btrfs: qgroup: Make snapshot accounting work with new extent-oriented
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
5d4f98a2
YZ
1319static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
15916de8 1322{
5d4f98a2
YZ
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1354#endif
5d4f98a2
YZ
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359}
15916de8 1360
5d4f98a2
YZ
1361static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1f3c79a2 1366{
5d4f98a2 1367 struct btrfs_key key;
1f3c79a2 1368 int ret;
1f3c79a2 1369
5d4f98a2
YZ
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1f3c79a2
LH
1377 }
1378
5d4f98a2
YZ
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
b3b4aa74 1384 btrfs_release_path(path);
5d4f98a2
YZ
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1f3c79a2 1390#endif
5d4f98a2 1391 return ret;
1f3c79a2
LH
1392}
1393
5d4f98a2
YZ
1394static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
31840ae1 1399{
5d4f98a2 1400 struct btrfs_key key;
31840ae1 1401 int ret;
31840ae1 1402
5d4f98a2
YZ
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1413 btrfs_release_path(path);
31840ae1
ZY
1414 return ret;
1415}
1416
5d4f98a2 1417static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1418{
5d4f98a2
YZ
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
31840ae1 1432}
56bec294 1433
2c47e605
YZ
1434static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
56bec294 1436
02217ed2 1437{
2c47e605 1438 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1439 if (!path->nodes[level])
1440 break;
5d4f98a2
YZ
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453}
037e6390 1454
5d4f98a2
YZ
1455/*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468static noinline_for_stack
1469int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476{
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
3173a18f
JB
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
26b8003f 1492
db94535d 1493 key.objectid = bytenr;
31840ae1 1494 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1495 key.offset = num_bytes;
31840ae1 1496
5d4f98a2
YZ
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1500 path->keep_locks = 1;
5d4f98a2
YZ
1501 } else
1502 extra_size = -1;
3173a18f
JB
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513again:
5d4f98a2 1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1515 if (ret < 0) {
5d4f98a2
YZ
1516 err = ret;
1517 goto out;
1518 }
3173a18f
JB
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
9ce49a0b 1536 key.objectid = bytenr;
3173a18f
JB
1537 key.type = BTRFS_EXTENT_ITEM_KEY;
1538 key.offset = num_bytes;
1539 btrfs_release_path(path);
1540 goto again;
1541 }
1542 }
1543
79787eaa
JM
1544 if (ret && !insert) {
1545 err = -ENOENT;
1546 goto out;
fae7f21c 1547 } else if (WARN_ON(ret)) {
492104c8 1548 err = -EIO;
492104c8 1549 goto out;
79787eaa 1550 }
5d4f98a2
YZ
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569#endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
5d4f98a2
YZ
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
3173a18f 1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
5d4f98a2
YZ
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
2c47e605
YZ
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
85d4198e 1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650out:
85d4198e 1651 if (insert) {
5d4f98a2
YZ
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656}
1657
1658/*
1659 * helper to add new inline back ref
1660 */
1661static noinline_for_stack
fd279fae 1662void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref *iref,
1665 u64 parent, u64 root_objectid,
1666 u64 owner, u64 offset, int refs_to_add,
1667 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1668{
1669 struct extent_buffer *leaf;
1670 struct btrfs_extent_item *ei;
1671 unsigned long ptr;
1672 unsigned long end;
1673 unsigned long item_offset;
1674 u64 refs;
1675 int size;
1676 int type;
5d4f98a2
YZ
1677
1678 leaf = path->nodes[0];
1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 item_offset = (unsigned long)iref - (unsigned long)ei;
1681
1682 type = extent_ref_type(parent, owner);
1683 size = btrfs_extent_inline_ref_size(type);
1684
4b90c680 1685 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1686
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 refs = btrfs_extent_refs(leaf, ei);
1689 refs += refs_to_add;
1690 btrfs_set_extent_refs(leaf, ei, refs);
1691 if (extent_op)
1692 __run_delayed_extent_op(extent_op, leaf, ei);
1693
1694 ptr = (unsigned long)ei + item_offset;
1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 if (ptr < end - size)
1697 memmove_extent_buffer(leaf, ptr + size, ptr,
1698 end - size - ptr);
1699
1700 iref = (struct btrfs_extent_inline_ref *)ptr;
1701 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 struct btrfs_extent_data_ref *dref;
1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 struct btrfs_shared_data_ref *sref;
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 }
1719 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1720}
1721
1722static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 struct btrfs_root *root,
1724 struct btrfs_path *path,
1725 struct btrfs_extent_inline_ref **ref_ret,
1726 u64 bytenr, u64 num_bytes, u64 parent,
1727 u64 root_objectid, u64 owner, u64 offset)
1728{
1729 int ret;
1730
1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 bytenr, num_bytes, parent,
1733 root_objectid, owner, offset, 0);
1734 if (ret != -ENOENT)
54aa1f4d 1735 return ret;
5d4f98a2 1736
b3b4aa74 1737 btrfs_release_path(path);
5d4f98a2
YZ
1738 *ref_ret = NULL;
1739
1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 root_objectid);
1743 } else {
1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 root_objectid, owner, offset);
b9473439 1746 }
5d4f98a2
YZ
1747 return ret;
1748}
31840ae1 1749
5d4f98a2
YZ
1750/*
1751 * helper to update/remove inline back ref
1752 */
1753static noinline_for_stack
afe5fea7 1754void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1755 struct btrfs_path *path,
1756 struct btrfs_extent_inline_ref *iref,
1757 int refs_to_mod,
fcebe456
JB
1758 struct btrfs_delayed_extent_op *extent_op,
1759 int *last_ref)
5d4f98a2
YZ
1760{
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *ei;
1763 struct btrfs_extent_data_ref *dref = NULL;
1764 struct btrfs_shared_data_ref *sref = NULL;
1765 unsigned long ptr;
1766 unsigned long end;
1767 u32 item_size;
1768 int size;
1769 int type;
5d4f98a2
YZ
1770 u64 refs;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 refs = btrfs_extent_refs(leaf, ei);
1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 refs += refs_to_mod;
1777 btrfs_set_extent_refs(leaf, ei, refs);
1778 if (extent_op)
1779 __run_delayed_extent_op(extent_op, leaf, ei);
1780
1781 type = btrfs_extent_inline_ref_type(leaf, iref);
1782
1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 refs = btrfs_extent_data_ref_count(leaf, dref);
1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 refs = btrfs_shared_data_ref_count(leaf, sref);
1789 } else {
1790 refs = 1;
1791 BUG_ON(refs_to_mod != -1);
56bec294 1792 }
31840ae1 1793
5d4f98a2
YZ
1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 refs += refs_to_mod;
1796
1797 if (refs > 0) {
1798 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 else
1801 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 } else {
fcebe456 1803 *last_ref = 1;
5d4f98a2
YZ
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
afe5fea7 1812 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1815}
1816
1817static noinline_for_stack
1818int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825{
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1834 update_inline_extent_backref(root, path, iref,
fcebe456 1835 refs_to_add, extent_op, NULL);
5d4f98a2 1836 } else if (ret == -ENOENT) {
fd279fae 1837 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
771ed689 1841 }
5d4f98a2
YZ
1842 return ret;
1843}
31840ae1 1844
5d4f98a2
YZ
1845static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850{
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862}
56bec294 1863
5d4f98a2
YZ
1864static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
fcebe456 1868 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1869{
143bede5 1870 int ret = 0;
b9473439 1871
5d4f98a2
YZ
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
afe5fea7 1874 update_inline_extent_backref(root, path, iref,
fcebe456 1875 -refs_to_drop, NULL, last_ref);
5d4f98a2 1876 } else if (is_data) {
fcebe456
JB
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 last_ref);
5d4f98a2 1879 } else {
fcebe456 1880 *last_ref = 1;
5d4f98a2
YZ
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884}
1885
5378e607 1886static int btrfs_issue_discard(struct block_device *bdev,
5d4f98a2
YZ
1887 u64 start, u64 len)
1888{
5378e607 1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
5d4f98a2 1890}
5d4f98a2 1891
1edb647b
FM
1892int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1894{
5d4f98a2 1895 int ret;
5378e607 1896 u64 discarded_bytes = 0;
a1d3c478 1897 struct btrfs_bio *bbio = NULL;
5d4f98a2 1898
e244a0ae 1899
5d4f98a2 1900 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1902 bytenr, &num_bytes, &bbio, 0);
79787eaa 1903 /* Error condition is -ENOMEM */
5d4f98a2 1904 if (!ret) {
a1d3c478 1905 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1906 int i;
1907
5d4f98a2 1908
a1d3c478 1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d5e2003c
JB
1910 if (!stripe->dev->can_discard)
1911 continue;
1912
5378e607
LD
1913 ret = btrfs_issue_discard(stripe->dev->bdev,
1914 stripe->physical,
1915 stripe->length);
1916 if (!ret)
1917 discarded_bytes += stripe->length;
1918 else if (ret != -EOPNOTSUPP)
79787eaa 1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1920
1921 /*
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1925 */
1926 ret = 0;
5d4f98a2 1927 }
6e9606d2 1928 btrfs_put_bbio(bbio);
5d4f98a2 1929 }
5378e607
LD
1930
1931 if (actual_bytes)
1932 *actual_bytes = discarded_bytes;
1933
5d4f98a2 1934
53b381b3
DW
1935 if (ret == -EOPNOTSUPP)
1936 ret = 0;
5d4f98a2 1937 return ret;
5d4f98a2
YZ
1938}
1939
79787eaa 1940/* Can return -ENOMEM */
5d4f98a2
YZ
1941int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
1944 u64 root_objectid, u64 owner, u64 offset,
1945 int no_quota)
5d4f98a2
YZ
1946{
1947 int ret;
66d7e7f0
AJ
1948 struct btrfs_fs_info *fs_info = root->fs_info;
1949
5d4f98a2
YZ
1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952
1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 num_bytes,
5d4f98a2 1956 parent, root_objectid, (int)owner,
fcebe456 1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 1958 } else {
66d7e7f0
AJ
1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 num_bytes,
5d4f98a2 1961 parent, root_objectid, owner, offset,
fcebe456 1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
1963 }
1964 return ret;
1965}
1966
1967static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
c682f9b3 1969 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
1970 u64 parent, u64 root_objectid,
1971 u64 owner, u64 offset, int refs_to_add,
1972 struct btrfs_delayed_extent_op *extent_op)
1973{
fcebe456 1974 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
1975 struct btrfs_path *path;
1976 struct extent_buffer *leaf;
1977 struct btrfs_extent_item *item;
fcebe456 1978 struct btrfs_key key;
c682f9b3
QW
1979 u64 bytenr = node->bytenr;
1980 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
1981 u64 refs;
1982 int ret;
c682f9b3 1983 int no_quota = node->no_quota;
5d4f98a2
YZ
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
fcebe456
JB
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
5d4f98a2
YZ
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
5d4f98a2
YZ
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
0ed4792a 1999 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2000 goto out;
fcebe456
JB
2001
2002 /*
2003 * Ok we had -EAGAIN which means we didn't have space to insert and
2004 * inline extent ref, so just update the reference count and add a
2005 * normal backref.
2006 */
5d4f98a2 2007 leaf = path->nodes[0];
fcebe456 2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2009 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2010 refs = btrfs_extent_refs(leaf, item);
2011 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2012 if (extent_op)
2013 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2014
5d4f98a2 2015 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2016 btrfs_release_path(path);
56bec294
CM
2017
2018 path->reada = 1;
b9473439 2019 path->leave_spinning = 1;
56bec294
CM
2020 /* now insert the actual backref */
2021 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2022 path, bytenr, parent, root_objectid,
2023 owner, offset, refs_to_add);
79787eaa
JM
2024 if (ret)
2025 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2026out:
56bec294 2027 btrfs_free_path(path);
30d133fc 2028 return ret;
56bec294
CM
2029}
2030
5d4f98a2
YZ
2031static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2032 struct btrfs_root *root,
2033 struct btrfs_delayed_ref_node *node,
2034 struct btrfs_delayed_extent_op *extent_op,
2035 int insert_reserved)
56bec294 2036{
5d4f98a2
YZ
2037 int ret = 0;
2038 struct btrfs_delayed_data_ref *ref;
2039 struct btrfs_key ins;
2040 u64 parent = 0;
2041 u64 ref_root = 0;
2042 u64 flags = 0;
2043
2044 ins.objectid = node->bytenr;
2045 ins.offset = node->num_bytes;
2046 ins.type = BTRFS_EXTENT_ITEM_KEY;
2047
2048 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2049 trace_run_delayed_data_ref(node, ref, node->action);
2050
5d4f98a2
YZ
2051 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2052 parent = ref->parent;
fcebe456 2053 ref_root = ref->root;
5d4f98a2
YZ
2054
2055 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2056 if (extent_op)
5d4f98a2 2057 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2058 ret = alloc_reserved_file_extent(trans, root,
2059 parent, ref_root, flags,
2060 ref->objectid, ref->offset,
2061 &ins, node->ref_mod);
5d4f98a2 2062 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2063 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2064 ref_root, ref->objectid,
2065 ref->offset, node->ref_mod,
c682f9b3 2066 extent_op);
5d4f98a2 2067 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2068 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2069 ref_root, ref->objectid,
2070 ref->offset, node->ref_mod,
c682f9b3 2071 extent_op);
5d4f98a2
YZ
2072 } else {
2073 BUG();
2074 }
2075 return ret;
2076}
2077
2078static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2079 struct extent_buffer *leaf,
2080 struct btrfs_extent_item *ei)
2081{
2082 u64 flags = btrfs_extent_flags(leaf, ei);
2083 if (extent_op->update_flags) {
2084 flags |= extent_op->flags_to_set;
2085 btrfs_set_extent_flags(leaf, ei, flags);
2086 }
2087
2088 if (extent_op->update_key) {
2089 struct btrfs_tree_block_info *bi;
2090 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2091 bi = (struct btrfs_tree_block_info *)(ei + 1);
2092 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2093 }
2094}
2095
2096static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2097 struct btrfs_root *root,
2098 struct btrfs_delayed_ref_node *node,
2099 struct btrfs_delayed_extent_op *extent_op)
2100{
2101 struct btrfs_key key;
2102 struct btrfs_path *path;
2103 struct btrfs_extent_item *ei;
2104 struct extent_buffer *leaf;
2105 u32 item_size;
56bec294 2106 int ret;
5d4f98a2 2107 int err = 0;
b1c79e09 2108 int metadata = !extent_op->is_data;
5d4f98a2 2109
79787eaa
JM
2110 if (trans->aborted)
2111 return 0;
2112
3173a18f
JB
2113 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2114 metadata = 0;
2115
5d4f98a2
YZ
2116 path = btrfs_alloc_path();
2117 if (!path)
2118 return -ENOMEM;
2119
2120 key.objectid = node->bytenr;
5d4f98a2 2121
3173a18f 2122 if (metadata) {
3173a18f 2123 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2124 key.offset = extent_op->level;
3173a18f
JB
2125 } else {
2126 key.type = BTRFS_EXTENT_ITEM_KEY;
2127 key.offset = node->num_bytes;
2128 }
2129
2130again:
5d4f98a2
YZ
2131 path->reada = 1;
2132 path->leave_spinning = 1;
2133 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2134 path, 0, 1);
2135 if (ret < 0) {
2136 err = ret;
2137 goto out;
2138 }
2139 if (ret > 0) {
3173a18f 2140 if (metadata) {
55994887
FDBM
2141 if (path->slots[0] > 0) {
2142 path->slots[0]--;
2143 btrfs_item_key_to_cpu(path->nodes[0], &key,
2144 path->slots[0]);
2145 if (key.objectid == node->bytenr &&
2146 key.type == BTRFS_EXTENT_ITEM_KEY &&
2147 key.offset == node->num_bytes)
2148 ret = 0;
2149 }
2150 if (ret > 0) {
2151 btrfs_release_path(path);
2152 metadata = 0;
3173a18f 2153
55994887
FDBM
2154 key.objectid = node->bytenr;
2155 key.offset = node->num_bytes;
2156 key.type = BTRFS_EXTENT_ITEM_KEY;
2157 goto again;
2158 }
2159 } else {
2160 err = -EIO;
2161 goto out;
3173a18f 2162 }
5d4f98a2
YZ
2163 }
2164
2165 leaf = path->nodes[0];
2166 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2167#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2168 if (item_size < sizeof(*ei)) {
2169 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2170 path, (u64)-1, 0);
2171 if (ret < 0) {
2172 err = ret;
2173 goto out;
2174 }
2175 leaf = path->nodes[0];
2176 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2177 }
2178#endif
2179 BUG_ON(item_size < sizeof(*ei));
2180 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2181 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2182
5d4f98a2
YZ
2183 btrfs_mark_buffer_dirty(leaf);
2184out:
2185 btrfs_free_path(path);
2186 return err;
56bec294
CM
2187}
2188
5d4f98a2
YZ
2189static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 struct btrfs_delayed_ref_node *node,
2192 struct btrfs_delayed_extent_op *extent_op,
2193 int insert_reserved)
56bec294
CM
2194{
2195 int ret = 0;
5d4f98a2
YZ
2196 struct btrfs_delayed_tree_ref *ref;
2197 struct btrfs_key ins;
2198 u64 parent = 0;
2199 u64 ref_root = 0;
3173a18f
JB
2200 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2201 SKINNY_METADATA);
56bec294 2202
5d4f98a2 2203 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2204 trace_run_delayed_tree_ref(node, ref, node->action);
2205
5d4f98a2
YZ
2206 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2207 parent = ref->parent;
fcebe456 2208 ref_root = ref->root;
5d4f98a2 2209
3173a18f
JB
2210 ins.objectid = node->bytenr;
2211 if (skinny_metadata) {
2212 ins.offset = ref->level;
2213 ins.type = BTRFS_METADATA_ITEM_KEY;
2214 } else {
2215 ins.offset = node->num_bytes;
2216 ins.type = BTRFS_EXTENT_ITEM_KEY;
2217 }
2218
5d4f98a2
YZ
2219 BUG_ON(node->ref_mod != 1);
2220 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2221 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2222 ret = alloc_reserved_tree_block(trans, root,
2223 parent, ref_root,
2224 extent_op->flags_to_set,
2225 &extent_op->key,
fcebe456
JB
2226 ref->level, &ins,
2227 node->no_quota);
5d4f98a2 2228 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2229 ret = __btrfs_inc_extent_ref(trans, root, node,
2230 parent, ref_root,
2231 ref->level, 0, 1,
fcebe456 2232 extent_op);
5d4f98a2 2233 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2234 ret = __btrfs_free_extent(trans, root, node,
2235 parent, ref_root,
2236 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2237 } else {
2238 BUG();
2239 }
56bec294
CM
2240 return ret;
2241}
2242
2243/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2244static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op,
2248 int insert_reserved)
56bec294 2249{
79787eaa
JM
2250 int ret = 0;
2251
857cc2fc
JB
2252 if (trans->aborted) {
2253 if (insert_reserved)
2254 btrfs_pin_extent(root, node->bytenr,
2255 node->num_bytes, 1);
79787eaa 2256 return 0;
857cc2fc 2257 }
79787eaa 2258
5d4f98a2 2259 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2260 struct btrfs_delayed_ref_head *head;
2261 /*
2262 * we've hit the end of the chain and we were supposed
2263 * to insert this extent into the tree. But, it got
2264 * deleted before we ever needed to insert it, so all
2265 * we have to do is clean up the accounting
2266 */
5d4f98a2
YZ
2267 BUG_ON(extent_op);
2268 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2269 trace_run_delayed_ref_head(node, head, node->action);
2270
56bec294 2271 if (insert_reserved) {
f0486c68
YZ
2272 btrfs_pin_extent(root, node->bytenr,
2273 node->num_bytes, 1);
5d4f98a2
YZ
2274 if (head->is_data) {
2275 ret = btrfs_del_csums(trans, root,
2276 node->bytenr,
2277 node->num_bytes);
5d4f98a2 2278 }
56bec294 2279 }
79787eaa 2280 return ret;
56bec294
CM
2281 }
2282
5d4f98a2
YZ
2283 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2284 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2285 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2286 insert_reserved);
2287 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2288 node->type == BTRFS_SHARED_DATA_REF_KEY)
2289 ret = run_delayed_data_ref(trans, root, node, extent_op,
2290 insert_reserved);
2291 else
2292 BUG();
2293 return ret;
56bec294
CM
2294}
2295
c6fc2454 2296static inline struct btrfs_delayed_ref_node *
56bec294
CM
2297select_delayed_ref(struct btrfs_delayed_ref_head *head)
2298{
c6fc2454
QW
2299 if (list_empty(&head->ref_list))
2300 return NULL;
d7df2c79 2301
c6fc2454
QW
2302 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2303 list);
56bec294
CM
2304}
2305
79787eaa
JM
2306/*
2307 * Returns 0 on success or if called with an already aborted transaction.
2308 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2309 */
d7df2c79
JB
2310static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2311 struct btrfs_root *root,
2312 unsigned long nr)
56bec294 2313{
56bec294
CM
2314 struct btrfs_delayed_ref_root *delayed_refs;
2315 struct btrfs_delayed_ref_node *ref;
2316 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2317 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2318 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2319 ktime_t start = ktime_get();
56bec294 2320 int ret;
d7df2c79 2321 unsigned long count = 0;
0a2b2a84 2322 unsigned long actual_count = 0;
56bec294 2323 int must_insert_reserved = 0;
56bec294
CM
2324
2325 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2326 while (1) {
2327 if (!locked_ref) {
d7df2c79 2328 if (count >= nr)
56bec294 2329 break;
56bec294 2330
d7df2c79
JB
2331 spin_lock(&delayed_refs->lock);
2332 locked_ref = btrfs_select_ref_head(trans);
2333 if (!locked_ref) {
2334 spin_unlock(&delayed_refs->lock);
2335 break;
2336 }
c3e69d58
CM
2337
2338 /* grab the lock that says we are going to process
2339 * all the refs for this head */
2340 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2341 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2342 /*
2343 * we may have dropped the spin lock to get the head
2344 * mutex lock, and that might have given someone else
2345 * time to free the head. If that's true, it has been
2346 * removed from our list and we can move on.
2347 */
2348 if (ret == -EAGAIN) {
2349 locked_ref = NULL;
2350 count++;
2351 continue;
56bec294
CM
2352 }
2353 }
a28ec197 2354
d7df2c79 2355 spin_lock(&locked_ref->lock);
ae1e206b 2356
d1270cd9
AJ
2357 /*
2358 * locked_ref is the head node, so we have to go one
2359 * node back for any delayed ref updates
2360 */
2361 ref = select_delayed_ref(locked_ref);
2362
2363 if (ref && ref->seq &&
097b8a7c 2364 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2365 spin_unlock(&locked_ref->lock);
093486c4 2366 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2367 spin_lock(&delayed_refs->lock);
2368 locked_ref->processing = 0;
d1270cd9
AJ
2369 delayed_refs->num_heads_ready++;
2370 spin_unlock(&delayed_refs->lock);
d7df2c79 2371 locked_ref = NULL;
d1270cd9 2372 cond_resched();
27a377db 2373 count++;
d1270cd9
AJ
2374 continue;
2375 }
2376
56bec294
CM
2377 /*
2378 * record the must insert reserved flag before we
2379 * drop the spin lock.
2380 */
2381 must_insert_reserved = locked_ref->must_insert_reserved;
2382 locked_ref->must_insert_reserved = 0;
7bb86316 2383
5d4f98a2
YZ
2384 extent_op = locked_ref->extent_op;
2385 locked_ref->extent_op = NULL;
2386
56bec294 2387 if (!ref) {
d7df2c79
JB
2388
2389
56bec294
CM
2390 /* All delayed refs have been processed, Go ahead
2391 * and send the head node to run_one_delayed_ref,
2392 * so that any accounting fixes can happen
2393 */
2394 ref = &locked_ref->node;
5d4f98a2
YZ
2395
2396 if (extent_op && must_insert_reserved) {
78a6184a 2397 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2398 extent_op = NULL;
2399 }
2400
2401 if (extent_op) {
d7df2c79 2402 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2403 ret = run_delayed_extent_op(trans, root,
2404 ref, extent_op);
78a6184a 2405 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2406
79787eaa 2407 if (ret) {
857cc2fc
JB
2408 /*
2409 * Need to reset must_insert_reserved if
2410 * there was an error so the abort stuff
2411 * can cleanup the reserved space
2412 * properly.
2413 */
2414 if (must_insert_reserved)
2415 locked_ref->must_insert_reserved = 1;
d7df2c79 2416 locked_ref->processing = 0;
c2cf52eb 2417 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2418 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2419 return ret;
2420 }
d7df2c79 2421 continue;
5d4f98a2 2422 }
02217ed2 2423
d7df2c79
JB
2424 /*
2425 * Need to drop our head ref lock and re-aqcuire the
2426 * delayed ref lock and then re-check to make sure
2427 * nobody got added.
2428 */
2429 spin_unlock(&locked_ref->lock);
2430 spin_lock(&delayed_refs->lock);
2431 spin_lock(&locked_ref->lock);
c6fc2454 2432 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2433 locked_ref->extent_op) {
d7df2c79
JB
2434 spin_unlock(&locked_ref->lock);
2435 spin_unlock(&delayed_refs->lock);
2436 continue;
2437 }
2438 ref->in_tree = 0;
2439 delayed_refs->num_heads--;
c46effa6
LB
2440 rb_erase(&locked_ref->href_node,
2441 &delayed_refs->href_root);
d7df2c79
JB
2442 spin_unlock(&delayed_refs->lock);
2443 } else {
0a2b2a84 2444 actual_count++;
d7df2c79 2445 ref->in_tree = 0;
c6fc2454 2446 list_del(&ref->list);
c46effa6 2447 }
d7df2c79
JB
2448 atomic_dec(&delayed_refs->num_entries);
2449
093486c4 2450 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2451 /*
2452 * when we play the delayed ref, also correct the
2453 * ref_mod on head
2454 */
2455 switch (ref->action) {
2456 case BTRFS_ADD_DELAYED_REF:
2457 case BTRFS_ADD_DELAYED_EXTENT:
2458 locked_ref->node.ref_mod -= ref->ref_mod;
2459 break;
2460 case BTRFS_DROP_DELAYED_REF:
2461 locked_ref->node.ref_mod += ref->ref_mod;
2462 break;
2463 default:
2464 WARN_ON(1);
2465 }
2466 }
d7df2c79 2467 spin_unlock(&locked_ref->lock);
925baedd 2468
5d4f98a2 2469 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2470 must_insert_reserved);
eb099670 2471
78a6184a 2472 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2473 if (ret) {
d7df2c79 2474 locked_ref->processing = 0;
093486c4
MX
2475 btrfs_delayed_ref_unlock(locked_ref);
2476 btrfs_put_delayed_ref(ref);
c2cf52eb 2477 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2478 return ret;
2479 }
2480
093486c4
MX
2481 /*
2482 * If this node is a head, that means all the refs in this head
2483 * have been dealt with, and we will pick the next head to deal
2484 * with, so we must unlock the head and drop it from the cluster
2485 * list before we release it.
2486 */
2487 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2488 if (locked_ref->is_data &&
2489 locked_ref->total_ref_mod < 0) {
2490 spin_lock(&delayed_refs->lock);
2491 delayed_refs->pending_csums -= ref->num_bytes;
2492 spin_unlock(&delayed_refs->lock);
2493 }
093486c4
MX
2494 btrfs_delayed_ref_unlock(locked_ref);
2495 locked_ref = NULL;
2496 }
2497 btrfs_put_delayed_ref(ref);
2498 count++;
c3e69d58 2499 cond_resched();
c3e69d58 2500 }
0a2b2a84
JB
2501
2502 /*
2503 * We don't want to include ref heads since we can have empty ref heads
2504 * and those will drastically skew our runtime down since we just do
2505 * accounting, no actual extent tree updates.
2506 */
2507 if (actual_count > 0) {
2508 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2509 u64 avg;
2510
2511 /*
2512 * We weigh the current average higher than our current runtime
2513 * to avoid large swings in the average.
2514 */
2515 spin_lock(&delayed_refs->lock);
2516 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2517 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2518 spin_unlock(&delayed_refs->lock);
2519 }
d7df2c79 2520 return 0;
c3e69d58
CM
2521}
2522
709c0486
AJ
2523#ifdef SCRAMBLE_DELAYED_REFS
2524/*
2525 * Normally delayed refs get processed in ascending bytenr order. This
2526 * correlates in most cases to the order added. To expose dependencies on this
2527 * order, we start to process the tree in the middle instead of the beginning
2528 */
2529static u64 find_middle(struct rb_root *root)
2530{
2531 struct rb_node *n = root->rb_node;
2532 struct btrfs_delayed_ref_node *entry;
2533 int alt = 1;
2534 u64 middle;
2535 u64 first = 0, last = 0;
2536
2537 n = rb_first(root);
2538 if (n) {
2539 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2540 first = entry->bytenr;
2541 }
2542 n = rb_last(root);
2543 if (n) {
2544 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2545 last = entry->bytenr;
2546 }
2547 n = root->rb_node;
2548
2549 while (n) {
2550 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2551 WARN_ON(!entry->in_tree);
2552
2553 middle = entry->bytenr;
2554
2555 if (alt)
2556 n = n->rb_left;
2557 else
2558 n = n->rb_right;
2559
2560 alt = 1 - alt;
2561 }
2562 return middle;
2563}
2564#endif
2565
1be41b78
JB
2566static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2567{
2568 u64 num_bytes;
2569
2570 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2571 sizeof(struct btrfs_extent_inline_ref));
2572 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2573 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2574
2575 /*
2576 * We don't ever fill up leaves all the way so multiply by 2 just to be
2577 * closer to what we're really going to want to ouse.
2578 */
f8c269d7 2579 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2580}
2581
1262133b
JB
2582/*
2583 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2584 * would require to store the csums for that many bytes.
2585 */
28f75a0e 2586u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2587{
2588 u64 csum_size;
2589 u64 num_csums_per_leaf;
2590 u64 num_csums;
2591
2592 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2593 num_csums_per_leaf = div64_u64(csum_size,
2594 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2595 num_csums = div64_u64(csum_bytes, root->sectorsize);
2596 num_csums += num_csums_per_leaf - 1;
2597 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2598 return num_csums;
2599}
2600
0a2b2a84 2601int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2602 struct btrfs_root *root)
2603{
2604 struct btrfs_block_rsv *global_rsv;
2605 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2606 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2607 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2608 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2609 int ret = 0;
2610
2611 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2612 num_heads = heads_to_leaves(root, num_heads);
2613 if (num_heads > 1)
707e8a07 2614 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2615 num_bytes <<= 1;
28f75a0e 2616 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2617 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2618 num_dirty_bgs);
1be41b78
JB
2619 global_rsv = &root->fs_info->global_block_rsv;
2620
2621 /*
2622 * If we can't allocate any more chunks lets make sure we have _lots_ of
2623 * wiggle room since running delayed refs can create more delayed refs.
2624 */
cb723e49
JB
2625 if (global_rsv->space_info->full) {
2626 num_dirty_bgs_bytes <<= 1;
1be41b78 2627 num_bytes <<= 1;
cb723e49 2628 }
1be41b78
JB
2629
2630 spin_lock(&global_rsv->lock);
cb723e49 2631 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2632 ret = 1;
2633 spin_unlock(&global_rsv->lock);
2634 return ret;
2635}
2636
0a2b2a84
JB
2637int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root)
2639{
2640 struct btrfs_fs_info *fs_info = root->fs_info;
2641 u64 num_entries =
2642 atomic_read(&trans->transaction->delayed_refs.num_entries);
2643 u64 avg_runtime;
a79b7d4b 2644 u64 val;
0a2b2a84
JB
2645
2646 smp_mb();
2647 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2648 val = num_entries * avg_runtime;
0a2b2a84
JB
2649 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2650 return 1;
a79b7d4b
CM
2651 if (val >= NSEC_PER_SEC / 2)
2652 return 2;
0a2b2a84
JB
2653
2654 return btrfs_check_space_for_delayed_refs(trans, root);
2655}
2656
a79b7d4b
CM
2657struct async_delayed_refs {
2658 struct btrfs_root *root;
2659 int count;
2660 int error;
2661 int sync;
2662 struct completion wait;
2663 struct btrfs_work work;
2664};
2665
2666static void delayed_ref_async_start(struct btrfs_work *work)
2667{
2668 struct async_delayed_refs *async;
2669 struct btrfs_trans_handle *trans;
2670 int ret;
2671
2672 async = container_of(work, struct async_delayed_refs, work);
2673
2674 trans = btrfs_join_transaction(async->root);
2675 if (IS_ERR(trans)) {
2676 async->error = PTR_ERR(trans);
2677 goto done;
2678 }
2679
2680 /*
2681 * trans->sync means that when we call end_transaciton, we won't
2682 * wait on delayed refs
2683 */
2684 trans->sync = true;
2685 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2686 if (ret)
2687 async->error = ret;
2688
2689 ret = btrfs_end_transaction(trans, async->root);
2690 if (ret && !async->error)
2691 async->error = ret;
2692done:
2693 if (async->sync)
2694 complete(&async->wait);
2695 else
2696 kfree(async);
2697}
2698
2699int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2700 unsigned long count, int wait)
2701{
2702 struct async_delayed_refs *async;
2703 int ret;
2704
2705 async = kmalloc(sizeof(*async), GFP_NOFS);
2706 if (!async)
2707 return -ENOMEM;
2708
2709 async->root = root->fs_info->tree_root;
2710 async->count = count;
2711 async->error = 0;
2712 if (wait)
2713 async->sync = 1;
2714 else
2715 async->sync = 0;
2716 init_completion(&async->wait);
2717
9e0af237
LB
2718 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2719 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2720
2721 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2722
2723 if (wait) {
2724 wait_for_completion(&async->wait);
2725 ret = async->error;
2726 kfree(async);
2727 return ret;
2728 }
2729 return 0;
2730}
2731
c3e69d58
CM
2732/*
2733 * this starts processing the delayed reference count updates and
2734 * extent insertions we have queued up so far. count can be
2735 * 0, which means to process everything in the tree at the start
2736 * of the run (but not newly added entries), or it can be some target
2737 * number you'd like to process.
79787eaa
JM
2738 *
2739 * Returns 0 on success or if called with an aborted transaction
2740 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2741 */
2742int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2743 struct btrfs_root *root, unsigned long count)
2744{
2745 struct rb_node *node;
2746 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2747 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2748 int ret;
2749 int run_all = count == (unsigned long)-1;
c3e69d58 2750
79787eaa
JM
2751 /* We'll clean this up in btrfs_cleanup_transaction */
2752 if (trans->aborted)
2753 return 0;
2754
c3e69d58
CM
2755 if (root == root->fs_info->extent_root)
2756 root = root->fs_info->tree_root;
2757
2758 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2759 if (count == 0)
d7df2c79 2760 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2761
c3e69d58 2762again:
709c0486
AJ
2763#ifdef SCRAMBLE_DELAYED_REFS
2764 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2765#endif
d7df2c79
JB
2766 ret = __btrfs_run_delayed_refs(trans, root, count);
2767 if (ret < 0) {
2768 btrfs_abort_transaction(trans, root, ret);
2769 return ret;
eb099670 2770 }
c3e69d58 2771
56bec294 2772 if (run_all) {
d7df2c79 2773 if (!list_empty(&trans->new_bgs))
ea658bad 2774 btrfs_create_pending_block_groups(trans, root);
ea658bad 2775
d7df2c79 2776 spin_lock(&delayed_refs->lock);
c46effa6 2777 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2778 if (!node) {
2779 spin_unlock(&delayed_refs->lock);
56bec294 2780 goto out;
d7df2c79 2781 }
c3e69d58 2782 count = (unsigned long)-1;
e9d0b13b 2783
56bec294 2784 while (node) {
c46effa6
LB
2785 head = rb_entry(node, struct btrfs_delayed_ref_head,
2786 href_node);
2787 if (btrfs_delayed_ref_is_head(&head->node)) {
2788 struct btrfs_delayed_ref_node *ref;
5caf2a00 2789
c46effa6 2790 ref = &head->node;
56bec294
CM
2791 atomic_inc(&ref->refs);
2792
2793 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2794 /*
2795 * Mutex was contended, block until it's
2796 * released and try again
2797 */
56bec294
CM
2798 mutex_lock(&head->mutex);
2799 mutex_unlock(&head->mutex);
2800
2801 btrfs_put_delayed_ref(ref);
1887be66 2802 cond_resched();
56bec294 2803 goto again;
c46effa6
LB
2804 } else {
2805 WARN_ON(1);
56bec294
CM
2806 }
2807 node = rb_next(node);
2808 }
2809 spin_unlock(&delayed_refs->lock);
d7df2c79 2810 cond_resched();
56bec294 2811 goto again;
5f39d397 2812 }
54aa1f4d 2813out:
edf39272 2814 assert_qgroups_uptodate(trans);
a28ec197
CM
2815 return 0;
2816}
2817
5d4f98a2
YZ
2818int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2819 struct btrfs_root *root,
2820 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2821 int level, int is_data)
5d4f98a2
YZ
2822{
2823 struct btrfs_delayed_extent_op *extent_op;
2824 int ret;
2825
78a6184a 2826 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2827 if (!extent_op)
2828 return -ENOMEM;
2829
2830 extent_op->flags_to_set = flags;
2831 extent_op->update_flags = 1;
2832 extent_op->update_key = 0;
2833 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2834 extent_op->level = level;
5d4f98a2 2835
66d7e7f0
AJ
2836 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2837 num_bytes, extent_op);
5d4f98a2 2838 if (ret)
78a6184a 2839 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2840 return ret;
2841}
2842
2843static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root,
2845 struct btrfs_path *path,
2846 u64 objectid, u64 offset, u64 bytenr)
2847{
2848 struct btrfs_delayed_ref_head *head;
2849 struct btrfs_delayed_ref_node *ref;
2850 struct btrfs_delayed_data_ref *data_ref;
2851 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2852 int ret = 0;
2853
5d4f98a2
YZ
2854 delayed_refs = &trans->transaction->delayed_refs;
2855 spin_lock(&delayed_refs->lock);
2856 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2857 if (!head) {
2858 spin_unlock(&delayed_refs->lock);
2859 return 0;
2860 }
5d4f98a2
YZ
2861
2862 if (!mutex_trylock(&head->mutex)) {
2863 atomic_inc(&head->node.refs);
2864 spin_unlock(&delayed_refs->lock);
2865
b3b4aa74 2866 btrfs_release_path(path);
5d4f98a2 2867
8cc33e5c
DS
2868 /*
2869 * Mutex was contended, block until it's released and let
2870 * caller try again
2871 */
5d4f98a2
YZ
2872 mutex_lock(&head->mutex);
2873 mutex_unlock(&head->mutex);
2874 btrfs_put_delayed_ref(&head->node);
2875 return -EAGAIN;
2876 }
d7df2c79 2877 spin_unlock(&delayed_refs->lock);
5d4f98a2 2878
d7df2c79 2879 spin_lock(&head->lock);
c6fc2454 2880 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2881 /* If it's a shared ref we know a cross reference exists */
2882 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2883 ret = 1;
2884 break;
2885 }
5d4f98a2 2886
d7df2c79 2887 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2888
d7df2c79
JB
2889 /*
2890 * If our ref doesn't match the one we're currently looking at
2891 * then we have a cross reference.
2892 */
2893 if (data_ref->root != root->root_key.objectid ||
2894 data_ref->objectid != objectid ||
2895 data_ref->offset != offset) {
2896 ret = 1;
2897 break;
2898 }
5d4f98a2 2899 }
d7df2c79 2900 spin_unlock(&head->lock);
5d4f98a2 2901 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2902 return ret;
2903}
2904
2905static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2906 struct btrfs_root *root,
2907 struct btrfs_path *path,
2908 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2909{
2910 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2911 struct extent_buffer *leaf;
5d4f98a2
YZ
2912 struct btrfs_extent_data_ref *ref;
2913 struct btrfs_extent_inline_ref *iref;
2914 struct btrfs_extent_item *ei;
f321e491 2915 struct btrfs_key key;
5d4f98a2 2916 u32 item_size;
be20aa9d 2917 int ret;
925baedd 2918
be20aa9d 2919 key.objectid = bytenr;
31840ae1 2920 key.offset = (u64)-1;
f321e491 2921 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 2922
be20aa9d
CM
2923 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2924 if (ret < 0)
2925 goto out;
79787eaa 2926 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
2927
2928 ret = -ENOENT;
2929 if (path->slots[0] == 0)
31840ae1 2930 goto out;
be20aa9d 2931
31840ae1 2932 path->slots[0]--;
f321e491 2933 leaf = path->nodes[0];
5d4f98a2 2934 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 2935
5d4f98a2 2936 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 2937 goto out;
f321e491 2938
5d4f98a2
YZ
2939 ret = 1;
2940 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2941#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2942 if (item_size < sizeof(*ei)) {
2943 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2944 goto out;
2945 }
2946#endif
2947 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 2948
5d4f98a2
YZ
2949 if (item_size != sizeof(*ei) +
2950 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2951 goto out;
be20aa9d 2952
5d4f98a2
YZ
2953 if (btrfs_extent_generation(leaf, ei) <=
2954 btrfs_root_last_snapshot(&root->root_item))
2955 goto out;
2956
2957 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2958 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2959 BTRFS_EXTENT_DATA_REF_KEY)
2960 goto out;
2961
2962 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2963 if (btrfs_extent_refs(leaf, ei) !=
2964 btrfs_extent_data_ref_count(leaf, ref) ||
2965 btrfs_extent_data_ref_root(leaf, ref) !=
2966 root->root_key.objectid ||
2967 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2968 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2969 goto out;
2970
2971 ret = 0;
2972out:
2973 return ret;
2974}
2975
2976int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2977 struct btrfs_root *root,
2978 u64 objectid, u64 offset, u64 bytenr)
2979{
2980 struct btrfs_path *path;
2981 int ret;
2982 int ret2;
2983
2984 path = btrfs_alloc_path();
2985 if (!path)
2986 return -ENOENT;
2987
2988 do {
2989 ret = check_committed_ref(trans, root, path, objectid,
2990 offset, bytenr);
2991 if (ret && ret != -ENOENT)
f321e491 2992 goto out;
80ff3856 2993
5d4f98a2
YZ
2994 ret2 = check_delayed_ref(trans, root, path, objectid,
2995 offset, bytenr);
2996 } while (ret2 == -EAGAIN);
2997
2998 if (ret2 && ret2 != -ENOENT) {
2999 ret = ret2;
3000 goto out;
f321e491 3001 }
5d4f98a2
YZ
3002
3003 if (ret != -ENOENT || ret2 != -ENOENT)
3004 ret = 0;
be20aa9d 3005out:
80ff3856 3006 btrfs_free_path(path);
f0486c68
YZ
3007 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3008 WARN_ON(ret > 0);
f321e491 3009 return ret;
be20aa9d 3010}
c5739bba 3011
5d4f98a2 3012static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3013 struct btrfs_root *root,
5d4f98a2 3014 struct extent_buffer *buf,
e339a6b0 3015 int full_backref, int inc)
31840ae1
ZY
3016{
3017 u64 bytenr;
5d4f98a2
YZ
3018 u64 num_bytes;
3019 u64 parent;
31840ae1 3020 u64 ref_root;
31840ae1 3021 u32 nritems;
31840ae1
ZY
3022 struct btrfs_key key;
3023 struct btrfs_file_extent_item *fi;
3024 int i;
3025 int level;
3026 int ret = 0;
31840ae1 3027 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3028 u64, u64, u64, u64, u64, u64, int);
31840ae1 3029
fccb84c9
DS
3030
3031 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3032 return 0;
fccb84c9 3033
31840ae1 3034 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3035 nritems = btrfs_header_nritems(buf);
3036 level = btrfs_header_level(buf);
3037
27cdeb70 3038 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3039 return 0;
31840ae1 3040
5d4f98a2
YZ
3041 if (inc)
3042 process_func = btrfs_inc_extent_ref;
3043 else
3044 process_func = btrfs_free_extent;
31840ae1 3045
5d4f98a2
YZ
3046 if (full_backref)
3047 parent = buf->start;
3048 else
3049 parent = 0;
3050
3051 for (i = 0; i < nritems; i++) {
31840ae1 3052 if (level == 0) {
5d4f98a2 3053 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3054 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3055 continue;
5d4f98a2 3056 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3057 struct btrfs_file_extent_item);
3058 if (btrfs_file_extent_type(buf, fi) ==
3059 BTRFS_FILE_EXTENT_INLINE)
3060 continue;
3061 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3062 if (bytenr == 0)
3063 continue;
5d4f98a2
YZ
3064
3065 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3066 key.offset -= btrfs_file_extent_offset(buf, fi);
3067 ret = process_func(trans, root, bytenr, num_bytes,
3068 parent, ref_root, key.objectid,
e339a6b0 3069 key.offset, 1);
31840ae1
ZY
3070 if (ret)
3071 goto fail;
3072 } else {
5d4f98a2 3073 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3074 num_bytes = root->nodesize;
5d4f98a2 3075 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3076 parent, ref_root, level - 1, 0,
e339a6b0 3077 1);
31840ae1
ZY
3078 if (ret)
3079 goto fail;
3080 }
3081 }
3082 return 0;
3083fail:
5d4f98a2
YZ
3084 return ret;
3085}
3086
3087int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3088 struct extent_buffer *buf, int full_backref)
5d4f98a2 3089{
e339a6b0 3090 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3091}
3092
3093int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3094 struct extent_buffer *buf, int full_backref)
5d4f98a2 3095{
e339a6b0 3096 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3097}
3098
9078a3e1
CM
3099static int write_one_cache_group(struct btrfs_trans_handle *trans,
3100 struct btrfs_root *root,
3101 struct btrfs_path *path,
3102 struct btrfs_block_group_cache *cache)
3103{
3104 int ret;
9078a3e1 3105 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3106 unsigned long bi;
3107 struct extent_buffer *leaf;
9078a3e1 3108
9078a3e1 3109 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3110 if (ret) {
3111 if (ret > 0)
3112 ret = -ENOENT;
54aa1f4d 3113 goto fail;
df95e7f0 3114 }
5f39d397
CM
3115
3116 leaf = path->nodes[0];
3117 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3118 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3119 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3120fail:
24b89d08 3121 btrfs_release_path(path);
df95e7f0 3122 return ret;
9078a3e1
CM
3123
3124}
3125
4a8c9a62
YZ
3126static struct btrfs_block_group_cache *
3127next_block_group(struct btrfs_root *root,
3128 struct btrfs_block_group_cache *cache)
3129{
3130 struct rb_node *node;
292cbd51 3131
4a8c9a62 3132 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3133
3134 /* If our block group was removed, we need a full search. */
3135 if (RB_EMPTY_NODE(&cache->cache_node)) {
3136 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3137
3138 spin_unlock(&root->fs_info->block_group_cache_lock);
3139 btrfs_put_block_group(cache);
3140 cache = btrfs_lookup_first_block_group(root->fs_info,
3141 next_bytenr);
3142 return cache;
3143 }
4a8c9a62
YZ
3144 node = rb_next(&cache->cache_node);
3145 btrfs_put_block_group(cache);
3146 if (node) {
3147 cache = rb_entry(node, struct btrfs_block_group_cache,
3148 cache_node);
11dfe35a 3149 btrfs_get_block_group(cache);
4a8c9a62
YZ
3150 } else
3151 cache = NULL;
3152 spin_unlock(&root->fs_info->block_group_cache_lock);
3153 return cache;
3154}
3155
0af3d00b
JB
3156static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3157 struct btrfs_trans_handle *trans,
3158 struct btrfs_path *path)
3159{
3160 struct btrfs_root *root = block_group->fs_info->tree_root;
3161 struct inode *inode = NULL;
3162 u64 alloc_hint = 0;
2b20982e 3163 int dcs = BTRFS_DC_ERROR;
f8c269d7 3164 u64 num_pages = 0;
0af3d00b
JB
3165 int retries = 0;
3166 int ret = 0;
3167
3168 /*
3169 * If this block group is smaller than 100 megs don't bother caching the
3170 * block group.
3171 */
3172 if (block_group->key.offset < (100 * 1024 * 1024)) {
3173 spin_lock(&block_group->lock);
3174 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3175 spin_unlock(&block_group->lock);
3176 return 0;
3177 }
3178
0c0ef4bc
JB
3179 if (trans->aborted)
3180 return 0;
0af3d00b
JB
3181again:
3182 inode = lookup_free_space_inode(root, block_group, path);
3183 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3184 ret = PTR_ERR(inode);
b3b4aa74 3185 btrfs_release_path(path);
0af3d00b
JB
3186 goto out;
3187 }
3188
3189 if (IS_ERR(inode)) {
3190 BUG_ON(retries);
3191 retries++;
3192
3193 if (block_group->ro)
3194 goto out_free;
3195
3196 ret = create_free_space_inode(root, trans, block_group, path);
3197 if (ret)
3198 goto out_free;
3199 goto again;
3200 }
3201
5b0e95bf
JB
3202 /* We've already setup this transaction, go ahead and exit */
3203 if (block_group->cache_generation == trans->transid &&
3204 i_size_read(inode)) {
3205 dcs = BTRFS_DC_SETUP;
3206 goto out_put;
3207 }
3208
0af3d00b
JB
3209 /*
3210 * We want to set the generation to 0, that way if anything goes wrong
3211 * from here on out we know not to trust this cache when we load up next
3212 * time.
3213 */
3214 BTRFS_I(inode)->generation = 0;
3215 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3216 if (ret) {
3217 /*
3218 * So theoretically we could recover from this, simply set the
3219 * super cache generation to 0 so we know to invalidate the
3220 * cache, but then we'd have to keep track of the block groups
3221 * that fail this way so we know we _have_ to reset this cache
3222 * before the next commit or risk reading stale cache. So to
3223 * limit our exposure to horrible edge cases lets just abort the
3224 * transaction, this only happens in really bad situations
3225 * anyway.
3226 */
3227 btrfs_abort_transaction(trans, root, ret);
3228 goto out_put;
3229 }
0af3d00b
JB
3230 WARN_ON(ret);
3231
3232 if (i_size_read(inode) > 0) {
7b61cd92
MX
3233 ret = btrfs_check_trunc_cache_free_space(root,
3234 &root->fs_info->global_block_rsv);
3235 if (ret)
3236 goto out_put;
3237
1bbc621e 3238 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3239 if (ret)
3240 goto out_put;
3241 }
3242
3243 spin_lock(&block_group->lock);
cf7c1ef6 3244 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3245 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3246 /*
3247 * don't bother trying to write stuff out _if_
3248 * a) we're not cached,
3249 * b) we're with nospace_cache mount option.
3250 */
2b20982e 3251 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3252 spin_unlock(&block_group->lock);
3253 goto out_put;
3254 }
3255 spin_unlock(&block_group->lock);
3256
6fc823b1
JB
3257 /*
3258 * Try to preallocate enough space based on how big the block group is.
3259 * Keep in mind this has to include any pinned space which could end up
3260 * taking up quite a bit since it's not folded into the other space
3261 * cache.
3262 */
f8c269d7 3263 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3264 if (!num_pages)
3265 num_pages = 1;
3266
0af3d00b
JB
3267 num_pages *= 16;
3268 num_pages *= PAGE_CACHE_SIZE;
3269
e2d1f923 3270 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3271 if (ret)
3272 goto out_put;
3273
3274 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3275 num_pages, num_pages,
3276 &alloc_hint);
2b20982e
JB
3277 if (!ret)
3278 dcs = BTRFS_DC_SETUP;
0af3d00b 3279 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3280
0af3d00b
JB
3281out_put:
3282 iput(inode);
3283out_free:
b3b4aa74 3284 btrfs_release_path(path);
0af3d00b
JB
3285out:
3286 spin_lock(&block_group->lock);
e65cbb94 3287 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3288 block_group->cache_generation = trans->transid;
2b20982e 3289 block_group->disk_cache_state = dcs;
0af3d00b
JB
3290 spin_unlock(&block_group->lock);
3291
3292 return ret;
3293}
3294
dcdf7f6d
JB
3295int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3296 struct btrfs_root *root)
3297{
3298 struct btrfs_block_group_cache *cache, *tmp;
3299 struct btrfs_transaction *cur_trans = trans->transaction;
3300 struct btrfs_path *path;
3301
3302 if (list_empty(&cur_trans->dirty_bgs) ||
3303 !btrfs_test_opt(root, SPACE_CACHE))
3304 return 0;
3305
3306 path = btrfs_alloc_path();
3307 if (!path)
3308 return -ENOMEM;
3309
3310 /* Could add new block groups, use _safe just in case */
3311 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3312 dirty_list) {
3313 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3314 cache_save_setup(cache, trans, path);
3315 }
3316
3317 btrfs_free_path(path);
3318 return 0;
3319}
3320
1bbc621e
CM
3321/*
3322 * transaction commit does final block group cache writeback during a
3323 * critical section where nothing is allowed to change the FS. This is
3324 * required in order for the cache to actually match the block group,
3325 * but can introduce a lot of latency into the commit.
3326 *
3327 * So, btrfs_start_dirty_block_groups is here to kick off block group
3328 * cache IO. There's a chance we'll have to redo some of it if the
3329 * block group changes again during the commit, but it greatly reduces
3330 * the commit latency by getting rid of the easy block groups while
3331 * we're still allowing others to join the commit.
3332 */
3333int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3334 struct btrfs_root *root)
9078a3e1 3335{
4a8c9a62 3336 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3337 struct btrfs_transaction *cur_trans = trans->transaction;
3338 int ret = 0;
c9dc4c65 3339 int should_put;
1bbc621e
CM
3340 struct btrfs_path *path = NULL;
3341 LIST_HEAD(dirty);
3342 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3343 int num_started = 0;
1bbc621e
CM
3344 int loops = 0;
3345
3346 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3347 if (list_empty(&cur_trans->dirty_bgs)) {
3348 spin_unlock(&cur_trans->dirty_bgs_lock);
3349 return 0;
1bbc621e 3350 }
b58d1a9e 3351 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3352 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3353
1bbc621e 3354again:
1bbc621e
CM
3355 /*
3356 * make sure all the block groups on our dirty list actually
3357 * exist
3358 */
3359 btrfs_create_pending_block_groups(trans, root);
3360
3361 if (!path) {
3362 path = btrfs_alloc_path();
3363 if (!path)
3364 return -ENOMEM;
3365 }
3366
b58d1a9e
FM
3367 /*
3368 * cache_write_mutex is here only to save us from balance or automatic
3369 * removal of empty block groups deleting this block group while we are
3370 * writing out the cache
3371 */
3372 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3373 while (!list_empty(&dirty)) {
3374 cache = list_first_entry(&dirty,
3375 struct btrfs_block_group_cache,
3376 dirty_list);
1bbc621e
CM
3377 /*
3378 * this can happen if something re-dirties a block
3379 * group that is already under IO. Just wait for it to
3380 * finish and then do it all again
3381 */
3382 if (!list_empty(&cache->io_list)) {
3383 list_del_init(&cache->io_list);
3384 btrfs_wait_cache_io(root, trans, cache,
3385 &cache->io_ctl, path,
3386 cache->key.objectid);
3387 btrfs_put_block_group(cache);
3388 }
3389
3390
3391 /*
3392 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3393 * if it should update the cache_state. Don't delete
3394 * until after we wait.
3395 *
3396 * Since we're not running in the commit critical section
3397 * we need the dirty_bgs_lock to protect from update_block_group
3398 */
3399 spin_lock(&cur_trans->dirty_bgs_lock);
3400 list_del_init(&cache->dirty_list);
3401 spin_unlock(&cur_trans->dirty_bgs_lock);
3402
3403 should_put = 1;
3404
3405 cache_save_setup(cache, trans, path);
3406
3407 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3408 cache->io_ctl.inode = NULL;
3409 ret = btrfs_write_out_cache(root, trans, cache, path);
3410 if (ret == 0 && cache->io_ctl.inode) {
3411 num_started++;
3412 should_put = 0;
3413
3414 /*
3415 * the cache_write_mutex is protecting
3416 * the io_list
3417 */
3418 list_add_tail(&cache->io_list, io);
3419 } else {
3420 /*
3421 * if we failed to write the cache, the
3422 * generation will be bad and life goes on
3423 */
3424 ret = 0;
3425 }
3426 }
ff1f8250 3427 if (!ret) {
1bbc621e 3428 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3429 /*
3430 * Our block group might still be attached to the list
3431 * of new block groups in the transaction handle of some
3432 * other task (struct btrfs_trans_handle->new_bgs). This
3433 * means its block group item isn't yet in the extent
3434 * tree. If this happens ignore the error, as we will
3435 * try again later in the critical section of the
3436 * transaction commit.
3437 */
3438 if (ret == -ENOENT) {
3439 ret = 0;
3440 spin_lock(&cur_trans->dirty_bgs_lock);
3441 if (list_empty(&cache->dirty_list)) {
3442 list_add_tail(&cache->dirty_list,
3443 &cur_trans->dirty_bgs);
3444 btrfs_get_block_group(cache);
3445 }
3446 spin_unlock(&cur_trans->dirty_bgs_lock);
3447 } else if (ret) {
3448 btrfs_abort_transaction(trans, root, ret);
3449 }
3450 }
1bbc621e
CM
3451
3452 /* if its not on the io list, we need to put the block group */
3453 if (should_put)
3454 btrfs_put_block_group(cache);
3455
3456 if (ret)
3457 break;
b58d1a9e
FM
3458
3459 /*
3460 * Avoid blocking other tasks for too long. It might even save
3461 * us from writing caches for block groups that are going to be
3462 * removed.
3463 */
3464 mutex_unlock(&trans->transaction->cache_write_mutex);
3465 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3466 }
b58d1a9e 3467 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3468
3469 /*
3470 * go through delayed refs for all the stuff we've just kicked off
3471 * and then loop back (just once)
3472 */
3473 ret = btrfs_run_delayed_refs(trans, root, 0);
3474 if (!ret && loops == 0) {
3475 loops++;
3476 spin_lock(&cur_trans->dirty_bgs_lock);
3477 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3478 /*
3479 * dirty_bgs_lock protects us from concurrent block group
3480 * deletes too (not just cache_write_mutex).
3481 */
3482 if (!list_empty(&dirty)) {
3483 spin_unlock(&cur_trans->dirty_bgs_lock);
3484 goto again;
3485 }
1bbc621e 3486 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3487 }
3488
3489 btrfs_free_path(path);
3490 return ret;
3491}
3492
3493int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3494 struct btrfs_root *root)
3495{
3496 struct btrfs_block_group_cache *cache;
3497 struct btrfs_transaction *cur_trans = trans->transaction;
3498 int ret = 0;
3499 int should_put;
3500 struct btrfs_path *path;
3501 struct list_head *io = &cur_trans->io_bgs;
3502 int num_started = 0;
9078a3e1
CM
3503
3504 path = btrfs_alloc_path();
3505 if (!path)
3506 return -ENOMEM;
3507
ce93ec54
JB
3508 /*
3509 * We don't need the lock here since we are protected by the transaction
3510 * commit. We want to do the cache_save_setup first and then run the
3511 * delayed refs to make sure we have the best chance at doing this all
3512 * in one shot.
3513 */
3514 while (!list_empty(&cur_trans->dirty_bgs)) {
3515 cache = list_first_entry(&cur_trans->dirty_bgs,
3516 struct btrfs_block_group_cache,
3517 dirty_list);
c9dc4c65
CM
3518
3519 /*
3520 * this can happen if cache_save_setup re-dirties a block
3521 * group that is already under IO. Just wait for it to
3522 * finish and then do it all again
3523 */
3524 if (!list_empty(&cache->io_list)) {
3525 list_del_init(&cache->io_list);
3526 btrfs_wait_cache_io(root, trans, cache,
3527 &cache->io_ctl, path,
3528 cache->key.objectid);
3529 btrfs_put_block_group(cache);
c9dc4c65
CM
3530 }
3531
1bbc621e
CM
3532 /*
3533 * don't remove from the dirty list until after we've waited
3534 * on any pending IO
3535 */
ce93ec54 3536 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3537 should_put = 1;
3538
1bbc621e 3539 cache_save_setup(cache, trans, path);
c9dc4c65 3540
ce93ec54 3541 if (!ret)
c9dc4c65
CM
3542 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3543
3544 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3545 cache->io_ctl.inode = NULL;
3546 ret = btrfs_write_out_cache(root, trans, cache, path);
3547 if (ret == 0 && cache->io_ctl.inode) {
3548 num_started++;
3549 should_put = 0;
1bbc621e 3550 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3551 } else {
3552 /*
3553 * if we failed to write the cache, the
3554 * generation will be bad and life goes on
3555 */
3556 ret = 0;
3557 }
3558 }
ff1f8250 3559 if (!ret) {
ce93ec54 3560 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3561 if (ret)
3562 btrfs_abort_transaction(trans, root, ret);
3563 }
c9dc4c65
CM
3564
3565 /* if its not on the io list, we need to put the block group */
3566 if (should_put)
3567 btrfs_put_block_group(cache);
3568 }
3569
1bbc621e
CM
3570 while (!list_empty(io)) {
3571 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3572 io_list);
3573 list_del_init(&cache->io_list);
c9dc4c65
CM
3574 btrfs_wait_cache_io(root, trans, cache,
3575 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3576 btrfs_put_block_group(cache);
3577 }
3578
9078a3e1 3579 btrfs_free_path(path);
ce93ec54 3580 return ret;
9078a3e1
CM
3581}
3582
d2fb3437
YZ
3583int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3584{
3585 struct btrfs_block_group_cache *block_group;
3586 int readonly = 0;
3587
3588 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3589 if (!block_group || block_group->ro)
3590 readonly = 1;
3591 if (block_group)
fa9c0d79 3592 btrfs_put_block_group(block_group);
d2fb3437
YZ
3593 return readonly;
3594}
3595
6ab0a202
JM
3596static const char *alloc_name(u64 flags)
3597{
3598 switch (flags) {
3599 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3600 return "mixed";
3601 case BTRFS_BLOCK_GROUP_METADATA:
3602 return "metadata";
3603 case BTRFS_BLOCK_GROUP_DATA:
3604 return "data";
3605 case BTRFS_BLOCK_GROUP_SYSTEM:
3606 return "system";
3607 default:
3608 WARN_ON(1);
3609 return "invalid-combination";
3610 };
3611}
3612
593060d7
CM
3613static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3614 u64 total_bytes, u64 bytes_used,
3615 struct btrfs_space_info **space_info)
3616{
3617 struct btrfs_space_info *found;
b742bb82
YZ
3618 int i;
3619 int factor;
b150a4f1 3620 int ret;
b742bb82
YZ
3621
3622 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3623 BTRFS_BLOCK_GROUP_RAID10))
3624 factor = 2;
3625 else
3626 factor = 1;
593060d7
CM
3627
3628 found = __find_space_info(info, flags);
3629 if (found) {
25179201 3630 spin_lock(&found->lock);
593060d7 3631 found->total_bytes += total_bytes;
89a55897 3632 found->disk_total += total_bytes * factor;
593060d7 3633 found->bytes_used += bytes_used;
b742bb82 3634 found->disk_used += bytes_used * factor;
2e6e5183
FM
3635 if (total_bytes > 0)
3636 found->full = 0;
25179201 3637 spin_unlock(&found->lock);
593060d7
CM
3638 *space_info = found;
3639 return 0;
3640 }
c146afad 3641 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3642 if (!found)
3643 return -ENOMEM;
3644
908c7f19 3645 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3646 if (ret) {
3647 kfree(found);
3648 return ret;
3649 }
3650
c1895442 3651 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3652 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3653 init_rwsem(&found->groups_sem);
0f9dd46c 3654 spin_lock_init(&found->lock);
52ba6929 3655 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3656 found->total_bytes = total_bytes;
89a55897 3657 found->disk_total = total_bytes * factor;
593060d7 3658 found->bytes_used = bytes_used;
b742bb82 3659 found->disk_used = bytes_used * factor;
593060d7 3660 found->bytes_pinned = 0;
e8569813 3661 found->bytes_reserved = 0;
c146afad 3662 found->bytes_readonly = 0;
f0486c68 3663 found->bytes_may_use = 0;
2e6e5183
FM
3664 if (total_bytes > 0)
3665 found->full = 0;
3666 else
3667 found->full = 1;
0e4f8f88 3668 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3669 found->chunk_alloc = 0;
fdb5effd
JB
3670 found->flush = 0;
3671 init_waitqueue_head(&found->wait);
633c0aad 3672 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3673
3674 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3675 info->space_info_kobj, "%s",
3676 alloc_name(found->flags));
3677 if (ret) {
3678 kfree(found);
3679 return ret;
3680 }
3681
593060d7 3682 *space_info = found;
4184ea7f 3683 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3684 if (flags & BTRFS_BLOCK_GROUP_DATA)
3685 info->data_sinfo = found;
6ab0a202
JM
3686
3687 return ret;
593060d7
CM
3688}
3689
8790d502
CM
3690static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3691{
899c81ea
ID
3692 u64 extra_flags = chunk_to_extended(flags) &
3693 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3694
de98ced9 3695 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3696 if (flags & BTRFS_BLOCK_GROUP_DATA)
3697 fs_info->avail_data_alloc_bits |= extra_flags;
3698 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3699 fs_info->avail_metadata_alloc_bits |= extra_flags;
3700 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3701 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3702 write_sequnlock(&fs_info->profiles_lock);
8790d502 3703}
593060d7 3704
fc67c450
ID
3705/*
3706 * returns target flags in extended format or 0 if restripe for this
3707 * chunk_type is not in progress
c6664b42
ID
3708 *
3709 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3710 */
3711static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3712{
3713 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3714 u64 target = 0;
3715
fc67c450
ID
3716 if (!bctl)
3717 return 0;
3718
3719 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3720 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3721 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3722 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3723 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3724 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3725 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3726 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3727 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3728 }
3729
3730 return target;
3731}
3732
a46d11a8
ID
3733/*
3734 * @flags: available profiles in extended format (see ctree.h)
3735 *
e4d8ec0f
ID
3736 * Returns reduced profile in chunk format. If profile changing is in
3737 * progress (either running or paused) picks the target profile (if it's
3738 * already available), otherwise falls back to plain reducing.
a46d11a8 3739 */
48a3b636 3740static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3741{
95669976 3742 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3743 u64 target;
53b381b3 3744 u64 tmp;
a061fc8d 3745
fc67c450
ID
3746 /*
3747 * see if restripe for this chunk_type is in progress, if so
3748 * try to reduce to the target profile
3749 */
e4d8ec0f 3750 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3751 target = get_restripe_target(root->fs_info, flags);
3752 if (target) {
3753 /* pick target profile only if it's already available */
3754 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3755 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3756 return extended_to_chunk(target);
e4d8ec0f
ID
3757 }
3758 }
3759 spin_unlock(&root->fs_info->balance_lock);
3760
53b381b3 3761 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3762 if (num_devices == 1)
53b381b3
DW
3763 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3764 BTRFS_BLOCK_GROUP_RAID5);
3765 if (num_devices < 3)
3766 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3767 if (num_devices < 4)
3768 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3769
53b381b3
DW
3770 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3771 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3772 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3773 flags &= ~tmp;
ec44a35c 3774
53b381b3
DW
3775 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3776 tmp = BTRFS_BLOCK_GROUP_RAID6;
3777 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3778 tmp = BTRFS_BLOCK_GROUP_RAID5;
3779 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3780 tmp = BTRFS_BLOCK_GROUP_RAID10;
3781 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3782 tmp = BTRFS_BLOCK_GROUP_RAID1;
3783 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3784 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3785
53b381b3 3786 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3787}
3788
f8213bdc 3789static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3790{
de98ced9 3791 unsigned seq;
f8213bdc 3792 u64 flags;
de98ced9
MX
3793
3794 do {
f8213bdc 3795 flags = orig_flags;
de98ced9
MX
3796 seq = read_seqbegin(&root->fs_info->profiles_lock);
3797
3798 if (flags & BTRFS_BLOCK_GROUP_DATA)
3799 flags |= root->fs_info->avail_data_alloc_bits;
3800 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3801 flags |= root->fs_info->avail_system_alloc_bits;
3802 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3803 flags |= root->fs_info->avail_metadata_alloc_bits;
3804 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3805
b742bb82 3806 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3807}
3808
6d07bcec 3809u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3810{
b742bb82 3811 u64 flags;
53b381b3 3812 u64 ret;
9ed74f2d 3813
b742bb82
YZ
3814 if (data)
3815 flags = BTRFS_BLOCK_GROUP_DATA;
3816 else if (root == root->fs_info->chunk_root)
3817 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3818 else
b742bb82 3819 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3820
53b381b3
DW
3821 ret = get_alloc_profile(root, flags);
3822 return ret;
6a63209f 3823}
9ed74f2d 3824
6a63209f 3825/*
6a63209f
JB
3826 * This will check the space that the inode allocates from to make sure we have
3827 * enough space for bytes.
6a63209f 3828 */
e2d1f923 3829int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3830{
6a63209f 3831 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3832 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3833 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3834 u64 used;
94b947b2 3835 int ret = 0;
c99f1b0c
ZL
3836 int need_commit = 2;
3837 int have_pinned_space;
6a63209f 3838
6a63209f 3839 /* make sure bytes are sectorsize aligned */
fda2832f 3840 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3841
9dced186 3842 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3843 need_commit = 0;
9dced186 3844 ASSERT(current->journal_info);
0af3d00b
JB
3845 }
3846
b4d7c3c9 3847 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3848 if (!data_sinfo)
3849 goto alloc;
9ed74f2d 3850
6a63209f
JB
3851again:
3852 /* make sure we have enough space to handle the data first */
3853 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3854 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3855 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3856 data_sinfo->bytes_may_use;
ab6e2410
JB
3857
3858 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3859 struct btrfs_trans_handle *trans;
9ed74f2d 3860
6a63209f
JB
3861 /*
3862 * if we don't have enough free bytes in this space then we need
3863 * to alloc a new chunk.
3864 */
b9fd47cd 3865 if (!data_sinfo->full) {
6a63209f 3866 u64 alloc_target;
9ed74f2d 3867
0e4f8f88 3868 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3869 spin_unlock(&data_sinfo->lock);
33b4d47f 3870alloc:
6a63209f 3871 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3872 /*
3873 * It is ugly that we don't call nolock join
3874 * transaction for the free space inode case here.
3875 * But it is safe because we only do the data space
3876 * reservation for the free space cache in the
3877 * transaction context, the common join transaction
3878 * just increase the counter of the current transaction
3879 * handler, doesn't try to acquire the trans_lock of
3880 * the fs.
3881 */
7a7eaa40 3882 trans = btrfs_join_transaction(root);
a22285a6
YZ
3883 if (IS_ERR(trans))
3884 return PTR_ERR(trans);
9ed74f2d 3885
6a63209f 3886 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3887 alloc_target,
3888 CHUNK_ALLOC_NO_FORCE);
6a63209f 3889 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3890 if (ret < 0) {
3891 if (ret != -ENOSPC)
3892 return ret;
c99f1b0c
ZL
3893 else {
3894 have_pinned_space = 1;
d52a5b5f 3895 goto commit_trans;
c99f1b0c 3896 }
d52a5b5f 3897 }
9ed74f2d 3898
b4d7c3c9
LZ
3899 if (!data_sinfo)
3900 data_sinfo = fs_info->data_sinfo;
3901
6a63209f
JB
3902 goto again;
3903 }
f2bb8f5c
JB
3904
3905 /*
b150a4f1 3906 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3907 * allocation, and no removed chunk in current transaction,
3908 * don't bother committing the transaction.
f2bb8f5c 3909 */
c99f1b0c
ZL
3910 have_pinned_space = percpu_counter_compare(
3911 &data_sinfo->total_bytes_pinned,
3912 used + bytes - data_sinfo->total_bytes);
6a63209f 3913 spin_unlock(&data_sinfo->lock);
6a63209f 3914
4e06bdd6 3915 /* commit the current transaction and try again */
d52a5b5f 3916commit_trans:
c99f1b0c 3917 if (need_commit &&
a4abeea4 3918 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3919 need_commit--;
b150a4f1 3920
7a7eaa40 3921 trans = btrfs_join_transaction(root);
a22285a6
YZ
3922 if (IS_ERR(trans))
3923 return PTR_ERR(trans);
c99f1b0c
ZL
3924 if (have_pinned_space >= 0 ||
3925 trans->transaction->have_free_bgs ||
3926 need_commit > 0) {
94b947b2
ZL
3927 ret = btrfs_commit_transaction(trans, root);
3928 if (ret)
3929 return ret;
d7c15171
ZL
3930 /*
3931 * make sure that all running delayed iput are
3932 * done
3933 */
3934 down_write(&root->fs_info->delayed_iput_sem);
3935 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
3936 goto again;
3937 } else {
3938 btrfs_end_transaction(trans, root);
3939 }
4e06bdd6 3940 }
9ed74f2d 3941
cab45e22
JM
3942 trace_btrfs_space_reservation(root->fs_info,
3943 "space_info:enospc",
3944 data_sinfo->flags, bytes, 1);
6a63209f
JB
3945 return -ENOSPC;
3946 }
e2d1f923 3947 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
3948 if (ret)
3949 goto out;
6a63209f 3950 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 3951 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3952 data_sinfo->flags, bytes, 1);
237c0e9f 3953out:
6a63209f 3954 spin_unlock(&data_sinfo->lock);
6a63209f 3955
237c0e9f 3956 return ret;
9ed74f2d 3957}
6a63209f 3958
6a63209f 3959/*
fb25e914 3960 * Called if we need to clear a data reservation for this inode.
6a63209f 3961 */
0ca1f7ce 3962void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 3963{
0ca1f7ce 3964 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 3965 struct btrfs_space_info *data_sinfo;
e3ccfa98 3966
6a63209f 3967 /* make sure bytes are sectorsize aligned */
fda2832f 3968 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 3969
b4d7c3c9 3970 data_sinfo = root->fs_info->data_sinfo;
6a63209f 3971 spin_lock(&data_sinfo->lock);
7ee9e440 3972 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 3973 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 3974 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3975 data_sinfo->flags, bytes, 0);
6a63209f 3976 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
3977}
3978
97e728d4 3979static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 3980{
97e728d4
JB
3981 struct list_head *head = &info->space_info;
3982 struct btrfs_space_info *found;
e3ccfa98 3983
97e728d4
JB
3984 rcu_read_lock();
3985 list_for_each_entry_rcu(found, head, list) {
3986 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 3987 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 3988 }
97e728d4 3989 rcu_read_unlock();
e3ccfa98
JB
3990}
3991
3c76cd84
MX
3992static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3993{
3994 return (global->size << 1);
3995}
3996
e5bc2458 3997static int should_alloc_chunk(struct btrfs_root *root,
698d0082 3998 struct btrfs_space_info *sinfo, int force)
32c00aff 3999{
fb25e914 4000 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4001 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4002 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4003 u64 thresh;
e3ccfa98 4004
0e4f8f88
CM
4005 if (force == CHUNK_ALLOC_FORCE)
4006 return 1;
4007
fb25e914
JB
4008 /*
4009 * We need to take into account the global rsv because for all intents
4010 * and purposes it's used space. Don't worry about locking the
4011 * global_rsv, it doesn't change except when the transaction commits.
4012 */
54338b5c 4013 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4014 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4015
0e4f8f88
CM
4016 /*
4017 * in limited mode, we want to have some free space up to
4018 * about 1% of the FS size.
4019 */
4020 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4021 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4022 thresh = max_t(u64, 64 * 1024 * 1024,
4023 div_factor_fine(thresh, 1));
4024
4025 if (num_bytes - num_allocated < thresh)
4026 return 1;
4027 }
0e4f8f88 4028
698d0082 4029 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4030 return 0;
424499db 4031 return 1;
32c00aff
JB
4032}
4033
39c2d7fa 4034static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4035{
4036 u64 num_dev;
4037
53b381b3
DW
4038 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4039 BTRFS_BLOCK_GROUP_RAID0 |
4040 BTRFS_BLOCK_GROUP_RAID5 |
4041 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4042 num_dev = root->fs_info->fs_devices->rw_devices;
4043 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4044 num_dev = 2;
4045 else
4046 num_dev = 1; /* DUP or single */
4047
39c2d7fa 4048 return num_dev;
15d1ff81
LB
4049}
4050
39c2d7fa
FM
4051/*
4052 * If @is_allocation is true, reserve space in the system space info necessary
4053 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4054 * removing a chunk.
4055 */
4056void check_system_chunk(struct btrfs_trans_handle *trans,
4057 struct btrfs_root *root,
4617ea3a 4058 u64 type)
15d1ff81
LB
4059{
4060 struct btrfs_space_info *info;
4061 u64 left;
4062 u64 thresh;
4fbcdf66 4063 int ret = 0;
39c2d7fa 4064 u64 num_devs;
4fbcdf66
FM
4065
4066 /*
4067 * Needed because we can end up allocating a system chunk and for an
4068 * atomic and race free space reservation in the chunk block reserve.
4069 */
4070 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4071
4072 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4073 spin_lock(&info->lock);
4074 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4075 info->bytes_reserved - info->bytes_readonly -
4076 info->bytes_may_use;
15d1ff81
LB
4077 spin_unlock(&info->lock);
4078
39c2d7fa
FM
4079 num_devs = get_profile_num_devs(root, type);
4080
4081 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4082 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4083 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4084
15d1ff81 4085 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4086 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4087 left, thresh, type);
15d1ff81
LB
4088 dump_space_info(info, 0, 0);
4089 }
4090
4091 if (left < thresh) {
4092 u64 flags;
4093
4094 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4095 /*
4096 * Ignore failure to create system chunk. We might end up not
4097 * needing it, as we might not need to COW all nodes/leafs from
4098 * the paths we visit in the chunk tree (they were already COWed
4099 * or created in the current transaction for example).
4100 */
4101 ret = btrfs_alloc_chunk(trans, root, flags);
4102 }
4103
4104 if (!ret) {
4105 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4106 &root->fs_info->chunk_block_rsv,
4107 thresh, BTRFS_RESERVE_NO_FLUSH);
4108 if (!ret)
4109 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4110 }
4111}
4112
6324fbf3 4113static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4114 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4115{
6324fbf3 4116 struct btrfs_space_info *space_info;
97e728d4 4117 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4118 int wait_for_alloc = 0;
9ed74f2d 4119 int ret = 0;
9ed74f2d 4120
c6b305a8
JB
4121 /* Don't re-enter if we're already allocating a chunk */
4122 if (trans->allocating_chunk)
4123 return -ENOSPC;
4124
6324fbf3 4125 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4126 if (!space_info) {
4127 ret = update_space_info(extent_root->fs_info, flags,
4128 0, 0, &space_info);
79787eaa 4129 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4130 }
79787eaa 4131 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4132
6d74119f 4133again:
25179201 4134 spin_lock(&space_info->lock);
9e622d6b 4135 if (force < space_info->force_alloc)
0e4f8f88 4136 force = space_info->force_alloc;
25179201 4137 if (space_info->full) {
09fb99a6
FDBM
4138 if (should_alloc_chunk(extent_root, space_info, force))
4139 ret = -ENOSPC;
4140 else
4141 ret = 0;
25179201 4142 spin_unlock(&space_info->lock);
09fb99a6 4143 return ret;
9ed74f2d
JB
4144 }
4145
698d0082 4146 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4147 spin_unlock(&space_info->lock);
6d74119f
JB
4148 return 0;
4149 } else if (space_info->chunk_alloc) {
4150 wait_for_alloc = 1;
4151 } else {
4152 space_info->chunk_alloc = 1;
9ed74f2d 4153 }
0e4f8f88 4154
25179201 4155 spin_unlock(&space_info->lock);
9ed74f2d 4156
6d74119f
JB
4157 mutex_lock(&fs_info->chunk_mutex);
4158
4159 /*
4160 * The chunk_mutex is held throughout the entirety of a chunk
4161 * allocation, so once we've acquired the chunk_mutex we know that the
4162 * other guy is done and we need to recheck and see if we should
4163 * allocate.
4164 */
4165 if (wait_for_alloc) {
4166 mutex_unlock(&fs_info->chunk_mutex);
4167 wait_for_alloc = 0;
4168 goto again;
4169 }
4170
c6b305a8
JB
4171 trans->allocating_chunk = true;
4172
67377734
JB
4173 /*
4174 * If we have mixed data/metadata chunks we want to make sure we keep
4175 * allocating mixed chunks instead of individual chunks.
4176 */
4177 if (btrfs_mixed_space_info(space_info))
4178 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4179
97e728d4
JB
4180 /*
4181 * if we're doing a data chunk, go ahead and make sure that
4182 * we keep a reasonable number of metadata chunks allocated in the
4183 * FS as well.
4184 */
9ed74f2d 4185 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4186 fs_info->data_chunk_allocations++;
4187 if (!(fs_info->data_chunk_allocations %
4188 fs_info->metadata_ratio))
4189 force_metadata_allocation(fs_info);
9ed74f2d
JB
4190 }
4191
15d1ff81
LB
4192 /*
4193 * Check if we have enough space in SYSTEM chunk because we may need
4194 * to update devices.
4195 */
4617ea3a 4196 check_system_chunk(trans, extent_root, flags);
15d1ff81 4197
2b82032c 4198 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4199 trans->allocating_chunk = false;
92b8e897 4200
9ed74f2d 4201 spin_lock(&space_info->lock);
a81cb9a2
AO
4202 if (ret < 0 && ret != -ENOSPC)
4203 goto out;
9ed74f2d 4204 if (ret)
6324fbf3 4205 space_info->full = 1;
424499db
YZ
4206 else
4207 ret = 1;
6d74119f 4208
0e4f8f88 4209 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4210out:
6d74119f 4211 space_info->chunk_alloc = 0;
9ed74f2d 4212 spin_unlock(&space_info->lock);
a25c75d5 4213 mutex_unlock(&fs_info->chunk_mutex);
0f9dd46c 4214 return ret;
6324fbf3 4215}
9ed74f2d 4216
a80c8dcf
JB
4217static int can_overcommit(struct btrfs_root *root,
4218 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4219 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4220{
96f1bb57 4221 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4222 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4223 u64 space_size;
a80c8dcf
JB
4224 u64 avail;
4225 u64 used;
4226
4227 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4228 space_info->bytes_pinned + space_info->bytes_readonly;
4229
96f1bb57
JB
4230 /*
4231 * We only want to allow over committing if we have lots of actual space
4232 * free, but if we don't have enough space to handle the global reserve
4233 * space then we could end up having a real enospc problem when trying
4234 * to allocate a chunk or some other such important allocation.
4235 */
3c76cd84
MX
4236 spin_lock(&global_rsv->lock);
4237 space_size = calc_global_rsv_need_space(global_rsv);
4238 spin_unlock(&global_rsv->lock);
4239 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4240 return 0;
4241
4242 used += space_info->bytes_may_use;
a80c8dcf
JB
4243
4244 spin_lock(&root->fs_info->free_chunk_lock);
4245 avail = root->fs_info->free_chunk_space;
4246 spin_unlock(&root->fs_info->free_chunk_lock);
4247
4248 /*
4249 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4250 * space is actually useable. For raid56, the space info used
4251 * doesn't include the parity drive, so we don't have to
4252 * change the math
a80c8dcf
JB
4253 */
4254 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4255 BTRFS_BLOCK_GROUP_RAID1 |
4256 BTRFS_BLOCK_GROUP_RAID10))
4257 avail >>= 1;
4258
4259 /*
561c294d
MX
4260 * If we aren't flushing all things, let us overcommit up to
4261 * 1/2th of the space. If we can flush, don't let us overcommit
4262 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4263 */
08e007d2 4264 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4265 avail >>= 3;
a80c8dcf 4266 else
14575aef 4267 avail >>= 1;
a80c8dcf 4268
14575aef 4269 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4270 return 1;
4271 return 0;
4272}
4273
48a3b636 4274static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4275 unsigned long nr_pages, int nr_items)
da633a42
MX
4276{
4277 struct super_block *sb = root->fs_info->sb;
da633a42 4278
925a6efb
JB
4279 if (down_read_trylock(&sb->s_umount)) {
4280 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4281 up_read(&sb->s_umount);
4282 } else {
da633a42
MX
4283 /*
4284 * We needn't worry the filesystem going from r/w to r/o though
4285 * we don't acquire ->s_umount mutex, because the filesystem
4286 * should guarantee the delalloc inodes list be empty after
4287 * the filesystem is readonly(all dirty pages are written to
4288 * the disk).
4289 */
6c255e67 4290 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4291 if (!current->journal_info)
6c255e67 4292 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4293 }
4294}
4295
18cd8ea6
MX
4296static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4297{
4298 u64 bytes;
4299 int nr;
4300
4301 bytes = btrfs_calc_trans_metadata_size(root, 1);
4302 nr = (int)div64_u64(to_reclaim, bytes);
4303 if (!nr)
4304 nr = 1;
4305 return nr;
4306}
4307
c61a16a7
MX
4308#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4309
9ed74f2d 4310/*
5da9d01b 4311 * shrink metadata reservation for delalloc
9ed74f2d 4312 */
f4c738c2
JB
4313static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4314 bool wait_ordered)
5da9d01b 4315{
0ca1f7ce 4316 struct btrfs_block_rsv *block_rsv;
0019f10d 4317 struct btrfs_space_info *space_info;
663350ac 4318 struct btrfs_trans_handle *trans;
f4c738c2 4319 u64 delalloc_bytes;
5da9d01b 4320 u64 max_reclaim;
b1953bce 4321 long time_left;
d3ee29e3
MX
4322 unsigned long nr_pages;
4323 int loops;
b0244199 4324 int items;
08e007d2 4325 enum btrfs_reserve_flush_enum flush;
5da9d01b 4326
c61a16a7 4327 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4328 items = calc_reclaim_items_nr(root, to_reclaim);
4329 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4330
663350ac 4331 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4332 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4333 space_info = block_rsv->space_info;
bf9022e0 4334
963d678b
MX
4335 delalloc_bytes = percpu_counter_sum_positive(
4336 &root->fs_info->delalloc_bytes);
f4c738c2 4337 if (delalloc_bytes == 0) {
fdb5effd 4338 if (trans)
f4c738c2 4339 return;
38c135af 4340 if (wait_ordered)
b0244199 4341 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4342 return;
fdb5effd
JB
4343 }
4344
d3ee29e3 4345 loops = 0;
f4c738c2
JB
4346 while (delalloc_bytes && loops < 3) {
4347 max_reclaim = min(delalloc_bytes, to_reclaim);
4348 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4349 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4350 /*
4351 * We need to wait for the async pages to actually start before
4352 * we do anything.
4353 */
9f3a074d
MX
4354 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4355 if (!max_reclaim)
4356 goto skip_async;
4357
4358 if (max_reclaim <= nr_pages)
4359 max_reclaim = 0;
4360 else
4361 max_reclaim -= nr_pages;
dea31f52 4362
9f3a074d
MX
4363 wait_event(root->fs_info->async_submit_wait,
4364 atomic_read(&root->fs_info->async_delalloc_pages) <=
4365 (int)max_reclaim);
4366skip_async:
08e007d2
MX
4367 if (!trans)
4368 flush = BTRFS_RESERVE_FLUSH_ALL;
4369 else
4370 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4371 spin_lock(&space_info->lock);
08e007d2 4372 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4373 spin_unlock(&space_info->lock);
4374 break;
4375 }
0019f10d 4376 spin_unlock(&space_info->lock);
5da9d01b 4377
36e39c40 4378 loops++;
f104d044 4379 if (wait_ordered && !trans) {
b0244199 4380 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4381 } else {
f4c738c2 4382 time_left = schedule_timeout_killable(1);
f104d044
JB
4383 if (time_left)
4384 break;
4385 }
963d678b
MX
4386 delalloc_bytes = percpu_counter_sum_positive(
4387 &root->fs_info->delalloc_bytes);
5da9d01b 4388 }
5da9d01b
YZ
4389}
4390
663350ac
JB
4391/**
4392 * maybe_commit_transaction - possibly commit the transaction if its ok to
4393 * @root - the root we're allocating for
4394 * @bytes - the number of bytes we want to reserve
4395 * @force - force the commit
8bb8ab2e 4396 *
663350ac
JB
4397 * This will check to make sure that committing the transaction will actually
4398 * get us somewhere and then commit the transaction if it does. Otherwise it
4399 * will return -ENOSPC.
8bb8ab2e 4400 */
663350ac
JB
4401static int may_commit_transaction(struct btrfs_root *root,
4402 struct btrfs_space_info *space_info,
4403 u64 bytes, int force)
4404{
4405 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4406 struct btrfs_trans_handle *trans;
4407
4408 trans = (struct btrfs_trans_handle *)current->journal_info;
4409 if (trans)
4410 return -EAGAIN;
4411
4412 if (force)
4413 goto commit;
4414
4415 /* See if there is enough pinned space to make this reservation */
b150a4f1 4416 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4417 bytes) >= 0)
663350ac 4418 goto commit;
663350ac
JB
4419
4420 /*
4421 * See if there is some space in the delayed insertion reservation for
4422 * this reservation.
4423 */
4424 if (space_info != delayed_rsv->space_info)
4425 return -ENOSPC;
4426
4427 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4428 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4429 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4430 spin_unlock(&delayed_rsv->lock);
4431 return -ENOSPC;
4432 }
4433 spin_unlock(&delayed_rsv->lock);
4434
4435commit:
4436 trans = btrfs_join_transaction(root);
4437 if (IS_ERR(trans))
4438 return -ENOSPC;
4439
4440 return btrfs_commit_transaction(trans, root);
4441}
4442
96c3f433 4443enum flush_state {
67b0fd63
JB
4444 FLUSH_DELAYED_ITEMS_NR = 1,
4445 FLUSH_DELAYED_ITEMS = 2,
4446 FLUSH_DELALLOC = 3,
4447 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4448 ALLOC_CHUNK = 5,
4449 COMMIT_TRANS = 6,
96c3f433
JB
4450};
4451
4452static int flush_space(struct btrfs_root *root,
4453 struct btrfs_space_info *space_info, u64 num_bytes,
4454 u64 orig_bytes, int state)
4455{
4456 struct btrfs_trans_handle *trans;
4457 int nr;
f4c738c2 4458 int ret = 0;
96c3f433
JB
4459
4460 switch (state) {
96c3f433
JB
4461 case FLUSH_DELAYED_ITEMS_NR:
4462 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4463 if (state == FLUSH_DELAYED_ITEMS_NR)
4464 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4465 else
96c3f433 4466 nr = -1;
18cd8ea6 4467
96c3f433
JB
4468 trans = btrfs_join_transaction(root);
4469 if (IS_ERR(trans)) {
4470 ret = PTR_ERR(trans);
4471 break;
4472 }
4473 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4474 btrfs_end_transaction(trans, root);
4475 break;
67b0fd63
JB
4476 case FLUSH_DELALLOC:
4477 case FLUSH_DELALLOC_WAIT:
24af7dd1 4478 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4479 state == FLUSH_DELALLOC_WAIT);
4480 break;
ea658bad
JB
4481 case ALLOC_CHUNK:
4482 trans = btrfs_join_transaction(root);
4483 if (IS_ERR(trans)) {
4484 ret = PTR_ERR(trans);
4485 break;
4486 }
4487 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4488 btrfs_get_alloc_profile(root, 0),
4489 CHUNK_ALLOC_NO_FORCE);
4490 btrfs_end_transaction(trans, root);
4491 if (ret == -ENOSPC)
4492 ret = 0;
4493 break;
96c3f433
JB
4494 case COMMIT_TRANS:
4495 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4496 break;
4497 default:
4498 ret = -ENOSPC;
4499 break;
4500 }
4501
4502 return ret;
4503}
21c7e756
MX
4504
4505static inline u64
4506btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4507 struct btrfs_space_info *space_info)
4508{
4509 u64 used;
4510 u64 expected;
4511 u64 to_reclaim;
4512
4513 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4514 16 * 1024 * 1024);
4515 spin_lock(&space_info->lock);
4516 if (can_overcommit(root, space_info, to_reclaim,
4517 BTRFS_RESERVE_FLUSH_ALL)) {
4518 to_reclaim = 0;
4519 goto out;
4520 }
4521
4522 used = space_info->bytes_used + space_info->bytes_reserved +
4523 space_info->bytes_pinned + space_info->bytes_readonly +
4524 space_info->bytes_may_use;
4525 if (can_overcommit(root, space_info, 1024 * 1024,
4526 BTRFS_RESERVE_FLUSH_ALL))
4527 expected = div_factor_fine(space_info->total_bytes, 95);
4528 else
4529 expected = div_factor_fine(space_info->total_bytes, 90);
4530
4531 if (used > expected)
4532 to_reclaim = used - expected;
4533 else
4534 to_reclaim = 0;
4535 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4536 space_info->bytes_reserved);
4537out:
4538 spin_unlock(&space_info->lock);
4539
4540 return to_reclaim;
4541}
4542
4543static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4544 struct btrfs_fs_info *fs_info, u64 used)
4545{
365c5313
JB
4546 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4547
4548 /* If we're just plain full then async reclaim just slows us down. */
4549 if (space_info->bytes_used >= thresh)
4550 return 0;
4551
4552 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4553 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4554}
4555
4556static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4557 struct btrfs_fs_info *fs_info,
4558 int flush_state)
21c7e756
MX
4559{
4560 u64 used;
4561
4562 spin_lock(&space_info->lock);
25ce459c
LB
4563 /*
4564 * We run out of space and have not got any free space via flush_space,
4565 * so don't bother doing async reclaim.
4566 */
4567 if (flush_state > COMMIT_TRANS && space_info->full) {
4568 spin_unlock(&space_info->lock);
4569 return 0;
4570 }
4571
21c7e756
MX
4572 used = space_info->bytes_used + space_info->bytes_reserved +
4573 space_info->bytes_pinned + space_info->bytes_readonly +
4574 space_info->bytes_may_use;
4575 if (need_do_async_reclaim(space_info, fs_info, used)) {
4576 spin_unlock(&space_info->lock);
4577 return 1;
4578 }
4579 spin_unlock(&space_info->lock);
4580
4581 return 0;
4582}
4583
4584static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4585{
4586 struct btrfs_fs_info *fs_info;
4587 struct btrfs_space_info *space_info;
4588 u64 to_reclaim;
4589 int flush_state;
4590
4591 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4592 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4593
4594 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4595 space_info);
4596 if (!to_reclaim)
4597 return;
4598
4599 flush_state = FLUSH_DELAYED_ITEMS_NR;
4600 do {
4601 flush_space(fs_info->fs_root, space_info, to_reclaim,
4602 to_reclaim, flush_state);
4603 flush_state++;
25ce459c
LB
4604 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4605 flush_state))
21c7e756 4606 return;
365c5313 4607 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4608}
4609
4610void btrfs_init_async_reclaim_work(struct work_struct *work)
4611{
4612 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4613}
4614
4a92b1b8
JB
4615/**
4616 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4617 * @root - the root we're allocating for
4618 * @block_rsv - the block_rsv we're allocating for
4619 * @orig_bytes - the number of bytes we want
48fc7f7e 4620 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4621 *
4a92b1b8
JB
4622 * This will reserve orgi_bytes number of bytes from the space info associated
4623 * with the block_rsv. If there is not enough space it will make an attempt to
4624 * flush out space to make room. It will do this by flushing delalloc if
4625 * possible or committing the transaction. If flush is 0 then no attempts to
4626 * regain reservations will be made and this will fail if there is not enough
4627 * space already.
8bb8ab2e 4628 */
4a92b1b8 4629static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4630 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4631 u64 orig_bytes,
4632 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4633{
f0486c68 4634 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4635 u64 used;
8bb8ab2e 4636 u64 num_bytes = orig_bytes;
67b0fd63 4637 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4638 int ret = 0;
fdb5effd 4639 bool flushing = false;
9ed74f2d 4640
8bb8ab2e 4641again:
fdb5effd 4642 ret = 0;
8bb8ab2e 4643 spin_lock(&space_info->lock);
fdb5effd 4644 /*
08e007d2
MX
4645 * We only want to wait if somebody other than us is flushing and we
4646 * are actually allowed to flush all things.
fdb5effd 4647 */
08e007d2
MX
4648 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4649 space_info->flush) {
fdb5effd
JB
4650 spin_unlock(&space_info->lock);
4651 /*
4652 * If we have a trans handle we can't wait because the flusher
4653 * may have to commit the transaction, which would mean we would
4654 * deadlock since we are waiting for the flusher to finish, but
4655 * hold the current transaction open.
4656 */
663350ac 4657 if (current->journal_info)
fdb5effd 4658 return -EAGAIN;
b9688bb8
AJ
4659 ret = wait_event_killable(space_info->wait, !space_info->flush);
4660 /* Must have been killed, return */
4661 if (ret)
fdb5effd
JB
4662 return -EINTR;
4663
4664 spin_lock(&space_info->lock);
4665 }
4666
4667 ret = -ENOSPC;
2bf64758
JB
4668 used = space_info->bytes_used + space_info->bytes_reserved +
4669 space_info->bytes_pinned + space_info->bytes_readonly +
4670 space_info->bytes_may_use;
9ed74f2d 4671
8bb8ab2e
JB
4672 /*
4673 * The idea here is that we've not already over-reserved the block group
4674 * then we can go ahead and save our reservation first and then start
4675 * flushing if we need to. Otherwise if we've already overcommitted
4676 * lets start flushing stuff first and then come back and try to make
4677 * our reservation.
4678 */
2bf64758
JB
4679 if (used <= space_info->total_bytes) {
4680 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4681 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4682 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4683 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4684 ret = 0;
4685 } else {
4686 /*
4687 * Ok set num_bytes to orig_bytes since we aren't
4688 * overocmmitted, this way we only try and reclaim what
4689 * we need.
4690 */
4691 num_bytes = orig_bytes;
4692 }
4693 } else {
4694 /*
4695 * Ok we're over committed, set num_bytes to the overcommitted
4696 * amount plus the amount of bytes that we need for this
4697 * reservation.
4698 */
2bf64758 4699 num_bytes = used - space_info->total_bytes +
96c3f433 4700 (orig_bytes * 2);
8bb8ab2e 4701 }
9ed74f2d 4702
44734ed1
JB
4703 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4704 space_info->bytes_may_use += orig_bytes;
4705 trace_btrfs_space_reservation(root->fs_info, "space_info",
4706 space_info->flags, orig_bytes,
4707 1);
4708 ret = 0;
2bf64758
JB
4709 }
4710
8bb8ab2e
JB
4711 /*
4712 * Couldn't make our reservation, save our place so while we're trying
4713 * to reclaim space we can actually use it instead of somebody else
4714 * stealing it from us.
08e007d2
MX
4715 *
4716 * We make the other tasks wait for the flush only when we can flush
4717 * all things.
8bb8ab2e 4718 */
72bcd99d 4719 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4720 flushing = true;
4721 space_info->flush = 1;
21c7e756
MX
4722 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4723 used += orig_bytes;
f6acfd50
JB
4724 /*
4725 * We will do the space reservation dance during log replay,
4726 * which means we won't have fs_info->fs_root set, so don't do
4727 * the async reclaim as we will panic.
4728 */
4729 if (!root->fs_info->log_root_recovering &&
4730 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4731 !work_busy(&root->fs_info->async_reclaim_work))
4732 queue_work(system_unbound_wq,
4733 &root->fs_info->async_reclaim_work);
8bb8ab2e 4734 }
f0486c68 4735 spin_unlock(&space_info->lock);
9ed74f2d 4736
08e007d2 4737 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4738 goto out;
f0486c68 4739
96c3f433
JB
4740 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4741 flush_state);
4742 flush_state++;
08e007d2
MX
4743
4744 /*
4745 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4746 * would happen. So skip delalloc flush.
4747 */
4748 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4749 (flush_state == FLUSH_DELALLOC ||
4750 flush_state == FLUSH_DELALLOC_WAIT))
4751 flush_state = ALLOC_CHUNK;
4752
96c3f433 4753 if (!ret)
8bb8ab2e 4754 goto again;
08e007d2
MX
4755 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4756 flush_state < COMMIT_TRANS)
4757 goto again;
4758 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4759 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4760 goto again;
4761
4762out:
5d80366e
JB
4763 if (ret == -ENOSPC &&
4764 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4765 struct btrfs_block_rsv *global_rsv =
4766 &root->fs_info->global_block_rsv;
4767
4768 if (block_rsv != global_rsv &&
4769 !block_rsv_use_bytes(global_rsv, orig_bytes))
4770 ret = 0;
4771 }
cab45e22
JM
4772 if (ret == -ENOSPC)
4773 trace_btrfs_space_reservation(root->fs_info,
4774 "space_info:enospc",
4775 space_info->flags, orig_bytes, 1);
fdb5effd 4776 if (flushing) {
8bb8ab2e 4777 spin_lock(&space_info->lock);
fdb5effd
JB
4778 space_info->flush = 0;
4779 wake_up_all(&space_info->wait);
8bb8ab2e 4780 spin_unlock(&space_info->lock);
f0486c68 4781 }
f0486c68
YZ
4782 return ret;
4783}
4784
79787eaa
JM
4785static struct btrfs_block_rsv *get_block_rsv(
4786 const struct btrfs_trans_handle *trans,
4787 const struct btrfs_root *root)
f0486c68 4788{
4c13d758
JB
4789 struct btrfs_block_rsv *block_rsv = NULL;
4790
27cdeb70 4791 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4792 block_rsv = trans->block_rsv;
4793
4794 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4795 block_rsv = trans->block_rsv;
4c13d758 4796
f7a81ea4
SB
4797 if (root == root->fs_info->uuid_root)
4798 block_rsv = trans->block_rsv;
4799
4c13d758 4800 if (!block_rsv)
f0486c68
YZ
4801 block_rsv = root->block_rsv;
4802
4803 if (!block_rsv)
4804 block_rsv = &root->fs_info->empty_block_rsv;
4805
4806 return block_rsv;
4807}
4808
4809static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4810 u64 num_bytes)
4811{
4812 int ret = -ENOSPC;
4813 spin_lock(&block_rsv->lock);
4814 if (block_rsv->reserved >= num_bytes) {
4815 block_rsv->reserved -= num_bytes;
4816 if (block_rsv->reserved < block_rsv->size)
4817 block_rsv->full = 0;
4818 ret = 0;
4819 }
4820 spin_unlock(&block_rsv->lock);
4821 return ret;
4822}
4823
4824static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4825 u64 num_bytes, int update_size)
4826{
4827 spin_lock(&block_rsv->lock);
4828 block_rsv->reserved += num_bytes;
4829 if (update_size)
4830 block_rsv->size += num_bytes;
4831 else if (block_rsv->reserved >= block_rsv->size)
4832 block_rsv->full = 1;
4833 spin_unlock(&block_rsv->lock);
4834}
4835
d52be818
JB
4836int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4837 struct btrfs_block_rsv *dest, u64 num_bytes,
4838 int min_factor)
4839{
4840 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4841 u64 min_bytes;
4842
4843 if (global_rsv->space_info != dest->space_info)
4844 return -ENOSPC;
4845
4846 spin_lock(&global_rsv->lock);
4847 min_bytes = div_factor(global_rsv->size, min_factor);
4848 if (global_rsv->reserved < min_bytes + num_bytes) {
4849 spin_unlock(&global_rsv->lock);
4850 return -ENOSPC;
4851 }
4852 global_rsv->reserved -= num_bytes;
4853 if (global_rsv->reserved < global_rsv->size)
4854 global_rsv->full = 0;
4855 spin_unlock(&global_rsv->lock);
4856
4857 block_rsv_add_bytes(dest, num_bytes, 1);
4858 return 0;
4859}
4860
8c2a3ca2
JB
4861static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4862 struct btrfs_block_rsv *block_rsv,
62a45b60 4863 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4864{
4865 struct btrfs_space_info *space_info = block_rsv->space_info;
4866
4867 spin_lock(&block_rsv->lock);
4868 if (num_bytes == (u64)-1)
4869 num_bytes = block_rsv->size;
4870 block_rsv->size -= num_bytes;
4871 if (block_rsv->reserved >= block_rsv->size) {
4872 num_bytes = block_rsv->reserved - block_rsv->size;
4873 block_rsv->reserved = block_rsv->size;
4874 block_rsv->full = 1;
4875 } else {
4876 num_bytes = 0;
4877 }
4878 spin_unlock(&block_rsv->lock);
4879
4880 if (num_bytes > 0) {
4881 if (dest) {
e9e22899
JB
4882 spin_lock(&dest->lock);
4883 if (!dest->full) {
4884 u64 bytes_to_add;
4885
4886 bytes_to_add = dest->size - dest->reserved;
4887 bytes_to_add = min(num_bytes, bytes_to_add);
4888 dest->reserved += bytes_to_add;
4889 if (dest->reserved >= dest->size)
4890 dest->full = 1;
4891 num_bytes -= bytes_to_add;
4892 }
4893 spin_unlock(&dest->lock);
4894 }
4895 if (num_bytes) {
f0486c68 4896 spin_lock(&space_info->lock);
fb25e914 4897 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4898 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4899 space_info->flags, num_bytes, 0);
f0486c68 4900 spin_unlock(&space_info->lock);
4e06bdd6 4901 }
9ed74f2d 4902 }
f0486c68 4903}
4e06bdd6 4904
f0486c68
YZ
4905static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4906 struct btrfs_block_rsv *dst, u64 num_bytes)
4907{
4908 int ret;
9ed74f2d 4909
f0486c68
YZ
4910 ret = block_rsv_use_bytes(src, num_bytes);
4911 if (ret)
4912 return ret;
9ed74f2d 4913
f0486c68 4914 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
4915 return 0;
4916}
4917
66d8f3dd 4918void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 4919{
f0486c68
YZ
4920 memset(rsv, 0, sizeof(*rsv));
4921 spin_lock_init(&rsv->lock);
66d8f3dd 4922 rsv->type = type;
f0486c68
YZ
4923}
4924
66d8f3dd
MX
4925struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4926 unsigned short type)
f0486c68
YZ
4927{
4928 struct btrfs_block_rsv *block_rsv;
4929 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 4930
f0486c68
YZ
4931 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4932 if (!block_rsv)
4933 return NULL;
9ed74f2d 4934
66d8f3dd 4935 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
4936 block_rsv->space_info = __find_space_info(fs_info,
4937 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
4938 return block_rsv;
4939}
9ed74f2d 4940
f0486c68
YZ
4941void btrfs_free_block_rsv(struct btrfs_root *root,
4942 struct btrfs_block_rsv *rsv)
4943{
2aaa6655
JB
4944 if (!rsv)
4945 return;
dabdb640
JB
4946 btrfs_block_rsv_release(root, rsv, (u64)-1);
4947 kfree(rsv);
9ed74f2d
JB
4948}
4949
cdfb080e
CM
4950void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4951{
4952 kfree(rsv);
4953}
4954
08e007d2
MX
4955int btrfs_block_rsv_add(struct btrfs_root *root,
4956 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4957 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4958{
f0486c68 4959 int ret;
9ed74f2d 4960
f0486c68
YZ
4961 if (num_bytes == 0)
4962 return 0;
8bb8ab2e 4963
61b520a9 4964 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
4965 if (!ret) {
4966 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4967 return 0;
4968 }
9ed74f2d 4969
f0486c68 4970 return ret;
f0486c68 4971}
9ed74f2d 4972
4a92b1b8 4973int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 4974 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
4975{
4976 u64 num_bytes = 0;
f0486c68 4977 int ret = -ENOSPC;
9ed74f2d 4978
f0486c68
YZ
4979 if (!block_rsv)
4980 return 0;
9ed74f2d 4981
f0486c68 4982 spin_lock(&block_rsv->lock);
36ba022a
JB
4983 num_bytes = div_factor(block_rsv->size, min_factor);
4984 if (block_rsv->reserved >= num_bytes)
4985 ret = 0;
4986 spin_unlock(&block_rsv->lock);
9ed74f2d 4987
36ba022a
JB
4988 return ret;
4989}
4990
08e007d2
MX
4991int btrfs_block_rsv_refill(struct btrfs_root *root,
4992 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4993 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
4994{
4995 u64 num_bytes = 0;
4996 int ret = -ENOSPC;
4997
4998 if (!block_rsv)
4999 return 0;
5000
5001 spin_lock(&block_rsv->lock);
5002 num_bytes = min_reserved;
13553e52 5003 if (block_rsv->reserved >= num_bytes)
f0486c68 5004 ret = 0;
13553e52 5005 else
f0486c68 5006 num_bytes -= block_rsv->reserved;
f0486c68 5007 spin_unlock(&block_rsv->lock);
13553e52 5008
f0486c68
YZ
5009 if (!ret)
5010 return 0;
5011
aa38a711 5012 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5013 if (!ret) {
5014 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5015 return 0;
6a63209f 5016 }
9ed74f2d 5017
13553e52 5018 return ret;
f0486c68
YZ
5019}
5020
5021int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5022 struct btrfs_block_rsv *dst_rsv,
5023 u64 num_bytes)
5024{
5025 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5026}
5027
5028void btrfs_block_rsv_release(struct btrfs_root *root,
5029 struct btrfs_block_rsv *block_rsv,
5030 u64 num_bytes)
5031{
5032 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5033 if (global_rsv == block_rsv ||
f0486c68
YZ
5034 block_rsv->space_info != global_rsv->space_info)
5035 global_rsv = NULL;
8c2a3ca2
JB
5036 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5037 num_bytes);
6a63209f
JB
5038}
5039
5040/*
8929ecfa
YZ
5041 * helper to calculate size of global block reservation.
5042 * the desired value is sum of space used by extent tree,
5043 * checksum tree and root tree
6a63209f 5044 */
8929ecfa 5045static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5046{
8929ecfa
YZ
5047 struct btrfs_space_info *sinfo;
5048 u64 num_bytes;
5049 u64 meta_used;
5050 u64 data_used;
6c41761f 5051 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5052
8929ecfa
YZ
5053 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5054 spin_lock(&sinfo->lock);
5055 data_used = sinfo->bytes_used;
5056 spin_unlock(&sinfo->lock);
33b4d47f 5057
8929ecfa
YZ
5058 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5059 spin_lock(&sinfo->lock);
6d48755d
JB
5060 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5061 data_used = 0;
8929ecfa
YZ
5062 meta_used = sinfo->bytes_used;
5063 spin_unlock(&sinfo->lock);
ab6e2410 5064
8929ecfa
YZ
5065 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5066 csum_size * 2;
f8c269d7 5067 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5068
8929ecfa 5069 if (num_bytes * 3 > meta_used)
f8c269d7 5070 num_bytes = div_u64(meta_used, 3);
ab6e2410 5071
707e8a07 5072 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5073}
6a63209f 5074
8929ecfa
YZ
5075static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5076{
5077 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5078 struct btrfs_space_info *sinfo = block_rsv->space_info;
5079 u64 num_bytes;
6a63209f 5080
8929ecfa 5081 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5082
8929ecfa 5083 spin_lock(&sinfo->lock);
1f699d38 5084 spin_lock(&block_rsv->lock);
4e06bdd6 5085
fdf30d1c 5086 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5087
8929ecfa 5088 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5089 sinfo->bytes_reserved + sinfo->bytes_readonly +
5090 sinfo->bytes_may_use;
8929ecfa
YZ
5091
5092 if (sinfo->total_bytes > num_bytes) {
5093 num_bytes = sinfo->total_bytes - num_bytes;
5094 block_rsv->reserved += num_bytes;
fb25e914 5095 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5096 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5097 sinfo->flags, num_bytes, 1);
6a63209f 5098 }
6a63209f 5099
8929ecfa
YZ
5100 if (block_rsv->reserved >= block_rsv->size) {
5101 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5102 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5103 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5104 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5105 block_rsv->reserved = block_rsv->size;
5106 block_rsv->full = 1;
5107 }
182608c8 5108
8929ecfa 5109 spin_unlock(&block_rsv->lock);
1f699d38 5110 spin_unlock(&sinfo->lock);
6a63209f
JB
5111}
5112
f0486c68 5113static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5114{
f0486c68 5115 struct btrfs_space_info *space_info;
6a63209f 5116
f0486c68
YZ
5117 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5118 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5119
f0486c68 5120 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5121 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5122 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5123 fs_info->trans_block_rsv.space_info = space_info;
5124 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5125 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5126
8929ecfa
YZ
5127 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5128 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5129 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5130 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5131 if (fs_info->quota_root)
5132 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5133 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5134
8929ecfa 5135 update_global_block_rsv(fs_info);
6a63209f
JB
5136}
5137
8929ecfa 5138static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5139{
8c2a3ca2
JB
5140 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5141 (u64)-1);
8929ecfa
YZ
5142 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5143 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5144 WARN_ON(fs_info->trans_block_rsv.size > 0);
5145 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5146 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5147 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5148 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5149 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5150}
5151
a22285a6
YZ
5152void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5153 struct btrfs_root *root)
6a63209f 5154{
0e721106
JB
5155 if (!trans->block_rsv)
5156 return;
5157
a22285a6
YZ
5158 if (!trans->bytes_reserved)
5159 return;
6a63209f 5160
e77266e4 5161 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5162 trans->transid, trans->bytes_reserved, 0);
b24e03db 5163 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5164 trans->bytes_reserved = 0;
5165}
6a63209f 5166
4fbcdf66
FM
5167/*
5168 * To be called after all the new block groups attached to the transaction
5169 * handle have been created (btrfs_create_pending_block_groups()).
5170 */
5171void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5172{
5173 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5174
5175 if (!trans->chunk_bytes_reserved)
5176 return;
5177
5178 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5179
5180 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5181 trans->chunk_bytes_reserved);
5182 trans->chunk_bytes_reserved = 0;
5183}
5184
79787eaa 5185/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5186int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5187 struct inode *inode)
5188{
5189 struct btrfs_root *root = BTRFS_I(inode)->root;
5190 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5191 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5192
5193 /*
fcb80c2a
JB
5194 * We need to hold space in order to delete our orphan item once we've
5195 * added it, so this takes the reservation so we can release it later
5196 * when we are truly done with the orphan item.
d68fc57b 5197 */
ff5714cc 5198 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5199 trace_btrfs_space_reservation(root->fs_info, "orphan",
5200 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5201 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5202}
5203
d68fc57b 5204void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5205{
d68fc57b 5206 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5207 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5208 trace_btrfs_space_reservation(root->fs_info, "orphan",
5209 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5210 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5211}
97e728d4 5212
d5c12070
MX
5213/*
5214 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5215 * root: the root of the parent directory
5216 * rsv: block reservation
5217 * items: the number of items that we need do reservation
5218 * qgroup_reserved: used to return the reserved size in qgroup
5219 *
5220 * This function is used to reserve the space for snapshot/subvolume
5221 * creation and deletion. Those operations are different with the
5222 * common file/directory operations, they change two fs/file trees
5223 * and root tree, the number of items that the qgroup reserves is
5224 * different with the free space reservation. So we can not use
5225 * the space reseravtion mechanism in start_transaction().
5226 */
5227int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5228 struct btrfs_block_rsv *rsv,
5229 int items,
ee3441b4
JM
5230 u64 *qgroup_reserved,
5231 bool use_global_rsv)
a22285a6 5232{
d5c12070
MX
5233 u64 num_bytes;
5234 int ret;
ee3441b4 5235 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5236
5237 if (root->fs_info->quota_enabled) {
5238 /* One for parent inode, two for dir entries */
707e8a07 5239 num_bytes = 3 * root->nodesize;
d5c12070
MX
5240 ret = btrfs_qgroup_reserve(root, num_bytes);
5241 if (ret)
5242 return ret;
5243 } else {
5244 num_bytes = 0;
5245 }
5246
5247 *qgroup_reserved = num_bytes;
5248
5249 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5250 rsv->space_info = __find_space_info(root->fs_info,
5251 BTRFS_BLOCK_GROUP_METADATA);
5252 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5253 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5254
5255 if (ret == -ENOSPC && use_global_rsv)
5256 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5257
d5c12070
MX
5258 if (ret) {
5259 if (*qgroup_reserved)
5260 btrfs_qgroup_free(root, *qgroup_reserved);
5261 }
5262
5263 return ret;
5264}
5265
5266void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5267 struct btrfs_block_rsv *rsv,
5268 u64 qgroup_reserved)
5269{
5270 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5271}
5272
7709cde3
JB
5273/**
5274 * drop_outstanding_extent - drop an outstanding extent
5275 * @inode: the inode we're dropping the extent for
dcab6a3b 5276 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5277 *
5278 * This is called when we are freeing up an outstanding extent, either called
5279 * after an error or after an extent is written. This will return the number of
5280 * reserved extents that need to be freed. This must be called with
5281 * BTRFS_I(inode)->lock held.
5282 */
dcab6a3b 5283static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5284{
7fd2ae21 5285 unsigned drop_inode_space = 0;
9e0baf60 5286 unsigned dropped_extents = 0;
dcab6a3b 5287 unsigned num_extents = 0;
9e0baf60 5288
dcab6a3b
JB
5289 num_extents = (unsigned)div64_u64(num_bytes +
5290 BTRFS_MAX_EXTENT_SIZE - 1,
5291 BTRFS_MAX_EXTENT_SIZE);
5292 ASSERT(num_extents);
5293 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5294 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5295
7fd2ae21 5296 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5297 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5298 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5299 drop_inode_space = 1;
7fd2ae21 5300
9e0baf60
JB
5301 /*
5302 * If we have more or the same amount of outsanding extents than we have
5303 * reserved then we need to leave the reserved extents count alone.
5304 */
5305 if (BTRFS_I(inode)->outstanding_extents >=
5306 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5307 return drop_inode_space;
9e0baf60
JB
5308
5309 dropped_extents = BTRFS_I(inode)->reserved_extents -
5310 BTRFS_I(inode)->outstanding_extents;
5311 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5312 return dropped_extents + drop_inode_space;
9e0baf60
JB
5313}
5314
7709cde3
JB
5315/**
5316 * calc_csum_metadata_size - return the amount of metada space that must be
5317 * reserved/free'd for the given bytes.
5318 * @inode: the inode we're manipulating
5319 * @num_bytes: the number of bytes in question
5320 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5321 *
5322 * This adjusts the number of csum_bytes in the inode and then returns the
5323 * correct amount of metadata that must either be reserved or freed. We
5324 * calculate how many checksums we can fit into one leaf and then divide the
5325 * number of bytes that will need to be checksumed by this value to figure out
5326 * how many checksums will be required. If we are adding bytes then the number
5327 * may go up and we will return the number of additional bytes that must be
5328 * reserved. If it is going down we will return the number of bytes that must
5329 * be freed.
5330 *
5331 * This must be called with BTRFS_I(inode)->lock held.
5332 */
5333static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5334 int reserve)
6324fbf3 5335{
7709cde3 5336 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5337 u64 old_csums, num_csums;
7709cde3
JB
5338
5339 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5340 BTRFS_I(inode)->csum_bytes == 0)
5341 return 0;
5342
28f75a0e 5343 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5344 if (reserve)
5345 BTRFS_I(inode)->csum_bytes += num_bytes;
5346 else
5347 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5348 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5349
5350 /* No change, no need to reserve more */
5351 if (old_csums == num_csums)
5352 return 0;
5353
5354 if (reserve)
5355 return btrfs_calc_trans_metadata_size(root,
5356 num_csums - old_csums);
5357
5358 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5359}
c146afad 5360
0ca1f7ce
YZ
5361int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5362{
5363 struct btrfs_root *root = BTRFS_I(inode)->root;
5364 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5365 u64 to_reserve = 0;
660d3f6c 5366 u64 csum_bytes;
9e0baf60 5367 unsigned nr_extents = 0;
660d3f6c 5368 int extra_reserve = 0;
08e007d2 5369 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5370 int ret = 0;
c64c2bd8 5371 bool delalloc_lock = true;
88e081bf
WS
5372 u64 to_free = 0;
5373 unsigned dropped;
6324fbf3 5374
c64c2bd8
JB
5375 /* If we are a free space inode we need to not flush since we will be in
5376 * the middle of a transaction commit. We also don't need the delalloc
5377 * mutex since we won't race with anybody. We need this mostly to make
5378 * lockdep shut its filthy mouth.
5379 */
5380 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5381 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5382 delalloc_lock = false;
5383 }
c09544e0 5384
08e007d2
MX
5385 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5386 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5387 schedule_timeout(1);
ec44a35c 5388
c64c2bd8
JB
5389 if (delalloc_lock)
5390 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5391
0ca1f7ce 5392 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5393
9e0baf60 5394 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5395 nr_extents = (unsigned)div64_u64(num_bytes +
5396 BTRFS_MAX_EXTENT_SIZE - 1,
5397 BTRFS_MAX_EXTENT_SIZE);
5398 BTRFS_I(inode)->outstanding_extents += nr_extents;
5399 nr_extents = 0;
9e0baf60
JB
5400
5401 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5402 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5403 nr_extents = BTRFS_I(inode)->outstanding_extents -
5404 BTRFS_I(inode)->reserved_extents;
57a45ced 5405
7fd2ae21
JB
5406 /*
5407 * Add an item to reserve for updating the inode when we complete the
5408 * delalloc io.
5409 */
72ac3c0d
JB
5410 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5411 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5412 nr_extents++;
660d3f6c 5413 extra_reserve = 1;
593060d7 5414 }
7fd2ae21
JB
5415
5416 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5417 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5418 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5419 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5420
88e081bf 5421 if (root->fs_info->quota_enabled) {
237c0e9f 5422 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5423 if (ret)
5424 goto out_fail;
5425 }
c5567237 5426
88e081bf
WS
5427 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5428 if (unlikely(ret)) {
5429 if (root->fs_info->quota_enabled)
237c0e9f 5430 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5431 goto out_fail;
9e0baf60 5432 }
25179201 5433
660d3f6c
JB
5434 spin_lock(&BTRFS_I(inode)->lock);
5435 if (extra_reserve) {
72ac3c0d
JB
5436 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5437 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5438 nr_extents--;
5439 }
5440 BTRFS_I(inode)->reserved_extents += nr_extents;
5441 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5442
5443 if (delalloc_lock)
5444 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5445
8c2a3ca2 5446 if (to_reserve)
67871254 5447 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5448 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5449 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5450
0ca1f7ce 5451 return 0;
88e081bf
WS
5452
5453out_fail:
5454 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5455 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5456 /*
5457 * If the inodes csum_bytes is the same as the original
5458 * csum_bytes then we know we haven't raced with any free()ers
5459 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5460 */
f4881bc7 5461 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5462 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5463 } else {
5464 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5465 u64 bytes;
5466
5467 /*
5468 * This is tricky, but first we need to figure out how much we
5469 * free'd from any free-ers that occured during this
5470 * reservation, so we reset ->csum_bytes to the csum_bytes
5471 * before we dropped our lock, and then call the free for the
5472 * number of bytes that were freed while we were trying our
5473 * reservation.
5474 */
5475 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5476 BTRFS_I(inode)->csum_bytes = csum_bytes;
5477 to_free = calc_csum_metadata_size(inode, bytes, 0);
5478
5479
5480 /*
5481 * Now we need to see how much we would have freed had we not
5482 * been making this reservation and our ->csum_bytes were not
5483 * artificially inflated.
5484 */
5485 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5486 bytes = csum_bytes - orig_csum_bytes;
5487 bytes = calc_csum_metadata_size(inode, bytes, 0);
5488
5489 /*
5490 * Now reset ->csum_bytes to what it should be. If bytes is
5491 * more than to_free then we would have free'd more space had we
5492 * not had an artificially high ->csum_bytes, so we need to free
5493 * the remainder. If bytes is the same or less then we don't
5494 * need to do anything, the other free-ers did the correct
5495 * thing.
5496 */
5497 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5498 if (bytes > to_free)
5499 to_free = bytes - to_free;
5500 else
5501 to_free = 0;
5502 }
88e081bf 5503 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5504 if (dropped)
88e081bf
WS
5505 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5506
5507 if (to_free) {
5508 btrfs_block_rsv_release(root, block_rsv, to_free);
5509 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5510 btrfs_ino(inode), to_free, 0);
5511 }
5512 if (delalloc_lock)
5513 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5514 return ret;
0ca1f7ce
YZ
5515}
5516
7709cde3
JB
5517/**
5518 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5519 * @inode: the inode to release the reservation for
5520 * @num_bytes: the number of bytes we're releasing
5521 *
5522 * This will release the metadata reservation for an inode. This can be called
5523 * once we complete IO for a given set of bytes to release their metadata
5524 * reservations.
5525 */
0ca1f7ce
YZ
5526void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5527{
5528 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5529 u64 to_free = 0;
5530 unsigned dropped;
0ca1f7ce
YZ
5531
5532 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5533 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5534 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5535
0934856d
MX
5536 if (num_bytes)
5537 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5538 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5539 if (dropped > 0)
5540 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5541
6a3891c5
JB
5542 if (btrfs_test_is_dummy_root(root))
5543 return;
5544
8c2a3ca2
JB
5545 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5546 btrfs_ino(inode), to_free, 0);
c5567237 5547
0ca1f7ce
YZ
5548 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5549 to_free);
5550}
5551
7709cde3
JB
5552/**
5553 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5554 * @inode: inode we're writing to
5555 * @num_bytes: the number of bytes we want to allocate
5556 *
5557 * This will do the following things
5558 *
5559 * o reserve space in the data space info for num_bytes
5560 * o reserve space in the metadata space info based on number of outstanding
5561 * extents and how much csums will be needed
5562 * o add to the inodes ->delalloc_bytes
5563 * o add it to the fs_info's delalloc inodes list.
5564 *
5565 * This will return 0 for success and -ENOSPC if there is no space left.
5566 */
0ca1f7ce
YZ
5567int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5568{
5569 int ret;
5570
e2d1f923 5571 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5572 if (ret)
0ca1f7ce
YZ
5573 return ret;
5574
5575 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5576 if (ret) {
5577 btrfs_free_reserved_data_space(inode, num_bytes);
5578 return ret;
5579 }
5580
5581 return 0;
5582}
5583
7709cde3
JB
5584/**
5585 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5586 * @inode: inode we're releasing space for
5587 * @num_bytes: the number of bytes we want to free up
5588 *
5589 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5590 * called in the case that we don't need the metadata AND data reservations
5591 * anymore. So if there is an error or we insert an inline extent.
5592 *
5593 * This function will release the metadata space that was not used and will
5594 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5595 * list if there are no delalloc bytes left.
5596 */
0ca1f7ce
YZ
5597void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5598{
5599 btrfs_delalloc_release_metadata(inode, num_bytes);
5600 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5601}
5602
ce93ec54
JB
5603static int update_block_group(struct btrfs_trans_handle *trans,
5604 struct btrfs_root *root, u64 bytenr,
5605 u64 num_bytes, int alloc)
9078a3e1 5606{
0af3d00b 5607 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5608 struct btrfs_fs_info *info = root->fs_info;
db94535d 5609 u64 total = num_bytes;
9078a3e1 5610 u64 old_val;
db94535d 5611 u64 byte_in_group;
0af3d00b 5612 int factor;
3e1ad54f 5613
5d4f98a2 5614 /* block accounting for super block */
eb73c1b7 5615 spin_lock(&info->delalloc_root_lock);
6c41761f 5616 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5617 if (alloc)
5618 old_val += num_bytes;
5619 else
5620 old_val -= num_bytes;
6c41761f 5621 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5622 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5623
d397712b 5624 while (total) {
db94535d 5625 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5626 if (!cache)
79787eaa 5627 return -ENOENT;
b742bb82
YZ
5628 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5629 BTRFS_BLOCK_GROUP_RAID1 |
5630 BTRFS_BLOCK_GROUP_RAID10))
5631 factor = 2;
5632 else
5633 factor = 1;
9d66e233
JB
5634 /*
5635 * If this block group has free space cache written out, we
5636 * need to make sure to load it if we are removing space. This
5637 * is because we need the unpinning stage to actually add the
5638 * space back to the block group, otherwise we will leak space.
5639 */
5640 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5641 cache_block_group(cache, 1);
0af3d00b 5642
db94535d
CM
5643 byte_in_group = bytenr - cache->key.objectid;
5644 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5645
25179201 5646 spin_lock(&cache->space_info->lock);
c286ac48 5647 spin_lock(&cache->lock);
0af3d00b 5648
73bc1876 5649 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5650 cache->disk_cache_state < BTRFS_DC_CLEAR)
5651 cache->disk_cache_state = BTRFS_DC_CLEAR;
5652
9078a3e1 5653 old_val = btrfs_block_group_used(&cache->item);
db94535d 5654 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5655 if (alloc) {
db94535d 5656 old_val += num_bytes;
11833d66
YZ
5657 btrfs_set_block_group_used(&cache->item, old_val);
5658 cache->reserved -= num_bytes;
11833d66 5659 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5660 cache->space_info->bytes_used += num_bytes;
5661 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5662 spin_unlock(&cache->lock);
25179201 5663 spin_unlock(&cache->space_info->lock);
cd1bc465 5664 } else {
db94535d 5665 old_val -= num_bytes;
ae0ab003
FM
5666 btrfs_set_block_group_used(&cache->item, old_val);
5667 cache->pinned += num_bytes;
5668 cache->space_info->bytes_pinned += num_bytes;
5669 cache->space_info->bytes_used -= num_bytes;
5670 cache->space_info->disk_used -= num_bytes * factor;
5671 spin_unlock(&cache->lock);
5672 spin_unlock(&cache->space_info->lock);
47ab2a6c 5673
ae0ab003
FM
5674 set_extent_dirty(info->pinned_extents,
5675 bytenr, bytenr + num_bytes - 1,
5676 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5677 /*
5678 * No longer have used bytes in this block group, queue
5679 * it for deletion.
5680 */
5681 if (old_val == 0) {
5682 spin_lock(&info->unused_bgs_lock);
5683 if (list_empty(&cache->bg_list)) {
5684 btrfs_get_block_group(cache);
5685 list_add_tail(&cache->bg_list,
5686 &info->unused_bgs);
5687 }
5688 spin_unlock(&info->unused_bgs_lock);
5689 }
cd1bc465 5690 }
1bbc621e
CM
5691
5692 spin_lock(&trans->transaction->dirty_bgs_lock);
5693 if (list_empty(&cache->dirty_list)) {
5694 list_add_tail(&cache->dirty_list,
5695 &trans->transaction->dirty_bgs);
5696 trans->transaction->num_dirty_bgs++;
5697 btrfs_get_block_group(cache);
5698 }
5699 spin_unlock(&trans->transaction->dirty_bgs_lock);
5700
fa9c0d79 5701 btrfs_put_block_group(cache);
db94535d
CM
5702 total -= num_bytes;
5703 bytenr += num_bytes;
9078a3e1
CM
5704 }
5705 return 0;
5706}
6324fbf3 5707
a061fc8d
CM
5708static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5709{
0f9dd46c 5710 struct btrfs_block_group_cache *cache;
d2fb3437 5711 u64 bytenr;
0f9dd46c 5712
a1897fdd
LB
5713 spin_lock(&root->fs_info->block_group_cache_lock);
5714 bytenr = root->fs_info->first_logical_byte;
5715 spin_unlock(&root->fs_info->block_group_cache_lock);
5716
5717 if (bytenr < (u64)-1)
5718 return bytenr;
5719
0f9dd46c
JB
5720 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5721 if (!cache)
a061fc8d 5722 return 0;
0f9dd46c 5723
d2fb3437 5724 bytenr = cache->key.objectid;
fa9c0d79 5725 btrfs_put_block_group(cache);
d2fb3437
YZ
5726
5727 return bytenr;
a061fc8d
CM
5728}
5729
f0486c68
YZ
5730static int pin_down_extent(struct btrfs_root *root,
5731 struct btrfs_block_group_cache *cache,
5732 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5733{
11833d66
YZ
5734 spin_lock(&cache->space_info->lock);
5735 spin_lock(&cache->lock);
5736 cache->pinned += num_bytes;
5737 cache->space_info->bytes_pinned += num_bytes;
5738 if (reserved) {
5739 cache->reserved -= num_bytes;
5740 cache->space_info->bytes_reserved -= num_bytes;
5741 }
5742 spin_unlock(&cache->lock);
5743 spin_unlock(&cache->space_info->lock);
68b38550 5744
f0486c68
YZ
5745 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5746 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5747 if (reserved)
0be5dc67 5748 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5749 return 0;
5750}
68b38550 5751
f0486c68
YZ
5752/*
5753 * this function must be called within transaction
5754 */
5755int btrfs_pin_extent(struct btrfs_root *root,
5756 u64 bytenr, u64 num_bytes, int reserved)
5757{
5758 struct btrfs_block_group_cache *cache;
68b38550 5759
f0486c68 5760 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5761 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5762
5763 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5764
5765 btrfs_put_block_group(cache);
11833d66
YZ
5766 return 0;
5767}
5768
f0486c68 5769/*
e688b725
CM
5770 * this function must be called within transaction
5771 */
dcfac415 5772int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5773 u64 bytenr, u64 num_bytes)
5774{
5775 struct btrfs_block_group_cache *cache;
b50c6e25 5776 int ret;
e688b725
CM
5777
5778 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5779 if (!cache)
5780 return -EINVAL;
e688b725
CM
5781
5782 /*
5783 * pull in the free space cache (if any) so that our pin
5784 * removes the free space from the cache. We have load_only set
5785 * to one because the slow code to read in the free extents does check
5786 * the pinned extents.
5787 */
f6373bf3 5788 cache_block_group(cache, 1);
e688b725
CM
5789
5790 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5791
5792 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5793 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5794 btrfs_put_block_group(cache);
b50c6e25 5795 return ret;
e688b725
CM
5796}
5797
8c2a1a30
JB
5798static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5799{
5800 int ret;
5801 struct btrfs_block_group_cache *block_group;
5802 struct btrfs_caching_control *caching_ctl;
5803
5804 block_group = btrfs_lookup_block_group(root->fs_info, start);
5805 if (!block_group)
5806 return -EINVAL;
5807
5808 cache_block_group(block_group, 0);
5809 caching_ctl = get_caching_control(block_group);
5810
5811 if (!caching_ctl) {
5812 /* Logic error */
5813 BUG_ON(!block_group_cache_done(block_group));
5814 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5815 } else {
5816 mutex_lock(&caching_ctl->mutex);
5817
5818 if (start >= caching_ctl->progress) {
5819 ret = add_excluded_extent(root, start, num_bytes);
5820 } else if (start + num_bytes <= caching_ctl->progress) {
5821 ret = btrfs_remove_free_space(block_group,
5822 start, num_bytes);
5823 } else {
5824 num_bytes = caching_ctl->progress - start;
5825 ret = btrfs_remove_free_space(block_group,
5826 start, num_bytes);
5827 if (ret)
5828 goto out_lock;
5829
5830 num_bytes = (start + num_bytes) -
5831 caching_ctl->progress;
5832 start = caching_ctl->progress;
5833 ret = add_excluded_extent(root, start, num_bytes);
5834 }
5835out_lock:
5836 mutex_unlock(&caching_ctl->mutex);
5837 put_caching_control(caching_ctl);
5838 }
5839 btrfs_put_block_group(block_group);
5840 return ret;
5841}
5842
5843int btrfs_exclude_logged_extents(struct btrfs_root *log,
5844 struct extent_buffer *eb)
5845{
5846 struct btrfs_file_extent_item *item;
5847 struct btrfs_key key;
5848 int found_type;
5849 int i;
5850
5851 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5852 return 0;
5853
5854 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5855 btrfs_item_key_to_cpu(eb, &key, i);
5856 if (key.type != BTRFS_EXTENT_DATA_KEY)
5857 continue;
5858 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5859 found_type = btrfs_file_extent_type(eb, item);
5860 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5861 continue;
5862 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5863 continue;
5864 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5865 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5866 __exclude_logged_extent(log, key.objectid, key.offset);
5867 }
5868
5869 return 0;
5870}
5871
fb25e914
JB
5872/**
5873 * btrfs_update_reserved_bytes - update the block_group and space info counters
5874 * @cache: The cache we are manipulating
5875 * @num_bytes: The number of bytes in question
5876 * @reserve: One of the reservation enums
e570fd27 5877 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5878 *
5879 * This is called by the allocator when it reserves space, or by somebody who is
5880 * freeing space that was never actually used on disk. For example if you
5881 * reserve some space for a new leaf in transaction A and before transaction A
5882 * commits you free that leaf, you call this with reserve set to 0 in order to
5883 * clear the reservation.
5884 *
5885 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5886 * ENOSPC accounting. For data we handle the reservation through clearing the
5887 * delalloc bits in the io_tree. We have to do this since we could end up
5888 * allocating less disk space for the amount of data we have reserved in the
5889 * case of compression.
5890 *
5891 * If this is a reservation and the block group has become read only we cannot
5892 * make the reservation and return -EAGAIN, otherwise this function always
5893 * succeeds.
f0486c68 5894 */
fb25e914 5895static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5896 u64 num_bytes, int reserve, int delalloc)
11833d66 5897{
fb25e914 5898 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5899 int ret = 0;
79787eaa 5900
fb25e914
JB
5901 spin_lock(&space_info->lock);
5902 spin_lock(&cache->lock);
5903 if (reserve != RESERVE_FREE) {
f0486c68
YZ
5904 if (cache->ro) {
5905 ret = -EAGAIN;
5906 } else {
fb25e914
JB
5907 cache->reserved += num_bytes;
5908 space_info->bytes_reserved += num_bytes;
5909 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 5910 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
5911 "space_info", space_info->flags,
5912 num_bytes, 0);
fb25e914
JB
5913 space_info->bytes_may_use -= num_bytes;
5914 }
e570fd27
MX
5915
5916 if (delalloc)
5917 cache->delalloc_bytes += num_bytes;
f0486c68 5918 }
fb25e914
JB
5919 } else {
5920 if (cache->ro)
5921 space_info->bytes_readonly += num_bytes;
5922 cache->reserved -= num_bytes;
5923 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
5924
5925 if (delalloc)
5926 cache->delalloc_bytes -= num_bytes;
324ae4df 5927 }
fb25e914
JB
5928 spin_unlock(&cache->lock);
5929 spin_unlock(&space_info->lock);
f0486c68 5930 return ret;
324ae4df 5931}
9078a3e1 5932
143bede5 5933void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 5934 struct btrfs_root *root)
e8569813 5935{
e8569813 5936 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
5937 struct btrfs_caching_control *next;
5938 struct btrfs_caching_control *caching_ctl;
5939 struct btrfs_block_group_cache *cache;
e8569813 5940
9e351cc8 5941 down_write(&fs_info->commit_root_sem);
25179201 5942
11833d66
YZ
5943 list_for_each_entry_safe(caching_ctl, next,
5944 &fs_info->caching_block_groups, list) {
5945 cache = caching_ctl->block_group;
5946 if (block_group_cache_done(cache)) {
5947 cache->last_byte_to_unpin = (u64)-1;
5948 list_del_init(&caching_ctl->list);
5949 put_caching_control(caching_ctl);
e8569813 5950 } else {
11833d66 5951 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 5952 }
e8569813 5953 }
11833d66
YZ
5954
5955 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5956 fs_info->pinned_extents = &fs_info->freed_extents[1];
5957 else
5958 fs_info->pinned_extents = &fs_info->freed_extents[0];
5959
9e351cc8 5960 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
5961
5962 update_global_block_rsv(fs_info);
e8569813
ZY
5963}
5964
678886bd
FM
5965static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5966 const bool return_free_space)
ccd467d6 5967{
11833d66
YZ
5968 struct btrfs_fs_info *fs_info = root->fs_info;
5969 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
5970 struct btrfs_space_info *space_info;
5971 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 5972 u64 len;
7b398f8e 5973 bool readonly;
ccd467d6 5974
11833d66 5975 while (start <= end) {
7b398f8e 5976 readonly = false;
11833d66
YZ
5977 if (!cache ||
5978 start >= cache->key.objectid + cache->key.offset) {
5979 if (cache)
5980 btrfs_put_block_group(cache);
5981 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 5982 BUG_ON(!cache); /* Logic error */
11833d66
YZ
5983 }
5984
5985 len = cache->key.objectid + cache->key.offset - start;
5986 len = min(len, end + 1 - start);
5987
5988 if (start < cache->last_byte_to_unpin) {
5989 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
5990 if (return_free_space)
5991 btrfs_add_free_space(cache, start, len);
11833d66
YZ
5992 }
5993
f0486c68 5994 start += len;
7b398f8e 5995 space_info = cache->space_info;
f0486c68 5996
7b398f8e 5997 spin_lock(&space_info->lock);
11833d66
YZ
5998 spin_lock(&cache->lock);
5999 cache->pinned -= len;
7b398f8e 6000 space_info->bytes_pinned -= len;
d288db5d 6001 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6002 if (cache->ro) {
6003 space_info->bytes_readonly += len;
6004 readonly = true;
6005 }
11833d66 6006 spin_unlock(&cache->lock);
7b398f8e
JB
6007 if (!readonly && global_rsv->space_info == space_info) {
6008 spin_lock(&global_rsv->lock);
6009 if (!global_rsv->full) {
6010 len = min(len, global_rsv->size -
6011 global_rsv->reserved);
6012 global_rsv->reserved += len;
6013 space_info->bytes_may_use += len;
6014 if (global_rsv->reserved >= global_rsv->size)
6015 global_rsv->full = 1;
6016 }
6017 spin_unlock(&global_rsv->lock);
6018 }
6019 spin_unlock(&space_info->lock);
ccd467d6 6020 }
11833d66
YZ
6021
6022 if (cache)
6023 btrfs_put_block_group(cache);
ccd467d6
CM
6024 return 0;
6025}
6026
6027int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6028 struct btrfs_root *root)
a28ec197 6029{
11833d66
YZ
6030 struct btrfs_fs_info *fs_info = root->fs_info;
6031 struct extent_io_tree *unpin;
1a5bc167
CM
6032 u64 start;
6033 u64 end;
a28ec197 6034 int ret;
a28ec197 6035
79787eaa
JM
6036 if (trans->aborted)
6037 return 0;
6038
11833d66
YZ
6039 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6040 unpin = &fs_info->freed_extents[1];
6041 else
6042 unpin = &fs_info->freed_extents[0];
6043
d397712b 6044 while (1) {
d4b450cd 6045 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6046 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6047 EXTENT_DIRTY, NULL);
d4b450cd
FM
6048 if (ret) {
6049 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6050 break;
d4b450cd 6051 }
1f3c79a2 6052
5378e607
LD
6053 if (btrfs_test_opt(root, DISCARD))
6054 ret = btrfs_discard_extent(root, start,
6055 end + 1 - start, NULL);
1f3c79a2 6056
1a5bc167 6057 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6058 unpin_extent_range(root, start, end, true);
d4b450cd 6059 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6060 cond_resched();
a28ec197 6061 }
817d52f8 6062
e20d96d6
CM
6063 return 0;
6064}
6065
b150a4f1
JB
6066static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6067 u64 owner, u64 root_objectid)
6068{
6069 struct btrfs_space_info *space_info;
6070 u64 flags;
6071
6072 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6073 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6074 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6075 else
6076 flags = BTRFS_BLOCK_GROUP_METADATA;
6077 } else {
6078 flags = BTRFS_BLOCK_GROUP_DATA;
6079 }
6080
6081 space_info = __find_space_info(fs_info, flags);
6082 BUG_ON(!space_info); /* Logic bug */
6083 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6084}
6085
6086
5d4f98a2
YZ
6087static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6088 struct btrfs_root *root,
c682f9b3 6089 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6090 u64 root_objectid, u64 owner_objectid,
6091 u64 owner_offset, int refs_to_drop,
c682f9b3 6092 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6093{
e2fa7227 6094 struct btrfs_key key;
5d4f98a2 6095 struct btrfs_path *path;
1261ec42
CM
6096 struct btrfs_fs_info *info = root->fs_info;
6097 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6098 struct extent_buffer *leaf;
5d4f98a2
YZ
6099 struct btrfs_extent_item *ei;
6100 struct btrfs_extent_inline_ref *iref;
a28ec197 6101 int ret;
5d4f98a2 6102 int is_data;
952fccac
CM
6103 int extent_slot = 0;
6104 int found_extent = 0;
6105 int num_to_del = 1;
c682f9b3 6106 int no_quota = node->no_quota;
5d4f98a2
YZ
6107 u32 item_size;
6108 u64 refs;
c682f9b3
QW
6109 u64 bytenr = node->bytenr;
6110 u64 num_bytes = node->num_bytes;
fcebe456 6111 int last_ref = 0;
3173a18f
JB
6112 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6113 SKINNY_METADATA);
037e6390 6114
fcebe456
JB
6115 if (!info->quota_enabled || !is_fstree(root_objectid))
6116 no_quota = 1;
6117
5caf2a00 6118 path = btrfs_alloc_path();
54aa1f4d
CM
6119 if (!path)
6120 return -ENOMEM;
5f26f772 6121
3c12ac72 6122 path->reada = 1;
b9473439 6123 path->leave_spinning = 1;
5d4f98a2
YZ
6124
6125 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6126 BUG_ON(!is_data && refs_to_drop != 1);
6127
3173a18f
JB
6128 if (is_data)
6129 skinny_metadata = 0;
6130
5d4f98a2
YZ
6131 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6132 bytenr, num_bytes, parent,
6133 root_objectid, owner_objectid,
6134 owner_offset);
7bb86316 6135 if (ret == 0) {
952fccac 6136 extent_slot = path->slots[0];
5d4f98a2
YZ
6137 while (extent_slot >= 0) {
6138 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6139 extent_slot);
5d4f98a2 6140 if (key.objectid != bytenr)
952fccac 6141 break;
5d4f98a2
YZ
6142 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6143 key.offset == num_bytes) {
952fccac
CM
6144 found_extent = 1;
6145 break;
6146 }
3173a18f
JB
6147 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6148 key.offset == owner_objectid) {
6149 found_extent = 1;
6150 break;
6151 }
952fccac
CM
6152 if (path->slots[0] - extent_slot > 5)
6153 break;
5d4f98a2 6154 extent_slot--;
952fccac 6155 }
5d4f98a2
YZ
6156#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6157 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6158 if (found_extent && item_size < sizeof(*ei))
6159 found_extent = 0;
6160#endif
31840ae1 6161 if (!found_extent) {
5d4f98a2 6162 BUG_ON(iref);
56bec294 6163 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6164 NULL, refs_to_drop,
fcebe456 6165 is_data, &last_ref);
005d6427
DS
6166 if (ret) {
6167 btrfs_abort_transaction(trans, extent_root, ret);
6168 goto out;
6169 }
b3b4aa74 6170 btrfs_release_path(path);
b9473439 6171 path->leave_spinning = 1;
5d4f98a2
YZ
6172
6173 key.objectid = bytenr;
6174 key.type = BTRFS_EXTENT_ITEM_KEY;
6175 key.offset = num_bytes;
6176
3173a18f
JB
6177 if (!is_data && skinny_metadata) {
6178 key.type = BTRFS_METADATA_ITEM_KEY;
6179 key.offset = owner_objectid;
6180 }
6181
31840ae1
ZY
6182 ret = btrfs_search_slot(trans, extent_root,
6183 &key, path, -1, 1);
3173a18f
JB
6184 if (ret > 0 && skinny_metadata && path->slots[0]) {
6185 /*
6186 * Couldn't find our skinny metadata item,
6187 * see if we have ye olde extent item.
6188 */
6189 path->slots[0]--;
6190 btrfs_item_key_to_cpu(path->nodes[0], &key,
6191 path->slots[0]);
6192 if (key.objectid == bytenr &&
6193 key.type == BTRFS_EXTENT_ITEM_KEY &&
6194 key.offset == num_bytes)
6195 ret = 0;
6196 }
6197
6198 if (ret > 0 && skinny_metadata) {
6199 skinny_metadata = false;
9ce49a0b 6200 key.objectid = bytenr;
3173a18f
JB
6201 key.type = BTRFS_EXTENT_ITEM_KEY;
6202 key.offset = num_bytes;
6203 btrfs_release_path(path);
6204 ret = btrfs_search_slot(trans, extent_root,
6205 &key, path, -1, 1);
6206 }
6207
f3465ca4 6208 if (ret) {
c2cf52eb 6209 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6210 ret, bytenr);
b783e62d
JB
6211 if (ret > 0)
6212 btrfs_print_leaf(extent_root,
6213 path->nodes[0]);
f3465ca4 6214 }
005d6427
DS
6215 if (ret < 0) {
6216 btrfs_abort_transaction(trans, extent_root, ret);
6217 goto out;
6218 }
31840ae1
ZY
6219 extent_slot = path->slots[0];
6220 }
fae7f21c 6221 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6222 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6223 btrfs_err(info,
6224 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6225 bytenr, parent, root_objectid, owner_objectid,
6226 owner_offset);
c4a050bb
JB
6227 btrfs_abort_transaction(trans, extent_root, ret);
6228 goto out;
79787eaa 6229 } else {
005d6427
DS
6230 btrfs_abort_transaction(trans, extent_root, ret);
6231 goto out;
7bb86316 6232 }
5f39d397
CM
6233
6234 leaf = path->nodes[0];
5d4f98a2
YZ
6235 item_size = btrfs_item_size_nr(leaf, extent_slot);
6236#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6237 if (item_size < sizeof(*ei)) {
6238 BUG_ON(found_extent || extent_slot != path->slots[0]);
6239 ret = convert_extent_item_v0(trans, extent_root, path,
6240 owner_objectid, 0);
005d6427
DS
6241 if (ret < 0) {
6242 btrfs_abort_transaction(trans, extent_root, ret);
6243 goto out;
6244 }
5d4f98a2 6245
b3b4aa74 6246 btrfs_release_path(path);
5d4f98a2
YZ
6247 path->leave_spinning = 1;
6248
6249 key.objectid = bytenr;
6250 key.type = BTRFS_EXTENT_ITEM_KEY;
6251 key.offset = num_bytes;
6252
6253 ret = btrfs_search_slot(trans, extent_root, &key, path,
6254 -1, 1);
6255 if (ret) {
c2cf52eb 6256 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6257 ret, bytenr);
5d4f98a2
YZ
6258 btrfs_print_leaf(extent_root, path->nodes[0]);
6259 }
005d6427
DS
6260 if (ret < 0) {
6261 btrfs_abort_transaction(trans, extent_root, ret);
6262 goto out;
6263 }
6264
5d4f98a2
YZ
6265 extent_slot = path->slots[0];
6266 leaf = path->nodes[0];
6267 item_size = btrfs_item_size_nr(leaf, extent_slot);
6268 }
6269#endif
6270 BUG_ON(item_size < sizeof(*ei));
952fccac 6271 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6272 struct btrfs_extent_item);
3173a18f
JB
6273 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6274 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6275 struct btrfs_tree_block_info *bi;
6276 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6277 bi = (struct btrfs_tree_block_info *)(ei + 1);
6278 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6279 }
56bec294 6280
5d4f98a2 6281 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6282 if (refs < refs_to_drop) {
6283 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6284 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6285 ret = -EINVAL;
6286 btrfs_abort_transaction(trans, extent_root, ret);
6287 goto out;
6288 }
56bec294 6289 refs -= refs_to_drop;
5f39d397 6290
5d4f98a2
YZ
6291 if (refs > 0) {
6292 if (extent_op)
6293 __run_delayed_extent_op(extent_op, leaf, ei);
6294 /*
6295 * In the case of inline back ref, reference count will
6296 * be updated by remove_extent_backref
952fccac 6297 */
5d4f98a2
YZ
6298 if (iref) {
6299 BUG_ON(!found_extent);
6300 } else {
6301 btrfs_set_extent_refs(leaf, ei, refs);
6302 btrfs_mark_buffer_dirty(leaf);
6303 }
6304 if (found_extent) {
6305 ret = remove_extent_backref(trans, extent_root, path,
6306 iref, refs_to_drop,
fcebe456 6307 is_data, &last_ref);
005d6427
DS
6308 if (ret) {
6309 btrfs_abort_transaction(trans, extent_root, ret);
6310 goto out;
6311 }
952fccac 6312 }
b150a4f1
JB
6313 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6314 root_objectid);
5d4f98a2 6315 } else {
5d4f98a2
YZ
6316 if (found_extent) {
6317 BUG_ON(is_data && refs_to_drop !=
6318 extent_data_ref_count(root, path, iref));
6319 if (iref) {
6320 BUG_ON(path->slots[0] != extent_slot);
6321 } else {
6322 BUG_ON(path->slots[0] != extent_slot + 1);
6323 path->slots[0] = extent_slot;
6324 num_to_del = 2;
6325 }
78fae27e 6326 }
b9473439 6327
fcebe456 6328 last_ref = 1;
952fccac
CM
6329 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6330 num_to_del);
005d6427
DS
6331 if (ret) {
6332 btrfs_abort_transaction(trans, extent_root, ret);
6333 goto out;
6334 }
b3b4aa74 6335 btrfs_release_path(path);
21af804c 6336
5d4f98a2 6337 if (is_data) {
459931ec 6338 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6339 if (ret) {
6340 btrfs_abort_transaction(trans, extent_root, ret);
6341 goto out;
6342 }
459931ec
CM
6343 }
6344
ce93ec54 6345 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6346 if (ret) {
6347 btrfs_abort_transaction(trans, extent_root, ret);
6348 goto out;
6349 }
a28ec197 6350 }
fcebe456
JB
6351 btrfs_release_path(path);
6352
79787eaa 6353out:
5caf2a00 6354 btrfs_free_path(path);
a28ec197
CM
6355 return ret;
6356}
6357
1887be66 6358/*
f0486c68 6359 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6360 * delayed ref for that extent as well. This searches the delayed ref tree for
6361 * a given extent, and if there are no other delayed refs to be processed, it
6362 * removes it from the tree.
6363 */
6364static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6365 struct btrfs_root *root, u64 bytenr)
6366{
6367 struct btrfs_delayed_ref_head *head;
6368 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6369 int ret = 0;
1887be66
CM
6370
6371 delayed_refs = &trans->transaction->delayed_refs;
6372 spin_lock(&delayed_refs->lock);
6373 head = btrfs_find_delayed_ref_head(trans, bytenr);
6374 if (!head)
cf93da7b 6375 goto out_delayed_unlock;
1887be66 6376
d7df2c79 6377 spin_lock(&head->lock);
c6fc2454 6378 if (!list_empty(&head->ref_list))
1887be66
CM
6379 goto out;
6380
5d4f98a2
YZ
6381 if (head->extent_op) {
6382 if (!head->must_insert_reserved)
6383 goto out;
78a6184a 6384 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6385 head->extent_op = NULL;
6386 }
6387
1887be66
CM
6388 /*
6389 * waiting for the lock here would deadlock. If someone else has it
6390 * locked they are already in the process of dropping it anyway
6391 */
6392 if (!mutex_trylock(&head->mutex))
6393 goto out;
6394
6395 /*
6396 * at this point we have a head with no other entries. Go
6397 * ahead and process it.
6398 */
6399 head->node.in_tree = 0;
c46effa6 6400 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6401
d7df2c79 6402 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6403
6404 /*
6405 * we don't take a ref on the node because we're removing it from the
6406 * tree, so we just steal the ref the tree was holding.
6407 */
c3e69d58 6408 delayed_refs->num_heads--;
d7df2c79 6409 if (head->processing == 0)
c3e69d58 6410 delayed_refs->num_heads_ready--;
d7df2c79
JB
6411 head->processing = 0;
6412 spin_unlock(&head->lock);
1887be66
CM
6413 spin_unlock(&delayed_refs->lock);
6414
f0486c68
YZ
6415 BUG_ON(head->extent_op);
6416 if (head->must_insert_reserved)
6417 ret = 1;
6418
6419 mutex_unlock(&head->mutex);
1887be66 6420 btrfs_put_delayed_ref(&head->node);
f0486c68 6421 return ret;
1887be66 6422out:
d7df2c79 6423 spin_unlock(&head->lock);
cf93da7b
CM
6424
6425out_delayed_unlock:
1887be66
CM
6426 spin_unlock(&delayed_refs->lock);
6427 return 0;
6428}
6429
f0486c68
YZ
6430void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6431 struct btrfs_root *root,
6432 struct extent_buffer *buf,
5581a51a 6433 u64 parent, int last_ref)
f0486c68 6434{
b150a4f1 6435 int pin = 1;
f0486c68
YZ
6436 int ret;
6437
6438 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6439 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6440 buf->start, buf->len,
6441 parent, root->root_key.objectid,
6442 btrfs_header_level(buf),
5581a51a 6443 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6444 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6445 }
6446
6447 if (!last_ref)
6448 return;
6449
f0486c68 6450 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6451 struct btrfs_block_group_cache *cache;
6452
f0486c68
YZ
6453 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6454 ret = check_ref_cleanup(trans, root, buf->start);
6455 if (!ret)
37be25bc 6456 goto out;
f0486c68
YZ
6457 }
6458
6219872d
FM
6459 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6460
f0486c68
YZ
6461 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6462 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6463 btrfs_put_block_group(cache);
37be25bc 6464 goto out;
f0486c68
YZ
6465 }
6466
6467 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6468
6469 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6470 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6471 btrfs_put_block_group(cache);
0be5dc67 6472 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6473 pin = 0;
f0486c68
YZ
6474 }
6475out:
b150a4f1
JB
6476 if (pin)
6477 add_pinned_bytes(root->fs_info, buf->len,
6478 btrfs_header_level(buf),
6479 root->root_key.objectid);
6480
a826d6dc
JB
6481 /*
6482 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6483 * anymore.
6484 */
6485 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6486}
6487
79787eaa 6488/* Can return -ENOMEM */
66d7e7f0
AJ
6489int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6490 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6491 u64 owner, u64 offset, int no_quota)
925baedd
CM
6492{
6493 int ret;
66d7e7f0 6494 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6495
fccb84c9 6496 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6497 return 0;
fccb84c9 6498
b150a4f1
JB
6499 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6500
56bec294
CM
6501 /*
6502 * tree log blocks never actually go into the extent allocation
6503 * tree, just update pinning info and exit early.
56bec294 6504 */
5d4f98a2
YZ
6505 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6506 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6507 /* unlocks the pinned mutex */
11833d66 6508 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6509 ret = 0;
5d4f98a2 6510 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6511 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6512 num_bytes,
5d4f98a2 6513 parent, root_objectid, (int)owner,
fcebe456 6514 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6515 } else {
66d7e7f0
AJ
6516 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6517 num_bytes,
6518 parent, root_objectid, owner,
6519 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6520 NULL, no_quota);
56bec294 6521 }
925baedd
CM
6522 return ret;
6523}
6524
817d52f8
JB
6525/*
6526 * when we wait for progress in the block group caching, its because
6527 * our allocation attempt failed at least once. So, we must sleep
6528 * and let some progress happen before we try again.
6529 *
6530 * This function will sleep at least once waiting for new free space to
6531 * show up, and then it will check the block group free space numbers
6532 * for our min num_bytes. Another option is to have it go ahead
6533 * and look in the rbtree for a free extent of a given size, but this
6534 * is a good start.
36cce922
JB
6535 *
6536 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6537 * any of the information in this block group.
817d52f8 6538 */
36cce922 6539static noinline void
817d52f8
JB
6540wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6541 u64 num_bytes)
6542{
11833d66 6543 struct btrfs_caching_control *caching_ctl;
817d52f8 6544
11833d66
YZ
6545 caching_ctl = get_caching_control(cache);
6546 if (!caching_ctl)
36cce922 6547 return;
817d52f8 6548
11833d66 6549 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6550 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6551
6552 put_caching_control(caching_ctl);
11833d66
YZ
6553}
6554
6555static noinline int
6556wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6557{
6558 struct btrfs_caching_control *caching_ctl;
36cce922 6559 int ret = 0;
11833d66
YZ
6560
6561 caching_ctl = get_caching_control(cache);
6562 if (!caching_ctl)
36cce922 6563 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6564
6565 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6566 if (cache->cached == BTRFS_CACHE_ERROR)
6567 ret = -EIO;
11833d66 6568 put_caching_control(caching_ctl);
36cce922 6569 return ret;
817d52f8
JB
6570}
6571
31e50229 6572int __get_raid_index(u64 flags)
b742bb82 6573{
7738a53a 6574 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6575 return BTRFS_RAID_RAID10;
7738a53a 6576 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6577 return BTRFS_RAID_RAID1;
7738a53a 6578 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6579 return BTRFS_RAID_DUP;
7738a53a 6580 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6581 return BTRFS_RAID_RAID0;
53b381b3 6582 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6583 return BTRFS_RAID_RAID5;
53b381b3 6584 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6585 return BTRFS_RAID_RAID6;
7738a53a 6586
e942f883 6587 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6588}
6589
6ab0a202 6590int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6591{
31e50229 6592 return __get_raid_index(cache->flags);
7738a53a
ID
6593}
6594
6ab0a202
JM
6595static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6596 [BTRFS_RAID_RAID10] = "raid10",
6597 [BTRFS_RAID_RAID1] = "raid1",
6598 [BTRFS_RAID_DUP] = "dup",
6599 [BTRFS_RAID_RAID0] = "raid0",
6600 [BTRFS_RAID_SINGLE] = "single",
6601 [BTRFS_RAID_RAID5] = "raid5",
6602 [BTRFS_RAID_RAID6] = "raid6",
6603};
6604
1b8e5df6 6605static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6606{
6607 if (type >= BTRFS_NR_RAID_TYPES)
6608 return NULL;
6609
6610 return btrfs_raid_type_names[type];
6611}
6612
817d52f8 6613enum btrfs_loop_type {
285ff5af
JB
6614 LOOP_CACHING_NOWAIT = 0,
6615 LOOP_CACHING_WAIT = 1,
6616 LOOP_ALLOC_CHUNK = 2,
6617 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6618};
6619
e570fd27
MX
6620static inline void
6621btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6622 int delalloc)
6623{
6624 if (delalloc)
6625 down_read(&cache->data_rwsem);
6626}
6627
6628static inline void
6629btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6630 int delalloc)
6631{
6632 btrfs_get_block_group(cache);
6633 if (delalloc)
6634 down_read(&cache->data_rwsem);
6635}
6636
6637static struct btrfs_block_group_cache *
6638btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6639 struct btrfs_free_cluster *cluster,
6640 int delalloc)
6641{
6642 struct btrfs_block_group_cache *used_bg;
6643 bool locked = false;
6644again:
6645 spin_lock(&cluster->refill_lock);
6646 if (locked) {
6647 if (used_bg == cluster->block_group)
6648 return used_bg;
6649
6650 up_read(&used_bg->data_rwsem);
6651 btrfs_put_block_group(used_bg);
6652 }
6653
6654 used_bg = cluster->block_group;
6655 if (!used_bg)
6656 return NULL;
6657
6658 if (used_bg == block_group)
6659 return used_bg;
6660
6661 btrfs_get_block_group(used_bg);
6662
6663 if (!delalloc)
6664 return used_bg;
6665
6666 if (down_read_trylock(&used_bg->data_rwsem))
6667 return used_bg;
6668
6669 spin_unlock(&cluster->refill_lock);
6670 down_read(&used_bg->data_rwsem);
6671 locked = true;
6672 goto again;
6673}
6674
6675static inline void
6676btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6677 int delalloc)
6678{
6679 if (delalloc)
6680 up_read(&cache->data_rwsem);
6681 btrfs_put_block_group(cache);
6682}
6683
fec577fb
CM
6684/*
6685 * walks the btree of allocated extents and find a hole of a given size.
6686 * The key ins is changed to record the hole:
a4820398 6687 * ins->objectid == start position
62e2749e 6688 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6689 * ins->offset == the size of the hole.
fec577fb 6690 * Any available blocks before search_start are skipped.
a4820398
MX
6691 *
6692 * If there is no suitable free space, we will record the max size of
6693 * the free space extent currently.
fec577fb 6694 */
00361589 6695static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6696 u64 num_bytes, u64 empty_size,
98ed5174 6697 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6698 u64 flags, int delalloc)
fec577fb 6699{
80eb234a 6700 int ret = 0;
d397712b 6701 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6702 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6703 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6704 u64 search_start = 0;
a4820398 6705 u64 max_extent_size = 0;
239b14b3 6706 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6707 struct btrfs_space_info *space_info;
fa9c0d79 6708 int loop = 0;
b6919a58
DS
6709 int index = __get_raid_index(flags);
6710 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6711 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6712 bool failed_cluster_refill = false;
1cdda9b8 6713 bool failed_alloc = false;
67377734 6714 bool use_cluster = true;
60d2adbb 6715 bool have_caching_bg = false;
fec577fb 6716
db94535d 6717 WARN_ON(num_bytes < root->sectorsize);
962a298f 6718 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6719 ins->objectid = 0;
6720 ins->offset = 0;
b1a4d965 6721
b6919a58 6722 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6723
b6919a58 6724 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6725 if (!space_info) {
b6919a58 6726 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6727 return -ENOSPC;
6728 }
2552d17e 6729
67377734
JB
6730 /*
6731 * If the space info is for both data and metadata it means we have a
6732 * small filesystem and we can't use the clustering stuff.
6733 */
6734 if (btrfs_mixed_space_info(space_info))
6735 use_cluster = false;
6736
b6919a58 6737 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6738 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6739 if (!btrfs_test_opt(root, SSD))
6740 empty_cluster = 64 * 1024;
239b14b3
CM
6741 }
6742
b6919a58 6743 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6744 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6745 last_ptr = &root->fs_info->data_alloc_cluster;
6746 }
0f9dd46c 6747
239b14b3 6748 if (last_ptr) {
fa9c0d79
CM
6749 spin_lock(&last_ptr->lock);
6750 if (last_ptr->block_group)
6751 hint_byte = last_ptr->window_start;
6752 spin_unlock(&last_ptr->lock);
239b14b3 6753 }
fa9c0d79 6754
a061fc8d 6755 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6756 search_start = max(search_start, hint_byte);
0b86a832 6757
817d52f8 6758 if (!last_ptr)
fa9c0d79 6759 empty_cluster = 0;
fa9c0d79 6760
2552d17e 6761 if (search_start == hint_byte) {
2552d17e
JB
6762 block_group = btrfs_lookup_block_group(root->fs_info,
6763 search_start);
817d52f8
JB
6764 /*
6765 * we don't want to use the block group if it doesn't match our
6766 * allocation bits, or if its not cached.
ccf0e725
JB
6767 *
6768 * However if we are re-searching with an ideal block group
6769 * picked out then we don't care that the block group is cached.
817d52f8 6770 */
b6919a58 6771 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6772 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6773 down_read(&space_info->groups_sem);
44fb5511
CM
6774 if (list_empty(&block_group->list) ||
6775 block_group->ro) {
6776 /*
6777 * someone is removing this block group,
6778 * we can't jump into the have_block_group
6779 * target because our list pointers are not
6780 * valid
6781 */
6782 btrfs_put_block_group(block_group);
6783 up_read(&space_info->groups_sem);
ccf0e725 6784 } else {
b742bb82 6785 index = get_block_group_index(block_group);
e570fd27 6786 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6787 goto have_block_group;
ccf0e725 6788 }
2552d17e 6789 } else if (block_group) {
fa9c0d79 6790 btrfs_put_block_group(block_group);
2552d17e 6791 }
42e70e7a 6792 }
2552d17e 6793search:
60d2adbb 6794 have_caching_bg = false;
80eb234a 6795 down_read(&space_info->groups_sem);
b742bb82
YZ
6796 list_for_each_entry(block_group, &space_info->block_groups[index],
6797 list) {
6226cb0a 6798 u64 offset;
817d52f8 6799 int cached;
8a1413a2 6800
e570fd27 6801 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6802 search_start = block_group->key.objectid;
42e70e7a 6803
83a50de9
CM
6804 /*
6805 * this can happen if we end up cycling through all the
6806 * raid types, but we want to make sure we only allocate
6807 * for the proper type.
6808 */
b6919a58 6809 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6810 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6811 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6812 BTRFS_BLOCK_GROUP_RAID5 |
6813 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6814 BTRFS_BLOCK_GROUP_RAID10;
6815
6816 /*
6817 * if they asked for extra copies and this block group
6818 * doesn't provide them, bail. This does allow us to
6819 * fill raid0 from raid1.
6820 */
b6919a58 6821 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6822 goto loop;
6823 }
6824
2552d17e 6825have_block_group:
291c7d2f
JB
6826 cached = block_group_cache_done(block_group);
6827 if (unlikely(!cached)) {
f6373bf3 6828 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6829 BUG_ON(ret < 0);
6830 ret = 0;
817d52f8
JB
6831 }
6832
36cce922
JB
6833 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6834 goto loop;
ea6a478e 6835 if (unlikely(block_group->ro))
2552d17e 6836 goto loop;
0f9dd46c 6837
0a24325e 6838 /*
062c05c4
AO
6839 * Ok we want to try and use the cluster allocator, so
6840 * lets look there
0a24325e 6841 */
062c05c4 6842 if (last_ptr) {
215a63d1 6843 struct btrfs_block_group_cache *used_block_group;
8de972b4 6844 unsigned long aligned_cluster;
fa9c0d79
CM
6845 /*
6846 * the refill lock keeps out other
6847 * people trying to start a new cluster
6848 */
e570fd27
MX
6849 used_block_group = btrfs_lock_cluster(block_group,
6850 last_ptr,
6851 delalloc);
6852 if (!used_block_group)
44fb5511 6853 goto refill_cluster;
274bd4fb 6854
e570fd27
MX
6855 if (used_block_group != block_group &&
6856 (used_block_group->ro ||
6857 !block_group_bits(used_block_group, flags)))
6858 goto release_cluster;
44fb5511 6859
274bd4fb 6860 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6861 last_ptr,
6862 num_bytes,
6863 used_block_group->key.objectid,
6864 &max_extent_size);
fa9c0d79
CM
6865 if (offset) {
6866 /* we have a block, we're done */
6867 spin_unlock(&last_ptr->refill_lock);
3f7de037 6868 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6869 used_block_group,
6870 search_start, num_bytes);
215a63d1 6871 if (used_block_group != block_group) {
e570fd27
MX
6872 btrfs_release_block_group(block_group,
6873 delalloc);
215a63d1
MX
6874 block_group = used_block_group;
6875 }
fa9c0d79
CM
6876 goto checks;
6877 }
6878
274bd4fb 6879 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 6880release_cluster:
062c05c4
AO
6881 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6882 * set up a new clusters, so lets just skip it
6883 * and let the allocator find whatever block
6884 * it can find. If we reach this point, we
6885 * will have tried the cluster allocator
6886 * plenty of times and not have found
6887 * anything, so we are likely way too
6888 * fragmented for the clustering stuff to find
a5f6f719
AO
6889 * anything.
6890 *
6891 * However, if the cluster is taken from the
6892 * current block group, release the cluster
6893 * first, so that we stand a better chance of
6894 * succeeding in the unclustered
6895 * allocation. */
6896 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 6897 used_block_group != block_group) {
062c05c4 6898 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
6899 btrfs_release_block_group(used_block_group,
6900 delalloc);
062c05c4
AO
6901 goto unclustered_alloc;
6902 }
6903
fa9c0d79
CM
6904 /*
6905 * this cluster didn't work out, free it and
6906 * start over
6907 */
6908 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6909
e570fd27
MX
6910 if (used_block_group != block_group)
6911 btrfs_release_block_group(used_block_group,
6912 delalloc);
6913refill_cluster:
a5f6f719
AO
6914 if (loop >= LOOP_NO_EMPTY_SIZE) {
6915 spin_unlock(&last_ptr->refill_lock);
6916 goto unclustered_alloc;
6917 }
6918
8de972b4
CM
6919 aligned_cluster = max_t(unsigned long,
6920 empty_cluster + empty_size,
6921 block_group->full_stripe_len);
6922
fa9c0d79 6923 /* allocate a cluster in this block group */
00361589
JB
6924 ret = btrfs_find_space_cluster(root, block_group,
6925 last_ptr, search_start,
6926 num_bytes,
6927 aligned_cluster);
fa9c0d79
CM
6928 if (ret == 0) {
6929 /*
6930 * now pull our allocation out of this
6931 * cluster
6932 */
6933 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
6934 last_ptr,
6935 num_bytes,
6936 search_start,
6937 &max_extent_size);
fa9c0d79
CM
6938 if (offset) {
6939 /* we found one, proceed */
6940 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
6941 trace_btrfs_reserve_extent_cluster(root,
6942 block_group, search_start,
6943 num_bytes);
fa9c0d79
CM
6944 goto checks;
6945 }
0a24325e
JB
6946 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6947 && !failed_cluster_refill) {
817d52f8
JB
6948 spin_unlock(&last_ptr->refill_lock);
6949
0a24325e 6950 failed_cluster_refill = true;
817d52f8
JB
6951 wait_block_group_cache_progress(block_group,
6952 num_bytes + empty_cluster + empty_size);
6953 goto have_block_group;
fa9c0d79 6954 }
817d52f8 6955
fa9c0d79
CM
6956 /*
6957 * at this point we either didn't find a cluster
6958 * or we weren't able to allocate a block from our
6959 * cluster. Free the cluster we've been trying
6960 * to use, and go to the next block group
6961 */
0a24325e 6962 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 6963 spin_unlock(&last_ptr->refill_lock);
0a24325e 6964 goto loop;
fa9c0d79
CM
6965 }
6966
062c05c4 6967unclustered_alloc:
a5f6f719
AO
6968 spin_lock(&block_group->free_space_ctl->tree_lock);
6969 if (cached &&
6970 block_group->free_space_ctl->free_space <
6971 num_bytes + empty_cluster + empty_size) {
a4820398
MX
6972 if (block_group->free_space_ctl->free_space >
6973 max_extent_size)
6974 max_extent_size =
6975 block_group->free_space_ctl->free_space;
a5f6f719
AO
6976 spin_unlock(&block_group->free_space_ctl->tree_lock);
6977 goto loop;
6978 }
6979 spin_unlock(&block_group->free_space_ctl->tree_lock);
6980
6226cb0a 6981 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
6982 num_bytes, empty_size,
6983 &max_extent_size);
1cdda9b8
JB
6984 /*
6985 * If we didn't find a chunk, and we haven't failed on this
6986 * block group before, and this block group is in the middle of
6987 * caching and we are ok with waiting, then go ahead and wait
6988 * for progress to be made, and set failed_alloc to true.
6989 *
6990 * If failed_alloc is true then we've already waited on this
6991 * block group once and should move on to the next block group.
6992 */
6993 if (!offset && !failed_alloc && !cached &&
6994 loop > LOOP_CACHING_NOWAIT) {
817d52f8 6995 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
6996 num_bytes + empty_size);
6997 failed_alloc = true;
817d52f8 6998 goto have_block_group;
1cdda9b8 6999 } else if (!offset) {
60d2adbb
MX
7000 if (!cached)
7001 have_caching_bg = true;
1cdda9b8 7002 goto loop;
817d52f8 7003 }
fa9c0d79 7004checks:
4e54b17a 7005 search_start = ALIGN(offset, root->stripesize);
25179201 7006
2552d17e
JB
7007 /* move on to the next group */
7008 if (search_start + num_bytes >
215a63d1
MX
7009 block_group->key.objectid + block_group->key.offset) {
7010 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7011 goto loop;
6226cb0a 7012 }
f5a31e16 7013
f0486c68 7014 if (offset < search_start)
215a63d1 7015 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7016 search_start - offset);
7017 BUG_ON(offset > search_start);
2552d17e 7018
215a63d1 7019 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7020 alloc_type, delalloc);
f0486c68 7021 if (ret == -EAGAIN) {
215a63d1 7022 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7023 goto loop;
0f9dd46c 7024 }
0b86a832 7025
f0486c68 7026 /* we are all good, lets return */
2552d17e
JB
7027 ins->objectid = search_start;
7028 ins->offset = num_bytes;
d2fb3437 7029
3f7de037
JB
7030 trace_btrfs_reserve_extent(orig_root, block_group,
7031 search_start, num_bytes);
e570fd27 7032 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7033 break;
7034loop:
0a24325e 7035 failed_cluster_refill = false;
1cdda9b8 7036 failed_alloc = false;
b742bb82 7037 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7038 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7039 }
7040 up_read(&space_info->groups_sem);
7041
60d2adbb
MX
7042 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7043 goto search;
7044
b742bb82
YZ
7045 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7046 goto search;
7047
285ff5af 7048 /*
ccf0e725
JB
7049 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7050 * caching kthreads as we move along
817d52f8
JB
7051 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7052 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7053 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7054 * again
fa9c0d79 7055 */
723bda20 7056 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7057 index = 0;
723bda20 7058 loop++;
817d52f8 7059 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7060 struct btrfs_trans_handle *trans;
f017f15f
WS
7061 int exist = 0;
7062
7063 trans = current->journal_info;
7064 if (trans)
7065 exist = 1;
7066 else
7067 trans = btrfs_join_transaction(root);
00361589 7068
00361589
JB
7069 if (IS_ERR(trans)) {
7070 ret = PTR_ERR(trans);
7071 goto out;
7072 }
7073
b6919a58 7074 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7075 CHUNK_ALLOC_FORCE);
7076 /*
7077 * Do not bail out on ENOSPC since we
7078 * can do more things.
7079 */
00361589 7080 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7081 btrfs_abort_transaction(trans,
7082 root, ret);
00361589
JB
7083 else
7084 ret = 0;
f017f15f
WS
7085 if (!exist)
7086 btrfs_end_transaction(trans, root);
00361589 7087 if (ret)
ea658bad 7088 goto out;
2552d17e
JB
7089 }
7090
723bda20
JB
7091 if (loop == LOOP_NO_EMPTY_SIZE) {
7092 empty_size = 0;
7093 empty_cluster = 0;
fa9c0d79 7094 }
723bda20
JB
7095
7096 goto search;
2552d17e
JB
7097 } else if (!ins->objectid) {
7098 ret = -ENOSPC;
d82a6f1d 7099 } else if (ins->objectid) {
80eb234a 7100 ret = 0;
be744175 7101 }
79787eaa 7102out:
a4820398
MX
7103 if (ret == -ENOSPC)
7104 ins->offset = max_extent_size;
0f70abe2 7105 return ret;
fec577fb 7106}
ec44a35c 7107
9ed74f2d
JB
7108static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7109 int dump_block_groups)
0f9dd46c
JB
7110{
7111 struct btrfs_block_group_cache *cache;
b742bb82 7112 int index = 0;
0f9dd46c 7113
9ed74f2d 7114 spin_lock(&info->lock);
efe120a0 7115 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7116 info->flags,
7117 info->total_bytes - info->bytes_used - info->bytes_pinned -
7118 info->bytes_reserved - info->bytes_readonly,
d397712b 7119 (info->full) ? "" : "not ");
efe120a0 7120 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7121 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7122 info->total_bytes, info->bytes_used, info->bytes_pinned,
7123 info->bytes_reserved, info->bytes_may_use,
7124 info->bytes_readonly);
9ed74f2d
JB
7125 spin_unlock(&info->lock);
7126
7127 if (!dump_block_groups)
7128 return;
0f9dd46c 7129
80eb234a 7130 down_read(&info->groups_sem);
b742bb82
YZ
7131again:
7132 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7133 spin_lock(&cache->lock);
efe120a0
FH
7134 printk(KERN_INFO "BTRFS: "
7135 "block group %llu has %llu bytes, "
7136 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7137 cache->key.objectid, cache->key.offset,
7138 btrfs_block_group_used(&cache->item), cache->pinned,
7139 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7140 btrfs_dump_free_space(cache, bytes);
7141 spin_unlock(&cache->lock);
7142 }
b742bb82
YZ
7143 if (++index < BTRFS_NR_RAID_TYPES)
7144 goto again;
80eb234a 7145 up_read(&info->groups_sem);
0f9dd46c 7146}
e8569813 7147
00361589 7148int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7149 u64 num_bytes, u64 min_alloc_size,
7150 u64 empty_size, u64 hint_byte,
e570fd27 7151 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7152{
9e622d6b 7153 bool final_tried = false;
b6919a58 7154 u64 flags;
fec577fb 7155 int ret;
925baedd 7156
b6919a58 7157 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7158again:
db94535d 7159 WARN_ON(num_bytes < root->sectorsize);
00361589 7160 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7161 flags, delalloc);
3b951516 7162
9e622d6b 7163 if (ret == -ENOSPC) {
a4820398
MX
7164 if (!final_tried && ins->offset) {
7165 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7166 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7167 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7168 if (num_bytes == min_alloc_size)
7169 final_tried = true;
7170 goto again;
7171 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7172 struct btrfs_space_info *sinfo;
7173
b6919a58 7174 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7175 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7176 flags, num_bytes);
53804280
JM
7177 if (sinfo)
7178 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7179 }
925baedd 7180 }
0f9dd46c
JB
7181
7182 return ret;
e6dcd2dc
CM
7183}
7184
e688b725 7185static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7186 u64 start, u64 len,
7187 int pin, int delalloc)
65b51a00 7188{
0f9dd46c 7189 struct btrfs_block_group_cache *cache;
1f3c79a2 7190 int ret = 0;
0f9dd46c 7191
0f9dd46c
JB
7192 cache = btrfs_lookup_block_group(root->fs_info, start);
7193 if (!cache) {
c2cf52eb 7194 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7195 start);
0f9dd46c
JB
7196 return -ENOSPC;
7197 }
1f3c79a2 7198
e688b725
CM
7199 if (pin)
7200 pin_down_extent(root, cache, start, len, 1);
7201 else {
dcc82f47
FM
7202 if (btrfs_test_opt(root, DISCARD))
7203 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7204 btrfs_add_free_space(cache, start, len);
e570fd27 7205 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7206 }
31193213 7207
fa9c0d79 7208 btrfs_put_block_group(cache);
817d52f8 7209
1abe9b8a 7210 trace_btrfs_reserved_extent_free(root, start, len);
7211
e6dcd2dc
CM
7212 return ret;
7213}
7214
e688b725 7215int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7216 u64 start, u64 len, int delalloc)
e688b725 7217{
e570fd27 7218 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7219}
7220
7221int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7222 u64 start, u64 len)
7223{
e570fd27 7224 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7225}
7226
5d4f98a2
YZ
7227static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7228 struct btrfs_root *root,
7229 u64 parent, u64 root_objectid,
7230 u64 flags, u64 owner, u64 offset,
7231 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7232{
7233 int ret;
5d4f98a2 7234 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7235 struct btrfs_extent_item *extent_item;
5d4f98a2 7236 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7237 struct btrfs_path *path;
5d4f98a2
YZ
7238 struct extent_buffer *leaf;
7239 int type;
7240 u32 size;
26b8003f 7241
5d4f98a2
YZ
7242 if (parent > 0)
7243 type = BTRFS_SHARED_DATA_REF_KEY;
7244 else
7245 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7246
5d4f98a2 7247 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7248
7249 path = btrfs_alloc_path();
db5b493a
TI
7250 if (!path)
7251 return -ENOMEM;
47e4bb98 7252
b9473439 7253 path->leave_spinning = 1;
5d4f98a2
YZ
7254 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7255 ins, size);
79787eaa
JM
7256 if (ret) {
7257 btrfs_free_path(path);
7258 return ret;
7259 }
0f9dd46c 7260
5d4f98a2
YZ
7261 leaf = path->nodes[0];
7262 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7263 struct btrfs_extent_item);
5d4f98a2
YZ
7264 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7265 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7266 btrfs_set_extent_flags(leaf, extent_item,
7267 flags | BTRFS_EXTENT_FLAG_DATA);
7268
7269 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7270 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7271 if (parent > 0) {
7272 struct btrfs_shared_data_ref *ref;
7273 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7274 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7275 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7276 } else {
7277 struct btrfs_extent_data_ref *ref;
7278 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7279 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7280 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7281 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7282 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7283 }
47e4bb98
CM
7284
7285 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7286 btrfs_free_path(path);
f510cfec 7287
ce93ec54 7288 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7289 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7290 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7291 ins->objectid, ins->offset);
f5947066
CM
7292 BUG();
7293 }
0be5dc67 7294 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7295 return ret;
7296}
7297
5d4f98a2
YZ
7298static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7299 struct btrfs_root *root,
7300 u64 parent, u64 root_objectid,
7301 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7302 int level, struct btrfs_key *ins,
7303 int no_quota)
e6dcd2dc
CM
7304{
7305 int ret;
5d4f98a2
YZ
7306 struct btrfs_fs_info *fs_info = root->fs_info;
7307 struct btrfs_extent_item *extent_item;
7308 struct btrfs_tree_block_info *block_info;
7309 struct btrfs_extent_inline_ref *iref;
7310 struct btrfs_path *path;
7311 struct extent_buffer *leaf;
3173a18f 7312 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7313 u64 num_bytes = ins->offset;
3173a18f
JB
7314 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7315 SKINNY_METADATA);
7316
7317 if (!skinny_metadata)
7318 size += sizeof(*block_info);
1c2308f8 7319
5d4f98a2 7320 path = btrfs_alloc_path();
857cc2fc
JB
7321 if (!path) {
7322 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7323 root->nodesize);
d8926bb3 7324 return -ENOMEM;
857cc2fc 7325 }
56bec294 7326
5d4f98a2
YZ
7327 path->leave_spinning = 1;
7328 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7329 ins, size);
79787eaa 7330 if (ret) {
dd825259 7331 btrfs_free_path(path);
857cc2fc 7332 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7333 root->nodesize);
79787eaa
JM
7334 return ret;
7335 }
5d4f98a2
YZ
7336
7337 leaf = path->nodes[0];
7338 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7339 struct btrfs_extent_item);
7340 btrfs_set_extent_refs(leaf, extent_item, 1);
7341 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7342 btrfs_set_extent_flags(leaf, extent_item,
7343 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7344
3173a18f
JB
7345 if (skinny_metadata) {
7346 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7347 num_bytes = root->nodesize;
3173a18f
JB
7348 } else {
7349 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7350 btrfs_set_tree_block_key(leaf, block_info, key);
7351 btrfs_set_tree_block_level(leaf, block_info, level);
7352 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7353 }
5d4f98a2 7354
5d4f98a2
YZ
7355 if (parent > 0) {
7356 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7357 btrfs_set_extent_inline_ref_type(leaf, iref,
7358 BTRFS_SHARED_BLOCK_REF_KEY);
7359 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7360 } else {
7361 btrfs_set_extent_inline_ref_type(leaf, iref,
7362 BTRFS_TREE_BLOCK_REF_KEY);
7363 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7364 }
7365
7366 btrfs_mark_buffer_dirty(leaf);
7367 btrfs_free_path(path);
7368
ce93ec54
JB
7369 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7370 1);
79787eaa 7371 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7372 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7373 ins->objectid, ins->offset);
5d4f98a2
YZ
7374 BUG();
7375 }
0be5dc67 7376
707e8a07 7377 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7378 return ret;
7379}
7380
7381int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7382 struct btrfs_root *root,
7383 u64 root_objectid, u64 owner,
7384 u64 offset, struct btrfs_key *ins)
7385{
7386 int ret;
7387
7388 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7389
66d7e7f0
AJ
7390 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7391 ins->offset, 0,
7392 root_objectid, owner, offset,
7393 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7394 return ret;
7395}
e02119d5
CM
7396
7397/*
7398 * this is used by the tree logging recovery code. It records that
7399 * an extent has been allocated and makes sure to clear the free
7400 * space cache bits as well
7401 */
5d4f98a2
YZ
7402int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7403 struct btrfs_root *root,
7404 u64 root_objectid, u64 owner, u64 offset,
7405 struct btrfs_key *ins)
e02119d5
CM
7406{
7407 int ret;
7408 struct btrfs_block_group_cache *block_group;
11833d66 7409
8c2a1a30
JB
7410 /*
7411 * Mixed block groups will exclude before processing the log so we only
7412 * need to do the exlude dance if this fs isn't mixed.
7413 */
7414 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7415 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7416 if (ret)
8c2a1a30 7417 return ret;
11833d66
YZ
7418 }
7419
8c2a1a30
JB
7420 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7421 if (!block_group)
7422 return -EINVAL;
7423
fb25e914 7424 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7425 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7426 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7427 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7428 0, owner, offset, ins, 1);
b50c6e25 7429 btrfs_put_block_group(block_group);
e02119d5
CM
7430 return ret;
7431}
7432
48a3b636
ES
7433static struct extent_buffer *
7434btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7435 u64 bytenr, int level)
65b51a00
CM
7436{
7437 struct extent_buffer *buf;
7438
a83fffb7 7439 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7440 if (!buf)
7441 return ERR_PTR(-ENOMEM);
7442 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7443 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7444 btrfs_tree_lock(buf);
01d58472 7445 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7446 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7447
7448 btrfs_set_lock_blocking(buf);
65b51a00 7449 btrfs_set_buffer_uptodate(buf);
b4ce94de 7450
d0c803c4 7451 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7452 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7453 /*
7454 * we allow two log transactions at a time, use different
7455 * EXENT bit to differentiate dirty pages.
7456 */
656f30db 7457 if (buf->log_index == 0)
8cef4e16
YZ
7458 set_extent_dirty(&root->dirty_log_pages, buf->start,
7459 buf->start + buf->len - 1, GFP_NOFS);
7460 else
7461 set_extent_new(&root->dirty_log_pages, buf->start,
7462 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7463 } else {
656f30db 7464 buf->log_index = -1;
d0c803c4 7465 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7466 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7467 }
65b51a00 7468 trans->blocks_used++;
b4ce94de 7469 /* this returns a buffer locked for blocking */
65b51a00
CM
7470 return buf;
7471}
7472
f0486c68
YZ
7473static struct btrfs_block_rsv *
7474use_block_rsv(struct btrfs_trans_handle *trans,
7475 struct btrfs_root *root, u32 blocksize)
7476{
7477 struct btrfs_block_rsv *block_rsv;
68a82277 7478 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7479 int ret;
d88033db 7480 bool global_updated = false;
f0486c68
YZ
7481
7482 block_rsv = get_block_rsv(trans, root);
7483
b586b323
MX
7484 if (unlikely(block_rsv->size == 0))
7485 goto try_reserve;
d88033db 7486again:
f0486c68
YZ
7487 ret = block_rsv_use_bytes(block_rsv, blocksize);
7488 if (!ret)
7489 return block_rsv;
7490
b586b323
MX
7491 if (block_rsv->failfast)
7492 return ERR_PTR(ret);
7493
d88033db
MX
7494 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7495 global_updated = true;
7496 update_global_block_rsv(root->fs_info);
7497 goto again;
7498 }
7499
b586b323
MX
7500 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7501 static DEFINE_RATELIMIT_STATE(_rs,
7502 DEFAULT_RATELIMIT_INTERVAL * 10,
7503 /*DEFAULT_RATELIMIT_BURST*/ 1);
7504 if (__ratelimit(&_rs))
7505 WARN(1, KERN_DEBUG
efe120a0 7506 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7507 }
7508try_reserve:
7509 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7510 BTRFS_RESERVE_NO_FLUSH);
7511 if (!ret)
7512 return block_rsv;
7513 /*
7514 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7515 * the global reserve if its space type is the same as the global
7516 * reservation.
b586b323 7517 */
5881cfc9
MX
7518 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7519 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7520 ret = block_rsv_use_bytes(global_rsv, blocksize);
7521 if (!ret)
7522 return global_rsv;
7523 }
7524 return ERR_PTR(ret);
f0486c68
YZ
7525}
7526
8c2a3ca2
JB
7527static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7528 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7529{
7530 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7531 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7532}
7533
fec577fb 7534/*
f0486c68
YZ
7535 * finds a free extent and does all the dirty work required for allocation
7536 * returns the key for the extent through ins, and a tree buffer for
7537 * the first block of the extent through buf.
7538 *
67b7859e 7539 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7540 */
4d75f8a9
DS
7541struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7542 struct btrfs_root *root,
5d4f98a2
YZ
7543 u64 parent, u64 root_objectid,
7544 struct btrfs_disk_key *key, int level,
5581a51a 7545 u64 hint, u64 empty_size)
fec577fb 7546{
e2fa7227 7547 struct btrfs_key ins;
f0486c68 7548 struct btrfs_block_rsv *block_rsv;
5f39d397 7549 struct extent_buffer *buf;
67b7859e 7550 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7551 u64 flags = 0;
7552 int ret;
4d75f8a9 7553 u32 blocksize = root->nodesize;
3173a18f
JB
7554 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7555 SKINNY_METADATA);
fec577fb 7556
fccb84c9 7557 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7558 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7559 level);
faa2dbf0
JB
7560 if (!IS_ERR(buf))
7561 root->alloc_bytenr += blocksize;
7562 return buf;
7563 }
fccb84c9 7564
f0486c68
YZ
7565 block_rsv = use_block_rsv(trans, root, blocksize);
7566 if (IS_ERR(block_rsv))
7567 return ERR_CAST(block_rsv);
7568
00361589 7569 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7570 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7571 if (ret)
7572 goto out_unuse;
55c69072 7573
fe864576 7574 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7575 if (IS_ERR(buf)) {
7576 ret = PTR_ERR(buf);
7577 goto out_free_reserved;
7578 }
f0486c68
YZ
7579
7580 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7581 if (parent == 0)
7582 parent = ins.objectid;
7583 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7584 } else
7585 BUG_ON(parent > 0);
7586
7587 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7588 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7589 if (!extent_op) {
7590 ret = -ENOMEM;
7591 goto out_free_buf;
7592 }
f0486c68
YZ
7593 if (key)
7594 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7595 else
7596 memset(&extent_op->key, 0, sizeof(extent_op->key));
7597 extent_op->flags_to_set = flags;
3173a18f
JB
7598 if (skinny_metadata)
7599 extent_op->update_key = 0;
7600 else
7601 extent_op->update_key = 1;
f0486c68
YZ
7602 extent_op->update_flags = 1;
7603 extent_op->is_data = 0;
b1c79e09 7604 extent_op->level = level;
f0486c68 7605
66d7e7f0 7606 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7607 ins.objectid, ins.offset,
7608 parent, root_objectid, level,
7609 BTRFS_ADD_DELAYED_EXTENT,
7610 extent_op, 0);
7611 if (ret)
7612 goto out_free_delayed;
f0486c68 7613 }
fec577fb 7614 return buf;
67b7859e
OS
7615
7616out_free_delayed:
7617 btrfs_free_delayed_extent_op(extent_op);
7618out_free_buf:
7619 free_extent_buffer(buf);
7620out_free_reserved:
7621 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7622out_unuse:
7623 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7624 return ERR_PTR(ret);
fec577fb 7625}
a28ec197 7626
2c47e605
YZ
7627struct walk_control {
7628 u64 refs[BTRFS_MAX_LEVEL];
7629 u64 flags[BTRFS_MAX_LEVEL];
7630 struct btrfs_key update_progress;
7631 int stage;
7632 int level;
7633 int shared_level;
7634 int update_ref;
7635 int keep_locks;
1c4850e2
YZ
7636 int reada_slot;
7637 int reada_count;
66d7e7f0 7638 int for_reloc;
2c47e605
YZ
7639};
7640
7641#define DROP_REFERENCE 1
7642#define UPDATE_BACKREF 2
7643
1c4850e2
YZ
7644static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7645 struct btrfs_root *root,
7646 struct walk_control *wc,
7647 struct btrfs_path *path)
6407bf6d 7648{
1c4850e2
YZ
7649 u64 bytenr;
7650 u64 generation;
7651 u64 refs;
94fcca9f 7652 u64 flags;
5d4f98a2 7653 u32 nritems;
1c4850e2
YZ
7654 u32 blocksize;
7655 struct btrfs_key key;
7656 struct extent_buffer *eb;
6407bf6d 7657 int ret;
1c4850e2
YZ
7658 int slot;
7659 int nread = 0;
6407bf6d 7660
1c4850e2
YZ
7661 if (path->slots[wc->level] < wc->reada_slot) {
7662 wc->reada_count = wc->reada_count * 2 / 3;
7663 wc->reada_count = max(wc->reada_count, 2);
7664 } else {
7665 wc->reada_count = wc->reada_count * 3 / 2;
7666 wc->reada_count = min_t(int, wc->reada_count,
7667 BTRFS_NODEPTRS_PER_BLOCK(root));
7668 }
7bb86316 7669
1c4850e2
YZ
7670 eb = path->nodes[wc->level];
7671 nritems = btrfs_header_nritems(eb);
707e8a07 7672 blocksize = root->nodesize;
bd56b302 7673
1c4850e2
YZ
7674 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7675 if (nread >= wc->reada_count)
7676 break;
bd56b302 7677
2dd3e67b 7678 cond_resched();
1c4850e2
YZ
7679 bytenr = btrfs_node_blockptr(eb, slot);
7680 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7681
1c4850e2
YZ
7682 if (slot == path->slots[wc->level])
7683 goto reada;
5d4f98a2 7684
1c4850e2
YZ
7685 if (wc->stage == UPDATE_BACKREF &&
7686 generation <= root->root_key.offset)
bd56b302
CM
7687 continue;
7688
94fcca9f 7689 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7690 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7691 wc->level - 1, 1, &refs,
7692 &flags);
79787eaa
JM
7693 /* We don't care about errors in readahead. */
7694 if (ret < 0)
7695 continue;
94fcca9f
YZ
7696 BUG_ON(refs == 0);
7697
1c4850e2 7698 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7699 if (refs == 1)
7700 goto reada;
bd56b302 7701
94fcca9f
YZ
7702 if (wc->level == 1 &&
7703 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7704 continue;
1c4850e2
YZ
7705 if (!wc->update_ref ||
7706 generation <= root->root_key.offset)
7707 continue;
7708 btrfs_node_key_to_cpu(eb, &key, slot);
7709 ret = btrfs_comp_cpu_keys(&key,
7710 &wc->update_progress);
7711 if (ret < 0)
7712 continue;
94fcca9f
YZ
7713 } else {
7714 if (wc->level == 1 &&
7715 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7716 continue;
6407bf6d 7717 }
1c4850e2 7718reada:
d3e46fea 7719 readahead_tree_block(root, bytenr);
1c4850e2 7720 nread++;
20524f02 7721 }
1c4850e2 7722 wc->reada_slot = slot;
20524f02 7723}
2c47e605 7724
0ed4792a
QW
7725/*
7726 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7727 * for later qgroup accounting.
7728 *
7729 * Current, this function does nothing.
7730 */
1152651a
MF
7731static int account_leaf_items(struct btrfs_trans_handle *trans,
7732 struct btrfs_root *root,
7733 struct extent_buffer *eb)
7734{
7735 int nr = btrfs_header_nritems(eb);
0ed4792a 7736 int i, extent_type;
1152651a
MF
7737 struct btrfs_key key;
7738 struct btrfs_file_extent_item *fi;
7739 u64 bytenr, num_bytes;
7740
7741 for (i = 0; i < nr; i++) {
7742 btrfs_item_key_to_cpu(eb, &key, i);
7743
7744 if (key.type != BTRFS_EXTENT_DATA_KEY)
7745 continue;
7746
7747 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7748 /* filter out non qgroup-accountable extents */
7749 extent_type = btrfs_file_extent_type(eb, fi);
7750
7751 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7752 continue;
7753
7754 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7755 if (!bytenr)
7756 continue;
7757
7758 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7759 }
7760 return 0;
7761}
7762
7763/*
7764 * Walk up the tree from the bottom, freeing leaves and any interior
7765 * nodes which have had all slots visited. If a node (leaf or
7766 * interior) is freed, the node above it will have it's slot
7767 * incremented. The root node will never be freed.
7768 *
7769 * At the end of this function, we should have a path which has all
7770 * slots incremented to the next position for a search. If we need to
7771 * read a new node it will be NULL and the node above it will have the
7772 * correct slot selected for a later read.
7773 *
7774 * If we increment the root nodes slot counter past the number of
7775 * elements, 1 is returned to signal completion of the search.
7776 */
7777static int adjust_slots_upwards(struct btrfs_root *root,
7778 struct btrfs_path *path, int root_level)
7779{
7780 int level = 0;
7781 int nr, slot;
7782 struct extent_buffer *eb;
7783
7784 if (root_level == 0)
7785 return 1;
7786
7787 while (level <= root_level) {
7788 eb = path->nodes[level];
7789 nr = btrfs_header_nritems(eb);
7790 path->slots[level]++;
7791 slot = path->slots[level];
7792 if (slot >= nr || level == 0) {
7793 /*
7794 * Don't free the root - we will detect this
7795 * condition after our loop and return a
7796 * positive value for caller to stop walking the tree.
7797 */
7798 if (level != root_level) {
7799 btrfs_tree_unlock_rw(eb, path->locks[level]);
7800 path->locks[level] = 0;
7801
7802 free_extent_buffer(eb);
7803 path->nodes[level] = NULL;
7804 path->slots[level] = 0;
7805 }
7806 } else {
7807 /*
7808 * We have a valid slot to walk back down
7809 * from. Stop here so caller can process these
7810 * new nodes.
7811 */
7812 break;
7813 }
7814
7815 level++;
7816 }
7817
7818 eb = path->nodes[root_level];
7819 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7820 return 1;
7821
7822 return 0;
7823}
7824
7825/*
7826 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7827 * TODO: Modify this function to mark all (including complete shared node)
7828 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7829 */
7830static int account_shared_subtree(struct btrfs_trans_handle *trans,
7831 struct btrfs_root *root,
7832 struct extent_buffer *root_eb,
7833 u64 root_gen,
7834 int root_level)
7835{
7836 int ret = 0;
7837 int level;
7838 struct extent_buffer *eb = root_eb;
7839 struct btrfs_path *path = NULL;
7840
7841 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7842 BUG_ON(root_eb == NULL);
7843
7844 if (!root->fs_info->quota_enabled)
7845 return 0;
7846
7847 if (!extent_buffer_uptodate(root_eb)) {
7848 ret = btrfs_read_buffer(root_eb, root_gen);
7849 if (ret)
7850 goto out;
7851 }
7852
7853 if (root_level == 0) {
7854 ret = account_leaf_items(trans, root, root_eb);
7855 goto out;
7856 }
7857
7858 path = btrfs_alloc_path();
7859 if (!path)
7860 return -ENOMEM;
7861
7862 /*
7863 * Walk down the tree. Missing extent blocks are filled in as
7864 * we go. Metadata is accounted every time we read a new
7865 * extent block.
7866 *
7867 * When we reach a leaf, we account for file extent items in it,
7868 * walk back up the tree (adjusting slot pointers as we go)
7869 * and restart the search process.
7870 */
7871 extent_buffer_get(root_eb); /* For path */
7872 path->nodes[root_level] = root_eb;
7873 path->slots[root_level] = 0;
7874 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7875walk_down:
7876 level = root_level;
7877 while (level >= 0) {
7878 if (path->nodes[level] == NULL) {
1152651a
MF
7879 int parent_slot;
7880 u64 child_gen;
7881 u64 child_bytenr;
7882
7883 /* We need to get child blockptr/gen from
7884 * parent before we can read it. */
7885 eb = path->nodes[level + 1];
7886 parent_slot = path->slots[level + 1];
7887 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7888 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7889
ce86cd59 7890 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
7891 if (IS_ERR(eb)) {
7892 ret = PTR_ERR(eb);
7893 goto out;
7894 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 7895 free_extent_buffer(eb);
64c043de 7896 ret = -EIO;
1152651a
MF
7897 goto out;
7898 }
7899
7900 path->nodes[level] = eb;
7901 path->slots[level] = 0;
7902
7903 btrfs_tree_read_lock(eb);
7904 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7905 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
7906 }
7907
7908 if (level == 0) {
7909 ret = account_leaf_items(trans, root, path->nodes[level]);
7910 if (ret)
7911 goto out;
7912
7913 /* Nonzero return here means we completed our search */
7914 ret = adjust_slots_upwards(root, path, root_level);
7915 if (ret)
7916 break;
7917
7918 /* Restart search with new slots */
7919 goto walk_down;
7920 }
7921
7922 level--;
7923 }
7924
7925 ret = 0;
7926out:
7927 btrfs_free_path(path);
7928
7929 return ret;
7930}
7931
f82d02d9 7932/*
2c016dc2 7933 * helper to process tree block while walking down the tree.
2c47e605 7934 *
2c47e605
YZ
7935 * when wc->stage == UPDATE_BACKREF, this function updates
7936 * back refs for pointers in the block.
7937 *
7938 * NOTE: return value 1 means we should stop walking down.
f82d02d9 7939 */
2c47e605 7940static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 7941 struct btrfs_root *root,
2c47e605 7942 struct btrfs_path *path,
94fcca9f 7943 struct walk_control *wc, int lookup_info)
f82d02d9 7944{
2c47e605
YZ
7945 int level = wc->level;
7946 struct extent_buffer *eb = path->nodes[level];
2c47e605 7947 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
7948 int ret;
7949
2c47e605
YZ
7950 if (wc->stage == UPDATE_BACKREF &&
7951 btrfs_header_owner(eb) != root->root_key.objectid)
7952 return 1;
f82d02d9 7953
2c47e605
YZ
7954 /*
7955 * when reference count of tree block is 1, it won't increase
7956 * again. once full backref flag is set, we never clear it.
7957 */
94fcca9f
YZ
7958 if (lookup_info &&
7959 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7960 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
7961 BUG_ON(!path->locks[level]);
7962 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 7963 eb->start, level, 1,
2c47e605
YZ
7964 &wc->refs[level],
7965 &wc->flags[level]);
79787eaa
JM
7966 BUG_ON(ret == -ENOMEM);
7967 if (ret)
7968 return ret;
2c47e605
YZ
7969 BUG_ON(wc->refs[level] == 0);
7970 }
5d4f98a2 7971
2c47e605
YZ
7972 if (wc->stage == DROP_REFERENCE) {
7973 if (wc->refs[level] > 1)
7974 return 1;
f82d02d9 7975
2c47e605 7976 if (path->locks[level] && !wc->keep_locks) {
bd681513 7977 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
7978 path->locks[level] = 0;
7979 }
7980 return 0;
7981 }
f82d02d9 7982
2c47e605
YZ
7983 /* wc->stage == UPDATE_BACKREF */
7984 if (!(wc->flags[level] & flag)) {
7985 BUG_ON(!path->locks[level]);
e339a6b0 7986 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 7987 BUG_ON(ret); /* -ENOMEM */
e339a6b0 7988 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 7989 BUG_ON(ret); /* -ENOMEM */
2c47e605 7990 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
7991 eb->len, flag,
7992 btrfs_header_level(eb), 0);
79787eaa 7993 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
7994 wc->flags[level] |= flag;
7995 }
7996
7997 /*
7998 * the block is shared by multiple trees, so it's not good to
7999 * keep the tree lock
8000 */
8001 if (path->locks[level] && level > 0) {
bd681513 8002 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8003 path->locks[level] = 0;
8004 }
8005 return 0;
8006}
8007
1c4850e2 8008/*
2c016dc2 8009 * helper to process tree block pointer.
1c4850e2
YZ
8010 *
8011 * when wc->stage == DROP_REFERENCE, this function checks
8012 * reference count of the block pointed to. if the block
8013 * is shared and we need update back refs for the subtree
8014 * rooted at the block, this function changes wc->stage to
8015 * UPDATE_BACKREF. if the block is shared and there is no
8016 * need to update back, this function drops the reference
8017 * to the block.
8018 *
8019 * NOTE: return value 1 means we should stop walking down.
8020 */
8021static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8022 struct btrfs_root *root,
8023 struct btrfs_path *path,
94fcca9f 8024 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8025{
8026 u64 bytenr;
8027 u64 generation;
8028 u64 parent;
8029 u32 blocksize;
8030 struct btrfs_key key;
8031 struct extent_buffer *next;
8032 int level = wc->level;
8033 int reada = 0;
8034 int ret = 0;
1152651a 8035 bool need_account = false;
1c4850e2
YZ
8036
8037 generation = btrfs_node_ptr_generation(path->nodes[level],
8038 path->slots[level]);
8039 /*
8040 * if the lower level block was created before the snapshot
8041 * was created, we know there is no need to update back refs
8042 * for the subtree
8043 */
8044 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8045 generation <= root->root_key.offset) {
8046 *lookup_info = 1;
1c4850e2 8047 return 1;
94fcca9f 8048 }
1c4850e2
YZ
8049
8050 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8051 blocksize = root->nodesize;
1c4850e2 8052
01d58472 8053 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8054 if (!next) {
a83fffb7 8055 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8056 if (!next)
8057 return -ENOMEM;
b2aaaa3b
JB
8058 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8059 level - 1);
1c4850e2
YZ
8060 reada = 1;
8061 }
8062 btrfs_tree_lock(next);
8063 btrfs_set_lock_blocking(next);
8064
3173a18f 8065 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8066 &wc->refs[level - 1],
8067 &wc->flags[level - 1]);
79787eaa
JM
8068 if (ret < 0) {
8069 btrfs_tree_unlock(next);
8070 return ret;
8071 }
8072
c2cf52eb
SK
8073 if (unlikely(wc->refs[level - 1] == 0)) {
8074 btrfs_err(root->fs_info, "Missing references.");
8075 BUG();
8076 }
94fcca9f 8077 *lookup_info = 0;
1c4850e2 8078
94fcca9f 8079 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8080 if (wc->refs[level - 1] > 1) {
1152651a 8081 need_account = true;
94fcca9f
YZ
8082 if (level == 1 &&
8083 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8084 goto skip;
8085
1c4850e2
YZ
8086 if (!wc->update_ref ||
8087 generation <= root->root_key.offset)
8088 goto skip;
8089
8090 btrfs_node_key_to_cpu(path->nodes[level], &key,
8091 path->slots[level]);
8092 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8093 if (ret < 0)
8094 goto skip;
8095
8096 wc->stage = UPDATE_BACKREF;
8097 wc->shared_level = level - 1;
8098 }
94fcca9f
YZ
8099 } else {
8100 if (level == 1 &&
8101 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8102 goto skip;
1c4850e2
YZ
8103 }
8104
b9fab919 8105 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8106 btrfs_tree_unlock(next);
8107 free_extent_buffer(next);
8108 next = NULL;
94fcca9f 8109 *lookup_info = 1;
1c4850e2
YZ
8110 }
8111
8112 if (!next) {
8113 if (reada && level == 1)
8114 reada_walk_down(trans, root, wc, path);
ce86cd59 8115 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8116 if (IS_ERR(next)) {
8117 return PTR_ERR(next);
8118 } else if (!extent_buffer_uptodate(next)) {
416bc658 8119 free_extent_buffer(next);
97d9a8a4 8120 return -EIO;
416bc658 8121 }
1c4850e2
YZ
8122 btrfs_tree_lock(next);
8123 btrfs_set_lock_blocking(next);
8124 }
8125
8126 level--;
8127 BUG_ON(level != btrfs_header_level(next));
8128 path->nodes[level] = next;
8129 path->slots[level] = 0;
bd681513 8130 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8131 wc->level = level;
8132 if (wc->level == 1)
8133 wc->reada_slot = 0;
8134 return 0;
8135skip:
8136 wc->refs[level - 1] = 0;
8137 wc->flags[level - 1] = 0;
94fcca9f
YZ
8138 if (wc->stage == DROP_REFERENCE) {
8139 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8140 parent = path->nodes[level]->start;
8141 } else {
8142 BUG_ON(root->root_key.objectid !=
8143 btrfs_header_owner(path->nodes[level]));
8144 parent = 0;
8145 }
1c4850e2 8146
1152651a
MF
8147 if (need_account) {
8148 ret = account_shared_subtree(trans, root, next,
8149 generation, level - 1);
8150 if (ret) {
8151 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8152 "%d accounting shared subtree. Quota "
8153 "is out of sync, rescan required.\n",
8154 root->fs_info->sb->s_id, ret);
8155 }
8156 }
94fcca9f 8157 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8158 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8159 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8160 }
1c4850e2
YZ
8161 btrfs_tree_unlock(next);
8162 free_extent_buffer(next);
94fcca9f 8163 *lookup_info = 1;
1c4850e2
YZ
8164 return 1;
8165}
8166
2c47e605 8167/*
2c016dc2 8168 * helper to process tree block while walking up the tree.
2c47e605
YZ
8169 *
8170 * when wc->stage == DROP_REFERENCE, this function drops
8171 * reference count on the block.
8172 *
8173 * when wc->stage == UPDATE_BACKREF, this function changes
8174 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8175 * to UPDATE_BACKREF previously while processing the block.
8176 *
8177 * NOTE: return value 1 means we should stop walking up.
8178 */
8179static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8180 struct btrfs_root *root,
8181 struct btrfs_path *path,
8182 struct walk_control *wc)
8183{
f0486c68 8184 int ret;
2c47e605
YZ
8185 int level = wc->level;
8186 struct extent_buffer *eb = path->nodes[level];
8187 u64 parent = 0;
8188
8189 if (wc->stage == UPDATE_BACKREF) {
8190 BUG_ON(wc->shared_level < level);
8191 if (level < wc->shared_level)
8192 goto out;
8193
2c47e605
YZ
8194 ret = find_next_key(path, level + 1, &wc->update_progress);
8195 if (ret > 0)
8196 wc->update_ref = 0;
8197
8198 wc->stage = DROP_REFERENCE;
8199 wc->shared_level = -1;
8200 path->slots[level] = 0;
8201
8202 /*
8203 * check reference count again if the block isn't locked.
8204 * we should start walking down the tree again if reference
8205 * count is one.
8206 */
8207 if (!path->locks[level]) {
8208 BUG_ON(level == 0);
8209 btrfs_tree_lock(eb);
8210 btrfs_set_lock_blocking(eb);
bd681513 8211 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8212
8213 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8214 eb->start, level, 1,
2c47e605
YZ
8215 &wc->refs[level],
8216 &wc->flags[level]);
79787eaa
JM
8217 if (ret < 0) {
8218 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8219 path->locks[level] = 0;
79787eaa
JM
8220 return ret;
8221 }
2c47e605
YZ
8222 BUG_ON(wc->refs[level] == 0);
8223 if (wc->refs[level] == 1) {
bd681513 8224 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8225 path->locks[level] = 0;
2c47e605
YZ
8226 return 1;
8227 }
f82d02d9 8228 }
2c47e605 8229 }
f82d02d9 8230
2c47e605
YZ
8231 /* wc->stage == DROP_REFERENCE */
8232 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8233
2c47e605
YZ
8234 if (wc->refs[level] == 1) {
8235 if (level == 0) {
8236 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8237 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8238 else
e339a6b0 8239 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8240 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8241 ret = account_leaf_items(trans, root, eb);
8242 if (ret) {
8243 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8244 "%d accounting leaf items. Quota "
8245 "is out of sync, rescan required.\n",
8246 root->fs_info->sb->s_id, ret);
8247 }
2c47e605
YZ
8248 }
8249 /* make block locked assertion in clean_tree_block happy */
8250 if (!path->locks[level] &&
8251 btrfs_header_generation(eb) == trans->transid) {
8252 btrfs_tree_lock(eb);
8253 btrfs_set_lock_blocking(eb);
bd681513 8254 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8255 }
01d58472 8256 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8257 }
8258
8259 if (eb == root->node) {
8260 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8261 parent = eb->start;
8262 else
8263 BUG_ON(root->root_key.objectid !=
8264 btrfs_header_owner(eb));
8265 } else {
8266 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8267 parent = path->nodes[level + 1]->start;
8268 else
8269 BUG_ON(root->root_key.objectid !=
8270 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8271 }
f82d02d9 8272
5581a51a 8273 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8274out:
8275 wc->refs[level] = 0;
8276 wc->flags[level] = 0;
f0486c68 8277 return 0;
2c47e605
YZ
8278}
8279
8280static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8281 struct btrfs_root *root,
8282 struct btrfs_path *path,
8283 struct walk_control *wc)
8284{
2c47e605 8285 int level = wc->level;
94fcca9f 8286 int lookup_info = 1;
2c47e605
YZ
8287 int ret;
8288
8289 while (level >= 0) {
94fcca9f 8290 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8291 if (ret > 0)
8292 break;
8293
8294 if (level == 0)
8295 break;
8296
7a7965f8
YZ
8297 if (path->slots[level] >=
8298 btrfs_header_nritems(path->nodes[level]))
8299 break;
8300
94fcca9f 8301 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8302 if (ret > 0) {
8303 path->slots[level]++;
8304 continue;
90d2c51d
MX
8305 } else if (ret < 0)
8306 return ret;
1c4850e2 8307 level = wc->level;
f82d02d9 8308 }
f82d02d9
YZ
8309 return 0;
8310}
8311
d397712b 8312static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8313 struct btrfs_root *root,
f82d02d9 8314 struct btrfs_path *path,
2c47e605 8315 struct walk_control *wc, int max_level)
20524f02 8316{
2c47e605 8317 int level = wc->level;
20524f02 8318 int ret;
9f3a7427 8319
2c47e605
YZ
8320 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8321 while (level < max_level && path->nodes[level]) {
8322 wc->level = level;
8323 if (path->slots[level] + 1 <
8324 btrfs_header_nritems(path->nodes[level])) {
8325 path->slots[level]++;
20524f02
CM
8326 return 0;
8327 } else {
2c47e605
YZ
8328 ret = walk_up_proc(trans, root, path, wc);
8329 if (ret > 0)
8330 return 0;
bd56b302 8331
2c47e605 8332 if (path->locks[level]) {
bd681513
CM
8333 btrfs_tree_unlock_rw(path->nodes[level],
8334 path->locks[level]);
2c47e605 8335 path->locks[level] = 0;
f82d02d9 8336 }
2c47e605
YZ
8337 free_extent_buffer(path->nodes[level]);
8338 path->nodes[level] = NULL;
8339 level++;
20524f02
CM
8340 }
8341 }
8342 return 1;
8343}
8344
9aca1d51 8345/*
2c47e605
YZ
8346 * drop a subvolume tree.
8347 *
8348 * this function traverses the tree freeing any blocks that only
8349 * referenced by the tree.
8350 *
8351 * when a shared tree block is found. this function decreases its
8352 * reference count by one. if update_ref is true, this function
8353 * also make sure backrefs for the shared block and all lower level
8354 * blocks are properly updated.
9d1a2a3a
DS
8355 *
8356 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8357 */
2c536799 8358int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8359 struct btrfs_block_rsv *block_rsv, int update_ref,
8360 int for_reloc)
20524f02 8361{
5caf2a00 8362 struct btrfs_path *path;
2c47e605
YZ
8363 struct btrfs_trans_handle *trans;
8364 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8365 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8366 struct walk_control *wc;
8367 struct btrfs_key key;
8368 int err = 0;
8369 int ret;
8370 int level;
d29a9f62 8371 bool root_dropped = false;
20524f02 8372
1152651a
MF
8373 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8374
5caf2a00 8375 path = btrfs_alloc_path();
cb1b69f4
TI
8376 if (!path) {
8377 err = -ENOMEM;
8378 goto out;
8379 }
20524f02 8380
2c47e605 8381 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8382 if (!wc) {
8383 btrfs_free_path(path);
cb1b69f4
TI
8384 err = -ENOMEM;
8385 goto out;
38a1a919 8386 }
2c47e605 8387
a22285a6 8388 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8389 if (IS_ERR(trans)) {
8390 err = PTR_ERR(trans);
8391 goto out_free;
8392 }
98d5dc13 8393
3fd0a558
YZ
8394 if (block_rsv)
8395 trans->block_rsv = block_rsv;
2c47e605 8396
9f3a7427 8397 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8398 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8399 path->nodes[level] = btrfs_lock_root_node(root);
8400 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8401 path->slots[level] = 0;
bd681513 8402 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8403 memset(&wc->update_progress, 0,
8404 sizeof(wc->update_progress));
9f3a7427 8405 } else {
9f3a7427 8406 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8407 memcpy(&wc->update_progress, &key,
8408 sizeof(wc->update_progress));
8409
6702ed49 8410 level = root_item->drop_level;
2c47e605 8411 BUG_ON(level == 0);
6702ed49 8412 path->lowest_level = level;
2c47e605
YZ
8413 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8414 path->lowest_level = 0;
8415 if (ret < 0) {
8416 err = ret;
79787eaa 8417 goto out_end_trans;
9f3a7427 8418 }
1c4850e2 8419 WARN_ON(ret > 0);
2c47e605 8420
7d9eb12c
CM
8421 /*
8422 * unlock our path, this is safe because only this
8423 * function is allowed to delete this snapshot
8424 */
5d4f98a2 8425 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8426
8427 level = btrfs_header_level(root->node);
8428 while (1) {
8429 btrfs_tree_lock(path->nodes[level]);
8430 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8431 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8432
8433 ret = btrfs_lookup_extent_info(trans, root,
8434 path->nodes[level]->start,
3173a18f 8435 level, 1, &wc->refs[level],
2c47e605 8436 &wc->flags[level]);
79787eaa
JM
8437 if (ret < 0) {
8438 err = ret;
8439 goto out_end_trans;
8440 }
2c47e605
YZ
8441 BUG_ON(wc->refs[level] == 0);
8442
8443 if (level == root_item->drop_level)
8444 break;
8445
8446 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8447 path->locks[level] = 0;
2c47e605
YZ
8448 WARN_ON(wc->refs[level] != 1);
8449 level--;
8450 }
9f3a7427 8451 }
2c47e605
YZ
8452
8453 wc->level = level;
8454 wc->shared_level = -1;
8455 wc->stage = DROP_REFERENCE;
8456 wc->update_ref = update_ref;
8457 wc->keep_locks = 0;
66d7e7f0 8458 wc->for_reloc = for_reloc;
1c4850e2 8459 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8460
d397712b 8461 while (1) {
9d1a2a3a 8462
2c47e605
YZ
8463 ret = walk_down_tree(trans, root, path, wc);
8464 if (ret < 0) {
8465 err = ret;
20524f02 8466 break;
2c47e605 8467 }
9aca1d51 8468
2c47e605
YZ
8469 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8470 if (ret < 0) {
8471 err = ret;
20524f02 8472 break;
2c47e605
YZ
8473 }
8474
8475 if (ret > 0) {
8476 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8477 break;
8478 }
2c47e605
YZ
8479
8480 if (wc->stage == DROP_REFERENCE) {
8481 level = wc->level;
8482 btrfs_node_key(path->nodes[level],
8483 &root_item->drop_progress,
8484 path->slots[level]);
8485 root_item->drop_level = level;
8486 }
8487
8488 BUG_ON(wc->level == 0);
3c8f2422
JB
8489 if (btrfs_should_end_transaction(trans, tree_root) ||
8490 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8491 ret = btrfs_update_root(trans, tree_root,
8492 &root->root_key,
8493 root_item);
79787eaa
JM
8494 if (ret) {
8495 btrfs_abort_transaction(trans, tree_root, ret);
8496 err = ret;
8497 goto out_end_trans;
8498 }
2c47e605 8499
3fd0a558 8500 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8501 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8502 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8503 err = -EAGAIN;
8504 goto out_free;
8505 }
8506
a22285a6 8507 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8508 if (IS_ERR(trans)) {
8509 err = PTR_ERR(trans);
8510 goto out_free;
8511 }
3fd0a558
YZ
8512 if (block_rsv)
8513 trans->block_rsv = block_rsv;
c3e69d58 8514 }
20524f02 8515 }
b3b4aa74 8516 btrfs_release_path(path);
79787eaa
JM
8517 if (err)
8518 goto out_end_trans;
2c47e605
YZ
8519
8520 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8521 if (ret) {
8522 btrfs_abort_transaction(trans, tree_root, ret);
8523 goto out_end_trans;
8524 }
2c47e605 8525
76dda93c 8526 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8527 ret = btrfs_find_root(tree_root, &root->root_key, path,
8528 NULL, NULL);
79787eaa
JM
8529 if (ret < 0) {
8530 btrfs_abort_transaction(trans, tree_root, ret);
8531 err = ret;
8532 goto out_end_trans;
8533 } else if (ret > 0) {
84cd948c
JB
8534 /* if we fail to delete the orphan item this time
8535 * around, it'll get picked up the next time.
8536 *
8537 * The most common failure here is just -ENOENT.
8538 */
8539 btrfs_del_orphan_item(trans, tree_root,
8540 root->root_key.objectid);
76dda93c
YZ
8541 }
8542 }
8543
27cdeb70 8544 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
cb517eab 8545 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
76dda93c
YZ
8546 } else {
8547 free_extent_buffer(root->node);
8548 free_extent_buffer(root->commit_root);
b0feb9d9 8549 btrfs_put_fs_root(root);
76dda93c 8550 }
d29a9f62 8551 root_dropped = true;
79787eaa 8552out_end_trans:
3fd0a558 8553 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8554out_free:
2c47e605 8555 kfree(wc);
5caf2a00 8556 btrfs_free_path(path);
cb1b69f4 8557out:
d29a9f62
JB
8558 /*
8559 * So if we need to stop dropping the snapshot for whatever reason we
8560 * need to make sure to add it back to the dead root list so that we
8561 * keep trying to do the work later. This also cleans up roots if we
8562 * don't have it in the radix (like when we recover after a power fail
8563 * or unmount) so we don't leak memory.
8564 */
b37b39cd 8565 if (!for_reloc && root_dropped == false)
d29a9f62 8566 btrfs_add_dead_root(root);
90515e7f 8567 if (err && err != -EAGAIN)
cb1b69f4 8568 btrfs_std_error(root->fs_info, err);
2c536799 8569 return err;
20524f02 8570}
9078a3e1 8571
2c47e605
YZ
8572/*
8573 * drop subtree rooted at tree block 'node'.
8574 *
8575 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8576 * only used by relocation code
2c47e605 8577 */
f82d02d9
YZ
8578int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8579 struct btrfs_root *root,
8580 struct extent_buffer *node,
8581 struct extent_buffer *parent)
8582{
8583 struct btrfs_path *path;
2c47e605 8584 struct walk_control *wc;
f82d02d9
YZ
8585 int level;
8586 int parent_level;
8587 int ret = 0;
8588 int wret;
8589
2c47e605
YZ
8590 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8591
f82d02d9 8592 path = btrfs_alloc_path();
db5b493a
TI
8593 if (!path)
8594 return -ENOMEM;
f82d02d9 8595
2c47e605 8596 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8597 if (!wc) {
8598 btrfs_free_path(path);
8599 return -ENOMEM;
8600 }
2c47e605 8601
b9447ef8 8602 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8603 parent_level = btrfs_header_level(parent);
8604 extent_buffer_get(parent);
8605 path->nodes[parent_level] = parent;
8606 path->slots[parent_level] = btrfs_header_nritems(parent);
8607
b9447ef8 8608 btrfs_assert_tree_locked(node);
f82d02d9 8609 level = btrfs_header_level(node);
f82d02d9
YZ
8610 path->nodes[level] = node;
8611 path->slots[level] = 0;
bd681513 8612 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8613
8614 wc->refs[parent_level] = 1;
8615 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8616 wc->level = level;
8617 wc->shared_level = -1;
8618 wc->stage = DROP_REFERENCE;
8619 wc->update_ref = 0;
8620 wc->keep_locks = 1;
66d7e7f0 8621 wc->for_reloc = 1;
1c4850e2 8622 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8623
8624 while (1) {
2c47e605
YZ
8625 wret = walk_down_tree(trans, root, path, wc);
8626 if (wret < 0) {
f82d02d9 8627 ret = wret;
f82d02d9 8628 break;
2c47e605 8629 }
f82d02d9 8630
2c47e605 8631 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8632 if (wret < 0)
8633 ret = wret;
8634 if (wret != 0)
8635 break;
8636 }
8637
2c47e605 8638 kfree(wc);
f82d02d9
YZ
8639 btrfs_free_path(path);
8640 return ret;
8641}
8642
ec44a35c
CM
8643static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8644{
8645 u64 num_devices;
fc67c450 8646 u64 stripped;
e4d8ec0f 8647
fc67c450
ID
8648 /*
8649 * if restripe for this chunk_type is on pick target profile and
8650 * return, otherwise do the usual balance
8651 */
8652 stripped = get_restripe_target(root->fs_info, flags);
8653 if (stripped)
8654 return extended_to_chunk(stripped);
e4d8ec0f 8655
95669976 8656 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8657
fc67c450 8658 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8659 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8660 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8661
ec44a35c
CM
8662 if (num_devices == 1) {
8663 stripped |= BTRFS_BLOCK_GROUP_DUP;
8664 stripped = flags & ~stripped;
8665
8666 /* turn raid0 into single device chunks */
8667 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8668 return stripped;
8669
8670 /* turn mirroring into duplication */
8671 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8672 BTRFS_BLOCK_GROUP_RAID10))
8673 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8674 } else {
8675 /* they already had raid on here, just return */
ec44a35c
CM
8676 if (flags & stripped)
8677 return flags;
8678
8679 stripped |= BTRFS_BLOCK_GROUP_DUP;
8680 stripped = flags & ~stripped;
8681
8682 /* switch duplicated blocks with raid1 */
8683 if (flags & BTRFS_BLOCK_GROUP_DUP)
8684 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8685
e3176ca2 8686 /* this is drive concat, leave it alone */
ec44a35c 8687 }
e3176ca2 8688
ec44a35c
CM
8689 return flags;
8690}
8691
199c36ea 8692static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8693{
f0486c68
YZ
8694 struct btrfs_space_info *sinfo = cache->space_info;
8695 u64 num_bytes;
199c36ea 8696 u64 min_allocable_bytes;
f0486c68 8697 int ret = -ENOSPC;
0ef3e66b 8698
c286ac48 8699
199c36ea
MX
8700 /*
8701 * We need some metadata space and system metadata space for
8702 * allocating chunks in some corner cases until we force to set
8703 * it to be readonly.
8704 */
8705 if ((sinfo->flags &
8706 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8707 !force)
8708 min_allocable_bytes = 1 * 1024 * 1024;
8709 else
8710 min_allocable_bytes = 0;
8711
f0486c68
YZ
8712 spin_lock(&sinfo->lock);
8713 spin_lock(&cache->lock);
61cfea9b
W
8714
8715 if (cache->ro) {
8716 ret = 0;
8717 goto out;
8718 }
8719
f0486c68
YZ
8720 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8721 cache->bytes_super - btrfs_block_group_used(&cache->item);
8722
8723 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8724 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8725 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8726 sinfo->bytes_readonly += num_bytes;
f0486c68 8727 cache->ro = 1;
633c0aad 8728 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8729 ret = 0;
8730 }
61cfea9b 8731out:
f0486c68
YZ
8732 spin_unlock(&cache->lock);
8733 spin_unlock(&sinfo->lock);
8734 return ret;
8735}
7d9eb12c 8736
f0486c68
YZ
8737int btrfs_set_block_group_ro(struct btrfs_root *root,
8738 struct btrfs_block_group_cache *cache)
c286ac48 8739
f0486c68
YZ
8740{
8741 struct btrfs_trans_handle *trans;
8742 u64 alloc_flags;
8743 int ret;
7d9eb12c 8744
f0486c68 8745 BUG_ON(cache->ro);
0ef3e66b 8746
1bbc621e 8747again:
ff5714cc 8748 trans = btrfs_join_transaction(root);
79787eaa
JM
8749 if (IS_ERR(trans))
8750 return PTR_ERR(trans);
5d4f98a2 8751
1bbc621e
CM
8752 /*
8753 * we're not allowed to set block groups readonly after the dirty
8754 * block groups cache has started writing. If it already started,
8755 * back off and let this transaction commit
8756 */
8757 mutex_lock(&root->fs_info->ro_block_group_mutex);
8758 if (trans->transaction->dirty_bg_run) {
8759 u64 transid = trans->transid;
8760
8761 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8762 btrfs_end_transaction(trans, root);
8763
8764 ret = btrfs_wait_for_commit(root, transid);
8765 if (ret)
8766 return ret;
8767 goto again;
8768 }
8769
153c35b6
CM
8770 /*
8771 * if we are changing raid levels, try to allocate a corresponding
8772 * block group with the new raid level.
8773 */
8774 alloc_flags = update_block_group_flags(root, cache->flags);
8775 if (alloc_flags != cache->flags) {
8776 ret = do_chunk_alloc(trans, root, alloc_flags,
8777 CHUNK_ALLOC_FORCE);
8778 /*
8779 * ENOSPC is allowed here, we may have enough space
8780 * already allocated at the new raid level to
8781 * carry on
8782 */
8783 if (ret == -ENOSPC)
8784 ret = 0;
8785 if (ret < 0)
8786 goto out;
8787 }
1bbc621e 8788
199c36ea 8789 ret = set_block_group_ro(cache, 0);
f0486c68
YZ
8790 if (!ret)
8791 goto out;
8792 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8793 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8794 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8795 if (ret < 0)
8796 goto out;
199c36ea 8797 ret = set_block_group_ro(cache, 0);
f0486c68 8798out:
2f081088
SL
8799 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8800 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8801 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8802 check_system_chunk(trans, root, alloc_flags);
a9629596 8803 unlock_chunks(root->fs_info->chunk_root);
2f081088 8804 }
1bbc621e 8805 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8806
f0486c68
YZ
8807 btrfs_end_transaction(trans, root);
8808 return ret;
8809}
5d4f98a2 8810
c87f08ca
CM
8811int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8812 struct btrfs_root *root, u64 type)
8813{
8814 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8815 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8816 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8817}
8818
6d07bcec
MX
8819/*
8820 * helper to account the unused space of all the readonly block group in the
633c0aad 8821 * space_info. takes mirrors into account.
6d07bcec 8822 */
633c0aad 8823u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8824{
8825 struct btrfs_block_group_cache *block_group;
8826 u64 free_bytes = 0;
8827 int factor;
8828
633c0aad
JB
8829 /* It's df, we don't care if it's racey */
8830 if (list_empty(&sinfo->ro_bgs))
8831 return 0;
8832
8833 spin_lock(&sinfo->lock);
8834 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8835 spin_lock(&block_group->lock);
8836
8837 if (!block_group->ro) {
8838 spin_unlock(&block_group->lock);
8839 continue;
8840 }
8841
8842 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8843 BTRFS_BLOCK_GROUP_RAID10 |
8844 BTRFS_BLOCK_GROUP_DUP))
8845 factor = 2;
8846 else
8847 factor = 1;
8848
8849 free_bytes += (block_group->key.offset -
8850 btrfs_block_group_used(&block_group->item)) *
8851 factor;
8852
8853 spin_unlock(&block_group->lock);
8854 }
6d07bcec
MX
8855 spin_unlock(&sinfo->lock);
8856
8857 return free_bytes;
8858}
8859
143bede5 8860void btrfs_set_block_group_rw(struct btrfs_root *root,
f0486c68 8861 struct btrfs_block_group_cache *cache)
5d4f98a2 8862{
f0486c68
YZ
8863 struct btrfs_space_info *sinfo = cache->space_info;
8864 u64 num_bytes;
8865
8866 BUG_ON(!cache->ro);
8867
8868 spin_lock(&sinfo->lock);
8869 spin_lock(&cache->lock);
8870 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8871 cache->bytes_super - btrfs_block_group_used(&cache->item);
8872 sinfo->bytes_readonly -= num_bytes;
8873 cache->ro = 0;
633c0aad 8874 list_del_init(&cache->ro_list);
f0486c68
YZ
8875 spin_unlock(&cache->lock);
8876 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
8877}
8878
ba1bf481
JB
8879/*
8880 * checks to see if its even possible to relocate this block group.
8881 *
8882 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8883 * ok to go ahead and try.
8884 */
8885int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 8886{
ba1bf481
JB
8887 struct btrfs_block_group_cache *block_group;
8888 struct btrfs_space_info *space_info;
8889 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8890 struct btrfs_device *device;
6df9a95e 8891 struct btrfs_trans_handle *trans;
cdcb725c 8892 u64 min_free;
6719db6a
JB
8893 u64 dev_min = 1;
8894 u64 dev_nr = 0;
4a5e98f5 8895 u64 target;
cdcb725c 8896 int index;
ba1bf481
JB
8897 int full = 0;
8898 int ret = 0;
1a40e23b 8899
ba1bf481 8900 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 8901
ba1bf481
JB
8902 /* odd, couldn't find the block group, leave it alone */
8903 if (!block_group)
8904 return -1;
1a40e23b 8905
cdcb725c 8906 min_free = btrfs_block_group_used(&block_group->item);
8907
ba1bf481 8908 /* no bytes used, we're good */
cdcb725c 8909 if (!min_free)
1a40e23b
ZY
8910 goto out;
8911
ba1bf481
JB
8912 space_info = block_group->space_info;
8913 spin_lock(&space_info->lock);
17d217fe 8914
ba1bf481 8915 full = space_info->full;
17d217fe 8916
ba1bf481
JB
8917 /*
8918 * if this is the last block group we have in this space, we can't
7ce618db
CM
8919 * relocate it unless we're able to allocate a new chunk below.
8920 *
8921 * Otherwise, we need to make sure we have room in the space to handle
8922 * all of the extents from this block group. If we can, we're good
ba1bf481 8923 */
7ce618db 8924 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 8925 (space_info->bytes_used + space_info->bytes_reserved +
8926 space_info->bytes_pinned + space_info->bytes_readonly +
8927 min_free < space_info->total_bytes)) {
ba1bf481
JB
8928 spin_unlock(&space_info->lock);
8929 goto out;
17d217fe 8930 }
ba1bf481 8931 spin_unlock(&space_info->lock);
ea8c2819 8932
ba1bf481
JB
8933 /*
8934 * ok we don't have enough space, but maybe we have free space on our
8935 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
8936 * alloc devices and guess if we have enough space. if this block
8937 * group is going to be restriped, run checks against the target
8938 * profile instead of the current one.
ba1bf481
JB
8939 */
8940 ret = -1;
ea8c2819 8941
cdcb725c 8942 /*
8943 * index:
8944 * 0: raid10
8945 * 1: raid1
8946 * 2: dup
8947 * 3: raid0
8948 * 4: single
8949 */
4a5e98f5
ID
8950 target = get_restripe_target(root->fs_info, block_group->flags);
8951 if (target) {
31e50229 8952 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
8953 } else {
8954 /*
8955 * this is just a balance, so if we were marked as full
8956 * we know there is no space for a new chunk
8957 */
8958 if (full)
8959 goto out;
8960
8961 index = get_block_group_index(block_group);
8962 }
8963
e6ec716f 8964 if (index == BTRFS_RAID_RAID10) {
cdcb725c 8965 dev_min = 4;
6719db6a
JB
8966 /* Divide by 2 */
8967 min_free >>= 1;
e6ec716f 8968 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 8969 dev_min = 2;
e6ec716f 8970 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
8971 /* Multiply by 2 */
8972 min_free <<= 1;
e6ec716f 8973 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 8974 dev_min = fs_devices->rw_devices;
47c5713f 8975 min_free = div64_u64(min_free, dev_min);
cdcb725c 8976 }
8977
6df9a95e
JB
8978 /* We need to do this so that we can look at pending chunks */
8979 trans = btrfs_join_transaction(root);
8980 if (IS_ERR(trans)) {
8981 ret = PTR_ERR(trans);
8982 goto out;
8983 }
8984
ba1bf481
JB
8985 mutex_lock(&root->fs_info->chunk_mutex);
8986 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 8987 u64 dev_offset;
56bec294 8988
ba1bf481
JB
8989 /*
8990 * check to make sure we can actually find a chunk with enough
8991 * space to fit our block group in.
8992 */
63a212ab
SB
8993 if (device->total_bytes > device->bytes_used + min_free &&
8994 !device->is_tgtdev_for_dev_replace) {
6df9a95e 8995 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 8996 &dev_offset, NULL);
ba1bf481 8997 if (!ret)
cdcb725c 8998 dev_nr++;
8999
9000 if (dev_nr >= dev_min)
73e48b27 9001 break;
cdcb725c 9002
ba1bf481 9003 ret = -1;
725c8463 9004 }
edbd8d4e 9005 }
ba1bf481 9006 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9007 btrfs_end_transaction(trans, root);
edbd8d4e 9008out:
ba1bf481 9009 btrfs_put_block_group(block_group);
edbd8d4e
CM
9010 return ret;
9011}
9012
b2950863
CH
9013static int find_first_block_group(struct btrfs_root *root,
9014 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9015{
925baedd 9016 int ret = 0;
0b86a832
CM
9017 struct btrfs_key found_key;
9018 struct extent_buffer *leaf;
9019 int slot;
edbd8d4e 9020
0b86a832
CM
9021 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9022 if (ret < 0)
925baedd
CM
9023 goto out;
9024
d397712b 9025 while (1) {
0b86a832 9026 slot = path->slots[0];
edbd8d4e 9027 leaf = path->nodes[0];
0b86a832
CM
9028 if (slot >= btrfs_header_nritems(leaf)) {
9029 ret = btrfs_next_leaf(root, path);
9030 if (ret == 0)
9031 continue;
9032 if (ret < 0)
925baedd 9033 goto out;
0b86a832 9034 break;
edbd8d4e 9035 }
0b86a832 9036 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9037
0b86a832 9038 if (found_key.objectid >= key->objectid &&
925baedd
CM
9039 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9040 ret = 0;
9041 goto out;
9042 }
0b86a832 9043 path->slots[0]++;
edbd8d4e 9044 }
925baedd 9045out:
0b86a832 9046 return ret;
edbd8d4e
CM
9047}
9048
0af3d00b
JB
9049void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9050{
9051 struct btrfs_block_group_cache *block_group;
9052 u64 last = 0;
9053
9054 while (1) {
9055 struct inode *inode;
9056
9057 block_group = btrfs_lookup_first_block_group(info, last);
9058 while (block_group) {
9059 spin_lock(&block_group->lock);
9060 if (block_group->iref)
9061 break;
9062 spin_unlock(&block_group->lock);
9063 block_group = next_block_group(info->tree_root,
9064 block_group);
9065 }
9066 if (!block_group) {
9067 if (last == 0)
9068 break;
9069 last = 0;
9070 continue;
9071 }
9072
9073 inode = block_group->inode;
9074 block_group->iref = 0;
9075 block_group->inode = NULL;
9076 spin_unlock(&block_group->lock);
9077 iput(inode);
9078 last = block_group->key.objectid + block_group->key.offset;
9079 btrfs_put_block_group(block_group);
9080 }
9081}
9082
1a40e23b
ZY
9083int btrfs_free_block_groups(struct btrfs_fs_info *info)
9084{
9085 struct btrfs_block_group_cache *block_group;
4184ea7f 9086 struct btrfs_space_info *space_info;
11833d66 9087 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9088 struct rb_node *n;
9089
9e351cc8 9090 down_write(&info->commit_root_sem);
11833d66
YZ
9091 while (!list_empty(&info->caching_block_groups)) {
9092 caching_ctl = list_entry(info->caching_block_groups.next,
9093 struct btrfs_caching_control, list);
9094 list_del(&caching_ctl->list);
9095 put_caching_control(caching_ctl);
9096 }
9e351cc8 9097 up_write(&info->commit_root_sem);
11833d66 9098
47ab2a6c
JB
9099 spin_lock(&info->unused_bgs_lock);
9100 while (!list_empty(&info->unused_bgs)) {
9101 block_group = list_first_entry(&info->unused_bgs,
9102 struct btrfs_block_group_cache,
9103 bg_list);
9104 list_del_init(&block_group->bg_list);
9105 btrfs_put_block_group(block_group);
9106 }
9107 spin_unlock(&info->unused_bgs_lock);
9108
1a40e23b
ZY
9109 spin_lock(&info->block_group_cache_lock);
9110 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9111 block_group = rb_entry(n, struct btrfs_block_group_cache,
9112 cache_node);
1a40e23b
ZY
9113 rb_erase(&block_group->cache_node,
9114 &info->block_group_cache_tree);
01eacb27 9115 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9116 spin_unlock(&info->block_group_cache_lock);
9117
80eb234a 9118 down_write(&block_group->space_info->groups_sem);
1a40e23b 9119 list_del(&block_group->list);
80eb234a 9120 up_write(&block_group->space_info->groups_sem);
d2fb3437 9121
817d52f8 9122 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9123 wait_block_group_cache_done(block_group);
817d52f8 9124
3c14874a
JB
9125 /*
9126 * We haven't cached this block group, which means we could
9127 * possibly have excluded extents on this block group.
9128 */
36cce922
JB
9129 if (block_group->cached == BTRFS_CACHE_NO ||
9130 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9131 free_excluded_extents(info->extent_root, block_group);
9132
817d52f8 9133 btrfs_remove_free_space_cache(block_group);
11dfe35a 9134 btrfs_put_block_group(block_group);
d899e052
YZ
9135
9136 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9137 }
9138 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9139
9140 /* now that all the block groups are freed, go through and
9141 * free all the space_info structs. This is only called during
9142 * the final stages of unmount, and so we know nobody is
9143 * using them. We call synchronize_rcu() once before we start,
9144 * just to be on the safe side.
9145 */
9146 synchronize_rcu();
9147
8929ecfa
YZ
9148 release_global_block_rsv(info);
9149
67871254 9150 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9151 int i;
9152
4184ea7f
CM
9153 space_info = list_entry(info->space_info.next,
9154 struct btrfs_space_info,
9155 list);
b069e0c3 9156 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9157 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9158 space_info->bytes_reserved > 0 ||
fae7f21c 9159 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9160 dump_space_info(space_info, 0, 0);
9161 }
f0486c68 9162 }
4184ea7f 9163 list_del(&space_info->list);
6ab0a202
JM
9164 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9165 struct kobject *kobj;
c1895442
JM
9166 kobj = space_info->block_group_kobjs[i];
9167 space_info->block_group_kobjs[i] = NULL;
9168 if (kobj) {
6ab0a202
JM
9169 kobject_del(kobj);
9170 kobject_put(kobj);
9171 }
9172 }
9173 kobject_del(&space_info->kobj);
9174 kobject_put(&space_info->kobj);
4184ea7f 9175 }
1a40e23b
ZY
9176 return 0;
9177}
9178
b742bb82
YZ
9179static void __link_block_group(struct btrfs_space_info *space_info,
9180 struct btrfs_block_group_cache *cache)
9181{
9182 int index = get_block_group_index(cache);
ed55b6ac 9183 bool first = false;
b742bb82
YZ
9184
9185 down_write(&space_info->groups_sem);
ed55b6ac
JM
9186 if (list_empty(&space_info->block_groups[index]))
9187 first = true;
9188 list_add_tail(&cache->list, &space_info->block_groups[index]);
9189 up_write(&space_info->groups_sem);
9190
9191 if (first) {
c1895442 9192 struct raid_kobject *rkobj;
6ab0a202
JM
9193 int ret;
9194
c1895442
JM
9195 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9196 if (!rkobj)
9197 goto out_err;
9198 rkobj->raid_type = index;
9199 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9200 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9201 "%s", get_raid_name(index));
6ab0a202 9202 if (ret) {
c1895442
JM
9203 kobject_put(&rkobj->kobj);
9204 goto out_err;
6ab0a202 9205 }
c1895442 9206 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9207 }
c1895442
JM
9208
9209 return;
9210out_err:
9211 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9212}
9213
920e4a58
MX
9214static struct btrfs_block_group_cache *
9215btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9216{
9217 struct btrfs_block_group_cache *cache;
9218
9219 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9220 if (!cache)
9221 return NULL;
9222
9223 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9224 GFP_NOFS);
9225 if (!cache->free_space_ctl) {
9226 kfree(cache);
9227 return NULL;
9228 }
9229
9230 cache->key.objectid = start;
9231 cache->key.offset = size;
9232 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9233
9234 cache->sectorsize = root->sectorsize;
9235 cache->fs_info = root->fs_info;
9236 cache->full_stripe_len = btrfs_full_stripe_len(root,
9237 &root->fs_info->mapping_tree,
9238 start);
9239 atomic_set(&cache->count, 1);
9240 spin_lock_init(&cache->lock);
e570fd27 9241 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9242 INIT_LIST_HEAD(&cache->list);
9243 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9244 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9245 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9246 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9247 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9248 btrfs_init_free_space_ctl(cache);
04216820 9249 atomic_set(&cache->trimming, 0);
920e4a58
MX
9250
9251 return cache;
9252}
9253
9078a3e1
CM
9254int btrfs_read_block_groups(struct btrfs_root *root)
9255{
9256 struct btrfs_path *path;
9257 int ret;
9078a3e1 9258 struct btrfs_block_group_cache *cache;
be744175 9259 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9260 struct btrfs_space_info *space_info;
9078a3e1
CM
9261 struct btrfs_key key;
9262 struct btrfs_key found_key;
5f39d397 9263 struct extent_buffer *leaf;
0af3d00b
JB
9264 int need_clear = 0;
9265 u64 cache_gen;
96b5179d 9266
be744175 9267 root = info->extent_root;
9078a3e1 9268 key.objectid = 0;
0b86a832 9269 key.offset = 0;
962a298f 9270 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9271 path = btrfs_alloc_path();
9272 if (!path)
9273 return -ENOMEM;
026fd317 9274 path->reada = 1;
9078a3e1 9275
6c41761f 9276 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9277 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9278 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9279 need_clear = 1;
88c2ba3b
JB
9280 if (btrfs_test_opt(root, CLEAR_CACHE))
9281 need_clear = 1;
0af3d00b 9282
d397712b 9283 while (1) {
0b86a832 9284 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9285 if (ret > 0)
9286 break;
0b86a832
CM
9287 if (ret != 0)
9288 goto error;
920e4a58 9289
5f39d397
CM
9290 leaf = path->nodes[0];
9291 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9292
9293 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9294 found_key.offset);
9078a3e1 9295 if (!cache) {
0b86a832 9296 ret = -ENOMEM;
f0486c68 9297 goto error;
9078a3e1 9298 }
96303081 9299
cf7c1ef6
LB
9300 if (need_clear) {
9301 /*
9302 * When we mount with old space cache, we need to
9303 * set BTRFS_DC_CLEAR and set dirty flag.
9304 *
9305 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9306 * truncate the old free space cache inode and
9307 * setup a new one.
9308 * b) Setting 'dirty flag' makes sure that we flush
9309 * the new space cache info onto disk.
9310 */
cf7c1ef6 9311 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9312 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9313 }
0af3d00b 9314
5f39d397
CM
9315 read_extent_buffer(leaf, &cache->item,
9316 btrfs_item_ptr_offset(leaf, path->slots[0]),
9317 sizeof(cache->item));
920e4a58 9318 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9319
9078a3e1 9320 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9321 btrfs_release_path(path);
34d52cb6 9322
3c14874a
JB
9323 /*
9324 * We need to exclude the super stripes now so that the space
9325 * info has super bytes accounted for, otherwise we'll think
9326 * we have more space than we actually do.
9327 */
835d974f
JB
9328 ret = exclude_super_stripes(root, cache);
9329 if (ret) {
9330 /*
9331 * We may have excluded something, so call this just in
9332 * case.
9333 */
9334 free_excluded_extents(root, cache);
920e4a58 9335 btrfs_put_block_group(cache);
835d974f
JB
9336 goto error;
9337 }
3c14874a 9338
817d52f8
JB
9339 /*
9340 * check for two cases, either we are full, and therefore
9341 * don't need to bother with the caching work since we won't
9342 * find any space, or we are empty, and we can just add all
9343 * the space in and be done with it. This saves us _alot_ of
9344 * time, particularly in the full case.
9345 */
9346 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9347 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9348 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9349 free_excluded_extents(root, cache);
817d52f8 9350 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9351 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9352 cache->cached = BTRFS_CACHE_FINISHED;
9353 add_new_free_space(cache, root->fs_info,
9354 found_key.objectid,
9355 found_key.objectid +
9356 found_key.offset);
11833d66 9357 free_excluded_extents(root, cache);
817d52f8 9358 }
96b5179d 9359
8c579fe7
JB
9360 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9361 if (ret) {
9362 btrfs_remove_free_space_cache(cache);
9363 btrfs_put_block_group(cache);
9364 goto error;
9365 }
9366
6324fbf3
CM
9367 ret = update_space_info(info, cache->flags, found_key.offset,
9368 btrfs_block_group_used(&cache->item),
9369 &space_info);
8c579fe7
JB
9370 if (ret) {
9371 btrfs_remove_free_space_cache(cache);
9372 spin_lock(&info->block_group_cache_lock);
9373 rb_erase(&cache->cache_node,
9374 &info->block_group_cache_tree);
01eacb27 9375 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9376 spin_unlock(&info->block_group_cache_lock);
9377 btrfs_put_block_group(cache);
9378 goto error;
9379 }
9380
6324fbf3 9381 cache->space_info = space_info;
1b2da372 9382 spin_lock(&cache->space_info->lock);
f0486c68 9383 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9384 spin_unlock(&cache->space_info->lock);
9385
b742bb82 9386 __link_block_group(space_info, cache);
0f9dd46c 9387
75ccf47d 9388 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9389 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
199c36ea 9390 set_block_group_ro(cache, 1);
47ab2a6c
JB
9391 } else if (btrfs_block_group_used(&cache->item) == 0) {
9392 spin_lock(&info->unused_bgs_lock);
9393 /* Should always be true but just in case. */
9394 if (list_empty(&cache->bg_list)) {
9395 btrfs_get_block_group(cache);
9396 list_add_tail(&cache->bg_list,
9397 &info->unused_bgs);
9398 }
9399 spin_unlock(&info->unused_bgs_lock);
9400 }
9078a3e1 9401 }
b742bb82
YZ
9402
9403 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9404 if (!(get_alloc_profile(root, space_info->flags) &
9405 (BTRFS_BLOCK_GROUP_RAID10 |
9406 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9407 BTRFS_BLOCK_GROUP_RAID5 |
9408 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9409 BTRFS_BLOCK_GROUP_DUP)))
9410 continue;
9411 /*
9412 * avoid allocating from un-mirrored block group if there are
9413 * mirrored block groups.
9414 */
1095cc0d 9415 list_for_each_entry(cache,
9416 &space_info->block_groups[BTRFS_RAID_RAID0],
9417 list)
199c36ea 9418 set_block_group_ro(cache, 1);
1095cc0d 9419 list_for_each_entry(cache,
9420 &space_info->block_groups[BTRFS_RAID_SINGLE],
9421 list)
199c36ea 9422 set_block_group_ro(cache, 1);
9078a3e1 9423 }
f0486c68
YZ
9424
9425 init_global_block_rsv(info);
0b86a832
CM
9426 ret = 0;
9427error:
9078a3e1 9428 btrfs_free_path(path);
0b86a832 9429 return ret;
9078a3e1 9430}
6324fbf3 9431
ea658bad
JB
9432void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9433 struct btrfs_root *root)
9434{
9435 struct btrfs_block_group_cache *block_group, *tmp;
9436 struct btrfs_root *extent_root = root->fs_info->extent_root;
9437 struct btrfs_block_group_item item;
9438 struct btrfs_key key;
9439 int ret = 0;
9440
47ab2a6c 9441 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9442 if (ret)
c92f6be3 9443 goto next;
ea658bad
JB
9444
9445 spin_lock(&block_group->lock);
9446 memcpy(&item, &block_group->item, sizeof(item));
9447 memcpy(&key, &block_group->key, sizeof(key));
9448 spin_unlock(&block_group->lock);
9449
9450 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9451 sizeof(item));
9452 if (ret)
9453 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9454 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9455 key.objectid, key.offset);
9456 if (ret)
9457 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9458next:
9459 list_del_init(&block_group->bg_list);
ea658bad
JB
9460 }
9461}
9462
6324fbf3
CM
9463int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9464 struct btrfs_root *root, u64 bytes_used,
e17cade2 9465 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9466 u64 size)
9467{
9468 int ret;
6324fbf3
CM
9469 struct btrfs_root *extent_root;
9470 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9471
9472 extent_root = root->fs_info->extent_root;
6324fbf3 9473
995946dd 9474 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9475
920e4a58 9476 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9477 if (!cache)
9478 return -ENOMEM;
34d52cb6 9479
6324fbf3 9480 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9481 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9482 btrfs_set_block_group_flags(&cache->item, type);
9483
920e4a58 9484 cache->flags = type;
11833d66 9485 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9486 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9487 ret = exclude_super_stripes(root, cache);
9488 if (ret) {
9489 /*
9490 * We may have excluded something, so call this just in
9491 * case.
9492 */
9493 free_excluded_extents(root, cache);
920e4a58 9494 btrfs_put_block_group(cache);
835d974f
JB
9495 return ret;
9496 }
96303081 9497
817d52f8
JB
9498 add_new_free_space(cache, root->fs_info, chunk_offset,
9499 chunk_offset + size);
9500
11833d66
YZ
9501 free_excluded_extents(root, cache);
9502
2e6e5183
FM
9503 /*
9504 * Call to ensure the corresponding space_info object is created and
9505 * assigned to our block group, but don't update its counters just yet.
9506 * We want our bg to be added to the rbtree with its ->space_info set.
9507 */
9508 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9509 &cache->space_info);
9510 if (ret) {
9511 btrfs_remove_free_space_cache(cache);
9512 btrfs_put_block_group(cache);
9513 return ret;
9514 }
9515
8c579fe7
JB
9516 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9517 if (ret) {
9518 btrfs_remove_free_space_cache(cache);
9519 btrfs_put_block_group(cache);
9520 return ret;
9521 }
9522
2e6e5183
FM
9523 /*
9524 * Now that our block group has its ->space_info set and is inserted in
9525 * the rbtree, update the space info's counters.
9526 */
6324fbf3
CM
9527 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9528 &cache->space_info);
8c579fe7
JB
9529 if (ret) {
9530 btrfs_remove_free_space_cache(cache);
9531 spin_lock(&root->fs_info->block_group_cache_lock);
9532 rb_erase(&cache->cache_node,
9533 &root->fs_info->block_group_cache_tree);
01eacb27 9534 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9535 spin_unlock(&root->fs_info->block_group_cache_lock);
9536 btrfs_put_block_group(cache);
9537 return ret;
9538 }
c7c144db 9539 update_global_block_rsv(root->fs_info);
1b2da372
JB
9540
9541 spin_lock(&cache->space_info->lock);
f0486c68 9542 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9543 spin_unlock(&cache->space_info->lock);
9544
b742bb82 9545 __link_block_group(cache->space_info, cache);
6324fbf3 9546
47ab2a6c 9547 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9548
d18a2c44 9549 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9550
6324fbf3
CM
9551 return 0;
9552}
1a40e23b 9553
10ea00f5
ID
9554static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9555{
899c81ea
ID
9556 u64 extra_flags = chunk_to_extended(flags) &
9557 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9558
de98ced9 9559 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9560 if (flags & BTRFS_BLOCK_GROUP_DATA)
9561 fs_info->avail_data_alloc_bits &= ~extra_flags;
9562 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9563 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9564 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9565 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9566 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9567}
9568
1a40e23b 9569int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9570 struct btrfs_root *root, u64 group_start,
9571 struct extent_map *em)
1a40e23b
ZY
9572{
9573 struct btrfs_path *path;
9574 struct btrfs_block_group_cache *block_group;
44fb5511 9575 struct btrfs_free_cluster *cluster;
0af3d00b 9576 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9577 struct btrfs_key key;
0af3d00b 9578 struct inode *inode;
c1895442 9579 struct kobject *kobj = NULL;
1a40e23b 9580 int ret;
10ea00f5 9581 int index;
89a55897 9582 int factor;
4f69cb98 9583 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9584 bool remove_em;
1a40e23b 9585
1a40e23b
ZY
9586 root = root->fs_info->extent_root;
9587
9588 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9589 BUG_ON(!block_group);
c146afad 9590 BUG_ON(!block_group->ro);
1a40e23b 9591
9f7c43c9 9592 /*
9593 * Free the reserved super bytes from this block group before
9594 * remove it.
9595 */
9596 free_excluded_extents(root, block_group);
9597
1a40e23b 9598 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9599 index = get_block_group_index(block_group);
89a55897
JB
9600 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9601 BTRFS_BLOCK_GROUP_RAID1 |
9602 BTRFS_BLOCK_GROUP_RAID10))
9603 factor = 2;
9604 else
9605 factor = 1;
1a40e23b 9606
44fb5511
CM
9607 /* make sure this block group isn't part of an allocation cluster */
9608 cluster = &root->fs_info->data_alloc_cluster;
9609 spin_lock(&cluster->refill_lock);
9610 btrfs_return_cluster_to_free_space(block_group, cluster);
9611 spin_unlock(&cluster->refill_lock);
9612
9613 /*
9614 * make sure this block group isn't part of a metadata
9615 * allocation cluster
9616 */
9617 cluster = &root->fs_info->meta_alloc_cluster;
9618 spin_lock(&cluster->refill_lock);
9619 btrfs_return_cluster_to_free_space(block_group, cluster);
9620 spin_unlock(&cluster->refill_lock);
9621
1a40e23b 9622 path = btrfs_alloc_path();
d8926bb3
MF
9623 if (!path) {
9624 ret = -ENOMEM;
9625 goto out;
9626 }
1a40e23b 9627
1bbc621e
CM
9628 /*
9629 * get the inode first so any iput calls done for the io_list
9630 * aren't the final iput (no unlinks allowed now)
9631 */
10b2f34d 9632 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9633
9634 mutex_lock(&trans->transaction->cache_write_mutex);
9635 /*
9636 * make sure our free spache cache IO is done before remove the
9637 * free space inode
9638 */
9639 spin_lock(&trans->transaction->dirty_bgs_lock);
9640 if (!list_empty(&block_group->io_list)) {
9641 list_del_init(&block_group->io_list);
9642
9643 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9644
9645 spin_unlock(&trans->transaction->dirty_bgs_lock);
9646 btrfs_wait_cache_io(root, trans, block_group,
9647 &block_group->io_ctl, path,
9648 block_group->key.objectid);
9649 btrfs_put_block_group(block_group);
9650 spin_lock(&trans->transaction->dirty_bgs_lock);
9651 }
9652
9653 if (!list_empty(&block_group->dirty_list)) {
9654 list_del_init(&block_group->dirty_list);
9655 btrfs_put_block_group(block_group);
9656 }
9657 spin_unlock(&trans->transaction->dirty_bgs_lock);
9658 mutex_unlock(&trans->transaction->cache_write_mutex);
9659
0af3d00b 9660 if (!IS_ERR(inode)) {
b532402e 9661 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9662 if (ret) {
9663 btrfs_add_delayed_iput(inode);
9664 goto out;
9665 }
0af3d00b
JB
9666 clear_nlink(inode);
9667 /* One for the block groups ref */
9668 spin_lock(&block_group->lock);
9669 if (block_group->iref) {
9670 block_group->iref = 0;
9671 block_group->inode = NULL;
9672 spin_unlock(&block_group->lock);
9673 iput(inode);
9674 } else {
9675 spin_unlock(&block_group->lock);
9676 }
9677 /* One for our lookup ref */
455757c3 9678 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9679 }
9680
9681 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9682 key.offset = block_group->key.objectid;
9683 key.type = 0;
9684
9685 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9686 if (ret < 0)
9687 goto out;
9688 if (ret > 0)
b3b4aa74 9689 btrfs_release_path(path);
0af3d00b
JB
9690 if (ret == 0) {
9691 ret = btrfs_del_item(trans, tree_root, path);
9692 if (ret)
9693 goto out;
b3b4aa74 9694 btrfs_release_path(path);
0af3d00b
JB
9695 }
9696
3dfdb934 9697 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9698 rb_erase(&block_group->cache_node,
9699 &root->fs_info->block_group_cache_tree);
292cbd51 9700 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9701
9702 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9703 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9704 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9705
80eb234a 9706 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9707 /*
9708 * we must use list_del_init so people can check to see if they
9709 * are still on the list after taking the semaphore
9710 */
9711 list_del_init(&block_group->list);
6ab0a202 9712 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9713 kobj = block_group->space_info->block_group_kobjs[index];
9714 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9715 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9716 }
80eb234a 9717 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9718 if (kobj) {
9719 kobject_del(kobj);
9720 kobject_put(kobj);
9721 }
1a40e23b 9722
4f69cb98
FM
9723 if (block_group->has_caching_ctl)
9724 caching_ctl = get_caching_control(block_group);
817d52f8 9725 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9726 wait_block_group_cache_done(block_group);
4f69cb98
FM
9727 if (block_group->has_caching_ctl) {
9728 down_write(&root->fs_info->commit_root_sem);
9729 if (!caching_ctl) {
9730 struct btrfs_caching_control *ctl;
9731
9732 list_for_each_entry(ctl,
9733 &root->fs_info->caching_block_groups, list)
9734 if (ctl->block_group == block_group) {
9735 caching_ctl = ctl;
9736 atomic_inc(&caching_ctl->count);
9737 break;
9738 }
9739 }
9740 if (caching_ctl)
9741 list_del_init(&caching_ctl->list);
9742 up_write(&root->fs_info->commit_root_sem);
9743 if (caching_ctl) {
9744 /* Once for the caching bgs list and once for us. */
9745 put_caching_control(caching_ctl);
9746 put_caching_control(caching_ctl);
9747 }
9748 }
817d52f8 9749
ce93ec54
JB
9750 spin_lock(&trans->transaction->dirty_bgs_lock);
9751 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9752 WARN_ON(1);
9753 }
9754 if (!list_empty(&block_group->io_list)) {
9755 WARN_ON(1);
ce93ec54
JB
9756 }
9757 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9758 btrfs_remove_free_space_cache(block_group);
9759
c146afad 9760 spin_lock(&block_group->space_info->lock);
75c68e9f 9761 list_del_init(&block_group->ro_list);
18d018ad
ZL
9762
9763 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9764 WARN_ON(block_group->space_info->total_bytes
9765 < block_group->key.offset);
9766 WARN_ON(block_group->space_info->bytes_readonly
9767 < block_group->key.offset);
9768 WARN_ON(block_group->space_info->disk_total
9769 < block_group->key.offset * factor);
9770 }
c146afad
YZ
9771 block_group->space_info->total_bytes -= block_group->key.offset;
9772 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9773 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9774
c146afad 9775 spin_unlock(&block_group->space_info->lock);
283bb197 9776
0af3d00b
JB
9777 memcpy(&key, &block_group->key, sizeof(key));
9778
04216820 9779 lock_chunks(root);
495e64f4
FM
9780 if (!list_empty(&em->list)) {
9781 /* We're in the transaction->pending_chunks list. */
9782 free_extent_map(em);
9783 }
04216820
FM
9784 spin_lock(&block_group->lock);
9785 block_group->removed = 1;
9786 /*
9787 * At this point trimming can't start on this block group, because we
9788 * removed the block group from the tree fs_info->block_group_cache_tree
9789 * so no one can't find it anymore and even if someone already got this
9790 * block group before we removed it from the rbtree, they have already
9791 * incremented block_group->trimming - if they didn't, they won't find
9792 * any free space entries because we already removed them all when we
9793 * called btrfs_remove_free_space_cache().
9794 *
9795 * And we must not remove the extent map from the fs_info->mapping_tree
9796 * to prevent the same logical address range and physical device space
9797 * ranges from being reused for a new block group. This is because our
9798 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9799 * completely transactionless, so while it is trimming a range the
9800 * currently running transaction might finish and a new one start,
9801 * allowing for new block groups to be created that can reuse the same
9802 * physical device locations unless we take this special care.
9803 */
9804 remove_em = (atomic_read(&block_group->trimming) == 0);
9805 /*
9806 * Make sure a trimmer task always sees the em in the pinned_chunks list
9807 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9808 * before checking block_group->removed).
9809 */
9810 if (!remove_em) {
9811 /*
9812 * Our em might be in trans->transaction->pending_chunks which
9813 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9814 * and so is the fs_info->pinned_chunks list.
9815 *
9816 * So at this point we must be holding the chunk_mutex to avoid
9817 * any races with chunk allocation (more specifically at
9818 * volumes.c:contains_pending_extent()), to ensure it always
9819 * sees the em, either in the pending_chunks list or in the
9820 * pinned_chunks list.
9821 */
9822 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9823 }
9824 spin_unlock(&block_group->lock);
04216820
FM
9825
9826 if (remove_em) {
9827 struct extent_map_tree *em_tree;
9828
9829 em_tree = &root->fs_info->mapping_tree.map_tree;
9830 write_lock(&em_tree->lock);
8dbcd10f
FM
9831 /*
9832 * The em might be in the pending_chunks list, so make sure the
9833 * chunk mutex is locked, since remove_extent_mapping() will
9834 * delete us from that list.
9835 */
04216820
FM
9836 remove_extent_mapping(em_tree, em);
9837 write_unlock(&em_tree->lock);
9838 /* once for the tree */
9839 free_extent_map(em);
9840 }
9841
8dbcd10f
FM
9842 unlock_chunks(root);
9843
fa9c0d79
CM
9844 btrfs_put_block_group(block_group);
9845 btrfs_put_block_group(block_group);
1a40e23b
ZY
9846
9847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9848 if (ret > 0)
9849 ret = -EIO;
9850 if (ret < 0)
9851 goto out;
9852
9853 ret = btrfs_del_item(trans, root, path);
9854out:
9855 btrfs_free_path(path);
9856 return ret;
9857}
acce952b 9858
47ab2a6c
JB
9859/*
9860 * Process the unused_bgs list and remove any that don't have any allocated
9861 * space inside of them.
9862 */
9863void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9864{
9865 struct btrfs_block_group_cache *block_group;
9866 struct btrfs_space_info *space_info;
9867 struct btrfs_root *root = fs_info->extent_root;
9868 struct btrfs_trans_handle *trans;
9869 int ret = 0;
9870
9871 if (!fs_info->open)
9872 return;
9873
9874 spin_lock(&fs_info->unused_bgs_lock);
9875 while (!list_empty(&fs_info->unused_bgs)) {
9876 u64 start, end;
9877
9878 block_group = list_first_entry(&fs_info->unused_bgs,
9879 struct btrfs_block_group_cache,
9880 bg_list);
9881 space_info = block_group->space_info;
9882 list_del_init(&block_group->bg_list);
9883 if (ret || btrfs_mixed_space_info(space_info)) {
9884 btrfs_put_block_group(block_group);
9885 continue;
9886 }
9887 spin_unlock(&fs_info->unused_bgs_lock);
9888
9889 /* Don't want to race with allocators so take the groups_sem */
9890 down_write(&space_info->groups_sem);
9891 spin_lock(&block_group->lock);
9892 if (block_group->reserved ||
9893 btrfs_block_group_used(&block_group->item) ||
9894 block_group->ro) {
9895 /*
9896 * We want to bail if we made new allocations or have
9897 * outstanding allocations in this block group. We do
9898 * the ro check in case balance is currently acting on
9899 * this block group.
9900 */
9901 spin_unlock(&block_group->lock);
9902 up_write(&space_info->groups_sem);
9903 goto next;
9904 }
9905 spin_unlock(&block_group->lock);
9906
9907 /* We don't want to force the issue, only flip if it's ok. */
9908 ret = set_block_group_ro(block_group, 0);
9909 up_write(&space_info->groups_sem);
9910 if (ret < 0) {
9911 ret = 0;
9912 goto next;
9913 }
9914
9915 /*
9916 * Want to do this before we do anything else so we can recover
9917 * properly if we fail to join the transaction.
9918 */
3d84be79
FL
9919 /* 1 for btrfs_orphan_reserve_metadata() */
9920 trans = btrfs_start_transaction(root, 1);
47ab2a6c
JB
9921 if (IS_ERR(trans)) {
9922 btrfs_set_block_group_rw(root, block_group);
9923 ret = PTR_ERR(trans);
9924 goto next;
9925 }
9926
9927 /*
9928 * We could have pending pinned extents for this block group,
9929 * just delete them, we don't care about them anymore.
9930 */
9931 start = block_group->key.objectid;
9932 end = start + block_group->key.offset - 1;
d4b450cd
FM
9933 /*
9934 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9935 * btrfs_finish_extent_commit(). If we are at transaction N,
9936 * another task might be running finish_extent_commit() for the
9937 * previous transaction N - 1, and have seen a range belonging
9938 * to the block group in freed_extents[] before we were able to
9939 * clear the whole block group range from freed_extents[]. This
9940 * means that task can lookup for the block group after we
9941 * unpinned it from freed_extents[] and removed it, leading to
9942 * a BUG_ON() at btrfs_unpin_extent_range().
9943 */
9944 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 9945 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 9946 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9947 if (ret) {
d4b450cd 9948 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9949 btrfs_set_block_group_rw(root, block_group);
9950 goto end_trans;
9951 }
9952 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 9953 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9954 if (ret) {
d4b450cd 9955 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9956 btrfs_set_block_group_rw(root, block_group);
9957 goto end_trans;
9958 }
d4b450cd 9959 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
9960
9961 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
9962 spin_lock(&space_info->lock);
9963 spin_lock(&block_group->lock);
9964
9965 space_info->bytes_pinned -= block_group->pinned;
9966 space_info->bytes_readonly += block_group->pinned;
9967 percpu_counter_add(&space_info->total_bytes_pinned,
9968 -block_group->pinned);
47ab2a6c
JB
9969 block_group->pinned = 0;
9970
c30666d4
ZL
9971 spin_unlock(&block_group->lock);
9972 spin_unlock(&space_info->lock);
9973
47ab2a6c
JB
9974 /*
9975 * Btrfs_remove_chunk will abort the transaction if things go
9976 * horribly wrong.
9977 */
9978 ret = btrfs_remove_chunk(trans, root,
9979 block_group->key.objectid);
758eb51e 9980end_trans:
47ab2a6c
JB
9981 btrfs_end_transaction(trans, root);
9982next:
9983 btrfs_put_block_group(block_group);
9984 spin_lock(&fs_info->unused_bgs_lock);
9985 }
9986 spin_unlock(&fs_info->unused_bgs_lock);
9987}
9988
c59021f8 9989int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9990{
9991 struct btrfs_space_info *space_info;
1aba86d6 9992 struct btrfs_super_block *disk_super;
9993 u64 features;
9994 u64 flags;
9995 int mixed = 0;
c59021f8 9996 int ret;
9997
6c41761f 9998 disk_super = fs_info->super_copy;
1aba86d6 9999 if (!btrfs_super_root(disk_super))
10000 return 1;
c59021f8 10001
1aba86d6 10002 features = btrfs_super_incompat_flags(disk_super);
10003 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10004 mixed = 1;
c59021f8 10005
1aba86d6 10006 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10007 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10008 if (ret)
1aba86d6 10009 goto out;
c59021f8 10010
1aba86d6 10011 if (mixed) {
10012 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10013 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10014 } else {
10015 flags = BTRFS_BLOCK_GROUP_METADATA;
10016 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10017 if (ret)
10018 goto out;
10019
10020 flags = BTRFS_BLOCK_GROUP_DATA;
10021 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10022 }
10023out:
c59021f8 10024 return ret;
10025}
10026
acce952b 10027int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10028{
678886bd 10029 return unpin_extent_range(root, start, end, false);
acce952b 10030}
10031
f7039b1d
LD
10032int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10033{
10034 struct btrfs_fs_info *fs_info = root->fs_info;
10035 struct btrfs_block_group_cache *cache = NULL;
10036 u64 group_trimmed;
10037 u64 start;
10038 u64 end;
10039 u64 trimmed = 0;
2cac13e4 10040 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10041 int ret = 0;
10042
2cac13e4
LB
10043 /*
10044 * try to trim all FS space, our block group may start from non-zero.
10045 */
10046 if (range->len == total_bytes)
10047 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10048 else
10049 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10050
10051 while (cache) {
10052 if (cache->key.objectid >= (range->start + range->len)) {
10053 btrfs_put_block_group(cache);
10054 break;
10055 }
10056
10057 start = max(range->start, cache->key.objectid);
10058 end = min(range->start + range->len,
10059 cache->key.objectid + cache->key.offset);
10060
10061 if (end - start >= range->minlen) {
10062 if (!block_group_cache_done(cache)) {
f6373bf3 10063 ret = cache_block_group(cache, 0);
1be41b78
JB
10064 if (ret) {
10065 btrfs_put_block_group(cache);
10066 break;
10067 }
10068 ret = wait_block_group_cache_done(cache);
10069 if (ret) {
10070 btrfs_put_block_group(cache);
10071 break;
10072 }
f7039b1d
LD
10073 }
10074 ret = btrfs_trim_block_group(cache,
10075 &group_trimmed,
10076 start,
10077 end,
10078 range->minlen);
10079
10080 trimmed += group_trimmed;
10081 if (ret) {
10082 btrfs_put_block_group(cache);
10083 break;
10084 }
10085 }
10086
10087 cache = next_block_group(fs_info->tree_root, cache);
10088 }
10089
10090 range->len = trimmed;
10091 return ret;
10092}
8257b2dc
MX
10093
10094/*
9ea24bbe
FM
10095 * btrfs_{start,end}_write_no_snapshoting() are similar to
10096 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10097 * data into the page cache through nocow before the subvolume is snapshoted,
10098 * but flush the data into disk after the snapshot creation, or to prevent
10099 * operations while snapshoting is ongoing and that cause the snapshot to be
10100 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10101 */
9ea24bbe 10102void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10103{
10104 percpu_counter_dec(&root->subv_writers->counter);
10105 /*
10106 * Make sure counter is updated before we wake up
10107 * waiters.
10108 */
10109 smp_mb();
10110 if (waitqueue_active(&root->subv_writers->wait))
10111 wake_up(&root->subv_writers->wait);
10112}
10113
9ea24bbe 10114int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10115{
ee39b432 10116 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10117 return 0;
10118
10119 percpu_counter_inc(&root->subv_writers->counter);
10120 /*
10121 * Make sure counter is updated before we check for snapshot creation.
10122 */
10123 smp_mb();
ee39b432 10124 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10125 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10126 return 0;
10127 }
10128 return 1;
10129}
This page took 1.394618 seconds and 5 git commands to generate.