Btrfs: don't cache the csum value into the extent state tree
[deliverable/linux.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
2db04966 16#include "compat.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 (unsigned long long)state->start,
65 (unsigned long long)state->end,
66 state->state, state->tree, atomic_read(&state->refs));
67 list_del(&state->leak_list);
68 kmem_cache_free(extent_state_cache, state);
69 }
70
71 while (!list_empty(&buffers)) {
72 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 "refs %d\n", (unsigned long long)eb->start,
75 eb->len, atomic_read(&eb->refs));
76 list_del(&eb->leak_list);
77 kmem_cache_free(extent_buffer_cache, eb);
78 }
79}
8d599ae1
DS
80
81#define btrfs_debug_check_extent_io_range(inode, start, end) \
82 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84 struct inode *inode, u64 start, u64 end)
85{
86 u64 isize = i_size_read(inode);
87
88 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89 printk_ratelimited(KERN_DEBUG
90 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91 caller,
92 (unsigned long long)btrfs_ino(inode),
93 (unsigned long long)isize,
94 (unsigned long long)start,
95 (unsigned long long)end);
96 }
97}
6d49ba1b
ES
98#else
99#define btrfs_leak_debug_add(new, head) do {} while (0)
100#define btrfs_leak_debug_del(entry) do {} while (0)
101#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 102#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 103#endif
d1310b2e 104
d1310b2e
CM
105#define BUFFER_LRU_MAX 64
106
107struct tree_entry {
108 u64 start;
109 u64 end;
d1310b2e
CM
110 struct rb_node rb_node;
111};
112
113struct extent_page_data {
114 struct bio *bio;
115 struct extent_io_tree *tree;
116 get_extent_t *get_extent;
de0022b9 117 unsigned long bio_flags;
771ed689
CM
118
119 /* tells writepage not to lock the state bits for this range
120 * it still does the unlocking
121 */
ffbd517d
CM
122 unsigned int extent_locked:1;
123
124 /* tells the submit_bio code to use a WRITE_SYNC */
125 unsigned int sync_io:1;
d1310b2e
CM
126};
127
0b32f4bb 128static noinline void flush_write_bio(void *data);
c2d904e0
JM
129static inline struct btrfs_fs_info *
130tree_fs_info(struct extent_io_tree *tree)
131{
132 return btrfs_sb(tree->mapping->host->i_sb);
133}
0b32f4bb 134
d1310b2e
CM
135int __init extent_io_init(void)
136{
837e1972 137 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
138 sizeof(struct extent_state), 0,
139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
140 if (!extent_state_cache)
141 return -ENOMEM;
142
837e1972 143 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
144 sizeof(struct extent_buffer), 0,
145 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
146 if (!extent_buffer_cache)
147 goto free_state_cache;
9be3395b
CM
148
149 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150 offsetof(struct btrfs_io_bio, bio));
151 if (!btrfs_bioset)
152 goto free_buffer_cache;
d1310b2e
CM
153 return 0;
154
9be3395b
CM
155free_buffer_cache:
156 kmem_cache_destroy(extent_buffer_cache);
157 extent_buffer_cache = NULL;
158
d1310b2e
CM
159free_state_cache:
160 kmem_cache_destroy(extent_state_cache);
9be3395b 161 extent_state_cache = NULL;
d1310b2e
CM
162 return -ENOMEM;
163}
164
165void extent_io_exit(void)
166{
6d49ba1b 167 btrfs_leak_debug_check();
8c0a8537
KS
168
169 /*
170 * Make sure all delayed rcu free are flushed before we
171 * destroy caches.
172 */
173 rcu_barrier();
d1310b2e
CM
174 if (extent_state_cache)
175 kmem_cache_destroy(extent_state_cache);
176 if (extent_buffer_cache)
177 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
178 if (btrfs_bioset)
179 bioset_free(btrfs_bioset);
d1310b2e
CM
180}
181
182void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 183 struct address_space *mapping)
d1310b2e 184{
6bef4d31 185 tree->state = RB_ROOT;
19fe0a8b 186 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
187 tree->ops = NULL;
188 tree->dirty_bytes = 0;
70dec807 189 spin_lock_init(&tree->lock);
6af118ce 190 spin_lock_init(&tree->buffer_lock);
d1310b2e 191 tree->mapping = mapping;
d1310b2e 192}
d1310b2e 193
b2950863 194static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
195{
196 struct extent_state *state;
d1310b2e
CM
197
198 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 199 if (!state)
d1310b2e
CM
200 return state;
201 state->state = 0;
d1310b2e 202 state->private = 0;
70dec807 203 state->tree = NULL;
6d49ba1b 204 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
205 atomic_set(&state->refs, 1);
206 init_waitqueue_head(&state->wq);
143bede5 207 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
208 return state;
209}
d1310b2e 210
4845e44f 211void free_extent_state(struct extent_state *state)
d1310b2e 212{
d1310b2e
CM
213 if (!state)
214 return;
215 if (atomic_dec_and_test(&state->refs)) {
70dec807 216 WARN_ON(state->tree);
6d49ba1b 217 btrfs_leak_debug_del(&state->leak_list);
143bede5 218 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
219 kmem_cache_free(extent_state_cache, state);
220 }
221}
d1310b2e
CM
222
223static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224 struct rb_node *node)
225{
d397712b
CM
226 struct rb_node **p = &root->rb_node;
227 struct rb_node *parent = NULL;
d1310b2e
CM
228 struct tree_entry *entry;
229
d397712b 230 while (*p) {
d1310b2e
CM
231 parent = *p;
232 entry = rb_entry(parent, struct tree_entry, rb_node);
233
234 if (offset < entry->start)
235 p = &(*p)->rb_left;
236 else if (offset > entry->end)
237 p = &(*p)->rb_right;
238 else
239 return parent;
240 }
241
d1310b2e
CM
242 rb_link_node(node, parent, p);
243 rb_insert_color(node, root);
244 return NULL;
245}
246
80ea96b1 247static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
248 struct rb_node **prev_ret,
249 struct rb_node **next_ret)
250{
80ea96b1 251 struct rb_root *root = &tree->state;
d397712b 252 struct rb_node *n = root->rb_node;
d1310b2e
CM
253 struct rb_node *prev = NULL;
254 struct rb_node *orig_prev = NULL;
255 struct tree_entry *entry;
256 struct tree_entry *prev_entry = NULL;
257
d397712b 258 while (n) {
d1310b2e
CM
259 entry = rb_entry(n, struct tree_entry, rb_node);
260 prev = n;
261 prev_entry = entry;
262
263 if (offset < entry->start)
264 n = n->rb_left;
265 else if (offset > entry->end)
266 n = n->rb_right;
d397712b 267 else
d1310b2e
CM
268 return n;
269 }
270
271 if (prev_ret) {
272 orig_prev = prev;
d397712b 273 while (prev && offset > prev_entry->end) {
d1310b2e
CM
274 prev = rb_next(prev);
275 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276 }
277 *prev_ret = prev;
278 prev = orig_prev;
279 }
280
281 if (next_ret) {
282 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 283 while (prev && offset < prev_entry->start) {
d1310b2e
CM
284 prev = rb_prev(prev);
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 }
287 *next_ret = prev;
288 }
289 return NULL;
290}
291
80ea96b1
CM
292static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293 u64 offset)
d1310b2e 294{
70dec807 295 struct rb_node *prev = NULL;
d1310b2e 296 struct rb_node *ret;
70dec807 297
80ea96b1 298 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 299 if (!ret)
d1310b2e
CM
300 return prev;
301 return ret;
302}
303
9ed74f2d
JB
304static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305 struct extent_state *other)
306{
307 if (tree->ops && tree->ops->merge_extent_hook)
308 tree->ops->merge_extent_hook(tree->mapping->host, new,
309 other);
310}
311
d1310b2e
CM
312/*
313 * utility function to look for merge candidates inside a given range.
314 * Any extents with matching state are merged together into a single
315 * extent in the tree. Extents with EXTENT_IO in their state field
316 * are not merged because the end_io handlers need to be able to do
317 * operations on them without sleeping (or doing allocations/splits).
318 *
319 * This should be called with the tree lock held.
320 */
1bf85046
JM
321static void merge_state(struct extent_io_tree *tree,
322 struct extent_state *state)
d1310b2e
CM
323{
324 struct extent_state *other;
325 struct rb_node *other_node;
326
5b21f2ed 327 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 328 return;
d1310b2e
CM
329
330 other_node = rb_prev(&state->rb_node);
331 if (other_node) {
332 other = rb_entry(other_node, struct extent_state, rb_node);
333 if (other->end == state->start - 1 &&
334 other->state == state->state) {
9ed74f2d 335 merge_cb(tree, state, other);
d1310b2e 336 state->start = other->start;
70dec807 337 other->tree = NULL;
d1310b2e
CM
338 rb_erase(&other->rb_node, &tree->state);
339 free_extent_state(other);
340 }
341 }
342 other_node = rb_next(&state->rb_node);
343 if (other_node) {
344 other = rb_entry(other_node, struct extent_state, rb_node);
345 if (other->start == state->end + 1 &&
346 other->state == state->state) {
9ed74f2d 347 merge_cb(tree, state, other);
df98b6e2
JB
348 state->end = other->end;
349 other->tree = NULL;
350 rb_erase(&other->rb_node, &tree->state);
351 free_extent_state(other);
d1310b2e
CM
352 }
353 }
d1310b2e
CM
354}
355
1bf85046 356static void set_state_cb(struct extent_io_tree *tree,
41074888 357 struct extent_state *state, unsigned long *bits)
291d673e 358{
1bf85046
JM
359 if (tree->ops && tree->ops->set_bit_hook)
360 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
361}
362
363static void clear_state_cb(struct extent_io_tree *tree,
41074888 364 struct extent_state *state, unsigned long *bits)
291d673e 365{
9ed74f2d
JB
366 if (tree->ops && tree->ops->clear_bit_hook)
367 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
368}
369
3150b699 370static void set_state_bits(struct extent_io_tree *tree,
41074888 371 struct extent_state *state, unsigned long *bits);
3150b699 372
d1310b2e
CM
373/*
374 * insert an extent_state struct into the tree. 'bits' are set on the
375 * struct before it is inserted.
376 *
377 * This may return -EEXIST if the extent is already there, in which case the
378 * state struct is freed.
379 *
380 * The tree lock is not taken internally. This is a utility function and
381 * probably isn't what you want to call (see set/clear_extent_bit).
382 */
383static int insert_state(struct extent_io_tree *tree,
384 struct extent_state *state, u64 start, u64 end,
41074888 385 unsigned long *bits)
d1310b2e
CM
386{
387 struct rb_node *node;
388
31b1a2bd
JL
389 if (end < start)
390 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
d397712b
CM
391 (unsigned long long)end,
392 (unsigned long long)start);
d1310b2e
CM
393 state->start = start;
394 state->end = end;
9ed74f2d 395
3150b699
XG
396 set_state_bits(tree, state, bits);
397
d1310b2e
CM
398 node = tree_insert(&tree->state, end, &state->rb_node);
399 if (node) {
400 struct extent_state *found;
401 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
402 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403 "%llu %llu\n", (unsigned long long)found->start,
404 (unsigned long long)found->end,
405 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
406 return -EEXIST;
407 }
70dec807 408 state->tree = tree;
d1310b2e
CM
409 merge_state(tree, state);
410 return 0;
411}
412
1bf85046 413static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
414 u64 split)
415{
416 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 417 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
418}
419
d1310b2e
CM
420/*
421 * split a given extent state struct in two, inserting the preallocated
422 * struct 'prealloc' as the newly created second half. 'split' indicates an
423 * offset inside 'orig' where it should be split.
424 *
425 * Before calling,
426 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
427 * are two extent state structs in the tree:
428 * prealloc: [orig->start, split - 1]
429 * orig: [ split, orig->end ]
430 *
431 * The tree locks are not taken by this function. They need to be held
432 * by the caller.
433 */
434static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435 struct extent_state *prealloc, u64 split)
436{
437 struct rb_node *node;
9ed74f2d
JB
438
439 split_cb(tree, orig, split);
440
d1310b2e
CM
441 prealloc->start = orig->start;
442 prealloc->end = split - 1;
443 prealloc->state = orig->state;
444 orig->start = split;
445
446 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447 if (node) {
d1310b2e
CM
448 free_extent_state(prealloc);
449 return -EEXIST;
450 }
70dec807 451 prealloc->tree = tree;
d1310b2e
CM
452 return 0;
453}
454
cdc6a395
LZ
455static struct extent_state *next_state(struct extent_state *state)
456{
457 struct rb_node *next = rb_next(&state->rb_node);
458 if (next)
459 return rb_entry(next, struct extent_state, rb_node);
460 else
461 return NULL;
462}
463
d1310b2e
CM
464/*
465 * utility function to clear some bits in an extent state struct.
1b303fc0 466 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
467 *
468 * If no bits are set on the state struct after clearing things, the
469 * struct is freed and removed from the tree
470 */
cdc6a395
LZ
471static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472 struct extent_state *state,
41074888 473 unsigned long *bits, int wake)
d1310b2e 474{
cdc6a395 475 struct extent_state *next;
41074888 476 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 477
0ca1f7ce 478 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
479 u64 range = state->end - state->start + 1;
480 WARN_ON(range > tree->dirty_bytes);
481 tree->dirty_bytes -= range;
482 }
291d673e 483 clear_state_cb(tree, state, bits);
32c00aff 484 state->state &= ~bits_to_clear;
d1310b2e
CM
485 if (wake)
486 wake_up(&state->wq);
0ca1f7ce 487 if (state->state == 0) {
cdc6a395 488 next = next_state(state);
70dec807 489 if (state->tree) {
d1310b2e 490 rb_erase(&state->rb_node, &tree->state);
70dec807 491 state->tree = NULL;
d1310b2e
CM
492 free_extent_state(state);
493 } else {
494 WARN_ON(1);
495 }
496 } else {
497 merge_state(tree, state);
cdc6a395 498 next = next_state(state);
d1310b2e 499 }
cdc6a395 500 return next;
d1310b2e
CM
501}
502
8233767a
XG
503static struct extent_state *
504alloc_extent_state_atomic(struct extent_state *prealloc)
505{
506 if (!prealloc)
507 prealloc = alloc_extent_state(GFP_ATOMIC);
508
509 return prealloc;
510}
511
48a3b636 512static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
513{
514 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515 "Extent tree was modified by another "
516 "thread while locked.");
517}
518
d1310b2e
CM
519/*
520 * clear some bits on a range in the tree. This may require splitting
521 * or inserting elements in the tree, so the gfp mask is used to
522 * indicate which allocations or sleeping are allowed.
523 *
524 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525 * the given range from the tree regardless of state (ie for truncate).
526 *
527 * the range [start, end] is inclusive.
528 *
6763af84 529 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
530 */
531int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 532 unsigned long bits, int wake, int delete,
2c64c53d
CM
533 struct extent_state **cached_state,
534 gfp_t mask)
d1310b2e
CM
535{
536 struct extent_state *state;
2c64c53d 537 struct extent_state *cached;
d1310b2e
CM
538 struct extent_state *prealloc = NULL;
539 struct rb_node *node;
5c939df5 540 u64 last_end;
d1310b2e 541 int err;
2ac55d41 542 int clear = 0;
d1310b2e 543
8d599ae1
DS
544 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545
7ee9e440
JB
546 if (bits & EXTENT_DELALLOC)
547 bits |= EXTENT_NORESERVE;
548
0ca1f7ce
YZ
549 if (delete)
550 bits |= ~EXTENT_CTLBITS;
551 bits |= EXTENT_FIRST_DELALLOC;
552
2ac55d41
JB
553 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554 clear = 1;
d1310b2e
CM
555again:
556 if (!prealloc && (mask & __GFP_WAIT)) {
557 prealloc = alloc_extent_state(mask);
558 if (!prealloc)
559 return -ENOMEM;
560 }
561
cad321ad 562 spin_lock(&tree->lock);
2c64c53d
CM
563 if (cached_state) {
564 cached = *cached_state;
2ac55d41
JB
565
566 if (clear) {
567 *cached_state = NULL;
568 cached_state = NULL;
569 }
570
df98b6e2
JB
571 if (cached && cached->tree && cached->start <= start &&
572 cached->end > start) {
2ac55d41
JB
573 if (clear)
574 atomic_dec(&cached->refs);
2c64c53d 575 state = cached;
42daec29 576 goto hit_next;
2c64c53d 577 }
2ac55d41
JB
578 if (clear)
579 free_extent_state(cached);
2c64c53d 580 }
d1310b2e
CM
581 /*
582 * this search will find the extents that end after
583 * our range starts
584 */
80ea96b1 585 node = tree_search(tree, start);
d1310b2e
CM
586 if (!node)
587 goto out;
588 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 589hit_next:
d1310b2e
CM
590 if (state->start > end)
591 goto out;
592 WARN_ON(state->end < start);
5c939df5 593 last_end = state->end;
d1310b2e 594
0449314a 595 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
596 if (!(state->state & bits)) {
597 state = next_state(state);
0449314a 598 goto next;
cdc6a395 599 }
0449314a 600
d1310b2e
CM
601 /*
602 * | ---- desired range ---- |
603 * | state | or
604 * | ------------- state -------------- |
605 *
606 * We need to split the extent we found, and may flip
607 * bits on second half.
608 *
609 * If the extent we found extends past our range, we
610 * just split and search again. It'll get split again
611 * the next time though.
612 *
613 * If the extent we found is inside our range, we clear
614 * the desired bit on it.
615 */
616
617 if (state->start < start) {
8233767a
XG
618 prealloc = alloc_extent_state_atomic(prealloc);
619 BUG_ON(!prealloc);
d1310b2e 620 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
621 if (err)
622 extent_io_tree_panic(tree, err);
623
d1310b2e
CM
624 prealloc = NULL;
625 if (err)
626 goto out;
627 if (state->end <= end) {
d1ac6e41
LB
628 state = clear_state_bit(tree, state, &bits, wake);
629 goto next;
d1310b2e
CM
630 }
631 goto search_again;
632 }
633 /*
634 * | ---- desired range ---- |
635 * | state |
636 * We need to split the extent, and clear the bit
637 * on the first half
638 */
639 if (state->start <= end && state->end > end) {
8233767a
XG
640 prealloc = alloc_extent_state_atomic(prealloc);
641 BUG_ON(!prealloc);
d1310b2e 642 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
643 if (err)
644 extent_io_tree_panic(tree, err);
645
d1310b2e
CM
646 if (wake)
647 wake_up(&state->wq);
42daec29 648
6763af84 649 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 650
d1310b2e
CM
651 prealloc = NULL;
652 goto out;
653 }
42daec29 654
cdc6a395 655 state = clear_state_bit(tree, state, &bits, wake);
0449314a 656next:
5c939df5
YZ
657 if (last_end == (u64)-1)
658 goto out;
659 start = last_end + 1;
cdc6a395 660 if (start <= end && state && !need_resched())
692e5759 661 goto hit_next;
d1310b2e
CM
662 goto search_again;
663
664out:
cad321ad 665 spin_unlock(&tree->lock);
d1310b2e
CM
666 if (prealloc)
667 free_extent_state(prealloc);
668
6763af84 669 return 0;
d1310b2e
CM
670
671search_again:
672 if (start > end)
673 goto out;
cad321ad 674 spin_unlock(&tree->lock);
d1310b2e
CM
675 if (mask & __GFP_WAIT)
676 cond_resched();
677 goto again;
678}
d1310b2e 679
143bede5
JM
680static void wait_on_state(struct extent_io_tree *tree,
681 struct extent_state *state)
641f5219
CH
682 __releases(tree->lock)
683 __acquires(tree->lock)
d1310b2e
CM
684{
685 DEFINE_WAIT(wait);
686 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 687 spin_unlock(&tree->lock);
d1310b2e 688 schedule();
cad321ad 689 spin_lock(&tree->lock);
d1310b2e 690 finish_wait(&state->wq, &wait);
d1310b2e
CM
691}
692
693/*
694 * waits for one or more bits to clear on a range in the state tree.
695 * The range [start, end] is inclusive.
696 * The tree lock is taken by this function
697 */
41074888
DS
698static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 unsigned long bits)
d1310b2e
CM
700{
701 struct extent_state *state;
702 struct rb_node *node;
703
8d599ae1
DS
704 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705
cad321ad 706 spin_lock(&tree->lock);
d1310b2e
CM
707again:
708 while (1) {
709 /*
710 * this search will find all the extents that end after
711 * our range starts
712 */
80ea96b1 713 node = tree_search(tree, start);
d1310b2e
CM
714 if (!node)
715 break;
716
717 state = rb_entry(node, struct extent_state, rb_node);
718
719 if (state->start > end)
720 goto out;
721
722 if (state->state & bits) {
723 start = state->start;
724 atomic_inc(&state->refs);
725 wait_on_state(tree, state);
726 free_extent_state(state);
727 goto again;
728 }
729 start = state->end + 1;
730
731 if (start > end)
732 break;
733
ded91f08 734 cond_resched_lock(&tree->lock);
d1310b2e
CM
735 }
736out:
cad321ad 737 spin_unlock(&tree->lock);
d1310b2e 738}
d1310b2e 739
1bf85046 740static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 741 struct extent_state *state,
41074888 742 unsigned long *bits)
d1310b2e 743{
41074888 744 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 745
1bf85046 746 set_state_cb(tree, state, bits);
0ca1f7ce 747 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
748 u64 range = state->end - state->start + 1;
749 tree->dirty_bytes += range;
750 }
0ca1f7ce 751 state->state |= bits_to_set;
d1310b2e
CM
752}
753
2c64c53d
CM
754static void cache_state(struct extent_state *state,
755 struct extent_state **cached_ptr)
756{
757 if (cached_ptr && !(*cached_ptr)) {
758 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759 *cached_ptr = state;
760 atomic_inc(&state->refs);
761 }
762 }
763}
764
507903b8
AJ
765static void uncache_state(struct extent_state **cached_ptr)
766{
767 if (cached_ptr && (*cached_ptr)) {
768 struct extent_state *state = *cached_ptr;
109b36a2
CM
769 *cached_ptr = NULL;
770 free_extent_state(state);
507903b8
AJ
771 }
772}
773
d1310b2e 774/*
1edbb734
CM
775 * set some bits on a range in the tree. This may require allocations or
776 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 777 *
1edbb734
CM
778 * If any of the exclusive bits are set, this will fail with -EEXIST if some
779 * part of the range already has the desired bits set. The start of the
780 * existing range is returned in failed_start in this case.
d1310b2e 781 *
1edbb734 782 * [start, end] is inclusive This takes the tree lock.
d1310b2e 783 */
1edbb734 784
3fbe5c02
JM
785static int __must_check
786__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
787 unsigned long bits, unsigned long exclusive_bits,
788 u64 *failed_start, struct extent_state **cached_state,
789 gfp_t mask)
d1310b2e
CM
790{
791 struct extent_state *state;
792 struct extent_state *prealloc = NULL;
793 struct rb_node *node;
d1310b2e 794 int err = 0;
d1310b2e
CM
795 u64 last_start;
796 u64 last_end;
42daec29 797
8d599ae1
DS
798 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
799
0ca1f7ce 800 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
801again:
802 if (!prealloc && (mask & __GFP_WAIT)) {
803 prealloc = alloc_extent_state(mask);
8233767a 804 BUG_ON(!prealloc);
d1310b2e
CM
805 }
806
cad321ad 807 spin_lock(&tree->lock);
9655d298
CM
808 if (cached_state && *cached_state) {
809 state = *cached_state;
df98b6e2
JB
810 if (state->start <= start && state->end > start &&
811 state->tree) {
9655d298
CM
812 node = &state->rb_node;
813 goto hit_next;
814 }
815 }
d1310b2e
CM
816 /*
817 * this search will find all the extents that end after
818 * our range starts.
819 */
80ea96b1 820 node = tree_search(tree, start);
d1310b2e 821 if (!node) {
8233767a
XG
822 prealloc = alloc_extent_state_atomic(prealloc);
823 BUG_ON(!prealloc);
0ca1f7ce 824 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
825 if (err)
826 extent_io_tree_panic(tree, err);
827
d1310b2e 828 prealloc = NULL;
d1310b2e
CM
829 goto out;
830 }
d1310b2e 831 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 832hit_next:
d1310b2e
CM
833 last_start = state->start;
834 last_end = state->end;
835
836 /*
837 * | ---- desired range ---- |
838 * | state |
839 *
840 * Just lock what we found and keep going
841 */
842 if (state->start == start && state->end <= end) {
1edbb734 843 if (state->state & exclusive_bits) {
d1310b2e
CM
844 *failed_start = state->start;
845 err = -EEXIST;
846 goto out;
847 }
42daec29 848
1bf85046 849 set_state_bits(tree, state, &bits);
2c64c53d 850 cache_state(state, cached_state);
d1310b2e 851 merge_state(tree, state);
5c939df5
YZ
852 if (last_end == (u64)-1)
853 goto out;
854 start = last_end + 1;
d1ac6e41
LB
855 state = next_state(state);
856 if (start < end && state && state->start == start &&
857 !need_resched())
858 goto hit_next;
d1310b2e
CM
859 goto search_again;
860 }
861
862 /*
863 * | ---- desired range ---- |
864 * | state |
865 * or
866 * | ------------- state -------------- |
867 *
868 * We need to split the extent we found, and may flip bits on
869 * second half.
870 *
871 * If the extent we found extends past our
872 * range, we just split and search again. It'll get split
873 * again the next time though.
874 *
875 * If the extent we found is inside our range, we set the
876 * desired bit on it.
877 */
878 if (state->start < start) {
1edbb734 879 if (state->state & exclusive_bits) {
d1310b2e
CM
880 *failed_start = start;
881 err = -EEXIST;
882 goto out;
883 }
8233767a
XG
884
885 prealloc = alloc_extent_state_atomic(prealloc);
886 BUG_ON(!prealloc);
d1310b2e 887 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
888 if (err)
889 extent_io_tree_panic(tree, err);
890
d1310b2e
CM
891 prealloc = NULL;
892 if (err)
893 goto out;
894 if (state->end <= end) {
1bf85046 895 set_state_bits(tree, state, &bits);
2c64c53d 896 cache_state(state, cached_state);
d1310b2e 897 merge_state(tree, state);
5c939df5
YZ
898 if (last_end == (u64)-1)
899 goto out;
900 start = last_end + 1;
d1ac6e41
LB
901 state = next_state(state);
902 if (start < end && state && state->start == start &&
903 !need_resched())
904 goto hit_next;
d1310b2e
CM
905 }
906 goto search_again;
907 }
908 /*
909 * | ---- desired range ---- |
910 * | state | or | state |
911 *
912 * There's a hole, we need to insert something in it and
913 * ignore the extent we found.
914 */
915 if (state->start > start) {
916 u64 this_end;
917 if (end < last_start)
918 this_end = end;
919 else
d397712b 920 this_end = last_start - 1;
8233767a
XG
921
922 prealloc = alloc_extent_state_atomic(prealloc);
923 BUG_ON(!prealloc);
c7f895a2
XG
924
925 /*
926 * Avoid to free 'prealloc' if it can be merged with
927 * the later extent.
928 */
d1310b2e 929 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 930 &bits);
c2d904e0
JM
931 if (err)
932 extent_io_tree_panic(tree, err);
933
9ed74f2d
JB
934 cache_state(prealloc, cached_state);
935 prealloc = NULL;
d1310b2e
CM
936 start = this_end + 1;
937 goto search_again;
938 }
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * We need to split the extent, and set the bit
943 * on the first half
944 */
945 if (state->start <= end && state->end > end) {
1edbb734 946 if (state->state & exclusive_bits) {
d1310b2e
CM
947 *failed_start = start;
948 err = -EEXIST;
949 goto out;
950 }
8233767a
XG
951
952 prealloc = alloc_extent_state_atomic(prealloc);
953 BUG_ON(!prealloc);
d1310b2e 954 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
955 if (err)
956 extent_io_tree_panic(tree, err);
d1310b2e 957
1bf85046 958 set_state_bits(tree, prealloc, &bits);
2c64c53d 959 cache_state(prealloc, cached_state);
d1310b2e
CM
960 merge_state(tree, prealloc);
961 prealloc = NULL;
962 goto out;
963 }
964
965 goto search_again;
966
967out:
cad321ad 968 spin_unlock(&tree->lock);
d1310b2e
CM
969 if (prealloc)
970 free_extent_state(prealloc);
971
972 return err;
973
974search_again:
975 if (start > end)
976 goto out;
cad321ad 977 spin_unlock(&tree->lock);
d1310b2e
CM
978 if (mask & __GFP_WAIT)
979 cond_resched();
980 goto again;
981}
d1310b2e 982
41074888
DS
983int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
984 unsigned long bits, u64 * failed_start,
985 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
986{
987 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
988 cached_state, mask);
989}
990
991
462d6fac 992/**
10983f2e
LB
993 * convert_extent_bit - convert all bits in a given range from one bit to
994 * another
462d6fac
JB
995 * @tree: the io tree to search
996 * @start: the start offset in bytes
997 * @end: the end offset in bytes (inclusive)
998 * @bits: the bits to set in this range
999 * @clear_bits: the bits to clear in this range
e6138876 1000 * @cached_state: state that we're going to cache
462d6fac
JB
1001 * @mask: the allocation mask
1002 *
1003 * This will go through and set bits for the given range. If any states exist
1004 * already in this range they are set with the given bit and cleared of the
1005 * clear_bits. This is only meant to be used by things that are mergeable, ie
1006 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1007 * boundary bits like LOCK.
1008 */
1009int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1010 unsigned long bits, unsigned long clear_bits,
e6138876 1011 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1012{
1013 struct extent_state *state;
1014 struct extent_state *prealloc = NULL;
1015 struct rb_node *node;
1016 int err = 0;
1017 u64 last_start;
1018 u64 last_end;
1019
8d599ae1
DS
1020 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1021
462d6fac
JB
1022again:
1023 if (!prealloc && (mask & __GFP_WAIT)) {
1024 prealloc = alloc_extent_state(mask);
1025 if (!prealloc)
1026 return -ENOMEM;
1027 }
1028
1029 spin_lock(&tree->lock);
e6138876
JB
1030 if (cached_state && *cached_state) {
1031 state = *cached_state;
1032 if (state->start <= start && state->end > start &&
1033 state->tree) {
1034 node = &state->rb_node;
1035 goto hit_next;
1036 }
1037 }
1038
462d6fac
JB
1039 /*
1040 * this search will find all the extents that end after
1041 * our range starts.
1042 */
1043 node = tree_search(tree, start);
1044 if (!node) {
1045 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1046 if (!prealloc) {
1047 err = -ENOMEM;
1048 goto out;
1049 }
462d6fac
JB
1050 err = insert_state(tree, prealloc, start, end, &bits);
1051 prealloc = NULL;
c2d904e0
JM
1052 if (err)
1053 extent_io_tree_panic(tree, err);
462d6fac
JB
1054 goto out;
1055 }
1056 state = rb_entry(node, struct extent_state, rb_node);
1057hit_next:
1058 last_start = state->start;
1059 last_end = state->end;
1060
1061 /*
1062 * | ---- desired range ---- |
1063 * | state |
1064 *
1065 * Just lock what we found and keep going
1066 */
1067 if (state->start == start && state->end <= end) {
462d6fac 1068 set_state_bits(tree, state, &bits);
e6138876 1069 cache_state(state, cached_state);
d1ac6e41 1070 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1071 if (last_end == (u64)-1)
1072 goto out;
462d6fac 1073 start = last_end + 1;
d1ac6e41
LB
1074 if (start < end && state && state->start == start &&
1075 !need_resched())
1076 goto hit_next;
462d6fac
JB
1077 goto search_again;
1078 }
1079
1080 /*
1081 * | ---- desired range ---- |
1082 * | state |
1083 * or
1084 * | ------------- state -------------- |
1085 *
1086 * We need to split the extent we found, and may flip bits on
1087 * second half.
1088 *
1089 * If the extent we found extends past our
1090 * range, we just split and search again. It'll get split
1091 * again the next time though.
1092 *
1093 * If the extent we found is inside our range, we set the
1094 * desired bit on it.
1095 */
1096 if (state->start < start) {
1097 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1098 if (!prealloc) {
1099 err = -ENOMEM;
1100 goto out;
1101 }
462d6fac 1102 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1103 if (err)
1104 extent_io_tree_panic(tree, err);
462d6fac
JB
1105 prealloc = NULL;
1106 if (err)
1107 goto out;
1108 if (state->end <= end) {
1109 set_state_bits(tree, state, &bits);
e6138876 1110 cache_state(state, cached_state);
d1ac6e41 1111 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1112 if (last_end == (u64)-1)
1113 goto out;
1114 start = last_end + 1;
d1ac6e41
LB
1115 if (start < end && state && state->start == start &&
1116 !need_resched())
1117 goto hit_next;
462d6fac
JB
1118 }
1119 goto search_again;
1120 }
1121 /*
1122 * | ---- desired range ---- |
1123 * | state | or | state |
1124 *
1125 * There's a hole, we need to insert something in it and
1126 * ignore the extent we found.
1127 */
1128 if (state->start > start) {
1129 u64 this_end;
1130 if (end < last_start)
1131 this_end = end;
1132 else
1133 this_end = last_start - 1;
1134
1135 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1136 if (!prealloc) {
1137 err = -ENOMEM;
1138 goto out;
1139 }
462d6fac
JB
1140
1141 /*
1142 * Avoid to free 'prealloc' if it can be merged with
1143 * the later extent.
1144 */
1145 err = insert_state(tree, prealloc, start, this_end,
1146 &bits);
c2d904e0
JM
1147 if (err)
1148 extent_io_tree_panic(tree, err);
e6138876 1149 cache_state(prealloc, cached_state);
462d6fac
JB
1150 prealloc = NULL;
1151 start = this_end + 1;
1152 goto search_again;
1153 }
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 * We need to split the extent, and set the bit
1158 * on the first half
1159 */
1160 if (state->start <= end && state->end > end) {
1161 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1162 if (!prealloc) {
1163 err = -ENOMEM;
1164 goto out;
1165 }
462d6fac
JB
1166
1167 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1168 if (err)
1169 extent_io_tree_panic(tree, err);
462d6fac
JB
1170
1171 set_state_bits(tree, prealloc, &bits);
e6138876 1172 cache_state(prealloc, cached_state);
462d6fac 1173 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1174 prealloc = NULL;
1175 goto out;
1176 }
1177
1178 goto search_again;
1179
1180out:
1181 spin_unlock(&tree->lock);
1182 if (prealloc)
1183 free_extent_state(prealloc);
1184
1185 return err;
1186
1187search_again:
1188 if (start > end)
1189 goto out;
1190 spin_unlock(&tree->lock);
1191 if (mask & __GFP_WAIT)
1192 cond_resched();
1193 goto again;
1194}
1195
d1310b2e
CM
1196/* wrappers around set/clear extent bit */
1197int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1198 gfp_t mask)
1199{
3fbe5c02 1200 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1201 NULL, mask);
d1310b2e 1202}
d1310b2e
CM
1203
1204int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1205 unsigned long bits, gfp_t mask)
d1310b2e 1206{
3fbe5c02 1207 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1208 NULL, mask);
d1310b2e 1209}
d1310b2e
CM
1210
1211int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1212 unsigned long bits, gfp_t mask)
d1310b2e 1213{
2c64c53d 1214 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1215}
d1310b2e
CM
1216
1217int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1218 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1219{
1220 return set_extent_bit(tree, start, end,
fee187d9 1221 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1222 NULL, cached_state, mask);
d1310b2e 1223}
d1310b2e 1224
9e8a4a8b
LB
1225int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1226 struct extent_state **cached_state, gfp_t mask)
1227{
1228 return set_extent_bit(tree, start, end,
1229 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1230 NULL, cached_state, mask);
1231}
1232
d1310b2e
CM
1233int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1234 gfp_t mask)
1235{
1236 return clear_extent_bit(tree, start, end,
32c00aff 1237 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1238 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1239}
d1310b2e
CM
1240
1241int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1242 gfp_t mask)
1243{
3fbe5c02 1244 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1245 NULL, mask);
d1310b2e 1246}
d1310b2e 1247
d1310b2e 1248int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1249 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1250{
6b67a320 1251 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1252 cached_state, mask);
d1310b2e 1253}
d1310b2e 1254
5fd02043
JB
1255int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1256 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1257{
2c64c53d 1258 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1259 cached_state, mask);
d1310b2e 1260}
d1310b2e 1261
d352ac68
CM
1262/*
1263 * either insert or lock state struct between start and end use mask to tell
1264 * us if waiting is desired.
1265 */
1edbb734 1266int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1267 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1268{
1269 int err;
1270 u64 failed_start;
1271 while (1) {
3fbe5c02
JM
1272 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1273 EXTENT_LOCKED, &failed_start,
1274 cached_state, GFP_NOFS);
d0082371 1275 if (err == -EEXIST) {
d1310b2e
CM
1276 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1277 start = failed_start;
d0082371 1278 } else
d1310b2e 1279 break;
d1310b2e
CM
1280 WARN_ON(start > end);
1281 }
1282 return err;
1283}
d1310b2e 1284
d0082371 1285int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1286{
d0082371 1287 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1288}
1289
d0082371 1290int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1291{
1292 int err;
1293 u64 failed_start;
1294
3fbe5c02
JM
1295 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1296 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1297 if (err == -EEXIST) {
1298 if (failed_start > start)
1299 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1300 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1301 return 0;
6643558d 1302 }
25179201
JB
1303 return 1;
1304}
25179201 1305
2c64c53d
CM
1306int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1307 struct extent_state **cached, gfp_t mask)
1308{
1309 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1310 mask);
1311}
1312
d0082371 1313int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1314{
2c64c53d 1315 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1316 GFP_NOFS);
d1310b2e 1317}
d1310b2e 1318
4adaa611
CM
1319int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1320{
1321 unsigned long index = start >> PAGE_CACHE_SHIFT;
1322 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1323 struct page *page;
1324
1325 while (index <= end_index) {
1326 page = find_get_page(inode->i_mapping, index);
1327 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1328 clear_page_dirty_for_io(page);
1329 page_cache_release(page);
1330 index++;
1331 }
1332 return 0;
1333}
1334
1335int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1336{
1337 unsigned long index = start >> PAGE_CACHE_SHIFT;
1338 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339 struct page *page;
1340
1341 while (index <= end_index) {
1342 page = find_get_page(inode->i_mapping, index);
1343 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1344 account_page_redirty(page);
1345 __set_page_dirty_nobuffers(page);
1346 page_cache_release(page);
1347 index++;
1348 }
1349 return 0;
1350}
1351
d1310b2e
CM
1352/*
1353 * helper function to set both pages and extents in the tree writeback
1354 */
b2950863 1355static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1356{
1357 unsigned long index = start >> PAGE_CACHE_SHIFT;
1358 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1359 struct page *page;
1360
1361 while (index <= end_index) {
1362 page = find_get_page(tree->mapping, index);
79787eaa 1363 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1364 set_page_writeback(page);
1365 page_cache_release(page);
1366 index++;
1367 }
d1310b2e
CM
1368 return 0;
1369}
d1310b2e 1370
d352ac68
CM
1371/* find the first state struct with 'bits' set after 'start', and
1372 * return it. tree->lock must be held. NULL will returned if
1373 * nothing was found after 'start'
1374 */
48a3b636
ES
1375static struct extent_state *
1376find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1377 u64 start, unsigned long bits)
d7fc640e
CM
1378{
1379 struct rb_node *node;
1380 struct extent_state *state;
1381
1382 /*
1383 * this search will find all the extents that end after
1384 * our range starts.
1385 */
1386 node = tree_search(tree, start);
d397712b 1387 if (!node)
d7fc640e 1388 goto out;
d7fc640e 1389
d397712b 1390 while (1) {
d7fc640e 1391 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1392 if (state->end >= start && (state->state & bits))
d7fc640e 1393 return state;
d397712b 1394
d7fc640e
CM
1395 node = rb_next(node);
1396 if (!node)
1397 break;
1398 }
1399out:
1400 return NULL;
1401}
d7fc640e 1402
69261c4b
XG
1403/*
1404 * find the first offset in the io tree with 'bits' set. zero is
1405 * returned if we find something, and *start_ret and *end_ret are
1406 * set to reflect the state struct that was found.
1407 *
477d7eaf 1408 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1409 */
1410int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1411 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1412 struct extent_state **cached_state)
69261c4b
XG
1413{
1414 struct extent_state *state;
e6138876 1415 struct rb_node *n;
69261c4b
XG
1416 int ret = 1;
1417
1418 spin_lock(&tree->lock);
e6138876
JB
1419 if (cached_state && *cached_state) {
1420 state = *cached_state;
1421 if (state->end == start - 1 && state->tree) {
1422 n = rb_next(&state->rb_node);
1423 while (n) {
1424 state = rb_entry(n, struct extent_state,
1425 rb_node);
1426 if (state->state & bits)
1427 goto got_it;
1428 n = rb_next(n);
1429 }
1430 free_extent_state(*cached_state);
1431 *cached_state = NULL;
1432 goto out;
1433 }
1434 free_extent_state(*cached_state);
1435 *cached_state = NULL;
1436 }
1437
69261c4b 1438 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1439got_it:
69261c4b 1440 if (state) {
e6138876 1441 cache_state(state, cached_state);
69261c4b
XG
1442 *start_ret = state->start;
1443 *end_ret = state->end;
1444 ret = 0;
1445 }
e6138876 1446out:
69261c4b
XG
1447 spin_unlock(&tree->lock);
1448 return ret;
1449}
1450
d352ac68
CM
1451/*
1452 * find a contiguous range of bytes in the file marked as delalloc, not
1453 * more than 'max_bytes'. start and end are used to return the range,
1454 *
1455 * 1 is returned if we find something, 0 if nothing was in the tree
1456 */
c8b97818 1457static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1458 u64 *start, u64 *end, u64 max_bytes,
1459 struct extent_state **cached_state)
d1310b2e
CM
1460{
1461 struct rb_node *node;
1462 struct extent_state *state;
1463 u64 cur_start = *start;
1464 u64 found = 0;
1465 u64 total_bytes = 0;
1466
cad321ad 1467 spin_lock(&tree->lock);
c8b97818 1468
d1310b2e
CM
1469 /*
1470 * this search will find all the extents that end after
1471 * our range starts.
1472 */
80ea96b1 1473 node = tree_search(tree, cur_start);
2b114d1d 1474 if (!node) {
3b951516
CM
1475 if (!found)
1476 *end = (u64)-1;
d1310b2e
CM
1477 goto out;
1478 }
1479
d397712b 1480 while (1) {
d1310b2e 1481 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1482 if (found && (state->start != cur_start ||
1483 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1484 goto out;
1485 }
1486 if (!(state->state & EXTENT_DELALLOC)) {
1487 if (!found)
1488 *end = state->end;
1489 goto out;
1490 }
c2a128d2 1491 if (!found) {
d1310b2e 1492 *start = state->start;
c2a128d2
JB
1493 *cached_state = state;
1494 atomic_inc(&state->refs);
1495 }
d1310b2e
CM
1496 found++;
1497 *end = state->end;
1498 cur_start = state->end + 1;
1499 node = rb_next(node);
1500 if (!node)
1501 break;
1502 total_bytes += state->end - state->start + 1;
1503 if (total_bytes >= max_bytes)
1504 break;
1505 }
1506out:
cad321ad 1507 spin_unlock(&tree->lock);
d1310b2e
CM
1508 return found;
1509}
1510
143bede5
JM
1511static noinline void __unlock_for_delalloc(struct inode *inode,
1512 struct page *locked_page,
1513 u64 start, u64 end)
c8b97818
CM
1514{
1515 int ret;
1516 struct page *pages[16];
1517 unsigned long index = start >> PAGE_CACHE_SHIFT;
1518 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1519 unsigned long nr_pages = end_index - index + 1;
1520 int i;
1521
1522 if (index == locked_page->index && end_index == index)
143bede5 1523 return;
c8b97818 1524
d397712b 1525 while (nr_pages > 0) {
c8b97818 1526 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1527 min_t(unsigned long, nr_pages,
1528 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1529 for (i = 0; i < ret; i++) {
1530 if (pages[i] != locked_page)
1531 unlock_page(pages[i]);
1532 page_cache_release(pages[i]);
1533 }
1534 nr_pages -= ret;
1535 index += ret;
1536 cond_resched();
1537 }
c8b97818
CM
1538}
1539
1540static noinline int lock_delalloc_pages(struct inode *inode,
1541 struct page *locked_page,
1542 u64 delalloc_start,
1543 u64 delalloc_end)
1544{
1545 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1546 unsigned long start_index = index;
1547 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1548 unsigned long pages_locked = 0;
1549 struct page *pages[16];
1550 unsigned long nrpages;
1551 int ret;
1552 int i;
1553
1554 /* the caller is responsible for locking the start index */
1555 if (index == locked_page->index && index == end_index)
1556 return 0;
1557
1558 /* skip the page at the start index */
1559 nrpages = end_index - index + 1;
d397712b 1560 while (nrpages > 0) {
c8b97818 1561 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1562 min_t(unsigned long,
1563 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1564 if (ret == 0) {
1565 ret = -EAGAIN;
1566 goto done;
1567 }
1568 /* now we have an array of pages, lock them all */
1569 for (i = 0; i < ret; i++) {
1570 /*
1571 * the caller is taking responsibility for
1572 * locked_page
1573 */
771ed689 1574 if (pages[i] != locked_page) {
c8b97818 1575 lock_page(pages[i]);
f2b1c41c
CM
1576 if (!PageDirty(pages[i]) ||
1577 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1578 ret = -EAGAIN;
1579 unlock_page(pages[i]);
1580 page_cache_release(pages[i]);
1581 goto done;
1582 }
1583 }
c8b97818 1584 page_cache_release(pages[i]);
771ed689 1585 pages_locked++;
c8b97818 1586 }
c8b97818
CM
1587 nrpages -= ret;
1588 index += ret;
1589 cond_resched();
1590 }
1591 ret = 0;
1592done:
1593 if (ret && pages_locked) {
1594 __unlock_for_delalloc(inode, locked_page,
1595 delalloc_start,
1596 ((u64)(start_index + pages_locked - 1)) <<
1597 PAGE_CACHE_SHIFT);
1598 }
1599 return ret;
1600}
1601
1602/*
1603 * find a contiguous range of bytes in the file marked as delalloc, not
1604 * more than 'max_bytes'. start and end are used to return the range,
1605 *
1606 * 1 is returned if we find something, 0 if nothing was in the tree
1607 */
1608static noinline u64 find_lock_delalloc_range(struct inode *inode,
1609 struct extent_io_tree *tree,
1610 struct page *locked_page,
1611 u64 *start, u64 *end,
1612 u64 max_bytes)
1613{
1614 u64 delalloc_start;
1615 u64 delalloc_end;
1616 u64 found;
9655d298 1617 struct extent_state *cached_state = NULL;
c8b97818
CM
1618 int ret;
1619 int loops = 0;
1620
1621again:
1622 /* step one, find a bunch of delalloc bytes starting at start */
1623 delalloc_start = *start;
1624 delalloc_end = 0;
1625 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1626 max_bytes, &cached_state);
70b99e69 1627 if (!found || delalloc_end <= *start) {
c8b97818
CM
1628 *start = delalloc_start;
1629 *end = delalloc_end;
c2a128d2 1630 free_extent_state(cached_state);
c8b97818
CM
1631 return found;
1632 }
1633
70b99e69
CM
1634 /*
1635 * start comes from the offset of locked_page. We have to lock
1636 * pages in order, so we can't process delalloc bytes before
1637 * locked_page
1638 */
d397712b 1639 if (delalloc_start < *start)
70b99e69 1640 delalloc_start = *start;
70b99e69 1641
c8b97818
CM
1642 /*
1643 * make sure to limit the number of pages we try to lock down
1644 * if we're looping.
1645 */
d397712b 1646 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1647 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1648
c8b97818
CM
1649 /* step two, lock all the pages after the page that has start */
1650 ret = lock_delalloc_pages(inode, locked_page,
1651 delalloc_start, delalloc_end);
1652 if (ret == -EAGAIN) {
1653 /* some of the pages are gone, lets avoid looping by
1654 * shortening the size of the delalloc range we're searching
1655 */
9655d298 1656 free_extent_state(cached_state);
c8b97818
CM
1657 if (!loops) {
1658 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1659 max_bytes = PAGE_CACHE_SIZE - offset;
1660 loops = 1;
1661 goto again;
1662 } else {
1663 found = 0;
1664 goto out_failed;
1665 }
1666 }
79787eaa 1667 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1668
1669 /* step three, lock the state bits for the whole range */
d0082371 1670 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1671
1672 /* then test to make sure it is all still delalloc */
1673 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1674 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1675 if (!ret) {
9655d298
CM
1676 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1677 &cached_state, GFP_NOFS);
c8b97818
CM
1678 __unlock_for_delalloc(inode, locked_page,
1679 delalloc_start, delalloc_end);
1680 cond_resched();
1681 goto again;
1682 }
9655d298 1683 free_extent_state(cached_state);
c8b97818
CM
1684 *start = delalloc_start;
1685 *end = delalloc_end;
1686out_failed:
1687 return found;
1688}
1689
1690int extent_clear_unlock_delalloc(struct inode *inode,
1691 struct extent_io_tree *tree,
1692 u64 start, u64 end, struct page *locked_page,
a791e35e 1693 unsigned long op)
c8b97818
CM
1694{
1695 int ret;
1696 struct page *pages[16];
1697 unsigned long index = start >> PAGE_CACHE_SHIFT;
1698 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1699 unsigned long nr_pages = end_index - index + 1;
1700 int i;
41074888 1701 unsigned long clear_bits = 0;
c8b97818 1702
a791e35e 1703 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1704 clear_bits |= EXTENT_LOCKED;
a791e35e 1705 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1706 clear_bits |= EXTENT_DIRTY;
1707
a791e35e 1708 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1709 clear_bits |= EXTENT_DELALLOC;
1710
2c64c53d 1711 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1712 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1713 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1714 EXTENT_SET_PRIVATE2)))
771ed689 1715 return 0;
c8b97818 1716
d397712b 1717 while (nr_pages > 0) {
c8b97818 1718 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1719 min_t(unsigned long,
1720 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1721 for (i = 0; i < ret; i++) {
8b62b72b 1722
a791e35e 1723 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1724 SetPagePrivate2(pages[i]);
1725
c8b97818
CM
1726 if (pages[i] == locked_page) {
1727 page_cache_release(pages[i]);
1728 continue;
1729 }
a791e35e 1730 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1731 clear_page_dirty_for_io(pages[i]);
a791e35e 1732 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1733 set_page_writeback(pages[i]);
a791e35e 1734 if (op & EXTENT_END_WRITEBACK)
c8b97818 1735 end_page_writeback(pages[i]);
a791e35e 1736 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1737 unlock_page(pages[i]);
c8b97818
CM
1738 page_cache_release(pages[i]);
1739 }
1740 nr_pages -= ret;
1741 index += ret;
1742 cond_resched();
1743 }
1744 return 0;
1745}
c8b97818 1746
d352ac68
CM
1747/*
1748 * count the number of bytes in the tree that have a given bit(s)
1749 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1750 * cached. The total number found is returned.
1751 */
d1310b2e
CM
1752u64 count_range_bits(struct extent_io_tree *tree,
1753 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1754 unsigned long bits, int contig)
d1310b2e
CM
1755{
1756 struct rb_node *node;
1757 struct extent_state *state;
1758 u64 cur_start = *start;
1759 u64 total_bytes = 0;
ec29ed5b 1760 u64 last = 0;
d1310b2e
CM
1761 int found = 0;
1762
1763 if (search_end <= cur_start) {
d1310b2e
CM
1764 WARN_ON(1);
1765 return 0;
1766 }
1767
cad321ad 1768 spin_lock(&tree->lock);
d1310b2e
CM
1769 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1770 total_bytes = tree->dirty_bytes;
1771 goto out;
1772 }
1773 /*
1774 * this search will find all the extents that end after
1775 * our range starts.
1776 */
80ea96b1 1777 node = tree_search(tree, cur_start);
d397712b 1778 if (!node)
d1310b2e 1779 goto out;
d1310b2e 1780
d397712b 1781 while (1) {
d1310b2e
CM
1782 state = rb_entry(node, struct extent_state, rb_node);
1783 if (state->start > search_end)
1784 break;
ec29ed5b
CM
1785 if (contig && found && state->start > last + 1)
1786 break;
1787 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1788 total_bytes += min(search_end, state->end) + 1 -
1789 max(cur_start, state->start);
1790 if (total_bytes >= max_bytes)
1791 break;
1792 if (!found) {
af60bed2 1793 *start = max(cur_start, state->start);
d1310b2e
CM
1794 found = 1;
1795 }
ec29ed5b
CM
1796 last = state->end;
1797 } else if (contig && found) {
1798 break;
d1310b2e
CM
1799 }
1800 node = rb_next(node);
1801 if (!node)
1802 break;
1803 }
1804out:
cad321ad 1805 spin_unlock(&tree->lock);
d1310b2e
CM
1806 return total_bytes;
1807}
b2950863 1808
d352ac68
CM
1809/*
1810 * set the private field for a given byte offset in the tree. If there isn't
1811 * an extent_state there already, this does nothing.
1812 */
d1310b2e
CM
1813int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1814{
1815 struct rb_node *node;
1816 struct extent_state *state;
1817 int ret = 0;
1818
cad321ad 1819 spin_lock(&tree->lock);
d1310b2e
CM
1820 /*
1821 * this search will find all the extents that end after
1822 * our range starts.
1823 */
80ea96b1 1824 node = tree_search(tree, start);
2b114d1d 1825 if (!node) {
d1310b2e
CM
1826 ret = -ENOENT;
1827 goto out;
1828 }
1829 state = rb_entry(node, struct extent_state, rb_node);
1830 if (state->start != start) {
1831 ret = -ENOENT;
1832 goto out;
1833 }
1834 state->private = private;
1835out:
cad321ad 1836 spin_unlock(&tree->lock);
d1310b2e
CM
1837 return ret;
1838}
1839
1840int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1841{
1842 struct rb_node *node;
1843 struct extent_state *state;
1844 int ret = 0;
1845
cad321ad 1846 spin_lock(&tree->lock);
d1310b2e
CM
1847 /*
1848 * this search will find all the extents that end after
1849 * our range starts.
1850 */
80ea96b1 1851 node = tree_search(tree, start);
2b114d1d 1852 if (!node) {
d1310b2e
CM
1853 ret = -ENOENT;
1854 goto out;
1855 }
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 if (state->start != start) {
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 *private = state->private;
1862out:
cad321ad 1863 spin_unlock(&tree->lock);
d1310b2e
CM
1864 return ret;
1865}
1866
1867/*
1868 * searches a range in the state tree for a given mask.
70dec807 1869 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1870 * has the bits set. Otherwise, 1 is returned if any bit in the
1871 * range is found set.
1872 */
1873int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1874 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1875{
1876 struct extent_state *state = NULL;
1877 struct rb_node *node;
1878 int bitset = 0;
d1310b2e 1879
cad321ad 1880 spin_lock(&tree->lock);
df98b6e2
JB
1881 if (cached && cached->tree && cached->start <= start &&
1882 cached->end > start)
9655d298
CM
1883 node = &cached->rb_node;
1884 else
1885 node = tree_search(tree, start);
d1310b2e
CM
1886 while (node && start <= end) {
1887 state = rb_entry(node, struct extent_state, rb_node);
1888
1889 if (filled && state->start > start) {
1890 bitset = 0;
1891 break;
1892 }
1893
1894 if (state->start > end)
1895 break;
1896
1897 if (state->state & bits) {
1898 bitset = 1;
1899 if (!filled)
1900 break;
1901 } else if (filled) {
1902 bitset = 0;
1903 break;
1904 }
46562cec
CM
1905
1906 if (state->end == (u64)-1)
1907 break;
1908
d1310b2e
CM
1909 start = state->end + 1;
1910 if (start > end)
1911 break;
1912 node = rb_next(node);
1913 if (!node) {
1914 if (filled)
1915 bitset = 0;
1916 break;
1917 }
1918 }
cad321ad 1919 spin_unlock(&tree->lock);
d1310b2e
CM
1920 return bitset;
1921}
d1310b2e
CM
1922
1923/*
1924 * helper function to set a given page up to date if all the
1925 * extents in the tree for that page are up to date
1926 */
143bede5 1927static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1928{
4eee4fa4 1929 u64 start = page_offset(page);
d1310b2e 1930 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1931 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1932 SetPageUptodate(page);
d1310b2e
CM
1933}
1934
4a54c8c1
JS
1935/*
1936 * When IO fails, either with EIO or csum verification fails, we
1937 * try other mirrors that might have a good copy of the data. This
1938 * io_failure_record is used to record state as we go through all the
1939 * mirrors. If another mirror has good data, the page is set up to date
1940 * and things continue. If a good mirror can't be found, the original
1941 * bio end_io callback is called to indicate things have failed.
1942 */
1943struct io_failure_record {
1944 struct page *page;
1945 u64 start;
1946 u64 len;
1947 u64 logical;
1948 unsigned long bio_flags;
1949 int this_mirror;
1950 int failed_mirror;
1951 int in_validation;
1952};
1953
1954static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1955 int did_repair)
1956{
1957 int ret;
1958 int err = 0;
1959 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1960
1961 set_state_private(failure_tree, rec->start, 0);
1962 ret = clear_extent_bits(failure_tree, rec->start,
1963 rec->start + rec->len - 1,
1964 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1965 if (ret)
1966 err = ret;
1967
53b381b3
DW
1968 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1969 rec->start + rec->len - 1,
1970 EXTENT_DAMAGED, GFP_NOFS);
1971 if (ret && !err)
1972 err = ret;
4a54c8c1
JS
1973
1974 kfree(rec);
1975 return err;
1976}
1977
1978static void repair_io_failure_callback(struct bio *bio, int err)
1979{
1980 complete(bio->bi_private);
1981}
1982
1983/*
1984 * this bypasses the standard btrfs submit functions deliberately, as
1985 * the standard behavior is to write all copies in a raid setup. here we only
1986 * want to write the one bad copy. so we do the mapping for ourselves and issue
1987 * submit_bio directly.
3ec706c8 1988 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1989 * actually prevents the read that triggered the error from finishing.
1990 * currently, there can be no more than two copies of every data bit. thus,
1991 * exactly one rewrite is required.
1992 */
3ec706c8 1993int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
1994 u64 length, u64 logical, struct page *page,
1995 int mirror_num)
1996{
1997 struct bio *bio;
1998 struct btrfs_device *dev;
1999 DECLARE_COMPLETION_ONSTACK(compl);
2000 u64 map_length = 0;
2001 u64 sector;
2002 struct btrfs_bio *bbio = NULL;
53b381b3 2003 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2004 int ret;
2005
2006 BUG_ON(!mirror_num);
2007
53b381b3
DW
2008 /* we can't repair anything in raid56 yet */
2009 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2010 return 0;
2011
9be3395b 2012 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2013 if (!bio)
2014 return -EIO;
2015 bio->bi_private = &compl;
2016 bio->bi_end_io = repair_io_failure_callback;
2017 bio->bi_size = 0;
2018 map_length = length;
2019
3ec706c8 2020 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2021 &map_length, &bbio, mirror_num);
2022 if (ret) {
2023 bio_put(bio);
2024 return -EIO;
2025 }
2026 BUG_ON(mirror_num != bbio->mirror_num);
2027 sector = bbio->stripes[mirror_num-1].physical >> 9;
2028 bio->bi_sector = sector;
2029 dev = bbio->stripes[mirror_num-1].dev;
2030 kfree(bbio);
2031 if (!dev || !dev->bdev || !dev->writeable) {
2032 bio_put(bio);
2033 return -EIO;
2034 }
2035 bio->bi_bdev = dev->bdev;
4eee4fa4 2036 bio_add_page(bio, page, length, start - page_offset(page));
21adbd5c 2037 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
2038 wait_for_completion(&compl);
2039
2040 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2041 /* try to remap that extent elsewhere? */
2042 bio_put(bio);
442a4f63 2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2044 return -EIO;
2045 }
2046
d5b025d5 2047 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2048 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2049 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2050
2051 bio_put(bio);
2052 return 0;
2053}
2054
ea466794
JB
2055int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2056 int mirror_num)
2057{
ea466794
JB
2058 u64 start = eb->start;
2059 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2060 int ret = 0;
ea466794
JB
2061
2062 for (i = 0; i < num_pages; i++) {
2063 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2064 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2065 start, p, mirror_num);
2066 if (ret)
2067 break;
2068 start += PAGE_CACHE_SIZE;
2069 }
2070
2071 return ret;
2072}
2073
4a54c8c1
JS
2074/*
2075 * each time an IO finishes, we do a fast check in the IO failure tree
2076 * to see if we need to process or clean up an io_failure_record
2077 */
2078static int clean_io_failure(u64 start, struct page *page)
2079{
2080 u64 private;
2081 u64 private_failure;
2082 struct io_failure_record *failrec;
3ec706c8 2083 struct btrfs_fs_info *fs_info;
4a54c8c1
JS
2084 struct extent_state *state;
2085 int num_copies;
2086 int did_repair = 0;
2087 int ret;
2088 struct inode *inode = page->mapping->host;
2089
2090 private = 0;
2091 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2092 (u64)-1, 1, EXTENT_DIRTY, 0);
2093 if (!ret)
2094 return 0;
2095
2096 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2097 &private_failure);
2098 if (ret)
2099 return 0;
2100
2101 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2102 BUG_ON(!failrec->this_mirror);
2103
2104 if (failrec->in_validation) {
2105 /* there was no real error, just free the record */
2106 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2107 failrec->start);
2108 did_repair = 1;
2109 goto out;
2110 }
2111
2112 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2113 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2114 failrec->start,
2115 EXTENT_LOCKED);
2116 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2117
2118 if (state && state->start == failrec->start) {
3ec706c8
SB
2119 fs_info = BTRFS_I(inode)->root->fs_info;
2120 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2121 failrec->len);
4a54c8c1 2122 if (num_copies > 1) {
3ec706c8 2123 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2124 failrec->logical, page,
2125 failrec->failed_mirror);
2126 did_repair = !ret;
2127 }
53b381b3 2128 ret = 0;
4a54c8c1
JS
2129 }
2130
2131out:
2132 if (!ret)
2133 ret = free_io_failure(inode, failrec, did_repair);
2134
2135 return ret;
2136}
2137
2138/*
2139 * this is a generic handler for readpage errors (default
2140 * readpage_io_failed_hook). if other copies exist, read those and write back
2141 * good data to the failed position. does not investigate in remapping the
2142 * failed extent elsewhere, hoping the device will be smart enough to do this as
2143 * needed
2144 */
2145
facc8a22
MX
2146static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2147 struct page *page, u64 start, u64 end,
2148 int failed_mirror)
4a54c8c1
JS
2149{
2150 struct io_failure_record *failrec = NULL;
2151 u64 private;
2152 struct extent_map *em;
2153 struct inode *inode = page->mapping->host;
2154 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2155 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2156 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2157 struct bio *bio;
facc8a22
MX
2158 struct btrfs_io_bio *btrfs_failed_bio;
2159 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2160 int num_copies;
2161 int ret;
2162 int read_mode;
2163 u64 logical;
2164
2165 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2166
2167 ret = get_state_private(failure_tree, start, &private);
2168 if (ret) {
2169 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2170 if (!failrec)
2171 return -ENOMEM;
2172 failrec->start = start;
2173 failrec->len = end - start + 1;
2174 failrec->this_mirror = 0;
2175 failrec->bio_flags = 0;
2176 failrec->in_validation = 0;
2177
2178 read_lock(&em_tree->lock);
2179 em = lookup_extent_mapping(em_tree, start, failrec->len);
2180 if (!em) {
2181 read_unlock(&em_tree->lock);
2182 kfree(failrec);
2183 return -EIO;
2184 }
2185
2186 if (em->start > start || em->start + em->len < start) {
2187 free_extent_map(em);
2188 em = NULL;
2189 }
2190 read_unlock(&em_tree->lock);
2191
7a2d6a64 2192 if (!em) {
4a54c8c1
JS
2193 kfree(failrec);
2194 return -EIO;
2195 }
2196 logical = start - em->start;
2197 logical = em->block_start + logical;
2198 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2199 logical = em->block_start;
2200 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2201 extent_set_compress_type(&failrec->bio_flags,
2202 em->compress_type);
2203 }
2204 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2205 "len=%llu\n", logical, start, failrec->len);
2206 failrec->logical = logical;
2207 free_extent_map(em);
2208
2209 /* set the bits in the private failure tree */
2210 ret = set_extent_bits(failure_tree, start, end,
2211 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2212 if (ret >= 0)
2213 ret = set_state_private(failure_tree, start,
2214 (u64)(unsigned long)failrec);
2215 /* set the bits in the inode's tree */
2216 if (ret >= 0)
2217 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2218 GFP_NOFS);
2219 if (ret < 0) {
2220 kfree(failrec);
2221 return ret;
2222 }
2223 } else {
2224 failrec = (struct io_failure_record *)(unsigned long)private;
2225 pr_debug("bio_readpage_error: (found) logical=%llu, "
2226 "start=%llu, len=%llu, validation=%d\n",
2227 failrec->logical, failrec->start, failrec->len,
2228 failrec->in_validation);
2229 /*
2230 * when data can be on disk more than twice, add to failrec here
2231 * (e.g. with a list for failed_mirror) to make
2232 * clean_io_failure() clean all those errors at once.
2233 */
2234 }
5d964051
SB
2235 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2236 failrec->logical, failrec->len);
4a54c8c1
JS
2237 if (num_copies == 1) {
2238 /*
2239 * we only have a single copy of the data, so don't bother with
2240 * all the retry and error correction code that follows. no
2241 * matter what the error is, it is very likely to persist.
2242 */
09a7f7a2
MX
2243 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2244 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2245 free_io_failure(inode, failrec, 0);
2246 return -EIO;
2247 }
2248
4a54c8c1
JS
2249 /*
2250 * there are two premises:
2251 * a) deliver good data to the caller
2252 * b) correct the bad sectors on disk
2253 */
2254 if (failed_bio->bi_vcnt > 1) {
2255 /*
2256 * to fulfill b), we need to know the exact failing sectors, as
2257 * we don't want to rewrite any more than the failed ones. thus,
2258 * we need separate read requests for the failed bio
2259 *
2260 * if the following BUG_ON triggers, our validation request got
2261 * merged. we need separate requests for our algorithm to work.
2262 */
2263 BUG_ON(failrec->in_validation);
2264 failrec->in_validation = 1;
2265 failrec->this_mirror = failed_mirror;
2266 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2267 } else {
2268 /*
2269 * we're ready to fulfill a) and b) alongside. get a good copy
2270 * of the failed sector and if we succeed, we have setup
2271 * everything for repair_io_failure to do the rest for us.
2272 */
2273 if (failrec->in_validation) {
2274 BUG_ON(failrec->this_mirror != failed_mirror);
2275 failrec->in_validation = 0;
2276 failrec->this_mirror = 0;
2277 }
2278 failrec->failed_mirror = failed_mirror;
2279 failrec->this_mirror++;
2280 if (failrec->this_mirror == failed_mirror)
2281 failrec->this_mirror++;
2282 read_mode = READ_SYNC;
2283 }
2284
facc8a22
MX
2285 if (failrec->this_mirror > num_copies) {
2286 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2287 num_copies, failrec->this_mirror, failed_mirror);
2288 free_io_failure(inode, failrec, 0);
2289 return -EIO;
2290 }
2291
9be3395b 2292 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2293 if (!bio) {
2294 free_io_failure(inode, failrec, 0);
2295 return -EIO;
2296 }
4a54c8c1
JS
2297 bio->bi_end_io = failed_bio->bi_end_io;
2298 bio->bi_sector = failrec->logical >> 9;
2299 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2300 bio->bi_size = 0;
2301
facc8a22
MX
2302 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2303 if (btrfs_failed_bio->csum) {
2304 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2305 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2306
2307 btrfs_bio = btrfs_io_bio(bio);
2308 btrfs_bio->csum = btrfs_bio->csum_inline;
2309 phy_offset >>= inode->i_sb->s_blocksize_bits;
2310 phy_offset *= csum_size;
2311 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2312 csum_size);
2313 }
2314
4a54c8c1
JS
2315 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2316
2317 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2318 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2319 failrec->this_mirror, num_copies, failrec->in_validation);
2320
013bd4c3
TI
2321 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2322 failrec->this_mirror,
2323 failrec->bio_flags, 0);
2324 return ret;
4a54c8c1
JS
2325}
2326
d1310b2e
CM
2327/* lots and lots of room for performance fixes in the end_bio funcs */
2328
87826df0
JM
2329int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2330{
2331 int uptodate = (err == 0);
2332 struct extent_io_tree *tree;
2333 int ret;
2334
2335 tree = &BTRFS_I(page->mapping->host)->io_tree;
2336
2337 if (tree->ops && tree->ops->writepage_end_io_hook) {
2338 ret = tree->ops->writepage_end_io_hook(page, start,
2339 end, NULL, uptodate);
2340 if (ret)
2341 uptodate = 0;
2342 }
2343
87826df0 2344 if (!uptodate) {
87826df0
JM
2345 ClearPageUptodate(page);
2346 SetPageError(page);
2347 }
2348 return 0;
2349}
2350
d1310b2e
CM
2351/*
2352 * after a writepage IO is done, we need to:
2353 * clear the uptodate bits on error
2354 * clear the writeback bits in the extent tree for this IO
2355 * end_page_writeback if the page has no more pending IO
2356 *
2357 * Scheduling is not allowed, so the extent state tree is expected
2358 * to have one and only one object corresponding to this IO.
2359 */
d1310b2e 2360static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2361{
d1310b2e 2362 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2363 struct extent_io_tree *tree;
d1310b2e
CM
2364 u64 start;
2365 u64 end;
d1310b2e 2366
d1310b2e
CM
2367 do {
2368 struct page *page = bvec->bv_page;
902b22f3
DW
2369 tree = &BTRFS_I(page->mapping->host)->io_tree;
2370
17a5adcc
AO
2371 /* We always issue full-page reads, but if some block
2372 * in a page fails to read, blk_update_request() will
2373 * advance bv_offset and adjust bv_len to compensate.
2374 * Print a warning for nonzero offsets, and an error
2375 * if they don't add up to a full page. */
2376 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2377 printk("%s page write in btrfs with offset %u and length %u\n",
2378 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2379 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2380 bvec->bv_offset, bvec->bv_len);
d1310b2e 2381
17a5adcc
AO
2382 start = page_offset(page);
2383 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2384
2385 if (--bvec >= bio->bi_io_vec)
2386 prefetchw(&bvec->bv_page->flags);
1259ab75 2387
87826df0
JM
2388 if (end_extent_writepage(page, err, start, end))
2389 continue;
70dec807 2390
17a5adcc 2391 end_page_writeback(page);
d1310b2e 2392 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2393
d1310b2e 2394 bio_put(bio);
d1310b2e
CM
2395}
2396
2397/*
2398 * after a readpage IO is done, we need to:
2399 * clear the uptodate bits on error
2400 * set the uptodate bits if things worked
2401 * set the page up to date if all extents in the tree are uptodate
2402 * clear the lock bit in the extent tree
2403 * unlock the page if there are no other extents locked for it
2404 *
2405 * Scheduling is not allowed, so the extent state tree is expected
2406 * to have one and only one object corresponding to this IO.
2407 */
d1310b2e 2408static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2409{
2410 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2411 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2412 struct bio_vec *bvec = bio->bi_io_vec;
facc8a22 2413 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2414 struct extent_io_tree *tree;
facc8a22 2415 u64 offset = 0;
d1310b2e
CM
2416 u64 start;
2417 u64 end;
facc8a22 2418 u64 len;
5cf1ab56 2419 int mirror;
d1310b2e
CM
2420 int ret;
2421
d20f7043
CM
2422 if (err)
2423 uptodate = 0;
2424
d1310b2e
CM
2425 do {
2426 struct page *page = bvec->bv_page;
507903b8
AJ
2427 struct extent_state *cached = NULL;
2428 struct extent_state *state;
a71754fc 2429 struct inode *inode = page->mapping->host;
507903b8 2430
be3940c0 2431 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2432 "mirror=%lu\n", (u64)bio->bi_sector, err,
2433 io_bio->mirror_num);
a71754fc 2434 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2435
17a5adcc
AO
2436 /* We always issue full-page reads, but if some block
2437 * in a page fails to read, blk_update_request() will
2438 * advance bv_offset and adjust bv_len to compensate.
2439 * Print a warning for nonzero offsets, and an error
2440 * if they don't add up to a full page. */
2441 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2442 printk("%s page read in btrfs with offset %u and length %u\n",
2443 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2444 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2445 bvec->bv_offset, bvec->bv_len);
d1310b2e 2446
17a5adcc
AO
2447 start = page_offset(page);
2448 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2449 len = bvec->bv_len;
d1310b2e 2450
4125bf76 2451 if (++bvec <= bvec_end)
d1310b2e
CM
2452 prefetchw(&bvec->bv_page->flags);
2453
507903b8 2454 spin_lock(&tree->lock);
0d399205 2455 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
f2a09da9 2456 if (likely(state && state->start == start)) {
507903b8
AJ
2457 /*
2458 * take a reference on the state, unlock will drop
2459 * the ref
2460 */
2461 cache_state(state, &cached);
2462 }
2463 spin_unlock(&tree->lock);
2464
9be3395b 2465 mirror = io_bio->mirror_num;
f2a09da9
MX
2466 if (likely(uptodate && tree->ops &&
2467 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2468 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2469 page, start, end,
2470 mirror);
5ee0844d 2471 if (ret)
d1310b2e 2472 uptodate = 0;
5ee0844d 2473 else
4a54c8c1 2474 clean_io_failure(start, page);
d1310b2e 2475 }
ea466794 2476
f2a09da9
MX
2477 if (likely(uptodate))
2478 goto readpage_ok;
2479
2480 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2481 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2482 if (!ret && !err &&
2483 test_bit(BIO_UPTODATE, &bio->bi_flags))
2484 uptodate = 1;
f2a09da9 2485 } else {
f4a8e656
JS
2486 /*
2487 * The generic bio_readpage_error handles errors the
2488 * following way: If possible, new read requests are
2489 * created and submitted and will end up in
2490 * end_bio_extent_readpage as well (if we're lucky, not
2491 * in the !uptodate case). In that case it returns 0 and
2492 * we just go on with the next page in our bio. If it
2493 * can't handle the error it will return -EIO and we
2494 * remain responsible for that page.
2495 */
facc8a22
MX
2496 ret = bio_readpage_error(bio, offset, page, start, end,
2497 mirror);
7e38326f 2498 if (ret == 0) {
3b951516
CM
2499 uptodate =
2500 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2501 if (err)
2502 uptodate = 0;
507903b8 2503 uncache_state(&cached);
7e38326f
CM
2504 continue;
2505 }
2506 }
f2a09da9 2507readpage_ok:
0b32f4bb 2508 if (uptodate && tree->track_uptodate) {
507903b8 2509 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2510 GFP_ATOMIC);
771ed689 2511 }
507903b8 2512 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2513
17a5adcc 2514 if (uptodate) {
a71754fc
JB
2515 loff_t i_size = i_size_read(inode);
2516 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2517 unsigned offset;
2518
2519 /* Zero out the end if this page straddles i_size */
2520 offset = i_size & (PAGE_CACHE_SIZE-1);
2521 if (page->index == end_index && offset)
2522 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2523 SetPageUptodate(page);
70dec807 2524 } else {
17a5adcc
AO
2525 ClearPageUptodate(page);
2526 SetPageError(page);
70dec807 2527 }
17a5adcc 2528 unlock_page(page);
facc8a22 2529 offset += len;
4125bf76 2530 } while (bvec <= bvec_end);
d1310b2e 2531
facc8a22
MX
2532 if (io_bio->end_io)
2533 io_bio->end_io(io_bio, err);
d1310b2e 2534 bio_put(bio);
d1310b2e
CM
2535}
2536
9be3395b
CM
2537/*
2538 * this allocates from the btrfs_bioset. We're returning a bio right now
2539 * but you can call btrfs_io_bio for the appropriate container_of magic
2540 */
88f794ed
MX
2541struct bio *
2542btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2543 gfp_t gfp_flags)
d1310b2e 2544{
facc8a22 2545 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2546 struct bio *bio;
2547
9be3395b 2548 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2549
2550 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2551 while (!bio && (nr_vecs /= 2)) {
2552 bio = bio_alloc_bioset(gfp_flags,
2553 nr_vecs, btrfs_bioset);
2554 }
d1310b2e
CM
2555 }
2556
2557 if (bio) {
e1c4b745 2558 bio->bi_size = 0;
d1310b2e
CM
2559 bio->bi_bdev = bdev;
2560 bio->bi_sector = first_sector;
facc8a22
MX
2561 btrfs_bio = btrfs_io_bio(bio);
2562 btrfs_bio->csum = NULL;
2563 btrfs_bio->csum_allocated = NULL;
2564 btrfs_bio->end_io = NULL;
d1310b2e
CM
2565 }
2566 return bio;
2567}
2568
9be3395b
CM
2569struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2570{
2571 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2572}
2573
2574
2575/* this also allocates from the btrfs_bioset */
2576struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2577{
facc8a22
MX
2578 struct btrfs_io_bio *btrfs_bio;
2579 struct bio *bio;
2580
2581 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2582 if (bio) {
2583 btrfs_bio = btrfs_io_bio(bio);
2584 btrfs_bio->csum = NULL;
2585 btrfs_bio->csum_allocated = NULL;
2586 btrfs_bio->end_io = NULL;
2587 }
2588 return bio;
9be3395b
CM
2589}
2590
2591
355808c2
JM
2592static int __must_check submit_one_bio(int rw, struct bio *bio,
2593 int mirror_num, unsigned long bio_flags)
d1310b2e 2594{
d1310b2e 2595 int ret = 0;
70dec807
CM
2596 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2597 struct page *page = bvec->bv_page;
2598 struct extent_io_tree *tree = bio->bi_private;
70dec807 2599 u64 start;
70dec807 2600
4eee4fa4 2601 start = page_offset(page) + bvec->bv_offset;
70dec807 2602
902b22f3 2603 bio->bi_private = NULL;
d1310b2e
CM
2604
2605 bio_get(bio);
2606
065631f6 2607 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2608 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2609 mirror_num, bio_flags, start);
0b86a832 2610 else
21adbd5c 2611 btrfsic_submit_bio(rw, bio);
4a54c8c1 2612
d1310b2e
CM
2613 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2614 ret = -EOPNOTSUPP;
2615 bio_put(bio);
2616 return ret;
2617}
2618
64a16701 2619static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2620 unsigned long offset, size_t size, struct bio *bio,
2621 unsigned long bio_flags)
2622{
2623 int ret = 0;
2624 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2625 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2626 bio_flags);
2627 BUG_ON(ret < 0);
2628 return ret;
2629
2630}
2631
d1310b2e
CM
2632static int submit_extent_page(int rw, struct extent_io_tree *tree,
2633 struct page *page, sector_t sector,
2634 size_t size, unsigned long offset,
2635 struct block_device *bdev,
2636 struct bio **bio_ret,
2637 unsigned long max_pages,
f188591e 2638 bio_end_io_t end_io_func,
c8b97818
CM
2639 int mirror_num,
2640 unsigned long prev_bio_flags,
2641 unsigned long bio_flags)
d1310b2e
CM
2642{
2643 int ret = 0;
2644 struct bio *bio;
2645 int nr;
c8b97818
CM
2646 int contig = 0;
2647 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2648 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2649 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2650
2651 if (bio_ret && *bio_ret) {
2652 bio = *bio_ret;
c8b97818
CM
2653 if (old_compressed)
2654 contig = bio->bi_sector == sector;
2655 else
f73a1c7d 2656 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2657
2658 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2659 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2660 bio_add_page(bio, page, page_size, offset) < page_size) {
2661 ret = submit_one_bio(rw, bio, mirror_num,
2662 prev_bio_flags);
79787eaa
JM
2663 if (ret < 0)
2664 return ret;
d1310b2e
CM
2665 bio = NULL;
2666 } else {
2667 return 0;
2668 }
2669 }
c8b97818
CM
2670 if (this_compressed)
2671 nr = BIO_MAX_PAGES;
2672 else
2673 nr = bio_get_nr_vecs(bdev);
2674
88f794ed 2675 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2676 if (!bio)
2677 return -ENOMEM;
70dec807 2678
c8b97818 2679 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2680 bio->bi_end_io = end_io_func;
2681 bio->bi_private = tree;
70dec807 2682
d397712b 2683 if (bio_ret)
d1310b2e 2684 *bio_ret = bio;
d397712b 2685 else
c8b97818 2686 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2687
2688 return ret;
2689}
2690
48a3b636
ES
2691static void attach_extent_buffer_page(struct extent_buffer *eb,
2692 struct page *page)
d1310b2e
CM
2693{
2694 if (!PagePrivate(page)) {
2695 SetPagePrivate(page);
d1310b2e 2696 page_cache_get(page);
4f2de97a
JB
2697 set_page_private(page, (unsigned long)eb);
2698 } else {
2699 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2700 }
2701}
2702
4f2de97a 2703void set_page_extent_mapped(struct page *page)
d1310b2e 2704{
4f2de97a
JB
2705 if (!PagePrivate(page)) {
2706 SetPagePrivate(page);
2707 page_cache_get(page);
2708 set_page_private(page, EXTENT_PAGE_PRIVATE);
2709 }
d1310b2e
CM
2710}
2711
2712/*
2713 * basic readpage implementation. Locked extent state structs are inserted
2714 * into the tree that are removed when the IO is done (by the end_io
2715 * handlers)
79787eaa 2716 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2717 */
2718static int __extent_read_full_page(struct extent_io_tree *tree,
2719 struct page *page,
2720 get_extent_t *get_extent,
c8b97818 2721 struct bio **bio, int mirror_num,
d4c7ca86 2722 unsigned long *bio_flags, int rw)
d1310b2e
CM
2723{
2724 struct inode *inode = page->mapping->host;
4eee4fa4 2725 u64 start = page_offset(page);
d1310b2e
CM
2726 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2727 u64 end;
2728 u64 cur = start;
2729 u64 extent_offset;
2730 u64 last_byte = i_size_read(inode);
2731 u64 block_start;
2732 u64 cur_end;
2733 sector_t sector;
2734 struct extent_map *em;
2735 struct block_device *bdev;
11c65dcc 2736 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2737 int ret;
2738 int nr = 0;
306e16ce 2739 size_t pg_offset = 0;
d1310b2e 2740 size_t iosize;
c8b97818 2741 size_t disk_io_size;
d1310b2e 2742 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2743 unsigned long this_bio_flag = 0;
d1310b2e
CM
2744
2745 set_page_extent_mapped(page);
2746
90a887c9
DM
2747 if (!PageUptodate(page)) {
2748 if (cleancache_get_page(page) == 0) {
2749 BUG_ON(blocksize != PAGE_SIZE);
2750 goto out;
2751 }
2752 }
2753
d1310b2e 2754 end = page_end;
11c65dcc 2755 while (1) {
d0082371 2756 lock_extent(tree, start, end);
11c65dcc
JB
2757 ordered = btrfs_lookup_ordered_extent(inode, start);
2758 if (!ordered)
2759 break;
d0082371 2760 unlock_extent(tree, start, end);
11c65dcc
JB
2761 btrfs_start_ordered_extent(inode, ordered, 1);
2762 btrfs_put_ordered_extent(ordered);
2763 }
d1310b2e 2764
c8b97818
CM
2765 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2766 char *userpage;
2767 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2768
2769 if (zero_offset) {
2770 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2771 userpage = kmap_atomic(page);
c8b97818
CM
2772 memset(userpage + zero_offset, 0, iosize);
2773 flush_dcache_page(page);
7ac687d9 2774 kunmap_atomic(userpage);
c8b97818
CM
2775 }
2776 }
d1310b2e 2777 while (cur <= end) {
c8f2f24b
JB
2778 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2779
d1310b2e
CM
2780 if (cur >= last_byte) {
2781 char *userpage;
507903b8
AJ
2782 struct extent_state *cached = NULL;
2783
306e16ce 2784 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2785 userpage = kmap_atomic(page);
306e16ce 2786 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2787 flush_dcache_page(page);
7ac687d9 2788 kunmap_atomic(userpage);
d1310b2e 2789 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2790 &cached, GFP_NOFS);
2791 unlock_extent_cached(tree, cur, cur + iosize - 1,
2792 &cached, GFP_NOFS);
d1310b2e
CM
2793 break;
2794 }
306e16ce 2795 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2796 end - cur + 1, 0);
c704005d 2797 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2798 SetPageError(page);
d0082371 2799 unlock_extent(tree, cur, end);
d1310b2e
CM
2800 break;
2801 }
d1310b2e
CM
2802 extent_offset = cur - em->start;
2803 BUG_ON(extent_map_end(em) <= cur);
2804 BUG_ON(end < cur);
2805
261507a0 2806 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2807 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2808 extent_set_compress_type(&this_bio_flag,
2809 em->compress_type);
2810 }
c8b97818 2811
d1310b2e
CM
2812 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2813 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2814 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2815 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2816 disk_io_size = em->block_len;
2817 sector = em->block_start >> 9;
2818 } else {
2819 sector = (em->block_start + extent_offset) >> 9;
2820 disk_io_size = iosize;
2821 }
d1310b2e
CM
2822 bdev = em->bdev;
2823 block_start = em->block_start;
d899e052
YZ
2824 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2825 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2826 free_extent_map(em);
2827 em = NULL;
2828
2829 /* we've found a hole, just zero and go on */
2830 if (block_start == EXTENT_MAP_HOLE) {
2831 char *userpage;
507903b8
AJ
2832 struct extent_state *cached = NULL;
2833
7ac687d9 2834 userpage = kmap_atomic(page);
306e16ce 2835 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2836 flush_dcache_page(page);
7ac687d9 2837 kunmap_atomic(userpage);
d1310b2e
CM
2838
2839 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2840 &cached, GFP_NOFS);
2841 unlock_extent_cached(tree, cur, cur + iosize - 1,
2842 &cached, GFP_NOFS);
d1310b2e 2843 cur = cur + iosize;
306e16ce 2844 pg_offset += iosize;
d1310b2e
CM
2845 continue;
2846 }
2847 /* the get_extent function already copied into the page */
9655d298
CM
2848 if (test_range_bit(tree, cur, cur_end,
2849 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2850 check_page_uptodate(tree, page);
d0082371 2851 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2852 cur = cur + iosize;
306e16ce 2853 pg_offset += iosize;
d1310b2e
CM
2854 continue;
2855 }
70dec807
CM
2856 /* we have an inline extent but it didn't get marked up
2857 * to date. Error out
2858 */
2859 if (block_start == EXTENT_MAP_INLINE) {
2860 SetPageError(page);
d0082371 2861 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2862 cur = cur + iosize;
306e16ce 2863 pg_offset += iosize;
70dec807
CM
2864 continue;
2865 }
d1310b2e 2866
c8f2f24b 2867 pnr -= page->index;
d4c7ca86 2868 ret = submit_extent_page(rw, tree, page,
306e16ce 2869 sector, disk_io_size, pg_offset,
89642229 2870 bdev, bio, pnr,
c8b97818
CM
2871 end_bio_extent_readpage, mirror_num,
2872 *bio_flags,
2873 this_bio_flag);
c8f2f24b
JB
2874 if (!ret) {
2875 nr++;
2876 *bio_flags = this_bio_flag;
2877 } else {
d1310b2e 2878 SetPageError(page);
edd33c99
JB
2879 unlock_extent(tree, cur, cur + iosize - 1);
2880 }
d1310b2e 2881 cur = cur + iosize;
306e16ce 2882 pg_offset += iosize;
d1310b2e 2883 }
90a887c9 2884out:
d1310b2e
CM
2885 if (!nr) {
2886 if (!PageError(page))
2887 SetPageUptodate(page);
2888 unlock_page(page);
2889 }
2890 return 0;
2891}
2892
2893int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2894 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2895{
2896 struct bio *bio = NULL;
c8b97818 2897 unsigned long bio_flags = 0;
d1310b2e
CM
2898 int ret;
2899
8ddc7d9c 2900 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 2901 &bio_flags, READ);
d1310b2e 2902 if (bio)
8ddc7d9c 2903 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2904 return ret;
2905}
d1310b2e 2906
11c8349b
CM
2907static noinline void update_nr_written(struct page *page,
2908 struct writeback_control *wbc,
2909 unsigned long nr_written)
2910{
2911 wbc->nr_to_write -= nr_written;
2912 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2913 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2914 page->mapping->writeback_index = page->index + nr_written;
2915}
2916
d1310b2e
CM
2917/*
2918 * the writepage semantics are similar to regular writepage. extent
2919 * records are inserted to lock ranges in the tree, and as dirty areas
2920 * are found, they are marked writeback. Then the lock bits are removed
2921 * and the end_io handler clears the writeback ranges
2922 */
2923static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2924 void *data)
2925{
2926 struct inode *inode = page->mapping->host;
2927 struct extent_page_data *epd = data;
2928 struct extent_io_tree *tree = epd->tree;
4eee4fa4 2929 u64 start = page_offset(page);
d1310b2e
CM
2930 u64 delalloc_start;
2931 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2932 u64 end;
2933 u64 cur = start;
2934 u64 extent_offset;
2935 u64 last_byte = i_size_read(inode);
2936 u64 block_start;
2937 u64 iosize;
2938 sector_t sector;
2c64c53d 2939 struct extent_state *cached_state = NULL;
d1310b2e
CM
2940 struct extent_map *em;
2941 struct block_device *bdev;
2942 int ret;
2943 int nr = 0;
7f3c74fb 2944 size_t pg_offset = 0;
d1310b2e
CM
2945 size_t blocksize;
2946 loff_t i_size = i_size_read(inode);
2947 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2948 u64 nr_delalloc;
2949 u64 delalloc_end;
c8b97818
CM
2950 int page_started;
2951 int compressed;
ffbd517d 2952 int write_flags;
771ed689 2953 unsigned long nr_written = 0;
9e487107 2954 bool fill_delalloc = true;
d1310b2e 2955
ffbd517d 2956 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2957 write_flags = WRITE_SYNC;
ffbd517d
CM
2958 else
2959 write_flags = WRITE;
2960
1abe9b8a 2961 trace___extent_writepage(page, inode, wbc);
2962
d1310b2e 2963 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2964
2965 ClearPageError(page);
2966
7f3c74fb 2967 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2968 if (page->index > end_index ||
7f3c74fb 2969 (page->index == end_index && !pg_offset)) {
d47992f8 2970 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
2971 unlock_page(page);
2972 return 0;
2973 }
2974
2975 if (page->index == end_index) {
2976 char *userpage;
2977
7ac687d9 2978 userpage = kmap_atomic(page);
7f3c74fb
CM
2979 memset(userpage + pg_offset, 0,
2980 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2981 kunmap_atomic(userpage);
211c17f5 2982 flush_dcache_page(page);
d1310b2e 2983 }
7f3c74fb 2984 pg_offset = 0;
d1310b2e
CM
2985
2986 set_page_extent_mapped(page);
2987
9e487107
JB
2988 if (!tree->ops || !tree->ops->fill_delalloc)
2989 fill_delalloc = false;
2990
d1310b2e
CM
2991 delalloc_start = start;
2992 delalloc_end = 0;
c8b97818 2993 page_started = 0;
9e487107 2994 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2995 u64 delalloc_to_write = 0;
11c8349b
CM
2996 /*
2997 * make sure the wbc mapping index is at least updated
2998 * to this page.
2999 */
3000 update_nr_written(page, wbc, 0);
3001
d397712b 3002 while (delalloc_end < page_end) {
771ed689 3003 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3004 page,
3005 &delalloc_start,
d1310b2e
CM
3006 &delalloc_end,
3007 128 * 1024 * 1024);
771ed689
CM
3008 if (nr_delalloc == 0) {
3009 delalloc_start = delalloc_end + 1;
3010 continue;
3011 }
013bd4c3
TI
3012 ret = tree->ops->fill_delalloc(inode, page,
3013 delalloc_start,
3014 delalloc_end,
3015 &page_started,
3016 &nr_written);
79787eaa
JM
3017 /* File system has been set read-only */
3018 if (ret) {
3019 SetPageError(page);
3020 goto done;
3021 }
f85d7d6c
CM
3022 /*
3023 * delalloc_end is already one less than the total
3024 * length, so we don't subtract one from
3025 * PAGE_CACHE_SIZE
3026 */
3027 delalloc_to_write += (delalloc_end - delalloc_start +
3028 PAGE_CACHE_SIZE) >>
3029 PAGE_CACHE_SHIFT;
d1310b2e 3030 delalloc_start = delalloc_end + 1;
d1310b2e 3031 }
f85d7d6c
CM
3032 if (wbc->nr_to_write < delalloc_to_write) {
3033 int thresh = 8192;
3034
3035 if (delalloc_to_write < thresh * 2)
3036 thresh = delalloc_to_write;
3037 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3038 thresh);
3039 }
c8b97818 3040
771ed689
CM
3041 /* did the fill delalloc function already unlock and start
3042 * the IO?
3043 */
3044 if (page_started) {
3045 ret = 0;
11c8349b
CM
3046 /*
3047 * we've unlocked the page, so we can't update
3048 * the mapping's writeback index, just update
3049 * nr_to_write.
3050 */
3051 wbc->nr_to_write -= nr_written;
3052 goto done_unlocked;
771ed689 3053 }
c8b97818 3054 }
247e743c 3055 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3056 ret = tree->ops->writepage_start_hook(page, start,
3057 page_end);
87826df0
JM
3058 if (ret) {
3059 /* Fixup worker will requeue */
3060 if (ret == -EBUSY)
3061 wbc->pages_skipped++;
3062 else
3063 redirty_page_for_writepage(wbc, page);
11c8349b 3064 update_nr_written(page, wbc, nr_written);
247e743c 3065 unlock_page(page);
771ed689 3066 ret = 0;
11c8349b 3067 goto done_unlocked;
247e743c
CM
3068 }
3069 }
3070
11c8349b
CM
3071 /*
3072 * we don't want to touch the inode after unlocking the page,
3073 * so we update the mapping writeback index now
3074 */
3075 update_nr_written(page, wbc, nr_written + 1);
771ed689 3076
d1310b2e 3077 end = page_end;
d1310b2e 3078 if (last_byte <= start) {
e6dcd2dc
CM
3079 if (tree->ops && tree->ops->writepage_end_io_hook)
3080 tree->ops->writepage_end_io_hook(page, start,
3081 page_end, NULL, 1);
d1310b2e
CM
3082 goto done;
3083 }
3084
d1310b2e
CM
3085 blocksize = inode->i_sb->s_blocksize;
3086
3087 while (cur <= end) {
3088 if (cur >= last_byte) {
e6dcd2dc
CM
3089 if (tree->ops && tree->ops->writepage_end_io_hook)
3090 tree->ops->writepage_end_io_hook(page, cur,
3091 page_end, NULL, 1);
d1310b2e
CM
3092 break;
3093 }
7f3c74fb 3094 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3095 end - cur + 1, 1);
c704005d 3096 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3097 SetPageError(page);
3098 break;
3099 }
3100
3101 extent_offset = cur - em->start;
3102 BUG_ON(extent_map_end(em) <= cur);
3103 BUG_ON(end < cur);
3104 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3105 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3106 sector = (em->block_start + extent_offset) >> 9;
3107 bdev = em->bdev;
3108 block_start = em->block_start;
c8b97818 3109 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3110 free_extent_map(em);
3111 em = NULL;
3112
c8b97818
CM
3113 /*
3114 * compressed and inline extents are written through other
3115 * paths in the FS
3116 */
3117 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3118 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3119 /*
3120 * end_io notification does not happen here for
3121 * compressed extents
3122 */
3123 if (!compressed && tree->ops &&
3124 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3125 tree->ops->writepage_end_io_hook(page, cur,
3126 cur + iosize - 1,
3127 NULL, 1);
c8b97818
CM
3128 else if (compressed) {
3129 /* we don't want to end_page_writeback on
3130 * a compressed extent. this happens
3131 * elsewhere
3132 */
3133 nr++;
3134 }
3135
3136 cur += iosize;
7f3c74fb 3137 pg_offset += iosize;
d1310b2e
CM
3138 continue;
3139 }
d1310b2e
CM
3140 /* leave this out until we have a page_mkwrite call */
3141 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3142 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3143 cur = cur + iosize;
7f3c74fb 3144 pg_offset += iosize;
d1310b2e
CM
3145 continue;
3146 }
c8b97818 3147
d1310b2e
CM
3148 if (tree->ops && tree->ops->writepage_io_hook) {
3149 ret = tree->ops->writepage_io_hook(page, cur,
3150 cur + iosize - 1);
3151 } else {
3152 ret = 0;
3153 }
1259ab75 3154 if (ret) {
d1310b2e 3155 SetPageError(page);
1259ab75 3156 } else {
d1310b2e 3157 unsigned long max_nr = end_index + 1;
7f3c74fb 3158
d1310b2e
CM
3159 set_range_writeback(tree, cur, cur + iosize - 1);
3160 if (!PageWriteback(page)) {
d397712b
CM
3161 printk(KERN_ERR "btrfs warning page %lu not "
3162 "writeback, cur %llu end %llu\n",
3163 page->index, (unsigned long long)cur,
d1310b2e
CM
3164 (unsigned long long)end);
3165 }
3166
ffbd517d
CM
3167 ret = submit_extent_page(write_flags, tree, page,
3168 sector, iosize, pg_offset,
3169 bdev, &epd->bio, max_nr,
c8b97818
CM
3170 end_bio_extent_writepage,
3171 0, 0, 0);
d1310b2e
CM
3172 if (ret)
3173 SetPageError(page);
3174 }
3175 cur = cur + iosize;
7f3c74fb 3176 pg_offset += iosize;
d1310b2e
CM
3177 nr++;
3178 }
3179done:
3180 if (nr == 0) {
3181 /* make sure the mapping tag for page dirty gets cleared */
3182 set_page_writeback(page);
3183 end_page_writeback(page);
3184 }
d1310b2e 3185 unlock_page(page);
771ed689 3186
11c8349b
CM
3187done_unlocked:
3188
2c64c53d
CM
3189 /* drop our reference on any cached states */
3190 free_extent_state(cached_state);
d1310b2e
CM
3191 return 0;
3192}
3193
0b32f4bb
JB
3194static int eb_wait(void *word)
3195{
3196 io_schedule();
3197 return 0;
3198}
3199
fd8b2b61 3200void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3201{
3202 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3203 TASK_UNINTERRUPTIBLE);
3204}
3205
3206static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3207 struct btrfs_fs_info *fs_info,
3208 struct extent_page_data *epd)
3209{
3210 unsigned long i, num_pages;
3211 int flush = 0;
3212 int ret = 0;
3213
3214 if (!btrfs_try_tree_write_lock(eb)) {
3215 flush = 1;
3216 flush_write_bio(epd);
3217 btrfs_tree_lock(eb);
3218 }
3219
3220 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3221 btrfs_tree_unlock(eb);
3222 if (!epd->sync_io)
3223 return 0;
3224 if (!flush) {
3225 flush_write_bio(epd);
3226 flush = 1;
3227 }
a098d8e8
CM
3228 while (1) {
3229 wait_on_extent_buffer_writeback(eb);
3230 btrfs_tree_lock(eb);
3231 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3232 break;
0b32f4bb 3233 btrfs_tree_unlock(eb);
0b32f4bb
JB
3234 }
3235 }
3236
51561ffe
JB
3237 /*
3238 * We need to do this to prevent races in people who check if the eb is
3239 * under IO since we can end up having no IO bits set for a short period
3240 * of time.
3241 */
3242 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3243 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3244 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3245 spin_unlock(&eb->refs_lock);
0b32f4bb 3246 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3247 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3248 -eb->len,
3249 fs_info->dirty_metadata_batch);
0b32f4bb 3250 ret = 1;
51561ffe
JB
3251 } else {
3252 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3253 }
3254
3255 btrfs_tree_unlock(eb);
3256
3257 if (!ret)
3258 return ret;
3259
3260 num_pages = num_extent_pages(eb->start, eb->len);
3261 for (i = 0; i < num_pages; i++) {
3262 struct page *p = extent_buffer_page(eb, i);
3263
3264 if (!trylock_page(p)) {
3265 if (!flush) {
3266 flush_write_bio(epd);
3267 flush = 1;
3268 }
3269 lock_page(p);
3270 }
3271 }
3272
3273 return ret;
3274}
3275
3276static void end_extent_buffer_writeback(struct extent_buffer *eb)
3277{
3278 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3279 smp_mb__after_clear_bit();
3280 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3281}
3282
3283static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3284{
3285 int uptodate = err == 0;
3286 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3287 struct extent_buffer *eb;
3288 int done;
3289
3290 do {
3291 struct page *page = bvec->bv_page;
3292
3293 bvec--;
3294 eb = (struct extent_buffer *)page->private;
3295 BUG_ON(!eb);
3296 done = atomic_dec_and_test(&eb->io_pages);
3297
3298 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3299 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3300 ClearPageUptodate(page);
3301 SetPageError(page);
3302 }
3303
3304 end_page_writeback(page);
3305
3306 if (!done)
3307 continue;
3308
3309 end_extent_buffer_writeback(eb);
3310 } while (bvec >= bio->bi_io_vec);
3311
3312 bio_put(bio);
3313
3314}
3315
3316static int write_one_eb(struct extent_buffer *eb,
3317 struct btrfs_fs_info *fs_info,
3318 struct writeback_control *wbc,
3319 struct extent_page_data *epd)
3320{
3321 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3322 u64 offset = eb->start;
3323 unsigned long i, num_pages;
de0022b9 3324 unsigned long bio_flags = 0;
d4c7ca86 3325 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3326 int ret = 0;
0b32f4bb
JB
3327
3328 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3329 num_pages = num_extent_pages(eb->start, eb->len);
3330 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3331 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3332 bio_flags = EXTENT_BIO_TREE_LOG;
3333
0b32f4bb
JB
3334 for (i = 0; i < num_pages; i++) {
3335 struct page *p = extent_buffer_page(eb, i);
3336
3337 clear_page_dirty_for_io(p);
3338 set_page_writeback(p);
3339 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3340 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3341 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3342 0, epd->bio_flags, bio_flags);
3343 epd->bio_flags = bio_flags;
0b32f4bb
JB
3344 if (ret) {
3345 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3346 SetPageError(p);
3347 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3348 end_extent_buffer_writeback(eb);
3349 ret = -EIO;
3350 break;
3351 }
3352 offset += PAGE_CACHE_SIZE;
3353 update_nr_written(p, wbc, 1);
3354 unlock_page(p);
3355 }
3356
3357 if (unlikely(ret)) {
3358 for (; i < num_pages; i++) {
3359 struct page *p = extent_buffer_page(eb, i);
3360 unlock_page(p);
3361 }
3362 }
3363
3364 return ret;
3365}
3366
3367int btree_write_cache_pages(struct address_space *mapping,
3368 struct writeback_control *wbc)
3369{
3370 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3371 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3372 struct extent_buffer *eb, *prev_eb = NULL;
3373 struct extent_page_data epd = {
3374 .bio = NULL,
3375 .tree = tree,
3376 .extent_locked = 0,
3377 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3378 .bio_flags = 0,
0b32f4bb
JB
3379 };
3380 int ret = 0;
3381 int done = 0;
3382 int nr_to_write_done = 0;
3383 struct pagevec pvec;
3384 int nr_pages;
3385 pgoff_t index;
3386 pgoff_t end; /* Inclusive */
3387 int scanned = 0;
3388 int tag;
3389
3390 pagevec_init(&pvec, 0);
3391 if (wbc->range_cyclic) {
3392 index = mapping->writeback_index; /* Start from prev offset */
3393 end = -1;
3394 } else {
3395 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3396 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3397 scanned = 1;
3398 }
3399 if (wbc->sync_mode == WB_SYNC_ALL)
3400 tag = PAGECACHE_TAG_TOWRITE;
3401 else
3402 tag = PAGECACHE_TAG_DIRTY;
3403retry:
3404 if (wbc->sync_mode == WB_SYNC_ALL)
3405 tag_pages_for_writeback(mapping, index, end);
3406 while (!done && !nr_to_write_done && (index <= end) &&
3407 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3408 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3409 unsigned i;
3410
3411 scanned = 1;
3412 for (i = 0; i < nr_pages; i++) {
3413 struct page *page = pvec.pages[i];
3414
3415 if (!PagePrivate(page))
3416 continue;
3417
3418 if (!wbc->range_cyclic && page->index > end) {
3419 done = 1;
3420 break;
3421 }
3422
b5bae261
JB
3423 spin_lock(&mapping->private_lock);
3424 if (!PagePrivate(page)) {
3425 spin_unlock(&mapping->private_lock);
3426 continue;
3427 }
3428
0b32f4bb 3429 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3430
3431 /*
3432 * Shouldn't happen and normally this would be a BUG_ON
3433 * but no sense in crashing the users box for something
3434 * we can survive anyway.
3435 */
0b32f4bb 3436 if (!eb) {
b5bae261 3437 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3438 WARN_ON(1);
3439 continue;
3440 }
3441
b5bae261
JB
3442 if (eb == prev_eb) {
3443 spin_unlock(&mapping->private_lock);
0b32f4bb 3444 continue;
b5bae261 3445 }
0b32f4bb 3446
b5bae261
JB
3447 ret = atomic_inc_not_zero(&eb->refs);
3448 spin_unlock(&mapping->private_lock);
3449 if (!ret)
0b32f4bb 3450 continue;
0b32f4bb
JB
3451
3452 prev_eb = eb;
3453 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3454 if (!ret) {
3455 free_extent_buffer(eb);
3456 continue;
3457 }
3458
3459 ret = write_one_eb(eb, fs_info, wbc, &epd);
3460 if (ret) {
3461 done = 1;
3462 free_extent_buffer(eb);
3463 break;
3464 }
3465 free_extent_buffer(eb);
3466
3467 /*
3468 * the filesystem may choose to bump up nr_to_write.
3469 * We have to make sure to honor the new nr_to_write
3470 * at any time
3471 */
3472 nr_to_write_done = wbc->nr_to_write <= 0;
3473 }
3474 pagevec_release(&pvec);
3475 cond_resched();
3476 }
3477 if (!scanned && !done) {
3478 /*
3479 * We hit the last page and there is more work to be done: wrap
3480 * back to the start of the file
3481 */
3482 scanned = 1;
3483 index = 0;
3484 goto retry;
3485 }
3486 flush_write_bio(&epd);
3487 return ret;
3488}
3489
d1310b2e 3490/**
4bef0848 3491 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3492 * @mapping: address space structure to write
3493 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3494 * @writepage: function called for each page
3495 * @data: data passed to writepage function
3496 *
3497 * If a page is already under I/O, write_cache_pages() skips it, even
3498 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3499 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3500 * and msync() need to guarantee that all the data which was dirty at the time
3501 * the call was made get new I/O started against them. If wbc->sync_mode is
3502 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3503 * existing IO to complete.
3504 */
b2950863 3505static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3506 struct address_space *mapping,
3507 struct writeback_control *wbc,
d2c3f4f6
CM
3508 writepage_t writepage, void *data,
3509 void (*flush_fn)(void *))
d1310b2e 3510{
7fd1a3f7 3511 struct inode *inode = mapping->host;
d1310b2e
CM
3512 int ret = 0;
3513 int done = 0;
f85d7d6c 3514 int nr_to_write_done = 0;
d1310b2e
CM
3515 struct pagevec pvec;
3516 int nr_pages;
3517 pgoff_t index;
3518 pgoff_t end; /* Inclusive */
3519 int scanned = 0;
f7aaa06b 3520 int tag;
d1310b2e 3521
7fd1a3f7
JB
3522 /*
3523 * We have to hold onto the inode so that ordered extents can do their
3524 * work when the IO finishes. The alternative to this is failing to add
3525 * an ordered extent if the igrab() fails there and that is a huge pain
3526 * to deal with, so instead just hold onto the inode throughout the
3527 * writepages operation. If it fails here we are freeing up the inode
3528 * anyway and we'd rather not waste our time writing out stuff that is
3529 * going to be truncated anyway.
3530 */
3531 if (!igrab(inode))
3532 return 0;
3533
d1310b2e
CM
3534 pagevec_init(&pvec, 0);
3535 if (wbc->range_cyclic) {
3536 index = mapping->writeback_index; /* Start from prev offset */
3537 end = -1;
3538 } else {
3539 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3540 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3541 scanned = 1;
3542 }
f7aaa06b
JB
3543 if (wbc->sync_mode == WB_SYNC_ALL)
3544 tag = PAGECACHE_TAG_TOWRITE;
3545 else
3546 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3547retry:
f7aaa06b
JB
3548 if (wbc->sync_mode == WB_SYNC_ALL)
3549 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3550 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3551 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3552 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3553 unsigned i;
3554
3555 scanned = 1;
3556 for (i = 0; i < nr_pages; i++) {
3557 struct page *page = pvec.pages[i];
3558
3559 /*
3560 * At this point we hold neither mapping->tree_lock nor
3561 * lock on the page itself: the page may be truncated or
3562 * invalidated (changing page->mapping to NULL), or even
3563 * swizzled back from swapper_space to tmpfs file
3564 * mapping
3565 */
c8f2f24b
JB
3566 if (!trylock_page(page)) {
3567 flush_fn(data);
3568 lock_page(page);
01d658f2 3569 }
d1310b2e
CM
3570
3571 if (unlikely(page->mapping != mapping)) {
3572 unlock_page(page);
3573 continue;
3574 }
3575
3576 if (!wbc->range_cyclic && page->index > end) {
3577 done = 1;
3578 unlock_page(page);
3579 continue;
3580 }
3581
d2c3f4f6 3582 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3583 if (PageWriteback(page))
3584 flush_fn(data);
d1310b2e 3585 wait_on_page_writeback(page);
d2c3f4f6 3586 }
d1310b2e
CM
3587
3588 if (PageWriteback(page) ||
3589 !clear_page_dirty_for_io(page)) {
3590 unlock_page(page);
3591 continue;
3592 }
3593
3594 ret = (*writepage)(page, wbc, data);
3595
3596 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3597 unlock_page(page);
3598 ret = 0;
3599 }
f85d7d6c 3600 if (ret)
d1310b2e 3601 done = 1;
f85d7d6c
CM
3602
3603 /*
3604 * the filesystem may choose to bump up nr_to_write.
3605 * We have to make sure to honor the new nr_to_write
3606 * at any time
3607 */
3608 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3609 }
3610 pagevec_release(&pvec);
3611 cond_resched();
3612 }
3613 if (!scanned && !done) {
3614 /*
3615 * We hit the last page and there is more work to be done: wrap
3616 * back to the start of the file
3617 */
3618 scanned = 1;
3619 index = 0;
3620 goto retry;
3621 }
7fd1a3f7 3622 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3623 return ret;
3624}
d1310b2e 3625
ffbd517d 3626static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3627{
d2c3f4f6 3628 if (epd->bio) {
355808c2
JM
3629 int rw = WRITE;
3630 int ret;
3631
ffbd517d 3632 if (epd->sync_io)
355808c2
JM
3633 rw = WRITE_SYNC;
3634
de0022b9 3635 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3636 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3637 epd->bio = NULL;
3638 }
3639}
3640
ffbd517d
CM
3641static noinline void flush_write_bio(void *data)
3642{
3643 struct extent_page_data *epd = data;
3644 flush_epd_write_bio(epd);
3645}
3646
d1310b2e
CM
3647int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3648 get_extent_t *get_extent,
3649 struct writeback_control *wbc)
3650{
3651 int ret;
d1310b2e
CM
3652 struct extent_page_data epd = {
3653 .bio = NULL,
3654 .tree = tree,
3655 .get_extent = get_extent,
771ed689 3656 .extent_locked = 0,
ffbd517d 3657 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3658 .bio_flags = 0,
d1310b2e 3659 };
d1310b2e 3660
d1310b2e
CM
3661 ret = __extent_writepage(page, wbc, &epd);
3662
ffbd517d 3663 flush_epd_write_bio(&epd);
d1310b2e
CM
3664 return ret;
3665}
d1310b2e 3666
771ed689
CM
3667int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3668 u64 start, u64 end, get_extent_t *get_extent,
3669 int mode)
3670{
3671 int ret = 0;
3672 struct address_space *mapping = inode->i_mapping;
3673 struct page *page;
3674 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3675 PAGE_CACHE_SHIFT;
3676
3677 struct extent_page_data epd = {
3678 .bio = NULL,
3679 .tree = tree,
3680 .get_extent = get_extent,
3681 .extent_locked = 1,
ffbd517d 3682 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3683 .bio_flags = 0,
771ed689
CM
3684 };
3685 struct writeback_control wbc_writepages = {
771ed689 3686 .sync_mode = mode,
771ed689
CM
3687 .nr_to_write = nr_pages * 2,
3688 .range_start = start,
3689 .range_end = end + 1,
3690 };
3691
d397712b 3692 while (start <= end) {
771ed689
CM
3693 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3694 if (clear_page_dirty_for_io(page))
3695 ret = __extent_writepage(page, &wbc_writepages, &epd);
3696 else {
3697 if (tree->ops && tree->ops->writepage_end_io_hook)
3698 tree->ops->writepage_end_io_hook(page, start,
3699 start + PAGE_CACHE_SIZE - 1,
3700 NULL, 1);
3701 unlock_page(page);
3702 }
3703 page_cache_release(page);
3704 start += PAGE_CACHE_SIZE;
3705 }
3706
ffbd517d 3707 flush_epd_write_bio(&epd);
771ed689
CM
3708 return ret;
3709}
d1310b2e
CM
3710
3711int extent_writepages(struct extent_io_tree *tree,
3712 struct address_space *mapping,
3713 get_extent_t *get_extent,
3714 struct writeback_control *wbc)
3715{
3716 int ret = 0;
3717 struct extent_page_data epd = {
3718 .bio = NULL,
3719 .tree = tree,
3720 .get_extent = get_extent,
771ed689 3721 .extent_locked = 0,
ffbd517d 3722 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3723 .bio_flags = 0,
d1310b2e
CM
3724 };
3725
4bef0848 3726 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3727 __extent_writepage, &epd,
3728 flush_write_bio);
ffbd517d 3729 flush_epd_write_bio(&epd);
d1310b2e
CM
3730 return ret;
3731}
d1310b2e
CM
3732
3733int extent_readpages(struct extent_io_tree *tree,
3734 struct address_space *mapping,
3735 struct list_head *pages, unsigned nr_pages,
3736 get_extent_t get_extent)
3737{
3738 struct bio *bio = NULL;
3739 unsigned page_idx;
c8b97818 3740 unsigned long bio_flags = 0;
67c9684f
LB
3741 struct page *pagepool[16];
3742 struct page *page;
3743 int i = 0;
3744 int nr = 0;
d1310b2e 3745
d1310b2e 3746 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3747 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3748
3749 prefetchw(&page->flags);
3750 list_del(&page->lru);
67c9684f 3751 if (add_to_page_cache_lru(page, mapping,
43e817a1 3752 page->index, GFP_NOFS)) {
67c9684f
LB
3753 page_cache_release(page);
3754 continue;
d1310b2e 3755 }
67c9684f
LB
3756
3757 pagepool[nr++] = page;
3758 if (nr < ARRAY_SIZE(pagepool))
3759 continue;
3760 for (i = 0; i < nr; i++) {
3761 __extent_read_full_page(tree, pagepool[i], get_extent,
d4c7ca86 3762 &bio, 0, &bio_flags, READ);
67c9684f
LB
3763 page_cache_release(pagepool[i]);
3764 }
3765 nr = 0;
d1310b2e 3766 }
67c9684f
LB
3767 for (i = 0; i < nr; i++) {
3768 __extent_read_full_page(tree, pagepool[i], get_extent,
d4c7ca86 3769 &bio, 0, &bio_flags, READ);
67c9684f 3770 page_cache_release(pagepool[i]);
d1310b2e 3771 }
67c9684f 3772
d1310b2e
CM
3773 BUG_ON(!list_empty(pages));
3774 if (bio)
79787eaa 3775 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3776 return 0;
3777}
d1310b2e
CM
3778
3779/*
3780 * basic invalidatepage code, this waits on any locked or writeback
3781 * ranges corresponding to the page, and then deletes any extent state
3782 * records from the tree
3783 */
3784int extent_invalidatepage(struct extent_io_tree *tree,
3785 struct page *page, unsigned long offset)
3786{
2ac55d41 3787 struct extent_state *cached_state = NULL;
4eee4fa4 3788 u64 start = page_offset(page);
d1310b2e
CM
3789 u64 end = start + PAGE_CACHE_SIZE - 1;
3790 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3791
fda2832f 3792 start += ALIGN(offset, blocksize);
d1310b2e
CM
3793 if (start > end)
3794 return 0;
3795
d0082371 3796 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3797 wait_on_page_writeback(page);
d1310b2e 3798 clear_extent_bit(tree, start, end,
32c00aff
JB
3799 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3800 EXTENT_DO_ACCOUNTING,
2ac55d41 3801 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3802 return 0;
3803}
d1310b2e 3804
7b13b7b1
CM
3805/*
3806 * a helper for releasepage, this tests for areas of the page that
3807 * are locked or under IO and drops the related state bits if it is safe
3808 * to drop the page.
3809 */
48a3b636
ES
3810static int try_release_extent_state(struct extent_map_tree *map,
3811 struct extent_io_tree *tree,
3812 struct page *page, gfp_t mask)
7b13b7b1 3813{
4eee4fa4 3814 u64 start = page_offset(page);
7b13b7b1
CM
3815 u64 end = start + PAGE_CACHE_SIZE - 1;
3816 int ret = 1;
3817
211f90e6 3818 if (test_range_bit(tree, start, end,
8b62b72b 3819 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3820 ret = 0;
3821 else {
3822 if ((mask & GFP_NOFS) == GFP_NOFS)
3823 mask = GFP_NOFS;
11ef160f
CM
3824 /*
3825 * at this point we can safely clear everything except the
3826 * locked bit and the nodatasum bit
3827 */
e3f24cc5 3828 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3829 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3830 0, 0, NULL, mask);
e3f24cc5
CM
3831
3832 /* if clear_extent_bit failed for enomem reasons,
3833 * we can't allow the release to continue.
3834 */
3835 if (ret < 0)
3836 ret = 0;
3837 else
3838 ret = 1;
7b13b7b1
CM
3839 }
3840 return ret;
3841}
7b13b7b1 3842
d1310b2e
CM
3843/*
3844 * a helper for releasepage. As long as there are no locked extents
3845 * in the range corresponding to the page, both state records and extent
3846 * map records are removed
3847 */
3848int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3849 struct extent_io_tree *tree, struct page *page,
3850 gfp_t mask)
d1310b2e
CM
3851{
3852 struct extent_map *em;
4eee4fa4 3853 u64 start = page_offset(page);
d1310b2e 3854 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3855
70dec807
CM
3856 if ((mask & __GFP_WAIT) &&
3857 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3858 u64 len;
70dec807 3859 while (start <= end) {
39b5637f 3860 len = end - start + 1;
890871be 3861 write_lock(&map->lock);
39b5637f 3862 em = lookup_extent_mapping(map, start, len);
285190d9 3863 if (!em) {
890871be 3864 write_unlock(&map->lock);
70dec807
CM
3865 break;
3866 }
7f3c74fb
CM
3867 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3868 em->start != start) {
890871be 3869 write_unlock(&map->lock);
70dec807
CM
3870 free_extent_map(em);
3871 break;
3872 }
3873 if (!test_range_bit(tree, em->start,
3874 extent_map_end(em) - 1,
8b62b72b 3875 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3876 0, NULL)) {
70dec807
CM
3877 remove_extent_mapping(map, em);
3878 /* once for the rb tree */
3879 free_extent_map(em);
3880 }
3881 start = extent_map_end(em);
890871be 3882 write_unlock(&map->lock);
70dec807
CM
3883
3884 /* once for us */
d1310b2e
CM
3885 free_extent_map(em);
3886 }
d1310b2e 3887 }
7b13b7b1 3888 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3889}
d1310b2e 3890
ec29ed5b
CM
3891/*
3892 * helper function for fiemap, which doesn't want to see any holes.
3893 * This maps until we find something past 'last'
3894 */
3895static struct extent_map *get_extent_skip_holes(struct inode *inode,
3896 u64 offset,
3897 u64 last,
3898 get_extent_t *get_extent)
3899{
3900 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3901 struct extent_map *em;
3902 u64 len;
3903
3904 if (offset >= last)
3905 return NULL;
3906
3907 while(1) {
3908 len = last - offset;
3909 if (len == 0)
3910 break;
fda2832f 3911 len = ALIGN(len, sectorsize);
ec29ed5b 3912 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3913 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3914 return em;
3915
3916 /* if this isn't a hole return it */
3917 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3918 em->block_start != EXTENT_MAP_HOLE) {
3919 return em;
3920 }
3921
3922 /* this is a hole, advance to the next extent */
3923 offset = extent_map_end(em);
3924 free_extent_map(em);
3925 if (offset >= last)
3926 break;
3927 }
3928 return NULL;
3929}
3930
1506fcc8
YS
3931int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3932 __u64 start, __u64 len, get_extent_t *get_extent)
3933{
975f84fe 3934 int ret = 0;
1506fcc8
YS
3935 u64 off = start;
3936 u64 max = start + len;
3937 u32 flags = 0;
975f84fe
JB
3938 u32 found_type;
3939 u64 last;
ec29ed5b 3940 u64 last_for_get_extent = 0;
1506fcc8 3941 u64 disko = 0;
ec29ed5b 3942 u64 isize = i_size_read(inode);
975f84fe 3943 struct btrfs_key found_key;
1506fcc8 3944 struct extent_map *em = NULL;
2ac55d41 3945 struct extent_state *cached_state = NULL;
975f84fe
JB
3946 struct btrfs_path *path;
3947 struct btrfs_file_extent_item *item;
1506fcc8 3948 int end = 0;
ec29ed5b
CM
3949 u64 em_start = 0;
3950 u64 em_len = 0;
3951 u64 em_end = 0;
1506fcc8 3952 unsigned long emflags;
1506fcc8
YS
3953
3954 if (len == 0)
3955 return -EINVAL;
3956
975f84fe
JB
3957 path = btrfs_alloc_path();
3958 if (!path)
3959 return -ENOMEM;
3960 path->leave_spinning = 1;
3961
4d479cf0
JB
3962 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3963 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3964
ec29ed5b
CM
3965 /*
3966 * lookup the last file extent. We're not using i_size here
3967 * because there might be preallocation past i_size
3968 */
975f84fe 3969 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3970 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3971 if (ret < 0) {
3972 btrfs_free_path(path);
3973 return ret;
3974 }
3975 WARN_ON(!ret);
3976 path->slots[0]--;
3977 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3978 struct btrfs_file_extent_item);
3979 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3980 found_type = btrfs_key_type(&found_key);
3981
ec29ed5b 3982 /* No extents, but there might be delalloc bits */
33345d01 3983 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3984 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3985 /* have to trust i_size as the end */
3986 last = (u64)-1;
3987 last_for_get_extent = isize;
3988 } else {
3989 /*
3990 * remember the start of the last extent. There are a
3991 * bunch of different factors that go into the length of the
3992 * extent, so its much less complex to remember where it started
3993 */
3994 last = found_key.offset;
3995 last_for_get_extent = last + 1;
975f84fe 3996 }
975f84fe
JB
3997 btrfs_free_path(path);
3998
ec29ed5b
CM
3999 /*
4000 * we might have some extents allocated but more delalloc past those
4001 * extents. so, we trust isize unless the start of the last extent is
4002 * beyond isize
4003 */
4004 if (last < isize) {
4005 last = (u64)-1;
4006 last_for_get_extent = isize;
4007 }
4008
a52f4cd2 4009 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4010 &cached_state);
ec29ed5b 4011
4d479cf0 4012 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4013 get_extent);
1506fcc8
YS
4014 if (!em)
4015 goto out;
4016 if (IS_ERR(em)) {
4017 ret = PTR_ERR(em);
4018 goto out;
4019 }
975f84fe 4020
1506fcc8 4021 while (!end) {
b76bb701 4022 u64 offset_in_extent = 0;
ea8efc74
CM
4023
4024 /* break if the extent we found is outside the range */
4025 if (em->start >= max || extent_map_end(em) < off)
4026 break;
4027
4028 /*
4029 * get_extent may return an extent that starts before our
4030 * requested range. We have to make sure the ranges
4031 * we return to fiemap always move forward and don't
4032 * overlap, so adjust the offsets here
4033 */
4034 em_start = max(em->start, off);
1506fcc8 4035
ea8efc74
CM
4036 /*
4037 * record the offset from the start of the extent
b76bb701
JB
4038 * for adjusting the disk offset below. Only do this if the
4039 * extent isn't compressed since our in ram offset may be past
4040 * what we have actually allocated on disk.
ea8efc74 4041 */
b76bb701
JB
4042 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4043 offset_in_extent = em_start - em->start;
ec29ed5b 4044 em_end = extent_map_end(em);
ea8efc74 4045 em_len = em_end - em_start;
ec29ed5b 4046 emflags = em->flags;
1506fcc8
YS
4047 disko = 0;
4048 flags = 0;
4049
ea8efc74
CM
4050 /*
4051 * bump off for our next call to get_extent
4052 */
4053 off = extent_map_end(em);
4054 if (off >= max)
4055 end = 1;
4056
93dbfad7 4057 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4058 end = 1;
4059 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4060 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4061 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4062 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4063 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4064 flags |= (FIEMAP_EXTENT_DELALLOC |
4065 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4066 } else {
ea8efc74 4067 disko = em->block_start + offset_in_extent;
1506fcc8
YS
4068 }
4069 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4070 flags |= FIEMAP_EXTENT_ENCODED;
4071
1506fcc8
YS
4072 free_extent_map(em);
4073 em = NULL;
ec29ed5b
CM
4074 if ((em_start >= last) || em_len == (u64)-1 ||
4075 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4076 flags |= FIEMAP_EXTENT_LAST;
4077 end = 1;
4078 }
4079
ec29ed5b
CM
4080 /* now scan forward to see if this is really the last extent. */
4081 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4082 get_extent);
4083 if (IS_ERR(em)) {
4084 ret = PTR_ERR(em);
4085 goto out;
4086 }
4087 if (!em) {
975f84fe
JB
4088 flags |= FIEMAP_EXTENT_LAST;
4089 end = 1;
4090 }
ec29ed5b
CM
4091 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4092 em_len, flags);
4093 if (ret)
4094 goto out_free;
1506fcc8
YS
4095 }
4096out_free:
4097 free_extent_map(em);
4098out:
a52f4cd2 4099 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4100 &cached_state, GFP_NOFS);
1506fcc8
YS
4101 return ret;
4102}
4103
727011e0
CM
4104static void __free_extent_buffer(struct extent_buffer *eb)
4105{
6d49ba1b 4106 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4107 kmem_cache_free(extent_buffer_cache, eb);
4108}
4109
d1310b2e
CM
4110static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4111 u64 start,
4112 unsigned long len,
4113 gfp_t mask)
4114{
4115 struct extent_buffer *eb = NULL;
4116
d1310b2e 4117 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4118 if (eb == NULL)
4119 return NULL;
d1310b2e
CM
4120 eb->start = start;
4121 eb->len = len;
4f2de97a 4122 eb->tree = tree;
815a51c7 4123 eb->bflags = 0;
bd681513
CM
4124 rwlock_init(&eb->lock);
4125 atomic_set(&eb->write_locks, 0);
4126 atomic_set(&eb->read_locks, 0);
4127 atomic_set(&eb->blocking_readers, 0);
4128 atomic_set(&eb->blocking_writers, 0);
4129 atomic_set(&eb->spinning_readers, 0);
4130 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4131 eb->lock_nested = 0;
bd681513
CM
4132 init_waitqueue_head(&eb->write_lock_wq);
4133 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4134
6d49ba1b
ES
4135 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4136
3083ee2e 4137 spin_lock_init(&eb->refs_lock);
d1310b2e 4138 atomic_set(&eb->refs, 1);
0b32f4bb 4139 atomic_set(&eb->io_pages, 0);
727011e0 4140
b8dae313
DS
4141 /*
4142 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4143 */
4144 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4145 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4146 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4147
4148 return eb;
4149}
4150
815a51c7
JS
4151struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4152{
4153 unsigned long i;
4154 struct page *p;
4155 struct extent_buffer *new;
4156 unsigned long num_pages = num_extent_pages(src->start, src->len);
4157
4158 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4159 if (new == NULL)
4160 return NULL;
4161
4162 for (i = 0; i < num_pages; i++) {
4163 p = alloc_page(GFP_ATOMIC);
4164 BUG_ON(!p);
4165 attach_extent_buffer_page(new, p);
4166 WARN_ON(PageDirty(p));
4167 SetPageUptodate(p);
4168 new->pages[i] = p;
4169 }
4170
4171 copy_extent_buffer(new, src, 0, 0, src->len);
4172 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4173 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4174
4175 return new;
4176}
4177
4178struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4179{
4180 struct extent_buffer *eb;
4181 unsigned long num_pages = num_extent_pages(0, len);
4182 unsigned long i;
4183
4184 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4185 if (!eb)
4186 return NULL;
4187
4188 for (i = 0; i < num_pages; i++) {
4189 eb->pages[i] = alloc_page(GFP_ATOMIC);
4190 if (!eb->pages[i])
4191 goto err;
4192 }
4193 set_extent_buffer_uptodate(eb);
4194 btrfs_set_header_nritems(eb, 0);
4195 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4196
4197 return eb;
4198err:
84167d19
SB
4199 for (; i > 0; i--)
4200 __free_page(eb->pages[i - 1]);
815a51c7
JS
4201 __free_extent_buffer(eb);
4202 return NULL;
4203}
4204
0b32f4bb 4205static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4206{
0b32f4bb
JB
4207 return (atomic_read(&eb->io_pages) ||
4208 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4209 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4210}
4211
897ca6e9
MX
4212/*
4213 * Helper for releasing extent buffer page.
4214 */
4215static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4216 unsigned long start_idx)
4217{
4218 unsigned long index;
39bab87b 4219 unsigned long num_pages;
897ca6e9 4220 struct page *page;
815a51c7 4221 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4222
0b32f4bb 4223 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4224
39bab87b
WSH
4225 num_pages = num_extent_pages(eb->start, eb->len);
4226 index = start_idx + num_pages;
897ca6e9
MX
4227 if (start_idx >= index)
4228 return;
4229
4230 do {
4231 index--;
4232 page = extent_buffer_page(eb, index);
815a51c7 4233 if (page && mapped) {
4f2de97a
JB
4234 spin_lock(&page->mapping->private_lock);
4235 /*
4236 * We do this since we'll remove the pages after we've
4237 * removed the eb from the radix tree, so we could race
4238 * and have this page now attached to the new eb. So
4239 * only clear page_private if it's still connected to
4240 * this eb.
4241 */
4242 if (PagePrivate(page) &&
4243 page->private == (unsigned long)eb) {
0b32f4bb 4244 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4245 BUG_ON(PageDirty(page));
4246 BUG_ON(PageWriteback(page));
4f2de97a
JB
4247 /*
4248 * We need to make sure we haven't be attached
4249 * to a new eb.
4250 */
4251 ClearPagePrivate(page);
4252 set_page_private(page, 0);
4253 /* One for the page private */
4254 page_cache_release(page);
4255 }
4256 spin_unlock(&page->mapping->private_lock);
4257
815a51c7
JS
4258 }
4259 if (page) {
4f2de97a 4260 /* One for when we alloced the page */
897ca6e9 4261 page_cache_release(page);
4f2de97a 4262 }
897ca6e9
MX
4263 } while (index != start_idx);
4264}
4265
4266/*
4267 * Helper for releasing the extent buffer.
4268 */
4269static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4270{
4271 btrfs_release_extent_buffer_page(eb, 0);
4272 __free_extent_buffer(eb);
4273}
4274
0b32f4bb
JB
4275static void check_buffer_tree_ref(struct extent_buffer *eb)
4276{
242e18c7 4277 int refs;
0b32f4bb
JB
4278 /* the ref bit is tricky. We have to make sure it is set
4279 * if we have the buffer dirty. Otherwise the
4280 * code to free a buffer can end up dropping a dirty
4281 * page
4282 *
4283 * Once the ref bit is set, it won't go away while the
4284 * buffer is dirty or in writeback, and it also won't
4285 * go away while we have the reference count on the
4286 * eb bumped.
4287 *
4288 * We can't just set the ref bit without bumping the
4289 * ref on the eb because free_extent_buffer might
4290 * see the ref bit and try to clear it. If this happens
4291 * free_extent_buffer might end up dropping our original
4292 * ref by mistake and freeing the page before we are able
4293 * to add one more ref.
4294 *
4295 * So bump the ref count first, then set the bit. If someone
4296 * beat us to it, drop the ref we added.
4297 */
242e18c7
CM
4298 refs = atomic_read(&eb->refs);
4299 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4300 return;
4301
594831c4
JB
4302 spin_lock(&eb->refs_lock);
4303 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4304 atomic_inc(&eb->refs);
594831c4 4305 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4306}
4307
5df4235e
JB
4308static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4309{
4310 unsigned long num_pages, i;
4311
0b32f4bb
JB
4312 check_buffer_tree_ref(eb);
4313
5df4235e
JB
4314 num_pages = num_extent_pages(eb->start, eb->len);
4315 for (i = 0; i < num_pages; i++) {
4316 struct page *p = extent_buffer_page(eb, i);
4317 mark_page_accessed(p);
4318 }
4319}
4320
d1310b2e 4321struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4322 u64 start, unsigned long len)
d1310b2e
CM
4323{
4324 unsigned long num_pages = num_extent_pages(start, len);
4325 unsigned long i;
4326 unsigned long index = start >> PAGE_CACHE_SHIFT;
4327 struct extent_buffer *eb;
6af118ce 4328 struct extent_buffer *exists = NULL;
d1310b2e
CM
4329 struct page *p;
4330 struct address_space *mapping = tree->mapping;
4331 int uptodate = 1;
19fe0a8b 4332 int ret;
d1310b2e 4333
19fe0a8b
MX
4334 rcu_read_lock();
4335 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4336 if (eb && atomic_inc_not_zero(&eb->refs)) {
4337 rcu_read_unlock();
5df4235e 4338 mark_extent_buffer_accessed(eb);
6af118ce
CM
4339 return eb;
4340 }
19fe0a8b 4341 rcu_read_unlock();
6af118ce 4342
ba144192 4343 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4344 if (!eb)
d1310b2e
CM
4345 return NULL;
4346
727011e0 4347 for (i = 0; i < num_pages; i++, index++) {
a6591715 4348 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4349 if (!p)
6af118ce 4350 goto free_eb;
4f2de97a
JB
4351
4352 spin_lock(&mapping->private_lock);
4353 if (PagePrivate(p)) {
4354 /*
4355 * We could have already allocated an eb for this page
4356 * and attached one so lets see if we can get a ref on
4357 * the existing eb, and if we can we know it's good and
4358 * we can just return that one, else we know we can just
4359 * overwrite page->private.
4360 */
4361 exists = (struct extent_buffer *)p->private;
4362 if (atomic_inc_not_zero(&exists->refs)) {
4363 spin_unlock(&mapping->private_lock);
4364 unlock_page(p);
17de39ac 4365 page_cache_release(p);
5df4235e 4366 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4367 goto free_eb;
4368 }
4369
0b32f4bb 4370 /*
4f2de97a
JB
4371 * Do this so attach doesn't complain and we need to
4372 * drop the ref the old guy had.
4373 */
4374 ClearPagePrivate(p);
0b32f4bb 4375 WARN_ON(PageDirty(p));
4f2de97a 4376 page_cache_release(p);
d1310b2e 4377 }
4f2de97a
JB
4378 attach_extent_buffer_page(eb, p);
4379 spin_unlock(&mapping->private_lock);
0b32f4bb 4380 WARN_ON(PageDirty(p));
d1310b2e 4381 mark_page_accessed(p);
727011e0 4382 eb->pages[i] = p;
d1310b2e
CM
4383 if (!PageUptodate(p))
4384 uptodate = 0;
eb14ab8e
CM
4385
4386 /*
4387 * see below about how we avoid a nasty race with release page
4388 * and why we unlock later
4389 */
d1310b2e
CM
4390 }
4391 if (uptodate)
b4ce94de 4392 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4393again:
19fe0a8b
MX
4394 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4395 if (ret)
4396 goto free_eb;
4397
6af118ce 4398 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4399 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4400 if (ret == -EEXIST) {
4401 exists = radix_tree_lookup(&tree->buffer,
4402 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4403 if (!atomic_inc_not_zero(&exists->refs)) {
4404 spin_unlock(&tree->buffer_lock);
4405 radix_tree_preload_end();
115391d2
JB
4406 exists = NULL;
4407 goto again;
4408 }
6af118ce 4409 spin_unlock(&tree->buffer_lock);
19fe0a8b 4410 radix_tree_preload_end();
5df4235e 4411 mark_extent_buffer_accessed(exists);
6af118ce
CM
4412 goto free_eb;
4413 }
6af118ce 4414 /* add one reference for the tree */
0b32f4bb 4415 check_buffer_tree_ref(eb);
f044ba78 4416 spin_unlock(&tree->buffer_lock);
19fe0a8b 4417 radix_tree_preload_end();
eb14ab8e
CM
4418
4419 /*
4420 * there is a race where release page may have
4421 * tried to find this extent buffer in the radix
4422 * but failed. It will tell the VM it is safe to
4423 * reclaim the, and it will clear the page private bit.
4424 * We must make sure to set the page private bit properly
4425 * after the extent buffer is in the radix tree so
4426 * it doesn't get lost
4427 */
727011e0
CM
4428 SetPageChecked(eb->pages[0]);
4429 for (i = 1; i < num_pages; i++) {
4430 p = extent_buffer_page(eb, i);
727011e0
CM
4431 ClearPageChecked(p);
4432 unlock_page(p);
4433 }
4434 unlock_page(eb->pages[0]);
d1310b2e
CM
4435 return eb;
4436
6af118ce 4437free_eb:
727011e0
CM
4438 for (i = 0; i < num_pages; i++) {
4439 if (eb->pages[i])
4440 unlock_page(eb->pages[i]);
4441 }
eb14ab8e 4442
17de39ac 4443 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4444 btrfs_release_extent_buffer(eb);
6af118ce 4445 return exists;
d1310b2e 4446}
d1310b2e
CM
4447
4448struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4449 u64 start, unsigned long len)
d1310b2e 4450{
d1310b2e 4451 struct extent_buffer *eb;
d1310b2e 4452
19fe0a8b
MX
4453 rcu_read_lock();
4454 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4455 if (eb && atomic_inc_not_zero(&eb->refs)) {
4456 rcu_read_unlock();
5df4235e 4457 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4458 return eb;
4459 }
4460 rcu_read_unlock();
0f9dd46c 4461
19fe0a8b 4462 return NULL;
d1310b2e 4463}
d1310b2e 4464
3083ee2e
JB
4465static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4466{
4467 struct extent_buffer *eb =
4468 container_of(head, struct extent_buffer, rcu_head);
4469
4470 __free_extent_buffer(eb);
4471}
4472
3083ee2e 4473/* Expects to have eb->eb_lock already held */
f7a52a40 4474static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4475{
4476 WARN_ON(atomic_read(&eb->refs) == 0);
4477 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4478 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4479 spin_unlock(&eb->refs_lock);
4480 } else {
4481 struct extent_io_tree *tree = eb->tree;
3083ee2e 4482
815a51c7 4483 spin_unlock(&eb->refs_lock);
3083ee2e 4484
815a51c7
JS
4485 spin_lock(&tree->buffer_lock);
4486 radix_tree_delete(&tree->buffer,
4487 eb->start >> PAGE_CACHE_SHIFT);
4488 spin_unlock(&tree->buffer_lock);
4489 }
3083ee2e
JB
4490
4491 /* Should be safe to release our pages at this point */
4492 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4493 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4494 return 1;
3083ee2e
JB
4495 }
4496 spin_unlock(&eb->refs_lock);
e64860aa
JB
4497
4498 return 0;
3083ee2e
JB
4499}
4500
d1310b2e
CM
4501void free_extent_buffer(struct extent_buffer *eb)
4502{
242e18c7
CM
4503 int refs;
4504 int old;
d1310b2e
CM
4505 if (!eb)
4506 return;
4507
242e18c7
CM
4508 while (1) {
4509 refs = atomic_read(&eb->refs);
4510 if (refs <= 3)
4511 break;
4512 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4513 if (old == refs)
4514 return;
4515 }
4516
3083ee2e 4517 spin_lock(&eb->refs_lock);
815a51c7
JS
4518 if (atomic_read(&eb->refs) == 2 &&
4519 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4520 atomic_dec(&eb->refs);
4521
3083ee2e
JB
4522 if (atomic_read(&eb->refs) == 2 &&
4523 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4524 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4525 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4526 atomic_dec(&eb->refs);
4527
4528 /*
4529 * I know this is terrible, but it's temporary until we stop tracking
4530 * the uptodate bits and such for the extent buffers.
4531 */
f7a52a40 4532 release_extent_buffer(eb);
3083ee2e
JB
4533}
4534
4535void free_extent_buffer_stale(struct extent_buffer *eb)
4536{
4537 if (!eb)
d1310b2e
CM
4538 return;
4539
3083ee2e
JB
4540 spin_lock(&eb->refs_lock);
4541 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4542
0b32f4bb 4543 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4544 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4545 atomic_dec(&eb->refs);
f7a52a40 4546 release_extent_buffer(eb);
d1310b2e 4547}
d1310b2e 4548
1d4284bd 4549void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4550{
d1310b2e
CM
4551 unsigned long i;
4552 unsigned long num_pages;
4553 struct page *page;
4554
d1310b2e
CM
4555 num_pages = num_extent_pages(eb->start, eb->len);
4556
4557 for (i = 0; i < num_pages; i++) {
4558 page = extent_buffer_page(eb, i);
b9473439 4559 if (!PageDirty(page))
d2c3f4f6
CM
4560 continue;
4561
a61e6f29 4562 lock_page(page);
eb14ab8e
CM
4563 WARN_ON(!PagePrivate(page));
4564
d1310b2e 4565 clear_page_dirty_for_io(page);
0ee0fda0 4566 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4567 if (!PageDirty(page)) {
4568 radix_tree_tag_clear(&page->mapping->page_tree,
4569 page_index(page),
4570 PAGECACHE_TAG_DIRTY);
4571 }
0ee0fda0 4572 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4573 ClearPageError(page);
a61e6f29 4574 unlock_page(page);
d1310b2e 4575 }
0b32f4bb 4576 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4577}
d1310b2e 4578
0b32f4bb 4579int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4580{
4581 unsigned long i;
4582 unsigned long num_pages;
b9473439 4583 int was_dirty = 0;
d1310b2e 4584
0b32f4bb
JB
4585 check_buffer_tree_ref(eb);
4586
b9473439 4587 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4588
d1310b2e 4589 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4590 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4591 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4592
b9473439 4593 for (i = 0; i < num_pages; i++)
0b32f4bb 4594 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4595 return was_dirty;
d1310b2e 4596}
d1310b2e 4597
0b32f4bb 4598int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4599{
4600 unsigned long i;
4601 struct page *page;
4602 unsigned long num_pages;
4603
b4ce94de 4604 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4605 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4606 for (i = 0; i < num_pages; i++) {
4607 page = extent_buffer_page(eb, i);
33958dc6
CM
4608 if (page)
4609 ClearPageUptodate(page);
1259ab75
CM
4610 }
4611 return 0;
4612}
4613
0b32f4bb 4614int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4615{
4616 unsigned long i;
4617 struct page *page;
4618 unsigned long num_pages;
4619
0b32f4bb 4620 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4621 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4622 for (i = 0; i < num_pages; i++) {
4623 page = extent_buffer_page(eb, i);
d1310b2e
CM
4624 SetPageUptodate(page);
4625 }
4626 return 0;
4627}
d1310b2e 4628
0b32f4bb 4629int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4630{
0b32f4bb 4631 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4632}
d1310b2e
CM
4633
4634int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4635 struct extent_buffer *eb, u64 start, int wait,
f188591e 4636 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4637{
4638 unsigned long i;
4639 unsigned long start_i;
4640 struct page *page;
4641 int err;
4642 int ret = 0;
ce9adaa5
CM
4643 int locked_pages = 0;
4644 int all_uptodate = 1;
d1310b2e 4645 unsigned long num_pages;
727011e0 4646 unsigned long num_reads = 0;
a86c12c7 4647 struct bio *bio = NULL;
c8b97818 4648 unsigned long bio_flags = 0;
a86c12c7 4649
b4ce94de 4650 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4651 return 0;
4652
d1310b2e
CM
4653 if (start) {
4654 WARN_ON(start < eb->start);
4655 start_i = (start >> PAGE_CACHE_SHIFT) -
4656 (eb->start >> PAGE_CACHE_SHIFT);
4657 } else {
4658 start_i = 0;
4659 }
4660
4661 num_pages = num_extent_pages(eb->start, eb->len);
4662 for (i = start_i; i < num_pages; i++) {
4663 page = extent_buffer_page(eb, i);
bb82ab88 4664 if (wait == WAIT_NONE) {
2db04966 4665 if (!trylock_page(page))
ce9adaa5 4666 goto unlock_exit;
d1310b2e
CM
4667 } else {
4668 lock_page(page);
4669 }
ce9adaa5 4670 locked_pages++;
727011e0
CM
4671 if (!PageUptodate(page)) {
4672 num_reads++;
ce9adaa5 4673 all_uptodate = 0;
727011e0 4674 }
ce9adaa5
CM
4675 }
4676 if (all_uptodate) {
4677 if (start_i == 0)
b4ce94de 4678 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4679 goto unlock_exit;
4680 }
4681
ea466794 4682 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4683 eb->read_mirror = 0;
0b32f4bb 4684 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4685 for (i = start_i; i < num_pages; i++) {
4686 page = extent_buffer_page(eb, i);
ce9adaa5 4687 if (!PageUptodate(page)) {
f188591e 4688 ClearPageError(page);
a86c12c7 4689 err = __extent_read_full_page(tree, page,
f188591e 4690 get_extent, &bio,
d4c7ca86
JB
4691 mirror_num, &bio_flags,
4692 READ | REQ_META);
d397712b 4693 if (err)
d1310b2e 4694 ret = err;
d1310b2e
CM
4695 } else {
4696 unlock_page(page);
4697 }
4698 }
4699
355808c2 4700 if (bio) {
d4c7ca86
JB
4701 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4702 bio_flags);
79787eaa
JM
4703 if (err)
4704 return err;
355808c2 4705 }
a86c12c7 4706
bb82ab88 4707 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4708 return ret;
d397712b 4709
d1310b2e
CM
4710 for (i = start_i; i < num_pages; i++) {
4711 page = extent_buffer_page(eb, i);
4712 wait_on_page_locked(page);
d397712b 4713 if (!PageUptodate(page))
d1310b2e 4714 ret = -EIO;
d1310b2e 4715 }
d397712b 4716
d1310b2e 4717 return ret;
ce9adaa5
CM
4718
4719unlock_exit:
4720 i = start_i;
d397712b 4721 while (locked_pages > 0) {
ce9adaa5
CM
4722 page = extent_buffer_page(eb, i);
4723 i++;
4724 unlock_page(page);
4725 locked_pages--;
4726 }
4727 return ret;
d1310b2e 4728}
d1310b2e
CM
4729
4730void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4731 unsigned long start,
4732 unsigned long len)
4733{
4734 size_t cur;
4735 size_t offset;
4736 struct page *page;
4737 char *kaddr;
4738 char *dst = (char *)dstv;
4739 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4740 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4741
4742 WARN_ON(start > eb->len);
4743 WARN_ON(start + len > eb->start + eb->len);
4744
4745 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4746
d397712b 4747 while (len > 0) {
d1310b2e 4748 page = extent_buffer_page(eb, i);
d1310b2e
CM
4749
4750 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4751 kaddr = page_address(page);
d1310b2e 4752 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4753
4754 dst += cur;
4755 len -= cur;
4756 offset = 0;
4757 i++;
4758 }
4759}
d1310b2e
CM
4760
4761int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4762 unsigned long min_len, char **map,
d1310b2e 4763 unsigned long *map_start,
a6591715 4764 unsigned long *map_len)
d1310b2e
CM
4765{
4766 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4767 char *kaddr;
4768 struct page *p;
4769 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4770 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4771 unsigned long end_i = (start_offset + start + min_len - 1) >>
4772 PAGE_CACHE_SHIFT;
4773
4774 if (i != end_i)
4775 return -EINVAL;
4776
4777 if (i == 0) {
4778 offset = start_offset;
4779 *map_start = 0;
4780 } else {
4781 offset = 0;
4782 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4783 }
d397712b 4784
d1310b2e 4785 if (start + min_len > eb->len) {
31b1a2bd 4786 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
d397712b
CM
4787 "wanted %lu %lu\n", (unsigned long long)eb->start,
4788 eb->len, start, min_len);
85026533 4789 return -EINVAL;
d1310b2e
CM
4790 }
4791
4792 p = extent_buffer_page(eb, i);
a6591715 4793 kaddr = page_address(p);
d1310b2e
CM
4794 *map = kaddr + offset;
4795 *map_len = PAGE_CACHE_SIZE - offset;
4796 return 0;
4797}
d1310b2e 4798
d1310b2e
CM
4799int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4800 unsigned long start,
4801 unsigned long len)
4802{
4803 size_t cur;
4804 size_t offset;
4805 struct page *page;
4806 char *kaddr;
4807 char *ptr = (char *)ptrv;
4808 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4809 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4810 int ret = 0;
4811
4812 WARN_ON(start > eb->len);
4813 WARN_ON(start + len > eb->start + eb->len);
4814
4815 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4816
d397712b 4817 while (len > 0) {
d1310b2e 4818 page = extent_buffer_page(eb, i);
d1310b2e
CM
4819
4820 cur = min(len, (PAGE_CACHE_SIZE - offset));
4821
a6591715 4822 kaddr = page_address(page);
d1310b2e 4823 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4824 if (ret)
4825 break;
4826
4827 ptr += cur;
4828 len -= cur;
4829 offset = 0;
4830 i++;
4831 }
4832 return ret;
4833}
d1310b2e
CM
4834
4835void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4836 unsigned long start, unsigned long len)
4837{
4838 size_t cur;
4839 size_t offset;
4840 struct page *page;
4841 char *kaddr;
4842 char *src = (char *)srcv;
4843 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4844 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4845
4846 WARN_ON(start > eb->len);
4847 WARN_ON(start + len > eb->start + eb->len);
4848
4849 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4850
d397712b 4851 while (len > 0) {
d1310b2e
CM
4852 page = extent_buffer_page(eb, i);
4853 WARN_ON(!PageUptodate(page));
4854
4855 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4856 kaddr = page_address(page);
d1310b2e 4857 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4858
4859 src += cur;
4860 len -= cur;
4861 offset = 0;
4862 i++;
4863 }
4864}
d1310b2e
CM
4865
4866void memset_extent_buffer(struct extent_buffer *eb, char c,
4867 unsigned long start, unsigned long len)
4868{
4869 size_t cur;
4870 size_t offset;
4871 struct page *page;
4872 char *kaddr;
4873 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4874 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4875
4876 WARN_ON(start > eb->len);
4877 WARN_ON(start + len > eb->start + eb->len);
4878
4879 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4880
d397712b 4881 while (len > 0) {
d1310b2e
CM
4882 page = extent_buffer_page(eb, i);
4883 WARN_ON(!PageUptodate(page));
4884
4885 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4886 kaddr = page_address(page);
d1310b2e 4887 memset(kaddr + offset, c, cur);
d1310b2e
CM
4888
4889 len -= cur;
4890 offset = 0;
4891 i++;
4892 }
4893}
d1310b2e
CM
4894
4895void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4896 unsigned long dst_offset, unsigned long src_offset,
4897 unsigned long len)
4898{
4899 u64 dst_len = dst->len;
4900 size_t cur;
4901 size_t offset;
4902 struct page *page;
4903 char *kaddr;
4904 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4905 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4906
4907 WARN_ON(src->len != dst_len);
4908
4909 offset = (start_offset + dst_offset) &
4910 ((unsigned long)PAGE_CACHE_SIZE - 1);
4911
d397712b 4912 while (len > 0) {
d1310b2e
CM
4913 page = extent_buffer_page(dst, i);
4914 WARN_ON(!PageUptodate(page));
4915
4916 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4917
a6591715 4918 kaddr = page_address(page);
d1310b2e 4919 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4920
4921 src_offset += cur;
4922 len -= cur;
4923 offset = 0;
4924 i++;
4925 }
4926}
d1310b2e
CM
4927
4928static void move_pages(struct page *dst_page, struct page *src_page,
4929 unsigned long dst_off, unsigned long src_off,
4930 unsigned long len)
4931{
a6591715 4932 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4933 if (dst_page == src_page) {
4934 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4935 } else {
a6591715 4936 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4937 char *p = dst_kaddr + dst_off + len;
4938 char *s = src_kaddr + src_off + len;
4939
4940 while (len--)
4941 *--p = *--s;
d1310b2e 4942 }
d1310b2e
CM
4943}
4944
3387206f
ST
4945static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4946{
4947 unsigned long distance = (src > dst) ? src - dst : dst - src;
4948 return distance < len;
4949}
4950
d1310b2e
CM
4951static void copy_pages(struct page *dst_page, struct page *src_page,
4952 unsigned long dst_off, unsigned long src_off,
4953 unsigned long len)
4954{
a6591715 4955 char *dst_kaddr = page_address(dst_page);
d1310b2e 4956 char *src_kaddr;
727011e0 4957 int must_memmove = 0;
d1310b2e 4958
3387206f 4959 if (dst_page != src_page) {
a6591715 4960 src_kaddr = page_address(src_page);
3387206f 4961 } else {
d1310b2e 4962 src_kaddr = dst_kaddr;
727011e0
CM
4963 if (areas_overlap(src_off, dst_off, len))
4964 must_memmove = 1;
3387206f 4965 }
d1310b2e 4966
727011e0
CM
4967 if (must_memmove)
4968 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4969 else
4970 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4971}
4972
4973void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4974 unsigned long src_offset, unsigned long len)
4975{
4976 size_t cur;
4977 size_t dst_off_in_page;
4978 size_t src_off_in_page;
4979 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4980 unsigned long dst_i;
4981 unsigned long src_i;
4982
4983 if (src_offset + len > dst->len) {
d397712b
CM
4984 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4985 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4986 BUG_ON(1);
4987 }
4988 if (dst_offset + len > dst->len) {
d397712b
CM
4989 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4990 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4991 BUG_ON(1);
4992 }
4993
d397712b 4994 while (len > 0) {
d1310b2e
CM
4995 dst_off_in_page = (start_offset + dst_offset) &
4996 ((unsigned long)PAGE_CACHE_SIZE - 1);
4997 src_off_in_page = (start_offset + src_offset) &
4998 ((unsigned long)PAGE_CACHE_SIZE - 1);
4999
5000 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5001 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5002
5003 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5004 src_off_in_page));
5005 cur = min_t(unsigned long, cur,
5006 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5007
5008 copy_pages(extent_buffer_page(dst, dst_i),
5009 extent_buffer_page(dst, src_i),
5010 dst_off_in_page, src_off_in_page, cur);
5011
5012 src_offset += cur;
5013 dst_offset += cur;
5014 len -= cur;
5015 }
5016}
d1310b2e
CM
5017
5018void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5019 unsigned long src_offset, unsigned long len)
5020{
5021 size_t cur;
5022 size_t dst_off_in_page;
5023 size_t src_off_in_page;
5024 unsigned long dst_end = dst_offset + len - 1;
5025 unsigned long src_end = src_offset + len - 1;
5026 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5027 unsigned long dst_i;
5028 unsigned long src_i;
5029
5030 if (src_offset + len > dst->len) {
d397712b
CM
5031 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5032 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5033 BUG_ON(1);
5034 }
5035 if (dst_offset + len > dst->len) {
d397712b
CM
5036 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5037 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5038 BUG_ON(1);
5039 }
727011e0 5040 if (dst_offset < src_offset) {
d1310b2e
CM
5041 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5042 return;
5043 }
d397712b 5044 while (len > 0) {
d1310b2e
CM
5045 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5046 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5047
5048 dst_off_in_page = (start_offset + dst_end) &
5049 ((unsigned long)PAGE_CACHE_SIZE - 1);
5050 src_off_in_page = (start_offset + src_end) &
5051 ((unsigned long)PAGE_CACHE_SIZE - 1);
5052
5053 cur = min_t(unsigned long, len, src_off_in_page + 1);
5054 cur = min(cur, dst_off_in_page + 1);
5055 move_pages(extent_buffer_page(dst, dst_i),
5056 extent_buffer_page(dst, src_i),
5057 dst_off_in_page - cur + 1,
5058 src_off_in_page - cur + 1, cur);
5059
5060 dst_end -= cur;
5061 src_end -= cur;
5062 len -= cur;
5063 }
5064}
6af118ce 5065
f7a52a40 5066int try_release_extent_buffer(struct page *page)
19fe0a8b 5067{
6af118ce 5068 struct extent_buffer *eb;
6af118ce 5069
3083ee2e
JB
5070 /*
5071 * We need to make sure noboody is attaching this page to an eb right
5072 * now.
5073 */
5074 spin_lock(&page->mapping->private_lock);
5075 if (!PagePrivate(page)) {
5076 spin_unlock(&page->mapping->private_lock);
4f2de97a 5077 return 1;
45f49bce 5078 }
6af118ce 5079
3083ee2e
JB
5080 eb = (struct extent_buffer *)page->private;
5081 BUG_ON(!eb);
19fe0a8b
MX
5082
5083 /*
3083ee2e
JB
5084 * This is a little awful but should be ok, we need to make sure that
5085 * the eb doesn't disappear out from under us while we're looking at
5086 * this page.
19fe0a8b 5087 */
3083ee2e 5088 spin_lock(&eb->refs_lock);
0b32f4bb 5089 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5090 spin_unlock(&eb->refs_lock);
5091 spin_unlock(&page->mapping->private_lock);
5092 return 0;
b9473439 5093 }
3083ee2e 5094 spin_unlock(&page->mapping->private_lock);
897ca6e9 5095
19fe0a8b 5096 /*
3083ee2e
JB
5097 * If tree ref isn't set then we know the ref on this eb is a real ref,
5098 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5099 */
3083ee2e
JB
5100 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5101 spin_unlock(&eb->refs_lock);
5102 return 0;
b9473439 5103 }
19fe0a8b 5104
f7a52a40 5105 return release_extent_buffer(eb);
6af118ce 5106}
This page took 0.773264 seconds and 5 git commands to generate.