Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/module.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
2db04966 17#include "compat.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
27
28static LIST_HEAD(buffers);
29static LIST_HEAD(states);
4bef0848 30
b47eda86 31#define LEAK_DEBUG 0
3935127c 32#if LEAK_DEBUG
d397712b 33static DEFINE_SPINLOCK(leak_lock);
4bef0848 34#endif
d1310b2e 35
d1310b2e
CM
36#define BUFFER_LRU_MAX 64
37
38struct tree_entry {
39 u64 start;
40 u64 end;
d1310b2e
CM
41 struct rb_node rb_node;
42};
43
44struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
771ed689
CM
48
49 /* tells writepage not to lock the state bits for this range
50 * it still does the unlocking
51 */
ffbd517d
CM
52 unsigned int extent_locked:1;
53
54 /* tells the submit_bio code to use a WRITE_SYNC */
55 unsigned int sync_io:1;
d1310b2e
CM
56};
57
0b32f4bb 58static noinline void flush_write_bio(void *data);
c2d904e0
JM
59static inline struct btrfs_fs_info *
60tree_fs_info(struct extent_io_tree *tree)
61{
62 return btrfs_sb(tree->mapping->host->i_sb);
63}
0b32f4bb 64
d1310b2e
CM
65int __init extent_io_init(void)
66{
9601e3f6
CH
67 extent_state_cache = kmem_cache_create("extent_state",
68 sizeof(struct extent_state), 0,
69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
70 if (!extent_state_cache)
71 return -ENOMEM;
72
9601e3f6
CH
73 extent_buffer_cache = kmem_cache_create("extent_buffers",
74 sizeof(struct extent_buffer), 0,
75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
76 if (!extent_buffer_cache)
77 goto free_state_cache;
78 return 0;
79
80free_state_cache:
81 kmem_cache_destroy(extent_state_cache);
82 return -ENOMEM;
83}
84
85void extent_io_exit(void)
86{
87 struct extent_state *state;
2d2ae547 88 struct extent_buffer *eb;
d1310b2e
CM
89
90 while (!list_empty(&states)) {
2d2ae547 91 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
92 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93 "state %lu in tree %p refs %d\n",
94 (unsigned long long)state->start,
95 (unsigned long long)state->end,
96 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 97 list_del(&state->leak_list);
d1310b2e
CM
98 kmem_cache_free(extent_state_cache, state);
99
100 }
101
2d2ae547
CM
102 while (!list_empty(&buffers)) {
103 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105 "refs %d\n", (unsigned long long)eb->start,
106 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
107 list_del(&eb->leak_list);
108 kmem_cache_free(extent_buffer_cache, eb);
109 }
8c0a8537
KS
110
111 /*
112 * Make sure all delayed rcu free are flushed before we
113 * destroy caches.
114 */
115 rcu_barrier();
d1310b2e
CM
116 if (extent_state_cache)
117 kmem_cache_destroy(extent_state_cache);
118 if (extent_buffer_cache)
119 kmem_cache_destroy(extent_buffer_cache);
120}
121
122void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 123 struct address_space *mapping)
d1310b2e 124{
6bef4d31 125 tree->state = RB_ROOT;
19fe0a8b 126 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
127 tree->ops = NULL;
128 tree->dirty_bytes = 0;
70dec807 129 spin_lock_init(&tree->lock);
6af118ce 130 spin_lock_init(&tree->buffer_lock);
d1310b2e 131 tree->mapping = mapping;
d1310b2e 132}
d1310b2e 133
b2950863 134static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
135{
136 struct extent_state *state;
3935127c 137#if LEAK_DEBUG
2d2ae547 138 unsigned long flags;
4bef0848 139#endif
d1310b2e
CM
140
141 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 142 if (!state)
d1310b2e
CM
143 return state;
144 state->state = 0;
d1310b2e 145 state->private = 0;
70dec807 146 state->tree = NULL;
3935127c 147#if LEAK_DEBUG
2d2ae547
CM
148 spin_lock_irqsave(&leak_lock, flags);
149 list_add(&state->leak_list, &states);
150 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 151#endif
d1310b2e
CM
152 atomic_set(&state->refs, 1);
153 init_waitqueue_head(&state->wq);
143bede5 154 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
155 return state;
156}
d1310b2e 157
4845e44f 158void free_extent_state(struct extent_state *state)
d1310b2e 159{
d1310b2e
CM
160 if (!state)
161 return;
162 if (atomic_dec_and_test(&state->refs)) {
3935127c 163#if LEAK_DEBUG
2d2ae547 164 unsigned long flags;
4bef0848 165#endif
70dec807 166 WARN_ON(state->tree);
3935127c 167#if LEAK_DEBUG
2d2ae547
CM
168 spin_lock_irqsave(&leak_lock, flags);
169 list_del(&state->leak_list);
170 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 171#endif
143bede5 172 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
173 kmem_cache_free(extent_state_cache, state);
174 }
175}
d1310b2e
CM
176
177static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
178 struct rb_node *node)
179{
d397712b
CM
180 struct rb_node **p = &root->rb_node;
181 struct rb_node *parent = NULL;
d1310b2e
CM
182 struct tree_entry *entry;
183
d397712b 184 while (*p) {
d1310b2e
CM
185 parent = *p;
186 entry = rb_entry(parent, struct tree_entry, rb_node);
187
188 if (offset < entry->start)
189 p = &(*p)->rb_left;
190 else if (offset > entry->end)
191 p = &(*p)->rb_right;
192 else
193 return parent;
194 }
195
d1310b2e
CM
196 rb_link_node(node, parent, p);
197 rb_insert_color(node, root);
198 return NULL;
199}
200
80ea96b1 201static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
202 struct rb_node **prev_ret,
203 struct rb_node **next_ret)
204{
80ea96b1 205 struct rb_root *root = &tree->state;
d397712b 206 struct rb_node *n = root->rb_node;
d1310b2e
CM
207 struct rb_node *prev = NULL;
208 struct rb_node *orig_prev = NULL;
209 struct tree_entry *entry;
210 struct tree_entry *prev_entry = NULL;
211
d397712b 212 while (n) {
d1310b2e
CM
213 entry = rb_entry(n, struct tree_entry, rb_node);
214 prev = n;
215 prev_entry = entry;
216
217 if (offset < entry->start)
218 n = n->rb_left;
219 else if (offset > entry->end)
220 n = n->rb_right;
d397712b 221 else
d1310b2e
CM
222 return n;
223 }
224
225 if (prev_ret) {
226 orig_prev = prev;
d397712b 227 while (prev && offset > prev_entry->end) {
d1310b2e
CM
228 prev = rb_next(prev);
229 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
230 }
231 *prev_ret = prev;
232 prev = orig_prev;
233 }
234
235 if (next_ret) {
236 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 237 while (prev && offset < prev_entry->start) {
d1310b2e
CM
238 prev = rb_prev(prev);
239 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
240 }
241 *next_ret = prev;
242 }
243 return NULL;
244}
245
80ea96b1
CM
246static inline struct rb_node *tree_search(struct extent_io_tree *tree,
247 u64 offset)
d1310b2e 248{
70dec807 249 struct rb_node *prev = NULL;
d1310b2e 250 struct rb_node *ret;
70dec807 251
80ea96b1 252 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 253 if (!ret)
d1310b2e
CM
254 return prev;
255 return ret;
256}
257
9ed74f2d
JB
258static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
259 struct extent_state *other)
260{
261 if (tree->ops && tree->ops->merge_extent_hook)
262 tree->ops->merge_extent_hook(tree->mapping->host, new,
263 other);
264}
265
d1310b2e
CM
266/*
267 * utility function to look for merge candidates inside a given range.
268 * Any extents with matching state are merged together into a single
269 * extent in the tree. Extents with EXTENT_IO in their state field
270 * are not merged because the end_io handlers need to be able to do
271 * operations on them without sleeping (or doing allocations/splits).
272 *
273 * This should be called with the tree lock held.
274 */
1bf85046
JM
275static void merge_state(struct extent_io_tree *tree,
276 struct extent_state *state)
d1310b2e
CM
277{
278 struct extent_state *other;
279 struct rb_node *other_node;
280
5b21f2ed 281 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 282 return;
d1310b2e
CM
283
284 other_node = rb_prev(&state->rb_node);
285 if (other_node) {
286 other = rb_entry(other_node, struct extent_state, rb_node);
287 if (other->end == state->start - 1 &&
288 other->state == state->state) {
9ed74f2d 289 merge_cb(tree, state, other);
d1310b2e 290 state->start = other->start;
70dec807 291 other->tree = NULL;
d1310b2e
CM
292 rb_erase(&other->rb_node, &tree->state);
293 free_extent_state(other);
294 }
295 }
296 other_node = rb_next(&state->rb_node);
297 if (other_node) {
298 other = rb_entry(other_node, struct extent_state, rb_node);
299 if (other->start == state->end + 1 &&
300 other->state == state->state) {
9ed74f2d 301 merge_cb(tree, state, other);
df98b6e2
JB
302 state->end = other->end;
303 other->tree = NULL;
304 rb_erase(&other->rb_node, &tree->state);
305 free_extent_state(other);
d1310b2e
CM
306 }
307 }
d1310b2e
CM
308}
309
1bf85046 310static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 311 struct extent_state *state, int *bits)
291d673e 312{
1bf85046
JM
313 if (tree->ops && tree->ops->set_bit_hook)
314 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
315}
316
317static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 318 struct extent_state *state, int *bits)
291d673e 319{
9ed74f2d
JB
320 if (tree->ops && tree->ops->clear_bit_hook)
321 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
322}
323
3150b699
XG
324static void set_state_bits(struct extent_io_tree *tree,
325 struct extent_state *state, int *bits);
326
d1310b2e
CM
327/*
328 * insert an extent_state struct into the tree. 'bits' are set on the
329 * struct before it is inserted.
330 *
331 * This may return -EEXIST if the extent is already there, in which case the
332 * state struct is freed.
333 *
334 * The tree lock is not taken internally. This is a utility function and
335 * probably isn't what you want to call (see set/clear_extent_bit).
336 */
337static int insert_state(struct extent_io_tree *tree,
338 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 339 int *bits)
d1310b2e
CM
340{
341 struct rb_node *node;
342
343 if (end < start) {
d397712b
CM
344 printk(KERN_ERR "btrfs end < start %llu %llu\n",
345 (unsigned long long)end,
346 (unsigned long long)start);
d1310b2e
CM
347 WARN_ON(1);
348 }
d1310b2e
CM
349 state->start = start;
350 state->end = end;
9ed74f2d 351
3150b699
XG
352 set_state_bits(tree, state, bits);
353
d1310b2e
CM
354 node = tree_insert(&tree->state, end, &state->rb_node);
355 if (node) {
356 struct extent_state *found;
357 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
358 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
359 "%llu %llu\n", (unsigned long long)found->start,
360 (unsigned long long)found->end,
361 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
362 return -EEXIST;
363 }
70dec807 364 state->tree = tree;
d1310b2e
CM
365 merge_state(tree, state);
366 return 0;
367}
368
1bf85046 369static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
370 u64 split)
371{
372 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 373 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
374}
375
d1310b2e
CM
376/*
377 * split a given extent state struct in two, inserting the preallocated
378 * struct 'prealloc' as the newly created second half. 'split' indicates an
379 * offset inside 'orig' where it should be split.
380 *
381 * Before calling,
382 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
383 * are two extent state structs in the tree:
384 * prealloc: [orig->start, split - 1]
385 * orig: [ split, orig->end ]
386 *
387 * The tree locks are not taken by this function. They need to be held
388 * by the caller.
389 */
390static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
391 struct extent_state *prealloc, u64 split)
392{
393 struct rb_node *node;
9ed74f2d
JB
394
395 split_cb(tree, orig, split);
396
d1310b2e
CM
397 prealloc->start = orig->start;
398 prealloc->end = split - 1;
399 prealloc->state = orig->state;
400 orig->start = split;
401
402 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
403 if (node) {
d1310b2e
CM
404 free_extent_state(prealloc);
405 return -EEXIST;
406 }
70dec807 407 prealloc->tree = tree;
d1310b2e
CM
408 return 0;
409}
410
cdc6a395
LZ
411static struct extent_state *next_state(struct extent_state *state)
412{
413 struct rb_node *next = rb_next(&state->rb_node);
414 if (next)
415 return rb_entry(next, struct extent_state, rb_node);
416 else
417 return NULL;
418}
419
d1310b2e
CM
420/*
421 * utility function to clear some bits in an extent state struct.
1b303fc0 422 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
423 *
424 * If no bits are set on the state struct after clearing things, the
425 * struct is freed and removed from the tree
426 */
cdc6a395
LZ
427static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
428 struct extent_state *state,
429 int *bits, int wake)
d1310b2e 430{
cdc6a395 431 struct extent_state *next;
0ca1f7ce 432 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 433
0ca1f7ce 434 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
435 u64 range = state->end - state->start + 1;
436 WARN_ON(range > tree->dirty_bytes);
437 tree->dirty_bytes -= range;
438 }
291d673e 439 clear_state_cb(tree, state, bits);
32c00aff 440 state->state &= ~bits_to_clear;
d1310b2e
CM
441 if (wake)
442 wake_up(&state->wq);
0ca1f7ce 443 if (state->state == 0) {
cdc6a395 444 next = next_state(state);
70dec807 445 if (state->tree) {
d1310b2e 446 rb_erase(&state->rb_node, &tree->state);
70dec807 447 state->tree = NULL;
d1310b2e
CM
448 free_extent_state(state);
449 } else {
450 WARN_ON(1);
451 }
452 } else {
453 merge_state(tree, state);
cdc6a395 454 next = next_state(state);
d1310b2e 455 }
cdc6a395 456 return next;
d1310b2e
CM
457}
458
8233767a
XG
459static struct extent_state *
460alloc_extent_state_atomic(struct extent_state *prealloc)
461{
462 if (!prealloc)
463 prealloc = alloc_extent_state(GFP_ATOMIC);
464
465 return prealloc;
466}
467
c2d904e0
JM
468void extent_io_tree_panic(struct extent_io_tree *tree, int err)
469{
470 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
471 "Extent tree was modified by another "
472 "thread while locked.");
473}
474
d1310b2e
CM
475/*
476 * clear some bits on a range in the tree. This may require splitting
477 * or inserting elements in the tree, so the gfp mask is used to
478 * indicate which allocations or sleeping are allowed.
479 *
480 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
481 * the given range from the tree regardless of state (ie for truncate).
482 *
483 * the range [start, end] is inclusive.
484 *
6763af84 485 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
486 */
487int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
488 int bits, int wake, int delete,
489 struct extent_state **cached_state,
490 gfp_t mask)
d1310b2e
CM
491{
492 struct extent_state *state;
2c64c53d 493 struct extent_state *cached;
d1310b2e
CM
494 struct extent_state *prealloc = NULL;
495 struct rb_node *node;
5c939df5 496 u64 last_end;
d1310b2e 497 int err;
2ac55d41 498 int clear = 0;
d1310b2e 499
0ca1f7ce
YZ
500 if (delete)
501 bits |= ~EXTENT_CTLBITS;
502 bits |= EXTENT_FIRST_DELALLOC;
503
2ac55d41
JB
504 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
505 clear = 1;
d1310b2e
CM
506again:
507 if (!prealloc && (mask & __GFP_WAIT)) {
508 prealloc = alloc_extent_state(mask);
509 if (!prealloc)
510 return -ENOMEM;
511 }
512
cad321ad 513 spin_lock(&tree->lock);
2c64c53d
CM
514 if (cached_state) {
515 cached = *cached_state;
2ac55d41
JB
516
517 if (clear) {
518 *cached_state = NULL;
519 cached_state = NULL;
520 }
521
df98b6e2
JB
522 if (cached && cached->tree && cached->start <= start &&
523 cached->end > start) {
2ac55d41
JB
524 if (clear)
525 atomic_dec(&cached->refs);
2c64c53d 526 state = cached;
42daec29 527 goto hit_next;
2c64c53d 528 }
2ac55d41
JB
529 if (clear)
530 free_extent_state(cached);
2c64c53d 531 }
d1310b2e
CM
532 /*
533 * this search will find the extents that end after
534 * our range starts
535 */
80ea96b1 536 node = tree_search(tree, start);
d1310b2e
CM
537 if (!node)
538 goto out;
539 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 540hit_next:
d1310b2e
CM
541 if (state->start > end)
542 goto out;
543 WARN_ON(state->end < start);
5c939df5 544 last_end = state->end;
d1310b2e 545
0449314a 546 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
547 if (!(state->state & bits)) {
548 state = next_state(state);
0449314a 549 goto next;
cdc6a395 550 }
0449314a 551
d1310b2e
CM
552 /*
553 * | ---- desired range ---- |
554 * | state | or
555 * | ------------- state -------------- |
556 *
557 * We need to split the extent we found, and may flip
558 * bits on second half.
559 *
560 * If the extent we found extends past our range, we
561 * just split and search again. It'll get split again
562 * the next time though.
563 *
564 * If the extent we found is inside our range, we clear
565 * the desired bit on it.
566 */
567
568 if (state->start < start) {
8233767a
XG
569 prealloc = alloc_extent_state_atomic(prealloc);
570 BUG_ON(!prealloc);
d1310b2e 571 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
572 if (err)
573 extent_io_tree_panic(tree, err);
574
d1310b2e
CM
575 prealloc = NULL;
576 if (err)
577 goto out;
578 if (state->end <= end) {
d1ac6e41
LB
579 state = clear_state_bit(tree, state, &bits, wake);
580 goto next;
d1310b2e
CM
581 }
582 goto search_again;
583 }
584 /*
585 * | ---- desired range ---- |
586 * | state |
587 * We need to split the extent, and clear the bit
588 * on the first half
589 */
590 if (state->start <= end && state->end > end) {
8233767a
XG
591 prealloc = alloc_extent_state_atomic(prealloc);
592 BUG_ON(!prealloc);
d1310b2e 593 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
594 if (err)
595 extent_io_tree_panic(tree, err);
596
d1310b2e
CM
597 if (wake)
598 wake_up(&state->wq);
42daec29 599
6763af84 600 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 601
d1310b2e
CM
602 prealloc = NULL;
603 goto out;
604 }
42daec29 605
cdc6a395 606 state = clear_state_bit(tree, state, &bits, wake);
0449314a 607next:
5c939df5
YZ
608 if (last_end == (u64)-1)
609 goto out;
610 start = last_end + 1;
cdc6a395 611 if (start <= end && state && !need_resched())
692e5759 612 goto hit_next;
d1310b2e
CM
613 goto search_again;
614
615out:
cad321ad 616 spin_unlock(&tree->lock);
d1310b2e
CM
617 if (prealloc)
618 free_extent_state(prealloc);
619
6763af84 620 return 0;
d1310b2e
CM
621
622search_again:
623 if (start > end)
624 goto out;
cad321ad 625 spin_unlock(&tree->lock);
d1310b2e
CM
626 if (mask & __GFP_WAIT)
627 cond_resched();
628 goto again;
629}
d1310b2e 630
143bede5
JM
631static void wait_on_state(struct extent_io_tree *tree,
632 struct extent_state *state)
641f5219
CH
633 __releases(tree->lock)
634 __acquires(tree->lock)
d1310b2e
CM
635{
636 DEFINE_WAIT(wait);
637 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 638 spin_unlock(&tree->lock);
d1310b2e 639 schedule();
cad321ad 640 spin_lock(&tree->lock);
d1310b2e 641 finish_wait(&state->wq, &wait);
d1310b2e
CM
642}
643
644/*
645 * waits for one or more bits to clear on a range in the state tree.
646 * The range [start, end] is inclusive.
647 * The tree lock is taken by this function
648 */
143bede5 649void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
d1310b2e
CM
650{
651 struct extent_state *state;
652 struct rb_node *node;
653
cad321ad 654 spin_lock(&tree->lock);
d1310b2e
CM
655again:
656 while (1) {
657 /*
658 * this search will find all the extents that end after
659 * our range starts
660 */
80ea96b1 661 node = tree_search(tree, start);
d1310b2e
CM
662 if (!node)
663 break;
664
665 state = rb_entry(node, struct extent_state, rb_node);
666
667 if (state->start > end)
668 goto out;
669
670 if (state->state & bits) {
671 start = state->start;
672 atomic_inc(&state->refs);
673 wait_on_state(tree, state);
674 free_extent_state(state);
675 goto again;
676 }
677 start = state->end + 1;
678
679 if (start > end)
680 break;
681
ded91f08 682 cond_resched_lock(&tree->lock);
d1310b2e
CM
683 }
684out:
cad321ad 685 spin_unlock(&tree->lock);
d1310b2e 686}
d1310b2e 687
1bf85046 688static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 689 struct extent_state *state,
0ca1f7ce 690 int *bits)
d1310b2e 691{
0ca1f7ce 692 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 693
1bf85046 694 set_state_cb(tree, state, bits);
0ca1f7ce 695 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
696 u64 range = state->end - state->start + 1;
697 tree->dirty_bytes += range;
698 }
0ca1f7ce 699 state->state |= bits_to_set;
d1310b2e
CM
700}
701
2c64c53d
CM
702static void cache_state(struct extent_state *state,
703 struct extent_state **cached_ptr)
704{
705 if (cached_ptr && !(*cached_ptr)) {
706 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
707 *cached_ptr = state;
708 atomic_inc(&state->refs);
709 }
710 }
711}
712
507903b8
AJ
713static void uncache_state(struct extent_state **cached_ptr)
714{
715 if (cached_ptr && (*cached_ptr)) {
716 struct extent_state *state = *cached_ptr;
109b36a2
CM
717 *cached_ptr = NULL;
718 free_extent_state(state);
507903b8
AJ
719 }
720}
721
d1310b2e 722/*
1edbb734
CM
723 * set some bits on a range in the tree. This may require allocations or
724 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 725 *
1edbb734
CM
726 * If any of the exclusive bits are set, this will fail with -EEXIST if some
727 * part of the range already has the desired bits set. The start of the
728 * existing range is returned in failed_start in this case.
d1310b2e 729 *
1edbb734 730 * [start, end] is inclusive This takes the tree lock.
d1310b2e 731 */
1edbb734 732
3fbe5c02
JM
733static int __must_check
734__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
735 int bits, int exclusive_bits, u64 *failed_start,
736 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
737{
738 struct extent_state *state;
739 struct extent_state *prealloc = NULL;
740 struct rb_node *node;
d1310b2e 741 int err = 0;
d1310b2e
CM
742 u64 last_start;
743 u64 last_end;
42daec29 744
0ca1f7ce 745 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
746again:
747 if (!prealloc && (mask & __GFP_WAIT)) {
748 prealloc = alloc_extent_state(mask);
8233767a 749 BUG_ON(!prealloc);
d1310b2e
CM
750 }
751
cad321ad 752 spin_lock(&tree->lock);
9655d298
CM
753 if (cached_state && *cached_state) {
754 state = *cached_state;
df98b6e2
JB
755 if (state->start <= start && state->end > start &&
756 state->tree) {
9655d298
CM
757 node = &state->rb_node;
758 goto hit_next;
759 }
760 }
d1310b2e
CM
761 /*
762 * this search will find all the extents that end after
763 * our range starts.
764 */
80ea96b1 765 node = tree_search(tree, start);
d1310b2e 766 if (!node) {
8233767a
XG
767 prealloc = alloc_extent_state_atomic(prealloc);
768 BUG_ON(!prealloc);
0ca1f7ce 769 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
770 if (err)
771 extent_io_tree_panic(tree, err);
772
d1310b2e 773 prealloc = NULL;
d1310b2e
CM
774 goto out;
775 }
d1310b2e 776 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 777hit_next:
d1310b2e
CM
778 last_start = state->start;
779 last_end = state->end;
780
781 /*
782 * | ---- desired range ---- |
783 * | state |
784 *
785 * Just lock what we found and keep going
786 */
787 if (state->start == start && state->end <= end) {
1edbb734 788 if (state->state & exclusive_bits) {
d1310b2e
CM
789 *failed_start = state->start;
790 err = -EEXIST;
791 goto out;
792 }
42daec29 793
1bf85046 794 set_state_bits(tree, state, &bits);
2c64c53d 795 cache_state(state, cached_state);
d1310b2e 796 merge_state(tree, state);
5c939df5
YZ
797 if (last_end == (u64)-1)
798 goto out;
799 start = last_end + 1;
d1ac6e41
LB
800 state = next_state(state);
801 if (start < end && state && state->start == start &&
802 !need_resched())
803 goto hit_next;
d1310b2e
CM
804 goto search_again;
805 }
806
807 /*
808 * | ---- desired range ---- |
809 * | state |
810 * or
811 * | ------------- state -------------- |
812 *
813 * We need to split the extent we found, and may flip bits on
814 * second half.
815 *
816 * If the extent we found extends past our
817 * range, we just split and search again. It'll get split
818 * again the next time though.
819 *
820 * If the extent we found is inside our range, we set the
821 * desired bit on it.
822 */
823 if (state->start < start) {
1edbb734 824 if (state->state & exclusive_bits) {
d1310b2e
CM
825 *failed_start = start;
826 err = -EEXIST;
827 goto out;
828 }
8233767a
XG
829
830 prealloc = alloc_extent_state_atomic(prealloc);
831 BUG_ON(!prealloc);
d1310b2e 832 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
833 if (err)
834 extent_io_tree_panic(tree, err);
835
d1310b2e
CM
836 prealloc = NULL;
837 if (err)
838 goto out;
839 if (state->end <= end) {
1bf85046 840 set_state_bits(tree, state, &bits);
2c64c53d 841 cache_state(state, cached_state);
d1310b2e 842 merge_state(tree, state);
5c939df5
YZ
843 if (last_end == (u64)-1)
844 goto out;
845 start = last_end + 1;
d1ac6e41
LB
846 state = next_state(state);
847 if (start < end && state && state->start == start &&
848 !need_resched())
849 goto hit_next;
d1310b2e
CM
850 }
851 goto search_again;
852 }
853 /*
854 * | ---- desired range ---- |
855 * | state | or | state |
856 *
857 * There's a hole, we need to insert something in it and
858 * ignore the extent we found.
859 */
860 if (state->start > start) {
861 u64 this_end;
862 if (end < last_start)
863 this_end = end;
864 else
d397712b 865 this_end = last_start - 1;
8233767a
XG
866
867 prealloc = alloc_extent_state_atomic(prealloc);
868 BUG_ON(!prealloc);
c7f895a2
XG
869
870 /*
871 * Avoid to free 'prealloc' if it can be merged with
872 * the later extent.
873 */
d1310b2e 874 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 875 &bits);
c2d904e0
JM
876 if (err)
877 extent_io_tree_panic(tree, err);
878
9ed74f2d
JB
879 cache_state(prealloc, cached_state);
880 prealloc = NULL;
d1310b2e
CM
881 start = this_end + 1;
882 goto search_again;
883 }
884 /*
885 * | ---- desired range ---- |
886 * | state |
887 * We need to split the extent, and set the bit
888 * on the first half
889 */
890 if (state->start <= end && state->end > end) {
1edbb734 891 if (state->state & exclusive_bits) {
d1310b2e
CM
892 *failed_start = start;
893 err = -EEXIST;
894 goto out;
895 }
8233767a
XG
896
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
d1310b2e 899 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
900 if (err)
901 extent_io_tree_panic(tree, err);
d1310b2e 902
1bf85046 903 set_state_bits(tree, prealloc, &bits);
2c64c53d 904 cache_state(prealloc, cached_state);
d1310b2e
CM
905 merge_state(tree, prealloc);
906 prealloc = NULL;
907 goto out;
908 }
909
910 goto search_again;
911
912out:
cad321ad 913 spin_unlock(&tree->lock);
d1310b2e
CM
914 if (prealloc)
915 free_extent_state(prealloc);
916
917 return err;
918
919search_again:
920 if (start > end)
921 goto out;
cad321ad 922 spin_unlock(&tree->lock);
d1310b2e
CM
923 if (mask & __GFP_WAIT)
924 cond_resched();
925 goto again;
926}
d1310b2e 927
3fbe5c02
JM
928int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
929 u64 *failed_start, struct extent_state **cached_state,
930 gfp_t mask)
931{
932 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
933 cached_state, mask);
934}
935
936
462d6fac 937/**
10983f2e
LB
938 * convert_extent_bit - convert all bits in a given range from one bit to
939 * another
462d6fac
JB
940 * @tree: the io tree to search
941 * @start: the start offset in bytes
942 * @end: the end offset in bytes (inclusive)
943 * @bits: the bits to set in this range
944 * @clear_bits: the bits to clear in this range
945 * @mask: the allocation mask
946 *
947 * This will go through and set bits for the given range. If any states exist
948 * already in this range they are set with the given bit and cleared of the
949 * clear_bits. This is only meant to be used by things that are mergeable, ie
950 * converting from say DELALLOC to DIRTY. This is not meant to be used with
951 * boundary bits like LOCK.
952 */
953int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
954 int bits, int clear_bits, gfp_t mask)
955{
956 struct extent_state *state;
957 struct extent_state *prealloc = NULL;
958 struct rb_node *node;
959 int err = 0;
960 u64 last_start;
961 u64 last_end;
962
963again:
964 if (!prealloc && (mask & __GFP_WAIT)) {
965 prealloc = alloc_extent_state(mask);
966 if (!prealloc)
967 return -ENOMEM;
968 }
969
970 spin_lock(&tree->lock);
971 /*
972 * this search will find all the extents that end after
973 * our range starts.
974 */
975 node = tree_search(tree, start);
976 if (!node) {
977 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
978 if (!prealloc) {
979 err = -ENOMEM;
980 goto out;
981 }
462d6fac
JB
982 err = insert_state(tree, prealloc, start, end, &bits);
983 prealloc = NULL;
c2d904e0
JM
984 if (err)
985 extent_io_tree_panic(tree, err);
462d6fac
JB
986 goto out;
987 }
988 state = rb_entry(node, struct extent_state, rb_node);
989hit_next:
990 last_start = state->start;
991 last_end = state->end;
992
993 /*
994 * | ---- desired range ---- |
995 * | state |
996 *
997 * Just lock what we found and keep going
998 */
999 if (state->start == start && state->end <= end) {
462d6fac 1000 set_state_bits(tree, state, &bits);
d1ac6e41 1001 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1002 if (last_end == (u64)-1)
1003 goto out;
462d6fac 1004 start = last_end + 1;
d1ac6e41
LB
1005 if (start < end && state && state->start == start &&
1006 !need_resched())
1007 goto hit_next;
462d6fac
JB
1008 goto search_again;
1009 }
1010
1011 /*
1012 * | ---- desired range ---- |
1013 * | state |
1014 * or
1015 * | ------------- state -------------- |
1016 *
1017 * We need to split the extent we found, and may flip bits on
1018 * second half.
1019 *
1020 * If the extent we found extends past our
1021 * range, we just split and search again. It'll get split
1022 * again the next time though.
1023 *
1024 * If the extent we found is inside our range, we set the
1025 * desired bit on it.
1026 */
1027 if (state->start < start) {
1028 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1029 if (!prealloc) {
1030 err = -ENOMEM;
1031 goto out;
1032 }
462d6fac 1033 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1034 if (err)
1035 extent_io_tree_panic(tree, err);
462d6fac
JB
1036 prealloc = NULL;
1037 if (err)
1038 goto out;
1039 if (state->end <= end) {
1040 set_state_bits(tree, state, &bits);
d1ac6e41 1041 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1042 if (last_end == (u64)-1)
1043 goto out;
1044 start = last_end + 1;
d1ac6e41
LB
1045 if (start < end && state && state->start == start &&
1046 !need_resched())
1047 goto hit_next;
462d6fac
JB
1048 }
1049 goto search_again;
1050 }
1051 /*
1052 * | ---- desired range ---- |
1053 * | state | or | state |
1054 *
1055 * There's a hole, we need to insert something in it and
1056 * ignore the extent we found.
1057 */
1058 if (state->start > start) {
1059 u64 this_end;
1060 if (end < last_start)
1061 this_end = end;
1062 else
1063 this_end = last_start - 1;
1064
1065 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1066 if (!prealloc) {
1067 err = -ENOMEM;
1068 goto out;
1069 }
462d6fac
JB
1070
1071 /*
1072 * Avoid to free 'prealloc' if it can be merged with
1073 * the later extent.
1074 */
1075 err = insert_state(tree, prealloc, start, this_end,
1076 &bits);
c2d904e0
JM
1077 if (err)
1078 extent_io_tree_panic(tree, err);
462d6fac
JB
1079 prealloc = NULL;
1080 start = this_end + 1;
1081 goto search_again;
1082 }
1083 /*
1084 * | ---- desired range ---- |
1085 * | state |
1086 * We need to split the extent, and set the bit
1087 * on the first half
1088 */
1089 if (state->start <= end && state->end > end) {
1090 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1091 if (!prealloc) {
1092 err = -ENOMEM;
1093 goto out;
1094 }
462d6fac
JB
1095
1096 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1097 if (err)
1098 extent_io_tree_panic(tree, err);
462d6fac
JB
1099
1100 set_state_bits(tree, prealloc, &bits);
1101 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1102 prealloc = NULL;
1103 goto out;
1104 }
1105
1106 goto search_again;
1107
1108out:
1109 spin_unlock(&tree->lock);
1110 if (prealloc)
1111 free_extent_state(prealloc);
1112
1113 return err;
1114
1115search_again:
1116 if (start > end)
1117 goto out;
1118 spin_unlock(&tree->lock);
1119 if (mask & __GFP_WAIT)
1120 cond_resched();
1121 goto again;
1122}
1123
d1310b2e
CM
1124/* wrappers around set/clear extent bit */
1125int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1126 gfp_t mask)
1127{
3fbe5c02 1128 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1129 NULL, mask);
d1310b2e 1130}
d1310b2e
CM
1131
1132int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133 int bits, gfp_t mask)
1134{
3fbe5c02 1135 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1136 NULL, mask);
d1310b2e 1137}
d1310b2e
CM
1138
1139int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1140 int bits, gfp_t mask)
1141{
2c64c53d 1142 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1143}
d1310b2e
CM
1144
1145int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1146 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1147{
1148 return set_extent_bit(tree, start, end,
fee187d9 1149 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1150 NULL, cached_state, mask);
d1310b2e 1151}
d1310b2e
CM
1152
1153int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1154 gfp_t mask)
1155{
1156 return clear_extent_bit(tree, start, end,
32c00aff 1157 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1158 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1159}
d1310b2e
CM
1160
1161int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1162 gfp_t mask)
1163{
3fbe5c02 1164 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1165 NULL, mask);
d1310b2e 1166}
d1310b2e 1167
d1310b2e 1168int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1169 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1170{
507903b8 1171 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
3fbe5c02 1172 cached_state, mask);
d1310b2e 1173}
d1310b2e 1174
5fd02043
JB
1175int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1176 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1177{
2c64c53d 1178 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1179 cached_state, mask);
d1310b2e 1180}
d1310b2e 1181
d352ac68
CM
1182/*
1183 * either insert or lock state struct between start and end use mask to tell
1184 * us if waiting is desired.
1185 */
1edbb734 1186int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
d0082371 1187 int bits, struct extent_state **cached_state)
d1310b2e
CM
1188{
1189 int err;
1190 u64 failed_start;
1191 while (1) {
3fbe5c02
JM
1192 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1193 EXTENT_LOCKED, &failed_start,
1194 cached_state, GFP_NOFS);
d0082371 1195 if (err == -EEXIST) {
d1310b2e
CM
1196 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1197 start = failed_start;
d0082371 1198 } else
d1310b2e 1199 break;
d1310b2e
CM
1200 WARN_ON(start > end);
1201 }
1202 return err;
1203}
d1310b2e 1204
d0082371 1205int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1206{
d0082371 1207 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1208}
1209
d0082371 1210int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1211{
1212 int err;
1213 u64 failed_start;
1214
3fbe5c02
JM
1215 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1216 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1217 if (err == -EEXIST) {
1218 if (failed_start > start)
1219 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1220 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1221 return 0;
6643558d 1222 }
25179201
JB
1223 return 1;
1224}
25179201 1225
2c64c53d
CM
1226int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1227 struct extent_state **cached, gfp_t mask)
1228{
1229 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1230 mask);
1231}
1232
d0082371 1233int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1234{
2c64c53d 1235 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1236 GFP_NOFS);
d1310b2e 1237}
d1310b2e 1238
d1310b2e
CM
1239/*
1240 * helper function to set both pages and extents in the tree writeback
1241 */
b2950863 1242static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1243{
1244 unsigned long index = start >> PAGE_CACHE_SHIFT;
1245 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1246 struct page *page;
1247
1248 while (index <= end_index) {
1249 page = find_get_page(tree->mapping, index);
79787eaa 1250 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1251 set_page_writeback(page);
1252 page_cache_release(page);
1253 index++;
1254 }
d1310b2e
CM
1255 return 0;
1256}
d1310b2e 1257
d352ac68
CM
1258/* find the first state struct with 'bits' set after 'start', and
1259 * return it. tree->lock must be held. NULL will returned if
1260 * nothing was found after 'start'
1261 */
d7fc640e
CM
1262struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1263 u64 start, int bits)
1264{
1265 struct rb_node *node;
1266 struct extent_state *state;
1267
1268 /*
1269 * this search will find all the extents that end after
1270 * our range starts.
1271 */
1272 node = tree_search(tree, start);
d397712b 1273 if (!node)
d7fc640e 1274 goto out;
d7fc640e 1275
d397712b 1276 while (1) {
d7fc640e 1277 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1278 if (state->end >= start && (state->state & bits))
d7fc640e 1279 return state;
d397712b 1280
d7fc640e
CM
1281 node = rb_next(node);
1282 if (!node)
1283 break;
1284 }
1285out:
1286 return NULL;
1287}
d7fc640e 1288
69261c4b
XG
1289/*
1290 * find the first offset in the io tree with 'bits' set. zero is
1291 * returned if we find something, and *start_ret and *end_ret are
1292 * set to reflect the state struct that was found.
1293 *
477d7eaf 1294 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1295 */
1296int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1297 u64 *start_ret, u64 *end_ret, int bits)
1298{
1299 struct extent_state *state;
1300 int ret = 1;
1301
1302 spin_lock(&tree->lock);
1303 state = find_first_extent_bit_state(tree, start, bits);
1304 if (state) {
1305 *start_ret = state->start;
1306 *end_ret = state->end;
1307 ret = 0;
1308 }
1309 spin_unlock(&tree->lock);
1310 return ret;
1311}
1312
d352ac68
CM
1313/*
1314 * find a contiguous range of bytes in the file marked as delalloc, not
1315 * more than 'max_bytes'. start and end are used to return the range,
1316 *
1317 * 1 is returned if we find something, 0 if nothing was in the tree
1318 */
c8b97818 1319static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1320 u64 *start, u64 *end, u64 max_bytes,
1321 struct extent_state **cached_state)
d1310b2e
CM
1322{
1323 struct rb_node *node;
1324 struct extent_state *state;
1325 u64 cur_start = *start;
1326 u64 found = 0;
1327 u64 total_bytes = 0;
1328
cad321ad 1329 spin_lock(&tree->lock);
c8b97818 1330
d1310b2e
CM
1331 /*
1332 * this search will find all the extents that end after
1333 * our range starts.
1334 */
80ea96b1 1335 node = tree_search(tree, cur_start);
2b114d1d 1336 if (!node) {
3b951516
CM
1337 if (!found)
1338 *end = (u64)-1;
d1310b2e
CM
1339 goto out;
1340 }
1341
d397712b 1342 while (1) {
d1310b2e 1343 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1344 if (found && (state->start != cur_start ||
1345 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1346 goto out;
1347 }
1348 if (!(state->state & EXTENT_DELALLOC)) {
1349 if (!found)
1350 *end = state->end;
1351 goto out;
1352 }
c2a128d2 1353 if (!found) {
d1310b2e 1354 *start = state->start;
c2a128d2
JB
1355 *cached_state = state;
1356 atomic_inc(&state->refs);
1357 }
d1310b2e
CM
1358 found++;
1359 *end = state->end;
1360 cur_start = state->end + 1;
1361 node = rb_next(node);
1362 if (!node)
1363 break;
1364 total_bytes += state->end - state->start + 1;
1365 if (total_bytes >= max_bytes)
1366 break;
1367 }
1368out:
cad321ad 1369 spin_unlock(&tree->lock);
d1310b2e
CM
1370 return found;
1371}
1372
143bede5
JM
1373static noinline void __unlock_for_delalloc(struct inode *inode,
1374 struct page *locked_page,
1375 u64 start, u64 end)
c8b97818
CM
1376{
1377 int ret;
1378 struct page *pages[16];
1379 unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 unsigned long nr_pages = end_index - index + 1;
1382 int i;
1383
1384 if (index == locked_page->index && end_index == index)
143bede5 1385 return;
c8b97818 1386
d397712b 1387 while (nr_pages > 0) {
c8b97818 1388 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1389 min_t(unsigned long, nr_pages,
1390 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1391 for (i = 0; i < ret; i++) {
1392 if (pages[i] != locked_page)
1393 unlock_page(pages[i]);
1394 page_cache_release(pages[i]);
1395 }
1396 nr_pages -= ret;
1397 index += ret;
1398 cond_resched();
1399 }
c8b97818
CM
1400}
1401
1402static noinline int lock_delalloc_pages(struct inode *inode,
1403 struct page *locked_page,
1404 u64 delalloc_start,
1405 u64 delalloc_end)
1406{
1407 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1408 unsigned long start_index = index;
1409 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1410 unsigned long pages_locked = 0;
1411 struct page *pages[16];
1412 unsigned long nrpages;
1413 int ret;
1414 int i;
1415
1416 /* the caller is responsible for locking the start index */
1417 if (index == locked_page->index && index == end_index)
1418 return 0;
1419
1420 /* skip the page at the start index */
1421 nrpages = end_index - index + 1;
d397712b 1422 while (nrpages > 0) {
c8b97818 1423 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1424 min_t(unsigned long,
1425 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1426 if (ret == 0) {
1427 ret = -EAGAIN;
1428 goto done;
1429 }
1430 /* now we have an array of pages, lock them all */
1431 for (i = 0; i < ret; i++) {
1432 /*
1433 * the caller is taking responsibility for
1434 * locked_page
1435 */
771ed689 1436 if (pages[i] != locked_page) {
c8b97818 1437 lock_page(pages[i]);
f2b1c41c
CM
1438 if (!PageDirty(pages[i]) ||
1439 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1440 ret = -EAGAIN;
1441 unlock_page(pages[i]);
1442 page_cache_release(pages[i]);
1443 goto done;
1444 }
1445 }
c8b97818 1446 page_cache_release(pages[i]);
771ed689 1447 pages_locked++;
c8b97818 1448 }
c8b97818
CM
1449 nrpages -= ret;
1450 index += ret;
1451 cond_resched();
1452 }
1453 ret = 0;
1454done:
1455 if (ret && pages_locked) {
1456 __unlock_for_delalloc(inode, locked_page,
1457 delalloc_start,
1458 ((u64)(start_index + pages_locked - 1)) <<
1459 PAGE_CACHE_SHIFT);
1460 }
1461 return ret;
1462}
1463
1464/*
1465 * find a contiguous range of bytes in the file marked as delalloc, not
1466 * more than 'max_bytes'. start and end are used to return the range,
1467 *
1468 * 1 is returned if we find something, 0 if nothing was in the tree
1469 */
1470static noinline u64 find_lock_delalloc_range(struct inode *inode,
1471 struct extent_io_tree *tree,
1472 struct page *locked_page,
1473 u64 *start, u64 *end,
1474 u64 max_bytes)
1475{
1476 u64 delalloc_start;
1477 u64 delalloc_end;
1478 u64 found;
9655d298 1479 struct extent_state *cached_state = NULL;
c8b97818
CM
1480 int ret;
1481 int loops = 0;
1482
1483again:
1484 /* step one, find a bunch of delalloc bytes starting at start */
1485 delalloc_start = *start;
1486 delalloc_end = 0;
1487 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1488 max_bytes, &cached_state);
70b99e69 1489 if (!found || delalloc_end <= *start) {
c8b97818
CM
1490 *start = delalloc_start;
1491 *end = delalloc_end;
c2a128d2 1492 free_extent_state(cached_state);
c8b97818
CM
1493 return found;
1494 }
1495
70b99e69
CM
1496 /*
1497 * start comes from the offset of locked_page. We have to lock
1498 * pages in order, so we can't process delalloc bytes before
1499 * locked_page
1500 */
d397712b 1501 if (delalloc_start < *start)
70b99e69 1502 delalloc_start = *start;
70b99e69 1503
c8b97818
CM
1504 /*
1505 * make sure to limit the number of pages we try to lock down
1506 * if we're looping.
1507 */
d397712b 1508 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1509 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1510
c8b97818
CM
1511 /* step two, lock all the pages after the page that has start */
1512 ret = lock_delalloc_pages(inode, locked_page,
1513 delalloc_start, delalloc_end);
1514 if (ret == -EAGAIN) {
1515 /* some of the pages are gone, lets avoid looping by
1516 * shortening the size of the delalloc range we're searching
1517 */
9655d298 1518 free_extent_state(cached_state);
c8b97818
CM
1519 if (!loops) {
1520 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1521 max_bytes = PAGE_CACHE_SIZE - offset;
1522 loops = 1;
1523 goto again;
1524 } else {
1525 found = 0;
1526 goto out_failed;
1527 }
1528 }
79787eaa 1529 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1530
1531 /* step three, lock the state bits for the whole range */
d0082371 1532 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1533
1534 /* then test to make sure it is all still delalloc */
1535 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1536 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1537 if (!ret) {
9655d298
CM
1538 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1539 &cached_state, GFP_NOFS);
c8b97818
CM
1540 __unlock_for_delalloc(inode, locked_page,
1541 delalloc_start, delalloc_end);
1542 cond_resched();
1543 goto again;
1544 }
9655d298 1545 free_extent_state(cached_state);
c8b97818
CM
1546 *start = delalloc_start;
1547 *end = delalloc_end;
1548out_failed:
1549 return found;
1550}
1551
1552int extent_clear_unlock_delalloc(struct inode *inode,
1553 struct extent_io_tree *tree,
1554 u64 start, u64 end, struct page *locked_page,
a791e35e 1555 unsigned long op)
c8b97818
CM
1556{
1557 int ret;
1558 struct page *pages[16];
1559 unsigned long index = start >> PAGE_CACHE_SHIFT;
1560 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1561 unsigned long nr_pages = end_index - index + 1;
1562 int i;
771ed689 1563 int clear_bits = 0;
c8b97818 1564
a791e35e 1565 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1566 clear_bits |= EXTENT_LOCKED;
a791e35e 1567 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1568 clear_bits |= EXTENT_DIRTY;
1569
a791e35e 1570 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1571 clear_bits |= EXTENT_DELALLOC;
1572
2c64c53d 1573 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1574 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1575 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1576 EXTENT_SET_PRIVATE2)))
771ed689 1577 return 0;
c8b97818 1578
d397712b 1579 while (nr_pages > 0) {
c8b97818 1580 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1581 min_t(unsigned long,
1582 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1583 for (i = 0; i < ret; i++) {
8b62b72b 1584
a791e35e 1585 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1586 SetPagePrivate2(pages[i]);
1587
c8b97818
CM
1588 if (pages[i] == locked_page) {
1589 page_cache_release(pages[i]);
1590 continue;
1591 }
a791e35e 1592 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1593 clear_page_dirty_for_io(pages[i]);
a791e35e 1594 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1595 set_page_writeback(pages[i]);
a791e35e 1596 if (op & EXTENT_END_WRITEBACK)
c8b97818 1597 end_page_writeback(pages[i]);
a791e35e 1598 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1599 unlock_page(pages[i]);
c8b97818
CM
1600 page_cache_release(pages[i]);
1601 }
1602 nr_pages -= ret;
1603 index += ret;
1604 cond_resched();
1605 }
1606 return 0;
1607}
c8b97818 1608
d352ac68
CM
1609/*
1610 * count the number of bytes in the tree that have a given bit(s)
1611 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1612 * cached. The total number found is returned.
1613 */
d1310b2e
CM
1614u64 count_range_bits(struct extent_io_tree *tree,
1615 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1616 unsigned long bits, int contig)
d1310b2e
CM
1617{
1618 struct rb_node *node;
1619 struct extent_state *state;
1620 u64 cur_start = *start;
1621 u64 total_bytes = 0;
ec29ed5b 1622 u64 last = 0;
d1310b2e
CM
1623 int found = 0;
1624
1625 if (search_end <= cur_start) {
d1310b2e
CM
1626 WARN_ON(1);
1627 return 0;
1628 }
1629
cad321ad 1630 spin_lock(&tree->lock);
d1310b2e
CM
1631 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1632 total_bytes = tree->dirty_bytes;
1633 goto out;
1634 }
1635 /*
1636 * this search will find all the extents that end after
1637 * our range starts.
1638 */
80ea96b1 1639 node = tree_search(tree, cur_start);
d397712b 1640 if (!node)
d1310b2e 1641 goto out;
d1310b2e 1642
d397712b 1643 while (1) {
d1310b2e
CM
1644 state = rb_entry(node, struct extent_state, rb_node);
1645 if (state->start > search_end)
1646 break;
ec29ed5b
CM
1647 if (contig && found && state->start > last + 1)
1648 break;
1649 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1650 total_bytes += min(search_end, state->end) + 1 -
1651 max(cur_start, state->start);
1652 if (total_bytes >= max_bytes)
1653 break;
1654 if (!found) {
af60bed2 1655 *start = max(cur_start, state->start);
d1310b2e
CM
1656 found = 1;
1657 }
ec29ed5b
CM
1658 last = state->end;
1659 } else if (contig && found) {
1660 break;
d1310b2e
CM
1661 }
1662 node = rb_next(node);
1663 if (!node)
1664 break;
1665 }
1666out:
cad321ad 1667 spin_unlock(&tree->lock);
d1310b2e
CM
1668 return total_bytes;
1669}
b2950863 1670
d352ac68
CM
1671/*
1672 * set the private field for a given byte offset in the tree. If there isn't
1673 * an extent_state there already, this does nothing.
1674 */
d1310b2e
CM
1675int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1676{
1677 struct rb_node *node;
1678 struct extent_state *state;
1679 int ret = 0;
1680
cad321ad 1681 spin_lock(&tree->lock);
d1310b2e
CM
1682 /*
1683 * this search will find all the extents that end after
1684 * our range starts.
1685 */
80ea96b1 1686 node = tree_search(tree, start);
2b114d1d 1687 if (!node) {
d1310b2e
CM
1688 ret = -ENOENT;
1689 goto out;
1690 }
1691 state = rb_entry(node, struct extent_state, rb_node);
1692 if (state->start != start) {
1693 ret = -ENOENT;
1694 goto out;
1695 }
1696 state->private = private;
1697out:
cad321ad 1698 spin_unlock(&tree->lock);
d1310b2e
CM
1699 return ret;
1700}
1701
1702int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1703{
1704 struct rb_node *node;
1705 struct extent_state *state;
1706 int ret = 0;
1707
cad321ad 1708 spin_lock(&tree->lock);
d1310b2e
CM
1709 /*
1710 * this search will find all the extents that end after
1711 * our range starts.
1712 */
80ea96b1 1713 node = tree_search(tree, start);
2b114d1d 1714 if (!node) {
d1310b2e
CM
1715 ret = -ENOENT;
1716 goto out;
1717 }
1718 state = rb_entry(node, struct extent_state, rb_node);
1719 if (state->start != start) {
1720 ret = -ENOENT;
1721 goto out;
1722 }
1723 *private = state->private;
1724out:
cad321ad 1725 spin_unlock(&tree->lock);
d1310b2e
CM
1726 return ret;
1727}
1728
1729/*
1730 * searches a range in the state tree for a given mask.
70dec807 1731 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1732 * has the bits set. Otherwise, 1 is returned if any bit in the
1733 * range is found set.
1734 */
1735int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1736 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1737{
1738 struct extent_state *state = NULL;
1739 struct rb_node *node;
1740 int bitset = 0;
d1310b2e 1741
cad321ad 1742 spin_lock(&tree->lock);
df98b6e2
JB
1743 if (cached && cached->tree && cached->start <= start &&
1744 cached->end > start)
9655d298
CM
1745 node = &cached->rb_node;
1746 else
1747 node = tree_search(tree, start);
d1310b2e
CM
1748 while (node && start <= end) {
1749 state = rb_entry(node, struct extent_state, rb_node);
1750
1751 if (filled && state->start > start) {
1752 bitset = 0;
1753 break;
1754 }
1755
1756 if (state->start > end)
1757 break;
1758
1759 if (state->state & bits) {
1760 bitset = 1;
1761 if (!filled)
1762 break;
1763 } else if (filled) {
1764 bitset = 0;
1765 break;
1766 }
46562cec
CM
1767
1768 if (state->end == (u64)-1)
1769 break;
1770
d1310b2e
CM
1771 start = state->end + 1;
1772 if (start > end)
1773 break;
1774 node = rb_next(node);
1775 if (!node) {
1776 if (filled)
1777 bitset = 0;
1778 break;
1779 }
1780 }
cad321ad 1781 spin_unlock(&tree->lock);
d1310b2e
CM
1782 return bitset;
1783}
d1310b2e
CM
1784
1785/*
1786 * helper function to set a given page up to date if all the
1787 * extents in the tree for that page are up to date
1788 */
143bede5 1789static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1790{
1791 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1792 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1793 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1794 SetPageUptodate(page);
d1310b2e
CM
1795}
1796
1797/*
1798 * helper function to unlock a page if all the extents in the tree
1799 * for that page are unlocked
1800 */
143bede5 1801static void check_page_locked(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1802{
1803 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1804 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1805 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e 1806 unlock_page(page);
d1310b2e
CM
1807}
1808
1809/*
1810 * helper function to end page writeback if all the extents
1811 * in the tree for that page are done with writeback
1812 */
143bede5
JM
1813static void check_page_writeback(struct extent_io_tree *tree,
1814 struct page *page)
d1310b2e 1815{
1edbb734 1816 end_page_writeback(page);
d1310b2e
CM
1817}
1818
4a54c8c1
JS
1819/*
1820 * When IO fails, either with EIO or csum verification fails, we
1821 * try other mirrors that might have a good copy of the data. This
1822 * io_failure_record is used to record state as we go through all the
1823 * mirrors. If another mirror has good data, the page is set up to date
1824 * and things continue. If a good mirror can't be found, the original
1825 * bio end_io callback is called to indicate things have failed.
1826 */
1827struct io_failure_record {
1828 struct page *page;
1829 u64 start;
1830 u64 len;
1831 u64 logical;
1832 unsigned long bio_flags;
1833 int this_mirror;
1834 int failed_mirror;
1835 int in_validation;
1836};
1837
1838static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1839 int did_repair)
1840{
1841 int ret;
1842 int err = 0;
1843 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1844
1845 set_state_private(failure_tree, rec->start, 0);
1846 ret = clear_extent_bits(failure_tree, rec->start,
1847 rec->start + rec->len - 1,
1848 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1849 if (ret)
1850 err = ret;
1851
1852 if (did_repair) {
1853 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1854 rec->start + rec->len - 1,
1855 EXTENT_DAMAGED, GFP_NOFS);
1856 if (ret && !err)
1857 err = ret;
1858 }
1859
1860 kfree(rec);
1861 return err;
1862}
1863
1864static void repair_io_failure_callback(struct bio *bio, int err)
1865{
1866 complete(bio->bi_private);
1867}
1868
1869/*
1870 * this bypasses the standard btrfs submit functions deliberately, as
1871 * the standard behavior is to write all copies in a raid setup. here we only
1872 * want to write the one bad copy. so we do the mapping for ourselves and issue
1873 * submit_bio directly.
1874 * to avoid any synchonization issues, wait for the data after writing, which
1875 * actually prevents the read that triggered the error from finishing.
1876 * currently, there can be no more than two copies of every data bit. thus,
1877 * exactly one rewrite is required.
1878 */
1879int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1880 u64 length, u64 logical, struct page *page,
1881 int mirror_num)
1882{
1883 struct bio *bio;
1884 struct btrfs_device *dev;
1885 DECLARE_COMPLETION_ONSTACK(compl);
1886 u64 map_length = 0;
1887 u64 sector;
1888 struct btrfs_bio *bbio = NULL;
1889 int ret;
1890
1891 BUG_ON(!mirror_num);
1892
1893 bio = bio_alloc(GFP_NOFS, 1);
1894 if (!bio)
1895 return -EIO;
1896 bio->bi_private = &compl;
1897 bio->bi_end_io = repair_io_failure_callback;
1898 bio->bi_size = 0;
1899 map_length = length;
1900
1901 ret = btrfs_map_block(map_tree, WRITE, logical,
1902 &map_length, &bbio, mirror_num);
1903 if (ret) {
1904 bio_put(bio);
1905 return -EIO;
1906 }
1907 BUG_ON(mirror_num != bbio->mirror_num);
1908 sector = bbio->stripes[mirror_num-1].physical >> 9;
1909 bio->bi_sector = sector;
1910 dev = bbio->stripes[mirror_num-1].dev;
1911 kfree(bbio);
1912 if (!dev || !dev->bdev || !dev->writeable) {
1913 bio_put(bio);
1914 return -EIO;
1915 }
1916 bio->bi_bdev = dev->bdev;
1917 bio_add_page(bio, page, length, start-page_offset(page));
21adbd5c 1918 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
1919 wait_for_completion(&compl);
1920
1921 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1922 /* try to remap that extent elsewhere? */
1923 bio_put(bio);
442a4f63 1924 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
1925 return -EIO;
1926 }
1927
d5b025d5 1928 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
1929 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1930 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
1931
1932 bio_put(bio);
1933 return 0;
1934}
1935
ea466794
JB
1936int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1937 int mirror_num)
1938{
1939 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1940 u64 start = eb->start;
1941 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 1942 int ret = 0;
ea466794
JB
1943
1944 for (i = 0; i < num_pages; i++) {
1945 struct page *p = extent_buffer_page(eb, i);
1946 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1947 start, p, mirror_num);
1948 if (ret)
1949 break;
1950 start += PAGE_CACHE_SIZE;
1951 }
1952
1953 return ret;
1954}
1955
4a54c8c1
JS
1956/*
1957 * each time an IO finishes, we do a fast check in the IO failure tree
1958 * to see if we need to process or clean up an io_failure_record
1959 */
1960static int clean_io_failure(u64 start, struct page *page)
1961{
1962 u64 private;
1963 u64 private_failure;
1964 struct io_failure_record *failrec;
1965 struct btrfs_mapping_tree *map_tree;
1966 struct extent_state *state;
1967 int num_copies;
1968 int did_repair = 0;
1969 int ret;
1970 struct inode *inode = page->mapping->host;
1971
1972 private = 0;
1973 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1974 (u64)-1, 1, EXTENT_DIRTY, 0);
1975 if (!ret)
1976 return 0;
1977
1978 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1979 &private_failure);
1980 if (ret)
1981 return 0;
1982
1983 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1984 BUG_ON(!failrec->this_mirror);
1985
1986 if (failrec->in_validation) {
1987 /* there was no real error, just free the record */
1988 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1989 failrec->start);
1990 did_repair = 1;
1991 goto out;
1992 }
1993
1994 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1995 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1996 failrec->start,
1997 EXTENT_LOCKED);
1998 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1999
2000 if (state && state->start == failrec->start) {
2001 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2002 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2003 failrec->len);
2004 if (num_copies > 1) {
2005 ret = repair_io_failure(map_tree, start, failrec->len,
2006 failrec->logical, page,
2007 failrec->failed_mirror);
2008 did_repair = !ret;
2009 }
2010 }
2011
2012out:
2013 if (!ret)
2014 ret = free_io_failure(inode, failrec, did_repair);
2015
2016 return ret;
2017}
2018
2019/*
2020 * this is a generic handler for readpage errors (default
2021 * readpage_io_failed_hook). if other copies exist, read those and write back
2022 * good data to the failed position. does not investigate in remapping the
2023 * failed extent elsewhere, hoping the device will be smart enough to do this as
2024 * needed
2025 */
2026
2027static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2028 u64 start, u64 end, int failed_mirror,
2029 struct extent_state *state)
2030{
2031 struct io_failure_record *failrec = NULL;
2032 u64 private;
2033 struct extent_map *em;
2034 struct inode *inode = page->mapping->host;
2035 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2036 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2037 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2038 struct bio *bio;
2039 int num_copies;
2040 int ret;
2041 int read_mode;
2042 u64 logical;
2043
2044 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2045
2046 ret = get_state_private(failure_tree, start, &private);
2047 if (ret) {
2048 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2049 if (!failrec)
2050 return -ENOMEM;
2051 failrec->start = start;
2052 failrec->len = end - start + 1;
2053 failrec->this_mirror = 0;
2054 failrec->bio_flags = 0;
2055 failrec->in_validation = 0;
2056
2057 read_lock(&em_tree->lock);
2058 em = lookup_extent_mapping(em_tree, start, failrec->len);
2059 if (!em) {
2060 read_unlock(&em_tree->lock);
2061 kfree(failrec);
2062 return -EIO;
2063 }
2064
2065 if (em->start > start || em->start + em->len < start) {
2066 free_extent_map(em);
2067 em = NULL;
2068 }
2069 read_unlock(&em_tree->lock);
2070
2071 if (!em || IS_ERR(em)) {
2072 kfree(failrec);
2073 return -EIO;
2074 }
2075 logical = start - em->start;
2076 logical = em->block_start + logical;
2077 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2078 logical = em->block_start;
2079 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2080 extent_set_compress_type(&failrec->bio_flags,
2081 em->compress_type);
2082 }
2083 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2084 "len=%llu\n", logical, start, failrec->len);
2085 failrec->logical = logical;
2086 free_extent_map(em);
2087
2088 /* set the bits in the private failure tree */
2089 ret = set_extent_bits(failure_tree, start, end,
2090 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2091 if (ret >= 0)
2092 ret = set_state_private(failure_tree, start,
2093 (u64)(unsigned long)failrec);
2094 /* set the bits in the inode's tree */
2095 if (ret >= 0)
2096 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2097 GFP_NOFS);
2098 if (ret < 0) {
2099 kfree(failrec);
2100 return ret;
2101 }
2102 } else {
2103 failrec = (struct io_failure_record *)(unsigned long)private;
2104 pr_debug("bio_readpage_error: (found) logical=%llu, "
2105 "start=%llu, len=%llu, validation=%d\n",
2106 failrec->logical, failrec->start, failrec->len,
2107 failrec->in_validation);
2108 /*
2109 * when data can be on disk more than twice, add to failrec here
2110 * (e.g. with a list for failed_mirror) to make
2111 * clean_io_failure() clean all those errors at once.
2112 */
2113 }
2114 num_copies = btrfs_num_copies(
2115 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2116 failrec->logical, failrec->len);
2117 if (num_copies == 1) {
2118 /*
2119 * we only have a single copy of the data, so don't bother with
2120 * all the retry and error correction code that follows. no
2121 * matter what the error is, it is very likely to persist.
2122 */
2123 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2124 "state=%p, num_copies=%d, next_mirror %d, "
2125 "failed_mirror %d\n", state, num_copies,
2126 failrec->this_mirror, failed_mirror);
2127 free_io_failure(inode, failrec, 0);
2128 return -EIO;
2129 }
2130
2131 if (!state) {
2132 spin_lock(&tree->lock);
2133 state = find_first_extent_bit_state(tree, failrec->start,
2134 EXTENT_LOCKED);
2135 if (state && state->start != failrec->start)
2136 state = NULL;
2137 spin_unlock(&tree->lock);
2138 }
2139
2140 /*
2141 * there are two premises:
2142 * a) deliver good data to the caller
2143 * b) correct the bad sectors on disk
2144 */
2145 if (failed_bio->bi_vcnt > 1) {
2146 /*
2147 * to fulfill b), we need to know the exact failing sectors, as
2148 * we don't want to rewrite any more than the failed ones. thus,
2149 * we need separate read requests for the failed bio
2150 *
2151 * if the following BUG_ON triggers, our validation request got
2152 * merged. we need separate requests for our algorithm to work.
2153 */
2154 BUG_ON(failrec->in_validation);
2155 failrec->in_validation = 1;
2156 failrec->this_mirror = failed_mirror;
2157 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2158 } else {
2159 /*
2160 * we're ready to fulfill a) and b) alongside. get a good copy
2161 * of the failed sector and if we succeed, we have setup
2162 * everything for repair_io_failure to do the rest for us.
2163 */
2164 if (failrec->in_validation) {
2165 BUG_ON(failrec->this_mirror != failed_mirror);
2166 failrec->in_validation = 0;
2167 failrec->this_mirror = 0;
2168 }
2169 failrec->failed_mirror = failed_mirror;
2170 failrec->this_mirror++;
2171 if (failrec->this_mirror == failed_mirror)
2172 failrec->this_mirror++;
2173 read_mode = READ_SYNC;
2174 }
2175
2176 if (!state || failrec->this_mirror > num_copies) {
2177 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2178 "next_mirror %d, failed_mirror %d\n", state,
2179 num_copies, failrec->this_mirror, failed_mirror);
2180 free_io_failure(inode, failrec, 0);
2181 return -EIO;
2182 }
2183
2184 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2185 if (!bio) {
2186 free_io_failure(inode, failrec, 0);
2187 return -EIO;
2188 }
4a54c8c1
JS
2189 bio->bi_private = state;
2190 bio->bi_end_io = failed_bio->bi_end_io;
2191 bio->bi_sector = failrec->logical >> 9;
2192 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2193 bio->bi_size = 0;
2194
2195 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2196
2197 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2198 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2199 failrec->this_mirror, num_copies, failrec->in_validation);
2200
013bd4c3
TI
2201 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2202 failrec->this_mirror,
2203 failrec->bio_flags, 0);
2204 return ret;
4a54c8c1
JS
2205}
2206
d1310b2e
CM
2207/* lots and lots of room for performance fixes in the end_bio funcs */
2208
87826df0
JM
2209int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2210{
2211 int uptodate = (err == 0);
2212 struct extent_io_tree *tree;
2213 int ret;
2214
2215 tree = &BTRFS_I(page->mapping->host)->io_tree;
2216
2217 if (tree->ops && tree->ops->writepage_end_io_hook) {
2218 ret = tree->ops->writepage_end_io_hook(page, start,
2219 end, NULL, uptodate);
2220 if (ret)
2221 uptodate = 0;
2222 }
2223
87826df0 2224 if (!uptodate) {
87826df0
JM
2225 ClearPageUptodate(page);
2226 SetPageError(page);
2227 }
2228 return 0;
2229}
2230
d1310b2e
CM
2231/*
2232 * after a writepage IO is done, we need to:
2233 * clear the uptodate bits on error
2234 * clear the writeback bits in the extent tree for this IO
2235 * end_page_writeback if the page has no more pending IO
2236 *
2237 * Scheduling is not allowed, so the extent state tree is expected
2238 * to have one and only one object corresponding to this IO.
2239 */
d1310b2e 2240static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2241{
d1310b2e 2242 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2243 struct extent_io_tree *tree;
d1310b2e
CM
2244 u64 start;
2245 u64 end;
2246 int whole_page;
2247
d1310b2e
CM
2248 do {
2249 struct page *page = bvec->bv_page;
902b22f3
DW
2250 tree = &BTRFS_I(page->mapping->host)->io_tree;
2251
d1310b2e
CM
2252 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2253 bvec->bv_offset;
2254 end = start + bvec->bv_len - 1;
2255
2256 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2257 whole_page = 1;
2258 else
2259 whole_page = 0;
2260
2261 if (--bvec >= bio->bi_io_vec)
2262 prefetchw(&bvec->bv_page->flags);
1259ab75 2263
87826df0
JM
2264 if (end_extent_writepage(page, err, start, end))
2265 continue;
70dec807 2266
d1310b2e
CM
2267 if (whole_page)
2268 end_page_writeback(page);
2269 else
2270 check_page_writeback(tree, page);
d1310b2e 2271 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2272
d1310b2e 2273 bio_put(bio);
d1310b2e
CM
2274}
2275
2276/*
2277 * after a readpage IO is done, we need to:
2278 * clear the uptodate bits on error
2279 * set the uptodate bits if things worked
2280 * set the page up to date if all extents in the tree are uptodate
2281 * clear the lock bit in the extent tree
2282 * unlock the page if there are no other extents locked for it
2283 *
2284 * Scheduling is not allowed, so the extent state tree is expected
2285 * to have one and only one object corresponding to this IO.
2286 */
d1310b2e 2287static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2288{
2289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2290 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2291 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2292 struct extent_io_tree *tree;
d1310b2e
CM
2293 u64 start;
2294 u64 end;
2295 int whole_page;
5cf1ab56 2296 int mirror;
d1310b2e
CM
2297 int ret;
2298
d20f7043
CM
2299 if (err)
2300 uptodate = 0;
2301
d1310b2e
CM
2302 do {
2303 struct page *page = bvec->bv_page;
507903b8
AJ
2304 struct extent_state *cached = NULL;
2305 struct extent_state *state;
2306
4a54c8c1
JS
2307 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2308 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2309 (long int)bio->bi_bdev);
902b22f3
DW
2310 tree = &BTRFS_I(page->mapping->host)->io_tree;
2311
d1310b2e
CM
2312 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2313 bvec->bv_offset;
2314 end = start + bvec->bv_len - 1;
2315
2316 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2317 whole_page = 1;
2318 else
2319 whole_page = 0;
2320
4125bf76 2321 if (++bvec <= bvec_end)
d1310b2e
CM
2322 prefetchw(&bvec->bv_page->flags);
2323
507903b8 2324 spin_lock(&tree->lock);
0d399205 2325 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2326 if (state && state->start == start) {
507903b8
AJ
2327 /*
2328 * take a reference on the state, unlock will drop
2329 * the ref
2330 */
2331 cache_state(state, &cached);
2332 }
2333 spin_unlock(&tree->lock);
2334
5cf1ab56 2335 mirror = (int)(unsigned long)bio->bi_bdev;
d1310b2e 2336 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2337 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2338 state, mirror);
5ee0844d 2339 if (ret)
d1310b2e 2340 uptodate = 0;
5ee0844d 2341 else
4a54c8c1 2342 clean_io_failure(start, page);
d1310b2e 2343 }
ea466794 2344
ea466794 2345 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2346 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2347 if (!ret && !err &&
2348 test_bit(BIO_UPTODATE, &bio->bi_flags))
2349 uptodate = 1;
2350 } else if (!uptodate) {
f4a8e656
JS
2351 /*
2352 * The generic bio_readpage_error handles errors the
2353 * following way: If possible, new read requests are
2354 * created and submitted and will end up in
2355 * end_bio_extent_readpage as well (if we're lucky, not
2356 * in the !uptodate case). In that case it returns 0 and
2357 * we just go on with the next page in our bio. If it
2358 * can't handle the error it will return -EIO and we
2359 * remain responsible for that page.
2360 */
5cf1ab56 2361 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
7e38326f 2362 if (ret == 0) {
3b951516
CM
2363 uptodate =
2364 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2365 if (err)
2366 uptodate = 0;
507903b8 2367 uncache_state(&cached);
7e38326f
CM
2368 continue;
2369 }
2370 }
d1310b2e 2371
0b32f4bb 2372 if (uptodate && tree->track_uptodate) {
507903b8 2373 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2374 GFP_ATOMIC);
771ed689 2375 }
507903b8 2376 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2377
70dec807
CM
2378 if (whole_page) {
2379 if (uptodate) {
2380 SetPageUptodate(page);
2381 } else {
2382 ClearPageUptodate(page);
2383 SetPageError(page);
2384 }
d1310b2e 2385 unlock_page(page);
70dec807
CM
2386 } else {
2387 if (uptodate) {
2388 check_page_uptodate(tree, page);
2389 } else {
2390 ClearPageUptodate(page);
2391 SetPageError(page);
2392 }
d1310b2e 2393 check_page_locked(tree, page);
70dec807 2394 }
4125bf76 2395 } while (bvec <= bvec_end);
d1310b2e
CM
2396
2397 bio_put(bio);
d1310b2e
CM
2398}
2399
88f794ed
MX
2400struct bio *
2401btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2402 gfp_t gfp_flags)
d1310b2e
CM
2403{
2404 struct bio *bio;
2405
2406 bio = bio_alloc(gfp_flags, nr_vecs);
2407
2408 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2409 while (!bio && (nr_vecs /= 2))
2410 bio = bio_alloc(gfp_flags, nr_vecs);
2411 }
2412
2413 if (bio) {
e1c4b745 2414 bio->bi_size = 0;
d1310b2e
CM
2415 bio->bi_bdev = bdev;
2416 bio->bi_sector = first_sector;
2417 }
2418 return bio;
2419}
2420
79787eaa
JM
2421/*
2422 * Since writes are async, they will only return -ENOMEM.
2423 * Reads can return the full range of I/O error conditions.
2424 */
355808c2
JM
2425static int __must_check submit_one_bio(int rw, struct bio *bio,
2426 int mirror_num, unsigned long bio_flags)
d1310b2e 2427{
d1310b2e 2428 int ret = 0;
70dec807
CM
2429 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2430 struct page *page = bvec->bv_page;
2431 struct extent_io_tree *tree = bio->bi_private;
70dec807 2432 u64 start;
70dec807
CM
2433
2434 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
70dec807 2435
902b22f3 2436 bio->bi_private = NULL;
d1310b2e
CM
2437
2438 bio_get(bio);
2439
065631f6 2440 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2441 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2442 mirror_num, bio_flags, start);
0b86a832 2443 else
21adbd5c 2444 btrfsic_submit_bio(rw, bio);
4a54c8c1 2445
d1310b2e
CM
2446 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2447 ret = -EOPNOTSUPP;
2448 bio_put(bio);
2449 return ret;
2450}
2451
3444a972
JM
2452static int merge_bio(struct extent_io_tree *tree, struct page *page,
2453 unsigned long offset, size_t size, struct bio *bio,
2454 unsigned long bio_flags)
2455{
2456 int ret = 0;
2457 if (tree->ops && tree->ops->merge_bio_hook)
2458 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2459 bio_flags);
2460 BUG_ON(ret < 0);
2461 return ret;
2462
2463}
2464
d1310b2e
CM
2465static int submit_extent_page(int rw, struct extent_io_tree *tree,
2466 struct page *page, sector_t sector,
2467 size_t size, unsigned long offset,
2468 struct block_device *bdev,
2469 struct bio **bio_ret,
2470 unsigned long max_pages,
f188591e 2471 bio_end_io_t end_io_func,
c8b97818
CM
2472 int mirror_num,
2473 unsigned long prev_bio_flags,
2474 unsigned long bio_flags)
d1310b2e
CM
2475{
2476 int ret = 0;
2477 struct bio *bio;
2478 int nr;
c8b97818
CM
2479 int contig = 0;
2480 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2481 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2482 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2483
2484 if (bio_ret && *bio_ret) {
2485 bio = *bio_ret;
c8b97818
CM
2486 if (old_compressed)
2487 contig = bio->bi_sector == sector;
2488 else
2489 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2490 sector;
2491
2492 if (prev_bio_flags != bio_flags || !contig ||
3444a972 2493 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2494 bio_add_page(bio, page, page_size, offset) < page_size) {
2495 ret = submit_one_bio(rw, bio, mirror_num,
2496 prev_bio_flags);
79787eaa
JM
2497 if (ret < 0)
2498 return ret;
d1310b2e
CM
2499 bio = NULL;
2500 } else {
2501 return 0;
2502 }
2503 }
c8b97818
CM
2504 if (this_compressed)
2505 nr = BIO_MAX_PAGES;
2506 else
2507 nr = bio_get_nr_vecs(bdev);
2508
88f794ed 2509 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2510 if (!bio)
2511 return -ENOMEM;
70dec807 2512
c8b97818 2513 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2514 bio->bi_end_io = end_io_func;
2515 bio->bi_private = tree;
70dec807 2516
d397712b 2517 if (bio_ret)
d1310b2e 2518 *bio_ret = bio;
d397712b 2519 else
c8b97818 2520 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2521
2522 return ret;
2523}
2524
4f2de97a 2525void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
d1310b2e
CM
2526{
2527 if (!PagePrivate(page)) {
2528 SetPagePrivate(page);
d1310b2e 2529 page_cache_get(page);
4f2de97a
JB
2530 set_page_private(page, (unsigned long)eb);
2531 } else {
2532 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2533 }
2534}
2535
4f2de97a 2536void set_page_extent_mapped(struct page *page)
d1310b2e 2537{
4f2de97a
JB
2538 if (!PagePrivate(page)) {
2539 SetPagePrivate(page);
2540 page_cache_get(page);
2541 set_page_private(page, EXTENT_PAGE_PRIVATE);
2542 }
d1310b2e
CM
2543}
2544
2545/*
2546 * basic readpage implementation. Locked extent state structs are inserted
2547 * into the tree that are removed when the IO is done (by the end_io
2548 * handlers)
79787eaa 2549 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2550 */
2551static int __extent_read_full_page(struct extent_io_tree *tree,
2552 struct page *page,
2553 get_extent_t *get_extent,
c8b97818
CM
2554 struct bio **bio, int mirror_num,
2555 unsigned long *bio_flags)
d1310b2e
CM
2556{
2557 struct inode *inode = page->mapping->host;
2558 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2559 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2560 u64 end;
2561 u64 cur = start;
2562 u64 extent_offset;
2563 u64 last_byte = i_size_read(inode);
2564 u64 block_start;
2565 u64 cur_end;
2566 sector_t sector;
2567 struct extent_map *em;
2568 struct block_device *bdev;
11c65dcc 2569 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2570 int ret;
2571 int nr = 0;
306e16ce 2572 size_t pg_offset = 0;
d1310b2e 2573 size_t iosize;
c8b97818 2574 size_t disk_io_size;
d1310b2e 2575 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2576 unsigned long this_bio_flag = 0;
d1310b2e
CM
2577
2578 set_page_extent_mapped(page);
2579
90a887c9
DM
2580 if (!PageUptodate(page)) {
2581 if (cleancache_get_page(page) == 0) {
2582 BUG_ON(blocksize != PAGE_SIZE);
2583 goto out;
2584 }
2585 }
2586
d1310b2e 2587 end = page_end;
11c65dcc 2588 while (1) {
d0082371 2589 lock_extent(tree, start, end);
11c65dcc
JB
2590 ordered = btrfs_lookup_ordered_extent(inode, start);
2591 if (!ordered)
2592 break;
d0082371 2593 unlock_extent(tree, start, end);
11c65dcc
JB
2594 btrfs_start_ordered_extent(inode, ordered, 1);
2595 btrfs_put_ordered_extent(ordered);
2596 }
d1310b2e 2597
c8b97818
CM
2598 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2599 char *userpage;
2600 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2601
2602 if (zero_offset) {
2603 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2604 userpage = kmap_atomic(page);
c8b97818
CM
2605 memset(userpage + zero_offset, 0, iosize);
2606 flush_dcache_page(page);
7ac687d9 2607 kunmap_atomic(userpage);
c8b97818
CM
2608 }
2609 }
d1310b2e
CM
2610 while (cur <= end) {
2611 if (cur >= last_byte) {
2612 char *userpage;
507903b8
AJ
2613 struct extent_state *cached = NULL;
2614
306e16ce 2615 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2616 userpage = kmap_atomic(page);
306e16ce 2617 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2618 flush_dcache_page(page);
7ac687d9 2619 kunmap_atomic(userpage);
d1310b2e 2620 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2621 &cached, GFP_NOFS);
2622 unlock_extent_cached(tree, cur, cur + iosize - 1,
2623 &cached, GFP_NOFS);
d1310b2e
CM
2624 break;
2625 }
306e16ce 2626 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2627 end - cur + 1, 0);
c704005d 2628 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2629 SetPageError(page);
d0082371 2630 unlock_extent(tree, cur, end);
d1310b2e
CM
2631 break;
2632 }
d1310b2e
CM
2633 extent_offset = cur - em->start;
2634 BUG_ON(extent_map_end(em) <= cur);
2635 BUG_ON(end < cur);
2636
261507a0 2637 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2638 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2639 extent_set_compress_type(&this_bio_flag,
2640 em->compress_type);
2641 }
c8b97818 2642
d1310b2e
CM
2643 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2644 cur_end = min(extent_map_end(em) - 1, end);
2645 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
c8b97818
CM
2646 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2647 disk_io_size = em->block_len;
2648 sector = em->block_start >> 9;
2649 } else {
2650 sector = (em->block_start + extent_offset) >> 9;
2651 disk_io_size = iosize;
2652 }
d1310b2e
CM
2653 bdev = em->bdev;
2654 block_start = em->block_start;
d899e052
YZ
2655 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2656 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2657 free_extent_map(em);
2658 em = NULL;
2659
2660 /* we've found a hole, just zero and go on */
2661 if (block_start == EXTENT_MAP_HOLE) {
2662 char *userpage;
507903b8
AJ
2663 struct extent_state *cached = NULL;
2664
7ac687d9 2665 userpage = kmap_atomic(page);
306e16ce 2666 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2667 flush_dcache_page(page);
7ac687d9 2668 kunmap_atomic(userpage);
d1310b2e
CM
2669
2670 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2671 &cached, GFP_NOFS);
2672 unlock_extent_cached(tree, cur, cur + iosize - 1,
2673 &cached, GFP_NOFS);
d1310b2e 2674 cur = cur + iosize;
306e16ce 2675 pg_offset += iosize;
d1310b2e
CM
2676 continue;
2677 }
2678 /* the get_extent function already copied into the page */
9655d298
CM
2679 if (test_range_bit(tree, cur, cur_end,
2680 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2681 check_page_uptodate(tree, page);
d0082371 2682 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2683 cur = cur + iosize;
306e16ce 2684 pg_offset += iosize;
d1310b2e
CM
2685 continue;
2686 }
70dec807
CM
2687 /* we have an inline extent but it didn't get marked up
2688 * to date. Error out
2689 */
2690 if (block_start == EXTENT_MAP_INLINE) {
2691 SetPageError(page);
d0082371 2692 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2693 cur = cur + iosize;
306e16ce 2694 pg_offset += iosize;
70dec807
CM
2695 continue;
2696 }
d1310b2e
CM
2697
2698 ret = 0;
2699 if (tree->ops && tree->ops->readpage_io_hook) {
2700 ret = tree->ops->readpage_io_hook(page, cur,
2701 cur + iosize - 1);
2702 }
2703 if (!ret) {
89642229
CM
2704 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2705 pnr -= page->index;
d1310b2e 2706 ret = submit_extent_page(READ, tree, page,
306e16ce 2707 sector, disk_io_size, pg_offset,
89642229 2708 bdev, bio, pnr,
c8b97818
CM
2709 end_bio_extent_readpage, mirror_num,
2710 *bio_flags,
2711 this_bio_flag);
79787eaa 2712 BUG_ON(ret == -ENOMEM);
89642229 2713 nr++;
c8b97818 2714 *bio_flags = this_bio_flag;
d1310b2e
CM
2715 }
2716 if (ret)
2717 SetPageError(page);
2718 cur = cur + iosize;
306e16ce 2719 pg_offset += iosize;
d1310b2e 2720 }
90a887c9 2721out:
d1310b2e
CM
2722 if (!nr) {
2723 if (!PageError(page))
2724 SetPageUptodate(page);
2725 unlock_page(page);
2726 }
2727 return 0;
2728}
2729
2730int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2731 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2732{
2733 struct bio *bio = NULL;
c8b97818 2734 unsigned long bio_flags = 0;
d1310b2e
CM
2735 int ret;
2736
8ddc7d9c 2737 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2738 &bio_flags);
d1310b2e 2739 if (bio)
8ddc7d9c 2740 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2741 return ret;
2742}
d1310b2e 2743
11c8349b
CM
2744static noinline void update_nr_written(struct page *page,
2745 struct writeback_control *wbc,
2746 unsigned long nr_written)
2747{
2748 wbc->nr_to_write -= nr_written;
2749 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2750 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2751 page->mapping->writeback_index = page->index + nr_written;
2752}
2753
d1310b2e
CM
2754/*
2755 * the writepage semantics are similar to regular writepage. extent
2756 * records are inserted to lock ranges in the tree, and as dirty areas
2757 * are found, they are marked writeback. Then the lock bits are removed
2758 * and the end_io handler clears the writeback ranges
2759 */
2760static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2761 void *data)
2762{
2763 struct inode *inode = page->mapping->host;
2764 struct extent_page_data *epd = data;
2765 struct extent_io_tree *tree = epd->tree;
2766 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2767 u64 delalloc_start;
2768 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2769 u64 end;
2770 u64 cur = start;
2771 u64 extent_offset;
2772 u64 last_byte = i_size_read(inode);
2773 u64 block_start;
2774 u64 iosize;
2775 sector_t sector;
2c64c53d 2776 struct extent_state *cached_state = NULL;
d1310b2e
CM
2777 struct extent_map *em;
2778 struct block_device *bdev;
2779 int ret;
2780 int nr = 0;
7f3c74fb 2781 size_t pg_offset = 0;
d1310b2e
CM
2782 size_t blocksize;
2783 loff_t i_size = i_size_read(inode);
2784 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2785 u64 nr_delalloc;
2786 u64 delalloc_end;
c8b97818
CM
2787 int page_started;
2788 int compressed;
ffbd517d 2789 int write_flags;
771ed689 2790 unsigned long nr_written = 0;
9e487107 2791 bool fill_delalloc = true;
d1310b2e 2792
ffbd517d 2793 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2794 write_flags = WRITE_SYNC;
ffbd517d
CM
2795 else
2796 write_flags = WRITE;
2797
1abe9b8a 2798 trace___extent_writepage(page, inode, wbc);
2799
d1310b2e 2800 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2801
2802 ClearPageError(page);
2803
7f3c74fb 2804 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2805 if (page->index > end_index ||
7f3c74fb 2806 (page->index == end_index && !pg_offset)) {
39be25cd 2807 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2808 unlock_page(page);
2809 return 0;
2810 }
2811
2812 if (page->index == end_index) {
2813 char *userpage;
2814
7ac687d9 2815 userpage = kmap_atomic(page);
7f3c74fb
CM
2816 memset(userpage + pg_offset, 0,
2817 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2818 kunmap_atomic(userpage);
211c17f5 2819 flush_dcache_page(page);
d1310b2e 2820 }
7f3c74fb 2821 pg_offset = 0;
d1310b2e
CM
2822
2823 set_page_extent_mapped(page);
2824
9e487107
JB
2825 if (!tree->ops || !tree->ops->fill_delalloc)
2826 fill_delalloc = false;
2827
d1310b2e
CM
2828 delalloc_start = start;
2829 delalloc_end = 0;
c8b97818 2830 page_started = 0;
9e487107 2831 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2832 u64 delalloc_to_write = 0;
11c8349b
CM
2833 /*
2834 * make sure the wbc mapping index is at least updated
2835 * to this page.
2836 */
2837 update_nr_written(page, wbc, 0);
2838
d397712b 2839 while (delalloc_end < page_end) {
771ed689 2840 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2841 page,
2842 &delalloc_start,
d1310b2e
CM
2843 &delalloc_end,
2844 128 * 1024 * 1024);
771ed689
CM
2845 if (nr_delalloc == 0) {
2846 delalloc_start = delalloc_end + 1;
2847 continue;
2848 }
013bd4c3
TI
2849 ret = tree->ops->fill_delalloc(inode, page,
2850 delalloc_start,
2851 delalloc_end,
2852 &page_started,
2853 &nr_written);
79787eaa
JM
2854 /* File system has been set read-only */
2855 if (ret) {
2856 SetPageError(page);
2857 goto done;
2858 }
f85d7d6c
CM
2859 /*
2860 * delalloc_end is already one less than the total
2861 * length, so we don't subtract one from
2862 * PAGE_CACHE_SIZE
2863 */
2864 delalloc_to_write += (delalloc_end - delalloc_start +
2865 PAGE_CACHE_SIZE) >>
2866 PAGE_CACHE_SHIFT;
d1310b2e 2867 delalloc_start = delalloc_end + 1;
d1310b2e 2868 }
f85d7d6c
CM
2869 if (wbc->nr_to_write < delalloc_to_write) {
2870 int thresh = 8192;
2871
2872 if (delalloc_to_write < thresh * 2)
2873 thresh = delalloc_to_write;
2874 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2875 thresh);
2876 }
c8b97818 2877
771ed689
CM
2878 /* did the fill delalloc function already unlock and start
2879 * the IO?
2880 */
2881 if (page_started) {
2882 ret = 0;
11c8349b
CM
2883 /*
2884 * we've unlocked the page, so we can't update
2885 * the mapping's writeback index, just update
2886 * nr_to_write.
2887 */
2888 wbc->nr_to_write -= nr_written;
2889 goto done_unlocked;
771ed689 2890 }
c8b97818 2891 }
247e743c 2892 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
2893 ret = tree->ops->writepage_start_hook(page, start,
2894 page_end);
87826df0
JM
2895 if (ret) {
2896 /* Fixup worker will requeue */
2897 if (ret == -EBUSY)
2898 wbc->pages_skipped++;
2899 else
2900 redirty_page_for_writepage(wbc, page);
11c8349b 2901 update_nr_written(page, wbc, nr_written);
247e743c 2902 unlock_page(page);
771ed689 2903 ret = 0;
11c8349b 2904 goto done_unlocked;
247e743c
CM
2905 }
2906 }
2907
11c8349b
CM
2908 /*
2909 * we don't want to touch the inode after unlocking the page,
2910 * so we update the mapping writeback index now
2911 */
2912 update_nr_written(page, wbc, nr_written + 1);
771ed689 2913
d1310b2e 2914 end = page_end;
d1310b2e 2915 if (last_byte <= start) {
e6dcd2dc
CM
2916 if (tree->ops && tree->ops->writepage_end_io_hook)
2917 tree->ops->writepage_end_io_hook(page, start,
2918 page_end, NULL, 1);
d1310b2e
CM
2919 goto done;
2920 }
2921
d1310b2e
CM
2922 blocksize = inode->i_sb->s_blocksize;
2923
2924 while (cur <= end) {
2925 if (cur >= last_byte) {
e6dcd2dc
CM
2926 if (tree->ops && tree->ops->writepage_end_io_hook)
2927 tree->ops->writepage_end_io_hook(page, cur,
2928 page_end, NULL, 1);
d1310b2e
CM
2929 break;
2930 }
7f3c74fb 2931 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 2932 end - cur + 1, 1);
c704005d 2933 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2934 SetPageError(page);
2935 break;
2936 }
2937
2938 extent_offset = cur - em->start;
2939 BUG_ON(extent_map_end(em) <= cur);
2940 BUG_ON(end < cur);
2941 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2942 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2943 sector = (em->block_start + extent_offset) >> 9;
2944 bdev = em->bdev;
2945 block_start = em->block_start;
c8b97818 2946 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
2947 free_extent_map(em);
2948 em = NULL;
2949
c8b97818
CM
2950 /*
2951 * compressed and inline extents are written through other
2952 * paths in the FS
2953 */
2954 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2955 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
2956 /*
2957 * end_io notification does not happen here for
2958 * compressed extents
2959 */
2960 if (!compressed && tree->ops &&
2961 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
2962 tree->ops->writepage_end_io_hook(page, cur,
2963 cur + iosize - 1,
2964 NULL, 1);
c8b97818
CM
2965 else if (compressed) {
2966 /* we don't want to end_page_writeback on
2967 * a compressed extent. this happens
2968 * elsewhere
2969 */
2970 nr++;
2971 }
2972
2973 cur += iosize;
7f3c74fb 2974 pg_offset += iosize;
d1310b2e
CM
2975 continue;
2976 }
d1310b2e
CM
2977 /* leave this out until we have a page_mkwrite call */
2978 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 2979 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 2980 cur = cur + iosize;
7f3c74fb 2981 pg_offset += iosize;
d1310b2e
CM
2982 continue;
2983 }
c8b97818 2984
d1310b2e
CM
2985 if (tree->ops && tree->ops->writepage_io_hook) {
2986 ret = tree->ops->writepage_io_hook(page, cur,
2987 cur + iosize - 1);
2988 } else {
2989 ret = 0;
2990 }
1259ab75 2991 if (ret) {
d1310b2e 2992 SetPageError(page);
1259ab75 2993 } else {
d1310b2e 2994 unsigned long max_nr = end_index + 1;
7f3c74fb 2995
d1310b2e
CM
2996 set_range_writeback(tree, cur, cur + iosize - 1);
2997 if (!PageWriteback(page)) {
d397712b
CM
2998 printk(KERN_ERR "btrfs warning page %lu not "
2999 "writeback, cur %llu end %llu\n",
3000 page->index, (unsigned long long)cur,
d1310b2e
CM
3001 (unsigned long long)end);
3002 }
3003
ffbd517d
CM
3004 ret = submit_extent_page(write_flags, tree, page,
3005 sector, iosize, pg_offset,
3006 bdev, &epd->bio, max_nr,
c8b97818
CM
3007 end_bio_extent_writepage,
3008 0, 0, 0);
d1310b2e
CM
3009 if (ret)
3010 SetPageError(page);
3011 }
3012 cur = cur + iosize;
7f3c74fb 3013 pg_offset += iosize;
d1310b2e
CM
3014 nr++;
3015 }
3016done:
3017 if (nr == 0) {
3018 /* make sure the mapping tag for page dirty gets cleared */
3019 set_page_writeback(page);
3020 end_page_writeback(page);
3021 }
d1310b2e 3022 unlock_page(page);
771ed689 3023
11c8349b
CM
3024done_unlocked:
3025
2c64c53d
CM
3026 /* drop our reference on any cached states */
3027 free_extent_state(cached_state);
d1310b2e
CM
3028 return 0;
3029}
3030
0b32f4bb
JB
3031static int eb_wait(void *word)
3032{
3033 io_schedule();
3034 return 0;
3035}
3036
3037static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3038{
3039 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3040 TASK_UNINTERRUPTIBLE);
3041}
3042
3043static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3044 struct btrfs_fs_info *fs_info,
3045 struct extent_page_data *epd)
3046{
3047 unsigned long i, num_pages;
3048 int flush = 0;
3049 int ret = 0;
3050
3051 if (!btrfs_try_tree_write_lock(eb)) {
3052 flush = 1;
3053 flush_write_bio(epd);
3054 btrfs_tree_lock(eb);
3055 }
3056
3057 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3058 btrfs_tree_unlock(eb);
3059 if (!epd->sync_io)
3060 return 0;
3061 if (!flush) {
3062 flush_write_bio(epd);
3063 flush = 1;
3064 }
a098d8e8
CM
3065 while (1) {
3066 wait_on_extent_buffer_writeback(eb);
3067 btrfs_tree_lock(eb);
3068 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3069 break;
0b32f4bb 3070 btrfs_tree_unlock(eb);
0b32f4bb
JB
3071 }
3072 }
3073
51561ffe
JB
3074 /*
3075 * We need to do this to prevent races in people who check if the eb is
3076 * under IO since we can end up having no IO bits set for a short period
3077 * of time.
3078 */
3079 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3080 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3081 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3082 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3083 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3084 spin_lock(&fs_info->delalloc_lock);
3085 if (fs_info->dirty_metadata_bytes >= eb->len)
3086 fs_info->dirty_metadata_bytes -= eb->len;
3087 else
3088 WARN_ON(1);
3089 spin_unlock(&fs_info->delalloc_lock);
3090 ret = 1;
51561ffe
JB
3091 } else {
3092 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3093 }
3094
3095 btrfs_tree_unlock(eb);
3096
3097 if (!ret)
3098 return ret;
3099
3100 num_pages = num_extent_pages(eb->start, eb->len);
3101 for (i = 0; i < num_pages; i++) {
3102 struct page *p = extent_buffer_page(eb, i);
3103
3104 if (!trylock_page(p)) {
3105 if (!flush) {
3106 flush_write_bio(epd);
3107 flush = 1;
3108 }
3109 lock_page(p);
3110 }
3111 }
3112
3113 return ret;
3114}
3115
3116static void end_extent_buffer_writeback(struct extent_buffer *eb)
3117{
3118 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3119 smp_mb__after_clear_bit();
3120 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3121}
3122
3123static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3124{
3125 int uptodate = err == 0;
3126 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3127 struct extent_buffer *eb;
3128 int done;
3129
3130 do {
3131 struct page *page = bvec->bv_page;
3132
3133 bvec--;
3134 eb = (struct extent_buffer *)page->private;
3135 BUG_ON(!eb);
3136 done = atomic_dec_and_test(&eb->io_pages);
3137
3138 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3139 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3140 ClearPageUptodate(page);
3141 SetPageError(page);
3142 }
3143
3144 end_page_writeback(page);
3145
3146 if (!done)
3147 continue;
3148
3149 end_extent_buffer_writeback(eb);
3150 } while (bvec >= bio->bi_io_vec);
3151
3152 bio_put(bio);
3153
3154}
3155
3156static int write_one_eb(struct extent_buffer *eb,
3157 struct btrfs_fs_info *fs_info,
3158 struct writeback_control *wbc,
3159 struct extent_page_data *epd)
3160{
3161 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3162 u64 offset = eb->start;
3163 unsigned long i, num_pages;
3164 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
d7dbe9e7 3165 int ret = 0;
0b32f4bb
JB
3166
3167 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3168 num_pages = num_extent_pages(eb->start, eb->len);
3169 atomic_set(&eb->io_pages, num_pages);
3170 for (i = 0; i < num_pages; i++) {
3171 struct page *p = extent_buffer_page(eb, i);
3172
3173 clear_page_dirty_for_io(p);
3174 set_page_writeback(p);
3175 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3176 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3177 -1, end_bio_extent_buffer_writepage,
3178 0, 0, 0);
3179 if (ret) {
3180 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3181 SetPageError(p);
3182 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3183 end_extent_buffer_writeback(eb);
3184 ret = -EIO;
3185 break;
3186 }
3187 offset += PAGE_CACHE_SIZE;
3188 update_nr_written(p, wbc, 1);
3189 unlock_page(p);
3190 }
3191
3192 if (unlikely(ret)) {
3193 for (; i < num_pages; i++) {
3194 struct page *p = extent_buffer_page(eb, i);
3195 unlock_page(p);
3196 }
3197 }
3198
3199 return ret;
3200}
3201
3202int btree_write_cache_pages(struct address_space *mapping,
3203 struct writeback_control *wbc)
3204{
3205 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3206 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3207 struct extent_buffer *eb, *prev_eb = NULL;
3208 struct extent_page_data epd = {
3209 .bio = NULL,
3210 .tree = tree,
3211 .extent_locked = 0,
3212 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3213 };
3214 int ret = 0;
3215 int done = 0;
3216 int nr_to_write_done = 0;
3217 struct pagevec pvec;
3218 int nr_pages;
3219 pgoff_t index;
3220 pgoff_t end; /* Inclusive */
3221 int scanned = 0;
3222 int tag;
3223
3224 pagevec_init(&pvec, 0);
3225 if (wbc->range_cyclic) {
3226 index = mapping->writeback_index; /* Start from prev offset */
3227 end = -1;
3228 } else {
3229 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3230 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3231 scanned = 1;
3232 }
3233 if (wbc->sync_mode == WB_SYNC_ALL)
3234 tag = PAGECACHE_TAG_TOWRITE;
3235 else
3236 tag = PAGECACHE_TAG_DIRTY;
3237retry:
3238 if (wbc->sync_mode == WB_SYNC_ALL)
3239 tag_pages_for_writeback(mapping, index, end);
3240 while (!done && !nr_to_write_done && (index <= end) &&
3241 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3242 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3243 unsigned i;
3244
3245 scanned = 1;
3246 for (i = 0; i < nr_pages; i++) {
3247 struct page *page = pvec.pages[i];
3248
3249 if (!PagePrivate(page))
3250 continue;
3251
3252 if (!wbc->range_cyclic && page->index > end) {
3253 done = 1;
3254 break;
3255 }
3256
3257 eb = (struct extent_buffer *)page->private;
3258 if (!eb) {
3259 WARN_ON(1);
3260 continue;
3261 }
3262
3263 if (eb == prev_eb)
3264 continue;
3265
3266 if (!atomic_inc_not_zero(&eb->refs)) {
3267 WARN_ON(1);
3268 continue;
3269 }
3270
3271 prev_eb = eb;
3272 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3273 if (!ret) {
3274 free_extent_buffer(eb);
3275 continue;
3276 }
3277
3278 ret = write_one_eb(eb, fs_info, wbc, &epd);
3279 if (ret) {
3280 done = 1;
3281 free_extent_buffer(eb);
3282 break;
3283 }
3284 free_extent_buffer(eb);
3285
3286 /*
3287 * the filesystem may choose to bump up nr_to_write.
3288 * We have to make sure to honor the new nr_to_write
3289 * at any time
3290 */
3291 nr_to_write_done = wbc->nr_to_write <= 0;
3292 }
3293 pagevec_release(&pvec);
3294 cond_resched();
3295 }
3296 if (!scanned && !done) {
3297 /*
3298 * We hit the last page and there is more work to be done: wrap
3299 * back to the start of the file
3300 */
3301 scanned = 1;
3302 index = 0;
3303 goto retry;
3304 }
3305 flush_write_bio(&epd);
3306 return ret;
3307}
3308
d1310b2e 3309/**
4bef0848 3310 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3311 * @mapping: address space structure to write
3312 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3313 * @writepage: function called for each page
3314 * @data: data passed to writepage function
3315 *
3316 * If a page is already under I/O, write_cache_pages() skips it, even
3317 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3318 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3319 * and msync() need to guarantee that all the data which was dirty at the time
3320 * the call was made get new I/O started against them. If wbc->sync_mode is
3321 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3322 * existing IO to complete.
3323 */
b2950863 3324static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3325 struct address_space *mapping,
3326 struct writeback_control *wbc,
d2c3f4f6
CM
3327 writepage_t writepage, void *data,
3328 void (*flush_fn)(void *))
d1310b2e 3329{
7fd1a3f7 3330 struct inode *inode = mapping->host;
d1310b2e
CM
3331 int ret = 0;
3332 int done = 0;
f85d7d6c 3333 int nr_to_write_done = 0;
d1310b2e
CM
3334 struct pagevec pvec;
3335 int nr_pages;
3336 pgoff_t index;
3337 pgoff_t end; /* Inclusive */
3338 int scanned = 0;
f7aaa06b 3339 int tag;
d1310b2e 3340
7fd1a3f7
JB
3341 /*
3342 * We have to hold onto the inode so that ordered extents can do their
3343 * work when the IO finishes. The alternative to this is failing to add
3344 * an ordered extent if the igrab() fails there and that is a huge pain
3345 * to deal with, so instead just hold onto the inode throughout the
3346 * writepages operation. If it fails here we are freeing up the inode
3347 * anyway and we'd rather not waste our time writing out stuff that is
3348 * going to be truncated anyway.
3349 */
3350 if (!igrab(inode))
3351 return 0;
3352
d1310b2e
CM
3353 pagevec_init(&pvec, 0);
3354 if (wbc->range_cyclic) {
3355 index = mapping->writeback_index; /* Start from prev offset */
3356 end = -1;
3357 } else {
3358 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3359 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3360 scanned = 1;
3361 }
f7aaa06b
JB
3362 if (wbc->sync_mode == WB_SYNC_ALL)
3363 tag = PAGECACHE_TAG_TOWRITE;
3364 else
3365 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3366retry:
f7aaa06b
JB
3367 if (wbc->sync_mode == WB_SYNC_ALL)
3368 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3369 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3370 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3371 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3372 unsigned i;
3373
3374 scanned = 1;
3375 for (i = 0; i < nr_pages; i++) {
3376 struct page *page = pvec.pages[i];
3377
3378 /*
3379 * At this point we hold neither mapping->tree_lock nor
3380 * lock on the page itself: the page may be truncated or
3381 * invalidated (changing page->mapping to NULL), or even
3382 * swizzled back from swapper_space to tmpfs file
3383 * mapping
3384 */
01d658f2
CM
3385 if (tree->ops &&
3386 tree->ops->write_cache_pages_lock_hook) {
3387 tree->ops->write_cache_pages_lock_hook(page,
3388 data, flush_fn);
3389 } else {
3390 if (!trylock_page(page)) {
3391 flush_fn(data);
3392 lock_page(page);
3393 }
3394 }
d1310b2e
CM
3395
3396 if (unlikely(page->mapping != mapping)) {
3397 unlock_page(page);
3398 continue;
3399 }
3400
3401 if (!wbc->range_cyclic && page->index > end) {
3402 done = 1;
3403 unlock_page(page);
3404 continue;
3405 }
3406
d2c3f4f6 3407 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3408 if (PageWriteback(page))
3409 flush_fn(data);
d1310b2e 3410 wait_on_page_writeback(page);
d2c3f4f6 3411 }
d1310b2e
CM
3412
3413 if (PageWriteback(page) ||
3414 !clear_page_dirty_for_io(page)) {
3415 unlock_page(page);
3416 continue;
3417 }
3418
3419 ret = (*writepage)(page, wbc, data);
3420
3421 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3422 unlock_page(page);
3423 ret = 0;
3424 }
f85d7d6c 3425 if (ret)
d1310b2e 3426 done = 1;
f85d7d6c
CM
3427
3428 /*
3429 * the filesystem may choose to bump up nr_to_write.
3430 * We have to make sure to honor the new nr_to_write
3431 * at any time
3432 */
3433 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3434 }
3435 pagevec_release(&pvec);
3436 cond_resched();
3437 }
3438 if (!scanned && !done) {
3439 /*
3440 * We hit the last page and there is more work to be done: wrap
3441 * back to the start of the file
3442 */
3443 scanned = 1;
3444 index = 0;
3445 goto retry;
3446 }
7fd1a3f7 3447 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3448 return ret;
3449}
d1310b2e 3450
ffbd517d 3451static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3452{
d2c3f4f6 3453 if (epd->bio) {
355808c2
JM
3454 int rw = WRITE;
3455 int ret;
3456
ffbd517d 3457 if (epd->sync_io)
355808c2
JM
3458 rw = WRITE_SYNC;
3459
3460 ret = submit_one_bio(rw, epd->bio, 0, 0);
79787eaa 3461 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3462 epd->bio = NULL;
3463 }
3464}
3465
ffbd517d
CM
3466static noinline void flush_write_bio(void *data)
3467{
3468 struct extent_page_data *epd = data;
3469 flush_epd_write_bio(epd);
3470}
3471
d1310b2e
CM
3472int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3473 get_extent_t *get_extent,
3474 struct writeback_control *wbc)
3475{
3476 int ret;
d1310b2e
CM
3477 struct extent_page_data epd = {
3478 .bio = NULL,
3479 .tree = tree,
3480 .get_extent = get_extent,
771ed689 3481 .extent_locked = 0,
ffbd517d 3482 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 3483 };
d1310b2e 3484
d1310b2e
CM
3485 ret = __extent_writepage(page, wbc, &epd);
3486
ffbd517d 3487 flush_epd_write_bio(&epd);
d1310b2e
CM
3488 return ret;
3489}
d1310b2e 3490
771ed689
CM
3491int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3492 u64 start, u64 end, get_extent_t *get_extent,
3493 int mode)
3494{
3495 int ret = 0;
3496 struct address_space *mapping = inode->i_mapping;
3497 struct page *page;
3498 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3499 PAGE_CACHE_SHIFT;
3500
3501 struct extent_page_data epd = {
3502 .bio = NULL,
3503 .tree = tree,
3504 .get_extent = get_extent,
3505 .extent_locked = 1,
ffbd517d 3506 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
3507 };
3508 struct writeback_control wbc_writepages = {
771ed689 3509 .sync_mode = mode,
771ed689
CM
3510 .nr_to_write = nr_pages * 2,
3511 .range_start = start,
3512 .range_end = end + 1,
3513 };
3514
d397712b 3515 while (start <= end) {
771ed689
CM
3516 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3517 if (clear_page_dirty_for_io(page))
3518 ret = __extent_writepage(page, &wbc_writepages, &epd);
3519 else {
3520 if (tree->ops && tree->ops->writepage_end_io_hook)
3521 tree->ops->writepage_end_io_hook(page, start,
3522 start + PAGE_CACHE_SIZE - 1,
3523 NULL, 1);
3524 unlock_page(page);
3525 }
3526 page_cache_release(page);
3527 start += PAGE_CACHE_SIZE;
3528 }
3529
ffbd517d 3530 flush_epd_write_bio(&epd);
771ed689
CM
3531 return ret;
3532}
d1310b2e
CM
3533
3534int extent_writepages(struct extent_io_tree *tree,
3535 struct address_space *mapping,
3536 get_extent_t *get_extent,
3537 struct writeback_control *wbc)
3538{
3539 int ret = 0;
3540 struct extent_page_data epd = {
3541 .bio = NULL,
3542 .tree = tree,
3543 .get_extent = get_extent,
771ed689 3544 .extent_locked = 0,
ffbd517d 3545 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3546 };
3547
4bef0848 3548 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3549 __extent_writepage, &epd,
3550 flush_write_bio);
ffbd517d 3551 flush_epd_write_bio(&epd);
d1310b2e
CM
3552 return ret;
3553}
d1310b2e
CM
3554
3555int extent_readpages(struct extent_io_tree *tree,
3556 struct address_space *mapping,
3557 struct list_head *pages, unsigned nr_pages,
3558 get_extent_t get_extent)
3559{
3560 struct bio *bio = NULL;
3561 unsigned page_idx;
c8b97818 3562 unsigned long bio_flags = 0;
67c9684f
LB
3563 struct page *pagepool[16];
3564 struct page *page;
3565 int i = 0;
3566 int nr = 0;
d1310b2e 3567
d1310b2e 3568 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3569 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3570
3571 prefetchw(&page->flags);
3572 list_del(&page->lru);
67c9684f 3573 if (add_to_page_cache_lru(page, mapping,
43e817a1 3574 page->index, GFP_NOFS)) {
67c9684f
LB
3575 page_cache_release(page);
3576 continue;
d1310b2e 3577 }
67c9684f
LB
3578
3579 pagepool[nr++] = page;
3580 if (nr < ARRAY_SIZE(pagepool))
3581 continue;
3582 for (i = 0; i < nr; i++) {
3583 __extent_read_full_page(tree, pagepool[i], get_extent,
3584 &bio, 0, &bio_flags);
3585 page_cache_release(pagepool[i]);
3586 }
3587 nr = 0;
d1310b2e 3588 }
67c9684f
LB
3589 for (i = 0; i < nr; i++) {
3590 __extent_read_full_page(tree, pagepool[i], get_extent,
3591 &bio, 0, &bio_flags);
3592 page_cache_release(pagepool[i]);
d1310b2e 3593 }
67c9684f 3594
d1310b2e
CM
3595 BUG_ON(!list_empty(pages));
3596 if (bio)
79787eaa 3597 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3598 return 0;
3599}
d1310b2e
CM
3600
3601/*
3602 * basic invalidatepage code, this waits on any locked or writeback
3603 * ranges corresponding to the page, and then deletes any extent state
3604 * records from the tree
3605 */
3606int extent_invalidatepage(struct extent_io_tree *tree,
3607 struct page *page, unsigned long offset)
3608{
2ac55d41 3609 struct extent_state *cached_state = NULL;
d1310b2e
CM
3610 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3611 u64 end = start + PAGE_CACHE_SIZE - 1;
3612 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3613
d397712b 3614 start += (offset + blocksize - 1) & ~(blocksize - 1);
d1310b2e
CM
3615 if (start > end)
3616 return 0;
3617
d0082371 3618 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3619 wait_on_page_writeback(page);
d1310b2e 3620 clear_extent_bit(tree, start, end,
32c00aff
JB
3621 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3622 EXTENT_DO_ACCOUNTING,
2ac55d41 3623 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3624 return 0;
3625}
d1310b2e 3626
7b13b7b1
CM
3627/*
3628 * a helper for releasepage, this tests for areas of the page that
3629 * are locked or under IO and drops the related state bits if it is safe
3630 * to drop the page.
3631 */
3632int try_release_extent_state(struct extent_map_tree *map,
3633 struct extent_io_tree *tree, struct page *page,
3634 gfp_t mask)
3635{
3636 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3637 u64 end = start + PAGE_CACHE_SIZE - 1;
3638 int ret = 1;
3639
211f90e6 3640 if (test_range_bit(tree, start, end,
8b62b72b 3641 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3642 ret = 0;
3643 else {
3644 if ((mask & GFP_NOFS) == GFP_NOFS)
3645 mask = GFP_NOFS;
11ef160f
CM
3646 /*
3647 * at this point we can safely clear everything except the
3648 * locked bit and the nodatasum bit
3649 */
e3f24cc5 3650 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3651 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3652 0, 0, NULL, mask);
e3f24cc5
CM
3653
3654 /* if clear_extent_bit failed for enomem reasons,
3655 * we can't allow the release to continue.
3656 */
3657 if (ret < 0)
3658 ret = 0;
3659 else
3660 ret = 1;
7b13b7b1
CM
3661 }
3662 return ret;
3663}
7b13b7b1 3664
d1310b2e
CM
3665/*
3666 * a helper for releasepage. As long as there are no locked extents
3667 * in the range corresponding to the page, both state records and extent
3668 * map records are removed
3669 */
3670int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3671 struct extent_io_tree *tree, struct page *page,
3672 gfp_t mask)
d1310b2e
CM
3673{
3674 struct extent_map *em;
3675 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3676 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3677
70dec807
CM
3678 if ((mask & __GFP_WAIT) &&
3679 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3680 u64 len;
70dec807 3681 while (start <= end) {
39b5637f 3682 len = end - start + 1;
890871be 3683 write_lock(&map->lock);
39b5637f 3684 em = lookup_extent_mapping(map, start, len);
285190d9 3685 if (!em) {
890871be 3686 write_unlock(&map->lock);
70dec807
CM
3687 break;
3688 }
7f3c74fb
CM
3689 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3690 em->start != start) {
890871be 3691 write_unlock(&map->lock);
70dec807
CM
3692 free_extent_map(em);
3693 break;
3694 }
3695 if (!test_range_bit(tree, em->start,
3696 extent_map_end(em) - 1,
8b62b72b 3697 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3698 0, NULL)) {
70dec807
CM
3699 remove_extent_mapping(map, em);
3700 /* once for the rb tree */
3701 free_extent_map(em);
3702 }
3703 start = extent_map_end(em);
890871be 3704 write_unlock(&map->lock);
70dec807
CM
3705
3706 /* once for us */
d1310b2e
CM
3707 free_extent_map(em);
3708 }
d1310b2e 3709 }
7b13b7b1 3710 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3711}
d1310b2e 3712
ec29ed5b
CM
3713/*
3714 * helper function for fiemap, which doesn't want to see any holes.
3715 * This maps until we find something past 'last'
3716 */
3717static struct extent_map *get_extent_skip_holes(struct inode *inode,
3718 u64 offset,
3719 u64 last,
3720 get_extent_t *get_extent)
3721{
3722 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3723 struct extent_map *em;
3724 u64 len;
3725
3726 if (offset >= last)
3727 return NULL;
3728
3729 while(1) {
3730 len = last - offset;
3731 if (len == 0)
3732 break;
3733 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3734 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3735 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3736 return em;
3737
3738 /* if this isn't a hole return it */
3739 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3740 em->block_start != EXTENT_MAP_HOLE) {
3741 return em;
3742 }
3743
3744 /* this is a hole, advance to the next extent */
3745 offset = extent_map_end(em);
3746 free_extent_map(em);
3747 if (offset >= last)
3748 break;
3749 }
3750 return NULL;
3751}
3752
1506fcc8
YS
3753int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3754 __u64 start, __u64 len, get_extent_t *get_extent)
3755{
975f84fe 3756 int ret = 0;
1506fcc8
YS
3757 u64 off = start;
3758 u64 max = start + len;
3759 u32 flags = 0;
975f84fe
JB
3760 u32 found_type;
3761 u64 last;
ec29ed5b 3762 u64 last_for_get_extent = 0;
1506fcc8 3763 u64 disko = 0;
ec29ed5b 3764 u64 isize = i_size_read(inode);
975f84fe 3765 struct btrfs_key found_key;
1506fcc8 3766 struct extent_map *em = NULL;
2ac55d41 3767 struct extent_state *cached_state = NULL;
975f84fe
JB
3768 struct btrfs_path *path;
3769 struct btrfs_file_extent_item *item;
1506fcc8 3770 int end = 0;
ec29ed5b
CM
3771 u64 em_start = 0;
3772 u64 em_len = 0;
3773 u64 em_end = 0;
1506fcc8 3774 unsigned long emflags;
1506fcc8
YS
3775
3776 if (len == 0)
3777 return -EINVAL;
3778
975f84fe
JB
3779 path = btrfs_alloc_path();
3780 if (!path)
3781 return -ENOMEM;
3782 path->leave_spinning = 1;
3783
4d479cf0
JB
3784 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3785 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3786
ec29ed5b
CM
3787 /*
3788 * lookup the last file extent. We're not using i_size here
3789 * because there might be preallocation past i_size
3790 */
975f84fe 3791 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3792 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3793 if (ret < 0) {
3794 btrfs_free_path(path);
3795 return ret;
3796 }
3797 WARN_ON(!ret);
3798 path->slots[0]--;
3799 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3800 struct btrfs_file_extent_item);
3801 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3802 found_type = btrfs_key_type(&found_key);
3803
ec29ed5b 3804 /* No extents, but there might be delalloc bits */
33345d01 3805 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3806 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3807 /* have to trust i_size as the end */
3808 last = (u64)-1;
3809 last_for_get_extent = isize;
3810 } else {
3811 /*
3812 * remember the start of the last extent. There are a
3813 * bunch of different factors that go into the length of the
3814 * extent, so its much less complex to remember where it started
3815 */
3816 last = found_key.offset;
3817 last_for_get_extent = last + 1;
975f84fe 3818 }
975f84fe
JB
3819 btrfs_free_path(path);
3820
ec29ed5b
CM
3821 /*
3822 * we might have some extents allocated but more delalloc past those
3823 * extents. so, we trust isize unless the start of the last extent is
3824 * beyond isize
3825 */
3826 if (last < isize) {
3827 last = (u64)-1;
3828 last_for_get_extent = isize;
3829 }
3830
2ac55d41 3831 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
d0082371 3832 &cached_state);
ec29ed5b 3833
4d479cf0 3834 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3835 get_extent);
1506fcc8
YS
3836 if (!em)
3837 goto out;
3838 if (IS_ERR(em)) {
3839 ret = PTR_ERR(em);
3840 goto out;
3841 }
975f84fe 3842
1506fcc8 3843 while (!end) {
ea8efc74
CM
3844 u64 offset_in_extent;
3845
3846 /* break if the extent we found is outside the range */
3847 if (em->start >= max || extent_map_end(em) < off)
3848 break;
3849
3850 /*
3851 * get_extent may return an extent that starts before our
3852 * requested range. We have to make sure the ranges
3853 * we return to fiemap always move forward and don't
3854 * overlap, so adjust the offsets here
3855 */
3856 em_start = max(em->start, off);
1506fcc8 3857
ea8efc74
CM
3858 /*
3859 * record the offset from the start of the extent
3860 * for adjusting the disk offset below
3861 */
3862 offset_in_extent = em_start - em->start;
ec29ed5b 3863 em_end = extent_map_end(em);
ea8efc74 3864 em_len = em_end - em_start;
ec29ed5b 3865 emflags = em->flags;
1506fcc8
YS
3866 disko = 0;
3867 flags = 0;
3868
ea8efc74
CM
3869 /*
3870 * bump off for our next call to get_extent
3871 */
3872 off = extent_map_end(em);
3873 if (off >= max)
3874 end = 1;
3875
93dbfad7 3876 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
3877 end = 1;
3878 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 3879 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
3880 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3881 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 3882 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
3883 flags |= (FIEMAP_EXTENT_DELALLOC |
3884 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 3885 } else {
ea8efc74 3886 disko = em->block_start + offset_in_extent;
1506fcc8
YS
3887 }
3888 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3889 flags |= FIEMAP_EXTENT_ENCODED;
3890
1506fcc8
YS
3891 free_extent_map(em);
3892 em = NULL;
ec29ed5b
CM
3893 if ((em_start >= last) || em_len == (u64)-1 ||
3894 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
3895 flags |= FIEMAP_EXTENT_LAST;
3896 end = 1;
3897 }
3898
ec29ed5b
CM
3899 /* now scan forward to see if this is really the last extent. */
3900 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3901 get_extent);
3902 if (IS_ERR(em)) {
3903 ret = PTR_ERR(em);
3904 goto out;
3905 }
3906 if (!em) {
975f84fe
JB
3907 flags |= FIEMAP_EXTENT_LAST;
3908 end = 1;
3909 }
ec29ed5b
CM
3910 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3911 em_len, flags);
3912 if (ret)
3913 goto out_free;
1506fcc8
YS
3914 }
3915out_free:
3916 free_extent_map(em);
3917out:
2ac55d41
JB
3918 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3919 &cached_state, GFP_NOFS);
1506fcc8
YS
3920 return ret;
3921}
3922
4a54c8c1 3923inline struct page *extent_buffer_page(struct extent_buffer *eb,
d1310b2e
CM
3924 unsigned long i)
3925{
727011e0 3926 return eb->pages[i];
d1310b2e
CM
3927}
3928
4a54c8c1 3929inline unsigned long num_extent_pages(u64 start, u64 len)
728131d8 3930{
6af118ce
CM
3931 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3932 (start >> PAGE_CACHE_SHIFT);
728131d8
CM
3933}
3934
727011e0
CM
3935static void __free_extent_buffer(struct extent_buffer *eb)
3936{
3937#if LEAK_DEBUG
3938 unsigned long flags;
3939 spin_lock_irqsave(&leak_lock, flags);
3940 list_del(&eb->leak_list);
3941 spin_unlock_irqrestore(&leak_lock, flags);
3942#endif
3943 if (eb->pages && eb->pages != eb->inline_pages)
3944 kfree(eb->pages);
3945 kmem_cache_free(extent_buffer_cache, eb);
3946}
3947
d1310b2e
CM
3948static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3949 u64 start,
3950 unsigned long len,
3951 gfp_t mask)
3952{
3953 struct extent_buffer *eb = NULL;
3935127c 3954#if LEAK_DEBUG
2d2ae547 3955 unsigned long flags;
4bef0848 3956#endif
d1310b2e 3957
d1310b2e 3958 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
3959 if (eb == NULL)
3960 return NULL;
d1310b2e
CM
3961 eb->start = start;
3962 eb->len = len;
4f2de97a 3963 eb->tree = tree;
815a51c7 3964 eb->bflags = 0;
bd681513
CM
3965 rwlock_init(&eb->lock);
3966 atomic_set(&eb->write_locks, 0);
3967 atomic_set(&eb->read_locks, 0);
3968 atomic_set(&eb->blocking_readers, 0);
3969 atomic_set(&eb->blocking_writers, 0);
3970 atomic_set(&eb->spinning_readers, 0);
3971 atomic_set(&eb->spinning_writers, 0);
5b25f70f 3972 eb->lock_nested = 0;
bd681513
CM
3973 init_waitqueue_head(&eb->write_lock_wq);
3974 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 3975
3935127c 3976#if LEAK_DEBUG
2d2ae547
CM
3977 spin_lock_irqsave(&leak_lock, flags);
3978 list_add(&eb->leak_list, &buffers);
3979 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 3980#endif
3083ee2e 3981 spin_lock_init(&eb->refs_lock);
d1310b2e 3982 atomic_set(&eb->refs, 1);
0b32f4bb 3983 atomic_set(&eb->io_pages, 0);
727011e0
CM
3984
3985 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3986 struct page **pages;
3987 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3988 PAGE_CACHE_SHIFT;
3989 pages = kzalloc(num_pages, mask);
3990 if (!pages) {
3991 __free_extent_buffer(eb);
3992 return NULL;
3993 }
3994 eb->pages = pages;
3995 } else {
3996 eb->pages = eb->inline_pages;
3997 }
d1310b2e
CM
3998
3999 return eb;
4000}
4001
815a51c7
JS
4002struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4003{
4004 unsigned long i;
4005 struct page *p;
4006 struct extent_buffer *new;
4007 unsigned long num_pages = num_extent_pages(src->start, src->len);
4008
4009 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4010 if (new == NULL)
4011 return NULL;
4012
4013 for (i = 0; i < num_pages; i++) {
4014 p = alloc_page(GFP_ATOMIC);
4015 BUG_ON(!p);
4016 attach_extent_buffer_page(new, p);
4017 WARN_ON(PageDirty(p));
4018 SetPageUptodate(p);
4019 new->pages[i] = p;
4020 }
4021
4022 copy_extent_buffer(new, src, 0, 0, src->len);
4023 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4024 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4025
4026 return new;
4027}
4028
4029struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4030{
4031 struct extent_buffer *eb;
4032 unsigned long num_pages = num_extent_pages(0, len);
4033 unsigned long i;
4034
4035 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4036 if (!eb)
4037 return NULL;
4038
4039 for (i = 0; i < num_pages; i++) {
4040 eb->pages[i] = alloc_page(GFP_ATOMIC);
4041 if (!eb->pages[i])
4042 goto err;
4043 }
4044 set_extent_buffer_uptodate(eb);
4045 btrfs_set_header_nritems(eb, 0);
4046 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4047
4048 return eb;
4049err:
4050 for (i--; i > 0; i--)
4051 __free_page(eb->pages[i]);
4052 __free_extent_buffer(eb);
4053 return NULL;
4054}
4055
0b32f4bb 4056static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4057{
0b32f4bb
JB
4058 return (atomic_read(&eb->io_pages) ||
4059 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4060 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4061}
4062
897ca6e9
MX
4063/*
4064 * Helper for releasing extent buffer page.
4065 */
4066static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4067 unsigned long start_idx)
4068{
4069 unsigned long index;
39bab87b 4070 unsigned long num_pages;
897ca6e9 4071 struct page *page;
815a51c7 4072 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4073
0b32f4bb 4074 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4075
39bab87b
WSH
4076 num_pages = num_extent_pages(eb->start, eb->len);
4077 index = start_idx + num_pages;
897ca6e9
MX
4078 if (start_idx >= index)
4079 return;
4080
4081 do {
4082 index--;
4083 page = extent_buffer_page(eb, index);
815a51c7 4084 if (page && mapped) {
4f2de97a
JB
4085 spin_lock(&page->mapping->private_lock);
4086 /*
4087 * We do this since we'll remove the pages after we've
4088 * removed the eb from the radix tree, so we could race
4089 * and have this page now attached to the new eb. So
4090 * only clear page_private if it's still connected to
4091 * this eb.
4092 */
4093 if (PagePrivate(page) &&
4094 page->private == (unsigned long)eb) {
0b32f4bb 4095 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4096 BUG_ON(PageDirty(page));
4097 BUG_ON(PageWriteback(page));
4f2de97a
JB
4098 /*
4099 * We need to make sure we haven't be attached
4100 * to a new eb.
4101 */
4102 ClearPagePrivate(page);
4103 set_page_private(page, 0);
4104 /* One for the page private */
4105 page_cache_release(page);
4106 }
4107 spin_unlock(&page->mapping->private_lock);
4108
815a51c7
JS
4109 }
4110 if (page) {
4f2de97a 4111 /* One for when we alloced the page */
897ca6e9 4112 page_cache_release(page);
4f2de97a 4113 }
897ca6e9
MX
4114 } while (index != start_idx);
4115}
4116
4117/*
4118 * Helper for releasing the extent buffer.
4119 */
4120static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4121{
4122 btrfs_release_extent_buffer_page(eb, 0);
4123 __free_extent_buffer(eb);
4124}
4125
0b32f4bb
JB
4126static void check_buffer_tree_ref(struct extent_buffer *eb)
4127{
4128 /* the ref bit is tricky. We have to make sure it is set
4129 * if we have the buffer dirty. Otherwise the
4130 * code to free a buffer can end up dropping a dirty
4131 * page
4132 *
4133 * Once the ref bit is set, it won't go away while the
4134 * buffer is dirty or in writeback, and it also won't
4135 * go away while we have the reference count on the
4136 * eb bumped.
4137 *
4138 * We can't just set the ref bit without bumping the
4139 * ref on the eb because free_extent_buffer might
4140 * see the ref bit and try to clear it. If this happens
4141 * free_extent_buffer might end up dropping our original
4142 * ref by mistake and freeing the page before we are able
4143 * to add one more ref.
4144 *
4145 * So bump the ref count first, then set the bit. If someone
4146 * beat us to it, drop the ref we added.
4147 */
594831c4
JB
4148 spin_lock(&eb->refs_lock);
4149 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4150 atomic_inc(&eb->refs);
594831c4 4151 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4152}
4153
5df4235e
JB
4154static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4155{
4156 unsigned long num_pages, i;
4157
0b32f4bb
JB
4158 check_buffer_tree_ref(eb);
4159
5df4235e
JB
4160 num_pages = num_extent_pages(eb->start, eb->len);
4161 for (i = 0; i < num_pages; i++) {
4162 struct page *p = extent_buffer_page(eb, i);
4163 mark_page_accessed(p);
4164 }
4165}
4166
d1310b2e 4167struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4168 u64 start, unsigned long len)
d1310b2e
CM
4169{
4170 unsigned long num_pages = num_extent_pages(start, len);
4171 unsigned long i;
4172 unsigned long index = start >> PAGE_CACHE_SHIFT;
4173 struct extent_buffer *eb;
6af118ce 4174 struct extent_buffer *exists = NULL;
d1310b2e
CM
4175 struct page *p;
4176 struct address_space *mapping = tree->mapping;
4177 int uptodate = 1;
19fe0a8b 4178 int ret;
d1310b2e 4179
19fe0a8b
MX
4180 rcu_read_lock();
4181 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4182 if (eb && atomic_inc_not_zero(&eb->refs)) {
4183 rcu_read_unlock();
5df4235e 4184 mark_extent_buffer_accessed(eb);
6af118ce
CM
4185 return eb;
4186 }
19fe0a8b 4187 rcu_read_unlock();
6af118ce 4188
ba144192 4189 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4190 if (!eb)
d1310b2e
CM
4191 return NULL;
4192
727011e0 4193 for (i = 0; i < num_pages; i++, index++) {
a6591715 4194 p = find_or_create_page(mapping, index, GFP_NOFS);
d1310b2e
CM
4195 if (!p) {
4196 WARN_ON(1);
6af118ce 4197 goto free_eb;
d1310b2e 4198 }
4f2de97a
JB
4199
4200 spin_lock(&mapping->private_lock);
4201 if (PagePrivate(p)) {
4202 /*
4203 * We could have already allocated an eb for this page
4204 * and attached one so lets see if we can get a ref on
4205 * the existing eb, and if we can we know it's good and
4206 * we can just return that one, else we know we can just
4207 * overwrite page->private.
4208 */
4209 exists = (struct extent_buffer *)p->private;
4210 if (atomic_inc_not_zero(&exists->refs)) {
4211 spin_unlock(&mapping->private_lock);
4212 unlock_page(p);
17de39ac 4213 page_cache_release(p);
5df4235e 4214 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4215 goto free_eb;
4216 }
4217
0b32f4bb 4218 /*
4f2de97a
JB
4219 * Do this so attach doesn't complain and we need to
4220 * drop the ref the old guy had.
4221 */
4222 ClearPagePrivate(p);
0b32f4bb 4223 WARN_ON(PageDirty(p));
4f2de97a 4224 page_cache_release(p);
d1310b2e 4225 }
4f2de97a
JB
4226 attach_extent_buffer_page(eb, p);
4227 spin_unlock(&mapping->private_lock);
0b32f4bb 4228 WARN_ON(PageDirty(p));
d1310b2e 4229 mark_page_accessed(p);
727011e0 4230 eb->pages[i] = p;
d1310b2e
CM
4231 if (!PageUptodate(p))
4232 uptodate = 0;
eb14ab8e
CM
4233
4234 /*
4235 * see below about how we avoid a nasty race with release page
4236 * and why we unlock later
4237 */
d1310b2e
CM
4238 }
4239 if (uptodate)
b4ce94de 4240 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4241again:
19fe0a8b
MX
4242 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4243 if (ret)
4244 goto free_eb;
4245
6af118ce 4246 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4247 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4248 if (ret == -EEXIST) {
4249 exists = radix_tree_lookup(&tree->buffer,
4250 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4251 if (!atomic_inc_not_zero(&exists->refs)) {
4252 spin_unlock(&tree->buffer_lock);
4253 radix_tree_preload_end();
115391d2
JB
4254 exists = NULL;
4255 goto again;
4256 }
6af118ce 4257 spin_unlock(&tree->buffer_lock);
19fe0a8b 4258 radix_tree_preload_end();
5df4235e 4259 mark_extent_buffer_accessed(exists);
6af118ce
CM
4260 goto free_eb;
4261 }
6af118ce 4262 /* add one reference for the tree */
0b32f4bb 4263 check_buffer_tree_ref(eb);
f044ba78 4264 spin_unlock(&tree->buffer_lock);
19fe0a8b 4265 radix_tree_preload_end();
eb14ab8e
CM
4266
4267 /*
4268 * there is a race where release page may have
4269 * tried to find this extent buffer in the radix
4270 * but failed. It will tell the VM it is safe to
4271 * reclaim the, and it will clear the page private bit.
4272 * We must make sure to set the page private bit properly
4273 * after the extent buffer is in the radix tree so
4274 * it doesn't get lost
4275 */
727011e0
CM
4276 SetPageChecked(eb->pages[0]);
4277 for (i = 1; i < num_pages; i++) {
4278 p = extent_buffer_page(eb, i);
727011e0
CM
4279 ClearPageChecked(p);
4280 unlock_page(p);
4281 }
4282 unlock_page(eb->pages[0]);
d1310b2e
CM
4283 return eb;
4284
6af118ce 4285free_eb:
727011e0
CM
4286 for (i = 0; i < num_pages; i++) {
4287 if (eb->pages[i])
4288 unlock_page(eb->pages[i]);
4289 }
eb14ab8e 4290
17de39ac 4291 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4292 btrfs_release_extent_buffer(eb);
6af118ce 4293 return exists;
d1310b2e 4294}
d1310b2e
CM
4295
4296struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4297 u64 start, unsigned long len)
d1310b2e 4298{
d1310b2e 4299 struct extent_buffer *eb;
d1310b2e 4300
19fe0a8b
MX
4301 rcu_read_lock();
4302 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4303 if (eb && atomic_inc_not_zero(&eb->refs)) {
4304 rcu_read_unlock();
5df4235e 4305 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4306 return eb;
4307 }
4308 rcu_read_unlock();
0f9dd46c 4309
19fe0a8b 4310 return NULL;
d1310b2e 4311}
d1310b2e 4312
3083ee2e
JB
4313static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4314{
4315 struct extent_buffer *eb =
4316 container_of(head, struct extent_buffer, rcu_head);
4317
4318 __free_extent_buffer(eb);
4319}
4320
3083ee2e 4321/* Expects to have eb->eb_lock already held */
e64860aa 4322static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
3083ee2e
JB
4323{
4324 WARN_ON(atomic_read(&eb->refs) == 0);
4325 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4326 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4327 spin_unlock(&eb->refs_lock);
4328 } else {
4329 struct extent_io_tree *tree = eb->tree;
3083ee2e 4330
815a51c7 4331 spin_unlock(&eb->refs_lock);
3083ee2e 4332
815a51c7
JS
4333 spin_lock(&tree->buffer_lock);
4334 radix_tree_delete(&tree->buffer,
4335 eb->start >> PAGE_CACHE_SHIFT);
4336 spin_unlock(&tree->buffer_lock);
4337 }
3083ee2e
JB
4338
4339 /* Should be safe to release our pages at this point */
4340 btrfs_release_extent_buffer_page(eb, 0);
4341
4342 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4343 return 1;
3083ee2e
JB
4344 }
4345 spin_unlock(&eb->refs_lock);
e64860aa
JB
4346
4347 return 0;
3083ee2e
JB
4348}
4349
d1310b2e
CM
4350void free_extent_buffer(struct extent_buffer *eb)
4351{
d1310b2e
CM
4352 if (!eb)
4353 return;
4354
3083ee2e 4355 spin_lock(&eb->refs_lock);
815a51c7
JS
4356 if (atomic_read(&eb->refs) == 2 &&
4357 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4358 atomic_dec(&eb->refs);
4359
3083ee2e
JB
4360 if (atomic_read(&eb->refs) == 2 &&
4361 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4362 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4363 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4364 atomic_dec(&eb->refs);
4365
4366 /*
4367 * I know this is terrible, but it's temporary until we stop tracking
4368 * the uptodate bits and such for the extent buffers.
4369 */
4370 release_extent_buffer(eb, GFP_ATOMIC);
4371}
4372
4373void free_extent_buffer_stale(struct extent_buffer *eb)
4374{
4375 if (!eb)
d1310b2e
CM
4376 return;
4377
3083ee2e
JB
4378 spin_lock(&eb->refs_lock);
4379 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4380
0b32f4bb 4381 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4382 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4383 atomic_dec(&eb->refs);
4384 release_extent_buffer(eb, GFP_NOFS);
d1310b2e 4385}
d1310b2e 4386
1d4284bd 4387void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4388{
d1310b2e
CM
4389 unsigned long i;
4390 unsigned long num_pages;
4391 struct page *page;
4392
d1310b2e
CM
4393 num_pages = num_extent_pages(eb->start, eb->len);
4394
4395 for (i = 0; i < num_pages; i++) {
4396 page = extent_buffer_page(eb, i);
b9473439 4397 if (!PageDirty(page))
d2c3f4f6
CM
4398 continue;
4399
a61e6f29 4400 lock_page(page);
eb14ab8e
CM
4401 WARN_ON(!PagePrivate(page));
4402
d1310b2e 4403 clear_page_dirty_for_io(page);
0ee0fda0 4404 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4405 if (!PageDirty(page)) {
4406 radix_tree_tag_clear(&page->mapping->page_tree,
4407 page_index(page),
4408 PAGECACHE_TAG_DIRTY);
4409 }
0ee0fda0 4410 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4411 ClearPageError(page);
a61e6f29 4412 unlock_page(page);
d1310b2e 4413 }
0b32f4bb 4414 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4415}
d1310b2e 4416
0b32f4bb 4417int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4418{
4419 unsigned long i;
4420 unsigned long num_pages;
b9473439 4421 int was_dirty = 0;
d1310b2e 4422
0b32f4bb
JB
4423 check_buffer_tree_ref(eb);
4424
b9473439 4425 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4426
d1310b2e 4427 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4428 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4429 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4430
b9473439 4431 for (i = 0; i < num_pages; i++)
0b32f4bb 4432 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4433 return was_dirty;
d1310b2e 4434}
d1310b2e 4435
0b32f4bb 4436static int range_straddles_pages(u64 start, u64 len)
19b6caf4
CM
4437{
4438 if (len < PAGE_CACHE_SIZE)
4439 return 1;
4440 if (start & (PAGE_CACHE_SIZE - 1))
4441 return 1;
4442 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4443 return 1;
4444 return 0;
4445}
4446
0b32f4bb 4447int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4448{
4449 unsigned long i;
4450 struct page *page;
4451 unsigned long num_pages;
4452
b4ce94de 4453 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4454 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4455 for (i = 0; i < num_pages; i++) {
4456 page = extent_buffer_page(eb, i);
33958dc6
CM
4457 if (page)
4458 ClearPageUptodate(page);
1259ab75
CM
4459 }
4460 return 0;
4461}
4462
0b32f4bb 4463int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4464{
4465 unsigned long i;
4466 struct page *page;
4467 unsigned long num_pages;
4468
0b32f4bb 4469 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4470 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4471 for (i = 0; i < num_pages; i++) {
4472 page = extent_buffer_page(eb, i);
d1310b2e
CM
4473 SetPageUptodate(page);
4474 }
4475 return 0;
4476}
d1310b2e 4477
ce9adaa5
CM
4478int extent_range_uptodate(struct extent_io_tree *tree,
4479 u64 start, u64 end)
4480{
4481 struct page *page;
4482 int ret;
4483 int pg_uptodate = 1;
4484 int uptodate;
4485 unsigned long index;
4486
0b32f4bb 4487 if (range_straddles_pages(start, end - start + 1)) {
19b6caf4
CM
4488 ret = test_range_bit(tree, start, end,
4489 EXTENT_UPTODATE, 1, NULL);
4490 if (ret)
4491 return 1;
4492 }
d397712b 4493 while (start <= end) {
ce9adaa5
CM
4494 index = start >> PAGE_CACHE_SHIFT;
4495 page = find_get_page(tree->mapping, index);
8bedd51b
MH
4496 if (!page)
4497 return 1;
ce9adaa5
CM
4498 uptodate = PageUptodate(page);
4499 page_cache_release(page);
4500 if (!uptodate) {
4501 pg_uptodate = 0;
4502 break;
4503 }
4504 start += PAGE_CACHE_SIZE;
4505 }
4506 return pg_uptodate;
4507}
4508
0b32f4bb 4509int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4510{
0b32f4bb 4511 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4512}
d1310b2e
CM
4513
4514int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4515 struct extent_buffer *eb, u64 start, int wait,
f188591e 4516 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4517{
4518 unsigned long i;
4519 unsigned long start_i;
4520 struct page *page;
4521 int err;
4522 int ret = 0;
ce9adaa5
CM
4523 int locked_pages = 0;
4524 int all_uptodate = 1;
d1310b2e 4525 unsigned long num_pages;
727011e0 4526 unsigned long num_reads = 0;
a86c12c7 4527 struct bio *bio = NULL;
c8b97818 4528 unsigned long bio_flags = 0;
a86c12c7 4529
b4ce94de 4530 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4531 return 0;
4532
d1310b2e
CM
4533 if (start) {
4534 WARN_ON(start < eb->start);
4535 start_i = (start >> PAGE_CACHE_SHIFT) -
4536 (eb->start >> PAGE_CACHE_SHIFT);
4537 } else {
4538 start_i = 0;
4539 }
4540
4541 num_pages = num_extent_pages(eb->start, eb->len);
4542 for (i = start_i; i < num_pages; i++) {
4543 page = extent_buffer_page(eb, i);
bb82ab88 4544 if (wait == WAIT_NONE) {
2db04966 4545 if (!trylock_page(page))
ce9adaa5 4546 goto unlock_exit;
d1310b2e
CM
4547 } else {
4548 lock_page(page);
4549 }
ce9adaa5 4550 locked_pages++;
727011e0
CM
4551 if (!PageUptodate(page)) {
4552 num_reads++;
ce9adaa5 4553 all_uptodate = 0;
727011e0 4554 }
ce9adaa5
CM
4555 }
4556 if (all_uptodate) {
4557 if (start_i == 0)
b4ce94de 4558 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4559 goto unlock_exit;
4560 }
4561
ea466794 4562 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4563 eb->read_mirror = 0;
0b32f4bb 4564 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4565 for (i = start_i; i < num_pages; i++) {
4566 page = extent_buffer_page(eb, i);
ce9adaa5 4567 if (!PageUptodate(page)) {
f188591e 4568 ClearPageError(page);
a86c12c7 4569 err = __extent_read_full_page(tree, page,
f188591e 4570 get_extent, &bio,
c8b97818 4571 mirror_num, &bio_flags);
d397712b 4572 if (err)
d1310b2e 4573 ret = err;
d1310b2e
CM
4574 } else {
4575 unlock_page(page);
4576 }
4577 }
4578
355808c2
JM
4579 if (bio) {
4580 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
79787eaa
JM
4581 if (err)
4582 return err;
355808c2 4583 }
a86c12c7 4584
bb82ab88 4585 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4586 return ret;
d397712b 4587
d1310b2e
CM
4588 for (i = start_i; i < num_pages; i++) {
4589 page = extent_buffer_page(eb, i);
4590 wait_on_page_locked(page);
d397712b 4591 if (!PageUptodate(page))
d1310b2e 4592 ret = -EIO;
d1310b2e 4593 }
d397712b 4594
d1310b2e 4595 return ret;
ce9adaa5
CM
4596
4597unlock_exit:
4598 i = start_i;
d397712b 4599 while (locked_pages > 0) {
ce9adaa5
CM
4600 page = extent_buffer_page(eb, i);
4601 i++;
4602 unlock_page(page);
4603 locked_pages--;
4604 }
4605 return ret;
d1310b2e 4606}
d1310b2e
CM
4607
4608void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4609 unsigned long start,
4610 unsigned long len)
4611{
4612 size_t cur;
4613 size_t offset;
4614 struct page *page;
4615 char *kaddr;
4616 char *dst = (char *)dstv;
4617 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4618 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4619
4620 WARN_ON(start > eb->len);
4621 WARN_ON(start + len > eb->start + eb->len);
4622
4623 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4624
d397712b 4625 while (len > 0) {
d1310b2e 4626 page = extent_buffer_page(eb, i);
d1310b2e
CM
4627
4628 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4629 kaddr = page_address(page);
d1310b2e 4630 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4631
4632 dst += cur;
4633 len -= cur;
4634 offset = 0;
4635 i++;
4636 }
4637}
d1310b2e
CM
4638
4639int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4640 unsigned long min_len, char **map,
d1310b2e 4641 unsigned long *map_start,
a6591715 4642 unsigned long *map_len)
d1310b2e
CM
4643{
4644 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4645 char *kaddr;
4646 struct page *p;
4647 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4648 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4649 unsigned long end_i = (start_offset + start + min_len - 1) >>
4650 PAGE_CACHE_SHIFT;
4651
4652 if (i != end_i)
4653 return -EINVAL;
4654
4655 if (i == 0) {
4656 offset = start_offset;
4657 *map_start = 0;
4658 } else {
4659 offset = 0;
4660 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4661 }
d397712b 4662
d1310b2e 4663 if (start + min_len > eb->len) {
d397712b
CM
4664 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4665 "wanted %lu %lu\n", (unsigned long long)eb->start,
4666 eb->len, start, min_len);
d1310b2e 4667 WARN_ON(1);
85026533 4668 return -EINVAL;
d1310b2e
CM
4669 }
4670
4671 p = extent_buffer_page(eb, i);
a6591715 4672 kaddr = page_address(p);
d1310b2e
CM
4673 *map = kaddr + offset;
4674 *map_len = PAGE_CACHE_SIZE - offset;
4675 return 0;
4676}
d1310b2e 4677
d1310b2e
CM
4678int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4679 unsigned long start,
4680 unsigned long len)
4681{
4682 size_t cur;
4683 size_t offset;
4684 struct page *page;
4685 char *kaddr;
4686 char *ptr = (char *)ptrv;
4687 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4688 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4689 int ret = 0;
4690
4691 WARN_ON(start > eb->len);
4692 WARN_ON(start + len > eb->start + eb->len);
4693
4694 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4695
d397712b 4696 while (len > 0) {
d1310b2e 4697 page = extent_buffer_page(eb, i);
d1310b2e
CM
4698
4699 cur = min(len, (PAGE_CACHE_SIZE - offset));
4700
a6591715 4701 kaddr = page_address(page);
d1310b2e 4702 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4703 if (ret)
4704 break;
4705
4706 ptr += cur;
4707 len -= cur;
4708 offset = 0;
4709 i++;
4710 }
4711 return ret;
4712}
d1310b2e
CM
4713
4714void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4715 unsigned long start, unsigned long len)
4716{
4717 size_t cur;
4718 size_t offset;
4719 struct page *page;
4720 char *kaddr;
4721 char *src = (char *)srcv;
4722 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4723 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4724
4725 WARN_ON(start > eb->len);
4726 WARN_ON(start + len > eb->start + eb->len);
4727
4728 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4729
d397712b 4730 while (len > 0) {
d1310b2e
CM
4731 page = extent_buffer_page(eb, i);
4732 WARN_ON(!PageUptodate(page));
4733
4734 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4735 kaddr = page_address(page);
d1310b2e 4736 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4737
4738 src += cur;
4739 len -= cur;
4740 offset = 0;
4741 i++;
4742 }
4743}
d1310b2e
CM
4744
4745void memset_extent_buffer(struct extent_buffer *eb, char c,
4746 unsigned long start, unsigned long len)
4747{
4748 size_t cur;
4749 size_t offset;
4750 struct page *page;
4751 char *kaddr;
4752 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4753 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4754
4755 WARN_ON(start > eb->len);
4756 WARN_ON(start + len > eb->start + eb->len);
4757
4758 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4759
d397712b 4760 while (len > 0) {
d1310b2e
CM
4761 page = extent_buffer_page(eb, i);
4762 WARN_ON(!PageUptodate(page));
4763
4764 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4765 kaddr = page_address(page);
d1310b2e 4766 memset(kaddr + offset, c, cur);
d1310b2e
CM
4767
4768 len -= cur;
4769 offset = 0;
4770 i++;
4771 }
4772}
d1310b2e
CM
4773
4774void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4775 unsigned long dst_offset, unsigned long src_offset,
4776 unsigned long len)
4777{
4778 u64 dst_len = dst->len;
4779 size_t cur;
4780 size_t offset;
4781 struct page *page;
4782 char *kaddr;
4783 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4784 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4785
4786 WARN_ON(src->len != dst_len);
4787
4788 offset = (start_offset + dst_offset) &
4789 ((unsigned long)PAGE_CACHE_SIZE - 1);
4790
d397712b 4791 while (len > 0) {
d1310b2e
CM
4792 page = extent_buffer_page(dst, i);
4793 WARN_ON(!PageUptodate(page));
4794
4795 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4796
a6591715 4797 kaddr = page_address(page);
d1310b2e 4798 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4799
4800 src_offset += cur;
4801 len -= cur;
4802 offset = 0;
4803 i++;
4804 }
4805}
d1310b2e
CM
4806
4807static void move_pages(struct page *dst_page, struct page *src_page,
4808 unsigned long dst_off, unsigned long src_off,
4809 unsigned long len)
4810{
a6591715 4811 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4812 if (dst_page == src_page) {
4813 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4814 } else {
a6591715 4815 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4816 char *p = dst_kaddr + dst_off + len;
4817 char *s = src_kaddr + src_off + len;
4818
4819 while (len--)
4820 *--p = *--s;
d1310b2e 4821 }
d1310b2e
CM
4822}
4823
3387206f
ST
4824static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4825{
4826 unsigned long distance = (src > dst) ? src - dst : dst - src;
4827 return distance < len;
4828}
4829
d1310b2e
CM
4830static void copy_pages(struct page *dst_page, struct page *src_page,
4831 unsigned long dst_off, unsigned long src_off,
4832 unsigned long len)
4833{
a6591715 4834 char *dst_kaddr = page_address(dst_page);
d1310b2e 4835 char *src_kaddr;
727011e0 4836 int must_memmove = 0;
d1310b2e 4837
3387206f 4838 if (dst_page != src_page) {
a6591715 4839 src_kaddr = page_address(src_page);
3387206f 4840 } else {
d1310b2e 4841 src_kaddr = dst_kaddr;
727011e0
CM
4842 if (areas_overlap(src_off, dst_off, len))
4843 must_memmove = 1;
3387206f 4844 }
d1310b2e 4845
727011e0
CM
4846 if (must_memmove)
4847 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4848 else
4849 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4850}
4851
4852void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4853 unsigned long src_offset, unsigned long len)
4854{
4855 size_t cur;
4856 size_t dst_off_in_page;
4857 size_t src_off_in_page;
4858 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4859 unsigned long dst_i;
4860 unsigned long src_i;
4861
4862 if (src_offset + len > dst->len) {
d397712b
CM
4863 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4864 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4865 BUG_ON(1);
4866 }
4867 if (dst_offset + len > dst->len) {
d397712b
CM
4868 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4869 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4870 BUG_ON(1);
4871 }
4872
d397712b 4873 while (len > 0) {
d1310b2e
CM
4874 dst_off_in_page = (start_offset + dst_offset) &
4875 ((unsigned long)PAGE_CACHE_SIZE - 1);
4876 src_off_in_page = (start_offset + src_offset) &
4877 ((unsigned long)PAGE_CACHE_SIZE - 1);
4878
4879 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4880 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4881
4882 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4883 src_off_in_page));
4884 cur = min_t(unsigned long, cur,
4885 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4886
4887 copy_pages(extent_buffer_page(dst, dst_i),
4888 extent_buffer_page(dst, src_i),
4889 dst_off_in_page, src_off_in_page, cur);
4890
4891 src_offset += cur;
4892 dst_offset += cur;
4893 len -= cur;
4894 }
4895}
d1310b2e
CM
4896
4897void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4898 unsigned long src_offset, unsigned long len)
4899{
4900 size_t cur;
4901 size_t dst_off_in_page;
4902 size_t src_off_in_page;
4903 unsigned long dst_end = dst_offset + len - 1;
4904 unsigned long src_end = src_offset + len - 1;
4905 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4906 unsigned long dst_i;
4907 unsigned long src_i;
4908
4909 if (src_offset + len > dst->len) {
d397712b
CM
4910 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4911 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4912 BUG_ON(1);
4913 }
4914 if (dst_offset + len > dst->len) {
d397712b
CM
4915 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4916 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4917 BUG_ON(1);
4918 }
727011e0 4919 if (dst_offset < src_offset) {
d1310b2e
CM
4920 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4921 return;
4922 }
d397712b 4923 while (len > 0) {
d1310b2e
CM
4924 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4925 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4926
4927 dst_off_in_page = (start_offset + dst_end) &
4928 ((unsigned long)PAGE_CACHE_SIZE - 1);
4929 src_off_in_page = (start_offset + src_end) &
4930 ((unsigned long)PAGE_CACHE_SIZE - 1);
4931
4932 cur = min_t(unsigned long, len, src_off_in_page + 1);
4933 cur = min(cur, dst_off_in_page + 1);
4934 move_pages(extent_buffer_page(dst, dst_i),
4935 extent_buffer_page(dst, src_i),
4936 dst_off_in_page - cur + 1,
4937 src_off_in_page - cur + 1, cur);
4938
4939 dst_end -= cur;
4940 src_end -= cur;
4941 len -= cur;
4942 }
4943}
6af118ce 4944
3083ee2e 4945int try_release_extent_buffer(struct page *page, gfp_t mask)
19fe0a8b 4946{
6af118ce 4947 struct extent_buffer *eb;
6af118ce 4948
3083ee2e
JB
4949 /*
4950 * We need to make sure noboody is attaching this page to an eb right
4951 * now.
4952 */
4953 spin_lock(&page->mapping->private_lock);
4954 if (!PagePrivate(page)) {
4955 spin_unlock(&page->mapping->private_lock);
4f2de97a 4956 return 1;
45f49bce 4957 }
6af118ce 4958
3083ee2e
JB
4959 eb = (struct extent_buffer *)page->private;
4960 BUG_ON(!eb);
19fe0a8b
MX
4961
4962 /*
3083ee2e
JB
4963 * This is a little awful but should be ok, we need to make sure that
4964 * the eb doesn't disappear out from under us while we're looking at
4965 * this page.
19fe0a8b 4966 */
3083ee2e 4967 spin_lock(&eb->refs_lock);
0b32f4bb 4968 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4969 spin_unlock(&eb->refs_lock);
4970 spin_unlock(&page->mapping->private_lock);
4971 return 0;
b9473439 4972 }
3083ee2e 4973 spin_unlock(&page->mapping->private_lock);
897ca6e9 4974
3083ee2e
JB
4975 if ((mask & GFP_NOFS) == GFP_NOFS)
4976 mask = GFP_NOFS;
19fe0a8b 4977
19fe0a8b 4978 /*
3083ee2e
JB
4979 * If tree ref isn't set then we know the ref on this eb is a real ref,
4980 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4981 */
3083ee2e
JB
4982 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4983 spin_unlock(&eb->refs_lock);
4984 return 0;
b9473439 4985 }
19fe0a8b 4986
e64860aa 4987 return release_extent_buffer(eb, mask);
6af118ce 4988}
This page took 0.555983 seconds and 5 git commands to generate.