Btrfs: finish ordered extents in their own thread
[deliverable/linux.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/module.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
2db04966 17#include "compat.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
27static LIST_HEAD(buffers);
28static LIST_HEAD(states);
4bef0848 29
b47eda86 30#define LEAK_DEBUG 0
3935127c 31#if LEAK_DEBUG
d397712b 32static DEFINE_SPINLOCK(leak_lock);
4bef0848 33#endif
d1310b2e 34
d1310b2e
CM
35#define BUFFER_LRU_MAX 64
36
37struct tree_entry {
38 u64 start;
39 u64 end;
d1310b2e
CM
40 struct rb_node rb_node;
41};
42
43struct extent_page_data {
44 struct bio *bio;
45 struct extent_io_tree *tree;
46 get_extent_t *get_extent;
771ed689
CM
47
48 /* tells writepage not to lock the state bits for this range
49 * it still does the unlocking
50 */
ffbd517d
CM
51 unsigned int extent_locked:1;
52
53 /* tells the submit_bio code to use a WRITE_SYNC */
54 unsigned int sync_io:1;
d1310b2e
CM
55};
56
0b32f4bb 57static noinline void flush_write_bio(void *data);
c2d904e0
JM
58static inline struct btrfs_fs_info *
59tree_fs_info(struct extent_io_tree *tree)
60{
61 return btrfs_sb(tree->mapping->host->i_sb);
62}
0b32f4bb 63
d1310b2e
CM
64int __init extent_io_init(void)
65{
9601e3f6
CH
66 extent_state_cache = kmem_cache_create("extent_state",
67 sizeof(struct extent_state), 0,
68 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
69 if (!extent_state_cache)
70 return -ENOMEM;
71
9601e3f6
CH
72 extent_buffer_cache = kmem_cache_create("extent_buffers",
73 sizeof(struct extent_buffer), 0,
74 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
75 if (!extent_buffer_cache)
76 goto free_state_cache;
77 return 0;
78
79free_state_cache:
80 kmem_cache_destroy(extent_state_cache);
81 return -ENOMEM;
82}
83
84void extent_io_exit(void)
85{
86 struct extent_state *state;
2d2ae547 87 struct extent_buffer *eb;
d1310b2e
CM
88
89 while (!list_empty(&states)) {
2d2ae547 90 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
91 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
92 "state %lu in tree %p refs %d\n",
93 (unsigned long long)state->start,
94 (unsigned long long)state->end,
95 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 96 list_del(&state->leak_list);
d1310b2e
CM
97 kmem_cache_free(extent_state_cache, state);
98
99 }
100
2d2ae547
CM
101 while (!list_empty(&buffers)) {
102 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
103 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
104 "refs %d\n", (unsigned long long)eb->start,
105 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
106 list_del(&eb->leak_list);
107 kmem_cache_free(extent_buffer_cache, eb);
108 }
d1310b2e
CM
109 if (extent_state_cache)
110 kmem_cache_destroy(extent_state_cache);
111 if (extent_buffer_cache)
112 kmem_cache_destroy(extent_buffer_cache);
113}
114
115void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 116 struct address_space *mapping)
d1310b2e 117{
6bef4d31 118 tree->state = RB_ROOT;
19fe0a8b 119 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
120 tree->ops = NULL;
121 tree->dirty_bytes = 0;
70dec807 122 spin_lock_init(&tree->lock);
6af118ce 123 spin_lock_init(&tree->buffer_lock);
d1310b2e 124 tree->mapping = mapping;
d1310b2e 125}
d1310b2e 126
b2950863 127static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
128{
129 struct extent_state *state;
3935127c 130#if LEAK_DEBUG
2d2ae547 131 unsigned long flags;
4bef0848 132#endif
d1310b2e
CM
133
134 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 135 if (!state)
d1310b2e
CM
136 return state;
137 state->state = 0;
d1310b2e 138 state->private = 0;
70dec807 139 state->tree = NULL;
3935127c 140#if LEAK_DEBUG
2d2ae547
CM
141 spin_lock_irqsave(&leak_lock, flags);
142 list_add(&state->leak_list, &states);
143 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 144#endif
d1310b2e
CM
145 atomic_set(&state->refs, 1);
146 init_waitqueue_head(&state->wq);
143bede5 147 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
148 return state;
149}
d1310b2e 150
4845e44f 151void free_extent_state(struct extent_state *state)
d1310b2e 152{
d1310b2e
CM
153 if (!state)
154 return;
155 if (atomic_dec_and_test(&state->refs)) {
3935127c 156#if LEAK_DEBUG
2d2ae547 157 unsigned long flags;
4bef0848 158#endif
70dec807 159 WARN_ON(state->tree);
3935127c 160#if LEAK_DEBUG
2d2ae547
CM
161 spin_lock_irqsave(&leak_lock, flags);
162 list_del(&state->leak_list);
163 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 164#endif
143bede5 165 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
166 kmem_cache_free(extent_state_cache, state);
167 }
168}
d1310b2e
CM
169
170static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
171 struct rb_node *node)
172{
d397712b
CM
173 struct rb_node **p = &root->rb_node;
174 struct rb_node *parent = NULL;
d1310b2e
CM
175 struct tree_entry *entry;
176
d397712b 177 while (*p) {
d1310b2e
CM
178 parent = *p;
179 entry = rb_entry(parent, struct tree_entry, rb_node);
180
181 if (offset < entry->start)
182 p = &(*p)->rb_left;
183 else if (offset > entry->end)
184 p = &(*p)->rb_right;
185 else
186 return parent;
187 }
188
d1310b2e
CM
189 rb_link_node(node, parent, p);
190 rb_insert_color(node, root);
191 return NULL;
192}
193
80ea96b1 194static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
195 struct rb_node **prev_ret,
196 struct rb_node **next_ret)
197{
80ea96b1 198 struct rb_root *root = &tree->state;
d397712b 199 struct rb_node *n = root->rb_node;
d1310b2e
CM
200 struct rb_node *prev = NULL;
201 struct rb_node *orig_prev = NULL;
202 struct tree_entry *entry;
203 struct tree_entry *prev_entry = NULL;
204
d397712b 205 while (n) {
d1310b2e
CM
206 entry = rb_entry(n, struct tree_entry, rb_node);
207 prev = n;
208 prev_entry = entry;
209
210 if (offset < entry->start)
211 n = n->rb_left;
212 else if (offset > entry->end)
213 n = n->rb_right;
d397712b 214 else
d1310b2e
CM
215 return n;
216 }
217
218 if (prev_ret) {
219 orig_prev = prev;
d397712b 220 while (prev && offset > prev_entry->end) {
d1310b2e
CM
221 prev = rb_next(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 }
224 *prev_ret = prev;
225 prev = orig_prev;
226 }
227
228 if (next_ret) {
229 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 230 while (prev && offset < prev_entry->start) {
d1310b2e
CM
231 prev = rb_prev(prev);
232 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
233 }
234 *next_ret = prev;
235 }
236 return NULL;
237}
238
80ea96b1
CM
239static inline struct rb_node *tree_search(struct extent_io_tree *tree,
240 u64 offset)
d1310b2e 241{
70dec807 242 struct rb_node *prev = NULL;
d1310b2e 243 struct rb_node *ret;
70dec807 244
80ea96b1 245 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 246 if (!ret)
d1310b2e
CM
247 return prev;
248 return ret;
249}
250
9ed74f2d
JB
251static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
252 struct extent_state *other)
253{
254 if (tree->ops && tree->ops->merge_extent_hook)
255 tree->ops->merge_extent_hook(tree->mapping->host, new,
256 other);
257}
258
d1310b2e
CM
259/*
260 * utility function to look for merge candidates inside a given range.
261 * Any extents with matching state are merged together into a single
262 * extent in the tree. Extents with EXTENT_IO in their state field
263 * are not merged because the end_io handlers need to be able to do
264 * operations on them without sleeping (or doing allocations/splits).
265 *
266 * This should be called with the tree lock held.
267 */
1bf85046
JM
268static void merge_state(struct extent_io_tree *tree,
269 struct extent_state *state)
d1310b2e
CM
270{
271 struct extent_state *other;
272 struct rb_node *other_node;
273
5b21f2ed 274 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 275 return;
d1310b2e
CM
276
277 other_node = rb_prev(&state->rb_node);
278 if (other_node) {
279 other = rb_entry(other_node, struct extent_state, rb_node);
280 if (other->end == state->start - 1 &&
281 other->state == state->state) {
9ed74f2d 282 merge_cb(tree, state, other);
d1310b2e 283 state->start = other->start;
70dec807 284 other->tree = NULL;
d1310b2e
CM
285 rb_erase(&other->rb_node, &tree->state);
286 free_extent_state(other);
287 }
288 }
289 other_node = rb_next(&state->rb_node);
290 if (other_node) {
291 other = rb_entry(other_node, struct extent_state, rb_node);
292 if (other->start == state->end + 1 &&
293 other->state == state->state) {
9ed74f2d 294 merge_cb(tree, state, other);
df98b6e2
JB
295 state->end = other->end;
296 other->tree = NULL;
297 rb_erase(&other->rb_node, &tree->state);
298 free_extent_state(other);
d1310b2e
CM
299 }
300 }
d1310b2e
CM
301}
302
1bf85046 303static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 304 struct extent_state *state, int *bits)
291d673e 305{
1bf85046
JM
306 if (tree->ops && tree->ops->set_bit_hook)
307 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
308}
309
310static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 311 struct extent_state *state, int *bits)
291d673e 312{
9ed74f2d
JB
313 if (tree->ops && tree->ops->clear_bit_hook)
314 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
315}
316
3150b699
XG
317static void set_state_bits(struct extent_io_tree *tree,
318 struct extent_state *state, int *bits);
319
d1310b2e
CM
320/*
321 * insert an extent_state struct into the tree. 'bits' are set on the
322 * struct before it is inserted.
323 *
324 * This may return -EEXIST if the extent is already there, in which case the
325 * state struct is freed.
326 *
327 * The tree lock is not taken internally. This is a utility function and
328 * probably isn't what you want to call (see set/clear_extent_bit).
329 */
330static int insert_state(struct extent_io_tree *tree,
331 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 332 int *bits)
d1310b2e
CM
333{
334 struct rb_node *node;
335
336 if (end < start) {
d397712b
CM
337 printk(KERN_ERR "btrfs end < start %llu %llu\n",
338 (unsigned long long)end,
339 (unsigned long long)start);
d1310b2e
CM
340 WARN_ON(1);
341 }
d1310b2e
CM
342 state->start = start;
343 state->end = end;
9ed74f2d 344
3150b699
XG
345 set_state_bits(tree, state, bits);
346
d1310b2e
CM
347 node = tree_insert(&tree->state, end, &state->rb_node);
348 if (node) {
349 struct extent_state *found;
350 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
351 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
352 "%llu %llu\n", (unsigned long long)found->start,
353 (unsigned long long)found->end,
354 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
355 return -EEXIST;
356 }
70dec807 357 state->tree = tree;
d1310b2e
CM
358 merge_state(tree, state);
359 return 0;
360}
361
1bf85046 362static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
363 u64 split)
364{
365 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 366 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
367}
368
d1310b2e
CM
369/*
370 * split a given extent state struct in two, inserting the preallocated
371 * struct 'prealloc' as the newly created second half. 'split' indicates an
372 * offset inside 'orig' where it should be split.
373 *
374 * Before calling,
375 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
376 * are two extent state structs in the tree:
377 * prealloc: [orig->start, split - 1]
378 * orig: [ split, orig->end ]
379 *
380 * The tree locks are not taken by this function. They need to be held
381 * by the caller.
382 */
383static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 struct extent_state *prealloc, u64 split)
385{
386 struct rb_node *node;
9ed74f2d
JB
387
388 split_cb(tree, orig, split);
389
d1310b2e
CM
390 prealloc->start = orig->start;
391 prealloc->end = split - 1;
392 prealloc->state = orig->state;
393 orig->start = split;
394
395 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
396 if (node) {
d1310b2e
CM
397 free_extent_state(prealloc);
398 return -EEXIST;
399 }
70dec807 400 prealloc->tree = tree;
d1310b2e
CM
401 return 0;
402}
403
cdc6a395
LZ
404static struct extent_state *next_state(struct extent_state *state)
405{
406 struct rb_node *next = rb_next(&state->rb_node);
407 if (next)
408 return rb_entry(next, struct extent_state, rb_node);
409 else
410 return NULL;
411}
412
d1310b2e
CM
413/*
414 * utility function to clear some bits in an extent state struct.
1b303fc0 415 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
416 *
417 * If no bits are set on the state struct after clearing things, the
418 * struct is freed and removed from the tree
419 */
cdc6a395
LZ
420static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
421 struct extent_state *state,
422 int *bits, int wake)
d1310b2e 423{
cdc6a395 424 struct extent_state *next;
0ca1f7ce 425 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 426
0ca1f7ce 427 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
428 u64 range = state->end - state->start + 1;
429 WARN_ON(range > tree->dirty_bytes);
430 tree->dirty_bytes -= range;
431 }
291d673e 432 clear_state_cb(tree, state, bits);
32c00aff 433 state->state &= ~bits_to_clear;
d1310b2e
CM
434 if (wake)
435 wake_up(&state->wq);
0ca1f7ce 436 if (state->state == 0) {
cdc6a395 437 next = next_state(state);
70dec807 438 if (state->tree) {
d1310b2e 439 rb_erase(&state->rb_node, &tree->state);
70dec807 440 state->tree = NULL;
d1310b2e
CM
441 free_extent_state(state);
442 } else {
443 WARN_ON(1);
444 }
445 } else {
446 merge_state(tree, state);
cdc6a395 447 next = next_state(state);
d1310b2e 448 }
cdc6a395 449 return next;
d1310b2e
CM
450}
451
8233767a
XG
452static struct extent_state *
453alloc_extent_state_atomic(struct extent_state *prealloc)
454{
455 if (!prealloc)
456 prealloc = alloc_extent_state(GFP_ATOMIC);
457
458 return prealloc;
459}
460
c2d904e0
JM
461void extent_io_tree_panic(struct extent_io_tree *tree, int err)
462{
463 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
464 "Extent tree was modified by another "
465 "thread while locked.");
466}
467
d1310b2e
CM
468/*
469 * clear some bits on a range in the tree. This may require splitting
470 * or inserting elements in the tree, so the gfp mask is used to
471 * indicate which allocations or sleeping are allowed.
472 *
473 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
474 * the given range from the tree regardless of state (ie for truncate).
475 *
476 * the range [start, end] is inclusive.
477 *
6763af84 478 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
479 */
480int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
481 int bits, int wake, int delete,
482 struct extent_state **cached_state,
483 gfp_t mask)
d1310b2e
CM
484{
485 struct extent_state *state;
2c64c53d 486 struct extent_state *cached;
d1310b2e
CM
487 struct extent_state *prealloc = NULL;
488 struct rb_node *node;
5c939df5 489 u64 last_end;
d1310b2e 490 int err;
2ac55d41 491 int clear = 0;
d1310b2e 492
0ca1f7ce
YZ
493 if (delete)
494 bits |= ~EXTENT_CTLBITS;
495 bits |= EXTENT_FIRST_DELALLOC;
496
2ac55d41
JB
497 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
498 clear = 1;
d1310b2e
CM
499again:
500 if (!prealloc && (mask & __GFP_WAIT)) {
501 prealloc = alloc_extent_state(mask);
502 if (!prealloc)
503 return -ENOMEM;
504 }
505
cad321ad 506 spin_lock(&tree->lock);
2c64c53d
CM
507 if (cached_state) {
508 cached = *cached_state;
2ac55d41
JB
509
510 if (clear) {
511 *cached_state = NULL;
512 cached_state = NULL;
513 }
514
df98b6e2
JB
515 if (cached && cached->tree && cached->start <= start &&
516 cached->end > start) {
2ac55d41
JB
517 if (clear)
518 atomic_dec(&cached->refs);
2c64c53d 519 state = cached;
42daec29 520 goto hit_next;
2c64c53d 521 }
2ac55d41
JB
522 if (clear)
523 free_extent_state(cached);
2c64c53d 524 }
d1310b2e
CM
525 /*
526 * this search will find the extents that end after
527 * our range starts
528 */
80ea96b1 529 node = tree_search(tree, start);
d1310b2e
CM
530 if (!node)
531 goto out;
532 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 533hit_next:
d1310b2e
CM
534 if (state->start > end)
535 goto out;
536 WARN_ON(state->end < start);
5c939df5 537 last_end = state->end;
d1310b2e 538
0449314a 539 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
540 if (!(state->state & bits)) {
541 state = next_state(state);
0449314a 542 goto next;
cdc6a395 543 }
0449314a 544
d1310b2e
CM
545 /*
546 * | ---- desired range ---- |
547 * | state | or
548 * | ------------- state -------------- |
549 *
550 * We need to split the extent we found, and may flip
551 * bits on second half.
552 *
553 * If the extent we found extends past our range, we
554 * just split and search again. It'll get split again
555 * the next time though.
556 *
557 * If the extent we found is inside our range, we clear
558 * the desired bit on it.
559 */
560
561 if (state->start < start) {
8233767a
XG
562 prealloc = alloc_extent_state_atomic(prealloc);
563 BUG_ON(!prealloc);
d1310b2e 564 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
565 if (err)
566 extent_io_tree_panic(tree, err);
567
d1310b2e
CM
568 prealloc = NULL;
569 if (err)
570 goto out;
571 if (state->end <= end) {
6763af84 572 clear_state_bit(tree, state, &bits, wake);
5c939df5
YZ
573 if (last_end == (u64)-1)
574 goto out;
575 start = last_end + 1;
d1310b2e
CM
576 }
577 goto search_again;
578 }
579 /*
580 * | ---- desired range ---- |
581 * | state |
582 * We need to split the extent, and clear the bit
583 * on the first half
584 */
585 if (state->start <= end && state->end > end) {
8233767a
XG
586 prealloc = alloc_extent_state_atomic(prealloc);
587 BUG_ON(!prealloc);
d1310b2e 588 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
589 if (err)
590 extent_io_tree_panic(tree, err);
591
d1310b2e
CM
592 if (wake)
593 wake_up(&state->wq);
42daec29 594
6763af84 595 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 596
d1310b2e
CM
597 prealloc = NULL;
598 goto out;
599 }
42daec29 600
cdc6a395 601 state = clear_state_bit(tree, state, &bits, wake);
0449314a 602next:
5c939df5
YZ
603 if (last_end == (u64)-1)
604 goto out;
605 start = last_end + 1;
cdc6a395 606 if (start <= end && state && !need_resched())
692e5759 607 goto hit_next;
d1310b2e
CM
608 goto search_again;
609
610out:
cad321ad 611 spin_unlock(&tree->lock);
d1310b2e
CM
612 if (prealloc)
613 free_extent_state(prealloc);
614
6763af84 615 return 0;
d1310b2e
CM
616
617search_again:
618 if (start > end)
619 goto out;
cad321ad 620 spin_unlock(&tree->lock);
d1310b2e
CM
621 if (mask & __GFP_WAIT)
622 cond_resched();
623 goto again;
624}
d1310b2e 625
143bede5
JM
626static void wait_on_state(struct extent_io_tree *tree,
627 struct extent_state *state)
641f5219
CH
628 __releases(tree->lock)
629 __acquires(tree->lock)
d1310b2e
CM
630{
631 DEFINE_WAIT(wait);
632 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 633 spin_unlock(&tree->lock);
d1310b2e 634 schedule();
cad321ad 635 spin_lock(&tree->lock);
d1310b2e 636 finish_wait(&state->wq, &wait);
d1310b2e
CM
637}
638
639/*
640 * waits for one or more bits to clear on a range in the state tree.
641 * The range [start, end] is inclusive.
642 * The tree lock is taken by this function
643 */
143bede5 644void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
d1310b2e
CM
645{
646 struct extent_state *state;
647 struct rb_node *node;
648
cad321ad 649 spin_lock(&tree->lock);
d1310b2e
CM
650again:
651 while (1) {
652 /*
653 * this search will find all the extents that end after
654 * our range starts
655 */
80ea96b1 656 node = tree_search(tree, start);
d1310b2e
CM
657 if (!node)
658 break;
659
660 state = rb_entry(node, struct extent_state, rb_node);
661
662 if (state->start > end)
663 goto out;
664
665 if (state->state & bits) {
666 start = state->start;
667 atomic_inc(&state->refs);
668 wait_on_state(tree, state);
669 free_extent_state(state);
670 goto again;
671 }
672 start = state->end + 1;
673
674 if (start > end)
675 break;
676
ded91f08 677 cond_resched_lock(&tree->lock);
d1310b2e
CM
678 }
679out:
cad321ad 680 spin_unlock(&tree->lock);
d1310b2e 681}
d1310b2e 682
1bf85046 683static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 684 struct extent_state *state,
0ca1f7ce 685 int *bits)
d1310b2e 686{
0ca1f7ce 687 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 688
1bf85046 689 set_state_cb(tree, state, bits);
0ca1f7ce 690 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
691 u64 range = state->end - state->start + 1;
692 tree->dirty_bytes += range;
693 }
0ca1f7ce 694 state->state |= bits_to_set;
d1310b2e
CM
695}
696
2c64c53d
CM
697static void cache_state(struct extent_state *state,
698 struct extent_state **cached_ptr)
699{
700 if (cached_ptr && !(*cached_ptr)) {
701 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
702 *cached_ptr = state;
703 atomic_inc(&state->refs);
704 }
705 }
706}
707
507903b8
AJ
708static void uncache_state(struct extent_state **cached_ptr)
709{
710 if (cached_ptr && (*cached_ptr)) {
711 struct extent_state *state = *cached_ptr;
109b36a2
CM
712 *cached_ptr = NULL;
713 free_extent_state(state);
507903b8
AJ
714 }
715}
716
d1310b2e 717/*
1edbb734
CM
718 * set some bits on a range in the tree. This may require allocations or
719 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 720 *
1edbb734
CM
721 * If any of the exclusive bits are set, this will fail with -EEXIST if some
722 * part of the range already has the desired bits set. The start of the
723 * existing range is returned in failed_start in this case.
d1310b2e 724 *
1edbb734 725 * [start, end] is inclusive This takes the tree lock.
d1310b2e 726 */
1edbb734 727
3fbe5c02
JM
728static int __must_check
729__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
730 int bits, int exclusive_bits, u64 *failed_start,
731 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
732{
733 struct extent_state *state;
734 struct extent_state *prealloc = NULL;
735 struct rb_node *node;
d1310b2e 736 int err = 0;
d1310b2e
CM
737 u64 last_start;
738 u64 last_end;
42daec29 739
0ca1f7ce 740 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
741again:
742 if (!prealloc && (mask & __GFP_WAIT)) {
743 prealloc = alloc_extent_state(mask);
8233767a 744 BUG_ON(!prealloc);
d1310b2e
CM
745 }
746
cad321ad 747 spin_lock(&tree->lock);
9655d298
CM
748 if (cached_state && *cached_state) {
749 state = *cached_state;
df98b6e2
JB
750 if (state->start <= start && state->end > start &&
751 state->tree) {
9655d298
CM
752 node = &state->rb_node;
753 goto hit_next;
754 }
755 }
d1310b2e
CM
756 /*
757 * this search will find all the extents that end after
758 * our range starts.
759 */
80ea96b1 760 node = tree_search(tree, start);
d1310b2e 761 if (!node) {
8233767a
XG
762 prealloc = alloc_extent_state_atomic(prealloc);
763 BUG_ON(!prealloc);
0ca1f7ce 764 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
765 if (err)
766 extent_io_tree_panic(tree, err);
767
d1310b2e 768 prealloc = NULL;
d1310b2e
CM
769 goto out;
770 }
d1310b2e 771 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 772hit_next:
d1310b2e
CM
773 last_start = state->start;
774 last_end = state->end;
775
776 /*
777 * | ---- desired range ---- |
778 * | state |
779 *
780 * Just lock what we found and keep going
781 */
782 if (state->start == start && state->end <= end) {
40431d6c 783 struct rb_node *next_node;
1edbb734 784 if (state->state & exclusive_bits) {
d1310b2e
CM
785 *failed_start = state->start;
786 err = -EEXIST;
787 goto out;
788 }
42daec29 789
1bf85046 790 set_state_bits(tree, state, &bits);
9ed74f2d 791
2c64c53d 792 cache_state(state, cached_state);
d1310b2e 793 merge_state(tree, state);
5c939df5
YZ
794 if (last_end == (u64)-1)
795 goto out;
40431d6c 796
5c939df5 797 start = last_end + 1;
df98b6e2 798 next_node = rb_next(&state->rb_node);
c7f895a2
XG
799 if (next_node && start < end && prealloc && !need_resched()) {
800 state = rb_entry(next_node, struct extent_state,
801 rb_node);
802 if (state->start == start)
803 goto hit_next;
40431d6c 804 }
d1310b2e
CM
805 goto search_again;
806 }
807
808 /*
809 * | ---- desired range ---- |
810 * | state |
811 * or
812 * | ------------- state -------------- |
813 *
814 * We need to split the extent we found, and may flip bits on
815 * second half.
816 *
817 * If the extent we found extends past our
818 * range, we just split and search again. It'll get split
819 * again the next time though.
820 *
821 * If the extent we found is inside our range, we set the
822 * desired bit on it.
823 */
824 if (state->start < start) {
1edbb734 825 if (state->state & exclusive_bits) {
d1310b2e
CM
826 *failed_start = start;
827 err = -EEXIST;
828 goto out;
829 }
8233767a
XG
830
831 prealloc = alloc_extent_state_atomic(prealloc);
832 BUG_ON(!prealloc);
d1310b2e 833 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
834 if (err)
835 extent_io_tree_panic(tree, err);
836
d1310b2e
CM
837 prealloc = NULL;
838 if (err)
839 goto out;
840 if (state->end <= end) {
1bf85046 841 set_state_bits(tree, state, &bits);
2c64c53d 842 cache_state(state, cached_state);
d1310b2e 843 merge_state(tree, state);
5c939df5
YZ
844 if (last_end == (u64)-1)
845 goto out;
846 start = last_end + 1;
d1310b2e
CM
847 }
848 goto search_again;
849 }
850 /*
851 * | ---- desired range ---- |
852 * | state | or | state |
853 *
854 * There's a hole, we need to insert something in it and
855 * ignore the extent we found.
856 */
857 if (state->start > start) {
858 u64 this_end;
859 if (end < last_start)
860 this_end = end;
861 else
d397712b 862 this_end = last_start - 1;
8233767a
XG
863
864 prealloc = alloc_extent_state_atomic(prealloc);
865 BUG_ON(!prealloc);
c7f895a2
XG
866
867 /*
868 * Avoid to free 'prealloc' if it can be merged with
869 * the later extent.
870 */
d1310b2e 871 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 872 &bits);
c2d904e0
JM
873 if (err)
874 extent_io_tree_panic(tree, err);
875
9ed74f2d
JB
876 cache_state(prealloc, cached_state);
877 prealloc = NULL;
d1310b2e
CM
878 start = this_end + 1;
879 goto search_again;
880 }
881 /*
882 * | ---- desired range ---- |
883 * | state |
884 * We need to split the extent, and set the bit
885 * on the first half
886 */
887 if (state->start <= end && state->end > end) {
1edbb734 888 if (state->state & exclusive_bits) {
d1310b2e
CM
889 *failed_start = start;
890 err = -EEXIST;
891 goto out;
892 }
8233767a
XG
893
894 prealloc = alloc_extent_state_atomic(prealloc);
895 BUG_ON(!prealloc);
d1310b2e 896 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
d1310b2e 899
1bf85046 900 set_state_bits(tree, prealloc, &bits);
2c64c53d 901 cache_state(prealloc, cached_state);
d1310b2e
CM
902 merge_state(tree, prealloc);
903 prealloc = NULL;
904 goto out;
905 }
906
907 goto search_again;
908
909out:
cad321ad 910 spin_unlock(&tree->lock);
d1310b2e
CM
911 if (prealloc)
912 free_extent_state(prealloc);
913
914 return err;
915
916search_again:
917 if (start > end)
918 goto out;
cad321ad 919 spin_unlock(&tree->lock);
d1310b2e
CM
920 if (mask & __GFP_WAIT)
921 cond_resched();
922 goto again;
923}
d1310b2e 924
3fbe5c02
JM
925int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
926 u64 *failed_start, struct extent_state **cached_state,
927 gfp_t mask)
928{
929 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
930 cached_state, mask);
931}
932
933
462d6fac
JB
934/**
935 * convert_extent - convert all bits in a given range from one bit to another
936 * @tree: the io tree to search
937 * @start: the start offset in bytes
938 * @end: the end offset in bytes (inclusive)
939 * @bits: the bits to set in this range
940 * @clear_bits: the bits to clear in this range
941 * @mask: the allocation mask
942 *
943 * This will go through and set bits for the given range. If any states exist
944 * already in this range they are set with the given bit and cleared of the
945 * clear_bits. This is only meant to be used by things that are mergeable, ie
946 * converting from say DELALLOC to DIRTY. This is not meant to be used with
947 * boundary bits like LOCK.
948 */
949int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
950 int bits, int clear_bits, gfp_t mask)
951{
952 struct extent_state *state;
953 struct extent_state *prealloc = NULL;
954 struct rb_node *node;
955 int err = 0;
956 u64 last_start;
957 u64 last_end;
958
959again:
960 if (!prealloc && (mask & __GFP_WAIT)) {
961 prealloc = alloc_extent_state(mask);
962 if (!prealloc)
963 return -ENOMEM;
964 }
965
966 spin_lock(&tree->lock);
967 /*
968 * this search will find all the extents that end after
969 * our range starts.
970 */
971 node = tree_search(tree, start);
972 if (!node) {
973 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
974 if (!prealloc) {
975 err = -ENOMEM;
976 goto out;
977 }
462d6fac
JB
978 err = insert_state(tree, prealloc, start, end, &bits);
979 prealloc = NULL;
c2d904e0
JM
980 if (err)
981 extent_io_tree_panic(tree, err);
462d6fac
JB
982 goto out;
983 }
984 state = rb_entry(node, struct extent_state, rb_node);
985hit_next:
986 last_start = state->start;
987 last_end = state->end;
988
989 /*
990 * | ---- desired range ---- |
991 * | state |
992 *
993 * Just lock what we found and keep going
994 */
995 if (state->start == start && state->end <= end) {
996 struct rb_node *next_node;
997
998 set_state_bits(tree, state, &bits);
999 clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1000 if (last_end == (u64)-1)
1001 goto out;
1002
1003 start = last_end + 1;
1004 next_node = rb_next(&state->rb_node);
1005 if (next_node && start < end && prealloc && !need_resched()) {
1006 state = rb_entry(next_node, struct extent_state,
1007 rb_node);
1008 if (state->start == start)
1009 goto hit_next;
1010 }
1011 goto search_again;
1012 }
1013
1014 /*
1015 * | ---- desired range ---- |
1016 * | state |
1017 * or
1018 * | ------------- state -------------- |
1019 *
1020 * We need to split the extent we found, and may flip bits on
1021 * second half.
1022 *
1023 * If the extent we found extends past our
1024 * range, we just split and search again. It'll get split
1025 * again the next time though.
1026 *
1027 * If the extent we found is inside our range, we set the
1028 * desired bit on it.
1029 */
1030 if (state->start < start) {
1031 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1032 if (!prealloc) {
1033 err = -ENOMEM;
1034 goto out;
1035 }
462d6fac 1036 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1037 if (err)
1038 extent_io_tree_panic(tree, err);
462d6fac
JB
1039 prealloc = NULL;
1040 if (err)
1041 goto out;
1042 if (state->end <= end) {
1043 set_state_bits(tree, state, &bits);
1044 clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1045 if (last_end == (u64)-1)
1046 goto out;
1047 start = last_end + 1;
1048 }
1049 goto search_again;
1050 }
1051 /*
1052 * | ---- desired range ---- |
1053 * | state | or | state |
1054 *
1055 * There's a hole, we need to insert something in it and
1056 * ignore the extent we found.
1057 */
1058 if (state->start > start) {
1059 u64 this_end;
1060 if (end < last_start)
1061 this_end = end;
1062 else
1063 this_end = last_start - 1;
1064
1065 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1066 if (!prealloc) {
1067 err = -ENOMEM;
1068 goto out;
1069 }
462d6fac
JB
1070
1071 /*
1072 * Avoid to free 'prealloc' if it can be merged with
1073 * the later extent.
1074 */
1075 err = insert_state(tree, prealloc, start, this_end,
1076 &bits);
c2d904e0
JM
1077 if (err)
1078 extent_io_tree_panic(tree, err);
462d6fac
JB
1079 prealloc = NULL;
1080 start = this_end + 1;
1081 goto search_again;
1082 }
1083 /*
1084 * | ---- desired range ---- |
1085 * | state |
1086 * We need to split the extent, and set the bit
1087 * on the first half
1088 */
1089 if (state->start <= end && state->end > end) {
1090 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1091 if (!prealloc) {
1092 err = -ENOMEM;
1093 goto out;
1094 }
462d6fac
JB
1095
1096 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1097 if (err)
1098 extent_io_tree_panic(tree, err);
462d6fac
JB
1099
1100 set_state_bits(tree, prealloc, &bits);
1101 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1102 prealloc = NULL;
1103 goto out;
1104 }
1105
1106 goto search_again;
1107
1108out:
1109 spin_unlock(&tree->lock);
1110 if (prealloc)
1111 free_extent_state(prealloc);
1112
1113 return err;
1114
1115search_again:
1116 if (start > end)
1117 goto out;
1118 spin_unlock(&tree->lock);
1119 if (mask & __GFP_WAIT)
1120 cond_resched();
1121 goto again;
1122}
1123
d1310b2e
CM
1124/* wrappers around set/clear extent bit */
1125int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1126 gfp_t mask)
1127{
3fbe5c02 1128 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1129 NULL, mask);
d1310b2e 1130}
d1310b2e
CM
1131
1132int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1133 int bits, gfp_t mask)
1134{
3fbe5c02 1135 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1136 NULL, mask);
d1310b2e 1137}
d1310b2e
CM
1138
1139int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1140 int bits, gfp_t mask)
1141{
2c64c53d 1142 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1143}
d1310b2e
CM
1144
1145int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1146 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1147{
1148 return set_extent_bit(tree, start, end,
fee187d9 1149 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1150 NULL, cached_state, mask);
d1310b2e 1151}
d1310b2e
CM
1152
1153int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1154 gfp_t mask)
1155{
1156 return clear_extent_bit(tree, start, end,
32c00aff 1157 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1158 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1159}
d1310b2e
CM
1160
1161int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1162 gfp_t mask)
1163{
3fbe5c02 1164 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1165 NULL, mask);
d1310b2e 1166}
d1310b2e 1167
d1310b2e 1168int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1169 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1170{
507903b8 1171 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
3fbe5c02 1172 cached_state, mask);
d1310b2e 1173}
d1310b2e 1174
5fd02043
JB
1175int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1176 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1177{
2c64c53d 1178 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1179 cached_state, mask);
d1310b2e 1180}
d1310b2e 1181
d352ac68
CM
1182/*
1183 * either insert or lock state struct between start and end use mask to tell
1184 * us if waiting is desired.
1185 */
1edbb734 1186int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
d0082371 1187 int bits, struct extent_state **cached_state)
d1310b2e
CM
1188{
1189 int err;
1190 u64 failed_start;
1191 while (1) {
3fbe5c02
JM
1192 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1193 EXTENT_LOCKED, &failed_start,
1194 cached_state, GFP_NOFS);
d0082371 1195 if (err == -EEXIST) {
d1310b2e
CM
1196 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1197 start = failed_start;
d0082371 1198 } else
d1310b2e 1199 break;
d1310b2e
CM
1200 WARN_ON(start > end);
1201 }
1202 return err;
1203}
d1310b2e 1204
d0082371 1205int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1206{
d0082371 1207 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1208}
1209
d0082371 1210int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1211{
1212 int err;
1213 u64 failed_start;
1214
3fbe5c02
JM
1215 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1216 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1217 if (err == -EEXIST) {
1218 if (failed_start > start)
1219 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1220 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1221 return 0;
6643558d 1222 }
25179201
JB
1223 return 1;
1224}
25179201 1225
2c64c53d
CM
1226int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1227 struct extent_state **cached, gfp_t mask)
1228{
1229 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1230 mask);
1231}
1232
d0082371 1233int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1234{
2c64c53d 1235 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1236 GFP_NOFS);
d1310b2e 1237}
d1310b2e 1238
d1310b2e
CM
1239/*
1240 * helper function to set both pages and extents in the tree writeback
1241 */
b2950863 1242static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1243{
1244 unsigned long index = start >> PAGE_CACHE_SHIFT;
1245 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1246 struct page *page;
1247
1248 while (index <= end_index) {
1249 page = find_get_page(tree->mapping, index);
79787eaa 1250 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1251 set_page_writeback(page);
1252 page_cache_release(page);
1253 index++;
1254 }
d1310b2e
CM
1255 return 0;
1256}
d1310b2e 1257
d352ac68
CM
1258/* find the first state struct with 'bits' set after 'start', and
1259 * return it. tree->lock must be held. NULL will returned if
1260 * nothing was found after 'start'
1261 */
d7fc640e
CM
1262struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1263 u64 start, int bits)
1264{
1265 struct rb_node *node;
1266 struct extent_state *state;
1267
1268 /*
1269 * this search will find all the extents that end after
1270 * our range starts.
1271 */
1272 node = tree_search(tree, start);
d397712b 1273 if (!node)
d7fc640e 1274 goto out;
d7fc640e 1275
d397712b 1276 while (1) {
d7fc640e 1277 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1278 if (state->end >= start && (state->state & bits))
d7fc640e 1279 return state;
d397712b 1280
d7fc640e
CM
1281 node = rb_next(node);
1282 if (!node)
1283 break;
1284 }
1285out:
1286 return NULL;
1287}
d7fc640e 1288
69261c4b
XG
1289/*
1290 * find the first offset in the io tree with 'bits' set. zero is
1291 * returned if we find something, and *start_ret and *end_ret are
1292 * set to reflect the state struct that was found.
1293 *
477d7eaf 1294 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1295 */
1296int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1297 u64 *start_ret, u64 *end_ret, int bits)
1298{
1299 struct extent_state *state;
1300 int ret = 1;
1301
1302 spin_lock(&tree->lock);
1303 state = find_first_extent_bit_state(tree, start, bits);
1304 if (state) {
1305 *start_ret = state->start;
1306 *end_ret = state->end;
1307 ret = 0;
1308 }
1309 spin_unlock(&tree->lock);
1310 return ret;
1311}
1312
d352ac68
CM
1313/*
1314 * find a contiguous range of bytes in the file marked as delalloc, not
1315 * more than 'max_bytes'. start and end are used to return the range,
1316 *
1317 * 1 is returned if we find something, 0 if nothing was in the tree
1318 */
c8b97818 1319static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1320 u64 *start, u64 *end, u64 max_bytes,
1321 struct extent_state **cached_state)
d1310b2e
CM
1322{
1323 struct rb_node *node;
1324 struct extent_state *state;
1325 u64 cur_start = *start;
1326 u64 found = 0;
1327 u64 total_bytes = 0;
1328
cad321ad 1329 spin_lock(&tree->lock);
c8b97818 1330
d1310b2e
CM
1331 /*
1332 * this search will find all the extents that end after
1333 * our range starts.
1334 */
80ea96b1 1335 node = tree_search(tree, cur_start);
2b114d1d 1336 if (!node) {
3b951516
CM
1337 if (!found)
1338 *end = (u64)-1;
d1310b2e
CM
1339 goto out;
1340 }
1341
d397712b 1342 while (1) {
d1310b2e 1343 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1344 if (found && (state->start != cur_start ||
1345 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1346 goto out;
1347 }
1348 if (!(state->state & EXTENT_DELALLOC)) {
1349 if (!found)
1350 *end = state->end;
1351 goto out;
1352 }
c2a128d2 1353 if (!found) {
d1310b2e 1354 *start = state->start;
c2a128d2
JB
1355 *cached_state = state;
1356 atomic_inc(&state->refs);
1357 }
d1310b2e
CM
1358 found++;
1359 *end = state->end;
1360 cur_start = state->end + 1;
1361 node = rb_next(node);
1362 if (!node)
1363 break;
1364 total_bytes += state->end - state->start + 1;
1365 if (total_bytes >= max_bytes)
1366 break;
1367 }
1368out:
cad321ad 1369 spin_unlock(&tree->lock);
d1310b2e
CM
1370 return found;
1371}
1372
143bede5
JM
1373static noinline void __unlock_for_delalloc(struct inode *inode,
1374 struct page *locked_page,
1375 u64 start, u64 end)
c8b97818
CM
1376{
1377 int ret;
1378 struct page *pages[16];
1379 unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 unsigned long nr_pages = end_index - index + 1;
1382 int i;
1383
1384 if (index == locked_page->index && end_index == index)
143bede5 1385 return;
c8b97818 1386
d397712b 1387 while (nr_pages > 0) {
c8b97818 1388 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1389 min_t(unsigned long, nr_pages,
1390 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1391 for (i = 0; i < ret; i++) {
1392 if (pages[i] != locked_page)
1393 unlock_page(pages[i]);
1394 page_cache_release(pages[i]);
1395 }
1396 nr_pages -= ret;
1397 index += ret;
1398 cond_resched();
1399 }
c8b97818
CM
1400}
1401
1402static noinline int lock_delalloc_pages(struct inode *inode,
1403 struct page *locked_page,
1404 u64 delalloc_start,
1405 u64 delalloc_end)
1406{
1407 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1408 unsigned long start_index = index;
1409 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1410 unsigned long pages_locked = 0;
1411 struct page *pages[16];
1412 unsigned long nrpages;
1413 int ret;
1414 int i;
1415
1416 /* the caller is responsible for locking the start index */
1417 if (index == locked_page->index && index == end_index)
1418 return 0;
1419
1420 /* skip the page at the start index */
1421 nrpages = end_index - index + 1;
d397712b 1422 while (nrpages > 0) {
c8b97818 1423 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1424 min_t(unsigned long,
1425 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1426 if (ret == 0) {
1427 ret = -EAGAIN;
1428 goto done;
1429 }
1430 /* now we have an array of pages, lock them all */
1431 for (i = 0; i < ret; i++) {
1432 /*
1433 * the caller is taking responsibility for
1434 * locked_page
1435 */
771ed689 1436 if (pages[i] != locked_page) {
c8b97818 1437 lock_page(pages[i]);
f2b1c41c
CM
1438 if (!PageDirty(pages[i]) ||
1439 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1440 ret = -EAGAIN;
1441 unlock_page(pages[i]);
1442 page_cache_release(pages[i]);
1443 goto done;
1444 }
1445 }
c8b97818 1446 page_cache_release(pages[i]);
771ed689 1447 pages_locked++;
c8b97818 1448 }
c8b97818
CM
1449 nrpages -= ret;
1450 index += ret;
1451 cond_resched();
1452 }
1453 ret = 0;
1454done:
1455 if (ret && pages_locked) {
1456 __unlock_for_delalloc(inode, locked_page,
1457 delalloc_start,
1458 ((u64)(start_index + pages_locked - 1)) <<
1459 PAGE_CACHE_SHIFT);
1460 }
1461 return ret;
1462}
1463
1464/*
1465 * find a contiguous range of bytes in the file marked as delalloc, not
1466 * more than 'max_bytes'. start and end are used to return the range,
1467 *
1468 * 1 is returned if we find something, 0 if nothing was in the tree
1469 */
1470static noinline u64 find_lock_delalloc_range(struct inode *inode,
1471 struct extent_io_tree *tree,
1472 struct page *locked_page,
1473 u64 *start, u64 *end,
1474 u64 max_bytes)
1475{
1476 u64 delalloc_start;
1477 u64 delalloc_end;
1478 u64 found;
9655d298 1479 struct extent_state *cached_state = NULL;
c8b97818
CM
1480 int ret;
1481 int loops = 0;
1482
1483again:
1484 /* step one, find a bunch of delalloc bytes starting at start */
1485 delalloc_start = *start;
1486 delalloc_end = 0;
1487 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1488 max_bytes, &cached_state);
70b99e69 1489 if (!found || delalloc_end <= *start) {
c8b97818
CM
1490 *start = delalloc_start;
1491 *end = delalloc_end;
c2a128d2 1492 free_extent_state(cached_state);
c8b97818
CM
1493 return found;
1494 }
1495
70b99e69
CM
1496 /*
1497 * start comes from the offset of locked_page. We have to lock
1498 * pages in order, so we can't process delalloc bytes before
1499 * locked_page
1500 */
d397712b 1501 if (delalloc_start < *start)
70b99e69 1502 delalloc_start = *start;
70b99e69 1503
c8b97818
CM
1504 /*
1505 * make sure to limit the number of pages we try to lock down
1506 * if we're looping.
1507 */
d397712b 1508 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1509 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1510
c8b97818
CM
1511 /* step two, lock all the pages after the page that has start */
1512 ret = lock_delalloc_pages(inode, locked_page,
1513 delalloc_start, delalloc_end);
1514 if (ret == -EAGAIN) {
1515 /* some of the pages are gone, lets avoid looping by
1516 * shortening the size of the delalloc range we're searching
1517 */
9655d298 1518 free_extent_state(cached_state);
c8b97818
CM
1519 if (!loops) {
1520 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1521 max_bytes = PAGE_CACHE_SIZE - offset;
1522 loops = 1;
1523 goto again;
1524 } else {
1525 found = 0;
1526 goto out_failed;
1527 }
1528 }
79787eaa 1529 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1530
1531 /* step three, lock the state bits for the whole range */
d0082371 1532 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1533
1534 /* then test to make sure it is all still delalloc */
1535 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1536 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1537 if (!ret) {
9655d298
CM
1538 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1539 &cached_state, GFP_NOFS);
c8b97818
CM
1540 __unlock_for_delalloc(inode, locked_page,
1541 delalloc_start, delalloc_end);
1542 cond_resched();
1543 goto again;
1544 }
9655d298 1545 free_extent_state(cached_state);
c8b97818
CM
1546 *start = delalloc_start;
1547 *end = delalloc_end;
1548out_failed:
1549 return found;
1550}
1551
1552int extent_clear_unlock_delalloc(struct inode *inode,
1553 struct extent_io_tree *tree,
1554 u64 start, u64 end, struct page *locked_page,
a791e35e 1555 unsigned long op)
c8b97818
CM
1556{
1557 int ret;
1558 struct page *pages[16];
1559 unsigned long index = start >> PAGE_CACHE_SHIFT;
1560 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1561 unsigned long nr_pages = end_index - index + 1;
1562 int i;
771ed689 1563 int clear_bits = 0;
c8b97818 1564
a791e35e 1565 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1566 clear_bits |= EXTENT_LOCKED;
a791e35e 1567 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1568 clear_bits |= EXTENT_DIRTY;
1569
a791e35e 1570 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1571 clear_bits |= EXTENT_DELALLOC;
1572
2c64c53d 1573 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1574 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1575 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1576 EXTENT_SET_PRIVATE2)))
771ed689 1577 return 0;
c8b97818 1578
d397712b 1579 while (nr_pages > 0) {
c8b97818 1580 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1581 min_t(unsigned long,
1582 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1583 for (i = 0; i < ret; i++) {
8b62b72b 1584
a791e35e 1585 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1586 SetPagePrivate2(pages[i]);
1587
c8b97818
CM
1588 if (pages[i] == locked_page) {
1589 page_cache_release(pages[i]);
1590 continue;
1591 }
a791e35e 1592 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1593 clear_page_dirty_for_io(pages[i]);
a791e35e 1594 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1595 set_page_writeback(pages[i]);
a791e35e 1596 if (op & EXTENT_END_WRITEBACK)
c8b97818 1597 end_page_writeback(pages[i]);
a791e35e 1598 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1599 unlock_page(pages[i]);
c8b97818
CM
1600 page_cache_release(pages[i]);
1601 }
1602 nr_pages -= ret;
1603 index += ret;
1604 cond_resched();
1605 }
1606 return 0;
1607}
c8b97818 1608
d352ac68
CM
1609/*
1610 * count the number of bytes in the tree that have a given bit(s)
1611 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1612 * cached. The total number found is returned.
1613 */
d1310b2e
CM
1614u64 count_range_bits(struct extent_io_tree *tree,
1615 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1616 unsigned long bits, int contig)
d1310b2e
CM
1617{
1618 struct rb_node *node;
1619 struct extent_state *state;
1620 u64 cur_start = *start;
1621 u64 total_bytes = 0;
ec29ed5b 1622 u64 last = 0;
d1310b2e
CM
1623 int found = 0;
1624
1625 if (search_end <= cur_start) {
d1310b2e
CM
1626 WARN_ON(1);
1627 return 0;
1628 }
1629
cad321ad 1630 spin_lock(&tree->lock);
d1310b2e
CM
1631 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1632 total_bytes = tree->dirty_bytes;
1633 goto out;
1634 }
1635 /*
1636 * this search will find all the extents that end after
1637 * our range starts.
1638 */
80ea96b1 1639 node = tree_search(tree, cur_start);
d397712b 1640 if (!node)
d1310b2e 1641 goto out;
d1310b2e 1642
d397712b 1643 while (1) {
d1310b2e
CM
1644 state = rb_entry(node, struct extent_state, rb_node);
1645 if (state->start > search_end)
1646 break;
ec29ed5b
CM
1647 if (contig && found && state->start > last + 1)
1648 break;
1649 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1650 total_bytes += min(search_end, state->end) + 1 -
1651 max(cur_start, state->start);
1652 if (total_bytes >= max_bytes)
1653 break;
1654 if (!found) {
af60bed2 1655 *start = max(cur_start, state->start);
d1310b2e
CM
1656 found = 1;
1657 }
ec29ed5b
CM
1658 last = state->end;
1659 } else if (contig && found) {
1660 break;
d1310b2e
CM
1661 }
1662 node = rb_next(node);
1663 if (!node)
1664 break;
1665 }
1666out:
cad321ad 1667 spin_unlock(&tree->lock);
d1310b2e
CM
1668 return total_bytes;
1669}
b2950863 1670
d352ac68
CM
1671/*
1672 * set the private field for a given byte offset in the tree. If there isn't
1673 * an extent_state there already, this does nothing.
1674 */
d1310b2e
CM
1675int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1676{
1677 struct rb_node *node;
1678 struct extent_state *state;
1679 int ret = 0;
1680
cad321ad 1681 spin_lock(&tree->lock);
d1310b2e
CM
1682 /*
1683 * this search will find all the extents that end after
1684 * our range starts.
1685 */
80ea96b1 1686 node = tree_search(tree, start);
2b114d1d 1687 if (!node) {
d1310b2e
CM
1688 ret = -ENOENT;
1689 goto out;
1690 }
1691 state = rb_entry(node, struct extent_state, rb_node);
1692 if (state->start != start) {
1693 ret = -ENOENT;
1694 goto out;
1695 }
1696 state->private = private;
1697out:
cad321ad 1698 spin_unlock(&tree->lock);
d1310b2e
CM
1699 return ret;
1700}
1701
1702int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1703{
1704 struct rb_node *node;
1705 struct extent_state *state;
1706 int ret = 0;
1707
cad321ad 1708 spin_lock(&tree->lock);
d1310b2e
CM
1709 /*
1710 * this search will find all the extents that end after
1711 * our range starts.
1712 */
80ea96b1 1713 node = tree_search(tree, start);
2b114d1d 1714 if (!node) {
d1310b2e
CM
1715 ret = -ENOENT;
1716 goto out;
1717 }
1718 state = rb_entry(node, struct extent_state, rb_node);
1719 if (state->start != start) {
1720 ret = -ENOENT;
1721 goto out;
1722 }
1723 *private = state->private;
1724out:
cad321ad 1725 spin_unlock(&tree->lock);
d1310b2e
CM
1726 return ret;
1727}
1728
1729/*
1730 * searches a range in the state tree for a given mask.
70dec807 1731 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1732 * has the bits set. Otherwise, 1 is returned if any bit in the
1733 * range is found set.
1734 */
1735int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1736 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1737{
1738 struct extent_state *state = NULL;
1739 struct rb_node *node;
1740 int bitset = 0;
d1310b2e 1741
cad321ad 1742 spin_lock(&tree->lock);
df98b6e2
JB
1743 if (cached && cached->tree && cached->start <= start &&
1744 cached->end > start)
9655d298
CM
1745 node = &cached->rb_node;
1746 else
1747 node = tree_search(tree, start);
d1310b2e
CM
1748 while (node && start <= end) {
1749 state = rb_entry(node, struct extent_state, rb_node);
1750
1751 if (filled && state->start > start) {
1752 bitset = 0;
1753 break;
1754 }
1755
1756 if (state->start > end)
1757 break;
1758
1759 if (state->state & bits) {
1760 bitset = 1;
1761 if (!filled)
1762 break;
1763 } else if (filled) {
1764 bitset = 0;
1765 break;
1766 }
46562cec
CM
1767
1768 if (state->end == (u64)-1)
1769 break;
1770
d1310b2e
CM
1771 start = state->end + 1;
1772 if (start > end)
1773 break;
1774 node = rb_next(node);
1775 if (!node) {
1776 if (filled)
1777 bitset = 0;
1778 break;
1779 }
1780 }
cad321ad 1781 spin_unlock(&tree->lock);
d1310b2e
CM
1782 return bitset;
1783}
d1310b2e
CM
1784
1785/*
1786 * helper function to set a given page up to date if all the
1787 * extents in the tree for that page are up to date
1788 */
143bede5 1789static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1790{
1791 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1792 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1793 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1794 SetPageUptodate(page);
d1310b2e
CM
1795}
1796
1797/*
1798 * helper function to unlock a page if all the extents in the tree
1799 * for that page are unlocked
1800 */
143bede5 1801static void check_page_locked(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1802{
1803 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1804 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1805 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e 1806 unlock_page(page);
d1310b2e
CM
1807}
1808
1809/*
1810 * helper function to end page writeback if all the extents
1811 * in the tree for that page are done with writeback
1812 */
143bede5
JM
1813static void check_page_writeback(struct extent_io_tree *tree,
1814 struct page *page)
d1310b2e 1815{
1edbb734 1816 end_page_writeback(page);
d1310b2e
CM
1817}
1818
4a54c8c1
JS
1819/*
1820 * When IO fails, either with EIO or csum verification fails, we
1821 * try other mirrors that might have a good copy of the data. This
1822 * io_failure_record is used to record state as we go through all the
1823 * mirrors. If another mirror has good data, the page is set up to date
1824 * and things continue. If a good mirror can't be found, the original
1825 * bio end_io callback is called to indicate things have failed.
1826 */
1827struct io_failure_record {
1828 struct page *page;
1829 u64 start;
1830 u64 len;
1831 u64 logical;
1832 unsigned long bio_flags;
1833 int this_mirror;
1834 int failed_mirror;
1835 int in_validation;
1836};
1837
1838static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1839 int did_repair)
1840{
1841 int ret;
1842 int err = 0;
1843 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1844
1845 set_state_private(failure_tree, rec->start, 0);
1846 ret = clear_extent_bits(failure_tree, rec->start,
1847 rec->start + rec->len - 1,
1848 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1849 if (ret)
1850 err = ret;
1851
1852 if (did_repair) {
1853 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1854 rec->start + rec->len - 1,
1855 EXTENT_DAMAGED, GFP_NOFS);
1856 if (ret && !err)
1857 err = ret;
1858 }
1859
1860 kfree(rec);
1861 return err;
1862}
1863
1864static void repair_io_failure_callback(struct bio *bio, int err)
1865{
1866 complete(bio->bi_private);
1867}
1868
1869/*
1870 * this bypasses the standard btrfs submit functions deliberately, as
1871 * the standard behavior is to write all copies in a raid setup. here we only
1872 * want to write the one bad copy. so we do the mapping for ourselves and issue
1873 * submit_bio directly.
1874 * to avoid any synchonization issues, wait for the data after writing, which
1875 * actually prevents the read that triggered the error from finishing.
1876 * currently, there can be no more than two copies of every data bit. thus,
1877 * exactly one rewrite is required.
1878 */
1879int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1880 u64 length, u64 logical, struct page *page,
1881 int mirror_num)
1882{
1883 struct bio *bio;
1884 struct btrfs_device *dev;
1885 DECLARE_COMPLETION_ONSTACK(compl);
1886 u64 map_length = 0;
1887 u64 sector;
1888 struct btrfs_bio *bbio = NULL;
1889 int ret;
1890
1891 BUG_ON(!mirror_num);
1892
1893 bio = bio_alloc(GFP_NOFS, 1);
1894 if (!bio)
1895 return -EIO;
1896 bio->bi_private = &compl;
1897 bio->bi_end_io = repair_io_failure_callback;
1898 bio->bi_size = 0;
1899 map_length = length;
1900
1901 ret = btrfs_map_block(map_tree, WRITE, logical,
1902 &map_length, &bbio, mirror_num);
1903 if (ret) {
1904 bio_put(bio);
1905 return -EIO;
1906 }
1907 BUG_ON(mirror_num != bbio->mirror_num);
1908 sector = bbio->stripes[mirror_num-1].physical >> 9;
1909 bio->bi_sector = sector;
1910 dev = bbio->stripes[mirror_num-1].dev;
1911 kfree(bbio);
1912 if (!dev || !dev->bdev || !dev->writeable) {
1913 bio_put(bio);
1914 return -EIO;
1915 }
1916 bio->bi_bdev = dev->bdev;
1917 bio_add_page(bio, page, length, start-page_offset(page));
21adbd5c 1918 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
1919 wait_for_completion(&compl);
1920
1921 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1922 /* try to remap that extent elsewhere? */
1923 bio_put(bio);
1924 return -EIO;
1925 }
1926
1927 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1928 "sector %llu)\n", page->mapping->host->i_ino, start,
1929 dev->name, sector);
1930
1931 bio_put(bio);
1932 return 0;
1933}
1934
ea466794
JB
1935int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1936 int mirror_num)
1937{
1938 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1939 u64 start = eb->start;
1940 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 1941 int ret = 0;
ea466794
JB
1942
1943 for (i = 0; i < num_pages; i++) {
1944 struct page *p = extent_buffer_page(eb, i);
1945 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1946 start, p, mirror_num);
1947 if (ret)
1948 break;
1949 start += PAGE_CACHE_SIZE;
1950 }
1951
1952 return ret;
1953}
1954
4a54c8c1
JS
1955/*
1956 * each time an IO finishes, we do a fast check in the IO failure tree
1957 * to see if we need to process or clean up an io_failure_record
1958 */
1959static int clean_io_failure(u64 start, struct page *page)
1960{
1961 u64 private;
1962 u64 private_failure;
1963 struct io_failure_record *failrec;
1964 struct btrfs_mapping_tree *map_tree;
1965 struct extent_state *state;
1966 int num_copies;
1967 int did_repair = 0;
1968 int ret;
1969 struct inode *inode = page->mapping->host;
1970
1971 private = 0;
1972 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1973 (u64)-1, 1, EXTENT_DIRTY, 0);
1974 if (!ret)
1975 return 0;
1976
1977 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1978 &private_failure);
1979 if (ret)
1980 return 0;
1981
1982 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1983 BUG_ON(!failrec->this_mirror);
1984
1985 if (failrec->in_validation) {
1986 /* there was no real error, just free the record */
1987 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1988 failrec->start);
1989 did_repair = 1;
1990 goto out;
1991 }
1992
1993 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1994 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1995 failrec->start,
1996 EXTENT_LOCKED);
1997 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1998
1999 if (state && state->start == failrec->start) {
2000 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2001 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2002 failrec->len);
2003 if (num_copies > 1) {
2004 ret = repair_io_failure(map_tree, start, failrec->len,
2005 failrec->logical, page,
2006 failrec->failed_mirror);
2007 did_repair = !ret;
2008 }
2009 }
2010
2011out:
2012 if (!ret)
2013 ret = free_io_failure(inode, failrec, did_repair);
2014
2015 return ret;
2016}
2017
2018/*
2019 * this is a generic handler for readpage errors (default
2020 * readpage_io_failed_hook). if other copies exist, read those and write back
2021 * good data to the failed position. does not investigate in remapping the
2022 * failed extent elsewhere, hoping the device will be smart enough to do this as
2023 * needed
2024 */
2025
2026static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2027 u64 start, u64 end, int failed_mirror,
2028 struct extent_state *state)
2029{
2030 struct io_failure_record *failrec = NULL;
2031 u64 private;
2032 struct extent_map *em;
2033 struct inode *inode = page->mapping->host;
2034 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2035 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2036 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2037 struct bio *bio;
2038 int num_copies;
2039 int ret;
2040 int read_mode;
2041 u64 logical;
2042
2043 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2044
2045 ret = get_state_private(failure_tree, start, &private);
2046 if (ret) {
2047 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2048 if (!failrec)
2049 return -ENOMEM;
2050 failrec->start = start;
2051 failrec->len = end - start + 1;
2052 failrec->this_mirror = 0;
2053 failrec->bio_flags = 0;
2054 failrec->in_validation = 0;
2055
2056 read_lock(&em_tree->lock);
2057 em = lookup_extent_mapping(em_tree, start, failrec->len);
2058 if (!em) {
2059 read_unlock(&em_tree->lock);
2060 kfree(failrec);
2061 return -EIO;
2062 }
2063
2064 if (em->start > start || em->start + em->len < start) {
2065 free_extent_map(em);
2066 em = NULL;
2067 }
2068 read_unlock(&em_tree->lock);
2069
2070 if (!em || IS_ERR(em)) {
2071 kfree(failrec);
2072 return -EIO;
2073 }
2074 logical = start - em->start;
2075 logical = em->block_start + logical;
2076 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2077 logical = em->block_start;
2078 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2079 extent_set_compress_type(&failrec->bio_flags,
2080 em->compress_type);
2081 }
2082 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2083 "len=%llu\n", logical, start, failrec->len);
2084 failrec->logical = logical;
2085 free_extent_map(em);
2086
2087 /* set the bits in the private failure tree */
2088 ret = set_extent_bits(failure_tree, start, end,
2089 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2090 if (ret >= 0)
2091 ret = set_state_private(failure_tree, start,
2092 (u64)(unsigned long)failrec);
2093 /* set the bits in the inode's tree */
2094 if (ret >= 0)
2095 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2096 GFP_NOFS);
2097 if (ret < 0) {
2098 kfree(failrec);
2099 return ret;
2100 }
2101 } else {
2102 failrec = (struct io_failure_record *)(unsigned long)private;
2103 pr_debug("bio_readpage_error: (found) logical=%llu, "
2104 "start=%llu, len=%llu, validation=%d\n",
2105 failrec->logical, failrec->start, failrec->len,
2106 failrec->in_validation);
2107 /*
2108 * when data can be on disk more than twice, add to failrec here
2109 * (e.g. with a list for failed_mirror) to make
2110 * clean_io_failure() clean all those errors at once.
2111 */
2112 }
2113 num_copies = btrfs_num_copies(
2114 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2115 failrec->logical, failrec->len);
2116 if (num_copies == 1) {
2117 /*
2118 * we only have a single copy of the data, so don't bother with
2119 * all the retry and error correction code that follows. no
2120 * matter what the error is, it is very likely to persist.
2121 */
2122 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2123 "state=%p, num_copies=%d, next_mirror %d, "
2124 "failed_mirror %d\n", state, num_copies,
2125 failrec->this_mirror, failed_mirror);
2126 free_io_failure(inode, failrec, 0);
2127 return -EIO;
2128 }
2129
2130 if (!state) {
2131 spin_lock(&tree->lock);
2132 state = find_first_extent_bit_state(tree, failrec->start,
2133 EXTENT_LOCKED);
2134 if (state && state->start != failrec->start)
2135 state = NULL;
2136 spin_unlock(&tree->lock);
2137 }
2138
2139 /*
2140 * there are two premises:
2141 * a) deliver good data to the caller
2142 * b) correct the bad sectors on disk
2143 */
2144 if (failed_bio->bi_vcnt > 1) {
2145 /*
2146 * to fulfill b), we need to know the exact failing sectors, as
2147 * we don't want to rewrite any more than the failed ones. thus,
2148 * we need separate read requests for the failed bio
2149 *
2150 * if the following BUG_ON triggers, our validation request got
2151 * merged. we need separate requests for our algorithm to work.
2152 */
2153 BUG_ON(failrec->in_validation);
2154 failrec->in_validation = 1;
2155 failrec->this_mirror = failed_mirror;
2156 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2157 } else {
2158 /*
2159 * we're ready to fulfill a) and b) alongside. get a good copy
2160 * of the failed sector and if we succeed, we have setup
2161 * everything for repair_io_failure to do the rest for us.
2162 */
2163 if (failrec->in_validation) {
2164 BUG_ON(failrec->this_mirror != failed_mirror);
2165 failrec->in_validation = 0;
2166 failrec->this_mirror = 0;
2167 }
2168 failrec->failed_mirror = failed_mirror;
2169 failrec->this_mirror++;
2170 if (failrec->this_mirror == failed_mirror)
2171 failrec->this_mirror++;
2172 read_mode = READ_SYNC;
2173 }
2174
2175 if (!state || failrec->this_mirror > num_copies) {
2176 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2177 "next_mirror %d, failed_mirror %d\n", state,
2178 num_copies, failrec->this_mirror, failed_mirror);
2179 free_io_failure(inode, failrec, 0);
2180 return -EIO;
2181 }
2182
2183 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2184 if (!bio) {
2185 free_io_failure(inode, failrec, 0);
2186 return -EIO;
2187 }
4a54c8c1
JS
2188 bio->bi_private = state;
2189 bio->bi_end_io = failed_bio->bi_end_io;
2190 bio->bi_sector = failrec->logical >> 9;
2191 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2192 bio->bi_size = 0;
2193
2194 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2195
2196 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2197 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2198 failrec->this_mirror, num_copies, failrec->in_validation);
2199
013bd4c3
TI
2200 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2201 failrec->this_mirror,
2202 failrec->bio_flags, 0);
2203 return ret;
4a54c8c1
JS
2204}
2205
d1310b2e
CM
2206/* lots and lots of room for performance fixes in the end_bio funcs */
2207
87826df0
JM
2208int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2209{
2210 int uptodate = (err == 0);
2211 struct extent_io_tree *tree;
2212 int ret;
2213
2214 tree = &BTRFS_I(page->mapping->host)->io_tree;
2215
2216 if (tree->ops && tree->ops->writepage_end_io_hook) {
2217 ret = tree->ops->writepage_end_io_hook(page, start,
2218 end, NULL, uptodate);
2219 if (ret)
2220 uptodate = 0;
2221 }
2222
87826df0 2223 if (!uptodate) {
87826df0
JM
2224 ClearPageUptodate(page);
2225 SetPageError(page);
2226 }
2227 return 0;
2228}
2229
d1310b2e
CM
2230/*
2231 * after a writepage IO is done, we need to:
2232 * clear the uptodate bits on error
2233 * clear the writeback bits in the extent tree for this IO
2234 * end_page_writeback if the page has no more pending IO
2235 *
2236 * Scheduling is not allowed, so the extent state tree is expected
2237 * to have one and only one object corresponding to this IO.
2238 */
d1310b2e 2239static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2240{
d1310b2e 2241 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2242 struct extent_io_tree *tree;
d1310b2e
CM
2243 u64 start;
2244 u64 end;
2245 int whole_page;
2246
d1310b2e
CM
2247 do {
2248 struct page *page = bvec->bv_page;
902b22f3
DW
2249 tree = &BTRFS_I(page->mapping->host)->io_tree;
2250
d1310b2e
CM
2251 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2252 bvec->bv_offset;
2253 end = start + bvec->bv_len - 1;
2254
2255 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2256 whole_page = 1;
2257 else
2258 whole_page = 0;
2259
2260 if (--bvec >= bio->bi_io_vec)
2261 prefetchw(&bvec->bv_page->flags);
1259ab75 2262
87826df0
JM
2263 if (end_extent_writepage(page, err, start, end))
2264 continue;
70dec807 2265
d1310b2e
CM
2266 if (whole_page)
2267 end_page_writeback(page);
2268 else
2269 check_page_writeback(tree, page);
d1310b2e 2270 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2271
d1310b2e 2272 bio_put(bio);
d1310b2e
CM
2273}
2274
2275/*
2276 * after a readpage IO is done, we need to:
2277 * clear the uptodate bits on error
2278 * set the uptodate bits if things worked
2279 * set the page up to date if all extents in the tree are uptodate
2280 * clear the lock bit in the extent tree
2281 * unlock the page if there are no other extents locked for it
2282 *
2283 * Scheduling is not allowed, so the extent state tree is expected
2284 * to have one and only one object corresponding to this IO.
2285 */
d1310b2e 2286static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2287{
2288 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2289 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2290 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2291 struct extent_io_tree *tree;
d1310b2e
CM
2292 u64 start;
2293 u64 end;
2294 int whole_page;
5cf1ab56 2295 int mirror;
d1310b2e
CM
2296 int ret;
2297
d20f7043
CM
2298 if (err)
2299 uptodate = 0;
2300
d1310b2e
CM
2301 do {
2302 struct page *page = bvec->bv_page;
507903b8
AJ
2303 struct extent_state *cached = NULL;
2304 struct extent_state *state;
2305
4a54c8c1
JS
2306 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2307 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2308 (long int)bio->bi_bdev);
902b22f3
DW
2309 tree = &BTRFS_I(page->mapping->host)->io_tree;
2310
d1310b2e
CM
2311 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2312 bvec->bv_offset;
2313 end = start + bvec->bv_len - 1;
2314
2315 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2316 whole_page = 1;
2317 else
2318 whole_page = 0;
2319
4125bf76 2320 if (++bvec <= bvec_end)
d1310b2e
CM
2321 prefetchw(&bvec->bv_page->flags);
2322
507903b8 2323 spin_lock(&tree->lock);
0d399205 2324 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2325 if (state && state->start == start) {
507903b8
AJ
2326 /*
2327 * take a reference on the state, unlock will drop
2328 * the ref
2329 */
2330 cache_state(state, &cached);
2331 }
2332 spin_unlock(&tree->lock);
2333
5cf1ab56 2334 mirror = (int)(unsigned long)bio->bi_bdev;
d1310b2e 2335 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2336 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2337 state, mirror);
d1310b2e
CM
2338 if (ret)
2339 uptodate = 0;
4a54c8c1
JS
2340 else
2341 clean_io_failure(start, page);
d1310b2e 2342 }
ea466794 2343
ea466794 2344 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2345 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2346 if (!ret && !err &&
2347 test_bit(BIO_UPTODATE, &bio->bi_flags))
2348 uptodate = 1;
2349 } else if (!uptodate) {
f4a8e656
JS
2350 /*
2351 * The generic bio_readpage_error handles errors the
2352 * following way: If possible, new read requests are
2353 * created and submitted and will end up in
2354 * end_bio_extent_readpage as well (if we're lucky, not
2355 * in the !uptodate case). In that case it returns 0 and
2356 * we just go on with the next page in our bio. If it
2357 * can't handle the error it will return -EIO and we
2358 * remain responsible for that page.
2359 */
5cf1ab56 2360 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
7e38326f 2361 if (ret == 0) {
3b951516
CM
2362 uptodate =
2363 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2364 if (err)
2365 uptodate = 0;
507903b8 2366 uncache_state(&cached);
7e38326f
CM
2367 continue;
2368 }
2369 }
d1310b2e 2370
0b32f4bb 2371 if (uptodate && tree->track_uptodate) {
507903b8 2372 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2373 GFP_ATOMIC);
771ed689 2374 }
507903b8 2375 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2376
70dec807
CM
2377 if (whole_page) {
2378 if (uptodate) {
2379 SetPageUptodate(page);
2380 } else {
2381 ClearPageUptodate(page);
2382 SetPageError(page);
2383 }
d1310b2e 2384 unlock_page(page);
70dec807
CM
2385 } else {
2386 if (uptodate) {
2387 check_page_uptodate(tree, page);
2388 } else {
2389 ClearPageUptodate(page);
2390 SetPageError(page);
2391 }
d1310b2e 2392 check_page_locked(tree, page);
70dec807 2393 }
4125bf76 2394 } while (bvec <= bvec_end);
d1310b2e
CM
2395
2396 bio_put(bio);
d1310b2e
CM
2397}
2398
88f794ed
MX
2399struct bio *
2400btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2401 gfp_t gfp_flags)
d1310b2e
CM
2402{
2403 struct bio *bio;
2404
2405 bio = bio_alloc(gfp_flags, nr_vecs);
2406
2407 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2408 while (!bio && (nr_vecs /= 2))
2409 bio = bio_alloc(gfp_flags, nr_vecs);
2410 }
2411
2412 if (bio) {
e1c4b745 2413 bio->bi_size = 0;
d1310b2e
CM
2414 bio->bi_bdev = bdev;
2415 bio->bi_sector = first_sector;
2416 }
2417 return bio;
2418}
2419
79787eaa
JM
2420/*
2421 * Since writes are async, they will only return -ENOMEM.
2422 * Reads can return the full range of I/O error conditions.
2423 */
355808c2
JM
2424static int __must_check submit_one_bio(int rw, struct bio *bio,
2425 int mirror_num, unsigned long bio_flags)
d1310b2e 2426{
d1310b2e 2427 int ret = 0;
70dec807
CM
2428 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2429 struct page *page = bvec->bv_page;
2430 struct extent_io_tree *tree = bio->bi_private;
70dec807 2431 u64 start;
70dec807
CM
2432
2433 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
70dec807 2434
902b22f3 2435 bio->bi_private = NULL;
d1310b2e
CM
2436
2437 bio_get(bio);
2438
065631f6 2439 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2440 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2441 mirror_num, bio_flags, start);
0b86a832 2442 else
21adbd5c 2443 btrfsic_submit_bio(rw, bio);
4a54c8c1 2444
d1310b2e
CM
2445 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2446 ret = -EOPNOTSUPP;
2447 bio_put(bio);
2448 return ret;
2449}
2450
3444a972
JM
2451static int merge_bio(struct extent_io_tree *tree, struct page *page,
2452 unsigned long offset, size_t size, struct bio *bio,
2453 unsigned long bio_flags)
2454{
2455 int ret = 0;
2456 if (tree->ops && tree->ops->merge_bio_hook)
2457 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2458 bio_flags);
2459 BUG_ON(ret < 0);
2460 return ret;
2461
2462}
2463
d1310b2e
CM
2464static int submit_extent_page(int rw, struct extent_io_tree *tree,
2465 struct page *page, sector_t sector,
2466 size_t size, unsigned long offset,
2467 struct block_device *bdev,
2468 struct bio **bio_ret,
2469 unsigned long max_pages,
f188591e 2470 bio_end_io_t end_io_func,
c8b97818
CM
2471 int mirror_num,
2472 unsigned long prev_bio_flags,
2473 unsigned long bio_flags)
d1310b2e
CM
2474{
2475 int ret = 0;
2476 struct bio *bio;
2477 int nr;
c8b97818
CM
2478 int contig = 0;
2479 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2480 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2481 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2482
2483 if (bio_ret && *bio_ret) {
2484 bio = *bio_ret;
c8b97818
CM
2485 if (old_compressed)
2486 contig = bio->bi_sector == sector;
2487 else
2488 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2489 sector;
2490
2491 if (prev_bio_flags != bio_flags || !contig ||
3444a972 2492 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2493 bio_add_page(bio, page, page_size, offset) < page_size) {
2494 ret = submit_one_bio(rw, bio, mirror_num,
2495 prev_bio_flags);
79787eaa
JM
2496 if (ret < 0)
2497 return ret;
d1310b2e
CM
2498 bio = NULL;
2499 } else {
2500 return 0;
2501 }
2502 }
c8b97818
CM
2503 if (this_compressed)
2504 nr = BIO_MAX_PAGES;
2505 else
2506 nr = bio_get_nr_vecs(bdev);
2507
88f794ed 2508 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2509 if (!bio)
2510 return -ENOMEM;
70dec807 2511
c8b97818 2512 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2513 bio->bi_end_io = end_io_func;
2514 bio->bi_private = tree;
70dec807 2515
d397712b 2516 if (bio_ret)
d1310b2e 2517 *bio_ret = bio;
d397712b 2518 else
c8b97818 2519 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2520
2521 return ret;
2522}
2523
4f2de97a 2524void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
d1310b2e
CM
2525{
2526 if (!PagePrivate(page)) {
2527 SetPagePrivate(page);
d1310b2e 2528 page_cache_get(page);
4f2de97a
JB
2529 set_page_private(page, (unsigned long)eb);
2530 } else {
2531 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2532 }
2533}
2534
4f2de97a 2535void set_page_extent_mapped(struct page *page)
d1310b2e 2536{
4f2de97a
JB
2537 if (!PagePrivate(page)) {
2538 SetPagePrivate(page);
2539 page_cache_get(page);
2540 set_page_private(page, EXTENT_PAGE_PRIVATE);
2541 }
d1310b2e
CM
2542}
2543
2544/*
2545 * basic readpage implementation. Locked extent state structs are inserted
2546 * into the tree that are removed when the IO is done (by the end_io
2547 * handlers)
79787eaa 2548 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2549 */
2550static int __extent_read_full_page(struct extent_io_tree *tree,
2551 struct page *page,
2552 get_extent_t *get_extent,
c8b97818
CM
2553 struct bio **bio, int mirror_num,
2554 unsigned long *bio_flags)
d1310b2e
CM
2555{
2556 struct inode *inode = page->mapping->host;
2557 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2558 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2559 u64 end;
2560 u64 cur = start;
2561 u64 extent_offset;
2562 u64 last_byte = i_size_read(inode);
2563 u64 block_start;
2564 u64 cur_end;
2565 sector_t sector;
2566 struct extent_map *em;
2567 struct block_device *bdev;
11c65dcc 2568 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2569 int ret;
2570 int nr = 0;
306e16ce 2571 size_t pg_offset = 0;
d1310b2e 2572 size_t iosize;
c8b97818 2573 size_t disk_io_size;
d1310b2e 2574 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2575 unsigned long this_bio_flag = 0;
d1310b2e
CM
2576
2577 set_page_extent_mapped(page);
2578
90a887c9
DM
2579 if (!PageUptodate(page)) {
2580 if (cleancache_get_page(page) == 0) {
2581 BUG_ON(blocksize != PAGE_SIZE);
2582 goto out;
2583 }
2584 }
2585
d1310b2e 2586 end = page_end;
11c65dcc 2587 while (1) {
d0082371 2588 lock_extent(tree, start, end);
11c65dcc
JB
2589 ordered = btrfs_lookup_ordered_extent(inode, start);
2590 if (!ordered)
2591 break;
d0082371 2592 unlock_extent(tree, start, end);
11c65dcc
JB
2593 btrfs_start_ordered_extent(inode, ordered, 1);
2594 btrfs_put_ordered_extent(ordered);
2595 }
d1310b2e 2596
c8b97818
CM
2597 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2598 char *userpage;
2599 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2600
2601 if (zero_offset) {
2602 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2603 userpage = kmap_atomic(page);
c8b97818
CM
2604 memset(userpage + zero_offset, 0, iosize);
2605 flush_dcache_page(page);
7ac687d9 2606 kunmap_atomic(userpage);
c8b97818
CM
2607 }
2608 }
d1310b2e
CM
2609 while (cur <= end) {
2610 if (cur >= last_byte) {
2611 char *userpage;
507903b8
AJ
2612 struct extent_state *cached = NULL;
2613
306e16ce 2614 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2615 userpage = kmap_atomic(page);
306e16ce 2616 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2617 flush_dcache_page(page);
7ac687d9 2618 kunmap_atomic(userpage);
d1310b2e 2619 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2620 &cached, GFP_NOFS);
2621 unlock_extent_cached(tree, cur, cur + iosize - 1,
2622 &cached, GFP_NOFS);
d1310b2e
CM
2623 break;
2624 }
306e16ce 2625 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2626 end - cur + 1, 0);
c704005d 2627 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2628 SetPageError(page);
d0082371 2629 unlock_extent(tree, cur, end);
d1310b2e
CM
2630 break;
2631 }
d1310b2e
CM
2632 extent_offset = cur - em->start;
2633 BUG_ON(extent_map_end(em) <= cur);
2634 BUG_ON(end < cur);
2635
261507a0 2636 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2637 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2638 extent_set_compress_type(&this_bio_flag,
2639 em->compress_type);
2640 }
c8b97818 2641
d1310b2e
CM
2642 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2643 cur_end = min(extent_map_end(em) - 1, end);
2644 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
c8b97818
CM
2645 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2646 disk_io_size = em->block_len;
2647 sector = em->block_start >> 9;
2648 } else {
2649 sector = (em->block_start + extent_offset) >> 9;
2650 disk_io_size = iosize;
2651 }
d1310b2e
CM
2652 bdev = em->bdev;
2653 block_start = em->block_start;
d899e052
YZ
2654 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2655 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2656 free_extent_map(em);
2657 em = NULL;
2658
2659 /* we've found a hole, just zero and go on */
2660 if (block_start == EXTENT_MAP_HOLE) {
2661 char *userpage;
507903b8
AJ
2662 struct extent_state *cached = NULL;
2663
7ac687d9 2664 userpage = kmap_atomic(page);
306e16ce 2665 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2666 flush_dcache_page(page);
7ac687d9 2667 kunmap_atomic(userpage);
d1310b2e
CM
2668
2669 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2670 &cached, GFP_NOFS);
2671 unlock_extent_cached(tree, cur, cur + iosize - 1,
2672 &cached, GFP_NOFS);
d1310b2e 2673 cur = cur + iosize;
306e16ce 2674 pg_offset += iosize;
d1310b2e
CM
2675 continue;
2676 }
2677 /* the get_extent function already copied into the page */
9655d298
CM
2678 if (test_range_bit(tree, cur, cur_end,
2679 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2680 check_page_uptodate(tree, page);
d0082371 2681 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2682 cur = cur + iosize;
306e16ce 2683 pg_offset += iosize;
d1310b2e
CM
2684 continue;
2685 }
70dec807
CM
2686 /* we have an inline extent but it didn't get marked up
2687 * to date. Error out
2688 */
2689 if (block_start == EXTENT_MAP_INLINE) {
2690 SetPageError(page);
d0082371 2691 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2692 cur = cur + iosize;
306e16ce 2693 pg_offset += iosize;
70dec807
CM
2694 continue;
2695 }
d1310b2e
CM
2696
2697 ret = 0;
2698 if (tree->ops && tree->ops->readpage_io_hook) {
2699 ret = tree->ops->readpage_io_hook(page, cur,
2700 cur + iosize - 1);
2701 }
2702 if (!ret) {
89642229
CM
2703 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2704 pnr -= page->index;
d1310b2e 2705 ret = submit_extent_page(READ, tree, page,
306e16ce 2706 sector, disk_io_size, pg_offset,
89642229 2707 bdev, bio, pnr,
c8b97818
CM
2708 end_bio_extent_readpage, mirror_num,
2709 *bio_flags,
2710 this_bio_flag);
79787eaa 2711 BUG_ON(ret == -ENOMEM);
89642229 2712 nr++;
c8b97818 2713 *bio_flags = this_bio_flag;
d1310b2e
CM
2714 }
2715 if (ret)
2716 SetPageError(page);
2717 cur = cur + iosize;
306e16ce 2718 pg_offset += iosize;
d1310b2e 2719 }
90a887c9 2720out:
d1310b2e
CM
2721 if (!nr) {
2722 if (!PageError(page))
2723 SetPageUptodate(page);
2724 unlock_page(page);
2725 }
2726 return 0;
2727}
2728
2729int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2730 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2731{
2732 struct bio *bio = NULL;
c8b97818 2733 unsigned long bio_flags = 0;
d1310b2e
CM
2734 int ret;
2735
8ddc7d9c 2736 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2737 &bio_flags);
d1310b2e 2738 if (bio)
8ddc7d9c 2739 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2740 return ret;
2741}
d1310b2e 2742
11c8349b
CM
2743static noinline void update_nr_written(struct page *page,
2744 struct writeback_control *wbc,
2745 unsigned long nr_written)
2746{
2747 wbc->nr_to_write -= nr_written;
2748 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2749 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2750 page->mapping->writeback_index = page->index + nr_written;
2751}
2752
d1310b2e
CM
2753/*
2754 * the writepage semantics are similar to regular writepage. extent
2755 * records are inserted to lock ranges in the tree, and as dirty areas
2756 * are found, they are marked writeback. Then the lock bits are removed
2757 * and the end_io handler clears the writeback ranges
2758 */
2759static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2760 void *data)
2761{
2762 struct inode *inode = page->mapping->host;
2763 struct extent_page_data *epd = data;
2764 struct extent_io_tree *tree = epd->tree;
2765 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2766 u64 delalloc_start;
2767 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2768 u64 end;
2769 u64 cur = start;
2770 u64 extent_offset;
2771 u64 last_byte = i_size_read(inode);
2772 u64 block_start;
2773 u64 iosize;
2774 sector_t sector;
2c64c53d 2775 struct extent_state *cached_state = NULL;
d1310b2e
CM
2776 struct extent_map *em;
2777 struct block_device *bdev;
2778 int ret;
2779 int nr = 0;
7f3c74fb 2780 size_t pg_offset = 0;
d1310b2e
CM
2781 size_t blocksize;
2782 loff_t i_size = i_size_read(inode);
2783 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2784 u64 nr_delalloc;
2785 u64 delalloc_end;
c8b97818
CM
2786 int page_started;
2787 int compressed;
ffbd517d 2788 int write_flags;
771ed689 2789 unsigned long nr_written = 0;
9e487107 2790 bool fill_delalloc = true;
d1310b2e 2791
ffbd517d 2792 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2793 write_flags = WRITE_SYNC;
ffbd517d
CM
2794 else
2795 write_flags = WRITE;
2796
1abe9b8a 2797 trace___extent_writepage(page, inode, wbc);
2798
d1310b2e 2799 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2800
2801 ClearPageError(page);
2802
7f3c74fb 2803 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2804 if (page->index > end_index ||
7f3c74fb 2805 (page->index == end_index && !pg_offset)) {
39be25cd 2806 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2807 unlock_page(page);
2808 return 0;
2809 }
2810
2811 if (page->index == end_index) {
2812 char *userpage;
2813
7ac687d9 2814 userpage = kmap_atomic(page);
7f3c74fb
CM
2815 memset(userpage + pg_offset, 0,
2816 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2817 kunmap_atomic(userpage);
211c17f5 2818 flush_dcache_page(page);
d1310b2e 2819 }
7f3c74fb 2820 pg_offset = 0;
d1310b2e
CM
2821
2822 set_page_extent_mapped(page);
2823
9e487107
JB
2824 if (!tree->ops || !tree->ops->fill_delalloc)
2825 fill_delalloc = false;
2826
d1310b2e
CM
2827 delalloc_start = start;
2828 delalloc_end = 0;
c8b97818 2829 page_started = 0;
9e487107 2830 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2831 u64 delalloc_to_write = 0;
11c8349b
CM
2832 /*
2833 * make sure the wbc mapping index is at least updated
2834 * to this page.
2835 */
2836 update_nr_written(page, wbc, 0);
2837
d397712b 2838 while (delalloc_end < page_end) {
771ed689 2839 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2840 page,
2841 &delalloc_start,
d1310b2e
CM
2842 &delalloc_end,
2843 128 * 1024 * 1024);
771ed689
CM
2844 if (nr_delalloc == 0) {
2845 delalloc_start = delalloc_end + 1;
2846 continue;
2847 }
013bd4c3
TI
2848 ret = tree->ops->fill_delalloc(inode, page,
2849 delalloc_start,
2850 delalloc_end,
2851 &page_started,
2852 &nr_written);
79787eaa
JM
2853 /* File system has been set read-only */
2854 if (ret) {
2855 SetPageError(page);
2856 goto done;
2857 }
f85d7d6c
CM
2858 /*
2859 * delalloc_end is already one less than the total
2860 * length, so we don't subtract one from
2861 * PAGE_CACHE_SIZE
2862 */
2863 delalloc_to_write += (delalloc_end - delalloc_start +
2864 PAGE_CACHE_SIZE) >>
2865 PAGE_CACHE_SHIFT;
d1310b2e 2866 delalloc_start = delalloc_end + 1;
d1310b2e 2867 }
f85d7d6c
CM
2868 if (wbc->nr_to_write < delalloc_to_write) {
2869 int thresh = 8192;
2870
2871 if (delalloc_to_write < thresh * 2)
2872 thresh = delalloc_to_write;
2873 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2874 thresh);
2875 }
c8b97818 2876
771ed689
CM
2877 /* did the fill delalloc function already unlock and start
2878 * the IO?
2879 */
2880 if (page_started) {
2881 ret = 0;
11c8349b
CM
2882 /*
2883 * we've unlocked the page, so we can't update
2884 * the mapping's writeback index, just update
2885 * nr_to_write.
2886 */
2887 wbc->nr_to_write -= nr_written;
2888 goto done_unlocked;
771ed689 2889 }
c8b97818 2890 }
247e743c 2891 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
2892 ret = tree->ops->writepage_start_hook(page, start,
2893 page_end);
87826df0
JM
2894 if (ret) {
2895 /* Fixup worker will requeue */
2896 if (ret == -EBUSY)
2897 wbc->pages_skipped++;
2898 else
2899 redirty_page_for_writepage(wbc, page);
11c8349b 2900 update_nr_written(page, wbc, nr_written);
247e743c 2901 unlock_page(page);
771ed689 2902 ret = 0;
11c8349b 2903 goto done_unlocked;
247e743c
CM
2904 }
2905 }
2906
11c8349b
CM
2907 /*
2908 * we don't want to touch the inode after unlocking the page,
2909 * so we update the mapping writeback index now
2910 */
2911 update_nr_written(page, wbc, nr_written + 1);
771ed689 2912
d1310b2e 2913 end = page_end;
d1310b2e 2914 if (last_byte <= start) {
e6dcd2dc
CM
2915 if (tree->ops && tree->ops->writepage_end_io_hook)
2916 tree->ops->writepage_end_io_hook(page, start,
2917 page_end, NULL, 1);
d1310b2e
CM
2918 goto done;
2919 }
2920
d1310b2e
CM
2921 blocksize = inode->i_sb->s_blocksize;
2922
2923 while (cur <= end) {
2924 if (cur >= last_byte) {
e6dcd2dc
CM
2925 if (tree->ops && tree->ops->writepage_end_io_hook)
2926 tree->ops->writepage_end_io_hook(page, cur,
2927 page_end, NULL, 1);
d1310b2e
CM
2928 break;
2929 }
7f3c74fb 2930 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 2931 end - cur + 1, 1);
c704005d 2932 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2933 SetPageError(page);
2934 break;
2935 }
2936
2937 extent_offset = cur - em->start;
2938 BUG_ON(extent_map_end(em) <= cur);
2939 BUG_ON(end < cur);
2940 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2941 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2942 sector = (em->block_start + extent_offset) >> 9;
2943 bdev = em->bdev;
2944 block_start = em->block_start;
c8b97818 2945 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
2946 free_extent_map(em);
2947 em = NULL;
2948
c8b97818
CM
2949 /*
2950 * compressed and inline extents are written through other
2951 * paths in the FS
2952 */
2953 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2954 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
2955 /*
2956 * end_io notification does not happen here for
2957 * compressed extents
2958 */
2959 if (!compressed && tree->ops &&
2960 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
2961 tree->ops->writepage_end_io_hook(page, cur,
2962 cur + iosize - 1,
2963 NULL, 1);
c8b97818
CM
2964 else if (compressed) {
2965 /* we don't want to end_page_writeback on
2966 * a compressed extent. this happens
2967 * elsewhere
2968 */
2969 nr++;
2970 }
2971
2972 cur += iosize;
7f3c74fb 2973 pg_offset += iosize;
d1310b2e
CM
2974 continue;
2975 }
d1310b2e
CM
2976 /* leave this out until we have a page_mkwrite call */
2977 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 2978 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 2979 cur = cur + iosize;
7f3c74fb 2980 pg_offset += iosize;
d1310b2e
CM
2981 continue;
2982 }
c8b97818 2983
d1310b2e
CM
2984 if (tree->ops && tree->ops->writepage_io_hook) {
2985 ret = tree->ops->writepage_io_hook(page, cur,
2986 cur + iosize - 1);
2987 } else {
2988 ret = 0;
2989 }
1259ab75 2990 if (ret) {
d1310b2e 2991 SetPageError(page);
1259ab75 2992 } else {
d1310b2e 2993 unsigned long max_nr = end_index + 1;
7f3c74fb 2994
d1310b2e
CM
2995 set_range_writeback(tree, cur, cur + iosize - 1);
2996 if (!PageWriteback(page)) {
d397712b
CM
2997 printk(KERN_ERR "btrfs warning page %lu not "
2998 "writeback, cur %llu end %llu\n",
2999 page->index, (unsigned long long)cur,
d1310b2e
CM
3000 (unsigned long long)end);
3001 }
3002
ffbd517d
CM
3003 ret = submit_extent_page(write_flags, tree, page,
3004 sector, iosize, pg_offset,
3005 bdev, &epd->bio, max_nr,
c8b97818
CM
3006 end_bio_extent_writepage,
3007 0, 0, 0);
d1310b2e
CM
3008 if (ret)
3009 SetPageError(page);
3010 }
3011 cur = cur + iosize;
7f3c74fb 3012 pg_offset += iosize;
d1310b2e
CM
3013 nr++;
3014 }
3015done:
3016 if (nr == 0) {
3017 /* make sure the mapping tag for page dirty gets cleared */
3018 set_page_writeback(page);
3019 end_page_writeback(page);
3020 }
d1310b2e 3021 unlock_page(page);
771ed689 3022
11c8349b
CM
3023done_unlocked:
3024
2c64c53d
CM
3025 /* drop our reference on any cached states */
3026 free_extent_state(cached_state);
d1310b2e
CM
3027 return 0;
3028}
3029
0b32f4bb
JB
3030static int eb_wait(void *word)
3031{
3032 io_schedule();
3033 return 0;
3034}
3035
3036static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3037{
3038 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3039 TASK_UNINTERRUPTIBLE);
3040}
3041
3042static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3043 struct btrfs_fs_info *fs_info,
3044 struct extent_page_data *epd)
3045{
3046 unsigned long i, num_pages;
3047 int flush = 0;
3048 int ret = 0;
3049
3050 if (!btrfs_try_tree_write_lock(eb)) {
3051 flush = 1;
3052 flush_write_bio(epd);
3053 btrfs_tree_lock(eb);
3054 }
3055
3056 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3057 btrfs_tree_unlock(eb);
3058 if (!epd->sync_io)
3059 return 0;
3060 if (!flush) {
3061 flush_write_bio(epd);
3062 flush = 1;
3063 }
a098d8e8
CM
3064 while (1) {
3065 wait_on_extent_buffer_writeback(eb);
3066 btrfs_tree_lock(eb);
3067 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3068 break;
0b32f4bb 3069 btrfs_tree_unlock(eb);
0b32f4bb
JB
3070 }
3071 }
3072
3073 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3074 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3075 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3076 spin_lock(&fs_info->delalloc_lock);
3077 if (fs_info->dirty_metadata_bytes >= eb->len)
3078 fs_info->dirty_metadata_bytes -= eb->len;
3079 else
3080 WARN_ON(1);
3081 spin_unlock(&fs_info->delalloc_lock);
3082 ret = 1;
3083 }
3084
3085 btrfs_tree_unlock(eb);
3086
3087 if (!ret)
3088 return ret;
3089
3090 num_pages = num_extent_pages(eb->start, eb->len);
3091 for (i = 0; i < num_pages; i++) {
3092 struct page *p = extent_buffer_page(eb, i);
3093
3094 if (!trylock_page(p)) {
3095 if (!flush) {
3096 flush_write_bio(epd);
3097 flush = 1;
3098 }
3099 lock_page(p);
3100 }
3101 }
3102
3103 return ret;
3104}
3105
3106static void end_extent_buffer_writeback(struct extent_buffer *eb)
3107{
3108 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3109 smp_mb__after_clear_bit();
3110 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3111}
3112
3113static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3114{
3115 int uptodate = err == 0;
3116 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3117 struct extent_buffer *eb;
3118 int done;
3119
3120 do {
3121 struct page *page = bvec->bv_page;
3122
3123 bvec--;
3124 eb = (struct extent_buffer *)page->private;
3125 BUG_ON(!eb);
3126 done = atomic_dec_and_test(&eb->io_pages);
3127
3128 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3129 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3130 ClearPageUptodate(page);
3131 SetPageError(page);
3132 }
3133
3134 end_page_writeback(page);
3135
3136 if (!done)
3137 continue;
3138
3139 end_extent_buffer_writeback(eb);
3140 } while (bvec >= bio->bi_io_vec);
3141
3142 bio_put(bio);
3143
3144}
3145
3146static int write_one_eb(struct extent_buffer *eb,
3147 struct btrfs_fs_info *fs_info,
3148 struct writeback_control *wbc,
3149 struct extent_page_data *epd)
3150{
3151 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3152 u64 offset = eb->start;
3153 unsigned long i, num_pages;
3154 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
d7dbe9e7 3155 int ret = 0;
0b32f4bb
JB
3156
3157 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3158 num_pages = num_extent_pages(eb->start, eb->len);
3159 atomic_set(&eb->io_pages, num_pages);
3160 for (i = 0; i < num_pages; i++) {
3161 struct page *p = extent_buffer_page(eb, i);
3162
3163 clear_page_dirty_for_io(p);
3164 set_page_writeback(p);
3165 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3166 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3167 -1, end_bio_extent_buffer_writepage,
3168 0, 0, 0);
3169 if (ret) {
3170 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3171 SetPageError(p);
3172 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3173 end_extent_buffer_writeback(eb);
3174 ret = -EIO;
3175 break;
3176 }
3177 offset += PAGE_CACHE_SIZE;
3178 update_nr_written(p, wbc, 1);
3179 unlock_page(p);
3180 }
3181
3182 if (unlikely(ret)) {
3183 for (; i < num_pages; i++) {
3184 struct page *p = extent_buffer_page(eb, i);
3185 unlock_page(p);
3186 }
3187 }
3188
3189 return ret;
3190}
3191
3192int btree_write_cache_pages(struct address_space *mapping,
3193 struct writeback_control *wbc)
3194{
3195 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3196 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3197 struct extent_buffer *eb, *prev_eb = NULL;
3198 struct extent_page_data epd = {
3199 .bio = NULL,
3200 .tree = tree,
3201 .extent_locked = 0,
3202 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3203 };
3204 int ret = 0;
3205 int done = 0;
3206 int nr_to_write_done = 0;
3207 struct pagevec pvec;
3208 int nr_pages;
3209 pgoff_t index;
3210 pgoff_t end; /* Inclusive */
3211 int scanned = 0;
3212 int tag;
3213
3214 pagevec_init(&pvec, 0);
3215 if (wbc->range_cyclic) {
3216 index = mapping->writeback_index; /* Start from prev offset */
3217 end = -1;
3218 } else {
3219 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3220 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3221 scanned = 1;
3222 }
3223 if (wbc->sync_mode == WB_SYNC_ALL)
3224 tag = PAGECACHE_TAG_TOWRITE;
3225 else
3226 tag = PAGECACHE_TAG_DIRTY;
3227retry:
3228 if (wbc->sync_mode == WB_SYNC_ALL)
3229 tag_pages_for_writeback(mapping, index, end);
3230 while (!done && !nr_to_write_done && (index <= end) &&
3231 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3232 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3233 unsigned i;
3234
3235 scanned = 1;
3236 for (i = 0; i < nr_pages; i++) {
3237 struct page *page = pvec.pages[i];
3238
3239 if (!PagePrivate(page))
3240 continue;
3241
3242 if (!wbc->range_cyclic && page->index > end) {
3243 done = 1;
3244 break;
3245 }
3246
3247 eb = (struct extent_buffer *)page->private;
3248 if (!eb) {
3249 WARN_ON(1);
3250 continue;
3251 }
3252
3253 if (eb == prev_eb)
3254 continue;
3255
3256 if (!atomic_inc_not_zero(&eb->refs)) {
3257 WARN_ON(1);
3258 continue;
3259 }
3260
3261 prev_eb = eb;
3262 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3263 if (!ret) {
3264 free_extent_buffer(eb);
3265 continue;
3266 }
3267
3268 ret = write_one_eb(eb, fs_info, wbc, &epd);
3269 if (ret) {
3270 done = 1;
3271 free_extent_buffer(eb);
3272 break;
3273 }
3274 free_extent_buffer(eb);
3275
3276 /*
3277 * the filesystem may choose to bump up nr_to_write.
3278 * We have to make sure to honor the new nr_to_write
3279 * at any time
3280 */
3281 nr_to_write_done = wbc->nr_to_write <= 0;
3282 }
3283 pagevec_release(&pvec);
3284 cond_resched();
3285 }
3286 if (!scanned && !done) {
3287 /*
3288 * We hit the last page and there is more work to be done: wrap
3289 * back to the start of the file
3290 */
3291 scanned = 1;
3292 index = 0;
3293 goto retry;
3294 }
3295 flush_write_bio(&epd);
3296 return ret;
3297}
3298
d1310b2e 3299/**
4bef0848 3300 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3301 * @mapping: address space structure to write
3302 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3303 * @writepage: function called for each page
3304 * @data: data passed to writepage function
3305 *
3306 * If a page is already under I/O, write_cache_pages() skips it, even
3307 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3308 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3309 * and msync() need to guarantee that all the data which was dirty at the time
3310 * the call was made get new I/O started against them. If wbc->sync_mode is
3311 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3312 * existing IO to complete.
3313 */
b2950863 3314static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3315 struct address_space *mapping,
3316 struct writeback_control *wbc,
d2c3f4f6
CM
3317 writepage_t writepage, void *data,
3318 void (*flush_fn)(void *))
d1310b2e 3319{
d1310b2e
CM
3320 int ret = 0;
3321 int done = 0;
f85d7d6c 3322 int nr_to_write_done = 0;
d1310b2e
CM
3323 struct pagevec pvec;
3324 int nr_pages;
3325 pgoff_t index;
3326 pgoff_t end; /* Inclusive */
3327 int scanned = 0;
f7aaa06b 3328 int tag;
d1310b2e 3329
d1310b2e
CM
3330 pagevec_init(&pvec, 0);
3331 if (wbc->range_cyclic) {
3332 index = mapping->writeback_index; /* Start from prev offset */
3333 end = -1;
3334 } else {
3335 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3336 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3337 scanned = 1;
3338 }
f7aaa06b
JB
3339 if (wbc->sync_mode == WB_SYNC_ALL)
3340 tag = PAGECACHE_TAG_TOWRITE;
3341 else
3342 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3343retry:
f7aaa06b
JB
3344 if (wbc->sync_mode == WB_SYNC_ALL)
3345 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3346 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3347 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3348 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3349 unsigned i;
3350
3351 scanned = 1;
3352 for (i = 0; i < nr_pages; i++) {
3353 struct page *page = pvec.pages[i];
3354
3355 /*
3356 * At this point we hold neither mapping->tree_lock nor
3357 * lock on the page itself: the page may be truncated or
3358 * invalidated (changing page->mapping to NULL), or even
3359 * swizzled back from swapper_space to tmpfs file
3360 * mapping
3361 */
01d658f2
CM
3362 if (tree->ops &&
3363 tree->ops->write_cache_pages_lock_hook) {
3364 tree->ops->write_cache_pages_lock_hook(page,
3365 data, flush_fn);
3366 } else {
3367 if (!trylock_page(page)) {
3368 flush_fn(data);
3369 lock_page(page);
3370 }
3371 }
d1310b2e
CM
3372
3373 if (unlikely(page->mapping != mapping)) {
3374 unlock_page(page);
3375 continue;
3376 }
3377
3378 if (!wbc->range_cyclic && page->index > end) {
3379 done = 1;
3380 unlock_page(page);
3381 continue;
3382 }
3383
d2c3f4f6 3384 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3385 if (PageWriteback(page))
3386 flush_fn(data);
d1310b2e 3387 wait_on_page_writeback(page);
d2c3f4f6 3388 }
d1310b2e
CM
3389
3390 if (PageWriteback(page) ||
3391 !clear_page_dirty_for_io(page)) {
3392 unlock_page(page);
3393 continue;
3394 }
3395
3396 ret = (*writepage)(page, wbc, data);
3397
3398 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3399 unlock_page(page);
3400 ret = 0;
3401 }
f85d7d6c 3402 if (ret)
d1310b2e 3403 done = 1;
f85d7d6c
CM
3404
3405 /*
3406 * the filesystem may choose to bump up nr_to_write.
3407 * We have to make sure to honor the new nr_to_write
3408 * at any time
3409 */
3410 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3411 }
3412 pagevec_release(&pvec);
3413 cond_resched();
3414 }
3415 if (!scanned && !done) {
3416 /*
3417 * We hit the last page and there is more work to be done: wrap
3418 * back to the start of the file
3419 */
3420 scanned = 1;
3421 index = 0;
3422 goto retry;
3423 }
d1310b2e
CM
3424 return ret;
3425}
d1310b2e 3426
ffbd517d 3427static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3428{
d2c3f4f6 3429 if (epd->bio) {
355808c2
JM
3430 int rw = WRITE;
3431 int ret;
3432
ffbd517d 3433 if (epd->sync_io)
355808c2
JM
3434 rw = WRITE_SYNC;
3435
3436 ret = submit_one_bio(rw, epd->bio, 0, 0);
79787eaa 3437 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3438 epd->bio = NULL;
3439 }
3440}
3441
ffbd517d
CM
3442static noinline void flush_write_bio(void *data)
3443{
3444 struct extent_page_data *epd = data;
3445 flush_epd_write_bio(epd);
3446}
3447
d1310b2e
CM
3448int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3449 get_extent_t *get_extent,
3450 struct writeback_control *wbc)
3451{
3452 int ret;
d1310b2e
CM
3453 struct extent_page_data epd = {
3454 .bio = NULL,
3455 .tree = tree,
3456 .get_extent = get_extent,
771ed689 3457 .extent_locked = 0,
ffbd517d 3458 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 3459 };
d1310b2e 3460
d1310b2e
CM
3461 ret = __extent_writepage(page, wbc, &epd);
3462
ffbd517d 3463 flush_epd_write_bio(&epd);
d1310b2e
CM
3464 return ret;
3465}
d1310b2e 3466
771ed689
CM
3467int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3468 u64 start, u64 end, get_extent_t *get_extent,
3469 int mode)
3470{
3471 int ret = 0;
3472 struct address_space *mapping = inode->i_mapping;
3473 struct page *page;
3474 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3475 PAGE_CACHE_SHIFT;
3476
3477 struct extent_page_data epd = {
3478 .bio = NULL,
3479 .tree = tree,
3480 .get_extent = get_extent,
3481 .extent_locked = 1,
ffbd517d 3482 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
3483 };
3484 struct writeback_control wbc_writepages = {
771ed689 3485 .sync_mode = mode,
771ed689
CM
3486 .nr_to_write = nr_pages * 2,
3487 .range_start = start,
3488 .range_end = end + 1,
3489 };
3490
d397712b 3491 while (start <= end) {
771ed689
CM
3492 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3493 if (clear_page_dirty_for_io(page))
3494 ret = __extent_writepage(page, &wbc_writepages, &epd);
3495 else {
3496 if (tree->ops && tree->ops->writepage_end_io_hook)
3497 tree->ops->writepage_end_io_hook(page, start,
3498 start + PAGE_CACHE_SIZE - 1,
3499 NULL, 1);
3500 unlock_page(page);
3501 }
3502 page_cache_release(page);
3503 start += PAGE_CACHE_SIZE;
3504 }
3505
ffbd517d 3506 flush_epd_write_bio(&epd);
771ed689
CM
3507 return ret;
3508}
d1310b2e
CM
3509
3510int extent_writepages(struct extent_io_tree *tree,
3511 struct address_space *mapping,
3512 get_extent_t *get_extent,
3513 struct writeback_control *wbc)
3514{
3515 int ret = 0;
3516 struct extent_page_data epd = {
3517 .bio = NULL,
3518 .tree = tree,
3519 .get_extent = get_extent,
771ed689 3520 .extent_locked = 0,
ffbd517d 3521 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3522 };
3523
4bef0848 3524 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3525 __extent_writepage, &epd,
3526 flush_write_bio);
ffbd517d 3527 flush_epd_write_bio(&epd);
d1310b2e
CM
3528 return ret;
3529}
d1310b2e
CM
3530
3531int extent_readpages(struct extent_io_tree *tree,
3532 struct address_space *mapping,
3533 struct list_head *pages, unsigned nr_pages,
3534 get_extent_t get_extent)
3535{
3536 struct bio *bio = NULL;
3537 unsigned page_idx;
c8b97818 3538 unsigned long bio_flags = 0;
d1310b2e 3539
d1310b2e
CM
3540 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3541 struct page *page = list_entry(pages->prev, struct page, lru);
3542
3543 prefetchw(&page->flags);
3544 list_del(&page->lru);
28ecb609 3545 if (!add_to_page_cache_lru(page, mapping,
43e817a1 3546 page->index, GFP_NOFS)) {
f188591e 3547 __extent_read_full_page(tree, page, get_extent,
c8b97818 3548 &bio, 0, &bio_flags);
d1310b2e
CM
3549 }
3550 page_cache_release(page);
3551 }
d1310b2e
CM
3552 BUG_ON(!list_empty(pages));
3553 if (bio)
79787eaa 3554 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3555 return 0;
3556}
d1310b2e
CM
3557
3558/*
3559 * basic invalidatepage code, this waits on any locked or writeback
3560 * ranges corresponding to the page, and then deletes any extent state
3561 * records from the tree
3562 */
3563int extent_invalidatepage(struct extent_io_tree *tree,
3564 struct page *page, unsigned long offset)
3565{
2ac55d41 3566 struct extent_state *cached_state = NULL;
d1310b2e
CM
3567 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3568 u64 end = start + PAGE_CACHE_SIZE - 1;
3569 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3570
d397712b 3571 start += (offset + blocksize - 1) & ~(blocksize - 1);
d1310b2e
CM
3572 if (start > end)
3573 return 0;
3574
d0082371 3575 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3576 wait_on_page_writeback(page);
d1310b2e 3577 clear_extent_bit(tree, start, end,
32c00aff
JB
3578 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3579 EXTENT_DO_ACCOUNTING,
2ac55d41 3580 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3581 return 0;
3582}
d1310b2e 3583
7b13b7b1
CM
3584/*
3585 * a helper for releasepage, this tests for areas of the page that
3586 * are locked or under IO and drops the related state bits if it is safe
3587 * to drop the page.
3588 */
3589int try_release_extent_state(struct extent_map_tree *map,
3590 struct extent_io_tree *tree, struct page *page,
3591 gfp_t mask)
3592{
3593 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3594 u64 end = start + PAGE_CACHE_SIZE - 1;
3595 int ret = 1;
3596
211f90e6 3597 if (test_range_bit(tree, start, end,
8b62b72b 3598 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3599 ret = 0;
3600 else {
3601 if ((mask & GFP_NOFS) == GFP_NOFS)
3602 mask = GFP_NOFS;
11ef160f
CM
3603 /*
3604 * at this point we can safely clear everything except the
3605 * locked bit and the nodatasum bit
3606 */
e3f24cc5 3607 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3608 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3609 0, 0, NULL, mask);
e3f24cc5
CM
3610
3611 /* if clear_extent_bit failed for enomem reasons,
3612 * we can't allow the release to continue.
3613 */
3614 if (ret < 0)
3615 ret = 0;
3616 else
3617 ret = 1;
7b13b7b1
CM
3618 }
3619 return ret;
3620}
7b13b7b1 3621
d1310b2e
CM
3622/*
3623 * a helper for releasepage. As long as there are no locked extents
3624 * in the range corresponding to the page, both state records and extent
3625 * map records are removed
3626 */
3627int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3628 struct extent_io_tree *tree, struct page *page,
3629 gfp_t mask)
d1310b2e
CM
3630{
3631 struct extent_map *em;
3632 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3633 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3634
70dec807
CM
3635 if ((mask & __GFP_WAIT) &&
3636 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3637 u64 len;
70dec807 3638 while (start <= end) {
39b5637f 3639 len = end - start + 1;
890871be 3640 write_lock(&map->lock);
39b5637f 3641 em = lookup_extent_mapping(map, start, len);
285190d9 3642 if (!em) {
890871be 3643 write_unlock(&map->lock);
70dec807
CM
3644 break;
3645 }
7f3c74fb
CM
3646 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3647 em->start != start) {
890871be 3648 write_unlock(&map->lock);
70dec807
CM
3649 free_extent_map(em);
3650 break;
3651 }
3652 if (!test_range_bit(tree, em->start,
3653 extent_map_end(em) - 1,
8b62b72b 3654 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3655 0, NULL)) {
70dec807
CM
3656 remove_extent_mapping(map, em);
3657 /* once for the rb tree */
3658 free_extent_map(em);
3659 }
3660 start = extent_map_end(em);
890871be 3661 write_unlock(&map->lock);
70dec807
CM
3662
3663 /* once for us */
d1310b2e
CM
3664 free_extent_map(em);
3665 }
d1310b2e 3666 }
7b13b7b1 3667 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3668}
d1310b2e 3669
ec29ed5b
CM
3670/*
3671 * helper function for fiemap, which doesn't want to see any holes.
3672 * This maps until we find something past 'last'
3673 */
3674static struct extent_map *get_extent_skip_holes(struct inode *inode,
3675 u64 offset,
3676 u64 last,
3677 get_extent_t *get_extent)
3678{
3679 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3680 struct extent_map *em;
3681 u64 len;
3682
3683 if (offset >= last)
3684 return NULL;
3685
3686 while(1) {
3687 len = last - offset;
3688 if (len == 0)
3689 break;
3690 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3691 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3692 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3693 return em;
3694
3695 /* if this isn't a hole return it */
3696 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3697 em->block_start != EXTENT_MAP_HOLE) {
3698 return em;
3699 }
3700
3701 /* this is a hole, advance to the next extent */
3702 offset = extent_map_end(em);
3703 free_extent_map(em);
3704 if (offset >= last)
3705 break;
3706 }
3707 return NULL;
3708}
3709
1506fcc8
YS
3710int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3711 __u64 start, __u64 len, get_extent_t *get_extent)
3712{
975f84fe 3713 int ret = 0;
1506fcc8
YS
3714 u64 off = start;
3715 u64 max = start + len;
3716 u32 flags = 0;
975f84fe
JB
3717 u32 found_type;
3718 u64 last;
ec29ed5b 3719 u64 last_for_get_extent = 0;
1506fcc8 3720 u64 disko = 0;
ec29ed5b 3721 u64 isize = i_size_read(inode);
975f84fe 3722 struct btrfs_key found_key;
1506fcc8 3723 struct extent_map *em = NULL;
2ac55d41 3724 struct extent_state *cached_state = NULL;
975f84fe
JB
3725 struct btrfs_path *path;
3726 struct btrfs_file_extent_item *item;
1506fcc8 3727 int end = 0;
ec29ed5b
CM
3728 u64 em_start = 0;
3729 u64 em_len = 0;
3730 u64 em_end = 0;
1506fcc8 3731 unsigned long emflags;
1506fcc8
YS
3732
3733 if (len == 0)
3734 return -EINVAL;
3735
975f84fe
JB
3736 path = btrfs_alloc_path();
3737 if (!path)
3738 return -ENOMEM;
3739 path->leave_spinning = 1;
3740
4d479cf0
JB
3741 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3742 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3743
ec29ed5b
CM
3744 /*
3745 * lookup the last file extent. We're not using i_size here
3746 * because there might be preallocation past i_size
3747 */
975f84fe 3748 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3749 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3750 if (ret < 0) {
3751 btrfs_free_path(path);
3752 return ret;
3753 }
3754 WARN_ON(!ret);
3755 path->slots[0]--;
3756 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3757 struct btrfs_file_extent_item);
3758 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3759 found_type = btrfs_key_type(&found_key);
3760
ec29ed5b 3761 /* No extents, but there might be delalloc bits */
33345d01 3762 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3763 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3764 /* have to trust i_size as the end */
3765 last = (u64)-1;
3766 last_for_get_extent = isize;
3767 } else {
3768 /*
3769 * remember the start of the last extent. There are a
3770 * bunch of different factors that go into the length of the
3771 * extent, so its much less complex to remember where it started
3772 */
3773 last = found_key.offset;
3774 last_for_get_extent = last + 1;
975f84fe 3775 }
975f84fe
JB
3776 btrfs_free_path(path);
3777
ec29ed5b
CM
3778 /*
3779 * we might have some extents allocated but more delalloc past those
3780 * extents. so, we trust isize unless the start of the last extent is
3781 * beyond isize
3782 */
3783 if (last < isize) {
3784 last = (u64)-1;
3785 last_for_get_extent = isize;
3786 }
3787
2ac55d41 3788 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
d0082371 3789 &cached_state);
ec29ed5b 3790
4d479cf0 3791 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3792 get_extent);
1506fcc8
YS
3793 if (!em)
3794 goto out;
3795 if (IS_ERR(em)) {
3796 ret = PTR_ERR(em);
3797 goto out;
3798 }
975f84fe 3799
1506fcc8 3800 while (!end) {
ea8efc74
CM
3801 u64 offset_in_extent;
3802
3803 /* break if the extent we found is outside the range */
3804 if (em->start >= max || extent_map_end(em) < off)
3805 break;
3806
3807 /*
3808 * get_extent may return an extent that starts before our
3809 * requested range. We have to make sure the ranges
3810 * we return to fiemap always move forward and don't
3811 * overlap, so adjust the offsets here
3812 */
3813 em_start = max(em->start, off);
1506fcc8 3814
ea8efc74
CM
3815 /*
3816 * record the offset from the start of the extent
3817 * for adjusting the disk offset below
3818 */
3819 offset_in_extent = em_start - em->start;
ec29ed5b 3820 em_end = extent_map_end(em);
ea8efc74 3821 em_len = em_end - em_start;
ec29ed5b 3822 emflags = em->flags;
1506fcc8
YS
3823 disko = 0;
3824 flags = 0;
3825
ea8efc74
CM
3826 /*
3827 * bump off for our next call to get_extent
3828 */
3829 off = extent_map_end(em);
3830 if (off >= max)
3831 end = 1;
3832
93dbfad7 3833 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
3834 end = 1;
3835 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 3836 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
3837 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3838 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 3839 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
3840 flags |= (FIEMAP_EXTENT_DELALLOC |
3841 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 3842 } else {
ea8efc74 3843 disko = em->block_start + offset_in_extent;
1506fcc8
YS
3844 }
3845 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3846 flags |= FIEMAP_EXTENT_ENCODED;
3847
1506fcc8
YS
3848 free_extent_map(em);
3849 em = NULL;
ec29ed5b
CM
3850 if ((em_start >= last) || em_len == (u64)-1 ||
3851 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
3852 flags |= FIEMAP_EXTENT_LAST;
3853 end = 1;
3854 }
3855
ec29ed5b
CM
3856 /* now scan forward to see if this is really the last extent. */
3857 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3858 get_extent);
3859 if (IS_ERR(em)) {
3860 ret = PTR_ERR(em);
3861 goto out;
3862 }
3863 if (!em) {
975f84fe
JB
3864 flags |= FIEMAP_EXTENT_LAST;
3865 end = 1;
3866 }
ec29ed5b
CM
3867 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3868 em_len, flags);
3869 if (ret)
3870 goto out_free;
1506fcc8
YS
3871 }
3872out_free:
3873 free_extent_map(em);
3874out:
2ac55d41
JB
3875 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3876 &cached_state, GFP_NOFS);
1506fcc8
YS
3877 return ret;
3878}
3879
4a54c8c1 3880inline struct page *extent_buffer_page(struct extent_buffer *eb,
d1310b2e
CM
3881 unsigned long i)
3882{
727011e0 3883 return eb->pages[i];
d1310b2e
CM
3884}
3885
4a54c8c1 3886inline unsigned long num_extent_pages(u64 start, u64 len)
728131d8 3887{
6af118ce
CM
3888 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3889 (start >> PAGE_CACHE_SHIFT);
728131d8
CM
3890}
3891
727011e0
CM
3892static void __free_extent_buffer(struct extent_buffer *eb)
3893{
3894#if LEAK_DEBUG
3895 unsigned long flags;
3896 spin_lock_irqsave(&leak_lock, flags);
3897 list_del(&eb->leak_list);
3898 spin_unlock_irqrestore(&leak_lock, flags);
3899#endif
3900 if (eb->pages && eb->pages != eb->inline_pages)
3901 kfree(eb->pages);
3902 kmem_cache_free(extent_buffer_cache, eb);
3903}
3904
d1310b2e
CM
3905static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3906 u64 start,
3907 unsigned long len,
3908 gfp_t mask)
3909{
3910 struct extent_buffer *eb = NULL;
3935127c 3911#if LEAK_DEBUG
2d2ae547 3912 unsigned long flags;
4bef0848 3913#endif
d1310b2e 3914
d1310b2e 3915 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
3916 if (eb == NULL)
3917 return NULL;
d1310b2e
CM
3918 eb->start = start;
3919 eb->len = len;
4f2de97a 3920 eb->tree = tree;
bd681513
CM
3921 rwlock_init(&eb->lock);
3922 atomic_set(&eb->write_locks, 0);
3923 atomic_set(&eb->read_locks, 0);
3924 atomic_set(&eb->blocking_readers, 0);
3925 atomic_set(&eb->blocking_writers, 0);
3926 atomic_set(&eb->spinning_readers, 0);
3927 atomic_set(&eb->spinning_writers, 0);
5b25f70f 3928 eb->lock_nested = 0;
bd681513
CM
3929 init_waitqueue_head(&eb->write_lock_wq);
3930 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 3931
3935127c 3932#if LEAK_DEBUG
2d2ae547
CM
3933 spin_lock_irqsave(&leak_lock, flags);
3934 list_add(&eb->leak_list, &buffers);
3935 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 3936#endif
3083ee2e 3937 spin_lock_init(&eb->refs_lock);
d1310b2e 3938 atomic_set(&eb->refs, 1);
0b32f4bb 3939 atomic_set(&eb->io_pages, 0);
727011e0
CM
3940
3941 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3942 struct page **pages;
3943 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3944 PAGE_CACHE_SHIFT;
3945 pages = kzalloc(num_pages, mask);
3946 if (!pages) {
3947 __free_extent_buffer(eb);
3948 return NULL;
3949 }
3950 eb->pages = pages;
3951 } else {
3952 eb->pages = eb->inline_pages;
3953 }
d1310b2e
CM
3954
3955 return eb;
3956}
3957
0b32f4bb 3958static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 3959{
0b32f4bb
JB
3960 return (atomic_read(&eb->io_pages) ||
3961 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3962 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
3963}
3964
897ca6e9
MX
3965/*
3966 * Helper for releasing extent buffer page.
3967 */
3968static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3969 unsigned long start_idx)
3970{
3971 unsigned long index;
39bab87b 3972 unsigned long num_pages;
897ca6e9
MX
3973 struct page *page;
3974
0b32f4bb 3975 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 3976
39bab87b
WSH
3977 num_pages = num_extent_pages(eb->start, eb->len);
3978 index = start_idx + num_pages;
897ca6e9
MX
3979 if (start_idx >= index)
3980 return;
3981
3982 do {
3983 index--;
3984 page = extent_buffer_page(eb, index);
4f2de97a
JB
3985 if (page) {
3986 spin_lock(&page->mapping->private_lock);
3987 /*
3988 * We do this since we'll remove the pages after we've
3989 * removed the eb from the radix tree, so we could race
3990 * and have this page now attached to the new eb. So
3991 * only clear page_private if it's still connected to
3992 * this eb.
3993 */
3994 if (PagePrivate(page) &&
3995 page->private == (unsigned long)eb) {
0b32f4bb 3996 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
3997 BUG_ON(PageDirty(page));
3998 BUG_ON(PageWriteback(page));
4f2de97a
JB
3999 /*
4000 * We need to make sure we haven't be attached
4001 * to a new eb.
4002 */
4003 ClearPagePrivate(page);
4004 set_page_private(page, 0);
4005 /* One for the page private */
4006 page_cache_release(page);
4007 }
4008 spin_unlock(&page->mapping->private_lock);
4009
4010 /* One for when we alloced the page */
897ca6e9 4011 page_cache_release(page);
4f2de97a 4012 }
897ca6e9
MX
4013 } while (index != start_idx);
4014}
4015
4016/*
4017 * Helper for releasing the extent buffer.
4018 */
4019static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4020{
4021 btrfs_release_extent_buffer_page(eb, 0);
4022 __free_extent_buffer(eb);
4023}
4024
0b32f4bb
JB
4025static void check_buffer_tree_ref(struct extent_buffer *eb)
4026{
4027 /* the ref bit is tricky. We have to make sure it is set
4028 * if we have the buffer dirty. Otherwise the
4029 * code to free a buffer can end up dropping a dirty
4030 * page
4031 *
4032 * Once the ref bit is set, it won't go away while the
4033 * buffer is dirty or in writeback, and it also won't
4034 * go away while we have the reference count on the
4035 * eb bumped.
4036 *
4037 * We can't just set the ref bit without bumping the
4038 * ref on the eb because free_extent_buffer might
4039 * see the ref bit and try to clear it. If this happens
4040 * free_extent_buffer might end up dropping our original
4041 * ref by mistake and freeing the page before we are able
4042 * to add one more ref.
4043 *
4044 * So bump the ref count first, then set the bit. If someone
4045 * beat us to it, drop the ref we added.
4046 */
4047 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4048 atomic_inc(&eb->refs);
4049 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4050 atomic_dec(&eb->refs);
4051 }
4052}
4053
5df4235e
JB
4054static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4055{
4056 unsigned long num_pages, i;
4057
0b32f4bb
JB
4058 check_buffer_tree_ref(eb);
4059
5df4235e
JB
4060 num_pages = num_extent_pages(eb->start, eb->len);
4061 for (i = 0; i < num_pages; i++) {
4062 struct page *p = extent_buffer_page(eb, i);
4063 mark_page_accessed(p);
4064 }
4065}
4066
d1310b2e 4067struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4068 u64 start, unsigned long len)
d1310b2e
CM
4069{
4070 unsigned long num_pages = num_extent_pages(start, len);
4071 unsigned long i;
4072 unsigned long index = start >> PAGE_CACHE_SHIFT;
4073 struct extent_buffer *eb;
6af118ce 4074 struct extent_buffer *exists = NULL;
d1310b2e
CM
4075 struct page *p;
4076 struct address_space *mapping = tree->mapping;
4077 int uptodate = 1;
19fe0a8b 4078 int ret;
d1310b2e 4079
19fe0a8b
MX
4080 rcu_read_lock();
4081 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4082 if (eb && atomic_inc_not_zero(&eb->refs)) {
4083 rcu_read_unlock();
5df4235e 4084 mark_extent_buffer_accessed(eb);
6af118ce
CM
4085 return eb;
4086 }
19fe0a8b 4087 rcu_read_unlock();
6af118ce 4088
ba144192 4089 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4090 if (!eb)
d1310b2e
CM
4091 return NULL;
4092
727011e0 4093 for (i = 0; i < num_pages; i++, index++) {
a6591715 4094 p = find_or_create_page(mapping, index, GFP_NOFS);
d1310b2e
CM
4095 if (!p) {
4096 WARN_ON(1);
6af118ce 4097 goto free_eb;
d1310b2e 4098 }
4f2de97a
JB
4099
4100 spin_lock(&mapping->private_lock);
4101 if (PagePrivate(p)) {
4102 /*
4103 * We could have already allocated an eb for this page
4104 * and attached one so lets see if we can get a ref on
4105 * the existing eb, and if we can we know it's good and
4106 * we can just return that one, else we know we can just
4107 * overwrite page->private.
4108 */
4109 exists = (struct extent_buffer *)p->private;
4110 if (atomic_inc_not_zero(&exists->refs)) {
4111 spin_unlock(&mapping->private_lock);
4112 unlock_page(p);
17de39ac 4113 page_cache_release(p);
5df4235e 4114 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4115 goto free_eb;
4116 }
4117
0b32f4bb 4118 /*
4f2de97a
JB
4119 * Do this so attach doesn't complain and we need to
4120 * drop the ref the old guy had.
4121 */
4122 ClearPagePrivate(p);
0b32f4bb 4123 WARN_ON(PageDirty(p));
4f2de97a 4124 page_cache_release(p);
d1310b2e 4125 }
4f2de97a
JB
4126 attach_extent_buffer_page(eb, p);
4127 spin_unlock(&mapping->private_lock);
0b32f4bb 4128 WARN_ON(PageDirty(p));
d1310b2e 4129 mark_page_accessed(p);
727011e0 4130 eb->pages[i] = p;
d1310b2e
CM
4131 if (!PageUptodate(p))
4132 uptodate = 0;
eb14ab8e
CM
4133
4134 /*
4135 * see below about how we avoid a nasty race with release page
4136 * and why we unlock later
4137 */
d1310b2e
CM
4138 }
4139 if (uptodate)
b4ce94de 4140 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4141again:
19fe0a8b
MX
4142 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4143 if (ret)
4144 goto free_eb;
4145
6af118ce 4146 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4147 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4148 if (ret == -EEXIST) {
4149 exists = radix_tree_lookup(&tree->buffer,
4150 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4151 if (!atomic_inc_not_zero(&exists->refs)) {
4152 spin_unlock(&tree->buffer_lock);
4153 radix_tree_preload_end();
115391d2
JB
4154 exists = NULL;
4155 goto again;
4156 }
6af118ce 4157 spin_unlock(&tree->buffer_lock);
19fe0a8b 4158 radix_tree_preload_end();
5df4235e 4159 mark_extent_buffer_accessed(exists);
6af118ce
CM
4160 goto free_eb;
4161 }
6af118ce 4162 /* add one reference for the tree */
3083ee2e 4163 spin_lock(&eb->refs_lock);
0b32f4bb 4164 check_buffer_tree_ref(eb);
3083ee2e 4165 spin_unlock(&eb->refs_lock);
f044ba78 4166 spin_unlock(&tree->buffer_lock);
19fe0a8b 4167 radix_tree_preload_end();
eb14ab8e
CM
4168
4169 /*
4170 * there is a race where release page may have
4171 * tried to find this extent buffer in the radix
4172 * but failed. It will tell the VM it is safe to
4173 * reclaim the, and it will clear the page private bit.
4174 * We must make sure to set the page private bit properly
4175 * after the extent buffer is in the radix tree so
4176 * it doesn't get lost
4177 */
727011e0
CM
4178 SetPageChecked(eb->pages[0]);
4179 for (i = 1; i < num_pages; i++) {
4180 p = extent_buffer_page(eb, i);
727011e0
CM
4181 ClearPageChecked(p);
4182 unlock_page(p);
4183 }
4184 unlock_page(eb->pages[0]);
d1310b2e
CM
4185 return eb;
4186
6af118ce 4187free_eb:
727011e0
CM
4188 for (i = 0; i < num_pages; i++) {
4189 if (eb->pages[i])
4190 unlock_page(eb->pages[i]);
4191 }
eb14ab8e 4192
17de39ac 4193 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4194 btrfs_release_extent_buffer(eb);
6af118ce 4195 return exists;
d1310b2e 4196}
d1310b2e
CM
4197
4198struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4199 u64 start, unsigned long len)
d1310b2e 4200{
d1310b2e 4201 struct extent_buffer *eb;
d1310b2e 4202
19fe0a8b
MX
4203 rcu_read_lock();
4204 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4205 if (eb && atomic_inc_not_zero(&eb->refs)) {
4206 rcu_read_unlock();
5df4235e 4207 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4208 return eb;
4209 }
4210 rcu_read_unlock();
0f9dd46c 4211
19fe0a8b 4212 return NULL;
d1310b2e 4213}
d1310b2e 4214
3083ee2e
JB
4215static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4216{
4217 struct extent_buffer *eb =
4218 container_of(head, struct extent_buffer, rcu_head);
4219
4220 __free_extent_buffer(eb);
4221}
4222
3083ee2e
JB
4223/* Expects to have eb->eb_lock already held */
4224static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4225{
4226 WARN_ON(atomic_read(&eb->refs) == 0);
4227 if (atomic_dec_and_test(&eb->refs)) {
4228 struct extent_io_tree *tree = eb->tree;
3083ee2e
JB
4229
4230 spin_unlock(&eb->refs_lock);
4231
3083ee2e
JB
4232 spin_lock(&tree->buffer_lock);
4233 radix_tree_delete(&tree->buffer,
4234 eb->start >> PAGE_CACHE_SHIFT);
4235 spin_unlock(&tree->buffer_lock);
4236
4237 /* Should be safe to release our pages at this point */
4238 btrfs_release_extent_buffer_page(eb, 0);
4239
4240 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4241 return;
4242 }
4243 spin_unlock(&eb->refs_lock);
4244}
4245
d1310b2e
CM
4246void free_extent_buffer(struct extent_buffer *eb)
4247{
d1310b2e
CM
4248 if (!eb)
4249 return;
4250
3083ee2e
JB
4251 spin_lock(&eb->refs_lock);
4252 if (atomic_read(&eb->refs) == 2 &&
4253 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4254 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4255 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4256 atomic_dec(&eb->refs);
4257
4258 /*
4259 * I know this is terrible, but it's temporary until we stop tracking
4260 * the uptodate bits and such for the extent buffers.
4261 */
4262 release_extent_buffer(eb, GFP_ATOMIC);
4263}
4264
4265void free_extent_buffer_stale(struct extent_buffer *eb)
4266{
4267 if (!eb)
d1310b2e
CM
4268 return;
4269
3083ee2e
JB
4270 spin_lock(&eb->refs_lock);
4271 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4272
0b32f4bb 4273 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4274 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4275 atomic_dec(&eb->refs);
4276 release_extent_buffer(eb, GFP_NOFS);
d1310b2e 4277}
d1310b2e 4278
1d4284bd 4279void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4280{
d1310b2e
CM
4281 unsigned long i;
4282 unsigned long num_pages;
4283 struct page *page;
4284
d1310b2e
CM
4285 num_pages = num_extent_pages(eb->start, eb->len);
4286
4287 for (i = 0; i < num_pages; i++) {
4288 page = extent_buffer_page(eb, i);
b9473439 4289 if (!PageDirty(page))
d2c3f4f6
CM
4290 continue;
4291
a61e6f29 4292 lock_page(page);
eb14ab8e
CM
4293 WARN_ON(!PagePrivate(page));
4294
d1310b2e 4295 clear_page_dirty_for_io(page);
0ee0fda0 4296 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4297 if (!PageDirty(page)) {
4298 radix_tree_tag_clear(&page->mapping->page_tree,
4299 page_index(page),
4300 PAGECACHE_TAG_DIRTY);
4301 }
0ee0fda0 4302 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4303 ClearPageError(page);
a61e6f29 4304 unlock_page(page);
d1310b2e 4305 }
0b32f4bb 4306 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4307}
d1310b2e 4308
0b32f4bb 4309int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4310{
4311 unsigned long i;
4312 unsigned long num_pages;
b9473439 4313 int was_dirty = 0;
d1310b2e 4314
0b32f4bb
JB
4315 check_buffer_tree_ref(eb);
4316
b9473439 4317 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4318
d1310b2e 4319 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4320 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4321 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4322
b9473439 4323 for (i = 0; i < num_pages; i++)
0b32f4bb 4324 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4325 return was_dirty;
d1310b2e 4326}
d1310b2e 4327
0b32f4bb 4328static int range_straddles_pages(u64 start, u64 len)
19b6caf4
CM
4329{
4330 if (len < PAGE_CACHE_SIZE)
4331 return 1;
4332 if (start & (PAGE_CACHE_SIZE - 1))
4333 return 1;
4334 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4335 return 1;
4336 return 0;
4337}
4338
0b32f4bb 4339int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4340{
4341 unsigned long i;
4342 struct page *page;
4343 unsigned long num_pages;
4344
b4ce94de 4345 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4346 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4347 for (i = 0; i < num_pages; i++) {
4348 page = extent_buffer_page(eb, i);
33958dc6
CM
4349 if (page)
4350 ClearPageUptodate(page);
1259ab75
CM
4351 }
4352 return 0;
4353}
4354
0b32f4bb 4355int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4356{
4357 unsigned long i;
4358 struct page *page;
4359 unsigned long num_pages;
4360
0b32f4bb 4361 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4362 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4363 for (i = 0; i < num_pages; i++) {
4364 page = extent_buffer_page(eb, i);
d1310b2e
CM
4365 SetPageUptodate(page);
4366 }
4367 return 0;
4368}
d1310b2e 4369
ce9adaa5
CM
4370int extent_range_uptodate(struct extent_io_tree *tree,
4371 u64 start, u64 end)
4372{
4373 struct page *page;
4374 int ret;
4375 int pg_uptodate = 1;
4376 int uptodate;
4377 unsigned long index;
4378
0b32f4bb 4379 if (range_straddles_pages(start, end - start + 1)) {
19b6caf4
CM
4380 ret = test_range_bit(tree, start, end,
4381 EXTENT_UPTODATE, 1, NULL);
4382 if (ret)
4383 return 1;
4384 }
d397712b 4385 while (start <= end) {
ce9adaa5
CM
4386 index = start >> PAGE_CACHE_SHIFT;
4387 page = find_get_page(tree->mapping, index);
8bedd51b
MH
4388 if (!page)
4389 return 1;
ce9adaa5
CM
4390 uptodate = PageUptodate(page);
4391 page_cache_release(page);
4392 if (!uptodate) {
4393 pg_uptodate = 0;
4394 break;
4395 }
4396 start += PAGE_CACHE_SIZE;
4397 }
4398 return pg_uptodate;
4399}
4400
0b32f4bb 4401int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4402{
0b32f4bb 4403 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4404}
d1310b2e
CM
4405
4406int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4407 struct extent_buffer *eb, u64 start, int wait,
f188591e 4408 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4409{
4410 unsigned long i;
4411 unsigned long start_i;
4412 struct page *page;
4413 int err;
4414 int ret = 0;
ce9adaa5
CM
4415 int locked_pages = 0;
4416 int all_uptodate = 1;
d1310b2e 4417 unsigned long num_pages;
727011e0 4418 unsigned long num_reads = 0;
a86c12c7 4419 struct bio *bio = NULL;
c8b97818 4420 unsigned long bio_flags = 0;
a86c12c7 4421
b4ce94de 4422 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4423 return 0;
4424
d1310b2e
CM
4425 if (start) {
4426 WARN_ON(start < eb->start);
4427 start_i = (start >> PAGE_CACHE_SHIFT) -
4428 (eb->start >> PAGE_CACHE_SHIFT);
4429 } else {
4430 start_i = 0;
4431 }
4432
4433 num_pages = num_extent_pages(eb->start, eb->len);
4434 for (i = start_i; i < num_pages; i++) {
4435 page = extent_buffer_page(eb, i);
bb82ab88 4436 if (wait == WAIT_NONE) {
2db04966 4437 if (!trylock_page(page))
ce9adaa5 4438 goto unlock_exit;
d1310b2e
CM
4439 } else {
4440 lock_page(page);
4441 }
ce9adaa5 4442 locked_pages++;
727011e0
CM
4443 if (!PageUptodate(page)) {
4444 num_reads++;
ce9adaa5 4445 all_uptodate = 0;
727011e0 4446 }
ce9adaa5
CM
4447 }
4448 if (all_uptodate) {
4449 if (start_i == 0)
b4ce94de 4450 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4451 goto unlock_exit;
4452 }
4453
ea466794 4454 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4455 eb->read_mirror = 0;
0b32f4bb 4456 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4457 for (i = start_i; i < num_pages; i++) {
4458 page = extent_buffer_page(eb, i);
ce9adaa5 4459 if (!PageUptodate(page)) {
f188591e 4460 ClearPageError(page);
a86c12c7 4461 err = __extent_read_full_page(tree, page,
f188591e 4462 get_extent, &bio,
c8b97818 4463 mirror_num, &bio_flags);
d397712b 4464 if (err)
d1310b2e 4465 ret = err;
d1310b2e
CM
4466 } else {
4467 unlock_page(page);
4468 }
4469 }
4470
355808c2
JM
4471 if (bio) {
4472 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
79787eaa
JM
4473 if (err)
4474 return err;
355808c2 4475 }
a86c12c7 4476
bb82ab88 4477 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4478 return ret;
d397712b 4479
d1310b2e
CM
4480 for (i = start_i; i < num_pages; i++) {
4481 page = extent_buffer_page(eb, i);
4482 wait_on_page_locked(page);
d397712b 4483 if (!PageUptodate(page))
d1310b2e 4484 ret = -EIO;
d1310b2e 4485 }
d397712b 4486
d1310b2e 4487 return ret;
ce9adaa5
CM
4488
4489unlock_exit:
4490 i = start_i;
d397712b 4491 while (locked_pages > 0) {
ce9adaa5
CM
4492 page = extent_buffer_page(eb, i);
4493 i++;
4494 unlock_page(page);
4495 locked_pages--;
4496 }
4497 return ret;
d1310b2e 4498}
d1310b2e
CM
4499
4500void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4501 unsigned long start,
4502 unsigned long len)
4503{
4504 size_t cur;
4505 size_t offset;
4506 struct page *page;
4507 char *kaddr;
4508 char *dst = (char *)dstv;
4509 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4510 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4511
4512 WARN_ON(start > eb->len);
4513 WARN_ON(start + len > eb->start + eb->len);
4514
4515 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4516
d397712b 4517 while (len > 0) {
d1310b2e 4518 page = extent_buffer_page(eb, i);
d1310b2e
CM
4519
4520 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4521 kaddr = page_address(page);
d1310b2e 4522 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4523
4524 dst += cur;
4525 len -= cur;
4526 offset = 0;
4527 i++;
4528 }
4529}
d1310b2e
CM
4530
4531int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4532 unsigned long min_len, char **map,
d1310b2e 4533 unsigned long *map_start,
a6591715 4534 unsigned long *map_len)
d1310b2e
CM
4535{
4536 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4537 char *kaddr;
4538 struct page *p;
4539 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4540 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4541 unsigned long end_i = (start_offset + start + min_len - 1) >>
4542 PAGE_CACHE_SHIFT;
4543
4544 if (i != end_i)
4545 return -EINVAL;
4546
4547 if (i == 0) {
4548 offset = start_offset;
4549 *map_start = 0;
4550 } else {
4551 offset = 0;
4552 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4553 }
d397712b 4554
d1310b2e 4555 if (start + min_len > eb->len) {
d397712b
CM
4556 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4557 "wanted %lu %lu\n", (unsigned long long)eb->start,
4558 eb->len, start, min_len);
d1310b2e 4559 WARN_ON(1);
85026533 4560 return -EINVAL;
d1310b2e
CM
4561 }
4562
4563 p = extent_buffer_page(eb, i);
a6591715 4564 kaddr = page_address(p);
d1310b2e
CM
4565 *map = kaddr + offset;
4566 *map_len = PAGE_CACHE_SIZE - offset;
4567 return 0;
4568}
d1310b2e 4569
d1310b2e
CM
4570int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4571 unsigned long start,
4572 unsigned long len)
4573{
4574 size_t cur;
4575 size_t offset;
4576 struct page *page;
4577 char *kaddr;
4578 char *ptr = (char *)ptrv;
4579 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4580 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4581 int ret = 0;
4582
4583 WARN_ON(start > eb->len);
4584 WARN_ON(start + len > eb->start + eb->len);
4585
4586 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4587
d397712b 4588 while (len > 0) {
d1310b2e 4589 page = extent_buffer_page(eb, i);
d1310b2e
CM
4590
4591 cur = min(len, (PAGE_CACHE_SIZE - offset));
4592
a6591715 4593 kaddr = page_address(page);
d1310b2e 4594 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4595 if (ret)
4596 break;
4597
4598 ptr += cur;
4599 len -= cur;
4600 offset = 0;
4601 i++;
4602 }
4603 return ret;
4604}
d1310b2e
CM
4605
4606void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4607 unsigned long start, unsigned long len)
4608{
4609 size_t cur;
4610 size_t offset;
4611 struct page *page;
4612 char *kaddr;
4613 char *src = (char *)srcv;
4614 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4615 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4616
4617 WARN_ON(start > eb->len);
4618 WARN_ON(start + len > eb->start + eb->len);
4619
4620 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4621
d397712b 4622 while (len > 0) {
d1310b2e
CM
4623 page = extent_buffer_page(eb, i);
4624 WARN_ON(!PageUptodate(page));
4625
4626 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4627 kaddr = page_address(page);
d1310b2e 4628 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4629
4630 src += cur;
4631 len -= cur;
4632 offset = 0;
4633 i++;
4634 }
4635}
d1310b2e
CM
4636
4637void memset_extent_buffer(struct extent_buffer *eb, char c,
4638 unsigned long start, unsigned long len)
4639{
4640 size_t cur;
4641 size_t offset;
4642 struct page *page;
4643 char *kaddr;
4644 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4645 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4646
4647 WARN_ON(start > eb->len);
4648 WARN_ON(start + len > eb->start + eb->len);
4649
4650 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4651
d397712b 4652 while (len > 0) {
d1310b2e
CM
4653 page = extent_buffer_page(eb, i);
4654 WARN_ON(!PageUptodate(page));
4655
4656 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4657 kaddr = page_address(page);
d1310b2e 4658 memset(kaddr + offset, c, cur);
d1310b2e
CM
4659
4660 len -= cur;
4661 offset = 0;
4662 i++;
4663 }
4664}
d1310b2e
CM
4665
4666void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4667 unsigned long dst_offset, unsigned long src_offset,
4668 unsigned long len)
4669{
4670 u64 dst_len = dst->len;
4671 size_t cur;
4672 size_t offset;
4673 struct page *page;
4674 char *kaddr;
4675 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4676 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4677
4678 WARN_ON(src->len != dst_len);
4679
4680 offset = (start_offset + dst_offset) &
4681 ((unsigned long)PAGE_CACHE_SIZE - 1);
4682
d397712b 4683 while (len > 0) {
d1310b2e
CM
4684 page = extent_buffer_page(dst, i);
4685 WARN_ON(!PageUptodate(page));
4686
4687 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4688
a6591715 4689 kaddr = page_address(page);
d1310b2e 4690 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4691
4692 src_offset += cur;
4693 len -= cur;
4694 offset = 0;
4695 i++;
4696 }
4697}
d1310b2e
CM
4698
4699static void move_pages(struct page *dst_page, struct page *src_page,
4700 unsigned long dst_off, unsigned long src_off,
4701 unsigned long len)
4702{
a6591715 4703 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4704 if (dst_page == src_page) {
4705 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4706 } else {
a6591715 4707 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4708 char *p = dst_kaddr + dst_off + len;
4709 char *s = src_kaddr + src_off + len;
4710
4711 while (len--)
4712 *--p = *--s;
d1310b2e 4713 }
d1310b2e
CM
4714}
4715
3387206f
ST
4716static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4717{
4718 unsigned long distance = (src > dst) ? src - dst : dst - src;
4719 return distance < len;
4720}
4721
d1310b2e
CM
4722static void copy_pages(struct page *dst_page, struct page *src_page,
4723 unsigned long dst_off, unsigned long src_off,
4724 unsigned long len)
4725{
a6591715 4726 char *dst_kaddr = page_address(dst_page);
d1310b2e 4727 char *src_kaddr;
727011e0 4728 int must_memmove = 0;
d1310b2e 4729
3387206f 4730 if (dst_page != src_page) {
a6591715 4731 src_kaddr = page_address(src_page);
3387206f 4732 } else {
d1310b2e 4733 src_kaddr = dst_kaddr;
727011e0
CM
4734 if (areas_overlap(src_off, dst_off, len))
4735 must_memmove = 1;
3387206f 4736 }
d1310b2e 4737
727011e0
CM
4738 if (must_memmove)
4739 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4740 else
4741 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4742}
4743
4744void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4745 unsigned long src_offset, unsigned long len)
4746{
4747 size_t cur;
4748 size_t dst_off_in_page;
4749 size_t src_off_in_page;
4750 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4751 unsigned long dst_i;
4752 unsigned long src_i;
4753
4754 if (src_offset + len > dst->len) {
d397712b
CM
4755 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4756 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4757 BUG_ON(1);
4758 }
4759 if (dst_offset + len > dst->len) {
d397712b
CM
4760 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4761 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4762 BUG_ON(1);
4763 }
4764
d397712b 4765 while (len > 0) {
d1310b2e
CM
4766 dst_off_in_page = (start_offset + dst_offset) &
4767 ((unsigned long)PAGE_CACHE_SIZE - 1);
4768 src_off_in_page = (start_offset + src_offset) &
4769 ((unsigned long)PAGE_CACHE_SIZE - 1);
4770
4771 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4772 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4773
4774 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4775 src_off_in_page));
4776 cur = min_t(unsigned long, cur,
4777 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4778
4779 copy_pages(extent_buffer_page(dst, dst_i),
4780 extent_buffer_page(dst, src_i),
4781 dst_off_in_page, src_off_in_page, cur);
4782
4783 src_offset += cur;
4784 dst_offset += cur;
4785 len -= cur;
4786 }
4787}
d1310b2e
CM
4788
4789void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4790 unsigned long src_offset, unsigned long len)
4791{
4792 size_t cur;
4793 size_t dst_off_in_page;
4794 size_t src_off_in_page;
4795 unsigned long dst_end = dst_offset + len - 1;
4796 unsigned long src_end = src_offset + len - 1;
4797 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4798 unsigned long dst_i;
4799 unsigned long src_i;
4800
4801 if (src_offset + len > dst->len) {
d397712b
CM
4802 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4803 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4804 BUG_ON(1);
4805 }
4806 if (dst_offset + len > dst->len) {
d397712b
CM
4807 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4808 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4809 BUG_ON(1);
4810 }
727011e0 4811 if (dst_offset < src_offset) {
d1310b2e
CM
4812 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4813 return;
4814 }
d397712b 4815 while (len > 0) {
d1310b2e
CM
4816 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4817 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4818
4819 dst_off_in_page = (start_offset + dst_end) &
4820 ((unsigned long)PAGE_CACHE_SIZE - 1);
4821 src_off_in_page = (start_offset + src_end) &
4822 ((unsigned long)PAGE_CACHE_SIZE - 1);
4823
4824 cur = min_t(unsigned long, len, src_off_in_page + 1);
4825 cur = min(cur, dst_off_in_page + 1);
4826 move_pages(extent_buffer_page(dst, dst_i),
4827 extent_buffer_page(dst, src_i),
4828 dst_off_in_page - cur + 1,
4829 src_off_in_page - cur + 1, cur);
4830
4831 dst_end -= cur;
4832 src_end -= cur;
4833 len -= cur;
4834 }
4835}
6af118ce 4836
3083ee2e 4837int try_release_extent_buffer(struct page *page, gfp_t mask)
19fe0a8b 4838{
6af118ce 4839 struct extent_buffer *eb;
6af118ce 4840
3083ee2e
JB
4841 /*
4842 * We need to make sure noboody is attaching this page to an eb right
4843 * now.
4844 */
4845 spin_lock(&page->mapping->private_lock);
4846 if (!PagePrivate(page)) {
4847 spin_unlock(&page->mapping->private_lock);
4f2de97a 4848 return 1;
45f49bce 4849 }
6af118ce 4850
3083ee2e
JB
4851 eb = (struct extent_buffer *)page->private;
4852 BUG_ON(!eb);
19fe0a8b
MX
4853
4854 /*
3083ee2e
JB
4855 * This is a little awful but should be ok, we need to make sure that
4856 * the eb doesn't disappear out from under us while we're looking at
4857 * this page.
19fe0a8b 4858 */
3083ee2e 4859 spin_lock(&eb->refs_lock);
0b32f4bb 4860 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4861 spin_unlock(&eb->refs_lock);
4862 spin_unlock(&page->mapping->private_lock);
4863 return 0;
b9473439 4864 }
3083ee2e 4865 spin_unlock(&page->mapping->private_lock);
897ca6e9 4866
3083ee2e
JB
4867 if ((mask & GFP_NOFS) == GFP_NOFS)
4868 mask = GFP_NOFS;
19fe0a8b 4869
19fe0a8b 4870 /*
3083ee2e
JB
4871 * If tree ref isn't set then we know the ref on this eb is a real ref,
4872 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4873 */
3083ee2e
JB
4874 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4875 spin_unlock(&eb->refs_lock);
4876 return 0;
b9473439 4877 }
3083ee2e 4878 release_extent_buffer(eb, mask);
19fe0a8b 4879
3083ee2e 4880 return 1;
6af118ce 4881}
This page took 0.651591 seconds and 5 git commands to generate.