btrfs: add error handling for scrub_workers_get()
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
5d4f98a2
YZ
1319static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
15916de8 1322{
5d4f98a2
YZ
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1354#endif
5d4f98a2
YZ
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359}
15916de8 1360
5d4f98a2
YZ
1361static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1f3c79a2 1366{
5d4f98a2 1367 struct btrfs_key key;
1f3c79a2 1368 int ret;
1f3c79a2 1369
5d4f98a2
YZ
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1f3c79a2
LH
1377 }
1378
5d4f98a2
YZ
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
b3b4aa74 1384 btrfs_release_path(path);
5d4f98a2
YZ
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1f3c79a2 1390#endif
5d4f98a2 1391 return ret;
1f3c79a2
LH
1392}
1393
5d4f98a2
YZ
1394static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
31840ae1 1399{
5d4f98a2 1400 struct btrfs_key key;
31840ae1 1401 int ret;
31840ae1 1402
5d4f98a2
YZ
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1413 btrfs_release_path(path);
31840ae1
ZY
1414 return ret;
1415}
1416
5d4f98a2 1417static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1418{
5d4f98a2
YZ
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
31840ae1 1432}
56bec294 1433
2c47e605
YZ
1434static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
56bec294 1436
02217ed2 1437{
2c47e605 1438 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1439 if (!path->nodes[level])
1440 break;
5d4f98a2
YZ
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453}
037e6390 1454
5d4f98a2
YZ
1455/*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468static noinline_for_stack
1469int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476{
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
3173a18f
JB
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
26b8003f 1492
db94535d 1493 key.objectid = bytenr;
31840ae1 1494 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1495 key.offset = num_bytes;
31840ae1 1496
5d4f98a2
YZ
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1500 path->keep_locks = 1;
5d4f98a2
YZ
1501 } else
1502 extra_size = -1;
3173a18f
JB
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513again:
5d4f98a2 1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1515 if (ret < 0) {
5d4f98a2
YZ
1516 err = ret;
1517 goto out;
1518 }
3173a18f
JB
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
9ce49a0b 1536 key.objectid = bytenr;
3173a18f
JB
1537 key.type = BTRFS_EXTENT_ITEM_KEY;
1538 key.offset = num_bytes;
1539 btrfs_release_path(path);
1540 goto again;
1541 }
1542 }
1543
79787eaa
JM
1544 if (ret && !insert) {
1545 err = -ENOENT;
1546 goto out;
fae7f21c 1547 } else if (WARN_ON(ret)) {
492104c8 1548 err = -EIO;
492104c8 1549 goto out;
79787eaa 1550 }
5d4f98a2
YZ
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569#endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
5d4f98a2
YZ
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
3173a18f 1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
5d4f98a2
YZ
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
2c47e605
YZ
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
85d4198e 1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650out:
85d4198e 1651 if (insert) {
5d4f98a2
YZ
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656}
1657
1658/*
1659 * helper to add new inline back ref
1660 */
1661static noinline_for_stack
fd279fae 1662void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref *iref,
1665 u64 parent, u64 root_objectid,
1666 u64 owner, u64 offset, int refs_to_add,
1667 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1668{
1669 struct extent_buffer *leaf;
1670 struct btrfs_extent_item *ei;
1671 unsigned long ptr;
1672 unsigned long end;
1673 unsigned long item_offset;
1674 u64 refs;
1675 int size;
1676 int type;
5d4f98a2
YZ
1677
1678 leaf = path->nodes[0];
1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 item_offset = (unsigned long)iref - (unsigned long)ei;
1681
1682 type = extent_ref_type(parent, owner);
1683 size = btrfs_extent_inline_ref_size(type);
1684
4b90c680 1685 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1686
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 refs = btrfs_extent_refs(leaf, ei);
1689 refs += refs_to_add;
1690 btrfs_set_extent_refs(leaf, ei, refs);
1691 if (extent_op)
1692 __run_delayed_extent_op(extent_op, leaf, ei);
1693
1694 ptr = (unsigned long)ei + item_offset;
1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 if (ptr < end - size)
1697 memmove_extent_buffer(leaf, ptr + size, ptr,
1698 end - size - ptr);
1699
1700 iref = (struct btrfs_extent_inline_ref *)ptr;
1701 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 struct btrfs_extent_data_ref *dref;
1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 struct btrfs_shared_data_ref *sref;
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 }
1719 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1720}
1721
1722static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 struct btrfs_root *root,
1724 struct btrfs_path *path,
1725 struct btrfs_extent_inline_ref **ref_ret,
1726 u64 bytenr, u64 num_bytes, u64 parent,
1727 u64 root_objectid, u64 owner, u64 offset)
1728{
1729 int ret;
1730
1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 bytenr, num_bytes, parent,
1733 root_objectid, owner, offset, 0);
1734 if (ret != -ENOENT)
54aa1f4d 1735 return ret;
5d4f98a2 1736
b3b4aa74 1737 btrfs_release_path(path);
5d4f98a2
YZ
1738 *ref_ret = NULL;
1739
1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 root_objectid);
1743 } else {
1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 root_objectid, owner, offset);
b9473439 1746 }
5d4f98a2
YZ
1747 return ret;
1748}
31840ae1 1749
5d4f98a2
YZ
1750/*
1751 * helper to update/remove inline back ref
1752 */
1753static noinline_for_stack
afe5fea7 1754void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1755 struct btrfs_path *path,
1756 struct btrfs_extent_inline_ref *iref,
1757 int refs_to_mod,
fcebe456
JB
1758 struct btrfs_delayed_extent_op *extent_op,
1759 int *last_ref)
5d4f98a2
YZ
1760{
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *ei;
1763 struct btrfs_extent_data_ref *dref = NULL;
1764 struct btrfs_shared_data_ref *sref = NULL;
1765 unsigned long ptr;
1766 unsigned long end;
1767 u32 item_size;
1768 int size;
1769 int type;
5d4f98a2
YZ
1770 u64 refs;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 refs = btrfs_extent_refs(leaf, ei);
1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 refs += refs_to_mod;
1777 btrfs_set_extent_refs(leaf, ei, refs);
1778 if (extent_op)
1779 __run_delayed_extent_op(extent_op, leaf, ei);
1780
1781 type = btrfs_extent_inline_ref_type(leaf, iref);
1782
1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 refs = btrfs_extent_data_ref_count(leaf, dref);
1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 refs = btrfs_shared_data_ref_count(leaf, sref);
1789 } else {
1790 refs = 1;
1791 BUG_ON(refs_to_mod != -1);
56bec294 1792 }
31840ae1 1793
5d4f98a2
YZ
1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 refs += refs_to_mod;
1796
1797 if (refs > 0) {
1798 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 else
1801 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 } else {
fcebe456 1803 *last_ref = 1;
5d4f98a2
YZ
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
afe5fea7 1812 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1815}
1816
1817static noinline_for_stack
1818int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825{
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1834 update_inline_extent_backref(root, path, iref,
fcebe456 1835 refs_to_add, extent_op, NULL);
5d4f98a2 1836 } else if (ret == -ENOENT) {
fd279fae 1837 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
771ed689 1841 }
5d4f98a2
YZ
1842 return ret;
1843}
31840ae1 1844
5d4f98a2
YZ
1845static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850{
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862}
56bec294 1863
5d4f98a2
YZ
1864static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
fcebe456 1868 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1869{
143bede5 1870 int ret = 0;
b9473439 1871
5d4f98a2
YZ
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
afe5fea7 1874 update_inline_extent_backref(root, path, iref,
fcebe456 1875 -refs_to_drop, NULL, last_ref);
5d4f98a2 1876 } else if (is_data) {
fcebe456
JB
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 last_ref);
5d4f98a2 1879 } else {
fcebe456 1880 *last_ref = 1;
5d4f98a2
YZ
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884}
1885
5378e607 1886static int btrfs_issue_discard(struct block_device *bdev,
5d4f98a2
YZ
1887 u64 start, u64 len)
1888{
5378e607 1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
5d4f98a2 1890}
5d4f98a2 1891
1edb647b
FM
1892int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1894{
5d4f98a2 1895 int ret;
5378e607 1896 u64 discarded_bytes = 0;
a1d3c478 1897 struct btrfs_bio *bbio = NULL;
5d4f98a2 1898
e244a0ae 1899
5d4f98a2 1900 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1902 bytenr, &num_bytes, &bbio, 0);
79787eaa 1903 /* Error condition is -ENOMEM */
5d4f98a2 1904 if (!ret) {
a1d3c478 1905 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1906 int i;
1907
5d4f98a2 1908
a1d3c478 1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d5e2003c
JB
1910 if (!stripe->dev->can_discard)
1911 continue;
1912
5378e607
LD
1913 ret = btrfs_issue_discard(stripe->dev->bdev,
1914 stripe->physical,
1915 stripe->length);
1916 if (!ret)
1917 discarded_bytes += stripe->length;
1918 else if (ret != -EOPNOTSUPP)
79787eaa 1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1920
1921 /*
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1925 */
1926 ret = 0;
5d4f98a2 1927 }
6e9606d2 1928 btrfs_put_bbio(bbio);
5d4f98a2 1929 }
5378e607
LD
1930
1931 if (actual_bytes)
1932 *actual_bytes = discarded_bytes;
1933
5d4f98a2 1934
53b381b3
DW
1935 if (ret == -EOPNOTSUPP)
1936 ret = 0;
5d4f98a2 1937 return ret;
5d4f98a2
YZ
1938}
1939
79787eaa 1940/* Can return -ENOMEM */
5d4f98a2
YZ
1941int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
1944 u64 root_objectid, u64 owner, u64 offset,
1945 int no_quota)
5d4f98a2
YZ
1946{
1947 int ret;
66d7e7f0
AJ
1948 struct btrfs_fs_info *fs_info = root->fs_info;
1949
5d4f98a2
YZ
1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952
1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 num_bytes,
5d4f98a2 1956 parent, root_objectid, (int)owner,
fcebe456 1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 1958 } else {
66d7e7f0
AJ
1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 num_bytes,
5d4f98a2 1961 parent, root_objectid, owner, offset,
fcebe456 1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
1963 }
1964 return ret;
1965}
1966
1967static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
c682f9b3 1969 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
1970 u64 parent, u64 root_objectid,
1971 u64 owner, u64 offset, int refs_to_add,
1972 struct btrfs_delayed_extent_op *extent_op)
1973{
fcebe456 1974 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
1975 struct btrfs_path *path;
1976 struct extent_buffer *leaf;
1977 struct btrfs_extent_item *item;
fcebe456 1978 struct btrfs_key key;
c682f9b3
QW
1979 u64 bytenr = node->bytenr;
1980 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
1981 u64 refs;
1982 int ret;
c682f9b3 1983 int no_quota = node->no_quota;
5d4f98a2
YZ
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
fcebe456
JB
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
5d4f98a2
YZ
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
5d4f98a2
YZ
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
0ed4792a 1999 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2000 goto out;
fcebe456
JB
2001
2002 /*
2003 * Ok we had -EAGAIN which means we didn't have space to insert and
2004 * inline extent ref, so just update the reference count and add a
2005 * normal backref.
2006 */
5d4f98a2 2007 leaf = path->nodes[0];
fcebe456 2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2009 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2010 refs = btrfs_extent_refs(leaf, item);
2011 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2012 if (extent_op)
2013 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2014
5d4f98a2 2015 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2016 btrfs_release_path(path);
56bec294
CM
2017
2018 path->reada = 1;
b9473439 2019 path->leave_spinning = 1;
56bec294
CM
2020 /* now insert the actual backref */
2021 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2022 path, bytenr, parent, root_objectid,
2023 owner, offset, refs_to_add);
79787eaa
JM
2024 if (ret)
2025 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2026out:
56bec294 2027 btrfs_free_path(path);
30d133fc 2028 return ret;
56bec294
CM
2029}
2030
5d4f98a2
YZ
2031static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2032 struct btrfs_root *root,
2033 struct btrfs_delayed_ref_node *node,
2034 struct btrfs_delayed_extent_op *extent_op,
2035 int insert_reserved)
56bec294 2036{
5d4f98a2
YZ
2037 int ret = 0;
2038 struct btrfs_delayed_data_ref *ref;
2039 struct btrfs_key ins;
2040 u64 parent = 0;
2041 u64 ref_root = 0;
2042 u64 flags = 0;
2043
2044 ins.objectid = node->bytenr;
2045 ins.offset = node->num_bytes;
2046 ins.type = BTRFS_EXTENT_ITEM_KEY;
2047
2048 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2049 trace_run_delayed_data_ref(node, ref, node->action);
2050
5d4f98a2
YZ
2051 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2052 parent = ref->parent;
fcebe456 2053 ref_root = ref->root;
5d4f98a2
YZ
2054
2055 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2056 if (extent_op)
5d4f98a2 2057 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2058 ret = alloc_reserved_file_extent(trans, root,
2059 parent, ref_root, flags,
2060 ref->objectid, ref->offset,
2061 &ins, node->ref_mod);
5d4f98a2 2062 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2063 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2064 ref_root, ref->objectid,
2065 ref->offset, node->ref_mod,
c682f9b3 2066 extent_op);
5d4f98a2 2067 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2068 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2069 ref_root, ref->objectid,
2070 ref->offset, node->ref_mod,
c682f9b3 2071 extent_op);
5d4f98a2
YZ
2072 } else {
2073 BUG();
2074 }
2075 return ret;
2076}
2077
2078static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2079 struct extent_buffer *leaf,
2080 struct btrfs_extent_item *ei)
2081{
2082 u64 flags = btrfs_extent_flags(leaf, ei);
2083 if (extent_op->update_flags) {
2084 flags |= extent_op->flags_to_set;
2085 btrfs_set_extent_flags(leaf, ei, flags);
2086 }
2087
2088 if (extent_op->update_key) {
2089 struct btrfs_tree_block_info *bi;
2090 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2091 bi = (struct btrfs_tree_block_info *)(ei + 1);
2092 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2093 }
2094}
2095
2096static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2097 struct btrfs_root *root,
2098 struct btrfs_delayed_ref_node *node,
2099 struct btrfs_delayed_extent_op *extent_op)
2100{
2101 struct btrfs_key key;
2102 struct btrfs_path *path;
2103 struct btrfs_extent_item *ei;
2104 struct extent_buffer *leaf;
2105 u32 item_size;
56bec294 2106 int ret;
5d4f98a2 2107 int err = 0;
b1c79e09 2108 int metadata = !extent_op->is_data;
5d4f98a2 2109
79787eaa
JM
2110 if (trans->aborted)
2111 return 0;
2112
3173a18f
JB
2113 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2114 metadata = 0;
2115
5d4f98a2
YZ
2116 path = btrfs_alloc_path();
2117 if (!path)
2118 return -ENOMEM;
2119
2120 key.objectid = node->bytenr;
5d4f98a2 2121
3173a18f 2122 if (metadata) {
3173a18f 2123 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2124 key.offset = extent_op->level;
3173a18f
JB
2125 } else {
2126 key.type = BTRFS_EXTENT_ITEM_KEY;
2127 key.offset = node->num_bytes;
2128 }
2129
2130again:
5d4f98a2
YZ
2131 path->reada = 1;
2132 path->leave_spinning = 1;
2133 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2134 path, 0, 1);
2135 if (ret < 0) {
2136 err = ret;
2137 goto out;
2138 }
2139 if (ret > 0) {
3173a18f 2140 if (metadata) {
55994887
FDBM
2141 if (path->slots[0] > 0) {
2142 path->slots[0]--;
2143 btrfs_item_key_to_cpu(path->nodes[0], &key,
2144 path->slots[0]);
2145 if (key.objectid == node->bytenr &&
2146 key.type == BTRFS_EXTENT_ITEM_KEY &&
2147 key.offset == node->num_bytes)
2148 ret = 0;
2149 }
2150 if (ret > 0) {
2151 btrfs_release_path(path);
2152 metadata = 0;
3173a18f 2153
55994887
FDBM
2154 key.objectid = node->bytenr;
2155 key.offset = node->num_bytes;
2156 key.type = BTRFS_EXTENT_ITEM_KEY;
2157 goto again;
2158 }
2159 } else {
2160 err = -EIO;
2161 goto out;
3173a18f 2162 }
5d4f98a2
YZ
2163 }
2164
2165 leaf = path->nodes[0];
2166 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2167#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2168 if (item_size < sizeof(*ei)) {
2169 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2170 path, (u64)-1, 0);
2171 if (ret < 0) {
2172 err = ret;
2173 goto out;
2174 }
2175 leaf = path->nodes[0];
2176 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2177 }
2178#endif
2179 BUG_ON(item_size < sizeof(*ei));
2180 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2181 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2182
5d4f98a2
YZ
2183 btrfs_mark_buffer_dirty(leaf);
2184out:
2185 btrfs_free_path(path);
2186 return err;
56bec294
CM
2187}
2188
5d4f98a2
YZ
2189static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 struct btrfs_delayed_ref_node *node,
2192 struct btrfs_delayed_extent_op *extent_op,
2193 int insert_reserved)
56bec294
CM
2194{
2195 int ret = 0;
5d4f98a2
YZ
2196 struct btrfs_delayed_tree_ref *ref;
2197 struct btrfs_key ins;
2198 u64 parent = 0;
2199 u64 ref_root = 0;
3173a18f
JB
2200 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2201 SKINNY_METADATA);
56bec294 2202
5d4f98a2 2203 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2204 trace_run_delayed_tree_ref(node, ref, node->action);
2205
5d4f98a2
YZ
2206 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2207 parent = ref->parent;
fcebe456 2208 ref_root = ref->root;
5d4f98a2 2209
3173a18f
JB
2210 ins.objectid = node->bytenr;
2211 if (skinny_metadata) {
2212 ins.offset = ref->level;
2213 ins.type = BTRFS_METADATA_ITEM_KEY;
2214 } else {
2215 ins.offset = node->num_bytes;
2216 ins.type = BTRFS_EXTENT_ITEM_KEY;
2217 }
2218
5d4f98a2
YZ
2219 BUG_ON(node->ref_mod != 1);
2220 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2221 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2222 ret = alloc_reserved_tree_block(trans, root,
2223 parent, ref_root,
2224 extent_op->flags_to_set,
2225 &extent_op->key,
fcebe456
JB
2226 ref->level, &ins,
2227 node->no_quota);
5d4f98a2 2228 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2229 ret = __btrfs_inc_extent_ref(trans, root, node,
2230 parent, ref_root,
2231 ref->level, 0, 1,
fcebe456 2232 extent_op);
5d4f98a2 2233 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2234 ret = __btrfs_free_extent(trans, root, node,
2235 parent, ref_root,
2236 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2237 } else {
2238 BUG();
2239 }
56bec294
CM
2240 return ret;
2241}
2242
2243/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2244static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op,
2248 int insert_reserved)
56bec294 2249{
79787eaa
JM
2250 int ret = 0;
2251
857cc2fc
JB
2252 if (trans->aborted) {
2253 if (insert_reserved)
2254 btrfs_pin_extent(root, node->bytenr,
2255 node->num_bytes, 1);
79787eaa 2256 return 0;
857cc2fc 2257 }
79787eaa 2258
5d4f98a2 2259 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2260 struct btrfs_delayed_ref_head *head;
2261 /*
2262 * we've hit the end of the chain and we were supposed
2263 * to insert this extent into the tree. But, it got
2264 * deleted before we ever needed to insert it, so all
2265 * we have to do is clean up the accounting
2266 */
5d4f98a2
YZ
2267 BUG_ON(extent_op);
2268 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2269 trace_run_delayed_ref_head(node, head, node->action);
2270
56bec294 2271 if (insert_reserved) {
f0486c68
YZ
2272 btrfs_pin_extent(root, node->bytenr,
2273 node->num_bytes, 1);
5d4f98a2
YZ
2274 if (head->is_data) {
2275 ret = btrfs_del_csums(trans, root,
2276 node->bytenr,
2277 node->num_bytes);
5d4f98a2 2278 }
56bec294 2279 }
79787eaa 2280 return ret;
56bec294
CM
2281 }
2282
5d4f98a2
YZ
2283 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2284 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2285 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2286 insert_reserved);
2287 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2288 node->type == BTRFS_SHARED_DATA_REF_KEY)
2289 ret = run_delayed_data_ref(trans, root, node, extent_op,
2290 insert_reserved);
2291 else
2292 BUG();
2293 return ret;
56bec294
CM
2294}
2295
c6fc2454 2296static inline struct btrfs_delayed_ref_node *
56bec294
CM
2297select_delayed_ref(struct btrfs_delayed_ref_head *head)
2298{
c6fc2454
QW
2299 if (list_empty(&head->ref_list))
2300 return NULL;
d7df2c79 2301
c6fc2454
QW
2302 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2303 list);
56bec294
CM
2304}
2305
79787eaa
JM
2306/*
2307 * Returns 0 on success or if called with an already aborted transaction.
2308 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2309 */
d7df2c79
JB
2310static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2311 struct btrfs_root *root,
2312 unsigned long nr)
56bec294 2313{
56bec294
CM
2314 struct btrfs_delayed_ref_root *delayed_refs;
2315 struct btrfs_delayed_ref_node *ref;
2316 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2317 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2318 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2319 ktime_t start = ktime_get();
56bec294 2320 int ret;
d7df2c79 2321 unsigned long count = 0;
0a2b2a84 2322 unsigned long actual_count = 0;
56bec294 2323 int must_insert_reserved = 0;
56bec294
CM
2324
2325 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2326 while (1) {
2327 if (!locked_ref) {
d7df2c79 2328 if (count >= nr)
56bec294 2329 break;
56bec294 2330
d7df2c79
JB
2331 spin_lock(&delayed_refs->lock);
2332 locked_ref = btrfs_select_ref_head(trans);
2333 if (!locked_ref) {
2334 spin_unlock(&delayed_refs->lock);
2335 break;
2336 }
c3e69d58
CM
2337
2338 /* grab the lock that says we are going to process
2339 * all the refs for this head */
2340 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2341 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2342 /*
2343 * we may have dropped the spin lock to get the head
2344 * mutex lock, and that might have given someone else
2345 * time to free the head. If that's true, it has been
2346 * removed from our list and we can move on.
2347 */
2348 if (ret == -EAGAIN) {
2349 locked_ref = NULL;
2350 count++;
2351 continue;
56bec294
CM
2352 }
2353 }
a28ec197 2354
d7df2c79 2355 spin_lock(&locked_ref->lock);
ae1e206b 2356
d1270cd9
AJ
2357 /*
2358 * locked_ref is the head node, so we have to go one
2359 * node back for any delayed ref updates
2360 */
2361 ref = select_delayed_ref(locked_ref);
2362
2363 if (ref && ref->seq &&
097b8a7c 2364 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2365 spin_unlock(&locked_ref->lock);
093486c4 2366 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2367 spin_lock(&delayed_refs->lock);
2368 locked_ref->processing = 0;
d1270cd9
AJ
2369 delayed_refs->num_heads_ready++;
2370 spin_unlock(&delayed_refs->lock);
d7df2c79 2371 locked_ref = NULL;
d1270cd9 2372 cond_resched();
27a377db 2373 count++;
d1270cd9
AJ
2374 continue;
2375 }
2376
56bec294
CM
2377 /*
2378 * record the must insert reserved flag before we
2379 * drop the spin lock.
2380 */
2381 must_insert_reserved = locked_ref->must_insert_reserved;
2382 locked_ref->must_insert_reserved = 0;
7bb86316 2383
5d4f98a2
YZ
2384 extent_op = locked_ref->extent_op;
2385 locked_ref->extent_op = NULL;
2386
56bec294 2387 if (!ref) {
d7df2c79
JB
2388
2389
56bec294
CM
2390 /* All delayed refs have been processed, Go ahead
2391 * and send the head node to run_one_delayed_ref,
2392 * so that any accounting fixes can happen
2393 */
2394 ref = &locked_ref->node;
5d4f98a2
YZ
2395
2396 if (extent_op && must_insert_reserved) {
78a6184a 2397 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2398 extent_op = NULL;
2399 }
2400
2401 if (extent_op) {
d7df2c79 2402 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2403 ret = run_delayed_extent_op(trans, root,
2404 ref, extent_op);
78a6184a 2405 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2406
79787eaa 2407 if (ret) {
857cc2fc
JB
2408 /*
2409 * Need to reset must_insert_reserved if
2410 * there was an error so the abort stuff
2411 * can cleanup the reserved space
2412 * properly.
2413 */
2414 if (must_insert_reserved)
2415 locked_ref->must_insert_reserved = 1;
d7df2c79 2416 locked_ref->processing = 0;
c2cf52eb 2417 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2418 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2419 return ret;
2420 }
d7df2c79 2421 continue;
5d4f98a2 2422 }
02217ed2 2423
d7df2c79
JB
2424 /*
2425 * Need to drop our head ref lock and re-aqcuire the
2426 * delayed ref lock and then re-check to make sure
2427 * nobody got added.
2428 */
2429 spin_unlock(&locked_ref->lock);
2430 spin_lock(&delayed_refs->lock);
2431 spin_lock(&locked_ref->lock);
c6fc2454 2432 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2433 locked_ref->extent_op) {
d7df2c79
JB
2434 spin_unlock(&locked_ref->lock);
2435 spin_unlock(&delayed_refs->lock);
2436 continue;
2437 }
2438 ref->in_tree = 0;
2439 delayed_refs->num_heads--;
c46effa6
LB
2440 rb_erase(&locked_ref->href_node,
2441 &delayed_refs->href_root);
d7df2c79
JB
2442 spin_unlock(&delayed_refs->lock);
2443 } else {
0a2b2a84 2444 actual_count++;
d7df2c79 2445 ref->in_tree = 0;
c6fc2454 2446 list_del(&ref->list);
c46effa6 2447 }
d7df2c79
JB
2448 atomic_dec(&delayed_refs->num_entries);
2449
093486c4 2450 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2451 /*
2452 * when we play the delayed ref, also correct the
2453 * ref_mod on head
2454 */
2455 switch (ref->action) {
2456 case BTRFS_ADD_DELAYED_REF:
2457 case BTRFS_ADD_DELAYED_EXTENT:
2458 locked_ref->node.ref_mod -= ref->ref_mod;
2459 break;
2460 case BTRFS_DROP_DELAYED_REF:
2461 locked_ref->node.ref_mod += ref->ref_mod;
2462 break;
2463 default:
2464 WARN_ON(1);
2465 }
2466 }
d7df2c79 2467 spin_unlock(&locked_ref->lock);
925baedd 2468
5d4f98a2 2469 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2470 must_insert_reserved);
eb099670 2471
78a6184a 2472 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2473 if (ret) {
d7df2c79 2474 locked_ref->processing = 0;
093486c4
MX
2475 btrfs_delayed_ref_unlock(locked_ref);
2476 btrfs_put_delayed_ref(ref);
c2cf52eb 2477 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2478 return ret;
2479 }
2480
093486c4
MX
2481 /*
2482 * If this node is a head, that means all the refs in this head
2483 * have been dealt with, and we will pick the next head to deal
2484 * with, so we must unlock the head and drop it from the cluster
2485 * list before we release it.
2486 */
2487 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2488 if (locked_ref->is_data &&
2489 locked_ref->total_ref_mod < 0) {
2490 spin_lock(&delayed_refs->lock);
2491 delayed_refs->pending_csums -= ref->num_bytes;
2492 spin_unlock(&delayed_refs->lock);
2493 }
093486c4
MX
2494 btrfs_delayed_ref_unlock(locked_ref);
2495 locked_ref = NULL;
2496 }
2497 btrfs_put_delayed_ref(ref);
2498 count++;
c3e69d58 2499 cond_resched();
c3e69d58 2500 }
0a2b2a84
JB
2501
2502 /*
2503 * We don't want to include ref heads since we can have empty ref heads
2504 * and those will drastically skew our runtime down since we just do
2505 * accounting, no actual extent tree updates.
2506 */
2507 if (actual_count > 0) {
2508 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2509 u64 avg;
2510
2511 /*
2512 * We weigh the current average higher than our current runtime
2513 * to avoid large swings in the average.
2514 */
2515 spin_lock(&delayed_refs->lock);
2516 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2517 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2518 spin_unlock(&delayed_refs->lock);
2519 }
d7df2c79 2520 return 0;
c3e69d58
CM
2521}
2522
709c0486
AJ
2523#ifdef SCRAMBLE_DELAYED_REFS
2524/*
2525 * Normally delayed refs get processed in ascending bytenr order. This
2526 * correlates in most cases to the order added. To expose dependencies on this
2527 * order, we start to process the tree in the middle instead of the beginning
2528 */
2529static u64 find_middle(struct rb_root *root)
2530{
2531 struct rb_node *n = root->rb_node;
2532 struct btrfs_delayed_ref_node *entry;
2533 int alt = 1;
2534 u64 middle;
2535 u64 first = 0, last = 0;
2536
2537 n = rb_first(root);
2538 if (n) {
2539 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2540 first = entry->bytenr;
2541 }
2542 n = rb_last(root);
2543 if (n) {
2544 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2545 last = entry->bytenr;
2546 }
2547 n = root->rb_node;
2548
2549 while (n) {
2550 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2551 WARN_ON(!entry->in_tree);
2552
2553 middle = entry->bytenr;
2554
2555 if (alt)
2556 n = n->rb_left;
2557 else
2558 n = n->rb_right;
2559
2560 alt = 1 - alt;
2561 }
2562 return middle;
2563}
2564#endif
2565
1be41b78
JB
2566static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2567{
2568 u64 num_bytes;
2569
2570 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2571 sizeof(struct btrfs_extent_inline_ref));
2572 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2573 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2574
2575 /*
2576 * We don't ever fill up leaves all the way so multiply by 2 just to be
2577 * closer to what we're really going to want to ouse.
2578 */
f8c269d7 2579 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2580}
2581
1262133b
JB
2582/*
2583 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2584 * would require to store the csums for that many bytes.
2585 */
28f75a0e 2586u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2587{
2588 u64 csum_size;
2589 u64 num_csums_per_leaf;
2590 u64 num_csums;
2591
2592 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2593 num_csums_per_leaf = div64_u64(csum_size,
2594 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2595 num_csums = div64_u64(csum_bytes, root->sectorsize);
2596 num_csums += num_csums_per_leaf - 1;
2597 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2598 return num_csums;
2599}
2600
0a2b2a84 2601int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2602 struct btrfs_root *root)
2603{
2604 struct btrfs_block_rsv *global_rsv;
2605 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2606 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2607 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2608 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2609 int ret = 0;
2610
2611 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2612 num_heads = heads_to_leaves(root, num_heads);
2613 if (num_heads > 1)
707e8a07 2614 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2615 num_bytes <<= 1;
28f75a0e 2616 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2617 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2618 num_dirty_bgs);
1be41b78
JB
2619 global_rsv = &root->fs_info->global_block_rsv;
2620
2621 /*
2622 * If we can't allocate any more chunks lets make sure we have _lots_ of
2623 * wiggle room since running delayed refs can create more delayed refs.
2624 */
cb723e49
JB
2625 if (global_rsv->space_info->full) {
2626 num_dirty_bgs_bytes <<= 1;
1be41b78 2627 num_bytes <<= 1;
cb723e49 2628 }
1be41b78
JB
2629
2630 spin_lock(&global_rsv->lock);
cb723e49 2631 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2632 ret = 1;
2633 spin_unlock(&global_rsv->lock);
2634 return ret;
2635}
2636
0a2b2a84
JB
2637int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root)
2639{
2640 struct btrfs_fs_info *fs_info = root->fs_info;
2641 u64 num_entries =
2642 atomic_read(&trans->transaction->delayed_refs.num_entries);
2643 u64 avg_runtime;
a79b7d4b 2644 u64 val;
0a2b2a84
JB
2645
2646 smp_mb();
2647 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2648 val = num_entries * avg_runtime;
0a2b2a84
JB
2649 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2650 return 1;
a79b7d4b
CM
2651 if (val >= NSEC_PER_SEC / 2)
2652 return 2;
0a2b2a84
JB
2653
2654 return btrfs_check_space_for_delayed_refs(trans, root);
2655}
2656
a79b7d4b
CM
2657struct async_delayed_refs {
2658 struct btrfs_root *root;
2659 int count;
2660 int error;
2661 int sync;
2662 struct completion wait;
2663 struct btrfs_work work;
2664};
2665
2666static void delayed_ref_async_start(struct btrfs_work *work)
2667{
2668 struct async_delayed_refs *async;
2669 struct btrfs_trans_handle *trans;
2670 int ret;
2671
2672 async = container_of(work, struct async_delayed_refs, work);
2673
2674 trans = btrfs_join_transaction(async->root);
2675 if (IS_ERR(trans)) {
2676 async->error = PTR_ERR(trans);
2677 goto done;
2678 }
2679
2680 /*
2681 * trans->sync means that when we call end_transaciton, we won't
2682 * wait on delayed refs
2683 */
2684 trans->sync = true;
2685 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2686 if (ret)
2687 async->error = ret;
2688
2689 ret = btrfs_end_transaction(trans, async->root);
2690 if (ret && !async->error)
2691 async->error = ret;
2692done:
2693 if (async->sync)
2694 complete(&async->wait);
2695 else
2696 kfree(async);
2697}
2698
2699int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2700 unsigned long count, int wait)
2701{
2702 struct async_delayed_refs *async;
2703 int ret;
2704
2705 async = kmalloc(sizeof(*async), GFP_NOFS);
2706 if (!async)
2707 return -ENOMEM;
2708
2709 async->root = root->fs_info->tree_root;
2710 async->count = count;
2711 async->error = 0;
2712 if (wait)
2713 async->sync = 1;
2714 else
2715 async->sync = 0;
2716 init_completion(&async->wait);
2717
9e0af237
LB
2718 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2719 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2720
2721 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2722
2723 if (wait) {
2724 wait_for_completion(&async->wait);
2725 ret = async->error;
2726 kfree(async);
2727 return ret;
2728 }
2729 return 0;
2730}
2731
c3e69d58
CM
2732/*
2733 * this starts processing the delayed reference count updates and
2734 * extent insertions we have queued up so far. count can be
2735 * 0, which means to process everything in the tree at the start
2736 * of the run (but not newly added entries), or it can be some target
2737 * number you'd like to process.
79787eaa
JM
2738 *
2739 * Returns 0 on success or if called with an aborted transaction
2740 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2741 */
2742int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2743 struct btrfs_root *root, unsigned long count)
2744{
2745 struct rb_node *node;
2746 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2747 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2748 int ret;
2749 int run_all = count == (unsigned long)-1;
c3e69d58 2750
79787eaa
JM
2751 /* We'll clean this up in btrfs_cleanup_transaction */
2752 if (trans->aborted)
2753 return 0;
2754
c3e69d58
CM
2755 if (root == root->fs_info->extent_root)
2756 root = root->fs_info->tree_root;
2757
2758 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2759 if (count == 0)
d7df2c79 2760 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2761
c3e69d58 2762again:
709c0486
AJ
2763#ifdef SCRAMBLE_DELAYED_REFS
2764 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2765#endif
d7df2c79
JB
2766 ret = __btrfs_run_delayed_refs(trans, root, count);
2767 if (ret < 0) {
2768 btrfs_abort_transaction(trans, root, ret);
2769 return ret;
eb099670 2770 }
c3e69d58 2771
56bec294 2772 if (run_all) {
d7df2c79 2773 if (!list_empty(&trans->new_bgs))
ea658bad 2774 btrfs_create_pending_block_groups(trans, root);
ea658bad 2775
d7df2c79 2776 spin_lock(&delayed_refs->lock);
c46effa6 2777 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2778 if (!node) {
2779 spin_unlock(&delayed_refs->lock);
56bec294 2780 goto out;
d7df2c79 2781 }
c3e69d58 2782 count = (unsigned long)-1;
e9d0b13b 2783
56bec294 2784 while (node) {
c46effa6
LB
2785 head = rb_entry(node, struct btrfs_delayed_ref_head,
2786 href_node);
2787 if (btrfs_delayed_ref_is_head(&head->node)) {
2788 struct btrfs_delayed_ref_node *ref;
5caf2a00 2789
c46effa6 2790 ref = &head->node;
56bec294
CM
2791 atomic_inc(&ref->refs);
2792
2793 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2794 /*
2795 * Mutex was contended, block until it's
2796 * released and try again
2797 */
56bec294
CM
2798 mutex_lock(&head->mutex);
2799 mutex_unlock(&head->mutex);
2800
2801 btrfs_put_delayed_ref(ref);
1887be66 2802 cond_resched();
56bec294 2803 goto again;
c46effa6
LB
2804 } else {
2805 WARN_ON(1);
56bec294
CM
2806 }
2807 node = rb_next(node);
2808 }
2809 spin_unlock(&delayed_refs->lock);
d7df2c79 2810 cond_resched();
56bec294 2811 goto again;
5f39d397 2812 }
54aa1f4d 2813out:
edf39272 2814 assert_qgroups_uptodate(trans);
a28ec197
CM
2815 return 0;
2816}
2817
5d4f98a2
YZ
2818int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2819 struct btrfs_root *root,
2820 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2821 int level, int is_data)
5d4f98a2
YZ
2822{
2823 struct btrfs_delayed_extent_op *extent_op;
2824 int ret;
2825
78a6184a 2826 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2827 if (!extent_op)
2828 return -ENOMEM;
2829
2830 extent_op->flags_to_set = flags;
2831 extent_op->update_flags = 1;
2832 extent_op->update_key = 0;
2833 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2834 extent_op->level = level;
5d4f98a2 2835
66d7e7f0
AJ
2836 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2837 num_bytes, extent_op);
5d4f98a2 2838 if (ret)
78a6184a 2839 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2840 return ret;
2841}
2842
2843static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root,
2845 struct btrfs_path *path,
2846 u64 objectid, u64 offset, u64 bytenr)
2847{
2848 struct btrfs_delayed_ref_head *head;
2849 struct btrfs_delayed_ref_node *ref;
2850 struct btrfs_delayed_data_ref *data_ref;
2851 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2852 int ret = 0;
2853
5d4f98a2
YZ
2854 delayed_refs = &trans->transaction->delayed_refs;
2855 spin_lock(&delayed_refs->lock);
2856 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2857 if (!head) {
2858 spin_unlock(&delayed_refs->lock);
2859 return 0;
2860 }
5d4f98a2
YZ
2861
2862 if (!mutex_trylock(&head->mutex)) {
2863 atomic_inc(&head->node.refs);
2864 spin_unlock(&delayed_refs->lock);
2865
b3b4aa74 2866 btrfs_release_path(path);
5d4f98a2 2867
8cc33e5c
DS
2868 /*
2869 * Mutex was contended, block until it's released and let
2870 * caller try again
2871 */
5d4f98a2
YZ
2872 mutex_lock(&head->mutex);
2873 mutex_unlock(&head->mutex);
2874 btrfs_put_delayed_ref(&head->node);
2875 return -EAGAIN;
2876 }
d7df2c79 2877 spin_unlock(&delayed_refs->lock);
5d4f98a2 2878
d7df2c79 2879 spin_lock(&head->lock);
c6fc2454 2880 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2881 /* If it's a shared ref we know a cross reference exists */
2882 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2883 ret = 1;
2884 break;
2885 }
5d4f98a2 2886
d7df2c79 2887 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2888
d7df2c79
JB
2889 /*
2890 * If our ref doesn't match the one we're currently looking at
2891 * then we have a cross reference.
2892 */
2893 if (data_ref->root != root->root_key.objectid ||
2894 data_ref->objectid != objectid ||
2895 data_ref->offset != offset) {
2896 ret = 1;
2897 break;
2898 }
5d4f98a2 2899 }
d7df2c79 2900 spin_unlock(&head->lock);
5d4f98a2 2901 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2902 return ret;
2903}
2904
2905static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2906 struct btrfs_root *root,
2907 struct btrfs_path *path,
2908 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2909{
2910 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2911 struct extent_buffer *leaf;
5d4f98a2
YZ
2912 struct btrfs_extent_data_ref *ref;
2913 struct btrfs_extent_inline_ref *iref;
2914 struct btrfs_extent_item *ei;
f321e491 2915 struct btrfs_key key;
5d4f98a2 2916 u32 item_size;
be20aa9d 2917 int ret;
925baedd 2918
be20aa9d 2919 key.objectid = bytenr;
31840ae1 2920 key.offset = (u64)-1;
f321e491 2921 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 2922
be20aa9d
CM
2923 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2924 if (ret < 0)
2925 goto out;
79787eaa 2926 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
2927
2928 ret = -ENOENT;
2929 if (path->slots[0] == 0)
31840ae1 2930 goto out;
be20aa9d 2931
31840ae1 2932 path->slots[0]--;
f321e491 2933 leaf = path->nodes[0];
5d4f98a2 2934 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 2935
5d4f98a2 2936 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 2937 goto out;
f321e491 2938
5d4f98a2
YZ
2939 ret = 1;
2940 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2941#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2942 if (item_size < sizeof(*ei)) {
2943 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2944 goto out;
2945 }
2946#endif
2947 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 2948
5d4f98a2
YZ
2949 if (item_size != sizeof(*ei) +
2950 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2951 goto out;
be20aa9d 2952
5d4f98a2
YZ
2953 if (btrfs_extent_generation(leaf, ei) <=
2954 btrfs_root_last_snapshot(&root->root_item))
2955 goto out;
2956
2957 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2958 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2959 BTRFS_EXTENT_DATA_REF_KEY)
2960 goto out;
2961
2962 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2963 if (btrfs_extent_refs(leaf, ei) !=
2964 btrfs_extent_data_ref_count(leaf, ref) ||
2965 btrfs_extent_data_ref_root(leaf, ref) !=
2966 root->root_key.objectid ||
2967 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2968 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2969 goto out;
2970
2971 ret = 0;
2972out:
2973 return ret;
2974}
2975
2976int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2977 struct btrfs_root *root,
2978 u64 objectid, u64 offset, u64 bytenr)
2979{
2980 struct btrfs_path *path;
2981 int ret;
2982 int ret2;
2983
2984 path = btrfs_alloc_path();
2985 if (!path)
2986 return -ENOENT;
2987
2988 do {
2989 ret = check_committed_ref(trans, root, path, objectid,
2990 offset, bytenr);
2991 if (ret && ret != -ENOENT)
f321e491 2992 goto out;
80ff3856 2993
5d4f98a2
YZ
2994 ret2 = check_delayed_ref(trans, root, path, objectid,
2995 offset, bytenr);
2996 } while (ret2 == -EAGAIN);
2997
2998 if (ret2 && ret2 != -ENOENT) {
2999 ret = ret2;
3000 goto out;
f321e491 3001 }
5d4f98a2
YZ
3002
3003 if (ret != -ENOENT || ret2 != -ENOENT)
3004 ret = 0;
be20aa9d 3005out:
80ff3856 3006 btrfs_free_path(path);
f0486c68
YZ
3007 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3008 WARN_ON(ret > 0);
f321e491 3009 return ret;
be20aa9d 3010}
c5739bba 3011
5d4f98a2 3012static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3013 struct btrfs_root *root,
5d4f98a2 3014 struct extent_buffer *buf,
e339a6b0 3015 int full_backref, int inc)
31840ae1
ZY
3016{
3017 u64 bytenr;
5d4f98a2
YZ
3018 u64 num_bytes;
3019 u64 parent;
31840ae1 3020 u64 ref_root;
31840ae1 3021 u32 nritems;
31840ae1
ZY
3022 struct btrfs_key key;
3023 struct btrfs_file_extent_item *fi;
3024 int i;
3025 int level;
3026 int ret = 0;
31840ae1 3027 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3028 u64, u64, u64, u64, u64, u64, int);
31840ae1 3029
fccb84c9
DS
3030
3031 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3032 return 0;
fccb84c9 3033
31840ae1 3034 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3035 nritems = btrfs_header_nritems(buf);
3036 level = btrfs_header_level(buf);
3037
27cdeb70 3038 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3039 return 0;
31840ae1 3040
5d4f98a2
YZ
3041 if (inc)
3042 process_func = btrfs_inc_extent_ref;
3043 else
3044 process_func = btrfs_free_extent;
31840ae1 3045
5d4f98a2
YZ
3046 if (full_backref)
3047 parent = buf->start;
3048 else
3049 parent = 0;
3050
3051 for (i = 0; i < nritems; i++) {
31840ae1 3052 if (level == 0) {
5d4f98a2 3053 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3054 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3055 continue;
5d4f98a2 3056 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3057 struct btrfs_file_extent_item);
3058 if (btrfs_file_extent_type(buf, fi) ==
3059 BTRFS_FILE_EXTENT_INLINE)
3060 continue;
3061 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3062 if (bytenr == 0)
3063 continue;
5d4f98a2
YZ
3064
3065 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3066 key.offset -= btrfs_file_extent_offset(buf, fi);
3067 ret = process_func(trans, root, bytenr, num_bytes,
3068 parent, ref_root, key.objectid,
e339a6b0 3069 key.offset, 1);
31840ae1
ZY
3070 if (ret)
3071 goto fail;
3072 } else {
5d4f98a2 3073 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3074 num_bytes = root->nodesize;
5d4f98a2 3075 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3076 parent, ref_root, level - 1, 0,
e339a6b0 3077 1);
31840ae1
ZY
3078 if (ret)
3079 goto fail;
3080 }
3081 }
3082 return 0;
3083fail:
5d4f98a2
YZ
3084 return ret;
3085}
3086
3087int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3088 struct extent_buffer *buf, int full_backref)
5d4f98a2 3089{
e339a6b0 3090 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3091}
3092
3093int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3094 struct extent_buffer *buf, int full_backref)
5d4f98a2 3095{
e339a6b0 3096 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3097}
3098
9078a3e1
CM
3099static int write_one_cache_group(struct btrfs_trans_handle *trans,
3100 struct btrfs_root *root,
3101 struct btrfs_path *path,
3102 struct btrfs_block_group_cache *cache)
3103{
3104 int ret;
9078a3e1 3105 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3106 unsigned long bi;
3107 struct extent_buffer *leaf;
9078a3e1 3108
9078a3e1 3109 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3110 if (ret) {
3111 if (ret > 0)
3112 ret = -ENOENT;
54aa1f4d 3113 goto fail;
df95e7f0 3114 }
5f39d397
CM
3115
3116 leaf = path->nodes[0];
3117 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3118 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3119 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3120fail:
24b89d08 3121 btrfs_release_path(path);
df95e7f0 3122 return ret;
9078a3e1
CM
3123
3124}
3125
4a8c9a62
YZ
3126static struct btrfs_block_group_cache *
3127next_block_group(struct btrfs_root *root,
3128 struct btrfs_block_group_cache *cache)
3129{
3130 struct rb_node *node;
292cbd51 3131
4a8c9a62 3132 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3133
3134 /* If our block group was removed, we need a full search. */
3135 if (RB_EMPTY_NODE(&cache->cache_node)) {
3136 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3137
3138 spin_unlock(&root->fs_info->block_group_cache_lock);
3139 btrfs_put_block_group(cache);
3140 cache = btrfs_lookup_first_block_group(root->fs_info,
3141 next_bytenr);
3142 return cache;
3143 }
4a8c9a62
YZ
3144 node = rb_next(&cache->cache_node);
3145 btrfs_put_block_group(cache);
3146 if (node) {
3147 cache = rb_entry(node, struct btrfs_block_group_cache,
3148 cache_node);
11dfe35a 3149 btrfs_get_block_group(cache);
4a8c9a62
YZ
3150 } else
3151 cache = NULL;
3152 spin_unlock(&root->fs_info->block_group_cache_lock);
3153 return cache;
3154}
3155
0af3d00b
JB
3156static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3157 struct btrfs_trans_handle *trans,
3158 struct btrfs_path *path)
3159{
3160 struct btrfs_root *root = block_group->fs_info->tree_root;
3161 struct inode *inode = NULL;
3162 u64 alloc_hint = 0;
2b20982e 3163 int dcs = BTRFS_DC_ERROR;
f8c269d7 3164 u64 num_pages = 0;
0af3d00b
JB
3165 int retries = 0;
3166 int ret = 0;
3167
3168 /*
3169 * If this block group is smaller than 100 megs don't bother caching the
3170 * block group.
3171 */
3172 if (block_group->key.offset < (100 * 1024 * 1024)) {
3173 spin_lock(&block_group->lock);
3174 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3175 spin_unlock(&block_group->lock);
3176 return 0;
3177 }
3178
0c0ef4bc
JB
3179 if (trans->aborted)
3180 return 0;
0af3d00b
JB
3181again:
3182 inode = lookup_free_space_inode(root, block_group, path);
3183 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3184 ret = PTR_ERR(inode);
b3b4aa74 3185 btrfs_release_path(path);
0af3d00b
JB
3186 goto out;
3187 }
3188
3189 if (IS_ERR(inode)) {
3190 BUG_ON(retries);
3191 retries++;
3192
3193 if (block_group->ro)
3194 goto out_free;
3195
3196 ret = create_free_space_inode(root, trans, block_group, path);
3197 if (ret)
3198 goto out_free;
3199 goto again;
3200 }
3201
5b0e95bf
JB
3202 /* We've already setup this transaction, go ahead and exit */
3203 if (block_group->cache_generation == trans->transid &&
3204 i_size_read(inode)) {
3205 dcs = BTRFS_DC_SETUP;
3206 goto out_put;
3207 }
3208
0af3d00b
JB
3209 /*
3210 * We want to set the generation to 0, that way if anything goes wrong
3211 * from here on out we know not to trust this cache when we load up next
3212 * time.
3213 */
3214 BTRFS_I(inode)->generation = 0;
3215 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3216 if (ret) {
3217 /*
3218 * So theoretically we could recover from this, simply set the
3219 * super cache generation to 0 so we know to invalidate the
3220 * cache, but then we'd have to keep track of the block groups
3221 * that fail this way so we know we _have_ to reset this cache
3222 * before the next commit or risk reading stale cache. So to
3223 * limit our exposure to horrible edge cases lets just abort the
3224 * transaction, this only happens in really bad situations
3225 * anyway.
3226 */
3227 btrfs_abort_transaction(trans, root, ret);
3228 goto out_put;
3229 }
0af3d00b
JB
3230 WARN_ON(ret);
3231
3232 if (i_size_read(inode) > 0) {
7b61cd92
MX
3233 ret = btrfs_check_trunc_cache_free_space(root,
3234 &root->fs_info->global_block_rsv);
3235 if (ret)
3236 goto out_put;
3237
1bbc621e 3238 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3239 if (ret)
3240 goto out_put;
3241 }
3242
3243 spin_lock(&block_group->lock);
cf7c1ef6 3244 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3245 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3246 /*
3247 * don't bother trying to write stuff out _if_
3248 * a) we're not cached,
3249 * b) we're with nospace_cache mount option.
3250 */
2b20982e 3251 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3252 spin_unlock(&block_group->lock);
3253 goto out_put;
3254 }
3255 spin_unlock(&block_group->lock);
3256
6fc823b1
JB
3257 /*
3258 * Try to preallocate enough space based on how big the block group is.
3259 * Keep in mind this has to include any pinned space which could end up
3260 * taking up quite a bit since it's not folded into the other space
3261 * cache.
3262 */
f8c269d7 3263 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3264 if (!num_pages)
3265 num_pages = 1;
3266
0af3d00b
JB
3267 num_pages *= 16;
3268 num_pages *= PAGE_CACHE_SIZE;
3269
e2d1f923 3270 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3271 if (ret)
3272 goto out_put;
3273
3274 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3275 num_pages, num_pages,
3276 &alloc_hint);
2b20982e
JB
3277 if (!ret)
3278 dcs = BTRFS_DC_SETUP;
0af3d00b 3279 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3280
0af3d00b
JB
3281out_put:
3282 iput(inode);
3283out_free:
b3b4aa74 3284 btrfs_release_path(path);
0af3d00b
JB
3285out:
3286 spin_lock(&block_group->lock);
e65cbb94 3287 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3288 block_group->cache_generation = trans->transid;
2b20982e 3289 block_group->disk_cache_state = dcs;
0af3d00b
JB
3290 spin_unlock(&block_group->lock);
3291
3292 return ret;
3293}
3294
dcdf7f6d
JB
3295int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3296 struct btrfs_root *root)
3297{
3298 struct btrfs_block_group_cache *cache, *tmp;
3299 struct btrfs_transaction *cur_trans = trans->transaction;
3300 struct btrfs_path *path;
3301
3302 if (list_empty(&cur_trans->dirty_bgs) ||
3303 !btrfs_test_opt(root, SPACE_CACHE))
3304 return 0;
3305
3306 path = btrfs_alloc_path();
3307 if (!path)
3308 return -ENOMEM;
3309
3310 /* Could add new block groups, use _safe just in case */
3311 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3312 dirty_list) {
3313 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3314 cache_save_setup(cache, trans, path);
3315 }
3316
3317 btrfs_free_path(path);
3318 return 0;
3319}
3320
1bbc621e
CM
3321/*
3322 * transaction commit does final block group cache writeback during a
3323 * critical section where nothing is allowed to change the FS. This is
3324 * required in order for the cache to actually match the block group,
3325 * but can introduce a lot of latency into the commit.
3326 *
3327 * So, btrfs_start_dirty_block_groups is here to kick off block group
3328 * cache IO. There's a chance we'll have to redo some of it if the
3329 * block group changes again during the commit, but it greatly reduces
3330 * the commit latency by getting rid of the easy block groups while
3331 * we're still allowing others to join the commit.
3332 */
3333int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3334 struct btrfs_root *root)
9078a3e1 3335{
4a8c9a62 3336 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3337 struct btrfs_transaction *cur_trans = trans->transaction;
3338 int ret = 0;
c9dc4c65 3339 int should_put;
1bbc621e
CM
3340 struct btrfs_path *path = NULL;
3341 LIST_HEAD(dirty);
3342 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3343 int num_started = 0;
1bbc621e
CM
3344 int loops = 0;
3345
3346 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3347 if (list_empty(&cur_trans->dirty_bgs)) {
3348 spin_unlock(&cur_trans->dirty_bgs_lock);
3349 return 0;
1bbc621e 3350 }
b58d1a9e 3351 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3352 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3353
1bbc621e 3354again:
1bbc621e
CM
3355 /*
3356 * make sure all the block groups on our dirty list actually
3357 * exist
3358 */
3359 btrfs_create_pending_block_groups(trans, root);
3360
3361 if (!path) {
3362 path = btrfs_alloc_path();
3363 if (!path)
3364 return -ENOMEM;
3365 }
3366
b58d1a9e
FM
3367 /*
3368 * cache_write_mutex is here only to save us from balance or automatic
3369 * removal of empty block groups deleting this block group while we are
3370 * writing out the cache
3371 */
3372 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3373 while (!list_empty(&dirty)) {
3374 cache = list_first_entry(&dirty,
3375 struct btrfs_block_group_cache,
3376 dirty_list);
1bbc621e
CM
3377 /*
3378 * this can happen if something re-dirties a block
3379 * group that is already under IO. Just wait for it to
3380 * finish and then do it all again
3381 */
3382 if (!list_empty(&cache->io_list)) {
3383 list_del_init(&cache->io_list);
3384 btrfs_wait_cache_io(root, trans, cache,
3385 &cache->io_ctl, path,
3386 cache->key.objectid);
3387 btrfs_put_block_group(cache);
3388 }
3389
3390
3391 /*
3392 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3393 * if it should update the cache_state. Don't delete
3394 * until after we wait.
3395 *
3396 * Since we're not running in the commit critical section
3397 * we need the dirty_bgs_lock to protect from update_block_group
3398 */
3399 spin_lock(&cur_trans->dirty_bgs_lock);
3400 list_del_init(&cache->dirty_list);
3401 spin_unlock(&cur_trans->dirty_bgs_lock);
3402
3403 should_put = 1;
3404
3405 cache_save_setup(cache, trans, path);
3406
3407 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3408 cache->io_ctl.inode = NULL;
3409 ret = btrfs_write_out_cache(root, trans, cache, path);
3410 if (ret == 0 && cache->io_ctl.inode) {
3411 num_started++;
3412 should_put = 0;
3413
3414 /*
3415 * the cache_write_mutex is protecting
3416 * the io_list
3417 */
3418 list_add_tail(&cache->io_list, io);
3419 } else {
3420 /*
3421 * if we failed to write the cache, the
3422 * generation will be bad and life goes on
3423 */
3424 ret = 0;
3425 }
3426 }
ff1f8250 3427 if (!ret) {
1bbc621e 3428 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3429 /*
3430 * Our block group might still be attached to the list
3431 * of new block groups in the transaction handle of some
3432 * other task (struct btrfs_trans_handle->new_bgs). This
3433 * means its block group item isn't yet in the extent
3434 * tree. If this happens ignore the error, as we will
3435 * try again later in the critical section of the
3436 * transaction commit.
3437 */
3438 if (ret == -ENOENT) {
3439 ret = 0;
3440 spin_lock(&cur_trans->dirty_bgs_lock);
3441 if (list_empty(&cache->dirty_list)) {
3442 list_add_tail(&cache->dirty_list,
3443 &cur_trans->dirty_bgs);
3444 btrfs_get_block_group(cache);
3445 }
3446 spin_unlock(&cur_trans->dirty_bgs_lock);
3447 } else if (ret) {
3448 btrfs_abort_transaction(trans, root, ret);
3449 }
3450 }
1bbc621e
CM
3451
3452 /* if its not on the io list, we need to put the block group */
3453 if (should_put)
3454 btrfs_put_block_group(cache);
3455
3456 if (ret)
3457 break;
b58d1a9e
FM
3458
3459 /*
3460 * Avoid blocking other tasks for too long. It might even save
3461 * us from writing caches for block groups that are going to be
3462 * removed.
3463 */
3464 mutex_unlock(&trans->transaction->cache_write_mutex);
3465 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3466 }
b58d1a9e 3467 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3468
3469 /*
3470 * go through delayed refs for all the stuff we've just kicked off
3471 * and then loop back (just once)
3472 */
3473 ret = btrfs_run_delayed_refs(trans, root, 0);
3474 if (!ret && loops == 0) {
3475 loops++;
3476 spin_lock(&cur_trans->dirty_bgs_lock);
3477 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3478 /*
3479 * dirty_bgs_lock protects us from concurrent block group
3480 * deletes too (not just cache_write_mutex).
3481 */
3482 if (!list_empty(&dirty)) {
3483 spin_unlock(&cur_trans->dirty_bgs_lock);
3484 goto again;
3485 }
1bbc621e 3486 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3487 }
3488
3489 btrfs_free_path(path);
3490 return ret;
3491}
3492
3493int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3494 struct btrfs_root *root)
3495{
3496 struct btrfs_block_group_cache *cache;
3497 struct btrfs_transaction *cur_trans = trans->transaction;
3498 int ret = 0;
3499 int should_put;
3500 struct btrfs_path *path;
3501 struct list_head *io = &cur_trans->io_bgs;
3502 int num_started = 0;
9078a3e1
CM
3503
3504 path = btrfs_alloc_path();
3505 if (!path)
3506 return -ENOMEM;
3507
ce93ec54
JB
3508 /*
3509 * We don't need the lock here since we are protected by the transaction
3510 * commit. We want to do the cache_save_setup first and then run the
3511 * delayed refs to make sure we have the best chance at doing this all
3512 * in one shot.
3513 */
3514 while (!list_empty(&cur_trans->dirty_bgs)) {
3515 cache = list_first_entry(&cur_trans->dirty_bgs,
3516 struct btrfs_block_group_cache,
3517 dirty_list);
c9dc4c65
CM
3518
3519 /*
3520 * this can happen if cache_save_setup re-dirties a block
3521 * group that is already under IO. Just wait for it to
3522 * finish and then do it all again
3523 */
3524 if (!list_empty(&cache->io_list)) {
3525 list_del_init(&cache->io_list);
3526 btrfs_wait_cache_io(root, trans, cache,
3527 &cache->io_ctl, path,
3528 cache->key.objectid);
3529 btrfs_put_block_group(cache);
c9dc4c65
CM
3530 }
3531
1bbc621e
CM
3532 /*
3533 * don't remove from the dirty list until after we've waited
3534 * on any pending IO
3535 */
ce93ec54 3536 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3537 should_put = 1;
3538
1bbc621e 3539 cache_save_setup(cache, trans, path);
c9dc4c65 3540
ce93ec54 3541 if (!ret)
c9dc4c65
CM
3542 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3543
3544 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3545 cache->io_ctl.inode = NULL;
3546 ret = btrfs_write_out_cache(root, trans, cache, path);
3547 if (ret == 0 && cache->io_ctl.inode) {
3548 num_started++;
3549 should_put = 0;
1bbc621e 3550 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3551 } else {
3552 /*
3553 * if we failed to write the cache, the
3554 * generation will be bad and life goes on
3555 */
3556 ret = 0;
3557 }
3558 }
ff1f8250 3559 if (!ret) {
ce93ec54 3560 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3561 if (ret)
3562 btrfs_abort_transaction(trans, root, ret);
3563 }
c9dc4c65
CM
3564
3565 /* if its not on the io list, we need to put the block group */
3566 if (should_put)
3567 btrfs_put_block_group(cache);
3568 }
3569
1bbc621e
CM
3570 while (!list_empty(io)) {
3571 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3572 io_list);
3573 list_del_init(&cache->io_list);
c9dc4c65
CM
3574 btrfs_wait_cache_io(root, trans, cache,
3575 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3576 btrfs_put_block_group(cache);
3577 }
3578
9078a3e1 3579 btrfs_free_path(path);
ce93ec54 3580 return ret;
9078a3e1
CM
3581}
3582
d2fb3437
YZ
3583int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3584{
3585 struct btrfs_block_group_cache *block_group;
3586 int readonly = 0;
3587
3588 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3589 if (!block_group || block_group->ro)
3590 readonly = 1;
3591 if (block_group)
fa9c0d79 3592 btrfs_put_block_group(block_group);
d2fb3437
YZ
3593 return readonly;
3594}
3595
6ab0a202
JM
3596static const char *alloc_name(u64 flags)
3597{
3598 switch (flags) {
3599 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3600 return "mixed";
3601 case BTRFS_BLOCK_GROUP_METADATA:
3602 return "metadata";
3603 case BTRFS_BLOCK_GROUP_DATA:
3604 return "data";
3605 case BTRFS_BLOCK_GROUP_SYSTEM:
3606 return "system";
3607 default:
3608 WARN_ON(1);
3609 return "invalid-combination";
3610 };
3611}
3612
593060d7
CM
3613static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3614 u64 total_bytes, u64 bytes_used,
3615 struct btrfs_space_info **space_info)
3616{
3617 struct btrfs_space_info *found;
b742bb82
YZ
3618 int i;
3619 int factor;
b150a4f1 3620 int ret;
b742bb82
YZ
3621
3622 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3623 BTRFS_BLOCK_GROUP_RAID10))
3624 factor = 2;
3625 else
3626 factor = 1;
593060d7
CM
3627
3628 found = __find_space_info(info, flags);
3629 if (found) {
25179201 3630 spin_lock(&found->lock);
593060d7 3631 found->total_bytes += total_bytes;
89a55897 3632 found->disk_total += total_bytes * factor;
593060d7 3633 found->bytes_used += bytes_used;
b742bb82 3634 found->disk_used += bytes_used * factor;
2e6e5183
FM
3635 if (total_bytes > 0)
3636 found->full = 0;
25179201 3637 spin_unlock(&found->lock);
593060d7
CM
3638 *space_info = found;
3639 return 0;
3640 }
c146afad 3641 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3642 if (!found)
3643 return -ENOMEM;
3644
908c7f19 3645 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3646 if (ret) {
3647 kfree(found);
3648 return ret;
3649 }
3650
c1895442 3651 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3652 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3653 init_rwsem(&found->groups_sem);
0f9dd46c 3654 spin_lock_init(&found->lock);
52ba6929 3655 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3656 found->total_bytes = total_bytes;
89a55897 3657 found->disk_total = total_bytes * factor;
593060d7 3658 found->bytes_used = bytes_used;
b742bb82 3659 found->disk_used = bytes_used * factor;
593060d7 3660 found->bytes_pinned = 0;
e8569813 3661 found->bytes_reserved = 0;
c146afad 3662 found->bytes_readonly = 0;
f0486c68 3663 found->bytes_may_use = 0;
2e6e5183
FM
3664 if (total_bytes > 0)
3665 found->full = 0;
3666 else
3667 found->full = 1;
0e4f8f88 3668 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3669 found->chunk_alloc = 0;
fdb5effd
JB
3670 found->flush = 0;
3671 init_waitqueue_head(&found->wait);
633c0aad 3672 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3673
3674 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3675 info->space_info_kobj, "%s",
3676 alloc_name(found->flags));
3677 if (ret) {
3678 kfree(found);
3679 return ret;
3680 }
3681
593060d7 3682 *space_info = found;
4184ea7f 3683 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3684 if (flags & BTRFS_BLOCK_GROUP_DATA)
3685 info->data_sinfo = found;
6ab0a202
JM
3686
3687 return ret;
593060d7
CM
3688}
3689
8790d502
CM
3690static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3691{
899c81ea
ID
3692 u64 extra_flags = chunk_to_extended(flags) &
3693 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3694
de98ced9 3695 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3696 if (flags & BTRFS_BLOCK_GROUP_DATA)
3697 fs_info->avail_data_alloc_bits |= extra_flags;
3698 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3699 fs_info->avail_metadata_alloc_bits |= extra_flags;
3700 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3701 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3702 write_sequnlock(&fs_info->profiles_lock);
8790d502 3703}
593060d7 3704
fc67c450
ID
3705/*
3706 * returns target flags in extended format or 0 if restripe for this
3707 * chunk_type is not in progress
c6664b42
ID
3708 *
3709 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3710 */
3711static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3712{
3713 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3714 u64 target = 0;
3715
fc67c450
ID
3716 if (!bctl)
3717 return 0;
3718
3719 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3720 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3721 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3722 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3723 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3724 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3725 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3726 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3727 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3728 }
3729
3730 return target;
3731}
3732
a46d11a8
ID
3733/*
3734 * @flags: available profiles in extended format (see ctree.h)
3735 *
e4d8ec0f
ID
3736 * Returns reduced profile in chunk format. If profile changing is in
3737 * progress (either running or paused) picks the target profile (if it's
3738 * already available), otherwise falls back to plain reducing.
a46d11a8 3739 */
48a3b636 3740static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3741{
95669976 3742 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3743 u64 target;
53b381b3 3744 u64 tmp;
a061fc8d 3745
fc67c450
ID
3746 /*
3747 * see if restripe for this chunk_type is in progress, if so
3748 * try to reduce to the target profile
3749 */
e4d8ec0f 3750 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3751 target = get_restripe_target(root->fs_info, flags);
3752 if (target) {
3753 /* pick target profile only if it's already available */
3754 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3755 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3756 return extended_to_chunk(target);
e4d8ec0f
ID
3757 }
3758 }
3759 spin_unlock(&root->fs_info->balance_lock);
3760
53b381b3 3761 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3762 if (num_devices == 1)
53b381b3
DW
3763 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3764 BTRFS_BLOCK_GROUP_RAID5);
3765 if (num_devices < 3)
3766 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3767 if (num_devices < 4)
3768 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3769
53b381b3
DW
3770 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3771 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3772 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3773 flags &= ~tmp;
ec44a35c 3774
53b381b3
DW
3775 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3776 tmp = BTRFS_BLOCK_GROUP_RAID6;
3777 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3778 tmp = BTRFS_BLOCK_GROUP_RAID5;
3779 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3780 tmp = BTRFS_BLOCK_GROUP_RAID10;
3781 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3782 tmp = BTRFS_BLOCK_GROUP_RAID1;
3783 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3784 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3785
53b381b3 3786 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3787}
3788
f8213bdc 3789static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3790{
de98ced9 3791 unsigned seq;
f8213bdc 3792 u64 flags;
de98ced9
MX
3793
3794 do {
f8213bdc 3795 flags = orig_flags;
de98ced9
MX
3796 seq = read_seqbegin(&root->fs_info->profiles_lock);
3797
3798 if (flags & BTRFS_BLOCK_GROUP_DATA)
3799 flags |= root->fs_info->avail_data_alloc_bits;
3800 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3801 flags |= root->fs_info->avail_system_alloc_bits;
3802 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3803 flags |= root->fs_info->avail_metadata_alloc_bits;
3804 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3805
b742bb82 3806 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3807}
3808
6d07bcec 3809u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3810{
b742bb82 3811 u64 flags;
53b381b3 3812 u64 ret;
9ed74f2d 3813
b742bb82
YZ
3814 if (data)
3815 flags = BTRFS_BLOCK_GROUP_DATA;
3816 else if (root == root->fs_info->chunk_root)
3817 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3818 else
b742bb82 3819 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3820
53b381b3
DW
3821 ret = get_alloc_profile(root, flags);
3822 return ret;
6a63209f 3823}
9ed74f2d 3824
6a63209f 3825/*
6a63209f
JB
3826 * This will check the space that the inode allocates from to make sure we have
3827 * enough space for bytes.
6a63209f 3828 */
e2d1f923 3829int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3830{
6a63209f 3831 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3832 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3833 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3834 u64 used;
94b947b2 3835 int ret = 0;
c99f1b0c
ZL
3836 int need_commit = 2;
3837 int have_pinned_space;
6a63209f 3838
6a63209f 3839 /* make sure bytes are sectorsize aligned */
fda2832f 3840 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3841
9dced186 3842 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3843 need_commit = 0;
9dced186 3844 ASSERT(current->journal_info);
0af3d00b
JB
3845 }
3846
b4d7c3c9 3847 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3848 if (!data_sinfo)
3849 goto alloc;
9ed74f2d 3850
6a63209f
JB
3851again:
3852 /* make sure we have enough space to handle the data first */
3853 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3854 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3855 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3856 data_sinfo->bytes_may_use;
ab6e2410
JB
3857
3858 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3859 struct btrfs_trans_handle *trans;
9ed74f2d 3860
6a63209f
JB
3861 /*
3862 * if we don't have enough free bytes in this space then we need
3863 * to alloc a new chunk.
3864 */
b9fd47cd 3865 if (!data_sinfo->full) {
6a63209f 3866 u64 alloc_target;
9ed74f2d 3867
0e4f8f88 3868 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3869 spin_unlock(&data_sinfo->lock);
33b4d47f 3870alloc:
6a63209f 3871 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3872 /*
3873 * It is ugly that we don't call nolock join
3874 * transaction for the free space inode case here.
3875 * But it is safe because we only do the data space
3876 * reservation for the free space cache in the
3877 * transaction context, the common join transaction
3878 * just increase the counter of the current transaction
3879 * handler, doesn't try to acquire the trans_lock of
3880 * the fs.
3881 */
7a7eaa40 3882 trans = btrfs_join_transaction(root);
a22285a6
YZ
3883 if (IS_ERR(trans))
3884 return PTR_ERR(trans);
9ed74f2d 3885
6a63209f 3886 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3887 alloc_target,
3888 CHUNK_ALLOC_NO_FORCE);
6a63209f 3889 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3890 if (ret < 0) {
3891 if (ret != -ENOSPC)
3892 return ret;
c99f1b0c
ZL
3893 else {
3894 have_pinned_space = 1;
d52a5b5f 3895 goto commit_trans;
c99f1b0c 3896 }
d52a5b5f 3897 }
9ed74f2d 3898
b4d7c3c9
LZ
3899 if (!data_sinfo)
3900 data_sinfo = fs_info->data_sinfo;
3901
6a63209f
JB
3902 goto again;
3903 }
f2bb8f5c
JB
3904
3905 /*
b150a4f1 3906 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3907 * allocation, and no removed chunk in current transaction,
3908 * don't bother committing the transaction.
f2bb8f5c 3909 */
c99f1b0c
ZL
3910 have_pinned_space = percpu_counter_compare(
3911 &data_sinfo->total_bytes_pinned,
3912 used + bytes - data_sinfo->total_bytes);
6a63209f 3913 spin_unlock(&data_sinfo->lock);
6a63209f 3914
4e06bdd6 3915 /* commit the current transaction and try again */
d52a5b5f 3916commit_trans:
c99f1b0c 3917 if (need_commit &&
a4abeea4 3918 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3919 need_commit--;
b150a4f1 3920
9a4e7276
ZL
3921 if (need_commit > 0)
3922 btrfs_wait_ordered_roots(fs_info, -1);
3923
7a7eaa40 3924 trans = btrfs_join_transaction(root);
a22285a6
YZ
3925 if (IS_ERR(trans))
3926 return PTR_ERR(trans);
c99f1b0c
ZL
3927 if (have_pinned_space >= 0 ||
3928 trans->transaction->have_free_bgs ||
3929 need_commit > 0) {
94b947b2
ZL
3930 ret = btrfs_commit_transaction(trans, root);
3931 if (ret)
3932 return ret;
d7c15171
ZL
3933 /*
3934 * make sure that all running delayed iput are
3935 * done
3936 */
3937 down_write(&root->fs_info->delayed_iput_sem);
3938 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
3939 goto again;
3940 } else {
3941 btrfs_end_transaction(trans, root);
3942 }
4e06bdd6 3943 }
9ed74f2d 3944
cab45e22
JM
3945 trace_btrfs_space_reservation(root->fs_info,
3946 "space_info:enospc",
3947 data_sinfo->flags, bytes, 1);
6a63209f
JB
3948 return -ENOSPC;
3949 }
e2d1f923 3950 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
3951 if (ret)
3952 goto out;
6a63209f 3953 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 3954 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3955 data_sinfo->flags, bytes, 1);
237c0e9f 3956out:
6a63209f 3957 spin_unlock(&data_sinfo->lock);
6a63209f 3958
237c0e9f 3959 return ret;
9ed74f2d 3960}
6a63209f 3961
6a63209f 3962/*
fb25e914 3963 * Called if we need to clear a data reservation for this inode.
6a63209f 3964 */
0ca1f7ce 3965void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 3966{
0ca1f7ce 3967 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 3968 struct btrfs_space_info *data_sinfo;
e3ccfa98 3969
6a63209f 3970 /* make sure bytes are sectorsize aligned */
fda2832f 3971 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 3972
b4d7c3c9 3973 data_sinfo = root->fs_info->data_sinfo;
6a63209f 3974 spin_lock(&data_sinfo->lock);
7ee9e440 3975 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 3976 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 3977 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3978 data_sinfo->flags, bytes, 0);
6a63209f 3979 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
3980}
3981
97e728d4 3982static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 3983{
97e728d4
JB
3984 struct list_head *head = &info->space_info;
3985 struct btrfs_space_info *found;
e3ccfa98 3986
97e728d4
JB
3987 rcu_read_lock();
3988 list_for_each_entry_rcu(found, head, list) {
3989 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 3990 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 3991 }
97e728d4 3992 rcu_read_unlock();
e3ccfa98
JB
3993}
3994
3c76cd84
MX
3995static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3996{
3997 return (global->size << 1);
3998}
3999
e5bc2458 4000static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4001 struct btrfs_space_info *sinfo, int force)
32c00aff 4002{
fb25e914 4003 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4004 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4005 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4006 u64 thresh;
e3ccfa98 4007
0e4f8f88
CM
4008 if (force == CHUNK_ALLOC_FORCE)
4009 return 1;
4010
fb25e914
JB
4011 /*
4012 * We need to take into account the global rsv because for all intents
4013 * and purposes it's used space. Don't worry about locking the
4014 * global_rsv, it doesn't change except when the transaction commits.
4015 */
54338b5c 4016 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4017 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4018
0e4f8f88
CM
4019 /*
4020 * in limited mode, we want to have some free space up to
4021 * about 1% of the FS size.
4022 */
4023 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4024 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4025 thresh = max_t(u64, 64 * 1024 * 1024,
4026 div_factor_fine(thresh, 1));
4027
4028 if (num_bytes - num_allocated < thresh)
4029 return 1;
4030 }
0e4f8f88 4031
698d0082 4032 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4033 return 0;
424499db 4034 return 1;
32c00aff
JB
4035}
4036
39c2d7fa 4037static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4038{
4039 u64 num_dev;
4040
53b381b3
DW
4041 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4042 BTRFS_BLOCK_GROUP_RAID0 |
4043 BTRFS_BLOCK_GROUP_RAID5 |
4044 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4045 num_dev = root->fs_info->fs_devices->rw_devices;
4046 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4047 num_dev = 2;
4048 else
4049 num_dev = 1; /* DUP or single */
4050
39c2d7fa 4051 return num_dev;
15d1ff81
LB
4052}
4053
39c2d7fa
FM
4054/*
4055 * If @is_allocation is true, reserve space in the system space info necessary
4056 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4057 * removing a chunk.
4058 */
4059void check_system_chunk(struct btrfs_trans_handle *trans,
4060 struct btrfs_root *root,
4617ea3a 4061 u64 type)
15d1ff81
LB
4062{
4063 struct btrfs_space_info *info;
4064 u64 left;
4065 u64 thresh;
4fbcdf66 4066 int ret = 0;
39c2d7fa 4067 u64 num_devs;
4fbcdf66
FM
4068
4069 /*
4070 * Needed because we can end up allocating a system chunk and for an
4071 * atomic and race free space reservation in the chunk block reserve.
4072 */
4073 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4074
4075 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4076 spin_lock(&info->lock);
4077 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4078 info->bytes_reserved - info->bytes_readonly -
4079 info->bytes_may_use;
15d1ff81
LB
4080 spin_unlock(&info->lock);
4081
39c2d7fa
FM
4082 num_devs = get_profile_num_devs(root, type);
4083
4084 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4085 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4086 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4087
15d1ff81 4088 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4089 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4090 left, thresh, type);
15d1ff81
LB
4091 dump_space_info(info, 0, 0);
4092 }
4093
4094 if (left < thresh) {
4095 u64 flags;
4096
4097 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4098 /*
4099 * Ignore failure to create system chunk. We might end up not
4100 * needing it, as we might not need to COW all nodes/leafs from
4101 * the paths we visit in the chunk tree (they were already COWed
4102 * or created in the current transaction for example).
4103 */
4104 ret = btrfs_alloc_chunk(trans, root, flags);
4105 }
4106
4107 if (!ret) {
4108 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4109 &root->fs_info->chunk_block_rsv,
4110 thresh, BTRFS_RESERVE_NO_FLUSH);
4111 if (!ret)
4112 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4113 }
4114}
4115
6324fbf3 4116static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4117 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4118{
6324fbf3 4119 struct btrfs_space_info *space_info;
97e728d4 4120 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4121 int wait_for_alloc = 0;
9ed74f2d 4122 int ret = 0;
9ed74f2d 4123
c6b305a8
JB
4124 /* Don't re-enter if we're already allocating a chunk */
4125 if (trans->allocating_chunk)
4126 return -ENOSPC;
4127
6324fbf3 4128 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4129 if (!space_info) {
4130 ret = update_space_info(extent_root->fs_info, flags,
4131 0, 0, &space_info);
79787eaa 4132 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4133 }
79787eaa 4134 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4135
6d74119f 4136again:
25179201 4137 spin_lock(&space_info->lock);
9e622d6b 4138 if (force < space_info->force_alloc)
0e4f8f88 4139 force = space_info->force_alloc;
25179201 4140 if (space_info->full) {
09fb99a6
FDBM
4141 if (should_alloc_chunk(extent_root, space_info, force))
4142 ret = -ENOSPC;
4143 else
4144 ret = 0;
25179201 4145 spin_unlock(&space_info->lock);
09fb99a6 4146 return ret;
9ed74f2d
JB
4147 }
4148
698d0082 4149 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4150 spin_unlock(&space_info->lock);
6d74119f
JB
4151 return 0;
4152 } else if (space_info->chunk_alloc) {
4153 wait_for_alloc = 1;
4154 } else {
4155 space_info->chunk_alloc = 1;
9ed74f2d 4156 }
0e4f8f88 4157
25179201 4158 spin_unlock(&space_info->lock);
9ed74f2d 4159
6d74119f
JB
4160 mutex_lock(&fs_info->chunk_mutex);
4161
4162 /*
4163 * The chunk_mutex is held throughout the entirety of a chunk
4164 * allocation, so once we've acquired the chunk_mutex we know that the
4165 * other guy is done and we need to recheck and see if we should
4166 * allocate.
4167 */
4168 if (wait_for_alloc) {
4169 mutex_unlock(&fs_info->chunk_mutex);
4170 wait_for_alloc = 0;
4171 goto again;
4172 }
4173
c6b305a8
JB
4174 trans->allocating_chunk = true;
4175
67377734
JB
4176 /*
4177 * If we have mixed data/metadata chunks we want to make sure we keep
4178 * allocating mixed chunks instead of individual chunks.
4179 */
4180 if (btrfs_mixed_space_info(space_info))
4181 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4182
97e728d4
JB
4183 /*
4184 * if we're doing a data chunk, go ahead and make sure that
4185 * we keep a reasonable number of metadata chunks allocated in the
4186 * FS as well.
4187 */
9ed74f2d 4188 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4189 fs_info->data_chunk_allocations++;
4190 if (!(fs_info->data_chunk_allocations %
4191 fs_info->metadata_ratio))
4192 force_metadata_allocation(fs_info);
9ed74f2d
JB
4193 }
4194
15d1ff81
LB
4195 /*
4196 * Check if we have enough space in SYSTEM chunk because we may need
4197 * to update devices.
4198 */
4617ea3a 4199 check_system_chunk(trans, extent_root, flags);
15d1ff81 4200
2b82032c 4201 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4202 trans->allocating_chunk = false;
92b8e897 4203
9ed74f2d 4204 spin_lock(&space_info->lock);
a81cb9a2
AO
4205 if (ret < 0 && ret != -ENOSPC)
4206 goto out;
9ed74f2d 4207 if (ret)
6324fbf3 4208 space_info->full = 1;
424499db
YZ
4209 else
4210 ret = 1;
6d74119f 4211
0e4f8f88 4212 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4213out:
6d74119f 4214 space_info->chunk_alloc = 0;
9ed74f2d 4215 spin_unlock(&space_info->lock);
a25c75d5 4216 mutex_unlock(&fs_info->chunk_mutex);
0f9dd46c 4217 return ret;
6324fbf3 4218}
9ed74f2d 4219
a80c8dcf
JB
4220static int can_overcommit(struct btrfs_root *root,
4221 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4222 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4223{
96f1bb57 4224 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4225 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4226 u64 space_size;
a80c8dcf
JB
4227 u64 avail;
4228 u64 used;
4229
4230 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4231 space_info->bytes_pinned + space_info->bytes_readonly;
4232
96f1bb57
JB
4233 /*
4234 * We only want to allow over committing if we have lots of actual space
4235 * free, but if we don't have enough space to handle the global reserve
4236 * space then we could end up having a real enospc problem when trying
4237 * to allocate a chunk or some other such important allocation.
4238 */
3c76cd84
MX
4239 spin_lock(&global_rsv->lock);
4240 space_size = calc_global_rsv_need_space(global_rsv);
4241 spin_unlock(&global_rsv->lock);
4242 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4243 return 0;
4244
4245 used += space_info->bytes_may_use;
a80c8dcf
JB
4246
4247 spin_lock(&root->fs_info->free_chunk_lock);
4248 avail = root->fs_info->free_chunk_space;
4249 spin_unlock(&root->fs_info->free_chunk_lock);
4250
4251 /*
4252 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4253 * space is actually useable. For raid56, the space info used
4254 * doesn't include the parity drive, so we don't have to
4255 * change the math
a80c8dcf
JB
4256 */
4257 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4258 BTRFS_BLOCK_GROUP_RAID1 |
4259 BTRFS_BLOCK_GROUP_RAID10))
4260 avail >>= 1;
4261
4262 /*
561c294d
MX
4263 * If we aren't flushing all things, let us overcommit up to
4264 * 1/2th of the space. If we can flush, don't let us overcommit
4265 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4266 */
08e007d2 4267 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4268 avail >>= 3;
a80c8dcf 4269 else
14575aef 4270 avail >>= 1;
a80c8dcf 4271
14575aef 4272 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4273 return 1;
4274 return 0;
4275}
4276
48a3b636 4277static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4278 unsigned long nr_pages, int nr_items)
da633a42
MX
4279{
4280 struct super_block *sb = root->fs_info->sb;
da633a42 4281
925a6efb
JB
4282 if (down_read_trylock(&sb->s_umount)) {
4283 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4284 up_read(&sb->s_umount);
4285 } else {
da633a42
MX
4286 /*
4287 * We needn't worry the filesystem going from r/w to r/o though
4288 * we don't acquire ->s_umount mutex, because the filesystem
4289 * should guarantee the delalloc inodes list be empty after
4290 * the filesystem is readonly(all dirty pages are written to
4291 * the disk).
4292 */
6c255e67 4293 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4294 if (!current->journal_info)
6c255e67 4295 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4296 }
4297}
4298
18cd8ea6
MX
4299static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4300{
4301 u64 bytes;
4302 int nr;
4303
4304 bytes = btrfs_calc_trans_metadata_size(root, 1);
4305 nr = (int)div64_u64(to_reclaim, bytes);
4306 if (!nr)
4307 nr = 1;
4308 return nr;
4309}
4310
c61a16a7
MX
4311#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4312
9ed74f2d 4313/*
5da9d01b 4314 * shrink metadata reservation for delalloc
9ed74f2d 4315 */
f4c738c2
JB
4316static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4317 bool wait_ordered)
5da9d01b 4318{
0ca1f7ce 4319 struct btrfs_block_rsv *block_rsv;
0019f10d 4320 struct btrfs_space_info *space_info;
663350ac 4321 struct btrfs_trans_handle *trans;
f4c738c2 4322 u64 delalloc_bytes;
5da9d01b 4323 u64 max_reclaim;
b1953bce 4324 long time_left;
d3ee29e3
MX
4325 unsigned long nr_pages;
4326 int loops;
b0244199 4327 int items;
08e007d2 4328 enum btrfs_reserve_flush_enum flush;
5da9d01b 4329
c61a16a7 4330 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4331 items = calc_reclaim_items_nr(root, to_reclaim);
4332 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4333
663350ac 4334 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4335 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4336 space_info = block_rsv->space_info;
bf9022e0 4337
963d678b
MX
4338 delalloc_bytes = percpu_counter_sum_positive(
4339 &root->fs_info->delalloc_bytes);
f4c738c2 4340 if (delalloc_bytes == 0) {
fdb5effd 4341 if (trans)
f4c738c2 4342 return;
38c135af 4343 if (wait_ordered)
b0244199 4344 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4345 return;
fdb5effd
JB
4346 }
4347
d3ee29e3 4348 loops = 0;
f4c738c2
JB
4349 while (delalloc_bytes && loops < 3) {
4350 max_reclaim = min(delalloc_bytes, to_reclaim);
4351 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4352 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4353 /*
4354 * We need to wait for the async pages to actually start before
4355 * we do anything.
4356 */
9f3a074d
MX
4357 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4358 if (!max_reclaim)
4359 goto skip_async;
4360
4361 if (max_reclaim <= nr_pages)
4362 max_reclaim = 0;
4363 else
4364 max_reclaim -= nr_pages;
dea31f52 4365
9f3a074d
MX
4366 wait_event(root->fs_info->async_submit_wait,
4367 atomic_read(&root->fs_info->async_delalloc_pages) <=
4368 (int)max_reclaim);
4369skip_async:
08e007d2
MX
4370 if (!trans)
4371 flush = BTRFS_RESERVE_FLUSH_ALL;
4372 else
4373 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4374 spin_lock(&space_info->lock);
08e007d2 4375 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4376 spin_unlock(&space_info->lock);
4377 break;
4378 }
0019f10d 4379 spin_unlock(&space_info->lock);
5da9d01b 4380
36e39c40 4381 loops++;
f104d044 4382 if (wait_ordered && !trans) {
b0244199 4383 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4384 } else {
f4c738c2 4385 time_left = schedule_timeout_killable(1);
f104d044
JB
4386 if (time_left)
4387 break;
4388 }
963d678b
MX
4389 delalloc_bytes = percpu_counter_sum_positive(
4390 &root->fs_info->delalloc_bytes);
5da9d01b 4391 }
5da9d01b
YZ
4392}
4393
663350ac
JB
4394/**
4395 * maybe_commit_transaction - possibly commit the transaction if its ok to
4396 * @root - the root we're allocating for
4397 * @bytes - the number of bytes we want to reserve
4398 * @force - force the commit
8bb8ab2e 4399 *
663350ac
JB
4400 * This will check to make sure that committing the transaction will actually
4401 * get us somewhere and then commit the transaction if it does. Otherwise it
4402 * will return -ENOSPC.
8bb8ab2e 4403 */
663350ac
JB
4404static int may_commit_transaction(struct btrfs_root *root,
4405 struct btrfs_space_info *space_info,
4406 u64 bytes, int force)
4407{
4408 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4409 struct btrfs_trans_handle *trans;
4410
4411 trans = (struct btrfs_trans_handle *)current->journal_info;
4412 if (trans)
4413 return -EAGAIN;
4414
4415 if (force)
4416 goto commit;
4417
4418 /* See if there is enough pinned space to make this reservation */
b150a4f1 4419 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4420 bytes) >= 0)
663350ac 4421 goto commit;
663350ac
JB
4422
4423 /*
4424 * See if there is some space in the delayed insertion reservation for
4425 * this reservation.
4426 */
4427 if (space_info != delayed_rsv->space_info)
4428 return -ENOSPC;
4429
4430 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4431 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4432 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4433 spin_unlock(&delayed_rsv->lock);
4434 return -ENOSPC;
4435 }
4436 spin_unlock(&delayed_rsv->lock);
4437
4438commit:
4439 trans = btrfs_join_transaction(root);
4440 if (IS_ERR(trans))
4441 return -ENOSPC;
4442
4443 return btrfs_commit_transaction(trans, root);
4444}
4445
96c3f433 4446enum flush_state {
67b0fd63
JB
4447 FLUSH_DELAYED_ITEMS_NR = 1,
4448 FLUSH_DELAYED_ITEMS = 2,
4449 FLUSH_DELALLOC = 3,
4450 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4451 ALLOC_CHUNK = 5,
4452 COMMIT_TRANS = 6,
96c3f433
JB
4453};
4454
4455static int flush_space(struct btrfs_root *root,
4456 struct btrfs_space_info *space_info, u64 num_bytes,
4457 u64 orig_bytes, int state)
4458{
4459 struct btrfs_trans_handle *trans;
4460 int nr;
f4c738c2 4461 int ret = 0;
96c3f433
JB
4462
4463 switch (state) {
96c3f433
JB
4464 case FLUSH_DELAYED_ITEMS_NR:
4465 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4466 if (state == FLUSH_DELAYED_ITEMS_NR)
4467 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4468 else
96c3f433 4469 nr = -1;
18cd8ea6 4470
96c3f433
JB
4471 trans = btrfs_join_transaction(root);
4472 if (IS_ERR(trans)) {
4473 ret = PTR_ERR(trans);
4474 break;
4475 }
4476 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4477 btrfs_end_transaction(trans, root);
4478 break;
67b0fd63
JB
4479 case FLUSH_DELALLOC:
4480 case FLUSH_DELALLOC_WAIT:
24af7dd1 4481 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4482 state == FLUSH_DELALLOC_WAIT);
4483 break;
ea658bad
JB
4484 case ALLOC_CHUNK:
4485 trans = btrfs_join_transaction(root);
4486 if (IS_ERR(trans)) {
4487 ret = PTR_ERR(trans);
4488 break;
4489 }
4490 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4491 btrfs_get_alloc_profile(root, 0),
4492 CHUNK_ALLOC_NO_FORCE);
4493 btrfs_end_transaction(trans, root);
4494 if (ret == -ENOSPC)
4495 ret = 0;
4496 break;
96c3f433
JB
4497 case COMMIT_TRANS:
4498 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4499 break;
4500 default:
4501 ret = -ENOSPC;
4502 break;
4503 }
4504
4505 return ret;
4506}
21c7e756
MX
4507
4508static inline u64
4509btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4510 struct btrfs_space_info *space_info)
4511{
4512 u64 used;
4513 u64 expected;
4514 u64 to_reclaim;
4515
4516 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4517 16 * 1024 * 1024);
4518 spin_lock(&space_info->lock);
4519 if (can_overcommit(root, space_info, to_reclaim,
4520 BTRFS_RESERVE_FLUSH_ALL)) {
4521 to_reclaim = 0;
4522 goto out;
4523 }
4524
4525 used = space_info->bytes_used + space_info->bytes_reserved +
4526 space_info->bytes_pinned + space_info->bytes_readonly +
4527 space_info->bytes_may_use;
4528 if (can_overcommit(root, space_info, 1024 * 1024,
4529 BTRFS_RESERVE_FLUSH_ALL))
4530 expected = div_factor_fine(space_info->total_bytes, 95);
4531 else
4532 expected = div_factor_fine(space_info->total_bytes, 90);
4533
4534 if (used > expected)
4535 to_reclaim = used - expected;
4536 else
4537 to_reclaim = 0;
4538 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4539 space_info->bytes_reserved);
4540out:
4541 spin_unlock(&space_info->lock);
4542
4543 return to_reclaim;
4544}
4545
4546static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4547 struct btrfs_fs_info *fs_info, u64 used)
4548{
365c5313
JB
4549 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4550
4551 /* If we're just plain full then async reclaim just slows us down. */
4552 if (space_info->bytes_used >= thresh)
4553 return 0;
4554
4555 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4556 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4557}
4558
4559static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4560 struct btrfs_fs_info *fs_info,
4561 int flush_state)
21c7e756
MX
4562{
4563 u64 used;
4564
4565 spin_lock(&space_info->lock);
25ce459c
LB
4566 /*
4567 * We run out of space and have not got any free space via flush_space,
4568 * so don't bother doing async reclaim.
4569 */
4570 if (flush_state > COMMIT_TRANS && space_info->full) {
4571 spin_unlock(&space_info->lock);
4572 return 0;
4573 }
4574
21c7e756
MX
4575 used = space_info->bytes_used + space_info->bytes_reserved +
4576 space_info->bytes_pinned + space_info->bytes_readonly +
4577 space_info->bytes_may_use;
4578 if (need_do_async_reclaim(space_info, fs_info, used)) {
4579 spin_unlock(&space_info->lock);
4580 return 1;
4581 }
4582 spin_unlock(&space_info->lock);
4583
4584 return 0;
4585}
4586
4587static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4588{
4589 struct btrfs_fs_info *fs_info;
4590 struct btrfs_space_info *space_info;
4591 u64 to_reclaim;
4592 int flush_state;
4593
4594 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4595 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4596
4597 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4598 space_info);
4599 if (!to_reclaim)
4600 return;
4601
4602 flush_state = FLUSH_DELAYED_ITEMS_NR;
4603 do {
4604 flush_space(fs_info->fs_root, space_info, to_reclaim,
4605 to_reclaim, flush_state);
4606 flush_state++;
25ce459c
LB
4607 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4608 flush_state))
21c7e756 4609 return;
365c5313 4610 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4611}
4612
4613void btrfs_init_async_reclaim_work(struct work_struct *work)
4614{
4615 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4616}
4617
4a92b1b8
JB
4618/**
4619 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4620 * @root - the root we're allocating for
4621 * @block_rsv - the block_rsv we're allocating for
4622 * @orig_bytes - the number of bytes we want
48fc7f7e 4623 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4624 *
4a92b1b8
JB
4625 * This will reserve orgi_bytes number of bytes from the space info associated
4626 * with the block_rsv. If there is not enough space it will make an attempt to
4627 * flush out space to make room. It will do this by flushing delalloc if
4628 * possible or committing the transaction. If flush is 0 then no attempts to
4629 * regain reservations will be made and this will fail if there is not enough
4630 * space already.
8bb8ab2e 4631 */
4a92b1b8 4632static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4633 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4634 u64 orig_bytes,
4635 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4636{
f0486c68 4637 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4638 u64 used;
8bb8ab2e 4639 u64 num_bytes = orig_bytes;
67b0fd63 4640 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4641 int ret = 0;
fdb5effd 4642 bool flushing = false;
9ed74f2d 4643
8bb8ab2e 4644again:
fdb5effd 4645 ret = 0;
8bb8ab2e 4646 spin_lock(&space_info->lock);
fdb5effd 4647 /*
08e007d2
MX
4648 * We only want to wait if somebody other than us is flushing and we
4649 * are actually allowed to flush all things.
fdb5effd 4650 */
08e007d2
MX
4651 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4652 space_info->flush) {
fdb5effd
JB
4653 spin_unlock(&space_info->lock);
4654 /*
4655 * If we have a trans handle we can't wait because the flusher
4656 * may have to commit the transaction, which would mean we would
4657 * deadlock since we are waiting for the flusher to finish, but
4658 * hold the current transaction open.
4659 */
663350ac 4660 if (current->journal_info)
fdb5effd 4661 return -EAGAIN;
b9688bb8
AJ
4662 ret = wait_event_killable(space_info->wait, !space_info->flush);
4663 /* Must have been killed, return */
4664 if (ret)
fdb5effd
JB
4665 return -EINTR;
4666
4667 spin_lock(&space_info->lock);
4668 }
4669
4670 ret = -ENOSPC;
2bf64758
JB
4671 used = space_info->bytes_used + space_info->bytes_reserved +
4672 space_info->bytes_pinned + space_info->bytes_readonly +
4673 space_info->bytes_may_use;
9ed74f2d 4674
8bb8ab2e
JB
4675 /*
4676 * The idea here is that we've not already over-reserved the block group
4677 * then we can go ahead and save our reservation first and then start
4678 * flushing if we need to. Otherwise if we've already overcommitted
4679 * lets start flushing stuff first and then come back and try to make
4680 * our reservation.
4681 */
2bf64758
JB
4682 if (used <= space_info->total_bytes) {
4683 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4684 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4685 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4686 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4687 ret = 0;
4688 } else {
4689 /*
4690 * Ok set num_bytes to orig_bytes since we aren't
4691 * overocmmitted, this way we only try and reclaim what
4692 * we need.
4693 */
4694 num_bytes = orig_bytes;
4695 }
4696 } else {
4697 /*
4698 * Ok we're over committed, set num_bytes to the overcommitted
4699 * amount plus the amount of bytes that we need for this
4700 * reservation.
4701 */
2bf64758 4702 num_bytes = used - space_info->total_bytes +
96c3f433 4703 (orig_bytes * 2);
8bb8ab2e 4704 }
9ed74f2d 4705
44734ed1
JB
4706 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4707 space_info->bytes_may_use += orig_bytes;
4708 trace_btrfs_space_reservation(root->fs_info, "space_info",
4709 space_info->flags, orig_bytes,
4710 1);
4711 ret = 0;
2bf64758
JB
4712 }
4713
8bb8ab2e
JB
4714 /*
4715 * Couldn't make our reservation, save our place so while we're trying
4716 * to reclaim space we can actually use it instead of somebody else
4717 * stealing it from us.
08e007d2
MX
4718 *
4719 * We make the other tasks wait for the flush only when we can flush
4720 * all things.
8bb8ab2e 4721 */
72bcd99d 4722 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4723 flushing = true;
4724 space_info->flush = 1;
21c7e756
MX
4725 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4726 used += orig_bytes;
f6acfd50
JB
4727 /*
4728 * We will do the space reservation dance during log replay,
4729 * which means we won't have fs_info->fs_root set, so don't do
4730 * the async reclaim as we will panic.
4731 */
4732 if (!root->fs_info->log_root_recovering &&
4733 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4734 !work_busy(&root->fs_info->async_reclaim_work))
4735 queue_work(system_unbound_wq,
4736 &root->fs_info->async_reclaim_work);
8bb8ab2e 4737 }
f0486c68 4738 spin_unlock(&space_info->lock);
9ed74f2d 4739
08e007d2 4740 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4741 goto out;
f0486c68 4742
96c3f433
JB
4743 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4744 flush_state);
4745 flush_state++;
08e007d2
MX
4746
4747 /*
4748 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4749 * would happen. So skip delalloc flush.
4750 */
4751 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4752 (flush_state == FLUSH_DELALLOC ||
4753 flush_state == FLUSH_DELALLOC_WAIT))
4754 flush_state = ALLOC_CHUNK;
4755
96c3f433 4756 if (!ret)
8bb8ab2e 4757 goto again;
08e007d2
MX
4758 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4759 flush_state < COMMIT_TRANS)
4760 goto again;
4761 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4762 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4763 goto again;
4764
4765out:
5d80366e
JB
4766 if (ret == -ENOSPC &&
4767 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4768 struct btrfs_block_rsv *global_rsv =
4769 &root->fs_info->global_block_rsv;
4770
4771 if (block_rsv != global_rsv &&
4772 !block_rsv_use_bytes(global_rsv, orig_bytes))
4773 ret = 0;
4774 }
cab45e22
JM
4775 if (ret == -ENOSPC)
4776 trace_btrfs_space_reservation(root->fs_info,
4777 "space_info:enospc",
4778 space_info->flags, orig_bytes, 1);
fdb5effd 4779 if (flushing) {
8bb8ab2e 4780 spin_lock(&space_info->lock);
fdb5effd
JB
4781 space_info->flush = 0;
4782 wake_up_all(&space_info->wait);
8bb8ab2e 4783 spin_unlock(&space_info->lock);
f0486c68 4784 }
f0486c68
YZ
4785 return ret;
4786}
4787
79787eaa
JM
4788static struct btrfs_block_rsv *get_block_rsv(
4789 const struct btrfs_trans_handle *trans,
4790 const struct btrfs_root *root)
f0486c68 4791{
4c13d758
JB
4792 struct btrfs_block_rsv *block_rsv = NULL;
4793
27cdeb70 4794 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4795 block_rsv = trans->block_rsv;
4796
4797 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4798 block_rsv = trans->block_rsv;
4c13d758 4799
f7a81ea4
SB
4800 if (root == root->fs_info->uuid_root)
4801 block_rsv = trans->block_rsv;
4802
4c13d758 4803 if (!block_rsv)
f0486c68
YZ
4804 block_rsv = root->block_rsv;
4805
4806 if (!block_rsv)
4807 block_rsv = &root->fs_info->empty_block_rsv;
4808
4809 return block_rsv;
4810}
4811
4812static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4813 u64 num_bytes)
4814{
4815 int ret = -ENOSPC;
4816 spin_lock(&block_rsv->lock);
4817 if (block_rsv->reserved >= num_bytes) {
4818 block_rsv->reserved -= num_bytes;
4819 if (block_rsv->reserved < block_rsv->size)
4820 block_rsv->full = 0;
4821 ret = 0;
4822 }
4823 spin_unlock(&block_rsv->lock);
4824 return ret;
4825}
4826
4827static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4828 u64 num_bytes, int update_size)
4829{
4830 spin_lock(&block_rsv->lock);
4831 block_rsv->reserved += num_bytes;
4832 if (update_size)
4833 block_rsv->size += num_bytes;
4834 else if (block_rsv->reserved >= block_rsv->size)
4835 block_rsv->full = 1;
4836 spin_unlock(&block_rsv->lock);
4837}
4838
d52be818
JB
4839int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4840 struct btrfs_block_rsv *dest, u64 num_bytes,
4841 int min_factor)
4842{
4843 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4844 u64 min_bytes;
4845
4846 if (global_rsv->space_info != dest->space_info)
4847 return -ENOSPC;
4848
4849 spin_lock(&global_rsv->lock);
4850 min_bytes = div_factor(global_rsv->size, min_factor);
4851 if (global_rsv->reserved < min_bytes + num_bytes) {
4852 spin_unlock(&global_rsv->lock);
4853 return -ENOSPC;
4854 }
4855 global_rsv->reserved -= num_bytes;
4856 if (global_rsv->reserved < global_rsv->size)
4857 global_rsv->full = 0;
4858 spin_unlock(&global_rsv->lock);
4859
4860 block_rsv_add_bytes(dest, num_bytes, 1);
4861 return 0;
4862}
4863
8c2a3ca2
JB
4864static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4865 struct btrfs_block_rsv *block_rsv,
62a45b60 4866 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4867{
4868 struct btrfs_space_info *space_info = block_rsv->space_info;
4869
4870 spin_lock(&block_rsv->lock);
4871 if (num_bytes == (u64)-1)
4872 num_bytes = block_rsv->size;
4873 block_rsv->size -= num_bytes;
4874 if (block_rsv->reserved >= block_rsv->size) {
4875 num_bytes = block_rsv->reserved - block_rsv->size;
4876 block_rsv->reserved = block_rsv->size;
4877 block_rsv->full = 1;
4878 } else {
4879 num_bytes = 0;
4880 }
4881 spin_unlock(&block_rsv->lock);
4882
4883 if (num_bytes > 0) {
4884 if (dest) {
e9e22899
JB
4885 spin_lock(&dest->lock);
4886 if (!dest->full) {
4887 u64 bytes_to_add;
4888
4889 bytes_to_add = dest->size - dest->reserved;
4890 bytes_to_add = min(num_bytes, bytes_to_add);
4891 dest->reserved += bytes_to_add;
4892 if (dest->reserved >= dest->size)
4893 dest->full = 1;
4894 num_bytes -= bytes_to_add;
4895 }
4896 spin_unlock(&dest->lock);
4897 }
4898 if (num_bytes) {
f0486c68 4899 spin_lock(&space_info->lock);
fb25e914 4900 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4901 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4902 space_info->flags, num_bytes, 0);
f0486c68 4903 spin_unlock(&space_info->lock);
4e06bdd6 4904 }
9ed74f2d 4905 }
f0486c68 4906}
4e06bdd6 4907
f0486c68
YZ
4908static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4909 struct btrfs_block_rsv *dst, u64 num_bytes)
4910{
4911 int ret;
9ed74f2d 4912
f0486c68
YZ
4913 ret = block_rsv_use_bytes(src, num_bytes);
4914 if (ret)
4915 return ret;
9ed74f2d 4916
f0486c68 4917 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
4918 return 0;
4919}
4920
66d8f3dd 4921void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 4922{
f0486c68
YZ
4923 memset(rsv, 0, sizeof(*rsv));
4924 spin_lock_init(&rsv->lock);
66d8f3dd 4925 rsv->type = type;
f0486c68
YZ
4926}
4927
66d8f3dd
MX
4928struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4929 unsigned short type)
f0486c68
YZ
4930{
4931 struct btrfs_block_rsv *block_rsv;
4932 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 4933
f0486c68
YZ
4934 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4935 if (!block_rsv)
4936 return NULL;
9ed74f2d 4937
66d8f3dd 4938 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
4939 block_rsv->space_info = __find_space_info(fs_info,
4940 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
4941 return block_rsv;
4942}
9ed74f2d 4943
f0486c68
YZ
4944void btrfs_free_block_rsv(struct btrfs_root *root,
4945 struct btrfs_block_rsv *rsv)
4946{
2aaa6655
JB
4947 if (!rsv)
4948 return;
dabdb640
JB
4949 btrfs_block_rsv_release(root, rsv, (u64)-1);
4950 kfree(rsv);
9ed74f2d
JB
4951}
4952
cdfb080e
CM
4953void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4954{
4955 kfree(rsv);
4956}
4957
08e007d2
MX
4958int btrfs_block_rsv_add(struct btrfs_root *root,
4959 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4960 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4961{
f0486c68 4962 int ret;
9ed74f2d 4963
f0486c68
YZ
4964 if (num_bytes == 0)
4965 return 0;
8bb8ab2e 4966
61b520a9 4967 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
4968 if (!ret) {
4969 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4970 return 0;
4971 }
9ed74f2d 4972
f0486c68 4973 return ret;
f0486c68 4974}
9ed74f2d 4975
4a92b1b8 4976int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 4977 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
4978{
4979 u64 num_bytes = 0;
f0486c68 4980 int ret = -ENOSPC;
9ed74f2d 4981
f0486c68
YZ
4982 if (!block_rsv)
4983 return 0;
9ed74f2d 4984
f0486c68 4985 spin_lock(&block_rsv->lock);
36ba022a
JB
4986 num_bytes = div_factor(block_rsv->size, min_factor);
4987 if (block_rsv->reserved >= num_bytes)
4988 ret = 0;
4989 spin_unlock(&block_rsv->lock);
9ed74f2d 4990
36ba022a
JB
4991 return ret;
4992}
4993
08e007d2
MX
4994int btrfs_block_rsv_refill(struct btrfs_root *root,
4995 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4996 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
4997{
4998 u64 num_bytes = 0;
4999 int ret = -ENOSPC;
5000
5001 if (!block_rsv)
5002 return 0;
5003
5004 spin_lock(&block_rsv->lock);
5005 num_bytes = min_reserved;
13553e52 5006 if (block_rsv->reserved >= num_bytes)
f0486c68 5007 ret = 0;
13553e52 5008 else
f0486c68 5009 num_bytes -= block_rsv->reserved;
f0486c68 5010 spin_unlock(&block_rsv->lock);
13553e52 5011
f0486c68
YZ
5012 if (!ret)
5013 return 0;
5014
aa38a711 5015 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5016 if (!ret) {
5017 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5018 return 0;
6a63209f 5019 }
9ed74f2d 5020
13553e52 5021 return ret;
f0486c68
YZ
5022}
5023
5024int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5025 struct btrfs_block_rsv *dst_rsv,
5026 u64 num_bytes)
5027{
5028 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5029}
5030
5031void btrfs_block_rsv_release(struct btrfs_root *root,
5032 struct btrfs_block_rsv *block_rsv,
5033 u64 num_bytes)
5034{
5035 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5036 if (global_rsv == block_rsv ||
f0486c68
YZ
5037 block_rsv->space_info != global_rsv->space_info)
5038 global_rsv = NULL;
8c2a3ca2
JB
5039 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5040 num_bytes);
6a63209f
JB
5041}
5042
5043/*
8929ecfa
YZ
5044 * helper to calculate size of global block reservation.
5045 * the desired value is sum of space used by extent tree,
5046 * checksum tree and root tree
6a63209f 5047 */
8929ecfa 5048static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5049{
8929ecfa
YZ
5050 struct btrfs_space_info *sinfo;
5051 u64 num_bytes;
5052 u64 meta_used;
5053 u64 data_used;
6c41761f 5054 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5055
8929ecfa
YZ
5056 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5057 spin_lock(&sinfo->lock);
5058 data_used = sinfo->bytes_used;
5059 spin_unlock(&sinfo->lock);
33b4d47f 5060
8929ecfa
YZ
5061 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5062 spin_lock(&sinfo->lock);
6d48755d
JB
5063 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5064 data_used = 0;
8929ecfa
YZ
5065 meta_used = sinfo->bytes_used;
5066 spin_unlock(&sinfo->lock);
ab6e2410 5067
8929ecfa
YZ
5068 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5069 csum_size * 2;
f8c269d7 5070 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5071
8929ecfa 5072 if (num_bytes * 3 > meta_used)
f8c269d7 5073 num_bytes = div_u64(meta_used, 3);
ab6e2410 5074
707e8a07 5075 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5076}
6a63209f 5077
8929ecfa
YZ
5078static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5079{
5080 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5081 struct btrfs_space_info *sinfo = block_rsv->space_info;
5082 u64 num_bytes;
6a63209f 5083
8929ecfa 5084 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5085
8929ecfa 5086 spin_lock(&sinfo->lock);
1f699d38 5087 spin_lock(&block_rsv->lock);
4e06bdd6 5088
fdf30d1c 5089 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5090
8929ecfa 5091 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5092 sinfo->bytes_reserved + sinfo->bytes_readonly +
5093 sinfo->bytes_may_use;
8929ecfa
YZ
5094
5095 if (sinfo->total_bytes > num_bytes) {
5096 num_bytes = sinfo->total_bytes - num_bytes;
5097 block_rsv->reserved += num_bytes;
fb25e914 5098 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5099 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5100 sinfo->flags, num_bytes, 1);
6a63209f 5101 }
6a63209f 5102
8929ecfa
YZ
5103 if (block_rsv->reserved >= block_rsv->size) {
5104 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5105 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5106 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5107 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5108 block_rsv->reserved = block_rsv->size;
5109 block_rsv->full = 1;
5110 }
182608c8 5111
8929ecfa 5112 spin_unlock(&block_rsv->lock);
1f699d38 5113 spin_unlock(&sinfo->lock);
6a63209f
JB
5114}
5115
f0486c68 5116static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5117{
f0486c68 5118 struct btrfs_space_info *space_info;
6a63209f 5119
f0486c68
YZ
5120 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5121 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5122
f0486c68 5123 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5124 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5125 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5126 fs_info->trans_block_rsv.space_info = space_info;
5127 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5128 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5129
8929ecfa
YZ
5130 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5131 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5132 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5133 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5134 if (fs_info->quota_root)
5135 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5136 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5137
8929ecfa 5138 update_global_block_rsv(fs_info);
6a63209f
JB
5139}
5140
8929ecfa 5141static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5142{
8c2a3ca2
JB
5143 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5144 (u64)-1);
8929ecfa
YZ
5145 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5146 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5147 WARN_ON(fs_info->trans_block_rsv.size > 0);
5148 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5149 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5150 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5151 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5152 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5153}
5154
a22285a6
YZ
5155void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5156 struct btrfs_root *root)
6a63209f 5157{
0e721106
JB
5158 if (!trans->block_rsv)
5159 return;
5160
a22285a6
YZ
5161 if (!trans->bytes_reserved)
5162 return;
6a63209f 5163
e77266e4 5164 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5165 trans->transid, trans->bytes_reserved, 0);
b24e03db 5166 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5167 trans->bytes_reserved = 0;
5168}
6a63209f 5169
4fbcdf66
FM
5170/*
5171 * To be called after all the new block groups attached to the transaction
5172 * handle have been created (btrfs_create_pending_block_groups()).
5173 */
5174void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5175{
5176 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5177
5178 if (!trans->chunk_bytes_reserved)
5179 return;
5180
5181 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5182
5183 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5184 trans->chunk_bytes_reserved);
5185 trans->chunk_bytes_reserved = 0;
5186}
5187
79787eaa 5188/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5189int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5190 struct inode *inode)
5191{
5192 struct btrfs_root *root = BTRFS_I(inode)->root;
5193 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5194 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5195
5196 /*
fcb80c2a
JB
5197 * We need to hold space in order to delete our orphan item once we've
5198 * added it, so this takes the reservation so we can release it later
5199 * when we are truly done with the orphan item.
d68fc57b 5200 */
ff5714cc 5201 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5202 trace_btrfs_space_reservation(root->fs_info, "orphan",
5203 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5204 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5205}
5206
d68fc57b 5207void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5208{
d68fc57b 5209 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5210 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5211 trace_btrfs_space_reservation(root->fs_info, "orphan",
5212 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5213 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5214}
97e728d4 5215
d5c12070
MX
5216/*
5217 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5218 * root: the root of the parent directory
5219 * rsv: block reservation
5220 * items: the number of items that we need do reservation
5221 * qgroup_reserved: used to return the reserved size in qgroup
5222 *
5223 * This function is used to reserve the space for snapshot/subvolume
5224 * creation and deletion. Those operations are different with the
5225 * common file/directory operations, they change two fs/file trees
5226 * and root tree, the number of items that the qgroup reserves is
5227 * different with the free space reservation. So we can not use
5228 * the space reseravtion mechanism in start_transaction().
5229 */
5230int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5231 struct btrfs_block_rsv *rsv,
5232 int items,
ee3441b4
JM
5233 u64 *qgroup_reserved,
5234 bool use_global_rsv)
a22285a6 5235{
d5c12070
MX
5236 u64 num_bytes;
5237 int ret;
ee3441b4 5238 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5239
5240 if (root->fs_info->quota_enabled) {
5241 /* One for parent inode, two for dir entries */
707e8a07 5242 num_bytes = 3 * root->nodesize;
d5c12070
MX
5243 ret = btrfs_qgroup_reserve(root, num_bytes);
5244 if (ret)
5245 return ret;
5246 } else {
5247 num_bytes = 0;
5248 }
5249
5250 *qgroup_reserved = num_bytes;
5251
5252 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5253 rsv->space_info = __find_space_info(root->fs_info,
5254 BTRFS_BLOCK_GROUP_METADATA);
5255 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5256 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5257
5258 if (ret == -ENOSPC && use_global_rsv)
5259 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5260
d5c12070
MX
5261 if (ret) {
5262 if (*qgroup_reserved)
5263 btrfs_qgroup_free(root, *qgroup_reserved);
5264 }
5265
5266 return ret;
5267}
5268
5269void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5270 struct btrfs_block_rsv *rsv,
5271 u64 qgroup_reserved)
5272{
5273 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5274}
5275
7709cde3
JB
5276/**
5277 * drop_outstanding_extent - drop an outstanding extent
5278 * @inode: the inode we're dropping the extent for
dcab6a3b 5279 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5280 *
5281 * This is called when we are freeing up an outstanding extent, either called
5282 * after an error or after an extent is written. This will return the number of
5283 * reserved extents that need to be freed. This must be called with
5284 * BTRFS_I(inode)->lock held.
5285 */
dcab6a3b 5286static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5287{
7fd2ae21 5288 unsigned drop_inode_space = 0;
9e0baf60 5289 unsigned dropped_extents = 0;
dcab6a3b 5290 unsigned num_extents = 0;
9e0baf60 5291
dcab6a3b
JB
5292 num_extents = (unsigned)div64_u64(num_bytes +
5293 BTRFS_MAX_EXTENT_SIZE - 1,
5294 BTRFS_MAX_EXTENT_SIZE);
5295 ASSERT(num_extents);
5296 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5297 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5298
7fd2ae21 5299 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5300 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5301 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5302 drop_inode_space = 1;
7fd2ae21 5303
9e0baf60
JB
5304 /*
5305 * If we have more or the same amount of outsanding extents than we have
5306 * reserved then we need to leave the reserved extents count alone.
5307 */
5308 if (BTRFS_I(inode)->outstanding_extents >=
5309 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5310 return drop_inode_space;
9e0baf60
JB
5311
5312 dropped_extents = BTRFS_I(inode)->reserved_extents -
5313 BTRFS_I(inode)->outstanding_extents;
5314 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5315 return dropped_extents + drop_inode_space;
9e0baf60
JB
5316}
5317
7709cde3
JB
5318/**
5319 * calc_csum_metadata_size - return the amount of metada space that must be
5320 * reserved/free'd for the given bytes.
5321 * @inode: the inode we're manipulating
5322 * @num_bytes: the number of bytes in question
5323 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5324 *
5325 * This adjusts the number of csum_bytes in the inode and then returns the
5326 * correct amount of metadata that must either be reserved or freed. We
5327 * calculate how many checksums we can fit into one leaf and then divide the
5328 * number of bytes that will need to be checksumed by this value to figure out
5329 * how many checksums will be required. If we are adding bytes then the number
5330 * may go up and we will return the number of additional bytes that must be
5331 * reserved. If it is going down we will return the number of bytes that must
5332 * be freed.
5333 *
5334 * This must be called with BTRFS_I(inode)->lock held.
5335 */
5336static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5337 int reserve)
6324fbf3 5338{
7709cde3 5339 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5340 u64 old_csums, num_csums;
7709cde3
JB
5341
5342 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5343 BTRFS_I(inode)->csum_bytes == 0)
5344 return 0;
5345
28f75a0e 5346 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5347 if (reserve)
5348 BTRFS_I(inode)->csum_bytes += num_bytes;
5349 else
5350 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5351 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5352
5353 /* No change, no need to reserve more */
5354 if (old_csums == num_csums)
5355 return 0;
5356
5357 if (reserve)
5358 return btrfs_calc_trans_metadata_size(root,
5359 num_csums - old_csums);
5360
5361 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5362}
c146afad 5363
0ca1f7ce
YZ
5364int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5365{
5366 struct btrfs_root *root = BTRFS_I(inode)->root;
5367 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5368 u64 to_reserve = 0;
660d3f6c 5369 u64 csum_bytes;
9e0baf60 5370 unsigned nr_extents = 0;
660d3f6c 5371 int extra_reserve = 0;
08e007d2 5372 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5373 int ret = 0;
c64c2bd8 5374 bool delalloc_lock = true;
88e081bf
WS
5375 u64 to_free = 0;
5376 unsigned dropped;
6324fbf3 5377
c64c2bd8
JB
5378 /* If we are a free space inode we need to not flush since we will be in
5379 * the middle of a transaction commit. We also don't need the delalloc
5380 * mutex since we won't race with anybody. We need this mostly to make
5381 * lockdep shut its filthy mouth.
5382 */
5383 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5384 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5385 delalloc_lock = false;
5386 }
c09544e0 5387
08e007d2
MX
5388 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5389 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5390 schedule_timeout(1);
ec44a35c 5391
c64c2bd8
JB
5392 if (delalloc_lock)
5393 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5394
0ca1f7ce 5395 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5396
9e0baf60 5397 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5398 nr_extents = (unsigned)div64_u64(num_bytes +
5399 BTRFS_MAX_EXTENT_SIZE - 1,
5400 BTRFS_MAX_EXTENT_SIZE);
5401 BTRFS_I(inode)->outstanding_extents += nr_extents;
5402 nr_extents = 0;
9e0baf60
JB
5403
5404 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5405 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5406 nr_extents = BTRFS_I(inode)->outstanding_extents -
5407 BTRFS_I(inode)->reserved_extents;
57a45ced 5408
7fd2ae21
JB
5409 /*
5410 * Add an item to reserve for updating the inode when we complete the
5411 * delalloc io.
5412 */
72ac3c0d
JB
5413 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5414 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5415 nr_extents++;
660d3f6c 5416 extra_reserve = 1;
593060d7 5417 }
7fd2ae21
JB
5418
5419 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5420 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5421 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5422 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5423
88e081bf 5424 if (root->fs_info->quota_enabled) {
237c0e9f 5425 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5426 if (ret)
5427 goto out_fail;
5428 }
c5567237 5429
88e081bf
WS
5430 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5431 if (unlikely(ret)) {
5432 if (root->fs_info->quota_enabled)
237c0e9f 5433 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5434 goto out_fail;
9e0baf60 5435 }
25179201 5436
660d3f6c
JB
5437 spin_lock(&BTRFS_I(inode)->lock);
5438 if (extra_reserve) {
72ac3c0d
JB
5439 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5440 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5441 nr_extents--;
5442 }
5443 BTRFS_I(inode)->reserved_extents += nr_extents;
5444 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5445
5446 if (delalloc_lock)
5447 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5448
8c2a3ca2 5449 if (to_reserve)
67871254 5450 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5451 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5452 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5453
0ca1f7ce 5454 return 0;
88e081bf
WS
5455
5456out_fail:
5457 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5458 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5459 /*
5460 * If the inodes csum_bytes is the same as the original
5461 * csum_bytes then we know we haven't raced with any free()ers
5462 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5463 */
f4881bc7 5464 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5465 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5466 } else {
5467 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5468 u64 bytes;
5469
5470 /*
5471 * This is tricky, but first we need to figure out how much we
5472 * free'd from any free-ers that occured during this
5473 * reservation, so we reset ->csum_bytes to the csum_bytes
5474 * before we dropped our lock, and then call the free for the
5475 * number of bytes that were freed while we were trying our
5476 * reservation.
5477 */
5478 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5479 BTRFS_I(inode)->csum_bytes = csum_bytes;
5480 to_free = calc_csum_metadata_size(inode, bytes, 0);
5481
5482
5483 /*
5484 * Now we need to see how much we would have freed had we not
5485 * been making this reservation and our ->csum_bytes were not
5486 * artificially inflated.
5487 */
5488 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5489 bytes = csum_bytes - orig_csum_bytes;
5490 bytes = calc_csum_metadata_size(inode, bytes, 0);
5491
5492 /*
5493 * Now reset ->csum_bytes to what it should be. If bytes is
5494 * more than to_free then we would have free'd more space had we
5495 * not had an artificially high ->csum_bytes, so we need to free
5496 * the remainder. If bytes is the same or less then we don't
5497 * need to do anything, the other free-ers did the correct
5498 * thing.
5499 */
5500 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5501 if (bytes > to_free)
5502 to_free = bytes - to_free;
5503 else
5504 to_free = 0;
5505 }
88e081bf 5506 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5507 if (dropped)
88e081bf
WS
5508 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5509
5510 if (to_free) {
5511 btrfs_block_rsv_release(root, block_rsv, to_free);
5512 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5513 btrfs_ino(inode), to_free, 0);
5514 }
5515 if (delalloc_lock)
5516 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5517 return ret;
0ca1f7ce
YZ
5518}
5519
7709cde3
JB
5520/**
5521 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5522 * @inode: the inode to release the reservation for
5523 * @num_bytes: the number of bytes we're releasing
5524 *
5525 * This will release the metadata reservation for an inode. This can be called
5526 * once we complete IO for a given set of bytes to release their metadata
5527 * reservations.
5528 */
0ca1f7ce
YZ
5529void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5530{
5531 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5532 u64 to_free = 0;
5533 unsigned dropped;
0ca1f7ce
YZ
5534
5535 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5536 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5537 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5538
0934856d
MX
5539 if (num_bytes)
5540 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5541 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5542 if (dropped > 0)
5543 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5544
6a3891c5
JB
5545 if (btrfs_test_is_dummy_root(root))
5546 return;
5547
8c2a3ca2
JB
5548 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5549 btrfs_ino(inode), to_free, 0);
c5567237 5550
0ca1f7ce
YZ
5551 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5552 to_free);
5553}
5554
7709cde3
JB
5555/**
5556 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5557 * @inode: inode we're writing to
5558 * @num_bytes: the number of bytes we want to allocate
5559 *
5560 * This will do the following things
5561 *
5562 * o reserve space in the data space info for num_bytes
5563 * o reserve space in the metadata space info based on number of outstanding
5564 * extents and how much csums will be needed
5565 * o add to the inodes ->delalloc_bytes
5566 * o add it to the fs_info's delalloc inodes list.
5567 *
5568 * This will return 0 for success and -ENOSPC if there is no space left.
5569 */
0ca1f7ce
YZ
5570int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5571{
5572 int ret;
5573
e2d1f923 5574 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5575 if (ret)
0ca1f7ce
YZ
5576 return ret;
5577
5578 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5579 if (ret) {
5580 btrfs_free_reserved_data_space(inode, num_bytes);
5581 return ret;
5582 }
5583
5584 return 0;
5585}
5586
7709cde3
JB
5587/**
5588 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5589 * @inode: inode we're releasing space for
5590 * @num_bytes: the number of bytes we want to free up
5591 *
5592 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5593 * called in the case that we don't need the metadata AND data reservations
5594 * anymore. So if there is an error or we insert an inline extent.
5595 *
5596 * This function will release the metadata space that was not used and will
5597 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5598 * list if there are no delalloc bytes left.
5599 */
0ca1f7ce
YZ
5600void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5601{
5602 btrfs_delalloc_release_metadata(inode, num_bytes);
5603 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5604}
5605
ce93ec54
JB
5606static int update_block_group(struct btrfs_trans_handle *trans,
5607 struct btrfs_root *root, u64 bytenr,
5608 u64 num_bytes, int alloc)
9078a3e1 5609{
0af3d00b 5610 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5611 struct btrfs_fs_info *info = root->fs_info;
db94535d 5612 u64 total = num_bytes;
9078a3e1 5613 u64 old_val;
db94535d 5614 u64 byte_in_group;
0af3d00b 5615 int factor;
3e1ad54f 5616
5d4f98a2 5617 /* block accounting for super block */
eb73c1b7 5618 spin_lock(&info->delalloc_root_lock);
6c41761f 5619 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5620 if (alloc)
5621 old_val += num_bytes;
5622 else
5623 old_val -= num_bytes;
6c41761f 5624 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5625 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5626
d397712b 5627 while (total) {
db94535d 5628 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5629 if (!cache)
79787eaa 5630 return -ENOENT;
b742bb82
YZ
5631 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5632 BTRFS_BLOCK_GROUP_RAID1 |
5633 BTRFS_BLOCK_GROUP_RAID10))
5634 factor = 2;
5635 else
5636 factor = 1;
9d66e233
JB
5637 /*
5638 * If this block group has free space cache written out, we
5639 * need to make sure to load it if we are removing space. This
5640 * is because we need the unpinning stage to actually add the
5641 * space back to the block group, otherwise we will leak space.
5642 */
5643 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5644 cache_block_group(cache, 1);
0af3d00b 5645
db94535d
CM
5646 byte_in_group = bytenr - cache->key.objectid;
5647 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5648
25179201 5649 spin_lock(&cache->space_info->lock);
c286ac48 5650 spin_lock(&cache->lock);
0af3d00b 5651
73bc1876 5652 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5653 cache->disk_cache_state < BTRFS_DC_CLEAR)
5654 cache->disk_cache_state = BTRFS_DC_CLEAR;
5655
9078a3e1 5656 old_val = btrfs_block_group_used(&cache->item);
db94535d 5657 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5658 if (alloc) {
db94535d 5659 old_val += num_bytes;
11833d66
YZ
5660 btrfs_set_block_group_used(&cache->item, old_val);
5661 cache->reserved -= num_bytes;
11833d66 5662 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5663 cache->space_info->bytes_used += num_bytes;
5664 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5665 spin_unlock(&cache->lock);
25179201 5666 spin_unlock(&cache->space_info->lock);
cd1bc465 5667 } else {
db94535d 5668 old_val -= num_bytes;
ae0ab003
FM
5669 btrfs_set_block_group_used(&cache->item, old_val);
5670 cache->pinned += num_bytes;
5671 cache->space_info->bytes_pinned += num_bytes;
5672 cache->space_info->bytes_used -= num_bytes;
5673 cache->space_info->disk_used -= num_bytes * factor;
5674 spin_unlock(&cache->lock);
5675 spin_unlock(&cache->space_info->lock);
47ab2a6c 5676
ae0ab003
FM
5677 set_extent_dirty(info->pinned_extents,
5678 bytenr, bytenr + num_bytes - 1,
5679 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5680 /*
5681 * No longer have used bytes in this block group, queue
5682 * it for deletion.
5683 */
5684 if (old_val == 0) {
5685 spin_lock(&info->unused_bgs_lock);
5686 if (list_empty(&cache->bg_list)) {
5687 btrfs_get_block_group(cache);
5688 list_add_tail(&cache->bg_list,
5689 &info->unused_bgs);
5690 }
5691 spin_unlock(&info->unused_bgs_lock);
5692 }
cd1bc465 5693 }
1bbc621e
CM
5694
5695 spin_lock(&trans->transaction->dirty_bgs_lock);
5696 if (list_empty(&cache->dirty_list)) {
5697 list_add_tail(&cache->dirty_list,
5698 &trans->transaction->dirty_bgs);
5699 trans->transaction->num_dirty_bgs++;
5700 btrfs_get_block_group(cache);
5701 }
5702 spin_unlock(&trans->transaction->dirty_bgs_lock);
5703
fa9c0d79 5704 btrfs_put_block_group(cache);
db94535d
CM
5705 total -= num_bytes;
5706 bytenr += num_bytes;
9078a3e1
CM
5707 }
5708 return 0;
5709}
6324fbf3 5710
a061fc8d
CM
5711static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5712{
0f9dd46c 5713 struct btrfs_block_group_cache *cache;
d2fb3437 5714 u64 bytenr;
0f9dd46c 5715
a1897fdd
LB
5716 spin_lock(&root->fs_info->block_group_cache_lock);
5717 bytenr = root->fs_info->first_logical_byte;
5718 spin_unlock(&root->fs_info->block_group_cache_lock);
5719
5720 if (bytenr < (u64)-1)
5721 return bytenr;
5722
0f9dd46c
JB
5723 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5724 if (!cache)
a061fc8d 5725 return 0;
0f9dd46c 5726
d2fb3437 5727 bytenr = cache->key.objectid;
fa9c0d79 5728 btrfs_put_block_group(cache);
d2fb3437
YZ
5729
5730 return bytenr;
a061fc8d
CM
5731}
5732
f0486c68
YZ
5733static int pin_down_extent(struct btrfs_root *root,
5734 struct btrfs_block_group_cache *cache,
5735 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5736{
11833d66
YZ
5737 spin_lock(&cache->space_info->lock);
5738 spin_lock(&cache->lock);
5739 cache->pinned += num_bytes;
5740 cache->space_info->bytes_pinned += num_bytes;
5741 if (reserved) {
5742 cache->reserved -= num_bytes;
5743 cache->space_info->bytes_reserved -= num_bytes;
5744 }
5745 spin_unlock(&cache->lock);
5746 spin_unlock(&cache->space_info->lock);
68b38550 5747
f0486c68
YZ
5748 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5749 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5750 if (reserved)
0be5dc67 5751 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5752 return 0;
5753}
68b38550 5754
f0486c68
YZ
5755/*
5756 * this function must be called within transaction
5757 */
5758int btrfs_pin_extent(struct btrfs_root *root,
5759 u64 bytenr, u64 num_bytes, int reserved)
5760{
5761 struct btrfs_block_group_cache *cache;
68b38550 5762
f0486c68 5763 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5764 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5765
5766 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5767
5768 btrfs_put_block_group(cache);
11833d66
YZ
5769 return 0;
5770}
5771
f0486c68 5772/*
e688b725
CM
5773 * this function must be called within transaction
5774 */
dcfac415 5775int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5776 u64 bytenr, u64 num_bytes)
5777{
5778 struct btrfs_block_group_cache *cache;
b50c6e25 5779 int ret;
e688b725
CM
5780
5781 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5782 if (!cache)
5783 return -EINVAL;
e688b725
CM
5784
5785 /*
5786 * pull in the free space cache (if any) so that our pin
5787 * removes the free space from the cache. We have load_only set
5788 * to one because the slow code to read in the free extents does check
5789 * the pinned extents.
5790 */
f6373bf3 5791 cache_block_group(cache, 1);
e688b725
CM
5792
5793 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5794
5795 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5796 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5797 btrfs_put_block_group(cache);
b50c6e25 5798 return ret;
e688b725
CM
5799}
5800
8c2a1a30
JB
5801static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5802{
5803 int ret;
5804 struct btrfs_block_group_cache *block_group;
5805 struct btrfs_caching_control *caching_ctl;
5806
5807 block_group = btrfs_lookup_block_group(root->fs_info, start);
5808 if (!block_group)
5809 return -EINVAL;
5810
5811 cache_block_group(block_group, 0);
5812 caching_ctl = get_caching_control(block_group);
5813
5814 if (!caching_ctl) {
5815 /* Logic error */
5816 BUG_ON(!block_group_cache_done(block_group));
5817 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5818 } else {
5819 mutex_lock(&caching_ctl->mutex);
5820
5821 if (start >= caching_ctl->progress) {
5822 ret = add_excluded_extent(root, start, num_bytes);
5823 } else if (start + num_bytes <= caching_ctl->progress) {
5824 ret = btrfs_remove_free_space(block_group,
5825 start, num_bytes);
5826 } else {
5827 num_bytes = caching_ctl->progress - start;
5828 ret = btrfs_remove_free_space(block_group,
5829 start, num_bytes);
5830 if (ret)
5831 goto out_lock;
5832
5833 num_bytes = (start + num_bytes) -
5834 caching_ctl->progress;
5835 start = caching_ctl->progress;
5836 ret = add_excluded_extent(root, start, num_bytes);
5837 }
5838out_lock:
5839 mutex_unlock(&caching_ctl->mutex);
5840 put_caching_control(caching_ctl);
5841 }
5842 btrfs_put_block_group(block_group);
5843 return ret;
5844}
5845
5846int btrfs_exclude_logged_extents(struct btrfs_root *log,
5847 struct extent_buffer *eb)
5848{
5849 struct btrfs_file_extent_item *item;
5850 struct btrfs_key key;
5851 int found_type;
5852 int i;
5853
5854 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5855 return 0;
5856
5857 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5858 btrfs_item_key_to_cpu(eb, &key, i);
5859 if (key.type != BTRFS_EXTENT_DATA_KEY)
5860 continue;
5861 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5862 found_type = btrfs_file_extent_type(eb, item);
5863 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5864 continue;
5865 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5866 continue;
5867 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5868 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5869 __exclude_logged_extent(log, key.objectid, key.offset);
5870 }
5871
5872 return 0;
5873}
5874
fb25e914
JB
5875/**
5876 * btrfs_update_reserved_bytes - update the block_group and space info counters
5877 * @cache: The cache we are manipulating
5878 * @num_bytes: The number of bytes in question
5879 * @reserve: One of the reservation enums
e570fd27 5880 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5881 *
5882 * This is called by the allocator when it reserves space, or by somebody who is
5883 * freeing space that was never actually used on disk. For example if you
5884 * reserve some space for a new leaf in transaction A and before transaction A
5885 * commits you free that leaf, you call this with reserve set to 0 in order to
5886 * clear the reservation.
5887 *
5888 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5889 * ENOSPC accounting. For data we handle the reservation through clearing the
5890 * delalloc bits in the io_tree. We have to do this since we could end up
5891 * allocating less disk space for the amount of data we have reserved in the
5892 * case of compression.
5893 *
5894 * If this is a reservation and the block group has become read only we cannot
5895 * make the reservation and return -EAGAIN, otherwise this function always
5896 * succeeds.
f0486c68 5897 */
fb25e914 5898static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5899 u64 num_bytes, int reserve, int delalloc)
11833d66 5900{
fb25e914 5901 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5902 int ret = 0;
79787eaa 5903
fb25e914
JB
5904 spin_lock(&space_info->lock);
5905 spin_lock(&cache->lock);
5906 if (reserve != RESERVE_FREE) {
f0486c68
YZ
5907 if (cache->ro) {
5908 ret = -EAGAIN;
5909 } else {
fb25e914
JB
5910 cache->reserved += num_bytes;
5911 space_info->bytes_reserved += num_bytes;
5912 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 5913 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
5914 "space_info", space_info->flags,
5915 num_bytes, 0);
fb25e914
JB
5916 space_info->bytes_may_use -= num_bytes;
5917 }
e570fd27
MX
5918
5919 if (delalloc)
5920 cache->delalloc_bytes += num_bytes;
f0486c68 5921 }
fb25e914
JB
5922 } else {
5923 if (cache->ro)
5924 space_info->bytes_readonly += num_bytes;
5925 cache->reserved -= num_bytes;
5926 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
5927
5928 if (delalloc)
5929 cache->delalloc_bytes -= num_bytes;
324ae4df 5930 }
fb25e914
JB
5931 spin_unlock(&cache->lock);
5932 spin_unlock(&space_info->lock);
f0486c68 5933 return ret;
324ae4df 5934}
9078a3e1 5935
143bede5 5936void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 5937 struct btrfs_root *root)
e8569813 5938{
e8569813 5939 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
5940 struct btrfs_caching_control *next;
5941 struct btrfs_caching_control *caching_ctl;
5942 struct btrfs_block_group_cache *cache;
e8569813 5943
9e351cc8 5944 down_write(&fs_info->commit_root_sem);
25179201 5945
11833d66
YZ
5946 list_for_each_entry_safe(caching_ctl, next,
5947 &fs_info->caching_block_groups, list) {
5948 cache = caching_ctl->block_group;
5949 if (block_group_cache_done(cache)) {
5950 cache->last_byte_to_unpin = (u64)-1;
5951 list_del_init(&caching_ctl->list);
5952 put_caching_control(caching_ctl);
e8569813 5953 } else {
11833d66 5954 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 5955 }
e8569813 5956 }
11833d66
YZ
5957
5958 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5959 fs_info->pinned_extents = &fs_info->freed_extents[1];
5960 else
5961 fs_info->pinned_extents = &fs_info->freed_extents[0];
5962
9e351cc8 5963 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
5964
5965 update_global_block_rsv(fs_info);
e8569813
ZY
5966}
5967
678886bd
FM
5968static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5969 const bool return_free_space)
ccd467d6 5970{
11833d66
YZ
5971 struct btrfs_fs_info *fs_info = root->fs_info;
5972 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
5973 struct btrfs_space_info *space_info;
5974 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 5975 u64 len;
7b398f8e 5976 bool readonly;
ccd467d6 5977
11833d66 5978 while (start <= end) {
7b398f8e 5979 readonly = false;
11833d66
YZ
5980 if (!cache ||
5981 start >= cache->key.objectid + cache->key.offset) {
5982 if (cache)
5983 btrfs_put_block_group(cache);
5984 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 5985 BUG_ON(!cache); /* Logic error */
11833d66
YZ
5986 }
5987
5988 len = cache->key.objectid + cache->key.offset - start;
5989 len = min(len, end + 1 - start);
5990
5991 if (start < cache->last_byte_to_unpin) {
5992 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
5993 if (return_free_space)
5994 btrfs_add_free_space(cache, start, len);
11833d66
YZ
5995 }
5996
f0486c68 5997 start += len;
7b398f8e 5998 space_info = cache->space_info;
f0486c68 5999
7b398f8e 6000 spin_lock(&space_info->lock);
11833d66
YZ
6001 spin_lock(&cache->lock);
6002 cache->pinned -= len;
7b398f8e 6003 space_info->bytes_pinned -= len;
d288db5d 6004 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6005 if (cache->ro) {
6006 space_info->bytes_readonly += len;
6007 readonly = true;
6008 }
11833d66 6009 spin_unlock(&cache->lock);
7b398f8e
JB
6010 if (!readonly && global_rsv->space_info == space_info) {
6011 spin_lock(&global_rsv->lock);
6012 if (!global_rsv->full) {
6013 len = min(len, global_rsv->size -
6014 global_rsv->reserved);
6015 global_rsv->reserved += len;
6016 space_info->bytes_may_use += len;
6017 if (global_rsv->reserved >= global_rsv->size)
6018 global_rsv->full = 1;
6019 }
6020 spin_unlock(&global_rsv->lock);
6021 }
6022 spin_unlock(&space_info->lock);
ccd467d6 6023 }
11833d66
YZ
6024
6025 if (cache)
6026 btrfs_put_block_group(cache);
ccd467d6
CM
6027 return 0;
6028}
6029
6030int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6031 struct btrfs_root *root)
a28ec197 6032{
11833d66
YZ
6033 struct btrfs_fs_info *fs_info = root->fs_info;
6034 struct extent_io_tree *unpin;
1a5bc167
CM
6035 u64 start;
6036 u64 end;
a28ec197 6037 int ret;
a28ec197 6038
79787eaa
JM
6039 if (trans->aborted)
6040 return 0;
6041
11833d66
YZ
6042 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6043 unpin = &fs_info->freed_extents[1];
6044 else
6045 unpin = &fs_info->freed_extents[0];
6046
d397712b 6047 while (1) {
d4b450cd 6048 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6049 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6050 EXTENT_DIRTY, NULL);
d4b450cd
FM
6051 if (ret) {
6052 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6053 break;
d4b450cd 6054 }
1f3c79a2 6055
5378e607
LD
6056 if (btrfs_test_opt(root, DISCARD))
6057 ret = btrfs_discard_extent(root, start,
6058 end + 1 - start, NULL);
1f3c79a2 6059
1a5bc167 6060 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6061 unpin_extent_range(root, start, end, true);
d4b450cd 6062 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6063 cond_resched();
a28ec197 6064 }
817d52f8 6065
e20d96d6
CM
6066 return 0;
6067}
6068
b150a4f1
JB
6069static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6070 u64 owner, u64 root_objectid)
6071{
6072 struct btrfs_space_info *space_info;
6073 u64 flags;
6074
6075 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6076 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6077 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6078 else
6079 flags = BTRFS_BLOCK_GROUP_METADATA;
6080 } else {
6081 flags = BTRFS_BLOCK_GROUP_DATA;
6082 }
6083
6084 space_info = __find_space_info(fs_info, flags);
6085 BUG_ON(!space_info); /* Logic bug */
6086 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6087}
6088
6089
5d4f98a2
YZ
6090static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6091 struct btrfs_root *root,
c682f9b3 6092 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6093 u64 root_objectid, u64 owner_objectid,
6094 u64 owner_offset, int refs_to_drop,
c682f9b3 6095 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6096{
e2fa7227 6097 struct btrfs_key key;
5d4f98a2 6098 struct btrfs_path *path;
1261ec42
CM
6099 struct btrfs_fs_info *info = root->fs_info;
6100 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6101 struct extent_buffer *leaf;
5d4f98a2
YZ
6102 struct btrfs_extent_item *ei;
6103 struct btrfs_extent_inline_ref *iref;
a28ec197 6104 int ret;
5d4f98a2 6105 int is_data;
952fccac
CM
6106 int extent_slot = 0;
6107 int found_extent = 0;
6108 int num_to_del = 1;
c682f9b3 6109 int no_quota = node->no_quota;
5d4f98a2
YZ
6110 u32 item_size;
6111 u64 refs;
c682f9b3
QW
6112 u64 bytenr = node->bytenr;
6113 u64 num_bytes = node->num_bytes;
fcebe456 6114 int last_ref = 0;
3173a18f
JB
6115 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6116 SKINNY_METADATA);
037e6390 6117
fcebe456
JB
6118 if (!info->quota_enabled || !is_fstree(root_objectid))
6119 no_quota = 1;
6120
5caf2a00 6121 path = btrfs_alloc_path();
54aa1f4d
CM
6122 if (!path)
6123 return -ENOMEM;
5f26f772 6124
3c12ac72 6125 path->reada = 1;
b9473439 6126 path->leave_spinning = 1;
5d4f98a2
YZ
6127
6128 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6129 BUG_ON(!is_data && refs_to_drop != 1);
6130
3173a18f
JB
6131 if (is_data)
6132 skinny_metadata = 0;
6133
5d4f98a2
YZ
6134 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6135 bytenr, num_bytes, parent,
6136 root_objectid, owner_objectid,
6137 owner_offset);
7bb86316 6138 if (ret == 0) {
952fccac 6139 extent_slot = path->slots[0];
5d4f98a2
YZ
6140 while (extent_slot >= 0) {
6141 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6142 extent_slot);
5d4f98a2 6143 if (key.objectid != bytenr)
952fccac 6144 break;
5d4f98a2
YZ
6145 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6146 key.offset == num_bytes) {
952fccac
CM
6147 found_extent = 1;
6148 break;
6149 }
3173a18f
JB
6150 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6151 key.offset == owner_objectid) {
6152 found_extent = 1;
6153 break;
6154 }
952fccac
CM
6155 if (path->slots[0] - extent_slot > 5)
6156 break;
5d4f98a2 6157 extent_slot--;
952fccac 6158 }
5d4f98a2
YZ
6159#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6160 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6161 if (found_extent && item_size < sizeof(*ei))
6162 found_extent = 0;
6163#endif
31840ae1 6164 if (!found_extent) {
5d4f98a2 6165 BUG_ON(iref);
56bec294 6166 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6167 NULL, refs_to_drop,
fcebe456 6168 is_data, &last_ref);
005d6427
DS
6169 if (ret) {
6170 btrfs_abort_transaction(trans, extent_root, ret);
6171 goto out;
6172 }
b3b4aa74 6173 btrfs_release_path(path);
b9473439 6174 path->leave_spinning = 1;
5d4f98a2
YZ
6175
6176 key.objectid = bytenr;
6177 key.type = BTRFS_EXTENT_ITEM_KEY;
6178 key.offset = num_bytes;
6179
3173a18f
JB
6180 if (!is_data && skinny_metadata) {
6181 key.type = BTRFS_METADATA_ITEM_KEY;
6182 key.offset = owner_objectid;
6183 }
6184
31840ae1
ZY
6185 ret = btrfs_search_slot(trans, extent_root,
6186 &key, path, -1, 1);
3173a18f
JB
6187 if (ret > 0 && skinny_metadata && path->slots[0]) {
6188 /*
6189 * Couldn't find our skinny metadata item,
6190 * see if we have ye olde extent item.
6191 */
6192 path->slots[0]--;
6193 btrfs_item_key_to_cpu(path->nodes[0], &key,
6194 path->slots[0]);
6195 if (key.objectid == bytenr &&
6196 key.type == BTRFS_EXTENT_ITEM_KEY &&
6197 key.offset == num_bytes)
6198 ret = 0;
6199 }
6200
6201 if (ret > 0 && skinny_metadata) {
6202 skinny_metadata = false;
9ce49a0b 6203 key.objectid = bytenr;
3173a18f
JB
6204 key.type = BTRFS_EXTENT_ITEM_KEY;
6205 key.offset = num_bytes;
6206 btrfs_release_path(path);
6207 ret = btrfs_search_slot(trans, extent_root,
6208 &key, path, -1, 1);
6209 }
6210
f3465ca4 6211 if (ret) {
c2cf52eb 6212 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6213 ret, bytenr);
b783e62d
JB
6214 if (ret > 0)
6215 btrfs_print_leaf(extent_root,
6216 path->nodes[0]);
f3465ca4 6217 }
005d6427
DS
6218 if (ret < 0) {
6219 btrfs_abort_transaction(trans, extent_root, ret);
6220 goto out;
6221 }
31840ae1
ZY
6222 extent_slot = path->slots[0];
6223 }
fae7f21c 6224 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6225 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6226 btrfs_err(info,
6227 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6228 bytenr, parent, root_objectid, owner_objectid,
6229 owner_offset);
c4a050bb
JB
6230 btrfs_abort_transaction(trans, extent_root, ret);
6231 goto out;
79787eaa 6232 } else {
005d6427
DS
6233 btrfs_abort_transaction(trans, extent_root, ret);
6234 goto out;
7bb86316 6235 }
5f39d397
CM
6236
6237 leaf = path->nodes[0];
5d4f98a2
YZ
6238 item_size = btrfs_item_size_nr(leaf, extent_slot);
6239#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6240 if (item_size < sizeof(*ei)) {
6241 BUG_ON(found_extent || extent_slot != path->slots[0]);
6242 ret = convert_extent_item_v0(trans, extent_root, path,
6243 owner_objectid, 0);
005d6427
DS
6244 if (ret < 0) {
6245 btrfs_abort_transaction(trans, extent_root, ret);
6246 goto out;
6247 }
5d4f98a2 6248
b3b4aa74 6249 btrfs_release_path(path);
5d4f98a2
YZ
6250 path->leave_spinning = 1;
6251
6252 key.objectid = bytenr;
6253 key.type = BTRFS_EXTENT_ITEM_KEY;
6254 key.offset = num_bytes;
6255
6256 ret = btrfs_search_slot(trans, extent_root, &key, path,
6257 -1, 1);
6258 if (ret) {
c2cf52eb 6259 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6260 ret, bytenr);
5d4f98a2
YZ
6261 btrfs_print_leaf(extent_root, path->nodes[0]);
6262 }
005d6427
DS
6263 if (ret < 0) {
6264 btrfs_abort_transaction(trans, extent_root, ret);
6265 goto out;
6266 }
6267
5d4f98a2
YZ
6268 extent_slot = path->slots[0];
6269 leaf = path->nodes[0];
6270 item_size = btrfs_item_size_nr(leaf, extent_slot);
6271 }
6272#endif
6273 BUG_ON(item_size < sizeof(*ei));
952fccac 6274 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6275 struct btrfs_extent_item);
3173a18f
JB
6276 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6277 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6278 struct btrfs_tree_block_info *bi;
6279 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6280 bi = (struct btrfs_tree_block_info *)(ei + 1);
6281 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6282 }
56bec294 6283
5d4f98a2 6284 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6285 if (refs < refs_to_drop) {
6286 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6287 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6288 ret = -EINVAL;
6289 btrfs_abort_transaction(trans, extent_root, ret);
6290 goto out;
6291 }
56bec294 6292 refs -= refs_to_drop;
5f39d397 6293
5d4f98a2
YZ
6294 if (refs > 0) {
6295 if (extent_op)
6296 __run_delayed_extent_op(extent_op, leaf, ei);
6297 /*
6298 * In the case of inline back ref, reference count will
6299 * be updated by remove_extent_backref
952fccac 6300 */
5d4f98a2
YZ
6301 if (iref) {
6302 BUG_ON(!found_extent);
6303 } else {
6304 btrfs_set_extent_refs(leaf, ei, refs);
6305 btrfs_mark_buffer_dirty(leaf);
6306 }
6307 if (found_extent) {
6308 ret = remove_extent_backref(trans, extent_root, path,
6309 iref, refs_to_drop,
fcebe456 6310 is_data, &last_ref);
005d6427
DS
6311 if (ret) {
6312 btrfs_abort_transaction(trans, extent_root, ret);
6313 goto out;
6314 }
952fccac 6315 }
b150a4f1
JB
6316 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6317 root_objectid);
5d4f98a2 6318 } else {
5d4f98a2
YZ
6319 if (found_extent) {
6320 BUG_ON(is_data && refs_to_drop !=
6321 extent_data_ref_count(root, path, iref));
6322 if (iref) {
6323 BUG_ON(path->slots[0] != extent_slot);
6324 } else {
6325 BUG_ON(path->slots[0] != extent_slot + 1);
6326 path->slots[0] = extent_slot;
6327 num_to_del = 2;
6328 }
78fae27e 6329 }
b9473439 6330
fcebe456 6331 last_ref = 1;
952fccac
CM
6332 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6333 num_to_del);
005d6427
DS
6334 if (ret) {
6335 btrfs_abort_transaction(trans, extent_root, ret);
6336 goto out;
6337 }
b3b4aa74 6338 btrfs_release_path(path);
21af804c 6339
5d4f98a2 6340 if (is_data) {
459931ec 6341 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6342 if (ret) {
6343 btrfs_abort_transaction(trans, extent_root, ret);
6344 goto out;
6345 }
459931ec
CM
6346 }
6347
ce93ec54 6348 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6349 if (ret) {
6350 btrfs_abort_transaction(trans, extent_root, ret);
6351 goto out;
6352 }
a28ec197 6353 }
fcebe456
JB
6354 btrfs_release_path(path);
6355
79787eaa 6356out:
5caf2a00 6357 btrfs_free_path(path);
a28ec197
CM
6358 return ret;
6359}
6360
1887be66 6361/*
f0486c68 6362 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6363 * delayed ref for that extent as well. This searches the delayed ref tree for
6364 * a given extent, and if there are no other delayed refs to be processed, it
6365 * removes it from the tree.
6366 */
6367static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6368 struct btrfs_root *root, u64 bytenr)
6369{
6370 struct btrfs_delayed_ref_head *head;
6371 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6372 int ret = 0;
1887be66
CM
6373
6374 delayed_refs = &trans->transaction->delayed_refs;
6375 spin_lock(&delayed_refs->lock);
6376 head = btrfs_find_delayed_ref_head(trans, bytenr);
6377 if (!head)
cf93da7b 6378 goto out_delayed_unlock;
1887be66 6379
d7df2c79 6380 spin_lock(&head->lock);
c6fc2454 6381 if (!list_empty(&head->ref_list))
1887be66
CM
6382 goto out;
6383
5d4f98a2
YZ
6384 if (head->extent_op) {
6385 if (!head->must_insert_reserved)
6386 goto out;
78a6184a 6387 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6388 head->extent_op = NULL;
6389 }
6390
1887be66
CM
6391 /*
6392 * waiting for the lock here would deadlock. If someone else has it
6393 * locked they are already in the process of dropping it anyway
6394 */
6395 if (!mutex_trylock(&head->mutex))
6396 goto out;
6397
6398 /*
6399 * at this point we have a head with no other entries. Go
6400 * ahead and process it.
6401 */
6402 head->node.in_tree = 0;
c46effa6 6403 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6404
d7df2c79 6405 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6406
6407 /*
6408 * we don't take a ref on the node because we're removing it from the
6409 * tree, so we just steal the ref the tree was holding.
6410 */
c3e69d58 6411 delayed_refs->num_heads--;
d7df2c79 6412 if (head->processing == 0)
c3e69d58 6413 delayed_refs->num_heads_ready--;
d7df2c79
JB
6414 head->processing = 0;
6415 spin_unlock(&head->lock);
1887be66
CM
6416 spin_unlock(&delayed_refs->lock);
6417
f0486c68
YZ
6418 BUG_ON(head->extent_op);
6419 if (head->must_insert_reserved)
6420 ret = 1;
6421
6422 mutex_unlock(&head->mutex);
1887be66 6423 btrfs_put_delayed_ref(&head->node);
f0486c68 6424 return ret;
1887be66 6425out:
d7df2c79 6426 spin_unlock(&head->lock);
cf93da7b
CM
6427
6428out_delayed_unlock:
1887be66
CM
6429 spin_unlock(&delayed_refs->lock);
6430 return 0;
6431}
6432
f0486c68
YZ
6433void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6434 struct btrfs_root *root,
6435 struct extent_buffer *buf,
5581a51a 6436 u64 parent, int last_ref)
f0486c68 6437{
b150a4f1 6438 int pin = 1;
f0486c68
YZ
6439 int ret;
6440
6441 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6442 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6443 buf->start, buf->len,
6444 parent, root->root_key.objectid,
6445 btrfs_header_level(buf),
5581a51a 6446 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6447 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6448 }
6449
6450 if (!last_ref)
6451 return;
6452
f0486c68 6453 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6454 struct btrfs_block_group_cache *cache;
6455
f0486c68
YZ
6456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6457 ret = check_ref_cleanup(trans, root, buf->start);
6458 if (!ret)
37be25bc 6459 goto out;
f0486c68
YZ
6460 }
6461
6219872d
FM
6462 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6463
f0486c68
YZ
6464 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6465 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6466 btrfs_put_block_group(cache);
37be25bc 6467 goto out;
f0486c68
YZ
6468 }
6469
6470 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6471
6472 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6473 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6474 btrfs_put_block_group(cache);
0be5dc67 6475 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6476 pin = 0;
f0486c68
YZ
6477 }
6478out:
b150a4f1
JB
6479 if (pin)
6480 add_pinned_bytes(root->fs_info, buf->len,
6481 btrfs_header_level(buf),
6482 root->root_key.objectid);
6483
a826d6dc
JB
6484 /*
6485 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6486 * anymore.
6487 */
6488 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6489}
6490
79787eaa 6491/* Can return -ENOMEM */
66d7e7f0
AJ
6492int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6493 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6494 u64 owner, u64 offset, int no_quota)
925baedd
CM
6495{
6496 int ret;
66d7e7f0 6497 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6498
fccb84c9 6499 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6500 return 0;
fccb84c9 6501
b150a4f1
JB
6502 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6503
56bec294
CM
6504 /*
6505 * tree log blocks never actually go into the extent allocation
6506 * tree, just update pinning info and exit early.
56bec294 6507 */
5d4f98a2
YZ
6508 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6509 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6510 /* unlocks the pinned mutex */
11833d66 6511 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6512 ret = 0;
5d4f98a2 6513 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6514 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6515 num_bytes,
5d4f98a2 6516 parent, root_objectid, (int)owner,
fcebe456 6517 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6518 } else {
66d7e7f0
AJ
6519 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6520 num_bytes,
6521 parent, root_objectid, owner,
6522 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6523 NULL, no_quota);
56bec294 6524 }
925baedd
CM
6525 return ret;
6526}
6527
817d52f8
JB
6528/*
6529 * when we wait for progress in the block group caching, its because
6530 * our allocation attempt failed at least once. So, we must sleep
6531 * and let some progress happen before we try again.
6532 *
6533 * This function will sleep at least once waiting for new free space to
6534 * show up, and then it will check the block group free space numbers
6535 * for our min num_bytes. Another option is to have it go ahead
6536 * and look in the rbtree for a free extent of a given size, but this
6537 * is a good start.
36cce922
JB
6538 *
6539 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6540 * any of the information in this block group.
817d52f8 6541 */
36cce922 6542static noinline void
817d52f8
JB
6543wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6544 u64 num_bytes)
6545{
11833d66 6546 struct btrfs_caching_control *caching_ctl;
817d52f8 6547
11833d66
YZ
6548 caching_ctl = get_caching_control(cache);
6549 if (!caching_ctl)
36cce922 6550 return;
817d52f8 6551
11833d66 6552 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6553 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6554
6555 put_caching_control(caching_ctl);
11833d66
YZ
6556}
6557
6558static noinline int
6559wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6560{
6561 struct btrfs_caching_control *caching_ctl;
36cce922 6562 int ret = 0;
11833d66
YZ
6563
6564 caching_ctl = get_caching_control(cache);
6565 if (!caching_ctl)
36cce922 6566 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6567
6568 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6569 if (cache->cached == BTRFS_CACHE_ERROR)
6570 ret = -EIO;
11833d66 6571 put_caching_control(caching_ctl);
36cce922 6572 return ret;
817d52f8
JB
6573}
6574
31e50229 6575int __get_raid_index(u64 flags)
b742bb82 6576{
7738a53a 6577 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6578 return BTRFS_RAID_RAID10;
7738a53a 6579 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6580 return BTRFS_RAID_RAID1;
7738a53a 6581 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6582 return BTRFS_RAID_DUP;
7738a53a 6583 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6584 return BTRFS_RAID_RAID0;
53b381b3 6585 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6586 return BTRFS_RAID_RAID5;
53b381b3 6587 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6588 return BTRFS_RAID_RAID6;
7738a53a 6589
e942f883 6590 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6591}
6592
6ab0a202 6593int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6594{
31e50229 6595 return __get_raid_index(cache->flags);
7738a53a
ID
6596}
6597
6ab0a202
JM
6598static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6599 [BTRFS_RAID_RAID10] = "raid10",
6600 [BTRFS_RAID_RAID1] = "raid1",
6601 [BTRFS_RAID_DUP] = "dup",
6602 [BTRFS_RAID_RAID0] = "raid0",
6603 [BTRFS_RAID_SINGLE] = "single",
6604 [BTRFS_RAID_RAID5] = "raid5",
6605 [BTRFS_RAID_RAID6] = "raid6",
6606};
6607
1b8e5df6 6608static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6609{
6610 if (type >= BTRFS_NR_RAID_TYPES)
6611 return NULL;
6612
6613 return btrfs_raid_type_names[type];
6614}
6615
817d52f8 6616enum btrfs_loop_type {
285ff5af
JB
6617 LOOP_CACHING_NOWAIT = 0,
6618 LOOP_CACHING_WAIT = 1,
6619 LOOP_ALLOC_CHUNK = 2,
6620 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6621};
6622
e570fd27
MX
6623static inline void
6624btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6625 int delalloc)
6626{
6627 if (delalloc)
6628 down_read(&cache->data_rwsem);
6629}
6630
6631static inline void
6632btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6633 int delalloc)
6634{
6635 btrfs_get_block_group(cache);
6636 if (delalloc)
6637 down_read(&cache->data_rwsem);
6638}
6639
6640static struct btrfs_block_group_cache *
6641btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6642 struct btrfs_free_cluster *cluster,
6643 int delalloc)
6644{
6645 struct btrfs_block_group_cache *used_bg;
6646 bool locked = false;
6647again:
6648 spin_lock(&cluster->refill_lock);
6649 if (locked) {
6650 if (used_bg == cluster->block_group)
6651 return used_bg;
6652
6653 up_read(&used_bg->data_rwsem);
6654 btrfs_put_block_group(used_bg);
6655 }
6656
6657 used_bg = cluster->block_group;
6658 if (!used_bg)
6659 return NULL;
6660
6661 if (used_bg == block_group)
6662 return used_bg;
6663
6664 btrfs_get_block_group(used_bg);
6665
6666 if (!delalloc)
6667 return used_bg;
6668
6669 if (down_read_trylock(&used_bg->data_rwsem))
6670 return used_bg;
6671
6672 spin_unlock(&cluster->refill_lock);
6673 down_read(&used_bg->data_rwsem);
6674 locked = true;
6675 goto again;
6676}
6677
6678static inline void
6679btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6680 int delalloc)
6681{
6682 if (delalloc)
6683 up_read(&cache->data_rwsem);
6684 btrfs_put_block_group(cache);
6685}
6686
fec577fb
CM
6687/*
6688 * walks the btree of allocated extents and find a hole of a given size.
6689 * The key ins is changed to record the hole:
a4820398 6690 * ins->objectid == start position
62e2749e 6691 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6692 * ins->offset == the size of the hole.
fec577fb 6693 * Any available blocks before search_start are skipped.
a4820398
MX
6694 *
6695 * If there is no suitable free space, we will record the max size of
6696 * the free space extent currently.
fec577fb 6697 */
00361589 6698static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6699 u64 num_bytes, u64 empty_size,
98ed5174 6700 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6701 u64 flags, int delalloc)
fec577fb 6702{
80eb234a 6703 int ret = 0;
d397712b 6704 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6705 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6706 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6707 u64 search_start = 0;
a4820398 6708 u64 max_extent_size = 0;
239b14b3 6709 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6710 struct btrfs_space_info *space_info;
fa9c0d79 6711 int loop = 0;
b6919a58
DS
6712 int index = __get_raid_index(flags);
6713 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6714 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6715 bool failed_cluster_refill = false;
1cdda9b8 6716 bool failed_alloc = false;
67377734 6717 bool use_cluster = true;
60d2adbb 6718 bool have_caching_bg = false;
fec577fb 6719
db94535d 6720 WARN_ON(num_bytes < root->sectorsize);
962a298f 6721 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6722 ins->objectid = 0;
6723 ins->offset = 0;
b1a4d965 6724
b6919a58 6725 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6726
b6919a58 6727 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6728 if (!space_info) {
b6919a58 6729 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6730 return -ENOSPC;
6731 }
2552d17e 6732
67377734
JB
6733 /*
6734 * If the space info is for both data and metadata it means we have a
6735 * small filesystem and we can't use the clustering stuff.
6736 */
6737 if (btrfs_mixed_space_info(space_info))
6738 use_cluster = false;
6739
b6919a58 6740 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6741 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6742 if (!btrfs_test_opt(root, SSD))
6743 empty_cluster = 64 * 1024;
239b14b3
CM
6744 }
6745
b6919a58 6746 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6747 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6748 last_ptr = &root->fs_info->data_alloc_cluster;
6749 }
0f9dd46c 6750
239b14b3 6751 if (last_ptr) {
fa9c0d79
CM
6752 spin_lock(&last_ptr->lock);
6753 if (last_ptr->block_group)
6754 hint_byte = last_ptr->window_start;
6755 spin_unlock(&last_ptr->lock);
239b14b3 6756 }
fa9c0d79 6757
a061fc8d 6758 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6759 search_start = max(search_start, hint_byte);
0b86a832 6760
817d52f8 6761 if (!last_ptr)
fa9c0d79 6762 empty_cluster = 0;
fa9c0d79 6763
2552d17e 6764 if (search_start == hint_byte) {
2552d17e
JB
6765 block_group = btrfs_lookup_block_group(root->fs_info,
6766 search_start);
817d52f8
JB
6767 /*
6768 * we don't want to use the block group if it doesn't match our
6769 * allocation bits, or if its not cached.
ccf0e725
JB
6770 *
6771 * However if we are re-searching with an ideal block group
6772 * picked out then we don't care that the block group is cached.
817d52f8 6773 */
b6919a58 6774 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6775 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6776 down_read(&space_info->groups_sem);
44fb5511
CM
6777 if (list_empty(&block_group->list) ||
6778 block_group->ro) {
6779 /*
6780 * someone is removing this block group,
6781 * we can't jump into the have_block_group
6782 * target because our list pointers are not
6783 * valid
6784 */
6785 btrfs_put_block_group(block_group);
6786 up_read(&space_info->groups_sem);
ccf0e725 6787 } else {
b742bb82 6788 index = get_block_group_index(block_group);
e570fd27 6789 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6790 goto have_block_group;
ccf0e725 6791 }
2552d17e 6792 } else if (block_group) {
fa9c0d79 6793 btrfs_put_block_group(block_group);
2552d17e 6794 }
42e70e7a 6795 }
2552d17e 6796search:
60d2adbb 6797 have_caching_bg = false;
80eb234a 6798 down_read(&space_info->groups_sem);
b742bb82
YZ
6799 list_for_each_entry(block_group, &space_info->block_groups[index],
6800 list) {
6226cb0a 6801 u64 offset;
817d52f8 6802 int cached;
8a1413a2 6803
e570fd27 6804 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6805 search_start = block_group->key.objectid;
42e70e7a 6806
83a50de9
CM
6807 /*
6808 * this can happen if we end up cycling through all the
6809 * raid types, but we want to make sure we only allocate
6810 * for the proper type.
6811 */
b6919a58 6812 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6813 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6814 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6815 BTRFS_BLOCK_GROUP_RAID5 |
6816 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6817 BTRFS_BLOCK_GROUP_RAID10;
6818
6819 /*
6820 * if they asked for extra copies and this block group
6821 * doesn't provide them, bail. This does allow us to
6822 * fill raid0 from raid1.
6823 */
b6919a58 6824 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6825 goto loop;
6826 }
6827
2552d17e 6828have_block_group:
291c7d2f
JB
6829 cached = block_group_cache_done(block_group);
6830 if (unlikely(!cached)) {
f6373bf3 6831 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6832 BUG_ON(ret < 0);
6833 ret = 0;
817d52f8
JB
6834 }
6835
36cce922
JB
6836 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6837 goto loop;
ea6a478e 6838 if (unlikely(block_group->ro))
2552d17e 6839 goto loop;
0f9dd46c 6840
0a24325e 6841 /*
062c05c4
AO
6842 * Ok we want to try and use the cluster allocator, so
6843 * lets look there
0a24325e 6844 */
062c05c4 6845 if (last_ptr) {
215a63d1 6846 struct btrfs_block_group_cache *used_block_group;
8de972b4 6847 unsigned long aligned_cluster;
fa9c0d79
CM
6848 /*
6849 * the refill lock keeps out other
6850 * people trying to start a new cluster
6851 */
e570fd27
MX
6852 used_block_group = btrfs_lock_cluster(block_group,
6853 last_ptr,
6854 delalloc);
6855 if (!used_block_group)
44fb5511 6856 goto refill_cluster;
274bd4fb 6857
e570fd27
MX
6858 if (used_block_group != block_group &&
6859 (used_block_group->ro ||
6860 !block_group_bits(used_block_group, flags)))
6861 goto release_cluster;
44fb5511 6862
274bd4fb 6863 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6864 last_ptr,
6865 num_bytes,
6866 used_block_group->key.objectid,
6867 &max_extent_size);
fa9c0d79
CM
6868 if (offset) {
6869 /* we have a block, we're done */
6870 spin_unlock(&last_ptr->refill_lock);
3f7de037 6871 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6872 used_block_group,
6873 search_start, num_bytes);
215a63d1 6874 if (used_block_group != block_group) {
e570fd27
MX
6875 btrfs_release_block_group(block_group,
6876 delalloc);
215a63d1
MX
6877 block_group = used_block_group;
6878 }
fa9c0d79
CM
6879 goto checks;
6880 }
6881
274bd4fb 6882 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 6883release_cluster:
062c05c4
AO
6884 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6885 * set up a new clusters, so lets just skip it
6886 * and let the allocator find whatever block
6887 * it can find. If we reach this point, we
6888 * will have tried the cluster allocator
6889 * plenty of times and not have found
6890 * anything, so we are likely way too
6891 * fragmented for the clustering stuff to find
a5f6f719
AO
6892 * anything.
6893 *
6894 * However, if the cluster is taken from the
6895 * current block group, release the cluster
6896 * first, so that we stand a better chance of
6897 * succeeding in the unclustered
6898 * allocation. */
6899 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 6900 used_block_group != block_group) {
062c05c4 6901 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
6902 btrfs_release_block_group(used_block_group,
6903 delalloc);
062c05c4
AO
6904 goto unclustered_alloc;
6905 }
6906
fa9c0d79
CM
6907 /*
6908 * this cluster didn't work out, free it and
6909 * start over
6910 */
6911 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6912
e570fd27
MX
6913 if (used_block_group != block_group)
6914 btrfs_release_block_group(used_block_group,
6915 delalloc);
6916refill_cluster:
a5f6f719
AO
6917 if (loop >= LOOP_NO_EMPTY_SIZE) {
6918 spin_unlock(&last_ptr->refill_lock);
6919 goto unclustered_alloc;
6920 }
6921
8de972b4
CM
6922 aligned_cluster = max_t(unsigned long,
6923 empty_cluster + empty_size,
6924 block_group->full_stripe_len);
6925
fa9c0d79 6926 /* allocate a cluster in this block group */
00361589
JB
6927 ret = btrfs_find_space_cluster(root, block_group,
6928 last_ptr, search_start,
6929 num_bytes,
6930 aligned_cluster);
fa9c0d79
CM
6931 if (ret == 0) {
6932 /*
6933 * now pull our allocation out of this
6934 * cluster
6935 */
6936 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
6937 last_ptr,
6938 num_bytes,
6939 search_start,
6940 &max_extent_size);
fa9c0d79
CM
6941 if (offset) {
6942 /* we found one, proceed */
6943 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
6944 trace_btrfs_reserve_extent_cluster(root,
6945 block_group, search_start,
6946 num_bytes);
fa9c0d79
CM
6947 goto checks;
6948 }
0a24325e
JB
6949 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6950 && !failed_cluster_refill) {
817d52f8
JB
6951 spin_unlock(&last_ptr->refill_lock);
6952
0a24325e 6953 failed_cluster_refill = true;
817d52f8
JB
6954 wait_block_group_cache_progress(block_group,
6955 num_bytes + empty_cluster + empty_size);
6956 goto have_block_group;
fa9c0d79 6957 }
817d52f8 6958
fa9c0d79
CM
6959 /*
6960 * at this point we either didn't find a cluster
6961 * or we weren't able to allocate a block from our
6962 * cluster. Free the cluster we've been trying
6963 * to use, and go to the next block group
6964 */
0a24325e 6965 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 6966 spin_unlock(&last_ptr->refill_lock);
0a24325e 6967 goto loop;
fa9c0d79
CM
6968 }
6969
062c05c4 6970unclustered_alloc:
a5f6f719
AO
6971 spin_lock(&block_group->free_space_ctl->tree_lock);
6972 if (cached &&
6973 block_group->free_space_ctl->free_space <
6974 num_bytes + empty_cluster + empty_size) {
a4820398
MX
6975 if (block_group->free_space_ctl->free_space >
6976 max_extent_size)
6977 max_extent_size =
6978 block_group->free_space_ctl->free_space;
a5f6f719
AO
6979 spin_unlock(&block_group->free_space_ctl->tree_lock);
6980 goto loop;
6981 }
6982 spin_unlock(&block_group->free_space_ctl->tree_lock);
6983
6226cb0a 6984 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
6985 num_bytes, empty_size,
6986 &max_extent_size);
1cdda9b8
JB
6987 /*
6988 * If we didn't find a chunk, and we haven't failed on this
6989 * block group before, and this block group is in the middle of
6990 * caching and we are ok with waiting, then go ahead and wait
6991 * for progress to be made, and set failed_alloc to true.
6992 *
6993 * If failed_alloc is true then we've already waited on this
6994 * block group once and should move on to the next block group.
6995 */
6996 if (!offset && !failed_alloc && !cached &&
6997 loop > LOOP_CACHING_NOWAIT) {
817d52f8 6998 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
6999 num_bytes + empty_size);
7000 failed_alloc = true;
817d52f8 7001 goto have_block_group;
1cdda9b8 7002 } else if (!offset) {
60d2adbb
MX
7003 if (!cached)
7004 have_caching_bg = true;
1cdda9b8 7005 goto loop;
817d52f8 7006 }
fa9c0d79 7007checks:
4e54b17a 7008 search_start = ALIGN(offset, root->stripesize);
25179201 7009
2552d17e
JB
7010 /* move on to the next group */
7011 if (search_start + num_bytes >
215a63d1
MX
7012 block_group->key.objectid + block_group->key.offset) {
7013 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7014 goto loop;
6226cb0a 7015 }
f5a31e16 7016
f0486c68 7017 if (offset < search_start)
215a63d1 7018 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7019 search_start - offset);
7020 BUG_ON(offset > search_start);
2552d17e 7021
215a63d1 7022 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7023 alloc_type, delalloc);
f0486c68 7024 if (ret == -EAGAIN) {
215a63d1 7025 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7026 goto loop;
0f9dd46c 7027 }
0b86a832 7028
f0486c68 7029 /* we are all good, lets return */
2552d17e
JB
7030 ins->objectid = search_start;
7031 ins->offset = num_bytes;
d2fb3437 7032
3f7de037
JB
7033 trace_btrfs_reserve_extent(orig_root, block_group,
7034 search_start, num_bytes);
e570fd27 7035 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7036 break;
7037loop:
0a24325e 7038 failed_cluster_refill = false;
1cdda9b8 7039 failed_alloc = false;
b742bb82 7040 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7041 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7042 }
7043 up_read(&space_info->groups_sem);
7044
60d2adbb
MX
7045 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7046 goto search;
7047
b742bb82
YZ
7048 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7049 goto search;
7050
285ff5af 7051 /*
ccf0e725
JB
7052 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7053 * caching kthreads as we move along
817d52f8
JB
7054 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7055 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7056 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7057 * again
fa9c0d79 7058 */
723bda20 7059 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7060 index = 0;
723bda20 7061 loop++;
817d52f8 7062 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7063 struct btrfs_trans_handle *trans;
f017f15f
WS
7064 int exist = 0;
7065
7066 trans = current->journal_info;
7067 if (trans)
7068 exist = 1;
7069 else
7070 trans = btrfs_join_transaction(root);
00361589 7071
00361589
JB
7072 if (IS_ERR(trans)) {
7073 ret = PTR_ERR(trans);
7074 goto out;
7075 }
7076
b6919a58 7077 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7078 CHUNK_ALLOC_FORCE);
7079 /*
7080 * Do not bail out on ENOSPC since we
7081 * can do more things.
7082 */
00361589 7083 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7084 btrfs_abort_transaction(trans,
7085 root, ret);
00361589
JB
7086 else
7087 ret = 0;
f017f15f
WS
7088 if (!exist)
7089 btrfs_end_transaction(trans, root);
00361589 7090 if (ret)
ea658bad 7091 goto out;
2552d17e
JB
7092 }
7093
723bda20
JB
7094 if (loop == LOOP_NO_EMPTY_SIZE) {
7095 empty_size = 0;
7096 empty_cluster = 0;
fa9c0d79 7097 }
723bda20
JB
7098
7099 goto search;
2552d17e
JB
7100 } else if (!ins->objectid) {
7101 ret = -ENOSPC;
d82a6f1d 7102 } else if (ins->objectid) {
80eb234a 7103 ret = 0;
be744175 7104 }
79787eaa 7105out:
a4820398
MX
7106 if (ret == -ENOSPC)
7107 ins->offset = max_extent_size;
0f70abe2 7108 return ret;
fec577fb 7109}
ec44a35c 7110
9ed74f2d
JB
7111static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7112 int dump_block_groups)
0f9dd46c
JB
7113{
7114 struct btrfs_block_group_cache *cache;
b742bb82 7115 int index = 0;
0f9dd46c 7116
9ed74f2d 7117 spin_lock(&info->lock);
efe120a0 7118 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7119 info->flags,
7120 info->total_bytes - info->bytes_used - info->bytes_pinned -
7121 info->bytes_reserved - info->bytes_readonly,
d397712b 7122 (info->full) ? "" : "not ");
efe120a0 7123 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7124 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7125 info->total_bytes, info->bytes_used, info->bytes_pinned,
7126 info->bytes_reserved, info->bytes_may_use,
7127 info->bytes_readonly);
9ed74f2d
JB
7128 spin_unlock(&info->lock);
7129
7130 if (!dump_block_groups)
7131 return;
0f9dd46c 7132
80eb234a 7133 down_read(&info->groups_sem);
b742bb82
YZ
7134again:
7135 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7136 spin_lock(&cache->lock);
efe120a0
FH
7137 printk(KERN_INFO "BTRFS: "
7138 "block group %llu has %llu bytes, "
7139 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7140 cache->key.objectid, cache->key.offset,
7141 btrfs_block_group_used(&cache->item), cache->pinned,
7142 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7143 btrfs_dump_free_space(cache, bytes);
7144 spin_unlock(&cache->lock);
7145 }
b742bb82
YZ
7146 if (++index < BTRFS_NR_RAID_TYPES)
7147 goto again;
80eb234a 7148 up_read(&info->groups_sem);
0f9dd46c 7149}
e8569813 7150
00361589 7151int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7152 u64 num_bytes, u64 min_alloc_size,
7153 u64 empty_size, u64 hint_byte,
e570fd27 7154 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7155{
9e622d6b 7156 bool final_tried = false;
b6919a58 7157 u64 flags;
fec577fb 7158 int ret;
925baedd 7159
b6919a58 7160 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7161again:
db94535d 7162 WARN_ON(num_bytes < root->sectorsize);
00361589 7163 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7164 flags, delalloc);
3b951516 7165
9e622d6b 7166 if (ret == -ENOSPC) {
a4820398
MX
7167 if (!final_tried && ins->offset) {
7168 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7169 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7170 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7171 if (num_bytes == min_alloc_size)
7172 final_tried = true;
7173 goto again;
7174 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7175 struct btrfs_space_info *sinfo;
7176
b6919a58 7177 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7178 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7179 flags, num_bytes);
53804280
JM
7180 if (sinfo)
7181 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7182 }
925baedd 7183 }
0f9dd46c
JB
7184
7185 return ret;
e6dcd2dc
CM
7186}
7187
e688b725 7188static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7189 u64 start, u64 len,
7190 int pin, int delalloc)
65b51a00 7191{
0f9dd46c 7192 struct btrfs_block_group_cache *cache;
1f3c79a2 7193 int ret = 0;
0f9dd46c 7194
0f9dd46c
JB
7195 cache = btrfs_lookup_block_group(root->fs_info, start);
7196 if (!cache) {
c2cf52eb 7197 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7198 start);
0f9dd46c
JB
7199 return -ENOSPC;
7200 }
1f3c79a2 7201
e688b725
CM
7202 if (pin)
7203 pin_down_extent(root, cache, start, len, 1);
7204 else {
dcc82f47
FM
7205 if (btrfs_test_opt(root, DISCARD))
7206 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7207 btrfs_add_free_space(cache, start, len);
e570fd27 7208 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7209 }
31193213 7210
fa9c0d79 7211 btrfs_put_block_group(cache);
817d52f8 7212
1abe9b8a 7213 trace_btrfs_reserved_extent_free(root, start, len);
7214
e6dcd2dc
CM
7215 return ret;
7216}
7217
e688b725 7218int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7219 u64 start, u64 len, int delalloc)
e688b725 7220{
e570fd27 7221 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7222}
7223
7224int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7225 u64 start, u64 len)
7226{
e570fd27 7227 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7228}
7229
5d4f98a2
YZ
7230static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7231 struct btrfs_root *root,
7232 u64 parent, u64 root_objectid,
7233 u64 flags, u64 owner, u64 offset,
7234 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7235{
7236 int ret;
5d4f98a2 7237 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7238 struct btrfs_extent_item *extent_item;
5d4f98a2 7239 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7240 struct btrfs_path *path;
5d4f98a2
YZ
7241 struct extent_buffer *leaf;
7242 int type;
7243 u32 size;
26b8003f 7244
5d4f98a2
YZ
7245 if (parent > 0)
7246 type = BTRFS_SHARED_DATA_REF_KEY;
7247 else
7248 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7249
5d4f98a2 7250 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7251
7252 path = btrfs_alloc_path();
db5b493a
TI
7253 if (!path)
7254 return -ENOMEM;
47e4bb98 7255
b9473439 7256 path->leave_spinning = 1;
5d4f98a2
YZ
7257 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7258 ins, size);
79787eaa
JM
7259 if (ret) {
7260 btrfs_free_path(path);
7261 return ret;
7262 }
0f9dd46c 7263
5d4f98a2
YZ
7264 leaf = path->nodes[0];
7265 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7266 struct btrfs_extent_item);
5d4f98a2
YZ
7267 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7268 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7269 btrfs_set_extent_flags(leaf, extent_item,
7270 flags | BTRFS_EXTENT_FLAG_DATA);
7271
7272 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7273 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7274 if (parent > 0) {
7275 struct btrfs_shared_data_ref *ref;
7276 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7277 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7278 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7279 } else {
7280 struct btrfs_extent_data_ref *ref;
7281 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7282 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7283 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7284 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7285 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7286 }
47e4bb98
CM
7287
7288 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7289 btrfs_free_path(path);
f510cfec 7290
ce93ec54 7291 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7292 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7293 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7294 ins->objectid, ins->offset);
f5947066
CM
7295 BUG();
7296 }
0be5dc67 7297 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7298 return ret;
7299}
7300
5d4f98a2
YZ
7301static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7302 struct btrfs_root *root,
7303 u64 parent, u64 root_objectid,
7304 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7305 int level, struct btrfs_key *ins,
7306 int no_quota)
e6dcd2dc
CM
7307{
7308 int ret;
5d4f98a2
YZ
7309 struct btrfs_fs_info *fs_info = root->fs_info;
7310 struct btrfs_extent_item *extent_item;
7311 struct btrfs_tree_block_info *block_info;
7312 struct btrfs_extent_inline_ref *iref;
7313 struct btrfs_path *path;
7314 struct extent_buffer *leaf;
3173a18f 7315 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7316 u64 num_bytes = ins->offset;
3173a18f
JB
7317 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7318 SKINNY_METADATA);
7319
7320 if (!skinny_metadata)
7321 size += sizeof(*block_info);
1c2308f8 7322
5d4f98a2 7323 path = btrfs_alloc_path();
857cc2fc
JB
7324 if (!path) {
7325 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7326 root->nodesize);
d8926bb3 7327 return -ENOMEM;
857cc2fc 7328 }
56bec294 7329
5d4f98a2
YZ
7330 path->leave_spinning = 1;
7331 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7332 ins, size);
79787eaa 7333 if (ret) {
dd825259 7334 btrfs_free_path(path);
857cc2fc 7335 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7336 root->nodesize);
79787eaa
JM
7337 return ret;
7338 }
5d4f98a2
YZ
7339
7340 leaf = path->nodes[0];
7341 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7342 struct btrfs_extent_item);
7343 btrfs_set_extent_refs(leaf, extent_item, 1);
7344 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7345 btrfs_set_extent_flags(leaf, extent_item,
7346 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7347
3173a18f
JB
7348 if (skinny_metadata) {
7349 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7350 num_bytes = root->nodesize;
3173a18f
JB
7351 } else {
7352 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7353 btrfs_set_tree_block_key(leaf, block_info, key);
7354 btrfs_set_tree_block_level(leaf, block_info, level);
7355 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7356 }
5d4f98a2 7357
5d4f98a2
YZ
7358 if (parent > 0) {
7359 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7360 btrfs_set_extent_inline_ref_type(leaf, iref,
7361 BTRFS_SHARED_BLOCK_REF_KEY);
7362 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7363 } else {
7364 btrfs_set_extent_inline_ref_type(leaf, iref,
7365 BTRFS_TREE_BLOCK_REF_KEY);
7366 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7367 }
7368
7369 btrfs_mark_buffer_dirty(leaf);
7370 btrfs_free_path(path);
7371
ce93ec54
JB
7372 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7373 1);
79787eaa 7374 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7375 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7376 ins->objectid, ins->offset);
5d4f98a2
YZ
7377 BUG();
7378 }
0be5dc67 7379
707e8a07 7380 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7381 return ret;
7382}
7383
7384int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7385 struct btrfs_root *root,
7386 u64 root_objectid, u64 owner,
7387 u64 offset, struct btrfs_key *ins)
7388{
7389 int ret;
7390
7391 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7392
66d7e7f0
AJ
7393 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7394 ins->offset, 0,
7395 root_objectid, owner, offset,
7396 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7397 return ret;
7398}
e02119d5
CM
7399
7400/*
7401 * this is used by the tree logging recovery code. It records that
7402 * an extent has been allocated and makes sure to clear the free
7403 * space cache bits as well
7404 */
5d4f98a2
YZ
7405int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7406 struct btrfs_root *root,
7407 u64 root_objectid, u64 owner, u64 offset,
7408 struct btrfs_key *ins)
e02119d5
CM
7409{
7410 int ret;
7411 struct btrfs_block_group_cache *block_group;
11833d66 7412
8c2a1a30
JB
7413 /*
7414 * Mixed block groups will exclude before processing the log so we only
7415 * need to do the exlude dance if this fs isn't mixed.
7416 */
7417 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7418 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7419 if (ret)
8c2a1a30 7420 return ret;
11833d66
YZ
7421 }
7422
8c2a1a30
JB
7423 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7424 if (!block_group)
7425 return -EINVAL;
7426
fb25e914 7427 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7428 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7429 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7430 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7431 0, owner, offset, ins, 1);
b50c6e25 7432 btrfs_put_block_group(block_group);
e02119d5
CM
7433 return ret;
7434}
7435
48a3b636
ES
7436static struct extent_buffer *
7437btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7438 u64 bytenr, int level)
65b51a00
CM
7439{
7440 struct extent_buffer *buf;
7441
a83fffb7 7442 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7443 if (!buf)
7444 return ERR_PTR(-ENOMEM);
7445 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7446 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7447 btrfs_tree_lock(buf);
01d58472 7448 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7449 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7450
7451 btrfs_set_lock_blocking(buf);
65b51a00 7452 btrfs_set_buffer_uptodate(buf);
b4ce94de 7453
d0c803c4 7454 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7455 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7456 /*
7457 * we allow two log transactions at a time, use different
7458 * EXENT bit to differentiate dirty pages.
7459 */
656f30db 7460 if (buf->log_index == 0)
8cef4e16
YZ
7461 set_extent_dirty(&root->dirty_log_pages, buf->start,
7462 buf->start + buf->len - 1, GFP_NOFS);
7463 else
7464 set_extent_new(&root->dirty_log_pages, buf->start,
7465 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7466 } else {
656f30db 7467 buf->log_index = -1;
d0c803c4 7468 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7469 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7470 }
65b51a00 7471 trans->blocks_used++;
b4ce94de 7472 /* this returns a buffer locked for blocking */
65b51a00
CM
7473 return buf;
7474}
7475
f0486c68
YZ
7476static struct btrfs_block_rsv *
7477use_block_rsv(struct btrfs_trans_handle *trans,
7478 struct btrfs_root *root, u32 blocksize)
7479{
7480 struct btrfs_block_rsv *block_rsv;
68a82277 7481 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7482 int ret;
d88033db 7483 bool global_updated = false;
f0486c68
YZ
7484
7485 block_rsv = get_block_rsv(trans, root);
7486
b586b323
MX
7487 if (unlikely(block_rsv->size == 0))
7488 goto try_reserve;
d88033db 7489again:
f0486c68
YZ
7490 ret = block_rsv_use_bytes(block_rsv, blocksize);
7491 if (!ret)
7492 return block_rsv;
7493
b586b323
MX
7494 if (block_rsv->failfast)
7495 return ERR_PTR(ret);
7496
d88033db
MX
7497 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7498 global_updated = true;
7499 update_global_block_rsv(root->fs_info);
7500 goto again;
7501 }
7502
b586b323
MX
7503 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7504 static DEFINE_RATELIMIT_STATE(_rs,
7505 DEFAULT_RATELIMIT_INTERVAL * 10,
7506 /*DEFAULT_RATELIMIT_BURST*/ 1);
7507 if (__ratelimit(&_rs))
7508 WARN(1, KERN_DEBUG
efe120a0 7509 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7510 }
7511try_reserve:
7512 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7513 BTRFS_RESERVE_NO_FLUSH);
7514 if (!ret)
7515 return block_rsv;
7516 /*
7517 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7518 * the global reserve if its space type is the same as the global
7519 * reservation.
b586b323 7520 */
5881cfc9
MX
7521 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7522 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7523 ret = block_rsv_use_bytes(global_rsv, blocksize);
7524 if (!ret)
7525 return global_rsv;
7526 }
7527 return ERR_PTR(ret);
f0486c68
YZ
7528}
7529
8c2a3ca2
JB
7530static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7531 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7532{
7533 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7534 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7535}
7536
fec577fb 7537/*
f0486c68
YZ
7538 * finds a free extent and does all the dirty work required for allocation
7539 * returns the key for the extent through ins, and a tree buffer for
7540 * the first block of the extent through buf.
7541 *
67b7859e 7542 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7543 */
4d75f8a9
DS
7544struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7545 struct btrfs_root *root,
5d4f98a2
YZ
7546 u64 parent, u64 root_objectid,
7547 struct btrfs_disk_key *key, int level,
5581a51a 7548 u64 hint, u64 empty_size)
fec577fb 7549{
e2fa7227 7550 struct btrfs_key ins;
f0486c68 7551 struct btrfs_block_rsv *block_rsv;
5f39d397 7552 struct extent_buffer *buf;
67b7859e 7553 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7554 u64 flags = 0;
7555 int ret;
4d75f8a9 7556 u32 blocksize = root->nodesize;
3173a18f
JB
7557 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7558 SKINNY_METADATA);
fec577fb 7559
fccb84c9 7560 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7561 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7562 level);
faa2dbf0
JB
7563 if (!IS_ERR(buf))
7564 root->alloc_bytenr += blocksize;
7565 return buf;
7566 }
fccb84c9 7567
f0486c68
YZ
7568 block_rsv = use_block_rsv(trans, root, blocksize);
7569 if (IS_ERR(block_rsv))
7570 return ERR_CAST(block_rsv);
7571
00361589 7572 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7573 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7574 if (ret)
7575 goto out_unuse;
55c69072 7576
fe864576 7577 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7578 if (IS_ERR(buf)) {
7579 ret = PTR_ERR(buf);
7580 goto out_free_reserved;
7581 }
f0486c68
YZ
7582
7583 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7584 if (parent == 0)
7585 parent = ins.objectid;
7586 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7587 } else
7588 BUG_ON(parent > 0);
7589
7590 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7591 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7592 if (!extent_op) {
7593 ret = -ENOMEM;
7594 goto out_free_buf;
7595 }
f0486c68
YZ
7596 if (key)
7597 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7598 else
7599 memset(&extent_op->key, 0, sizeof(extent_op->key));
7600 extent_op->flags_to_set = flags;
3173a18f
JB
7601 if (skinny_metadata)
7602 extent_op->update_key = 0;
7603 else
7604 extent_op->update_key = 1;
f0486c68
YZ
7605 extent_op->update_flags = 1;
7606 extent_op->is_data = 0;
b1c79e09 7607 extent_op->level = level;
f0486c68 7608
66d7e7f0 7609 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7610 ins.objectid, ins.offset,
7611 parent, root_objectid, level,
7612 BTRFS_ADD_DELAYED_EXTENT,
7613 extent_op, 0);
7614 if (ret)
7615 goto out_free_delayed;
f0486c68 7616 }
fec577fb 7617 return buf;
67b7859e
OS
7618
7619out_free_delayed:
7620 btrfs_free_delayed_extent_op(extent_op);
7621out_free_buf:
7622 free_extent_buffer(buf);
7623out_free_reserved:
7624 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7625out_unuse:
7626 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7627 return ERR_PTR(ret);
fec577fb 7628}
a28ec197 7629
2c47e605
YZ
7630struct walk_control {
7631 u64 refs[BTRFS_MAX_LEVEL];
7632 u64 flags[BTRFS_MAX_LEVEL];
7633 struct btrfs_key update_progress;
7634 int stage;
7635 int level;
7636 int shared_level;
7637 int update_ref;
7638 int keep_locks;
1c4850e2
YZ
7639 int reada_slot;
7640 int reada_count;
66d7e7f0 7641 int for_reloc;
2c47e605
YZ
7642};
7643
7644#define DROP_REFERENCE 1
7645#define UPDATE_BACKREF 2
7646
1c4850e2
YZ
7647static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7648 struct btrfs_root *root,
7649 struct walk_control *wc,
7650 struct btrfs_path *path)
6407bf6d 7651{
1c4850e2
YZ
7652 u64 bytenr;
7653 u64 generation;
7654 u64 refs;
94fcca9f 7655 u64 flags;
5d4f98a2 7656 u32 nritems;
1c4850e2
YZ
7657 u32 blocksize;
7658 struct btrfs_key key;
7659 struct extent_buffer *eb;
6407bf6d 7660 int ret;
1c4850e2
YZ
7661 int slot;
7662 int nread = 0;
6407bf6d 7663
1c4850e2
YZ
7664 if (path->slots[wc->level] < wc->reada_slot) {
7665 wc->reada_count = wc->reada_count * 2 / 3;
7666 wc->reada_count = max(wc->reada_count, 2);
7667 } else {
7668 wc->reada_count = wc->reada_count * 3 / 2;
7669 wc->reada_count = min_t(int, wc->reada_count,
7670 BTRFS_NODEPTRS_PER_BLOCK(root));
7671 }
7bb86316 7672
1c4850e2
YZ
7673 eb = path->nodes[wc->level];
7674 nritems = btrfs_header_nritems(eb);
707e8a07 7675 blocksize = root->nodesize;
bd56b302 7676
1c4850e2
YZ
7677 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7678 if (nread >= wc->reada_count)
7679 break;
bd56b302 7680
2dd3e67b 7681 cond_resched();
1c4850e2
YZ
7682 bytenr = btrfs_node_blockptr(eb, slot);
7683 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7684
1c4850e2
YZ
7685 if (slot == path->slots[wc->level])
7686 goto reada;
5d4f98a2 7687
1c4850e2
YZ
7688 if (wc->stage == UPDATE_BACKREF &&
7689 generation <= root->root_key.offset)
bd56b302
CM
7690 continue;
7691
94fcca9f 7692 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7693 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7694 wc->level - 1, 1, &refs,
7695 &flags);
79787eaa
JM
7696 /* We don't care about errors in readahead. */
7697 if (ret < 0)
7698 continue;
94fcca9f
YZ
7699 BUG_ON(refs == 0);
7700
1c4850e2 7701 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7702 if (refs == 1)
7703 goto reada;
bd56b302 7704
94fcca9f
YZ
7705 if (wc->level == 1 &&
7706 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7707 continue;
1c4850e2
YZ
7708 if (!wc->update_ref ||
7709 generation <= root->root_key.offset)
7710 continue;
7711 btrfs_node_key_to_cpu(eb, &key, slot);
7712 ret = btrfs_comp_cpu_keys(&key,
7713 &wc->update_progress);
7714 if (ret < 0)
7715 continue;
94fcca9f
YZ
7716 } else {
7717 if (wc->level == 1 &&
7718 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7719 continue;
6407bf6d 7720 }
1c4850e2 7721reada:
d3e46fea 7722 readahead_tree_block(root, bytenr);
1c4850e2 7723 nread++;
20524f02 7724 }
1c4850e2 7725 wc->reada_slot = slot;
20524f02 7726}
2c47e605 7727
0ed4792a
QW
7728/*
7729 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7730 * for later qgroup accounting.
7731 *
7732 * Current, this function does nothing.
7733 */
1152651a
MF
7734static int account_leaf_items(struct btrfs_trans_handle *trans,
7735 struct btrfs_root *root,
7736 struct extent_buffer *eb)
7737{
7738 int nr = btrfs_header_nritems(eb);
0ed4792a 7739 int i, extent_type;
1152651a
MF
7740 struct btrfs_key key;
7741 struct btrfs_file_extent_item *fi;
7742 u64 bytenr, num_bytes;
7743
7744 for (i = 0; i < nr; i++) {
7745 btrfs_item_key_to_cpu(eb, &key, i);
7746
7747 if (key.type != BTRFS_EXTENT_DATA_KEY)
7748 continue;
7749
7750 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7751 /* filter out non qgroup-accountable extents */
7752 extent_type = btrfs_file_extent_type(eb, fi);
7753
7754 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7755 continue;
7756
7757 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7758 if (!bytenr)
7759 continue;
7760
7761 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7762 }
7763 return 0;
7764}
7765
7766/*
7767 * Walk up the tree from the bottom, freeing leaves and any interior
7768 * nodes which have had all slots visited. If a node (leaf or
7769 * interior) is freed, the node above it will have it's slot
7770 * incremented. The root node will never be freed.
7771 *
7772 * At the end of this function, we should have a path which has all
7773 * slots incremented to the next position for a search. If we need to
7774 * read a new node it will be NULL and the node above it will have the
7775 * correct slot selected for a later read.
7776 *
7777 * If we increment the root nodes slot counter past the number of
7778 * elements, 1 is returned to signal completion of the search.
7779 */
7780static int adjust_slots_upwards(struct btrfs_root *root,
7781 struct btrfs_path *path, int root_level)
7782{
7783 int level = 0;
7784 int nr, slot;
7785 struct extent_buffer *eb;
7786
7787 if (root_level == 0)
7788 return 1;
7789
7790 while (level <= root_level) {
7791 eb = path->nodes[level];
7792 nr = btrfs_header_nritems(eb);
7793 path->slots[level]++;
7794 slot = path->slots[level];
7795 if (slot >= nr || level == 0) {
7796 /*
7797 * Don't free the root - we will detect this
7798 * condition after our loop and return a
7799 * positive value for caller to stop walking the tree.
7800 */
7801 if (level != root_level) {
7802 btrfs_tree_unlock_rw(eb, path->locks[level]);
7803 path->locks[level] = 0;
7804
7805 free_extent_buffer(eb);
7806 path->nodes[level] = NULL;
7807 path->slots[level] = 0;
7808 }
7809 } else {
7810 /*
7811 * We have a valid slot to walk back down
7812 * from. Stop here so caller can process these
7813 * new nodes.
7814 */
7815 break;
7816 }
7817
7818 level++;
7819 }
7820
7821 eb = path->nodes[root_level];
7822 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7823 return 1;
7824
7825 return 0;
7826}
7827
7828/*
7829 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7830 * TODO: Modify this function to mark all (including complete shared node)
7831 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7832 */
7833static int account_shared_subtree(struct btrfs_trans_handle *trans,
7834 struct btrfs_root *root,
7835 struct extent_buffer *root_eb,
7836 u64 root_gen,
7837 int root_level)
7838{
7839 int ret = 0;
7840 int level;
7841 struct extent_buffer *eb = root_eb;
7842 struct btrfs_path *path = NULL;
7843
7844 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7845 BUG_ON(root_eb == NULL);
7846
7847 if (!root->fs_info->quota_enabled)
7848 return 0;
7849
7850 if (!extent_buffer_uptodate(root_eb)) {
7851 ret = btrfs_read_buffer(root_eb, root_gen);
7852 if (ret)
7853 goto out;
7854 }
7855
7856 if (root_level == 0) {
7857 ret = account_leaf_items(trans, root, root_eb);
7858 goto out;
7859 }
7860
7861 path = btrfs_alloc_path();
7862 if (!path)
7863 return -ENOMEM;
7864
7865 /*
7866 * Walk down the tree. Missing extent blocks are filled in as
7867 * we go. Metadata is accounted every time we read a new
7868 * extent block.
7869 *
7870 * When we reach a leaf, we account for file extent items in it,
7871 * walk back up the tree (adjusting slot pointers as we go)
7872 * and restart the search process.
7873 */
7874 extent_buffer_get(root_eb); /* For path */
7875 path->nodes[root_level] = root_eb;
7876 path->slots[root_level] = 0;
7877 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7878walk_down:
7879 level = root_level;
7880 while (level >= 0) {
7881 if (path->nodes[level] == NULL) {
1152651a
MF
7882 int parent_slot;
7883 u64 child_gen;
7884 u64 child_bytenr;
7885
7886 /* We need to get child blockptr/gen from
7887 * parent before we can read it. */
7888 eb = path->nodes[level + 1];
7889 parent_slot = path->slots[level + 1];
7890 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7891 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7892
ce86cd59 7893 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
7894 if (IS_ERR(eb)) {
7895 ret = PTR_ERR(eb);
7896 goto out;
7897 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 7898 free_extent_buffer(eb);
64c043de 7899 ret = -EIO;
1152651a
MF
7900 goto out;
7901 }
7902
7903 path->nodes[level] = eb;
7904 path->slots[level] = 0;
7905
7906 btrfs_tree_read_lock(eb);
7907 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7908 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
7909 }
7910
7911 if (level == 0) {
7912 ret = account_leaf_items(trans, root, path->nodes[level]);
7913 if (ret)
7914 goto out;
7915
7916 /* Nonzero return here means we completed our search */
7917 ret = adjust_slots_upwards(root, path, root_level);
7918 if (ret)
7919 break;
7920
7921 /* Restart search with new slots */
7922 goto walk_down;
7923 }
7924
7925 level--;
7926 }
7927
7928 ret = 0;
7929out:
7930 btrfs_free_path(path);
7931
7932 return ret;
7933}
7934
f82d02d9 7935/*
2c016dc2 7936 * helper to process tree block while walking down the tree.
2c47e605 7937 *
2c47e605
YZ
7938 * when wc->stage == UPDATE_BACKREF, this function updates
7939 * back refs for pointers in the block.
7940 *
7941 * NOTE: return value 1 means we should stop walking down.
f82d02d9 7942 */
2c47e605 7943static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 7944 struct btrfs_root *root,
2c47e605 7945 struct btrfs_path *path,
94fcca9f 7946 struct walk_control *wc, int lookup_info)
f82d02d9 7947{
2c47e605
YZ
7948 int level = wc->level;
7949 struct extent_buffer *eb = path->nodes[level];
2c47e605 7950 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
7951 int ret;
7952
2c47e605
YZ
7953 if (wc->stage == UPDATE_BACKREF &&
7954 btrfs_header_owner(eb) != root->root_key.objectid)
7955 return 1;
f82d02d9 7956
2c47e605
YZ
7957 /*
7958 * when reference count of tree block is 1, it won't increase
7959 * again. once full backref flag is set, we never clear it.
7960 */
94fcca9f
YZ
7961 if (lookup_info &&
7962 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7963 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
7964 BUG_ON(!path->locks[level]);
7965 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 7966 eb->start, level, 1,
2c47e605
YZ
7967 &wc->refs[level],
7968 &wc->flags[level]);
79787eaa
JM
7969 BUG_ON(ret == -ENOMEM);
7970 if (ret)
7971 return ret;
2c47e605
YZ
7972 BUG_ON(wc->refs[level] == 0);
7973 }
5d4f98a2 7974
2c47e605
YZ
7975 if (wc->stage == DROP_REFERENCE) {
7976 if (wc->refs[level] > 1)
7977 return 1;
f82d02d9 7978
2c47e605 7979 if (path->locks[level] && !wc->keep_locks) {
bd681513 7980 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
7981 path->locks[level] = 0;
7982 }
7983 return 0;
7984 }
f82d02d9 7985
2c47e605
YZ
7986 /* wc->stage == UPDATE_BACKREF */
7987 if (!(wc->flags[level] & flag)) {
7988 BUG_ON(!path->locks[level]);
e339a6b0 7989 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 7990 BUG_ON(ret); /* -ENOMEM */
e339a6b0 7991 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 7992 BUG_ON(ret); /* -ENOMEM */
2c47e605 7993 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
7994 eb->len, flag,
7995 btrfs_header_level(eb), 0);
79787eaa 7996 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
7997 wc->flags[level] |= flag;
7998 }
7999
8000 /*
8001 * the block is shared by multiple trees, so it's not good to
8002 * keep the tree lock
8003 */
8004 if (path->locks[level] && level > 0) {
bd681513 8005 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8006 path->locks[level] = 0;
8007 }
8008 return 0;
8009}
8010
1c4850e2 8011/*
2c016dc2 8012 * helper to process tree block pointer.
1c4850e2
YZ
8013 *
8014 * when wc->stage == DROP_REFERENCE, this function checks
8015 * reference count of the block pointed to. if the block
8016 * is shared and we need update back refs for the subtree
8017 * rooted at the block, this function changes wc->stage to
8018 * UPDATE_BACKREF. if the block is shared and there is no
8019 * need to update back, this function drops the reference
8020 * to the block.
8021 *
8022 * NOTE: return value 1 means we should stop walking down.
8023 */
8024static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8025 struct btrfs_root *root,
8026 struct btrfs_path *path,
94fcca9f 8027 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8028{
8029 u64 bytenr;
8030 u64 generation;
8031 u64 parent;
8032 u32 blocksize;
8033 struct btrfs_key key;
8034 struct extent_buffer *next;
8035 int level = wc->level;
8036 int reada = 0;
8037 int ret = 0;
1152651a 8038 bool need_account = false;
1c4850e2
YZ
8039
8040 generation = btrfs_node_ptr_generation(path->nodes[level],
8041 path->slots[level]);
8042 /*
8043 * if the lower level block was created before the snapshot
8044 * was created, we know there is no need to update back refs
8045 * for the subtree
8046 */
8047 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8048 generation <= root->root_key.offset) {
8049 *lookup_info = 1;
1c4850e2 8050 return 1;
94fcca9f 8051 }
1c4850e2
YZ
8052
8053 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8054 blocksize = root->nodesize;
1c4850e2 8055
01d58472 8056 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8057 if (!next) {
a83fffb7 8058 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8059 if (!next)
8060 return -ENOMEM;
b2aaaa3b
JB
8061 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8062 level - 1);
1c4850e2
YZ
8063 reada = 1;
8064 }
8065 btrfs_tree_lock(next);
8066 btrfs_set_lock_blocking(next);
8067
3173a18f 8068 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8069 &wc->refs[level - 1],
8070 &wc->flags[level - 1]);
79787eaa
JM
8071 if (ret < 0) {
8072 btrfs_tree_unlock(next);
8073 return ret;
8074 }
8075
c2cf52eb
SK
8076 if (unlikely(wc->refs[level - 1] == 0)) {
8077 btrfs_err(root->fs_info, "Missing references.");
8078 BUG();
8079 }
94fcca9f 8080 *lookup_info = 0;
1c4850e2 8081
94fcca9f 8082 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8083 if (wc->refs[level - 1] > 1) {
1152651a 8084 need_account = true;
94fcca9f
YZ
8085 if (level == 1 &&
8086 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8087 goto skip;
8088
1c4850e2
YZ
8089 if (!wc->update_ref ||
8090 generation <= root->root_key.offset)
8091 goto skip;
8092
8093 btrfs_node_key_to_cpu(path->nodes[level], &key,
8094 path->slots[level]);
8095 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8096 if (ret < 0)
8097 goto skip;
8098
8099 wc->stage = UPDATE_BACKREF;
8100 wc->shared_level = level - 1;
8101 }
94fcca9f
YZ
8102 } else {
8103 if (level == 1 &&
8104 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8105 goto skip;
1c4850e2
YZ
8106 }
8107
b9fab919 8108 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8109 btrfs_tree_unlock(next);
8110 free_extent_buffer(next);
8111 next = NULL;
94fcca9f 8112 *lookup_info = 1;
1c4850e2
YZ
8113 }
8114
8115 if (!next) {
8116 if (reada && level == 1)
8117 reada_walk_down(trans, root, wc, path);
ce86cd59 8118 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8119 if (IS_ERR(next)) {
8120 return PTR_ERR(next);
8121 } else if (!extent_buffer_uptodate(next)) {
416bc658 8122 free_extent_buffer(next);
97d9a8a4 8123 return -EIO;
416bc658 8124 }
1c4850e2
YZ
8125 btrfs_tree_lock(next);
8126 btrfs_set_lock_blocking(next);
8127 }
8128
8129 level--;
8130 BUG_ON(level != btrfs_header_level(next));
8131 path->nodes[level] = next;
8132 path->slots[level] = 0;
bd681513 8133 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8134 wc->level = level;
8135 if (wc->level == 1)
8136 wc->reada_slot = 0;
8137 return 0;
8138skip:
8139 wc->refs[level - 1] = 0;
8140 wc->flags[level - 1] = 0;
94fcca9f
YZ
8141 if (wc->stage == DROP_REFERENCE) {
8142 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8143 parent = path->nodes[level]->start;
8144 } else {
8145 BUG_ON(root->root_key.objectid !=
8146 btrfs_header_owner(path->nodes[level]));
8147 parent = 0;
8148 }
1c4850e2 8149
1152651a
MF
8150 if (need_account) {
8151 ret = account_shared_subtree(trans, root, next,
8152 generation, level - 1);
8153 if (ret) {
8154 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8155 "%d accounting shared subtree. Quota "
8156 "is out of sync, rescan required.\n",
8157 root->fs_info->sb->s_id, ret);
8158 }
8159 }
94fcca9f 8160 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8161 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8162 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8163 }
1c4850e2
YZ
8164 btrfs_tree_unlock(next);
8165 free_extent_buffer(next);
94fcca9f 8166 *lookup_info = 1;
1c4850e2
YZ
8167 return 1;
8168}
8169
2c47e605 8170/*
2c016dc2 8171 * helper to process tree block while walking up the tree.
2c47e605
YZ
8172 *
8173 * when wc->stage == DROP_REFERENCE, this function drops
8174 * reference count on the block.
8175 *
8176 * when wc->stage == UPDATE_BACKREF, this function changes
8177 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8178 * to UPDATE_BACKREF previously while processing the block.
8179 *
8180 * NOTE: return value 1 means we should stop walking up.
8181 */
8182static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8183 struct btrfs_root *root,
8184 struct btrfs_path *path,
8185 struct walk_control *wc)
8186{
f0486c68 8187 int ret;
2c47e605
YZ
8188 int level = wc->level;
8189 struct extent_buffer *eb = path->nodes[level];
8190 u64 parent = 0;
8191
8192 if (wc->stage == UPDATE_BACKREF) {
8193 BUG_ON(wc->shared_level < level);
8194 if (level < wc->shared_level)
8195 goto out;
8196
2c47e605
YZ
8197 ret = find_next_key(path, level + 1, &wc->update_progress);
8198 if (ret > 0)
8199 wc->update_ref = 0;
8200
8201 wc->stage = DROP_REFERENCE;
8202 wc->shared_level = -1;
8203 path->slots[level] = 0;
8204
8205 /*
8206 * check reference count again if the block isn't locked.
8207 * we should start walking down the tree again if reference
8208 * count is one.
8209 */
8210 if (!path->locks[level]) {
8211 BUG_ON(level == 0);
8212 btrfs_tree_lock(eb);
8213 btrfs_set_lock_blocking(eb);
bd681513 8214 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8215
8216 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8217 eb->start, level, 1,
2c47e605
YZ
8218 &wc->refs[level],
8219 &wc->flags[level]);
79787eaa
JM
8220 if (ret < 0) {
8221 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8222 path->locks[level] = 0;
79787eaa
JM
8223 return ret;
8224 }
2c47e605
YZ
8225 BUG_ON(wc->refs[level] == 0);
8226 if (wc->refs[level] == 1) {
bd681513 8227 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8228 path->locks[level] = 0;
2c47e605
YZ
8229 return 1;
8230 }
f82d02d9 8231 }
2c47e605 8232 }
f82d02d9 8233
2c47e605
YZ
8234 /* wc->stage == DROP_REFERENCE */
8235 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8236
2c47e605
YZ
8237 if (wc->refs[level] == 1) {
8238 if (level == 0) {
8239 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8240 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8241 else
e339a6b0 8242 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8243 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8244 ret = account_leaf_items(trans, root, eb);
8245 if (ret) {
8246 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8247 "%d accounting leaf items. Quota "
8248 "is out of sync, rescan required.\n",
8249 root->fs_info->sb->s_id, ret);
8250 }
2c47e605
YZ
8251 }
8252 /* make block locked assertion in clean_tree_block happy */
8253 if (!path->locks[level] &&
8254 btrfs_header_generation(eb) == trans->transid) {
8255 btrfs_tree_lock(eb);
8256 btrfs_set_lock_blocking(eb);
bd681513 8257 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8258 }
01d58472 8259 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8260 }
8261
8262 if (eb == root->node) {
8263 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8264 parent = eb->start;
8265 else
8266 BUG_ON(root->root_key.objectid !=
8267 btrfs_header_owner(eb));
8268 } else {
8269 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8270 parent = path->nodes[level + 1]->start;
8271 else
8272 BUG_ON(root->root_key.objectid !=
8273 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8274 }
f82d02d9 8275
5581a51a 8276 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8277out:
8278 wc->refs[level] = 0;
8279 wc->flags[level] = 0;
f0486c68 8280 return 0;
2c47e605
YZ
8281}
8282
8283static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8284 struct btrfs_root *root,
8285 struct btrfs_path *path,
8286 struct walk_control *wc)
8287{
2c47e605 8288 int level = wc->level;
94fcca9f 8289 int lookup_info = 1;
2c47e605
YZ
8290 int ret;
8291
8292 while (level >= 0) {
94fcca9f 8293 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8294 if (ret > 0)
8295 break;
8296
8297 if (level == 0)
8298 break;
8299
7a7965f8
YZ
8300 if (path->slots[level] >=
8301 btrfs_header_nritems(path->nodes[level]))
8302 break;
8303
94fcca9f 8304 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8305 if (ret > 0) {
8306 path->slots[level]++;
8307 continue;
90d2c51d
MX
8308 } else if (ret < 0)
8309 return ret;
1c4850e2 8310 level = wc->level;
f82d02d9 8311 }
f82d02d9
YZ
8312 return 0;
8313}
8314
d397712b 8315static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8316 struct btrfs_root *root,
f82d02d9 8317 struct btrfs_path *path,
2c47e605 8318 struct walk_control *wc, int max_level)
20524f02 8319{
2c47e605 8320 int level = wc->level;
20524f02 8321 int ret;
9f3a7427 8322
2c47e605
YZ
8323 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8324 while (level < max_level && path->nodes[level]) {
8325 wc->level = level;
8326 if (path->slots[level] + 1 <
8327 btrfs_header_nritems(path->nodes[level])) {
8328 path->slots[level]++;
20524f02
CM
8329 return 0;
8330 } else {
2c47e605
YZ
8331 ret = walk_up_proc(trans, root, path, wc);
8332 if (ret > 0)
8333 return 0;
bd56b302 8334
2c47e605 8335 if (path->locks[level]) {
bd681513
CM
8336 btrfs_tree_unlock_rw(path->nodes[level],
8337 path->locks[level]);
2c47e605 8338 path->locks[level] = 0;
f82d02d9 8339 }
2c47e605
YZ
8340 free_extent_buffer(path->nodes[level]);
8341 path->nodes[level] = NULL;
8342 level++;
20524f02
CM
8343 }
8344 }
8345 return 1;
8346}
8347
9aca1d51 8348/*
2c47e605
YZ
8349 * drop a subvolume tree.
8350 *
8351 * this function traverses the tree freeing any blocks that only
8352 * referenced by the tree.
8353 *
8354 * when a shared tree block is found. this function decreases its
8355 * reference count by one. if update_ref is true, this function
8356 * also make sure backrefs for the shared block and all lower level
8357 * blocks are properly updated.
9d1a2a3a
DS
8358 *
8359 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8360 */
2c536799 8361int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8362 struct btrfs_block_rsv *block_rsv, int update_ref,
8363 int for_reloc)
20524f02 8364{
5caf2a00 8365 struct btrfs_path *path;
2c47e605
YZ
8366 struct btrfs_trans_handle *trans;
8367 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8368 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8369 struct walk_control *wc;
8370 struct btrfs_key key;
8371 int err = 0;
8372 int ret;
8373 int level;
d29a9f62 8374 bool root_dropped = false;
20524f02 8375
1152651a
MF
8376 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8377
5caf2a00 8378 path = btrfs_alloc_path();
cb1b69f4
TI
8379 if (!path) {
8380 err = -ENOMEM;
8381 goto out;
8382 }
20524f02 8383
2c47e605 8384 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8385 if (!wc) {
8386 btrfs_free_path(path);
cb1b69f4
TI
8387 err = -ENOMEM;
8388 goto out;
38a1a919 8389 }
2c47e605 8390
a22285a6 8391 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8392 if (IS_ERR(trans)) {
8393 err = PTR_ERR(trans);
8394 goto out_free;
8395 }
98d5dc13 8396
3fd0a558
YZ
8397 if (block_rsv)
8398 trans->block_rsv = block_rsv;
2c47e605 8399
9f3a7427 8400 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8401 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8402 path->nodes[level] = btrfs_lock_root_node(root);
8403 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8404 path->slots[level] = 0;
bd681513 8405 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8406 memset(&wc->update_progress, 0,
8407 sizeof(wc->update_progress));
9f3a7427 8408 } else {
9f3a7427 8409 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8410 memcpy(&wc->update_progress, &key,
8411 sizeof(wc->update_progress));
8412
6702ed49 8413 level = root_item->drop_level;
2c47e605 8414 BUG_ON(level == 0);
6702ed49 8415 path->lowest_level = level;
2c47e605
YZ
8416 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8417 path->lowest_level = 0;
8418 if (ret < 0) {
8419 err = ret;
79787eaa 8420 goto out_end_trans;
9f3a7427 8421 }
1c4850e2 8422 WARN_ON(ret > 0);
2c47e605 8423
7d9eb12c
CM
8424 /*
8425 * unlock our path, this is safe because only this
8426 * function is allowed to delete this snapshot
8427 */
5d4f98a2 8428 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8429
8430 level = btrfs_header_level(root->node);
8431 while (1) {
8432 btrfs_tree_lock(path->nodes[level]);
8433 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8434 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8435
8436 ret = btrfs_lookup_extent_info(trans, root,
8437 path->nodes[level]->start,
3173a18f 8438 level, 1, &wc->refs[level],
2c47e605 8439 &wc->flags[level]);
79787eaa
JM
8440 if (ret < 0) {
8441 err = ret;
8442 goto out_end_trans;
8443 }
2c47e605
YZ
8444 BUG_ON(wc->refs[level] == 0);
8445
8446 if (level == root_item->drop_level)
8447 break;
8448
8449 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8450 path->locks[level] = 0;
2c47e605
YZ
8451 WARN_ON(wc->refs[level] != 1);
8452 level--;
8453 }
9f3a7427 8454 }
2c47e605
YZ
8455
8456 wc->level = level;
8457 wc->shared_level = -1;
8458 wc->stage = DROP_REFERENCE;
8459 wc->update_ref = update_ref;
8460 wc->keep_locks = 0;
66d7e7f0 8461 wc->for_reloc = for_reloc;
1c4850e2 8462 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8463
d397712b 8464 while (1) {
9d1a2a3a 8465
2c47e605
YZ
8466 ret = walk_down_tree(trans, root, path, wc);
8467 if (ret < 0) {
8468 err = ret;
20524f02 8469 break;
2c47e605 8470 }
9aca1d51 8471
2c47e605
YZ
8472 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8473 if (ret < 0) {
8474 err = ret;
20524f02 8475 break;
2c47e605
YZ
8476 }
8477
8478 if (ret > 0) {
8479 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8480 break;
8481 }
2c47e605
YZ
8482
8483 if (wc->stage == DROP_REFERENCE) {
8484 level = wc->level;
8485 btrfs_node_key(path->nodes[level],
8486 &root_item->drop_progress,
8487 path->slots[level]);
8488 root_item->drop_level = level;
8489 }
8490
8491 BUG_ON(wc->level == 0);
3c8f2422
JB
8492 if (btrfs_should_end_transaction(trans, tree_root) ||
8493 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8494 ret = btrfs_update_root(trans, tree_root,
8495 &root->root_key,
8496 root_item);
79787eaa
JM
8497 if (ret) {
8498 btrfs_abort_transaction(trans, tree_root, ret);
8499 err = ret;
8500 goto out_end_trans;
8501 }
2c47e605 8502
3fd0a558 8503 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8504 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8505 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8506 err = -EAGAIN;
8507 goto out_free;
8508 }
8509
a22285a6 8510 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8511 if (IS_ERR(trans)) {
8512 err = PTR_ERR(trans);
8513 goto out_free;
8514 }
3fd0a558
YZ
8515 if (block_rsv)
8516 trans->block_rsv = block_rsv;
c3e69d58 8517 }
20524f02 8518 }
b3b4aa74 8519 btrfs_release_path(path);
79787eaa
JM
8520 if (err)
8521 goto out_end_trans;
2c47e605
YZ
8522
8523 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8524 if (ret) {
8525 btrfs_abort_transaction(trans, tree_root, ret);
8526 goto out_end_trans;
8527 }
2c47e605 8528
76dda93c 8529 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8530 ret = btrfs_find_root(tree_root, &root->root_key, path,
8531 NULL, NULL);
79787eaa
JM
8532 if (ret < 0) {
8533 btrfs_abort_transaction(trans, tree_root, ret);
8534 err = ret;
8535 goto out_end_trans;
8536 } else if (ret > 0) {
84cd948c
JB
8537 /* if we fail to delete the orphan item this time
8538 * around, it'll get picked up the next time.
8539 *
8540 * The most common failure here is just -ENOENT.
8541 */
8542 btrfs_del_orphan_item(trans, tree_root,
8543 root->root_key.objectid);
76dda93c
YZ
8544 }
8545 }
8546
27cdeb70 8547 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
cb517eab 8548 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
76dda93c
YZ
8549 } else {
8550 free_extent_buffer(root->node);
8551 free_extent_buffer(root->commit_root);
b0feb9d9 8552 btrfs_put_fs_root(root);
76dda93c 8553 }
d29a9f62 8554 root_dropped = true;
79787eaa 8555out_end_trans:
3fd0a558 8556 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8557out_free:
2c47e605 8558 kfree(wc);
5caf2a00 8559 btrfs_free_path(path);
cb1b69f4 8560out:
d29a9f62
JB
8561 /*
8562 * So if we need to stop dropping the snapshot for whatever reason we
8563 * need to make sure to add it back to the dead root list so that we
8564 * keep trying to do the work later. This also cleans up roots if we
8565 * don't have it in the radix (like when we recover after a power fail
8566 * or unmount) so we don't leak memory.
8567 */
b37b39cd 8568 if (!for_reloc && root_dropped == false)
d29a9f62 8569 btrfs_add_dead_root(root);
90515e7f 8570 if (err && err != -EAGAIN)
cb1b69f4 8571 btrfs_std_error(root->fs_info, err);
2c536799 8572 return err;
20524f02 8573}
9078a3e1 8574
2c47e605
YZ
8575/*
8576 * drop subtree rooted at tree block 'node'.
8577 *
8578 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8579 * only used by relocation code
2c47e605 8580 */
f82d02d9
YZ
8581int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8582 struct btrfs_root *root,
8583 struct extent_buffer *node,
8584 struct extent_buffer *parent)
8585{
8586 struct btrfs_path *path;
2c47e605 8587 struct walk_control *wc;
f82d02d9
YZ
8588 int level;
8589 int parent_level;
8590 int ret = 0;
8591 int wret;
8592
2c47e605
YZ
8593 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8594
f82d02d9 8595 path = btrfs_alloc_path();
db5b493a
TI
8596 if (!path)
8597 return -ENOMEM;
f82d02d9 8598
2c47e605 8599 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8600 if (!wc) {
8601 btrfs_free_path(path);
8602 return -ENOMEM;
8603 }
2c47e605 8604
b9447ef8 8605 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8606 parent_level = btrfs_header_level(parent);
8607 extent_buffer_get(parent);
8608 path->nodes[parent_level] = parent;
8609 path->slots[parent_level] = btrfs_header_nritems(parent);
8610
b9447ef8 8611 btrfs_assert_tree_locked(node);
f82d02d9 8612 level = btrfs_header_level(node);
f82d02d9
YZ
8613 path->nodes[level] = node;
8614 path->slots[level] = 0;
bd681513 8615 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8616
8617 wc->refs[parent_level] = 1;
8618 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8619 wc->level = level;
8620 wc->shared_level = -1;
8621 wc->stage = DROP_REFERENCE;
8622 wc->update_ref = 0;
8623 wc->keep_locks = 1;
66d7e7f0 8624 wc->for_reloc = 1;
1c4850e2 8625 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8626
8627 while (1) {
2c47e605
YZ
8628 wret = walk_down_tree(trans, root, path, wc);
8629 if (wret < 0) {
f82d02d9 8630 ret = wret;
f82d02d9 8631 break;
2c47e605 8632 }
f82d02d9 8633
2c47e605 8634 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8635 if (wret < 0)
8636 ret = wret;
8637 if (wret != 0)
8638 break;
8639 }
8640
2c47e605 8641 kfree(wc);
f82d02d9
YZ
8642 btrfs_free_path(path);
8643 return ret;
8644}
8645
ec44a35c
CM
8646static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8647{
8648 u64 num_devices;
fc67c450 8649 u64 stripped;
e4d8ec0f 8650
fc67c450
ID
8651 /*
8652 * if restripe for this chunk_type is on pick target profile and
8653 * return, otherwise do the usual balance
8654 */
8655 stripped = get_restripe_target(root->fs_info, flags);
8656 if (stripped)
8657 return extended_to_chunk(stripped);
e4d8ec0f 8658
95669976 8659 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8660
fc67c450 8661 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8662 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8663 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8664
ec44a35c
CM
8665 if (num_devices == 1) {
8666 stripped |= BTRFS_BLOCK_GROUP_DUP;
8667 stripped = flags & ~stripped;
8668
8669 /* turn raid0 into single device chunks */
8670 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8671 return stripped;
8672
8673 /* turn mirroring into duplication */
8674 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8675 BTRFS_BLOCK_GROUP_RAID10))
8676 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8677 } else {
8678 /* they already had raid on here, just return */
ec44a35c
CM
8679 if (flags & stripped)
8680 return flags;
8681
8682 stripped |= BTRFS_BLOCK_GROUP_DUP;
8683 stripped = flags & ~stripped;
8684
8685 /* switch duplicated blocks with raid1 */
8686 if (flags & BTRFS_BLOCK_GROUP_DUP)
8687 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8688
e3176ca2 8689 /* this is drive concat, leave it alone */
ec44a35c 8690 }
e3176ca2 8691
ec44a35c
CM
8692 return flags;
8693}
8694
199c36ea 8695static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8696{
f0486c68
YZ
8697 struct btrfs_space_info *sinfo = cache->space_info;
8698 u64 num_bytes;
199c36ea 8699 u64 min_allocable_bytes;
f0486c68 8700 int ret = -ENOSPC;
0ef3e66b 8701
c286ac48 8702
199c36ea
MX
8703 /*
8704 * We need some metadata space and system metadata space for
8705 * allocating chunks in some corner cases until we force to set
8706 * it to be readonly.
8707 */
8708 if ((sinfo->flags &
8709 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8710 !force)
8711 min_allocable_bytes = 1 * 1024 * 1024;
8712 else
8713 min_allocable_bytes = 0;
8714
f0486c68
YZ
8715 spin_lock(&sinfo->lock);
8716 spin_lock(&cache->lock);
61cfea9b
W
8717
8718 if (cache->ro) {
8719 ret = 0;
8720 goto out;
8721 }
8722
f0486c68
YZ
8723 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8724 cache->bytes_super - btrfs_block_group_used(&cache->item);
8725
8726 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8727 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8728 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8729 sinfo->bytes_readonly += num_bytes;
f0486c68 8730 cache->ro = 1;
633c0aad 8731 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8732 ret = 0;
8733 }
61cfea9b 8734out:
f0486c68
YZ
8735 spin_unlock(&cache->lock);
8736 spin_unlock(&sinfo->lock);
8737 return ret;
8738}
7d9eb12c 8739
f0486c68
YZ
8740int btrfs_set_block_group_ro(struct btrfs_root *root,
8741 struct btrfs_block_group_cache *cache)
c286ac48 8742
f0486c68
YZ
8743{
8744 struct btrfs_trans_handle *trans;
8745 u64 alloc_flags;
8746 int ret;
7d9eb12c 8747
f0486c68 8748 BUG_ON(cache->ro);
0ef3e66b 8749
1bbc621e 8750again:
ff5714cc 8751 trans = btrfs_join_transaction(root);
79787eaa
JM
8752 if (IS_ERR(trans))
8753 return PTR_ERR(trans);
5d4f98a2 8754
1bbc621e
CM
8755 /*
8756 * we're not allowed to set block groups readonly after the dirty
8757 * block groups cache has started writing. If it already started,
8758 * back off and let this transaction commit
8759 */
8760 mutex_lock(&root->fs_info->ro_block_group_mutex);
8761 if (trans->transaction->dirty_bg_run) {
8762 u64 transid = trans->transid;
8763
8764 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8765 btrfs_end_transaction(trans, root);
8766
8767 ret = btrfs_wait_for_commit(root, transid);
8768 if (ret)
8769 return ret;
8770 goto again;
8771 }
8772
153c35b6
CM
8773 /*
8774 * if we are changing raid levels, try to allocate a corresponding
8775 * block group with the new raid level.
8776 */
8777 alloc_flags = update_block_group_flags(root, cache->flags);
8778 if (alloc_flags != cache->flags) {
8779 ret = do_chunk_alloc(trans, root, alloc_flags,
8780 CHUNK_ALLOC_FORCE);
8781 /*
8782 * ENOSPC is allowed here, we may have enough space
8783 * already allocated at the new raid level to
8784 * carry on
8785 */
8786 if (ret == -ENOSPC)
8787 ret = 0;
8788 if (ret < 0)
8789 goto out;
8790 }
1bbc621e 8791
199c36ea 8792 ret = set_block_group_ro(cache, 0);
f0486c68
YZ
8793 if (!ret)
8794 goto out;
8795 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8796 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8797 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8798 if (ret < 0)
8799 goto out;
199c36ea 8800 ret = set_block_group_ro(cache, 0);
f0486c68 8801out:
2f081088
SL
8802 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8803 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8804 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8805 check_system_chunk(trans, root, alloc_flags);
a9629596 8806 unlock_chunks(root->fs_info->chunk_root);
2f081088 8807 }
1bbc621e 8808 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8809
f0486c68
YZ
8810 btrfs_end_transaction(trans, root);
8811 return ret;
8812}
5d4f98a2 8813
c87f08ca
CM
8814int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8815 struct btrfs_root *root, u64 type)
8816{
8817 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8818 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8819 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8820}
8821
6d07bcec
MX
8822/*
8823 * helper to account the unused space of all the readonly block group in the
633c0aad 8824 * space_info. takes mirrors into account.
6d07bcec 8825 */
633c0aad 8826u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8827{
8828 struct btrfs_block_group_cache *block_group;
8829 u64 free_bytes = 0;
8830 int factor;
8831
633c0aad
JB
8832 /* It's df, we don't care if it's racey */
8833 if (list_empty(&sinfo->ro_bgs))
8834 return 0;
8835
8836 spin_lock(&sinfo->lock);
8837 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8838 spin_lock(&block_group->lock);
8839
8840 if (!block_group->ro) {
8841 spin_unlock(&block_group->lock);
8842 continue;
8843 }
8844
8845 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8846 BTRFS_BLOCK_GROUP_RAID10 |
8847 BTRFS_BLOCK_GROUP_DUP))
8848 factor = 2;
8849 else
8850 factor = 1;
8851
8852 free_bytes += (block_group->key.offset -
8853 btrfs_block_group_used(&block_group->item)) *
8854 factor;
8855
8856 spin_unlock(&block_group->lock);
8857 }
6d07bcec
MX
8858 spin_unlock(&sinfo->lock);
8859
8860 return free_bytes;
8861}
8862
143bede5 8863void btrfs_set_block_group_rw(struct btrfs_root *root,
f0486c68 8864 struct btrfs_block_group_cache *cache)
5d4f98a2 8865{
f0486c68
YZ
8866 struct btrfs_space_info *sinfo = cache->space_info;
8867 u64 num_bytes;
8868
8869 BUG_ON(!cache->ro);
8870
8871 spin_lock(&sinfo->lock);
8872 spin_lock(&cache->lock);
8873 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8874 cache->bytes_super - btrfs_block_group_used(&cache->item);
8875 sinfo->bytes_readonly -= num_bytes;
8876 cache->ro = 0;
633c0aad 8877 list_del_init(&cache->ro_list);
f0486c68
YZ
8878 spin_unlock(&cache->lock);
8879 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
8880}
8881
ba1bf481
JB
8882/*
8883 * checks to see if its even possible to relocate this block group.
8884 *
8885 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8886 * ok to go ahead and try.
8887 */
8888int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 8889{
ba1bf481
JB
8890 struct btrfs_block_group_cache *block_group;
8891 struct btrfs_space_info *space_info;
8892 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8893 struct btrfs_device *device;
6df9a95e 8894 struct btrfs_trans_handle *trans;
cdcb725c 8895 u64 min_free;
6719db6a
JB
8896 u64 dev_min = 1;
8897 u64 dev_nr = 0;
4a5e98f5 8898 u64 target;
cdcb725c 8899 int index;
ba1bf481
JB
8900 int full = 0;
8901 int ret = 0;
1a40e23b 8902
ba1bf481 8903 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 8904
ba1bf481
JB
8905 /* odd, couldn't find the block group, leave it alone */
8906 if (!block_group)
8907 return -1;
1a40e23b 8908
cdcb725c 8909 min_free = btrfs_block_group_used(&block_group->item);
8910
ba1bf481 8911 /* no bytes used, we're good */
cdcb725c 8912 if (!min_free)
1a40e23b
ZY
8913 goto out;
8914
ba1bf481
JB
8915 space_info = block_group->space_info;
8916 spin_lock(&space_info->lock);
17d217fe 8917
ba1bf481 8918 full = space_info->full;
17d217fe 8919
ba1bf481
JB
8920 /*
8921 * if this is the last block group we have in this space, we can't
7ce618db
CM
8922 * relocate it unless we're able to allocate a new chunk below.
8923 *
8924 * Otherwise, we need to make sure we have room in the space to handle
8925 * all of the extents from this block group. If we can, we're good
ba1bf481 8926 */
7ce618db 8927 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 8928 (space_info->bytes_used + space_info->bytes_reserved +
8929 space_info->bytes_pinned + space_info->bytes_readonly +
8930 min_free < space_info->total_bytes)) {
ba1bf481
JB
8931 spin_unlock(&space_info->lock);
8932 goto out;
17d217fe 8933 }
ba1bf481 8934 spin_unlock(&space_info->lock);
ea8c2819 8935
ba1bf481
JB
8936 /*
8937 * ok we don't have enough space, but maybe we have free space on our
8938 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
8939 * alloc devices and guess if we have enough space. if this block
8940 * group is going to be restriped, run checks against the target
8941 * profile instead of the current one.
ba1bf481
JB
8942 */
8943 ret = -1;
ea8c2819 8944
cdcb725c 8945 /*
8946 * index:
8947 * 0: raid10
8948 * 1: raid1
8949 * 2: dup
8950 * 3: raid0
8951 * 4: single
8952 */
4a5e98f5
ID
8953 target = get_restripe_target(root->fs_info, block_group->flags);
8954 if (target) {
31e50229 8955 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
8956 } else {
8957 /*
8958 * this is just a balance, so if we were marked as full
8959 * we know there is no space for a new chunk
8960 */
8961 if (full)
8962 goto out;
8963
8964 index = get_block_group_index(block_group);
8965 }
8966
e6ec716f 8967 if (index == BTRFS_RAID_RAID10) {
cdcb725c 8968 dev_min = 4;
6719db6a
JB
8969 /* Divide by 2 */
8970 min_free >>= 1;
e6ec716f 8971 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 8972 dev_min = 2;
e6ec716f 8973 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
8974 /* Multiply by 2 */
8975 min_free <<= 1;
e6ec716f 8976 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 8977 dev_min = fs_devices->rw_devices;
47c5713f 8978 min_free = div64_u64(min_free, dev_min);
cdcb725c 8979 }
8980
6df9a95e
JB
8981 /* We need to do this so that we can look at pending chunks */
8982 trans = btrfs_join_transaction(root);
8983 if (IS_ERR(trans)) {
8984 ret = PTR_ERR(trans);
8985 goto out;
8986 }
8987
ba1bf481
JB
8988 mutex_lock(&root->fs_info->chunk_mutex);
8989 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 8990 u64 dev_offset;
56bec294 8991
ba1bf481
JB
8992 /*
8993 * check to make sure we can actually find a chunk with enough
8994 * space to fit our block group in.
8995 */
63a212ab
SB
8996 if (device->total_bytes > device->bytes_used + min_free &&
8997 !device->is_tgtdev_for_dev_replace) {
6df9a95e 8998 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 8999 &dev_offset, NULL);
ba1bf481 9000 if (!ret)
cdcb725c 9001 dev_nr++;
9002
9003 if (dev_nr >= dev_min)
73e48b27 9004 break;
cdcb725c 9005
ba1bf481 9006 ret = -1;
725c8463 9007 }
edbd8d4e 9008 }
ba1bf481 9009 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9010 btrfs_end_transaction(trans, root);
edbd8d4e 9011out:
ba1bf481 9012 btrfs_put_block_group(block_group);
edbd8d4e
CM
9013 return ret;
9014}
9015
b2950863
CH
9016static int find_first_block_group(struct btrfs_root *root,
9017 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9018{
925baedd 9019 int ret = 0;
0b86a832
CM
9020 struct btrfs_key found_key;
9021 struct extent_buffer *leaf;
9022 int slot;
edbd8d4e 9023
0b86a832
CM
9024 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9025 if (ret < 0)
925baedd
CM
9026 goto out;
9027
d397712b 9028 while (1) {
0b86a832 9029 slot = path->slots[0];
edbd8d4e 9030 leaf = path->nodes[0];
0b86a832
CM
9031 if (slot >= btrfs_header_nritems(leaf)) {
9032 ret = btrfs_next_leaf(root, path);
9033 if (ret == 0)
9034 continue;
9035 if (ret < 0)
925baedd 9036 goto out;
0b86a832 9037 break;
edbd8d4e 9038 }
0b86a832 9039 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9040
0b86a832 9041 if (found_key.objectid >= key->objectid &&
925baedd
CM
9042 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9043 ret = 0;
9044 goto out;
9045 }
0b86a832 9046 path->slots[0]++;
edbd8d4e 9047 }
925baedd 9048out:
0b86a832 9049 return ret;
edbd8d4e
CM
9050}
9051
0af3d00b
JB
9052void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9053{
9054 struct btrfs_block_group_cache *block_group;
9055 u64 last = 0;
9056
9057 while (1) {
9058 struct inode *inode;
9059
9060 block_group = btrfs_lookup_first_block_group(info, last);
9061 while (block_group) {
9062 spin_lock(&block_group->lock);
9063 if (block_group->iref)
9064 break;
9065 spin_unlock(&block_group->lock);
9066 block_group = next_block_group(info->tree_root,
9067 block_group);
9068 }
9069 if (!block_group) {
9070 if (last == 0)
9071 break;
9072 last = 0;
9073 continue;
9074 }
9075
9076 inode = block_group->inode;
9077 block_group->iref = 0;
9078 block_group->inode = NULL;
9079 spin_unlock(&block_group->lock);
9080 iput(inode);
9081 last = block_group->key.objectid + block_group->key.offset;
9082 btrfs_put_block_group(block_group);
9083 }
9084}
9085
1a40e23b
ZY
9086int btrfs_free_block_groups(struct btrfs_fs_info *info)
9087{
9088 struct btrfs_block_group_cache *block_group;
4184ea7f 9089 struct btrfs_space_info *space_info;
11833d66 9090 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9091 struct rb_node *n;
9092
9e351cc8 9093 down_write(&info->commit_root_sem);
11833d66
YZ
9094 while (!list_empty(&info->caching_block_groups)) {
9095 caching_ctl = list_entry(info->caching_block_groups.next,
9096 struct btrfs_caching_control, list);
9097 list_del(&caching_ctl->list);
9098 put_caching_control(caching_ctl);
9099 }
9e351cc8 9100 up_write(&info->commit_root_sem);
11833d66 9101
47ab2a6c
JB
9102 spin_lock(&info->unused_bgs_lock);
9103 while (!list_empty(&info->unused_bgs)) {
9104 block_group = list_first_entry(&info->unused_bgs,
9105 struct btrfs_block_group_cache,
9106 bg_list);
9107 list_del_init(&block_group->bg_list);
9108 btrfs_put_block_group(block_group);
9109 }
9110 spin_unlock(&info->unused_bgs_lock);
9111
1a40e23b
ZY
9112 spin_lock(&info->block_group_cache_lock);
9113 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9114 block_group = rb_entry(n, struct btrfs_block_group_cache,
9115 cache_node);
1a40e23b
ZY
9116 rb_erase(&block_group->cache_node,
9117 &info->block_group_cache_tree);
01eacb27 9118 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9119 spin_unlock(&info->block_group_cache_lock);
9120
80eb234a 9121 down_write(&block_group->space_info->groups_sem);
1a40e23b 9122 list_del(&block_group->list);
80eb234a 9123 up_write(&block_group->space_info->groups_sem);
d2fb3437 9124
817d52f8 9125 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9126 wait_block_group_cache_done(block_group);
817d52f8 9127
3c14874a
JB
9128 /*
9129 * We haven't cached this block group, which means we could
9130 * possibly have excluded extents on this block group.
9131 */
36cce922
JB
9132 if (block_group->cached == BTRFS_CACHE_NO ||
9133 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9134 free_excluded_extents(info->extent_root, block_group);
9135
817d52f8 9136 btrfs_remove_free_space_cache(block_group);
11dfe35a 9137 btrfs_put_block_group(block_group);
d899e052
YZ
9138
9139 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9140 }
9141 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9142
9143 /* now that all the block groups are freed, go through and
9144 * free all the space_info structs. This is only called during
9145 * the final stages of unmount, and so we know nobody is
9146 * using them. We call synchronize_rcu() once before we start,
9147 * just to be on the safe side.
9148 */
9149 synchronize_rcu();
9150
8929ecfa
YZ
9151 release_global_block_rsv(info);
9152
67871254 9153 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9154 int i;
9155
4184ea7f
CM
9156 space_info = list_entry(info->space_info.next,
9157 struct btrfs_space_info,
9158 list);
b069e0c3 9159 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9160 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9161 space_info->bytes_reserved > 0 ||
fae7f21c 9162 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9163 dump_space_info(space_info, 0, 0);
9164 }
f0486c68 9165 }
4184ea7f 9166 list_del(&space_info->list);
6ab0a202
JM
9167 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9168 struct kobject *kobj;
c1895442
JM
9169 kobj = space_info->block_group_kobjs[i];
9170 space_info->block_group_kobjs[i] = NULL;
9171 if (kobj) {
6ab0a202
JM
9172 kobject_del(kobj);
9173 kobject_put(kobj);
9174 }
9175 }
9176 kobject_del(&space_info->kobj);
9177 kobject_put(&space_info->kobj);
4184ea7f 9178 }
1a40e23b
ZY
9179 return 0;
9180}
9181
b742bb82
YZ
9182static void __link_block_group(struct btrfs_space_info *space_info,
9183 struct btrfs_block_group_cache *cache)
9184{
9185 int index = get_block_group_index(cache);
ed55b6ac 9186 bool first = false;
b742bb82
YZ
9187
9188 down_write(&space_info->groups_sem);
ed55b6ac
JM
9189 if (list_empty(&space_info->block_groups[index]))
9190 first = true;
9191 list_add_tail(&cache->list, &space_info->block_groups[index]);
9192 up_write(&space_info->groups_sem);
9193
9194 if (first) {
c1895442 9195 struct raid_kobject *rkobj;
6ab0a202
JM
9196 int ret;
9197
c1895442
JM
9198 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9199 if (!rkobj)
9200 goto out_err;
9201 rkobj->raid_type = index;
9202 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9203 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9204 "%s", get_raid_name(index));
6ab0a202 9205 if (ret) {
c1895442
JM
9206 kobject_put(&rkobj->kobj);
9207 goto out_err;
6ab0a202 9208 }
c1895442 9209 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9210 }
c1895442
JM
9211
9212 return;
9213out_err:
9214 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9215}
9216
920e4a58
MX
9217static struct btrfs_block_group_cache *
9218btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9219{
9220 struct btrfs_block_group_cache *cache;
9221
9222 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9223 if (!cache)
9224 return NULL;
9225
9226 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9227 GFP_NOFS);
9228 if (!cache->free_space_ctl) {
9229 kfree(cache);
9230 return NULL;
9231 }
9232
9233 cache->key.objectid = start;
9234 cache->key.offset = size;
9235 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9236
9237 cache->sectorsize = root->sectorsize;
9238 cache->fs_info = root->fs_info;
9239 cache->full_stripe_len = btrfs_full_stripe_len(root,
9240 &root->fs_info->mapping_tree,
9241 start);
9242 atomic_set(&cache->count, 1);
9243 spin_lock_init(&cache->lock);
e570fd27 9244 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9245 INIT_LIST_HEAD(&cache->list);
9246 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9247 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9248 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9249 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9250 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9251 btrfs_init_free_space_ctl(cache);
04216820 9252 atomic_set(&cache->trimming, 0);
920e4a58
MX
9253
9254 return cache;
9255}
9256
9078a3e1
CM
9257int btrfs_read_block_groups(struct btrfs_root *root)
9258{
9259 struct btrfs_path *path;
9260 int ret;
9078a3e1 9261 struct btrfs_block_group_cache *cache;
be744175 9262 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9263 struct btrfs_space_info *space_info;
9078a3e1
CM
9264 struct btrfs_key key;
9265 struct btrfs_key found_key;
5f39d397 9266 struct extent_buffer *leaf;
0af3d00b
JB
9267 int need_clear = 0;
9268 u64 cache_gen;
96b5179d 9269
be744175 9270 root = info->extent_root;
9078a3e1 9271 key.objectid = 0;
0b86a832 9272 key.offset = 0;
962a298f 9273 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9274 path = btrfs_alloc_path();
9275 if (!path)
9276 return -ENOMEM;
026fd317 9277 path->reada = 1;
9078a3e1 9278
6c41761f 9279 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9280 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9281 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9282 need_clear = 1;
88c2ba3b
JB
9283 if (btrfs_test_opt(root, CLEAR_CACHE))
9284 need_clear = 1;
0af3d00b 9285
d397712b 9286 while (1) {
0b86a832 9287 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9288 if (ret > 0)
9289 break;
0b86a832
CM
9290 if (ret != 0)
9291 goto error;
920e4a58 9292
5f39d397
CM
9293 leaf = path->nodes[0];
9294 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9295
9296 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9297 found_key.offset);
9078a3e1 9298 if (!cache) {
0b86a832 9299 ret = -ENOMEM;
f0486c68 9300 goto error;
9078a3e1 9301 }
96303081 9302
cf7c1ef6
LB
9303 if (need_clear) {
9304 /*
9305 * When we mount with old space cache, we need to
9306 * set BTRFS_DC_CLEAR and set dirty flag.
9307 *
9308 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9309 * truncate the old free space cache inode and
9310 * setup a new one.
9311 * b) Setting 'dirty flag' makes sure that we flush
9312 * the new space cache info onto disk.
9313 */
cf7c1ef6 9314 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9315 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9316 }
0af3d00b 9317
5f39d397
CM
9318 read_extent_buffer(leaf, &cache->item,
9319 btrfs_item_ptr_offset(leaf, path->slots[0]),
9320 sizeof(cache->item));
920e4a58 9321 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9322
9078a3e1 9323 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9324 btrfs_release_path(path);
34d52cb6 9325
3c14874a
JB
9326 /*
9327 * We need to exclude the super stripes now so that the space
9328 * info has super bytes accounted for, otherwise we'll think
9329 * we have more space than we actually do.
9330 */
835d974f
JB
9331 ret = exclude_super_stripes(root, cache);
9332 if (ret) {
9333 /*
9334 * We may have excluded something, so call this just in
9335 * case.
9336 */
9337 free_excluded_extents(root, cache);
920e4a58 9338 btrfs_put_block_group(cache);
835d974f
JB
9339 goto error;
9340 }
3c14874a 9341
817d52f8
JB
9342 /*
9343 * check for two cases, either we are full, and therefore
9344 * don't need to bother with the caching work since we won't
9345 * find any space, or we are empty, and we can just add all
9346 * the space in and be done with it. This saves us _alot_ of
9347 * time, particularly in the full case.
9348 */
9349 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9350 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9351 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9352 free_excluded_extents(root, cache);
817d52f8 9353 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9354 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9355 cache->cached = BTRFS_CACHE_FINISHED;
9356 add_new_free_space(cache, root->fs_info,
9357 found_key.objectid,
9358 found_key.objectid +
9359 found_key.offset);
11833d66 9360 free_excluded_extents(root, cache);
817d52f8 9361 }
96b5179d 9362
8c579fe7
JB
9363 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9364 if (ret) {
9365 btrfs_remove_free_space_cache(cache);
9366 btrfs_put_block_group(cache);
9367 goto error;
9368 }
9369
6324fbf3
CM
9370 ret = update_space_info(info, cache->flags, found_key.offset,
9371 btrfs_block_group_used(&cache->item),
9372 &space_info);
8c579fe7
JB
9373 if (ret) {
9374 btrfs_remove_free_space_cache(cache);
9375 spin_lock(&info->block_group_cache_lock);
9376 rb_erase(&cache->cache_node,
9377 &info->block_group_cache_tree);
01eacb27 9378 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9379 spin_unlock(&info->block_group_cache_lock);
9380 btrfs_put_block_group(cache);
9381 goto error;
9382 }
9383
6324fbf3 9384 cache->space_info = space_info;
1b2da372 9385 spin_lock(&cache->space_info->lock);
f0486c68 9386 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9387 spin_unlock(&cache->space_info->lock);
9388
b742bb82 9389 __link_block_group(space_info, cache);
0f9dd46c 9390
75ccf47d 9391 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9392 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
199c36ea 9393 set_block_group_ro(cache, 1);
47ab2a6c
JB
9394 } else if (btrfs_block_group_used(&cache->item) == 0) {
9395 spin_lock(&info->unused_bgs_lock);
9396 /* Should always be true but just in case. */
9397 if (list_empty(&cache->bg_list)) {
9398 btrfs_get_block_group(cache);
9399 list_add_tail(&cache->bg_list,
9400 &info->unused_bgs);
9401 }
9402 spin_unlock(&info->unused_bgs_lock);
9403 }
9078a3e1 9404 }
b742bb82
YZ
9405
9406 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9407 if (!(get_alloc_profile(root, space_info->flags) &
9408 (BTRFS_BLOCK_GROUP_RAID10 |
9409 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9410 BTRFS_BLOCK_GROUP_RAID5 |
9411 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9412 BTRFS_BLOCK_GROUP_DUP)))
9413 continue;
9414 /*
9415 * avoid allocating from un-mirrored block group if there are
9416 * mirrored block groups.
9417 */
1095cc0d 9418 list_for_each_entry(cache,
9419 &space_info->block_groups[BTRFS_RAID_RAID0],
9420 list)
199c36ea 9421 set_block_group_ro(cache, 1);
1095cc0d 9422 list_for_each_entry(cache,
9423 &space_info->block_groups[BTRFS_RAID_SINGLE],
9424 list)
199c36ea 9425 set_block_group_ro(cache, 1);
9078a3e1 9426 }
f0486c68
YZ
9427
9428 init_global_block_rsv(info);
0b86a832
CM
9429 ret = 0;
9430error:
9078a3e1 9431 btrfs_free_path(path);
0b86a832 9432 return ret;
9078a3e1 9433}
6324fbf3 9434
ea658bad
JB
9435void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9436 struct btrfs_root *root)
9437{
9438 struct btrfs_block_group_cache *block_group, *tmp;
9439 struct btrfs_root *extent_root = root->fs_info->extent_root;
9440 struct btrfs_block_group_item item;
9441 struct btrfs_key key;
9442 int ret = 0;
9443
47ab2a6c 9444 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9445 if (ret)
c92f6be3 9446 goto next;
ea658bad
JB
9447
9448 spin_lock(&block_group->lock);
9449 memcpy(&item, &block_group->item, sizeof(item));
9450 memcpy(&key, &block_group->key, sizeof(key));
9451 spin_unlock(&block_group->lock);
9452
9453 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9454 sizeof(item));
9455 if (ret)
9456 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9457 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9458 key.objectid, key.offset);
9459 if (ret)
9460 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9461next:
9462 list_del_init(&block_group->bg_list);
ea658bad
JB
9463 }
9464}
9465
6324fbf3
CM
9466int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9467 struct btrfs_root *root, u64 bytes_used,
e17cade2 9468 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9469 u64 size)
9470{
9471 int ret;
6324fbf3
CM
9472 struct btrfs_root *extent_root;
9473 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9474
9475 extent_root = root->fs_info->extent_root;
6324fbf3 9476
995946dd 9477 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9478
920e4a58 9479 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9480 if (!cache)
9481 return -ENOMEM;
34d52cb6 9482
6324fbf3 9483 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9484 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9485 btrfs_set_block_group_flags(&cache->item, type);
9486
920e4a58 9487 cache->flags = type;
11833d66 9488 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9489 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9490 ret = exclude_super_stripes(root, cache);
9491 if (ret) {
9492 /*
9493 * We may have excluded something, so call this just in
9494 * case.
9495 */
9496 free_excluded_extents(root, cache);
920e4a58 9497 btrfs_put_block_group(cache);
835d974f
JB
9498 return ret;
9499 }
96303081 9500
817d52f8
JB
9501 add_new_free_space(cache, root->fs_info, chunk_offset,
9502 chunk_offset + size);
9503
11833d66
YZ
9504 free_excluded_extents(root, cache);
9505
2e6e5183
FM
9506 /*
9507 * Call to ensure the corresponding space_info object is created and
9508 * assigned to our block group, but don't update its counters just yet.
9509 * We want our bg to be added to the rbtree with its ->space_info set.
9510 */
9511 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9512 &cache->space_info);
9513 if (ret) {
9514 btrfs_remove_free_space_cache(cache);
9515 btrfs_put_block_group(cache);
9516 return ret;
9517 }
9518
8c579fe7
JB
9519 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9520 if (ret) {
9521 btrfs_remove_free_space_cache(cache);
9522 btrfs_put_block_group(cache);
9523 return ret;
9524 }
9525
2e6e5183
FM
9526 /*
9527 * Now that our block group has its ->space_info set and is inserted in
9528 * the rbtree, update the space info's counters.
9529 */
6324fbf3
CM
9530 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9531 &cache->space_info);
8c579fe7
JB
9532 if (ret) {
9533 btrfs_remove_free_space_cache(cache);
9534 spin_lock(&root->fs_info->block_group_cache_lock);
9535 rb_erase(&cache->cache_node,
9536 &root->fs_info->block_group_cache_tree);
01eacb27 9537 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9538 spin_unlock(&root->fs_info->block_group_cache_lock);
9539 btrfs_put_block_group(cache);
9540 return ret;
9541 }
c7c144db 9542 update_global_block_rsv(root->fs_info);
1b2da372
JB
9543
9544 spin_lock(&cache->space_info->lock);
f0486c68 9545 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9546 spin_unlock(&cache->space_info->lock);
9547
b742bb82 9548 __link_block_group(cache->space_info, cache);
6324fbf3 9549
47ab2a6c 9550 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9551
d18a2c44 9552 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9553
6324fbf3
CM
9554 return 0;
9555}
1a40e23b 9556
10ea00f5
ID
9557static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9558{
899c81ea
ID
9559 u64 extra_flags = chunk_to_extended(flags) &
9560 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9561
de98ced9 9562 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9563 if (flags & BTRFS_BLOCK_GROUP_DATA)
9564 fs_info->avail_data_alloc_bits &= ~extra_flags;
9565 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9566 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9567 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9568 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9569 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9570}
9571
1a40e23b 9572int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9573 struct btrfs_root *root, u64 group_start,
9574 struct extent_map *em)
1a40e23b
ZY
9575{
9576 struct btrfs_path *path;
9577 struct btrfs_block_group_cache *block_group;
44fb5511 9578 struct btrfs_free_cluster *cluster;
0af3d00b 9579 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9580 struct btrfs_key key;
0af3d00b 9581 struct inode *inode;
c1895442 9582 struct kobject *kobj = NULL;
1a40e23b 9583 int ret;
10ea00f5 9584 int index;
89a55897 9585 int factor;
4f69cb98 9586 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9587 bool remove_em;
1a40e23b 9588
1a40e23b
ZY
9589 root = root->fs_info->extent_root;
9590
9591 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9592 BUG_ON(!block_group);
c146afad 9593 BUG_ON(!block_group->ro);
1a40e23b 9594
9f7c43c9 9595 /*
9596 * Free the reserved super bytes from this block group before
9597 * remove it.
9598 */
9599 free_excluded_extents(root, block_group);
9600
1a40e23b 9601 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9602 index = get_block_group_index(block_group);
89a55897
JB
9603 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9604 BTRFS_BLOCK_GROUP_RAID1 |
9605 BTRFS_BLOCK_GROUP_RAID10))
9606 factor = 2;
9607 else
9608 factor = 1;
1a40e23b 9609
44fb5511
CM
9610 /* make sure this block group isn't part of an allocation cluster */
9611 cluster = &root->fs_info->data_alloc_cluster;
9612 spin_lock(&cluster->refill_lock);
9613 btrfs_return_cluster_to_free_space(block_group, cluster);
9614 spin_unlock(&cluster->refill_lock);
9615
9616 /*
9617 * make sure this block group isn't part of a metadata
9618 * allocation cluster
9619 */
9620 cluster = &root->fs_info->meta_alloc_cluster;
9621 spin_lock(&cluster->refill_lock);
9622 btrfs_return_cluster_to_free_space(block_group, cluster);
9623 spin_unlock(&cluster->refill_lock);
9624
1a40e23b 9625 path = btrfs_alloc_path();
d8926bb3
MF
9626 if (!path) {
9627 ret = -ENOMEM;
9628 goto out;
9629 }
1a40e23b 9630
1bbc621e
CM
9631 /*
9632 * get the inode first so any iput calls done for the io_list
9633 * aren't the final iput (no unlinks allowed now)
9634 */
10b2f34d 9635 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9636
9637 mutex_lock(&trans->transaction->cache_write_mutex);
9638 /*
9639 * make sure our free spache cache IO is done before remove the
9640 * free space inode
9641 */
9642 spin_lock(&trans->transaction->dirty_bgs_lock);
9643 if (!list_empty(&block_group->io_list)) {
9644 list_del_init(&block_group->io_list);
9645
9646 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9647
9648 spin_unlock(&trans->transaction->dirty_bgs_lock);
9649 btrfs_wait_cache_io(root, trans, block_group,
9650 &block_group->io_ctl, path,
9651 block_group->key.objectid);
9652 btrfs_put_block_group(block_group);
9653 spin_lock(&trans->transaction->dirty_bgs_lock);
9654 }
9655
9656 if (!list_empty(&block_group->dirty_list)) {
9657 list_del_init(&block_group->dirty_list);
9658 btrfs_put_block_group(block_group);
9659 }
9660 spin_unlock(&trans->transaction->dirty_bgs_lock);
9661 mutex_unlock(&trans->transaction->cache_write_mutex);
9662
0af3d00b 9663 if (!IS_ERR(inode)) {
b532402e 9664 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9665 if (ret) {
9666 btrfs_add_delayed_iput(inode);
9667 goto out;
9668 }
0af3d00b
JB
9669 clear_nlink(inode);
9670 /* One for the block groups ref */
9671 spin_lock(&block_group->lock);
9672 if (block_group->iref) {
9673 block_group->iref = 0;
9674 block_group->inode = NULL;
9675 spin_unlock(&block_group->lock);
9676 iput(inode);
9677 } else {
9678 spin_unlock(&block_group->lock);
9679 }
9680 /* One for our lookup ref */
455757c3 9681 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9682 }
9683
9684 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9685 key.offset = block_group->key.objectid;
9686 key.type = 0;
9687
9688 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9689 if (ret < 0)
9690 goto out;
9691 if (ret > 0)
b3b4aa74 9692 btrfs_release_path(path);
0af3d00b
JB
9693 if (ret == 0) {
9694 ret = btrfs_del_item(trans, tree_root, path);
9695 if (ret)
9696 goto out;
b3b4aa74 9697 btrfs_release_path(path);
0af3d00b
JB
9698 }
9699
3dfdb934 9700 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9701 rb_erase(&block_group->cache_node,
9702 &root->fs_info->block_group_cache_tree);
292cbd51 9703 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9704
9705 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9706 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9707 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9708
80eb234a 9709 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9710 /*
9711 * we must use list_del_init so people can check to see if they
9712 * are still on the list after taking the semaphore
9713 */
9714 list_del_init(&block_group->list);
6ab0a202 9715 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9716 kobj = block_group->space_info->block_group_kobjs[index];
9717 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9718 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9719 }
80eb234a 9720 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9721 if (kobj) {
9722 kobject_del(kobj);
9723 kobject_put(kobj);
9724 }
1a40e23b 9725
4f69cb98
FM
9726 if (block_group->has_caching_ctl)
9727 caching_ctl = get_caching_control(block_group);
817d52f8 9728 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9729 wait_block_group_cache_done(block_group);
4f69cb98
FM
9730 if (block_group->has_caching_ctl) {
9731 down_write(&root->fs_info->commit_root_sem);
9732 if (!caching_ctl) {
9733 struct btrfs_caching_control *ctl;
9734
9735 list_for_each_entry(ctl,
9736 &root->fs_info->caching_block_groups, list)
9737 if (ctl->block_group == block_group) {
9738 caching_ctl = ctl;
9739 atomic_inc(&caching_ctl->count);
9740 break;
9741 }
9742 }
9743 if (caching_ctl)
9744 list_del_init(&caching_ctl->list);
9745 up_write(&root->fs_info->commit_root_sem);
9746 if (caching_ctl) {
9747 /* Once for the caching bgs list and once for us. */
9748 put_caching_control(caching_ctl);
9749 put_caching_control(caching_ctl);
9750 }
9751 }
817d52f8 9752
ce93ec54
JB
9753 spin_lock(&trans->transaction->dirty_bgs_lock);
9754 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9755 WARN_ON(1);
9756 }
9757 if (!list_empty(&block_group->io_list)) {
9758 WARN_ON(1);
ce93ec54
JB
9759 }
9760 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9761 btrfs_remove_free_space_cache(block_group);
9762
c146afad 9763 spin_lock(&block_group->space_info->lock);
75c68e9f 9764 list_del_init(&block_group->ro_list);
18d018ad
ZL
9765
9766 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9767 WARN_ON(block_group->space_info->total_bytes
9768 < block_group->key.offset);
9769 WARN_ON(block_group->space_info->bytes_readonly
9770 < block_group->key.offset);
9771 WARN_ON(block_group->space_info->disk_total
9772 < block_group->key.offset * factor);
9773 }
c146afad
YZ
9774 block_group->space_info->total_bytes -= block_group->key.offset;
9775 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9776 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9777
c146afad 9778 spin_unlock(&block_group->space_info->lock);
283bb197 9779
0af3d00b
JB
9780 memcpy(&key, &block_group->key, sizeof(key));
9781
04216820 9782 lock_chunks(root);
495e64f4
FM
9783 if (!list_empty(&em->list)) {
9784 /* We're in the transaction->pending_chunks list. */
9785 free_extent_map(em);
9786 }
04216820
FM
9787 spin_lock(&block_group->lock);
9788 block_group->removed = 1;
9789 /*
9790 * At this point trimming can't start on this block group, because we
9791 * removed the block group from the tree fs_info->block_group_cache_tree
9792 * so no one can't find it anymore and even if someone already got this
9793 * block group before we removed it from the rbtree, they have already
9794 * incremented block_group->trimming - if they didn't, they won't find
9795 * any free space entries because we already removed them all when we
9796 * called btrfs_remove_free_space_cache().
9797 *
9798 * And we must not remove the extent map from the fs_info->mapping_tree
9799 * to prevent the same logical address range and physical device space
9800 * ranges from being reused for a new block group. This is because our
9801 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9802 * completely transactionless, so while it is trimming a range the
9803 * currently running transaction might finish and a new one start,
9804 * allowing for new block groups to be created that can reuse the same
9805 * physical device locations unless we take this special care.
9806 */
9807 remove_em = (atomic_read(&block_group->trimming) == 0);
9808 /*
9809 * Make sure a trimmer task always sees the em in the pinned_chunks list
9810 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9811 * before checking block_group->removed).
9812 */
9813 if (!remove_em) {
9814 /*
9815 * Our em might be in trans->transaction->pending_chunks which
9816 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9817 * and so is the fs_info->pinned_chunks list.
9818 *
9819 * So at this point we must be holding the chunk_mutex to avoid
9820 * any races with chunk allocation (more specifically at
9821 * volumes.c:contains_pending_extent()), to ensure it always
9822 * sees the em, either in the pending_chunks list or in the
9823 * pinned_chunks list.
9824 */
9825 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9826 }
9827 spin_unlock(&block_group->lock);
04216820
FM
9828
9829 if (remove_em) {
9830 struct extent_map_tree *em_tree;
9831
9832 em_tree = &root->fs_info->mapping_tree.map_tree;
9833 write_lock(&em_tree->lock);
8dbcd10f
FM
9834 /*
9835 * The em might be in the pending_chunks list, so make sure the
9836 * chunk mutex is locked, since remove_extent_mapping() will
9837 * delete us from that list.
9838 */
04216820
FM
9839 remove_extent_mapping(em_tree, em);
9840 write_unlock(&em_tree->lock);
9841 /* once for the tree */
9842 free_extent_map(em);
9843 }
9844
8dbcd10f
FM
9845 unlock_chunks(root);
9846
fa9c0d79
CM
9847 btrfs_put_block_group(block_group);
9848 btrfs_put_block_group(block_group);
1a40e23b
ZY
9849
9850 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9851 if (ret > 0)
9852 ret = -EIO;
9853 if (ret < 0)
9854 goto out;
9855
9856 ret = btrfs_del_item(trans, root, path);
9857out:
9858 btrfs_free_path(path);
9859 return ret;
9860}
acce952b 9861
47ab2a6c
JB
9862/*
9863 * Process the unused_bgs list and remove any that don't have any allocated
9864 * space inside of them.
9865 */
9866void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9867{
9868 struct btrfs_block_group_cache *block_group;
9869 struct btrfs_space_info *space_info;
9870 struct btrfs_root *root = fs_info->extent_root;
9871 struct btrfs_trans_handle *trans;
9872 int ret = 0;
9873
9874 if (!fs_info->open)
9875 return;
9876
9877 spin_lock(&fs_info->unused_bgs_lock);
9878 while (!list_empty(&fs_info->unused_bgs)) {
9879 u64 start, end;
9880
9881 block_group = list_first_entry(&fs_info->unused_bgs,
9882 struct btrfs_block_group_cache,
9883 bg_list);
9884 space_info = block_group->space_info;
9885 list_del_init(&block_group->bg_list);
9886 if (ret || btrfs_mixed_space_info(space_info)) {
9887 btrfs_put_block_group(block_group);
9888 continue;
9889 }
9890 spin_unlock(&fs_info->unused_bgs_lock);
9891
9892 /* Don't want to race with allocators so take the groups_sem */
9893 down_write(&space_info->groups_sem);
9894 spin_lock(&block_group->lock);
9895 if (block_group->reserved ||
9896 btrfs_block_group_used(&block_group->item) ||
9897 block_group->ro) {
9898 /*
9899 * We want to bail if we made new allocations or have
9900 * outstanding allocations in this block group. We do
9901 * the ro check in case balance is currently acting on
9902 * this block group.
9903 */
9904 spin_unlock(&block_group->lock);
9905 up_write(&space_info->groups_sem);
9906 goto next;
9907 }
9908 spin_unlock(&block_group->lock);
9909
9910 /* We don't want to force the issue, only flip if it's ok. */
9911 ret = set_block_group_ro(block_group, 0);
9912 up_write(&space_info->groups_sem);
9913 if (ret < 0) {
9914 ret = 0;
9915 goto next;
9916 }
9917
9918 /*
9919 * Want to do this before we do anything else so we can recover
9920 * properly if we fail to join the transaction.
9921 */
3d84be79
FL
9922 /* 1 for btrfs_orphan_reserve_metadata() */
9923 trans = btrfs_start_transaction(root, 1);
47ab2a6c
JB
9924 if (IS_ERR(trans)) {
9925 btrfs_set_block_group_rw(root, block_group);
9926 ret = PTR_ERR(trans);
9927 goto next;
9928 }
9929
9930 /*
9931 * We could have pending pinned extents for this block group,
9932 * just delete them, we don't care about them anymore.
9933 */
9934 start = block_group->key.objectid;
9935 end = start + block_group->key.offset - 1;
d4b450cd
FM
9936 /*
9937 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9938 * btrfs_finish_extent_commit(). If we are at transaction N,
9939 * another task might be running finish_extent_commit() for the
9940 * previous transaction N - 1, and have seen a range belonging
9941 * to the block group in freed_extents[] before we were able to
9942 * clear the whole block group range from freed_extents[]. This
9943 * means that task can lookup for the block group after we
9944 * unpinned it from freed_extents[] and removed it, leading to
9945 * a BUG_ON() at btrfs_unpin_extent_range().
9946 */
9947 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 9948 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 9949 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9950 if (ret) {
d4b450cd 9951 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9952 btrfs_set_block_group_rw(root, block_group);
9953 goto end_trans;
9954 }
9955 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 9956 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9957 if (ret) {
d4b450cd 9958 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9959 btrfs_set_block_group_rw(root, block_group);
9960 goto end_trans;
9961 }
d4b450cd 9962 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
9963
9964 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
9965 spin_lock(&space_info->lock);
9966 spin_lock(&block_group->lock);
9967
9968 space_info->bytes_pinned -= block_group->pinned;
9969 space_info->bytes_readonly += block_group->pinned;
9970 percpu_counter_add(&space_info->total_bytes_pinned,
9971 -block_group->pinned);
47ab2a6c
JB
9972 block_group->pinned = 0;
9973
c30666d4
ZL
9974 spin_unlock(&block_group->lock);
9975 spin_unlock(&space_info->lock);
9976
47ab2a6c
JB
9977 /*
9978 * Btrfs_remove_chunk will abort the transaction if things go
9979 * horribly wrong.
9980 */
9981 ret = btrfs_remove_chunk(trans, root,
9982 block_group->key.objectid);
758eb51e 9983end_trans:
47ab2a6c
JB
9984 btrfs_end_transaction(trans, root);
9985next:
9986 btrfs_put_block_group(block_group);
9987 spin_lock(&fs_info->unused_bgs_lock);
9988 }
9989 spin_unlock(&fs_info->unused_bgs_lock);
9990}
9991
c59021f8 9992int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9993{
9994 struct btrfs_space_info *space_info;
1aba86d6 9995 struct btrfs_super_block *disk_super;
9996 u64 features;
9997 u64 flags;
9998 int mixed = 0;
c59021f8 9999 int ret;
10000
6c41761f 10001 disk_super = fs_info->super_copy;
1aba86d6 10002 if (!btrfs_super_root(disk_super))
10003 return 1;
c59021f8 10004
1aba86d6 10005 features = btrfs_super_incompat_flags(disk_super);
10006 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10007 mixed = 1;
c59021f8 10008
1aba86d6 10009 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10010 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10011 if (ret)
1aba86d6 10012 goto out;
c59021f8 10013
1aba86d6 10014 if (mixed) {
10015 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10016 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10017 } else {
10018 flags = BTRFS_BLOCK_GROUP_METADATA;
10019 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10020 if (ret)
10021 goto out;
10022
10023 flags = BTRFS_BLOCK_GROUP_DATA;
10024 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10025 }
10026out:
c59021f8 10027 return ret;
10028}
10029
acce952b 10030int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10031{
678886bd 10032 return unpin_extent_range(root, start, end, false);
acce952b 10033}
10034
f7039b1d
LD
10035int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10036{
10037 struct btrfs_fs_info *fs_info = root->fs_info;
10038 struct btrfs_block_group_cache *cache = NULL;
10039 u64 group_trimmed;
10040 u64 start;
10041 u64 end;
10042 u64 trimmed = 0;
2cac13e4 10043 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10044 int ret = 0;
10045
2cac13e4
LB
10046 /*
10047 * try to trim all FS space, our block group may start from non-zero.
10048 */
10049 if (range->len == total_bytes)
10050 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10051 else
10052 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10053
10054 while (cache) {
10055 if (cache->key.objectid >= (range->start + range->len)) {
10056 btrfs_put_block_group(cache);
10057 break;
10058 }
10059
10060 start = max(range->start, cache->key.objectid);
10061 end = min(range->start + range->len,
10062 cache->key.objectid + cache->key.offset);
10063
10064 if (end - start >= range->minlen) {
10065 if (!block_group_cache_done(cache)) {
f6373bf3 10066 ret = cache_block_group(cache, 0);
1be41b78
JB
10067 if (ret) {
10068 btrfs_put_block_group(cache);
10069 break;
10070 }
10071 ret = wait_block_group_cache_done(cache);
10072 if (ret) {
10073 btrfs_put_block_group(cache);
10074 break;
10075 }
f7039b1d
LD
10076 }
10077 ret = btrfs_trim_block_group(cache,
10078 &group_trimmed,
10079 start,
10080 end,
10081 range->minlen);
10082
10083 trimmed += group_trimmed;
10084 if (ret) {
10085 btrfs_put_block_group(cache);
10086 break;
10087 }
10088 }
10089
10090 cache = next_block_group(fs_info->tree_root, cache);
10091 }
10092
10093 range->len = trimmed;
10094 return ret;
10095}
8257b2dc
MX
10096
10097/*
9ea24bbe
FM
10098 * btrfs_{start,end}_write_no_snapshoting() are similar to
10099 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10100 * data into the page cache through nocow before the subvolume is snapshoted,
10101 * but flush the data into disk after the snapshot creation, or to prevent
10102 * operations while snapshoting is ongoing and that cause the snapshot to be
10103 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10104 */
9ea24bbe 10105void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10106{
10107 percpu_counter_dec(&root->subv_writers->counter);
10108 /*
10109 * Make sure counter is updated before we wake up
10110 * waiters.
10111 */
10112 smp_mb();
10113 if (waitqueue_active(&root->subv_writers->wait))
10114 wake_up(&root->subv_writers->wait);
10115}
10116
9ea24bbe 10117int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10118{
ee39b432 10119 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10120 return 0;
10121
10122 percpu_counter_inc(&root->subv_writers->counter);
10123 /*
10124 * Make sure counter is updated before we check for snapshot creation.
10125 */
10126 smp_mb();
ee39b432 10127 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10128 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10129 return 0;
10130 }
10131 return 1;
10132}
This page took 1.507855 seconds and 5 git commands to generate.