btrfs_block_group_cache *block_group;
9264 struct btrfs_space_info *space_info;
9265 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9266 struct btrfs_device *device;
6df9a95e 9267 struct btrfs_trans_handle *trans;
cdcb725c 9268 u64 min_free;
6719db6a
JB
9269 u64 dev_min = 1;
9270 u64 dev_nr = 0;
4a5e98f5 9271 u64 target;
cdcb725c 9272 int index;
ba1bf481
JB
9273 int full = 0;
9274 int ret = 0;
1a40e23b 9275
ba1bf481 9276 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9277
ba1bf481
JB
9278 /* odd, couldn't find the block group, leave it alone */
9279 if (!block_group)
9280 return -1;
1a40e23b 9281
cdcb725c 9282 min_free = btrfs_block_group_used(&block_group->item);
9283
ba1bf481 9284 /* no bytes used, we're good */
cdcb725c 9285 if (!min_free)
1a40e23b
ZY
9286 goto out;
9287
ba1bf481
JB
9288 space_info = block_group->space_info;
9289 spin_lock(&space_info->lock);
17d217fe 9290
ba1bf481 9291 full = space_info->full;
17d217fe 9292
ba1bf481
JB
9293 /*
9294 * if this is the last block group we have in this space, we can't
7ce618db
CM
9295 * relocate it unless we're able to allocate a new chunk below.
9296 *
9297 * Otherwise, we need to make sure we have room in the space to handle
9298 * all of the extents from this block group. If we can, we're good
ba1bf481 9299 */
7ce618db 9300 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9301 (space_info->bytes_used + space_info->bytes_reserved +
9302 space_info->bytes_pinned + space_info->bytes_readonly +
9303 min_free < space_info->total_bytes)) {
ba1bf481
JB
9304 spin_unlock(&space_info->lock);
9305 goto out;
17d217fe 9306 }
ba1bf481 9307 spin_unlock(&space_info->lock);
ea8c2819 9308
ba1bf481
JB
9309 /*
9310 * ok we don't have enough space, but maybe we have free space on our
9311 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9312 * alloc devices and guess if we have enough space. if this block
9313 * group is going to be restriped, run checks against the target
9314 * profile instead of the current one.
ba1bf481
JB
9315 */
9316 ret = -1;
ea8c2819 9317
cdcb725c 9318 /*
9319 * index:
9320 * 0: raid10
9321 * 1: raid1
9322 * 2: dup
9323 * 3: raid0
9324 * 4: single
9325 */
4a5e98f5
ID
9326 target = get_restripe_target(root->fs_info, block_group->flags);
9327 if (target) {
31e50229 9328 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9329 } else {
9330 /*
9331 * this is just a balance, so if we were marked as full
9332 * we know there is no space for a new chunk
9333 */
9334 if (full)
9335 goto out;
9336
9337 index = get_block_group_index(block_group);
9338 }
9339
e6ec716f 9340 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9341 dev_min = 4;
6719db6a
JB
9342 /* Divide by 2 */
9343 min_free >>= 1;
e6ec716f 9344 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9345 dev_min = 2;
e6ec716f 9346 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9347 /* Multiply by 2 */
9348 min_free <<= 1;
e6ec716f 9349 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9350 dev_min = fs_devices->rw_devices;
47c5713f 9351 min_free = div64_u64(min_free, dev_min);
cdcb725c 9352 }
9353
6df9a95e
JB
9354 /* We need to do this so that we can look at pending chunks */
9355 trans = btrfs_join_transaction(root);
9356 if (IS_ERR(trans)) {
9357 ret = PTR_ERR(trans);
9358 goto out;
9359 }
9360
ba1bf481
JB
9361 mutex_lock(&root->fs_info->chunk_mutex);
9362 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9363 u64 dev_offset;
56bec294 9364
ba1bf481
JB
9365 /*
9366 * check to make sure we can actually find a chunk with enough
9367 * space to fit our block group in.
9368 */
63a212ab
SB
9369 if (device->total_bytes > device->bytes_used + min_free &&
9370 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9371 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9372 &dev_offset, NULL);
ba1bf481 9373 if (!ret)
cdcb725c 9374 dev_nr++;
9375
9376 if (dev_nr >= dev_min)
73e48b27 9377 break;
cdcb725c 9378
ba1bf481 9379 ret = -1;
725c8463 9380 }
edbd8d4e 9381 }
ba1bf481 9382 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9383 btrfs_end_transaction(trans, root);
edbd8d4e 9384out:
ba1bf481 9385 btrfs_put_block_group(block_group);
edbd8d4e
CM
9386 return ret;
9387}
9388
b2950863
CH
9389static int find_first_block_group(struct btrfs_root *root,
9390 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9391{
925baedd 9392 int ret = 0;
0b86a832
CM
9393 struct btrfs_key found_key;
9394 struct extent_buffer *leaf;
9395 int slot;
edbd8d4e 9396
0b86a832
CM
9397 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9398 if (ret < 0)
925baedd
CM
9399 goto out;
9400
d397712b 9401 while (1) {
0b86a832 9402 slot = path->slots[0];
edbd8d4e 9403 leaf = path->nodes[0];
0b86a832
CM
9404 if (slot >= btrfs_header_nritems(leaf)) {
9405 ret = btrfs_next_leaf(root, path);
9406 if (ret == 0)
9407 continue;
9408 if (ret < 0)
925baedd 9409 goto out;
0b86a832 9410 break;
edbd8d4e 9411 }
0b86a832 9412 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9413
0b86a832 9414 if (found_key.objectid >= key->objectid &&
925baedd
CM
9415 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9416 ret = 0;
9417 goto out;
9418 }
0b86a832 9419 path->slots[0]++;
edbd8d4e 9420 }
925baedd 9421out:
0b86a832 9422 return ret;
edbd8d4e
CM
9423}
9424
0af3d00b
JB
9425void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9426{
9427 struct btrfs_block_group_cache *block_group;
9428 u64 last = 0;
9429
9430 while (1) {
9431 struct inode *inode;
9432
9433 block_group = btrfs_lookup_first_block_group(info, last);
9434 while (block_group) {
9435 spin_lock(&block_group->lock);
9436 if (block_group->iref)
9437 break;
9438 spin_unlock(&block_group->lock);
9439 block_group = next_block_group(info->tree_root,
9440 block_group);
9441 }
9442 if (!block_group) {
9443 if (last == 0)
9444 break;
9445 last = 0;
9446 continue;
9447 }
9448
9449 inode = block_group->inode;
9450 block_group->iref = 0;
9451 block_group->inode = NULL;
9452 spin_unlock(&block_group->lock);
9453 iput(inode);
9454 last = block_group->key.objectid + block_group->key.offset;
9455 btrfs_put_block_group(block_group);
9456 }
9457}
9458
1a40e23b
ZY
9459int btrfs_free_block_groups(struct btrfs_fs_info *info)
9460{
9461 struct btrfs_block_group_cache *block_group;
4184ea7f 9462 struct btrfs_space_info *space_info;
11833d66 9463 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9464 struct rb_node *n;
9465
9e351cc8 9466 down_write(&info->commit_root_sem);
11833d66
YZ
9467 while (!list_empty(&info->caching_block_groups)) {
9468 caching_ctl = list_entry(info->caching_block_groups.next,
9469 struct btrfs_caching_control, list);
9470 list_del(&caching_ctl->list);
9471 put_caching_control(caching_ctl);
9472 }
9e351cc8 9473 up_write(&info->commit_root_sem);
11833d66 9474
47ab2a6c
JB
9475 spin_lock(&info->unused_bgs_lock);
9476 while (!list_empty(&info->unused_bgs)) {
9477 block_group = list_first_entry(&info->unused_bgs,
9478 struct btrfs_block_group_cache,
9479 bg_list);
9480 list_del_init(&block_group->bg_list);
9481 btrfs_put_block_group(block_group);
9482 }
9483 spin_unlock(&info->unused_bgs_lock);
9484
1a40e23b
ZY
9485 spin_lock(&info->block_group_cache_lock);
9486 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9487 block_group = rb_entry(n, struct btrfs_block_group_cache,
9488 cache_node);
1a40e23b
ZY
9489 rb_erase(&block_group->cache_node,
9490 &info->block_group_cache_tree);
01eacb27 9491 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9492 spin_unlock(&info->block_group_cache_lock);
9493
80eb234a 9494 down_write(&block_group->space_info->groups_sem);
1a40e23b 9495 list_del(&block_group->list);
80eb234a 9496 up_write(&block_group->space_info->groups_sem);
d2fb3437 9497
817d52f8 9498 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9499 wait_block_group_cache_done(block_group);
817d52f8 9500
3c14874a
JB
9501 /*
9502 * We haven't cached this block group, which means we could
9503 * possibly have excluded extents on this block group.
9504 */
36cce922
JB
9505 if (block_group->cached == BTRFS_CACHE_NO ||
9506 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9507 free_excluded_extents(info->extent_root, block_group);
9508
817d52f8 9509 btrfs_remove_free_space_cache(block_group);
11dfe35a 9510 btrfs_put_block_group(block_group);
d899e052
YZ
9511
9512 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9513 }
9514 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9515
9516 /* now that all the block groups are freed, go through and
9517 * free all the space_info structs. This is only called during
9518 * the final stages of unmount, and so we know nobody is
9519 * using them. We call synchronize_rcu() once before we start,
9520 * just to be on the safe side.
9521 */
9522 synchronize_rcu();
9523
8929ecfa
YZ
9524 release_global_block_rsv(info);
9525
67871254 9526 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9527 int i;
9528
4184ea7f
CM
9529 space_info = list_entry(info->space_info.next,
9530 struct btrfs_space_info,
9531 list);
b069e0c3 9532 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9533 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9534 space_info->bytes_reserved > 0 ||
fae7f21c 9535 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9536 dump_space_info(space_info, 0, 0);
9537 }
f0486c68 9538 }
4184ea7f 9539 list_del(&space_info->list);
6ab0a202
JM
9540 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9541 struct kobject *kobj;
c1895442
JM
9542 kobj = space_info->block_group_kobjs[i];
9543 space_info->block_group_kobjs[i] = NULL;
9544 if (kobj) {
6ab0a202
JM
9545 kobject_del(kobj);
9546 kobject_put(kobj);
9547 }
9548 }
9549 kobject_del(&space_info->kobj);
9550 kobject_put(&space_info->kobj);
4184ea7f 9551 }
1a40e23b
ZY
9552 return 0;
9553}
9554
b742bb82
YZ
9555static void __link_block_group(struct btrfs_space_info *space_info,
9556 struct btrfs_block_group_cache *cache)
9557{
9558 int index = get_block_group_index(cache);
ed55b6ac 9559 bool first = false;
b742bb82
YZ
9560
9561 down_write(&space_info->groups_sem);
ed55b6ac
JM
9562 if (list_empty(&space_info->block_groups[index]))
9563 first = true;
9564 list_add_tail(&cache->list, &space_info->block_groups[index]);
9565 up_write(&space_info->groups_sem);
9566
9567 if (first) {
c1895442 9568 struct raid_kobject *rkobj;
6ab0a202
JM
9569 int ret;
9570
c1895442
JM
9571 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9572 if (!rkobj)
9573 goto out_err;
9574 rkobj->raid_type = index;
9575 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9576 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9577 "%s", get_raid_name(index));
6ab0a202 9578 if (ret) {
c1895442
JM
9579 kobject_put(&rkobj->kobj);
9580 goto out_err;
6ab0a202 9581 }
c1895442 9582 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9583 }
c1895442
JM
9584
9585 return;
9586out_err:
9587 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9588}
9589
920e4a58
MX
9590static struct btrfs_block_group_cache *
9591btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9592{
9593 struct btrfs_block_group_cache *cache;
9594
9595 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9596 if (!cache)
9597 return NULL;
9598
9599 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9600 GFP_NOFS);
9601 if (!cache->free_space_ctl) {
9602 kfree(cache);
9603 return NULL;
9604 }
9605
9606 cache->key.objectid = start;
9607 cache->key.offset = size;
9608 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9609
9610 cache->sectorsize = root->sectorsize;
9611 cache->fs_info = root->fs_info;
9612 cache->full_stripe_len = btrfs_full_stripe_len(root,
9613 &root->fs_info->mapping_tree,
9614 start);
9615 atomic_set(&cache->count, 1);
9616 spin_lock_init(&cache->lock);
e570fd27 9617 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9618 INIT_LIST_HEAD(&cache->list);
9619 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9620 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9621 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9622 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9623 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9624 btrfs_init_free_space_ctl(cache);
04216820 9625 atomic_set(&cache->trimming, 0);
920e4a58
MX
9626
9627 return cache;
9628}
9629
9078a3e1
CM
9630int btrfs_read_block_groups(struct btrfs_root *root)
9631{
9632 struct btrfs_path *path;
9633 int ret;
9078a3e1 9634 struct btrfs_block_group_cache *cache;
be744175 9635 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9636 struct btrfs_space_info *space_info;
9078a3e1
CM
9637 struct btrfs_key key;
9638 struct btrfs_key found_key;
5f39d397 9639 struct extent_buffer *leaf;
0af3d00b
JB
9640 int need_clear = 0;
9641 u64 cache_gen;
96b5179d 9642
be744175 9643 root = info->extent_root;
9078a3e1 9644 key.objectid = 0;
0b86a832 9645 key.offset = 0;
962a298f 9646 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9647 path = btrfs_alloc_path();
9648 if (!path)
9649 return -ENOMEM;
026fd317 9650 path->reada = 1;
9078a3e1 9651
6c41761f 9652 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9653 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9654 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9655 need_clear = 1;
88c2ba3b
JB
9656 if (btrfs_test_opt(root, CLEAR_CACHE))
9657 need_clear = 1;
0af3d00b 9658
d397712b 9659 while (1) {
0b86a832 9660 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9661 if (ret > 0)
9662 break;
0b86a832
CM
9663 if (ret != 0)
9664 goto error;
920e4a58 9665
5f39d397
CM
9666 leaf = path->nodes[0];
9667 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9668
9669 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9670 found_key.offset);
9078a3e1 9671 if (!cache) {
0b86a832 9672 ret = -ENOMEM;
f0486c68 9673 goto error;
9078a3e1 9674 }
96303081 9675
cf7c1ef6
LB
9676 if (need_clear) {
9677 /*
9678 * When we mount with old space cache, we need to
9679 * set BTRFS_DC_CLEAR and set dirty flag.
9680 *
9681 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9682 * truncate the old free space cache inode and
9683 * setup a new one.
9684 * b) Setting 'dirty flag' makes sure that we flush
9685 * the new space cache info onto disk.
9686 */
cf7c1ef6 9687 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9688 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9689 }
0af3d00b 9690
5f39d397
CM
9691 read_extent_buffer(leaf, &cache->item,
9692 btrfs_item_ptr_offset(leaf, path->slots[0]),
9693 sizeof(cache->item));
920e4a58 9694 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9695
9078a3e1 9696 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9697 btrfs_release_path(path);
34d52cb6 9698
3c14874a
JB
9699 /*
9700 * We need to exclude the super stripes now so that the space
9701 * info has super bytes accounted for, otherwise we'll think
9702 * we have more space than we actually do.
9703 */
835d974f
JB
9704 ret = exclude_super_stripes(root, cache);
9705 if (ret) {
9706 /*
9707 * We may have excluded something, so call this just in
9708 * case.
9709 */
9710 free_excluded_extents(root, cache);
920e4a58 9711 btrfs_put_block_group(cache);
835d974f
JB
9712 goto error;
9713 }
3c14874a 9714
817d52f8
JB
9715 /*
9716 * check for two cases, either we are full, and therefore
9717 * don't need to bother with the caching work since we won't
9718 * find any space, or we are empty, and we can just add all
9719 * the space in and be done with it. This saves us _alot_ of
9720 * time, particularly in the full case.
9721 */
9722 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9723 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9724 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9725 free_excluded_extents(root, cache);
817d52f8 9726 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9727 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9728 cache->cached = BTRFS_CACHE_FINISHED;
9729 add_new_free_space(cache, root->fs_info,
9730 found_key.objectid,
9731 found_key.objectid +
9732 found_key.offset);
11833d66 9733 free_excluded_extents(root, cache);
817d52f8 9734 }
96b5179d 9735
8c579fe7
JB
9736 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9737 if (ret) {
9738 btrfs_remove_free_space_cache(cache);
9739 btrfs_put_block_group(cache);
9740 goto error;
9741 }
9742
6324fbf3
CM
9743 ret = update_space_info(info, cache->flags, found_key.offset,
9744 btrfs_block_group_used(&cache->item),
9745 &space_info);
8c579fe7
JB
9746 if (ret) {
9747 btrfs_remove_free_space_cache(cache);
9748 spin_lock(&info->block_group_cache_lock);
9749 rb_erase(&cache->cache_node,
9750 &info->block_group_cache_tree);
01eacb27 9751 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9752 spin_unlock(&info->block_group_cache_lock);
9753 btrfs_put_block_group(cache);
9754 goto error;
9755 }
9756
6324fbf3 9757 cache->space_info = space_info;
1b2da372 9758 spin_lock(&cache->space_info->lock);
f0486c68 9759 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9760 spin_unlock(&cache->space_info->lock);
9761
b742bb82 9762 __link_block_group(space_info, cache);
0f9dd46c 9763
75ccf47d 9764 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9765 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9766 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9767 } else if (btrfs_block_group_used(&cache->item) == 0) {
9768 spin_lock(&info->unused_bgs_lock);
9769 /* Should always be true but just in case. */
9770 if (list_empty(&cache->bg_list)) {
9771 btrfs_get_block_group(cache);
9772 list_add_tail(&cache->bg_list,
9773 &info->unused_bgs);
9774 }
9775 spin_unlock(&info->unused_bgs_lock);
9776 }
9078a3e1 9777 }
b742bb82
YZ
9778
9779 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9780 if (!(get_alloc_profile(root, space_info->flags) &
9781 (BTRFS_BLOCK_GROUP_RAID10 |
9782 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9783 BTRFS_BLOCK_GROUP_RAID5 |
9784 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9785 BTRFS_BLOCK_GROUP_DUP)))
9786 continue;
9787 /*
9788 * avoid allocating from un-mirrored block group if there are
9789 * mirrored block groups.
9790 */
1095cc0d 9791 list_for_each_entry(cache,
9792 &space_info->block_groups[BTRFS_RAID_RAID0],
9793 list)
868f401a 9794 inc_block_group_ro(cache, 1);
1095cc0d 9795 list_for_each_entry(cache,
9796 &space_info->block_groups[BTRFS_RAID_SINGLE],
9797 list)
868f401a 9798 inc_block_group_ro(cache, 1);
9078a3e1 9799 }
f0486c68
YZ
9800
9801 init_global_block_rsv(info);
0b86a832
CM
9802 ret = 0;
9803error:
9078a3e1 9804 btrfs_free_path(path);
0b86a832 9805 return ret;
9078a3e1 9806}
6324fbf3 9807
ea658bad
JB
9808void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9809 struct btrfs_root *root)
9810{
9811 struct btrfs_block_group_cache *block_group, *tmp;
9812 struct btrfs_root *extent_root = root->fs_info->extent_root;
9813 struct btrfs_block_group_item item;
9814 struct btrfs_key key;
9815 int ret = 0;
d9a0540a 9816 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9817
d9a0540a 9818 trans->can_flush_pending_bgs = false;
47ab2a6c 9819 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9820 if (ret)
c92f6be3 9821 goto next;
ea658bad
JB
9822
9823 spin_lock(&block_group->lock);
9824 memcpy(&item, &block_group->item, sizeof(item));
9825 memcpy(&key, &block_group->key, sizeof(key));
9826 spin_unlock(&block_group->lock);
9827
9828 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9829 sizeof(item));
9830 if (ret)
9831 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9832 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9833 key.objectid, key.offset);
9834 if (ret)
9835 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9836next:
9837 list_del_init(&block_group->bg_list);
ea658bad 9838 }
d9a0540a 9839 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9840}
9841
6324fbf3
CM
9842int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9843 struct btrfs_root *root, u64 bytes_used,
e17cade2 9844 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9845 u64 size)
9846{
9847 int ret;
6324fbf3
CM
9848 struct btrfs_root *extent_root;
9849 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9850
9851 extent_root = root->fs_info->extent_root;
6324fbf3 9852
995946dd 9853 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9854
920e4a58 9855 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9856 if (!cache)
9857 return -ENOMEM;
34d52cb6 9858
6324fbf3 9859 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9860 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9861 btrfs_set_block_group_flags(&cache->item, type);
9862
920e4a58 9863 cache->flags = type;
11833d66 9864 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9865 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9866 ret = exclude_super_stripes(root, cache);
9867 if (ret) {
9868 /*
9869 * We may have excluded something, so call this just in
9870 * case.
9871 */
9872 free_excluded_extents(root, cache);
920e4a58 9873 btrfs_put_block_group(cache);
835d974f
JB
9874 return ret;
9875 }
96303081 9876
817d52f8
JB
9877 add_new_free_space(cache, root->fs_info, chunk_offset,
9878 chunk_offset + size);
9879
11833d66
YZ
9880 free_excluded_extents(root, cache);
9881
d0bd4560
JB
9882#ifdef CONFIG_BTRFS_DEBUG
9883 if (btrfs_should_fragment_free_space(root, cache)) {
9884 u64 new_bytes_used = size - bytes_used;
9885
9886 bytes_used += new_bytes_used >> 1;
9887 fragment_free_space(root, cache);
9888 }
9889#endif
2e6e5183
FM
9890 /*
9891 * Call to ensure the corresponding space_info object is created and
9892 * assigned to our block group, but don't update its counters just yet.
9893 * We want our bg to be added to the rbtree with its ->space_info set.
9894 */
9895 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9896 &cache->space_info);
9897 if (ret) {
9898 btrfs_remove_free_space_cache(cache);
9899 btrfs_put_block_group(cache);
9900 return ret;
9901 }
9902
8c579fe7
JB
9903 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9904 if (ret) {
9905 btrfs_remove_free_space_cache(cache);
9906 btrfs_put_block_group(cache);
9907 return ret;
9908 }
9909
2e6e5183
FM
9910 /*
9911 * Now that our block group has its ->space_info set and is inserted in
9912 * the rbtree, update the space info's counters.
9913 */
6324fbf3
CM
9914 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9915 &cache->space_info);
8c579fe7
JB
9916 if (ret) {
9917 btrfs_remove_free_space_cache(cache);
9918 spin_lock(&root->fs_info->block_group_cache_lock);
9919 rb_erase(&cache->cache_node,
9920 &root->fs_info->block_group_cache_tree);
01eacb27 9921 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9922 spin_unlock(&root->fs_info->block_group_cache_lock);
9923 btrfs_put_block_group(cache);
9924 return ret;
9925 }
c7c144db 9926 update_global_block_rsv(root->fs_info);
1b2da372
JB
9927
9928 spin_lock(&cache->space_info->lock);
f0486c68 9929 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9930 spin_unlock(&cache->space_info->lock);
9931
b742bb82 9932 __link_block_group(cache->space_info, cache);
6324fbf3 9933
47ab2a6c 9934 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9935
d18a2c44 9936 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9937
6324fbf3
CM
9938 return 0;
9939}
1a40e23b 9940
10ea00f5
ID
9941static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9942{
899c81ea
ID
9943 u64 extra_flags = chunk_to_extended(flags) &
9944 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9945
de98ced9 9946 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9947 if (flags & BTRFS_BLOCK_GROUP_DATA)
9948 fs_info->avail_data_alloc_bits &= ~extra_flags;
9949 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9950 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9951 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9952 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9953 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9954}
9955
1a40e23b 9956int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9957 struct btrfs_root *root, u64 group_start,
9958 struct extent_map *em)
1a40e23b
ZY
9959{
9960 struct btrfs_path *path;
9961 struct btrfs_block_group_cache *block_group;
44fb5511 9962 struct btrfs_free_cluster *cluster;
0af3d00b 9963 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9964 struct btrfs_key key;
0af3d00b 9965 struct inode *inode;
c1895442 9966 struct kobject *kobj = NULL;
1a40e23b 9967 int ret;
10ea00f5 9968 int index;
89a55897 9969 int factor;
4f69cb98 9970 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9971 bool remove_em;
1a40e23b 9972
1a40e23b
ZY
9973 root = root->fs_info->extent_root;
9974
9975 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9976 BUG_ON(!block_group);
c146afad 9977 BUG_ON(!block_group->ro);
1a40e23b 9978
9f7c43c9 9979 /*
9980 * Free the reserved super bytes from this block group before
9981 * remove it.
9982 */
9983 free_excluded_extents(root, block_group);
9984
1a40e23b 9985 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9986 index = get_block_group_index(block_group);
89a55897
JB
9987 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9988 BTRFS_BLOCK_GROUP_RAID1 |
9989 BTRFS_BLOCK_GROUP_RAID10))
9990 factor = 2;
9991 else
9992 factor = 1;
1a40e23b 9993
44fb5511
CM
9994 /* make sure this block group isn't part of an allocation cluster */
9995 cluster = &root->fs_info->data_alloc_cluster;
9996 spin_lock(&cluster->refill_lock);
9997 btrfs_return_cluster_to_free_space(block_group, cluster);
9998 spin_unlock(&cluster->refill_lock);
9999
10000 /*
10001 * make sure this block group isn't part of a metadata
10002 * allocation cluster
10003 */
10004 cluster = &root->fs_info->meta_alloc_cluster;
10005 spin_lock(&cluster->refill_lock);
10006 btrfs_return_cluster_to_free_space(block_group, cluster);
10007 spin_unlock(&cluster->refill_lock);
10008
1a40e23b 10009 path = btrfs_alloc_path();
d8926bb3
MF
10010 if (!path) {
10011 ret = -ENOMEM;
10012 goto out;
10013 }
1a40e23b 10014
1bbc621e
CM
10015 /*
10016 * get the inode first so any iput calls done for the io_list
10017 * aren't the final iput (no unlinks allowed now)
10018 */
10b2f34d 10019 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10020
10021 mutex_lock(&trans->transaction->cache_write_mutex);
10022 /*
10023 * make sure our free spache cache IO is done before remove the
10024 * free space inode
10025 */
10026 spin_lock(&trans->transaction->dirty_bgs_lock);
10027 if (!list_empty(&block_group->io_list)) {
10028 list_del_init(&block_group->io_list);
10029
10030 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10031
10032 spin_unlock(&trans->transaction->dirty_bgs_lock);
10033 btrfs_wait_cache_io(root, trans, block_group,
10034 &block_group->io_ctl, path,
10035 block_group->key.objectid);
10036 btrfs_put_block_group(block_group);
10037 spin_lock(&trans->transaction->dirty_bgs_lock);
10038 }
10039
10040 if (!list_empty(&block_group->dirty_list)) {
10041 list_del_init(&block_group->dirty_list);
10042 btrfs_put_block_group(block_group);
10043 }
10044 spin_unlock(&trans->transaction->dirty_bgs_lock);
10045 mutex_unlock(&trans->transaction->cache_write_mutex);
10046
0af3d00b 10047 if (!IS_ERR(inode)) {
b532402e 10048 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10049 if (ret) {
10050 btrfs_add_delayed_iput(inode);
10051 goto out;
10052 }
0af3d00b
JB
10053 clear_nlink(inode);
10054 /* One for the block groups ref */
10055 spin_lock(&block_group->lock);
10056 if (block_group->iref) {
10057 block_group->iref = 0;
10058 block_group->inode = NULL;
10059 spin_unlock(&block_group->lock);
10060 iput(inode);
10061 } else {
10062 spin_unlock(&block_group->lock);
10063 }
10064 /* One for our lookup ref */
455757c3 10065 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10066 }
10067
10068 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10069 key.offset = block_group->key.objectid;
10070 key.type = 0;
10071
10072 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10073 if (ret < 0)
10074 goto out;
10075 if (ret > 0)
b3b4aa74 10076 btrfs_release_path(path);
0af3d00b
JB
10077 if (ret == 0) {
10078 ret = btrfs_del_item(trans, tree_root, path);
10079 if (ret)
10080 goto out;
b3b4aa74 10081 btrfs_release_path(path);
0af3d00b
JB
10082 }
10083
3dfdb934 10084 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10085 rb_erase(&block_group->cache_node,
10086 &root->fs_info->block_group_cache_tree);
292cbd51 10087 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10088
10089 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10090 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10091 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10092
80eb234a 10093 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10094 /*
10095 * we must use list_del_init so people can check to see if they
10096 * are still on the list after taking the semaphore
10097 */
10098 list_del_init(&block_group->list);
6ab0a202 10099 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10100 kobj = block_group->space_info->block_group_kobjs[index];
10101 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10102 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10103 }
80eb234a 10104 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10105 if (kobj) {
10106 kobject_del(kobj);
10107 kobject_put(kobj);
10108 }
1a40e23b 10109
4f69cb98
FM
10110 if (block_group->has_caching_ctl)
10111 caching_ctl = get_caching_control(block_group);
817d52f8 10112 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10113 wait_block_group_cache_done(block_group);
4f69cb98
FM
10114 if (block_group->has_caching_ctl) {
10115 down_write(&root->fs_info->commit_root_sem);
10116 if (!caching_ctl) {
10117 struct btrfs_caching_control *ctl;
10118
10119 list_for_each_entry(ctl,
10120 &root->fs_info->caching_block_groups, list)
10121 if (ctl->block_group == block_group) {
10122 caching_ctl = ctl;
10123 atomic_inc(&caching_ctl->count);
10124 break;
10125 }
10126 }
10127 if (caching_ctl)
10128 list_del_init(&caching_ctl->list);
10129 up_write(&root->fs_info->commit_root_sem);
10130 if (caching_ctl) {
10131 /* Once for the caching bgs list and once for us. */
10132 put_caching_control(caching_ctl);
10133 put_caching_control(caching_ctl);
10134 }
10135 }
817d52f8 10136
ce93ec54
JB
10137 spin_lock(&trans->transaction->dirty_bgs_lock);
10138 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10139 WARN_ON(1);
10140 }
10141 if (!list_empty(&block_group->io_list)) {
10142 WARN_ON(1);
ce93ec54
JB
10143 }
10144 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10145 btrfs_remove_free_space_cache(block_group);
10146
c146afad 10147 spin_lock(&block_group->space_info->lock);
75c68e9f 10148 list_del_init(&block_group->ro_list);
18d018ad
ZL
10149
10150 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10151 WARN_ON(block_group->space_info->total_bytes
10152 < block_group->key.offset);
10153 WARN_ON(block_group->space_info->bytes_readonly
10154 < block_group->key.offset);
10155 WARN_ON(block_group->space_info->disk_total
10156 < block_group->key.offset * factor);
10157 }
c146afad
YZ
10158 block_group->space_info->total_bytes -= block_group->key.offset;
10159 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10160 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10161
c146afad 10162 spin_unlock(&block_group->space_info->lock);
283bb197 10163
0af3d00b
JB
10164 memcpy(&key, &block_group->key, sizeof(key));
10165
04216820 10166 lock_chunks(root);
495e64f4
FM
10167 if (!list_empty(&em->list)) {
10168 /* We're in the transaction->pending_chunks list. */
10169 free_extent_map(em);
10170 }
04216820
FM
10171 spin_lock(&block_group->lock);
10172 block_group->removed = 1;
10173 /*
10174 * At this point trimming can't start on this block group, because we
10175 * removed the block group from the tree fs_info->block_group_cache_tree
10176 * so no one can't find it anymore and even if someone already got this
10177 * block group before we removed it from the rbtree, they have already
10178 * incremented block_group->trimming - if they didn't, they won't find
10179 * any free space entries because we already removed them all when we
10180 * called btrfs_remove_free_space_cache().
10181 *
10182 * And we must not remove the extent map from the fs_info->mapping_tree
10183 * to prevent the same logical address range and physical device space
10184 * ranges from being reused for a new block group. This is because our
10185 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10186 * completely transactionless, so while it is trimming a range the
10187 * currently running transaction might finish and a new one start,
10188 * allowing for new block groups to be created that can reuse the same
10189 * physical device locations unless we take this special care.
e33e17ee
JM
10190 *
10191 * There may also be an implicit trim operation if the file system
10192 * is mounted with -odiscard. The same protections must remain
10193 * in place until the extents have been discarded completely when
10194 * the transaction commit has completed.
04216820
FM
10195 */
10196 remove_em = (atomic_read(&block_group->trimming) == 0);
10197 /*
10198 * Make sure a trimmer task always sees the em in the pinned_chunks list
10199 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10200 * before checking block_group->removed).
10201 */
10202 if (!remove_em) {
10203 /*
10204 * Our em might be in trans->transaction->pending_chunks which
10205 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10206 * and so is the fs_info->pinned_chunks list.
10207 *
10208 * So at this point we must be holding the chunk_mutex to avoid
10209 * any races with chunk allocation (more specifically at
10210 * volumes.c:contains_pending_extent()), to ensure it always
10211 * sees the em, either in the pending_chunks list or in the
10212 * pinned_chunks list.
10213 */
10214 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10215 }
10216 spin_unlock(&block_group->lock);
04216820
FM
10217
10218 if (remove_em) {
10219 struct extent_map_tree *em_tree;
10220
10221 em_tree = &root->fs_info->mapping_tree.map_tree;
10222 write_lock(&em_tree->lock);
8dbcd10f
FM
10223 /*
10224 * The em might be in the pending_chunks list, so make sure the
10225 * chunk mutex is locked, since remove_extent_mapping() will
10226 * delete us from that list.
10227 */
04216820
FM
10228 remove_extent_mapping(em_tree, em);
10229 write_unlock(&em_tree->lock);
10230 /* once for the tree */
10231 free_extent_map(em);
10232 }
10233
8dbcd10f
FM
10234 unlock_chunks(root);
10235
fa9c0d79
CM
10236 btrfs_put_block_group(block_group);
10237 btrfs_put_block_group(block_group);
1a40e23b
ZY
10238
10239 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10240 if (ret > 0)
10241 ret = -EIO;
10242 if (ret < 0)
10243 goto out;
10244
10245 ret = btrfs_del_item(trans, root, path);
10246out:
10247 btrfs_free_path(path);
10248 return ret;
10249}
acce952b 10250
47ab2a6c
JB
10251/*
10252 * Process the unused_bgs list and remove any that don't have any allocated
10253 * space inside of them.
10254 */
10255void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10256{
10257 struct btrfs_block_group_cache *block_group;
10258 struct btrfs_space_info *space_info;
10259 struct btrfs_root *root = fs_info->extent_root;
10260 struct btrfs_trans_handle *trans;
10261 int ret = 0;
10262
10263 if (!fs_info->open)
10264 return;
10265
10266 spin_lock(&fs_info->unused_bgs_lock);
10267 while (!list_empty(&fs_info->unused_bgs)) {
10268 u64 start, end;
e33e17ee 10269 int trimming;
47ab2a6c
JB
10270
10271 block_group = list_first_entry(&fs_info->unused_bgs,
10272 struct btrfs_block_group_cache,
10273 bg_list);
10274 space_info = block_group->space_info;
10275 list_del_init(&block_group->bg_list);
10276 if (ret || btrfs_mixed_space_info(space_info)) {
10277 btrfs_put_block_group(block_group);
10278 continue;
10279 }
10280 spin_unlock(&fs_info->unused_bgs_lock);
10281
67c5e7d4
FM
10282 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10283
47ab2a6c
JB
10284 /* Don't want to race with allocators so take the groups_sem */
10285 down_write(&space_info->groups_sem);
10286 spin_lock(&block_group->lock);
10287 if (block_group->reserved ||
10288 btrfs_block_group_used(&block_group->item) ||
10289 block_group->ro) {
10290 /*
10291 * We want to bail if we made new allocations or have
10292 * outstanding allocations in this block group. We do
10293 * the ro check in case balance is currently acting on
10294 * this block group.
10295 */
10296 spin_unlock(&block_group->lock);
10297 up_write(&space_info->groups_sem);
10298 goto next;
10299 }
10300 spin_unlock(&block_group->lock);
10301
10302 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10303 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10304 up_write(&space_info->groups_sem);
10305 if (ret < 0) {
10306 ret = 0;
10307 goto next;
10308 }
10309
10310 /*
10311 * Want to do this before we do anything else so we can recover
10312 * properly if we fail to join the transaction.
10313 */
3d84be79
FL
10314 /* 1 for btrfs_orphan_reserve_metadata() */
10315 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10316 if (IS_ERR(trans)) {
868f401a 10317 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10318 ret = PTR_ERR(trans);
10319 goto next;
10320 }
10321
10322 /*
10323 * We could have pending pinned extents for this block group,
10324 * just delete them, we don't care about them anymore.
10325 */
10326 start = block_group->key.objectid;
10327 end = start + block_group->key.offset - 1;
d4b450cd
FM
10328 /*
10329 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10330 * btrfs_finish_extent_commit(). If we are at transaction N,
10331 * another task might be running finish_extent_commit() for the
10332 * previous transaction N - 1, and have seen a range belonging
10333 * to the block group in freed_extents[] before we were able to
10334 * clear the whole block group range from freed_extents[]. This
10335 * means that task can lookup for the block group after we
10336 * unpinned it from freed_extents[] and removed it, leading to
10337 * a BUG_ON() at btrfs_unpin_extent_range().
10338 */
10339 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10340 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10341 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10342 if (ret) {
d4b450cd 10343 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10344 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10345 goto end_trans;
10346 }
10347 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10348 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10349 if (ret) {
d4b450cd 10350 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10351 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10352 goto end_trans;
10353 }
d4b450cd 10354 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10355
10356 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10357 spin_lock(&space_info->lock);
10358 spin_lock(&block_group->lock);
10359
10360 space_info->bytes_pinned -= block_group->pinned;
10361 space_info->bytes_readonly += block_group->pinned;
10362 percpu_counter_add(&space_info->total_bytes_pinned,
10363 -block_group->pinned);
47ab2a6c
JB
10364 block_group->pinned = 0;
10365
c30666d4
ZL
10366 spin_unlock(&block_group->lock);
10367 spin_unlock(&space_info->lock);
10368
e33e17ee
JM
10369 /* DISCARD can flip during remount */
10370 trimming = btrfs_test_opt(root, DISCARD);
10371
10372 /* Implicit trim during transaction commit. */
10373 if (trimming)
10374 btrfs_get_block_group_trimming(block_group);
10375
47ab2a6c
JB
10376 /*
10377 * Btrfs_remove_chunk will abort the transaction if things go
10378 * horribly wrong.
10379 */
10380 ret = btrfs_remove_chunk(trans, root,
10381 block_group->key.objectid);
e33e17ee
JM
10382
10383 if (ret) {
10384 if (trimming)
10385 btrfs_put_block_group_trimming(block_group);
10386 goto end_trans;
10387 }
10388
10389 /*
10390 * If we're not mounted with -odiscard, we can just forget
10391 * about this block group. Otherwise we'll need to wait
10392 * until transaction commit to do the actual discard.
10393 */
10394 if (trimming) {
10395 WARN_ON(!list_empty(&block_group->bg_list));
10396 spin_lock(&trans->transaction->deleted_bgs_lock);
10397 list_move(&block_group->bg_list,
10398 &trans->transaction->deleted_bgs);
10399 spin_unlock(&trans->transaction->deleted_bgs_lock);
10400 btrfs_get_block_group(block_group);
10401 }
758eb51e 10402end_trans:
47ab2a6c
JB
10403 btrfs_end_transaction(trans, root);
10404next:
67c5e7d4 10405 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10406 btrfs_put_block_group(block_group);
10407 spin_lock(&fs_info->unused_bgs_lock);
10408 }
10409 spin_unlock(&fs_info->unused_bgs_lock);
10410}
10411
c59021f8 10412int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10413{
10414 struct btrfs_space_info *space_info;
1aba86d6 10415 struct btrfs_super_block *disk_super;
10416 u64 features;
10417 u64 flags;
10418 int mixed = 0;
c59021f8 10419 int ret;
10420
6c41761f 10421 disk_super = fs_info->super_copy;
1aba86d6 10422 if (!btrfs_super_root(disk_super))
10423 return 1;
c59021f8 10424
1aba86d6 10425 features = btrfs_super_incompat_flags(disk_super);
10426 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10427 mixed = 1;
c59021f8 10428
1aba86d6 10429 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10430 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10431 if (ret)
1aba86d6 10432 goto out;
c59021f8 10433
1aba86d6 10434 if (mixed) {
10435 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10436 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10437 } else {
10438 flags = BTRFS_BLOCK_GROUP_METADATA;
10439 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10440 if (ret)
10441 goto out;
10442
10443 flags = BTRFS_BLOCK_GROUP_DATA;
10444 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10445 }
10446out:
c59021f8 10447 return ret;
10448}
10449
acce952b 10450int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10451{
678886bd 10452 return unpin_extent_range(root, start, end, false);
acce952b 10453}
10454
499f377f
JM
10455/*
10456 * It used to be that old block groups would be left around forever.
10457 * Iterating over them would be enough to trim unused space. Since we
10458 * now automatically remove them, we also need to iterate over unallocated
10459 * space.
10460 *
10461 * We don't want a transaction for this since the discard may take a
10462 * substantial amount of time. We don't require that a transaction be
10463 * running, but we do need to take a running transaction into account
10464 * to ensure that we're not discarding chunks that were released in
10465 * the current transaction.
10466 *
10467 * Holding the chunks lock will prevent other threads from allocating
10468 * or releasing chunks, but it won't prevent a running transaction
10469 * from committing and releasing the memory that the pending chunks
10470 * list head uses. For that, we need to take a reference to the
10471 * transaction.
10472 */
10473static int btrfs_trim_free_extents(struct btrfs_device *device,
10474 u64 minlen, u64 *trimmed)
10475{
10476 u64 start = 0, len = 0;
10477 int ret;
10478
10479 *trimmed = 0;
10480
10481 /* Not writeable = nothing to do. */
10482 if (!device->writeable)
10483 return 0;
10484
10485 /* No free space = nothing to do. */
10486 if (device->total_bytes <= device->bytes_used)
10487 return 0;
10488
10489 ret = 0;
10490
10491 while (1) {
10492 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10493 struct btrfs_transaction *trans;
10494 u64 bytes;
10495
10496 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10497 if (ret)
10498 return ret;
10499
10500 down_read(&fs_info->commit_root_sem);
10501
10502 spin_lock(&fs_info->trans_lock);
10503 trans = fs_info->running_transaction;
10504 if (trans)
10505 atomic_inc(&trans->use_count);
10506 spin_unlock(&fs_info->trans_lock);
10507
10508 ret = find_free_dev_extent_start(trans, device, minlen, start,
10509 &start, &len);
10510 if (trans)
10511 btrfs_put_transaction(trans);
10512
10513 if (ret) {
10514 up_read(&fs_info->commit_root_sem);
10515 mutex_unlock(&fs_info->chunk_mutex);
10516 if (ret == -ENOSPC)
10517 ret = 0;
10518 break;
10519 }
10520
10521 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10522 up_read(&fs_info->commit_root_sem);
10523 mutex_unlock(&fs_info->chunk_mutex);
10524
10525 if (ret)
10526 break;
10527
10528 start += len;
10529 *trimmed += bytes;
10530
10531 if (fatal_signal_pending(current)) {
10532 ret = -ERESTARTSYS;
10533 break;
10534 }
10535
10536 cond_resched();
10537 }
10538
10539 return ret;
10540}
10541
f7039b1d
LD
10542int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10543{
10544 struct btrfs_fs_info *fs_info = root->fs_info;
10545 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10546 struct btrfs_device *device;
10547 struct list_head *devices;
f7039b1d
LD
10548 u64 group_trimmed;
10549 u64 start;
10550 u64 end;
10551 u64 trimmed = 0;
2cac13e4 10552 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10553 int ret = 0;
10554
2cac13e4
LB
10555 /*
10556 * try to trim all FS space, our block group may start from non-zero.
10557 */
10558 if (range->len == total_bytes)
10559 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10560 else
10561 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10562
10563 while (cache) {
10564 if (cache->key.objectid >= (range->start + range->len)) {
10565 btrfs_put_block_group(cache);
10566 break;
10567 }
10568
10569 start = max(range->start, cache->key.objectid);
10570 end = min(range->start + range->len,
10571 cache->key.objectid + cache->key.offset);
10572
10573 if (end - start >= range->minlen) {
10574 if (!block_group_cache_done(cache)) {
f6373bf3 10575 ret = cache_block_group(cache, 0);
1be41b78
JB
10576 if (ret) {
10577 btrfs_put_block_group(cache);
10578 break;
10579 }
10580 ret = wait_block_group_cache_done(cache);
10581 if (ret) {
10582 btrfs_put_block_group(cache);
10583 break;
10584 }
f7039b1d
LD
10585 }
10586 ret = btrfs_trim_block_group(cache,
10587 &group_trimmed,
10588 start,
10589 end,
10590 range->minlen);
10591
10592 trimmed += group_trimmed;
10593 if (ret) {
10594 btrfs_put_block_group(cache);
10595 break;
10596 }
10597 }
10598
10599 cache = next_block_group(fs_info->tree_root, cache);
10600 }
10601
499f377f
JM
10602 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10603 devices = &root->fs_info->fs_devices->alloc_list;
10604 list_for_each_entry(device, devices, dev_alloc_list) {
10605 ret = btrfs_trim_free_extents(device, range->minlen,
10606 &group_trimmed);
10607 if (ret)
10608 break;
10609
10610 trimmed += group_trimmed;
10611 }
10612 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10613
f7039b1d
LD
10614 range->len = trimmed;
10615 return ret;
10616}
8257b2dc
MX
10617
10618/*
9ea24bbe
FM
10619 * btrfs_{start,end}_write_no_snapshoting() are similar to
10620 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10621 * data into the page cache through nocow before the subvolume is snapshoted,
10622 * but flush the data into disk after the snapshot creation, or to prevent
10623 * operations while snapshoting is ongoing and that cause the snapshot to be
10624 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10625 */
9ea24bbe 10626void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10627{
10628 percpu_counter_dec(&root->subv_writers->counter);
10629 /*
a83342aa 10630 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10631 */
10632 smp_mb();
10633 if (waitqueue_active(&root->subv_writers->wait))
10634 wake_up(&root->subv_writers->wait);
10635}
10636
9ea24bbe 10637int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10638{
ee39b432 10639 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10640 return 0;
10641
10642 percpu_counter_inc(&root->subv_writers->counter);
10643 /*
10644 * Make sure counter is updated before we check for snapshot creation.
10645 */
10646 smp_mb();
ee39b432 10647 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10648 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10649 return 0;
10650 }
10651 return 1;
10652}
This page took 1.372592 seconds and 5 git commands to generate.