btrfs: extent-tree: Switch to new delalloc space reserve and release
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
9ed0dea0 1319static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1320 struct btrfs_extent_inline_ref *iref)
15916de8 1321{
5d4f98a2
YZ
1322 struct btrfs_key key;
1323 struct extent_buffer *leaf;
1324 struct btrfs_extent_data_ref *ref1;
1325 struct btrfs_shared_data_ref *ref2;
1326 u32 num_refs = 0;
1327
1328 leaf = path->nodes[0];
1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1330 if (iref) {
1331 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1332 BTRFS_EXTENT_DATA_REF_KEY) {
1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1335 } else {
1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1338 }
1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1353#endif
5d4f98a2
YZ
1354 } else {
1355 WARN_ON(1);
1356 }
1357 return num_refs;
1358}
15916de8 1359
5d4f98a2
YZ
1360static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1f3c79a2 1365{
5d4f98a2 1366 struct btrfs_key key;
1f3c79a2 1367 int ret;
1f3c79a2 1368
5d4f98a2
YZ
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1f3c79a2
LH
1376 }
1377
5d4f98a2
YZ
1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 if (ret == -ENOENT && parent) {
b3b4aa74 1383 btrfs_release_path(path);
5d4f98a2
YZ
1384 key.type = BTRFS_EXTENT_REF_V0_KEY;
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 }
1f3c79a2 1389#endif
5d4f98a2 1390 return ret;
1f3c79a2
LH
1391}
1392
5d4f98a2
YZ
1393static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct btrfs_path *path,
1396 u64 bytenr, u64 parent,
1397 u64 root_objectid)
31840ae1 1398{
5d4f98a2 1399 struct btrfs_key key;
31840ae1 1400 int ret;
31840ae1 1401
5d4f98a2
YZ
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1409 }
1410
1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1412 btrfs_release_path(path);
31840ae1
ZY
1413 return ret;
1414}
1415
5d4f98a2 1416static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1417{
5d4f98a2
YZ
1418 int type;
1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1420 if (parent > 0)
1421 type = BTRFS_SHARED_BLOCK_REF_KEY;
1422 else
1423 type = BTRFS_TREE_BLOCK_REF_KEY;
1424 } else {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_DATA_REF_KEY;
1427 else
1428 type = BTRFS_EXTENT_DATA_REF_KEY;
1429 }
1430 return type;
31840ae1 1431}
56bec294 1432
2c47e605
YZ
1433static int find_next_key(struct btrfs_path *path, int level,
1434 struct btrfs_key *key)
56bec294 1435
02217ed2 1436{
2c47e605 1437 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1438 if (!path->nodes[level])
1439 break;
5d4f98a2
YZ
1440 if (path->slots[level] + 1 >=
1441 btrfs_header_nritems(path->nodes[level]))
1442 continue;
1443 if (level == 0)
1444 btrfs_item_key_to_cpu(path->nodes[level], key,
1445 path->slots[level] + 1);
1446 else
1447 btrfs_node_key_to_cpu(path->nodes[level], key,
1448 path->slots[level] + 1);
1449 return 0;
1450 }
1451 return 1;
1452}
037e6390 1453
5d4f98a2
YZ
1454/*
1455 * look for inline back ref. if back ref is found, *ref_ret is set
1456 * to the address of inline back ref, and 0 is returned.
1457 *
1458 * if back ref isn't found, *ref_ret is set to the address where it
1459 * should be inserted, and -ENOENT is returned.
1460 *
1461 * if insert is true and there are too many inline back refs, the path
1462 * points to the extent item, and -EAGAIN is returned.
1463 *
1464 * NOTE: inline back refs are ordered in the same way that back ref
1465 * items in the tree are ordered.
1466 */
1467static noinline_for_stack
1468int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 struct btrfs_extent_inline_ref **ref_ret,
1472 u64 bytenr, u64 num_bytes,
1473 u64 parent, u64 root_objectid,
1474 u64 owner, u64 offset, int insert)
1475{
1476 struct btrfs_key key;
1477 struct extent_buffer *leaf;
1478 struct btrfs_extent_item *ei;
1479 struct btrfs_extent_inline_ref *iref;
1480 u64 flags;
1481 u64 item_size;
1482 unsigned long ptr;
1483 unsigned long end;
1484 int extra_size;
1485 int type;
1486 int want;
1487 int ret;
1488 int err = 0;
3173a18f
JB
1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1490 SKINNY_METADATA);
26b8003f 1491
db94535d 1492 key.objectid = bytenr;
31840ae1 1493 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1494 key.offset = num_bytes;
31840ae1 1495
5d4f98a2
YZ
1496 want = extent_ref_type(parent, owner);
1497 if (insert) {
1498 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1499 path->keep_locks = 1;
5d4f98a2
YZ
1500 } else
1501 extra_size = -1;
3173a18f
JB
1502
1503 /*
1504 * Owner is our parent level, so we can just add one to get the level
1505 * for the block we are interested in.
1506 */
1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1508 key.type = BTRFS_METADATA_ITEM_KEY;
1509 key.offset = owner;
1510 }
1511
1512again:
5d4f98a2 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1514 if (ret < 0) {
5d4f98a2
YZ
1515 err = ret;
1516 goto out;
1517 }
3173a18f
JB
1518
1519 /*
1520 * We may be a newly converted file system which still has the old fat
1521 * extent entries for metadata, so try and see if we have one of those.
1522 */
1523 if (ret > 0 && skinny_metadata) {
1524 skinny_metadata = false;
1525 if (path->slots[0]) {
1526 path->slots[0]--;
1527 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 path->slots[0]);
1529 if (key.objectid == bytenr &&
1530 key.type == BTRFS_EXTENT_ITEM_KEY &&
1531 key.offset == num_bytes)
1532 ret = 0;
1533 }
1534 if (ret) {
9ce49a0b 1535 key.objectid = bytenr;
3173a18f
JB
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
79787eaa
JM
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
fae7f21c 1546 } else if (WARN_ON(ret)) {
492104c8 1547 err = -EIO;
492104c8 1548 goto out;
79787eaa 1549 }
5d4f98a2
YZ
1550
1551 leaf = path->nodes[0];
1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1553#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1554 if (item_size < sizeof(*ei)) {
1555 if (!insert) {
1556 err = -ENOENT;
1557 goto out;
1558 }
1559 ret = convert_extent_item_v0(trans, root, path, owner,
1560 extra_size);
1561 if (ret < 0) {
1562 err = ret;
1563 goto out;
1564 }
1565 leaf = path->nodes[0];
1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1567 }
1568#endif
1569 BUG_ON(item_size < sizeof(*ei));
1570
5d4f98a2
YZ
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 flags = btrfs_extent_flags(leaf, ei);
1573
1574 ptr = (unsigned long)(ei + 1);
1575 end = (unsigned long)ei + item_size;
1576
3173a18f 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1578 ptr += sizeof(struct btrfs_tree_block_info);
1579 BUG_ON(ptr > end);
5d4f98a2
YZ
1580 }
1581
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
1589 type = btrfs_extent_inline_ref_type(leaf, iref);
1590 if (want < type)
1591 break;
1592 if (want > type) {
1593 ptr += btrfs_extent_inline_ref_size(type);
1594 continue;
1595 }
1596
1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1598 struct btrfs_extent_data_ref *dref;
1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1600 if (match_extent_data_ref(leaf, dref, root_objectid,
1601 owner, offset)) {
1602 err = 0;
1603 break;
1604 }
1605 if (hash_extent_data_ref_item(leaf, dref) <
1606 hash_extent_data_ref(root_objectid, owner, offset))
1607 break;
1608 } else {
1609 u64 ref_offset;
1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1611 if (parent > 0) {
1612 if (parent == ref_offset) {
1613 err = 0;
1614 break;
1615 }
1616 if (ref_offset < parent)
1617 break;
1618 } else {
1619 if (root_objectid == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < root_objectid)
1624 break;
1625 }
1626 }
1627 ptr += btrfs_extent_inline_ref_size(type);
1628 }
1629 if (err == -ENOENT && insert) {
1630 if (item_size + extra_size >=
1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1632 err = -EAGAIN;
1633 goto out;
1634 }
1635 /*
1636 * To add new inline back ref, we have to make sure
1637 * there is no corresponding back ref item.
1638 * For simplicity, we just do not add new inline back
1639 * ref if there is any kind of item for this block
1640 */
2c47e605
YZ
1641 if (find_next_key(path, 0, &key) == 0 &&
1642 key.objectid == bytenr &&
85d4198e 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1644 err = -EAGAIN;
1645 goto out;
1646 }
1647 }
1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1649out:
85d4198e 1650 if (insert) {
5d4f98a2
YZ
1651 path->keep_locks = 0;
1652 btrfs_unlock_up_safe(path, 1);
1653 }
1654 return err;
1655}
1656
1657/*
1658 * helper to add new inline back ref
1659 */
1660static noinline_for_stack
fd279fae 1661void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1662 struct btrfs_path *path,
1663 struct btrfs_extent_inline_ref *iref,
1664 u64 parent, u64 root_objectid,
1665 u64 owner, u64 offset, int refs_to_add,
1666 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1667{
1668 struct extent_buffer *leaf;
1669 struct btrfs_extent_item *ei;
1670 unsigned long ptr;
1671 unsigned long end;
1672 unsigned long item_offset;
1673 u64 refs;
1674 int size;
1675 int type;
5d4f98a2
YZ
1676
1677 leaf = path->nodes[0];
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 item_offset = (unsigned long)iref - (unsigned long)ei;
1680
1681 type = extent_ref_type(parent, owner);
1682 size = btrfs_extent_inline_ref_size(type);
1683
4b90c680 1684 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1685
1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1687 refs = btrfs_extent_refs(leaf, ei);
1688 refs += refs_to_add;
1689 btrfs_set_extent_refs(leaf, ei, refs);
1690 if (extent_op)
1691 __run_delayed_extent_op(extent_op, leaf, ei);
1692
1693 ptr = (unsigned long)ei + item_offset;
1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1695 if (ptr < end - size)
1696 memmove_extent_buffer(leaf, ptr + size, ptr,
1697 end - size - ptr);
1698
1699 iref = (struct btrfs_extent_inline_ref *)ptr;
1700 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1702 struct btrfs_extent_data_ref *dref;
1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1709 struct btrfs_shared_data_ref *sref;
1710 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1717 }
1718 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1719}
1720
1721static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1722 struct btrfs_root *root,
1723 struct btrfs_path *path,
1724 struct btrfs_extent_inline_ref **ref_ret,
1725 u64 bytenr, u64 num_bytes, u64 parent,
1726 u64 root_objectid, u64 owner, u64 offset)
1727{
1728 int ret;
1729
1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1731 bytenr, num_bytes, parent,
1732 root_objectid, owner, offset, 0);
1733 if (ret != -ENOENT)
54aa1f4d 1734 return ret;
5d4f98a2 1735
b3b4aa74 1736 btrfs_release_path(path);
5d4f98a2
YZ
1737 *ref_ret = NULL;
1738
1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1741 root_objectid);
1742 } else {
1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1744 root_objectid, owner, offset);
b9473439 1745 }
5d4f98a2
YZ
1746 return ret;
1747}
31840ae1 1748
5d4f98a2
YZ
1749/*
1750 * helper to update/remove inline back ref
1751 */
1752static noinline_for_stack
afe5fea7 1753void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1754 struct btrfs_path *path,
1755 struct btrfs_extent_inline_ref *iref,
1756 int refs_to_mod,
fcebe456
JB
1757 struct btrfs_delayed_extent_op *extent_op,
1758 int *last_ref)
5d4f98a2
YZ
1759{
1760 struct extent_buffer *leaf;
1761 struct btrfs_extent_item *ei;
1762 struct btrfs_extent_data_ref *dref = NULL;
1763 struct btrfs_shared_data_ref *sref = NULL;
1764 unsigned long ptr;
1765 unsigned long end;
1766 u32 item_size;
1767 int size;
1768 int type;
5d4f98a2
YZ
1769 u64 refs;
1770
1771 leaf = path->nodes[0];
1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1773 refs = btrfs_extent_refs(leaf, ei);
1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1775 refs += refs_to_mod;
1776 btrfs_set_extent_refs(leaf, ei, refs);
1777 if (extent_op)
1778 __run_delayed_extent_op(extent_op, leaf, ei);
1779
1780 type = btrfs_extent_inline_ref_type(leaf, iref);
1781
1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1784 refs = btrfs_extent_data_ref_count(leaf, dref);
1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1786 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1787 refs = btrfs_shared_data_ref_count(leaf, sref);
1788 } else {
1789 refs = 1;
1790 BUG_ON(refs_to_mod != -1);
56bec294 1791 }
31840ae1 1792
5d4f98a2
YZ
1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1794 refs += refs_to_mod;
1795
1796 if (refs > 0) {
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1798 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1799 else
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1801 } else {
fcebe456 1802 *last_ref = 1;
5d4f98a2
YZ
1803 size = btrfs_extent_inline_ref_size(type);
1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1805 ptr = (unsigned long)iref;
1806 end = (unsigned long)ei + item_size;
1807 if (ptr + size < end)
1808 memmove_extent_buffer(leaf, ptr, ptr + size,
1809 end - ptr - size);
1810 item_size -= size;
afe5fea7 1811 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1812 }
1813 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1814}
1815
1816static noinline_for_stack
1817int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1818 struct btrfs_root *root,
1819 struct btrfs_path *path,
1820 u64 bytenr, u64 num_bytes, u64 parent,
1821 u64 root_objectid, u64 owner,
1822 u64 offset, int refs_to_add,
1823 struct btrfs_delayed_extent_op *extent_op)
1824{
1825 struct btrfs_extent_inline_ref *iref;
1826 int ret;
1827
1828 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1829 bytenr, num_bytes, parent,
1830 root_objectid, owner, offset, 1);
1831 if (ret == 0) {
1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1833 update_inline_extent_backref(root, path, iref,
fcebe456 1834 refs_to_add, extent_op, NULL);
5d4f98a2 1835 } else if (ret == -ENOENT) {
fd279fae 1836 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1837 root_objectid, owner, offset,
1838 refs_to_add, extent_op);
1839 ret = 0;
771ed689 1840 }
5d4f98a2
YZ
1841 return ret;
1842}
31840ae1 1843
5d4f98a2
YZ
1844static int insert_extent_backref(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root,
1846 struct btrfs_path *path,
1847 u64 bytenr, u64 parent, u64 root_objectid,
1848 u64 owner, u64 offset, int refs_to_add)
1849{
1850 int ret;
1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1852 BUG_ON(refs_to_add != 1);
1853 ret = insert_tree_block_ref(trans, root, path, bytenr,
1854 parent, root_objectid);
1855 } else {
1856 ret = insert_extent_data_ref(trans, root, path, bytenr,
1857 parent, root_objectid,
1858 owner, offset, refs_to_add);
1859 }
1860 return ret;
1861}
56bec294 1862
5d4f98a2
YZ
1863static int remove_extent_backref(struct btrfs_trans_handle *trans,
1864 struct btrfs_root *root,
1865 struct btrfs_path *path,
1866 struct btrfs_extent_inline_ref *iref,
fcebe456 1867 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1868{
143bede5 1869 int ret = 0;
b9473439 1870
5d4f98a2
YZ
1871 BUG_ON(!is_data && refs_to_drop != 1);
1872 if (iref) {
afe5fea7 1873 update_inline_extent_backref(root, path, iref,
fcebe456 1874 -refs_to_drop, NULL, last_ref);
5d4f98a2 1875 } else if (is_data) {
fcebe456
JB
1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1877 last_ref);
5d4f98a2 1878 } else {
fcebe456 1879 *last_ref = 1;
5d4f98a2
YZ
1880 ret = btrfs_del_item(trans, root, path);
1881 }
1882 return ret;
1883}
1884
86557861 1885#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1886static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1887 u64 *discarded_bytes)
5d4f98a2 1888{
86557861
JM
1889 int j, ret = 0;
1890 u64 bytes_left, end;
4d89d377 1891 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1892
4d89d377
JM
1893 if (WARN_ON(start != aligned_start)) {
1894 len -= aligned_start - start;
1895 len = round_down(len, 1 << 9);
1896 start = aligned_start;
1897 }
d04c6b88 1898
4d89d377 1899 *discarded_bytes = 0;
86557861
JM
1900
1901 if (!len)
1902 return 0;
1903
1904 end = start + len;
1905 bytes_left = len;
1906
1907 /* Skip any superblocks on this device. */
1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1909 u64 sb_start = btrfs_sb_offset(j);
1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1911 u64 size = sb_start - start;
1912
1913 if (!in_range(sb_start, start, bytes_left) &&
1914 !in_range(sb_end, start, bytes_left) &&
1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1916 continue;
1917
1918 /*
1919 * Superblock spans beginning of range. Adjust start and
1920 * try again.
1921 */
1922 if (sb_start <= start) {
1923 start += sb_end - start;
1924 if (start > end) {
1925 bytes_left = 0;
1926 break;
1927 }
1928 bytes_left = end - start;
1929 continue;
1930 }
1931
1932 if (size) {
1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1934 GFP_NOFS, 0);
1935 if (!ret)
1936 *discarded_bytes += size;
1937 else if (ret != -EOPNOTSUPP)
1938 return ret;
1939 }
1940
1941 start = sb_end;
1942 if (start > end) {
1943 bytes_left = 0;
1944 break;
1945 }
1946 bytes_left = end - start;
1947 }
1948
1949 if (bytes_left) {
1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1951 GFP_NOFS, 0);
1952 if (!ret)
86557861 1953 *discarded_bytes += bytes_left;
4d89d377 1954 }
d04c6b88 1955 return ret;
5d4f98a2 1956}
5d4f98a2 1957
1edb647b
FM
1958int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1959 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1960{
5d4f98a2 1961 int ret;
5378e607 1962 u64 discarded_bytes = 0;
a1d3c478 1963 struct btrfs_bio *bbio = NULL;
5d4f98a2 1964
e244a0ae 1965
5d4f98a2 1966 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1968 bytenr, &num_bytes, &bbio, 0);
79787eaa 1969 /* Error condition is -ENOMEM */
5d4f98a2 1970 if (!ret) {
a1d3c478 1971 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1972 int i;
1973
5d4f98a2 1974
a1d3c478 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1976 u64 bytes;
d5e2003c
JB
1977 if (!stripe->dev->can_discard)
1978 continue;
1979
5378e607
LD
1980 ret = btrfs_issue_discard(stripe->dev->bdev,
1981 stripe->physical,
d04c6b88
JM
1982 stripe->length,
1983 &bytes);
5378e607 1984 if (!ret)
d04c6b88 1985 discarded_bytes += bytes;
5378e607 1986 else if (ret != -EOPNOTSUPP)
79787eaa 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1988
1989 /*
1990 * Just in case we get back EOPNOTSUPP for some reason,
1991 * just ignore the return value so we don't screw up
1992 * people calling discard_extent.
1993 */
1994 ret = 0;
5d4f98a2 1995 }
6e9606d2 1996 btrfs_put_bbio(bbio);
5d4f98a2 1997 }
5378e607
LD
1998
1999 if (actual_bytes)
2000 *actual_bytes = discarded_bytes;
2001
5d4f98a2 2002
53b381b3
DW
2003 if (ret == -EOPNOTSUPP)
2004 ret = 0;
5d4f98a2 2005 return ret;
5d4f98a2
YZ
2006}
2007
79787eaa 2008/* Can return -ENOMEM */
5d4f98a2
YZ
2009int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2010 struct btrfs_root *root,
2011 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2012 u64 root_objectid, u64 owner, u64 offset,
2013 int no_quota)
5d4f98a2
YZ
2014{
2015 int ret;
66d7e7f0
AJ
2016 struct btrfs_fs_info *fs_info = root->fs_info;
2017
5d4f98a2
YZ
2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2019 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2020
2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2023 num_bytes,
5d4f98a2 2024 parent, root_objectid, (int)owner,
fcebe456 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2026 } else {
66d7e7f0
AJ
2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2028 num_bytes,
5d4f98a2 2029 parent, root_objectid, owner, offset,
fcebe456 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2031 }
2032 return ret;
2033}
2034
2035static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
c682f9b3 2037 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2038 u64 parent, u64 root_objectid,
2039 u64 owner, u64 offset, int refs_to_add,
2040 struct btrfs_delayed_extent_op *extent_op)
2041{
fcebe456 2042 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2043 struct btrfs_path *path;
2044 struct extent_buffer *leaf;
2045 struct btrfs_extent_item *item;
fcebe456 2046 struct btrfs_key key;
c682f9b3
QW
2047 u64 bytenr = node->bytenr;
2048 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2049 u64 refs;
2050 int ret;
c682f9b3 2051 int no_quota = node->no_quota;
5d4f98a2
YZ
2052
2053 path = btrfs_alloc_path();
2054 if (!path)
2055 return -ENOMEM;
2056
fcebe456
JB
2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2058 no_quota = 1;
2059
5d4f98a2
YZ
2060 path->reada = 1;
2061 path->leave_spinning = 1;
2062 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2064 bytenr, num_bytes, parent,
5d4f98a2
YZ
2065 root_objectid, owner, offset,
2066 refs_to_add, extent_op);
0ed4792a 2067 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2068 goto out;
fcebe456
JB
2069
2070 /*
2071 * Ok we had -EAGAIN which means we didn't have space to insert and
2072 * inline extent ref, so just update the reference count and add a
2073 * normal backref.
2074 */
5d4f98a2 2075 leaf = path->nodes[0];
fcebe456 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 refs = btrfs_extent_refs(leaf, item);
2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2080 if (extent_op)
2081 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2082
5d4f98a2 2083 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2084 btrfs_release_path(path);
56bec294
CM
2085
2086 path->reada = 1;
b9473439 2087 path->leave_spinning = 1;
56bec294
CM
2088 /* now insert the actual backref */
2089 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2090 path, bytenr, parent, root_objectid,
2091 owner, offset, refs_to_add);
79787eaa
JM
2092 if (ret)
2093 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2094out:
56bec294 2095 btrfs_free_path(path);
30d133fc 2096 return ret;
56bec294
CM
2097}
2098
5d4f98a2
YZ
2099static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_delayed_ref_node *node,
2102 struct btrfs_delayed_extent_op *extent_op,
2103 int insert_reserved)
56bec294 2104{
5d4f98a2
YZ
2105 int ret = 0;
2106 struct btrfs_delayed_data_ref *ref;
2107 struct btrfs_key ins;
2108 u64 parent = 0;
2109 u64 ref_root = 0;
2110 u64 flags = 0;
2111
2112 ins.objectid = node->bytenr;
2113 ins.offset = node->num_bytes;
2114 ins.type = BTRFS_EXTENT_ITEM_KEY;
2115
2116 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2117 trace_run_delayed_data_ref(node, ref, node->action);
2118
5d4f98a2
YZ
2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2120 parent = ref->parent;
fcebe456 2121 ref_root = ref->root;
5d4f98a2
YZ
2122
2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2124 if (extent_op)
5d4f98a2 2125 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2126 ret = alloc_reserved_file_extent(trans, root,
2127 parent, ref_root, flags,
2128 ref->objectid, ref->offset,
2129 &ins, node->ref_mod);
5d4f98a2 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2132 ref_root, ref->objectid,
2133 ref->offset, node->ref_mod,
c682f9b3 2134 extent_op);
5d4f98a2 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2136 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2137 ref_root, ref->objectid,
2138 ref->offset, node->ref_mod,
c682f9b3 2139 extent_op);
5d4f98a2
YZ
2140 } else {
2141 BUG();
2142 }
2143 return ret;
2144}
2145
2146static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2147 struct extent_buffer *leaf,
2148 struct btrfs_extent_item *ei)
2149{
2150 u64 flags = btrfs_extent_flags(leaf, ei);
2151 if (extent_op->update_flags) {
2152 flags |= extent_op->flags_to_set;
2153 btrfs_set_extent_flags(leaf, ei, flags);
2154 }
2155
2156 if (extent_op->update_key) {
2157 struct btrfs_tree_block_info *bi;
2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2159 bi = (struct btrfs_tree_block_info *)(ei + 1);
2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2161 }
2162}
2163
2164static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2165 struct btrfs_root *root,
2166 struct btrfs_delayed_ref_node *node,
2167 struct btrfs_delayed_extent_op *extent_op)
2168{
2169 struct btrfs_key key;
2170 struct btrfs_path *path;
2171 struct btrfs_extent_item *ei;
2172 struct extent_buffer *leaf;
2173 u32 item_size;
56bec294 2174 int ret;
5d4f98a2 2175 int err = 0;
b1c79e09 2176 int metadata = !extent_op->is_data;
5d4f98a2 2177
79787eaa
JM
2178 if (trans->aborted)
2179 return 0;
2180
3173a18f
JB
2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2182 metadata = 0;
2183
5d4f98a2
YZ
2184 path = btrfs_alloc_path();
2185 if (!path)
2186 return -ENOMEM;
2187
2188 key.objectid = node->bytenr;
5d4f98a2 2189
3173a18f 2190 if (metadata) {
3173a18f 2191 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2192 key.offset = extent_op->level;
3173a18f
JB
2193 } else {
2194 key.type = BTRFS_EXTENT_ITEM_KEY;
2195 key.offset = node->num_bytes;
2196 }
2197
2198again:
5d4f98a2
YZ
2199 path->reada = 1;
2200 path->leave_spinning = 1;
2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2202 path, 0, 1);
2203 if (ret < 0) {
2204 err = ret;
2205 goto out;
2206 }
2207 if (ret > 0) {
3173a18f 2208 if (metadata) {
55994887
FDBM
2209 if (path->slots[0] > 0) {
2210 path->slots[0]--;
2211 btrfs_item_key_to_cpu(path->nodes[0], &key,
2212 path->slots[0]);
2213 if (key.objectid == node->bytenr &&
2214 key.type == BTRFS_EXTENT_ITEM_KEY &&
2215 key.offset == node->num_bytes)
2216 ret = 0;
2217 }
2218 if (ret > 0) {
2219 btrfs_release_path(path);
2220 metadata = 0;
3173a18f 2221
55994887
FDBM
2222 key.objectid = node->bytenr;
2223 key.offset = node->num_bytes;
2224 key.type = BTRFS_EXTENT_ITEM_KEY;
2225 goto again;
2226 }
2227 } else {
2228 err = -EIO;
2229 goto out;
3173a18f 2230 }
5d4f98a2
YZ
2231 }
2232
2233 leaf = path->nodes[0];
2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2235#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2236 if (item_size < sizeof(*ei)) {
2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2238 path, (u64)-1, 0);
2239 if (ret < 0) {
2240 err = ret;
2241 goto out;
2242 }
2243 leaf = path->nodes[0];
2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2245 }
2246#endif
2247 BUG_ON(item_size < sizeof(*ei));
2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2249 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2250
5d4f98a2
YZ
2251 btrfs_mark_buffer_dirty(leaf);
2252out:
2253 btrfs_free_path(path);
2254 return err;
56bec294
CM
2255}
2256
5d4f98a2
YZ
2257static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2258 struct btrfs_root *root,
2259 struct btrfs_delayed_ref_node *node,
2260 struct btrfs_delayed_extent_op *extent_op,
2261 int insert_reserved)
56bec294
CM
2262{
2263 int ret = 0;
5d4f98a2
YZ
2264 struct btrfs_delayed_tree_ref *ref;
2265 struct btrfs_key ins;
2266 u64 parent = 0;
2267 u64 ref_root = 0;
3173a18f
JB
2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2269 SKINNY_METADATA);
56bec294 2270
5d4f98a2 2271 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2272 trace_run_delayed_tree_ref(node, ref, node->action);
2273
5d4f98a2
YZ
2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 parent = ref->parent;
fcebe456 2276 ref_root = ref->root;
5d4f98a2 2277
3173a18f
JB
2278 ins.objectid = node->bytenr;
2279 if (skinny_metadata) {
2280 ins.offset = ref->level;
2281 ins.type = BTRFS_METADATA_ITEM_KEY;
2282 } else {
2283 ins.offset = node->num_bytes;
2284 ins.type = BTRFS_EXTENT_ITEM_KEY;
2285 }
2286
5d4f98a2
YZ
2287 BUG_ON(node->ref_mod != 1);
2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2289 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2290 ret = alloc_reserved_tree_block(trans, root,
2291 parent, ref_root,
2292 extent_op->flags_to_set,
2293 &extent_op->key,
fcebe456
JB
2294 ref->level, &ins,
2295 node->no_quota);
5d4f98a2 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2297 ret = __btrfs_inc_extent_ref(trans, root, node,
2298 parent, ref_root,
2299 ref->level, 0, 1,
fcebe456 2300 extent_op);
5d4f98a2 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2302 ret = __btrfs_free_extent(trans, root, node,
2303 parent, ref_root,
2304 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2305 } else {
2306 BUG();
2307 }
56bec294
CM
2308 return ret;
2309}
2310
2311/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2312static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
56bec294 2317{
79787eaa
JM
2318 int ret = 0;
2319
857cc2fc
JB
2320 if (trans->aborted) {
2321 if (insert_reserved)
2322 btrfs_pin_extent(root, node->bytenr,
2323 node->num_bytes, 1);
79787eaa 2324 return 0;
857cc2fc 2325 }
79787eaa 2326
5d4f98a2 2327 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2328 struct btrfs_delayed_ref_head *head;
2329 /*
2330 * we've hit the end of the chain and we were supposed
2331 * to insert this extent into the tree. But, it got
2332 * deleted before we ever needed to insert it, so all
2333 * we have to do is clean up the accounting
2334 */
5d4f98a2
YZ
2335 BUG_ON(extent_op);
2336 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2337 trace_run_delayed_ref_head(node, head, node->action);
2338
56bec294 2339 if (insert_reserved) {
f0486c68
YZ
2340 btrfs_pin_extent(root, node->bytenr,
2341 node->num_bytes, 1);
5d4f98a2
YZ
2342 if (head->is_data) {
2343 ret = btrfs_del_csums(trans, root,
2344 node->bytenr,
2345 node->num_bytes);
5d4f98a2 2346 }
56bec294 2347 }
297d750b
QW
2348
2349 /* Also free its reserved qgroup space */
2350 btrfs_qgroup_free_delayed_ref(root->fs_info,
2351 head->qgroup_ref_root,
2352 head->qgroup_reserved);
79787eaa 2353 return ret;
56bec294
CM
2354 }
2355
5d4f98a2
YZ
2356 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2357 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2358 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2359 insert_reserved);
2360 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2361 node->type == BTRFS_SHARED_DATA_REF_KEY)
2362 ret = run_delayed_data_ref(trans, root, node, extent_op,
2363 insert_reserved);
2364 else
2365 BUG();
2366 return ret;
56bec294
CM
2367}
2368
c6fc2454 2369static inline struct btrfs_delayed_ref_node *
56bec294
CM
2370select_delayed_ref(struct btrfs_delayed_ref_head *head)
2371{
cffc3374
FM
2372 struct btrfs_delayed_ref_node *ref;
2373
c6fc2454
QW
2374 if (list_empty(&head->ref_list))
2375 return NULL;
d7df2c79 2376
cffc3374
FM
2377 /*
2378 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2379 * This is to prevent a ref count from going down to zero, which deletes
2380 * the extent item from the extent tree, when there still are references
2381 * to add, which would fail because they would not find the extent item.
2382 */
2383 list_for_each_entry(ref, &head->ref_list, list) {
2384 if (ref->action == BTRFS_ADD_DELAYED_REF)
2385 return ref;
2386 }
2387
c6fc2454
QW
2388 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2389 list);
56bec294
CM
2390}
2391
79787eaa
JM
2392/*
2393 * Returns 0 on success or if called with an already aborted transaction.
2394 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2395 */
d7df2c79
JB
2396static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2397 struct btrfs_root *root,
2398 unsigned long nr)
56bec294 2399{
56bec294
CM
2400 struct btrfs_delayed_ref_root *delayed_refs;
2401 struct btrfs_delayed_ref_node *ref;
2402 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2403 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2404 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2405 ktime_t start = ktime_get();
56bec294 2406 int ret;
d7df2c79 2407 unsigned long count = 0;
0a2b2a84 2408 unsigned long actual_count = 0;
56bec294 2409 int must_insert_reserved = 0;
56bec294
CM
2410
2411 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2412 while (1) {
2413 if (!locked_ref) {
d7df2c79 2414 if (count >= nr)
56bec294 2415 break;
56bec294 2416
d7df2c79
JB
2417 spin_lock(&delayed_refs->lock);
2418 locked_ref = btrfs_select_ref_head(trans);
2419 if (!locked_ref) {
2420 spin_unlock(&delayed_refs->lock);
2421 break;
2422 }
c3e69d58
CM
2423
2424 /* grab the lock that says we are going to process
2425 * all the refs for this head */
2426 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2427 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2428 /*
2429 * we may have dropped the spin lock to get the head
2430 * mutex lock, and that might have given someone else
2431 * time to free the head. If that's true, it has been
2432 * removed from our list and we can move on.
2433 */
2434 if (ret == -EAGAIN) {
2435 locked_ref = NULL;
2436 count++;
2437 continue;
56bec294
CM
2438 }
2439 }
a28ec197 2440
d7df2c79 2441 spin_lock(&locked_ref->lock);
ae1e206b 2442
d1270cd9
AJ
2443 /*
2444 * locked_ref is the head node, so we have to go one
2445 * node back for any delayed ref updates
2446 */
2447 ref = select_delayed_ref(locked_ref);
2448
2449 if (ref && ref->seq &&
097b8a7c 2450 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2451 spin_unlock(&locked_ref->lock);
093486c4 2452 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2453 spin_lock(&delayed_refs->lock);
2454 locked_ref->processing = 0;
d1270cd9
AJ
2455 delayed_refs->num_heads_ready++;
2456 spin_unlock(&delayed_refs->lock);
d7df2c79 2457 locked_ref = NULL;
d1270cd9 2458 cond_resched();
27a377db 2459 count++;
d1270cd9
AJ
2460 continue;
2461 }
2462
56bec294
CM
2463 /*
2464 * record the must insert reserved flag before we
2465 * drop the spin lock.
2466 */
2467 must_insert_reserved = locked_ref->must_insert_reserved;
2468 locked_ref->must_insert_reserved = 0;
7bb86316 2469
5d4f98a2
YZ
2470 extent_op = locked_ref->extent_op;
2471 locked_ref->extent_op = NULL;
2472
56bec294 2473 if (!ref) {
d7df2c79
JB
2474
2475
56bec294
CM
2476 /* All delayed refs have been processed, Go ahead
2477 * and send the head node to run_one_delayed_ref,
2478 * so that any accounting fixes can happen
2479 */
2480 ref = &locked_ref->node;
5d4f98a2
YZ
2481
2482 if (extent_op && must_insert_reserved) {
78a6184a 2483 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2484 extent_op = NULL;
2485 }
2486
2487 if (extent_op) {
d7df2c79 2488 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2489 ret = run_delayed_extent_op(trans, root,
2490 ref, extent_op);
78a6184a 2491 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2492
79787eaa 2493 if (ret) {
857cc2fc
JB
2494 /*
2495 * Need to reset must_insert_reserved if
2496 * there was an error so the abort stuff
2497 * can cleanup the reserved space
2498 * properly.
2499 */
2500 if (must_insert_reserved)
2501 locked_ref->must_insert_reserved = 1;
d7df2c79 2502 locked_ref->processing = 0;
c2cf52eb 2503 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2504 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2505 return ret;
2506 }
d7df2c79 2507 continue;
5d4f98a2 2508 }
02217ed2 2509
d7df2c79
JB
2510 /*
2511 * Need to drop our head ref lock and re-aqcuire the
2512 * delayed ref lock and then re-check to make sure
2513 * nobody got added.
2514 */
2515 spin_unlock(&locked_ref->lock);
2516 spin_lock(&delayed_refs->lock);
2517 spin_lock(&locked_ref->lock);
c6fc2454 2518 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2519 locked_ref->extent_op) {
d7df2c79
JB
2520 spin_unlock(&locked_ref->lock);
2521 spin_unlock(&delayed_refs->lock);
2522 continue;
2523 }
2524 ref->in_tree = 0;
2525 delayed_refs->num_heads--;
c46effa6
LB
2526 rb_erase(&locked_ref->href_node,
2527 &delayed_refs->href_root);
d7df2c79
JB
2528 spin_unlock(&delayed_refs->lock);
2529 } else {
0a2b2a84 2530 actual_count++;
d7df2c79 2531 ref->in_tree = 0;
c6fc2454 2532 list_del(&ref->list);
c46effa6 2533 }
d7df2c79
JB
2534 atomic_dec(&delayed_refs->num_entries);
2535
093486c4 2536 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2537 /*
2538 * when we play the delayed ref, also correct the
2539 * ref_mod on head
2540 */
2541 switch (ref->action) {
2542 case BTRFS_ADD_DELAYED_REF:
2543 case BTRFS_ADD_DELAYED_EXTENT:
2544 locked_ref->node.ref_mod -= ref->ref_mod;
2545 break;
2546 case BTRFS_DROP_DELAYED_REF:
2547 locked_ref->node.ref_mod += ref->ref_mod;
2548 break;
2549 default:
2550 WARN_ON(1);
2551 }
2552 }
d7df2c79 2553 spin_unlock(&locked_ref->lock);
925baedd 2554
5d4f98a2 2555 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2556 must_insert_reserved);
eb099670 2557
78a6184a 2558 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2559 if (ret) {
d7df2c79 2560 locked_ref->processing = 0;
093486c4
MX
2561 btrfs_delayed_ref_unlock(locked_ref);
2562 btrfs_put_delayed_ref(ref);
c2cf52eb 2563 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2564 return ret;
2565 }
2566
093486c4
MX
2567 /*
2568 * If this node is a head, that means all the refs in this head
2569 * have been dealt with, and we will pick the next head to deal
2570 * with, so we must unlock the head and drop it from the cluster
2571 * list before we release it.
2572 */
2573 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2574 if (locked_ref->is_data &&
2575 locked_ref->total_ref_mod < 0) {
2576 spin_lock(&delayed_refs->lock);
2577 delayed_refs->pending_csums -= ref->num_bytes;
2578 spin_unlock(&delayed_refs->lock);
2579 }
093486c4
MX
2580 btrfs_delayed_ref_unlock(locked_ref);
2581 locked_ref = NULL;
2582 }
2583 btrfs_put_delayed_ref(ref);
2584 count++;
c3e69d58 2585 cond_resched();
c3e69d58 2586 }
0a2b2a84
JB
2587
2588 /*
2589 * We don't want to include ref heads since we can have empty ref heads
2590 * and those will drastically skew our runtime down since we just do
2591 * accounting, no actual extent tree updates.
2592 */
2593 if (actual_count > 0) {
2594 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2595 u64 avg;
2596
2597 /*
2598 * We weigh the current average higher than our current runtime
2599 * to avoid large swings in the average.
2600 */
2601 spin_lock(&delayed_refs->lock);
2602 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2603 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2604 spin_unlock(&delayed_refs->lock);
2605 }
d7df2c79 2606 return 0;
c3e69d58
CM
2607}
2608
709c0486
AJ
2609#ifdef SCRAMBLE_DELAYED_REFS
2610/*
2611 * Normally delayed refs get processed in ascending bytenr order. This
2612 * correlates in most cases to the order added. To expose dependencies on this
2613 * order, we start to process the tree in the middle instead of the beginning
2614 */
2615static u64 find_middle(struct rb_root *root)
2616{
2617 struct rb_node *n = root->rb_node;
2618 struct btrfs_delayed_ref_node *entry;
2619 int alt = 1;
2620 u64 middle;
2621 u64 first = 0, last = 0;
2622
2623 n = rb_first(root);
2624 if (n) {
2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2626 first = entry->bytenr;
2627 }
2628 n = rb_last(root);
2629 if (n) {
2630 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2631 last = entry->bytenr;
2632 }
2633 n = root->rb_node;
2634
2635 while (n) {
2636 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2637 WARN_ON(!entry->in_tree);
2638
2639 middle = entry->bytenr;
2640
2641 if (alt)
2642 n = n->rb_left;
2643 else
2644 n = n->rb_right;
2645
2646 alt = 1 - alt;
2647 }
2648 return middle;
2649}
2650#endif
2651
1be41b78
JB
2652static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2653{
2654 u64 num_bytes;
2655
2656 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2657 sizeof(struct btrfs_extent_inline_ref));
2658 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2659 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2660
2661 /*
2662 * We don't ever fill up leaves all the way so multiply by 2 just to be
2663 * closer to what we're really going to want to ouse.
2664 */
f8c269d7 2665 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2666}
2667
1262133b
JB
2668/*
2669 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2670 * would require to store the csums for that many bytes.
2671 */
28f75a0e 2672u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2673{
2674 u64 csum_size;
2675 u64 num_csums_per_leaf;
2676 u64 num_csums;
2677
2678 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2679 num_csums_per_leaf = div64_u64(csum_size,
2680 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2681 num_csums = div64_u64(csum_bytes, root->sectorsize);
2682 num_csums += num_csums_per_leaf - 1;
2683 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2684 return num_csums;
2685}
2686
0a2b2a84 2687int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2688 struct btrfs_root *root)
2689{
2690 struct btrfs_block_rsv *global_rsv;
2691 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2692 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2693 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2694 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2695 int ret = 0;
2696
2697 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2698 num_heads = heads_to_leaves(root, num_heads);
2699 if (num_heads > 1)
707e8a07 2700 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2701 num_bytes <<= 1;
28f75a0e 2702 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2703 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2704 num_dirty_bgs);
1be41b78
JB
2705 global_rsv = &root->fs_info->global_block_rsv;
2706
2707 /*
2708 * If we can't allocate any more chunks lets make sure we have _lots_ of
2709 * wiggle room since running delayed refs can create more delayed refs.
2710 */
cb723e49
JB
2711 if (global_rsv->space_info->full) {
2712 num_dirty_bgs_bytes <<= 1;
1be41b78 2713 num_bytes <<= 1;
cb723e49 2714 }
1be41b78
JB
2715
2716 spin_lock(&global_rsv->lock);
cb723e49 2717 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2718 ret = 1;
2719 spin_unlock(&global_rsv->lock);
2720 return ret;
2721}
2722
0a2b2a84
JB
2723int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root)
2725{
2726 struct btrfs_fs_info *fs_info = root->fs_info;
2727 u64 num_entries =
2728 atomic_read(&trans->transaction->delayed_refs.num_entries);
2729 u64 avg_runtime;
a79b7d4b 2730 u64 val;
0a2b2a84
JB
2731
2732 smp_mb();
2733 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2734 val = num_entries * avg_runtime;
0a2b2a84
JB
2735 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2736 return 1;
a79b7d4b
CM
2737 if (val >= NSEC_PER_SEC / 2)
2738 return 2;
0a2b2a84
JB
2739
2740 return btrfs_check_space_for_delayed_refs(trans, root);
2741}
2742
a79b7d4b
CM
2743struct async_delayed_refs {
2744 struct btrfs_root *root;
2745 int count;
2746 int error;
2747 int sync;
2748 struct completion wait;
2749 struct btrfs_work work;
2750};
2751
2752static void delayed_ref_async_start(struct btrfs_work *work)
2753{
2754 struct async_delayed_refs *async;
2755 struct btrfs_trans_handle *trans;
2756 int ret;
2757
2758 async = container_of(work, struct async_delayed_refs, work);
2759
2760 trans = btrfs_join_transaction(async->root);
2761 if (IS_ERR(trans)) {
2762 async->error = PTR_ERR(trans);
2763 goto done;
2764 }
2765
2766 /*
2767 * trans->sync means that when we call end_transaciton, we won't
2768 * wait on delayed refs
2769 */
2770 trans->sync = true;
2771 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2772 if (ret)
2773 async->error = ret;
2774
2775 ret = btrfs_end_transaction(trans, async->root);
2776 if (ret && !async->error)
2777 async->error = ret;
2778done:
2779 if (async->sync)
2780 complete(&async->wait);
2781 else
2782 kfree(async);
2783}
2784
2785int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2786 unsigned long count, int wait)
2787{
2788 struct async_delayed_refs *async;
2789 int ret;
2790
2791 async = kmalloc(sizeof(*async), GFP_NOFS);
2792 if (!async)
2793 return -ENOMEM;
2794
2795 async->root = root->fs_info->tree_root;
2796 async->count = count;
2797 async->error = 0;
2798 if (wait)
2799 async->sync = 1;
2800 else
2801 async->sync = 0;
2802 init_completion(&async->wait);
2803
9e0af237
LB
2804 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2805 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2806
2807 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2808
2809 if (wait) {
2810 wait_for_completion(&async->wait);
2811 ret = async->error;
2812 kfree(async);
2813 return ret;
2814 }
2815 return 0;
2816}
2817
c3e69d58
CM
2818/*
2819 * this starts processing the delayed reference count updates and
2820 * extent insertions we have queued up so far. count can be
2821 * 0, which means to process everything in the tree at the start
2822 * of the run (but not newly added entries), or it can be some target
2823 * number you'd like to process.
79787eaa
JM
2824 *
2825 * Returns 0 on success or if called with an aborted transaction
2826 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2827 */
2828int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2829 struct btrfs_root *root, unsigned long count)
2830{
2831 struct rb_node *node;
2832 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2833 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2834 int ret;
2835 int run_all = count == (unsigned long)-1;
d9a0540a 2836 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2837
79787eaa
JM
2838 /* We'll clean this up in btrfs_cleanup_transaction */
2839 if (trans->aborted)
2840 return 0;
2841
c3e69d58
CM
2842 if (root == root->fs_info->extent_root)
2843 root = root->fs_info->tree_root;
2844
2845 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2846 if (count == 0)
d7df2c79 2847 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2848
c3e69d58 2849again:
709c0486
AJ
2850#ifdef SCRAMBLE_DELAYED_REFS
2851 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2852#endif
d9a0540a 2853 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2854 ret = __btrfs_run_delayed_refs(trans, root, count);
2855 if (ret < 0) {
2856 btrfs_abort_transaction(trans, root, ret);
2857 return ret;
eb099670 2858 }
c3e69d58 2859
56bec294 2860 if (run_all) {
d7df2c79 2861 if (!list_empty(&trans->new_bgs))
ea658bad 2862 btrfs_create_pending_block_groups(trans, root);
ea658bad 2863
d7df2c79 2864 spin_lock(&delayed_refs->lock);
c46effa6 2865 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2866 if (!node) {
2867 spin_unlock(&delayed_refs->lock);
56bec294 2868 goto out;
d7df2c79 2869 }
c3e69d58 2870 count = (unsigned long)-1;
e9d0b13b 2871
56bec294 2872 while (node) {
c46effa6
LB
2873 head = rb_entry(node, struct btrfs_delayed_ref_head,
2874 href_node);
2875 if (btrfs_delayed_ref_is_head(&head->node)) {
2876 struct btrfs_delayed_ref_node *ref;
5caf2a00 2877
c46effa6 2878 ref = &head->node;
56bec294
CM
2879 atomic_inc(&ref->refs);
2880
2881 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2882 /*
2883 * Mutex was contended, block until it's
2884 * released and try again
2885 */
56bec294
CM
2886 mutex_lock(&head->mutex);
2887 mutex_unlock(&head->mutex);
2888
2889 btrfs_put_delayed_ref(ref);
1887be66 2890 cond_resched();
56bec294 2891 goto again;
c46effa6
LB
2892 } else {
2893 WARN_ON(1);
56bec294
CM
2894 }
2895 node = rb_next(node);
2896 }
2897 spin_unlock(&delayed_refs->lock);
d7df2c79 2898 cond_resched();
56bec294 2899 goto again;
5f39d397 2900 }
54aa1f4d 2901out:
edf39272 2902 assert_qgroups_uptodate(trans);
d9a0540a 2903 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2904 return 0;
2905}
2906
5d4f98a2
YZ
2907int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2908 struct btrfs_root *root,
2909 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2910 int level, int is_data)
5d4f98a2
YZ
2911{
2912 struct btrfs_delayed_extent_op *extent_op;
2913 int ret;
2914
78a6184a 2915 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2916 if (!extent_op)
2917 return -ENOMEM;
2918
2919 extent_op->flags_to_set = flags;
2920 extent_op->update_flags = 1;
2921 extent_op->update_key = 0;
2922 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2923 extent_op->level = level;
5d4f98a2 2924
66d7e7f0
AJ
2925 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2926 num_bytes, extent_op);
5d4f98a2 2927 if (ret)
78a6184a 2928 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2929 return ret;
2930}
2931
2932static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root,
2934 struct btrfs_path *path,
2935 u64 objectid, u64 offset, u64 bytenr)
2936{
2937 struct btrfs_delayed_ref_head *head;
2938 struct btrfs_delayed_ref_node *ref;
2939 struct btrfs_delayed_data_ref *data_ref;
2940 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2941 int ret = 0;
2942
5d4f98a2
YZ
2943 delayed_refs = &trans->transaction->delayed_refs;
2944 spin_lock(&delayed_refs->lock);
2945 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2946 if (!head) {
2947 spin_unlock(&delayed_refs->lock);
2948 return 0;
2949 }
5d4f98a2
YZ
2950
2951 if (!mutex_trylock(&head->mutex)) {
2952 atomic_inc(&head->node.refs);
2953 spin_unlock(&delayed_refs->lock);
2954
b3b4aa74 2955 btrfs_release_path(path);
5d4f98a2 2956
8cc33e5c
DS
2957 /*
2958 * Mutex was contended, block until it's released and let
2959 * caller try again
2960 */
5d4f98a2
YZ
2961 mutex_lock(&head->mutex);
2962 mutex_unlock(&head->mutex);
2963 btrfs_put_delayed_ref(&head->node);
2964 return -EAGAIN;
2965 }
d7df2c79 2966 spin_unlock(&delayed_refs->lock);
5d4f98a2 2967
d7df2c79 2968 spin_lock(&head->lock);
c6fc2454 2969 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2970 /* If it's a shared ref we know a cross reference exists */
2971 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2972 ret = 1;
2973 break;
2974 }
5d4f98a2 2975
d7df2c79 2976 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2977
d7df2c79
JB
2978 /*
2979 * If our ref doesn't match the one we're currently looking at
2980 * then we have a cross reference.
2981 */
2982 if (data_ref->root != root->root_key.objectid ||
2983 data_ref->objectid != objectid ||
2984 data_ref->offset != offset) {
2985 ret = 1;
2986 break;
2987 }
5d4f98a2 2988 }
d7df2c79 2989 spin_unlock(&head->lock);
5d4f98a2 2990 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2991 return ret;
2992}
2993
2994static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2995 struct btrfs_root *root,
2996 struct btrfs_path *path,
2997 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2998{
2999 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3000 struct extent_buffer *leaf;
5d4f98a2
YZ
3001 struct btrfs_extent_data_ref *ref;
3002 struct btrfs_extent_inline_ref *iref;
3003 struct btrfs_extent_item *ei;
f321e491 3004 struct btrfs_key key;
5d4f98a2 3005 u32 item_size;
be20aa9d 3006 int ret;
925baedd 3007
be20aa9d 3008 key.objectid = bytenr;
31840ae1 3009 key.offset = (u64)-1;
f321e491 3010 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3011
be20aa9d
CM
3012 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3013 if (ret < 0)
3014 goto out;
79787eaa 3015 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3016
3017 ret = -ENOENT;
3018 if (path->slots[0] == 0)
31840ae1 3019 goto out;
be20aa9d 3020
31840ae1 3021 path->slots[0]--;
f321e491 3022 leaf = path->nodes[0];
5d4f98a2 3023 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3024
5d4f98a2 3025 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3026 goto out;
f321e491 3027
5d4f98a2
YZ
3028 ret = 1;
3029 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3030#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3031 if (item_size < sizeof(*ei)) {
3032 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3033 goto out;
3034 }
3035#endif
3036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3037
5d4f98a2
YZ
3038 if (item_size != sizeof(*ei) +
3039 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3040 goto out;
be20aa9d 3041
5d4f98a2
YZ
3042 if (btrfs_extent_generation(leaf, ei) <=
3043 btrfs_root_last_snapshot(&root->root_item))
3044 goto out;
3045
3046 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3047 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3048 BTRFS_EXTENT_DATA_REF_KEY)
3049 goto out;
3050
3051 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3052 if (btrfs_extent_refs(leaf, ei) !=
3053 btrfs_extent_data_ref_count(leaf, ref) ||
3054 btrfs_extent_data_ref_root(leaf, ref) !=
3055 root->root_key.objectid ||
3056 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3057 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3058 goto out;
3059
3060 ret = 0;
3061out:
3062 return ret;
3063}
3064
3065int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root,
3067 u64 objectid, u64 offset, u64 bytenr)
3068{
3069 struct btrfs_path *path;
3070 int ret;
3071 int ret2;
3072
3073 path = btrfs_alloc_path();
3074 if (!path)
3075 return -ENOENT;
3076
3077 do {
3078 ret = check_committed_ref(trans, root, path, objectid,
3079 offset, bytenr);
3080 if (ret && ret != -ENOENT)
f321e491 3081 goto out;
80ff3856 3082
5d4f98a2
YZ
3083 ret2 = check_delayed_ref(trans, root, path, objectid,
3084 offset, bytenr);
3085 } while (ret2 == -EAGAIN);
3086
3087 if (ret2 && ret2 != -ENOENT) {
3088 ret = ret2;
3089 goto out;
f321e491 3090 }
5d4f98a2
YZ
3091
3092 if (ret != -ENOENT || ret2 != -ENOENT)
3093 ret = 0;
be20aa9d 3094out:
80ff3856 3095 btrfs_free_path(path);
f0486c68
YZ
3096 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3097 WARN_ON(ret > 0);
f321e491 3098 return ret;
be20aa9d 3099}
c5739bba 3100
5d4f98a2 3101static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3102 struct btrfs_root *root,
5d4f98a2 3103 struct extent_buffer *buf,
e339a6b0 3104 int full_backref, int inc)
31840ae1
ZY
3105{
3106 u64 bytenr;
5d4f98a2
YZ
3107 u64 num_bytes;
3108 u64 parent;
31840ae1 3109 u64 ref_root;
31840ae1 3110 u32 nritems;
31840ae1
ZY
3111 struct btrfs_key key;
3112 struct btrfs_file_extent_item *fi;
3113 int i;
3114 int level;
3115 int ret = 0;
31840ae1 3116 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3117 u64, u64, u64, u64, u64, u64, int);
31840ae1 3118
fccb84c9
DS
3119
3120 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3121 return 0;
fccb84c9 3122
31840ae1 3123 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3124 nritems = btrfs_header_nritems(buf);
3125 level = btrfs_header_level(buf);
3126
27cdeb70 3127 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3128 return 0;
31840ae1 3129
5d4f98a2
YZ
3130 if (inc)
3131 process_func = btrfs_inc_extent_ref;
3132 else
3133 process_func = btrfs_free_extent;
31840ae1 3134
5d4f98a2
YZ
3135 if (full_backref)
3136 parent = buf->start;
3137 else
3138 parent = 0;
3139
3140 for (i = 0; i < nritems; i++) {
31840ae1 3141 if (level == 0) {
5d4f98a2 3142 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3143 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3144 continue;
5d4f98a2 3145 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3146 struct btrfs_file_extent_item);
3147 if (btrfs_file_extent_type(buf, fi) ==
3148 BTRFS_FILE_EXTENT_INLINE)
3149 continue;
3150 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3151 if (bytenr == 0)
3152 continue;
5d4f98a2
YZ
3153
3154 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3155 key.offset -= btrfs_file_extent_offset(buf, fi);
3156 ret = process_func(trans, root, bytenr, num_bytes,
3157 parent, ref_root, key.objectid,
e339a6b0 3158 key.offset, 1);
31840ae1
ZY
3159 if (ret)
3160 goto fail;
3161 } else {
5d4f98a2 3162 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3163 num_bytes = root->nodesize;
5d4f98a2 3164 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3165 parent, ref_root, level - 1, 0,
e339a6b0 3166 1);
31840ae1
ZY
3167 if (ret)
3168 goto fail;
3169 }
3170 }
3171 return 0;
3172fail:
5d4f98a2
YZ
3173 return ret;
3174}
3175
3176int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3177 struct extent_buffer *buf, int full_backref)
5d4f98a2 3178{
e339a6b0 3179 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3180}
3181
3182int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3183 struct extent_buffer *buf, int full_backref)
5d4f98a2 3184{
e339a6b0 3185 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3186}
3187
9078a3e1
CM
3188static int write_one_cache_group(struct btrfs_trans_handle *trans,
3189 struct btrfs_root *root,
3190 struct btrfs_path *path,
3191 struct btrfs_block_group_cache *cache)
3192{
3193 int ret;
9078a3e1 3194 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3195 unsigned long bi;
3196 struct extent_buffer *leaf;
9078a3e1 3197
9078a3e1 3198 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3199 if (ret) {
3200 if (ret > 0)
3201 ret = -ENOENT;
54aa1f4d 3202 goto fail;
df95e7f0 3203 }
5f39d397
CM
3204
3205 leaf = path->nodes[0];
3206 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3207 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3208 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3209fail:
24b89d08 3210 btrfs_release_path(path);
df95e7f0 3211 return ret;
9078a3e1
CM
3212
3213}
3214
4a8c9a62
YZ
3215static struct btrfs_block_group_cache *
3216next_block_group(struct btrfs_root *root,
3217 struct btrfs_block_group_cache *cache)
3218{
3219 struct rb_node *node;
292cbd51 3220
4a8c9a62 3221 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3222
3223 /* If our block group was removed, we need a full search. */
3224 if (RB_EMPTY_NODE(&cache->cache_node)) {
3225 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3226
3227 spin_unlock(&root->fs_info->block_group_cache_lock);
3228 btrfs_put_block_group(cache);
3229 cache = btrfs_lookup_first_block_group(root->fs_info,
3230 next_bytenr);
3231 return cache;
3232 }
4a8c9a62
YZ
3233 node = rb_next(&cache->cache_node);
3234 btrfs_put_block_group(cache);
3235 if (node) {
3236 cache = rb_entry(node, struct btrfs_block_group_cache,
3237 cache_node);
11dfe35a 3238 btrfs_get_block_group(cache);
4a8c9a62
YZ
3239 } else
3240 cache = NULL;
3241 spin_unlock(&root->fs_info->block_group_cache_lock);
3242 return cache;
3243}
3244
0af3d00b
JB
3245static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3246 struct btrfs_trans_handle *trans,
3247 struct btrfs_path *path)
3248{
3249 struct btrfs_root *root = block_group->fs_info->tree_root;
3250 struct inode *inode = NULL;
3251 u64 alloc_hint = 0;
2b20982e 3252 int dcs = BTRFS_DC_ERROR;
f8c269d7 3253 u64 num_pages = 0;
0af3d00b
JB
3254 int retries = 0;
3255 int ret = 0;
3256
3257 /*
3258 * If this block group is smaller than 100 megs don't bother caching the
3259 * block group.
3260 */
3261 if (block_group->key.offset < (100 * 1024 * 1024)) {
3262 spin_lock(&block_group->lock);
3263 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3264 spin_unlock(&block_group->lock);
3265 return 0;
3266 }
3267
0c0ef4bc
JB
3268 if (trans->aborted)
3269 return 0;
0af3d00b
JB
3270again:
3271 inode = lookup_free_space_inode(root, block_group, path);
3272 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3273 ret = PTR_ERR(inode);
b3b4aa74 3274 btrfs_release_path(path);
0af3d00b
JB
3275 goto out;
3276 }
3277
3278 if (IS_ERR(inode)) {
3279 BUG_ON(retries);
3280 retries++;
3281
3282 if (block_group->ro)
3283 goto out_free;
3284
3285 ret = create_free_space_inode(root, trans, block_group, path);
3286 if (ret)
3287 goto out_free;
3288 goto again;
3289 }
3290
5b0e95bf
JB
3291 /* We've already setup this transaction, go ahead and exit */
3292 if (block_group->cache_generation == trans->transid &&
3293 i_size_read(inode)) {
3294 dcs = BTRFS_DC_SETUP;
3295 goto out_put;
3296 }
3297
0af3d00b
JB
3298 /*
3299 * We want to set the generation to 0, that way if anything goes wrong
3300 * from here on out we know not to trust this cache when we load up next
3301 * time.
3302 */
3303 BTRFS_I(inode)->generation = 0;
3304 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3305 if (ret) {
3306 /*
3307 * So theoretically we could recover from this, simply set the
3308 * super cache generation to 0 so we know to invalidate the
3309 * cache, but then we'd have to keep track of the block groups
3310 * that fail this way so we know we _have_ to reset this cache
3311 * before the next commit or risk reading stale cache. So to
3312 * limit our exposure to horrible edge cases lets just abort the
3313 * transaction, this only happens in really bad situations
3314 * anyway.
3315 */
3316 btrfs_abort_transaction(trans, root, ret);
3317 goto out_put;
3318 }
0af3d00b
JB
3319 WARN_ON(ret);
3320
3321 if (i_size_read(inode) > 0) {
7b61cd92
MX
3322 ret = btrfs_check_trunc_cache_free_space(root,
3323 &root->fs_info->global_block_rsv);
3324 if (ret)
3325 goto out_put;
3326
1bbc621e 3327 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3328 if (ret)
3329 goto out_put;
3330 }
3331
3332 spin_lock(&block_group->lock);
cf7c1ef6 3333 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3334 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3335 /*
3336 * don't bother trying to write stuff out _if_
3337 * a) we're not cached,
3338 * b) we're with nospace_cache mount option.
3339 */
2b20982e 3340 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3341 spin_unlock(&block_group->lock);
3342 goto out_put;
3343 }
3344 spin_unlock(&block_group->lock);
3345
6fc823b1
JB
3346 /*
3347 * Try to preallocate enough space based on how big the block group is.
3348 * Keep in mind this has to include any pinned space which could end up
3349 * taking up quite a bit since it's not folded into the other space
3350 * cache.
3351 */
f8c269d7 3352 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3353 if (!num_pages)
3354 num_pages = 1;
3355
0af3d00b
JB
3356 num_pages *= 16;
3357 num_pages *= PAGE_CACHE_SIZE;
3358
d9d8b2a5 3359 ret = __btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3360 if (ret)
3361 goto out_put;
3362
3363 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3364 num_pages, num_pages,
3365 &alloc_hint);
2b20982e
JB
3366 if (!ret)
3367 dcs = BTRFS_DC_SETUP;
d9d8b2a5 3368 __btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3369
0af3d00b
JB
3370out_put:
3371 iput(inode);
3372out_free:
b3b4aa74 3373 btrfs_release_path(path);
0af3d00b
JB
3374out:
3375 spin_lock(&block_group->lock);
e65cbb94 3376 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3377 block_group->cache_generation = trans->transid;
2b20982e 3378 block_group->disk_cache_state = dcs;
0af3d00b
JB
3379 spin_unlock(&block_group->lock);
3380
3381 return ret;
3382}
3383
dcdf7f6d
JB
3384int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3385 struct btrfs_root *root)
3386{
3387 struct btrfs_block_group_cache *cache, *tmp;
3388 struct btrfs_transaction *cur_trans = trans->transaction;
3389 struct btrfs_path *path;
3390
3391 if (list_empty(&cur_trans->dirty_bgs) ||
3392 !btrfs_test_opt(root, SPACE_CACHE))
3393 return 0;
3394
3395 path = btrfs_alloc_path();
3396 if (!path)
3397 return -ENOMEM;
3398
3399 /* Could add new block groups, use _safe just in case */
3400 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3401 dirty_list) {
3402 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3403 cache_save_setup(cache, trans, path);
3404 }
3405
3406 btrfs_free_path(path);
3407 return 0;
3408}
3409
1bbc621e
CM
3410/*
3411 * transaction commit does final block group cache writeback during a
3412 * critical section where nothing is allowed to change the FS. This is
3413 * required in order for the cache to actually match the block group,
3414 * but can introduce a lot of latency into the commit.
3415 *
3416 * So, btrfs_start_dirty_block_groups is here to kick off block group
3417 * cache IO. There's a chance we'll have to redo some of it if the
3418 * block group changes again during the commit, but it greatly reduces
3419 * the commit latency by getting rid of the easy block groups while
3420 * we're still allowing others to join the commit.
3421 */
3422int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3423 struct btrfs_root *root)
9078a3e1 3424{
4a8c9a62 3425 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3426 struct btrfs_transaction *cur_trans = trans->transaction;
3427 int ret = 0;
c9dc4c65 3428 int should_put;
1bbc621e
CM
3429 struct btrfs_path *path = NULL;
3430 LIST_HEAD(dirty);
3431 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3432 int num_started = 0;
1bbc621e
CM
3433 int loops = 0;
3434
3435 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3436 if (list_empty(&cur_trans->dirty_bgs)) {
3437 spin_unlock(&cur_trans->dirty_bgs_lock);
3438 return 0;
1bbc621e 3439 }
b58d1a9e 3440 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3441 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3442
1bbc621e 3443again:
1bbc621e
CM
3444 /*
3445 * make sure all the block groups on our dirty list actually
3446 * exist
3447 */
3448 btrfs_create_pending_block_groups(trans, root);
3449
3450 if (!path) {
3451 path = btrfs_alloc_path();
3452 if (!path)
3453 return -ENOMEM;
3454 }
3455
b58d1a9e
FM
3456 /*
3457 * cache_write_mutex is here only to save us from balance or automatic
3458 * removal of empty block groups deleting this block group while we are
3459 * writing out the cache
3460 */
3461 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3462 while (!list_empty(&dirty)) {
3463 cache = list_first_entry(&dirty,
3464 struct btrfs_block_group_cache,
3465 dirty_list);
1bbc621e
CM
3466 /*
3467 * this can happen if something re-dirties a block
3468 * group that is already under IO. Just wait for it to
3469 * finish and then do it all again
3470 */
3471 if (!list_empty(&cache->io_list)) {
3472 list_del_init(&cache->io_list);
3473 btrfs_wait_cache_io(root, trans, cache,
3474 &cache->io_ctl, path,
3475 cache->key.objectid);
3476 btrfs_put_block_group(cache);
3477 }
3478
3479
3480 /*
3481 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3482 * if it should update the cache_state. Don't delete
3483 * until after we wait.
3484 *
3485 * Since we're not running in the commit critical section
3486 * we need the dirty_bgs_lock to protect from update_block_group
3487 */
3488 spin_lock(&cur_trans->dirty_bgs_lock);
3489 list_del_init(&cache->dirty_list);
3490 spin_unlock(&cur_trans->dirty_bgs_lock);
3491
3492 should_put = 1;
3493
3494 cache_save_setup(cache, trans, path);
3495
3496 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3497 cache->io_ctl.inode = NULL;
3498 ret = btrfs_write_out_cache(root, trans, cache, path);
3499 if (ret == 0 && cache->io_ctl.inode) {
3500 num_started++;
3501 should_put = 0;
3502
3503 /*
3504 * the cache_write_mutex is protecting
3505 * the io_list
3506 */
3507 list_add_tail(&cache->io_list, io);
3508 } else {
3509 /*
3510 * if we failed to write the cache, the
3511 * generation will be bad and life goes on
3512 */
3513 ret = 0;
3514 }
3515 }
ff1f8250 3516 if (!ret) {
1bbc621e 3517 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3518 /*
3519 * Our block group might still be attached to the list
3520 * of new block groups in the transaction handle of some
3521 * other task (struct btrfs_trans_handle->new_bgs). This
3522 * means its block group item isn't yet in the extent
3523 * tree. If this happens ignore the error, as we will
3524 * try again later in the critical section of the
3525 * transaction commit.
3526 */
3527 if (ret == -ENOENT) {
3528 ret = 0;
3529 spin_lock(&cur_trans->dirty_bgs_lock);
3530 if (list_empty(&cache->dirty_list)) {
3531 list_add_tail(&cache->dirty_list,
3532 &cur_trans->dirty_bgs);
3533 btrfs_get_block_group(cache);
3534 }
3535 spin_unlock(&cur_trans->dirty_bgs_lock);
3536 } else if (ret) {
3537 btrfs_abort_transaction(trans, root, ret);
3538 }
3539 }
1bbc621e
CM
3540
3541 /* if its not on the io list, we need to put the block group */
3542 if (should_put)
3543 btrfs_put_block_group(cache);
3544
3545 if (ret)
3546 break;
b58d1a9e
FM
3547
3548 /*
3549 * Avoid blocking other tasks for too long. It might even save
3550 * us from writing caches for block groups that are going to be
3551 * removed.
3552 */
3553 mutex_unlock(&trans->transaction->cache_write_mutex);
3554 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3555 }
b58d1a9e 3556 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3557
3558 /*
3559 * go through delayed refs for all the stuff we've just kicked off
3560 * and then loop back (just once)
3561 */
3562 ret = btrfs_run_delayed_refs(trans, root, 0);
3563 if (!ret && loops == 0) {
3564 loops++;
3565 spin_lock(&cur_trans->dirty_bgs_lock);
3566 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3567 /*
3568 * dirty_bgs_lock protects us from concurrent block group
3569 * deletes too (not just cache_write_mutex).
3570 */
3571 if (!list_empty(&dirty)) {
3572 spin_unlock(&cur_trans->dirty_bgs_lock);
3573 goto again;
3574 }
1bbc621e 3575 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3576 }
3577
3578 btrfs_free_path(path);
3579 return ret;
3580}
3581
3582int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *root)
3584{
3585 struct btrfs_block_group_cache *cache;
3586 struct btrfs_transaction *cur_trans = trans->transaction;
3587 int ret = 0;
3588 int should_put;
3589 struct btrfs_path *path;
3590 struct list_head *io = &cur_trans->io_bgs;
3591 int num_started = 0;
9078a3e1
CM
3592
3593 path = btrfs_alloc_path();
3594 if (!path)
3595 return -ENOMEM;
3596
ce93ec54
JB
3597 /*
3598 * We don't need the lock here since we are protected by the transaction
3599 * commit. We want to do the cache_save_setup first and then run the
3600 * delayed refs to make sure we have the best chance at doing this all
3601 * in one shot.
3602 */
3603 while (!list_empty(&cur_trans->dirty_bgs)) {
3604 cache = list_first_entry(&cur_trans->dirty_bgs,
3605 struct btrfs_block_group_cache,
3606 dirty_list);
c9dc4c65
CM
3607
3608 /*
3609 * this can happen if cache_save_setup re-dirties a block
3610 * group that is already under IO. Just wait for it to
3611 * finish and then do it all again
3612 */
3613 if (!list_empty(&cache->io_list)) {
3614 list_del_init(&cache->io_list);
3615 btrfs_wait_cache_io(root, trans, cache,
3616 &cache->io_ctl, path,
3617 cache->key.objectid);
3618 btrfs_put_block_group(cache);
c9dc4c65
CM
3619 }
3620
1bbc621e
CM
3621 /*
3622 * don't remove from the dirty list until after we've waited
3623 * on any pending IO
3624 */
ce93ec54 3625 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3626 should_put = 1;
3627
1bbc621e 3628 cache_save_setup(cache, trans, path);
c9dc4c65 3629
ce93ec54 3630 if (!ret)
c9dc4c65
CM
3631 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3632
3633 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3634 cache->io_ctl.inode = NULL;
3635 ret = btrfs_write_out_cache(root, trans, cache, path);
3636 if (ret == 0 && cache->io_ctl.inode) {
3637 num_started++;
3638 should_put = 0;
1bbc621e 3639 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3640 } else {
3641 /*
3642 * if we failed to write the cache, the
3643 * generation will be bad and life goes on
3644 */
3645 ret = 0;
3646 }
3647 }
ff1f8250 3648 if (!ret) {
ce93ec54 3649 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3650 if (ret)
3651 btrfs_abort_transaction(trans, root, ret);
3652 }
c9dc4c65
CM
3653
3654 /* if its not on the io list, we need to put the block group */
3655 if (should_put)
3656 btrfs_put_block_group(cache);
3657 }
3658
1bbc621e
CM
3659 while (!list_empty(io)) {
3660 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3661 io_list);
3662 list_del_init(&cache->io_list);
c9dc4c65
CM
3663 btrfs_wait_cache_io(root, trans, cache,
3664 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3665 btrfs_put_block_group(cache);
3666 }
3667
9078a3e1 3668 btrfs_free_path(path);
ce93ec54 3669 return ret;
9078a3e1
CM
3670}
3671
d2fb3437
YZ
3672int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3673{
3674 struct btrfs_block_group_cache *block_group;
3675 int readonly = 0;
3676
3677 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3678 if (!block_group || block_group->ro)
3679 readonly = 1;
3680 if (block_group)
fa9c0d79 3681 btrfs_put_block_group(block_group);
d2fb3437
YZ
3682 return readonly;
3683}
3684
6ab0a202
JM
3685static const char *alloc_name(u64 flags)
3686{
3687 switch (flags) {
3688 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3689 return "mixed";
3690 case BTRFS_BLOCK_GROUP_METADATA:
3691 return "metadata";
3692 case BTRFS_BLOCK_GROUP_DATA:
3693 return "data";
3694 case BTRFS_BLOCK_GROUP_SYSTEM:
3695 return "system";
3696 default:
3697 WARN_ON(1);
3698 return "invalid-combination";
3699 };
3700}
3701
593060d7
CM
3702static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3703 u64 total_bytes, u64 bytes_used,
3704 struct btrfs_space_info **space_info)
3705{
3706 struct btrfs_space_info *found;
b742bb82
YZ
3707 int i;
3708 int factor;
b150a4f1 3709 int ret;
b742bb82
YZ
3710
3711 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3712 BTRFS_BLOCK_GROUP_RAID10))
3713 factor = 2;
3714 else
3715 factor = 1;
593060d7
CM
3716
3717 found = __find_space_info(info, flags);
3718 if (found) {
25179201 3719 spin_lock(&found->lock);
593060d7 3720 found->total_bytes += total_bytes;
89a55897 3721 found->disk_total += total_bytes * factor;
593060d7 3722 found->bytes_used += bytes_used;
b742bb82 3723 found->disk_used += bytes_used * factor;
2e6e5183
FM
3724 if (total_bytes > 0)
3725 found->full = 0;
25179201 3726 spin_unlock(&found->lock);
593060d7
CM
3727 *space_info = found;
3728 return 0;
3729 }
c146afad 3730 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3731 if (!found)
3732 return -ENOMEM;
3733
908c7f19 3734 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3735 if (ret) {
3736 kfree(found);
3737 return ret;
3738 }
3739
c1895442 3740 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3741 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3742 init_rwsem(&found->groups_sem);
0f9dd46c 3743 spin_lock_init(&found->lock);
52ba6929 3744 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3745 found->total_bytes = total_bytes;
89a55897 3746 found->disk_total = total_bytes * factor;
593060d7 3747 found->bytes_used = bytes_used;
b742bb82 3748 found->disk_used = bytes_used * factor;
593060d7 3749 found->bytes_pinned = 0;
e8569813 3750 found->bytes_reserved = 0;
c146afad 3751 found->bytes_readonly = 0;
f0486c68 3752 found->bytes_may_use = 0;
6af3e3ad 3753 found->full = 0;
0e4f8f88 3754 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3755 found->chunk_alloc = 0;
fdb5effd
JB
3756 found->flush = 0;
3757 init_waitqueue_head(&found->wait);
633c0aad 3758 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3759
3760 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3761 info->space_info_kobj, "%s",
3762 alloc_name(found->flags));
3763 if (ret) {
3764 kfree(found);
3765 return ret;
3766 }
3767
593060d7 3768 *space_info = found;
4184ea7f 3769 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3770 if (flags & BTRFS_BLOCK_GROUP_DATA)
3771 info->data_sinfo = found;
6ab0a202
JM
3772
3773 return ret;
593060d7
CM
3774}
3775
8790d502
CM
3776static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3777{
899c81ea
ID
3778 u64 extra_flags = chunk_to_extended(flags) &
3779 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3780
de98ced9 3781 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3782 if (flags & BTRFS_BLOCK_GROUP_DATA)
3783 fs_info->avail_data_alloc_bits |= extra_flags;
3784 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3785 fs_info->avail_metadata_alloc_bits |= extra_flags;
3786 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3787 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3788 write_sequnlock(&fs_info->profiles_lock);
8790d502 3789}
593060d7 3790
fc67c450
ID
3791/*
3792 * returns target flags in extended format or 0 if restripe for this
3793 * chunk_type is not in progress
c6664b42
ID
3794 *
3795 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3796 */
3797static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3798{
3799 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3800 u64 target = 0;
3801
fc67c450
ID
3802 if (!bctl)
3803 return 0;
3804
3805 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3806 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3807 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3808 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3809 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3810 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3811 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3812 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3813 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3814 }
3815
3816 return target;
3817}
3818
a46d11a8
ID
3819/*
3820 * @flags: available profiles in extended format (see ctree.h)
3821 *
e4d8ec0f
ID
3822 * Returns reduced profile in chunk format. If profile changing is in
3823 * progress (either running or paused) picks the target profile (if it's
3824 * already available), otherwise falls back to plain reducing.
a46d11a8 3825 */
48a3b636 3826static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3827{
95669976 3828 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3829 u64 target;
9c170b26
ZL
3830 u64 raid_type;
3831 u64 allowed = 0;
a061fc8d 3832
fc67c450
ID
3833 /*
3834 * see if restripe for this chunk_type is in progress, if so
3835 * try to reduce to the target profile
3836 */
e4d8ec0f 3837 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3838 target = get_restripe_target(root->fs_info, flags);
3839 if (target) {
3840 /* pick target profile only if it's already available */
3841 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3842 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3843 return extended_to_chunk(target);
e4d8ec0f
ID
3844 }
3845 }
3846 spin_unlock(&root->fs_info->balance_lock);
3847
53b381b3 3848 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3849 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3850 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3851 allowed |= btrfs_raid_group[raid_type];
3852 }
3853 allowed &= flags;
3854
3855 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3856 allowed = BTRFS_BLOCK_GROUP_RAID6;
3857 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3858 allowed = BTRFS_BLOCK_GROUP_RAID5;
3859 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3860 allowed = BTRFS_BLOCK_GROUP_RAID10;
3861 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3862 allowed = BTRFS_BLOCK_GROUP_RAID1;
3863 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3864 allowed = BTRFS_BLOCK_GROUP_RAID0;
3865
3866 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3867
3868 return extended_to_chunk(flags | allowed);
ec44a35c
CM
3869}
3870
f8213bdc 3871static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3872{
de98ced9 3873 unsigned seq;
f8213bdc 3874 u64 flags;
de98ced9
MX
3875
3876 do {
f8213bdc 3877 flags = orig_flags;
de98ced9
MX
3878 seq = read_seqbegin(&root->fs_info->profiles_lock);
3879
3880 if (flags & BTRFS_BLOCK_GROUP_DATA)
3881 flags |= root->fs_info->avail_data_alloc_bits;
3882 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3883 flags |= root->fs_info->avail_system_alloc_bits;
3884 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3885 flags |= root->fs_info->avail_metadata_alloc_bits;
3886 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3887
b742bb82 3888 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3889}
3890
6d07bcec 3891u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3892{
b742bb82 3893 u64 flags;
53b381b3 3894 u64 ret;
9ed74f2d 3895
b742bb82
YZ
3896 if (data)
3897 flags = BTRFS_BLOCK_GROUP_DATA;
3898 else if (root == root->fs_info->chunk_root)
3899 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3900 else
b742bb82 3901 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3902
53b381b3
DW
3903 ret = get_alloc_profile(root, flags);
3904 return ret;
6a63209f 3905}
9ed74f2d 3906
4ceff079 3907int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 3908{
6a63209f 3909 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3910 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3911 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3912 u64 used;
94b947b2 3913 int ret = 0;
c99f1b0c
ZL
3914 int need_commit = 2;
3915 int have_pinned_space;
6a63209f 3916
6a63209f 3917 /* make sure bytes are sectorsize aligned */
fda2832f 3918 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3919
9dced186 3920 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3921 need_commit = 0;
9dced186 3922 ASSERT(current->journal_info);
0af3d00b
JB
3923 }
3924
b4d7c3c9 3925 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3926 if (!data_sinfo)
3927 goto alloc;
9ed74f2d 3928
6a63209f
JB
3929again:
3930 /* make sure we have enough space to handle the data first */
3931 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3932 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3933 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3934 data_sinfo->bytes_may_use;
ab6e2410
JB
3935
3936 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3937 struct btrfs_trans_handle *trans;
9ed74f2d 3938
6a63209f
JB
3939 /*
3940 * if we don't have enough free bytes in this space then we need
3941 * to alloc a new chunk.
3942 */
b9fd47cd 3943 if (!data_sinfo->full) {
6a63209f 3944 u64 alloc_target;
9ed74f2d 3945
0e4f8f88 3946 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3947 spin_unlock(&data_sinfo->lock);
33b4d47f 3948alloc:
6a63209f 3949 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3950 /*
3951 * It is ugly that we don't call nolock join
3952 * transaction for the free space inode case here.
3953 * But it is safe because we only do the data space
3954 * reservation for the free space cache in the
3955 * transaction context, the common join transaction
3956 * just increase the counter of the current transaction
3957 * handler, doesn't try to acquire the trans_lock of
3958 * the fs.
3959 */
7a7eaa40 3960 trans = btrfs_join_transaction(root);
a22285a6
YZ
3961 if (IS_ERR(trans))
3962 return PTR_ERR(trans);
9ed74f2d 3963
6a63209f 3964 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3965 alloc_target,
3966 CHUNK_ALLOC_NO_FORCE);
6a63209f 3967 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3968 if (ret < 0) {
3969 if (ret != -ENOSPC)
3970 return ret;
c99f1b0c
ZL
3971 else {
3972 have_pinned_space = 1;
d52a5b5f 3973 goto commit_trans;
c99f1b0c 3974 }
d52a5b5f 3975 }
9ed74f2d 3976
b4d7c3c9
LZ
3977 if (!data_sinfo)
3978 data_sinfo = fs_info->data_sinfo;
3979
6a63209f
JB
3980 goto again;
3981 }
f2bb8f5c
JB
3982
3983 /*
b150a4f1 3984 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3985 * allocation, and no removed chunk in current transaction,
3986 * don't bother committing the transaction.
f2bb8f5c 3987 */
c99f1b0c
ZL
3988 have_pinned_space = percpu_counter_compare(
3989 &data_sinfo->total_bytes_pinned,
3990 used + bytes - data_sinfo->total_bytes);
6a63209f 3991 spin_unlock(&data_sinfo->lock);
6a63209f 3992
4e06bdd6 3993 /* commit the current transaction and try again */
d52a5b5f 3994commit_trans:
c99f1b0c 3995 if (need_commit &&
a4abeea4 3996 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3997 need_commit--;
b150a4f1 3998
9a4e7276
ZL
3999 if (need_commit > 0)
4000 btrfs_wait_ordered_roots(fs_info, -1);
4001
7a7eaa40 4002 trans = btrfs_join_transaction(root);
a22285a6
YZ
4003 if (IS_ERR(trans))
4004 return PTR_ERR(trans);
c99f1b0c
ZL
4005 if (have_pinned_space >= 0 ||
4006 trans->transaction->have_free_bgs ||
4007 need_commit > 0) {
94b947b2
ZL
4008 ret = btrfs_commit_transaction(trans, root);
4009 if (ret)
4010 return ret;
d7c15171
ZL
4011 /*
4012 * make sure that all running delayed iput are
4013 * done
4014 */
4015 down_write(&root->fs_info->delayed_iput_sem);
4016 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4017 goto again;
4018 } else {
4019 btrfs_end_transaction(trans, root);
4020 }
4e06bdd6 4021 }
9ed74f2d 4022
cab45e22
JM
4023 trace_btrfs_space_reservation(root->fs_info,
4024 "space_info:enospc",
4025 data_sinfo->flags, bytes, 1);
6a63209f
JB
4026 return -ENOSPC;
4027 }
4028 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4029 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4030 data_sinfo->flags, bytes, 1);
6a63209f 4031 spin_unlock(&data_sinfo->lock);
6a63209f 4032
237c0e9f 4033 return ret;
9ed74f2d 4034}
6a63209f 4035
4ceff079
QW
4036/*
4037 * This will check the space that the inode allocates from to make sure we have
4038 * enough space for bytes.
4039 */
4040int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
4041{
4042 struct btrfs_root *root = BTRFS_I(inode)->root;
4043 int ret;
4044
4045 ret = btrfs_alloc_data_chunk_ondemand(inode, bytes);
4046 if (ret < 0)
4047 return ret;
4048 ret = btrfs_qgroup_reserve(root, write_bytes);
4049 return ret;
4050}
4051
4052/*
4053 * New check_data_free_space() with ability for precious data reservation
4054 * Will replace old btrfs_check_data_free_space(), but for patch split,
4055 * add a new function first and then replace it.
4056 */
4057int __btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4058{
4059 struct btrfs_root *root = BTRFS_I(inode)->root;
4060 int ret;
4061
4062 /* align the range */
4063 len = round_up(start + len, root->sectorsize) -
4064 round_down(start, root->sectorsize);
4065 start = round_down(start, root->sectorsize);
4066
4067 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4068 if (ret < 0)
4069 return ret;
4070
4071 /* Use new btrfs_qgroup_reserve_data to reserve precious data space */
4072 ret = btrfs_qgroup_reserve_data(inode, start, len);
4073 return ret;
4074}
4075
6a63209f 4076/*
fb25e914 4077 * Called if we need to clear a data reservation for this inode.
6a63209f 4078 */
0ca1f7ce 4079void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 4080{
0ca1f7ce 4081 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4082 struct btrfs_space_info *data_sinfo;
e3ccfa98 4083
6a63209f 4084 /* make sure bytes are sectorsize aligned */
fda2832f 4085 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4086
b4d7c3c9 4087 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4088 spin_lock(&data_sinfo->lock);
7ee9e440 4089 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4090 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4091 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4092 data_sinfo->flags, bytes, 0);
6a63209f 4093 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4094}
4095
4ceff079
QW
4096/*
4097 * Called if we need to clear a data reservation for this inode
4098 * Normally in a error case.
4099 *
4100 * This one will handle the per-indoe data rsv map for accurate reserved
4101 * space framework.
4102 */
4103void __btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4104{
4105 struct btrfs_root *root = BTRFS_I(inode)->root;
4106 struct btrfs_space_info *data_sinfo;
4107
4108 /* Make sure the range is aligned to sectorsize */
4109 len = round_up(start + len, root->sectorsize) -
4110 round_down(start, root->sectorsize);
4111 start = round_down(start, root->sectorsize);
4112
4113 /*
4114 * Free any reserved qgroup data space first
4115 * As it will alloc memory, we can't do it with data sinfo
4116 * spinlock hold.
4117 */
4118 btrfs_qgroup_free_data(inode, start, len);
4119
4120 data_sinfo = root->fs_info->data_sinfo;
4121 spin_lock(&data_sinfo->lock);
4122 if (WARN_ON(data_sinfo->bytes_may_use < len))
4123 data_sinfo->bytes_may_use = 0;
4124 else
4125 data_sinfo->bytes_may_use -= len;
4126 trace_btrfs_space_reservation(root->fs_info, "space_info",
4127 data_sinfo->flags, len, 0);
4128 spin_unlock(&data_sinfo->lock);
4129}
4130
97e728d4 4131static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4132{
97e728d4
JB
4133 struct list_head *head = &info->space_info;
4134 struct btrfs_space_info *found;
e3ccfa98 4135
97e728d4
JB
4136 rcu_read_lock();
4137 list_for_each_entry_rcu(found, head, list) {
4138 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4139 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4140 }
97e728d4 4141 rcu_read_unlock();
e3ccfa98
JB
4142}
4143
3c76cd84
MX
4144static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4145{
4146 return (global->size << 1);
4147}
4148
e5bc2458 4149static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4150 struct btrfs_space_info *sinfo, int force)
32c00aff 4151{
fb25e914 4152 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4153 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4154 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4155 u64 thresh;
e3ccfa98 4156
0e4f8f88
CM
4157 if (force == CHUNK_ALLOC_FORCE)
4158 return 1;
4159
fb25e914
JB
4160 /*
4161 * We need to take into account the global rsv because for all intents
4162 * and purposes it's used space. Don't worry about locking the
4163 * global_rsv, it doesn't change except when the transaction commits.
4164 */
54338b5c 4165 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4166 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4167
0e4f8f88
CM
4168 /*
4169 * in limited mode, we want to have some free space up to
4170 * about 1% of the FS size.
4171 */
4172 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4173 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4174 thresh = max_t(u64, 64 * 1024 * 1024,
4175 div_factor_fine(thresh, 1));
4176
4177 if (num_bytes - num_allocated < thresh)
4178 return 1;
4179 }
0e4f8f88 4180
698d0082 4181 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4182 return 0;
424499db 4183 return 1;
32c00aff
JB
4184}
4185
39c2d7fa 4186static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4187{
4188 u64 num_dev;
4189
53b381b3
DW
4190 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4191 BTRFS_BLOCK_GROUP_RAID0 |
4192 BTRFS_BLOCK_GROUP_RAID5 |
4193 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4194 num_dev = root->fs_info->fs_devices->rw_devices;
4195 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4196 num_dev = 2;
4197 else
4198 num_dev = 1; /* DUP or single */
4199
39c2d7fa 4200 return num_dev;
15d1ff81
LB
4201}
4202
39c2d7fa
FM
4203/*
4204 * If @is_allocation is true, reserve space in the system space info necessary
4205 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4206 * removing a chunk.
4207 */
4208void check_system_chunk(struct btrfs_trans_handle *trans,
4209 struct btrfs_root *root,
4617ea3a 4210 u64 type)
15d1ff81
LB
4211{
4212 struct btrfs_space_info *info;
4213 u64 left;
4214 u64 thresh;
4fbcdf66 4215 int ret = 0;
39c2d7fa 4216 u64 num_devs;
4fbcdf66
FM
4217
4218 /*
4219 * Needed because we can end up allocating a system chunk and for an
4220 * atomic and race free space reservation in the chunk block reserve.
4221 */
4222 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4223
4224 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4225 spin_lock(&info->lock);
4226 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4227 info->bytes_reserved - info->bytes_readonly -
4228 info->bytes_may_use;
15d1ff81
LB
4229 spin_unlock(&info->lock);
4230
39c2d7fa
FM
4231 num_devs = get_profile_num_devs(root, type);
4232
4233 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4234 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4235 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4236
15d1ff81 4237 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4238 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4239 left, thresh, type);
15d1ff81
LB
4240 dump_space_info(info, 0, 0);
4241 }
4242
4243 if (left < thresh) {
4244 u64 flags;
4245
4246 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4247 /*
4248 * Ignore failure to create system chunk. We might end up not
4249 * needing it, as we might not need to COW all nodes/leafs from
4250 * the paths we visit in the chunk tree (they were already COWed
4251 * or created in the current transaction for example).
4252 */
4253 ret = btrfs_alloc_chunk(trans, root, flags);
4254 }
4255
4256 if (!ret) {
4257 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4258 &root->fs_info->chunk_block_rsv,
4259 thresh, BTRFS_RESERVE_NO_FLUSH);
4260 if (!ret)
4261 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4262 }
4263}
4264
6324fbf3 4265static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4266 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4267{
6324fbf3 4268 struct btrfs_space_info *space_info;
97e728d4 4269 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4270 int wait_for_alloc = 0;
9ed74f2d 4271 int ret = 0;
9ed74f2d 4272
c6b305a8
JB
4273 /* Don't re-enter if we're already allocating a chunk */
4274 if (trans->allocating_chunk)
4275 return -ENOSPC;
4276
6324fbf3 4277 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4278 if (!space_info) {
4279 ret = update_space_info(extent_root->fs_info, flags,
4280 0, 0, &space_info);
79787eaa 4281 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4282 }
79787eaa 4283 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4284
6d74119f 4285again:
25179201 4286 spin_lock(&space_info->lock);
9e622d6b 4287 if (force < space_info->force_alloc)
0e4f8f88 4288 force = space_info->force_alloc;
25179201 4289 if (space_info->full) {
09fb99a6
FDBM
4290 if (should_alloc_chunk(extent_root, space_info, force))
4291 ret = -ENOSPC;
4292 else
4293 ret = 0;
25179201 4294 spin_unlock(&space_info->lock);
09fb99a6 4295 return ret;
9ed74f2d
JB
4296 }
4297
698d0082 4298 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4299 spin_unlock(&space_info->lock);
6d74119f
JB
4300 return 0;
4301 } else if (space_info->chunk_alloc) {
4302 wait_for_alloc = 1;
4303 } else {
4304 space_info->chunk_alloc = 1;
9ed74f2d 4305 }
0e4f8f88 4306
25179201 4307 spin_unlock(&space_info->lock);
9ed74f2d 4308
6d74119f
JB
4309 mutex_lock(&fs_info->chunk_mutex);
4310
4311 /*
4312 * The chunk_mutex is held throughout the entirety of a chunk
4313 * allocation, so once we've acquired the chunk_mutex we know that the
4314 * other guy is done and we need to recheck and see if we should
4315 * allocate.
4316 */
4317 if (wait_for_alloc) {
4318 mutex_unlock(&fs_info->chunk_mutex);
4319 wait_for_alloc = 0;
4320 goto again;
4321 }
4322
c6b305a8
JB
4323 trans->allocating_chunk = true;
4324
67377734
JB
4325 /*
4326 * If we have mixed data/metadata chunks we want to make sure we keep
4327 * allocating mixed chunks instead of individual chunks.
4328 */
4329 if (btrfs_mixed_space_info(space_info))
4330 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4331
97e728d4
JB
4332 /*
4333 * if we're doing a data chunk, go ahead and make sure that
4334 * we keep a reasonable number of metadata chunks allocated in the
4335 * FS as well.
4336 */
9ed74f2d 4337 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4338 fs_info->data_chunk_allocations++;
4339 if (!(fs_info->data_chunk_allocations %
4340 fs_info->metadata_ratio))
4341 force_metadata_allocation(fs_info);
9ed74f2d
JB
4342 }
4343
15d1ff81
LB
4344 /*
4345 * Check if we have enough space in SYSTEM chunk because we may need
4346 * to update devices.
4347 */
4617ea3a 4348 check_system_chunk(trans, extent_root, flags);
15d1ff81 4349
2b82032c 4350 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4351 trans->allocating_chunk = false;
92b8e897 4352
9ed74f2d 4353 spin_lock(&space_info->lock);
a81cb9a2
AO
4354 if (ret < 0 && ret != -ENOSPC)
4355 goto out;
9ed74f2d 4356 if (ret)
6324fbf3 4357 space_info->full = 1;
424499db
YZ
4358 else
4359 ret = 1;
6d74119f 4360
0e4f8f88 4361 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4362out:
6d74119f 4363 space_info->chunk_alloc = 0;
9ed74f2d 4364 spin_unlock(&space_info->lock);
a25c75d5 4365 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4366 /*
4367 * When we allocate a new chunk we reserve space in the chunk block
4368 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4369 * add new nodes/leafs to it if we end up needing to do it when
4370 * inserting the chunk item and updating device items as part of the
4371 * second phase of chunk allocation, performed by
4372 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4373 * large number of new block groups to create in our transaction
4374 * handle's new_bgs list to avoid exhausting the chunk block reserve
4375 * in extreme cases - like having a single transaction create many new
4376 * block groups when starting to write out the free space caches of all
4377 * the block groups that were made dirty during the lifetime of the
4378 * transaction.
4379 */
d9a0540a
FM
4380 if (trans->can_flush_pending_bgs &&
4381 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
00d80e34
FM
4382 btrfs_create_pending_block_groups(trans, trans->root);
4383 btrfs_trans_release_chunk_metadata(trans);
4384 }
0f9dd46c 4385 return ret;
6324fbf3 4386}
9ed74f2d 4387
a80c8dcf
JB
4388static int can_overcommit(struct btrfs_root *root,
4389 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4390 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4391{
96f1bb57 4392 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4393 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4394 u64 space_size;
a80c8dcf
JB
4395 u64 avail;
4396 u64 used;
4397
4398 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4399 space_info->bytes_pinned + space_info->bytes_readonly;
4400
96f1bb57
JB
4401 /*
4402 * We only want to allow over committing if we have lots of actual space
4403 * free, but if we don't have enough space to handle the global reserve
4404 * space then we could end up having a real enospc problem when trying
4405 * to allocate a chunk or some other such important allocation.
4406 */
3c76cd84
MX
4407 spin_lock(&global_rsv->lock);
4408 space_size = calc_global_rsv_need_space(global_rsv);
4409 spin_unlock(&global_rsv->lock);
4410 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4411 return 0;
4412
4413 used += space_info->bytes_may_use;
a80c8dcf
JB
4414
4415 spin_lock(&root->fs_info->free_chunk_lock);
4416 avail = root->fs_info->free_chunk_space;
4417 spin_unlock(&root->fs_info->free_chunk_lock);
4418
4419 /*
4420 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4421 * space is actually useable. For raid56, the space info used
4422 * doesn't include the parity drive, so we don't have to
4423 * change the math
a80c8dcf
JB
4424 */
4425 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4426 BTRFS_BLOCK_GROUP_RAID1 |
4427 BTRFS_BLOCK_GROUP_RAID10))
4428 avail >>= 1;
4429
4430 /*
561c294d
MX
4431 * If we aren't flushing all things, let us overcommit up to
4432 * 1/2th of the space. If we can flush, don't let us overcommit
4433 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4434 */
08e007d2 4435 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4436 avail >>= 3;
a80c8dcf 4437 else
14575aef 4438 avail >>= 1;
a80c8dcf 4439
14575aef 4440 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4441 return 1;
4442 return 0;
4443}
4444
48a3b636 4445static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4446 unsigned long nr_pages, int nr_items)
da633a42
MX
4447{
4448 struct super_block *sb = root->fs_info->sb;
da633a42 4449
925a6efb
JB
4450 if (down_read_trylock(&sb->s_umount)) {
4451 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4452 up_read(&sb->s_umount);
4453 } else {
da633a42
MX
4454 /*
4455 * We needn't worry the filesystem going from r/w to r/o though
4456 * we don't acquire ->s_umount mutex, because the filesystem
4457 * should guarantee the delalloc inodes list be empty after
4458 * the filesystem is readonly(all dirty pages are written to
4459 * the disk).
4460 */
6c255e67 4461 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4462 if (!current->journal_info)
6c255e67 4463 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4464 }
4465}
4466
18cd8ea6
MX
4467static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4468{
4469 u64 bytes;
4470 int nr;
4471
4472 bytes = btrfs_calc_trans_metadata_size(root, 1);
4473 nr = (int)div64_u64(to_reclaim, bytes);
4474 if (!nr)
4475 nr = 1;
4476 return nr;
4477}
4478
c61a16a7
MX
4479#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4480
9ed74f2d 4481/*
5da9d01b 4482 * shrink metadata reservation for delalloc
9ed74f2d 4483 */
f4c738c2
JB
4484static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4485 bool wait_ordered)
5da9d01b 4486{
0ca1f7ce 4487 struct btrfs_block_rsv *block_rsv;
0019f10d 4488 struct btrfs_space_info *space_info;
663350ac 4489 struct btrfs_trans_handle *trans;
f4c738c2 4490 u64 delalloc_bytes;
5da9d01b 4491 u64 max_reclaim;
b1953bce 4492 long time_left;
d3ee29e3
MX
4493 unsigned long nr_pages;
4494 int loops;
b0244199 4495 int items;
08e007d2 4496 enum btrfs_reserve_flush_enum flush;
5da9d01b 4497
c61a16a7 4498 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4499 items = calc_reclaim_items_nr(root, to_reclaim);
4500 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4501
663350ac 4502 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4503 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4504 space_info = block_rsv->space_info;
bf9022e0 4505
963d678b
MX
4506 delalloc_bytes = percpu_counter_sum_positive(
4507 &root->fs_info->delalloc_bytes);
f4c738c2 4508 if (delalloc_bytes == 0) {
fdb5effd 4509 if (trans)
f4c738c2 4510 return;
38c135af 4511 if (wait_ordered)
b0244199 4512 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4513 return;
fdb5effd
JB
4514 }
4515
d3ee29e3 4516 loops = 0;
f4c738c2
JB
4517 while (delalloc_bytes && loops < 3) {
4518 max_reclaim = min(delalloc_bytes, to_reclaim);
4519 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4520 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4521 /*
4522 * We need to wait for the async pages to actually start before
4523 * we do anything.
4524 */
9f3a074d
MX
4525 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4526 if (!max_reclaim)
4527 goto skip_async;
4528
4529 if (max_reclaim <= nr_pages)
4530 max_reclaim = 0;
4531 else
4532 max_reclaim -= nr_pages;
dea31f52 4533
9f3a074d
MX
4534 wait_event(root->fs_info->async_submit_wait,
4535 atomic_read(&root->fs_info->async_delalloc_pages) <=
4536 (int)max_reclaim);
4537skip_async:
08e007d2
MX
4538 if (!trans)
4539 flush = BTRFS_RESERVE_FLUSH_ALL;
4540 else
4541 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4542 spin_lock(&space_info->lock);
08e007d2 4543 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4544 spin_unlock(&space_info->lock);
4545 break;
4546 }
0019f10d 4547 spin_unlock(&space_info->lock);
5da9d01b 4548
36e39c40 4549 loops++;
f104d044 4550 if (wait_ordered && !trans) {
b0244199 4551 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4552 } else {
f4c738c2 4553 time_left = schedule_timeout_killable(1);
f104d044
JB
4554 if (time_left)
4555 break;
4556 }
963d678b
MX
4557 delalloc_bytes = percpu_counter_sum_positive(
4558 &root->fs_info->delalloc_bytes);
5da9d01b 4559 }
5da9d01b
YZ
4560}
4561
663350ac
JB
4562/**
4563 * maybe_commit_transaction - possibly commit the transaction if its ok to
4564 * @root - the root we're allocating for
4565 * @bytes - the number of bytes we want to reserve
4566 * @force - force the commit
8bb8ab2e 4567 *
663350ac
JB
4568 * This will check to make sure that committing the transaction will actually
4569 * get us somewhere and then commit the transaction if it does. Otherwise it
4570 * will return -ENOSPC.
8bb8ab2e 4571 */
663350ac
JB
4572static int may_commit_transaction(struct btrfs_root *root,
4573 struct btrfs_space_info *space_info,
4574 u64 bytes, int force)
4575{
4576 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4577 struct btrfs_trans_handle *trans;
4578
4579 trans = (struct btrfs_trans_handle *)current->journal_info;
4580 if (trans)
4581 return -EAGAIN;
4582
4583 if (force)
4584 goto commit;
4585
4586 /* See if there is enough pinned space to make this reservation */
b150a4f1 4587 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4588 bytes) >= 0)
663350ac 4589 goto commit;
663350ac
JB
4590
4591 /*
4592 * See if there is some space in the delayed insertion reservation for
4593 * this reservation.
4594 */
4595 if (space_info != delayed_rsv->space_info)
4596 return -ENOSPC;
4597
4598 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4599 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4600 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4601 spin_unlock(&delayed_rsv->lock);
4602 return -ENOSPC;
4603 }
4604 spin_unlock(&delayed_rsv->lock);
4605
4606commit:
4607 trans = btrfs_join_transaction(root);
4608 if (IS_ERR(trans))
4609 return -ENOSPC;
4610
4611 return btrfs_commit_transaction(trans, root);
4612}
4613
96c3f433 4614enum flush_state {
67b0fd63
JB
4615 FLUSH_DELAYED_ITEMS_NR = 1,
4616 FLUSH_DELAYED_ITEMS = 2,
4617 FLUSH_DELALLOC = 3,
4618 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4619 ALLOC_CHUNK = 5,
4620 COMMIT_TRANS = 6,
96c3f433
JB
4621};
4622
4623static int flush_space(struct btrfs_root *root,
4624 struct btrfs_space_info *space_info, u64 num_bytes,
4625 u64 orig_bytes, int state)
4626{
4627 struct btrfs_trans_handle *trans;
4628 int nr;
f4c738c2 4629 int ret = 0;
96c3f433
JB
4630
4631 switch (state) {
96c3f433
JB
4632 case FLUSH_DELAYED_ITEMS_NR:
4633 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4634 if (state == FLUSH_DELAYED_ITEMS_NR)
4635 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4636 else
96c3f433 4637 nr = -1;
18cd8ea6 4638
96c3f433
JB
4639 trans = btrfs_join_transaction(root);
4640 if (IS_ERR(trans)) {
4641 ret = PTR_ERR(trans);
4642 break;
4643 }
4644 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4645 btrfs_end_transaction(trans, root);
4646 break;
67b0fd63
JB
4647 case FLUSH_DELALLOC:
4648 case FLUSH_DELALLOC_WAIT:
24af7dd1 4649 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4650 state == FLUSH_DELALLOC_WAIT);
4651 break;
ea658bad
JB
4652 case ALLOC_CHUNK:
4653 trans = btrfs_join_transaction(root);
4654 if (IS_ERR(trans)) {
4655 ret = PTR_ERR(trans);
4656 break;
4657 }
4658 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4659 btrfs_get_alloc_profile(root, 0),
4660 CHUNK_ALLOC_NO_FORCE);
4661 btrfs_end_transaction(trans, root);
4662 if (ret == -ENOSPC)
4663 ret = 0;
4664 break;
96c3f433
JB
4665 case COMMIT_TRANS:
4666 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4667 break;
4668 default:
4669 ret = -ENOSPC;
4670 break;
4671 }
4672
4673 return ret;
4674}
21c7e756
MX
4675
4676static inline u64
4677btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4678 struct btrfs_space_info *space_info)
4679{
4680 u64 used;
4681 u64 expected;
4682 u64 to_reclaim;
4683
4684 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4685 16 * 1024 * 1024);
4686 spin_lock(&space_info->lock);
4687 if (can_overcommit(root, space_info, to_reclaim,
4688 BTRFS_RESERVE_FLUSH_ALL)) {
4689 to_reclaim = 0;
4690 goto out;
4691 }
4692
4693 used = space_info->bytes_used + space_info->bytes_reserved +
4694 space_info->bytes_pinned + space_info->bytes_readonly +
4695 space_info->bytes_may_use;
4696 if (can_overcommit(root, space_info, 1024 * 1024,
4697 BTRFS_RESERVE_FLUSH_ALL))
4698 expected = div_factor_fine(space_info->total_bytes, 95);
4699 else
4700 expected = div_factor_fine(space_info->total_bytes, 90);
4701
4702 if (used > expected)
4703 to_reclaim = used - expected;
4704 else
4705 to_reclaim = 0;
4706 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4707 space_info->bytes_reserved);
4708out:
4709 spin_unlock(&space_info->lock);
4710
4711 return to_reclaim;
4712}
4713
4714static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4715 struct btrfs_fs_info *fs_info, u64 used)
4716{
365c5313
JB
4717 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4718
4719 /* If we're just plain full then async reclaim just slows us down. */
4720 if (space_info->bytes_used >= thresh)
4721 return 0;
4722
4723 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4724 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4725}
4726
4727static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4728 struct btrfs_fs_info *fs_info,
4729 int flush_state)
21c7e756
MX
4730{
4731 u64 used;
4732
4733 spin_lock(&space_info->lock);
25ce459c
LB
4734 /*
4735 * We run out of space and have not got any free space via flush_space,
4736 * so don't bother doing async reclaim.
4737 */
4738 if (flush_state > COMMIT_TRANS && space_info->full) {
4739 spin_unlock(&space_info->lock);
4740 return 0;
4741 }
4742
21c7e756
MX
4743 used = space_info->bytes_used + space_info->bytes_reserved +
4744 space_info->bytes_pinned + space_info->bytes_readonly +
4745 space_info->bytes_may_use;
4746 if (need_do_async_reclaim(space_info, fs_info, used)) {
4747 spin_unlock(&space_info->lock);
4748 return 1;
4749 }
4750 spin_unlock(&space_info->lock);
4751
4752 return 0;
4753}
4754
4755static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4756{
4757 struct btrfs_fs_info *fs_info;
4758 struct btrfs_space_info *space_info;
4759 u64 to_reclaim;
4760 int flush_state;
4761
4762 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4763 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4764
4765 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4766 space_info);
4767 if (!to_reclaim)
4768 return;
4769
4770 flush_state = FLUSH_DELAYED_ITEMS_NR;
4771 do {
4772 flush_space(fs_info->fs_root, space_info, to_reclaim,
4773 to_reclaim, flush_state);
4774 flush_state++;
25ce459c
LB
4775 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4776 flush_state))
21c7e756 4777 return;
365c5313 4778 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4779}
4780
4781void btrfs_init_async_reclaim_work(struct work_struct *work)
4782{
4783 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4784}
4785
4a92b1b8
JB
4786/**
4787 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4788 * @root - the root we're allocating for
4789 * @block_rsv - the block_rsv we're allocating for
4790 * @orig_bytes - the number of bytes we want
48fc7f7e 4791 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4792 *
4a92b1b8
JB
4793 * This will reserve orgi_bytes number of bytes from the space info associated
4794 * with the block_rsv. If there is not enough space it will make an attempt to
4795 * flush out space to make room. It will do this by flushing delalloc if
4796 * possible or committing the transaction. If flush is 0 then no attempts to
4797 * regain reservations will be made and this will fail if there is not enough
4798 * space already.
8bb8ab2e 4799 */
4a92b1b8 4800static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4801 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4802 u64 orig_bytes,
4803 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4804{
f0486c68 4805 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4806 u64 used;
8bb8ab2e 4807 u64 num_bytes = orig_bytes;
67b0fd63 4808 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4809 int ret = 0;
fdb5effd 4810 bool flushing = false;
9ed74f2d 4811
8bb8ab2e 4812again:
fdb5effd 4813 ret = 0;
8bb8ab2e 4814 spin_lock(&space_info->lock);
fdb5effd 4815 /*
08e007d2
MX
4816 * We only want to wait if somebody other than us is flushing and we
4817 * are actually allowed to flush all things.
fdb5effd 4818 */
08e007d2
MX
4819 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4820 space_info->flush) {
fdb5effd
JB
4821 spin_unlock(&space_info->lock);
4822 /*
4823 * If we have a trans handle we can't wait because the flusher
4824 * may have to commit the transaction, which would mean we would
4825 * deadlock since we are waiting for the flusher to finish, but
4826 * hold the current transaction open.
4827 */
663350ac 4828 if (current->journal_info)
fdb5effd 4829 return -EAGAIN;
b9688bb8
AJ
4830 ret = wait_event_killable(space_info->wait, !space_info->flush);
4831 /* Must have been killed, return */
4832 if (ret)
fdb5effd
JB
4833 return -EINTR;
4834
4835 spin_lock(&space_info->lock);
4836 }
4837
4838 ret = -ENOSPC;
2bf64758
JB
4839 used = space_info->bytes_used + space_info->bytes_reserved +
4840 space_info->bytes_pinned + space_info->bytes_readonly +
4841 space_info->bytes_may_use;
9ed74f2d 4842
8bb8ab2e
JB
4843 /*
4844 * The idea here is that we've not already over-reserved the block group
4845 * then we can go ahead and save our reservation first and then start
4846 * flushing if we need to. Otherwise if we've already overcommitted
4847 * lets start flushing stuff first and then come back and try to make
4848 * our reservation.
4849 */
2bf64758
JB
4850 if (used <= space_info->total_bytes) {
4851 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4852 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4853 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4854 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4855 ret = 0;
4856 } else {
4857 /*
4858 * Ok set num_bytes to orig_bytes since we aren't
4859 * overocmmitted, this way we only try and reclaim what
4860 * we need.
4861 */
4862 num_bytes = orig_bytes;
4863 }
4864 } else {
4865 /*
4866 * Ok we're over committed, set num_bytes to the overcommitted
4867 * amount plus the amount of bytes that we need for this
4868 * reservation.
4869 */
2bf64758 4870 num_bytes = used - space_info->total_bytes +
96c3f433 4871 (orig_bytes * 2);
8bb8ab2e 4872 }
9ed74f2d 4873
44734ed1
JB
4874 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4875 space_info->bytes_may_use += orig_bytes;
4876 trace_btrfs_space_reservation(root->fs_info, "space_info",
4877 space_info->flags, orig_bytes,
4878 1);
4879 ret = 0;
2bf64758
JB
4880 }
4881
8bb8ab2e
JB
4882 /*
4883 * Couldn't make our reservation, save our place so while we're trying
4884 * to reclaim space we can actually use it instead of somebody else
4885 * stealing it from us.
08e007d2
MX
4886 *
4887 * We make the other tasks wait for the flush only when we can flush
4888 * all things.
8bb8ab2e 4889 */
72bcd99d 4890 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4891 flushing = true;
4892 space_info->flush = 1;
21c7e756
MX
4893 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4894 used += orig_bytes;
f6acfd50
JB
4895 /*
4896 * We will do the space reservation dance during log replay,
4897 * which means we won't have fs_info->fs_root set, so don't do
4898 * the async reclaim as we will panic.
4899 */
4900 if (!root->fs_info->log_root_recovering &&
4901 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4902 !work_busy(&root->fs_info->async_reclaim_work))
4903 queue_work(system_unbound_wq,
4904 &root->fs_info->async_reclaim_work);
8bb8ab2e 4905 }
f0486c68 4906 spin_unlock(&space_info->lock);
9ed74f2d 4907
08e007d2 4908 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4909 goto out;
f0486c68 4910
96c3f433
JB
4911 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4912 flush_state);
4913 flush_state++;
08e007d2
MX
4914
4915 /*
4916 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4917 * would happen. So skip delalloc flush.
4918 */
4919 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4920 (flush_state == FLUSH_DELALLOC ||
4921 flush_state == FLUSH_DELALLOC_WAIT))
4922 flush_state = ALLOC_CHUNK;
4923
96c3f433 4924 if (!ret)
8bb8ab2e 4925 goto again;
08e007d2
MX
4926 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4927 flush_state < COMMIT_TRANS)
4928 goto again;
4929 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4930 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4931 goto again;
4932
4933out:
5d80366e
JB
4934 if (ret == -ENOSPC &&
4935 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4936 struct btrfs_block_rsv *global_rsv =
4937 &root->fs_info->global_block_rsv;
4938
4939 if (block_rsv != global_rsv &&
4940 !block_rsv_use_bytes(global_rsv, orig_bytes))
4941 ret = 0;
4942 }
cab45e22
JM
4943 if (ret == -ENOSPC)
4944 trace_btrfs_space_reservation(root->fs_info,
4945 "space_info:enospc",
4946 space_info->flags, orig_bytes, 1);
fdb5effd 4947 if (flushing) {
8bb8ab2e 4948 spin_lock(&space_info->lock);
fdb5effd
JB
4949 space_info->flush = 0;
4950 wake_up_all(&space_info->wait);
8bb8ab2e 4951 spin_unlock(&space_info->lock);
f0486c68 4952 }
f0486c68
YZ
4953 return ret;
4954}
4955
79787eaa
JM
4956static struct btrfs_block_rsv *get_block_rsv(
4957 const struct btrfs_trans_handle *trans,
4958 const struct btrfs_root *root)
f0486c68 4959{
4c13d758
JB
4960 struct btrfs_block_rsv *block_rsv = NULL;
4961
e9cf439f
AM
4962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4963 (root == root->fs_info->csum_root && trans->adding_csums) ||
4964 (root == root->fs_info->uuid_root))
f7a81ea4
SB
4965 block_rsv = trans->block_rsv;
4966
4c13d758 4967 if (!block_rsv)
f0486c68
YZ
4968 block_rsv = root->block_rsv;
4969
4970 if (!block_rsv)
4971 block_rsv = &root->fs_info->empty_block_rsv;
4972
4973 return block_rsv;
4974}
4975
4976static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4977 u64 num_bytes)
4978{
4979 int ret = -ENOSPC;
4980 spin_lock(&block_rsv->lock);
4981 if (block_rsv->reserved >= num_bytes) {
4982 block_rsv->reserved -= num_bytes;
4983 if (block_rsv->reserved < block_rsv->size)
4984 block_rsv->full = 0;
4985 ret = 0;
4986 }
4987 spin_unlock(&block_rsv->lock);
4988 return ret;
4989}
4990
4991static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4992 u64 num_bytes, int update_size)
4993{
4994 spin_lock(&block_rsv->lock);
4995 block_rsv->reserved += num_bytes;
4996 if (update_size)
4997 block_rsv->size += num_bytes;
4998 else if (block_rsv->reserved >= block_rsv->size)
4999 block_rsv->full = 1;
5000 spin_unlock(&block_rsv->lock);
5001}
5002
d52be818
JB
5003int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5004 struct btrfs_block_rsv *dest, u64 num_bytes,
5005 int min_factor)
5006{
5007 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5008 u64 min_bytes;
5009
5010 if (global_rsv->space_info != dest->space_info)
5011 return -ENOSPC;
5012
5013 spin_lock(&global_rsv->lock);
5014 min_bytes = div_factor(global_rsv->size, min_factor);
5015 if (global_rsv->reserved < min_bytes + num_bytes) {
5016 spin_unlock(&global_rsv->lock);
5017 return -ENOSPC;
5018 }
5019 global_rsv->reserved -= num_bytes;
5020 if (global_rsv->reserved < global_rsv->size)
5021 global_rsv->full = 0;
5022 spin_unlock(&global_rsv->lock);
5023
5024 block_rsv_add_bytes(dest, num_bytes, 1);
5025 return 0;
5026}
5027
8c2a3ca2
JB
5028static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5029 struct btrfs_block_rsv *block_rsv,
62a45b60 5030 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5031{
5032 struct btrfs_space_info *space_info = block_rsv->space_info;
5033
5034 spin_lock(&block_rsv->lock);
5035 if (num_bytes == (u64)-1)
5036 num_bytes = block_rsv->size;
5037 block_rsv->size -= num_bytes;
5038 if (block_rsv->reserved >= block_rsv->size) {
5039 num_bytes = block_rsv->reserved - block_rsv->size;
5040 block_rsv->reserved = block_rsv->size;
5041 block_rsv->full = 1;
5042 } else {
5043 num_bytes = 0;
5044 }
5045 spin_unlock(&block_rsv->lock);
5046
5047 if (num_bytes > 0) {
5048 if (dest) {
e9e22899
JB
5049 spin_lock(&dest->lock);
5050 if (!dest->full) {
5051 u64 bytes_to_add;
5052
5053 bytes_to_add = dest->size - dest->reserved;
5054 bytes_to_add = min(num_bytes, bytes_to_add);
5055 dest->reserved += bytes_to_add;
5056 if (dest->reserved >= dest->size)
5057 dest->full = 1;
5058 num_bytes -= bytes_to_add;
5059 }
5060 spin_unlock(&dest->lock);
5061 }
5062 if (num_bytes) {
f0486c68 5063 spin_lock(&space_info->lock);
fb25e914 5064 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5065 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5066 space_info->flags, num_bytes, 0);
f0486c68 5067 spin_unlock(&space_info->lock);
4e06bdd6 5068 }
9ed74f2d 5069 }
f0486c68 5070}
4e06bdd6 5071
f0486c68
YZ
5072static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5073 struct btrfs_block_rsv *dst, u64 num_bytes)
5074{
5075 int ret;
9ed74f2d 5076
f0486c68
YZ
5077 ret = block_rsv_use_bytes(src, num_bytes);
5078 if (ret)
5079 return ret;
9ed74f2d 5080
f0486c68 5081 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5082 return 0;
5083}
5084
66d8f3dd 5085void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5086{
f0486c68
YZ
5087 memset(rsv, 0, sizeof(*rsv));
5088 spin_lock_init(&rsv->lock);
66d8f3dd 5089 rsv->type = type;
f0486c68
YZ
5090}
5091
66d8f3dd
MX
5092struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5093 unsigned short type)
f0486c68
YZ
5094{
5095 struct btrfs_block_rsv *block_rsv;
5096 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5097
f0486c68
YZ
5098 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5099 if (!block_rsv)
5100 return NULL;
9ed74f2d 5101
66d8f3dd 5102 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5103 block_rsv->space_info = __find_space_info(fs_info,
5104 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5105 return block_rsv;
5106}
9ed74f2d 5107
f0486c68
YZ
5108void btrfs_free_block_rsv(struct btrfs_root *root,
5109 struct btrfs_block_rsv *rsv)
5110{
2aaa6655
JB
5111 if (!rsv)
5112 return;
dabdb640
JB
5113 btrfs_block_rsv_release(root, rsv, (u64)-1);
5114 kfree(rsv);
9ed74f2d
JB
5115}
5116
cdfb080e
CM
5117void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5118{
5119 kfree(rsv);
5120}
5121
08e007d2
MX
5122int btrfs_block_rsv_add(struct btrfs_root *root,
5123 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5124 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5125{
f0486c68 5126 int ret;
9ed74f2d 5127
f0486c68
YZ
5128 if (num_bytes == 0)
5129 return 0;
8bb8ab2e 5130
61b520a9 5131 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5132 if (!ret) {
5133 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5134 return 0;
5135 }
9ed74f2d 5136
f0486c68 5137 return ret;
f0486c68 5138}
9ed74f2d 5139
4a92b1b8 5140int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5141 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5142{
5143 u64 num_bytes = 0;
f0486c68 5144 int ret = -ENOSPC;
9ed74f2d 5145
f0486c68
YZ
5146 if (!block_rsv)
5147 return 0;
9ed74f2d 5148
f0486c68 5149 spin_lock(&block_rsv->lock);
36ba022a
JB
5150 num_bytes = div_factor(block_rsv->size, min_factor);
5151 if (block_rsv->reserved >= num_bytes)
5152 ret = 0;
5153 spin_unlock(&block_rsv->lock);
9ed74f2d 5154
36ba022a
JB
5155 return ret;
5156}
5157
08e007d2
MX
5158int btrfs_block_rsv_refill(struct btrfs_root *root,
5159 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5160 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5161{
5162 u64 num_bytes = 0;
5163 int ret = -ENOSPC;
5164
5165 if (!block_rsv)
5166 return 0;
5167
5168 spin_lock(&block_rsv->lock);
5169 num_bytes = min_reserved;
13553e52 5170 if (block_rsv->reserved >= num_bytes)
f0486c68 5171 ret = 0;
13553e52 5172 else
f0486c68 5173 num_bytes -= block_rsv->reserved;
f0486c68 5174 spin_unlock(&block_rsv->lock);
13553e52 5175
f0486c68
YZ
5176 if (!ret)
5177 return 0;
5178
aa38a711 5179 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5180 if (!ret) {
5181 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5182 return 0;
6a63209f 5183 }
9ed74f2d 5184
13553e52 5185 return ret;
f0486c68
YZ
5186}
5187
5188int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5189 struct btrfs_block_rsv *dst_rsv,
5190 u64 num_bytes)
5191{
5192 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5193}
5194
5195void btrfs_block_rsv_release(struct btrfs_root *root,
5196 struct btrfs_block_rsv *block_rsv,
5197 u64 num_bytes)
5198{
5199 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5200 if (global_rsv == block_rsv ||
f0486c68
YZ
5201 block_rsv->space_info != global_rsv->space_info)
5202 global_rsv = NULL;
8c2a3ca2
JB
5203 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5204 num_bytes);
6a63209f
JB
5205}
5206
5207/*
8929ecfa
YZ
5208 * helper to calculate size of global block reservation.
5209 * the desired value is sum of space used by extent tree,
5210 * checksum tree and root tree
6a63209f 5211 */
8929ecfa 5212static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5213{
8929ecfa
YZ
5214 struct btrfs_space_info *sinfo;
5215 u64 num_bytes;
5216 u64 meta_used;
5217 u64 data_used;
6c41761f 5218 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5219
8929ecfa
YZ
5220 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5221 spin_lock(&sinfo->lock);
5222 data_used = sinfo->bytes_used;
5223 spin_unlock(&sinfo->lock);
33b4d47f 5224
8929ecfa
YZ
5225 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5226 spin_lock(&sinfo->lock);
6d48755d
JB
5227 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5228 data_used = 0;
8929ecfa
YZ
5229 meta_used = sinfo->bytes_used;
5230 spin_unlock(&sinfo->lock);
ab6e2410 5231
8929ecfa
YZ
5232 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5233 csum_size * 2;
f8c269d7 5234 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5235
8929ecfa 5236 if (num_bytes * 3 > meta_used)
f8c269d7 5237 num_bytes = div_u64(meta_used, 3);
ab6e2410 5238
707e8a07 5239 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5240}
6a63209f 5241
8929ecfa
YZ
5242static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5243{
5244 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5245 struct btrfs_space_info *sinfo = block_rsv->space_info;
5246 u64 num_bytes;
6a63209f 5247
8929ecfa 5248 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5249
8929ecfa 5250 spin_lock(&sinfo->lock);
1f699d38 5251 spin_lock(&block_rsv->lock);
4e06bdd6 5252
fdf30d1c 5253 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5254
8929ecfa 5255 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5256 sinfo->bytes_reserved + sinfo->bytes_readonly +
5257 sinfo->bytes_may_use;
8929ecfa
YZ
5258
5259 if (sinfo->total_bytes > num_bytes) {
5260 num_bytes = sinfo->total_bytes - num_bytes;
5261 block_rsv->reserved += num_bytes;
fb25e914 5262 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5263 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5264 sinfo->flags, num_bytes, 1);
6a63209f 5265 }
6a63209f 5266
8929ecfa
YZ
5267 if (block_rsv->reserved >= block_rsv->size) {
5268 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5269 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5270 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5271 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5272 block_rsv->reserved = block_rsv->size;
5273 block_rsv->full = 1;
5274 }
182608c8 5275
8929ecfa 5276 spin_unlock(&block_rsv->lock);
1f699d38 5277 spin_unlock(&sinfo->lock);
6a63209f
JB
5278}
5279
f0486c68 5280static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5281{
f0486c68 5282 struct btrfs_space_info *space_info;
6a63209f 5283
f0486c68
YZ
5284 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5285 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5286
f0486c68 5287 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5288 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5289 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5290 fs_info->trans_block_rsv.space_info = space_info;
5291 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5292 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5293
8929ecfa
YZ
5294 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5295 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5296 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5297 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5298 if (fs_info->quota_root)
5299 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5300 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5301
8929ecfa 5302 update_global_block_rsv(fs_info);
6a63209f
JB
5303}
5304
8929ecfa 5305static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5306{
8c2a3ca2
JB
5307 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5308 (u64)-1);
8929ecfa
YZ
5309 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5310 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5311 WARN_ON(fs_info->trans_block_rsv.size > 0);
5312 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5313 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5314 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5315 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5316 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5317}
5318
a22285a6
YZ
5319void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5320 struct btrfs_root *root)
6a63209f 5321{
0e721106
JB
5322 if (!trans->block_rsv)
5323 return;
5324
a22285a6
YZ
5325 if (!trans->bytes_reserved)
5326 return;
6a63209f 5327
e77266e4 5328 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5329 trans->transid, trans->bytes_reserved, 0);
b24e03db 5330 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5331 trans->bytes_reserved = 0;
5332}
6a63209f 5333
4fbcdf66
FM
5334/*
5335 * To be called after all the new block groups attached to the transaction
5336 * handle have been created (btrfs_create_pending_block_groups()).
5337 */
5338void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5339{
5340 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5341
5342 if (!trans->chunk_bytes_reserved)
5343 return;
5344
5345 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5346
5347 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5348 trans->chunk_bytes_reserved);
5349 trans->chunk_bytes_reserved = 0;
5350}
5351
79787eaa 5352/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5353int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5354 struct inode *inode)
5355{
5356 struct btrfs_root *root = BTRFS_I(inode)->root;
5357 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5358 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5359
5360 /*
fcb80c2a
JB
5361 * We need to hold space in order to delete our orphan item once we've
5362 * added it, so this takes the reservation so we can release it later
5363 * when we are truly done with the orphan item.
d68fc57b 5364 */
ff5714cc 5365 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5366 trace_btrfs_space_reservation(root->fs_info, "orphan",
5367 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5368 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5369}
5370
d68fc57b 5371void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5372{
d68fc57b 5373 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5374 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5375 trace_btrfs_space_reservation(root->fs_info, "orphan",
5376 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5377 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5378}
97e728d4 5379
d5c12070
MX
5380/*
5381 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5382 * root: the root of the parent directory
5383 * rsv: block reservation
5384 * items: the number of items that we need do reservation
5385 * qgroup_reserved: used to return the reserved size in qgroup
5386 *
5387 * This function is used to reserve the space for snapshot/subvolume
5388 * creation and deletion. Those operations are different with the
5389 * common file/directory operations, they change two fs/file trees
5390 * and root tree, the number of items that the qgroup reserves is
5391 * different with the free space reservation. So we can not use
5392 * the space reseravtion mechanism in start_transaction().
5393 */
5394int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5395 struct btrfs_block_rsv *rsv,
5396 int items,
ee3441b4
JM
5397 u64 *qgroup_reserved,
5398 bool use_global_rsv)
a22285a6 5399{
d5c12070
MX
5400 u64 num_bytes;
5401 int ret;
ee3441b4 5402 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5403
5404 if (root->fs_info->quota_enabled) {
5405 /* One for parent inode, two for dir entries */
707e8a07 5406 num_bytes = 3 * root->nodesize;
7174109c 5407 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5408 if (ret)
5409 return ret;
5410 } else {
5411 num_bytes = 0;
5412 }
5413
5414 *qgroup_reserved = num_bytes;
5415
5416 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5417 rsv->space_info = __find_space_info(root->fs_info,
5418 BTRFS_BLOCK_GROUP_METADATA);
5419 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5420 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5421
5422 if (ret == -ENOSPC && use_global_rsv)
5423 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5424
7174109c
QW
5425 if (ret && *qgroup_reserved)
5426 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5427
5428 return ret;
5429}
5430
5431void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5432 struct btrfs_block_rsv *rsv,
5433 u64 qgroup_reserved)
5434{
5435 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5436}
5437
7709cde3
JB
5438/**
5439 * drop_outstanding_extent - drop an outstanding extent
5440 * @inode: the inode we're dropping the extent for
dcab6a3b 5441 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5442 *
5443 * This is called when we are freeing up an outstanding extent, either called
5444 * after an error or after an extent is written. This will return the number of
5445 * reserved extents that need to be freed. This must be called with
5446 * BTRFS_I(inode)->lock held.
5447 */
dcab6a3b 5448static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5449{
7fd2ae21 5450 unsigned drop_inode_space = 0;
9e0baf60 5451 unsigned dropped_extents = 0;
dcab6a3b 5452 unsigned num_extents = 0;
9e0baf60 5453
dcab6a3b
JB
5454 num_extents = (unsigned)div64_u64(num_bytes +
5455 BTRFS_MAX_EXTENT_SIZE - 1,
5456 BTRFS_MAX_EXTENT_SIZE);
5457 ASSERT(num_extents);
5458 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5459 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5460
7fd2ae21 5461 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5462 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5463 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5464 drop_inode_space = 1;
7fd2ae21 5465
9e0baf60
JB
5466 /*
5467 * If we have more or the same amount of outsanding extents than we have
5468 * reserved then we need to leave the reserved extents count alone.
5469 */
5470 if (BTRFS_I(inode)->outstanding_extents >=
5471 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5472 return drop_inode_space;
9e0baf60
JB
5473
5474 dropped_extents = BTRFS_I(inode)->reserved_extents -
5475 BTRFS_I(inode)->outstanding_extents;
5476 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5477 return dropped_extents + drop_inode_space;
9e0baf60
JB
5478}
5479
7709cde3
JB
5480/**
5481 * calc_csum_metadata_size - return the amount of metada space that must be
5482 * reserved/free'd for the given bytes.
5483 * @inode: the inode we're manipulating
5484 * @num_bytes: the number of bytes in question
5485 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5486 *
5487 * This adjusts the number of csum_bytes in the inode and then returns the
5488 * correct amount of metadata that must either be reserved or freed. We
5489 * calculate how many checksums we can fit into one leaf and then divide the
5490 * number of bytes that will need to be checksumed by this value to figure out
5491 * how many checksums will be required. If we are adding bytes then the number
5492 * may go up and we will return the number of additional bytes that must be
5493 * reserved. If it is going down we will return the number of bytes that must
5494 * be freed.
5495 *
5496 * This must be called with BTRFS_I(inode)->lock held.
5497 */
5498static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5499 int reserve)
6324fbf3 5500{
7709cde3 5501 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5502 u64 old_csums, num_csums;
7709cde3
JB
5503
5504 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5505 BTRFS_I(inode)->csum_bytes == 0)
5506 return 0;
5507
28f75a0e 5508 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5509 if (reserve)
5510 BTRFS_I(inode)->csum_bytes += num_bytes;
5511 else
5512 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5513 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5514
5515 /* No change, no need to reserve more */
5516 if (old_csums == num_csums)
5517 return 0;
5518
5519 if (reserve)
5520 return btrfs_calc_trans_metadata_size(root,
5521 num_csums - old_csums);
5522
5523 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5524}
c146afad 5525
0ca1f7ce
YZ
5526int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5527{
5528 struct btrfs_root *root = BTRFS_I(inode)->root;
5529 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5530 u64 to_reserve = 0;
660d3f6c 5531 u64 csum_bytes;
9e0baf60 5532 unsigned nr_extents = 0;
660d3f6c 5533 int extra_reserve = 0;
08e007d2 5534 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5535 int ret = 0;
c64c2bd8 5536 bool delalloc_lock = true;
88e081bf
WS
5537 u64 to_free = 0;
5538 unsigned dropped;
6324fbf3 5539
c64c2bd8
JB
5540 /* If we are a free space inode we need to not flush since we will be in
5541 * the middle of a transaction commit. We also don't need the delalloc
5542 * mutex since we won't race with anybody. We need this mostly to make
5543 * lockdep shut its filthy mouth.
5544 */
5545 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5546 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5547 delalloc_lock = false;
5548 }
c09544e0 5549
08e007d2
MX
5550 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5551 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5552 schedule_timeout(1);
ec44a35c 5553
c64c2bd8
JB
5554 if (delalloc_lock)
5555 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5556
0ca1f7ce 5557 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5558
9e0baf60 5559 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5560 nr_extents = (unsigned)div64_u64(num_bytes +
5561 BTRFS_MAX_EXTENT_SIZE - 1,
5562 BTRFS_MAX_EXTENT_SIZE);
5563 BTRFS_I(inode)->outstanding_extents += nr_extents;
5564 nr_extents = 0;
9e0baf60
JB
5565
5566 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5567 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5568 nr_extents = BTRFS_I(inode)->outstanding_extents -
5569 BTRFS_I(inode)->reserved_extents;
57a45ced 5570
7fd2ae21
JB
5571 /*
5572 * Add an item to reserve for updating the inode when we complete the
5573 * delalloc io.
5574 */
72ac3c0d
JB
5575 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5576 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5577 nr_extents++;
660d3f6c 5578 extra_reserve = 1;
593060d7 5579 }
7fd2ae21
JB
5580
5581 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5582 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5583 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5584 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5585
88e081bf 5586 if (root->fs_info->quota_enabled) {
7174109c
QW
5587 ret = btrfs_qgroup_reserve_meta(root,
5588 nr_extents * root->nodesize);
88e081bf
WS
5589 if (ret)
5590 goto out_fail;
5591 }
c5567237 5592
88e081bf
WS
5593 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5594 if (unlikely(ret)) {
7174109c 5595 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5596 goto out_fail;
9e0baf60 5597 }
25179201 5598
660d3f6c
JB
5599 spin_lock(&BTRFS_I(inode)->lock);
5600 if (extra_reserve) {
72ac3c0d
JB
5601 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5602 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5603 nr_extents--;
5604 }
5605 BTRFS_I(inode)->reserved_extents += nr_extents;
5606 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5607
5608 if (delalloc_lock)
5609 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5610
8c2a3ca2 5611 if (to_reserve)
67871254 5612 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5613 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5614 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5615
0ca1f7ce 5616 return 0;
88e081bf
WS
5617
5618out_fail:
5619 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5620 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5621 /*
5622 * If the inodes csum_bytes is the same as the original
5623 * csum_bytes then we know we haven't raced with any free()ers
5624 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5625 */
f4881bc7 5626 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5627 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5628 } else {
5629 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5630 u64 bytes;
5631
5632 /*
5633 * This is tricky, but first we need to figure out how much we
5634 * free'd from any free-ers that occured during this
5635 * reservation, so we reset ->csum_bytes to the csum_bytes
5636 * before we dropped our lock, and then call the free for the
5637 * number of bytes that were freed while we were trying our
5638 * reservation.
5639 */
5640 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5641 BTRFS_I(inode)->csum_bytes = csum_bytes;
5642 to_free = calc_csum_metadata_size(inode, bytes, 0);
5643
5644
5645 /*
5646 * Now we need to see how much we would have freed had we not
5647 * been making this reservation and our ->csum_bytes were not
5648 * artificially inflated.
5649 */
5650 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5651 bytes = csum_bytes - orig_csum_bytes;
5652 bytes = calc_csum_metadata_size(inode, bytes, 0);
5653
5654 /*
5655 * Now reset ->csum_bytes to what it should be. If bytes is
5656 * more than to_free then we would have free'd more space had we
5657 * not had an artificially high ->csum_bytes, so we need to free
5658 * the remainder. If bytes is the same or less then we don't
5659 * need to do anything, the other free-ers did the correct
5660 * thing.
5661 */
5662 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5663 if (bytes > to_free)
5664 to_free = bytes - to_free;
5665 else
5666 to_free = 0;
5667 }
88e081bf 5668 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5669 if (dropped)
88e081bf
WS
5670 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5671
5672 if (to_free) {
5673 btrfs_block_rsv_release(root, block_rsv, to_free);
5674 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5675 btrfs_ino(inode), to_free, 0);
5676 }
5677 if (delalloc_lock)
5678 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5679 return ret;
0ca1f7ce
YZ
5680}
5681
7709cde3
JB
5682/**
5683 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5684 * @inode: the inode to release the reservation for
5685 * @num_bytes: the number of bytes we're releasing
5686 *
5687 * This will release the metadata reservation for an inode. This can be called
5688 * once we complete IO for a given set of bytes to release their metadata
5689 * reservations.
5690 */
0ca1f7ce
YZ
5691void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5692{
5693 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5694 u64 to_free = 0;
5695 unsigned dropped;
0ca1f7ce
YZ
5696
5697 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5698 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5699 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5700
0934856d
MX
5701 if (num_bytes)
5702 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5703 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5704 if (dropped > 0)
5705 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5706
6a3891c5
JB
5707 if (btrfs_test_is_dummy_root(root))
5708 return;
5709
8c2a3ca2
JB
5710 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5711 btrfs_ino(inode), to_free, 0);
c5567237 5712
0ca1f7ce
YZ
5713 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5714 to_free);
5715}
5716
1ada3a62
QW
5717/**
5718 * __btrfs_delalloc_reserve_space - reserve data and metadata space for
5719 * delalloc
5720 * @inode: inode we're writing to
5721 * @start: start range we are writing to
5722 * @len: how long the range we are writing to
5723 *
5724 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5725 *
5726 * This will do the following things
5727 *
5728 * o reserve space in data space info for num bytes
5729 * and reserve precious corresponding qgroup space
5730 * (Done in check_data_free_space)
5731 *
5732 * o reserve space for metadata space, based on the number of outstanding
5733 * extents and how much csums will be needed
5734 * also reserve metadata space in a per root over-reserve method.
5735 * o add to the inodes->delalloc_bytes
5736 * o add it to the fs_info's delalloc inodes list.
5737 * (Above 3 all done in delalloc_reserve_metadata)
5738 *
5739 * Return 0 for success
5740 * Return <0 for error(-ENOSPC or -EQUOT)
5741 */
5742int __btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5743{
5744 int ret;
5745
5746 ret = __btrfs_check_data_free_space(inode, start, len);
5747 if (ret < 0)
5748 return ret;
5749 ret = btrfs_delalloc_reserve_metadata(inode, len);
5750 if (ret < 0)
5751 __btrfs_free_reserved_data_space(inode, start, len);
5752 return ret;
5753}
5754
7709cde3
JB
5755/**
5756 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5757 * @inode: inode we're writing to
5758 * @num_bytes: the number of bytes we want to allocate
5759 *
5760 * This will do the following things
5761 *
5762 * o reserve space in the data space info for num_bytes
5763 * o reserve space in the metadata space info based on number of outstanding
5764 * extents and how much csums will be needed
5765 * o add to the inodes ->delalloc_bytes
5766 * o add it to the fs_info's delalloc inodes list.
5767 *
5768 * This will return 0 for success and -ENOSPC if there is no space left.
5769 */
0ca1f7ce
YZ
5770int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5771{
5772 int ret;
5773
e2d1f923 5774 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5775 if (ret)
0ca1f7ce
YZ
5776 return ret;
5777
5778 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5779 if (ret) {
5780 btrfs_free_reserved_data_space(inode, num_bytes);
5781 return ret;
5782 }
5783
5784 return 0;
5785}
5786
1ada3a62
QW
5787/**
5788 * __btrfs_delalloc_release_space - release data and metadata space for delalloc
5789 * @inode: inode we're releasing space for
5790 * @start: start position of the space already reserved
5791 * @len: the len of the space already reserved
5792 *
5793 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5794 * called in the case that we don't need the metadata AND data reservations
5795 * anymore. So if there is an error or we insert an inline extent.
5796 *
5797 * This function will release the metadata space that was not used and will
5798 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5799 * list if there are no delalloc bytes left.
5800 * Also it will handle the qgroup reserved space.
5801 */
5802void __btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5803{
5804 btrfs_delalloc_release_metadata(inode, len);
5805 __btrfs_free_reserved_data_space(inode, start, len);
5806}
5807
7709cde3
JB
5808/**
5809 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5810 * @inode: inode we're releasing space for
5811 * @num_bytes: the number of bytes we want to free up
5812 *
5813 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5814 * called in the case that we don't need the metadata AND data reservations
5815 * anymore. So if there is an error or we insert an inline extent.
5816 *
5817 * This function will release the metadata space that was not used and will
5818 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5819 * list if there are no delalloc bytes left.
5820 */
0ca1f7ce
YZ
5821void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5822{
5823 btrfs_delalloc_release_metadata(inode, num_bytes);
5824 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5825}
5826
ce93ec54
JB
5827static int update_block_group(struct btrfs_trans_handle *trans,
5828 struct btrfs_root *root, u64 bytenr,
5829 u64 num_bytes, int alloc)
9078a3e1 5830{
0af3d00b 5831 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5832 struct btrfs_fs_info *info = root->fs_info;
db94535d 5833 u64 total = num_bytes;
9078a3e1 5834 u64 old_val;
db94535d 5835 u64 byte_in_group;
0af3d00b 5836 int factor;
3e1ad54f 5837
5d4f98a2 5838 /* block accounting for super block */
eb73c1b7 5839 spin_lock(&info->delalloc_root_lock);
6c41761f 5840 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5841 if (alloc)
5842 old_val += num_bytes;
5843 else
5844 old_val -= num_bytes;
6c41761f 5845 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5846 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5847
d397712b 5848 while (total) {
db94535d 5849 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5850 if (!cache)
79787eaa 5851 return -ENOENT;
b742bb82
YZ
5852 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5853 BTRFS_BLOCK_GROUP_RAID1 |
5854 BTRFS_BLOCK_GROUP_RAID10))
5855 factor = 2;
5856 else
5857 factor = 1;
9d66e233
JB
5858 /*
5859 * If this block group has free space cache written out, we
5860 * need to make sure to load it if we are removing space. This
5861 * is because we need the unpinning stage to actually add the
5862 * space back to the block group, otherwise we will leak space.
5863 */
5864 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5865 cache_block_group(cache, 1);
0af3d00b 5866
db94535d
CM
5867 byte_in_group = bytenr - cache->key.objectid;
5868 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5869
25179201 5870 spin_lock(&cache->space_info->lock);
c286ac48 5871 spin_lock(&cache->lock);
0af3d00b 5872
73bc1876 5873 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5874 cache->disk_cache_state < BTRFS_DC_CLEAR)
5875 cache->disk_cache_state = BTRFS_DC_CLEAR;
5876
9078a3e1 5877 old_val = btrfs_block_group_used(&cache->item);
db94535d 5878 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5879 if (alloc) {
db94535d 5880 old_val += num_bytes;
11833d66
YZ
5881 btrfs_set_block_group_used(&cache->item, old_val);
5882 cache->reserved -= num_bytes;
11833d66 5883 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5884 cache->space_info->bytes_used += num_bytes;
5885 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5886 spin_unlock(&cache->lock);
25179201 5887 spin_unlock(&cache->space_info->lock);
cd1bc465 5888 } else {
db94535d 5889 old_val -= num_bytes;
ae0ab003
FM
5890 btrfs_set_block_group_used(&cache->item, old_val);
5891 cache->pinned += num_bytes;
5892 cache->space_info->bytes_pinned += num_bytes;
5893 cache->space_info->bytes_used -= num_bytes;
5894 cache->space_info->disk_used -= num_bytes * factor;
5895 spin_unlock(&cache->lock);
5896 spin_unlock(&cache->space_info->lock);
47ab2a6c 5897
ae0ab003
FM
5898 set_extent_dirty(info->pinned_extents,
5899 bytenr, bytenr + num_bytes - 1,
5900 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5901 /*
5902 * No longer have used bytes in this block group, queue
5903 * it for deletion.
5904 */
5905 if (old_val == 0) {
5906 spin_lock(&info->unused_bgs_lock);
5907 if (list_empty(&cache->bg_list)) {
5908 btrfs_get_block_group(cache);
5909 list_add_tail(&cache->bg_list,
5910 &info->unused_bgs);
5911 }
5912 spin_unlock(&info->unused_bgs_lock);
5913 }
cd1bc465 5914 }
1bbc621e
CM
5915
5916 spin_lock(&trans->transaction->dirty_bgs_lock);
5917 if (list_empty(&cache->dirty_list)) {
5918 list_add_tail(&cache->dirty_list,
5919 &trans->transaction->dirty_bgs);
5920 trans->transaction->num_dirty_bgs++;
5921 btrfs_get_block_group(cache);
5922 }
5923 spin_unlock(&trans->transaction->dirty_bgs_lock);
5924
fa9c0d79 5925 btrfs_put_block_group(cache);
db94535d
CM
5926 total -= num_bytes;
5927 bytenr += num_bytes;
9078a3e1
CM
5928 }
5929 return 0;
5930}
6324fbf3 5931
a061fc8d
CM
5932static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5933{
0f9dd46c 5934 struct btrfs_block_group_cache *cache;
d2fb3437 5935 u64 bytenr;
0f9dd46c 5936
a1897fdd
LB
5937 spin_lock(&root->fs_info->block_group_cache_lock);
5938 bytenr = root->fs_info->first_logical_byte;
5939 spin_unlock(&root->fs_info->block_group_cache_lock);
5940
5941 if (bytenr < (u64)-1)
5942 return bytenr;
5943
0f9dd46c
JB
5944 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5945 if (!cache)
a061fc8d 5946 return 0;
0f9dd46c 5947
d2fb3437 5948 bytenr = cache->key.objectid;
fa9c0d79 5949 btrfs_put_block_group(cache);
d2fb3437
YZ
5950
5951 return bytenr;
a061fc8d
CM
5952}
5953
f0486c68
YZ
5954static int pin_down_extent(struct btrfs_root *root,
5955 struct btrfs_block_group_cache *cache,
5956 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5957{
11833d66
YZ
5958 spin_lock(&cache->space_info->lock);
5959 spin_lock(&cache->lock);
5960 cache->pinned += num_bytes;
5961 cache->space_info->bytes_pinned += num_bytes;
5962 if (reserved) {
5963 cache->reserved -= num_bytes;
5964 cache->space_info->bytes_reserved -= num_bytes;
5965 }
5966 spin_unlock(&cache->lock);
5967 spin_unlock(&cache->space_info->lock);
68b38550 5968
f0486c68
YZ
5969 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5970 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5971 if (reserved)
0be5dc67 5972 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5973 return 0;
5974}
68b38550 5975
f0486c68
YZ
5976/*
5977 * this function must be called within transaction
5978 */
5979int btrfs_pin_extent(struct btrfs_root *root,
5980 u64 bytenr, u64 num_bytes, int reserved)
5981{
5982 struct btrfs_block_group_cache *cache;
68b38550 5983
f0486c68 5984 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5985 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5986
5987 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5988
5989 btrfs_put_block_group(cache);
11833d66
YZ
5990 return 0;
5991}
5992
f0486c68 5993/*
e688b725
CM
5994 * this function must be called within transaction
5995 */
dcfac415 5996int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5997 u64 bytenr, u64 num_bytes)
5998{
5999 struct btrfs_block_group_cache *cache;
b50c6e25 6000 int ret;
e688b725
CM
6001
6002 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6003 if (!cache)
6004 return -EINVAL;
e688b725
CM
6005
6006 /*
6007 * pull in the free space cache (if any) so that our pin
6008 * removes the free space from the cache. We have load_only set
6009 * to one because the slow code to read in the free extents does check
6010 * the pinned extents.
6011 */
f6373bf3 6012 cache_block_group(cache, 1);
e688b725
CM
6013
6014 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6015
6016 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6017 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6018 btrfs_put_block_group(cache);
b50c6e25 6019 return ret;
e688b725
CM
6020}
6021
8c2a1a30
JB
6022static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6023{
6024 int ret;
6025 struct btrfs_block_group_cache *block_group;
6026 struct btrfs_caching_control *caching_ctl;
6027
6028 block_group = btrfs_lookup_block_group(root->fs_info, start);
6029 if (!block_group)
6030 return -EINVAL;
6031
6032 cache_block_group(block_group, 0);
6033 caching_ctl = get_caching_control(block_group);
6034
6035 if (!caching_ctl) {
6036 /* Logic error */
6037 BUG_ON(!block_group_cache_done(block_group));
6038 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6039 } else {
6040 mutex_lock(&caching_ctl->mutex);
6041
6042 if (start >= caching_ctl->progress) {
6043 ret = add_excluded_extent(root, start, num_bytes);
6044 } else if (start + num_bytes <= caching_ctl->progress) {
6045 ret = btrfs_remove_free_space(block_group,
6046 start, num_bytes);
6047 } else {
6048 num_bytes = caching_ctl->progress - start;
6049 ret = btrfs_remove_free_space(block_group,
6050 start, num_bytes);
6051 if (ret)
6052 goto out_lock;
6053
6054 num_bytes = (start + num_bytes) -
6055 caching_ctl->progress;
6056 start = caching_ctl->progress;
6057 ret = add_excluded_extent(root, start, num_bytes);
6058 }
6059out_lock:
6060 mutex_unlock(&caching_ctl->mutex);
6061 put_caching_control(caching_ctl);
6062 }
6063 btrfs_put_block_group(block_group);
6064 return ret;
6065}
6066
6067int btrfs_exclude_logged_extents(struct btrfs_root *log,
6068 struct extent_buffer *eb)
6069{
6070 struct btrfs_file_extent_item *item;
6071 struct btrfs_key key;
6072 int found_type;
6073 int i;
6074
6075 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6076 return 0;
6077
6078 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6079 btrfs_item_key_to_cpu(eb, &key, i);
6080 if (key.type != BTRFS_EXTENT_DATA_KEY)
6081 continue;
6082 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6083 found_type = btrfs_file_extent_type(eb, item);
6084 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6085 continue;
6086 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6087 continue;
6088 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6089 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6090 __exclude_logged_extent(log, key.objectid, key.offset);
6091 }
6092
6093 return 0;
6094}
6095
fb25e914
JB
6096/**
6097 * btrfs_update_reserved_bytes - update the block_group and space info counters
6098 * @cache: The cache we are manipulating
6099 * @num_bytes: The number of bytes in question
6100 * @reserve: One of the reservation enums
e570fd27 6101 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6102 *
6103 * This is called by the allocator when it reserves space, or by somebody who is
6104 * freeing space that was never actually used on disk. For example if you
6105 * reserve some space for a new leaf in transaction A and before transaction A
6106 * commits you free that leaf, you call this with reserve set to 0 in order to
6107 * clear the reservation.
6108 *
6109 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6110 * ENOSPC accounting. For data we handle the reservation through clearing the
6111 * delalloc bits in the io_tree. We have to do this since we could end up
6112 * allocating less disk space for the amount of data we have reserved in the
6113 * case of compression.
6114 *
6115 * If this is a reservation and the block group has become read only we cannot
6116 * make the reservation and return -EAGAIN, otherwise this function always
6117 * succeeds.
f0486c68 6118 */
fb25e914 6119static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6120 u64 num_bytes, int reserve, int delalloc)
11833d66 6121{
fb25e914 6122 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6123 int ret = 0;
79787eaa 6124
fb25e914
JB
6125 spin_lock(&space_info->lock);
6126 spin_lock(&cache->lock);
6127 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6128 if (cache->ro) {
6129 ret = -EAGAIN;
6130 } else {
fb25e914
JB
6131 cache->reserved += num_bytes;
6132 space_info->bytes_reserved += num_bytes;
6133 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6134 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6135 "space_info", space_info->flags,
6136 num_bytes, 0);
fb25e914
JB
6137 space_info->bytes_may_use -= num_bytes;
6138 }
e570fd27
MX
6139
6140 if (delalloc)
6141 cache->delalloc_bytes += num_bytes;
f0486c68 6142 }
fb25e914
JB
6143 } else {
6144 if (cache->ro)
6145 space_info->bytes_readonly += num_bytes;
6146 cache->reserved -= num_bytes;
6147 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6148
6149 if (delalloc)
6150 cache->delalloc_bytes -= num_bytes;
324ae4df 6151 }
fb25e914
JB
6152 spin_unlock(&cache->lock);
6153 spin_unlock(&space_info->lock);
f0486c68 6154 return ret;
324ae4df 6155}
9078a3e1 6156
143bede5 6157void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6158 struct btrfs_root *root)
e8569813 6159{
e8569813 6160 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6161 struct btrfs_caching_control *next;
6162 struct btrfs_caching_control *caching_ctl;
6163 struct btrfs_block_group_cache *cache;
e8569813 6164
9e351cc8 6165 down_write(&fs_info->commit_root_sem);
25179201 6166
11833d66
YZ
6167 list_for_each_entry_safe(caching_ctl, next,
6168 &fs_info->caching_block_groups, list) {
6169 cache = caching_ctl->block_group;
6170 if (block_group_cache_done(cache)) {
6171 cache->last_byte_to_unpin = (u64)-1;
6172 list_del_init(&caching_ctl->list);
6173 put_caching_control(caching_ctl);
e8569813 6174 } else {
11833d66 6175 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6176 }
e8569813 6177 }
11833d66
YZ
6178
6179 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6180 fs_info->pinned_extents = &fs_info->freed_extents[1];
6181 else
6182 fs_info->pinned_extents = &fs_info->freed_extents[0];
6183
9e351cc8 6184 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6185
6186 update_global_block_rsv(fs_info);
e8569813
ZY
6187}
6188
678886bd
FM
6189static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6190 const bool return_free_space)
ccd467d6 6191{
11833d66
YZ
6192 struct btrfs_fs_info *fs_info = root->fs_info;
6193 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6194 struct btrfs_space_info *space_info;
6195 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6196 u64 len;
7b398f8e 6197 bool readonly;
ccd467d6 6198
11833d66 6199 while (start <= end) {
7b398f8e 6200 readonly = false;
11833d66
YZ
6201 if (!cache ||
6202 start >= cache->key.objectid + cache->key.offset) {
6203 if (cache)
6204 btrfs_put_block_group(cache);
6205 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6206 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6207 }
6208
6209 len = cache->key.objectid + cache->key.offset - start;
6210 len = min(len, end + 1 - start);
6211
6212 if (start < cache->last_byte_to_unpin) {
6213 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6214 if (return_free_space)
6215 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6216 }
6217
f0486c68 6218 start += len;
7b398f8e 6219 space_info = cache->space_info;
f0486c68 6220
7b398f8e 6221 spin_lock(&space_info->lock);
11833d66
YZ
6222 spin_lock(&cache->lock);
6223 cache->pinned -= len;
7b398f8e 6224 space_info->bytes_pinned -= len;
d288db5d 6225 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6226 if (cache->ro) {
6227 space_info->bytes_readonly += len;
6228 readonly = true;
6229 }
11833d66 6230 spin_unlock(&cache->lock);
7b398f8e
JB
6231 if (!readonly && global_rsv->space_info == space_info) {
6232 spin_lock(&global_rsv->lock);
6233 if (!global_rsv->full) {
6234 len = min(len, global_rsv->size -
6235 global_rsv->reserved);
6236 global_rsv->reserved += len;
6237 space_info->bytes_may_use += len;
6238 if (global_rsv->reserved >= global_rsv->size)
6239 global_rsv->full = 1;
6240 }
6241 spin_unlock(&global_rsv->lock);
6242 }
6243 spin_unlock(&space_info->lock);
ccd467d6 6244 }
11833d66
YZ
6245
6246 if (cache)
6247 btrfs_put_block_group(cache);
ccd467d6
CM
6248 return 0;
6249}
6250
6251int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6252 struct btrfs_root *root)
a28ec197 6253{
11833d66 6254 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6255 struct btrfs_block_group_cache *block_group, *tmp;
6256 struct list_head *deleted_bgs;
11833d66 6257 struct extent_io_tree *unpin;
1a5bc167
CM
6258 u64 start;
6259 u64 end;
a28ec197 6260 int ret;
a28ec197 6261
11833d66
YZ
6262 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6263 unpin = &fs_info->freed_extents[1];
6264 else
6265 unpin = &fs_info->freed_extents[0];
6266
e33e17ee 6267 while (!trans->aborted) {
d4b450cd 6268 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6269 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6270 EXTENT_DIRTY, NULL);
d4b450cd
FM
6271 if (ret) {
6272 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6273 break;
d4b450cd 6274 }
1f3c79a2 6275
5378e607
LD
6276 if (btrfs_test_opt(root, DISCARD))
6277 ret = btrfs_discard_extent(root, start,
6278 end + 1 - start, NULL);
1f3c79a2 6279
1a5bc167 6280 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6281 unpin_extent_range(root, start, end, true);
d4b450cd 6282 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6283 cond_resched();
a28ec197 6284 }
817d52f8 6285
e33e17ee
JM
6286 /*
6287 * Transaction is finished. We don't need the lock anymore. We
6288 * do need to clean up the block groups in case of a transaction
6289 * abort.
6290 */
6291 deleted_bgs = &trans->transaction->deleted_bgs;
6292 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6293 u64 trimmed = 0;
6294
6295 ret = -EROFS;
6296 if (!trans->aborted)
6297 ret = btrfs_discard_extent(root,
6298 block_group->key.objectid,
6299 block_group->key.offset,
6300 &trimmed);
6301
6302 list_del_init(&block_group->bg_list);
6303 btrfs_put_block_group_trimming(block_group);
6304 btrfs_put_block_group(block_group);
6305
6306 if (ret) {
6307 const char *errstr = btrfs_decode_error(ret);
6308 btrfs_warn(fs_info,
6309 "Discard failed while removing blockgroup: errno=%d %s\n",
6310 ret, errstr);
6311 }
6312 }
6313
e20d96d6
CM
6314 return 0;
6315}
6316
b150a4f1
JB
6317static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6318 u64 owner, u64 root_objectid)
6319{
6320 struct btrfs_space_info *space_info;
6321 u64 flags;
6322
6323 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6324 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6325 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6326 else
6327 flags = BTRFS_BLOCK_GROUP_METADATA;
6328 } else {
6329 flags = BTRFS_BLOCK_GROUP_DATA;
6330 }
6331
6332 space_info = __find_space_info(fs_info, flags);
6333 BUG_ON(!space_info); /* Logic bug */
6334 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6335}
6336
6337
5d4f98a2
YZ
6338static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6339 struct btrfs_root *root,
c682f9b3 6340 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6341 u64 root_objectid, u64 owner_objectid,
6342 u64 owner_offset, int refs_to_drop,
c682f9b3 6343 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6344{
e2fa7227 6345 struct btrfs_key key;
5d4f98a2 6346 struct btrfs_path *path;
1261ec42
CM
6347 struct btrfs_fs_info *info = root->fs_info;
6348 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6349 struct extent_buffer *leaf;
5d4f98a2
YZ
6350 struct btrfs_extent_item *ei;
6351 struct btrfs_extent_inline_ref *iref;
a28ec197 6352 int ret;
5d4f98a2 6353 int is_data;
952fccac
CM
6354 int extent_slot = 0;
6355 int found_extent = 0;
6356 int num_to_del = 1;
c682f9b3 6357 int no_quota = node->no_quota;
5d4f98a2
YZ
6358 u32 item_size;
6359 u64 refs;
c682f9b3
QW
6360 u64 bytenr = node->bytenr;
6361 u64 num_bytes = node->num_bytes;
fcebe456 6362 int last_ref = 0;
3173a18f
JB
6363 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6364 SKINNY_METADATA);
037e6390 6365
fcebe456
JB
6366 if (!info->quota_enabled || !is_fstree(root_objectid))
6367 no_quota = 1;
6368
5caf2a00 6369 path = btrfs_alloc_path();
54aa1f4d
CM
6370 if (!path)
6371 return -ENOMEM;
5f26f772 6372
3c12ac72 6373 path->reada = 1;
b9473439 6374 path->leave_spinning = 1;
5d4f98a2
YZ
6375
6376 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6377 BUG_ON(!is_data && refs_to_drop != 1);
6378
3173a18f
JB
6379 if (is_data)
6380 skinny_metadata = 0;
6381
5d4f98a2
YZ
6382 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6383 bytenr, num_bytes, parent,
6384 root_objectid, owner_objectid,
6385 owner_offset);
7bb86316 6386 if (ret == 0) {
952fccac 6387 extent_slot = path->slots[0];
5d4f98a2
YZ
6388 while (extent_slot >= 0) {
6389 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6390 extent_slot);
5d4f98a2 6391 if (key.objectid != bytenr)
952fccac 6392 break;
5d4f98a2
YZ
6393 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6394 key.offset == num_bytes) {
952fccac
CM
6395 found_extent = 1;
6396 break;
6397 }
3173a18f
JB
6398 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6399 key.offset == owner_objectid) {
6400 found_extent = 1;
6401 break;
6402 }
952fccac
CM
6403 if (path->slots[0] - extent_slot > 5)
6404 break;
5d4f98a2 6405 extent_slot--;
952fccac 6406 }
5d4f98a2
YZ
6407#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6408 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6409 if (found_extent && item_size < sizeof(*ei))
6410 found_extent = 0;
6411#endif
31840ae1 6412 if (!found_extent) {
5d4f98a2 6413 BUG_ON(iref);
56bec294 6414 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6415 NULL, refs_to_drop,
fcebe456 6416 is_data, &last_ref);
005d6427
DS
6417 if (ret) {
6418 btrfs_abort_transaction(trans, extent_root, ret);
6419 goto out;
6420 }
b3b4aa74 6421 btrfs_release_path(path);
b9473439 6422 path->leave_spinning = 1;
5d4f98a2
YZ
6423
6424 key.objectid = bytenr;
6425 key.type = BTRFS_EXTENT_ITEM_KEY;
6426 key.offset = num_bytes;
6427
3173a18f
JB
6428 if (!is_data && skinny_metadata) {
6429 key.type = BTRFS_METADATA_ITEM_KEY;
6430 key.offset = owner_objectid;
6431 }
6432
31840ae1
ZY
6433 ret = btrfs_search_slot(trans, extent_root,
6434 &key, path, -1, 1);
3173a18f
JB
6435 if (ret > 0 && skinny_metadata && path->slots[0]) {
6436 /*
6437 * Couldn't find our skinny metadata item,
6438 * see if we have ye olde extent item.
6439 */
6440 path->slots[0]--;
6441 btrfs_item_key_to_cpu(path->nodes[0], &key,
6442 path->slots[0]);
6443 if (key.objectid == bytenr &&
6444 key.type == BTRFS_EXTENT_ITEM_KEY &&
6445 key.offset == num_bytes)
6446 ret = 0;
6447 }
6448
6449 if (ret > 0 && skinny_metadata) {
6450 skinny_metadata = false;
9ce49a0b 6451 key.objectid = bytenr;
3173a18f
JB
6452 key.type = BTRFS_EXTENT_ITEM_KEY;
6453 key.offset = num_bytes;
6454 btrfs_release_path(path);
6455 ret = btrfs_search_slot(trans, extent_root,
6456 &key, path, -1, 1);
6457 }
6458
f3465ca4 6459 if (ret) {
c2cf52eb 6460 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6461 ret, bytenr);
b783e62d
JB
6462 if (ret > 0)
6463 btrfs_print_leaf(extent_root,
6464 path->nodes[0]);
f3465ca4 6465 }
005d6427
DS
6466 if (ret < 0) {
6467 btrfs_abort_transaction(trans, extent_root, ret);
6468 goto out;
6469 }
31840ae1
ZY
6470 extent_slot = path->slots[0];
6471 }
fae7f21c 6472 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6473 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6474 btrfs_err(info,
6475 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6476 bytenr, parent, root_objectid, owner_objectid,
6477 owner_offset);
c4a050bb
JB
6478 btrfs_abort_transaction(trans, extent_root, ret);
6479 goto out;
79787eaa 6480 } else {
005d6427
DS
6481 btrfs_abort_transaction(trans, extent_root, ret);
6482 goto out;
7bb86316 6483 }
5f39d397
CM
6484
6485 leaf = path->nodes[0];
5d4f98a2
YZ
6486 item_size = btrfs_item_size_nr(leaf, extent_slot);
6487#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6488 if (item_size < sizeof(*ei)) {
6489 BUG_ON(found_extent || extent_slot != path->slots[0]);
6490 ret = convert_extent_item_v0(trans, extent_root, path,
6491 owner_objectid, 0);
005d6427
DS
6492 if (ret < 0) {
6493 btrfs_abort_transaction(trans, extent_root, ret);
6494 goto out;
6495 }
5d4f98a2 6496
b3b4aa74 6497 btrfs_release_path(path);
5d4f98a2
YZ
6498 path->leave_spinning = 1;
6499
6500 key.objectid = bytenr;
6501 key.type = BTRFS_EXTENT_ITEM_KEY;
6502 key.offset = num_bytes;
6503
6504 ret = btrfs_search_slot(trans, extent_root, &key, path,
6505 -1, 1);
6506 if (ret) {
c2cf52eb 6507 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6508 ret, bytenr);
5d4f98a2
YZ
6509 btrfs_print_leaf(extent_root, path->nodes[0]);
6510 }
005d6427
DS
6511 if (ret < 0) {
6512 btrfs_abort_transaction(trans, extent_root, ret);
6513 goto out;
6514 }
6515
5d4f98a2
YZ
6516 extent_slot = path->slots[0];
6517 leaf = path->nodes[0];
6518 item_size = btrfs_item_size_nr(leaf, extent_slot);
6519 }
6520#endif
6521 BUG_ON(item_size < sizeof(*ei));
952fccac 6522 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6523 struct btrfs_extent_item);
3173a18f
JB
6524 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6525 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6526 struct btrfs_tree_block_info *bi;
6527 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6528 bi = (struct btrfs_tree_block_info *)(ei + 1);
6529 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6530 }
56bec294 6531
5d4f98a2 6532 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6533 if (refs < refs_to_drop) {
6534 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6535 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6536 ret = -EINVAL;
6537 btrfs_abort_transaction(trans, extent_root, ret);
6538 goto out;
6539 }
56bec294 6540 refs -= refs_to_drop;
5f39d397 6541
5d4f98a2
YZ
6542 if (refs > 0) {
6543 if (extent_op)
6544 __run_delayed_extent_op(extent_op, leaf, ei);
6545 /*
6546 * In the case of inline back ref, reference count will
6547 * be updated by remove_extent_backref
952fccac 6548 */
5d4f98a2
YZ
6549 if (iref) {
6550 BUG_ON(!found_extent);
6551 } else {
6552 btrfs_set_extent_refs(leaf, ei, refs);
6553 btrfs_mark_buffer_dirty(leaf);
6554 }
6555 if (found_extent) {
6556 ret = remove_extent_backref(trans, extent_root, path,
6557 iref, refs_to_drop,
fcebe456 6558 is_data, &last_ref);
005d6427
DS
6559 if (ret) {
6560 btrfs_abort_transaction(trans, extent_root, ret);
6561 goto out;
6562 }
952fccac 6563 }
b150a4f1
JB
6564 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6565 root_objectid);
5d4f98a2 6566 } else {
5d4f98a2
YZ
6567 if (found_extent) {
6568 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6569 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6570 if (iref) {
6571 BUG_ON(path->slots[0] != extent_slot);
6572 } else {
6573 BUG_ON(path->slots[0] != extent_slot + 1);
6574 path->slots[0] = extent_slot;
6575 num_to_del = 2;
6576 }
78fae27e 6577 }
b9473439 6578
fcebe456 6579 last_ref = 1;
952fccac
CM
6580 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6581 num_to_del);
005d6427
DS
6582 if (ret) {
6583 btrfs_abort_transaction(trans, extent_root, ret);
6584 goto out;
6585 }
b3b4aa74 6586 btrfs_release_path(path);
21af804c 6587
5d4f98a2 6588 if (is_data) {
459931ec 6589 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6590 if (ret) {
6591 btrfs_abort_transaction(trans, extent_root, ret);
6592 goto out;
6593 }
459931ec
CM
6594 }
6595
ce93ec54 6596 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6597 if (ret) {
6598 btrfs_abort_transaction(trans, extent_root, ret);
6599 goto out;
6600 }
a28ec197 6601 }
fcebe456
JB
6602 btrfs_release_path(path);
6603
79787eaa 6604out:
5caf2a00 6605 btrfs_free_path(path);
a28ec197
CM
6606 return ret;
6607}
6608
1887be66 6609/*
f0486c68 6610 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6611 * delayed ref for that extent as well. This searches the delayed ref tree for
6612 * a given extent, and if there are no other delayed refs to be processed, it
6613 * removes it from the tree.
6614 */
6615static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6616 struct btrfs_root *root, u64 bytenr)
6617{
6618 struct btrfs_delayed_ref_head *head;
6619 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6620 int ret = 0;
1887be66
CM
6621
6622 delayed_refs = &trans->transaction->delayed_refs;
6623 spin_lock(&delayed_refs->lock);
6624 head = btrfs_find_delayed_ref_head(trans, bytenr);
6625 if (!head)
cf93da7b 6626 goto out_delayed_unlock;
1887be66 6627
d7df2c79 6628 spin_lock(&head->lock);
c6fc2454 6629 if (!list_empty(&head->ref_list))
1887be66
CM
6630 goto out;
6631
5d4f98a2
YZ
6632 if (head->extent_op) {
6633 if (!head->must_insert_reserved)
6634 goto out;
78a6184a 6635 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6636 head->extent_op = NULL;
6637 }
6638
1887be66
CM
6639 /*
6640 * waiting for the lock here would deadlock. If someone else has it
6641 * locked they are already in the process of dropping it anyway
6642 */
6643 if (!mutex_trylock(&head->mutex))
6644 goto out;
6645
6646 /*
6647 * at this point we have a head with no other entries. Go
6648 * ahead and process it.
6649 */
6650 head->node.in_tree = 0;
c46effa6 6651 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6652
d7df2c79 6653 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6654
6655 /*
6656 * we don't take a ref on the node because we're removing it from the
6657 * tree, so we just steal the ref the tree was holding.
6658 */
c3e69d58 6659 delayed_refs->num_heads--;
d7df2c79 6660 if (head->processing == 0)
c3e69d58 6661 delayed_refs->num_heads_ready--;
d7df2c79
JB
6662 head->processing = 0;
6663 spin_unlock(&head->lock);
1887be66
CM
6664 spin_unlock(&delayed_refs->lock);
6665
f0486c68
YZ
6666 BUG_ON(head->extent_op);
6667 if (head->must_insert_reserved)
6668 ret = 1;
6669
6670 mutex_unlock(&head->mutex);
1887be66 6671 btrfs_put_delayed_ref(&head->node);
f0486c68 6672 return ret;
1887be66 6673out:
d7df2c79 6674 spin_unlock(&head->lock);
cf93da7b
CM
6675
6676out_delayed_unlock:
1887be66
CM
6677 spin_unlock(&delayed_refs->lock);
6678 return 0;
6679}
6680
f0486c68
YZ
6681void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6682 struct btrfs_root *root,
6683 struct extent_buffer *buf,
5581a51a 6684 u64 parent, int last_ref)
f0486c68 6685{
b150a4f1 6686 int pin = 1;
f0486c68
YZ
6687 int ret;
6688
6689 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6690 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6691 buf->start, buf->len,
6692 parent, root->root_key.objectid,
6693 btrfs_header_level(buf),
5581a51a 6694 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6695 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6696 }
6697
6698 if (!last_ref)
6699 return;
6700
f0486c68 6701 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6702 struct btrfs_block_group_cache *cache;
6703
f0486c68
YZ
6704 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6705 ret = check_ref_cleanup(trans, root, buf->start);
6706 if (!ret)
37be25bc 6707 goto out;
f0486c68
YZ
6708 }
6709
6219872d
FM
6710 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6711
f0486c68
YZ
6712 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6713 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6714 btrfs_put_block_group(cache);
37be25bc 6715 goto out;
f0486c68
YZ
6716 }
6717
6718 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6719
6720 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6721 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6722 btrfs_put_block_group(cache);
0be5dc67 6723 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6724 pin = 0;
f0486c68
YZ
6725 }
6726out:
b150a4f1
JB
6727 if (pin)
6728 add_pinned_bytes(root->fs_info, buf->len,
6729 btrfs_header_level(buf),
6730 root->root_key.objectid);
6731
a826d6dc
JB
6732 /*
6733 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6734 * anymore.
6735 */
6736 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6737}
6738
79787eaa 6739/* Can return -ENOMEM */
66d7e7f0
AJ
6740int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6741 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6742 u64 owner, u64 offset, int no_quota)
925baedd
CM
6743{
6744 int ret;
66d7e7f0 6745 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6746
fccb84c9 6747 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6748 return 0;
fccb84c9 6749
b150a4f1
JB
6750 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6751
56bec294
CM
6752 /*
6753 * tree log blocks never actually go into the extent allocation
6754 * tree, just update pinning info and exit early.
56bec294 6755 */
5d4f98a2
YZ
6756 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6757 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6758 /* unlocks the pinned mutex */
11833d66 6759 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6760 ret = 0;
5d4f98a2 6761 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6762 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6763 num_bytes,
5d4f98a2 6764 parent, root_objectid, (int)owner,
fcebe456 6765 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6766 } else {
66d7e7f0
AJ
6767 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6768 num_bytes,
6769 parent, root_objectid, owner,
6770 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6771 NULL, no_quota);
56bec294 6772 }
925baedd
CM
6773 return ret;
6774}
6775
817d52f8
JB
6776/*
6777 * when we wait for progress in the block group caching, its because
6778 * our allocation attempt failed at least once. So, we must sleep
6779 * and let some progress happen before we try again.
6780 *
6781 * This function will sleep at least once waiting for new free space to
6782 * show up, and then it will check the block group free space numbers
6783 * for our min num_bytes. Another option is to have it go ahead
6784 * and look in the rbtree for a free extent of a given size, but this
6785 * is a good start.
36cce922
JB
6786 *
6787 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6788 * any of the information in this block group.
817d52f8 6789 */
36cce922 6790static noinline void
817d52f8
JB
6791wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6792 u64 num_bytes)
6793{
11833d66 6794 struct btrfs_caching_control *caching_ctl;
817d52f8 6795
11833d66
YZ
6796 caching_ctl = get_caching_control(cache);
6797 if (!caching_ctl)
36cce922 6798 return;
817d52f8 6799
11833d66 6800 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6801 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6802
6803 put_caching_control(caching_ctl);
11833d66
YZ
6804}
6805
6806static noinline int
6807wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6808{
6809 struct btrfs_caching_control *caching_ctl;
36cce922 6810 int ret = 0;
11833d66
YZ
6811
6812 caching_ctl = get_caching_control(cache);
6813 if (!caching_ctl)
36cce922 6814 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6815
6816 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6817 if (cache->cached == BTRFS_CACHE_ERROR)
6818 ret = -EIO;
11833d66 6819 put_caching_control(caching_ctl);
36cce922 6820 return ret;
817d52f8
JB
6821}
6822
31e50229 6823int __get_raid_index(u64 flags)
b742bb82 6824{
7738a53a 6825 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6826 return BTRFS_RAID_RAID10;
7738a53a 6827 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6828 return BTRFS_RAID_RAID1;
7738a53a 6829 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6830 return BTRFS_RAID_DUP;
7738a53a 6831 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6832 return BTRFS_RAID_RAID0;
53b381b3 6833 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6834 return BTRFS_RAID_RAID5;
53b381b3 6835 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6836 return BTRFS_RAID_RAID6;
7738a53a 6837
e942f883 6838 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6839}
6840
6ab0a202 6841int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6842{
31e50229 6843 return __get_raid_index(cache->flags);
7738a53a
ID
6844}
6845
6ab0a202
JM
6846static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6847 [BTRFS_RAID_RAID10] = "raid10",
6848 [BTRFS_RAID_RAID1] = "raid1",
6849 [BTRFS_RAID_DUP] = "dup",
6850 [BTRFS_RAID_RAID0] = "raid0",
6851 [BTRFS_RAID_SINGLE] = "single",
6852 [BTRFS_RAID_RAID5] = "raid5",
6853 [BTRFS_RAID_RAID6] = "raid6",
6854};
6855
1b8e5df6 6856static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6857{
6858 if (type >= BTRFS_NR_RAID_TYPES)
6859 return NULL;
6860
6861 return btrfs_raid_type_names[type];
6862}
6863
817d52f8 6864enum btrfs_loop_type {
285ff5af
JB
6865 LOOP_CACHING_NOWAIT = 0,
6866 LOOP_CACHING_WAIT = 1,
6867 LOOP_ALLOC_CHUNK = 2,
6868 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6869};
6870
e570fd27
MX
6871static inline void
6872btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6873 int delalloc)
6874{
6875 if (delalloc)
6876 down_read(&cache->data_rwsem);
6877}
6878
6879static inline void
6880btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6881 int delalloc)
6882{
6883 btrfs_get_block_group(cache);
6884 if (delalloc)
6885 down_read(&cache->data_rwsem);
6886}
6887
6888static struct btrfs_block_group_cache *
6889btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6890 struct btrfs_free_cluster *cluster,
6891 int delalloc)
6892{
6893 struct btrfs_block_group_cache *used_bg;
6894 bool locked = false;
6895again:
6896 spin_lock(&cluster->refill_lock);
6897 if (locked) {
6898 if (used_bg == cluster->block_group)
6899 return used_bg;
6900
6901 up_read(&used_bg->data_rwsem);
6902 btrfs_put_block_group(used_bg);
6903 }
6904
6905 used_bg = cluster->block_group;
6906 if (!used_bg)
6907 return NULL;
6908
6909 if (used_bg == block_group)
6910 return used_bg;
6911
6912 btrfs_get_block_group(used_bg);
6913
6914 if (!delalloc)
6915 return used_bg;
6916
6917 if (down_read_trylock(&used_bg->data_rwsem))
6918 return used_bg;
6919
6920 spin_unlock(&cluster->refill_lock);
6921 down_read(&used_bg->data_rwsem);
6922 locked = true;
6923 goto again;
6924}
6925
6926static inline void
6927btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6928 int delalloc)
6929{
6930 if (delalloc)
6931 up_read(&cache->data_rwsem);
6932 btrfs_put_block_group(cache);
6933}
6934
fec577fb
CM
6935/*
6936 * walks the btree of allocated extents and find a hole of a given size.
6937 * The key ins is changed to record the hole:
a4820398 6938 * ins->objectid == start position
62e2749e 6939 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6940 * ins->offset == the size of the hole.
fec577fb 6941 * Any available blocks before search_start are skipped.
a4820398
MX
6942 *
6943 * If there is no suitable free space, we will record the max size of
6944 * the free space extent currently.
fec577fb 6945 */
00361589 6946static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6947 u64 num_bytes, u64 empty_size,
98ed5174 6948 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6949 u64 flags, int delalloc)
fec577fb 6950{
80eb234a 6951 int ret = 0;
d397712b 6952 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6953 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6954 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6955 u64 search_start = 0;
a4820398 6956 u64 max_extent_size = 0;
239b14b3 6957 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6958 struct btrfs_space_info *space_info;
fa9c0d79 6959 int loop = 0;
b6919a58
DS
6960 int index = __get_raid_index(flags);
6961 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6962 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6963 bool failed_cluster_refill = false;
1cdda9b8 6964 bool failed_alloc = false;
67377734 6965 bool use_cluster = true;
60d2adbb 6966 bool have_caching_bg = false;
fec577fb 6967
db94535d 6968 WARN_ON(num_bytes < root->sectorsize);
962a298f 6969 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6970 ins->objectid = 0;
6971 ins->offset = 0;
b1a4d965 6972
b6919a58 6973 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6974
b6919a58 6975 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6976 if (!space_info) {
b6919a58 6977 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6978 return -ENOSPC;
6979 }
2552d17e 6980
67377734
JB
6981 /*
6982 * If the space info is for both data and metadata it means we have a
6983 * small filesystem and we can't use the clustering stuff.
6984 */
6985 if (btrfs_mixed_space_info(space_info))
6986 use_cluster = false;
6987
b6919a58 6988 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6989 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6990 if (!btrfs_test_opt(root, SSD))
6991 empty_cluster = 64 * 1024;
239b14b3
CM
6992 }
6993
b6919a58 6994 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6995 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6996 last_ptr = &root->fs_info->data_alloc_cluster;
6997 }
0f9dd46c 6998
239b14b3 6999 if (last_ptr) {
fa9c0d79
CM
7000 spin_lock(&last_ptr->lock);
7001 if (last_ptr->block_group)
7002 hint_byte = last_ptr->window_start;
7003 spin_unlock(&last_ptr->lock);
239b14b3 7004 }
fa9c0d79 7005
a061fc8d 7006 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7007 search_start = max(search_start, hint_byte);
0b86a832 7008
817d52f8 7009 if (!last_ptr)
fa9c0d79 7010 empty_cluster = 0;
fa9c0d79 7011
2552d17e 7012 if (search_start == hint_byte) {
2552d17e
JB
7013 block_group = btrfs_lookup_block_group(root->fs_info,
7014 search_start);
817d52f8
JB
7015 /*
7016 * we don't want to use the block group if it doesn't match our
7017 * allocation bits, or if its not cached.
ccf0e725
JB
7018 *
7019 * However if we are re-searching with an ideal block group
7020 * picked out then we don't care that the block group is cached.
817d52f8 7021 */
b6919a58 7022 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7023 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7024 down_read(&space_info->groups_sem);
44fb5511
CM
7025 if (list_empty(&block_group->list) ||
7026 block_group->ro) {
7027 /*
7028 * someone is removing this block group,
7029 * we can't jump into the have_block_group
7030 * target because our list pointers are not
7031 * valid
7032 */
7033 btrfs_put_block_group(block_group);
7034 up_read(&space_info->groups_sem);
ccf0e725 7035 } else {
b742bb82 7036 index = get_block_group_index(block_group);
e570fd27 7037 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7038 goto have_block_group;
ccf0e725 7039 }
2552d17e 7040 } else if (block_group) {
fa9c0d79 7041 btrfs_put_block_group(block_group);
2552d17e 7042 }
42e70e7a 7043 }
2552d17e 7044search:
60d2adbb 7045 have_caching_bg = false;
80eb234a 7046 down_read(&space_info->groups_sem);
b742bb82
YZ
7047 list_for_each_entry(block_group, &space_info->block_groups[index],
7048 list) {
6226cb0a 7049 u64 offset;
817d52f8 7050 int cached;
8a1413a2 7051
e570fd27 7052 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7053 search_start = block_group->key.objectid;
42e70e7a 7054
83a50de9
CM
7055 /*
7056 * this can happen if we end up cycling through all the
7057 * raid types, but we want to make sure we only allocate
7058 * for the proper type.
7059 */
b6919a58 7060 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7061 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7062 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7063 BTRFS_BLOCK_GROUP_RAID5 |
7064 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7065 BTRFS_BLOCK_GROUP_RAID10;
7066
7067 /*
7068 * if they asked for extra copies and this block group
7069 * doesn't provide them, bail. This does allow us to
7070 * fill raid0 from raid1.
7071 */
b6919a58 7072 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7073 goto loop;
7074 }
7075
2552d17e 7076have_block_group:
291c7d2f
JB
7077 cached = block_group_cache_done(block_group);
7078 if (unlikely(!cached)) {
f6373bf3 7079 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7080 BUG_ON(ret < 0);
7081 ret = 0;
817d52f8
JB
7082 }
7083
36cce922
JB
7084 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7085 goto loop;
ea6a478e 7086 if (unlikely(block_group->ro))
2552d17e 7087 goto loop;
0f9dd46c 7088
0a24325e 7089 /*
062c05c4
AO
7090 * Ok we want to try and use the cluster allocator, so
7091 * lets look there
0a24325e 7092 */
062c05c4 7093 if (last_ptr) {
215a63d1 7094 struct btrfs_block_group_cache *used_block_group;
8de972b4 7095 unsigned long aligned_cluster;
fa9c0d79
CM
7096 /*
7097 * the refill lock keeps out other
7098 * people trying to start a new cluster
7099 */
e570fd27
MX
7100 used_block_group = btrfs_lock_cluster(block_group,
7101 last_ptr,
7102 delalloc);
7103 if (!used_block_group)
44fb5511 7104 goto refill_cluster;
274bd4fb 7105
e570fd27
MX
7106 if (used_block_group != block_group &&
7107 (used_block_group->ro ||
7108 !block_group_bits(used_block_group, flags)))
7109 goto release_cluster;
44fb5511 7110
274bd4fb 7111 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7112 last_ptr,
7113 num_bytes,
7114 used_block_group->key.objectid,
7115 &max_extent_size);
fa9c0d79
CM
7116 if (offset) {
7117 /* we have a block, we're done */
7118 spin_unlock(&last_ptr->refill_lock);
3f7de037 7119 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7120 used_block_group,
7121 search_start, num_bytes);
215a63d1 7122 if (used_block_group != block_group) {
e570fd27
MX
7123 btrfs_release_block_group(block_group,
7124 delalloc);
215a63d1
MX
7125 block_group = used_block_group;
7126 }
fa9c0d79
CM
7127 goto checks;
7128 }
7129
274bd4fb 7130 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7131release_cluster:
062c05c4
AO
7132 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7133 * set up a new clusters, so lets just skip it
7134 * and let the allocator find whatever block
7135 * it can find. If we reach this point, we
7136 * will have tried the cluster allocator
7137 * plenty of times and not have found
7138 * anything, so we are likely way too
7139 * fragmented for the clustering stuff to find
a5f6f719
AO
7140 * anything.
7141 *
7142 * However, if the cluster is taken from the
7143 * current block group, release the cluster
7144 * first, so that we stand a better chance of
7145 * succeeding in the unclustered
7146 * allocation. */
7147 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7148 used_block_group != block_group) {
062c05c4 7149 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7150 btrfs_release_block_group(used_block_group,
7151 delalloc);
062c05c4
AO
7152 goto unclustered_alloc;
7153 }
7154
fa9c0d79
CM
7155 /*
7156 * this cluster didn't work out, free it and
7157 * start over
7158 */
7159 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7160
e570fd27
MX
7161 if (used_block_group != block_group)
7162 btrfs_release_block_group(used_block_group,
7163 delalloc);
7164refill_cluster:
a5f6f719
AO
7165 if (loop >= LOOP_NO_EMPTY_SIZE) {
7166 spin_unlock(&last_ptr->refill_lock);
7167 goto unclustered_alloc;
7168 }
7169
8de972b4
CM
7170 aligned_cluster = max_t(unsigned long,
7171 empty_cluster + empty_size,
7172 block_group->full_stripe_len);
7173
fa9c0d79 7174 /* allocate a cluster in this block group */
00361589
JB
7175 ret = btrfs_find_space_cluster(root, block_group,
7176 last_ptr, search_start,
7177 num_bytes,
7178 aligned_cluster);
fa9c0d79
CM
7179 if (ret == 0) {
7180 /*
7181 * now pull our allocation out of this
7182 * cluster
7183 */
7184 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7185 last_ptr,
7186 num_bytes,
7187 search_start,
7188 &max_extent_size);
fa9c0d79
CM
7189 if (offset) {
7190 /* we found one, proceed */
7191 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7192 trace_btrfs_reserve_extent_cluster(root,
7193 block_group, search_start,
7194 num_bytes);
fa9c0d79
CM
7195 goto checks;
7196 }
0a24325e
JB
7197 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7198 && !failed_cluster_refill) {
817d52f8
JB
7199 spin_unlock(&last_ptr->refill_lock);
7200
0a24325e 7201 failed_cluster_refill = true;
817d52f8
JB
7202 wait_block_group_cache_progress(block_group,
7203 num_bytes + empty_cluster + empty_size);
7204 goto have_block_group;
fa9c0d79 7205 }
817d52f8 7206
fa9c0d79
CM
7207 /*
7208 * at this point we either didn't find a cluster
7209 * or we weren't able to allocate a block from our
7210 * cluster. Free the cluster we've been trying
7211 * to use, and go to the next block group
7212 */
0a24325e 7213 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7214 spin_unlock(&last_ptr->refill_lock);
0a24325e 7215 goto loop;
fa9c0d79
CM
7216 }
7217
062c05c4 7218unclustered_alloc:
a5f6f719
AO
7219 spin_lock(&block_group->free_space_ctl->tree_lock);
7220 if (cached &&
7221 block_group->free_space_ctl->free_space <
7222 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7223 if (block_group->free_space_ctl->free_space >
7224 max_extent_size)
7225 max_extent_size =
7226 block_group->free_space_ctl->free_space;
a5f6f719
AO
7227 spin_unlock(&block_group->free_space_ctl->tree_lock);
7228 goto loop;
7229 }
7230 spin_unlock(&block_group->free_space_ctl->tree_lock);
7231
6226cb0a 7232 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7233 num_bytes, empty_size,
7234 &max_extent_size);
1cdda9b8
JB
7235 /*
7236 * If we didn't find a chunk, and we haven't failed on this
7237 * block group before, and this block group is in the middle of
7238 * caching and we are ok with waiting, then go ahead and wait
7239 * for progress to be made, and set failed_alloc to true.
7240 *
7241 * If failed_alloc is true then we've already waited on this
7242 * block group once and should move on to the next block group.
7243 */
7244 if (!offset && !failed_alloc && !cached &&
7245 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7246 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7247 num_bytes + empty_size);
7248 failed_alloc = true;
817d52f8 7249 goto have_block_group;
1cdda9b8 7250 } else if (!offset) {
60d2adbb
MX
7251 if (!cached)
7252 have_caching_bg = true;
1cdda9b8 7253 goto loop;
817d52f8 7254 }
fa9c0d79 7255checks:
4e54b17a 7256 search_start = ALIGN(offset, root->stripesize);
25179201 7257
2552d17e
JB
7258 /* move on to the next group */
7259 if (search_start + num_bytes >
215a63d1
MX
7260 block_group->key.objectid + block_group->key.offset) {
7261 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7262 goto loop;
6226cb0a 7263 }
f5a31e16 7264
f0486c68 7265 if (offset < search_start)
215a63d1 7266 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7267 search_start - offset);
7268 BUG_ON(offset > search_start);
2552d17e 7269
215a63d1 7270 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7271 alloc_type, delalloc);
f0486c68 7272 if (ret == -EAGAIN) {
215a63d1 7273 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7274 goto loop;
0f9dd46c 7275 }
0b86a832 7276
f0486c68 7277 /* we are all good, lets return */
2552d17e
JB
7278 ins->objectid = search_start;
7279 ins->offset = num_bytes;
d2fb3437 7280
3f7de037
JB
7281 trace_btrfs_reserve_extent(orig_root, block_group,
7282 search_start, num_bytes);
e570fd27 7283 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7284 break;
7285loop:
0a24325e 7286 failed_cluster_refill = false;
1cdda9b8 7287 failed_alloc = false;
b742bb82 7288 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7289 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7290 }
7291 up_read(&space_info->groups_sem);
7292
60d2adbb
MX
7293 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7294 goto search;
7295
b742bb82
YZ
7296 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7297 goto search;
7298
285ff5af 7299 /*
ccf0e725
JB
7300 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7301 * caching kthreads as we move along
817d52f8
JB
7302 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7303 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7304 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7305 * again
fa9c0d79 7306 */
723bda20 7307 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7308 index = 0;
723bda20 7309 loop++;
817d52f8 7310 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7311 struct btrfs_trans_handle *trans;
f017f15f
WS
7312 int exist = 0;
7313
7314 trans = current->journal_info;
7315 if (trans)
7316 exist = 1;
7317 else
7318 trans = btrfs_join_transaction(root);
00361589 7319
00361589
JB
7320 if (IS_ERR(trans)) {
7321 ret = PTR_ERR(trans);
7322 goto out;
7323 }
7324
b6919a58 7325 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7326 CHUNK_ALLOC_FORCE);
7327 /*
7328 * Do not bail out on ENOSPC since we
7329 * can do more things.
7330 */
00361589 7331 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7332 btrfs_abort_transaction(trans,
7333 root, ret);
00361589
JB
7334 else
7335 ret = 0;
f017f15f
WS
7336 if (!exist)
7337 btrfs_end_transaction(trans, root);
00361589 7338 if (ret)
ea658bad 7339 goto out;
2552d17e
JB
7340 }
7341
723bda20
JB
7342 if (loop == LOOP_NO_EMPTY_SIZE) {
7343 empty_size = 0;
7344 empty_cluster = 0;
fa9c0d79 7345 }
723bda20
JB
7346
7347 goto search;
2552d17e
JB
7348 } else if (!ins->objectid) {
7349 ret = -ENOSPC;
d82a6f1d 7350 } else if (ins->objectid) {
80eb234a 7351 ret = 0;
be744175 7352 }
79787eaa 7353out:
a4820398
MX
7354 if (ret == -ENOSPC)
7355 ins->offset = max_extent_size;
0f70abe2 7356 return ret;
fec577fb 7357}
ec44a35c 7358
9ed74f2d
JB
7359static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7360 int dump_block_groups)
0f9dd46c
JB
7361{
7362 struct btrfs_block_group_cache *cache;
b742bb82 7363 int index = 0;
0f9dd46c 7364
9ed74f2d 7365 spin_lock(&info->lock);
efe120a0 7366 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7367 info->flags,
7368 info->total_bytes - info->bytes_used - info->bytes_pinned -
7369 info->bytes_reserved - info->bytes_readonly,
d397712b 7370 (info->full) ? "" : "not ");
efe120a0 7371 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7372 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7373 info->total_bytes, info->bytes_used, info->bytes_pinned,
7374 info->bytes_reserved, info->bytes_may_use,
7375 info->bytes_readonly);
9ed74f2d
JB
7376 spin_unlock(&info->lock);
7377
7378 if (!dump_block_groups)
7379 return;
0f9dd46c 7380
80eb234a 7381 down_read(&info->groups_sem);
b742bb82
YZ
7382again:
7383 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7384 spin_lock(&cache->lock);
efe120a0
FH
7385 printk(KERN_INFO "BTRFS: "
7386 "block group %llu has %llu bytes, "
7387 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7388 cache->key.objectid, cache->key.offset,
7389 btrfs_block_group_used(&cache->item), cache->pinned,
7390 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7391 btrfs_dump_free_space(cache, bytes);
7392 spin_unlock(&cache->lock);
7393 }
b742bb82
YZ
7394 if (++index < BTRFS_NR_RAID_TYPES)
7395 goto again;
80eb234a 7396 up_read(&info->groups_sem);
0f9dd46c 7397}
e8569813 7398
00361589 7399int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7400 u64 num_bytes, u64 min_alloc_size,
7401 u64 empty_size, u64 hint_byte,
e570fd27 7402 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7403{
9e622d6b 7404 bool final_tried = false;
b6919a58 7405 u64 flags;
fec577fb 7406 int ret;
925baedd 7407
b6919a58 7408 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7409again:
db94535d 7410 WARN_ON(num_bytes < root->sectorsize);
00361589 7411 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7412 flags, delalloc);
3b951516 7413
9e622d6b 7414 if (ret == -ENOSPC) {
a4820398
MX
7415 if (!final_tried && ins->offset) {
7416 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7417 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7418 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7419 if (num_bytes == min_alloc_size)
7420 final_tried = true;
7421 goto again;
7422 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7423 struct btrfs_space_info *sinfo;
7424
b6919a58 7425 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7426 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7427 flags, num_bytes);
53804280
JM
7428 if (sinfo)
7429 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7430 }
925baedd 7431 }
0f9dd46c
JB
7432
7433 return ret;
e6dcd2dc
CM
7434}
7435
e688b725 7436static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7437 u64 start, u64 len,
7438 int pin, int delalloc)
65b51a00 7439{
0f9dd46c 7440 struct btrfs_block_group_cache *cache;
1f3c79a2 7441 int ret = 0;
0f9dd46c 7442
0f9dd46c
JB
7443 cache = btrfs_lookup_block_group(root->fs_info, start);
7444 if (!cache) {
c2cf52eb 7445 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7446 start);
0f9dd46c
JB
7447 return -ENOSPC;
7448 }
1f3c79a2 7449
e688b725
CM
7450 if (pin)
7451 pin_down_extent(root, cache, start, len, 1);
7452 else {
dcc82f47
FM
7453 if (btrfs_test_opt(root, DISCARD))
7454 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7455 btrfs_add_free_space(cache, start, len);
e570fd27 7456 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7457 }
31193213 7458
fa9c0d79 7459 btrfs_put_block_group(cache);
817d52f8 7460
1abe9b8a 7461 trace_btrfs_reserved_extent_free(root, start, len);
7462
e6dcd2dc
CM
7463 return ret;
7464}
7465
e688b725 7466int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7467 u64 start, u64 len, int delalloc)
e688b725 7468{
e570fd27 7469 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7470}
7471
7472int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7473 u64 start, u64 len)
7474{
e570fd27 7475 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7476}
7477
5d4f98a2
YZ
7478static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7479 struct btrfs_root *root,
7480 u64 parent, u64 root_objectid,
7481 u64 flags, u64 owner, u64 offset,
7482 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7483{
7484 int ret;
5d4f98a2 7485 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7486 struct btrfs_extent_item *extent_item;
5d4f98a2 7487 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7488 struct btrfs_path *path;
5d4f98a2
YZ
7489 struct extent_buffer *leaf;
7490 int type;
7491 u32 size;
26b8003f 7492
5d4f98a2
YZ
7493 if (parent > 0)
7494 type = BTRFS_SHARED_DATA_REF_KEY;
7495 else
7496 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7497
5d4f98a2 7498 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7499
7500 path = btrfs_alloc_path();
db5b493a
TI
7501 if (!path)
7502 return -ENOMEM;
47e4bb98 7503
b9473439 7504 path->leave_spinning = 1;
5d4f98a2
YZ
7505 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7506 ins, size);
79787eaa
JM
7507 if (ret) {
7508 btrfs_free_path(path);
7509 return ret;
7510 }
0f9dd46c 7511
5d4f98a2
YZ
7512 leaf = path->nodes[0];
7513 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7514 struct btrfs_extent_item);
5d4f98a2
YZ
7515 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7516 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7517 btrfs_set_extent_flags(leaf, extent_item,
7518 flags | BTRFS_EXTENT_FLAG_DATA);
7519
7520 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7521 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7522 if (parent > 0) {
7523 struct btrfs_shared_data_ref *ref;
7524 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7525 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7526 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7527 } else {
7528 struct btrfs_extent_data_ref *ref;
7529 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7530 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7531 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7532 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7533 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7534 }
47e4bb98
CM
7535
7536 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7537 btrfs_free_path(path);
f510cfec 7538
ce93ec54 7539 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7540 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7541 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7542 ins->objectid, ins->offset);
f5947066
CM
7543 BUG();
7544 }
0be5dc67 7545 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7546 return ret;
7547}
7548
5d4f98a2
YZ
7549static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7550 struct btrfs_root *root,
7551 u64 parent, u64 root_objectid,
7552 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7553 int level, struct btrfs_key *ins,
7554 int no_quota)
e6dcd2dc
CM
7555{
7556 int ret;
5d4f98a2
YZ
7557 struct btrfs_fs_info *fs_info = root->fs_info;
7558 struct btrfs_extent_item *extent_item;
7559 struct btrfs_tree_block_info *block_info;
7560 struct btrfs_extent_inline_ref *iref;
7561 struct btrfs_path *path;
7562 struct extent_buffer *leaf;
3173a18f 7563 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7564 u64 num_bytes = ins->offset;
3173a18f
JB
7565 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7566 SKINNY_METADATA);
7567
7568 if (!skinny_metadata)
7569 size += sizeof(*block_info);
1c2308f8 7570
5d4f98a2 7571 path = btrfs_alloc_path();
857cc2fc
JB
7572 if (!path) {
7573 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7574 root->nodesize);
d8926bb3 7575 return -ENOMEM;
857cc2fc 7576 }
56bec294 7577
5d4f98a2
YZ
7578 path->leave_spinning = 1;
7579 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7580 ins, size);
79787eaa 7581 if (ret) {
dd825259 7582 btrfs_free_path(path);
857cc2fc 7583 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7584 root->nodesize);
79787eaa
JM
7585 return ret;
7586 }
5d4f98a2
YZ
7587
7588 leaf = path->nodes[0];
7589 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7590 struct btrfs_extent_item);
7591 btrfs_set_extent_refs(leaf, extent_item, 1);
7592 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7593 btrfs_set_extent_flags(leaf, extent_item,
7594 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7595
3173a18f
JB
7596 if (skinny_metadata) {
7597 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7598 num_bytes = root->nodesize;
3173a18f
JB
7599 } else {
7600 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7601 btrfs_set_tree_block_key(leaf, block_info, key);
7602 btrfs_set_tree_block_level(leaf, block_info, level);
7603 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7604 }
5d4f98a2 7605
5d4f98a2
YZ
7606 if (parent > 0) {
7607 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7608 btrfs_set_extent_inline_ref_type(leaf, iref,
7609 BTRFS_SHARED_BLOCK_REF_KEY);
7610 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7611 } else {
7612 btrfs_set_extent_inline_ref_type(leaf, iref,
7613 BTRFS_TREE_BLOCK_REF_KEY);
7614 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7615 }
7616
7617 btrfs_mark_buffer_dirty(leaf);
7618 btrfs_free_path(path);
7619
ce93ec54
JB
7620 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7621 1);
79787eaa 7622 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7623 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7624 ins->objectid, ins->offset);
5d4f98a2
YZ
7625 BUG();
7626 }
0be5dc67 7627
707e8a07 7628 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7629 return ret;
7630}
7631
7632int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7633 struct btrfs_root *root,
7634 u64 root_objectid, u64 owner,
7635 u64 offset, struct btrfs_key *ins)
7636{
7637 int ret;
7638
7639 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7640
66d7e7f0
AJ
7641 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7642 ins->offset, 0,
7643 root_objectid, owner, offset,
7644 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7645 return ret;
7646}
e02119d5
CM
7647
7648/*
7649 * this is used by the tree logging recovery code. It records that
7650 * an extent has been allocated and makes sure to clear the free
7651 * space cache bits as well
7652 */
5d4f98a2
YZ
7653int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7654 struct btrfs_root *root,
7655 u64 root_objectid, u64 owner, u64 offset,
7656 struct btrfs_key *ins)
e02119d5
CM
7657{
7658 int ret;
7659 struct btrfs_block_group_cache *block_group;
11833d66 7660
8c2a1a30
JB
7661 /*
7662 * Mixed block groups will exclude before processing the log so we only
7663 * need to do the exlude dance if this fs isn't mixed.
7664 */
7665 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7666 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7667 if (ret)
8c2a1a30 7668 return ret;
11833d66
YZ
7669 }
7670
8c2a1a30
JB
7671 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7672 if (!block_group)
7673 return -EINVAL;
7674
fb25e914 7675 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7676 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7677 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7678 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7679 0, owner, offset, ins, 1);
b50c6e25 7680 btrfs_put_block_group(block_group);
e02119d5
CM
7681 return ret;
7682}
7683
48a3b636
ES
7684static struct extent_buffer *
7685btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7686 u64 bytenr, int level)
65b51a00
CM
7687{
7688 struct extent_buffer *buf;
7689
a83fffb7 7690 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7691 if (!buf)
7692 return ERR_PTR(-ENOMEM);
7693 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7694 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7695 btrfs_tree_lock(buf);
01d58472 7696 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7697 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7698
7699 btrfs_set_lock_blocking(buf);
65b51a00 7700 btrfs_set_buffer_uptodate(buf);
b4ce94de 7701
d0c803c4 7702 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7703 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7704 /*
7705 * we allow two log transactions at a time, use different
7706 * EXENT bit to differentiate dirty pages.
7707 */
656f30db 7708 if (buf->log_index == 0)
8cef4e16
YZ
7709 set_extent_dirty(&root->dirty_log_pages, buf->start,
7710 buf->start + buf->len - 1, GFP_NOFS);
7711 else
7712 set_extent_new(&root->dirty_log_pages, buf->start,
7713 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7714 } else {
656f30db 7715 buf->log_index = -1;
d0c803c4 7716 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7717 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7718 }
65b51a00 7719 trans->blocks_used++;
b4ce94de 7720 /* this returns a buffer locked for blocking */
65b51a00
CM
7721 return buf;
7722}
7723
f0486c68
YZ
7724static struct btrfs_block_rsv *
7725use_block_rsv(struct btrfs_trans_handle *trans,
7726 struct btrfs_root *root, u32 blocksize)
7727{
7728 struct btrfs_block_rsv *block_rsv;
68a82277 7729 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7730 int ret;
d88033db 7731 bool global_updated = false;
f0486c68
YZ
7732
7733 block_rsv = get_block_rsv(trans, root);
7734
b586b323
MX
7735 if (unlikely(block_rsv->size == 0))
7736 goto try_reserve;
d88033db 7737again:
f0486c68
YZ
7738 ret = block_rsv_use_bytes(block_rsv, blocksize);
7739 if (!ret)
7740 return block_rsv;
7741
b586b323
MX
7742 if (block_rsv->failfast)
7743 return ERR_PTR(ret);
7744
d88033db
MX
7745 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7746 global_updated = true;
7747 update_global_block_rsv(root->fs_info);
7748 goto again;
7749 }
7750
b586b323
MX
7751 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7752 static DEFINE_RATELIMIT_STATE(_rs,
7753 DEFAULT_RATELIMIT_INTERVAL * 10,
7754 /*DEFAULT_RATELIMIT_BURST*/ 1);
7755 if (__ratelimit(&_rs))
7756 WARN(1, KERN_DEBUG
efe120a0 7757 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7758 }
7759try_reserve:
7760 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7761 BTRFS_RESERVE_NO_FLUSH);
7762 if (!ret)
7763 return block_rsv;
7764 /*
7765 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7766 * the global reserve if its space type is the same as the global
7767 * reservation.
b586b323 7768 */
5881cfc9
MX
7769 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7770 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7771 ret = block_rsv_use_bytes(global_rsv, blocksize);
7772 if (!ret)
7773 return global_rsv;
7774 }
7775 return ERR_PTR(ret);
f0486c68
YZ
7776}
7777
8c2a3ca2
JB
7778static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7779 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7780{
7781 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7782 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7783}
7784
fec577fb 7785/*
f0486c68 7786 * finds a free extent and does all the dirty work required for allocation
67b7859e 7787 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7788 */
4d75f8a9
DS
7789struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7790 struct btrfs_root *root,
5d4f98a2
YZ
7791 u64 parent, u64 root_objectid,
7792 struct btrfs_disk_key *key, int level,
5581a51a 7793 u64 hint, u64 empty_size)
fec577fb 7794{
e2fa7227 7795 struct btrfs_key ins;
f0486c68 7796 struct btrfs_block_rsv *block_rsv;
5f39d397 7797 struct extent_buffer *buf;
67b7859e 7798 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7799 u64 flags = 0;
7800 int ret;
4d75f8a9 7801 u32 blocksize = root->nodesize;
3173a18f
JB
7802 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7803 SKINNY_METADATA);
fec577fb 7804
fccb84c9 7805 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7806 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7807 level);
faa2dbf0
JB
7808 if (!IS_ERR(buf))
7809 root->alloc_bytenr += blocksize;
7810 return buf;
7811 }
fccb84c9 7812
f0486c68
YZ
7813 block_rsv = use_block_rsv(trans, root, blocksize);
7814 if (IS_ERR(block_rsv))
7815 return ERR_CAST(block_rsv);
7816
00361589 7817 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7818 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7819 if (ret)
7820 goto out_unuse;
55c69072 7821
fe864576 7822 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7823 if (IS_ERR(buf)) {
7824 ret = PTR_ERR(buf);
7825 goto out_free_reserved;
7826 }
f0486c68
YZ
7827
7828 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7829 if (parent == 0)
7830 parent = ins.objectid;
7831 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7832 } else
7833 BUG_ON(parent > 0);
7834
7835 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7836 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7837 if (!extent_op) {
7838 ret = -ENOMEM;
7839 goto out_free_buf;
7840 }
f0486c68
YZ
7841 if (key)
7842 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7843 else
7844 memset(&extent_op->key, 0, sizeof(extent_op->key));
7845 extent_op->flags_to_set = flags;
3173a18f
JB
7846 if (skinny_metadata)
7847 extent_op->update_key = 0;
7848 else
7849 extent_op->update_key = 1;
f0486c68
YZ
7850 extent_op->update_flags = 1;
7851 extent_op->is_data = 0;
b1c79e09 7852 extent_op->level = level;
f0486c68 7853
66d7e7f0 7854 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7855 ins.objectid, ins.offset,
7856 parent, root_objectid, level,
7857 BTRFS_ADD_DELAYED_EXTENT,
7858 extent_op, 0);
7859 if (ret)
7860 goto out_free_delayed;
f0486c68 7861 }
fec577fb 7862 return buf;
67b7859e
OS
7863
7864out_free_delayed:
7865 btrfs_free_delayed_extent_op(extent_op);
7866out_free_buf:
7867 free_extent_buffer(buf);
7868out_free_reserved:
7869 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7870out_unuse:
7871 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7872 return ERR_PTR(ret);
fec577fb 7873}
a28ec197 7874
2c47e605
YZ
7875struct walk_control {
7876 u64 refs[BTRFS_MAX_LEVEL];
7877 u64 flags[BTRFS_MAX_LEVEL];
7878 struct btrfs_key update_progress;
7879 int stage;
7880 int level;
7881 int shared_level;
7882 int update_ref;
7883 int keep_locks;
1c4850e2
YZ
7884 int reada_slot;
7885 int reada_count;
66d7e7f0 7886 int for_reloc;
2c47e605
YZ
7887};
7888
7889#define DROP_REFERENCE 1
7890#define UPDATE_BACKREF 2
7891
1c4850e2
YZ
7892static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7893 struct btrfs_root *root,
7894 struct walk_control *wc,
7895 struct btrfs_path *path)
6407bf6d 7896{
1c4850e2
YZ
7897 u64 bytenr;
7898 u64 generation;
7899 u64 refs;
94fcca9f 7900 u64 flags;
5d4f98a2 7901 u32 nritems;
1c4850e2
YZ
7902 u32 blocksize;
7903 struct btrfs_key key;
7904 struct extent_buffer *eb;
6407bf6d 7905 int ret;
1c4850e2
YZ
7906 int slot;
7907 int nread = 0;
6407bf6d 7908
1c4850e2
YZ
7909 if (path->slots[wc->level] < wc->reada_slot) {
7910 wc->reada_count = wc->reada_count * 2 / 3;
7911 wc->reada_count = max(wc->reada_count, 2);
7912 } else {
7913 wc->reada_count = wc->reada_count * 3 / 2;
7914 wc->reada_count = min_t(int, wc->reada_count,
7915 BTRFS_NODEPTRS_PER_BLOCK(root));
7916 }
7bb86316 7917
1c4850e2
YZ
7918 eb = path->nodes[wc->level];
7919 nritems = btrfs_header_nritems(eb);
707e8a07 7920 blocksize = root->nodesize;
bd56b302 7921
1c4850e2
YZ
7922 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7923 if (nread >= wc->reada_count)
7924 break;
bd56b302 7925
2dd3e67b 7926 cond_resched();
1c4850e2
YZ
7927 bytenr = btrfs_node_blockptr(eb, slot);
7928 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7929
1c4850e2
YZ
7930 if (slot == path->slots[wc->level])
7931 goto reada;
5d4f98a2 7932
1c4850e2
YZ
7933 if (wc->stage == UPDATE_BACKREF &&
7934 generation <= root->root_key.offset)
bd56b302
CM
7935 continue;
7936
94fcca9f 7937 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7938 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7939 wc->level - 1, 1, &refs,
7940 &flags);
79787eaa
JM
7941 /* We don't care about errors in readahead. */
7942 if (ret < 0)
7943 continue;
94fcca9f
YZ
7944 BUG_ON(refs == 0);
7945
1c4850e2 7946 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7947 if (refs == 1)
7948 goto reada;
bd56b302 7949
94fcca9f
YZ
7950 if (wc->level == 1 &&
7951 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7952 continue;
1c4850e2
YZ
7953 if (!wc->update_ref ||
7954 generation <= root->root_key.offset)
7955 continue;
7956 btrfs_node_key_to_cpu(eb, &key, slot);
7957 ret = btrfs_comp_cpu_keys(&key,
7958 &wc->update_progress);
7959 if (ret < 0)
7960 continue;
94fcca9f
YZ
7961 } else {
7962 if (wc->level == 1 &&
7963 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7964 continue;
6407bf6d 7965 }
1c4850e2 7966reada:
d3e46fea 7967 readahead_tree_block(root, bytenr);
1c4850e2 7968 nread++;
20524f02 7969 }
1c4850e2 7970 wc->reada_slot = slot;
20524f02 7971}
2c47e605 7972
0ed4792a
QW
7973/*
7974 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7975 * for later qgroup accounting.
7976 *
7977 * Current, this function does nothing.
7978 */
1152651a
MF
7979static int account_leaf_items(struct btrfs_trans_handle *trans,
7980 struct btrfs_root *root,
7981 struct extent_buffer *eb)
7982{
7983 int nr = btrfs_header_nritems(eb);
0ed4792a 7984 int i, extent_type;
1152651a
MF
7985 struct btrfs_key key;
7986 struct btrfs_file_extent_item *fi;
7987 u64 bytenr, num_bytes;
7988
7989 for (i = 0; i < nr; i++) {
7990 btrfs_item_key_to_cpu(eb, &key, i);
7991
7992 if (key.type != BTRFS_EXTENT_DATA_KEY)
7993 continue;
7994
7995 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7996 /* filter out non qgroup-accountable extents */
7997 extent_type = btrfs_file_extent_type(eb, fi);
7998
7999 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8000 continue;
8001
8002 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8003 if (!bytenr)
8004 continue;
8005
8006 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
8007 }
8008 return 0;
8009}
8010
8011/*
8012 * Walk up the tree from the bottom, freeing leaves and any interior
8013 * nodes which have had all slots visited. If a node (leaf or
8014 * interior) is freed, the node above it will have it's slot
8015 * incremented. The root node will never be freed.
8016 *
8017 * At the end of this function, we should have a path which has all
8018 * slots incremented to the next position for a search. If we need to
8019 * read a new node it will be NULL and the node above it will have the
8020 * correct slot selected for a later read.
8021 *
8022 * If we increment the root nodes slot counter past the number of
8023 * elements, 1 is returned to signal completion of the search.
8024 */
8025static int adjust_slots_upwards(struct btrfs_root *root,
8026 struct btrfs_path *path, int root_level)
8027{
8028 int level = 0;
8029 int nr, slot;
8030 struct extent_buffer *eb;
8031
8032 if (root_level == 0)
8033 return 1;
8034
8035 while (level <= root_level) {
8036 eb = path->nodes[level];
8037 nr = btrfs_header_nritems(eb);
8038 path->slots[level]++;
8039 slot = path->slots[level];
8040 if (slot >= nr || level == 0) {
8041 /*
8042 * Don't free the root - we will detect this
8043 * condition after our loop and return a
8044 * positive value for caller to stop walking the tree.
8045 */
8046 if (level != root_level) {
8047 btrfs_tree_unlock_rw(eb, path->locks[level]);
8048 path->locks[level] = 0;
8049
8050 free_extent_buffer(eb);
8051 path->nodes[level] = NULL;
8052 path->slots[level] = 0;
8053 }
8054 } else {
8055 /*
8056 * We have a valid slot to walk back down
8057 * from. Stop here so caller can process these
8058 * new nodes.
8059 */
8060 break;
8061 }
8062
8063 level++;
8064 }
8065
8066 eb = path->nodes[root_level];
8067 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8068 return 1;
8069
8070 return 0;
8071}
8072
8073/*
8074 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
8075 * TODO: Modify this function to mark all (including complete shared node)
8076 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
8077 */
8078static int account_shared_subtree(struct btrfs_trans_handle *trans,
8079 struct btrfs_root *root,
8080 struct extent_buffer *root_eb,
8081 u64 root_gen,
8082 int root_level)
8083{
8084 int ret = 0;
8085 int level;
8086 struct extent_buffer *eb = root_eb;
8087 struct btrfs_path *path = NULL;
8088
8089 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8090 BUG_ON(root_eb == NULL);
8091
8092 if (!root->fs_info->quota_enabled)
8093 return 0;
8094
8095 if (!extent_buffer_uptodate(root_eb)) {
8096 ret = btrfs_read_buffer(root_eb, root_gen);
8097 if (ret)
8098 goto out;
8099 }
8100
8101 if (root_level == 0) {
8102 ret = account_leaf_items(trans, root, root_eb);
8103 goto out;
8104 }
8105
8106 path = btrfs_alloc_path();
8107 if (!path)
8108 return -ENOMEM;
8109
8110 /*
8111 * Walk down the tree. Missing extent blocks are filled in as
8112 * we go. Metadata is accounted every time we read a new
8113 * extent block.
8114 *
8115 * When we reach a leaf, we account for file extent items in it,
8116 * walk back up the tree (adjusting slot pointers as we go)
8117 * and restart the search process.
8118 */
8119 extent_buffer_get(root_eb); /* For path */
8120 path->nodes[root_level] = root_eb;
8121 path->slots[root_level] = 0;
8122 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8123walk_down:
8124 level = root_level;
8125 while (level >= 0) {
8126 if (path->nodes[level] == NULL) {
1152651a
MF
8127 int parent_slot;
8128 u64 child_gen;
8129 u64 child_bytenr;
8130
8131 /* We need to get child blockptr/gen from
8132 * parent before we can read it. */
8133 eb = path->nodes[level + 1];
8134 parent_slot = path->slots[level + 1];
8135 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8136 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8137
ce86cd59 8138 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8139 if (IS_ERR(eb)) {
8140 ret = PTR_ERR(eb);
8141 goto out;
8142 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8143 free_extent_buffer(eb);
64c043de 8144 ret = -EIO;
1152651a
MF
8145 goto out;
8146 }
8147
8148 path->nodes[level] = eb;
8149 path->slots[level] = 0;
8150
8151 btrfs_tree_read_lock(eb);
8152 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8153 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8154 }
8155
8156 if (level == 0) {
8157 ret = account_leaf_items(trans, root, path->nodes[level]);
8158 if (ret)
8159 goto out;
8160
8161 /* Nonzero return here means we completed our search */
8162 ret = adjust_slots_upwards(root, path, root_level);
8163 if (ret)
8164 break;
8165
8166 /* Restart search with new slots */
8167 goto walk_down;
8168 }
8169
8170 level--;
8171 }
8172
8173 ret = 0;
8174out:
8175 btrfs_free_path(path);
8176
8177 return ret;
8178}
8179
f82d02d9 8180/*
2c016dc2 8181 * helper to process tree block while walking down the tree.
2c47e605 8182 *
2c47e605
YZ
8183 * when wc->stage == UPDATE_BACKREF, this function updates
8184 * back refs for pointers in the block.
8185 *
8186 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8187 */
2c47e605 8188static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8189 struct btrfs_root *root,
2c47e605 8190 struct btrfs_path *path,
94fcca9f 8191 struct walk_control *wc, int lookup_info)
f82d02d9 8192{
2c47e605
YZ
8193 int level = wc->level;
8194 struct extent_buffer *eb = path->nodes[level];
2c47e605 8195 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8196 int ret;
8197
2c47e605
YZ
8198 if (wc->stage == UPDATE_BACKREF &&
8199 btrfs_header_owner(eb) != root->root_key.objectid)
8200 return 1;
f82d02d9 8201
2c47e605
YZ
8202 /*
8203 * when reference count of tree block is 1, it won't increase
8204 * again. once full backref flag is set, we never clear it.
8205 */
94fcca9f
YZ
8206 if (lookup_info &&
8207 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8208 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8209 BUG_ON(!path->locks[level]);
8210 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8211 eb->start, level, 1,
2c47e605
YZ
8212 &wc->refs[level],
8213 &wc->flags[level]);
79787eaa
JM
8214 BUG_ON(ret == -ENOMEM);
8215 if (ret)
8216 return ret;
2c47e605
YZ
8217 BUG_ON(wc->refs[level] == 0);
8218 }
5d4f98a2 8219
2c47e605
YZ
8220 if (wc->stage == DROP_REFERENCE) {
8221 if (wc->refs[level] > 1)
8222 return 1;
f82d02d9 8223
2c47e605 8224 if (path->locks[level] && !wc->keep_locks) {
bd681513 8225 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8226 path->locks[level] = 0;
8227 }
8228 return 0;
8229 }
f82d02d9 8230
2c47e605
YZ
8231 /* wc->stage == UPDATE_BACKREF */
8232 if (!(wc->flags[level] & flag)) {
8233 BUG_ON(!path->locks[level]);
e339a6b0 8234 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8235 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8236 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8237 BUG_ON(ret); /* -ENOMEM */
2c47e605 8238 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8239 eb->len, flag,
8240 btrfs_header_level(eb), 0);
79787eaa 8241 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8242 wc->flags[level] |= flag;
8243 }
8244
8245 /*
8246 * the block is shared by multiple trees, so it's not good to
8247 * keep the tree lock
8248 */
8249 if (path->locks[level] && level > 0) {
bd681513 8250 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8251 path->locks[level] = 0;
8252 }
8253 return 0;
8254}
8255
1c4850e2 8256/*
2c016dc2 8257 * helper to process tree block pointer.
1c4850e2
YZ
8258 *
8259 * when wc->stage == DROP_REFERENCE, this function checks
8260 * reference count of the block pointed to. if the block
8261 * is shared and we need update back refs for the subtree
8262 * rooted at the block, this function changes wc->stage to
8263 * UPDATE_BACKREF. if the block is shared and there is no
8264 * need to update back, this function drops the reference
8265 * to the block.
8266 *
8267 * NOTE: return value 1 means we should stop walking down.
8268 */
8269static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8270 struct btrfs_root *root,
8271 struct btrfs_path *path,
94fcca9f 8272 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8273{
8274 u64 bytenr;
8275 u64 generation;
8276 u64 parent;
8277 u32 blocksize;
8278 struct btrfs_key key;
8279 struct extent_buffer *next;
8280 int level = wc->level;
8281 int reada = 0;
8282 int ret = 0;
1152651a 8283 bool need_account = false;
1c4850e2
YZ
8284
8285 generation = btrfs_node_ptr_generation(path->nodes[level],
8286 path->slots[level]);
8287 /*
8288 * if the lower level block was created before the snapshot
8289 * was created, we know there is no need to update back refs
8290 * for the subtree
8291 */
8292 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8293 generation <= root->root_key.offset) {
8294 *lookup_info = 1;
1c4850e2 8295 return 1;
94fcca9f 8296 }
1c4850e2
YZ
8297
8298 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8299 blocksize = root->nodesize;
1c4850e2 8300
01d58472 8301 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8302 if (!next) {
a83fffb7 8303 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8304 if (!next)
8305 return -ENOMEM;
b2aaaa3b
JB
8306 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8307 level - 1);
1c4850e2
YZ
8308 reada = 1;
8309 }
8310 btrfs_tree_lock(next);
8311 btrfs_set_lock_blocking(next);
8312
3173a18f 8313 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8314 &wc->refs[level - 1],
8315 &wc->flags[level - 1]);
79787eaa
JM
8316 if (ret < 0) {
8317 btrfs_tree_unlock(next);
8318 return ret;
8319 }
8320
c2cf52eb
SK
8321 if (unlikely(wc->refs[level - 1] == 0)) {
8322 btrfs_err(root->fs_info, "Missing references.");
8323 BUG();
8324 }
94fcca9f 8325 *lookup_info = 0;
1c4850e2 8326
94fcca9f 8327 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8328 if (wc->refs[level - 1] > 1) {
1152651a 8329 need_account = true;
94fcca9f
YZ
8330 if (level == 1 &&
8331 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8332 goto skip;
8333
1c4850e2
YZ
8334 if (!wc->update_ref ||
8335 generation <= root->root_key.offset)
8336 goto skip;
8337
8338 btrfs_node_key_to_cpu(path->nodes[level], &key,
8339 path->slots[level]);
8340 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8341 if (ret < 0)
8342 goto skip;
8343
8344 wc->stage = UPDATE_BACKREF;
8345 wc->shared_level = level - 1;
8346 }
94fcca9f
YZ
8347 } else {
8348 if (level == 1 &&
8349 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8350 goto skip;
1c4850e2
YZ
8351 }
8352
b9fab919 8353 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8354 btrfs_tree_unlock(next);
8355 free_extent_buffer(next);
8356 next = NULL;
94fcca9f 8357 *lookup_info = 1;
1c4850e2
YZ
8358 }
8359
8360 if (!next) {
8361 if (reada && level == 1)
8362 reada_walk_down(trans, root, wc, path);
ce86cd59 8363 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8364 if (IS_ERR(next)) {
8365 return PTR_ERR(next);
8366 } else if (!extent_buffer_uptodate(next)) {
416bc658 8367 free_extent_buffer(next);
97d9a8a4 8368 return -EIO;
416bc658 8369 }
1c4850e2
YZ
8370 btrfs_tree_lock(next);
8371 btrfs_set_lock_blocking(next);
8372 }
8373
8374 level--;
8375 BUG_ON(level != btrfs_header_level(next));
8376 path->nodes[level] = next;
8377 path->slots[level] = 0;
bd681513 8378 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8379 wc->level = level;
8380 if (wc->level == 1)
8381 wc->reada_slot = 0;
8382 return 0;
8383skip:
8384 wc->refs[level - 1] = 0;
8385 wc->flags[level - 1] = 0;
94fcca9f
YZ
8386 if (wc->stage == DROP_REFERENCE) {
8387 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8388 parent = path->nodes[level]->start;
8389 } else {
8390 BUG_ON(root->root_key.objectid !=
8391 btrfs_header_owner(path->nodes[level]));
8392 parent = 0;
8393 }
1c4850e2 8394
1152651a
MF
8395 if (need_account) {
8396 ret = account_shared_subtree(trans, root, next,
8397 generation, level - 1);
8398 if (ret) {
94647322
DS
8399 btrfs_err_rl(root->fs_info,
8400 "Error "
1152651a 8401 "%d accounting shared subtree. Quota "
94647322
DS
8402 "is out of sync, rescan required.",
8403 ret);
1152651a
MF
8404 }
8405 }
94fcca9f 8406 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8407 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8408 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8409 }
1c4850e2
YZ
8410 btrfs_tree_unlock(next);
8411 free_extent_buffer(next);
94fcca9f 8412 *lookup_info = 1;
1c4850e2
YZ
8413 return 1;
8414}
8415
2c47e605 8416/*
2c016dc2 8417 * helper to process tree block while walking up the tree.
2c47e605
YZ
8418 *
8419 * when wc->stage == DROP_REFERENCE, this function drops
8420 * reference count on the block.
8421 *
8422 * when wc->stage == UPDATE_BACKREF, this function changes
8423 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8424 * to UPDATE_BACKREF previously while processing the block.
8425 *
8426 * NOTE: return value 1 means we should stop walking up.
8427 */
8428static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8429 struct btrfs_root *root,
8430 struct btrfs_path *path,
8431 struct walk_control *wc)
8432{
f0486c68 8433 int ret;
2c47e605
YZ
8434 int level = wc->level;
8435 struct extent_buffer *eb = path->nodes[level];
8436 u64 parent = 0;
8437
8438 if (wc->stage == UPDATE_BACKREF) {
8439 BUG_ON(wc->shared_level < level);
8440 if (level < wc->shared_level)
8441 goto out;
8442
2c47e605
YZ
8443 ret = find_next_key(path, level + 1, &wc->update_progress);
8444 if (ret > 0)
8445 wc->update_ref = 0;
8446
8447 wc->stage = DROP_REFERENCE;
8448 wc->shared_level = -1;
8449 path->slots[level] = 0;
8450
8451 /*
8452 * check reference count again if the block isn't locked.
8453 * we should start walking down the tree again if reference
8454 * count is one.
8455 */
8456 if (!path->locks[level]) {
8457 BUG_ON(level == 0);
8458 btrfs_tree_lock(eb);
8459 btrfs_set_lock_blocking(eb);
bd681513 8460 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8461
8462 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8463 eb->start, level, 1,
2c47e605
YZ
8464 &wc->refs[level],
8465 &wc->flags[level]);
79787eaa
JM
8466 if (ret < 0) {
8467 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8468 path->locks[level] = 0;
79787eaa
JM
8469 return ret;
8470 }
2c47e605
YZ
8471 BUG_ON(wc->refs[level] == 0);
8472 if (wc->refs[level] == 1) {
bd681513 8473 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8474 path->locks[level] = 0;
2c47e605
YZ
8475 return 1;
8476 }
f82d02d9 8477 }
2c47e605 8478 }
f82d02d9 8479
2c47e605
YZ
8480 /* wc->stage == DROP_REFERENCE */
8481 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8482
2c47e605
YZ
8483 if (wc->refs[level] == 1) {
8484 if (level == 0) {
8485 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8486 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8487 else
e339a6b0 8488 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8489 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8490 ret = account_leaf_items(trans, root, eb);
8491 if (ret) {
94647322
DS
8492 btrfs_err_rl(root->fs_info,
8493 "error "
1152651a 8494 "%d accounting leaf items. Quota "
94647322
DS
8495 "is out of sync, rescan required.",
8496 ret);
1152651a 8497 }
2c47e605
YZ
8498 }
8499 /* make block locked assertion in clean_tree_block happy */
8500 if (!path->locks[level] &&
8501 btrfs_header_generation(eb) == trans->transid) {
8502 btrfs_tree_lock(eb);
8503 btrfs_set_lock_blocking(eb);
bd681513 8504 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8505 }
01d58472 8506 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8507 }
8508
8509 if (eb == root->node) {
8510 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8511 parent = eb->start;
8512 else
8513 BUG_ON(root->root_key.objectid !=
8514 btrfs_header_owner(eb));
8515 } else {
8516 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8517 parent = path->nodes[level + 1]->start;
8518 else
8519 BUG_ON(root->root_key.objectid !=
8520 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8521 }
f82d02d9 8522
5581a51a 8523 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8524out:
8525 wc->refs[level] = 0;
8526 wc->flags[level] = 0;
f0486c68 8527 return 0;
2c47e605
YZ
8528}
8529
8530static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8531 struct btrfs_root *root,
8532 struct btrfs_path *path,
8533 struct walk_control *wc)
8534{
2c47e605 8535 int level = wc->level;
94fcca9f 8536 int lookup_info = 1;
2c47e605
YZ
8537 int ret;
8538
8539 while (level >= 0) {
94fcca9f 8540 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8541 if (ret > 0)
8542 break;
8543
8544 if (level == 0)
8545 break;
8546
7a7965f8
YZ
8547 if (path->slots[level] >=
8548 btrfs_header_nritems(path->nodes[level]))
8549 break;
8550
94fcca9f 8551 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8552 if (ret > 0) {
8553 path->slots[level]++;
8554 continue;
90d2c51d
MX
8555 } else if (ret < 0)
8556 return ret;
1c4850e2 8557 level = wc->level;
f82d02d9 8558 }
f82d02d9
YZ
8559 return 0;
8560}
8561
d397712b 8562static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8563 struct btrfs_root *root,
f82d02d9 8564 struct btrfs_path *path,
2c47e605 8565 struct walk_control *wc, int max_level)
20524f02 8566{
2c47e605 8567 int level = wc->level;
20524f02 8568 int ret;
9f3a7427 8569
2c47e605
YZ
8570 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8571 while (level < max_level && path->nodes[level]) {
8572 wc->level = level;
8573 if (path->slots[level] + 1 <
8574 btrfs_header_nritems(path->nodes[level])) {
8575 path->slots[level]++;
20524f02
CM
8576 return 0;
8577 } else {
2c47e605
YZ
8578 ret = walk_up_proc(trans, root, path, wc);
8579 if (ret > 0)
8580 return 0;
bd56b302 8581
2c47e605 8582 if (path->locks[level]) {
bd681513
CM
8583 btrfs_tree_unlock_rw(path->nodes[level],
8584 path->locks[level]);
2c47e605 8585 path->locks[level] = 0;
f82d02d9 8586 }
2c47e605
YZ
8587 free_extent_buffer(path->nodes[level]);
8588 path->nodes[level] = NULL;
8589 level++;
20524f02
CM
8590 }
8591 }
8592 return 1;
8593}
8594
9aca1d51 8595/*
2c47e605
YZ
8596 * drop a subvolume tree.
8597 *
8598 * this function traverses the tree freeing any blocks that only
8599 * referenced by the tree.
8600 *
8601 * when a shared tree block is found. this function decreases its
8602 * reference count by one. if update_ref is true, this function
8603 * also make sure backrefs for the shared block and all lower level
8604 * blocks are properly updated.
9d1a2a3a
DS
8605 *
8606 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8607 */
2c536799 8608int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8609 struct btrfs_block_rsv *block_rsv, int update_ref,
8610 int for_reloc)
20524f02 8611{
5caf2a00 8612 struct btrfs_path *path;
2c47e605
YZ
8613 struct btrfs_trans_handle *trans;
8614 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8615 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8616 struct walk_control *wc;
8617 struct btrfs_key key;
8618 int err = 0;
8619 int ret;
8620 int level;
d29a9f62 8621 bool root_dropped = false;
20524f02 8622
1152651a
MF
8623 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8624
5caf2a00 8625 path = btrfs_alloc_path();
cb1b69f4
TI
8626 if (!path) {
8627 err = -ENOMEM;
8628 goto out;
8629 }
20524f02 8630
2c47e605 8631 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8632 if (!wc) {
8633 btrfs_free_path(path);
cb1b69f4
TI
8634 err = -ENOMEM;
8635 goto out;
38a1a919 8636 }
2c47e605 8637
a22285a6 8638 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8639 if (IS_ERR(trans)) {
8640 err = PTR_ERR(trans);
8641 goto out_free;
8642 }
98d5dc13 8643
3fd0a558
YZ
8644 if (block_rsv)
8645 trans->block_rsv = block_rsv;
2c47e605 8646
9f3a7427 8647 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8648 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8649 path->nodes[level] = btrfs_lock_root_node(root);
8650 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8651 path->slots[level] = 0;
bd681513 8652 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8653 memset(&wc->update_progress, 0,
8654 sizeof(wc->update_progress));
9f3a7427 8655 } else {
9f3a7427 8656 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8657 memcpy(&wc->update_progress, &key,
8658 sizeof(wc->update_progress));
8659
6702ed49 8660 level = root_item->drop_level;
2c47e605 8661 BUG_ON(level == 0);
6702ed49 8662 path->lowest_level = level;
2c47e605
YZ
8663 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8664 path->lowest_level = 0;
8665 if (ret < 0) {
8666 err = ret;
79787eaa 8667 goto out_end_trans;
9f3a7427 8668 }
1c4850e2 8669 WARN_ON(ret > 0);
2c47e605 8670
7d9eb12c
CM
8671 /*
8672 * unlock our path, this is safe because only this
8673 * function is allowed to delete this snapshot
8674 */
5d4f98a2 8675 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8676
8677 level = btrfs_header_level(root->node);
8678 while (1) {
8679 btrfs_tree_lock(path->nodes[level]);
8680 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8681 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8682
8683 ret = btrfs_lookup_extent_info(trans, root,
8684 path->nodes[level]->start,
3173a18f 8685 level, 1, &wc->refs[level],
2c47e605 8686 &wc->flags[level]);
79787eaa
JM
8687 if (ret < 0) {
8688 err = ret;
8689 goto out_end_trans;
8690 }
2c47e605
YZ
8691 BUG_ON(wc->refs[level] == 0);
8692
8693 if (level == root_item->drop_level)
8694 break;
8695
8696 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8697 path->locks[level] = 0;
2c47e605
YZ
8698 WARN_ON(wc->refs[level] != 1);
8699 level--;
8700 }
9f3a7427 8701 }
2c47e605
YZ
8702
8703 wc->level = level;
8704 wc->shared_level = -1;
8705 wc->stage = DROP_REFERENCE;
8706 wc->update_ref = update_ref;
8707 wc->keep_locks = 0;
66d7e7f0 8708 wc->for_reloc = for_reloc;
1c4850e2 8709 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8710
d397712b 8711 while (1) {
9d1a2a3a 8712
2c47e605
YZ
8713 ret = walk_down_tree(trans, root, path, wc);
8714 if (ret < 0) {
8715 err = ret;
20524f02 8716 break;
2c47e605 8717 }
9aca1d51 8718
2c47e605
YZ
8719 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8720 if (ret < 0) {
8721 err = ret;
20524f02 8722 break;
2c47e605
YZ
8723 }
8724
8725 if (ret > 0) {
8726 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8727 break;
8728 }
2c47e605
YZ
8729
8730 if (wc->stage == DROP_REFERENCE) {
8731 level = wc->level;
8732 btrfs_node_key(path->nodes[level],
8733 &root_item->drop_progress,
8734 path->slots[level]);
8735 root_item->drop_level = level;
8736 }
8737
8738 BUG_ON(wc->level == 0);
3c8f2422
JB
8739 if (btrfs_should_end_transaction(trans, tree_root) ||
8740 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8741 ret = btrfs_update_root(trans, tree_root,
8742 &root->root_key,
8743 root_item);
79787eaa
JM
8744 if (ret) {
8745 btrfs_abort_transaction(trans, tree_root, ret);
8746 err = ret;
8747 goto out_end_trans;
8748 }
2c47e605 8749
3fd0a558 8750 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8751 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8752 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8753 err = -EAGAIN;
8754 goto out_free;
8755 }
8756
a22285a6 8757 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8758 if (IS_ERR(trans)) {
8759 err = PTR_ERR(trans);
8760 goto out_free;
8761 }
3fd0a558
YZ
8762 if (block_rsv)
8763 trans->block_rsv = block_rsv;
c3e69d58 8764 }
20524f02 8765 }
b3b4aa74 8766 btrfs_release_path(path);
79787eaa
JM
8767 if (err)
8768 goto out_end_trans;
2c47e605
YZ
8769
8770 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8771 if (ret) {
8772 btrfs_abort_transaction(trans, tree_root, ret);
8773 goto out_end_trans;
8774 }
2c47e605 8775
76dda93c 8776 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8777 ret = btrfs_find_root(tree_root, &root->root_key, path,
8778 NULL, NULL);
79787eaa
JM
8779 if (ret < 0) {
8780 btrfs_abort_transaction(trans, tree_root, ret);
8781 err = ret;
8782 goto out_end_trans;
8783 } else if (ret > 0) {
84cd948c
JB
8784 /* if we fail to delete the orphan item this time
8785 * around, it'll get picked up the next time.
8786 *
8787 * The most common failure here is just -ENOENT.
8788 */
8789 btrfs_del_orphan_item(trans, tree_root,
8790 root->root_key.objectid);
76dda93c
YZ
8791 }
8792 }
8793
27cdeb70 8794 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 8795 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
8796 } else {
8797 free_extent_buffer(root->node);
8798 free_extent_buffer(root->commit_root);
b0feb9d9 8799 btrfs_put_fs_root(root);
76dda93c 8800 }
d29a9f62 8801 root_dropped = true;
79787eaa 8802out_end_trans:
3fd0a558 8803 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8804out_free:
2c47e605 8805 kfree(wc);
5caf2a00 8806 btrfs_free_path(path);
cb1b69f4 8807out:
d29a9f62
JB
8808 /*
8809 * So if we need to stop dropping the snapshot for whatever reason we
8810 * need to make sure to add it back to the dead root list so that we
8811 * keep trying to do the work later. This also cleans up roots if we
8812 * don't have it in the radix (like when we recover after a power fail
8813 * or unmount) so we don't leak memory.
8814 */
b37b39cd 8815 if (!for_reloc && root_dropped == false)
d29a9f62 8816 btrfs_add_dead_root(root);
90515e7f 8817 if (err && err != -EAGAIN)
a4553fef 8818 btrfs_std_error(root->fs_info, err, NULL);
2c536799 8819 return err;
20524f02 8820}
9078a3e1 8821
2c47e605
YZ
8822/*
8823 * drop subtree rooted at tree block 'node'.
8824 *
8825 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8826 * only used by relocation code
2c47e605 8827 */
f82d02d9
YZ
8828int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8829 struct btrfs_root *root,
8830 struct extent_buffer *node,
8831 struct extent_buffer *parent)
8832{
8833 struct btrfs_path *path;
2c47e605 8834 struct walk_control *wc;
f82d02d9
YZ
8835 int level;
8836 int parent_level;
8837 int ret = 0;
8838 int wret;
8839
2c47e605
YZ
8840 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8841
f82d02d9 8842 path = btrfs_alloc_path();
db5b493a
TI
8843 if (!path)
8844 return -ENOMEM;
f82d02d9 8845
2c47e605 8846 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8847 if (!wc) {
8848 btrfs_free_path(path);
8849 return -ENOMEM;
8850 }
2c47e605 8851
b9447ef8 8852 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8853 parent_level = btrfs_header_level(parent);
8854 extent_buffer_get(parent);
8855 path->nodes[parent_level] = parent;
8856 path->slots[parent_level] = btrfs_header_nritems(parent);
8857
b9447ef8 8858 btrfs_assert_tree_locked(node);
f82d02d9 8859 level = btrfs_header_level(node);
f82d02d9
YZ
8860 path->nodes[level] = node;
8861 path->slots[level] = 0;
bd681513 8862 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8863
8864 wc->refs[parent_level] = 1;
8865 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8866 wc->level = level;
8867 wc->shared_level = -1;
8868 wc->stage = DROP_REFERENCE;
8869 wc->update_ref = 0;
8870 wc->keep_locks = 1;
66d7e7f0 8871 wc->for_reloc = 1;
1c4850e2 8872 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8873
8874 while (1) {
2c47e605
YZ
8875 wret = walk_down_tree(trans, root, path, wc);
8876 if (wret < 0) {
f82d02d9 8877 ret = wret;
f82d02d9 8878 break;
2c47e605 8879 }
f82d02d9 8880
2c47e605 8881 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8882 if (wret < 0)
8883 ret = wret;
8884 if (wret != 0)
8885 break;
8886 }
8887
2c47e605 8888 kfree(wc);
f82d02d9
YZ
8889 btrfs_free_path(path);
8890 return ret;
8891}
8892
ec44a35c
CM
8893static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8894{
8895 u64 num_devices;
fc67c450 8896 u64 stripped;
e4d8ec0f 8897
fc67c450
ID
8898 /*
8899 * if restripe for this chunk_type is on pick target profile and
8900 * return, otherwise do the usual balance
8901 */
8902 stripped = get_restripe_target(root->fs_info, flags);
8903 if (stripped)
8904 return extended_to_chunk(stripped);
e4d8ec0f 8905
95669976 8906 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8907
fc67c450 8908 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8909 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8910 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8911
ec44a35c
CM
8912 if (num_devices == 1) {
8913 stripped |= BTRFS_BLOCK_GROUP_DUP;
8914 stripped = flags & ~stripped;
8915
8916 /* turn raid0 into single device chunks */
8917 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8918 return stripped;
8919
8920 /* turn mirroring into duplication */
8921 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8922 BTRFS_BLOCK_GROUP_RAID10))
8923 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8924 } else {
8925 /* they already had raid on here, just return */
ec44a35c
CM
8926 if (flags & stripped)
8927 return flags;
8928
8929 stripped |= BTRFS_BLOCK_GROUP_DUP;
8930 stripped = flags & ~stripped;
8931
8932 /* switch duplicated blocks with raid1 */
8933 if (flags & BTRFS_BLOCK_GROUP_DUP)
8934 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8935
e3176ca2 8936 /* this is drive concat, leave it alone */
ec44a35c 8937 }
e3176ca2 8938
ec44a35c
CM
8939 return flags;
8940}
8941
868f401a 8942static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8943{
f0486c68
YZ
8944 struct btrfs_space_info *sinfo = cache->space_info;
8945 u64 num_bytes;
199c36ea 8946 u64 min_allocable_bytes;
f0486c68 8947 int ret = -ENOSPC;
0ef3e66b 8948
199c36ea
MX
8949 /*
8950 * We need some metadata space and system metadata space for
8951 * allocating chunks in some corner cases until we force to set
8952 * it to be readonly.
8953 */
8954 if ((sinfo->flags &
8955 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8956 !force)
8957 min_allocable_bytes = 1 * 1024 * 1024;
8958 else
8959 min_allocable_bytes = 0;
8960
f0486c68
YZ
8961 spin_lock(&sinfo->lock);
8962 spin_lock(&cache->lock);
61cfea9b
W
8963
8964 if (cache->ro) {
868f401a 8965 cache->ro++;
61cfea9b
W
8966 ret = 0;
8967 goto out;
8968 }
8969
f0486c68
YZ
8970 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8971 cache->bytes_super - btrfs_block_group_used(&cache->item);
8972
8973 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8974 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8975 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8976 sinfo->bytes_readonly += num_bytes;
868f401a 8977 cache->ro++;
633c0aad 8978 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8979 ret = 0;
8980 }
61cfea9b 8981out:
f0486c68
YZ
8982 spin_unlock(&cache->lock);
8983 spin_unlock(&sinfo->lock);
8984 return ret;
8985}
7d9eb12c 8986
868f401a 8987int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 8988 struct btrfs_block_group_cache *cache)
c286ac48 8989
f0486c68
YZ
8990{
8991 struct btrfs_trans_handle *trans;
8992 u64 alloc_flags;
8993 int ret;
7d9eb12c 8994
1bbc621e 8995again:
ff5714cc 8996 trans = btrfs_join_transaction(root);
79787eaa
JM
8997 if (IS_ERR(trans))
8998 return PTR_ERR(trans);
5d4f98a2 8999
1bbc621e
CM
9000 /*
9001 * we're not allowed to set block groups readonly after the dirty
9002 * block groups cache has started writing. If it already started,
9003 * back off and let this transaction commit
9004 */
9005 mutex_lock(&root->fs_info->ro_block_group_mutex);
9006 if (trans->transaction->dirty_bg_run) {
9007 u64 transid = trans->transid;
9008
9009 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9010 btrfs_end_transaction(trans, root);
9011
9012 ret = btrfs_wait_for_commit(root, transid);
9013 if (ret)
9014 return ret;
9015 goto again;
9016 }
9017
153c35b6
CM
9018 /*
9019 * if we are changing raid levels, try to allocate a corresponding
9020 * block group with the new raid level.
9021 */
9022 alloc_flags = update_block_group_flags(root, cache->flags);
9023 if (alloc_flags != cache->flags) {
9024 ret = do_chunk_alloc(trans, root, alloc_flags,
9025 CHUNK_ALLOC_FORCE);
9026 /*
9027 * ENOSPC is allowed here, we may have enough space
9028 * already allocated at the new raid level to
9029 * carry on
9030 */
9031 if (ret == -ENOSPC)
9032 ret = 0;
9033 if (ret < 0)
9034 goto out;
9035 }
1bbc621e 9036
868f401a 9037 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9038 if (!ret)
9039 goto out;
9040 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9041 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9042 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9043 if (ret < 0)
9044 goto out;
868f401a 9045 ret = inc_block_group_ro(cache, 0);
f0486c68 9046out:
2f081088
SL
9047 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9048 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9049 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9050 check_system_chunk(trans, root, alloc_flags);
a9629596 9051 unlock_chunks(root->fs_info->chunk_root);
2f081088 9052 }
1bbc621e 9053 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9054
f0486c68
YZ
9055 btrfs_end_transaction(trans, root);
9056 return ret;
9057}
5d4f98a2 9058
c87f08ca
CM
9059int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9060 struct btrfs_root *root, u64 type)
9061{
9062 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9063 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9064 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9065}
9066
6d07bcec
MX
9067/*
9068 * helper to account the unused space of all the readonly block group in the
633c0aad 9069 * space_info. takes mirrors into account.
6d07bcec 9070 */
633c0aad 9071u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9072{
9073 struct btrfs_block_group_cache *block_group;
9074 u64 free_bytes = 0;
9075 int factor;
9076
633c0aad
JB
9077 /* It's df, we don't care if it's racey */
9078 if (list_empty(&sinfo->ro_bgs))
9079 return 0;
9080
9081 spin_lock(&sinfo->lock);
9082 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9083 spin_lock(&block_group->lock);
9084
9085 if (!block_group->ro) {
9086 spin_unlock(&block_group->lock);
9087 continue;
9088 }
9089
9090 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9091 BTRFS_BLOCK_GROUP_RAID10 |
9092 BTRFS_BLOCK_GROUP_DUP))
9093 factor = 2;
9094 else
9095 factor = 1;
9096
9097 free_bytes += (block_group->key.offset -
9098 btrfs_block_group_used(&block_group->item)) *
9099 factor;
9100
9101 spin_unlock(&block_group->lock);
9102 }
6d07bcec
MX
9103 spin_unlock(&sinfo->lock);
9104
9105 return free_bytes;
9106}
9107
868f401a 9108void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9109 struct btrfs_block_group_cache *cache)
5d4f98a2 9110{
f0486c68
YZ
9111 struct btrfs_space_info *sinfo = cache->space_info;
9112 u64 num_bytes;
9113
9114 BUG_ON(!cache->ro);
9115
9116 spin_lock(&sinfo->lock);
9117 spin_lock(&cache->lock);
868f401a
Z
9118 if (!--cache->ro) {
9119 num_bytes = cache->key.offset - cache->reserved -
9120 cache->pinned - cache->bytes_super -
9121 btrfs_block_group_used(&cache->item);
9122 sinfo->bytes_readonly -= num_bytes;
9123 list_del_init(&cache->ro_list);
9124 }
f0486c68
YZ
9125 spin_unlock(&cache->lock);
9126 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9127}
9128
ba1bf481
JB
9129/*
9130 * checks to see if its even possible to relocate this block group.
9131 *
9132 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9133 * ok to go ahead and try.
9134 */
9135int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9136{
ba1bf481
JB
9137 struct btrfs_block_group_cache *block_group;
9138 struct btrfs_space_info *space_info;
9139 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9140 struct btrfs_device *device;
6df9a95e 9141 struct btrfs_trans_handle *trans;
cdcb725c 9142 u64 min_free;
6719db6a
JB
9143 u64 dev_min = 1;
9144 u64 dev_nr = 0;
4a5e98f5 9145 u64 target;
cdcb725c 9146 int index;
ba1bf481
JB
9147 int full = 0;
9148 int ret = 0;
1a40e23b 9149
ba1bf481 9150 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9151
ba1bf481
JB
9152 /* odd, couldn't find the block group, leave it alone */
9153 if (!block_group)
9154 return -1;
1a40e23b 9155
cdcb725c 9156 min_free = btrfs_block_group_used(&block_group->item);
9157
ba1bf481 9158 /* no bytes used, we're good */
cdcb725c 9159 if (!min_free)
1a40e23b
ZY
9160 goto out;
9161
ba1bf481
JB
9162 space_info = block_group->space_info;
9163 spin_lock(&space_info->lock);
17d217fe 9164
ba1bf481 9165 full = space_info->full;
17d217fe 9166
ba1bf481
JB
9167 /*
9168 * if this is the last block group we have in this space, we can't
7ce618db
CM
9169 * relocate it unless we're able to allocate a new chunk below.
9170 *
9171 * Otherwise, we need to make sure we have room in the space to handle
9172 * all of the extents from this block group. If we can, we're good
ba1bf481 9173 */
7ce618db 9174 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9175 (space_info->bytes_used + space_info->bytes_reserved +
9176 space_info->bytes_pinned + space_info->bytes_readonly +
9177 min_free < space_info->total_bytes)) {
ba1bf481
JB
9178 spin_unlock(&space_info->lock);
9179 goto out;
17d217fe 9180 }
ba1bf481 9181 spin_unlock(&space_info->lock);
ea8c2819 9182
ba1bf481
JB
9183 /*
9184 * ok we don't have enough space, but maybe we have free space on our
9185 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9186 * alloc devices and guess if we have enough space. if this block
9187 * group is going to be restriped, run checks against the target
9188 * profile instead of the current one.
ba1bf481
JB
9189 */
9190 ret = -1;
ea8c2819 9191
cdcb725c 9192 /*
9193 * index:
9194 * 0: raid10
9195 * 1: raid1
9196 * 2: dup
9197 * 3: raid0
9198 * 4: single
9199 */
4a5e98f5
ID
9200 target = get_restripe_target(root->fs_info, block_group->flags);
9201 if (target) {
31e50229 9202 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9203 } else {
9204 /*
9205 * this is just a balance, so if we were marked as full
9206 * we know there is no space for a new chunk
9207 */
9208 if (full)
9209 goto out;
9210
9211 index = get_block_group_index(block_group);
9212 }
9213
e6ec716f 9214 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9215 dev_min = 4;
6719db6a
JB
9216 /* Divide by 2 */
9217 min_free >>= 1;
e6ec716f 9218 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9219 dev_min = 2;
e6ec716f 9220 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9221 /* Multiply by 2 */
9222 min_free <<= 1;
e6ec716f 9223 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9224 dev_min = fs_devices->rw_devices;
47c5713f 9225 min_free = div64_u64(min_free, dev_min);
cdcb725c 9226 }
9227
6df9a95e
JB
9228 /* We need to do this so that we can look at pending chunks */
9229 trans = btrfs_join_transaction(root);
9230 if (IS_ERR(trans)) {
9231 ret = PTR_ERR(trans);
9232 goto out;
9233 }
9234
ba1bf481
JB
9235 mutex_lock(&root->fs_info->chunk_mutex);
9236 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9237 u64 dev_offset;
56bec294 9238
ba1bf481
JB
9239 /*
9240 * check to make sure we can actually find a chunk with enough
9241 * space to fit our block group in.
9242 */
63a212ab
SB
9243 if (device->total_bytes > device->bytes_used + min_free &&
9244 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9245 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9246 &dev_offset, NULL);
ba1bf481 9247 if (!ret)
cdcb725c 9248 dev_nr++;
9249
9250 if (dev_nr >= dev_min)
73e48b27 9251 break;
cdcb725c 9252
ba1bf481 9253 ret = -1;
725c8463 9254 }
edbd8d4e 9255 }
ba1bf481 9256 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9257 btrfs_end_transaction(trans, root);
edbd8d4e 9258out:
ba1bf481 9259 btrfs_put_block_group(block_group);
edbd8d4e
CM
9260 return ret;
9261}
9262
b2950863
CH
9263static int find_first_block_group(struct btrfs_root *root,
9264 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9265{
925baedd 9266 int ret = 0;
0b86a832
CM
9267 struct btrfs_key found_key;
9268 struct extent_buffer *leaf;
9269 int slot;
edbd8d4e 9270
0b86a832
CM
9271 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9272 if (ret < 0)
925baedd
CM
9273 goto out;
9274
d397712b 9275 while (1) {
0b86a832 9276 slot = path->slots[0];
edbd8d4e 9277 leaf = path->nodes[0];
0b86a832
CM
9278 if (slot >= btrfs_header_nritems(leaf)) {
9279 ret = btrfs_next_leaf(root, path);
9280 if (ret == 0)
9281 continue;
9282 if (ret < 0)
925baedd 9283 goto out;
0b86a832 9284 break;
edbd8d4e 9285 }
0b86a832 9286 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9287
0b86a832 9288 if (found_key.objectid >= key->objectid &&
925baedd
CM
9289 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9290 ret = 0;
9291 goto out;
9292 }
0b86a832 9293 path->slots[0]++;
edbd8d4e 9294 }
925baedd 9295out:
0b86a832 9296 return ret;
edbd8d4e
CM
9297}
9298
0af3d00b
JB
9299void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9300{
9301 struct btrfs_block_group_cache *block_group;
9302 u64 last = 0;
9303
9304 while (1) {
9305 struct inode *inode;
9306
9307 block_group = btrfs_lookup_first_block_group(info, last);
9308 while (block_group) {
9309 spin_lock(&block_group->lock);
9310 if (block_group->iref)
9311 break;
9312 spin_unlock(&block_group->lock);
9313 block_group = next_block_group(info->tree_root,
9314 block_group);
9315 }
9316 if (!block_group) {
9317 if (last == 0)
9318 break;
9319 last = 0;
9320 continue;
9321 }
9322
9323 inode = block_group->inode;
9324 block_group->iref = 0;
9325 block_group->inode = NULL;
9326 spin_unlock(&block_group->lock);
9327 iput(inode);
9328 last = block_group->key.objectid + block_group->key.offset;
9329 btrfs_put_block_group(block_group);
9330 }
9331}
9332
1a40e23b
ZY
9333int btrfs_free_block_groups(struct btrfs_fs_info *info)
9334{
9335 struct btrfs_block_group_cache *block_group;
4184ea7f 9336 struct btrfs_space_info *space_info;
11833d66 9337 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9338 struct rb_node *n;
9339
9e351cc8 9340 down_write(&info->commit_root_sem);
11833d66
YZ
9341 while (!list_empty(&info->caching_block_groups)) {
9342 caching_ctl = list_entry(info->caching_block_groups.next,
9343 struct btrfs_caching_control, list);
9344 list_del(&caching_ctl->list);
9345 put_caching_control(caching_ctl);
9346 }
9e351cc8 9347 up_write(&info->commit_root_sem);
11833d66 9348
47ab2a6c
JB
9349 spin_lock(&info->unused_bgs_lock);
9350 while (!list_empty(&info->unused_bgs)) {
9351 block_group = list_first_entry(&info->unused_bgs,
9352 struct btrfs_block_group_cache,
9353 bg_list);
9354 list_del_init(&block_group->bg_list);
9355 btrfs_put_block_group(block_group);
9356 }
9357 spin_unlock(&info->unused_bgs_lock);
9358
1a40e23b
ZY
9359 spin_lock(&info->block_group_cache_lock);
9360 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9361 block_group = rb_entry(n, struct btrfs_block_group_cache,
9362 cache_node);
1a40e23b
ZY
9363 rb_erase(&block_group->cache_node,
9364 &info->block_group_cache_tree);
01eacb27 9365 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9366 spin_unlock(&info->block_group_cache_lock);
9367
80eb234a 9368 down_write(&block_group->space_info->groups_sem);
1a40e23b 9369 list_del(&block_group->list);
80eb234a 9370 up_write(&block_group->space_info->groups_sem);
d2fb3437 9371
817d52f8 9372 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9373 wait_block_group_cache_done(block_group);
817d52f8 9374
3c14874a
JB
9375 /*
9376 * We haven't cached this block group, which means we could
9377 * possibly have excluded extents on this block group.
9378 */
36cce922
JB
9379 if (block_group->cached == BTRFS_CACHE_NO ||
9380 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9381 free_excluded_extents(info->extent_root, block_group);
9382
817d52f8 9383 btrfs_remove_free_space_cache(block_group);
11dfe35a 9384 btrfs_put_block_group(block_group);
d899e052
YZ
9385
9386 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9387 }
9388 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9389
9390 /* now that all the block groups are freed, go through and
9391 * free all the space_info structs. This is only called during
9392 * the final stages of unmount, and so we know nobody is
9393 * using them. We call synchronize_rcu() once before we start,
9394 * just to be on the safe side.
9395 */
9396 synchronize_rcu();
9397
8929ecfa
YZ
9398 release_global_block_rsv(info);
9399
67871254 9400 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9401 int i;
9402
4184ea7f
CM
9403 space_info = list_entry(info->space_info.next,
9404 struct btrfs_space_info,
9405 list);
b069e0c3 9406 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9407 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9408 space_info->bytes_reserved > 0 ||
fae7f21c 9409 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9410 dump_space_info(space_info, 0, 0);
9411 }
f0486c68 9412 }
4184ea7f 9413 list_del(&space_info->list);
6ab0a202
JM
9414 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9415 struct kobject *kobj;
c1895442
JM
9416 kobj = space_info->block_group_kobjs[i];
9417 space_info->block_group_kobjs[i] = NULL;
9418 if (kobj) {
6ab0a202
JM
9419 kobject_del(kobj);
9420 kobject_put(kobj);
9421 }
9422 }
9423 kobject_del(&space_info->kobj);
9424 kobject_put(&space_info->kobj);
4184ea7f 9425 }
1a40e23b
ZY
9426 return 0;
9427}
9428
b742bb82
YZ
9429static void __link_block_group(struct btrfs_space_info *space_info,
9430 struct btrfs_block_group_cache *cache)
9431{
9432 int index = get_block_group_index(cache);
ed55b6ac 9433 bool first = false;
b742bb82
YZ
9434
9435 down_write(&space_info->groups_sem);
ed55b6ac
JM
9436 if (list_empty(&space_info->block_groups[index]))
9437 first = true;
9438 list_add_tail(&cache->list, &space_info->block_groups[index]);
9439 up_write(&space_info->groups_sem);
9440
9441 if (first) {
c1895442 9442 struct raid_kobject *rkobj;
6ab0a202
JM
9443 int ret;
9444
c1895442
JM
9445 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9446 if (!rkobj)
9447 goto out_err;
9448 rkobj->raid_type = index;
9449 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9450 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9451 "%s", get_raid_name(index));
6ab0a202 9452 if (ret) {
c1895442
JM
9453 kobject_put(&rkobj->kobj);
9454 goto out_err;
6ab0a202 9455 }
c1895442 9456 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9457 }
c1895442
JM
9458
9459 return;
9460out_err:
9461 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9462}
9463
920e4a58
MX
9464static struct btrfs_block_group_cache *
9465btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9466{
9467 struct btrfs_block_group_cache *cache;
9468
9469 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9470 if (!cache)
9471 return NULL;
9472
9473 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9474 GFP_NOFS);
9475 if (!cache->free_space_ctl) {
9476 kfree(cache);
9477 return NULL;
9478 }
9479
9480 cache->key.objectid = start;
9481 cache->key.offset = size;
9482 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9483
9484 cache->sectorsize = root->sectorsize;
9485 cache->fs_info = root->fs_info;
9486 cache->full_stripe_len = btrfs_full_stripe_len(root,
9487 &root->fs_info->mapping_tree,
9488 start);
9489 atomic_set(&cache->count, 1);
9490 spin_lock_init(&cache->lock);
e570fd27 9491 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9492 INIT_LIST_HEAD(&cache->list);
9493 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9494 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9495 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9496 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9497 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9498 btrfs_init_free_space_ctl(cache);
04216820 9499 atomic_set(&cache->trimming, 0);
920e4a58
MX
9500
9501 return cache;
9502}
9503
9078a3e1
CM
9504int btrfs_read_block_groups(struct btrfs_root *root)
9505{
9506 struct btrfs_path *path;
9507 int ret;
9078a3e1 9508 struct btrfs_block_group_cache *cache;
be744175 9509 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9510 struct btrfs_space_info *space_info;
9078a3e1
CM
9511 struct btrfs_key key;
9512 struct btrfs_key found_key;
5f39d397 9513 struct extent_buffer *leaf;
0af3d00b
JB
9514 int need_clear = 0;
9515 u64 cache_gen;
96b5179d 9516
be744175 9517 root = info->extent_root;
9078a3e1 9518 key.objectid = 0;
0b86a832 9519 key.offset = 0;
962a298f 9520 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9521 path = btrfs_alloc_path();
9522 if (!path)
9523 return -ENOMEM;
026fd317 9524 path->reada = 1;
9078a3e1 9525
6c41761f 9526 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9527 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9528 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9529 need_clear = 1;
88c2ba3b
JB
9530 if (btrfs_test_opt(root, CLEAR_CACHE))
9531 need_clear = 1;
0af3d00b 9532
d397712b 9533 while (1) {
0b86a832 9534 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9535 if (ret > 0)
9536 break;
0b86a832
CM
9537 if (ret != 0)
9538 goto error;
920e4a58 9539
5f39d397
CM
9540 leaf = path->nodes[0];
9541 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9542
9543 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9544 found_key.offset);
9078a3e1 9545 if (!cache) {
0b86a832 9546 ret = -ENOMEM;
f0486c68 9547 goto error;
9078a3e1 9548 }
96303081 9549
cf7c1ef6
LB
9550 if (need_clear) {
9551 /*
9552 * When we mount with old space cache, we need to
9553 * set BTRFS_DC_CLEAR and set dirty flag.
9554 *
9555 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9556 * truncate the old free space cache inode and
9557 * setup a new one.
9558 * b) Setting 'dirty flag' makes sure that we flush
9559 * the new space cache info onto disk.
9560 */
cf7c1ef6 9561 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9562 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9563 }
0af3d00b 9564
5f39d397
CM
9565 read_extent_buffer(leaf, &cache->item,
9566 btrfs_item_ptr_offset(leaf, path->slots[0]),
9567 sizeof(cache->item));
920e4a58 9568 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9569
9078a3e1 9570 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9571 btrfs_release_path(path);
34d52cb6 9572
3c14874a
JB
9573 /*
9574 * We need to exclude the super stripes now so that the space
9575 * info has super bytes accounted for, otherwise we'll think
9576 * we have more space than we actually do.
9577 */
835d974f
JB
9578 ret = exclude_super_stripes(root, cache);
9579 if (ret) {
9580 /*
9581 * We may have excluded something, so call this just in
9582 * case.
9583 */
9584 free_excluded_extents(root, cache);
920e4a58 9585 btrfs_put_block_group(cache);
835d974f
JB
9586 goto error;
9587 }
3c14874a 9588
817d52f8
JB
9589 /*
9590 * check for two cases, either we are full, and therefore
9591 * don't need to bother with the caching work since we won't
9592 * find any space, or we are empty, and we can just add all
9593 * the space in and be done with it. This saves us _alot_ of
9594 * time, particularly in the full case.
9595 */
9596 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9597 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9598 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9599 free_excluded_extents(root, cache);
817d52f8 9600 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9601 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9602 cache->cached = BTRFS_CACHE_FINISHED;
9603 add_new_free_space(cache, root->fs_info,
9604 found_key.objectid,
9605 found_key.objectid +
9606 found_key.offset);
11833d66 9607 free_excluded_extents(root, cache);
817d52f8 9608 }
96b5179d 9609
8c579fe7
JB
9610 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9611 if (ret) {
9612 btrfs_remove_free_space_cache(cache);
9613 btrfs_put_block_group(cache);
9614 goto error;
9615 }
9616
6324fbf3
CM
9617 ret = update_space_info(info, cache->flags, found_key.offset,
9618 btrfs_block_group_used(&cache->item),
9619 &space_info);
8c579fe7
JB
9620 if (ret) {
9621 btrfs_remove_free_space_cache(cache);
9622 spin_lock(&info->block_group_cache_lock);
9623 rb_erase(&cache->cache_node,
9624 &info->block_group_cache_tree);
01eacb27 9625 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9626 spin_unlock(&info->block_group_cache_lock);
9627 btrfs_put_block_group(cache);
9628 goto error;
9629 }
9630
6324fbf3 9631 cache->space_info = space_info;
1b2da372 9632 spin_lock(&cache->space_info->lock);
f0486c68 9633 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9634 spin_unlock(&cache->space_info->lock);
9635
b742bb82 9636 __link_block_group(space_info, cache);
0f9dd46c 9637
75ccf47d 9638 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9639 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 9640 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9641 } else if (btrfs_block_group_used(&cache->item) == 0) {
9642 spin_lock(&info->unused_bgs_lock);
9643 /* Should always be true but just in case. */
9644 if (list_empty(&cache->bg_list)) {
9645 btrfs_get_block_group(cache);
9646 list_add_tail(&cache->bg_list,
9647 &info->unused_bgs);
9648 }
9649 spin_unlock(&info->unused_bgs_lock);
9650 }
9078a3e1 9651 }
b742bb82
YZ
9652
9653 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9654 if (!(get_alloc_profile(root, space_info->flags) &
9655 (BTRFS_BLOCK_GROUP_RAID10 |
9656 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9657 BTRFS_BLOCK_GROUP_RAID5 |
9658 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9659 BTRFS_BLOCK_GROUP_DUP)))
9660 continue;
9661 /*
9662 * avoid allocating from un-mirrored block group if there are
9663 * mirrored block groups.
9664 */
1095cc0d 9665 list_for_each_entry(cache,
9666 &space_info->block_groups[BTRFS_RAID_RAID0],
9667 list)
868f401a 9668 inc_block_group_ro(cache, 1);
1095cc0d 9669 list_for_each_entry(cache,
9670 &space_info->block_groups[BTRFS_RAID_SINGLE],
9671 list)
868f401a 9672 inc_block_group_ro(cache, 1);
9078a3e1 9673 }
f0486c68
YZ
9674
9675 init_global_block_rsv(info);
0b86a832
CM
9676 ret = 0;
9677error:
9078a3e1 9678 btrfs_free_path(path);
0b86a832 9679 return ret;
9078a3e1 9680}
6324fbf3 9681
ea658bad
JB
9682void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9683 struct btrfs_root *root)
9684{
9685 struct btrfs_block_group_cache *block_group, *tmp;
9686 struct btrfs_root *extent_root = root->fs_info->extent_root;
9687 struct btrfs_block_group_item item;
9688 struct btrfs_key key;
9689 int ret = 0;
d9a0540a 9690 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 9691
d9a0540a 9692 trans->can_flush_pending_bgs = false;
47ab2a6c 9693 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9694 if (ret)
c92f6be3 9695 goto next;
ea658bad
JB
9696
9697 spin_lock(&block_group->lock);
9698 memcpy(&item, &block_group->item, sizeof(item));
9699 memcpy(&key, &block_group->key, sizeof(key));
9700 spin_unlock(&block_group->lock);
9701
9702 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9703 sizeof(item));
9704 if (ret)
9705 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9706 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9707 key.objectid, key.offset);
9708 if (ret)
9709 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9710next:
9711 list_del_init(&block_group->bg_list);
ea658bad 9712 }
d9a0540a 9713 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
9714}
9715
6324fbf3
CM
9716int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9717 struct btrfs_root *root, u64 bytes_used,
e17cade2 9718 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9719 u64 size)
9720{
9721 int ret;
6324fbf3
CM
9722 struct btrfs_root *extent_root;
9723 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9724
9725 extent_root = root->fs_info->extent_root;
6324fbf3 9726
995946dd 9727 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9728
920e4a58 9729 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9730 if (!cache)
9731 return -ENOMEM;
34d52cb6 9732
6324fbf3 9733 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9734 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9735 btrfs_set_block_group_flags(&cache->item, type);
9736
920e4a58 9737 cache->flags = type;
11833d66 9738 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9739 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9740 ret = exclude_super_stripes(root, cache);
9741 if (ret) {
9742 /*
9743 * We may have excluded something, so call this just in
9744 * case.
9745 */
9746 free_excluded_extents(root, cache);
920e4a58 9747 btrfs_put_block_group(cache);
835d974f
JB
9748 return ret;
9749 }
96303081 9750
817d52f8
JB
9751 add_new_free_space(cache, root->fs_info, chunk_offset,
9752 chunk_offset + size);
9753
11833d66
YZ
9754 free_excluded_extents(root, cache);
9755
2e6e5183
FM
9756 /*
9757 * Call to ensure the corresponding space_info object is created and
9758 * assigned to our block group, but don't update its counters just yet.
9759 * We want our bg to be added to the rbtree with its ->space_info set.
9760 */
9761 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9762 &cache->space_info);
9763 if (ret) {
9764 btrfs_remove_free_space_cache(cache);
9765 btrfs_put_block_group(cache);
9766 return ret;
9767 }
9768
8c579fe7
JB
9769 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9770 if (ret) {
9771 btrfs_remove_free_space_cache(cache);
9772 btrfs_put_block_group(cache);
9773 return ret;
9774 }
9775
2e6e5183
FM
9776 /*
9777 * Now that our block group has its ->space_info set and is inserted in
9778 * the rbtree, update the space info's counters.
9779 */
6324fbf3
CM
9780 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9781 &cache->space_info);
8c579fe7
JB
9782 if (ret) {
9783 btrfs_remove_free_space_cache(cache);
9784 spin_lock(&root->fs_info->block_group_cache_lock);
9785 rb_erase(&cache->cache_node,
9786 &root->fs_info->block_group_cache_tree);
01eacb27 9787 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9788 spin_unlock(&root->fs_info->block_group_cache_lock);
9789 btrfs_put_block_group(cache);
9790 return ret;
9791 }
c7c144db 9792 update_global_block_rsv(root->fs_info);
1b2da372
JB
9793
9794 spin_lock(&cache->space_info->lock);
f0486c68 9795 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9796 spin_unlock(&cache->space_info->lock);
9797
b742bb82 9798 __link_block_group(cache->space_info, cache);
6324fbf3 9799
47ab2a6c 9800 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9801
d18a2c44 9802 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9803
6324fbf3
CM
9804 return 0;
9805}
1a40e23b 9806
10ea00f5
ID
9807static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9808{
899c81ea
ID
9809 u64 extra_flags = chunk_to_extended(flags) &
9810 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9811
de98ced9 9812 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9813 if (flags & BTRFS_BLOCK_GROUP_DATA)
9814 fs_info->avail_data_alloc_bits &= ~extra_flags;
9815 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9816 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9817 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9818 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9819 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9820}
9821
1a40e23b 9822int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9823 struct btrfs_root *root, u64 group_start,
9824 struct extent_map *em)
1a40e23b
ZY
9825{
9826 struct btrfs_path *path;
9827 struct btrfs_block_group_cache *block_group;
44fb5511 9828 struct btrfs_free_cluster *cluster;
0af3d00b 9829 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9830 struct btrfs_key key;
0af3d00b 9831 struct inode *inode;
c1895442 9832 struct kobject *kobj = NULL;
1a40e23b 9833 int ret;
10ea00f5 9834 int index;
89a55897 9835 int factor;
4f69cb98 9836 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9837 bool remove_em;
1a40e23b 9838
1a40e23b
ZY
9839 root = root->fs_info->extent_root;
9840
9841 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9842 BUG_ON(!block_group);
c146afad 9843 BUG_ON(!block_group->ro);
1a40e23b 9844
9f7c43c9 9845 /*
9846 * Free the reserved super bytes from this block group before
9847 * remove it.
9848 */
9849 free_excluded_extents(root, block_group);
9850
1a40e23b 9851 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9852 index = get_block_group_index(block_group);
89a55897
JB
9853 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9854 BTRFS_BLOCK_GROUP_RAID1 |
9855 BTRFS_BLOCK_GROUP_RAID10))
9856 factor = 2;
9857 else
9858 factor = 1;
1a40e23b 9859
44fb5511
CM
9860 /* make sure this block group isn't part of an allocation cluster */
9861 cluster = &root->fs_info->data_alloc_cluster;
9862 spin_lock(&cluster->refill_lock);
9863 btrfs_return_cluster_to_free_space(block_group, cluster);
9864 spin_unlock(&cluster->refill_lock);
9865
9866 /*
9867 * make sure this block group isn't part of a metadata
9868 * allocation cluster
9869 */
9870 cluster = &root->fs_info->meta_alloc_cluster;
9871 spin_lock(&cluster->refill_lock);
9872 btrfs_return_cluster_to_free_space(block_group, cluster);
9873 spin_unlock(&cluster->refill_lock);
9874
1a40e23b 9875 path = btrfs_alloc_path();
d8926bb3
MF
9876 if (!path) {
9877 ret = -ENOMEM;
9878 goto out;
9879 }
1a40e23b 9880
1bbc621e
CM
9881 /*
9882 * get the inode first so any iput calls done for the io_list
9883 * aren't the final iput (no unlinks allowed now)
9884 */
10b2f34d 9885 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9886
9887 mutex_lock(&trans->transaction->cache_write_mutex);
9888 /*
9889 * make sure our free spache cache IO is done before remove the
9890 * free space inode
9891 */
9892 spin_lock(&trans->transaction->dirty_bgs_lock);
9893 if (!list_empty(&block_group->io_list)) {
9894 list_del_init(&block_group->io_list);
9895
9896 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9897
9898 spin_unlock(&trans->transaction->dirty_bgs_lock);
9899 btrfs_wait_cache_io(root, trans, block_group,
9900 &block_group->io_ctl, path,
9901 block_group->key.objectid);
9902 btrfs_put_block_group(block_group);
9903 spin_lock(&trans->transaction->dirty_bgs_lock);
9904 }
9905
9906 if (!list_empty(&block_group->dirty_list)) {
9907 list_del_init(&block_group->dirty_list);
9908 btrfs_put_block_group(block_group);
9909 }
9910 spin_unlock(&trans->transaction->dirty_bgs_lock);
9911 mutex_unlock(&trans->transaction->cache_write_mutex);
9912
0af3d00b 9913 if (!IS_ERR(inode)) {
b532402e 9914 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9915 if (ret) {
9916 btrfs_add_delayed_iput(inode);
9917 goto out;
9918 }
0af3d00b
JB
9919 clear_nlink(inode);
9920 /* One for the block groups ref */
9921 spin_lock(&block_group->lock);
9922 if (block_group->iref) {
9923 block_group->iref = 0;
9924 block_group->inode = NULL;
9925 spin_unlock(&block_group->lock);
9926 iput(inode);
9927 } else {
9928 spin_unlock(&block_group->lock);
9929 }
9930 /* One for our lookup ref */
455757c3 9931 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9932 }
9933
9934 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9935 key.offset = block_group->key.objectid;
9936 key.type = 0;
9937
9938 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9939 if (ret < 0)
9940 goto out;
9941 if (ret > 0)
b3b4aa74 9942 btrfs_release_path(path);
0af3d00b
JB
9943 if (ret == 0) {
9944 ret = btrfs_del_item(trans, tree_root, path);
9945 if (ret)
9946 goto out;
b3b4aa74 9947 btrfs_release_path(path);
0af3d00b
JB
9948 }
9949
3dfdb934 9950 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9951 rb_erase(&block_group->cache_node,
9952 &root->fs_info->block_group_cache_tree);
292cbd51 9953 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9954
9955 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9956 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9957 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9958
80eb234a 9959 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9960 /*
9961 * we must use list_del_init so people can check to see if they
9962 * are still on the list after taking the semaphore
9963 */
9964 list_del_init(&block_group->list);
6ab0a202 9965 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9966 kobj = block_group->space_info->block_group_kobjs[index];
9967 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9968 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9969 }
80eb234a 9970 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9971 if (kobj) {
9972 kobject_del(kobj);
9973 kobject_put(kobj);
9974 }
1a40e23b 9975
4f69cb98
FM
9976 if (block_group->has_caching_ctl)
9977 caching_ctl = get_caching_control(block_group);
817d52f8 9978 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9979 wait_block_group_cache_done(block_group);
4f69cb98
FM
9980 if (block_group->has_caching_ctl) {
9981 down_write(&root->fs_info->commit_root_sem);
9982 if (!caching_ctl) {
9983 struct btrfs_caching_control *ctl;
9984
9985 list_for_each_entry(ctl,
9986 &root->fs_info->caching_block_groups, list)
9987 if (ctl->block_group == block_group) {
9988 caching_ctl = ctl;
9989 atomic_inc(&caching_ctl->count);
9990 break;
9991 }
9992 }
9993 if (caching_ctl)
9994 list_del_init(&caching_ctl->list);
9995 up_write(&root->fs_info->commit_root_sem);
9996 if (caching_ctl) {
9997 /* Once for the caching bgs list and once for us. */
9998 put_caching_control(caching_ctl);
9999 put_caching_control(caching_ctl);
10000 }
10001 }
817d52f8 10002
ce93ec54
JB
10003 spin_lock(&trans->transaction->dirty_bgs_lock);
10004 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10005 WARN_ON(1);
10006 }
10007 if (!list_empty(&block_group->io_list)) {
10008 WARN_ON(1);
ce93ec54
JB
10009 }
10010 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10011 btrfs_remove_free_space_cache(block_group);
10012
c146afad 10013 spin_lock(&block_group->space_info->lock);
75c68e9f 10014 list_del_init(&block_group->ro_list);
18d018ad
ZL
10015
10016 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10017 WARN_ON(block_group->space_info->total_bytes
10018 < block_group->key.offset);
10019 WARN_ON(block_group->space_info->bytes_readonly
10020 < block_group->key.offset);
10021 WARN_ON(block_group->space_info->disk_total
10022 < block_group->key.offset * factor);
10023 }
c146afad
YZ
10024 block_group->space_info->total_bytes -= block_group->key.offset;
10025 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10026 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10027
c146afad 10028 spin_unlock(&block_group->space_info->lock);
283bb197 10029
0af3d00b
JB
10030 memcpy(&key, &block_group->key, sizeof(key));
10031
04216820 10032 lock_chunks(root);
495e64f4
FM
10033 if (!list_empty(&em->list)) {
10034 /* We're in the transaction->pending_chunks list. */
10035 free_extent_map(em);
10036 }
04216820
FM
10037 spin_lock(&block_group->lock);
10038 block_group->removed = 1;
10039 /*
10040 * At this point trimming can't start on this block group, because we
10041 * removed the block group from the tree fs_info->block_group_cache_tree
10042 * so no one can't find it anymore and even if someone already got this
10043 * block group before we removed it from the rbtree, they have already
10044 * incremented block_group->trimming - if they didn't, they won't find
10045 * any free space entries because we already removed them all when we
10046 * called btrfs_remove_free_space_cache().
10047 *
10048 * And we must not remove the extent map from the fs_info->mapping_tree
10049 * to prevent the same logical address range and physical device space
10050 * ranges from being reused for a new block group. This is because our
10051 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10052 * completely transactionless, so while it is trimming a range the
10053 * currently running transaction might finish and a new one start,
10054 * allowing for new block groups to be created that can reuse the same
10055 * physical device locations unless we take this special care.
e33e17ee
JM
10056 *
10057 * There may also be an implicit trim operation if the file system
10058 * is mounted with -odiscard. The same protections must remain
10059 * in place until the extents have been discarded completely when
10060 * the transaction commit has completed.
04216820
FM
10061 */
10062 remove_em = (atomic_read(&block_group->trimming) == 0);
10063 /*
10064 * Make sure a trimmer task always sees the em in the pinned_chunks list
10065 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10066 * before checking block_group->removed).
10067 */
10068 if (!remove_em) {
10069 /*
10070 * Our em might be in trans->transaction->pending_chunks which
10071 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10072 * and so is the fs_info->pinned_chunks list.
10073 *
10074 * So at this point we must be holding the chunk_mutex to avoid
10075 * any races with chunk allocation (more specifically at
10076 * volumes.c:contains_pending_extent()), to ensure it always
10077 * sees the em, either in the pending_chunks list or in the
10078 * pinned_chunks list.
10079 */
10080 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10081 }
10082 spin_unlock(&block_group->lock);
04216820
FM
10083
10084 if (remove_em) {
10085 struct extent_map_tree *em_tree;
10086
10087 em_tree = &root->fs_info->mapping_tree.map_tree;
10088 write_lock(&em_tree->lock);
8dbcd10f
FM
10089 /*
10090 * The em might be in the pending_chunks list, so make sure the
10091 * chunk mutex is locked, since remove_extent_mapping() will
10092 * delete us from that list.
10093 */
04216820
FM
10094 remove_extent_mapping(em_tree, em);
10095 write_unlock(&em_tree->lock);
10096 /* once for the tree */
10097 free_extent_map(em);
10098 }
10099
8dbcd10f
FM
10100 unlock_chunks(root);
10101
fa9c0d79
CM
10102 btrfs_put_block_group(block_group);
10103 btrfs_put_block_group(block_group);
1a40e23b
ZY
10104
10105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10106 if (ret > 0)
10107 ret = -EIO;
10108 if (ret < 0)
10109 goto out;
10110
10111 ret = btrfs_del_item(trans, root, path);
10112out:
10113 btrfs_free_path(path);
10114 return ret;
10115}
acce952b 10116
47ab2a6c
JB
10117/*
10118 * Process the unused_bgs list and remove any that don't have any allocated
10119 * space inside of them.
10120 */
10121void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10122{
10123 struct btrfs_block_group_cache *block_group;
10124 struct btrfs_space_info *space_info;
10125 struct btrfs_root *root = fs_info->extent_root;
10126 struct btrfs_trans_handle *trans;
10127 int ret = 0;
10128
10129 if (!fs_info->open)
10130 return;
10131
10132 spin_lock(&fs_info->unused_bgs_lock);
10133 while (!list_empty(&fs_info->unused_bgs)) {
10134 u64 start, end;
e33e17ee 10135 int trimming;
47ab2a6c
JB
10136
10137 block_group = list_first_entry(&fs_info->unused_bgs,
10138 struct btrfs_block_group_cache,
10139 bg_list);
10140 space_info = block_group->space_info;
10141 list_del_init(&block_group->bg_list);
10142 if (ret || btrfs_mixed_space_info(space_info)) {
10143 btrfs_put_block_group(block_group);
10144 continue;
10145 }
10146 spin_unlock(&fs_info->unused_bgs_lock);
10147
67c5e7d4
FM
10148 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10149
47ab2a6c
JB
10150 /* Don't want to race with allocators so take the groups_sem */
10151 down_write(&space_info->groups_sem);
10152 spin_lock(&block_group->lock);
10153 if (block_group->reserved ||
10154 btrfs_block_group_used(&block_group->item) ||
10155 block_group->ro) {
10156 /*
10157 * We want to bail if we made new allocations or have
10158 * outstanding allocations in this block group. We do
10159 * the ro check in case balance is currently acting on
10160 * this block group.
10161 */
10162 spin_unlock(&block_group->lock);
10163 up_write(&space_info->groups_sem);
10164 goto next;
10165 }
10166 spin_unlock(&block_group->lock);
10167
10168 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10169 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10170 up_write(&space_info->groups_sem);
10171 if (ret < 0) {
10172 ret = 0;
10173 goto next;
10174 }
10175
10176 /*
10177 * Want to do this before we do anything else so we can recover
10178 * properly if we fail to join the transaction.
10179 */
3d84be79
FL
10180 /* 1 for btrfs_orphan_reserve_metadata() */
10181 trans = btrfs_start_transaction(root, 1);
47ab2a6c 10182 if (IS_ERR(trans)) {
868f401a 10183 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10184 ret = PTR_ERR(trans);
10185 goto next;
10186 }
10187
10188 /*
10189 * We could have pending pinned extents for this block group,
10190 * just delete them, we don't care about them anymore.
10191 */
10192 start = block_group->key.objectid;
10193 end = start + block_group->key.offset - 1;
d4b450cd
FM
10194 /*
10195 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10196 * btrfs_finish_extent_commit(). If we are at transaction N,
10197 * another task might be running finish_extent_commit() for the
10198 * previous transaction N - 1, and have seen a range belonging
10199 * to the block group in freed_extents[] before we were able to
10200 * clear the whole block group range from freed_extents[]. This
10201 * means that task can lookup for the block group after we
10202 * unpinned it from freed_extents[] and removed it, leading to
10203 * a BUG_ON() at btrfs_unpin_extent_range().
10204 */
10205 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10206 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10207 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10208 if (ret) {
d4b450cd 10209 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10210 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10211 goto end_trans;
10212 }
10213 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10214 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10215 if (ret) {
d4b450cd 10216 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10217 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10218 goto end_trans;
10219 }
d4b450cd 10220 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10221
10222 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10223 spin_lock(&space_info->lock);
10224 spin_lock(&block_group->lock);
10225
10226 space_info->bytes_pinned -= block_group->pinned;
10227 space_info->bytes_readonly += block_group->pinned;
10228 percpu_counter_add(&space_info->total_bytes_pinned,
10229 -block_group->pinned);
47ab2a6c
JB
10230 block_group->pinned = 0;
10231
c30666d4
ZL
10232 spin_unlock(&block_group->lock);
10233 spin_unlock(&space_info->lock);
10234
e33e17ee
JM
10235 /* DISCARD can flip during remount */
10236 trimming = btrfs_test_opt(root, DISCARD);
10237
10238 /* Implicit trim during transaction commit. */
10239 if (trimming)
10240 btrfs_get_block_group_trimming(block_group);
10241
47ab2a6c
JB
10242 /*
10243 * Btrfs_remove_chunk will abort the transaction if things go
10244 * horribly wrong.
10245 */
10246 ret = btrfs_remove_chunk(trans, root,
10247 block_group->key.objectid);
e33e17ee
JM
10248
10249 if (ret) {
10250 if (trimming)
10251 btrfs_put_block_group_trimming(block_group);
10252 goto end_trans;
10253 }
10254
10255 /*
10256 * If we're not mounted with -odiscard, we can just forget
10257 * about this block group. Otherwise we'll need to wait
10258 * until transaction commit to do the actual discard.
10259 */
10260 if (trimming) {
10261 WARN_ON(!list_empty(&block_group->bg_list));
10262 spin_lock(&trans->transaction->deleted_bgs_lock);
10263 list_move(&block_group->bg_list,
10264 &trans->transaction->deleted_bgs);
10265 spin_unlock(&trans->transaction->deleted_bgs_lock);
10266 btrfs_get_block_group(block_group);
10267 }
758eb51e 10268end_trans:
47ab2a6c
JB
10269 btrfs_end_transaction(trans, root);
10270next:
67c5e7d4 10271 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10272 btrfs_put_block_group(block_group);
10273 spin_lock(&fs_info->unused_bgs_lock);
10274 }
10275 spin_unlock(&fs_info->unused_bgs_lock);
10276}
10277
c59021f8 10278int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10279{
10280 struct btrfs_space_info *space_info;
1aba86d6 10281 struct btrfs_super_block *disk_super;
10282 u64 features;
10283 u64 flags;
10284 int mixed = 0;
c59021f8 10285 int ret;
10286
6c41761f 10287 disk_super = fs_info->super_copy;
1aba86d6 10288 if (!btrfs_super_root(disk_super))
10289 return 1;
c59021f8 10290
1aba86d6 10291 features = btrfs_super_incompat_flags(disk_super);
10292 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10293 mixed = 1;
c59021f8 10294
1aba86d6 10295 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10296 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10297 if (ret)
1aba86d6 10298 goto out;
c59021f8 10299
1aba86d6 10300 if (mixed) {
10301 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10302 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10303 } else {
10304 flags = BTRFS_BLOCK_GROUP_METADATA;
10305 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10306 if (ret)
10307 goto out;
10308
10309 flags = BTRFS_BLOCK_GROUP_DATA;
10310 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10311 }
10312out:
c59021f8 10313 return ret;
10314}
10315
acce952b 10316int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10317{
678886bd 10318 return unpin_extent_range(root, start, end, false);
acce952b 10319}
10320
499f377f
JM
10321/*
10322 * It used to be that old block groups would be left around forever.
10323 * Iterating over them would be enough to trim unused space. Since we
10324 * now automatically remove them, we also need to iterate over unallocated
10325 * space.
10326 *
10327 * We don't want a transaction for this since the discard may take a
10328 * substantial amount of time. We don't require that a transaction be
10329 * running, but we do need to take a running transaction into account
10330 * to ensure that we're not discarding chunks that were released in
10331 * the current transaction.
10332 *
10333 * Holding the chunks lock will prevent other threads from allocating
10334 * or releasing chunks, but it won't prevent a running transaction
10335 * from committing and releasing the memory that the pending chunks
10336 * list head uses. For that, we need to take a reference to the
10337 * transaction.
10338 */
10339static int btrfs_trim_free_extents(struct btrfs_device *device,
10340 u64 minlen, u64 *trimmed)
10341{
10342 u64 start = 0, len = 0;
10343 int ret;
10344
10345 *trimmed = 0;
10346
10347 /* Not writeable = nothing to do. */
10348 if (!device->writeable)
10349 return 0;
10350
10351 /* No free space = nothing to do. */
10352 if (device->total_bytes <= device->bytes_used)
10353 return 0;
10354
10355 ret = 0;
10356
10357 while (1) {
10358 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10359 struct btrfs_transaction *trans;
10360 u64 bytes;
10361
10362 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10363 if (ret)
10364 return ret;
10365
10366 down_read(&fs_info->commit_root_sem);
10367
10368 spin_lock(&fs_info->trans_lock);
10369 trans = fs_info->running_transaction;
10370 if (trans)
10371 atomic_inc(&trans->use_count);
10372 spin_unlock(&fs_info->trans_lock);
10373
10374 ret = find_free_dev_extent_start(trans, device, minlen, start,
10375 &start, &len);
10376 if (trans)
10377 btrfs_put_transaction(trans);
10378
10379 if (ret) {
10380 up_read(&fs_info->commit_root_sem);
10381 mutex_unlock(&fs_info->chunk_mutex);
10382 if (ret == -ENOSPC)
10383 ret = 0;
10384 break;
10385 }
10386
10387 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10388 up_read(&fs_info->commit_root_sem);
10389 mutex_unlock(&fs_info->chunk_mutex);
10390
10391 if (ret)
10392 break;
10393
10394 start += len;
10395 *trimmed += bytes;
10396
10397 if (fatal_signal_pending(current)) {
10398 ret = -ERESTARTSYS;
10399 break;
10400 }
10401
10402 cond_resched();
10403 }
10404
10405 return ret;
10406}
10407
f7039b1d
LD
10408int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10409{
10410 struct btrfs_fs_info *fs_info = root->fs_info;
10411 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10412 struct btrfs_device *device;
10413 struct list_head *devices;
f7039b1d
LD
10414 u64 group_trimmed;
10415 u64 start;
10416 u64 end;
10417 u64 trimmed = 0;
2cac13e4 10418 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10419 int ret = 0;
10420
2cac13e4
LB
10421 /*
10422 * try to trim all FS space, our block group may start from non-zero.
10423 */
10424 if (range->len == total_bytes)
10425 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10426 else
10427 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10428
10429 while (cache) {
10430 if (cache->key.objectid >= (range->start + range->len)) {
10431 btrfs_put_block_group(cache);
10432 break;
10433 }
10434
10435 start = max(range->start, cache->key.objectid);
10436 end = min(range->start + range->len,
10437 cache->key.objectid + cache->key.offset);
10438
10439 if (end - start >= range->minlen) {
10440 if (!block_group_cache_done(cache)) {
f6373bf3 10441 ret = cache_block_group(cache, 0);
1be41b78
JB
10442 if (ret) {
10443 btrfs_put_block_group(cache);
10444 break;
10445 }
10446 ret = wait_block_group_cache_done(cache);
10447 if (ret) {
10448 btrfs_put_block_group(cache);
10449 break;
10450 }
f7039b1d
LD
10451 }
10452 ret = btrfs_trim_block_group(cache,
10453 &group_trimmed,
10454 start,
10455 end,
10456 range->minlen);
10457
10458 trimmed += group_trimmed;
10459 if (ret) {
10460 btrfs_put_block_group(cache);
10461 break;
10462 }
10463 }
10464
10465 cache = next_block_group(fs_info->tree_root, cache);
10466 }
10467
499f377f
JM
10468 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10469 devices = &root->fs_info->fs_devices->alloc_list;
10470 list_for_each_entry(device, devices, dev_alloc_list) {
10471 ret = btrfs_trim_free_extents(device, range->minlen,
10472 &group_trimmed);
10473 if (ret)
10474 break;
10475
10476 trimmed += group_trimmed;
10477 }
10478 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10479
f7039b1d
LD
10480 range->len = trimmed;
10481 return ret;
10482}
8257b2dc
MX
10483
10484/*
9ea24bbe
FM
10485 * btrfs_{start,end}_write_no_snapshoting() are similar to
10486 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10487 * data into the page cache through nocow before the subvolume is snapshoted,
10488 * but flush the data into disk after the snapshot creation, or to prevent
10489 * operations while snapshoting is ongoing and that cause the snapshot to be
10490 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10491 */
9ea24bbe 10492void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10493{
10494 percpu_counter_dec(&root->subv_writers->counter);
10495 /*
a83342aa 10496 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10497 */
10498 smp_mb();
10499 if (waitqueue_active(&root->subv_writers->wait))
10500 wake_up(&root->subv_writers->wait);
10501}
10502
9ea24bbe 10503int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10504{
ee39b432 10505 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10506 return 0;
10507
10508 percpu_counter_inc(&root->subv_writers->counter);
10509 /*
10510 * Make sure counter is updated before we check for snapshot creation.
10511 */
10512 smp_mb();
ee39b432 10513 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10514 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10515 return 0;
10516 }
10517 return 1;
10518}
This page took 1.427072 seconds and 5 git commands to generate.