Btrfs: fix memory leak in reading btree blocks
[deliverable/linux.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
ce93ec54
JB
63static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
5d4f98a2
YZ
66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
86 struct btrfs_root *extent_root, u64 flags,
87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
9ed74f2d
JB
90static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
91 int dump_block_groups);
4824f1f4 92static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 93 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
94static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 num_bytes, int delalloc);
5d80366e
JB
96static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
97 u64 num_bytes);
48a3b636
ES
98int btrfs_pin_extent(struct btrfs_root *root,
99 u64 bytenr, u64 num_bytes, int reserved);
957780eb
JB
100static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
6a63209f 110
817d52f8
JB
111static noinline int
112block_group_cache_done(struct btrfs_block_group_cache *cache)
113{
114 smp_mb();
36cce922
JB
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
117}
118
0f9dd46c
JB
119static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120{
121 return (cache->flags & bits) == bits;
122}
123
758f2dfc 124void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
125{
126 atomic_inc(&cache->count);
127}
128
129void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130{
f0486c68
YZ
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
34d52cb6 134 kfree(cache->free_space_ctl);
11dfe35a 135 kfree(cache);
f0486c68 136 }
11dfe35a
JB
137}
138
0f9dd46c
JB
139/*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
b2950863 143static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
144 struct btrfs_block_group_cache *block_group)
145{
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
a1897fdd
LB
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
0f9dd46c
JB
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177}
178
179/*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183static struct btrfs_block_group_cache *
184block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186{
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
a1897fdd 215 if (ret) {
11dfe35a 216 btrfs_get_block_group(ret);
a1897fdd
LB
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
0f9dd46c
JB
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223}
224
11833d66
YZ
225static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
817d52f8 227{
11833d66
YZ
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 230 start, end, EXTENT_UPTODATE);
11833d66 231 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
11833d66
YZ
233 return 0;
234}
817d52f8 235
11833d66
YZ
236static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
238{
239 u64 start, end;
817d52f8 240
11833d66
YZ
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
244 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 245 start, end, EXTENT_UPTODATE);
11833d66 246 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 247 start, end, EXTENT_UPTODATE);
817d52f8
JB
248}
249
11833d66
YZ
250static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
817d52f8 252{
817d52f8
JB
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
06b2331f
YZ
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
262 stripe_len);
835d974f
JB
263 if (ret)
264 return ret;
06b2331f
YZ
265 }
266
817d52f8
JB
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
327 if (atomic_dec_and_test(&ctl->count))
328 kfree(ctl);
329}
330
d0bd4560
JB
331#ifdef CONFIG_BTRFS_DEBUG
332static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
334{
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 root->nodesize : root->sectorsize;
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
bab39bf9
JB
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
bab39bf9 399 struct btrfs_root *extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
bab39bf9
JB
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
412
e37c9e69
CM
413 path = btrfs_alloc_path();
414 if (!path)
73fa48b6 415 return -ENOMEM;
7d7d6068 416
817d52f8 417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 418
d0bd4560
JB
419#ifdef CONFIG_BTRFS_DEBUG
420 /*
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
423 * the free space.
424 */
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
426 wakeup = false;
427#endif
5cd57b2c 428 /*
817d52f8
JB
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
5cd57b2c
CM
433 */
434 path->skip_locking = 1;
817d52f8 435 path->search_commit_root = 1;
e4058b54 436 path->reada = READA_FORWARD;
817d52f8 437
e4404d6e 438 key.objectid = last;
e37c9e69 439 key.offset = 0;
11833d66 440 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 441
52ee28d2 442next:
11833d66 443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 444 if (ret < 0)
73fa48b6 445 goto out;
a512bbf8 446
11833d66
YZ
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
449
d397712b 450 while (1) {
7841cb28 451 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 452 last = (u64)-1;
817d52f8 453 break;
f25784b3 454 }
817d52f8 455
11833d66
YZ
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 } else {
459 ret = find_next_key(path, 0, &key);
460 if (ret)
e37c9e69 461 break;
817d52f8 462
c9ea7b24 463 if (need_resched() ||
9e351cc8 464 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
465 if (wakeup)
466 caching_ctl->progress = last;
ff5714cc 467 btrfs_release_path(path);
9e351cc8 468 up_read(&fs_info->commit_root_sem);
589d8ade 469 mutex_unlock(&caching_ctl->mutex);
11833d66 470 cond_resched();
73fa48b6
OS
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
473 goto next;
589d8ade 474 }
0a3896d0
JB
475
476 ret = btrfs_next_leaf(extent_root, path);
477 if (ret < 0)
73fa48b6 478 goto out;
0a3896d0
JB
479 if (ret)
480 break;
589d8ade
JB
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 continue;
11833d66 484 }
817d52f8 485
52ee28d2
LB
486 if (key.objectid < last) {
487 key.objectid = last;
488 key.offset = 0;
489 key.type = BTRFS_EXTENT_ITEM_KEY;
490
d0bd4560
JB
491 if (wakeup)
492 caching_ctl->progress = last;
52ee28d2
LB
493 btrfs_release_path(path);
494 goto next;
495 }
496
11833d66
YZ
497 if (key.objectid < block_group->key.objectid) {
498 path->slots[0]++;
817d52f8 499 continue;
e37c9e69 500 }
0f9dd46c 501
e37c9e69 502 if (key.objectid >= block_group->key.objectid +
0f9dd46c 503 block_group->key.offset)
e37c9e69 504 break;
7d7d6068 505
3173a18f
JB
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
508 total_found += add_new_free_space(block_group,
509 fs_info, last,
510 key.objectid);
3173a18f
JB
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
707e8a07 513 fs_info->tree_root->nodesize;
3173a18f
JB
514 else
515 last = key.objectid + key.offset;
817d52f8 516
73fa48b6 517 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 518 total_found = 0;
d0bd4560
JB
519 if (wakeup)
520 wake_up(&caching_ctl->wait);
11833d66 521 }
817d52f8 522 }
e37c9e69
CM
523 path->slots[0]++;
524 }
817d52f8 525 ret = 0;
e37c9e69 526
817d52f8
JB
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
11833d66 530 caching_ctl->progress = (u64)-1;
817d52f8 531
73fa48b6
OS
532out:
533 btrfs_free_path(path);
534 return ret;
535}
536
537static noinline void caching_thread(struct btrfs_work *work)
538{
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
b4570aa9 542 struct btrfs_root *extent_root;
73fa48b6
OS
543 int ret;
544
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
b4570aa9 548 extent_root = fs_info->extent_root;
73fa48b6
OS
549
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
552
1e144fb8
OS
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
555 else
556 ret = load_extent_tree_free(caching_ctl);
73fa48b6 557
817d52f8 558 spin_lock(&block_group->lock);
11833d66 559 block_group->caching_ctl = NULL;
73fa48b6 560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 561 spin_unlock(&block_group->lock);
0f9dd46c 562
d0bd4560
JB
563#ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 u64 bytes_used;
566
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
575 }
576#endif
577
578 caching_ctl->progress = (u64)-1;
11833d66 579
9e351cc8 580 up_read(&fs_info->commit_root_sem);
73fa48b6 581 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 582 mutex_unlock(&caching_ctl->mutex);
73fa48b6 583
11833d66
YZ
584 wake_up(&caching_ctl->wait);
585
586 put_caching_control(caching_ctl);
11dfe35a 587 btrfs_put_block_group(block_group);
817d52f8
JB
588}
589
9d66e233 590static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 591 int load_cache_only)
817d52f8 592{
291c7d2f 593 DEFINE_WAIT(wait);
11833d66
YZ
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
596 int ret = 0;
597
291c7d2f 598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
599 if (!caching_ctl)
600 return -ENOMEM;
291c7d2f
JB
601
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
291c7d2f
JB
610
611 spin_lock(&cache->lock);
612 /*
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
622 * another.
623 */
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
626
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
631
632 schedule();
633
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
637 }
638
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
641 kfree(caching_ctl);
11833d66 642 return 0;
291c7d2f
JB
643 }
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
11833d66 648
d53ba474 649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 650 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
651 ret = load_free_space_cache(fs_info, cache);
652
653 spin_lock(&cache->lock);
654 if (ret == 1) {
291c7d2f 655 cache->caching_ctl = NULL;
9d66e233
JB
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 658 caching_ctl->progress = (u64)-1;
9d66e233 659 } else {
291c7d2f
JB
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
663 } else {
664 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 665 cache->has_caching_ctl = 1;
291c7d2f 666 }
9d66e233
JB
667 }
668 spin_unlock(&cache->lock);
d0bd4560
JB
669#ifdef CONFIG_BTRFS_DEBUG
670 if (ret == 1 &&
671 btrfs_should_fragment_free_space(fs_info->extent_root,
672 cache)) {
673 u64 bytes_used;
674
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
683 }
684#endif
cb83b7b8
JB
685 mutex_unlock(&caching_ctl->mutex);
686
291c7d2f 687 wake_up(&caching_ctl->wait);
3c14874a 688 if (ret == 1) {
291c7d2f 689 put_caching_control(caching_ctl);
3c14874a 690 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 691 return 0;
3c14874a 692 }
291c7d2f
JB
693 } else {
694 /*
1e144fb8
OS
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
697 */
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
702 } else {
703 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 704 cache->has_caching_ctl = 1;
291c7d2f
JB
705 }
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
9d66e233
JB
708 }
709
291c7d2f
JB
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
11833d66 712 return 0;
817d52f8 713 }
817d52f8 714
9e351cc8 715 down_write(&fs_info->commit_root_sem);
291c7d2f 716 atomic_inc(&caching_ctl->count);
11833d66 717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 718 up_write(&fs_info->commit_root_sem);
11833d66 719
11dfe35a 720 btrfs_get_block_group(cache);
11833d66 721
e66f0bb1 722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 723
ef8bbdfe 724 return ret;
e37c9e69
CM
725}
726
0f9dd46c
JB
727/*
728 * return the block group that starts at or after bytenr
729 */
d397712b
CM
730static struct btrfs_block_group_cache *
731btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 732{
0f9dd46c 733 struct btrfs_block_group_cache *cache;
0ef3e66b 734
0f9dd46c 735 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 736
0f9dd46c 737 return cache;
0ef3e66b
CM
738}
739
0f9dd46c 740/*
9f55684c 741 * return the block group that contains the given bytenr
0f9dd46c 742 */
d397712b
CM
743struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
745 u64 bytenr)
be744175 746{
0f9dd46c 747 struct btrfs_block_group_cache *cache;
be744175 748
0f9dd46c 749 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 750
0f9dd46c 751 return cache;
be744175 752}
0b86a832 753
0f9dd46c
JB
754static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
755 u64 flags)
6324fbf3 756{
0f9dd46c 757 struct list_head *head = &info->space_info;
0f9dd46c 758 struct btrfs_space_info *found;
4184ea7f 759
52ba6929 760 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 761
4184ea7f
CM
762 rcu_read_lock();
763 list_for_each_entry_rcu(found, head, list) {
67377734 764 if (found->flags & flags) {
4184ea7f 765 rcu_read_unlock();
0f9dd46c 766 return found;
4184ea7f 767 }
0f9dd46c 768 }
4184ea7f 769 rcu_read_unlock();
0f9dd46c 770 return NULL;
6324fbf3
CM
771}
772
4184ea7f
CM
773/*
774 * after adding space to the filesystem, we need to clear the full flags
775 * on all the space infos.
776 */
777void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
778{
779 struct list_head *head = &info->space_info;
780 struct btrfs_space_info *found;
781
782 rcu_read_lock();
783 list_for_each_entry_rcu(found, head, list)
784 found->full = 0;
785 rcu_read_unlock();
786}
787
1a4ed8fd
FM
788/* simple helper to search for an existing data extent at a given offset */
789int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
790{
791 int ret;
792 struct btrfs_key key;
31840ae1 793 struct btrfs_path *path;
e02119d5 794
31840ae1 795 path = btrfs_alloc_path();
d8926bb3
MF
796 if (!path)
797 return -ENOMEM;
798
e02119d5
CM
799 key.objectid = start;
800 key.offset = len;
3173a18f 801 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
802 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
803 0, 0);
31840ae1 804 btrfs_free_path(path);
7bb86316
CM
805 return ret;
806}
807
a22285a6 808/*
3173a18f 809 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
810 *
811 * the head node for delayed ref is used to store the sum of all the
812 * reference count modifications queued up in the rbtree. the head
813 * node may also store the extent flags to set. This way you can check
814 * to see what the reference count and extent flags would be if all of
815 * the delayed refs are not processed.
816 */
817int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root, u64 bytenr,
3173a18f 819 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
820{
821 struct btrfs_delayed_ref_head *head;
822 struct btrfs_delayed_ref_root *delayed_refs;
823 struct btrfs_path *path;
824 struct btrfs_extent_item *ei;
825 struct extent_buffer *leaf;
826 struct btrfs_key key;
827 u32 item_size;
828 u64 num_refs;
829 u64 extent_flags;
830 int ret;
831
3173a18f
JB
832 /*
833 * If we don't have skinny metadata, don't bother doing anything
834 * different
835 */
836 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 837 offset = root->nodesize;
3173a18f
JB
838 metadata = 0;
839 }
840
a22285a6
YZ
841 path = btrfs_alloc_path();
842 if (!path)
843 return -ENOMEM;
844
a22285a6
YZ
845 if (!trans) {
846 path->skip_locking = 1;
847 path->search_commit_root = 1;
848 }
639eefc8
FDBM
849
850search_again:
851 key.objectid = bytenr;
852 key.offset = offset;
853 if (metadata)
854 key.type = BTRFS_METADATA_ITEM_KEY;
855 else
856 key.type = BTRFS_EXTENT_ITEM_KEY;
857
a22285a6
YZ
858 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
859 &key, path, 0, 0);
860 if (ret < 0)
861 goto out_free;
862
3173a18f 863 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
864 if (path->slots[0]) {
865 path->slots[0]--;
866 btrfs_item_key_to_cpu(path->nodes[0], &key,
867 path->slots[0]);
868 if (key.objectid == bytenr &&
869 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 870 key.offset == root->nodesize)
74be9510
FDBM
871 ret = 0;
872 }
3173a18f
JB
873 }
874
a22285a6
YZ
875 if (ret == 0) {
876 leaf = path->nodes[0];
877 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
878 if (item_size >= sizeof(*ei)) {
879 ei = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item);
881 num_refs = btrfs_extent_refs(leaf, ei);
882 extent_flags = btrfs_extent_flags(leaf, ei);
883 } else {
884#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
885 struct btrfs_extent_item_v0 *ei0;
886 BUG_ON(item_size != sizeof(*ei0));
887 ei0 = btrfs_item_ptr(leaf, path->slots[0],
888 struct btrfs_extent_item_v0);
889 num_refs = btrfs_extent_refs_v0(leaf, ei0);
890 /* FIXME: this isn't correct for data */
891 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
892#else
893 BUG();
894#endif
895 }
896 BUG_ON(num_refs == 0);
897 } else {
898 num_refs = 0;
899 extent_flags = 0;
900 ret = 0;
901 }
902
903 if (!trans)
904 goto out;
905
906 delayed_refs = &trans->transaction->delayed_refs;
907 spin_lock(&delayed_refs->lock);
908 head = btrfs_find_delayed_ref_head(trans, bytenr);
909 if (head) {
910 if (!mutex_trylock(&head->mutex)) {
911 atomic_inc(&head->node.refs);
912 spin_unlock(&delayed_refs->lock);
913
b3b4aa74 914 btrfs_release_path(path);
a22285a6 915
8cc33e5c
DS
916 /*
917 * Mutex was contended, block until it's released and try
918 * again
919 */
a22285a6
YZ
920 mutex_lock(&head->mutex);
921 mutex_unlock(&head->mutex);
922 btrfs_put_delayed_ref(&head->node);
639eefc8 923 goto search_again;
a22285a6 924 }
d7df2c79 925 spin_lock(&head->lock);
a22285a6
YZ
926 if (head->extent_op && head->extent_op->update_flags)
927 extent_flags |= head->extent_op->flags_to_set;
928 else
929 BUG_ON(num_refs == 0);
930
931 num_refs += head->node.ref_mod;
d7df2c79 932 spin_unlock(&head->lock);
a22285a6
YZ
933 mutex_unlock(&head->mutex);
934 }
935 spin_unlock(&delayed_refs->lock);
936out:
937 WARN_ON(num_refs == 0);
938 if (refs)
939 *refs = num_refs;
940 if (flags)
941 *flags = extent_flags;
942out_free:
943 btrfs_free_path(path);
944 return ret;
945}
946
d8d5f3e1
CM
947/*
948 * Back reference rules. Back refs have three main goals:
949 *
950 * 1) differentiate between all holders of references to an extent so that
951 * when a reference is dropped we can make sure it was a valid reference
952 * before freeing the extent.
953 *
954 * 2) Provide enough information to quickly find the holders of an extent
955 * if we notice a given block is corrupted or bad.
956 *
957 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
958 * maintenance. This is actually the same as #2, but with a slightly
959 * different use case.
960 *
5d4f98a2
YZ
961 * There are two kinds of back refs. The implicit back refs is optimized
962 * for pointers in non-shared tree blocks. For a given pointer in a block,
963 * back refs of this kind provide information about the block's owner tree
964 * and the pointer's key. These information allow us to find the block by
965 * b-tree searching. The full back refs is for pointers in tree blocks not
966 * referenced by their owner trees. The location of tree block is recorded
967 * in the back refs. Actually the full back refs is generic, and can be
968 * used in all cases the implicit back refs is used. The major shortcoming
969 * of the full back refs is its overhead. Every time a tree block gets
970 * COWed, we have to update back refs entry for all pointers in it.
971 *
972 * For a newly allocated tree block, we use implicit back refs for
973 * pointers in it. This means most tree related operations only involve
974 * implicit back refs. For a tree block created in old transaction, the
975 * only way to drop a reference to it is COW it. So we can detect the
976 * event that tree block loses its owner tree's reference and do the
977 * back refs conversion.
978 *
01327610 979 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
980 *
981 * The reference count of the block is one and the tree is the block's
982 * owner tree. Nothing to do in this case.
983 *
984 * The reference count of the block is one and the tree is not the
985 * block's owner tree. In this case, full back refs is used for pointers
986 * in the block. Remove these full back refs, add implicit back refs for
987 * every pointers in the new block.
988 *
989 * The reference count of the block is greater than one and the tree is
990 * the block's owner tree. In this case, implicit back refs is used for
991 * pointers in the block. Add full back refs for every pointers in the
992 * block, increase lower level extents' reference counts. The original
993 * implicit back refs are entailed to the new block.
994 *
995 * The reference count of the block is greater than one and the tree is
996 * not the block's owner tree. Add implicit back refs for every pointer in
997 * the new block, increase lower level extents' reference count.
998 *
999 * Back Reference Key composing:
1000 *
1001 * The key objectid corresponds to the first byte in the extent,
1002 * The key type is used to differentiate between types of back refs.
1003 * There are different meanings of the key offset for different types
1004 * of back refs.
1005 *
d8d5f3e1
CM
1006 * File extents can be referenced by:
1007 *
1008 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1009 * - different files inside a single subvolume
d8d5f3e1
CM
1010 * - different offsets inside a file (bookend extents in file.c)
1011 *
5d4f98a2 1012 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1013 *
1014 * - Objectid of the subvolume root
d8d5f3e1 1015 * - objectid of the file holding the reference
5d4f98a2
YZ
1016 * - original offset in the file
1017 * - how many bookend extents
d8d5f3e1 1018 *
5d4f98a2
YZ
1019 * The key offset for the implicit back refs is hash of the first
1020 * three fields.
d8d5f3e1 1021 *
5d4f98a2 1022 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1023 *
5d4f98a2 1024 * - number of pointers in the tree leaf
d8d5f3e1 1025 *
5d4f98a2
YZ
1026 * The key offset for the implicit back refs is the first byte of
1027 * the tree leaf
d8d5f3e1 1028 *
5d4f98a2
YZ
1029 * When a file extent is allocated, The implicit back refs is used.
1030 * the fields are filled in:
d8d5f3e1 1031 *
5d4f98a2 1032 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * When a file extent is removed file truncation, we find the
1035 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1036 *
5d4f98a2 1037 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1038 *
5d4f98a2 1039 * Btree extents can be referenced by:
d8d5f3e1 1040 *
5d4f98a2 1041 * - Different subvolumes
d8d5f3e1 1042 *
5d4f98a2
YZ
1043 * Both the implicit back refs and the full back refs for tree blocks
1044 * only consist of key. The key offset for the implicit back refs is
1045 * objectid of block's owner tree. The key offset for the full back refs
1046 * is the first byte of parent block.
d8d5f3e1 1047 *
5d4f98a2
YZ
1048 * When implicit back refs is used, information about the lowest key and
1049 * level of the tree block are required. These information are stored in
1050 * tree block info structure.
d8d5f3e1 1051 */
31840ae1 1052
5d4f98a2
YZ
1053#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1054static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1055 struct btrfs_root *root,
1056 struct btrfs_path *path,
1057 u64 owner, u32 extra_size)
7bb86316 1058{
5d4f98a2
YZ
1059 struct btrfs_extent_item *item;
1060 struct btrfs_extent_item_v0 *ei0;
1061 struct btrfs_extent_ref_v0 *ref0;
1062 struct btrfs_tree_block_info *bi;
1063 struct extent_buffer *leaf;
7bb86316 1064 struct btrfs_key key;
5d4f98a2
YZ
1065 struct btrfs_key found_key;
1066 u32 new_size = sizeof(*item);
1067 u64 refs;
1068 int ret;
1069
1070 leaf = path->nodes[0];
1071 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1072
1073 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1074 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_item_v0);
1076 refs = btrfs_extent_refs_v0(leaf, ei0);
1077
1078 if (owner == (u64)-1) {
1079 while (1) {
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 return ret;
79787eaa 1084 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1085 leaf = path->nodes[0];
1086 }
1087 btrfs_item_key_to_cpu(leaf, &found_key,
1088 path->slots[0]);
1089 BUG_ON(key.objectid != found_key.objectid);
1090 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1091 path->slots[0]++;
1092 continue;
1093 }
1094 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1095 struct btrfs_extent_ref_v0);
1096 owner = btrfs_ref_objectid_v0(leaf, ref0);
1097 break;
1098 }
1099 }
b3b4aa74 1100 btrfs_release_path(path);
5d4f98a2
YZ
1101
1102 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1103 new_size += sizeof(*bi);
1104
1105 new_size -= sizeof(*ei0);
1106 ret = btrfs_search_slot(trans, root, &key, path,
1107 new_size + extra_size, 1);
1108 if (ret < 0)
1109 return ret;
79787eaa 1110 BUG_ON(ret); /* Corruption */
5d4f98a2 1111
4b90c680 1112 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1113
1114 leaf = path->nodes[0];
1115 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1116 btrfs_set_extent_refs(leaf, item, refs);
1117 /* FIXME: get real generation */
1118 btrfs_set_extent_generation(leaf, item, 0);
1119 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1120 btrfs_set_extent_flags(leaf, item,
1121 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1122 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1123 bi = (struct btrfs_tree_block_info *)(item + 1);
1124 /* FIXME: get first key of the block */
1125 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1126 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1127 } else {
1128 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1129 }
1130 btrfs_mark_buffer_dirty(leaf);
1131 return 0;
1132}
1133#endif
1134
1135static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1136{
1137 u32 high_crc = ~(u32)0;
1138 u32 low_crc = ~(u32)0;
1139 __le64 lenum;
1140
1141 lenum = cpu_to_le64(root_objectid);
14a958e6 1142 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1143 lenum = cpu_to_le64(owner);
14a958e6 1144 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1145 lenum = cpu_to_le64(offset);
14a958e6 1146 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1147
1148 return ((u64)high_crc << 31) ^ (u64)low_crc;
1149}
1150
1151static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref)
1153{
1154 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1155 btrfs_extent_data_ref_objectid(leaf, ref),
1156 btrfs_extent_data_ref_offset(leaf, ref));
1157}
1158
1159static int match_extent_data_ref(struct extent_buffer *leaf,
1160 struct btrfs_extent_data_ref *ref,
1161 u64 root_objectid, u64 owner, u64 offset)
1162{
1163 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1164 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1165 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1166 return 0;
1167 return 1;
1168}
1169
1170static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1171 struct btrfs_root *root,
1172 struct btrfs_path *path,
1173 u64 bytenr, u64 parent,
1174 u64 root_objectid,
1175 u64 owner, u64 offset)
1176{
1177 struct btrfs_key key;
1178 struct btrfs_extent_data_ref *ref;
31840ae1 1179 struct extent_buffer *leaf;
5d4f98a2 1180 u32 nritems;
74493f7a 1181 int ret;
5d4f98a2
YZ
1182 int recow;
1183 int err = -ENOENT;
74493f7a 1184
31840ae1 1185 key.objectid = bytenr;
5d4f98a2
YZ
1186 if (parent) {
1187 key.type = BTRFS_SHARED_DATA_REF_KEY;
1188 key.offset = parent;
1189 } else {
1190 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1191 key.offset = hash_extent_data_ref(root_objectid,
1192 owner, offset);
1193 }
1194again:
1195 recow = 0;
1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 if (ret < 0) {
1198 err = ret;
1199 goto fail;
1200 }
31840ae1 1201
5d4f98a2
YZ
1202 if (parent) {
1203 if (!ret)
1204 return 0;
1205#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1207 btrfs_release_path(path);
5d4f98a2
YZ
1208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1209 if (ret < 0) {
1210 err = ret;
1211 goto fail;
1212 }
1213 if (!ret)
1214 return 0;
1215#endif
1216 goto fail;
31840ae1
ZY
1217 }
1218
1219 leaf = path->nodes[0];
5d4f98a2
YZ
1220 nritems = btrfs_header_nritems(leaf);
1221 while (1) {
1222 if (path->slots[0] >= nritems) {
1223 ret = btrfs_next_leaf(root, path);
1224 if (ret < 0)
1225 err = ret;
1226 if (ret)
1227 goto fail;
1228
1229 leaf = path->nodes[0];
1230 nritems = btrfs_header_nritems(leaf);
1231 recow = 1;
1232 }
1233
1234 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1235 if (key.objectid != bytenr ||
1236 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1237 goto fail;
1238
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1241
1242 if (match_extent_data_ref(leaf, ref, root_objectid,
1243 owner, offset)) {
1244 if (recow) {
b3b4aa74 1245 btrfs_release_path(path);
5d4f98a2
YZ
1246 goto again;
1247 }
1248 err = 0;
1249 break;
1250 }
1251 path->slots[0]++;
31840ae1 1252 }
5d4f98a2
YZ
1253fail:
1254 return err;
31840ae1
ZY
1255}
1256
5d4f98a2
YZ
1257static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1258 struct btrfs_root *root,
1259 struct btrfs_path *path,
1260 u64 bytenr, u64 parent,
1261 u64 root_objectid, u64 owner,
1262 u64 offset, int refs_to_add)
31840ae1
ZY
1263{
1264 struct btrfs_key key;
1265 struct extent_buffer *leaf;
5d4f98a2 1266 u32 size;
31840ae1
ZY
1267 u32 num_refs;
1268 int ret;
74493f7a 1269
74493f7a 1270 key.objectid = bytenr;
5d4f98a2
YZ
1271 if (parent) {
1272 key.type = BTRFS_SHARED_DATA_REF_KEY;
1273 key.offset = parent;
1274 size = sizeof(struct btrfs_shared_data_ref);
1275 } else {
1276 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1277 key.offset = hash_extent_data_ref(root_objectid,
1278 owner, offset);
1279 size = sizeof(struct btrfs_extent_data_ref);
1280 }
74493f7a 1281
5d4f98a2
YZ
1282 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1283 if (ret && ret != -EEXIST)
1284 goto fail;
1285
1286 leaf = path->nodes[0];
1287 if (parent) {
1288 struct btrfs_shared_data_ref *ref;
31840ae1 1289 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1290 struct btrfs_shared_data_ref);
1291 if (ret == 0) {
1292 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1293 } else {
1294 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1295 num_refs += refs_to_add;
1296 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1297 }
5d4f98a2
YZ
1298 } else {
1299 struct btrfs_extent_data_ref *ref;
1300 while (ret == -EEXIST) {
1301 ref = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 if (match_extent_data_ref(leaf, ref, root_objectid,
1304 owner, offset))
1305 break;
b3b4aa74 1306 btrfs_release_path(path);
5d4f98a2
YZ
1307 key.offset++;
1308 ret = btrfs_insert_empty_item(trans, root, path, &key,
1309 size);
1310 if (ret && ret != -EEXIST)
1311 goto fail;
31840ae1 1312
5d4f98a2
YZ
1313 leaf = path->nodes[0];
1314 }
1315 ref = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 if (ret == 0) {
1318 btrfs_set_extent_data_ref_root(leaf, ref,
1319 root_objectid);
1320 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1321 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1322 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1323 } else {
1324 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1325 num_refs += refs_to_add;
1326 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1327 }
31840ae1 1328 }
5d4f98a2
YZ
1329 btrfs_mark_buffer_dirty(leaf);
1330 ret = 0;
1331fail:
b3b4aa74 1332 btrfs_release_path(path);
7bb86316 1333 return ret;
74493f7a
CM
1334}
1335
5d4f98a2
YZ
1336static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
fcebe456 1339 int refs_to_drop, int *last_ref)
31840ae1 1340{
5d4f98a2
YZ
1341 struct btrfs_key key;
1342 struct btrfs_extent_data_ref *ref1 = NULL;
1343 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1344 struct extent_buffer *leaf;
5d4f98a2 1345 u32 num_refs = 0;
31840ae1
ZY
1346 int ret = 0;
1347
1348 leaf = path->nodes[0];
5d4f98a2
YZ
1349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1350
1351 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1352 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_data_ref);
1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1355 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1356 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_shared_data_ref);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1361 struct btrfs_extent_ref_v0 *ref0;
1362 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_extent_ref_v0);
1364 num_refs = btrfs_ref_count_v0(leaf, ref0);
1365#endif
1366 } else {
1367 BUG();
1368 }
1369
56bec294
CM
1370 BUG_ON(num_refs < refs_to_drop);
1371 num_refs -= refs_to_drop;
5d4f98a2 1372
31840ae1
ZY
1373 if (num_refs == 0) {
1374 ret = btrfs_del_item(trans, root, path);
fcebe456 1375 *last_ref = 1;
31840ae1 1376 } else {
5d4f98a2
YZ
1377 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1378 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1379 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1380 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1381#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 else {
1383 struct btrfs_extent_ref_v0 *ref0;
1384 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1385 struct btrfs_extent_ref_v0);
1386 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1387 }
1388#endif
31840ae1
ZY
1389 btrfs_mark_buffer_dirty(leaf);
1390 }
31840ae1
ZY
1391 return ret;
1392}
1393
9ed0dea0 1394static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1395 struct btrfs_extent_inline_ref *iref)
15916de8 1396{
5d4f98a2
YZ
1397 struct btrfs_key key;
1398 struct extent_buffer *leaf;
1399 struct btrfs_extent_data_ref *ref1;
1400 struct btrfs_shared_data_ref *ref2;
1401 u32 num_refs = 0;
1402
1403 leaf = path->nodes[0];
1404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1405 if (iref) {
1406 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1407 BTRFS_EXTENT_DATA_REF_KEY) {
1408 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 } else {
1411 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1412 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1413 }
1414 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1415 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1416 struct btrfs_extent_data_ref);
1417 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1418 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1419 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_shared_data_ref);
1421 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1422#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1423 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1424 struct btrfs_extent_ref_v0 *ref0;
1425 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1426 struct btrfs_extent_ref_v0);
1427 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1428#endif
5d4f98a2
YZ
1429 } else {
1430 WARN_ON(1);
1431 }
1432 return num_refs;
1433}
15916de8 1434
5d4f98a2
YZ
1435static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1436 struct btrfs_root *root,
1437 struct btrfs_path *path,
1438 u64 bytenr, u64 parent,
1439 u64 root_objectid)
1f3c79a2 1440{
5d4f98a2 1441 struct btrfs_key key;
1f3c79a2 1442 int ret;
1f3c79a2 1443
5d4f98a2
YZ
1444 key.objectid = bytenr;
1445 if (parent) {
1446 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1447 key.offset = parent;
1448 } else {
1449 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1450 key.offset = root_objectid;
1f3c79a2
LH
1451 }
1452
5d4f98a2
YZ
1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 if (ret > 0)
1455 ret = -ENOENT;
1456#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1457 if (ret == -ENOENT && parent) {
b3b4aa74 1458 btrfs_release_path(path);
5d4f98a2
YZ
1459 key.type = BTRFS_EXTENT_REF_V0_KEY;
1460 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1461 if (ret > 0)
1462 ret = -ENOENT;
1463 }
1f3c79a2 1464#endif
5d4f98a2 1465 return ret;
1f3c79a2
LH
1466}
1467
5d4f98a2
YZ
1468static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 u64 bytenr, u64 parent,
1472 u64 root_objectid)
31840ae1 1473{
5d4f98a2 1474 struct btrfs_key key;
31840ae1 1475 int ret;
31840ae1 1476
5d4f98a2
YZ
1477 key.objectid = bytenr;
1478 if (parent) {
1479 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1480 key.offset = parent;
1481 } else {
1482 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1483 key.offset = root_objectid;
1484 }
1485
1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1487 btrfs_release_path(path);
31840ae1
ZY
1488 return ret;
1489}
1490
5d4f98a2 1491static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1492{
5d4f98a2
YZ
1493 int type;
1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 if (parent > 0)
1496 type = BTRFS_SHARED_BLOCK_REF_KEY;
1497 else
1498 type = BTRFS_TREE_BLOCK_REF_KEY;
1499 } else {
1500 if (parent > 0)
1501 type = BTRFS_SHARED_DATA_REF_KEY;
1502 else
1503 type = BTRFS_EXTENT_DATA_REF_KEY;
1504 }
1505 return type;
31840ae1 1506}
56bec294 1507
2c47e605
YZ
1508static int find_next_key(struct btrfs_path *path, int level,
1509 struct btrfs_key *key)
56bec294 1510
02217ed2 1511{
2c47e605 1512 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1513 if (!path->nodes[level])
1514 break;
5d4f98a2
YZ
1515 if (path->slots[level] + 1 >=
1516 btrfs_header_nritems(path->nodes[level]))
1517 continue;
1518 if (level == 0)
1519 btrfs_item_key_to_cpu(path->nodes[level], key,
1520 path->slots[level] + 1);
1521 else
1522 btrfs_node_key_to_cpu(path->nodes[level], key,
1523 path->slots[level] + 1);
1524 return 0;
1525 }
1526 return 1;
1527}
037e6390 1528
5d4f98a2
YZ
1529/*
1530 * look for inline back ref. if back ref is found, *ref_ret is set
1531 * to the address of inline back ref, and 0 is returned.
1532 *
1533 * if back ref isn't found, *ref_ret is set to the address where it
1534 * should be inserted, and -ENOENT is returned.
1535 *
1536 * if insert is true and there are too many inline back refs, the path
1537 * points to the extent item, and -EAGAIN is returned.
1538 *
1539 * NOTE: inline back refs are ordered in the same way that back ref
1540 * items in the tree are ordered.
1541 */
1542static noinline_for_stack
1543int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root,
1545 struct btrfs_path *path,
1546 struct btrfs_extent_inline_ref **ref_ret,
1547 u64 bytenr, u64 num_bytes,
1548 u64 parent, u64 root_objectid,
1549 u64 owner, u64 offset, int insert)
1550{
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1555 u64 flags;
1556 u64 item_size;
1557 unsigned long ptr;
1558 unsigned long end;
1559 int extra_size;
1560 int type;
1561 int want;
1562 int ret;
1563 int err = 0;
3173a18f
JB
1564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1565 SKINNY_METADATA);
26b8003f 1566
db94535d 1567 key.objectid = bytenr;
31840ae1 1568 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1569 key.offset = num_bytes;
31840ae1 1570
5d4f98a2
YZ
1571 want = extent_ref_type(parent, owner);
1572 if (insert) {
1573 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1574 path->keep_locks = 1;
5d4f98a2
YZ
1575 } else
1576 extra_size = -1;
3173a18f
JB
1577
1578 /*
1579 * Owner is our parent level, so we can just add one to get the level
1580 * for the block we are interested in.
1581 */
1582 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1583 key.type = BTRFS_METADATA_ITEM_KEY;
1584 key.offset = owner;
1585 }
1586
1587again:
5d4f98a2 1588 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1589 if (ret < 0) {
5d4f98a2
YZ
1590 err = ret;
1591 goto out;
1592 }
3173a18f
JB
1593
1594 /*
1595 * We may be a newly converted file system which still has the old fat
1596 * extent entries for metadata, so try and see if we have one of those.
1597 */
1598 if (ret > 0 && skinny_metadata) {
1599 skinny_metadata = false;
1600 if (path->slots[0]) {
1601 path->slots[0]--;
1602 btrfs_item_key_to_cpu(path->nodes[0], &key,
1603 path->slots[0]);
1604 if (key.objectid == bytenr &&
1605 key.type == BTRFS_EXTENT_ITEM_KEY &&
1606 key.offset == num_bytes)
1607 ret = 0;
1608 }
1609 if (ret) {
9ce49a0b 1610 key.objectid = bytenr;
3173a18f
JB
1611 key.type = BTRFS_EXTENT_ITEM_KEY;
1612 key.offset = num_bytes;
1613 btrfs_release_path(path);
1614 goto again;
1615 }
1616 }
1617
79787eaa
JM
1618 if (ret && !insert) {
1619 err = -ENOENT;
1620 goto out;
fae7f21c 1621 } else if (WARN_ON(ret)) {
492104c8 1622 err = -EIO;
492104c8 1623 goto out;
79787eaa 1624 }
5d4f98a2
YZ
1625
1626 leaf = path->nodes[0];
1627 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1628#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1629 if (item_size < sizeof(*ei)) {
1630 if (!insert) {
1631 err = -ENOENT;
1632 goto out;
1633 }
1634 ret = convert_extent_item_v0(trans, root, path, owner,
1635 extra_size);
1636 if (ret < 0) {
1637 err = ret;
1638 goto out;
1639 }
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 }
1643#endif
1644 BUG_ON(item_size < sizeof(*ei));
1645
5d4f98a2
YZ
1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 flags = btrfs_extent_flags(leaf, ei);
1648
1649 ptr = (unsigned long)(ei + 1);
1650 end = (unsigned long)ei + item_size;
1651
3173a18f 1652 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1653 ptr += sizeof(struct btrfs_tree_block_info);
1654 BUG_ON(ptr > end);
5d4f98a2
YZ
1655 }
1656
1657 err = -ENOENT;
1658 while (1) {
1659 if (ptr >= end) {
1660 WARN_ON(ptr > end);
1661 break;
1662 }
1663 iref = (struct btrfs_extent_inline_ref *)ptr;
1664 type = btrfs_extent_inline_ref_type(leaf, iref);
1665 if (want < type)
1666 break;
1667 if (want > type) {
1668 ptr += btrfs_extent_inline_ref_size(type);
1669 continue;
1670 }
1671
1672 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1673 struct btrfs_extent_data_ref *dref;
1674 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1675 if (match_extent_data_ref(leaf, dref, root_objectid,
1676 owner, offset)) {
1677 err = 0;
1678 break;
1679 }
1680 if (hash_extent_data_ref_item(leaf, dref) <
1681 hash_extent_data_ref(root_objectid, owner, offset))
1682 break;
1683 } else {
1684 u64 ref_offset;
1685 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1686 if (parent > 0) {
1687 if (parent == ref_offset) {
1688 err = 0;
1689 break;
1690 }
1691 if (ref_offset < parent)
1692 break;
1693 } else {
1694 if (root_objectid == ref_offset) {
1695 err = 0;
1696 break;
1697 }
1698 if (ref_offset < root_objectid)
1699 break;
1700 }
1701 }
1702 ptr += btrfs_extent_inline_ref_size(type);
1703 }
1704 if (err == -ENOENT && insert) {
1705 if (item_size + extra_size >=
1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 /*
1711 * To add new inline back ref, we have to make sure
1712 * there is no corresponding back ref item.
1713 * For simplicity, we just do not add new inline back
1714 * ref if there is any kind of item for this block
1715 */
2c47e605
YZ
1716 if (find_next_key(path, 0, &key) == 0 &&
1717 key.objectid == bytenr &&
85d4198e 1718 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1719 err = -EAGAIN;
1720 goto out;
1721 }
1722 }
1723 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1724out:
85d4198e 1725 if (insert) {
5d4f98a2
YZ
1726 path->keep_locks = 0;
1727 btrfs_unlock_up_safe(path, 1);
1728 }
1729 return err;
1730}
1731
1732/*
1733 * helper to add new inline back ref
1734 */
1735static noinline_for_stack
fd279fae 1736void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1737 struct btrfs_path *path,
1738 struct btrfs_extent_inline_ref *iref,
1739 u64 parent, u64 root_objectid,
1740 u64 owner, u64 offset, int refs_to_add,
1741 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1742{
1743 struct extent_buffer *leaf;
1744 struct btrfs_extent_item *ei;
1745 unsigned long ptr;
1746 unsigned long end;
1747 unsigned long item_offset;
1748 u64 refs;
1749 int size;
1750 int type;
5d4f98a2
YZ
1751
1752 leaf = path->nodes[0];
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 item_offset = (unsigned long)iref - (unsigned long)ei;
1755
1756 type = extent_ref_type(parent, owner);
1757 size = btrfs_extent_inline_ref_size(type);
1758
4b90c680 1759 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1760
1761 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1762 refs = btrfs_extent_refs(leaf, ei);
1763 refs += refs_to_add;
1764 btrfs_set_extent_refs(leaf, ei, refs);
1765 if (extent_op)
1766 __run_delayed_extent_op(extent_op, leaf, ei);
1767
1768 ptr = (unsigned long)ei + item_offset;
1769 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1770 if (ptr < end - size)
1771 memmove_extent_buffer(leaf, ptr + size, ptr,
1772 end - size - ptr);
1773
1774 iref = (struct btrfs_extent_inline_ref *)ptr;
1775 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1776 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1777 struct btrfs_extent_data_ref *dref;
1778 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1779 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1780 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1781 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1782 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1783 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1784 struct btrfs_shared_data_ref *sref;
1785 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1786 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1787 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1788 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1789 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1790 } else {
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1792 }
1793 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1794}
1795
1796static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1797 struct btrfs_root *root,
1798 struct btrfs_path *path,
1799 struct btrfs_extent_inline_ref **ref_ret,
1800 u64 bytenr, u64 num_bytes, u64 parent,
1801 u64 root_objectid, u64 owner, u64 offset)
1802{
1803 int ret;
1804
1805 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1806 bytenr, num_bytes, parent,
1807 root_objectid, owner, offset, 0);
1808 if (ret != -ENOENT)
54aa1f4d 1809 return ret;
5d4f98a2 1810
b3b4aa74 1811 btrfs_release_path(path);
5d4f98a2
YZ
1812 *ref_ret = NULL;
1813
1814 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1815 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1816 root_objectid);
1817 } else {
1818 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1819 root_objectid, owner, offset);
b9473439 1820 }
5d4f98a2
YZ
1821 return ret;
1822}
31840ae1 1823
5d4f98a2
YZ
1824/*
1825 * helper to update/remove inline back ref
1826 */
1827static noinline_for_stack
afe5fea7 1828void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1831 int refs_to_mod,
fcebe456
JB
1832 struct btrfs_delayed_extent_op *extent_op,
1833 int *last_ref)
5d4f98a2
YZ
1834{
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1839 unsigned long ptr;
1840 unsigned long end;
1841 u32 item_size;
1842 int size;
1843 int type;
5d4f98a2
YZ
1844 u64 refs;
1845
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1852 if (extent_op)
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1863 } else {
1864 refs = 1;
1865 BUG_ON(refs_to_mod != -1);
56bec294 1866 }
31840ae1 1867
5d4f98a2
YZ
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1870
1871 if (refs > 0) {
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 else
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 } else {
fcebe456 1877 *last_ref = 1;
5d4f98a2
YZ
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1884 end - ptr - size);
1885 item_size -= size;
afe5fea7 1886 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1889}
1890
1891static noinline_for_stack
1892int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899{
1900 struct btrfs_extent_inline_ref *iref;
1901 int ret;
1902
1903 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1906 if (ret == 0) {
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1908 update_inline_extent_backref(root, path, iref,
fcebe456 1909 refs_to_add, extent_op, NULL);
5d4f98a2 1910 } else if (ret == -ENOENT) {
fd279fae 1911 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1914 ret = 0;
771ed689 1915 }
5d4f98a2
YZ
1916 return ret;
1917}
31840ae1 1918
5d4f98a2
YZ
1919static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1924{
1925 int ret;
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
1928 ret = insert_tree_block_ref(trans, root, path, bytenr,
1929 parent, root_objectid);
1930 } else {
1931 ret = insert_extent_data_ref(trans, root, path, bytenr,
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 }
1935 return ret;
1936}
56bec294 1937
5d4f98a2
YZ
1938static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 struct btrfs_root *root,
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
fcebe456 1942 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1943{
143bede5 1944 int ret = 0;
b9473439 1945
5d4f98a2
YZ
1946 BUG_ON(!is_data && refs_to_drop != 1);
1947 if (iref) {
afe5fea7 1948 update_inline_extent_backref(root, path, iref,
fcebe456 1949 -refs_to_drop, NULL, last_ref);
5d4f98a2 1950 } else if (is_data) {
fcebe456
JB
1951 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1952 last_ref);
5d4f98a2 1953 } else {
fcebe456 1954 *last_ref = 1;
5d4f98a2
YZ
1955 ret = btrfs_del_item(trans, root, path);
1956 }
1957 return ret;
1958}
1959
86557861 1960#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1961static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
5d4f98a2 1963{
86557861
JM
1964 int j, ret = 0;
1965 u64 bytes_left, end;
4d89d377 1966 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1967
4d89d377
JM
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1972 }
d04c6b88 1973
4d89d377 1974 *discarded_bytes = 0;
86557861
JM
1975
1976 if (!len)
1977 return 0;
1978
1979 end = start + len;
1980 bytes_left = len;
1981
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1987
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 continue;
1992
1993 /*
1994 * Superblock spans beginning of range. Adjust start and
1995 * try again.
1996 */
1997 if (sb_start <= start) {
1998 start += sb_end - start;
1999 if (start > end) {
2000 bytes_left = 0;
2001 break;
2002 }
2003 bytes_left = end - start;
2004 continue;
2005 }
2006
2007 if (size) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2013 return ret;
2014 }
2015
2016 start = sb_end;
2017 if (start > end) {
2018 bytes_left = 0;
2019 break;
2020 }
2021 bytes_left = end - start;
2022 }
2023
2024 if (bytes_left) {
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2026 GFP_NOFS, 0);
2027 if (!ret)
86557861 2028 *discarded_bytes += bytes_left;
4d89d377 2029 }
d04c6b88 2030 return ret;
5d4f98a2 2031}
5d4f98a2 2032
1edb647b
FM
2033int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2034 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2035{
5d4f98a2 2036 int ret;
5378e607 2037 u64 discarded_bytes = 0;
a1d3c478 2038 struct btrfs_bio *bbio = NULL;
5d4f98a2 2039
e244a0ae 2040
2999241d
FM
2041 /*
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2044 */
2045 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2046 /* Tell the block device(s) that the sectors can be discarded */
b3d3fa51 2047 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
a1d3c478 2048 bytenr, &num_bytes, &bbio, 0);
79787eaa 2049 /* Error condition is -ENOMEM */
5d4f98a2 2050 if (!ret) {
a1d3c478 2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2052 int i;
2053
5d4f98a2 2054
a1d3c478 2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2056 u64 bytes;
d5e2003c
JB
2057 if (!stripe->dev->can_discard)
2058 continue;
2059
5378e607
LD
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2061 stripe->physical,
d04c6b88
JM
2062 stripe->length,
2063 &bytes);
5378e607 2064 if (!ret)
d04c6b88 2065 discarded_bytes += bytes;
5378e607 2066 else if (ret != -EOPNOTSUPP)
79787eaa 2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2068
2069 /*
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2073 */
2074 ret = 0;
5d4f98a2 2075 }
6e9606d2 2076 btrfs_put_bbio(bbio);
5d4f98a2 2077 }
2999241d 2078 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2079
2080 if (actual_bytes)
2081 *actual_bytes = discarded_bytes;
2082
5d4f98a2 2083
53b381b3
DW
2084 if (ret == -EOPNOTSUPP)
2085 ret = 0;
5d4f98a2 2086 return ret;
5d4f98a2
YZ
2087}
2088
79787eaa 2089/* Can return -ENOMEM */
5d4f98a2
YZ
2090int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2093 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2094{
2095 int ret;
66d7e7f0
AJ
2096 struct btrfs_fs_info *fs_info = root->fs_info;
2097
5d4f98a2
YZ
2098 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2099 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2100
2101 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2102 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2103 num_bytes,
5d4f98a2 2104 parent, root_objectid, (int)owner,
b06c4bf5 2105 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2106 } else {
66d7e7f0 2107 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2108 num_bytes, parent, root_objectid,
2109 owner, offset, 0,
b06c4bf5 2110 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2111 }
2112 return ret;
2113}
2114
2115static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2116 struct btrfs_root *root,
c682f9b3 2117 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2118 u64 parent, u64 root_objectid,
2119 u64 owner, u64 offset, int refs_to_add,
2120 struct btrfs_delayed_extent_op *extent_op)
2121{
fcebe456 2122 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
fcebe456 2126 struct btrfs_key key;
c682f9b3
QW
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2129 u64 refs;
2130 int ret;
5d4f98a2
YZ
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
e4058b54 2136 path->reada = READA_FORWARD;
5d4f98a2
YZ
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2139 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2140 bytenr, num_bytes, parent,
5d4f98a2
YZ
2141 root_objectid, owner, offset,
2142 refs_to_add, extent_op);
0ed4792a 2143 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2144 goto out;
fcebe456
JB
2145
2146 /*
2147 * Ok we had -EAGAIN which means we didn't have space to insert and
2148 * inline extent ref, so just update the reference count and add a
2149 * normal backref.
2150 */
5d4f98a2 2151 leaf = path->nodes[0];
fcebe456 2152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2153 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2154 refs = btrfs_extent_refs(leaf, item);
2155 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2156 if (extent_op)
2157 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2158
5d4f98a2 2159 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2160 btrfs_release_path(path);
56bec294 2161
e4058b54 2162 path->reada = READA_FORWARD;
b9473439 2163 path->leave_spinning = 1;
56bec294
CM
2164 /* now insert the actual backref */
2165 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2166 path, bytenr, parent, root_objectid,
2167 owner, offset, refs_to_add);
79787eaa 2168 if (ret)
66642832 2169 btrfs_abort_transaction(trans, ret);
5d4f98a2 2170out:
56bec294 2171 btrfs_free_path(path);
30d133fc 2172 return ret;
56bec294
CM
2173}
2174
5d4f98a2
YZ
2175static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
56bec294 2180{
5d4f98a2
YZ
2181 int ret = 0;
2182 struct btrfs_delayed_data_ref *ref;
2183 struct btrfs_key ins;
2184 u64 parent = 0;
2185 u64 ref_root = 0;
2186 u64 flags = 0;
2187
2188 ins.objectid = node->bytenr;
2189 ins.offset = node->num_bytes;
2190 ins.type = BTRFS_EXTENT_ITEM_KEY;
2191
2192 ref = btrfs_delayed_node_to_data_ref(node);
bc074524 2193 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
599c75ec 2194
5d4f98a2
YZ
2195 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2196 parent = ref->parent;
fcebe456 2197 ref_root = ref->root;
5d4f98a2
YZ
2198
2199 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2200 if (extent_op)
5d4f98a2 2201 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2202 ret = alloc_reserved_file_extent(trans, root,
2203 parent, ref_root, flags,
2204 ref->objectid, ref->offset,
2205 &ins, node->ref_mod);
5d4f98a2 2206 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2207 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2208 ref_root, ref->objectid,
2209 ref->offset, node->ref_mod,
c682f9b3 2210 extent_op);
5d4f98a2 2211 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2212 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2213 ref_root, ref->objectid,
2214 ref->offset, node->ref_mod,
c682f9b3 2215 extent_op);
5d4f98a2
YZ
2216 } else {
2217 BUG();
2218 }
2219 return ret;
2220}
2221
2222static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2223 struct extent_buffer *leaf,
2224 struct btrfs_extent_item *ei)
2225{
2226 u64 flags = btrfs_extent_flags(leaf, ei);
2227 if (extent_op->update_flags) {
2228 flags |= extent_op->flags_to_set;
2229 btrfs_set_extent_flags(leaf, ei, flags);
2230 }
2231
2232 if (extent_op->update_key) {
2233 struct btrfs_tree_block_info *bi;
2234 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2235 bi = (struct btrfs_tree_block_info *)(ei + 1);
2236 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2237 }
2238}
2239
2240static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2241 struct btrfs_root *root,
2242 struct btrfs_delayed_ref_node *node,
2243 struct btrfs_delayed_extent_op *extent_op)
2244{
2245 struct btrfs_key key;
2246 struct btrfs_path *path;
2247 struct btrfs_extent_item *ei;
2248 struct extent_buffer *leaf;
2249 u32 item_size;
56bec294 2250 int ret;
5d4f98a2 2251 int err = 0;
b1c79e09 2252 int metadata = !extent_op->is_data;
5d4f98a2 2253
79787eaa
JM
2254 if (trans->aborted)
2255 return 0;
2256
3173a18f
JB
2257 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2258 metadata = 0;
2259
5d4f98a2
YZ
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2263
2264 key.objectid = node->bytenr;
5d4f98a2 2265
3173a18f 2266 if (metadata) {
3173a18f 2267 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2268 key.offset = extent_op->level;
3173a18f
JB
2269 } else {
2270 key.type = BTRFS_EXTENT_ITEM_KEY;
2271 key.offset = node->num_bytes;
2272 }
2273
2274again:
e4058b54 2275 path->reada = READA_FORWARD;
5d4f98a2
YZ
2276 path->leave_spinning = 1;
2277 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2278 path, 0, 1);
2279 if (ret < 0) {
2280 err = ret;
2281 goto out;
2282 }
2283 if (ret > 0) {
3173a18f 2284 if (metadata) {
55994887
FDBM
2285 if (path->slots[0] > 0) {
2286 path->slots[0]--;
2287 btrfs_item_key_to_cpu(path->nodes[0], &key,
2288 path->slots[0]);
2289 if (key.objectid == node->bytenr &&
2290 key.type == BTRFS_EXTENT_ITEM_KEY &&
2291 key.offset == node->num_bytes)
2292 ret = 0;
2293 }
2294 if (ret > 0) {
2295 btrfs_release_path(path);
2296 metadata = 0;
3173a18f 2297
55994887
FDBM
2298 key.objectid = node->bytenr;
2299 key.offset = node->num_bytes;
2300 key.type = BTRFS_EXTENT_ITEM_KEY;
2301 goto again;
2302 }
2303 } else {
2304 err = -EIO;
2305 goto out;
3173a18f 2306 }
5d4f98a2
YZ
2307 }
2308
2309 leaf = path->nodes[0];
2310 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2311#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2312 if (item_size < sizeof(*ei)) {
2313 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2314 path, (u64)-1, 0);
2315 if (ret < 0) {
2316 err = ret;
2317 goto out;
2318 }
2319 leaf = path->nodes[0];
2320 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2321 }
2322#endif
2323 BUG_ON(item_size < sizeof(*ei));
2324 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2325 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2326
5d4f98a2
YZ
2327 btrfs_mark_buffer_dirty(leaf);
2328out:
2329 btrfs_free_path(path);
2330 return err;
56bec294
CM
2331}
2332
5d4f98a2
YZ
2333static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *root,
2335 struct btrfs_delayed_ref_node *node,
2336 struct btrfs_delayed_extent_op *extent_op,
2337 int insert_reserved)
56bec294
CM
2338{
2339 int ret = 0;
5d4f98a2
YZ
2340 struct btrfs_delayed_tree_ref *ref;
2341 struct btrfs_key ins;
2342 u64 parent = 0;
2343 u64 ref_root = 0;
3173a18f
JB
2344 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2345 SKINNY_METADATA);
56bec294 2346
5d4f98a2 2347 ref = btrfs_delayed_node_to_tree_ref(node);
bc074524 2348 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
599c75ec 2349
5d4f98a2
YZ
2350 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2351 parent = ref->parent;
fcebe456 2352 ref_root = ref->root;
5d4f98a2 2353
3173a18f
JB
2354 ins.objectid = node->bytenr;
2355 if (skinny_metadata) {
2356 ins.offset = ref->level;
2357 ins.type = BTRFS_METADATA_ITEM_KEY;
2358 } else {
2359 ins.offset = node->num_bytes;
2360 ins.type = BTRFS_EXTENT_ITEM_KEY;
2361 }
2362
5d4f98a2
YZ
2363 BUG_ON(node->ref_mod != 1);
2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2365 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2366 ret = alloc_reserved_tree_block(trans, root,
2367 parent, ref_root,
2368 extent_op->flags_to_set,
2369 &extent_op->key,
b06c4bf5 2370 ref->level, &ins);
5d4f98a2 2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2372 ret = __btrfs_inc_extent_ref(trans, root, node,
2373 parent, ref_root,
2374 ref->level, 0, 1,
fcebe456 2375 extent_op);
5d4f98a2 2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2377 ret = __btrfs_free_extent(trans, root, node,
2378 parent, ref_root,
2379 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2380 } else {
2381 BUG();
2382 }
56bec294
CM
2383 return ret;
2384}
2385
2386/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2387static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root,
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
56bec294 2392{
79787eaa
JM
2393 int ret = 0;
2394
857cc2fc
JB
2395 if (trans->aborted) {
2396 if (insert_reserved)
2397 btrfs_pin_extent(root, node->bytenr,
2398 node->num_bytes, 1);
79787eaa 2399 return 0;
857cc2fc 2400 }
79787eaa 2401
5d4f98a2 2402 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2403 struct btrfs_delayed_ref_head *head;
2404 /*
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2409 */
5d4f98a2
YZ
2410 BUG_ON(extent_op);
2411 head = btrfs_delayed_node_to_head(node);
bc074524
JM
2412 trace_run_delayed_ref_head(root->fs_info, node, head,
2413 node->action);
599c75ec 2414
56bec294 2415 if (insert_reserved) {
f0486c68
YZ
2416 btrfs_pin_extent(root, node->bytenr,
2417 node->num_bytes, 1);
5d4f98a2
YZ
2418 if (head->is_data) {
2419 ret = btrfs_del_csums(trans, root,
2420 node->bytenr,
2421 node->num_bytes);
5d4f98a2 2422 }
56bec294 2423 }
297d750b
QW
2424
2425 /* Also free its reserved qgroup space */
2426 btrfs_qgroup_free_delayed_ref(root->fs_info,
2427 head->qgroup_ref_root,
2428 head->qgroup_reserved);
79787eaa 2429 return ret;
56bec294
CM
2430 }
2431
5d4f98a2
YZ
2432 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2433 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2434 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2435 insert_reserved);
2436 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2437 node->type == BTRFS_SHARED_DATA_REF_KEY)
2438 ret = run_delayed_data_ref(trans, root, node, extent_op,
2439 insert_reserved);
2440 else
2441 BUG();
2442 return ret;
56bec294
CM
2443}
2444
c6fc2454 2445static inline struct btrfs_delayed_ref_node *
56bec294
CM
2446select_delayed_ref(struct btrfs_delayed_ref_head *head)
2447{
cffc3374
FM
2448 struct btrfs_delayed_ref_node *ref;
2449
c6fc2454
QW
2450 if (list_empty(&head->ref_list))
2451 return NULL;
d7df2c79 2452
cffc3374
FM
2453 /*
2454 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2455 * This is to prevent a ref count from going down to zero, which deletes
2456 * the extent item from the extent tree, when there still are references
2457 * to add, which would fail because they would not find the extent item.
2458 */
2459 list_for_each_entry(ref, &head->ref_list, list) {
2460 if (ref->action == BTRFS_ADD_DELAYED_REF)
2461 return ref;
2462 }
2463
c6fc2454
QW
2464 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2465 list);
56bec294
CM
2466}
2467
79787eaa
JM
2468/*
2469 * Returns 0 on success or if called with an already aborted transaction.
2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2471 */
d7df2c79
JB
2472static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2473 struct btrfs_root *root,
2474 unsigned long nr)
56bec294 2475{
56bec294
CM
2476 struct btrfs_delayed_ref_root *delayed_refs;
2477 struct btrfs_delayed_ref_node *ref;
2478 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2479 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2480 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2481 ktime_t start = ktime_get();
56bec294 2482 int ret;
d7df2c79 2483 unsigned long count = 0;
0a2b2a84 2484 unsigned long actual_count = 0;
56bec294 2485 int must_insert_reserved = 0;
56bec294
CM
2486
2487 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2488 while (1) {
2489 if (!locked_ref) {
d7df2c79 2490 if (count >= nr)
56bec294 2491 break;
56bec294 2492
d7df2c79
JB
2493 spin_lock(&delayed_refs->lock);
2494 locked_ref = btrfs_select_ref_head(trans);
2495 if (!locked_ref) {
2496 spin_unlock(&delayed_refs->lock);
2497 break;
2498 }
c3e69d58
CM
2499
2500 /* grab the lock that says we are going to process
2501 * all the refs for this head */
2502 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2503 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2504 /*
2505 * we may have dropped the spin lock to get the head
2506 * mutex lock, and that might have given someone else
2507 * time to free the head. If that's true, it has been
2508 * removed from our list and we can move on.
2509 */
2510 if (ret == -EAGAIN) {
2511 locked_ref = NULL;
2512 count++;
2513 continue;
56bec294
CM
2514 }
2515 }
a28ec197 2516
2c3cf7d5
FM
2517 /*
2518 * We need to try and merge add/drops of the same ref since we
2519 * can run into issues with relocate dropping the implicit ref
2520 * and then it being added back again before the drop can
2521 * finish. If we merged anything we need to re-loop so we can
2522 * get a good ref.
2523 * Or we can get node references of the same type that weren't
2524 * merged when created due to bumps in the tree mod seq, and
2525 * we need to merge them to prevent adding an inline extent
2526 * backref before dropping it (triggering a BUG_ON at
2527 * insert_inline_extent_backref()).
2528 */
d7df2c79 2529 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2530 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2531 locked_ref);
ae1e206b 2532
d1270cd9
AJ
2533 /*
2534 * locked_ref is the head node, so we have to go one
2535 * node back for any delayed ref updates
2536 */
2537 ref = select_delayed_ref(locked_ref);
2538
2539 if (ref && ref->seq &&
097b8a7c 2540 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2541 spin_unlock(&locked_ref->lock);
093486c4 2542 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2543 spin_lock(&delayed_refs->lock);
2544 locked_ref->processing = 0;
d1270cd9
AJ
2545 delayed_refs->num_heads_ready++;
2546 spin_unlock(&delayed_refs->lock);
d7df2c79 2547 locked_ref = NULL;
d1270cd9 2548 cond_resched();
27a377db 2549 count++;
d1270cd9
AJ
2550 continue;
2551 }
2552
56bec294
CM
2553 /*
2554 * record the must insert reserved flag before we
2555 * drop the spin lock.
2556 */
2557 must_insert_reserved = locked_ref->must_insert_reserved;
2558 locked_ref->must_insert_reserved = 0;
7bb86316 2559
5d4f98a2
YZ
2560 extent_op = locked_ref->extent_op;
2561 locked_ref->extent_op = NULL;
2562
56bec294 2563 if (!ref) {
d7df2c79
JB
2564
2565
56bec294
CM
2566 /* All delayed refs have been processed, Go ahead
2567 * and send the head node to run_one_delayed_ref,
2568 * so that any accounting fixes can happen
2569 */
2570 ref = &locked_ref->node;
5d4f98a2
YZ
2571
2572 if (extent_op && must_insert_reserved) {
78a6184a 2573 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2574 extent_op = NULL;
2575 }
2576
2577 if (extent_op) {
d7df2c79 2578 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2579 ret = run_delayed_extent_op(trans, root,
2580 ref, extent_op);
78a6184a 2581 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2582
79787eaa 2583 if (ret) {
857cc2fc
JB
2584 /*
2585 * Need to reset must_insert_reserved if
2586 * there was an error so the abort stuff
2587 * can cleanup the reserved space
2588 * properly.
2589 */
2590 if (must_insert_reserved)
2591 locked_ref->must_insert_reserved = 1;
d7df2c79 2592 locked_ref->processing = 0;
c2cf52eb 2593 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2594 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2595 return ret;
2596 }
d7df2c79 2597 continue;
5d4f98a2 2598 }
02217ed2 2599
d7df2c79 2600 /*
01327610 2601 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2602 * delayed ref lock and then re-check to make sure
2603 * nobody got added.
2604 */
2605 spin_unlock(&locked_ref->lock);
2606 spin_lock(&delayed_refs->lock);
2607 spin_lock(&locked_ref->lock);
c6fc2454 2608 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2609 locked_ref->extent_op) {
d7df2c79
JB
2610 spin_unlock(&locked_ref->lock);
2611 spin_unlock(&delayed_refs->lock);
2612 continue;
2613 }
2614 ref->in_tree = 0;
2615 delayed_refs->num_heads--;
c46effa6
LB
2616 rb_erase(&locked_ref->href_node,
2617 &delayed_refs->href_root);
d7df2c79
JB
2618 spin_unlock(&delayed_refs->lock);
2619 } else {
0a2b2a84 2620 actual_count++;
d7df2c79 2621 ref->in_tree = 0;
c6fc2454 2622 list_del(&ref->list);
c46effa6 2623 }
d7df2c79
JB
2624 atomic_dec(&delayed_refs->num_entries);
2625
093486c4 2626 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2627 /*
2628 * when we play the delayed ref, also correct the
2629 * ref_mod on head
2630 */
2631 switch (ref->action) {
2632 case BTRFS_ADD_DELAYED_REF:
2633 case BTRFS_ADD_DELAYED_EXTENT:
2634 locked_ref->node.ref_mod -= ref->ref_mod;
2635 break;
2636 case BTRFS_DROP_DELAYED_REF:
2637 locked_ref->node.ref_mod += ref->ref_mod;
2638 break;
2639 default:
2640 WARN_ON(1);
2641 }
2642 }
d7df2c79 2643 spin_unlock(&locked_ref->lock);
925baedd 2644
5d4f98a2 2645 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2646 must_insert_reserved);
eb099670 2647
78a6184a 2648 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2649 if (ret) {
d7df2c79 2650 locked_ref->processing = 0;
093486c4
MX
2651 btrfs_delayed_ref_unlock(locked_ref);
2652 btrfs_put_delayed_ref(ref);
c2cf52eb 2653 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2654 return ret;
2655 }
2656
093486c4
MX
2657 /*
2658 * If this node is a head, that means all the refs in this head
2659 * have been dealt with, and we will pick the next head to deal
2660 * with, so we must unlock the head and drop it from the cluster
2661 * list before we release it.
2662 */
2663 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2664 if (locked_ref->is_data &&
2665 locked_ref->total_ref_mod < 0) {
2666 spin_lock(&delayed_refs->lock);
2667 delayed_refs->pending_csums -= ref->num_bytes;
2668 spin_unlock(&delayed_refs->lock);
2669 }
093486c4
MX
2670 btrfs_delayed_ref_unlock(locked_ref);
2671 locked_ref = NULL;
2672 }
2673 btrfs_put_delayed_ref(ref);
2674 count++;
c3e69d58 2675 cond_resched();
c3e69d58 2676 }
0a2b2a84
JB
2677
2678 /*
2679 * We don't want to include ref heads since we can have empty ref heads
2680 * and those will drastically skew our runtime down since we just do
2681 * accounting, no actual extent tree updates.
2682 */
2683 if (actual_count > 0) {
2684 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2685 u64 avg;
2686
2687 /*
2688 * We weigh the current average higher than our current runtime
2689 * to avoid large swings in the average.
2690 */
2691 spin_lock(&delayed_refs->lock);
2692 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2693 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2694 spin_unlock(&delayed_refs->lock);
2695 }
d7df2c79 2696 return 0;
c3e69d58
CM
2697}
2698
709c0486
AJ
2699#ifdef SCRAMBLE_DELAYED_REFS
2700/*
2701 * Normally delayed refs get processed in ascending bytenr order. This
2702 * correlates in most cases to the order added. To expose dependencies on this
2703 * order, we start to process the tree in the middle instead of the beginning
2704 */
2705static u64 find_middle(struct rb_root *root)
2706{
2707 struct rb_node *n = root->rb_node;
2708 struct btrfs_delayed_ref_node *entry;
2709 int alt = 1;
2710 u64 middle;
2711 u64 first = 0, last = 0;
2712
2713 n = rb_first(root);
2714 if (n) {
2715 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2716 first = entry->bytenr;
2717 }
2718 n = rb_last(root);
2719 if (n) {
2720 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2721 last = entry->bytenr;
2722 }
2723 n = root->rb_node;
2724
2725 while (n) {
2726 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2727 WARN_ON(!entry->in_tree);
2728
2729 middle = entry->bytenr;
2730
2731 if (alt)
2732 n = n->rb_left;
2733 else
2734 n = n->rb_right;
2735
2736 alt = 1 - alt;
2737 }
2738 return middle;
2739}
2740#endif
2741
1be41b78
JB
2742static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2743{
2744 u64 num_bytes;
2745
2746 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2747 sizeof(struct btrfs_extent_inline_ref));
2748 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2749 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2750
2751 /*
2752 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2753 * closer to what we're really going to want to use.
1be41b78 2754 */
f8c269d7 2755 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2756}
2757
1262133b
JB
2758/*
2759 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2760 * would require to store the csums for that many bytes.
2761 */
28f75a0e 2762u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2763{
2764 u64 csum_size;
2765 u64 num_csums_per_leaf;
2766 u64 num_csums;
2767
14a1e067 2768 csum_size = BTRFS_MAX_ITEM_SIZE(root);
1262133b
JB
2769 num_csums_per_leaf = div64_u64(csum_size,
2770 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2771 num_csums = div64_u64(csum_bytes, root->sectorsize);
2772 num_csums += num_csums_per_leaf - 1;
2773 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2774 return num_csums;
2775}
2776
0a2b2a84 2777int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2778 struct btrfs_root *root)
2779{
2780 struct btrfs_block_rsv *global_rsv;
2781 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2782 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2783 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2784 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2785 int ret = 0;
2786
2787 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2788 num_heads = heads_to_leaves(root, num_heads);
2789 if (num_heads > 1)
707e8a07 2790 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2791 num_bytes <<= 1;
28f75a0e 2792 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2793 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2794 num_dirty_bgs);
1be41b78
JB
2795 global_rsv = &root->fs_info->global_block_rsv;
2796
2797 /*
2798 * If we can't allocate any more chunks lets make sure we have _lots_ of
2799 * wiggle room since running delayed refs can create more delayed refs.
2800 */
cb723e49
JB
2801 if (global_rsv->space_info->full) {
2802 num_dirty_bgs_bytes <<= 1;
1be41b78 2803 num_bytes <<= 1;
cb723e49 2804 }
1be41b78
JB
2805
2806 spin_lock(&global_rsv->lock);
cb723e49 2807 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2808 ret = 1;
2809 spin_unlock(&global_rsv->lock);
2810 return ret;
2811}
2812
0a2b2a84
JB
2813int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2814 struct btrfs_root *root)
2815{
2816 struct btrfs_fs_info *fs_info = root->fs_info;
2817 u64 num_entries =
2818 atomic_read(&trans->transaction->delayed_refs.num_entries);
2819 u64 avg_runtime;
a79b7d4b 2820 u64 val;
0a2b2a84
JB
2821
2822 smp_mb();
2823 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2824 val = num_entries * avg_runtime;
0a2b2a84
JB
2825 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2826 return 1;
a79b7d4b
CM
2827 if (val >= NSEC_PER_SEC / 2)
2828 return 2;
0a2b2a84
JB
2829
2830 return btrfs_check_space_for_delayed_refs(trans, root);
2831}
2832
a79b7d4b
CM
2833struct async_delayed_refs {
2834 struct btrfs_root *root;
31b9655f 2835 u64 transid;
a79b7d4b
CM
2836 int count;
2837 int error;
2838 int sync;
2839 struct completion wait;
2840 struct btrfs_work work;
2841};
2842
2843static void delayed_ref_async_start(struct btrfs_work *work)
2844{
2845 struct async_delayed_refs *async;
2846 struct btrfs_trans_handle *trans;
2847 int ret;
2848
2849 async = container_of(work, struct async_delayed_refs, work);
2850
0f873eca
CM
2851 /* if the commit is already started, we don't need to wait here */
2852 if (btrfs_transaction_blocked(async->root->fs_info))
31b9655f 2853 goto done;
31b9655f 2854
0f873eca
CM
2855 trans = btrfs_join_transaction(async->root);
2856 if (IS_ERR(trans)) {
2857 async->error = PTR_ERR(trans);
a79b7d4b
CM
2858 goto done;
2859 }
2860
2861 /*
01327610 2862 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2863 * wait on delayed refs
2864 */
2865 trans->sync = true;
0f873eca
CM
2866
2867 /* Don't bother flushing if we got into a different transaction */
2868 if (trans->transid > async->transid)
2869 goto end;
2870
a79b7d4b
CM
2871 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2872 if (ret)
2873 async->error = ret;
0f873eca 2874end:
a79b7d4b
CM
2875 ret = btrfs_end_transaction(trans, async->root);
2876 if (ret && !async->error)
2877 async->error = ret;
2878done:
2879 if (async->sync)
2880 complete(&async->wait);
2881 else
2882 kfree(async);
2883}
2884
2885int btrfs_async_run_delayed_refs(struct btrfs_root *root,
31b9655f 2886 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2887{
2888 struct async_delayed_refs *async;
2889 int ret;
2890
2891 async = kmalloc(sizeof(*async), GFP_NOFS);
2892 if (!async)
2893 return -ENOMEM;
2894
2895 async->root = root->fs_info->tree_root;
2896 async->count = count;
2897 async->error = 0;
31b9655f 2898 async->transid = transid;
a79b7d4b
CM
2899 if (wait)
2900 async->sync = 1;
2901 else
2902 async->sync = 0;
2903 init_completion(&async->wait);
2904
9e0af237
LB
2905 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2906 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2907
2908 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2909
2910 if (wait) {
2911 wait_for_completion(&async->wait);
2912 ret = async->error;
2913 kfree(async);
2914 return ret;
2915 }
2916 return 0;
2917}
2918
c3e69d58
CM
2919/*
2920 * this starts processing the delayed reference count updates and
2921 * extent insertions we have queued up so far. count can be
2922 * 0, which means to process everything in the tree at the start
2923 * of the run (but not newly added entries), or it can be some target
2924 * number you'd like to process.
79787eaa
JM
2925 *
2926 * Returns 0 on success or if called with an aborted transaction
2927 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2928 */
2929int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2930 struct btrfs_root *root, unsigned long count)
2931{
2932 struct rb_node *node;
2933 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2934 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2935 int ret;
2936 int run_all = count == (unsigned long)-1;
d9a0540a 2937 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2938
79787eaa
JM
2939 /* We'll clean this up in btrfs_cleanup_transaction */
2940 if (trans->aborted)
2941 return 0;
2942
511711af
CM
2943 if (root->fs_info->creating_free_space_tree)
2944 return 0;
2945
c3e69d58
CM
2946 if (root == root->fs_info->extent_root)
2947 root = root->fs_info->tree_root;
2948
2949 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2950 if (count == 0)
d7df2c79 2951 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2952
c3e69d58 2953again:
709c0486
AJ
2954#ifdef SCRAMBLE_DELAYED_REFS
2955 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2956#endif
d9a0540a 2957 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2958 ret = __btrfs_run_delayed_refs(trans, root, count);
2959 if (ret < 0) {
66642832 2960 btrfs_abort_transaction(trans, ret);
d7df2c79 2961 return ret;
eb099670 2962 }
c3e69d58 2963
56bec294 2964 if (run_all) {
d7df2c79 2965 if (!list_empty(&trans->new_bgs))
ea658bad 2966 btrfs_create_pending_block_groups(trans, root);
ea658bad 2967
d7df2c79 2968 spin_lock(&delayed_refs->lock);
c46effa6 2969 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2970 if (!node) {
2971 spin_unlock(&delayed_refs->lock);
56bec294 2972 goto out;
d7df2c79 2973 }
c3e69d58 2974 count = (unsigned long)-1;
e9d0b13b 2975
56bec294 2976 while (node) {
c46effa6
LB
2977 head = rb_entry(node, struct btrfs_delayed_ref_head,
2978 href_node);
2979 if (btrfs_delayed_ref_is_head(&head->node)) {
2980 struct btrfs_delayed_ref_node *ref;
5caf2a00 2981
c46effa6 2982 ref = &head->node;
56bec294
CM
2983 atomic_inc(&ref->refs);
2984
2985 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2986 /*
2987 * Mutex was contended, block until it's
2988 * released and try again
2989 */
56bec294
CM
2990 mutex_lock(&head->mutex);
2991 mutex_unlock(&head->mutex);
2992
2993 btrfs_put_delayed_ref(ref);
1887be66 2994 cond_resched();
56bec294 2995 goto again;
c46effa6
LB
2996 } else {
2997 WARN_ON(1);
56bec294
CM
2998 }
2999 node = rb_next(node);
3000 }
3001 spin_unlock(&delayed_refs->lock);
d7df2c79 3002 cond_resched();
56bec294 3003 goto again;
5f39d397 3004 }
54aa1f4d 3005out:
edf39272 3006 assert_qgroups_uptodate(trans);
d9a0540a 3007 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3008 return 0;
3009}
3010
5d4f98a2
YZ
3011int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3012 struct btrfs_root *root,
3013 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3014 int level, int is_data)
5d4f98a2
YZ
3015{
3016 struct btrfs_delayed_extent_op *extent_op;
3017 int ret;
3018
78a6184a 3019 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3020 if (!extent_op)
3021 return -ENOMEM;
3022
3023 extent_op->flags_to_set = flags;
35b3ad50
DS
3024 extent_op->update_flags = true;
3025 extent_op->update_key = false;
3026 extent_op->is_data = is_data ? true : false;
b1c79e09 3027 extent_op->level = level;
5d4f98a2 3028
66d7e7f0
AJ
3029 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3030 num_bytes, extent_op);
5d4f98a2 3031 if (ret)
78a6184a 3032 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3033 return ret;
3034}
3035
3036static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root,
3038 struct btrfs_path *path,
3039 u64 objectid, u64 offset, u64 bytenr)
3040{
3041 struct btrfs_delayed_ref_head *head;
3042 struct btrfs_delayed_ref_node *ref;
3043 struct btrfs_delayed_data_ref *data_ref;
3044 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3045 int ret = 0;
3046
5d4f98a2
YZ
3047 delayed_refs = &trans->transaction->delayed_refs;
3048 spin_lock(&delayed_refs->lock);
3049 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3050 if (!head) {
3051 spin_unlock(&delayed_refs->lock);
3052 return 0;
3053 }
5d4f98a2
YZ
3054
3055 if (!mutex_trylock(&head->mutex)) {
3056 atomic_inc(&head->node.refs);
3057 spin_unlock(&delayed_refs->lock);
3058
b3b4aa74 3059 btrfs_release_path(path);
5d4f98a2 3060
8cc33e5c
DS
3061 /*
3062 * Mutex was contended, block until it's released and let
3063 * caller try again
3064 */
5d4f98a2
YZ
3065 mutex_lock(&head->mutex);
3066 mutex_unlock(&head->mutex);
3067 btrfs_put_delayed_ref(&head->node);
3068 return -EAGAIN;
3069 }
d7df2c79 3070 spin_unlock(&delayed_refs->lock);
5d4f98a2 3071
d7df2c79 3072 spin_lock(&head->lock);
c6fc2454 3073 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3074 /* If it's a shared ref we know a cross reference exists */
3075 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3076 ret = 1;
3077 break;
3078 }
5d4f98a2 3079
d7df2c79 3080 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3081
d7df2c79
JB
3082 /*
3083 * If our ref doesn't match the one we're currently looking at
3084 * then we have a cross reference.
3085 */
3086 if (data_ref->root != root->root_key.objectid ||
3087 data_ref->objectid != objectid ||
3088 data_ref->offset != offset) {
3089 ret = 1;
3090 break;
3091 }
5d4f98a2 3092 }
d7df2c79 3093 spin_unlock(&head->lock);
5d4f98a2 3094 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3095 return ret;
3096}
3097
3098static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3099 struct btrfs_root *root,
3100 struct btrfs_path *path,
3101 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3102{
3103 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3104 struct extent_buffer *leaf;
5d4f98a2
YZ
3105 struct btrfs_extent_data_ref *ref;
3106 struct btrfs_extent_inline_ref *iref;
3107 struct btrfs_extent_item *ei;
f321e491 3108 struct btrfs_key key;
5d4f98a2 3109 u32 item_size;
be20aa9d 3110 int ret;
925baedd 3111
be20aa9d 3112 key.objectid = bytenr;
31840ae1 3113 key.offset = (u64)-1;
f321e491 3114 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3115
be20aa9d
CM
3116 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3117 if (ret < 0)
3118 goto out;
79787eaa 3119 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3120
3121 ret = -ENOENT;
3122 if (path->slots[0] == 0)
31840ae1 3123 goto out;
be20aa9d 3124
31840ae1 3125 path->slots[0]--;
f321e491 3126 leaf = path->nodes[0];
5d4f98a2 3127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3128
5d4f98a2 3129 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3130 goto out;
f321e491 3131
5d4f98a2
YZ
3132 ret = 1;
3133 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3134#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3135 if (item_size < sizeof(*ei)) {
3136 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3137 goto out;
3138 }
3139#endif
3140 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3141
5d4f98a2
YZ
3142 if (item_size != sizeof(*ei) +
3143 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3144 goto out;
be20aa9d 3145
5d4f98a2
YZ
3146 if (btrfs_extent_generation(leaf, ei) <=
3147 btrfs_root_last_snapshot(&root->root_item))
3148 goto out;
3149
3150 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3151 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3152 BTRFS_EXTENT_DATA_REF_KEY)
3153 goto out;
3154
3155 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3156 if (btrfs_extent_refs(leaf, ei) !=
3157 btrfs_extent_data_ref_count(leaf, ref) ||
3158 btrfs_extent_data_ref_root(leaf, ref) !=
3159 root->root_key.objectid ||
3160 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3161 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3162 goto out;
3163
3164 ret = 0;
3165out:
3166 return ret;
3167}
3168
3169int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3170 struct btrfs_root *root,
3171 u64 objectid, u64 offset, u64 bytenr)
3172{
3173 struct btrfs_path *path;
3174 int ret;
3175 int ret2;
3176
3177 path = btrfs_alloc_path();
3178 if (!path)
3179 return -ENOENT;
3180
3181 do {
3182 ret = check_committed_ref(trans, root, path, objectid,
3183 offset, bytenr);
3184 if (ret && ret != -ENOENT)
f321e491 3185 goto out;
80ff3856 3186
5d4f98a2
YZ
3187 ret2 = check_delayed_ref(trans, root, path, objectid,
3188 offset, bytenr);
3189 } while (ret2 == -EAGAIN);
3190
3191 if (ret2 && ret2 != -ENOENT) {
3192 ret = ret2;
3193 goto out;
f321e491 3194 }
5d4f98a2
YZ
3195
3196 if (ret != -ENOENT || ret2 != -ENOENT)
3197 ret = 0;
be20aa9d 3198out:
80ff3856 3199 btrfs_free_path(path);
f0486c68
YZ
3200 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3201 WARN_ON(ret > 0);
f321e491 3202 return ret;
be20aa9d 3203}
c5739bba 3204
5d4f98a2 3205static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3206 struct btrfs_root *root,
5d4f98a2 3207 struct extent_buffer *buf,
e339a6b0 3208 int full_backref, int inc)
31840ae1
ZY
3209{
3210 u64 bytenr;
5d4f98a2
YZ
3211 u64 num_bytes;
3212 u64 parent;
31840ae1 3213 u64 ref_root;
31840ae1 3214 u32 nritems;
31840ae1
ZY
3215 struct btrfs_key key;
3216 struct btrfs_file_extent_item *fi;
3217 int i;
3218 int level;
3219 int ret = 0;
31840ae1 3220 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3221 u64, u64, u64, u64, u64, u64);
31840ae1 3222
fccb84c9 3223
f5ee5c9a 3224 if (btrfs_is_testing(root->fs_info))
faa2dbf0 3225 return 0;
fccb84c9 3226
31840ae1 3227 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3228 nritems = btrfs_header_nritems(buf);
3229 level = btrfs_header_level(buf);
3230
27cdeb70 3231 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3232 return 0;
31840ae1 3233
5d4f98a2
YZ
3234 if (inc)
3235 process_func = btrfs_inc_extent_ref;
3236 else
3237 process_func = btrfs_free_extent;
31840ae1 3238
5d4f98a2
YZ
3239 if (full_backref)
3240 parent = buf->start;
3241 else
3242 parent = 0;
3243
3244 for (i = 0; i < nritems; i++) {
31840ae1 3245 if (level == 0) {
5d4f98a2 3246 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3247 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3248 continue;
5d4f98a2 3249 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3250 struct btrfs_file_extent_item);
3251 if (btrfs_file_extent_type(buf, fi) ==
3252 BTRFS_FILE_EXTENT_INLINE)
3253 continue;
3254 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3255 if (bytenr == 0)
3256 continue;
5d4f98a2
YZ
3257
3258 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3259 key.offset -= btrfs_file_extent_offset(buf, fi);
3260 ret = process_func(trans, root, bytenr, num_bytes,
3261 parent, ref_root, key.objectid,
b06c4bf5 3262 key.offset);
31840ae1
ZY
3263 if (ret)
3264 goto fail;
3265 } else {
5d4f98a2 3266 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3267 num_bytes = root->nodesize;
5d4f98a2 3268 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3269 parent, ref_root, level - 1, 0);
31840ae1
ZY
3270 if (ret)
3271 goto fail;
3272 }
3273 }
3274 return 0;
3275fail:
5d4f98a2
YZ
3276 return ret;
3277}
3278
3279int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3280 struct extent_buffer *buf, int full_backref)
5d4f98a2 3281{
e339a6b0 3282 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3283}
3284
3285int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3286 struct extent_buffer *buf, int full_backref)
5d4f98a2 3287{
e339a6b0 3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3289}
3290
9078a3e1
CM
3291static int write_one_cache_group(struct btrfs_trans_handle *trans,
3292 struct btrfs_root *root,
3293 struct btrfs_path *path,
3294 struct btrfs_block_group_cache *cache)
3295{
3296 int ret;
9078a3e1 3297 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3298 unsigned long bi;
3299 struct extent_buffer *leaf;
9078a3e1 3300
9078a3e1 3301 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3302 if (ret) {
3303 if (ret > 0)
3304 ret = -ENOENT;
54aa1f4d 3305 goto fail;
df95e7f0 3306 }
5f39d397
CM
3307
3308 leaf = path->nodes[0];
3309 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3310 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3311 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3312fail:
24b89d08 3313 btrfs_release_path(path);
df95e7f0 3314 return ret;
9078a3e1
CM
3315
3316}
3317
4a8c9a62
YZ
3318static struct btrfs_block_group_cache *
3319next_block_group(struct btrfs_root *root,
3320 struct btrfs_block_group_cache *cache)
3321{
3322 struct rb_node *node;
292cbd51 3323
4a8c9a62 3324 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3325
3326 /* If our block group was removed, we need a full search. */
3327 if (RB_EMPTY_NODE(&cache->cache_node)) {
3328 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3329
3330 spin_unlock(&root->fs_info->block_group_cache_lock);
3331 btrfs_put_block_group(cache);
3332 cache = btrfs_lookup_first_block_group(root->fs_info,
3333 next_bytenr);
3334 return cache;
3335 }
4a8c9a62
YZ
3336 node = rb_next(&cache->cache_node);
3337 btrfs_put_block_group(cache);
3338 if (node) {
3339 cache = rb_entry(node, struct btrfs_block_group_cache,
3340 cache_node);
11dfe35a 3341 btrfs_get_block_group(cache);
4a8c9a62
YZ
3342 } else
3343 cache = NULL;
3344 spin_unlock(&root->fs_info->block_group_cache_lock);
3345 return cache;
3346}
3347
0af3d00b
JB
3348static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3349 struct btrfs_trans_handle *trans,
3350 struct btrfs_path *path)
3351{
3352 struct btrfs_root *root = block_group->fs_info->tree_root;
3353 struct inode *inode = NULL;
3354 u64 alloc_hint = 0;
2b20982e 3355 int dcs = BTRFS_DC_ERROR;
f8c269d7 3356 u64 num_pages = 0;
0af3d00b
JB
3357 int retries = 0;
3358 int ret = 0;
3359
3360 /*
3361 * If this block group is smaller than 100 megs don't bother caching the
3362 * block group.
3363 */
ee22184b 3364 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3365 spin_lock(&block_group->lock);
3366 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3367 spin_unlock(&block_group->lock);
3368 return 0;
3369 }
3370
0c0ef4bc
JB
3371 if (trans->aborted)
3372 return 0;
0af3d00b
JB
3373again:
3374 inode = lookup_free_space_inode(root, block_group, path);
3375 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3376 ret = PTR_ERR(inode);
b3b4aa74 3377 btrfs_release_path(path);
0af3d00b
JB
3378 goto out;
3379 }
3380
3381 if (IS_ERR(inode)) {
3382 BUG_ON(retries);
3383 retries++;
3384
3385 if (block_group->ro)
3386 goto out_free;
3387
3388 ret = create_free_space_inode(root, trans, block_group, path);
3389 if (ret)
3390 goto out_free;
3391 goto again;
3392 }
3393
5b0e95bf
JB
3394 /* We've already setup this transaction, go ahead and exit */
3395 if (block_group->cache_generation == trans->transid &&
3396 i_size_read(inode)) {
3397 dcs = BTRFS_DC_SETUP;
3398 goto out_put;
3399 }
3400
0af3d00b
JB
3401 /*
3402 * We want to set the generation to 0, that way if anything goes wrong
3403 * from here on out we know not to trust this cache when we load up next
3404 * time.
3405 */
3406 BTRFS_I(inode)->generation = 0;
3407 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3408 if (ret) {
3409 /*
3410 * So theoretically we could recover from this, simply set the
3411 * super cache generation to 0 so we know to invalidate the
3412 * cache, but then we'd have to keep track of the block groups
3413 * that fail this way so we know we _have_ to reset this cache
3414 * before the next commit or risk reading stale cache. So to
3415 * limit our exposure to horrible edge cases lets just abort the
3416 * transaction, this only happens in really bad situations
3417 * anyway.
3418 */
66642832 3419 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3420 goto out_put;
3421 }
0af3d00b
JB
3422 WARN_ON(ret);
3423
3424 if (i_size_read(inode) > 0) {
7b61cd92
MX
3425 ret = btrfs_check_trunc_cache_free_space(root,
3426 &root->fs_info->global_block_rsv);
3427 if (ret)
3428 goto out_put;
3429
1bbc621e 3430 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3431 if (ret)
3432 goto out_put;
3433 }
3434
3435 spin_lock(&block_group->lock);
cf7c1ef6 3436 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3cdde224 3437 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3438 /*
3439 * don't bother trying to write stuff out _if_
3440 * a) we're not cached,
3441 * b) we're with nospace_cache mount option.
3442 */
2b20982e 3443 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3444 spin_unlock(&block_group->lock);
3445 goto out_put;
3446 }
3447 spin_unlock(&block_group->lock);
3448
2968b1f4
JB
3449 /*
3450 * We hit an ENOSPC when setting up the cache in this transaction, just
3451 * skip doing the setup, we've already cleared the cache so we're safe.
3452 */
3453 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3454 ret = -ENOSPC;
3455 goto out_put;
3456 }
3457
6fc823b1
JB
3458 /*
3459 * Try to preallocate enough space based on how big the block group is.
3460 * Keep in mind this has to include any pinned space which could end up
3461 * taking up quite a bit since it's not folded into the other space
3462 * cache.
3463 */
ee22184b 3464 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3465 if (!num_pages)
3466 num_pages = 1;
3467
0af3d00b 3468 num_pages *= 16;
09cbfeaf 3469 num_pages *= PAGE_SIZE;
0af3d00b 3470
7cf5b976 3471 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3472 if (ret)
3473 goto out_put;
3474
3475 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3476 num_pages, num_pages,
3477 &alloc_hint);
2968b1f4
JB
3478 /*
3479 * Our cache requires contiguous chunks so that we don't modify a bunch
3480 * of metadata or split extents when writing the cache out, which means
3481 * we can enospc if we are heavily fragmented in addition to just normal
3482 * out of space conditions. So if we hit this just skip setting up any
3483 * other block groups for this transaction, maybe we'll unpin enough
3484 * space the next time around.
3485 */
2b20982e
JB
3486 if (!ret)
3487 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3488 else if (ret == -ENOSPC)
3489 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3490
0af3d00b
JB
3491out_put:
3492 iput(inode);
3493out_free:
b3b4aa74 3494 btrfs_release_path(path);
0af3d00b
JB
3495out:
3496 spin_lock(&block_group->lock);
e65cbb94 3497 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3498 block_group->cache_generation = trans->transid;
2b20982e 3499 block_group->disk_cache_state = dcs;
0af3d00b
JB
3500 spin_unlock(&block_group->lock);
3501
3502 return ret;
3503}
3504
dcdf7f6d
JB
3505int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3506 struct btrfs_root *root)
3507{
3508 struct btrfs_block_group_cache *cache, *tmp;
3509 struct btrfs_transaction *cur_trans = trans->transaction;
3510 struct btrfs_path *path;
3511
3512 if (list_empty(&cur_trans->dirty_bgs) ||
3cdde224 3513 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
dcdf7f6d
JB
3514 return 0;
3515
3516 path = btrfs_alloc_path();
3517 if (!path)
3518 return -ENOMEM;
3519
3520 /* Could add new block groups, use _safe just in case */
3521 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3522 dirty_list) {
3523 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3524 cache_save_setup(cache, trans, path);
3525 }
3526
3527 btrfs_free_path(path);
3528 return 0;
3529}
3530
1bbc621e
CM
3531/*
3532 * transaction commit does final block group cache writeback during a
3533 * critical section where nothing is allowed to change the FS. This is
3534 * required in order for the cache to actually match the block group,
3535 * but can introduce a lot of latency into the commit.
3536 *
3537 * So, btrfs_start_dirty_block_groups is here to kick off block group
3538 * cache IO. There's a chance we'll have to redo some of it if the
3539 * block group changes again during the commit, but it greatly reduces
3540 * the commit latency by getting rid of the easy block groups while
3541 * we're still allowing others to join the commit.
3542 */
3543int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3544 struct btrfs_root *root)
9078a3e1 3545{
4a8c9a62 3546 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3547 struct btrfs_transaction *cur_trans = trans->transaction;
3548 int ret = 0;
c9dc4c65 3549 int should_put;
1bbc621e
CM
3550 struct btrfs_path *path = NULL;
3551 LIST_HEAD(dirty);
3552 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3553 int num_started = 0;
1bbc621e
CM
3554 int loops = 0;
3555
3556 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3557 if (list_empty(&cur_trans->dirty_bgs)) {
3558 spin_unlock(&cur_trans->dirty_bgs_lock);
3559 return 0;
1bbc621e 3560 }
b58d1a9e 3561 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3562 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3563
1bbc621e 3564again:
1bbc621e
CM
3565 /*
3566 * make sure all the block groups on our dirty list actually
3567 * exist
3568 */
3569 btrfs_create_pending_block_groups(trans, root);
3570
3571 if (!path) {
3572 path = btrfs_alloc_path();
3573 if (!path)
3574 return -ENOMEM;
3575 }
3576
b58d1a9e
FM
3577 /*
3578 * cache_write_mutex is here only to save us from balance or automatic
3579 * removal of empty block groups deleting this block group while we are
3580 * writing out the cache
3581 */
3582 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3583 while (!list_empty(&dirty)) {
3584 cache = list_first_entry(&dirty,
3585 struct btrfs_block_group_cache,
3586 dirty_list);
1bbc621e
CM
3587 /*
3588 * this can happen if something re-dirties a block
3589 * group that is already under IO. Just wait for it to
3590 * finish and then do it all again
3591 */
3592 if (!list_empty(&cache->io_list)) {
3593 list_del_init(&cache->io_list);
3594 btrfs_wait_cache_io(root, trans, cache,
3595 &cache->io_ctl, path,
3596 cache->key.objectid);
3597 btrfs_put_block_group(cache);
3598 }
3599
3600
3601 /*
3602 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3603 * if it should update the cache_state. Don't delete
3604 * until after we wait.
3605 *
3606 * Since we're not running in the commit critical section
3607 * we need the dirty_bgs_lock to protect from update_block_group
3608 */
3609 spin_lock(&cur_trans->dirty_bgs_lock);
3610 list_del_init(&cache->dirty_list);
3611 spin_unlock(&cur_trans->dirty_bgs_lock);
3612
3613 should_put = 1;
3614
3615 cache_save_setup(cache, trans, path);
3616
3617 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3618 cache->io_ctl.inode = NULL;
3619 ret = btrfs_write_out_cache(root, trans, cache, path);
3620 if (ret == 0 && cache->io_ctl.inode) {
3621 num_started++;
3622 should_put = 0;
3623
3624 /*
3625 * the cache_write_mutex is protecting
3626 * the io_list
3627 */
3628 list_add_tail(&cache->io_list, io);
3629 } else {
3630 /*
3631 * if we failed to write the cache, the
3632 * generation will be bad and life goes on
3633 */
3634 ret = 0;
3635 }
3636 }
ff1f8250 3637 if (!ret) {
1bbc621e 3638 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3639 /*
3640 * Our block group might still be attached to the list
3641 * of new block groups in the transaction handle of some
3642 * other task (struct btrfs_trans_handle->new_bgs). This
3643 * means its block group item isn't yet in the extent
3644 * tree. If this happens ignore the error, as we will
3645 * try again later in the critical section of the
3646 * transaction commit.
3647 */
3648 if (ret == -ENOENT) {
3649 ret = 0;
3650 spin_lock(&cur_trans->dirty_bgs_lock);
3651 if (list_empty(&cache->dirty_list)) {
3652 list_add_tail(&cache->dirty_list,
3653 &cur_trans->dirty_bgs);
3654 btrfs_get_block_group(cache);
3655 }
3656 spin_unlock(&cur_trans->dirty_bgs_lock);
3657 } else if (ret) {
66642832 3658 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3659 }
3660 }
1bbc621e
CM
3661
3662 /* if its not on the io list, we need to put the block group */
3663 if (should_put)
3664 btrfs_put_block_group(cache);
3665
3666 if (ret)
3667 break;
b58d1a9e
FM
3668
3669 /*
3670 * Avoid blocking other tasks for too long. It might even save
3671 * us from writing caches for block groups that are going to be
3672 * removed.
3673 */
3674 mutex_unlock(&trans->transaction->cache_write_mutex);
3675 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3676 }
b58d1a9e 3677 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3678
3679 /*
3680 * go through delayed refs for all the stuff we've just kicked off
3681 * and then loop back (just once)
3682 */
3683 ret = btrfs_run_delayed_refs(trans, root, 0);
3684 if (!ret && loops == 0) {
3685 loops++;
3686 spin_lock(&cur_trans->dirty_bgs_lock);
3687 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3688 /*
3689 * dirty_bgs_lock protects us from concurrent block group
3690 * deletes too (not just cache_write_mutex).
3691 */
3692 if (!list_empty(&dirty)) {
3693 spin_unlock(&cur_trans->dirty_bgs_lock);
3694 goto again;
3695 }
1bbc621e 3696 spin_unlock(&cur_trans->dirty_bgs_lock);
de26dfde
LB
3697 } else if (ret < 0) {
3698 btrfs_cleanup_dirty_bgs(cur_trans, root);
1bbc621e
CM
3699 }
3700
3701 btrfs_free_path(path);
3702 return ret;
3703}
3704
3705int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3706 struct btrfs_root *root)
3707{
3708 struct btrfs_block_group_cache *cache;
3709 struct btrfs_transaction *cur_trans = trans->transaction;
3710 int ret = 0;
3711 int should_put;
3712 struct btrfs_path *path;
3713 struct list_head *io = &cur_trans->io_bgs;
3714 int num_started = 0;
9078a3e1
CM
3715
3716 path = btrfs_alloc_path();
3717 if (!path)
3718 return -ENOMEM;
3719
ce93ec54 3720 /*
e44081ef
FM
3721 * Even though we are in the critical section of the transaction commit,
3722 * we can still have concurrent tasks adding elements to this
3723 * transaction's list of dirty block groups. These tasks correspond to
3724 * endio free space workers started when writeback finishes for a
3725 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3726 * allocate new block groups as a result of COWing nodes of the root
3727 * tree when updating the free space inode. The writeback for the space
3728 * caches is triggered by an earlier call to
3729 * btrfs_start_dirty_block_groups() and iterations of the following
3730 * loop.
3731 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3732 * delayed refs to make sure we have the best chance at doing this all
3733 * in one shot.
3734 */
e44081ef 3735 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3736 while (!list_empty(&cur_trans->dirty_bgs)) {
3737 cache = list_first_entry(&cur_trans->dirty_bgs,
3738 struct btrfs_block_group_cache,
3739 dirty_list);
c9dc4c65
CM
3740
3741 /*
3742 * this can happen if cache_save_setup re-dirties a block
3743 * group that is already under IO. Just wait for it to
3744 * finish and then do it all again
3745 */
3746 if (!list_empty(&cache->io_list)) {
e44081ef 3747 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3748 list_del_init(&cache->io_list);
3749 btrfs_wait_cache_io(root, trans, cache,
3750 &cache->io_ctl, path,
3751 cache->key.objectid);
3752 btrfs_put_block_group(cache);
e44081ef 3753 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3754 }
3755
1bbc621e
CM
3756 /*
3757 * don't remove from the dirty list until after we've waited
3758 * on any pending IO
3759 */
ce93ec54 3760 list_del_init(&cache->dirty_list);
e44081ef 3761 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3762 should_put = 1;
3763
1bbc621e 3764 cache_save_setup(cache, trans, path);
c9dc4c65 3765
ce93ec54 3766 if (!ret)
c9dc4c65
CM
3767 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3768
3769 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3770 cache->io_ctl.inode = NULL;
3771 ret = btrfs_write_out_cache(root, trans, cache, path);
3772 if (ret == 0 && cache->io_ctl.inode) {
3773 num_started++;
3774 should_put = 0;
1bbc621e 3775 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3776 } else {
3777 /*
3778 * if we failed to write the cache, the
3779 * generation will be bad and life goes on
3780 */
3781 ret = 0;
3782 }
3783 }
ff1f8250 3784 if (!ret) {
ce93ec54 3785 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3786 /*
3787 * One of the free space endio workers might have
3788 * created a new block group while updating a free space
3789 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3790 * and hasn't released its transaction handle yet, in
3791 * which case the new block group is still attached to
3792 * its transaction handle and its creation has not
3793 * finished yet (no block group item in the extent tree
3794 * yet, etc). If this is the case, wait for all free
3795 * space endio workers to finish and retry. This is a
3796 * a very rare case so no need for a more efficient and
3797 * complex approach.
3798 */
3799 if (ret == -ENOENT) {
3800 wait_event(cur_trans->writer_wait,
3801 atomic_read(&cur_trans->num_writers) == 1);
3802 ret = write_one_cache_group(trans, root, path,
3803 cache);
3804 }
ff1f8250 3805 if (ret)
66642832 3806 btrfs_abort_transaction(trans, ret);
ff1f8250 3807 }
c9dc4c65
CM
3808
3809 /* if its not on the io list, we need to put the block group */
3810 if (should_put)
3811 btrfs_put_block_group(cache);
e44081ef 3812 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3813 }
e44081ef 3814 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3815
1bbc621e
CM
3816 while (!list_empty(io)) {
3817 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3818 io_list);
3819 list_del_init(&cache->io_list);
c9dc4c65
CM
3820 btrfs_wait_cache_io(root, trans, cache,
3821 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3822 btrfs_put_block_group(cache);
3823 }
3824
9078a3e1 3825 btrfs_free_path(path);
ce93ec54 3826 return ret;
9078a3e1
CM
3827}
3828
d2fb3437
YZ
3829int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3830{
3831 struct btrfs_block_group_cache *block_group;
3832 int readonly = 0;
3833
3834 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3835 if (!block_group || block_group->ro)
3836 readonly = 1;
3837 if (block_group)
fa9c0d79 3838 btrfs_put_block_group(block_group);
d2fb3437
YZ
3839 return readonly;
3840}
3841
f78c436c
FM
3842bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3843{
3844 struct btrfs_block_group_cache *bg;
3845 bool ret = true;
3846
3847 bg = btrfs_lookup_block_group(fs_info, bytenr);
3848 if (!bg)
3849 return false;
3850
3851 spin_lock(&bg->lock);
3852 if (bg->ro)
3853 ret = false;
3854 else
3855 atomic_inc(&bg->nocow_writers);
3856 spin_unlock(&bg->lock);
3857
3858 /* no put on block group, done by btrfs_dec_nocow_writers */
3859 if (!ret)
3860 btrfs_put_block_group(bg);
3861
3862 return ret;
3863
3864}
3865
3866void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3867{
3868 struct btrfs_block_group_cache *bg;
3869
3870 bg = btrfs_lookup_block_group(fs_info, bytenr);
3871 ASSERT(bg);
3872 if (atomic_dec_and_test(&bg->nocow_writers))
3873 wake_up_atomic_t(&bg->nocow_writers);
3874 /*
3875 * Once for our lookup and once for the lookup done by a previous call
3876 * to btrfs_inc_nocow_writers()
3877 */
3878 btrfs_put_block_group(bg);
3879 btrfs_put_block_group(bg);
3880}
3881
3882static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3883{
3884 schedule();
3885 return 0;
3886}
3887
3888void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3889{
3890 wait_on_atomic_t(&bg->nocow_writers,
3891 btrfs_wait_nocow_writers_atomic_t,
3892 TASK_UNINTERRUPTIBLE);
3893}
3894
6ab0a202
JM
3895static const char *alloc_name(u64 flags)
3896{
3897 switch (flags) {
3898 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3899 return "mixed";
3900 case BTRFS_BLOCK_GROUP_METADATA:
3901 return "metadata";
3902 case BTRFS_BLOCK_GROUP_DATA:
3903 return "data";
3904 case BTRFS_BLOCK_GROUP_SYSTEM:
3905 return "system";
3906 default:
3907 WARN_ON(1);
3908 return "invalid-combination";
3909 };
3910}
3911
593060d7
CM
3912static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3913 u64 total_bytes, u64 bytes_used,
e40edf2d 3914 u64 bytes_readonly,
593060d7
CM
3915 struct btrfs_space_info **space_info)
3916{
3917 struct btrfs_space_info *found;
b742bb82
YZ
3918 int i;
3919 int factor;
b150a4f1 3920 int ret;
b742bb82
YZ
3921
3922 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3923 BTRFS_BLOCK_GROUP_RAID10))
3924 factor = 2;
3925 else
3926 factor = 1;
593060d7
CM
3927
3928 found = __find_space_info(info, flags);
3929 if (found) {
25179201 3930 spin_lock(&found->lock);
593060d7 3931 found->total_bytes += total_bytes;
89a55897 3932 found->disk_total += total_bytes * factor;
593060d7 3933 found->bytes_used += bytes_used;
b742bb82 3934 found->disk_used += bytes_used * factor;
e40edf2d 3935 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3936 if (total_bytes > 0)
3937 found->full = 0;
957780eb
JB
3938 space_info_add_new_bytes(info, found, total_bytes -
3939 bytes_used - bytes_readonly);
25179201 3940 spin_unlock(&found->lock);
593060d7
CM
3941 *space_info = found;
3942 return 0;
3943 }
c146afad 3944 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3945 if (!found)
3946 return -ENOMEM;
3947
908c7f19 3948 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3949 if (ret) {
3950 kfree(found);
3951 return ret;
3952 }
3953
c1895442 3954 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3955 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3956 init_rwsem(&found->groups_sem);
0f9dd46c 3957 spin_lock_init(&found->lock);
52ba6929 3958 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3959 found->total_bytes = total_bytes;
89a55897 3960 found->disk_total = total_bytes * factor;
593060d7 3961 found->bytes_used = bytes_used;
b742bb82 3962 found->disk_used = bytes_used * factor;
593060d7 3963 found->bytes_pinned = 0;
e8569813 3964 found->bytes_reserved = 0;
e40edf2d 3965 found->bytes_readonly = bytes_readonly;
f0486c68 3966 found->bytes_may_use = 0;
6af3e3ad 3967 found->full = 0;
4f4db217 3968 found->max_extent_size = 0;
0e4f8f88 3969 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3970 found->chunk_alloc = 0;
fdb5effd
JB
3971 found->flush = 0;
3972 init_waitqueue_head(&found->wait);
633c0aad 3973 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3974 INIT_LIST_HEAD(&found->tickets);
3975 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3976
3977 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3978 info->space_info_kobj, "%s",
3979 alloc_name(found->flags));
3980 if (ret) {
3981 kfree(found);
3982 return ret;
3983 }
3984
593060d7 3985 *space_info = found;
4184ea7f 3986 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3987 if (flags & BTRFS_BLOCK_GROUP_DATA)
3988 info->data_sinfo = found;
6ab0a202
JM
3989
3990 return ret;
593060d7
CM
3991}
3992
8790d502
CM
3993static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3994{
899c81ea
ID
3995 u64 extra_flags = chunk_to_extended(flags) &
3996 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3997
de98ced9 3998 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3999 if (flags & BTRFS_BLOCK_GROUP_DATA)
4000 fs_info->avail_data_alloc_bits |= extra_flags;
4001 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4002 fs_info->avail_metadata_alloc_bits |= extra_flags;
4003 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4004 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4005 write_sequnlock(&fs_info->profiles_lock);
8790d502 4006}
593060d7 4007
fc67c450
ID
4008/*
4009 * returns target flags in extended format or 0 if restripe for this
4010 * chunk_type is not in progress
c6664b42
ID
4011 *
4012 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4013 */
4014static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4015{
4016 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4017 u64 target = 0;
4018
fc67c450
ID
4019 if (!bctl)
4020 return 0;
4021
4022 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4023 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4024 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4025 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4026 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4027 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4028 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4029 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4030 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4031 }
4032
4033 return target;
4034}
4035
a46d11a8
ID
4036/*
4037 * @flags: available profiles in extended format (see ctree.h)
4038 *
e4d8ec0f
ID
4039 * Returns reduced profile in chunk format. If profile changing is in
4040 * progress (either running or paused) picks the target profile (if it's
4041 * already available), otherwise falls back to plain reducing.
a46d11a8 4042 */
48a3b636 4043static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4044{
95669976 4045 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4046 u64 target;
9c170b26
ZL
4047 u64 raid_type;
4048 u64 allowed = 0;
a061fc8d 4049
fc67c450
ID
4050 /*
4051 * see if restripe for this chunk_type is in progress, if so
4052 * try to reduce to the target profile
4053 */
e4d8ec0f 4054 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4055 target = get_restripe_target(root->fs_info, flags);
4056 if (target) {
4057 /* pick target profile only if it's already available */
4058 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4059 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4060 return extended_to_chunk(target);
e4d8ec0f
ID
4061 }
4062 }
4063 spin_unlock(&root->fs_info->balance_lock);
4064
53b381b3 4065 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4066 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4067 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4068 allowed |= btrfs_raid_group[raid_type];
4069 }
4070 allowed &= flags;
4071
4072 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4073 allowed = BTRFS_BLOCK_GROUP_RAID6;
4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4075 allowed = BTRFS_BLOCK_GROUP_RAID5;
4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4077 allowed = BTRFS_BLOCK_GROUP_RAID10;
4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4079 allowed = BTRFS_BLOCK_GROUP_RAID1;
4080 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4081 allowed = BTRFS_BLOCK_GROUP_RAID0;
4082
4083 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4084
4085 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4086}
4087
f8213bdc 4088static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4089{
de98ced9 4090 unsigned seq;
f8213bdc 4091 u64 flags;
de98ced9
MX
4092
4093 do {
f8213bdc 4094 flags = orig_flags;
de98ced9
MX
4095 seq = read_seqbegin(&root->fs_info->profiles_lock);
4096
4097 if (flags & BTRFS_BLOCK_GROUP_DATA)
4098 flags |= root->fs_info->avail_data_alloc_bits;
4099 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4100 flags |= root->fs_info->avail_system_alloc_bits;
4101 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4102 flags |= root->fs_info->avail_metadata_alloc_bits;
4103 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4104
b742bb82 4105 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4106}
4107
6d07bcec 4108u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4109{
b742bb82 4110 u64 flags;
53b381b3 4111 u64 ret;
9ed74f2d 4112
b742bb82
YZ
4113 if (data)
4114 flags = BTRFS_BLOCK_GROUP_DATA;
4115 else if (root == root->fs_info->chunk_root)
4116 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4117 else
b742bb82 4118 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4119
53b381b3
DW
4120 ret = get_alloc_profile(root, flags);
4121 return ret;
6a63209f 4122}
9ed74f2d 4123
4ceff079 4124int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4125{
6a63209f 4126 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4127 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4128 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4129 u64 used;
94b947b2 4130 int ret = 0;
c99f1b0c
ZL
4131 int need_commit = 2;
4132 int have_pinned_space;
6a63209f 4133
6a63209f 4134 /* make sure bytes are sectorsize aligned */
fda2832f 4135 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4136
9dced186 4137 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4138 need_commit = 0;
9dced186 4139 ASSERT(current->journal_info);
0af3d00b
JB
4140 }
4141
b4d7c3c9 4142 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4143 if (!data_sinfo)
4144 goto alloc;
9ed74f2d 4145
6a63209f
JB
4146again:
4147 /* make sure we have enough space to handle the data first */
4148 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4149 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4150 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4151 data_sinfo->bytes_may_use;
ab6e2410
JB
4152
4153 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4154 struct btrfs_trans_handle *trans;
9ed74f2d 4155
6a63209f
JB
4156 /*
4157 * if we don't have enough free bytes in this space then we need
4158 * to alloc a new chunk.
4159 */
b9fd47cd 4160 if (!data_sinfo->full) {
6a63209f 4161 u64 alloc_target;
9ed74f2d 4162
0e4f8f88 4163 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4164 spin_unlock(&data_sinfo->lock);
33b4d47f 4165alloc:
6a63209f 4166 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4167 /*
4168 * It is ugly that we don't call nolock join
4169 * transaction for the free space inode case here.
4170 * But it is safe because we only do the data space
4171 * reservation for the free space cache in the
4172 * transaction context, the common join transaction
4173 * just increase the counter of the current transaction
4174 * handler, doesn't try to acquire the trans_lock of
4175 * the fs.
4176 */
7a7eaa40 4177 trans = btrfs_join_transaction(root);
a22285a6
YZ
4178 if (IS_ERR(trans))
4179 return PTR_ERR(trans);
9ed74f2d 4180
6a63209f 4181 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4182 alloc_target,
4183 CHUNK_ALLOC_NO_FORCE);
6a63209f 4184 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4185 if (ret < 0) {
4186 if (ret != -ENOSPC)
4187 return ret;
c99f1b0c
ZL
4188 else {
4189 have_pinned_space = 1;
d52a5b5f 4190 goto commit_trans;
c99f1b0c 4191 }
d52a5b5f 4192 }
9ed74f2d 4193
b4d7c3c9
LZ
4194 if (!data_sinfo)
4195 data_sinfo = fs_info->data_sinfo;
4196
6a63209f
JB
4197 goto again;
4198 }
f2bb8f5c
JB
4199
4200 /*
b150a4f1 4201 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4202 * allocation, and no removed chunk in current transaction,
4203 * don't bother committing the transaction.
f2bb8f5c 4204 */
c99f1b0c
ZL
4205 have_pinned_space = percpu_counter_compare(
4206 &data_sinfo->total_bytes_pinned,
4207 used + bytes - data_sinfo->total_bytes);
6a63209f 4208 spin_unlock(&data_sinfo->lock);
6a63209f 4209
4e06bdd6 4210 /* commit the current transaction and try again */
d52a5b5f 4211commit_trans:
c99f1b0c 4212 if (need_commit &&
a4abeea4 4213 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4214 need_commit--;
b150a4f1 4215
e1746e83
ZL
4216 if (need_commit > 0) {
4217 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4218 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4219 }
9a4e7276 4220
7a7eaa40 4221 trans = btrfs_join_transaction(root);
a22285a6
YZ
4222 if (IS_ERR(trans))
4223 return PTR_ERR(trans);
c99f1b0c 4224 if (have_pinned_space >= 0 ||
3204d33c
JB
4225 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4226 &trans->transaction->flags) ||
c99f1b0c 4227 need_commit > 0) {
94b947b2
ZL
4228 ret = btrfs_commit_transaction(trans, root);
4229 if (ret)
4230 return ret;
d7c15171 4231 /*
c2d6cb16
FM
4232 * The cleaner kthread might still be doing iput
4233 * operations. Wait for it to finish so that
4234 * more space is released.
d7c15171 4235 */
c2d6cb16
FM
4236 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4237 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4238 goto again;
4239 } else {
4240 btrfs_end_transaction(trans, root);
4241 }
4e06bdd6 4242 }
9ed74f2d 4243
cab45e22
JM
4244 trace_btrfs_space_reservation(root->fs_info,
4245 "space_info:enospc",
4246 data_sinfo->flags, bytes, 1);
6a63209f
JB
4247 return -ENOSPC;
4248 }
4249 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4250 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4251 data_sinfo->flags, bytes, 1);
6a63209f 4252 spin_unlock(&data_sinfo->lock);
6a63209f 4253
237c0e9f 4254 return ret;
9ed74f2d 4255}
6a63209f 4256
4ceff079
QW
4257/*
4258 * New check_data_free_space() with ability for precious data reservation
4259 * Will replace old btrfs_check_data_free_space(), but for patch split,
4260 * add a new function first and then replace it.
4261 */
7cf5b976 4262int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4263{
4264 struct btrfs_root *root = BTRFS_I(inode)->root;
4265 int ret;
4266
4267 /* align the range */
4268 len = round_up(start + len, root->sectorsize) -
4269 round_down(start, root->sectorsize);
4270 start = round_down(start, root->sectorsize);
4271
4272 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4273 if (ret < 0)
4274 return ret;
4275
94ed938a
QW
4276 /*
4277 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4278 *
4279 * TODO: Find a good method to avoid reserve data space for NOCOW
4280 * range, but don't impact performance on quota disable case.
4281 */
4ceff079
QW
4282 ret = btrfs_qgroup_reserve_data(inode, start, len);
4283 return ret;
4284}
4285
4ceff079
QW
4286/*
4287 * Called if we need to clear a data reservation for this inode
4288 * Normally in a error case.
4289 *
51773bec
QW
4290 * This one will *NOT* use accurate qgroup reserved space API, just for case
4291 * which we can't sleep and is sure it won't affect qgroup reserved space.
4292 * Like clear_bit_hook().
4ceff079 4293 */
51773bec
QW
4294void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4295 u64 len)
4ceff079
QW
4296{
4297 struct btrfs_root *root = BTRFS_I(inode)->root;
4298 struct btrfs_space_info *data_sinfo;
4299
4300 /* Make sure the range is aligned to sectorsize */
4301 len = round_up(start + len, root->sectorsize) -
4302 round_down(start, root->sectorsize);
4303 start = round_down(start, root->sectorsize);
4304
4ceff079
QW
4305 data_sinfo = root->fs_info->data_sinfo;
4306 spin_lock(&data_sinfo->lock);
4307 if (WARN_ON(data_sinfo->bytes_may_use < len))
4308 data_sinfo->bytes_may_use = 0;
4309 else
4310 data_sinfo->bytes_may_use -= len;
4311 trace_btrfs_space_reservation(root->fs_info, "space_info",
4312 data_sinfo->flags, len, 0);
4313 spin_unlock(&data_sinfo->lock);
4314}
4315
51773bec
QW
4316/*
4317 * Called if we need to clear a data reservation for this inode
4318 * Normally in a error case.
4319 *
01327610 4320 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4321 * space framework.
4322 */
4323void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4324{
4325 btrfs_free_reserved_data_space_noquota(inode, start, len);
4326 btrfs_qgroup_free_data(inode, start, len);
4327}
4328
97e728d4 4329static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4330{
97e728d4
JB
4331 struct list_head *head = &info->space_info;
4332 struct btrfs_space_info *found;
e3ccfa98 4333
97e728d4
JB
4334 rcu_read_lock();
4335 list_for_each_entry_rcu(found, head, list) {
4336 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4337 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4338 }
97e728d4 4339 rcu_read_unlock();
e3ccfa98
JB
4340}
4341
3c76cd84
MX
4342static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4343{
4344 return (global->size << 1);
4345}
4346
e5bc2458 4347static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4348 struct btrfs_space_info *sinfo, int force)
32c00aff 4349{
fb25e914 4350 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4351 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4352 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4353 u64 thresh;
e3ccfa98 4354
0e4f8f88
CM
4355 if (force == CHUNK_ALLOC_FORCE)
4356 return 1;
4357
fb25e914
JB
4358 /*
4359 * We need to take into account the global rsv because for all intents
4360 * and purposes it's used space. Don't worry about locking the
4361 * global_rsv, it doesn't change except when the transaction commits.
4362 */
54338b5c 4363 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4364 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4365
0e4f8f88
CM
4366 /*
4367 * in limited mode, we want to have some free space up to
4368 * about 1% of the FS size.
4369 */
4370 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4371 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4372 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4373
4374 if (num_bytes - num_allocated < thresh)
4375 return 1;
4376 }
0e4f8f88 4377
ee22184b 4378 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4379 return 0;
424499db 4380 return 1;
32c00aff
JB
4381}
4382
39c2d7fa 4383static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4384{
4385 u64 num_dev;
4386
53b381b3
DW
4387 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4388 BTRFS_BLOCK_GROUP_RAID0 |
4389 BTRFS_BLOCK_GROUP_RAID5 |
4390 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4391 num_dev = root->fs_info->fs_devices->rw_devices;
4392 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4393 num_dev = 2;
4394 else
4395 num_dev = 1; /* DUP or single */
4396
39c2d7fa 4397 return num_dev;
15d1ff81
LB
4398}
4399
39c2d7fa
FM
4400/*
4401 * If @is_allocation is true, reserve space in the system space info necessary
4402 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4403 * removing a chunk.
4404 */
4405void check_system_chunk(struct btrfs_trans_handle *trans,
4406 struct btrfs_root *root,
4617ea3a 4407 u64 type)
15d1ff81
LB
4408{
4409 struct btrfs_space_info *info;
4410 u64 left;
4411 u64 thresh;
4fbcdf66 4412 int ret = 0;
39c2d7fa 4413 u64 num_devs;
4fbcdf66
FM
4414
4415 /*
4416 * Needed because we can end up allocating a system chunk and for an
4417 * atomic and race free space reservation in the chunk block reserve.
4418 */
4419 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4420
4421 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4422 spin_lock(&info->lock);
4423 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4424 info->bytes_reserved - info->bytes_readonly -
4425 info->bytes_may_use;
15d1ff81
LB
4426 spin_unlock(&info->lock);
4427
39c2d7fa
FM
4428 num_devs = get_profile_num_devs(root, type);
4429
4430 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4431 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4432 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4433
3cdde224 4434 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
c2cf52eb
SK
4435 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4436 left, thresh, type);
15d1ff81
LB
4437 dump_space_info(info, 0, 0);
4438 }
4439
4440 if (left < thresh) {
4441 u64 flags;
4442
4443 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4444 /*
4445 * Ignore failure to create system chunk. We might end up not
4446 * needing it, as we might not need to COW all nodes/leafs from
4447 * the paths we visit in the chunk tree (they were already COWed
4448 * or created in the current transaction for example).
4449 */
4450 ret = btrfs_alloc_chunk(trans, root, flags);
4451 }
4452
4453 if (!ret) {
4454 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4455 &root->fs_info->chunk_block_rsv,
4456 thresh, BTRFS_RESERVE_NO_FLUSH);
4457 if (!ret)
4458 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4459 }
4460}
4461
28b737f6
LB
4462/*
4463 * If force is CHUNK_ALLOC_FORCE:
4464 * - return 1 if it successfully allocates a chunk,
4465 * - return errors including -ENOSPC otherwise.
4466 * If force is NOT CHUNK_ALLOC_FORCE:
4467 * - return 0 if it doesn't need to allocate a new chunk,
4468 * - return 1 if it successfully allocates a chunk,
4469 * - return errors including -ENOSPC otherwise.
4470 */
6324fbf3 4471static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4472 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4473{
6324fbf3 4474 struct btrfs_space_info *space_info;
97e728d4 4475 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4476 int wait_for_alloc = 0;
9ed74f2d 4477 int ret = 0;
9ed74f2d 4478
c6b305a8
JB
4479 /* Don't re-enter if we're already allocating a chunk */
4480 if (trans->allocating_chunk)
4481 return -ENOSPC;
4482
6324fbf3 4483 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4484 if (!space_info) {
4485 ret = update_space_info(extent_root->fs_info, flags,
e40edf2d 4486 0, 0, 0, &space_info);
79787eaa 4487 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4488 }
79787eaa 4489 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4490
6d74119f 4491again:
25179201 4492 spin_lock(&space_info->lock);
9e622d6b 4493 if (force < space_info->force_alloc)
0e4f8f88 4494 force = space_info->force_alloc;
25179201 4495 if (space_info->full) {
09fb99a6
FDBM
4496 if (should_alloc_chunk(extent_root, space_info, force))
4497 ret = -ENOSPC;
4498 else
4499 ret = 0;
25179201 4500 spin_unlock(&space_info->lock);
09fb99a6 4501 return ret;
9ed74f2d
JB
4502 }
4503
698d0082 4504 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4505 spin_unlock(&space_info->lock);
6d74119f
JB
4506 return 0;
4507 } else if (space_info->chunk_alloc) {
4508 wait_for_alloc = 1;
4509 } else {
4510 space_info->chunk_alloc = 1;
9ed74f2d 4511 }
0e4f8f88 4512
25179201 4513 spin_unlock(&space_info->lock);
9ed74f2d 4514
6d74119f
JB
4515 mutex_lock(&fs_info->chunk_mutex);
4516
4517 /*
4518 * The chunk_mutex is held throughout the entirety of a chunk
4519 * allocation, so once we've acquired the chunk_mutex we know that the
4520 * other guy is done and we need to recheck and see if we should
4521 * allocate.
4522 */
4523 if (wait_for_alloc) {
4524 mutex_unlock(&fs_info->chunk_mutex);
4525 wait_for_alloc = 0;
4526 goto again;
4527 }
4528
c6b305a8
JB
4529 trans->allocating_chunk = true;
4530
67377734
JB
4531 /*
4532 * If we have mixed data/metadata chunks we want to make sure we keep
4533 * allocating mixed chunks instead of individual chunks.
4534 */
4535 if (btrfs_mixed_space_info(space_info))
4536 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4537
97e728d4
JB
4538 /*
4539 * if we're doing a data chunk, go ahead and make sure that
4540 * we keep a reasonable number of metadata chunks allocated in the
4541 * FS as well.
4542 */
9ed74f2d 4543 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4544 fs_info->data_chunk_allocations++;
4545 if (!(fs_info->data_chunk_allocations %
4546 fs_info->metadata_ratio))
4547 force_metadata_allocation(fs_info);
9ed74f2d
JB
4548 }
4549
15d1ff81
LB
4550 /*
4551 * Check if we have enough space in SYSTEM chunk because we may need
4552 * to update devices.
4553 */
4617ea3a 4554 check_system_chunk(trans, extent_root, flags);
15d1ff81 4555
2b82032c 4556 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4557 trans->allocating_chunk = false;
92b8e897 4558
9ed74f2d 4559 spin_lock(&space_info->lock);
a81cb9a2
AO
4560 if (ret < 0 && ret != -ENOSPC)
4561 goto out;
9ed74f2d 4562 if (ret)
6324fbf3 4563 space_info->full = 1;
424499db
YZ
4564 else
4565 ret = 1;
6d74119f 4566
0e4f8f88 4567 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4568out:
6d74119f 4569 space_info->chunk_alloc = 0;
9ed74f2d 4570 spin_unlock(&space_info->lock);
a25c75d5 4571 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4572 /*
4573 * When we allocate a new chunk we reserve space in the chunk block
4574 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4575 * add new nodes/leafs to it if we end up needing to do it when
4576 * inserting the chunk item and updating device items as part of the
4577 * second phase of chunk allocation, performed by
4578 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4579 * large number of new block groups to create in our transaction
4580 * handle's new_bgs list to avoid exhausting the chunk block reserve
4581 * in extreme cases - like having a single transaction create many new
4582 * block groups when starting to write out the free space caches of all
4583 * the block groups that were made dirty during the lifetime of the
4584 * transaction.
4585 */
d9a0540a 4586 if (trans->can_flush_pending_bgs &&
ee22184b 4587 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
64b63580 4588 btrfs_create_pending_block_groups(trans, extent_root);
00d80e34
FM
4589 btrfs_trans_release_chunk_metadata(trans);
4590 }
0f9dd46c 4591 return ret;
6324fbf3 4592}
9ed74f2d 4593
a80c8dcf
JB
4594static int can_overcommit(struct btrfs_root *root,
4595 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4596 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4597{
957780eb
JB
4598 struct btrfs_block_rsv *global_rsv;
4599 u64 profile;
3c76cd84 4600 u64 space_size;
a80c8dcf
JB
4601 u64 avail;
4602 u64 used;
4603
957780eb
JB
4604 /* Don't overcommit when in mixed mode. */
4605 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4606 return 0;
4607
4608 BUG_ON(root->fs_info == NULL);
4609 global_rsv = &root->fs_info->global_block_rsv;
4610 profile = btrfs_get_alloc_profile(root, 0);
a80c8dcf 4611 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4612 space_info->bytes_pinned + space_info->bytes_readonly;
4613
96f1bb57
JB
4614 /*
4615 * We only want to allow over committing if we have lots of actual space
4616 * free, but if we don't have enough space to handle the global reserve
4617 * space then we could end up having a real enospc problem when trying
4618 * to allocate a chunk or some other such important allocation.
4619 */
3c76cd84
MX
4620 spin_lock(&global_rsv->lock);
4621 space_size = calc_global_rsv_need_space(global_rsv);
4622 spin_unlock(&global_rsv->lock);
4623 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4624 return 0;
4625
4626 used += space_info->bytes_may_use;
a80c8dcf
JB
4627
4628 spin_lock(&root->fs_info->free_chunk_lock);
4629 avail = root->fs_info->free_chunk_space;
4630 spin_unlock(&root->fs_info->free_chunk_lock);
4631
4632 /*
4633 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4634 * space is actually useable. For raid56, the space info used
4635 * doesn't include the parity drive, so we don't have to
4636 * change the math
a80c8dcf
JB
4637 */
4638 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4639 BTRFS_BLOCK_GROUP_RAID1 |
4640 BTRFS_BLOCK_GROUP_RAID10))
4641 avail >>= 1;
4642
4643 /*
561c294d
MX
4644 * If we aren't flushing all things, let us overcommit up to
4645 * 1/2th of the space. If we can flush, don't let us overcommit
4646 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4647 */
08e007d2 4648 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4649 avail >>= 3;
a80c8dcf 4650 else
14575aef 4651 avail >>= 1;
a80c8dcf 4652
14575aef 4653 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4654 return 1;
4655 return 0;
4656}
4657
48a3b636 4658static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4659 unsigned long nr_pages, int nr_items)
da633a42
MX
4660{
4661 struct super_block *sb = root->fs_info->sb;
da633a42 4662
925a6efb
JB
4663 if (down_read_trylock(&sb->s_umount)) {
4664 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4665 up_read(&sb->s_umount);
4666 } else {
da633a42
MX
4667 /*
4668 * We needn't worry the filesystem going from r/w to r/o though
4669 * we don't acquire ->s_umount mutex, because the filesystem
4670 * should guarantee the delalloc inodes list be empty after
4671 * the filesystem is readonly(all dirty pages are written to
4672 * the disk).
4673 */
6c255e67 4674 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4675 if (!current->journal_info)
578def7c
FM
4676 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4677 0, (u64)-1);
da633a42
MX
4678 }
4679}
4680
18cd8ea6
MX
4681static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4682{
4683 u64 bytes;
4684 int nr;
4685
4686 bytes = btrfs_calc_trans_metadata_size(root, 1);
4687 nr = (int)div64_u64(to_reclaim, bytes);
4688 if (!nr)
4689 nr = 1;
4690 return nr;
4691}
4692
ee22184b 4693#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4694
9ed74f2d 4695/*
5da9d01b 4696 * shrink metadata reservation for delalloc
9ed74f2d 4697 */
f4c738c2
JB
4698static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4699 bool wait_ordered)
5da9d01b 4700{
0ca1f7ce 4701 struct btrfs_block_rsv *block_rsv;
0019f10d 4702 struct btrfs_space_info *space_info;
663350ac 4703 struct btrfs_trans_handle *trans;
f4c738c2 4704 u64 delalloc_bytes;
5da9d01b 4705 u64 max_reclaim;
b1953bce 4706 long time_left;
d3ee29e3
MX
4707 unsigned long nr_pages;
4708 int loops;
b0244199 4709 int items;
08e007d2 4710 enum btrfs_reserve_flush_enum flush;
5da9d01b 4711
c61a16a7 4712 /* Calc the number of the pages we need flush for space reservation */
b0244199 4713 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4714 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4715
663350ac 4716 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4717 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4718 space_info = block_rsv->space_info;
bf9022e0 4719
963d678b
MX
4720 delalloc_bytes = percpu_counter_sum_positive(
4721 &root->fs_info->delalloc_bytes);
f4c738c2 4722 if (delalloc_bytes == 0) {
fdb5effd 4723 if (trans)
f4c738c2 4724 return;
38c135af 4725 if (wait_ordered)
578def7c
FM
4726 btrfs_wait_ordered_roots(root->fs_info, items,
4727 0, (u64)-1);
f4c738c2 4728 return;
fdb5effd
JB
4729 }
4730
d3ee29e3 4731 loops = 0;
f4c738c2
JB
4732 while (delalloc_bytes && loops < 3) {
4733 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4734 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4735 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4736 /*
4737 * We need to wait for the async pages to actually start before
4738 * we do anything.
4739 */
9f3a074d
MX
4740 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4741 if (!max_reclaim)
4742 goto skip_async;
4743
4744 if (max_reclaim <= nr_pages)
4745 max_reclaim = 0;
4746 else
4747 max_reclaim -= nr_pages;
dea31f52 4748
9f3a074d
MX
4749 wait_event(root->fs_info->async_submit_wait,
4750 atomic_read(&root->fs_info->async_delalloc_pages) <=
4751 (int)max_reclaim);
4752skip_async:
08e007d2
MX
4753 if (!trans)
4754 flush = BTRFS_RESERVE_FLUSH_ALL;
4755 else
4756 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4757 spin_lock(&space_info->lock);
08e007d2 4758 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4759 spin_unlock(&space_info->lock);
4760 break;
4761 }
957780eb
JB
4762 if (list_empty(&space_info->tickets) &&
4763 list_empty(&space_info->priority_tickets)) {
4764 spin_unlock(&space_info->lock);
4765 break;
4766 }
0019f10d 4767 spin_unlock(&space_info->lock);
5da9d01b 4768
36e39c40 4769 loops++;
f104d044 4770 if (wait_ordered && !trans) {
578def7c
FM
4771 btrfs_wait_ordered_roots(root->fs_info, items,
4772 0, (u64)-1);
f104d044 4773 } else {
f4c738c2 4774 time_left = schedule_timeout_killable(1);
f104d044
JB
4775 if (time_left)
4776 break;
4777 }
963d678b
MX
4778 delalloc_bytes = percpu_counter_sum_positive(
4779 &root->fs_info->delalloc_bytes);
5da9d01b 4780 }
5da9d01b
YZ
4781}
4782
663350ac
JB
4783/**
4784 * maybe_commit_transaction - possibly commit the transaction if its ok to
4785 * @root - the root we're allocating for
4786 * @bytes - the number of bytes we want to reserve
4787 * @force - force the commit
8bb8ab2e 4788 *
663350ac
JB
4789 * This will check to make sure that committing the transaction will actually
4790 * get us somewhere and then commit the transaction if it does. Otherwise it
4791 * will return -ENOSPC.
8bb8ab2e 4792 */
663350ac
JB
4793static int may_commit_transaction(struct btrfs_root *root,
4794 struct btrfs_space_info *space_info,
4795 u64 bytes, int force)
4796{
4797 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4798 struct btrfs_trans_handle *trans;
4799
4800 trans = (struct btrfs_trans_handle *)current->journal_info;
4801 if (trans)
4802 return -EAGAIN;
4803
4804 if (force)
4805 goto commit;
4806
4807 /* See if there is enough pinned space to make this reservation */
b150a4f1 4808 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4809 bytes) >= 0)
663350ac 4810 goto commit;
663350ac
JB
4811
4812 /*
4813 * See if there is some space in the delayed insertion reservation for
4814 * this reservation.
4815 */
4816 if (space_info != delayed_rsv->space_info)
4817 return -ENOSPC;
4818
4819 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4820 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4821 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4822 spin_unlock(&delayed_rsv->lock);
4823 return -ENOSPC;
4824 }
4825 spin_unlock(&delayed_rsv->lock);
4826
4827commit:
4828 trans = btrfs_join_transaction(root);
4829 if (IS_ERR(trans))
4830 return -ENOSPC;
4831
4832 return btrfs_commit_transaction(trans, root);
4833}
4834
957780eb
JB
4835struct reserve_ticket {
4836 u64 bytes;
4837 int error;
4838 struct list_head list;
4839 wait_queue_head_t wait;
96c3f433
JB
4840};
4841
4842static int flush_space(struct btrfs_root *root,
4843 struct btrfs_space_info *space_info, u64 num_bytes,
4844 u64 orig_bytes, int state)
4845{
4846 struct btrfs_trans_handle *trans;
4847 int nr;
f4c738c2 4848 int ret = 0;
96c3f433
JB
4849
4850 switch (state) {
96c3f433
JB
4851 case FLUSH_DELAYED_ITEMS_NR:
4852 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4853 if (state == FLUSH_DELAYED_ITEMS_NR)
4854 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4855 else
96c3f433 4856 nr = -1;
18cd8ea6 4857
96c3f433
JB
4858 trans = btrfs_join_transaction(root);
4859 if (IS_ERR(trans)) {
4860 ret = PTR_ERR(trans);
4861 break;
4862 }
4863 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4864 btrfs_end_transaction(trans, root);
4865 break;
67b0fd63
JB
4866 case FLUSH_DELALLOC:
4867 case FLUSH_DELALLOC_WAIT:
24af7dd1 4868 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4869 state == FLUSH_DELALLOC_WAIT);
4870 break;
ea658bad
JB
4871 case ALLOC_CHUNK:
4872 trans = btrfs_join_transaction(root);
4873 if (IS_ERR(trans)) {
4874 ret = PTR_ERR(trans);
4875 break;
4876 }
4877 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4878 btrfs_get_alloc_profile(root, 0),
4879 CHUNK_ALLOC_NO_FORCE);
4880 btrfs_end_transaction(trans, root);
eecba891 4881 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4882 ret = 0;
4883 break;
96c3f433
JB
4884 case COMMIT_TRANS:
4885 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4886 break;
4887 default:
4888 ret = -ENOSPC;
4889 break;
4890 }
4891
f376df2b
JB
4892 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4893 orig_bytes, state, ret);
96c3f433
JB
4894 return ret;
4895}
21c7e756
MX
4896
4897static inline u64
4898btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4899 struct btrfs_space_info *space_info)
4900{
957780eb 4901 struct reserve_ticket *ticket;
21c7e756
MX
4902 u64 used;
4903 u64 expected;
957780eb 4904 u64 to_reclaim = 0;
21c7e756 4905
957780eb
JB
4906 list_for_each_entry(ticket, &space_info->tickets, list)
4907 to_reclaim += ticket->bytes;
4908 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4909 to_reclaim += ticket->bytes;
4910 if (to_reclaim)
4911 return to_reclaim;
21c7e756 4912
e0af2484
WX
4913 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4914 if (can_overcommit(root, space_info, to_reclaim,
4915 BTRFS_RESERVE_FLUSH_ALL))
4916 return 0;
4917
21c7e756
MX
4918 used = space_info->bytes_used + space_info->bytes_reserved +
4919 space_info->bytes_pinned + space_info->bytes_readonly +
4920 space_info->bytes_may_use;
ee22184b 4921 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4922 expected = div_factor_fine(space_info->total_bytes, 95);
4923 else
4924 expected = div_factor_fine(space_info->total_bytes, 90);
4925
4926 if (used > expected)
4927 to_reclaim = used - expected;
4928 else
4929 to_reclaim = 0;
4930 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4931 space_info->bytes_reserved);
21c7e756
MX
4932 return to_reclaim;
4933}
4934
4935static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4936 struct btrfs_root *root, u64 used)
21c7e756 4937{
365c5313
JB
4938 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4939
4940 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4941 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4942 return 0;
4943
87241c2e 4944 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4945 return 0;
4946
87241c2e
JB
4947 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4948 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4949 &root->fs_info->fs_state));
21c7e756
MX
4950}
4951
957780eb 4952static void wake_all_tickets(struct list_head *head)
21c7e756 4953{
957780eb 4954 struct reserve_ticket *ticket;
25ce459c 4955
957780eb
JB
4956 while (!list_empty(head)) {
4957 ticket = list_first_entry(head, struct reserve_ticket, list);
4958 list_del_init(&ticket->list);
4959 ticket->error = -ENOSPC;
4960 wake_up(&ticket->wait);
21c7e756 4961 }
21c7e756
MX
4962}
4963
957780eb
JB
4964/*
4965 * This is for normal flushers, we can wait all goddamned day if we want to. We
4966 * will loop and continuously try to flush as long as we are making progress.
4967 * We count progress as clearing off tickets each time we have to loop.
4968 */
21c7e756
MX
4969static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4970{
957780eb 4971 struct reserve_ticket *last_ticket = NULL;
21c7e756
MX
4972 struct btrfs_fs_info *fs_info;
4973 struct btrfs_space_info *space_info;
4974 u64 to_reclaim;
4975 int flush_state;
957780eb 4976 int commit_cycles = 0;
21c7e756
MX
4977
4978 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4979 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4980
957780eb 4981 spin_lock(&space_info->lock);
21c7e756
MX
4982 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4983 space_info);
957780eb
JB
4984 if (!to_reclaim) {
4985 space_info->flush = 0;
4986 spin_unlock(&space_info->lock);
21c7e756 4987 return;
957780eb
JB
4988 }
4989 last_ticket = list_first_entry(&space_info->tickets,
4990 struct reserve_ticket, list);
4991 spin_unlock(&space_info->lock);
21c7e756
MX
4992
4993 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
4994 do {
4995 struct reserve_ticket *ticket;
4996 int ret;
4997
4998 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
4999 to_reclaim, flush_state);
5000 spin_lock(&space_info->lock);
5001 if (list_empty(&space_info->tickets)) {
5002 space_info->flush = 0;
5003 spin_unlock(&space_info->lock);
5004 return;
5005 }
5006 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5007 space_info);
5008 ticket = list_first_entry(&space_info->tickets,
5009 struct reserve_ticket, list);
5010 if (last_ticket == ticket) {
5011 flush_state++;
5012 } else {
5013 last_ticket = ticket;
5014 flush_state = FLUSH_DELAYED_ITEMS_NR;
5015 if (commit_cycles)
5016 commit_cycles--;
5017 }
5018
5019 if (flush_state > COMMIT_TRANS) {
5020 commit_cycles++;
5021 if (commit_cycles > 2) {
5022 wake_all_tickets(&space_info->tickets);
5023 space_info->flush = 0;
5024 } else {
5025 flush_state = FLUSH_DELAYED_ITEMS_NR;
5026 }
5027 }
5028 spin_unlock(&space_info->lock);
5029 } while (flush_state <= COMMIT_TRANS);
5030}
5031
5032void btrfs_init_async_reclaim_work(struct work_struct *work)
5033{
5034 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5035}
5036
5037static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5038 struct btrfs_space_info *space_info,
5039 struct reserve_ticket *ticket)
5040{
5041 u64 to_reclaim;
5042 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5043
5044 spin_lock(&space_info->lock);
5045 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5046 space_info);
5047 if (!to_reclaim) {
5048 spin_unlock(&space_info->lock);
5049 return;
5050 }
5051 spin_unlock(&space_info->lock);
5052
21c7e756
MX
5053 do {
5054 flush_space(fs_info->fs_root, space_info, to_reclaim,
5055 to_reclaim, flush_state);
5056 flush_state++;
957780eb
JB
5057 spin_lock(&space_info->lock);
5058 if (ticket->bytes == 0) {
5059 spin_unlock(&space_info->lock);
21c7e756 5060 return;
957780eb
JB
5061 }
5062 spin_unlock(&space_info->lock);
5063
5064 /*
5065 * Priority flushers can't wait on delalloc without
5066 * deadlocking.
5067 */
5068 if (flush_state == FLUSH_DELALLOC ||
5069 flush_state == FLUSH_DELALLOC_WAIT)
5070 flush_state = ALLOC_CHUNK;
365c5313 5071 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5072}
5073
957780eb
JB
5074static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5075 struct btrfs_space_info *space_info,
5076 struct reserve_ticket *ticket, u64 orig_bytes)
5077
21c7e756 5078{
957780eb
JB
5079 DEFINE_WAIT(wait);
5080 int ret = 0;
5081
5082 spin_lock(&space_info->lock);
5083 while (ticket->bytes > 0 && ticket->error == 0) {
5084 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5085 if (ret) {
5086 ret = -EINTR;
5087 break;
5088 }
5089 spin_unlock(&space_info->lock);
5090
5091 schedule();
5092
5093 finish_wait(&ticket->wait, &wait);
5094 spin_lock(&space_info->lock);
5095 }
5096 if (!ret)
5097 ret = ticket->error;
5098 if (!list_empty(&ticket->list))
5099 list_del_init(&ticket->list);
5100 if (ticket->bytes && ticket->bytes < orig_bytes) {
5101 u64 num_bytes = orig_bytes - ticket->bytes;
5102 space_info->bytes_may_use -= num_bytes;
5103 trace_btrfs_space_reservation(fs_info, "space_info",
5104 space_info->flags, num_bytes, 0);
5105 }
5106 spin_unlock(&space_info->lock);
5107
5108 return ret;
21c7e756
MX
5109}
5110
4a92b1b8
JB
5111/**
5112 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5113 * @root - the root we're allocating for
957780eb 5114 * @space_info - the space info we want to allocate from
4a92b1b8 5115 * @orig_bytes - the number of bytes we want
48fc7f7e 5116 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5117 *
01327610 5118 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5119 * with the block_rsv. If there is not enough space it will make an attempt to
5120 * flush out space to make room. It will do this by flushing delalloc if
5121 * possible or committing the transaction. If flush is 0 then no attempts to
5122 * regain reservations will be made and this will fail if there is not enough
5123 * space already.
8bb8ab2e 5124 */
957780eb
JB
5125static int __reserve_metadata_bytes(struct btrfs_root *root,
5126 struct btrfs_space_info *space_info,
5127 u64 orig_bytes,
5128 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5129{
957780eb 5130 struct reserve_ticket ticket;
2bf64758 5131 u64 used;
8bb8ab2e 5132 int ret = 0;
9ed74f2d 5133
957780eb 5134 ASSERT(orig_bytes);
8ca17f0f 5135 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5136
8bb8ab2e 5137 spin_lock(&space_info->lock);
fdb5effd 5138 ret = -ENOSPC;
2bf64758
JB
5139 used = space_info->bytes_used + space_info->bytes_reserved +
5140 space_info->bytes_pinned + space_info->bytes_readonly +
5141 space_info->bytes_may_use;
9ed74f2d 5142
8bb8ab2e 5143 /*
957780eb
JB
5144 * If we have enough space then hooray, make our reservation and carry
5145 * on. If not see if we can overcommit, and if we can, hooray carry on.
5146 * If not things get more complicated.
8bb8ab2e 5147 */
957780eb
JB
5148 if (used + orig_bytes <= space_info->total_bytes) {
5149 space_info->bytes_may_use += orig_bytes;
5150 trace_btrfs_space_reservation(root->fs_info, "space_info",
5151 space_info->flags, orig_bytes,
5152 1);
5153 ret = 0;
5154 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1
JB
5155 space_info->bytes_may_use += orig_bytes;
5156 trace_btrfs_space_reservation(root->fs_info, "space_info",
5157 space_info->flags, orig_bytes,
5158 1);
5159 ret = 0;
2bf64758
JB
5160 }
5161
8bb8ab2e 5162 /*
957780eb
JB
5163 * If we couldn't make a reservation then setup our reservation ticket
5164 * and kick the async worker if it's not already running.
08e007d2 5165 *
957780eb
JB
5166 * If we are a priority flusher then we just need to add our ticket to
5167 * the list and we will do our own flushing further down.
8bb8ab2e 5168 */
72bcd99d 5169 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5170 ticket.bytes = orig_bytes;
5171 ticket.error = 0;
5172 init_waitqueue_head(&ticket.wait);
5173 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5174 list_add_tail(&ticket.list, &space_info->tickets);
5175 if (!space_info->flush) {
5176 space_info->flush = 1;
f376df2b
JB
5177 trace_btrfs_trigger_flush(root->fs_info,
5178 space_info->flags,
5179 orig_bytes, flush,
5180 "enospc");
957780eb
JB
5181 queue_work(system_unbound_wq,
5182 &root->fs_info->async_reclaim_work);
5183 }
5184 } else {
5185 list_add_tail(&ticket.list,
5186 &space_info->priority_tickets);
5187 }
21c7e756
MX
5188 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5189 used += orig_bytes;
f6acfd50
JB
5190 /*
5191 * We will do the space reservation dance during log replay,
5192 * which means we won't have fs_info->fs_root set, so don't do
5193 * the async reclaim as we will panic.
5194 */
5195 if (!root->fs_info->log_root_recovering &&
87241c2e 5196 need_do_async_reclaim(space_info, root, used) &&
f376df2b
JB
5197 !work_busy(&root->fs_info->async_reclaim_work)) {
5198 trace_btrfs_trigger_flush(root->fs_info,
5199 space_info->flags,
5200 orig_bytes, flush,
5201 "preempt");
21c7e756
MX
5202 queue_work(system_unbound_wq,
5203 &root->fs_info->async_reclaim_work);
f376df2b 5204 }
8bb8ab2e 5205 }
f0486c68 5206 spin_unlock(&space_info->lock);
08e007d2 5207 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5208 return ret;
f0486c68 5209
957780eb
JB
5210 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5211 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5212 orig_bytes);
08e007d2 5213
957780eb
JB
5214 ret = 0;
5215 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5216 spin_lock(&space_info->lock);
5217 if (ticket.bytes) {
5218 if (ticket.bytes < orig_bytes) {
5219 u64 num_bytes = orig_bytes - ticket.bytes;
5220 space_info->bytes_may_use -= num_bytes;
5221 trace_btrfs_space_reservation(root->fs_info,
5222 "space_info", space_info->flags,
5223 num_bytes, 0);
08e007d2 5224
957780eb
JB
5225 }
5226 list_del_init(&ticket.list);
5227 ret = -ENOSPC;
5228 }
5229 spin_unlock(&space_info->lock);
5230 ASSERT(list_empty(&ticket.list));
5231 return ret;
5232}
8bb8ab2e 5233
957780eb
JB
5234/**
5235 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5236 * @root - the root we're allocating for
5237 * @block_rsv - the block_rsv we're allocating for
5238 * @orig_bytes - the number of bytes we want
5239 * @flush - whether or not we can flush to make our reservation
5240 *
5241 * This will reserve orgi_bytes number of bytes from the space info associated
5242 * with the block_rsv. If there is not enough space it will make an attempt to
5243 * flush out space to make room. It will do this by flushing delalloc if
5244 * possible or committing the transaction. If flush is 0 then no attempts to
5245 * regain reservations will be made and this will fail if there is not enough
5246 * space already.
5247 */
5248static int reserve_metadata_bytes(struct btrfs_root *root,
5249 struct btrfs_block_rsv *block_rsv,
5250 u64 orig_bytes,
5251 enum btrfs_reserve_flush_enum flush)
5252{
5253 int ret;
5254
5255 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5256 flush);
5d80366e
JB
5257 if (ret == -ENOSPC &&
5258 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5259 struct btrfs_block_rsv *global_rsv =
5260 &root->fs_info->global_block_rsv;
5261
5262 if (block_rsv != global_rsv &&
5263 !block_rsv_use_bytes(global_rsv, orig_bytes))
5264 ret = 0;
5265 }
cab45e22
JM
5266 if (ret == -ENOSPC)
5267 trace_btrfs_space_reservation(root->fs_info,
5268 "space_info:enospc",
957780eb
JB
5269 block_rsv->space_info->flags,
5270 orig_bytes, 1);
f0486c68
YZ
5271 return ret;
5272}
5273
79787eaa
JM
5274static struct btrfs_block_rsv *get_block_rsv(
5275 const struct btrfs_trans_handle *trans,
5276 const struct btrfs_root *root)
f0486c68 5277{
4c13d758
JB
5278 struct btrfs_block_rsv *block_rsv = NULL;
5279
e9cf439f
AM
5280 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5281 (root == root->fs_info->csum_root && trans->adding_csums) ||
5282 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5283 block_rsv = trans->block_rsv;
5284
4c13d758 5285 if (!block_rsv)
f0486c68
YZ
5286 block_rsv = root->block_rsv;
5287
5288 if (!block_rsv)
5289 block_rsv = &root->fs_info->empty_block_rsv;
5290
5291 return block_rsv;
5292}
5293
5294static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5295 u64 num_bytes)
5296{
5297 int ret = -ENOSPC;
5298 spin_lock(&block_rsv->lock);
5299 if (block_rsv->reserved >= num_bytes) {
5300 block_rsv->reserved -= num_bytes;
5301 if (block_rsv->reserved < block_rsv->size)
5302 block_rsv->full = 0;
5303 ret = 0;
5304 }
5305 spin_unlock(&block_rsv->lock);
5306 return ret;
5307}
5308
5309static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5310 u64 num_bytes, int update_size)
5311{
5312 spin_lock(&block_rsv->lock);
5313 block_rsv->reserved += num_bytes;
5314 if (update_size)
5315 block_rsv->size += num_bytes;
5316 else if (block_rsv->reserved >= block_rsv->size)
5317 block_rsv->full = 1;
5318 spin_unlock(&block_rsv->lock);
5319}
5320
d52be818
JB
5321int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5322 struct btrfs_block_rsv *dest, u64 num_bytes,
5323 int min_factor)
5324{
5325 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5326 u64 min_bytes;
5327
5328 if (global_rsv->space_info != dest->space_info)
5329 return -ENOSPC;
5330
5331 spin_lock(&global_rsv->lock);
5332 min_bytes = div_factor(global_rsv->size, min_factor);
5333 if (global_rsv->reserved < min_bytes + num_bytes) {
5334 spin_unlock(&global_rsv->lock);
5335 return -ENOSPC;
5336 }
5337 global_rsv->reserved -= num_bytes;
5338 if (global_rsv->reserved < global_rsv->size)
5339 global_rsv->full = 0;
5340 spin_unlock(&global_rsv->lock);
5341
5342 block_rsv_add_bytes(dest, num_bytes, 1);
5343 return 0;
5344}
5345
957780eb
JB
5346/*
5347 * This is for space we already have accounted in space_info->bytes_may_use, so
5348 * basically when we're returning space from block_rsv's.
5349 */
5350static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5351 struct btrfs_space_info *space_info,
5352 u64 num_bytes)
5353{
5354 struct reserve_ticket *ticket;
5355 struct list_head *head;
5356 u64 used;
5357 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5358 bool check_overcommit = false;
5359
5360 spin_lock(&space_info->lock);
5361 head = &space_info->priority_tickets;
5362
5363 /*
5364 * If we are over our limit then we need to check and see if we can
5365 * overcommit, and if we can't then we just need to free up our space
5366 * and not satisfy any requests.
5367 */
5368 used = space_info->bytes_used + space_info->bytes_reserved +
5369 space_info->bytes_pinned + space_info->bytes_readonly +
5370 space_info->bytes_may_use;
5371 if (used - num_bytes >= space_info->total_bytes)
5372 check_overcommit = true;
5373again:
5374 while (!list_empty(head) && num_bytes) {
5375 ticket = list_first_entry(head, struct reserve_ticket,
5376 list);
5377 /*
5378 * We use 0 bytes because this space is already reserved, so
5379 * adding the ticket space would be a double count.
5380 */
5381 if (check_overcommit &&
5382 !can_overcommit(fs_info->extent_root, space_info, 0,
5383 flush))
5384 break;
5385 if (num_bytes >= ticket->bytes) {
5386 list_del_init(&ticket->list);
5387 num_bytes -= ticket->bytes;
5388 ticket->bytes = 0;
5389 wake_up(&ticket->wait);
5390 } else {
5391 ticket->bytes -= num_bytes;
5392 num_bytes = 0;
5393 }
5394 }
5395
5396 if (num_bytes && head == &space_info->priority_tickets) {
5397 head = &space_info->tickets;
5398 flush = BTRFS_RESERVE_FLUSH_ALL;
5399 goto again;
5400 }
5401 space_info->bytes_may_use -= num_bytes;
5402 trace_btrfs_space_reservation(fs_info, "space_info",
5403 space_info->flags, num_bytes, 0);
5404 spin_unlock(&space_info->lock);
5405}
5406
5407/*
5408 * This is for newly allocated space that isn't accounted in
5409 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5410 * we use this helper.
5411 */
5412static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5413 struct btrfs_space_info *space_info,
5414 u64 num_bytes)
5415{
5416 struct reserve_ticket *ticket;
5417 struct list_head *head = &space_info->priority_tickets;
5418
5419again:
5420 while (!list_empty(head) && num_bytes) {
5421 ticket = list_first_entry(head, struct reserve_ticket,
5422 list);
5423 if (num_bytes >= ticket->bytes) {
5424 trace_btrfs_space_reservation(fs_info, "space_info",
5425 space_info->flags,
5426 ticket->bytes, 1);
5427 list_del_init(&ticket->list);
5428 num_bytes -= ticket->bytes;
5429 space_info->bytes_may_use += ticket->bytes;
5430 ticket->bytes = 0;
5431 wake_up(&ticket->wait);
5432 } else {
5433 trace_btrfs_space_reservation(fs_info, "space_info",
5434 space_info->flags,
5435 num_bytes, 1);
5436 space_info->bytes_may_use += num_bytes;
5437 ticket->bytes -= num_bytes;
5438 num_bytes = 0;
5439 }
5440 }
5441
5442 if (num_bytes && head == &space_info->priority_tickets) {
5443 head = &space_info->tickets;
5444 goto again;
5445 }
5446}
5447
8c2a3ca2
JB
5448static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5449 struct btrfs_block_rsv *block_rsv,
62a45b60 5450 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5451{
5452 struct btrfs_space_info *space_info = block_rsv->space_info;
5453
5454 spin_lock(&block_rsv->lock);
5455 if (num_bytes == (u64)-1)
5456 num_bytes = block_rsv->size;
5457 block_rsv->size -= num_bytes;
5458 if (block_rsv->reserved >= block_rsv->size) {
5459 num_bytes = block_rsv->reserved - block_rsv->size;
5460 block_rsv->reserved = block_rsv->size;
5461 block_rsv->full = 1;
5462 } else {
5463 num_bytes = 0;
5464 }
5465 spin_unlock(&block_rsv->lock);
5466
5467 if (num_bytes > 0) {
5468 if (dest) {
e9e22899
JB
5469 spin_lock(&dest->lock);
5470 if (!dest->full) {
5471 u64 bytes_to_add;
5472
5473 bytes_to_add = dest->size - dest->reserved;
5474 bytes_to_add = min(num_bytes, bytes_to_add);
5475 dest->reserved += bytes_to_add;
5476 if (dest->reserved >= dest->size)
5477 dest->full = 1;
5478 num_bytes -= bytes_to_add;
5479 }
5480 spin_unlock(&dest->lock);
5481 }
957780eb
JB
5482 if (num_bytes)
5483 space_info_add_old_bytes(fs_info, space_info,
5484 num_bytes);
9ed74f2d 5485 }
f0486c68 5486}
4e06bdd6 5487
25d609f8
JB
5488int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5489 struct btrfs_block_rsv *dst, u64 num_bytes,
5490 int update_size)
f0486c68
YZ
5491{
5492 int ret;
9ed74f2d 5493
f0486c68
YZ
5494 ret = block_rsv_use_bytes(src, num_bytes);
5495 if (ret)
5496 return ret;
9ed74f2d 5497
25d609f8 5498 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5499 return 0;
5500}
5501
66d8f3dd 5502void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5503{
f0486c68
YZ
5504 memset(rsv, 0, sizeof(*rsv));
5505 spin_lock_init(&rsv->lock);
66d8f3dd 5506 rsv->type = type;
f0486c68
YZ
5507}
5508
66d8f3dd
MX
5509struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5510 unsigned short type)
f0486c68
YZ
5511{
5512 struct btrfs_block_rsv *block_rsv;
5513 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5514
f0486c68
YZ
5515 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5516 if (!block_rsv)
5517 return NULL;
9ed74f2d 5518
66d8f3dd 5519 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5520 block_rsv->space_info = __find_space_info(fs_info,
5521 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5522 return block_rsv;
5523}
9ed74f2d 5524
f0486c68
YZ
5525void btrfs_free_block_rsv(struct btrfs_root *root,
5526 struct btrfs_block_rsv *rsv)
5527{
2aaa6655
JB
5528 if (!rsv)
5529 return;
dabdb640
JB
5530 btrfs_block_rsv_release(root, rsv, (u64)-1);
5531 kfree(rsv);
9ed74f2d
JB
5532}
5533
cdfb080e
CM
5534void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5535{
5536 kfree(rsv);
5537}
5538
08e007d2
MX
5539int btrfs_block_rsv_add(struct btrfs_root *root,
5540 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5541 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5542{
f0486c68 5543 int ret;
9ed74f2d 5544
f0486c68
YZ
5545 if (num_bytes == 0)
5546 return 0;
8bb8ab2e 5547
61b520a9 5548 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5549 if (!ret) {
5550 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5551 return 0;
5552 }
9ed74f2d 5553
f0486c68 5554 return ret;
f0486c68 5555}
9ed74f2d 5556
4a92b1b8 5557int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5558 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5559{
5560 u64 num_bytes = 0;
f0486c68 5561 int ret = -ENOSPC;
9ed74f2d 5562
f0486c68
YZ
5563 if (!block_rsv)
5564 return 0;
9ed74f2d 5565
f0486c68 5566 spin_lock(&block_rsv->lock);
36ba022a
JB
5567 num_bytes = div_factor(block_rsv->size, min_factor);
5568 if (block_rsv->reserved >= num_bytes)
5569 ret = 0;
5570 spin_unlock(&block_rsv->lock);
9ed74f2d 5571
36ba022a
JB
5572 return ret;
5573}
5574
08e007d2
MX
5575int btrfs_block_rsv_refill(struct btrfs_root *root,
5576 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5577 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5578{
5579 u64 num_bytes = 0;
5580 int ret = -ENOSPC;
5581
5582 if (!block_rsv)
5583 return 0;
5584
5585 spin_lock(&block_rsv->lock);
5586 num_bytes = min_reserved;
13553e52 5587 if (block_rsv->reserved >= num_bytes)
f0486c68 5588 ret = 0;
13553e52 5589 else
f0486c68 5590 num_bytes -= block_rsv->reserved;
f0486c68 5591 spin_unlock(&block_rsv->lock);
13553e52 5592
f0486c68
YZ
5593 if (!ret)
5594 return 0;
5595
aa38a711 5596 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5597 if (!ret) {
5598 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5599 return 0;
6a63209f 5600 }
9ed74f2d 5601
13553e52 5602 return ret;
f0486c68
YZ
5603}
5604
f0486c68
YZ
5605void btrfs_block_rsv_release(struct btrfs_root *root,
5606 struct btrfs_block_rsv *block_rsv,
5607 u64 num_bytes)
5608{
5609 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5610 if (global_rsv == block_rsv ||
f0486c68
YZ
5611 block_rsv->space_info != global_rsv->space_info)
5612 global_rsv = NULL;
8c2a3ca2
JB
5613 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5614 num_bytes);
6a63209f
JB
5615}
5616
8929ecfa
YZ
5617static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5618{
5619 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5620 struct btrfs_space_info *sinfo = block_rsv->space_info;
5621 u64 num_bytes;
6a63209f 5622
ae2e4728
JB
5623 /*
5624 * The global block rsv is based on the size of the extent tree, the
5625 * checksum tree and the root tree. If the fs is empty we want to set
5626 * it to a minimal amount for safety.
5627 */
5628 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5629 btrfs_root_used(&fs_info->csum_root->root_item) +
5630 btrfs_root_used(&fs_info->tree_root->root_item);
5631 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5632
8929ecfa 5633 spin_lock(&sinfo->lock);
1f699d38 5634 spin_lock(&block_rsv->lock);
4e06bdd6 5635
ee22184b 5636 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5637
fb4b10e5
JB
5638 if (block_rsv->reserved < block_rsv->size) {
5639 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5640 sinfo->bytes_reserved + sinfo->bytes_readonly +
5641 sinfo->bytes_may_use;
5642 if (sinfo->total_bytes > num_bytes) {
5643 num_bytes = sinfo->total_bytes - num_bytes;
5644 num_bytes = min(num_bytes,
5645 block_rsv->size - block_rsv->reserved);
5646 block_rsv->reserved += num_bytes;
5647 sinfo->bytes_may_use += num_bytes;
5648 trace_btrfs_space_reservation(fs_info, "space_info",
5649 sinfo->flags, num_bytes,
5650 1);
5651 }
5652 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5653 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5654 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5655 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5656 sinfo->flags, num_bytes, 0);
8929ecfa 5657 block_rsv->reserved = block_rsv->size;
8929ecfa 5658 }
182608c8 5659
fb4b10e5
JB
5660 if (block_rsv->reserved == block_rsv->size)
5661 block_rsv->full = 1;
5662 else
5663 block_rsv->full = 0;
5664
8929ecfa 5665 spin_unlock(&block_rsv->lock);
1f699d38 5666 spin_unlock(&sinfo->lock);
6a63209f
JB
5667}
5668
f0486c68 5669static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5670{
f0486c68 5671 struct btrfs_space_info *space_info;
6a63209f 5672
f0486c68
YZ
5673 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5674 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5675
f0486c68 5676 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5677 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5678 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5679 fs_info->trans_block_rsv.space_info = space_info;
5680 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5681 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5682
8929ecfa
YZ
5683 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5684 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5685 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5686 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5687 if (fs_info->quota_root)
5688 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5689 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5690
8929ecfa 5691 update_global_block_rsv(fs_info);
6a63209f
JB
5692}
5693
8929ecfa 5694static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5695{
8c2a3ca2
JB
5696 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5697 (u64)-1);
8929ecfa
YZ
5698 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5699 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5700 WARN_ON(fs_info->trans_block_rsv.size > 0);
5701 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5702 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5703 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5704 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5705 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5706}
5707
a22285a6
YZ
5708void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5709 struct btrfs_root *root)
6a63209f 5710{
0e721106
JB
5711 if (!trans->block_rsv)
5712 return;
5713
a22285a6
YZ
5714 if (!trans->bytes_reserved)
5715 return;
6a63209f 5716
e77266e4 5717 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5718 trans->transid, trans->bytes_reserved, 0);
b24e03db 5719 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5720 trans->bytes_reserved = 0;
5721}
6a63209f 5722
4fbcdf66
FM
5723/*
5724 * To be called after all the new block groups attached to the transaction
5725 * handle have been created (btrfs_create_pending_block_groups()).
5726 */
5727void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5728{
64b63580 5729 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5730
5731 if (!trans->chunk_bytes_reserved)
5732 return;
5733
5734 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5735
5736 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5737 trans->chunk_bytes_reserved);
5738 trans->chunk_bytes_reserved = 0;
5739}
5740
79787eaa 5741/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5742int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5743 struct inode *inode)
5744{
5745 struct btrfs_root *root = BTRFS_I(inode)->root;
40acc3ee
JB
5746 /*
5747 * We always use trans->block_rsv here as we will have reserved space
5748 * for our orphan when starting the transaction, using get_block_rsv()
5749 * here will sometimes make us choose the wrong block rsv as we could be
5750 * doing a reloc inode for a non refcounted root.
5751 */
5752 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5753 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5754
5755 /*
fcb80c2a
JB
5756 * We need to hold space in order to delete our orphan item once we've
5757 * added it, so this takes the reservation so we can release it later
5758 * when we are truly done with the orphan item.
d68fc57b 5759 */
ff5714cc 5760 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5761 trace_btrfs_space_reservation(root->fs_info, "orphan",
5762 btrfs_ino(inode), num_bytes, 1);
25d609f8 5763 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5764}
5765
d68fc57b 5766void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5767{
d68fc57b 5768 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5769 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5770 trace_btrfs_space_reservation(root->fs_info, "orphan",
5771 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5772 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5773}
97e728d4 5774
d5c12070
MX
5775/*
5776 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5777 * root: the root of the parent directory
5778 * rsv: block reservation
5779 * items: the number of items that we need do reservation
5780 * qgroup_reserved: used to return the reserved size in qgroup
5781 *
5782 * This function is used to reserve the space for snapshot/subvolume
5783 * creation and deletion. Those operations are different with the
5784 * common file/directory operations, they change two fs/file trees
5785 * and root tree, the number of items that the qgroup reserves is
5786 * different with the free space reservation. So we can not use
01327610 5787 * the space reservation mechanism in start_transaction().
d5c12070
MX
5788 */
5789int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5790 struct btrfs_block_rsv *rsv,
5791 int items,
ee3441b4
JM
5792 u64 *qgroup_reserved,
5793 bool use_global_rsv)
a22285a6 5794{
d5c12070
MX
5795 u64 num_bytes;
5796 int ret;
ee3441b4 5797 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5798
5799 if (root->fs_info->quota_enabled) {
5800 /* One for parent inode, two for dir entries */
707e8a07 5801 num_bytes = 3 * root->nodesize;
7174109c 5802 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5803 if (ret)
5804 return ret;
5805 } else {
5806 num_bytes = 0;
5807 }
5808
5809 *qgroup_reserved = num_bytes;
5810
5811 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5812 rsv->space_info = __find_space_info(root->fs_info,
5813 BTRFS_BLOCK_GROUP_METADATA);
5814 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5815 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5816
5817 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5818 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5819
7174109c
QW
5820 if (ret && *qgroup_reserved)
5821 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5822
5823 return ret;
5824}
5825
5826void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5827 struct btrfs_block_rsv *rsv,
5828 u64 qgroup_reserved)
5829{
5830 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5831}
5832
7709cde3
JB
5833/**
5834 * drop_outstanding_extent - drop an outstanding extent
5835 * @inode: the inode we're dropping the extent for
01327610 5836 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5837 *
5838 * This is called when we are freeing up an outstanding extent, either called
5839 * after an error or after an extent is written. This will return the number of
5840 * reserved extents that need to be freed. This must be called with
5841 * BTRFS_I(inode)->lock held.
5842 */
dcab6a3b 5843static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5844{
7fd2ae21 5845 unsigned drop_inode_space = 0;
9e0baf60 5846 unsigned dropped_extents = 0;
dcab6a3b 5847 unsigned num_extents = 0;
9e0baf60 5848
dcab6a3b
JB
5849 num_extents = (unsigned)div64_u64(num_bytes +
5850 BTRFS_MAX_EXTENT_SIZE - 1,
5851 BTRFS_MAX_EXTENT_SIZE);
5852 ASSERT(num_extents);
5853 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5854 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5855
7fd2ae21 5856 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5857 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5858 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5859 drop_inode_space = 1;
7fd2ae21 5860
9e0baf60 5861 /*
01327610 5862 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5863 * reserved then we need to leave the reserved extents count alone.
5864 */
5865 if (BTRFS_I(inode)->outstanding_extents >=
5866 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5867 return drop_inode_space;
9e0baf60
JB
5868
5869 dropped_extents = BTRFS_I(inode)->reserved_extents -
5870 BTRFS_I(inode)->outstanding_extents;
5871 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5872 return dropped_extents + drop_inode_space;
9e0baf60
JB
5873}
5874
7709cde3 5875/**
01327610
NS
5876 * calc_csum_metadata_size - return the amount of metadata space that must be
5877 * reserved/freed for the given bytes.
7709cde3
JB
5878 * @inode: the inode we're manipulating
5879 * @num_bytes: the number of bytes in question
5880 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5881 *
5882 * This adjusts the number of csum_bytes in the inode and then returns the
5883 * correct amount of metadata that must either be reserved or freed. We
5884 * calculate how many checksums we can fit into one leaf and then divide the
5885 * number of bytes that will need to be checksumed by this value to figure out
5886 * how many checksums will be required. If we are adding bytes then the number
5887 * may go up and we will return the number of additional bytes that must be
5888 * reserved. If it is going down we will return the number of bytes that must
5889 * be freed.
5890 *
5891 * This must be called with BTRFS_I(inode)->lock held.
5892 */
5893static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5894 int reserve)
6324fbf3 5895{
7709cde3 5896 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5897 u64 old_csums, num_csums;
7709cde3
JB
5898
5899 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5900 BTRFS_I(inode)->csum_bytes == 0)
5901 return 0;
5902
28f75a0e 5903 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5904 if (reserve)
5905 BTRFS_I(inode)->csum_bytes += num_bytes;
5906 else
5907 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5908 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5909
5910 /* No change, no need to reserve more */
5911 if (old_csums == num_csums)
5912 return 0;
5913
5914 if (reserve)
5915 return btrfs_calc_trans_metadata_size(root,
5916 num_csums - old_csums);
5917
5918 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5919}
c146afad 5920
0ca1f7ce
YZ
5921int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5922{
5923 struct btrfs_root *root = BTRFS_I(inode)->root;
5924 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5925 u64 to_reserve = 0;
660d3f6c 5926 u64 csum_bytes;
9e0baf60 5927 unsigned nr_extents = 0;
08e007d2 5928 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5929 int ret = 0;
c64c2bd8 5930 bool delalloc_lock = true;
88e081bf
WS
5931 u64 to_free = 0;
5932 unsigned dropped;
48c3d480 5933 bool release_extra = false;
6324fbf3 5934
c64c2bd8
JB
5935 /* If we are a free space inode we need to not flush since we will be in
5936 * the middle of a transaction commit. We also don't need the delalloc
5937 * mutex since we won't race with anybody. We need this mostly to make
5938 * lockdep shut its filthy mouth.
bac357dc
JB
5939 *
5940 * If we have a transaction open (can happen if we call truncate_block
5941 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5942 */
5943 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5944 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5945 delalloc_lock = false;
bac357dc
JB
5946 } else if (current->journal_info) {
5947 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5948 }
c09544e0 5949
08e007d2
MX
5950 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5951 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5952 schedule_timeout(1);
ec44a35c 5953
c64c2bd8
JB
5954 if (delalloc_lock)
5955 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5956
0ca1f7ce 5957 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5958
9e0baf60 5959 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5960 nr_extents = (unsigned)div64_u64(num_bytes +
5961 BTRFS_MAX_EXTENT_SIZE - 1,
5962 BTRFS_MAX_EXTENT_SIZE);
5963 BTRFS_I(inode)->outstanding_extents += nr_extents;
9e0baf60 5964
48c3d480 5965 nr_extents = 0;
9e0baf60 5966 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5967 BTRFS_I(inode)->reserved_extents)
48c3d480 5968 nr_extents += BTRFS_I(inode)->outstanding_extents -
9e0baf60 5969 BTRFS_I(inode)->reserved_extents;
57a45ced 5970
48c3d480
JB
5971 /* We always want to reserve a slot for updating the inode. */
5972 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
7709cde3 5973 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5974 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5975 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5976
88e081bf 5977 if (root->fs_info->quota_enabled) {
7174109c
QW
5978 ret = btrfs_qgroup_reserve_meta(root,
5979 nr_extents * root->nodesize);
88e081bf
WS
5980 if (ret)
5981 goto out_fail;
5982 }
c5567237 5983
48c3d480 5984 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 5985 if (unlikely(ret)) {
7174109c 5986 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5987 goto out_fail;
9e0baf60 5988 }
25179201 5989
660d3f6c 5990 spin_lock(&BTRFS_I(inode)->lock);
48c3d480 5991 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
f485c9ee
JB
5992 &BTRFS_I(inode)->runtime_flags)) {
5993 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
48c3d480 5994 release_extra = true;
660d3f6c
JB
5995 }
5996 BTRFS_I(inode)->reserved_extents += nr_extents;
5997 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5998
5999 if (delalloc_lock)
6000 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 6001
8c2a3ca2 6002 if (to_reserve)
67871254 6003 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 6004 btrfs_ino(inode), to_reserve, 1);
48c3d480
JB
6005 if (release_extra)
6006 btrfs_block_rsv_release(root, block_rsv,
6007 btrfs_calc_trans_metadata_size(root,
6008 1));
0ca1f7ce 6009 return 0;
88e081bf
WS
6010
6011out_fail:
6012 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6013 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6014 /*
6015 * If the inodes csum_bytes is the same as the original
6016 * csum_bytes then we know we haven't raced with any free()ers
6017 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6018 */
f4881bc7 6019 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 6020 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
6021 } else {
6022 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6023 u64 bytes;
6024
6025 /*
6026 * This is tricky, but first we need to figure out how much we
01327610 6027 * freed from any free-ers that occurred during this
f4881bc7
JB
6028 * reservation, so we reset ->csum_bytes to the csum_bytes
6029 * before we dropped our lock, and then call the free for the
6030 * number of bytes that were freed while we were trying our
6031 * reservation.
6032 */
6033 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6034 BTRFS_I(inode)->csum_bytes = csum_bytes;
6035 to_free = calc_csum_metadata_size(inode, bytes, 0);
6036
6037
6038 /*
6039 * Now we need to see how much we would have freed had we not
6040 * been making this reservation and our ->csum_bytes were not
6041 * artificially inflated.
6042 */
6043 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6044 bytes = csum_bytes - orig_csum_bytes;
6045 bytes = calc_csum_metadata_size(inode, bytes, 0);
6046
6047 /*
6048 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6049 * more than to_free then we would have freed more space had we
f4881bc7
JB
6050 * not had an artificially high ->csum_bytes, so we need to free
6051 * the remainder. If bytes is the same or less then we don't
6052 * need to do anything, the other free-ers did the correct
6053 * thing.
6054 */
6055 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6056 if (bytes > to_free)
6057 to_free = bytes - to_free;
6058 else
6059 to_free = 0;
6060 }
88e081bf 6061 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 6062 if (dropped)
88e081bf
WS
6063 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6064
6065 if (to_free) {
6066 btrfs_block_rsv_release(root, block_rsv, to_free);
6067 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6068 btrfs_ino(inode), to_free, 0);
6069 }
6070 if (delalloc_lock)
6071 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6072 return ret;
0ca1f7ce
YZ
6073}
6074
7709cde3
JB
6075/**
6076 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6077 * @inode: the inode to release the reservation for
6078 * @num_bytes: the number of bytes we're releasing
6079 *
6080 * This will release the metadata reservation for an inode. This can be called
6081 * once we complete IO for a given set of bytes to release their metadata
6082 * reservations.
6083 */
0ca1f7ce
YZ
6084void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6085{
6086 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
6087 u64 to_free = 0;
6088 unsigned dropped;
0ca1f7ce
YZ
6089
6090 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 6091 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6092 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6093
0934856d
MX
6094 if (num_bytes)
6095 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 6096 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
6097 if (dropped > 0)
6098 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 6099
f5ee5c9a 6100 if (btrfs_is_testing(root->fs_info))
6a3891c5
JB
6101 return;
6102
8c2a3ca2
JB
6103 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6104 btrfs_ino(inode), to_free, 0);
c5567237 6105
0ca1f7ce
YZ
6106 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6107 to_free);
6108}
6109
1ada3a62 6110/**
7cf5b976 6111 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6112 * delalloc
6113 * @inode: inode we're writing to
6114 * @start: start range we are writing to
6115 * @len: how long the range we are writing to
6116 *
6117 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6118 *
6119 * This will do the following things
6120 *
6121 * o reserve space in data space info for num bytes
6122 * and reserve precious corresponding qgroup space
6123 * (Done in check_data_free_space)
6124 *
6125 * o reserve space for metadata space, based on the number of outstanding
6126 * extents and how much csums will be needed
6127 * also reserve metadata space in a per root over-reserve method.
6128 * o add to the inodes->delalloc_bytes
6129 * o add it to the fs_info's delalloc inodes list.
6130 * (Above 3 all done in delalloc_reserve_metadata)
6131 *
6132 * Return 0 for success
6133 * Return <0 for error(-ENOSPC or -EQUOT)
6134 */
7cf5b976 6135int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6136{
6137 int ret;
6138
7cf5b976 6139 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6140 if (ret < 0)
6141 return ret;
6142 ret = btrfs_delalloc_reserve_metadata(inode, len);
6143 if (ret < 0)
7cf5b976 6144 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6145 return ret;
6146}
6147
7709cde3 6148/**
7cf5b976 6149 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6150 * @inode: inode we're releasing space for
6151 * @start: start position of the space already reserved
6152 * @len: the len of the space already reserved
6153 *
6154 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6155 * called in the case that we don't need the metadata AND data reservations
6156 * anymore. So if there is an error or we insert an inline extent.
6157 *
6158 * This function will release the metadata space that was not used and will
6159 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6160 * list if there are no delalloc bytes left.
6161 * Also it will handle the qgroup reserved space.
6162 */
7cf5b976 6163void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6164{
6165 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 6166 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6167}
6168
ce93ec54
JB
6169static int update_block_group(struct btrfs_trans_handle *trans,
6170 struct btrfs_root *root, u64 bytenr,
6171 u64 num_bytes, int alloc)
9078a3e1 6172{
0af3d00b 6173 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 6174 struct btrfs_fs_info *info = root->fs_info;
db94535d 6175 u64 total = num_bytes;
9078a3e1 6176 u64 old_val;
db94535d 6177 u64 byte_in_group;
0af3d00b 6178 int factor;
3e1ad54f 6179
5d4f98a2 6180 /* block accounting for super block */
eb73c1b7 6181 spin_lock(&info->delalloc_root_lock);
6c41761f 6182 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6183 if (alloc)
6184 old_val += num_bytes;
6185 else
6186 old_val -= num_bytes;
6c41761f 6187 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6188 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6189
d397712b 6190 while (total) {
db94535d 6191 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6192 if (!cache)
79787eaa 6193 return -ENOENT;
b742bb82
YZ
6194 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6195 BTRFS_BLOCK_GROUP_RAID1 |
6196 BTRFS_BLOCK_GROUP_RAID10))
6197 factor = 2;
6198 else
6199 factor = 1;
9d66e233
JB
6200 /*
6201 * If this block group has free space cache written out, we
6202 * need to make sure to load it if we are removing space. This
6203 * is because we need the unpinning stage to actually add the
6204 * space back to the block group, otherwise we will leak space.
6205 */
6206 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6207 cache_block_group(cache, 1);
0af3d00b 6208
db94535d
CM
6209 byte_in_group = bytenr - cache->key.objectid;
6210 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6211
25179201 6212 spin_lock(&cache->space_info->lock);
c286ac48 6213 spin_lock(&cache->lock);
0af3d00b 6214
3cdde224 6215 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
0af3d00b
JB
6216 cache->disk_cache_state < BTRFS_DC_CLEAR)
6217 cache->disk_cache_state = BTRFS_DC_CLEAR;
6218
9078a3e1 6219 old_val = btrfs_block_group_used(&cache->item);
db94535d 6220 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6221 if (alloc) {
db94535d 6222 old_val += num_bytes;
11833d66
YZ
6223 btrfs_set_block_group_used(&cache->item, old_val);
6224 cache->reserved -= num_bytes;
11833d66 6225 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6226 cache->space_info->bytes_used += num_bytes;
6227 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6228 spin_unlock(&cache->lock);
25179201 6229 spin_unlock(&cache->space_info->lock);
cd1bc465 6230 } else {
db94535d 6231 old_val -= num_bytes;
ae0ab003
FM
6232 btrfs_set_block_group_used(&cache->item, old_val);
6233 cache->pinned += num_bytes;
6234 cache->space_info->bytes_pinned += num_bytes;
6235 cache->space_info->bytes_used -= num_bytes;
6236 cache->space_info->disk_used -= num_bytes * factor;
6237 spin_unlock(&cache->lock);
6238 spin_unlock(&cache->space_info->lock);
47ab2a6c 6239
c51e7bb1
JB
6240 trace_btrfs_space_reservation(root->fs_info, "pinned",
6241 cache->space_info->flags,
6242 num_bytes, 1);
ae0ab003
FM
6243 set_extent_dirty(info->pinned_extents,
6244 bytenr, bytenr + num_bytes - 1,
6245 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6246 }
1bbc621e
CM
6247
6248 spin_lock(&trans->transaction->dirty_bgs_lock);
6249 if (list_empty(&cache->dirty_list)) {
6250 list_add_tail(&cache->dirty_list,
6251 &trans->transaction->dirty_bgs);
6252 trans->transaction->num_dirty_bgs++;
6253 btrfs_get_block_group(cache);
6254 }
6255 spin_unlock(&trans->transaction->dirty_bgs_lock);
6256
036a9348
FM
6257 /*
6258 * No longer have used bytes in this block group, queue it for
6259 * deletion. We do this after adding the block group to the
6260 * dirty list to avoid races between cleaner kthread and space
6261 * cache writeout.
6262 */
6263 if (!alloc && old_val == 0) {
6264 spin_lock(&info->unused_bgs_lock);
6265 if (list_empty(&cache->bg_list)) {
6266 btrfs_get_block_group(cache);
6267 list_add_tail(&cache->bg_list,
6268 &info->unused_bgs);
6269 }
6270 spin_unlock(&info->unused_bgs_lock);
6271 }
6272
fa9c0d79 6273 btrfs_put_block_group(cache);
db94535d
CM
6274 total -= num_bytes;
6275 bytenr += num_bytes;
9078a3e1
CM
6276 }
6277 return 0;
6278}
6324fbf3 6279
a061fc8d
CM
6280static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6281{
0f9dd46c 6282 struct btrfs_block_group_cache *cache;
d2fb3437 6283 u64 bytenr;
0f9dd46c 6284
a1897fdd
LB
6285 spin_lock(&root->fs_info->block_group_cache_lock);
6286 bytenr = root->fs_info->first_logical_byte;
6287 spin_unlock(&root->fs_info->block_group_cache_lock);
6288
6289 if (bytenr < (u64)-1)
6290 return bytenr;
6291
0f9dd46c
JB
6292 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6293 if (!cache)
a061fc8d 6294 return 0;
0f9dd46c 6295
d2fb3437 6296 bytenr = cache->key.objectid;
fa9c0d79 6297 btrfs_put_block_group(cache);
d2fb3437
YZ
6298
6299 return bytenr;
a061fc8d
CM
6300}
6301
f0486c68
YZ
6302static int pin_down_extent(struct btrfs_root *root,
6303 struct btrfs_block_group_cache *cache,
6304 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6305{
11833d66
YZ
6306 spin_lock(&cache->space_info->lock);
6307 spin_lock(&cache->lock);
6308 cache->pinned += num_bytes;
6309 cache->space_info->bytes_pinned += num_bytes;
6310 if (reserved) {
6311 cache->reserved -= num_bytes;
6312 cache->space_info->bytes_reserved -= num_bytes;
6313 }
6314 spin_unlock(&cache->lock);
6315 spin_unlock(&cache->space_info->lock);
68b38550 6316
c51e7bb1
JB
6317 trace_btrfs_space_reservation(root->fs_info, "pinned",
6318 cache->space_info->flags, num_bytes, 1);
f0486c68
YZ
6319 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6320 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6321 return 0;
6322}
68b38550 6323
f0486c68
YZ
6324/*
6325 * this function must be called within transaction
6326 */
6327int btrfs_pin_extent(struct btrfs_root *root,
6328 u64 bytenr, u64 num_bytes, int reserved)
6329{
6330 struct btrfs_block_group_cache *cache;
68b38550 6331
f0486c68 6332 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6333 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6334
6335 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6336
6337 btrfs_put_block_group(cache);
11833d66
YZ
6338 return 0;
6339}
6340
f0486c68 6341/*
e688b725
CM
6342 * this function must be called within transaction
6343 */
dcfac415 6344int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6345 u64 bytenr, u64 num_bytes)
6346{
6347 struct btrfs_block_group_cache *cache;
b50c6e25 6348 int ret;
e688b725
CM
6349
6350 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6351 if (!cache)
6352 return -EINVAL;
e688b725
CM
6353
6354 /*
6355 * pull in the free space cache (if any) so that our pin
6356 * removes the free space from the cache. We have load_only set
6357 * to one because the slow code to read in the free extents does check
6358 * the pinned extents.
6359 */
f6373bf3 6360 cache_block_group(cache, 1);
e688b725
CM
6361
6362 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6363
6364 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6365 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6366 btrfs_put_block_group(cache);
b50c6e25 6367 return ret;
e688b725
CM
6368}
6369
8c2a1a30
JB
6370static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6371{
6372 int ret;
6373 struct btrfs_block_group_cache *block_group;
6374 struct btrfs_caching_control *caching_ctl;
6375
6376 block_group = btrfs_lookup_block_group(root->fs_info, start);
6377 if (!block_group)
6378 return -EINVAL;
6379
6380 cache_block_group(block_group, 0);
6381 caching_ctl = get_caching_control(block_group);
6382
6383 if (!caching_ctl) {
6384 /* Logic error */
6385 BUG_ON(!block_group_cache_done(block_group));
6386 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6387 } else {
6388 mutex_lock(&caching_ctl->mutex);
6389
6390 if (start >= caching_ctl->progress) {
6391 ret = add_excluded_extent(root, start, num_bytes);
6392 } else if (start + num_bytes <= caching_ctl->progress) {
6393 ret = btrfs_remove_free_space(block_group,
6394 start, num_bytes);
6395 } else {
6396 num_bytes = caching_ctl->progress - start;
6397 ret = btrfs_remove_free_space(block_group,
6398 start, num_bytes);
6399 if (ret)
6400 goto out_lock;
6401
6402 num_bytes = (start + num_bytes) -
6403 caching_ctl->progress;
6404 start = caching_ctl->progress;
6405 ret = add_excluded_extent(root, start, num_bytes);
6406 }
6407out_lock:
6408 mutex_unlock(&caching_ctl->mutex);
6409 put_caching_control(caching_ctl);
6410 }
6411 btrfs_put_block_group(block_group);
6412 return ret;
6413}
6414
6415int btrfs_exclude_logged_extents(struct btrfs_root *log,
6416 struct extent_buffer *eb)
6417{
6418 struct btrfs_file_extent_item *item;
6419 struct btrfs_key key;
6420 int found_type;
6421 int i;
6422
6423 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6424 return 0;
6425
6426 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6427 btrfs_item_key_to_cpu(eb, &key, i);
6428 if (key.type != BTRFS_EXTENT_DATA_KEY)
6429 continue;
6430 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6431 found_type = btrfs_file_extent_type(eb, item);
6432 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6433 continue;
6434 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6435 continue;
6436 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6437 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6438 __exclude_logged_extent(log, key.objectid, key.offset);
6439 }
6440
6441 return 0;
6442}
6443
9cfa3e34
FM
6444static void
6445btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6446{
6447 atomic_inc(&bg->reservations);
6448}
6449
6450void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6451 const u64 start)
6452{
6453 struct btrfs_block_group_cache *bg;
6454
6455 bg = btrfs_lookup_block_group(fs_info, start);
6456 ASSERT(bg);
6457 if (atomic_dec_and_test(&bg->reservations))
6458 wake_up_atomic_t(&bg->reservations);
6459 btrfs_put_block_group(bg);
6460}
6461
6462static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6463{
6464 schedule();
6465 return 0;
6466}
6467
6468void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6469{
6470 struct btrfs_space_info *space_info = bg->space_info;
6471
6472 ASSERT(bg->ro);
6473
6474 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6475 return;
6476
6477 /*
6478 * Our block group is read only but before we set it to read only,
6479 * some task might have had allocated an extent from it already, but it
6480 * has not yet created a respective ordered extent (and added it to a
6481 * root's list of ordered extents).
6482 * Therefore wait for any task currently allocating extents, since the
6483 * block group's reservations counter is incremented while a read lock
6484 * on the groups' semaphore is held and decremented after releasing
6485 * the read access on that semaphore and creating the ordered extent.
6486 */
6487 down_write(&space_info->groups_sem);
6488 up_write(&space_info->groups_sem);
6489
6490 wait_on_atomic_t(&bg->reservations,
6491 btrfs_wait_bg_reservations_atomic_t,
6492 TASK_UNINTERRUPTIBLE);
6493}
6494
fb25e914 6495/**
4824f1f4 6496 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6497 * @cache: The cache we are manipulating
18513091
WX
6498 * @ram_bytes: The number of bytes of file content, and will be same to
6499 * @num_bytes except for the compress path.
fb25e914 6500 * @num_bytes: The number of bytes in question
e570fd27 6501 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6502 *
4824f1f4
WX
6503 * This is called by the allocator when it reserves space. Metadata
6504 * reservations should be called with RESERVE_ALLOC so we do the proper
fb25e914
JB
6505 * ENOSPC accounting. For data we handle the reservation through clearing the
6506 * delalloc bits in the io_tree. We have to do this since we could end up
6507 * allocating less disk space for the amount of data we have reserved in the
6508 * case of compression.
6509 *
6510 * If this is a reservation and the block group has become read only we cannot
6511 * make the reservation and return -EAGAIN, otherwise this function always
6512 * succeeds.
f0486c68 6513 */
4824f1f4 6514static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6515 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6516{
fb25e914 6517 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6518 int ret = 0;
79787eaa 6519
fb25e914
JB
6520 spin_lock(&space_info->lock);
6521 spin_lock(&cache->lock);
4824f1f4
WX
6522 if (cache->ro) {
6523 ret = -EAGAIN;
fb25e914 6524 } else {
4824f1f4
WX
6525 cache->reserved += num_bytes;
6526 space_info->bytes_reserved += num_bytes;
e570fd27 6527
18513091
WX
6528 trace_btrfs_space_reservation(cache->fs_info,
6529 "space_info", space_info->flags,
6530 ram_bytes, 0);
6531 space_info->bytes_may_use -= ram_bytes;
e570fd27 6532 if (delalloc)
4824f1f4 6533 cache->delalloc_bytes += num_bytes;
324ae4df 6534 }
fb25e914
JB
6535 spin_unlock(&cache->lock);
6536 spin_unlock(&space_info->lock);
f0486c68 6537 return ret;
324ae4df 6538}
9078a3e1 6539
4824f1f4
WX
6540/**
6541 * btrfs_free_reserved_bytes - update the block_group and space info counters
6542 * @cache: The cache we are manipulating
6543 * @num_bytes: The number of bytes in question
6544 * @delalloc: The blocks are allocated for the delalloc write
6545 *
6546 * This is called by somebody who is freeing space that was never actually used
6547 * on disk. For example if you reserve some space for a new leaf in transaction
6548 * A and before transaction A commits you free that leaf, you call this with
6549 * reserve set to 0 in order to clear the reservation.
6550 */
6551
6552static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6553 u64 num_bytes, int delalloc)
6554{
6555 struct btrfs_space_info *space_info = cache->space_info;
6556 int ret = 0;
6557
6558 spin_lock(&space_info->lock);
6559 spin_lock(&cache->lock);
6560 if (cache->ro)
6561 space_info->bytes_readonly += num_bytes;
6562 cache->reserved -= num_bytes;
6563 space_info->bytes_reserved -= num_bytes;
6564
6565 if (delalloc)
6566 cache->delalloc_bytes -= num_bytes;
6567 spin_unlock(&cache->lock);
6568 spin_unlock(&space_info->lock);
6569 return ret;
6570}
143bede5 6571void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6572 struct btrfs_root *root)
e8569813 6573{
e8569813 6574 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6575 struct btrfs_caching_control *next;
6576 struct btrfs_caching_control *caching_ctl;
6577 struct btrfs_block_group_cache *cache;
e8569813 6578
9e351cc8 6579 down_write(&fs_info->commit_root_sem);
25179201 6580
11833d66
YZ
6581 list_for_each_entry_safe(caching_ctl, next,
6582 &fs_info->caching_block_groups, list) {
6583 cache = caching_ctl->block_group;
6584 if (block_group_cache_done(cache)) {
6585 cache->last_byte_to_unpin = (u64)-1;
6586 list_del_init(&caching_ctl->list);
6587 put_caching_control(caching_ctl);
e8569813 6588 } else {
11833d66 6589 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6590 }
e8569813 6591 }
11833d66
YZ
6592
6593 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6594 fs_info->pinned_extents = &fs_info->freed_extents[1];
6595 else
6596 fs_info->pinned_extents = &fs_info->freed_extents[0];
6597
9e351cc8 6598 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6599
6600 update_global_block_rsv(fs_info);
e8569813
ZY
6601}
6602
c759c4e1
JB
6603/*
6604 * Returns the free cluster for the given space info and sets empty_cluster to
6605 * what it should be based on the mount options.
6606 */
6607static struct btrfs_free_cluster *
6608fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6609 u64 *empty_cluster)
6610{
6611 struct btrfs_free_cluster *ret = NULL;
3cdde224 6612 bool ssd = btrfs_test_opt(root->fs_info, SSD);
c759c4e1
JB
6613
6614 *empty_cluster = 0;
6615 if (btrfs_mixed_space_info(space_info))
6616 return ret;
6617
6618 if (ssd)
ee22184b 6619 *empty_cluster = SZ_2M;
c759c4e1
JB
6620 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6621 ret = &root->fs_info->meta_alloc_cluster;
6622 if (!ssd)
ee22184b 6623 *empty_cluster = SZ_64K;
c759c4e1
JB
6624 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6625 ret = &root->fs_info->data_alloc_cluster;
6626 }
6627
6628 return ret;
6629}
6630
678886bd
FM
6631static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6632 const bool return_free_space)
ccd467d6 6633{
11833d66
YZ
6634 struct btrfs_fs_info *fs_info = root->fs_info;
6635 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6636 struct btrfs_space_info *space_info;
6637 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6638 struct btrfs_free_cluster *cluster = NULL;
11833d66 6639 u64 len;
c759c4e1
JB
6640 u64 total_unpinned = 0;
6641 u64 empty_cluster = 0;
7b398f8e 6642 bool readonly;
ccd467d6 6643
11833d66 6644 while (start <= end) {
7b398f8e 6645 readonly = false;
11833d66
YZ
6646 if (!cache ||
6647 start >= cache->key.objectid + cache->key.offset) {
6648 if (cache)
6649 btrfs_put_block_group(cache);
c759c4e1 6650 total_unpinned = 0;
11833d66 6651 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6652 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6653
6654 cluster = fetch_cluster_info(root,
6655 cache->space_info,
6656 &empty_cluster);
6657 empty_cluster <<= 1;
11833d66
YZ
6658 }
6659
6660 len = cache->key.objectid + cache->key.offset - start;
6661 len = min(len, end + 1 - start);
6662
6663 if (start < cache->last_byte_to_unpin) {
6664 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6665 if (return_free_space)
6666 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6667 }
6668
f0486c68 6669 start += len;
c759c4e1 6670 total_unpinned += len;
7b398f8e 6671 space_info = cache->space_info;
f0486c68 6672
c759c4e1
JB
6673 /*
6674 * If this space cluster has been marked as fragmented and we've
6675 * unpinned enough in this block group to potentially allow a
6676 * cluster to be created inside of it go ahead and clear the
6677 * fragmented check.
6678 */
6679 if (cluster && cluster->fragmented &&
6680 total_unpinned > empty_cluster) {
6681 spin_lock(&cluster->lock);
6682 cluster->fragmented = 0;
6683 spin_unlock(&cluster->lock);
6684 }
6685
7b398f8e 6686 spin_lock(&space_info->lock);
11833d66
YZ
6687 spin_lock(&cache->lock);
6688 cache->pinned -= len;
7b398f8e 6689 space_info->bytes_pinned -= len;
c51e7bb1
JB
6690
6691 trace_btrfs_space_reservation(fs_info, "pinned",
6692 space_info->flags, len, 0);
4f4db217 6693 space_info->max_extent_size = 0;
d288db5d 6694 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6695 if (cache->ro) {
6696 space_info->bytes_readonly += len;
6697 readonly = true;
6698 }
11833d66 6699 spin_unlock(&cache->lock);
957780eb
JB
6700 if (!readonly && return_free_space &&
6701 global_rsv->space_info == space_info) {
6702 u64 to_add = len;
6703 WARN_ON(!return_free_space);
7b398f8e
JB
6704 spin_lock(&global_rsv->lock);
6705 if (!global_rsv->full) {
957780eb
JB
6706 to_add = min(len, global_rsv->size -
6707 global_rsv->reserved);
6708 global_rsv->reserved += to_add;
6709 space_info->bytes_may_use += to_add;
7b398f8e
JB
6710 if (global_rsv->reserved >= global_rsv->size)
6711 global_rsv->full = 1;
957780eb
JB
6712 trace_btrfs_space_reservation(fs_info,
6713 "space_info",
6714 space_info->flags,
6715 to_add, 1);
6716 len -= to_add;
7b398f8e
JB
6717 }
6718 spin_unlock(&global_rsv->lock);
957780eb
JB
6719 /* Add to any tickets we may have */
6720 if (len)
6721 space_info_add_new_bytes(fs_info, space_info,
6722 len);
7b398f8e
JB
6723 }
6724 spin_unlock(&space_info->lock);
ccd467d6 6725 }
11833d66
YZ
6726
6727 if (cache)
6728 btrfs_put_block_group(cache);
ccd467d6
CM
6729 return 0;
6730}
6731
6732int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6733 struct btrfs_root *root)
a28ec197 6734{
11833d66 6735 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6736 struct btrfs_block_group_cache *block_group, *tmp;
6737 struct list_head *deleted_bgs;
11833d66 6738 struct extent_io_tree *unpin;
1a5bc167
CM
6739 u64 start;
6740 u64 end;
a28ec197 6741 int ret;
a28ec197 6742
11833d66
YZ
6743 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6744 unpin = &fs_info->freed_extents[1];
6745 else
6746 unpin = &fs_info->freed_extents[0];
6747
e33e17ee 6748 while (!trans->aborted) {
d4b450cd 6749 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6750 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6751 EXTENT_DIRTY, NULL);
d4b450cd
FM
6752 if (ret) {
6753 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6754 break;
d4b450cd 6755 }
1f3c79a2 6756
3cdde224 6757 if (btrfs_test_opt(root->fs_info, DISCARD))
5378e607
LD
6758 ret = btrfs_discard_extent(root, start,
6759 end + 1 - start, NULL);
1f3c79a2 6760
af6f8f60 6761 clear_extent_dirty(unpin, start, end);
678886bd 6762 unpin_extent_range(root, start, end, true);
d4b450cd 6763 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6764 cond_resched();
a28ec197 6765 }
817d52f8 6766
e33e17ee
JM
6767 /*
6768 * Transaction is finished. We don't need the lock anymore. We
6769 * do need to clean up the block groups in case of a transaction
6770 * abort.
6771 */
6772 deleted_bgs = &trans->transaction->deleted_bgs;
6773 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6774 u64 trimmed = 0;
6775
6776 ret = -EROFS;
6777 if (!trans->aborted)
6778 ret = btrfs_discard_extent(root,
6779 block_group->key.objectid,
6780 block_group->key.offset,
6781 &trimmed);
6782
6783 list_del_init(&block_group->bg_list);
6784 btrfs_put_block_group_trimming(block_group);
6785 btrfs_put_block_group(block_group);
6786
6787 if (ret) {
6788 const char *errstr = btrfs_decode_error(ret);
6789 btrfs_warn(fs_info,
6790 "Discard failed while removing blockgroup: errno=%d %s\n",
6791 ret, errstr);
6792 }
6793 }
6794
e20d96d6
CM
6795 return 0;
6796}
6797
b150a4f1
JB
6798static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6799 u64 owner, u64 root_objectid)
6800{
6801 struct btrfs_space_info *space_info;
6802 u64 flags;
6803
6804 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6805 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6806 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6807 else
6808 flags = BTRFS_BLOCK_GROUP_METADATA;
6809 } else {
6810 flags = BTRFS_BLOCK_GROUP_DATA;
6811 }
6812
6813 space_info = __find_space_info(fs_info, flags);
6814 BUG_ON(!space_info); /* Logic bug */
6815 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6816}
6817
6818
5d4f98a2
YZ
6819static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6820 struct btrfs_root *root,
c682f9b3 6821 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6822 u64 root_objectid, u64 owner_objectid,
6823 u64 owner_offset, int refs_to_drop,
c682f9b3 6824 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6825{
e2fa7227 6826 struct btrfs_key key;
5d4f98a2 6827 struct btrfs_path *path;
1261ec42
CM
6828 struct btrfs_fs_info *info = root->fs_info;
6829 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6830 struct extent_buffer *leaf;
5d4f98a2
YZ
6831 struct btrfs_extent_item *ei;
6832 struct btrfs_extent_inline_ref *iref;
a28ec197 6833 int ret;
5d4f98a2 6834 int is_data;
952fccac
CM
6835 int extent_slot = 0;
6836 int found_extent = 0;
6837 int num_to_del = 1;
5d4f98a2
YZ
6838 u32 item_size;
6839 u64 refs;
c682f9b3
QW
6840 u64 bytenr = node->bytenr;
6841 u64 num_bytes = node->num_bytes;
fcebe456 6842 int last_ref = 0;
3173a18f
JB
6843 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6844 SKINNY_METADATA);
037e6390 6845
5caf2a00 6846 path = btrfs_alloc_path();
54aa1f4d
CM
6847 if (!path)
6848 return -ENOMEM;
5f26f772 6849
e4058b54 6850 path->reada = READA_FORWARD;
b9473439 6851 path->leave_spinning = 1;
5d4f98a2
YZ
6852
6853 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6854 BUG_ON(!is_data && refs_to_drop != 1);
6855
3173a18f
JB
6856 if (is_data)
6857 skinny_metadata = 0;
6858
5d4f98a2
YZ
6859 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6860 bytenr, num_bytes, parent,
6861 root_objectid, owner_objectid,
6862 owner_offset);
7bb86316 6863 if (ret == 0) {
952fccac 6864 extent_slot = path->slots[0];
5d4f98a2
YZ
6865 while (extent_slot >= 0) {
6866 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6867 extent_slot);
5d4f98a2 6868 if (key.objectid != bytenr)
952fccac 6869 break;
5d4f98a2
YZ
6870 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6871 key.offset == num_bytes) {
952fccac
CM
6872 found_extent = 1;
6873 break;
6874 }
3173a18f
JB
6875 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6876 key.offset == owner_objectid) {
6877 found_extent = 1;
6878 break;
6879 }
952fccac
CM
6880 if (path->slots[0] - extent_slot > 5)
6881 break;
5d4f98a2 6882 extent_slot--;
952fccac 6883 }
5d4f98a2
YZ
6884#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6885 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6886 if (found_extent && item_size < sizeof(*ei))
6887 found_extent = 0;
6888#endif
31840ae1 6889 if (!found_extent) {
5d4f98a2 6890 BUG_ON(iref);
56bec294 6891 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6892 NULL, refs_to_drop,
fcebe456 6893 is_data, &last_ref);
005d6427 6894 if (ret) {
66642832 6895 btrfs_abort_transaction(trans, ret);
005d6427
DS
6896 goto out;
6897 }
b3b4aa74 6898 btrfs_release_path(path);
b9473439 6899 path->leave_spinning = 1;
5d4f98a2
YZ
6900
6901 key.objectid = bytenr;
6902 key.type = BTRFS_EXTENT_ITEM_KEY;
6903 key.offset = num_bytes;
6904
3173a18f
JB
6905 if (!is_data && skinny_metadata) {
6906 key.type = BTRFS_METADATA_ITEM_KEY;
6907 key.offset = owner_objectid;
6908 }
6909
31840ae1
ZY
6910 ret = btrfs_search_slot(trans, extent_root,
6911 &key, path, -1, 1);
3173a18f
JB
6912 if (ret > 0 && skinny_metadata && path->slots[0]) {
6913 /*
6914 * Couldn't find our skinny metadata item,
6915 * see if we have ye olde extent item.
6916 */
6917 path->slots[0]--;
6918 btrfs_item_key_to_cpu(path->nodes[0], &key,
6919 path->slots[0]);
6920 if (key.objectid == bytenr &&
6921 key.type == BTRFS_EXTENT_ITEM_KEY &&
6922 key.offset == num_bytes)
6923 ret = 0;
6924 }
6925
6926 if (ret > 0 && skinny_metadata) {
6927 skinny_metadata = false;
9ce49a0b 6928 key.objectid = bytenr;
3173a18f
JB
6929 key.type = BTRFS_EXTENT_ITEM_KEY;
6930 key.offset = num_bytes;
6931 btrfs_release_path(path);
6932 ret = btrfs_search_slot(trans, extent_root,
6933 &key, path, -1, 1);
6934 }
6935
f3465ca4 6936 if (ret) {
c2cf52eb 6937 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6938 ret, bytenr);
b783e62d
JB
6939 if (ret > 0)
6940 btrfs_print_leaf(extent_root,
6941 path->nodes[0]);
f3465ca4 6942 }
005d6427 6943 if (ret < 0) {
66642832 6944 btrfs_abort_transaction(trans, ret);
005d6427
DS
6945 goto out;
6946 }
31840ae1
ZY
6947 extent_slot = path->slots[0];
6948 }
fae7f21c 6949 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6950 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6951 btrfs_err(info,
6952 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6953 bytenr, parent, root_objectid, owner_objectid,
6954 owner_offset);
66642832 6955 btrfs_abort_transaction(trans, ret);
c4a050bb 6956 goto out;
79787eaa 6957 } else {
66642832 6958 btrfs_abort_transaction(trans, ret);
005d6427 6959 goto out;
7bb86316 6960 }
5f39d397
CM
6961
6962 leaf = path->nodes[0];
5d4f98a2
YZ
6963 item_size = btrfs_item_size_nr(leaf, extent_slot);
6964#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6965 if (item_size < sizeof(*ei)) {
6966 BUG_ON(found_extent || extent_slot != path->slots[0]);
6967 ret = convert_extent_item_v0(trans, extent_root, path,
6968 owner_objectid, 0);
005d6427 6969 if (ret < 0) {
66642832 6970 btrfs_abort_transaction(trans, ret);
005d6427
DS
6971 goto out;
6972 }
5d4f98a2 6973
b3b4aa74 6974 btrfs_release_path(path);
5d4f98a2
YZ
6975 path->leave_spinning = 1;
6976
6977 key.objectid = bytenr;
6978 key.type = BTRFS_EXTENT_ITEM_KEY;
6979 key.offset = num_bytes;
6980
6981 ret = btrfs_search_slot(trans, extent_root, &key, path,
6982 -1, 1);
6983 if (ret) {
c2cf52eb 6984 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6985 ret, bytenr);
5d4f98a2
YZ
6986 btrfs_print_leaf(extent_root, path->nodes[0]);
6987 }
005d6427 6988 if (ret < 0) {
66642832 6989 btrfs_abort_transaction(trans, ret);
005d6427
DS
6990 goto out;
6991 }
6992
5d4f98a2
YZ
6993 extent_slot = path->slots[0];
6994 leaf = path->nodes[0];
6995 item_size = btrfs_item_size_nr(leaf, extent_slot);
6996 }
6997#endif
6998 BUG_ON(item_size < sizeof(*ei));
952fccac 6999 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7000 struct btrfs_extent_item);
3173a18f
JB
7001 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7002 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7003 struct btrfs_tree_block_info *bi;
7004 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7005 bi = (struct btrfs_tree_block_info *)(ei + 1);
7006 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7007 }
56bec294 7008
5d4f98a2 7009 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
7010 if (refs < refs_to_drop) {
7011 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 7012 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538 7013 ret = -EINVAL;
66642832 7014 btrfs_abort_transaction(trans, ret);
32b02538
JB
7015 goto out;
7016 }
56bec294 7017 refs -= refs_to_drop;
5f39d397 7018
5d4f98a2
YZ
7019 if (refs > 0) {
7020 if (extent_op)
7021 __run_delayed_extent_op(extent_op, leaf, ei);
7022 /*
7023 * In the case of inline back ref, reference count will
7024 * be updated by remove_extent_backref
952fccac 7025 */
5d4f98a2
YZ
7026 if (iref) {
7027 BUG_ON(!found_extent);
7028 } else {
7029 btrfs_set_extent_refs(leaf, ei, refs);
7030 btrfs_mark_buffer_dirty(leaf);
7031 }
7032 if (found_extent) {
7033 ret = remove_extent_backref(trans, extent_root, path,
7034 iref, refs_to_drop,
fcebe456 7035 is_data, &last_ref);
005d6427 7036 if (ret) {
66642832 7037 btrfs_abort_transaction(trans, ret);
005d6427
DS
7038 goto out;
7039 }
952fccac 7040 }
b150a4f1
JB
7041 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7042 root_objectid);
5d4f98a2 7043 } else {
5d4f98a2
YZ
7044 if (found_extent) {
7045 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7046 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7047 if (iref) {
7048 BUG_ON(path->slots[0] != extent_slot);
7049 } else {
7050 BUG_ON(path->slots[0] != extent_slot + 1);
7051 path->slots[0] = extent_slot;
7052 num_to_del = 2;
7053 }
78fae27e 7054 }
b9473439 7055
fcebe456 7056 last_ref = 1;
952fccac
CM
7057 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7058 num_to_del);
005d6427 7059 if (ret) {
66642832 7060 btrfs_abort_transaction(trans, ret);
005d6427
DS
7061 goto out;
7062 }
b3b4aa74 7063 btrfs_release_path(path);
21af804c 7064
5d4f98a2 7065 if (is_data) {
459931ec 7066 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427 7067 if (ret) {
66642832 7068 btrfs_abort_transaction(trans, ret);
005d6427
DS
7069 goto out;
7070 }
459931ec
CM
7071 }
7072
1e144fb8
OS
7073 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7074 num_bytes);
7075 if (ret) {
66642832 7076 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7077 goto out;
7078 }
7079
ce93ec54 7080 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427 7081 if (ret) {
66642832 7082 btrfs_abort_transaction(trans, ret);
005d6427
DS
7083 goto out;
7084 }
a28ec197 7085 }
fcebe456
JB
7086 btrfs_release_path(path);
7087
79787eaa 7088out:
5caf2a00 7089 btrfs_free_path(path);
a28ec197
CM
7090 return ret;
7091}
7092
1887be66 7093/*
f0486c68 7094 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7095 * delayed ref for that extent as well. This searches the delayed ref tree for
7096 * a given extent, and if there are no other delayed refs to be processed, it
7097 * removes it from the tree.
7098 */
7099static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7100 struct btrfs_root *root, u64 bytenr)
7101{
7102 struct btrfs_delayed_ref_head *head;
7103 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7104 int ret = 0;
1887be66
CM
7105
7106 delayed_refs = &trans->transaction->delayed_refs;
7107 spin_lock(&delayed_refs->lock);
7108 head = btrfs_find_delayed_ref_head(trans, bytenr);
7109 if (!head)
cf93da7b 7110 goto out_delayed_unlock;
1887be66 7111
d7df2c79 7112 spin_lock(&head->lock);
c6fc2454 7113 if (!list_empty(&head->ref_list))
1887be66
CM
7114 goto out;
7115
5d4f98a2
YZ
7116 if (head->extent_op) {
7117 if (!head->must_insert_reserved)
7118 goto out;
78a6184a 7119 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7120 head->extent_op = NULL;
7121 }
7122
1887be66
CM
7123 /*
7124 * waiting for the lock here would deadlock. If someone else has it
7125 * locked they are already in the process of dropping it anyway
7126 */
7127 if (!mutex_trylock(&head->mutex))
7128 goto out;
7129
7130 /*
7131 * at this point we have a head with no other entries. Go
7132 * ahead and process it.
7133 */
7134 head->node.in_tree = 0;
c46effa6 7135 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7136
d7df2c79 7137 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7138
7139 /*
7140 * we don't take a ref on the node because we're removing it from the
7141 * tree, so we just steal the ref the tree was holding.
7142 */
c3e69d58 7143 delayed_refs->num_heads--;
d7df2c79 7144 if (head->processing == 0)
c3e69d58 7145 delayed_refs->num_heads_ready--;
d7df2c79
JB
7146 head->processing = 0;
7147 spin_unlock(&head->lock);
1887be66
CM
7148 spin_unlock(&delayed_refs->lock);
7149
f0486c68
YZ
7150 BUG_ON(head->extent_op);
7151 if (head->must_insert_reserved)
7152 ret = 1;
7153
7154 mutex_unlock(&head->mutex);
1887be66 7155 btrfs_put_delayed_ref(&head->node);
f0486c68 7156 return ret;
1887be66 7157out:
d7df2c79 7158 spin_unlock(&head->lock);
cf93da7b
CM
7159
7160out_delayed_unlock:
1887be66
CM
7161 spin_unlock(&delayed_refs->lock);
7162 return 0;
7163}
7164
f0486c68
YZ
7165void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7166 struct btrfs_root *root,
7167 struct extent_buffer *buf,
5581a51a 7168 u64 parent, int last_ref)
f0486c68 7169{
b150a4f1 7170 int pin = 1;
f0486c68
YZ
7171 int ret;
7172
7173 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
7174 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7175 buf->start, buf->len,
7176 parent, root->root_key.objectid,
7177 btrfs_header_level(buf),
b06c4bf5 7178 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7179 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7180 }
7181
7182 if (!last_ref)
7183 return;
7184
f0486c68 7185 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7186 struct btrfs_block_group_cache *cache;
7187
f0486c68
YZ
7188 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7189 ret = check_ref_cleanup(trans, root, buf->start);
7190 if (!ret)
37be25bc 7191 goto out;
f0486c68
YZ
7192 }
7193
6219872d
FM
7194 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7195
f0486c68
YZ
7196 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7197 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 7198 btrfs_put_block_group(cache);
37be25bc 7199 goto out;
f0486c68
YZ
7200 }
7201
7202 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7203
7204 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7205 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7206 btrfs_put_block_group(cache);
0be5dc67 7207 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 7208 pin = 0;
f0486c68
YZ
7209 }
7210out:
b150a4f1
JB
7211 if (pin)
7212 add_pinned_bytes(root->fs_info, buf->len,
7213 btrfs_header_level(buf),
7214 root->root_key.objectid);
7215
a826d6dc
JB
7216 /*
7217 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7218 * anymore.
7219 */
7220 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7221}
7222
79787eaa 7223/* Can return -ENOMEM */
66d7e7f0
AJ
7224int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7225 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7226 u64 owner, u64 offset)
925baedd
CM
7227{
7228 int ret;
66d7e7f0 7229 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 7230
f5ee5c9a 7231 if (btrfs_is_testing(fs_info))
faa2dbf0 7232 return 0;
fccb84c9 7233
b150a4f1
JB
7234 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7235
56bec294
CM
7236 /*
7237 * tree log blocks never actually go into the extent allocation
7238 * tree, just update pinning info and exit early.
56bec294 7239 */
5d4f98a2
YZ
7240 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7241 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7242 /* unlocks the pinned mutex */
11833d66 7243 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7244 ret = 0;
5d4f98a2 7245 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7246 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7247 num_bytes,
5d4f98a2 7248 parent, root_objectid, (int)owner,
b06c4bf5 7249 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7250 } else {
66d7e7f0
AJ
7251 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7252 num_bytes,
7253 parent, root_objectid, owner,
5846a3c2
QW
7254 offset, 0,
7255 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7256 }
925baedd
CM
7257 return ret;
7258}
7259
817d52f8
JB
7260/*
7261 * when we wait for progress in the block group caching, its because
7262 * our allocation attempt failed at least once. So, we must sleep
7263 * and let some progress happen before we try again.
7264 *
7265 * This function will sleep at least once waiting for new free space to
7266 * show up, and then it will check the block group free space numbers
7267 * for our min num_bytes. Another option is to have it go ahead
7268 * and look in the rbtree for a free extent of a given size, but this
7269 * is a good start.
36cce922
JB
7270 *
7271 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7272 * any of the information in this block group.
817d52f8 7273 */
36cce922 7274static noinline void
817d52f8
JB
7275wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7276 u64 num_bytes)
7277{
11833d66 7278 struct btrfs_caching_control *caching_ctl;
817d52f8 7279
11833d66
YZ
7280 caching_ctl = get_caching_control(cache);
7281 if (!caching_ctl)
36cce922 7282 return;
817d52f8 7283
11833d66 7284 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7285 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7286
7287 put_caching_control(caching_ctl);
11833d66
YZ
7288}
7289
7290static noinline int
7291wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7292{
7293 struct btrfs_caching_control *caching_ctl;
36cce922 7294 int ret = 0;
11833d66
YZ
7295
7296 caching_ctl = get_caching_control(cache);
7297 if (!caching_ctl)
36cce922 7298 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7299
7300 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7301 if (cache->cached == BTRFS_CACHE_ERROR)
7302 ret = -EIO;
11833d66 7303 put_caching_control(caching_ctl);
36cce922 7304 return ret;
817d52f8
JB
7305}
7306
31e50229 7307int __get_raid_index(u64 flags)
b742bb82 7308{
7738a53a 7309 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7310 return BTRFS_RAID_RAID10;
7738a53a 7311 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7312 return BTRFS_RAID_RAID1;
7738a53a 7313 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7314 return BTRFS_RAID_DUP;
7738a53a 7315 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7316 return BTRFS_RAID_RAID0;
53b381b3 7317 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7318 return BTRFS_RAID_RAID5;
53b381b3 7319 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7320 return BTRFS_RAID_RAID6;
7738a53a 7321
e942f883 7322 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7323}
7324
6ab0a202 7325int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7326{
31e50229 7327 return __get_raid_index(cache->flags);
7738a53a
ID
7328}
7329
6ab0a202
JM
7330static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7331 [BTRFS_RAID_RAID10] = "raid10",
7332 [BTRFS_RAID_RAID1] = "raid1",
7333 [BTRFS_RAID_DUP] = "dup",
7334 [BTRFS_RAID_RAID0] = "raid0",
7335 [BTRFS_RAID_SINGLE] = "single",
7336 [BTRFS_RAID_RAID5] = "raid5",
7337 [BTRFS_RAID_RAID6] = "raid6",
7338};
7339
1b8e5df6 7340static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7341{
7342 if (type >= BTRFS_NR_RAID_TYPES)
7343 return NULL;
7344
7345 return btrfs_raid_type_names[type];
7346}
7347
817d52f8 7348enum btrfs_loop_type {
285ff5af
JB
7349 LOOP_CACHING_NOWAIT = 0,
7350 LOOP_CACHING_WAIT = 1,
7351 LOOP_ALLOC_CHUNK = 2,
7352 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7353};
7354
e570fd27
MX
7355static inline void
7356btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7357 int delalloc)
7358{
7359 if (delalloc)
7360 down_read(&cache->data_rwsem);
7361}
7362
7363static inline void
7364btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7365 int delalloc)
7366{
7367 btrfs_get_block_group(cache);
7368 if (delalloc)
7369 down_read(&cache->data_rwsem);
7370}
7371
7372static struct btrfs_block_group_cache *
7373btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7374 struct btrfs_free_cluster *cluster,
7375 int delalloc)
7376{
89771cc9 7377 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7378
e570fd27 7379 spin_lock(&cluster->refill_lock);
6719afdc
GU
7380 while (1) {
7381 used_bg = cluster->block_group;
7382 if (!used_bg)
7383 return NULL;
7384
7385 if (used_bg == block_group)
e570fd27
MX
7386 return used_bg;
7387
6719afdc 7388 btrfs_get_block_group(used_bg);
e570fd27 7389
6719afdc
GU
7390 if (!delalloc)
7391 return used_bg;
e570fd27 7392
6719afdc
GU
7393 if (down_read_trylock(&used_bg->data_rwsem))
7394 return used_bg;
e570fd27 7395
6719afdc 7396 spin_unlock(&cluster->refill_lock);
e570fd27 7397
6719afdc 7398 down_read(&used_bg->data_rwsem);
e570fd27 7399
6719afdc
GU
7400 spin_lock(&cluster->refill_lock);
7401 if (used_bg == cluster->block_group)
7402 return used_bg;
e570fd27 7403
6719afdc
GU
7404 up_read(&used_bg->data_rwsem);
7405 btrfs_put_block_group(used_bg);
7406 }
e570fd27
MX
7407}
7408
7409static inline void
7410btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7411 int delalloc)
7412{
7413 if (delalloc)
7414 up_read(&cache->data_rwsem);
7415 btrfs_put_block_group(cache);
7416}
7417
fec577fb
CM
7418/*
7419 * walks the btree of allocated extents and find a hole of a given size.
7420 * The key ins is changed to record the hole:
a4820398 7421 * ins->objectid == start position
62e2749e 7422 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7423 * ins->offset == the size of the hole.
fec577fb 7424 * Any available blocks before search_start are skipped.
a4820398
MX
7425 *
7426 * If there is no suitable free space, we will record the max size of
7427 * the free space extent currently.
fec577fb 7428 */
00361589 7429static noinline int find_free_extent(struct btrfs_root *orig_root,
18513091
WX
7430 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7431 u64 hint_byte, struct btrfs_key *ins,
7432 u64 flags, int delalloc)
fec577fb 7433{
80eb234a 7434 int ret = 0;
d397712b 7435 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7436 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7437 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7438 u64 search_start = 0;
a4820398 7439 u64 max_extent_size = 0;
c759c4e1 7440 u64 empty_cluster = 0;
80eb234a 7441 struct btrfs_space_info *space_info;
fa9c0d79 7442 int loop = 0;
b6919a58 7443 int index = __get_raid_index(flags);
0a24325e 7444 bool failed_cluster_refill = false;
1cdda9b8 7445 bool failed_alloc = false;
67377734 7446 bool use_cluster = true;
60d2adbb 7447 bool have_caching_bg = false;
13a0db5a 7448 bool orig_have_caching_bg = false;
a5e681d9 7449 bool full_search = false;
fec577fb 7450
db94535d 7451 WARN_ON(num_bytes < root->sectorsize);
962a298f 7452 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7453 ins->objectid = 0;
7454 ins->offset = 0;
b1a4d965 7455
b6919a58 7456 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7457
b6919a58 7458 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7459 if (!space_info) {
b6919a58 7460 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7461 return -ENOSPC;
7462 }
2552d17e 7463
67377734 7464 /*
4f4db217
JB
7465 * If our free space is heavily fragmented we may not be able to make
7466 * big contiguous allocations, so instead of doing the expensive search
7467 * for free space, simply return ENOSPC with our max_extent_size so we
7468 * can go ahead and search for a more manageable chunk.
7469 *
7470 * If our max_extent_size is large enough for our allocation simply
7471 * disable clustering since we will likely not be able to find enough
7472 * space to create a cluster and induce latency trying.
67377734 7473 */
4f4db217
JB
7474 if (unlikely(space_info->max_extent_size)) {
7475 spin_lock(&space_info->lock);
7476 if (space_info->max_extent_size &&
7477 num_bytes > space_info->max_extent_size) {
7478 ins->offset = space_info->max_extent_size;
7479 spin_unlock(&space_info->lock);
7480 return -ENOSPC;
7481 } else if (space_info->max_extent_size) {
7482 use_cluster = false;
7483 }
7484 spin_unlock(&space_info->lock);
fa9c0d79 7485 }
0f9dd46c 7486
c759c4e1 7487 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7488 if (last_ptr) {
fa9c0d79
CM
7489 spin_lock(&last_ptr->lock);
7490 if (last_ptr->block_group)
7491 hint_byte = last_ptr->window_start;
c759c4e1
JB
7492 if (last_ptr->fragmented) {
7493 /*
7494 * We still set window_start so we can keep track of the
7495 * last place we found an allocation to try and save
7496 * some time.
7497 */
7498 hint_byte = last_ptr->window_start;
7499 use_cluster = false;
7500 }
fa9c0d79 7501 spin_unlock(&last_ptr->lock);
239b14b3 7502 }
fa9c0d79 7503
a061fc8d 7504 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7505 search_start = max(search_start, hint_byte);
2552d17e 7506 if (search_start == hint_byte) {
2552d17e
JB
7507 block_group = btrfs_lookup_block_group(root->fs_info,
7508 search_start);
817d52f8
JB
7509 /*
7510 * we don't want to use the block group if it doesn't match our
7511 * allocation bits, or if its not cached.
ccf0e725
JB
7512 *
7513 * However if we are re-searching with an ideal block group
7514 * picked out then we don't care that the block group is cached.
817d52f8 7515 */
b6919a58 7516 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7517 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7518 down_read(&space_info->groups_sem);
44fb5511
CM
7519 if (list_empty(&block_group->list) ||
7520 block_group->ro) {
7521 /*
7522 * someone is removing this block group,
7523 * we can't jump into the have_block_group
7524 * target because our list pointers are not
7525 * valid
7526 */
7527 btrfs_put_block_group(block_group);
7528 up_read(&space_info->groups_sem);
ccf0e725 7529 } else {
b742bb82 7530 index = get_block_group_index(block_group);
e570fd27 7531 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7532 goto have_block_group;
ccf0e725 7533 }
2552d17e 7534 } else if (block_group) {
fa9c0d79 7535 btrfs_put_block_group(block_group);
2552d17e 7536 }
42e70e7a 7537 }
2552d17e 7538search:
60d2adbb 7539 have_caching_bg = false;
a5e681d9
JB
7540 if (index == 0 || index == __get_raid_index(flags))
7541 full_search = true;
80eb234a 7542 down_read(&space_info->groups_sem);
b742bb82
YZ
7543 list_for_each_entry(block_group, &space_info->block_groups[index],
7544 list) {
6226cb0a 7545 u64 offset;
817d52f8 7546 int cached;
8a1413a2 7547
e570fd27 7548 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7549 search_start = block_group->key.objectid;
42e70e7a 7550
83a50de9
CM
7551 /*
7552 * this can happen if we end up cycling through all the
7553 * raid types, but we want to make sure we only allocate
7554 * for the proper type.
7555 */
b6919a58 7556 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7557 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7558 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7559 BTRFS_BLOCK_GROUP_RAID5 |
7560 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7561 BTRFS_BLOCK_GROUP_RAID10;
7562
7563 /*
7564 * if they asked for extra copies and this block group
7565 * doesn't provide them, bail. This does allow us to
7566 * fill raid0 from raid1.
7567 */
b6919a58 7568 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7569 goto loop;
7570 }
7571
2552d17e 7572have_block_group:
291c7d2f
JB
7573 cached = block_group_cache_done(block_group);
7574 if (unlikely(!cached)) {
a5e681d9 7575 have_caching_bg = true;
f6373bf3 7576 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7577 BUG_ON(ret < 0);
7578 ret = 0;
817d52f8
JB
7579 }
7580
36cce922
JB
7581 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7582 goto loop;
ea6a478e 7583 if (unlikely(block_group->ro))
2552d17e 7584 goto loop;
0f9dd46c 7585
0a24325e 7586 /*
062c05c4
AO
7587 * Ok we want to try and use the cluster allocator, so
7588 * lets look there
0a24325e 7589 */
c759c4e1 7590 if (last_ptr && use_cluster) {
215a63d1 7591 struct btrfs_block_group_cache *used_block_group;
8de972b4 7592 unsigned long aligned_cluster;
fa9c0d79
CM
7593 /*
7594 * the refill lock keeps out other
7595 * people trying to start a new cluster
7596 */
e570fd27
MX
7597 used_block_group = btrfs_lock_cluster(block_group,
7598 last_ptr,
7599 delalloc);
7600 if (!used_block_group)
44fb5511 7601 goto refill_cluster;
274bd4fb 7602
e570fd27
MX
7603 if (used_block_group != block_group &&
7604 (used_block_group->ro ||
7605 !block_group_bits(used_block_group, flags)))
7606 goto release_cluster;
44fb5511 7607
274bd4fb 7608 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7609 last_ptr,
7610 num_bytes,
7611 used_block_group->key.objectid,
7612 &max_extent_size);
fa9c0d79
CM
7613 if (offset) {
7614 /* we have a block, we're done */
7615 spin_unlock(&last_ptr->refill_lock);
3f7de037 7616 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7617 used_block_group,
7618 search_start, num_bytes);
215a63d1 7619 if (used_block_group != block_group) {
e570fd27
MX
7620 btrfs_release_block_group(block_group,
7621 delalloc);
215a63d1
MX
7622 block_group = used_block_group;
7623 }
fa9c0d79
CM
7624 goto checks;
7625 }
7626
274bd4fb 7627 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7628release_cluster:
062c05c4
AO
7629 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7630 * set up a new clusters, so lets just skip it
7631 * and let the allocator find whatever block
7632 * it can find. If we reach this point, we
7633 * will have tried the cluster allocator
7634 * plenty of times and not have found
7635 * anything, so we are likely way too
7636 * fragmented for the clustering stuff to find
a5f6f719
AO
7637 * anything.
7638 *
7639 * However, if the cluster is taken from the
7640 * current block group, release the cluster
7641 * first, so that we stand a better chance of
7642 * succeeding in the unclustered
7643 * allocation. */
7644 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7645 used_block_group != block_group) {
062c05c4 7646 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7647 btrfs_release_block_group(used_block_group,
7648 delalloc);
062c05c4
AO
7649 goto unclustered_alloc;
7650 }
7651
fa9c0d79
CM
7652 /*
7653 * this cluster didn't work out, free it and
7654 * start over
7655 */
7656 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7657
e570fd27
MX
7658 if (used_block_group != block_group)
7659 btrfs_release_block_group(used_block_group,
7660 delalloc);
7661refill_cluster:
a5f6f719
AO
7662 if (loop >= LOOP_NO_EMPTY_SIZE) {
7663 spin_unlock(&last_ptr->refill_lock);
7664 goto unclustered_alloc;
7665 }
7666
8de972b4
CM
7667 aligned_cluster = max_t(unsigned long,
7668 empty_cluster + empty_size,
7669 block_group->full_stripe_len);
7670
fa9c0d79 7671 /* allocate a cluster in this block group */
00361589
JB
7672 ret = btrfs_find_space_cluster(root, block_group,
7673 last_ptr, search_start,
7674 num_bytes,
7675 aligned_cluster);
fa9c0d79
CM
7676 if (ret == 0) {
7677 /*
7678 * now pull our allocation out of this
7679 * cluster
7680 */
7681 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7682 last_ptr,
7683 num_bytes,
7684 search_start,
7685 &max_extent_size);
fa9c0d79
CM
7686 if (offset) {
7687 /* we found one, proceed */
7688 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7689 trace_btrfs_reserve_extent_cluster(root,
7690 block_group, search_start,
7691 num_bytes);
fa9c0d79
CM
7692 goto checks;
7693 }
0a24325e
JB
7694 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7695 && !failed_cluster_refill) {
817d52f8
JB
7696 spin_unlock(&last_ptr->refill_lock);
7697
0a24325e 7698 failed_cluster_refill = true;
817d52f8
JB
7699 wait_block_group_cache_progress(block_group,
7700 num_bytes + empty_cluster + empty_size);
7701 goto have_block_group;
fa9c0d79 7702 }
817d52f8 7703
fa9c0d79
CM
7704 /*
7705 * at this point we either didn't find a cluster
7706 * or we weren't able to allocate a block from our
7707 * cluster. Free the cluster we've been trying
7708 * to use, and go to the next block group
7709 */
0a24325e 7710 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7711 spin_unlock(&last_ptr->refill_lock);
0a24325e 7712 goto loop;
fa9c0d79
CM
7713 }
7714
062c05c4 7715unclustered_alloc:
c759c4e1
JB
7716 /*
7717 * We are doing an unclustered alloc, set the fragmented flag so
7718 * we don't bother trying to setup a cluster again until we get
7719 * more space.
7720 */
7721 if (unlikely(last_ptr)) {
7722 spin_lock(&last_ptr->lock);
7723 last_ptr->fragmented = 1;
7724 spin_unlock(&last_ptr->lock);
7725 }
a5f6f719
AO
7726 spin_lock(&block_group->free_space_ctl->tree_lock);
7727 if (cached &&
7728 block_group->free_space_ctl->free_space <
7729 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7730 if (block_group->free_space_ctl->free_space >
7731 max_extent_size)
7732 max_extent_size =
7733 block_group->free_space_ctl->free_space;
a5f6f719
AO
7734 spin_unlock(&block_group->free_space_ctl->tree_lock);
7735 goto loop;
7736 }
7737 spin_unlock(&block_group->free_space_ctl->tree_lock);
7738
6226cb0a 7739 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7740 num_bytes, empty_size,
7741 &max_extent_size);
1cdda9b8
JB
7742 /*
7743 * If we didn't find a chunk, and we haven't failed on this
7744 * block group before, and this block group is in the middle of
7745 * caching and we are ok with waiting, then go ahead and wait
7746 * for progress to be made, and set failed_alloc to true.
7747 *
7748 * If failed_alloc is true then we've already waited on this
7749 * block group once and should move on to the next block group.
7750 */
7751 if (!offset && !failed_alloc && !cached &&
7752 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7753 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7754 num_bytes + empty_size);
7755 failed_alloc = true;
817d52f8 7756 goto have_block_group;
1cdda9b8
JB
7757 } else if (!offset) {
7758 goto loop;
817d52f8 7759 }
fa9c0d79 7760checks:
4e54b17a 7761 search_start = ALIGN(offset, root->stripesize);
25179201 7762
2552d17e
JB
7763 /* move on to the next group */
7764 if (search_start + num_bytes >
215a63d1
MX
7765 block_group->key.objectid + block_group->key.offset) {
7766 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7767 goto loop;
6226cb0a 7768 }
f5a31e16 7769
f0486c68 7770 if (offset < search_start)
215a63d1 7771 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7772 search_start - offset);
7773 BUG_ON(offset > search_start);
2552d17e 7774
18513091
WX
7775 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7776 num_bytes, delalloc);
f0486c68 7777 if (ret == -EAGAIN) {
215a63d1 7778 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7779 goto loop;
0f9dd46c 7780 }
9cfa3e34 7781 btrfs_inc_block_group_reservations(block_group);
0b86a832 7782
f0486c68 7783 /* we are all good, lets return */
2552d17e
JB
7784 ins->objectid = search_start;
7785 ins->offset = num_bytes;
d2fb3437 7786
3f7de037
JB
7787 trace_btrfs_reserve_extent(orig_root, block_group,
7788 search_start, num_bytes);
e570fd27 7789 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7790 break;
7791loop:
0a24325e 7792 failed_cluster_refill = false;
1cdda9b8 7793 failed_alloc = false;
b742bb82 7794 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7795 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7796 }
7797 up_read(&space_info->groups_sem);
7798
13a0db5a 7799 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7800 && !orig_have_caching_bg)
7801 orig_have_caching_bg = true;
7802
60d2adbb
MX
7803 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7804 goto search;
7805
b742bb82
YZ
7806 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7807 goto search;
7808
285ff5af 7809 /*
ccf0e725
JB
7810 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7811 * caching kthreads as we move along
817d52f8
JB
7812 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7813 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7814 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7815 * again
fa9c0d79 7816 */
723bda20 7817 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7818 index = 0;
a5e681d9
JB
7819 if (loop == LOOP_CACHING_NOWAIT) {
7820 /*
7821 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7822 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7823 * full search through.
7824 */
13a0db5a 7825 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7826 loop = LOOP_CACHING_WAIT;
7827 else
7828 loop = LOOP_ALLOC_CHUNK;
7829 } else {
7830 loop++;
7831 }
7832
817d52f8 7833 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7834 struct btrfs_trans_handle *trans;
f017f15f
WS
7835 int exist = 0;
7836
7837 trans = current->journal_info;
7838 if (trans)
7839 exist = 1;
7840 else
7841 trans = btrfs_join_transaction(root);
00361589 7842
00361589
JB
7843 if (IS_ERR(trans)) {
7844 ret = PTR_ERR(trans);
7845 goto out;
7846 }
7847
b6919a58 7848 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7849 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7850
7851 /*
7852 * If we can't allocate a new chunk we've already looped
7853 * through at least once, move on to the NO_EMPTY_SIZE
7854 * case.
7855 */
7856 if (ret == -ENOSPC)
7857 loop = LOOP_NO_EMPTY_SIZE;
7858
ea658bad
JB
7859 /*
7860 * Do not bail out on ENOSPC since we
7861 * can do more things.
7862 */
00361589 7863 if (ret < 0 && ret != -ENOSPC)
66642832 7864 btrfs_abort_transaction(trans, ret);
00361589
JB
7865 else
7866 ret = 0;
f017f15f
WS
7867 if (!exist)
7868 btrfs_end_transaction(trans, root);
00361589 7869 if (ret)
ea658bad 7870 goto out;
2552d17e
JB
7871 }
7872
723bda20 7873 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7874 /*
7875 * Don't loop again if we already have no empty_size and
7876 * no empty_cluster.
7877 */
7878 if (empty_size == 0 &&
7879 empty_cluster == 0) {
7880 ret = -ENOSPC;
7881 goto out;
7882 }
723bda20
JB
7883 empty_size = 0;
7884 empty_cluster = 0;
fa9c0d79 7885 }
723bda20
JB
7886
7887 goto search;
2552d17e
JB
7888 } else if (!ins->objectid) {
7889 ret = -ENOSPC;
d82a6f1d 7890 } else if (ins->objectid) {
c759c4e1
JB
7891 if (!use_cluster && last_ptr) {
7892 spin_lock(&last_ptr->lock);
7893 last_ptr->window_start = ins->objectid;
7894 spin_unlock(&last_ptr->lock);
7895 }
80eb234a 7896 ret = 0;
be744175 7897 }
79787eaa 7898out:
4f4db217
JB
7899 if (ret == -ENOSPC) {
7900 spin_lock(&space_info->lock);
7901 space_info->max_extent_size = max_extent_size;
7902 spin_unlock(&space_info->lock);
a4820398 7903 ins->offset = max_extent_size;
4f4db217 7904 }
0f70abe2 7905 return ret;
fec577fb 7906}
ec44a35c 7907
9ed74f2d
JB
7908static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7909 int dump_block_groups)
0f9dd46c
JB
7910{
7911 struct btrfs_block_group_cache *cache;
b742bb82 7912 int index = 0;
0f9dd46c 7913
9ed74f2d 7914 spin_lock(&info->lock);
efe120a0 7915 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7916 info->flags,
7917 info->total_bytes - info->bytes_used - info->bytes_pinned -
39581a3a
WX
7918 info->bytes_reserved - info->bytes_readonly -
7919 info->bytes_may_use, (info->full) ? "" : "not ");
efe120a0 7920 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7921 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7922 info->total_bytes, info->bytes_used, info->bytes_pinned,
7923 info->bytes_reserved, info->bytes_may_use,
7924 info->bytes_readonly);
9ed74f2d
JB
7925 spin_unlock(&info->lock);
7926
7927 if (!dump_block_groups)
7928 return;
0f9dd46c 7929
80eb234a 7930 down_read(&info->groups_sem);
b742bb82
YZ
7931again:
7932 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7933 spin_lock(&cache->lock);
efe120a0
FH
7934 printk(KERN_INFO "BTRFS: "
7935 "block group %llu has %llu bytes, "
7936 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7937 cache->key.objectid, cache->key.offset,
7938 btrfs_block_group_used(&cache->item), cache->pinned,
7939 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7940 btrfs_dump_free_space(cache, bytes);
7941 spin_unlock(&cache->lock);
7942 }
b742bb82
YZ
7943 if (++index < BTRFS_NR_RAID_TYPES)
7944 goto again;
80eb234a 7945 up_read(&info->groups_sem);
0f9dd46c 7946}
e8569813 7947
18513091 7948int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7949 u64 num_bytes, u64 min_alloc_size,
7950 u64 empty_size, u64 hint_byte,
e570fd27 7951 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7952{
36af4e07 7953 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7954 u64 flags;
fec577fb 7955 int ret;
925baedd 7956
b6919a58 7957 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7958again:
db94535d 7959 WARN_ON(num_bytes < root->sectorsize);
18513091
WX
7960 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7961 hint_byte, ins, flags, delalloc);
9cfa3e34
FM
7962 if (!ret && !is_data) {
7963 btrfs_dec_block_group_reservations(root->fs_info,
7964 ins->objectid);
7965 } else if (ret == -ENOSPC) {
a4820398
MX
7966 if (!final_tried && ins->offset) {
7967 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7968 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7969 num_bytes = max(num_bytes, min_alloc_size);
18513091 7970 ram_bytes = num_bytes;
9e622d6b
MX
7971 if (num_bytes == min_alloc_size)
7972 final_tried = true;
7973 goto again;
3cdde224 7974 } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7975 struct btrfs_space_info *sinfo;
7976
b6919a58 7977 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7978 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7979 flags, num_bytes);
53804280
JM
7980 if (sinfo)
7981 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7982 }
925baedd 7983 }
0f9dd46c
JB
7984
7985 return ret;
e6dcd2dc
CM
7986}
7987
e688b725 7988static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7989 u64 start, u64 len,
7990 int pin, int delalloc)
65b51a00 7991{
0f9dd46c 7992 struct btrfs_block_group_cache *cache;
1f3c79a2 7993 int ret = 0;
0f9dd46c 7994
0f9dd46c
JB
7995 cache = btrfs_lookup_block_group(root->fs_info, start);
7996 if (!cache) {
c2cf52eb 7997 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7998 start);
0f9dd46c
JB
7999 return -ENOSPC;
8000 }
1f3c79a2 8001
e688b725
CM
8002 if (pin)
8003 pin_down_extent(root, cache, start, len, 1);
8004 else {
3cdde224 8005 if (btrfs_test_opt(root->fs_info, DISCARD))
dcc82f47 8006 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 8007 btrfs_add_free_space(cache, start, len);
4824f1f4 8008 btrfs_free_reserved_bytes(cache, len, delalloc);
31bada7c 8009 trace_btrfs_reserved_extent_free(root, start, len);
e688b725 8010 }
31193213 8011
fa9c0d79 8012 btrfs_put_block_group(cache);
e6dcd2dc
CM
8013 return ret;
8014}
8015
e688b725 8016int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 8017 u64 start, u64 len, int delalloc)
e688b725 8018{
e570fd27 8019 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
8020}
8021
8022int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8023 u64 start, u64 len)
8024{
e570fd27 8025 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
8026}
8027
5d4f98a2
YZ
8028static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8029 struct btrfs_root *root,
8030 u64 parent, u64 root_objectid,
8031 u64 flags, u64 owner, u64 offset,
8032 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8033{
8034 int ret;
5d4f98a2 8035 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 8036 struct btrfs_extent_item *extent_item;
5d4f98a2 8037 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8038 struct btrfs_path *path;
5d4f98a2
YZ
8039 struct extent_buffer *leaf;
8040 int type;
8041 u32 size;
26b8003f 8042
5d4f98a2
YZ
8043 if (parent > 0)
8044 type = BTRFS_SHARED_DATA_REF_KEY;
8045 else
8046 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8047
5d4f98a2 8048 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8049
8050 path = btrfs_alloc_path();
db5b493a
TI
8051 if (!path)
8052 return -ENOMEM;
47e4bb98 8053
b9473439 8054 path->leave_spinning = 1;
5d4f98a2
YZ
8055 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8056 ins, size);
79787eaa
JM
8057 if (ret) {
8058 btrfs_free_path(path);
8059 return ret;
8060 }
0f9dd46c 8061
5d4f98a2
YZ
8062 leaf = path->nodes[0];
8063 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8064 struct btrfs_extent_item);
5d4f98a2
YZ
8065 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8066 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8067 btrfs_set_extent_flags(leaf, extent_item,
8068 flags | BTRFS_EXTENT_FLAG_DATA);
8069
8070 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8071 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8072 if (parent > 0) {
8073 struct btrfs_shared_data_ref *ref;
8074 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8075 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8076 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8077 } else {
8078 struct btrfs_extent_data_ref *ref;
8079 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8080 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8081 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8082 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8083 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8084 }
47e4bb98
CM
8085
8086 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8087 btrfs_free_path(path);
f510cfec 8088
1e144fb8
OS
8089 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8090 ins->offset);
8091 if (ret)
8092 return ret;
8093
ce93ec54 8094 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 8095 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8096 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8097 ins->objectid, ins->offset);
f5947066
CM
8098 BUG();
8099 }
0be5dc67 8100 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
8101 return ret;
8102}
8103
5d4f98a2
YZ
8104static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8105 struct btrfs_root *root,
8106 u64 parent, u64 root_objectid,
8107 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8108 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8109{
8110 int ret;
5d4f98a2
YZ
8111 struct btrfs_fs_info *fs_info = root->fs_info;
8112 struct btrfs_extent_item *extent_item;
8113 struct btrfs_tree_block_info *block_info;
8114 struct btrfs_extent_inline_ref *iref;
8115 struct btrfs_path *path;
8116 struct extent_buffer *leaf;
3173a18f 8117 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8118 u64 num_bytes = ins->offset;
3173a18f
JB
8119 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8120 SKINNY_METADATA);
8121
8122 if (!skinny_metadata)
8123 size += sizeof(*block_info);
1c2308f8 8124
5d4f98a2 8125 path = btrfs_alloc_path();
857cc2fc
JB
8126 if (!path) {
8127 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8128 root->nodesize);
d8926bb3 8129 return -ENOMEM;
857cc2fc 8130 }
56bec294 8131
5d4f98a2
YZ
8132 path->leave_spinning = 1;
8133 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8134 ins, size);
79787eaa 8135 if (ret) {
dd825259 8136 btrfs_free_path(path);
857cc2fc 8137 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8138 root->nodesize);
79787eaa
JM
8139 return ret;
8140 }
5d4f98a2
YZ
8141
8142 leaf = path->nodes[0];
8143 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8144 struct btrfs_extent_item);
8145 btrfs_set_extent_refs(leaf, extent_item, 1);
8146 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8147 btrfs_set_extent_flags(leaf, extent_item,
8148 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8149
3173a18f
JB
8150 if (skinny_metadata) {
8151 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 8152 num_bytes = root->nodesize;
3173a18f
JB
8153 } else {
8154 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8155 btrfs_set_tree_block_key(leaf, block_info, key);
8156 btrfs_set_tree_block_level(leaf, block_info, level);
8157 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8158 }
5d4f98a2 8159
5d4f98a2
YZ
8160 if (parent > 0) {
8161 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8162 btrfs_set_extent_inline_ref_type(leaf, iref,
8163 BTRFS_SHARED_BLOCK_REF_KEY);
8164 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8165 } else {
8166 btrfs_set_extent_inline_ref_type(leaf, iref,
8167 BTRFS_TREE_BLOCK_REF_KEY);
8168 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8169 }
8170
8171 btrfs_mark_buffer_dirty(leaf);
8172 btrfs_free_path(path);
8173
1e144fb8
OS
8174 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8175 num_bytes);
8176 if (ret)
8177 return ret;
8178
ce93ec54
JB
8179 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8180 1);
79787eaa 8181 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8182 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8183 ins->objectid, ins->offset);
5d4f98a2
YZ
8184 BUG();
8185 }
0be5dc67 8186
707e8a07 8187 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
8188 return ret;
8189}
8190
8191int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8192 struct btrfs_root *root,
8193 u64 root_objectid, u64 owner,
5846a3c2
QW
8194 u64 offset, u64 ram_bytes,
8195 struct btrfs_key *ins)
5d4f98a2
YZ
8196{
8197 int ret;
8198
8199 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8200
66d7e7f0
AJ
8201 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8202 ins->offset, 0,
8203 root_objectid, owner, offset,
5846a3c2
QW
8204 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8205 NULL);
e6dcd2dc
CM
8206 return ret;
8207}
e02119d5
CM
8208
8209/*
8210 * this is used by the tree logging recovery code. It records that
8211 * an extent has been allocated and makes sure to clear the free
8212 * space cache bits as well
8213 */
5d4f98a2
YZ
8214int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8215 struct btrfs_root *root,
8216 u64 root_objectid, u64 owner, u64 offset,
8217 struct btrfs_key *ins)
e02119d5
CM
8218{
8219 int ret;
8220 struct btrfs_block_group_cache *block_group;
11833d66 8221
8c2a1a30
JB
8222 /*
8223 * Mixed block groups will exclude before processing the log so we only
01327610 8224 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
8225 */
8226 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8227 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 8228 if (ret)
8c2a1a30 8229 return ret;
11833d66
YZ
8230 }
8231
8c2a1a30
JB
8232 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8233 if (!block_group)
8234 return -EINVAL;
8235
4824f1f4 8236 ret = btrfs_add_reserved_bytes(block_group, ins->offset,
18513091 8237 ins->offset, 0);
79787eaa 8238 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
8239 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8240 0, owner, offset, ins, 1);
b50c6e25 8241 btrfs_put_block_group(block_group);
e02119d5
CM
8242 return ret;
8243}
8244
48a3b636
ES
8245static struct extent_buffer *
8246btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8247 u64 bytenr, int level)
65b51a00
CM
8248{
8249 struct extent_buffer *buf;
8250
a83fffb7 8251 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8252 if (IS_ERR(buf))
8253 return buf;
8254
65b51a00 8255 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8256 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8257 btrfs_tree_lock(buf);
01d58472 8258 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8259 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8260
8261 btrfs_set_lock_blocking(buf);
4db8c528 8262 set_extent_buffer_uptodate(buf);
b4ce94de 8263
d0c803c4 8264 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8265 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8266 /*
8267 * we allow two log transactions at a time, use different
8268 * EXENT bit to differentiate dirty pages.
8269 */
656f30db 8270 if (buf->log_index == 0)
8cef4e16
YZ
8271 set_extent_dirty(&root->dirty_log_pages, buf->start,
8272 buf->start + buf->len - 1, GFP_NOFS);
8273 else
8274 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8275 buf->start + buf->len - 1);
d0c803c4 8276 } else {
656f30db 8277 buf->log_index = -1;
d0c803c4 8278 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8279 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8280 }
64c12921 8281 trans->dirty = true;
b4ce94de 8282 /* this returns a buffer locked for blocking */
65b51a00
CM
8283 return buf;
8284}
8285
f0486c68
YZ
8286static struct btrfs_block_rsv *
8287use_block_rsv(struct btrfs_trans_handle *trans,
8288 struct btrfs_root *root, u32 blocksize)
8289{
8290 struct btrfs_block_rsv *block_rsv;
68a82277 8291 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8292 int ret;
d88033db 8293 bool global_updated = false;
f0486c68
YZ
8294
8295 block_rsv = get_block_rsv(trans, root);
8296
b586b323
MX
8297 if (unlikely(block_rsv->size == 0))
8298 goto try_reserve;
d88033db 8299again:
f0486c68
YZ
8300 ret = block_rsv_use_bytes(block_rsv, blocksize);
8301 if (!ret)
8302 return block_rsv;
8303
b586b323
MX
8304 if (block_rsv->failfast)
8305 return ERR_PTR(ret);
8306
d88033db
MX
8307 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8308 global_updated = true;
8309 update_global_block_rsv(root->fs_info);
8310 goto again;
8311 }
8312
3cdde224 8313 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8314 static DEFINE_RATELIMIT_STATE(_rs,
8315 DEFAULT_RATELIMIT_INTERVAL * 10,
8316 /*DEFAULT_RATELIMIT_BURST*/ 1);
8317 if (__ratelimit(&_rs))
8318 WARN(1, KERN_DEBUG
efe120a0 8319 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8320 }
8321try_reserve:
8322 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8323 BTRFS_RESERVE_NO_FLUSH);
8324 if (!ret)
8325 return block_rsv;
8326 /*
8327 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8328 * the global reserve if its space type is the same as the global
8329 * reservation.
b586b323 8330 */
5881cfc9
MX
8331 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8332 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8333 ret = block_rsv_use_bytes(global_rsv, blocksize);
8334 if (!ret)
8335 return global_rsv;
8336 }
8337 return ERR_PTR(ret);
f0486c68
YZ
8338}
8339
8c2a3ca2
JB
8340static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8341 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8342{
8343 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8344 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8345}
8346
fec577fb 8347/*
f0486c68 8348 * finds a free extent and does all the dirty work required for allocation
67b7859e 8349 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8350 */
4d75f8a9
DS
8351struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8352 struct btrfs_root *root,
5d4f98a2
YZ
8353 u64 parent, u64 root_objectid,
8354 struct btrfs_disk_key *key, int level,
5581a51a 8355 u64 hint, u64 empty_size)
fec577fb 8356{
e2fa7227 8357 struct btrfs_key ins;
f0486c68 8358 struct btrfs_block_rsv *block_rsv;
5f39d397 8359 struct extent_buffer *buf;
67b7859e 8360 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8361 u64 flags = 0;
8362 int ret;
4d75f8a9 8363 u32 blocksize = root->nodesize;
3173a18f
JB
8364 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8365 SKINNY_METADATA);
fec577fb 8366
05653ef3 8367#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
f5ee5c9a 8368 if (btrfs_is_testing(root->fs_info)) {
faa2dbf0 8369 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8370 level);
faa2dbf0
JB
8371 if (!IS_ERR(buf))
8372 root->alloc_bytenr += blocksize;
8373 return buf;
8374 }
05653ef3 8375#endif
fccb84c9 8376
f0486c68
YZ
8377 block_rsv = use_block_rsv(trans, root, blocksize);
8378 if (IS_ERR(block_rsv))
8379 return ERR_CAST(block_rsv);
8380
18513091 8381 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8382 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8383 if (ret)
8384 goto out_unuse;
55c69072 8385
fe864576 8386 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8387 if (IS_ERR(buf)) {
8388 ret = PTR_ERR(buf);
8389 goto out_free_reserved;
8390 }
f0486c68
YZ
8391
8392 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8393 if (parent == 0)
8394 parent = ins.objectid;
8395 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8396 } else
8397 BUG_ON(parent > 0);
8398
8399 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8400 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8401 if (!extent_op) {
8402 ret = -ENOMEM;
8403 goto out_free_buf;
8404 }
f0486c68
YZ
8405 if (key)
8406 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8407 else
8408 memset(&extent_op->key, 0, sizeof(extent_op->key));
8409 extent_op->flags_to_set = flags;
35b3ad50
DS
8410 extent_op->update_key = skinny_metadata ? false : true;
8411 extent_op->update_flags = true;
8412 extent_op->is_data = false;
b1c79e09 8413 extent_op->level = level;
f0486c68 8414
66d7e7f0 8415 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8416 ins.objectid, ins.offset,
8417 parent, root_objectid, level,
8418 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8419 extent_op);
67b7859e
OS
8420 if (ret)
8421 goto out_free_delayed;
f0486c68 8422 }
fec577fb 8423 return buf;
67b7859e
OS
8424
8425out_free_delayed:
8426 btrfs_free_delayed_extent_op(extent_op);
8427out_free_buf:
8428 free_extent_buffer(buf);
8429out_free_reserved:
8430 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8431out_unuse:
8432 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8433 return ERR_PTR(ret);
fec577fb 8434}
a28ec197 8435
2c47e605
YZ
8436struct walk_control {
8437 u64 refs[BTRFS_MAX_LEVEL];
8438 u64 flags[BTRFS_MAX_LEVEL];
8439 struct btrfs_key update_progress;
8440 int stage;
8441 int level;
8442 int shared_level;
8443 int update_ref;
8444 int keep_locks;
1c4850e2
YZ
8445 int reada_slot;
8446 int reada_count;
66d7e7f0 8447 int for_reloc;
2c47e605
YZ
8448};
8449
8450#define DROP_REFERENCE 1
8451#define UPDATE_BACKREF 2
8452
1c4850e2
YZ
8453static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8454 struct btrfs_root *root,
8455 struct walk_control *wc,
8456 struct btrfs_path *path)
6407bf6d 8457{
1c4850e2
YZ
8458 u64 bytenr;
8459 u64 generation;
8460 u64 refs;
94fcca9f 8461 u64 flags;
5d4f98a2 8462 u32 nritems;
1c4850e2
YZ
8463 u32 blocksize;
8464 struct btrfs_key key;
8465 struct extent_buffer *eb;
6407bf6d 8466 int ret;
1c4850e2
YZ
8467 int slot;
8468 int nread = 0;
6407bf6d 8469
1c4850e2
YZ
8470 if (path->slots[wc->level] < wc->reada_slot) {
8471 wc->reada_count = wc->reada_count * 2 / 3;
8472 wc->reada_count = max(wc->reada_count, 2);
8473 } else {
8474 wc->reada_count = wc->reada_count * 3 / 2;
8475 wc->reada_count = min_t(int, wc->reada_count,
8476 BTRFS_NODEPTRS_PER_BLOCK(root));
8477 }
7bb86316 8478
1c4850e2
YZ
8479 eb = path->nodes[wc->level];
8480 nritems = btrfs_header_nritems(eb);
707e8a07 8481 blocksize = root->nodesize;
bd56b302 8482
1c4850e2
YZ
8483 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8484 if (nread >= wc->reada_count)
8485 break;
bd56b302 8486
2dd3e67b 8487 cond_resched();
1c4850e2
YZ
8488 bytenr = btrfs_node_blockptr(eb, slot);
8489 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8490
1c4850e2
YZ
8491 if (slot == path->slots[wc->level])
8492 goto reada;
5d4f98a2 8493
1c4850e2
YZ
8494 if (wc->stage == UPDATE_BACKREF &&
8495 generation <= root->root_key.offset)
bd56b302
CM
8496 continue;
8497
94fcca9f 8498 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8499 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8500 wc->level - 1, 1, &refs,
8501 &flags);
79787eaa
JM
8502 /* We don't care about errors in readahead. */
8503 if (ret < 0)
8504 continue;
94fcca9f
YZ
8505 BUG_ON(refs == 0);
8506
1c4850e2 8507 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8508 if (refs == 1)
8509 goto reada;
bd56b302 8510
94fcca9f
YZ
8511 if (wc->level == 1 &&
8512 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8513 continue;
1c4850e2
YZ
8514 if (!wc->update_ref ||
8515 generation <= root->root_key.offset)
8516 continue;
8517 btrfs_node_key_to_cpu(eb, &key, slot);
8518 ret = btrfs_comp_cpu_keys(&key,
8519 &wc->update_progress);
8520 if (ret < 0)
8521 continue;
94fcca9f
YZ
8522 } else {
8523 if (wc->level == 1 &&
8524 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8525 continue;
6407bf6d 8526 }
1c4850e2 8527reada:
d3e46fea 8528 readahead_tree_block(root, bytenr);
1c4850e2 8529 nread++;
20524f02 8530 }
1c4850e2 8531 wc->reada_slot = slot;
20524f02 8532}
2c47e605 8533
1152651a
MF
8534static int account_leaf_items(struct btrfs_trans_handle *trans,
8535 struct btrfs_root *root,
8536 struct extent_buffer *eb)
8537{
8538 int nr = btrfs_header_nritems(eb);
82bd101b 8539 int i, extent_type, ret;
1152651a
MF
8540 struct btrfs_key key;
8541 struct btrfs_file_extent_item *fi;
8542 u64 bytenr, num_bytes;
8543
82bd101b
MF
8544 /* We can be called directly from walk_up_proc() */
8545 if (!root->fs_info->quota_enabled)
8546 return 0;
8547
1152651a
MF
8548 for (i = 0; i < nr; i++) {
8549 btrfs_item_key_to_cpu(eb, &key, i);
8550
8551 if (key.type != BTRFS_EXTENT_DATA_KEY)
8552 continue;
8553
8554 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8555 /* filter out non qgroup-accountable extents */
8556 extent_type = btrfs_file_extent_type(eb, fi);
8557
8558 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8559 continue;
8560
8561 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8562 if (!bytenr)
8563 continue;
8564
8565 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b 8566
cb93b52c
QW
8567 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8568 bytenr, num_bytes, GFP_NOFS);
82bd101b
MF
8569 if (ret)
8570 return ret;
1152651a
MF
8571 }
8572 return 0;
8573}
8574
8575/*
8576 * Walk up the tree from the bottom, freeing leaves and any interior
8577 * nodes which have had all slots visited. If a node (leaf or
8578 * interior) is freed, the node above it will have it's slot
8579 * incremented. The root node will never be freed.
8580 *
8581 * At the end of this function, we should have a path which has all
8582 * slots incremented to the next position for a search. If we need to
8583 * read a new node it will be NULL and the node above it will have the
8584 * correct slot selected for a later read.
8585 *
8586 * If we increment the root nodes slot counter past the number of
8587 * elements, 1 is returned to signal completion of the search.
8588 */
8589static int adjust_slots_upwards(struct btrfs_root *root,
8590 struct btrfs_path *path, int root_level)
8591{
8592 int level = 0;
8593 int nr, slot;
8594 struct extent_buffer *eb;
8595
8596 if (root_level == 0)
8597 return 1;
8598
8599 while (level <= root_level) {
8600 eb = path->nodes[level];
8601 nr = btrfs_header_nritems(eb);
8602 path->slots[level]++;
8603 slot = path->slots[level];
8604 if (slot >= nr || level == 0) {
8605 /*
8606 * Don't free the root - we will detect this
8607 * condition after our loop and return a
8608 * positive value for caller to stop walking the tree.
8609 */
8610 if (level != root_level) {
8611 btrfs_tree_unlock_rw(eb, path->locks[level]);
8612 path->locks[level] = 0;
8613
8614 free_extent_buffer(eb);
8615 path->nodes[level] = NULL;
8616 path->slots[level] = 0;
8617 }
8618 } else {
8619 /*
8620 * We have a valid slot to walk back down
8621 * from. Stop here so caller can process these
8622 * new nodes.
8623 */
8624 break;
8625 }
8626
8627 level++;
8628 }
8629
8630 eb = path->nodes[root_level];
8631 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8632 return 1;
8633
8634 return 0;
8635}
8636
8637/*
8638 * root_eb is the subtree root and is locked before this function is called.
8639 */
8640static int account_shared_subtree(struct btrfs_trans_handle *trans,
8641 struct btrfs_root *root,
8642 struct extent_buffer *root_eb,
8643 u64 root_gen,
8644 int root_level)
8645{
8646 int ret = 0;
8647 int level;
8648 struct extent_buffer *eb = root_eb;
8649 struct btrfs_path *path = NULL;
8650
8651 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8652 BUG_ON(root_eb == NULL);
8653
8654 if (!root->fs_info->quota_enabled)
8655 return 0;
8656
8657 if (!extent_buffer_uptodate(root_eb)) {
8658 ret = btrfs_read_buffer(root_eb, root_gen);
8659 if (ret)
8660 goto out;
8661 }
8662
8663 if (root_level == 0) {
8664 ret = account_leaf_items(trans, root, root_eb);
8665 goto out;
8666 }
8667
8668 path = btrfs_alloc_path();
8669 if (!path)
8670 return -ENOMEM;
8671
8672 /*
8673 * Walk down the tree. Missing extent blocks are filled in as
8674 * we go. Metadata is accounted every time we read a new
8675 * extent block.
8676 *
8677 * When we reach a leaf, we account for file extent items in it,
8678 * walk back up the tree (adjusting slot pointers as we go)
8679 * and restart the search process.
8680 */
8681 extent_buffer_get(root_eb); /* For path */
8682 path->nodes[root_level] = root_eb;
8683 path->slots[root_level] = 0;
8684 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8685walk_down:
8686 level = root_level;
8687 while (level >= 0) {
8688 if (path->nodes[level] == NULL) {
1152651a
MF
8689 int parent_slot;
8690 u64 child_gen;
8691 u64 child_bytenr;
8692
8693 /* We need to get child blockptr/gen from
8694 * parent before we can read it. */
8695 eb = path->nodes[level + 1];
8696 parent_slot = path->slots[level + 1];
8697 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8698 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8699
ce86cd59 8700 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8701 if (IS_ERR(eb)) {
8702 ret = PTR_ERR(eb);
8703 goto out;
8704 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8705 free_extent_buffer(eb);
64c043de 8706 ret = -EIO;
1152651a
MF
8707 goto out;
8708 }
8709
8710 path->nodes[level] = eb;
8711 path->slots[level] = 0;
8712
8713 btrfs_tree_read_lock(eb);
8714 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8715 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b 8716
cb93b52c
QW
8717 ret = btrfs_qgroup_insert_dirty_extent(trans,
8718 root->fs_info, child_bytenr,
8719 root->nodesize, GFP_NOFS);
82bd101b
MF
8720 if (ret)
8721 goto out;
1152651a
MF
8722 }
8723
8724 if (level == 0) {
8725 ret = account_leaf_items(trans, root, path->nodes[level]);
8726 if (ret)
8727 goto out;
8728
8729 /* Nonzero return here means we completed our search */
8730 ret = adjust_slots_upwards(root, path, root_level);
8731 if (ret)
8732 break;
8733
8734 /* Restart search with new slots */
8735 goto walk_down;
8736 }
8737
8738 level--;
8739 }
8740
8741 ret = 0;
8742out:
8743 btrfs_free_path(path);
8744
8745 return ret;
8746}
8747
f82d02d9 8748/*
2c016dc2 8749 * helper to process tree block while walking down the tree.
2c47e605 8750 *
2c47e605
YZ
8751 * when wc->stage == UPDATE_BACKREF, this function updates
8752 * back refs for pointers in the block.
8753 *
8754 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8755 */
2c47e605 8756static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8757 struct btrfs_root *root,
2c47e605 8758 struct btrfs_path *path,
94fcca9f 8759 struct walk_control *wc, int lookup_info)
f82d02d9 8760{
2c47e605
YZ
8761 int level = wc->level;
8762 struct extent_buffer *eb = path->nodes[level];
2c47e605 8763 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8764 int ret;
8765
2c47e605
YZ
8766 if (wc->stage == UPDATE_BACKREF &&
8767 btrfs_header_owner(eb) != root->root_key.objectid)
8768 return 1;
f82d02d9 8769
2c47e605
YZ
8770 /*
8771 * when reference count of tree block is 1, it won't increase
8772 * again. once full backref flag is set, we never clear it.
8773 */
94fcca9f
YZ
8774 if (lookup_info &&
8775 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8776 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8777 BUG_ON(!path->locks[level]);
8778 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8779 eb->start, level, 1,
2c47e605
YZ
8780 &wc->refs[level],
8781 &wc->flags[level]);
79787eaa
JM
8782 BUG_ON(ret == -ENOMEM);
8783 if (ret)
8784 return ret;
2c47e605
YZ
8785 BUG_ON(wc->refs[level] == 0);
8786 }
5d4f98a2 8787
2c47e605
YZ
8788 if (wc->stage == DROP_REFERENCE) {
8789 if (wc->refs[level] > 1)
8790 return 1;
f82d02d9 8791
2c47e605 8792 if (path->locks[level] && !wc->keep_locks) {
bd681513 8793 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8794 path->locks[level] = 0;
8795 }
8796 return 0;
8797 }
f82d02d9 8798
2c47e605
YZ
8799 /* wc->stage == UPDATE_BACKREF */
8800 if (!(wc->flags[level] & flag)) {
8801 BUG_ON(!path->locks[level]);
e339a6b0 8802 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8803 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8804 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8805 BUG_ON(ret); /* -ENOMEM */
2c47e605 8806 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8807 eb->len, flag,
8808 btrfs_header_level(eb), 0);
79787eaa 8809 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8810 wc->flags[level] |= flag;
8811 }
8812
8813 /*
8814 * the block is shared by multiple trees, so it's not good to
8815 * keep the tree lock
8816 */
8817 if (path->locks[level] && level > 0) {
bd681513 8818 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8819 path->locks[level] = 0;
8820 }
8821 return 0;
8822}
8823
1c4850e2 8824/*
2c016dc2 8825 * helper to process tree block pointer.
1c4850e2
YZ
8826 *
8827 * when wc->stage == DROP_REFERENCE, this function checks
8828 * reference count of the block pointed to. if the block
8829 * is shared and we need update back refs for the subtree
8830 * rooted at the block, this function changes wc->stage to
8831 * UPDATE_BACKREF. if the block is shared and there is no
8832 * need to update back, this function drops the reference
8833 * to the block.
8834 *
8835 * NOTE: return value 1 means we should stop walking down.
8836 */
8837static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8838 struct btrfs_root *root,
8839 struct btrfs_path *path,
94fcca9f 8840 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8841{
8842 u64 bytenr;
8843 u64 generation;
8844 u64 parent;
8845 u32 blocksize;
8846 struct btrfs_key key;
8847 struct extent_buffer *next;
8848 int level = wc->level;
8849 int reada = 0;
8850 int ret = 0;
1152651a 8851 bool need_account = false;
1c4850e2
YZ
8852
8853 generation = btrfs_node_ptr_generation(path->nodes[level],
8854 path->slots[level]);
8855 /*
8856 * if the lower level block was created before the snapshot
8857 * was created, we know there is no need to update back refs
8858 * for the subtree
8859 */
8860 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8861 generation <= root->root_key.offset) {
8862 *lookup_info = 1;
1c4850e2 8863 return 1;
94fcca9f 8864 }
1c4850e2
YZ
8865
8866 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8867 blocksize = root->nodesize;
1c4850e2 8868
01d58472 8869 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8870 if (!next) {
a83fffb7 8871 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8872 if (IS_ERR(next))
8873 return PTR_ERR(next);
8874
b2aaaa3b
JB
8875 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8876 level - 1);
1c4850e2
YZ
8877 reada = 1;
8878 }
8879 btrfs_tree_lock(next);
8880 btrfs_set_lock_blocking(next);
8881
3173a18f 8882 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8883 &wc->refs[level - 1],
8884 &wc->flags[level - 1]);
79787eaa
JM
8885 if (ret < 0) {
8886 btrfs_tree_unlock(next);
8887 return ret;
8888 }
8889
c2cf52eb
SK
8890 if (unlikely(wc->refs[level - 1] == 0)) {
8891 btrfs_err(root->fs_info, "Missing references.");
8892 BUG();
8893 }
94fcca9f 8894 *lookup_info = 0;
1c4850e2 8895
94fcca9f 8896 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8897 if (wc->refs[level - 1] > 1) {
1152651a 8898 need_account = true;
94fcca9f
YZ
8899 if (level == 1 &&
8900 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8901 goto skip;
8902
1c4850e2
YZ
8903 if (!wc->update_ref ||
8904 generation <= root->root_key.offset)
8905 goto skip;
8906
8907 btrfs_node_key_to_cpu(path->nodes[level], &key,
8908 path->slots[level]);
8909 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8910 if (ret < 0)
8911 goto skip;
8912
8913 wc->stage = UPDATE_BACKREF;
8914 wc->shared_level = level - 1;
8915 }
94fcca9f
YZ
8916 } else {
8917 if (level == 1 &&
8918 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8919 goto skip;
1c4850e2
YZ
8920 }
8921
b9fab919 8922 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8923 btrfs_tree_unlock(next);
8924 free_extent_buffer(next);
8925 next = NULL;
94fcca9f 8926 *lookup_info = 1;
1c4850e2
YZ
8927 }
8928
8929 if (!next) {
8930 if (reada && level == 1)
8931 reada_walk_down(trans, root, wc, path);
ce86cd59 8932 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8933 if (IS_ERR(next)) {
8934 return PTR_ERR(next);
8935 } else if (!extent_buffer_uptodate(next)) {
416bc658 8936 free_extent_buffer(next);
97d9a8a4 8937 return -EIO;
416bc658 8938 }
1c4850e2
YZ
8939 btrfs_tree_lock(next);
8940 btrfs_set_lock_blocking(next);
8941 }
8942
8943 level--;
8944 BUG_ON(level != btrfs_header_level(next));
8945 path->nodes[level] = next;
8946 path->slots[level] = 0;
bd681513 8947 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8948 wc->level = level;
8949 if (wc->level == 1)
8950 wc->reada_slot = 0;
8951 return 0;
8952skip:
8953 wc->refs[level - 1] = 0;
8954 wc->flags[level - 1] = 0;
94fcca9f
YZ
8955 if (wc->stage == DROP_REFERENCE) {
8956 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8957 parent = path->nodes[level]->start;
8958 } else {
8959 BUG_ON(root->root_key.objectid !=
8960 btrfs_header_owner(path->nodes[level]));
8961 parent = 0;
8962 }
1c4850e2 8963
1152651a
MF
8964 if (need_account) {
8965 ret = account_shared_subtree(trans, root, next,
8966 generation, level - 1);
8967 if (ret) {
94647322
DS
8968 btrfs_err_rl(root->fs_info,
8969 "Error "
1152651a 8970 "%d accounting shared subtree. Quota "
94647322
DS
8971 "is out of sync, rescan required.",
8972 ret);
1152651a
MF
8973 }
8974 }
94fcca9f 8975 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8976 root->root_key.objectid, level - 1, 0);
79787eaa 8977 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8978 }
1c4850e2
YZ
8979 btrfs_tree_unlock(next);
8980 free_extent_buffer(next);
94fcca9f 8981 *lookup_info = 1;
1c4850e2
YZ
8982 return 1;
8983}
8984
2c47e605 8985/*
2c016dc2 8986 * helper to process tree block while walking up the tree.
2c47e605
YZ
8987 *
8988 * when wc->stage == DROP_REFERENCE, this function drops
8989 * reference count on the block.
8990 *
8991 * when wc->stage == UPDATE_BACKREF, this function changes
8992 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8993 * to UPDATE_BACKREF previously while processing the block.
8994 *
8995 * NOTE: return value 1 means we should stop walking up.
8996 */
8997static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8998 struct btrfs_root *root,
8999 struct btrfs_path *path,
9000 struct walk_control *wc)
9001{
f0486c68 9002 int ret;
2c47e605
YZ
9003 int level = wc->level;
9004 struct extent_buffer *eb = path->nodes[level];
9005 u64 parent = 0;
9006
9007 if (wc->stage == UPDATE_BACKREF) {
9008 BUG_ON(wc->shared_level < level);
9009 if (level < wc->shared_level)
9010 goto out;
9011
2c47e605
YZ
9012 ret = find_next_key(path, level + 1, &wc->update_progress);
9013 if (ret > 0)
9014 wc->update_ref = 0;
9015
9016 wc->stage = DROP_REFERENCE;
9017 wc->shared_level = -1;
9018 path->slots[level] = 0;
9019
9020 /*
9021 * check reference count again if the block isn't locked.
9022 * we should start walking down the tree again if reference
9023 * count is one.
9024 */
9025 if (!path->locks[level]) {
9026 BUG_ON(level == 0);
9027 btrfs_tree_lock(eb);
9028 btrfs_set_lock_blocking(eb);
bd681513 9029 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9030
9031 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 9032 eb->start, level, 1,
2c47e605
YZ
9033 &wc->refs[level],
9034 &wc->flags[level]);
79787eaa
JM
9035 if (ret < 0) {
9036 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9037 path->locks[level] = 0;
79787eaa
JM
9038 return ret;
9039 }
2c47e605
YZ
9040 BUG_ON(wc->refs[level] == 0);
9041 if (wc->refs[level] == 1) {
bd681513 9042 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9043 path->locks[level] = 0;
2c47e605
YZ
9044 return 1;
9045 }
f82d02d9 9046 }
2c47e605 9047 }
f82d02d9 9048
2c47e605
YZ
9049 /* wc->stage == DROP_REFERENCE */
9050 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9051
2c47e605
YZ
9052 if (wc->refs[level] == 1) {
9053 if (level == 0) {
9054 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9055 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9056 else
e339a6b0 9057 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9058 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
9059 ret = account_leaf_items(trans, root, eb);
9060 if (ret) {
94647322
DS
9061 btrfs_err_rl(root->fs_info,
9062 "error "
1152651a 9063 "%d accounting leaf items. Quota "
94647322
DS
9064 "is out of sync, rescan required.",
9065 ret);
1152651a 9066 }
2c47e605
YZ
9067 }
9068 /* make block locked assertion in clean_tree_block happy */
9069 if (!path->locks[level] &&
9070 btrfs_header_generation(eb) == trans->transid) {
9071 btrfs_tree_lock(eb);
9072 btrfs_set_lock_blocking(eb);
bd681513 9073 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9074 }
01d58472 9075 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
9076 }
9077
9078 if (eb == root->node) {
9079 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9080 parent = eb->start;
9081 else
9082 BUG_ON(root->root_key.objectid !=
9083 btrfs_header_owner(eb));
9084 } else {
9085 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9086 parent = path->nodes[level + 1]->start;
9087 else
9088 BUG_ON(root->root_key.objectid !=
9089 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 9090 }
f82d02d9 9091
5581a51a 9092 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9093out:
9094 wc->refs[level] = 0;
9095 wc->flags[level] = 0;
f0486c68 9096 return 0;
2c47e605
YZ
9097}
9098
9099static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9100 struct btrfs_root *root,
9101 struct btrfs_path *path,
9102 struct walk_control *wc)
9103{
2c47e605 9104 int level = wc->level;
94fcca9f 9105 int lookup_info = 1;
2c47e605
YZ
9106 int ret;
9107
9108 while (level >= 0) {
94fcca9f 9109 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9110 if (ret > 0)
9111 break;
9112
9113 if (level == 0)
9114 break;
9115
7a7965f8
YZ
9116 if (path->slots[level] >=
9117 btrfs_header_nritems(path->nodes[level]))
9118 break;
9119
94fcca9f 9120 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9121 if (ret > 0) {
9122 path->slots[level]++;
9123 continue;
90d2c51d
MX
9124 } else if (ret < 0)
9125 return ret;
1c4850e2 9126 level = wc->level;
f82d02d9 9127 }
f82d02d9
YZ
9128 return 0;
9129}
9130
d397712b 9131static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9132 struct btrfs_root *root,
f82d02d9 9133 struct btrfs_path *path,
2c47e605 9134 struct walk_control *wc, int max_level)
20524f02 9135{
2c47e605 9136 int level = wc->level;
20524f02 9137 int ret;
9f3a7427 9138
2c47e605
YZ
9139 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9140 while (level < max_level && path->nodes[level]) {
9141 wc->level = level;
9142 if (path->slots[level] + 1 <
9143 btrfs_header_nritems(path->nodes[level])) {
9144 path->slots[level]++;
20524f02
CM
9145 return 0;
9146 } else {
2c47e605
YZ
9147 ret = walk_up_proc(trans, root, path, wc);
9148 if (ret > 0)
9149 return 0;
bd56b302 9150
2c47e605 9151 if (path->locks[level]) {
bd681513
CM
9152 btrfs_tree_unlock_rw(path->nodes[level],
9153 path->locks[level]);
2c47e605 9154 path->locks[level] = 0;
f82d02d9 9155 }
2c47e605
YZ
9156 free_extent_buffer(path->nodes[level]);
9157 path->nodes[level] = NULL;
9158 level++;
20524f02
CM
9159 }
9160 }
9161 return 1;
9162}
9163
9aca1d51 9164/*
2c47e605
YZ
9165 * drop a subvolume tree.
9166 *
9167 * this function traverses the tree freeing any blocks that only
9168 * referenced by the tree.
9169 *
9170 * when a shared tree block is found. this function decreases its
9171 * reference count by one. if update_ref is true, this function
9172 * also make sure backrefs for the shared block and all lower level
9173 * blocks are properly updated.
9d1a2a3a
DS
9174 *
9175 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9176 */
2c536799 9177int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9178 struct btrfs_block_rsv *block_rsv, int update_ref,
9179 int for_reloc)
20524f02 9180{
5caf2a00 9181 struct btrfs_path *path;
2c47e605
YZ
9182 struct btrfs_trans_handle *trans;
9183 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 9184 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9185 struct walk_control *wc;
9186 struct btrfs_key key;
9187 int err = 0;
9188 int ret;
9189 int level;
d29a9f62 9190 bool root_dropped = false;
20524f02 9191
1152651a
MF
9192 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9193
5caf2a00 9194 path = btrfs_alloc_path();
cb1b69f4
TI
9195 if (!path) {
9196 err = -ENOMEM;
9197 goto out;
9198 }
20524f02 9199
2c47e605 9200 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9201 if (!wc) {
9202 btrfs_free_path(path);
cb1b69f4
TI
9203 err = -ENOMEM;
9204 goto out;
38a1a919 9205 }
2c47e605 9206
a22285a6 9207 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9208 if (IS_ERR(trans)) {
9209 err = PTR_ERR(trans);
9210 goto out_free;
9211 }
98d5dc13 9212
3fd0a558
YZ
9213 if (block_rsv)
9214 trans->block_rsv = block_rsv;
2c47e605 9215
9f3a7427 9216 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9217 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9218 path->nodes[level] = btrfs_lock_root_node(root);
9219 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9220 path->slots[level] = 0;
bd681513 9221 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9222 memset(&wc->update_progress, 0,
9223 sizeof(wc->update_progress));
9f3a7427 9224 } else {
9f3a7427 9225 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9226 memcpy(&wc->update_progress, &key,
9227 sizeof(wc->update_progress));
9228
6702ed49 9229 level = root_item->drop_level;
2c47e605 9230 BUG_ON(level == 0);
6702ed49 9231 path->lowest_level = level;
2c47e605
YZ
9232 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9233 path->lowest_level = 0;
9234 if (ret < 0) {
9235 err = ret;
79787eaa 9236 goto out_end_trans;
9f3a7427 9237 }
1c4850e2 9238 WARN_ON(ret > 0);
2c47e605 9239
7d9eb12c
CM
9240 /*
9241 * unlock our path, this is safe because only this
9242 * function is allowed to delete this snapshot
9243 */
5d4f98a2 9244 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9245
9246 level = btrfs_header_level(root->node);
9247 while (1) {
9248 btrfs_tree_lock(path->nodes[level]);
9249 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9250 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9251
9252 ret = btrfs_lookup_extent_info(trans, root,
9253 path->nodes[level]->start,
3173a18f 9254 level, 1, &wc->refs[level],
2c47e605 9255 &wc->flags[level]);
79787eaa
JM
9256 if (ret < 0) {
9257 err = ret;
9258 goto out_end_trans;
9259 }
2c47e605
YZ
9260 BUG_ON(wc->refs[level] == 0);
9261
9262 if (level == root_item->drop_level)
9263 break;
9264
9265 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9266 path->locks[level] = 0;
2c47e605
YZ
9267 WARN_ON(wc->refs[level] != 1);
9268 level--;
9269 }
9f3a7427 9270 }
2c47e605
YZ
9271
9272 wc->level = level;
9273 wc->shared_level = -1;
9274 wc->stage = DROP_REFERENCE;
9275 wc->update_ref = update_ref;
9276 wc->keep_locks = 0;
66d7e7f0 9277 wc->for_reloc = for_reloc;
1c4850e2 9278 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9279
d397712b 9280 while (1) {
9d1a2a3a 9281
2c47e605
YZ
9282 ret = walk_down_tree(trans, root, path, wc);
9283 if (ret < 0) {
9284 err = ret;
20524f02 9285 break;
2c47e605 9286 }
9aca1d51 9287
2c47e605
YZ
9288 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9289 if (ret < 0) {
9290 err = ret;
20524f02 9291 break;
2c47e605
YZ
9292 }
9293
9294 if (ret > 0) {
9295 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9296 break;
9297 }
2c47e605
YZ
9298
9299 if (wc->stage == DROP_REFERENCE) {
9300 level = wc->level;
9301 btrfs_node_key(path->nodes[level],
9302 &root_item->drop_progress,
9303 path->slots[level]);
9304 root_item->drop_level = level;
9305 }
9306
9307 BUG_ON(wc->level == 0);
3c8f2422
JB
9308 if (btrfs_should_end_transaction(trans, tree_root) ||
9309 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9310 ret = btrfs_update_root(trans, tree_root,
9311 &root->root_key,
9312 root_item);
79787eaa 9313 if (ret) {
66642832 9314 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9315 err = ret;
9316 goto out_end_trans;
9317 }
2c47e605 9318
3fd0a558 9319 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9320 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 9321 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
9322 err = -EAGAIN;
9323 goto out_free;
9324 }
9325
a22285a6 9326 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9327 if (IS_ERR(trans)) {
9328 err = PTR_ERR(trans);
9329 goto out_free;
9330 }
3fd0a558
YZ
9331 if (block_rsv)
9332 trans->block_rsv = block_rsv;
c3e69d58 9333 }
20524f02 9334 }
b3b4aa74 9335 btrfs_release_path(path);
79787eaa
JM
9336 if (err)
9337 goto out_end_trans;
2c47e605
YZ
9338
9339 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9340 if (ret) {
66642832 9341 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9342 goto out_end_trans;
9343 }
2c47e605 9344
76dda93c 9345 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9346 ret = btrfs_find_root(tree_root, &root->root_key, path,
9347 NULL, NULL);
79787eaa 9348 if (ret < 0) {
66642832 9349 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9350 err = ret;
9351 goto out_end_trans;
9352 } else if (ret > 0) {
84cd948c
JB
9353 /* if we fail to delete the orphan item this time
9354 * around, it'll get picked up the next time.
9355 *
9356 * The most common failure here is just -ENOENT.
9357 */
9358 btrfs_del_orphan_item(trans, tree_root,
9359 root->root_key.objectid);
76dda93c
YZ
9360 }
9361 }
9362
27cdeb70 9363 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9364 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9365 } else {
9366 free_extent_buffer(root->node);
9367 free_extent_buffer(root->commit_root);
b0feb9d9 9368 btrfs_put_fs_root(root);
76dda93c 9369 }
d29a9f62 9370 root_dropped = true;
79787eaa 9371out_end_trans:
3fd0a558 9372 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9373out_free:
2c47e605 9374 kfree(wc);
5caf2a00 9375 btrfs_free_path(path);
cb1b69f4 9376out:
d29a9f62
JB
9377 /*
9378 * So if we need to stop dropping the snapshot for whatever reason we
9379 * need to make sure to add it back to the dead root list so that we
9380 * keep trying to do the work later. This also cleans up roots if we
9381 * don't have it in the radix (like when we recover after a power fail
9382 * or unmount) so we don't leak memory.
9383 */
b37b39cd 9384 if (!for_reloc && root_dropped == false)
d29a9f62 9385 btrfs_add_dead_root(root);
90515e7f 9386 if (err && err != -EAGAIN)
34d97007 9387 btrfs_handle_fs_error(root->fs_info, err, NULL);
2c536799 9388 return err;
20524f02 9389}
9078a3e1 9390
2c47e605
YZ
9391/*
9392 * drop subtree rooted at tree block 'node'.
9393 *
9394 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9395 * only used by relocation code
2c47e605 9396 */
f82d02d9
YZ
9397int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9398 struct btrfs_root *root,
9399 struct extent_buffer *node,
9400 struct extent_buffer *parent)
9401{
9402 struct btrfs_path *path;
2c47e605 9403 struct walk_control *wc;
f82d02d9
YZ
9404 int level;
9405 int parent_level;
9406 int ret = 0;
9407 int wret;
9408
2c47e605
YZ
9409 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9410
f82d02d9 9411 path = btrfs_alloc_path();
db5b493a
TI
9412 if (!path)
9413 return -ENOMEM;
f82d02d9 9414
2c47e605 9415 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9416 if (!wc) {
9417 btrfs_free_path(path);
9418 return -ENOMEM;
9419 }
2c47e605 9420
b9447ef8 9421 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9422 parent_level = btrfs_header_level(parent);
9423 extent_buffer_get(parent);
9424 path->nodes[parent_level] = parent;
9425 path->slots[parent_level] = btrfs_header_nritems(parent);
9426
b9447ef8 9427 btrfs_assert_tree_locked(node);
f82d02d9 9428 level = btrfs_header_level(node);
f82d02d9
YZ
9429 path->nodes[level] = node;
9430 path->slots[level] = 0;
bd681513 9431 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9432
9433 wc->refs[parent_level] = 1;
9434 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9435 wc->level = level;
9436 wc->shared_level = -1;
9437 wc->stage = DROP_REFERENCE;
9438 wc->update_ref = 0;
9439 wc->keep_locks = 1;
66d7e7f0 9440 wc->for_reloc = 1;
1c4850e2 9441 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9442
9443 while (1) {
2c47e605
YZ
9444 wret = walk_down_tree(trans, root, path, wc);
9445 if (wret < 0) {
f82d02d9 9446 ret = wret;
f82d02d9 9447 break;
2c47e605 9448 }
f82d02d9 9449
2c47e605 9450 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9451 if (wret < 0)
9452 ret = wret;
9453 if (wret != 0)
9454 break;
9455 }
9456
2c47e605 9457 kfree(wc);
f82d02d9
YZ
9458 btrfs_free_path(path);
9459 return ret;
9460}
9461
ec44a35c
CM
9462static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9463{
9464 u64 num_devices;
fc67c450 9465 u64 stripped;
e4d8ec0f 9466
fc67c450
ID
9467 /*
9468 * if restripe for this chunk_type is on pick target profile and
9469 * return, otherwise do the usual balance
9470 */
9471 stripped = get_restripe_target(root->fs_info, flags);
9472 if (stripped)
9473 return extended_to_chunk(stripped);
e4d8ec0f 9474
95669976 9475 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9476
fc67c450 9477 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9478 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9479 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9480
ec44a35c
CM
9481 if (num_devices == 1) {
9482 stripped |= BTRFS_BLOCK_GROUP_DUP;
9483 stripped = flags & ~stripped;
9484
9485 /* turn raid0 into single device chunks */
9486 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9487 return stripped;
9488
9489 /* turn mirroring into duplication */
9490 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9491 BTRFS_BLOCK_GROUP_RAID10))
9492 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9493 } else {
9494 /* they already had raid on here, just return */
ec44a35c
CM
9495 if (flags & stripped)
9496 return flags;
9497
9498 stripped |= BTRFS_BLOCK_GROUP_DUP;
9499 stripped = flags & ~stripped;
9500
9501 /* switch duplicated blocks with raid1 */
9502 if (flags & BTRFS_BLOCK_GROUP_DUP)
9503 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9504
e3176ca2 9505 /* this is drive concat, leave it alone */
ec44a35c 9506 }
e3176ca2 9507
ec44a35c
CM
9508 return flags;
9509}
9510
868f401a 9511static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9512{
f0486c68
YZ
9513 struct btrfs_space_info *sinfo = cache->space_info;
9514 u64 num_bytes;
199c36ea 9515 u64 min_allocable_bytes;
f0486c68 9516 int ret = -ENOSPC;
0ef3e66b 9517
199c36ea
MX
9518 /*
9519 * We need some metadata space and system metadata space for
9520 * allocating chunks in some corner cases until we force to set
9521 * it to be readonly.
9522 */
9523 if ((sinfo->flags &
9524 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9525 !force)
ee22184b 9526 min_allocable_bytes = SZ_1M;
199c36ea
MX
9527 else
9528 min_allocable_bytes = 0;
9529
f0486c68
YZ
9530 spin_lock(&sinfo->lock);
9531 spin_lock(&cache->lock);
61cfea9b
W
9532
9533 if (cache->ro) {
868f401a 9534 cache->ro++;
61cfea9b
W
9535 ret = 0;
9536 goto out;
9537 }
9538
f0486c68
YZ
9539 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9540 cache->bytes_super - btrfs_block_group_used(&cache->item);
9541
9542 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9543 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9544 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9545 sinfo->bytes_readonly += num_bytes;
868f401a 9546 cache->ro++;
633c0aad 9547 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9548 ret = 0;
9549 }
61cfea9b 9550out:
f0486c68
YZ
9551 spin_unlock(&cache->lock);
9552 spin_unlock(&sinfo->lock);
9553 return ret;
9554}
7d9eb12c 9555
868f401a 9556int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9557 struct btrfs_block_group_cache *cache)
c286ac48 9558
f0486c68
YZ
9559{
9560 struct btrfs_trans_handle *trans;
9561 u64 alloc_flags;
9562 int ret;
7d9eb12c 9563
1bbc621e 9564again:
ff5714cc 9565 trans = btrfs_join_transaction(root);
79787eaa
JM
9566 if (IS_ERR(trans))
9567 return PTR_ERR(trans);
5d4f98a2 9568
1bbc621e
CM
9569 /*
9570 * we're not allowed to set block groups readonly after the dirty
9571 * block groups cache has started writing. If it already started,
9572 * back off and let this transaction commit
9573 */
9574 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9575 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9576 u64 transid = trans->transid;
9577
9578 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9579 btrfs_end_transaction(trans, root);
9580
9581 ret = btrfs_wait_for_commit(root, transid);
9582 if (ret)
9583 return ret;
9584 goto again;
9585 }
9586
153c35b6
CM
9587 /*
9588 * if we are changing raid levels, try to allocate a corresponding
9589 * block group with the new raid level.
9590 */
9591 alloc_flags = update_block_group_flags(root, cache->flags);
9592 if (alloc_flags != cache->flags) {
9593 ret = do_chunk_alloc(trans, root, alloc_flags,
9594 CHUNK_ALLOC_FORCE);
9595 /*
9596 * ENOSPC is allowed here, we may have enough space
9597 * already allocated at the new raid level to
9598 * carry on
9599 */
9600 if (ret == -ENOSPC)
9601 ret = 0;
9602 if (ret < 0)
9603 goto out;
9604 }
1bbc621e 9605
868f401a 9606 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9607 if (!ret)
9608 goto out;
9609 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9610 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9611 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9612 if (ret < 0)
9613 goto out;
868f401a 9614 ret = inc_block_group_ro(cache, 0);
f0486c68 9615out:
2f081088
SL
9616 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9617 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9618 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9619 check_system_chunk(trans, root, alloc_flags);
a9629596 9620 unlock_chunks(root->fs_info->chunk_root);
2f081088 9621 }
1bbc621e 9622 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9623
f0486c68
YZ
9624 btrfs_end_transaction(trans, root);
9625 return ret;
9626}
5d4f98a2 9627
c87f08ca
CM
9628int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9629 struct btrfs_root *root, u64 type)
9630{
9631 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9632 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9633 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9634}
9635
6d07bcec
MX
9636/*
9637 * helper to account the unused space of all the readonly block group in the
633c0aad 9638 * space_info. takes mirrors into account.
6d07bcec 9639 */
633c0aad 9640u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9641{
9642 struct btrfs_block_group_cache *block_group;
9643 u64 free_bytes = 0;
9644 int factor;
9645
01327610 9646 /* It's df, we don't care if it's racy */
633c0aad
JB
9647 if (list_empty(&sinfo->ro_bgs))
9648 return 0;
9649
9650 spin_lock(&sinfo->lock);
9651 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9652 spin_lock(&block_group->lock);
9653
9654 if (!block_group->ro) {
9655 spin_unlock(&block_group->lock);
9656 continue;
9657 }
9658
9659 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9660 BTRFS_BLOCK_GROUP_RAID10 |
9661 BTRFS_BLOCK_GROUP_DUP))
9662 factor = 2;
9663 else
9664 factor = 1;
9665
9666 free_bytes += (block_group->key.offset -
9667 btrfs_block_group_used(&block_group->item)) *
9668 factor;
9669
9670 spin_unlock(&block_group->lock);
9671 }
6d07bcec
MX
9672 spin_unlock(&sinfo->lock);
9673
9674 return free_bytes;
9675}
9676
868f401a 9677void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9678 struct btrfs_block_group_cache *cache)
5d4f98a2 9679{
f0486c68
YZ
9680 struct btrfs_space_info *sinfo = cache->space_info;
9681 u64 num_bytes;
9682
9683 BUG_ON(!cache->ro);
9684
9685 spin_lock(&sinfo->lock);
9686 spin_lock(&cache->lock);
868f401a
Z
9687 if (!--cache->ro) {
9688 num_bytes = cache->key.offset - cache->reserved -
9689 cache->pinned - cache->bytes_super -
9690 btrfs_block_group_used(&cache->item);
9691 sinfo->bytes_readonly -= num_bytes;
9692 list_del_init(&cache->ro_list);
9693 }
f0486c68
YZ
9694 spin_unlock(&cache->lock);
9695 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9696}
9697
ba1bf481
JB
9698/*
9699 * checks to see if its even possible to relocate this block group.
9700 *
9701 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9702 * ok to go ahead and try.
9703 */
9704int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9705{
ba1bf481
JB
9706 struct btrfs_block_group_cache *block_group;
9707 struct btrfs_space_info *space_info;
9708 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9709 struct btrfs_device *device;
6df9a95e 9710 struct btrfs_trans_handle *trans;
cdcb725c 9711 u64 min_free;
6719db6a
JB
9712 u64 dev_min = 1;
9713 u64 dev_nr = 0;
4a5e98f5 9714 u64 target;
0305bc27 9715 int debug;
cdcb725c 9716 int index;
ba1bf481
JB
9717 int full = 0;
9718 int ret = 0;
1a40e23b 9719
3cdde224 9720 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
0305bc27 9721
ba1bf481 9722 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9723
ba1bf481 9724 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9725 if (!block_group) {
9726 if (debug)
9727 btrfs_warn(root->fs_info,
9728 "can't find block group for bytenr %llu",
9729 bytenr);
ba1bf481 9730 return -1;
0305bc27 9731 }
1a40e23b 9732
cdcb725c 9733 min_free = btrfs_block_group_used(&block_group->item);
9734
ba1bf481 9735 /* no bytes used, we're good */
cdcb725c 9736 if (!min_free)
1a40e23b
ZY
9737 goto out;
9738
ba1bf481
JB
9739 space_info = block_group->space_info;
9740 spin_lock(&space_info->lock);
17d217fe 9741
ba1bf481 9742 full = space_info->full;
17d217fe 9743
ba1bf481
JB
9744 /*
9745 * if this is the last block group we have in this space, we can't
7ce618db
CM
9746 * relocate it unless we're able to allocate a new chunk below.
9747 *
9748 * Otherwise, we need to make sure we have room in the space to handle
9749 * all of the extents from this block group. If we can, we're good
ba1bf481 9750 */
7ce618db 9751 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9752 (space_info->bytes_used + space_info->bytes_reserved +
9753 space_info->bytes_pinned + space_info->bytes_readonly +
9754 min_free < space_info->total_bytes)) {
ba1bf481
JB
9755 spin_unlock(&space_info->lock);
9756 goto out;
17d217fe 9757 }
ba1bf481 9758 spin_unlock(&space_info->lock);
ea8c2819 9759
ba1bf481
JB
9760 /*
9761 * ok we don't have enough space, but maybe we have free space on our
9762 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9763 * alloc devices and guess if we have enough space. if this block
9764 * group is going to be restriped, run checks against the target
9765 * profile instead of the current one.
ba1bf481
JB
9766 */
9767 ret = -1;
ea8c2819 9768
cdcb725c 9769 /*
9770 * index:
9771 * 0: raid10
9772 * 1: raid1
9773 * 2: dup
9774 * 3: raid0
9775 * 4: single
9776 */
4a5e98f5
ID
9777 target = get_restripe_target(root->fs_info, block_group->flags);
9778 if (target) {
31e50229 9779 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9780 } else {
9781 /*
9782 * this is just a balance, so if we were marked as full
9783 * we know there is no space for a new chunk
9784 */
0305bc27
QW
9785 if (full) {
9786 if (debug)
9787 btrfs_warn(root->fs_info,
9788 "no space to alloc new chunk for block group %llu",
9789 block_group->key.objectid);
4a5e98f5 9790 goto out;
0305bc27 9791 }
4a5e98f5
ID
9792
9793 index = get_block_group_index(block_group);
9794 }
9795
e6ec716f 9796 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9797 dev_min = 4;
6719db6a
JB
9798 /* Divide by 2 */
9799 min_free >>= 1;
e6ec716f 9800 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9801 dev_min = 2;
e6ec716f 9802 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9803 /* Multiply by 2 */
9804 min_free <<= 1;
e6ec716f 9805 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9806 dev_min = fs_devices->rw_devices;
47c5713f 9807 min_free = div64_u64(min_free, dev_min);
cdcb725c 9808 }
9809
6df9a95e
JB
9810 /* We need to do this so that we can look at pending chunks */
9811 trans = btrfs_join_transaction(root);
9812 if (IS_ERR(trans)) {
9813 ret = PTR_ERR(trans);
9814 goto out;
9815 }
9816
ba1bf481
JB
9817 mutex_lock(&root->fs_info->chunk_mutex);
9818 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9819 u64 dev_offset;
56bec294 9820
ba1bf481
JB
9821 /*
9822 * check to make sure we can actually find a chunk with enough
9823 * space to fit our block group in.
9824 */
63a212ab
SB
9825 if (device->total_bytes > device->bytes_used + min_free &&
9826 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9827 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9828 &dev_offset, NULL);
ba1bf481 9829 if (!ret)
cdcb725c 9830 dev_nr++;
9831
9832 if (dev_nr >= dev_min)
73e48b27 9833 break;
cdcb725c 9834
ba1bf481 9835 ret = -1;
725c8463 9836 }
edbd8d4e 9837 }
0305bc27
QW
9838 if (debug && ret == -1)
9839 btrfs_warn(root->fs_info,
9840 "no space to allocate a new chunk for block group %llu",
9841 block_group->key.objectid);
ba1bf481 9842 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9843 btrfs_end_transaction(trans, root);
edbd8d4e 9844out:
ba1bf481 9845 btrfs_put_block_group(block_group);
edbd8d4e
CM
9846 return ret;
9847}
9848
b2950863
CH
9849static int find_first_block_group(struct btrfs_root *root,
9850 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9851{
925baedd 9852 int ret = 0;
0b86a832
CM
9853 struct btrfs_key found_key;
9854 struct extent_buffer *leaf;
9855 int slot;
edbd8d4e 9856
0b86a832
CM
9857 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9858 if (ret < 0)
925baedd
CM
9859 goto out;
9860
d397712b 9861 while (1) {
0b86a832 9862 slot = path->slots[0];
edbd8d4e 9863 leaf = path->nodes[0];
0b86a832
CM
9864 if (slot >= btrfs_header_nritems(leaf)) {
9865 ret = btrfs_next_leaf(root, path);
9866 if (ret == 0)
9867 continue;
9868 if (ret < 0)
925baedd 9869 goto out;
0b86a832 9870 break;
edbd8d4e 9871 }
0b86a832 9872 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9873
0b86a832 9874 if (found_key.objectid >= key->objectid &&
925baedd 9875 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9876 struct extent_map_tree *em_tree;
9877 struct extent_map *em;
9878
9879 em_tree = &root->fs_info->mapping_tree.map_tree;
9880 read_lock(&em_tree->lock);
9881 em = lookup_extent_mapping(em_tree, found_key.objectid,
9882 found_key.offset);
9883 read_unlock(&em_tree->lock);
9884 if (!em) {
9885 btrfs_err(root->fs_info,
9886 "logical %llu len %llu found bg but no related chunk",
9887 found_key.objectid, found_key.offset);
9888 ret = -ENOENT;
9889 } else {
9890 ret = 0;
9891 }
187ee58c 9892 free_extent_map(em);
925baedd
CM
9893 goto out;
9894 }
0b86a832 9895 path->slots[0]++;
edbd8d4e 9896 }
925baedd 9897out:
0b86a832 9898 return ret;
edbd8d4e
CM
9899}
9900
0af3d00b
JB
9901void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9902{
9903 struct btrfs_block_group_cache *block_group;
9904 u64 last = 0;
9905
9906 while (1) {
9907 struct inode *inode;
9908
9909 block_group = btrfs_lookup_first_block_group(info, last);
9910 while (block_group) {
9911 spin_lock(&block_group->lock);
9912 if (block_group->iref)
9913 break;
9914 spin_unlock(&block_group->lock);
9915 block_group = next_block_group(info->tree_root,
9916 block_group);
9917 }
9918 if (!block_group) {
9919 if (last == 0)
9920 break;
9921 last = 0;
9922 continue;
9923 }
9924
9925 inode = block_group->inode;
9926 block_group->iref = 0;
9927 block_group->inode = NULL;
9928 spin_unlock(&block_group->lock);
f3bca802 9929 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9930 iput(inode);
9931 last = block_group->key.objectid + block_group->key.offset;
9932 btrfs_put_block_group(block_group);
9933 }
9934}
9935
1a40e23b
ZY
9936int btrfs_free_block_groups(struct btrfs_fs_info *info)
9937{
9938 struct btrfs_block_group_cache *block_group;
4184ea7f 9939 struct btrfs_space_info *space_info;
11833d66 9940 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9941 struct rb_node *n;
9942
9e351cc8 9943 down_write(&info->commit_root_sem);
11833d66
YZ
9944 while (!list_empty(&info->caching_block_groups)) {
9945 caching_ctl = list_entry(info->caching_block_groups.next,
9946 struct btrfs_caching_control, list);
9947 list_del(&caching_ctl->list);
9948 put_caching_control(caching_ctl);
9949 }
9e351cc8 9950 up_write(&info->commit_root_sem);
11833d66 9951
47ab2a6c
JB
9952 spin_lock(&info->unused_bgs_lock);
9953 while (!list_empty(&info->unused_bgs)) {
9954 block_group = list_first_entry(&info->unused_bgs,
9955 struct btrfs_block_group_cache,
9956 bg_list);
9957 list_del_init(&block_group->bg_list);
9958 btrfs_put_block_group(block_group);
9959 }
9960 spin_unlock(&info->unused_bgs_lock);
9961
1a40e23b
ZY
9962 spin_lock(&info->block_group_cache_lock);
9963 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9964 block_group = rb_entry(n, struct btrfs_block_group_cache,
9965 cache_node);
1a40e23b
ZY
9966 rb_erase(&block_group->cache_node,
9967 &info->block_group_cache_tree);
01eacb27 9968 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9969 spin_unlock(&info->block_group_cache_lock);
9970
80eb234a 9971 down_write(&block_group->space_info->groups_sem);
1a40e23b 9972 list_del(&block_group->list);
80eb234a 9973 up_write(&block_group->space_info->groups_sem);
d2fb3437 9974
817d52f8 9975 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9976 wait_block_group_cache_done(block_group);
817d52f8 9977
3c14874a
JB
9978 /*
9979 * We haven't cached this block group, which means we could
9980 * possibly have excluded extents on this block group.
9981 */
36cce922
JB
9982 if (block_group->cached == BTRFS_CACHE_NO ||
9983 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9984 free_excluded_extents(info->extent_root, block_group);
9985
817d52f8 9986 btrfs_remove_free_space_cache(block_group);
f3bca802
LB
9987 ASSERT(list_empty(&block_group->dirty_list));
9988 ASSERT(list_empty(&block_group->io_list));
9989 ASSERT(list_empty(&block_group->bg_list));
9990 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9991 btrfs_put_block_group(block_group);
d899e052
YZ
9992
9993 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9994 }
9995 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9996
9997 /* now that all the block groups are freed, go through and
9998 * free all the space_info structs. This is only called during
9999 * the final stages of unmount, and so we know nobody is
10000 * using them. We call synchronize_rcu() once before we start,
10001 * just to be on the safe side.
10002 */
10003 synchronize_rcu();
10004
8929ecfa
YZ
10005 release_global_block_rsv(info);
10006
67871254 10007 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10008 int i;
10009
4184ea7f
CM
10010 space_info = list_entry(info->space_info.next,
10011 struct btrfs_space_info,
10012 list);
d555b6c3
JB
10013
10014 /*
10015 * Do not hide this behind enospc_debug, this is actually
10016 * important and indicates a real bug if this happens.
10017 */
10018 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10019 space_info->bytes_reserved > 0 ||
d555b6c3
JB
10020 space_info->bytes_may_use > 0))
10021 dump_space_info(space_info, 0, 0);
4184ea7f 10022 list_del(&space_info->list);
6ab0a202
JM
10023 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10024 struct kobject *kobj;
c1895442
JM
10025 kobj = space_info->block_group_kobjs[i];
10026 space_info->block_group_kobjs[i] = NULL;
10027 if (kobj) {
6ab0a202
JM
10028 kobject_del(kobj);
10029 kobject_put(kobj);
10030 }
10031 }
10032 kobject_del(&space_info->kobj);
10033 kobject_put(&space_info->kobj);
4184ea7f 10034 }
1a40e23b
ZY
10035 return 0;
10036}
10037
b742bb82
YZ
10038static void __link_block_group(struct btrfs_space_info *space_info,
10039 struct btrfs_block_group_cache *cache)
10040{
10041 int index = get_block_group_index(cache);
ed55b6ac 10042 bool first = false;
b742bb82
YZ
10043
10044 down_write(&space_info->groups_sem);
ed55b6ac
JM
10045 if (list_empty(&space_info->block_groups[index]))
10046 first = true;
10047 list_add_tail(&cache->list, &space_info->block_groups[index]);
10048 up_write(&space_info->groups_sem);
10049
10050 if (first) {
c1895442 10051 struct raid_kobject *rkobj;
6ab0a202
JM
10052 int ret;
10053
c1895442
JM
10054 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10055 if (!rkobj)
10056 goto out_err;
10057 rkobj->raid_type = index;
10058 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10059 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10060 "%s", get_raid_name(index));
6ab0a202 10061 if (ret) {
c1895442
JM
10062 kobject_put(&rkobj->kobj);
10063 goto out_err;
6ab0a202 10064 }
c1895442 10065 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10066 }
c1895442
JM
10067
10068 return;
10069out_err:
10070 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
10071}
10072
920e4a58
MX
10073static struct btrfs_block_group_cache *
10074btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10075{
10076 struct btrfs_block_group_cache *cache;
10077
10078 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10079 if (!cache)
10080 return NULL;
10081
10082 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10083 GFP_NOFS);
10084 if (!cache->free_space_ctl) {
10085 kfree(cache);
10086 return NULL;
10087 }
10088
10089 cache->key.objectid = start;
10090 cache->key.offset = size;
10091 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10092
10093 cache->sectorsize = root->sectorsize;
10094 cache->fs_info = root->fs_info;
10095 cache->full_stripe_len = btrfs_full_stripe_len(root,
10096 &root->fs_info->mapping_tree,
10097 start);
1e144fb8
OS
10098 set_free_space_tree_thresholds(cache);
10099
920e4a58
MX
10100 atomic_set(&cache->count, 1);
10101 spin_lock_init(&cache->lock);
e570fd27 10102 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10103 INIT_LIST_HEAD(&cache->list);
10104 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10105 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10106 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10107 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10108 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10109 btrfs_init_free_space_ctl(cache);
04216820 10110 atomic_set(&cache->trimming, 0);
a5ed9182 10111 mutex_init(&cache->free_space_lock);
920e4a58
MX
10112
10113 return cache;
10114}
10115
9078a3e1
CM
10116int btrfs_read_block_groups(struct btrfs_root *root)
10117{
10118 struct btrfs_path *path;
10119 int ret;
9078a3e1 10120 struct btrfs_block_group_cache *cache;
be744175 10121 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 10122 struct btrfs_space_info *space_info;
9078a3e1
CM
10123 struct btrfs_key key;
10124 struct btrfs_key found_key;
5f39d397 10125 struct extent_buffer *leaf;
0af3d00b
JB
10126 int need_clear = 0;
10127 u64 cache_gen;
96b5179d 10128
be744175 10129 root = info->extent_root;
9078a3e1 10130 key.objectid = 0;
0b86a832 10131 key.offset = 0;
962a298f 10132 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10133 path = btrfs_alloc_path();
10134 if (!path)
10135 return -ENOMEM;
e4058b54 10136 path->reada = READA_FORWARD;
9078a3e1 10137
6c41761f 10138 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
3cdde224 10139 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6c41761f 10140 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 10141 need_clear = 1;
3cdde224 10142 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
88c2ba3b 10143 need_clear = 1;
0af3d00b 10144
d397712b 10145 while (1) {
0b86a832 10146 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
10147 if (ret > 0)
10148 break;
0b86a832
CM
10149 if (ret != 0)
10150 goto error;
920e4a58 10151
5f39d397
CM
10152 leaf = path->nodes[0];
10153 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
10154
10155 cache = btrfs_create_block_group_cache(root, found_key.objectid,
10156 found_key.offset);
9078a3e1 10157 if (!cache) {
0b86a832 10158 ret = -ENOMEM;
f0486c68 10159 goto error;
9078a3e1 10160 }
96303081 10161
cf7c1ef6
LB
10162 if (need_clear) {
10163 /*
10164 * When we mount with old space cache, we need to
10165 * set BTRFS_DC_CLEAR and set dirty flag.
10166 *
10167 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10168 * truncate the old free space cache inode and
10169 * setup a new one.
10170 * b) Setting 'dirty flag' makes sure that we flush
10171 * the new space cache info onto disk.
10172 */
3cdde224 10173 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
ce93ec54 10174 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10175 }
0af3d00b 10176
5f39d397
CM
10177 read_extent_buffer(leaf, &cache->item,
10178 btrfs_item_ptr_offset(leaf, path->slots[0]),
10179 sizeof(cache->item));
920e4a58 10180 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 10181
9078a3e1 10182 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10183 btrfs_release_path(path);
34d52cb6 10184
3c14874a
JB
10185 /*
10186 * We need to exclude the super stripes now so that the space
10187 * info has super bytes accounted for, otherwise we'll think
10188 * we have more space than we actually do.
10189 */
835d974f
JB
10190 ret = exclude_super_stripes(root, cache);
10191 if (ret) {
10192 /*
10193 * We may have excluded something, so call this just in
10194 * case.
10195 */
10196 free_excluded_extents(root, cache);
920e4a58 10197 btrfs_put_block_group(cache);
835d974f
JB
10198 goto error;
10199 }
3c14874a 10200
817d52f8
JB
10201 /*
10202 * check for two cases, either we are full, and therefore
10203 * don't need to bother with the caching work since we won't
10204 * find any space, or we are empty, and we can just add all
10205 * the space in and be done with it. This saves us _alot_ of
10206 * time, particularly in the full case.
10207 */
10208 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10209 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10210 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 10211 free_excluded_extents(root, cache);
817d52f8 10212 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10213 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
10214 cache->cached = BTRFS_CACHE_FINISHED;
10215 add_new_free_space(cache, root->fs_info,
10216 found_key.objectid,
10217 found_key.objectid +
10218 found_key.offset);
11833d66 10219 free_excluded_extents(root, cache);
817d52f8 10220 }
96b5179d 10221
8c579fe7
JB
10222 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10223 if (ret) {
10224 btrfs_remove_free_space_cache(cache);
10225 btrfs_put_block_group(cache);
10226 goto error;
10227 }
10228
c83f8eff 10229 trace_btrfs_add_block_group(root->fs_info, cache, 0);
6324fbf3
CM
10230 ret = update_space_info(info, cache->flags, found_key.offset,
10231 btrfs_block_group_used(&cache->item),
e40edf2d 10232 cache->bytes_super, &space_info);
8c579fe7
JB
10233 if (ret) {
10234 btrfs_remove_free_space_cache(cache);
10235 spin_lock(&info->block_group_cache_lock);
10236 rb_erase(&cache->cache_node,
10237 &info->block_group_cache_tree);
01eacb27 10238 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10239 spin_unlock(&info->block_group_cache_lock);
10240 btrfs_put_block_group(cache);
10241 goto error;
10242 }
10243
6324fbf3 10244 cache->space_info = space_info;
1b2da372 10245
b742bb82 10246 __link_block_group(space_info, cache);
0f9dd46c 10247
75ccf47d 10248 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10249 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10250 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10251 } else if (btrfs_block_group_used(&cache->item) == 0) {
10252 spin_lock(&info->unused_bgs_lock);
10253 /* Should always be true but just in case. */
10254 if (list_empty(&cache->bg_list)) {
10255 btrfs_get_block_group(cache);
10256 list_add_tail(&cache->bg_list,
10257 &info->unused_bgs);
10258 }
10259 spin_unlock(&info->unused_bgs_lock);
10260 }
9078a3e1 10261 }
b742bb82
YZ
10262
10263 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10264 if (!(get_alloc_profile(root, space_info->flags) &
10265 (BTRFS_BLOCK_GROUP_RAID10 |
10266 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10267 BTRFS_BLOCK_GROUP_RAID5 |
10268 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10269 BTRFS_BLOCK_GROUP_DUP)))
10270 continue;
10271 /*
10272 * avoid allocating from un-mirrored block group if there are
10273 * mirrored block groups.
10274 */
1095cc0d 10275 list_for_each_entry(cache,
10276 &space_info->block_groups[BTRFS_RAID_RAID0],
10277 list)
868f401a 10278 inc_block_group_ro(cache, 1);
1095cc0d 10279 list_for_each_entry(cache,
10280 &space_info->block_groups[BTRFS_RAID_SINGLE],
10281 list)
868f401a 10282 inc_block_group_ro(cache, 1);
9078a3e1 10283 }
f0486c68
YZ
10284
10285 init_global_block_rsv(info);
0b86a832
CM
10286 ret = 0;
10287error:
9078a3e1 10288 btrfs_free_path(path);
0b86a832 10289 return ret;
9078a3e1 10290}
6324fbf3 10291
ea658bad
JB
10292void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10293 struct btrfs_root *root)
10294{
10295 struct btrfs_block_group_cache *block_group, *tmp;
10296 struct btrfs_root *extent_root = root->fs_info->extent_root;
10297 struct btrfs_block_group_item item;
10298 struct btrfs_key key;
10299 int ret = 0;
d9a0540a 10300 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10301
d9a0540a 10302 trans->can_flush_pending_bgs = false;
47ab2a6c 10303 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10304 if (ret)
c92f6be3 10305 goto next;
ea658bad
JB
10306
10307 spin_lock(&block_group->lock);
10308 memcpy(&item, &block_group->item, sizeof(item));
10309 memcpy(&key, &block_group->key, sizeof(key));
10310 spin_unlock(&block_group->lock);
10311
10312 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10313 sizeof(item));
10314 if (ret)
66642832 10315 btrfs_abort_transaction(trans, ret);
6df9a95e
JB
10316 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10317 key.objectid, key.offset);
10318 if (ret)
66642832 10319 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
10320 add_block_group_free_space(trans, root->fs_info, block_group);
10321 /* already aborted the transaction if it failed. */
c92f6be3
FM
10322next:
10323 list_del_init(&block_group->bg_list);
ea658bad 10324 }
d9a0540a 10325 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10326}
10327
6324fbf3
CM
10328int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10329 struct btrfs_root *root, u64 bytes_used,
e17cade2 10330 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10331 u64 size)
10332{
10333 int ret;
6324fbf3
CM
10334 struct btrfs_root *extent_root;
10335 struct btrfs_block_group_cache *cache;
6324fbf3 10336 extent_root = root->fs_info->extent_root;
6324fbf3 10337
995946dd 10338 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10339
920e4a58 10340 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10341 if (!cache)
10342 return -ENOMEM;
34d52cb6 10343
6324fbf3 10344 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10345 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10346 btrfs_set_block_group_flags(&cache->item, type);
10347
920e4a58 10348 cache->flags = type;
11833d66 10349 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10350 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10351 cache->needs_free_space = 1;
835d974f
JB
10352 ret = exclude_super_stripes(root, cache);
10353 if (ret) {
10354 /*
10355 * We may have excluded something, so call this just in
10356 * case.
10357 */
10358 free_excluded_extents(root, cache);
920e4a58 10359 btrfs_put_block_group(cache);
835d974f
JB
10360 return ret;
10361 }
96303081 10362
817d52f8
JB
10363 add_new_free_space(cache, root->fs_info, chunk_offset,
10364 chunk_offset + size);
10365
11833d66
YZ
10366 free_excluded_extents(root, cache);
10367
d0bd4560
JB
10368#ifdef CONFIG_BTRFS_DEBUG
10369 if (btrfs_should_fragment_free_space(root, cache)) {
10370 u64 new_bytes_used = size - bytes_used;
10371
10372 bytes_used += new_bytes_used >> 1;
10373 fragment_free_space(root, cache);
10374 }
10375#endif
2e6e5183
FM
10376 /*
10377 * Call to ensure the corresponding space_info object is created and
10378 * assigned to our block group, but don't update its counters just yet.
10379 * We want our bg to be added to the rbtree with its ->space_info set.
10380 */
e40edf2d 10381 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10382 &cache->space_info);
10383 if (ret) {
10384 btrfs_remove_free_space_cache(cache);
10385 btrfs_put_block_group(cache);
10386 return ret;
10387 }
10388
8c579fe7
JB
10389 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10390 if (ret) {
10391 btrfs_remove_free_space_cache(cache);
10392 btrfs_put_block_group(cache);
10393 return ret;
10394 }
10395
2e6e5183
FM
10396 /*
10397 * Now that our block group has its ->space_info set and is inserted in
10398 * the rbtree, update the space info's counters.
10399 */
c83f8eff 10400 trace_btrfs_add_block_group(root->fs_info, cache, 1);
6324fbf3 10401 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
e40edf2d 10402 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10403 if (ret) {
10404 btrfs_remove_free_space_cache(cache);
10405 spin_lock(&root->fs_info->block_group_cache_lock);
10406 rb_erase(&cache->cache_node,
10407 &root->fs_info->block_group_cache_tree);
01eacb27 10408 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10409 spin_unlock(&root->fs_info->block_group_cache_lock);
10410 btrfs_put_block_group(cache);
10411 return ret;
10412 }
c7c144db 10413 update_global_block_rsv(root->fs_info);
1b2da372 10414
b742bb82 10415 __link_block_group(cache->space_info, cache);
6324fbf3 10416
47ab2a6c 10417 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10418
d18a2c44 10419 set_avail_alloc_bits(extent_root->fs_info, type);
6324fbf3
CM
10420 return 0;
10421}
1a40e23b 10422
10ea00f5
ID
10423static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10424{
899c81ea
ID
10425 u64 extra_flags = chunk_to_extended(flags) &
10426 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10427
de98ced9 10428 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10429 if (flags & BTRFS_BLOCK_GROUP_DATA)
10430 fs_info->avail_data_alloc_bits &= ~extra_flags;
10431 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10432 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10433 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10434 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10435 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10436}
10437
1a40e23b 10438int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10439 struct btrfs_root *root, u64 group_start,
10440 struct extent_map *em)
1a40e23b
ZY
10441{
10442 struct btrfs_path *path;
10443 struct btrfs_block_group_cache *block_group;
44fb5511 10444 struct btrfs_free_cluster *cluster;
0af3d00b 10445 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10446 struct btrfs_key key;
0af3d00b 10447 struct inode *inode;
c1895442 10448 struct kobject *kobj = NULL;
1a40e23b 10449 int ret;
10ea00f5 10450 int index;
89a55897 10451 int factor;
4f69cb98 10452 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10453 bool remove_em;
1a40e23b 10454
1a40e23b
ZY
10455 root = root->fs_info->extent_root;
10456
10457 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10458 BUG_ON(!block_group);
c146afad 10459 BUG_ON(!block_group->ro);
1a40e23b 10460
9f7c43c9 10461 /*
10462 * Free the reserved super bytes from this block group before
10463 * remove it.
10464 */
10465 free_excluded_extents(root, block_group);
10466
1a40e23b 10467 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10468 index = get_block_group_index(block_group);
89a55897
JB
10469 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10470 BTRFS_BLOCK_GROUP_RAID1 |
10471 BTRFS_BLOCK_GROUP_RAID10))
10472 factor = 2;
10473 else
10474 factor = 1;
1a40e23b 10475
44fb5511
CM
10476 /* make sure this block group isn't part of an allocation cluster */
10477 cluster = &root->fs_info->data_alloc_cluster;
10478 spin_lock(&cluster->refill_lock);
10479 btrfs_return_cluster_to_free_space(block_group, cluster);
10480 spin_unlock(&cluster->refill_lock);
10481
10482 /*
10483 * make sure this block group isn't part of a metadata
10484 * allocation cluster
10485 */
10486 cluster = &root->fs_info->meta_alloc_cluster;
10487 spin_lock(&cluster->refill_lock);
10488 btrfs_return_cluster_to_free_space(block_group, cluster);
10489 spin_unlock(&cluster->refill_lock);
10490
1a40e23b 10491 path = btrfs_alloc_path();
d8926bb3
MF
10492 if (!path) {
10493 ret = -ENOMEM;
10494 goto out;
10495 }
1a40e23b 10496
1bbc621e
CM
10497 /*
10498 * get the inode first so any iput calls done for the io_list
10499 * aren't the final iput (no unlinks allowed now)
10500 */
10b2f34d 10501 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10502
10503 mutex_lock(&trans->transaction->cache_write_mutex);
10504 /*
10505 * make sure our free spache cache IO is done before remove the
10506 * free space inode
10507 */
10508 spin_lock(&trans->transaction->dirty_bgs_lock);
10509 if (!list_empty(&block_group->io_list)) {
10510 list_del_init(&block_group->io_list);
10511
10512 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10513
10514 spin_unlock(&trans->transaction->dirty_bgs_lock);
10515 btrfs_wait_cache_io(root, trans, block_group,
10516 &block_group->io_ctl, path,
10517 block_group->key.objectid);
10518 btrfs_put_block_group(block_group);
10519 spin_lock(&trans->transaction->dirty_bgs_lock);
10520 }
10521
10522 if (!list_empty(&block_group->dirty_list)) {
10523 list_del_init(&block_group->dirty_list);
10524 btrfs_put_block_group(block_group);
10525 }
10526 spin_unlock(&trans->transaction->dirty_bgs_lock);
10527 mutex_unlock(&trans->transaction->cache_write_mutex);
10528
0af3d00b 10529 if (!IS_ERR(inode)) {
b532402e 10530 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10531 if (ret) {
10532 btrfs_add_delayed_iput(inode);
10533 goto out;
10534 }
0af3d00b
JB
10535 clear_nlink(inode);
10536 /* One for the block groups ref */
10537 spin_lock(&block_group->lock);
10538 if (block_group->iref) {
10539 block_group->iref = 0;
10540 block_group->inode = NULL;
10541 spin_unlock(&block_group->lock);
10542 iput(inode);
10543 } else {
10544 spin_unlock(&block_group->lock);
10545 }
10546 /* One for our lookup ref */
455757c3 10547 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10548 }
10549
10550 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10551 key.offset = block_group->key.objectid;
10552 key.type = 0;
10553
10554 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10555 if (ret < 0)
10556 goto out;
10557 if (ret > 0)
b3b4aa74 10558 btrfs_release_path(path);
0af3d00b
JB
10559 if (ret == 0) {
10560 ret = btrfs_del_item(trans, tree_root, path);
10561 if (ret)
10562 goto out;
b3b4aa74 10563 btrfs_release_path(path);
0af3d00b
JB
10564 }
10565
3dfdb934 10566 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10567 rb_erase(&block_group->cache_node,
10568 &root->fs_info->block_group_cache_tree);
292cbd51 10569 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10570
10571 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10572 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10573 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10574
80eb234a 10575 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10576 /*
10577 * we must use list_del_init so people can check to see if they
10578 * are still on the list after taking the semaphore
10579 */
10580 list_del_init(&block_group->list);
6ab0a202 10581 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10582 kobj = block_group->space_info->block_group_kobjs[index];
10583 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10584 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10585 }
80eb234a 10586 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10587 if (kobj) {
10588 kobject_del(kobj);
10589 kobject_put(kobj);
10590 }
1a40e23b 10591
4f69cb98
FM
10592 if (block_group->has_caching_ctl)
10593 caching_ctl = get_caching_control(block_group);
817d52f8 10594 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10595 wait_block_group_cache_done(block_group);
4f69cb98
FM
10596 if (block_group->has_caching_ctl) {
10597 down_write(&root->fs_info->commit_root_sem);
10598 if (!caching_ctl) {
10599 struct btrfs_caching_control *ctl;
10600
10601 list_for_each_entry(ctl,
10602 &root->fs_info->caching_block_groups, list)
10603 if (ctl->block_group == block_group) {
10604 caching_ctl = ctl;
10605 atomic_inc(&caching_ctl->count);
10606 break;
10607 }
10608 }
10609 if (caching_ctl)
10610 list_del_init(&caching_ctl->list);
10611 up_write(&root->fs_info->commit_root_sem);
10612 if (caching_ctl) {
10613 /* Once for the caching bgs list and once for us. */
10614 put_caching_control(caching_ctl);
10615 put_caching_control(caching_ctl);
10616 }
10617 }
817d52f8 10618
ce93ec54
JB
10619 spin_lock(&trans->transaction->dirty_bgs_lock);
10620 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10621 WARN_ON(1);
10622 }
10623 if (!list_empty(&block_group->io_list)) {
10624 WARN_ON(1);
ce93ec54
JB
10625 }
10626 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10627 btrfs_remove_free_space_cache(block_group);
10628
c146afad 10629 spin_lock(&block_group->space_info->lock);
75c68e9f 10630 list_del_init(&block_group->ro_list);
18d018ad 10631
3cdde224 10632 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10633 WARN_ON(block_group->space_info->total_bytes
10634 < block_group->key.offset);
10635 WARN_ON(block_group->space_info->bytes_readonly
10636 < block_group->key.offset);
10637 WARN_ON(block_group->space_info->disk_total
10638 < block_group->key.offset * factor);
10639 }
c146afad
YZ
10640 block_group->space_info->total_bytes -= block_group->key.offset;
10641 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10642 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10643
c146afad 10644 spin_unlock(&block_group->space_info->lock);
283bb197 10645
0af3d00b
JB
10646 memcpy(&key, &block_group->key, sizeof(key));
10647
04216820 10648 lock_chunks(root);
495e64f4
FM
10649 if (!list_empty(&em->list)) {
10650 /* We're in the transaction->pending_chunks list. */
10651 free_extent_map(em);
10652 }
04216820
FM
10653 spin_lock(&block_group->lock);
10654 block_group->removed = 1;
10655 /*
10656 * At this point trimming can't start on this block group, because we
10657 * removed the block group from the tree fs_info->block_group_cache_tree
10658 * so no one can't find it anymore and even if someone already got this
10659 * block group before we removed it from the rbtree, they have already
10660 * incremented block_group->trimming - if they didn't, they won't find
10661 * any free space entries because we already removed them all when we
10662 * called btrfs_remove_free_space_cache().
10663 *
10664 * And we must not remove the extent map from the fs_info->mapping_tree
10665 * to prevent the same logical address range and physical device space
10666 * ranges from being reused for a new block group. This is because our
10667 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10668 * completely transactionless, so while it is trimming a range the
10669 * currently running transaction might finish and a new one start,
10670 * allowing for new block groups to be created that can reuse the same
10671 * physical device locations unless we take this special care.
e33e17ee
JM
10672 *
10673 * There may also be an implicit trim operation if the file system
10674 * is mounted with -odiscard. The same protections must remain
10675 * in place until the extents have been discarded completely when
10676 * the transaction commit has completed.
04216820
FM
10677 */
10678 remove_em = (atomic_read(&block_group->trimming) == 0);
10679 /*
10680 * Make sure a trimmer task always sees the em in the pinned_chunks list
10681 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10682 * before checking block_group->removed).
10683 */
10684 if (!remove_em) {
10685 /*
10686 * Our em might be in trans->transaction->pending_chunks which
10687 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10688 * and so is the fs_info->pinned_chunks list.
10689 *
10690 * So at this point we must be holding the chunk_mutex to avoid
10691 * any races with chunk allocation (more specifically at
10692 * volumes.c:contains_pending_extent()), to ensure it always
10693 * sees the em, either in the pending_chunks list or in the
10694 * pinned_chunks list.
10695 */
10696 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10697 }
10698 spin_unlock(&block_group->lock);
04216820
FM
10699
10700 if (remove_em) {
10701 struct extent_map_tree *em_tree;
10702
10703 em_tree = &root->fs_info->mapping_tree.map_tree;
10704 write_lock(&em_tree->lock);
8dbcd10f
FM
10705 /*
10706 * The em might be in the pending_chunks list, so make sure the
10707 * chunk mutex is locked, since remove_extent_mapping() will
10708 * delete us from that list.
10709 */
04216820
FM
10710 remove_extent_mapping(em_tree, em);
10711 write_unlock(&em_tree->lock);
10712 /* once for the tree */
10713 free_extent_map(em);
10714 }
10715
8dbcd10f
FM
10716 unlock_chunks(root);
10717
1e144fb8
OS
10718 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10719 if (ret)
10720 goto out;
10721
fa9c0d79
CM
10722 btrfs_put_block_group(block_group);
10723 btrfs_put_block_group(block_group);
1a40e23b
ZY
10724
10725 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10726 if (ret > 0)
10727 ret = -EIO;
10728 if (ret < 0)
10729 goto out;
10730
10731 ret = btrfs_del_item(trans, root, path);
10732out:
10733 btrfs_free_path(path);
10734 return ret;
10735}
acce952b 10736
8eab77ff 10737struct btrfs_trans_handle *
7fd01182
FM
10738btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10739 const u64 chunk_offset)
8eab77ff 10740{
7fd01182
FM
10741 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10742 struct extent_map *em;
10743 struct map_lookup *map;
10744 unsigned int num_items;
10745
10746 read_lock(&em_tree->lock);
10747 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10748 read_unlock(&em_tree->lock);
10749 ASSERT(em && em->start == chunk_offset);
10750
8eab77ff 10751 /*
7fd01182
FM
10752 * We need to reserve 3 + N units from the metadata space info in order
10753 * to remove a block group (done at btrfs_remove_chunk() and at
10754 * btrfs_remove_block_group()), which are used for:
10755 *
8eab77ff
FM
10756 * 1 unit for adding the free space inode's orphan (located in the tree
10757 * of tree roots).
7fd01182
FM
10758 * 1 unit for deleting the block group item (located in the extent
10759 * tree).
10760 * 1 unit for deleting the free space item (located in tree of tree
10761 * roots).
10762 * N units for deleting N device extent items corresponding to each
10763 * stripe (located in the device tree).
10764 *
10765 * In order to remove a block group we also need to reserve units in the
10766 * system space info in order to update the chunk tree (update one or
10767 * more device items and remove one chunk item), but this is done at
10768 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10769 */
95617d69 10770 map = em->map_lookup;
7fd01182
FM
10771 num_items = 3 + map->num_stripes;
10772 free_extent_map(em);
10773
8eab77ff 10774 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10775 num_items, 1);
8eab77ff
FM
10776}
10777
47ab2a6c
JB
10778/*
10779 * Process the unused_bgs list and remove any that don't have any allocated
10780 * space inside of them.
10781 */
10782void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10783{
10784 struct btrfs_block_group_cache *block_group;
10785 struct btrfs_space_info *space_info;
10786 struct btrfs_root *root = fs_info->extent_root;
10787 struct btrfs_trans_handle *trans;
10788 int ret = 0;
10789
10790 if (!fs_info->open)
10791 return;
10792
10793 spin_lock(&fs_info->unused_bgs_lock);
10794 while (!list_empty(&fs_info->unused_bgs)) {
10795 u64 start, end;
e33e17ee 10796 int trimming;
47ab2a6c
JB
10797
10798 block_group = list_first_entry(&fs_info->unused_bgs,
10799 struct btrfs_block_group_cache,
10800 bg_list);
47ab2a6c 10801 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10802
10803 space_info = block_group->space_info;
10804
47ab2a6c
JB
10805 if (ret || btrfs_mixed_space_info(space_info)) {
10806 btrfs_put_block_group(block_group);
10807 continue;
10808 }
10809 spin_unlock(&fs_info->unused_bgs_lock);
10810
d5f2e33b 10811 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10812
47ab2a6c
JB
10813 /* Don't want to race with allocators so take the groups_sem */
10814 down_write(&space_info->groups_sem);
10815 spin_lock(&block_group->lock);
10816 if (block_group->reserved ||
10817 btrfs_block_group_used(&block_group->item) ||
aefbe9a6
ZL
10818 block_group->ro ||
10819 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10820 /*
10821 * We want to bail if we made new allocations or have
10822 * outstanding allocations in this block group. We do
10823 * the ro check in case balance is currently acting on
10824 * this block group.
10825 */
10826 spin_unlock(&block_group->lock);
10827 up_write(&space_info->groups_sem);
10828 goto next;
10829 }
10830 spin_unlock(&block_group->lock);
10831
10832 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10833 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10834 up_write(&space_info->groups_sem);
10835 if (ret < 0) {
10836 ret = 0;
10837 goto next;
10838 }
10839
10840 /*
10841 * Want to do this before we do anything else so we can recover
10842 * properly if we fail to join the transaction.
10843 */
7fd01182
FM
10844 trans = btrfs_start_trans_remove_block_group(fs_info,
10845 block_group->key.objectid);
47ab2a6c 10846 if (IS_ERR(trans)) {
868f401a 10847 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10848 ret = PTR_ERR(trans);
10849 goto next;
10850 }
10851
10852 /*
10853 * We could have pending pinned extents for this block group,
10854 * just delete them, we don't care about them anymore.
10855 */
10856 start = block_group->key.objectid;
10857 end = start + block_group->key.offset - 1;
d4b450cd
FM
10858 /*
10859 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10860 * btrfs_finish_extent_commit(). If we are at transaction N,
10861 * another task might be running finish_extent_commit() for the
10862 * previous transaction N - 1, and have seen a range belonging
10863 * to the block group in freed_extents[] before we were able to
10864 * clear the whole block group range from freed_extents[]. This
10865 * means that task can lookup for the block group after we
10866 * unpinned it from freed_extents[] and removed it, leading to
10867 * a BUG_ON() at btrfs_unpin_extent_range().
10868 */
10869 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10870 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10871 EXTENT_DIRTY);
758eb51e 10872 if (ret) {
d4b450cd 10873 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10874 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10875 goto end_trans;
10876 }
10877 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10878 EXTENT_DIRTY);
758eb51e 10879 if (ret) {
d4b450cd 10880 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10881 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10882 goto end_trans;
10883 }
d4b450cd 10884 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10885
10886 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10887 spin_lock(&space_info->lock);
10888 spin_lock(&block_group->lock);
10889
10890 space_info->bytes_pinned -= block_group->pinned;
10891 space_info->bytes_readonly += block_group->pinned;
10892 percpu_counter_add(&space_info->total_bytes_pinned,
10893 -block_group->pinned);
47ab2a6c
JB
10894 block_group->pinned = 0;
10895
c30666d4
ZL
10896 spin_unlock(&block_group->lock);
10897 spin_unlock(&space_info->lock);
10898
e33e17ee 10899 /* DISCARD can flip during remount */
3cdde224 10900 trimming = btrfs_test_opt(root->fs_info, DISCARD);
e33e17ee
JM
10901
10902 /* Implicit trim during transaction commit. */
10903 if (trimming)
10904 btrfs_get_block_group_trimming(block_group);
10905
47ab2a6c
JB
10906 /*
10907 * Btrfs_remove_chunk will abort the transaction if things go
10908 * horribly wrong.
10909 */
10910 ret = btrfs_remove_chunk(trans, root,
10911 block_group->key.objectid);
e33e17ee
JM
10912
10913 if (ret) {
10914 if (trimming)
10915 btrfs_put_block_group_trimming(block_group);
10916 goto end_trans;
10917 }
10918
10919 /*
10920 * If we're not mounted with -odiscard, we can just forget
10921 * about this block group. Otherwise we'll need to wait
10922 * until transaction commit to do the actual discard.
10923 */
10924 if (trimming) {
348a0013
FM
10925 spin_lock(&fs_info->unused_bgs_lock);
10926 /*
10927 * A concurrent scrub might have added us to the list
10928 * fs_info->unused_bgs, so use a list_move operation
10929 * to add the block group to the deleted_bgs list.
10930 */
e33e17ee
JM
10931 list_move(&block_group->bg_list,
10932 &trans->transaction->deleted_bgs);
348a0013 10933 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10934 btrfs_get_block_group(block_group);
10935 }
758eb51e 10936end_trans:
47ab2a6c
JB
10937 btrfs_end_transaction(trans, root);
10938next:
d5f2e33b 10939 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10940 btrfs_put_block_group(block_group);
10941 spin_lock(&fs_info->unused_bgs_lock);
10942 }
10943 spin_unlock(&fs_info->unused_bgs_lock);
10944}
10945
c59021f8 10946int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10947{
10948 struct btrfs_space_info *space_info;
1aba86d6 10949 struct btrfs_super_block *disk_super;
10950 u64 features;
10951 u64 flags;
10952 int mixed = 0;
c59021f8 10953 int ret;
10954
6c41761f 10955 disk_super = fs_info->super_copy;
1aba86d6 10956 if (!btrfs_super_root(disk_super))
0dc924c5 10957 return -EINVAL;
c59021f8 10958
1aba86d6 10959 features = btrfs_super_incompat_flags(disk_super);
10960 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10961 mixed = 1;
c59021f8 10962
1aba86d6 10963 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10964 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10965 if (ret)
1aba86d6 10966 goto out;
c59021f8 10967
1aba86d6 10968 if (mixed) {
10969 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10970 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10971 } else {
10972 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10973 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10974 if (ret)
10975 goto out;
10976
10977 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10978 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10979 }
10980out:
c59021f8 10981 return ret;
10982}
10983
acce952b 10984int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10985{
678886bd 10986 return unpin_extent_range(root, start, end, false);
acce952b 10987}
10988
499f377f
JM
10989/*
10990 * It used to be that old block groups would be left around forever.
10991 * Iterating over them would be enough to trim unused space. Since we
10992 * now automatically remove them, we also need to iterate over unallocated
10993 * space.
10994 *
10995 * We don't want a transaction for this since the discard may take a
10996 * substantial amount of time. We don't require that a transaction be
10997 * running, but we do need to take a running transaction into account
10998 * to ensure that we're not discarding chunks that were released in
10999 * the current transaction.
11000 *
11001 * Holding the chunks lock will prevent other threads from allocating
11002 * or releasing chunks, but it won't prevent a running transaction
11003 * from committing and releasing the memory that the pending chunks
11004 * list head uses. For that, we need to take a reference to the
11005 * transaction.
11006 */
11007static int btrfs_trim_free_extents(struct btrfs_device *device,
11008 u64 minlen, u64 *trimmed)
11009{
11010 u64 start = 0, len = 0;
11011 int ret;
11012
11013 *trimmed = 0;
11014
11015 /* Not writeable = nothing to do. */
11016 if (!device->writeable)
11017 return 0;
11018
11019 /* No free space = nothing to do. */
11020 if (device->total_bytes <= device->bytes_used)
11021 return 0;
11022
11023 ret = 0;
11024
11025 while (1) {
11026 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11027 struct btrfs_transaction *trans;
11028 u64 bytes;
11029
11030 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11031 if (ret)
11032 return ret;
11033
11034 down_read(&fs_info->commit_root_sem);
11035
11036 spin_lock(&fs_info->trans_lock);
11037 trans = fs_info->running_transaction;
11038 if (trans)
11039 atomic_inc(&trans->use_count);
11040 spin_unlock(&fs_info->trans_lock);
11041
11042 ret = find_free_dev_extent_start(trans, device, minlen, start,
11043 &start, &len);
11044 if (trans)
11045 btrfs_put_transaction(trans);
11046
11047 if (ret) {
11048 up_read(&fs_info->commit_root_sem);
11049 mutex_unlock(&fs_info->chunk_mutex);
11050 if (ret == -ENOSPC)
11051 ret = 0;
11052 break;
11053 }
11054
11055 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11056 up_read(&fs_info->commit_root_sem);
11057 mutex_unlock(&fs_info->chunk_mutex);
11058
11059 if (ret)
11060 break;
11061
11062 start += len;
11063 *trimmed += bytes;
11064
11065 if (fatal_signal_pending(current)) {
11066 ret = -ERESTARTSYS;
11067 break;
11068 }
11069
11070 cond_resched();
11071 }
11072
11073 return ret;
11074}
11075
f7039b1d
LD
11076int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11077{
11078 struct btrfs_fs_info *fs_info = root->fs_info;
11079 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11080 struct btrfs_device *device;
11081 struct list_head *devices;
f7039b1d
LD
11082 u64 group_trimmed;
11083 u64 start;
11084 u64 end;
11085 u64 trimmed = 0;
2cac13e4 11086 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
11087 int ret = 0;
11088
2cac13e4
LB
11089 /*
11090 * try to trim all FS space, our block group may start from non-zero.
11091 */
11092 if (range->len == total_bytes)
11093 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11094 else
11095 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
11096
11097 while (cache) {
11098 if (cache->key.objectid >= (range->start + range->len)) {
11099 btrfs_put_block_group(cache);
11100 break;
11101 }
11102
11103 start = max(range->start, cache->key.objectid);
11104 end = min(range->start + range->len,
11105 cache->key.objectid + cache->key.offset);
11106
11107 if (end - start >= range->minlen) {
11108 if (!block_group_cache_done(cache)) {
f6373bf3 11109 ret = cache_block_group(cache, 0);
1be41b78
JB
11110 if (ret) {
11111 btrfs_put_block_group(cache);
11112 break;
11113 }
11114 ret = wait_block_group_cache_done(cache);
11115 if (ret) {
11116 btrfs_put_block_group(cache);
11117 break;
11118 }
f7039b1d
LD
11119 }
11120 ret = btrfs_trim_block_group(cache,
11121 &group_trimmed,
11122 start,
11123 end,
11124 range->minlen);
11125
11126 trimmed += group_trimmed;
11127 if (ret) {
11128 btrfs_put_block_group(cache);
11129 break;
11130 }
11131 }
11132
11133 cache = next_block_group(fs_info->tree_root, cache);
11134 }
11135
499f377f
JM
11136 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11137 devices = &root->fs_info->fs_devices->alloc_list;
11138 list_for_each_entry(device, devices, dev_alloc_list) {
11139 ret = btrfs_trim_free_extents(device, range->minlen,
11140 &group_trimmed);
11141 if (ret)
11142 break;
11143
11144 trimmed += group_trimmed;
11145 }
11146 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11147
f7039b1d
LD
11148 range->len = trimmed;
11149 return ret;
11150}
8257b2dc
MX
11151
11152/*
9ea24bbe
FM
11153 * btrfs_{start,end}_write_no_snapshoting() are similar to
11154 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11155 * data into the page cache through nocow before the subvolume is snapshoted,
11156 * but flush the data into disk after the snapshot creation, or to prevent
11157 * operations while snapshoting is ongoing and that cause the snapshot to be
11158 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11159 */
9ea24bbe 11160void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
11161{
11162 percpu_counter_dec(&root->subv_writers->counter);
11163 /*
a83342aa 11164 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11165 */
11166 smp_mb();
11167 if (waitqueue_active(&root->subv_writers->wait))
11168 wake_up(&root->subv_writers->wait);
11169}
11170
9ea24bbe 11171int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 11172{
ee39b432 11173 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
11174 return 0;
11175
11176 percpu_counter_inc(&root->subv_writers->counter);
11177 /*
11178 * Make sure counter is updated before we check for snapshot creation.
11179 */
11180 smp_mb();
ee39b432 11181 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11182 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11183 return 0;
11184 }
11185 return 1;
11186}
0bc19f90
ZL
11187
11188static int wait_snapshoting_atomic_t(atomic_t *a)
11189{
11190 schedule();
11191 return 0;
11192}
11193
11194void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11195{
11196 while (true) {
11197 int ret;
11198
11199 ret = btrfs_start_write_no_snapshoting(root);
11200 if (ret)
11201 break;
11202 wait_on_atomic_t(&root->will_be_snapshoted,
11203 wait_snapshoting_atomic_t,
11204 TASK_UNINTERRUPTIBLE);
11205 }
11206}
This page took 1.598221 seconds and 5 git commands to generate.