Linux 3.18-rc5
[deliverable/linux.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
27a3507d
FM
67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1
DS
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
efe120a0 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
0b32f4bb 134static noinline void flush_write_bio(void *data);
c2d904e0
JM
135static inline struct btrfs_fs_info *
136tree_fs_info(struct extent_io_tree *tree)
137{
a5dee37d
JB
138 if (!tree->mapping)
139 return NULL;
c2d904e0
JM
140 return btrfs_sb(tree->mapping->host->i_sb);
141}
0b32f4bb 142
d1310b2e
CM
143int __init extent_io_init(void)
144{
837e1972 145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
148 if (!extent_state_cache)
149 return -ENOMEM;
150
837e1972 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_buffer_cache)
155 goto free_state_cache;
9be3395b
CM
156
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
b208c2f7
DW
161
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
d1310b2e
CM
165 return 0;
166
b208c2f7
DW
167free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
170
9be3395b
CM
171free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
174
d1310b2e
CM
175free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
9be3395b 177 extent_state_cache = NULL;
d1310b2e
CM
178 return -ENOMEM;
179}
180
181void extent_io_exit(void)
182{
6d49ba1b 183 btrfs_leak_debug_check();
8c0a8537
KS
184
185 /*
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
188 */
189 rcu_barrier();
d1310b2e
CM
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
d1310b2e
CM
196}
197
198void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 199 struct address_space *mapping)
d1310b2e 200{
6bef4d31 201 tree->state = RB_ROOT;
d1310b2e
CM
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
70dec807 204 spin_lock_init(&tree->lock);
d1310b2e 205 tree->mapping = mapping;
d1310b2e 206}
d1310b2e 207
b2950863 208static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
209{
210 struct extent_state *state;
d1310b2e
CM
211
212 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 213 if (!state)
d1310b2e
CM
214 return state;
215 state->state = 0;
d1310b2e 216 state->private = 0;
27a3507d 217 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 218 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
143bede5 221 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
222 return state;
223}
d1310b2e 224
4845e44f 225void free_extent_state(struct extent_state *state)
d1310b2e 226{
d1310b2e
CM
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
27a3507d 230 WARN_ON(extent_state_in_tree(state));
6d49ba1b 231 btrfs_leak_debug_del(&state->leak_list);
143bede5 232 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
233 kmem_cache_free(extent_state_cache, state);
234 }
235}
d1310b2e 236
f2071b21
FM
237static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
12cfbad9
FDBM
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
d1310b2e 243{
f2071b21 244 struct rb_node **p;
d397712b 245 struct rb_node *parent = NULL;
d1310b2e
CM
246 struct tree_entry *entry;
247
12cfbad9
FDBM
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
252 }
253
f2071b21 254 p = search_start ? &search_start : &root->rb_node;
d397712b 255 while (*p) {
d1310b2e
CM
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
265 }
266
12cfbad9 267do_insert:
d1310b2e
CM
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
271}
272
80ea96b1 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
d1310b2e 278{
80ea96b1 279 struct rb_root *root = &tree->state;
12cfbad9 280 struct rb_node **n = &root->rb_node;
d1310b2e
CM
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
285
12cfbad9
FDBM
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
289 prev_entry = entry;
290
291 if (offset < entry->start)
12cfbad9 292 n = &(*n)->rb_left;
d1310b2e 293 else if (offset > entry->end)
12cfbad9 294 n = &(*n)->rb_right;
d397712b 295 else
12cfbad9 296 return *n;
d1310b2e
CM
297 }
298
12cfbad9
FDBM
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
303
d1310b2e
CM
304 if (prev_ret) {
305 orig_prev = prev;
d397712b 306 while (prev && offset > prev_entry->end) {
d1310b2e
CM
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 }
310 *prev_ret = prev;
311 prev = orig_prev;
312 }
313
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 316 while (prev && offset < prev_entry->start) {
d1310b2e
CM
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *next_ret = prev;
321 }
322 return NULL;
323}
324
12cfbad9
FDBM
325static inline struct rb_node *
326tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
d1310b2e 330{
70dec807 331 struct rb_node *prev = NULL;
d1310b2e 332 struct rb_node *ret;
70dec807 333
12cfbad9 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 335 if (!ret)
d1310b2e
CM
336 return prev;
337 return ret;
338}
339
12cfbad9
FDBM
340static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
342{
343 return tree_search_for_insert(tree, offset, NULL, NULL);
344}
345
9ed74f2d
JB
346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
348{
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
352}
353
d1310b2e
CM
354/*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
1bf85046
JM
363static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
d1310b2e
CM
365{
366 struct extent_state *other;
367 struct rb_node *other_node;
368
5b21f2ed 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 370 return;
d1310b2e
CM
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
9ed74f2d 377 merge_cb(tree, state, other);
d1310b2e 378 state->start = other->start;
d1310b2e 379 rb_erase(&other->rb_node, &tree->state);
27a3507d 380 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
9ed74f2d 389 merge_cb(tree, state, other);
df98b6e2 390 state->end = other->end;
df98b6e2 391 rb_erase(&other->rb_node, &tree->state);
27a3507d 392 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 393 free_extent_state(other);
d1310b2e
CM
394 }
395 }
d1310b2e
CM
396}
397
1bf85046 398static void set_state_cb(struct extent_io_tree *tree,
41074888 399 struct extent_state *state, unsigned long *bits)
291d673e 400{
1bf85046
JM
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
403}
404
405static void clear_state_cb(struct extent_io_tree *tree,
41074888 406 struct extent_state *state, unsigned long *bits)
291d673e 407{
9ed74f2d
JB
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
410}
411
3150b699 412static void set_state_bits(struct extent_io_tree *tree,
41074888 413 struct extent_state *state, unsigned long *bits);
3150b699 414
d1310b2e
CM
415/*
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
418 *
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
421 *
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
424 */
425static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
427 struct rb_node ***p,
428 struct rb_node **parent,
41074888 429 unsigned long *bits)
d1310b2e
CM
430{
431 struct rb_node *node;
432
31b1a2bd 433 if (end < start)
efe120a0 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 435 end, start);
d1310b2e
CM
436 state->start = start;
437 state->end = end;
9ed74f2d 438
3150b699
XG
439 set_state_bits(tree, state, bits);
440
f2071b21 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
446 "%llu %llu\n",
447 found->start, found->end, start, end);
d1310b2e
CM
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452}
453
1bf85046 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
455 u64 split)
456{
457 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
459}
460
d1310b2e
CM
461/*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477{
478 struct rb_node *node;
9ed74f2d
JB
479
480 split_cb(tree, orig, split);
481
d1310b2e
CM
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
f2071b21
FM
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
d1310b2e 489 if (node) {
d1310b2e
CM
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
cdc6a395
LZ
496static struct extent_state *next_state(struct extent_state *state)
497{
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503}
504
d1310b2e
CM
505/*
506 * utility function to clear some bits in an extent state struct.
1b303fc0 507 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
cdc6a395
LZ
512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
41074888 514 unsigned long *bits, int wake)
d1310b2e 515{
cdc6a395 516 struct extent_state *next;
41074888 517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 518
0ca1f7ce 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
523 }
291d673e 524 clear_state_cb(tree, state, bits);
32c00aff 525 state->state &= ~bits_to_clear;
d1310b2e
CM
526 if (wake)
527 wake_up(&state->wq);
0ca1f7ce 528 if (state->state == 0) {
cdc6a395 529 next = next_state(state);
27a3507d 530 if (extent_state_in_tree(state)) {
d1310b2e 531 rb_erase(&state->rb_node, &tree->state);
27a3507d 532 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
536 }
537 } else {
538 merge_state(tree, state);
cdc6a395 539 next = next_state(state);
d1310b2e 540 }
cdc6a395 541 return next;
d1310b2e
CM
542}
543
8233767a
XG
544static struct extent_state *
545alloc_extent_state_atomic(struct extent_state *prealloc)
546{
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550 return prealloc;
551}
552
48a3b636 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
554{
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
558}
559
d1310b2e
CM
560/*
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
564 *
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
567 *
568 * the range [start, end] is inclusive.
569 *
6763af84 570 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
571 */
572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 573 unsigned long bits, int wake, int delete,
2c64c53d
CM
574 struct extent_state **cached_state,
575 gfp_t mask)
d1310b2e
CM
576{
577 struct extent_state *state;
2c64c53d 578 struct extent_state *cached;
d1310b2e
CM
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
5c939df5 581 u64 last_end;
d1310b2e 582 int err;
2ac55d41 583 int clear = 0;
d1310b2e 584
a5dee37d 585 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 586
7ee9e440
JB
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
589
0ca1f7ce
YZ
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
593
2ac55d41
JB
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
d1310b2e
CM
596again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
598 prealloc = alloc_extent_state(mask);
599 if (!prealloc)
600 return -ENOMEM;
601 }
602
cad321ad 603 spin_lock(&tree->lock);
2c64c53d
CM
604 if (cached_state) {
605 cached = *cached_state;
2ac55d41
JB
606
607 if (clear) {
608 *cached_state = NULL;
609 cached_state = NULL;
610 }
611
27a3507d
FM
612 if (cached && extent_state_in_tree(cached) &&
613 cached->start <= start && cached->end > start) {
2ac55d41
JB
614 if (clear)
615 atomic_dec(&cached->refs);
2c64c53d 616 state = cached;
42daec29 617 goto hit_next;
2c64c53d 618 }
2ac55d41
JB
619 if (clear)
620 free_extent_state(cached);
2c64c53d 621 }
d1310b2e
CM
622 /*
623 * this search will find the extents that end after
624 * our range starts
625 */
80ea96b1 626 node = tree_search(tree, start);
d1310b2e
CM
627 if (!node)
628 goto out;
629 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 630hit_next:
d1310b2e
CM
631 if (state->start > end)
632 goto out;
633 WARN_ON(state->end < start);
5c939df5 634 last_end = state->end;
d1310b2e 635
0449314a 636 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
637 if (!(state->state & bits)) {
638 state = next_state(state);
0449314a 639 goto next;
cdc6a395 640 }
0449314a 641
d1310b2e
CM
642 /*
643 * | ---- desired range ---- |
644 * | state | or
645 * | ------------- state -------------- |
646 *
647 * We need to split the extent we found, and may flip
648 * bits on second half.
649 *
650 * If the extent we found extends past our range, we
651 * just split and search again. It'll get split again
652 * the next time though.
653 *
654 * If the extent we found is inside our range, we clear
655 * the desired bit on it.
656 */
657
658 if (state->start < start) {
8233767a
XG
659 prealloc = alloc_extent_state_atomic(prealloc);
660 BUG_ON(!prealloc);
d1310b2e 661 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
662 if (err)
663 extent_io_tree_panic(tree, err);
664
d1310b2e
CM
665 prealloc = NULL;
666 if (err)
667 goto out;
668 if (state->end <= end) {
d1ac6e41
LB
669 state = clear_state_bit(tree, state, &bits, wake);
670 goto next;
d1310b2e
CM
671 }
672 goto search_again;
673 }
674 /*
675 * | ---- desired range ---- |
676 * | state |
677 * We need to split the extent, and clear the bit
678 * on the first half
679 */
680 if (state->start <= end && state->end > end) {
8233767a
XG
681 prealloc = alloc_extent_state_atomic(prealloc);
682 BUG_ON(!prealloc);
d1310b2e 683 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
684 if (err)
685 extent_io_tree_panic(tree, err);
686
d1310b2e
CM
687 if (wake)
688 wake_up(&state->wq);
42daec29 689
6763af84 690 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 691
d1310b2e
CM
692 prealloc = NULL;
693 goto out;
694 }
42daec29 695
cdc6a395 696 state = clear_state_bit(tree, state, &bits, wake);
0449314a 697next:
5c939df5
YZ
698 if (last_end == (u64)-1)
699 goto out;
700 start = last_end + 1;
cdc6a395 701 if (start <= end && state && !need_resched())
692e5759 702 goto hit_next;
d1310b2e
CM
703 goto search_again;
704
705out:
cad321ad 706 spin_unlock(&tree->lock);
d1310b2e
CM
707 if (prealloc)
708 free_extent_state(prealloc);
709
6763af84 710 return 0;
d1310b2e
CM
711
712search_again:
713 if (start > end)
714 goto out;
cad321ad 715 spin_unlock(&tree->lock);
d1310b2e
CM
716 if (mask & __GFP_WAIT)
717 cond_resched();
718 goto again;
719}
d1310b2e 720
143bede5
JM
721static void wait_on_state(struct extent_io_tree *tree,
722 struct extent_state *state)
641f5219
CH
723 __releases(tree->lock)
724 __acquires(tree->lock)
d1310b2e
CM
725{
726 DEFINE_WAIT(wait);
727 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 728 spin_unlock(&tree->lock);
d1310b2e 729 schedule();
cad321ad 730 spin_lock(&tree->lock);
d1310b2e 731 finish_wait(&state->wq, &wait);
d1310b2e
CM
732}
733
734/*
735 * waits for one or more bits to clear on a range in the state tree.
736 * The range [start, end] is inclusive.
737 * The tree lock is taken by this function
738 */
41074888
DS
739static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
740 unsigned long bits)
d1310b2e
CM
741{
742 struct extent_state *state;
743 struct rb_node *node;
744
a5dee37d 745 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 746
cad321ad 747 spin_lock(&tree->lock);
d1310b2e
CM
748again:
749 while (1) {
750 /*
751 * this search will find all the extents that end after
752 * our range starts
753 */
80ea96b1 754 node = tree_search(tree, start);
c50d3e71 755process_node:
d1310b2e
CM
756 if (!node)
757 break;
758
759 state = rb_entry(node, struct extent_state, rb_node);
760
761 if (state->start > end)
762 goto out;
763
764 if (state->state & bits) {
765 start = state->start;
766 atomic_inc(&state->refs);
767 wait_on_state(tree, state);
768 free_extent_state(state);
769 goto again;
770 }
771 start = state->end + 1;
772
773 if (start > end)
774 break;
775
c50d3e71
FM
776 if (!cond_resched_lock(&tree->lock)) {
777 node = rb_next(node);
778 goto process_node;
779 }
d1310b2e
CM
780 }
781out:
cad321ad 782 spin_unlock(&tree->lock);
d1310b2e 783}
d1310b2e 784
1bf85046 785static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 786 struct extent_state *state,
41074888 787 unsigned long *bits)
d1310b2e 788{
41074888 789 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 790
1bf85046 791 set_state_cb(tree, state, bits);
0ca1f7ce 792 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
793 u64 range = state->end - state->start + 1;
794 tree->dirty_bytes += range;
795 }
0ca1f7ce 796 state->state |= bits_to_set;
d1310b2e
CM
797}
798
2c64c53d
CM
799static void cache_state(struct extent_state *state,
800 struct extent_state **cached_ptr)
801{
802 if (cached_ptr && !(*cached_ptr)) {
803 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
804 *cached_ptr = state;
805 atomic_inc(&state->refs);
806 }
807 }
808}
809
d1310b2e 810/*
1edbb734
CM
811 * set some bits on a range in the tree. This may require allocations or
812 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 813 *
1edbb734
CM
814 * If any of the exclusive bits are set, this will fail with -EEXIST if some
815 * part of the range already has the desired bits set. The start of the
816 * existing range is returned in failed_start in this case.
d1310b2e 817 *
1edbb734 818 * [start, end] is inclusive This takes the tree lock.
d1310b2e 819 */
1edbb734 820
3fbe5c02
JM
821static int __must_check
822__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
823 unsigned long bits, unsigned long exclusive_bits,
824 u64 *failed_start, struct extent_state **cached_state,
825 gfp_t mask)
d1310b2e
CM
826{
827 struct extent_state *state;
828 struct extent_state *prealloc = NULL;
829 struct rb_node *node;
12cfbad9
FDBM
830 struct rb_node **p;
831 struct rb_node *parent;
d1310b2e 832 int err = 0;
d1310b2e
CM
833 u64 last_start;
834 u64 last_end;
42daec29 835
a5dee37d 836 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 837
0ca1f7ce 838 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
839again:
840 if (!prealloc && (mask & __GFP_WAIT)) {
841 prealloc = alloc_extent_state(mask);
8233767a 842 BUG_ON(!prealloc);
d1310b2e
CM
843 }
844
cad321ad 845 spin_lock(&tree->lock);
9655d298
CM
846 if (cached_state && *cached_state) {
847 state = *cached_state;
df98b6e2 848 if (state->start <= start && state->end > start &&
27a3507d 849 extent_state_in_tree(state)) {
9655d298
CM
850 node = &state->rb_node;
851 goto hit_next;
852 }
853 }
d1310b2e
CM
854 /*
855 * this search will find all the extents that end after
856 * our range starts.
857 */
12cfbad9 858 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 859 if (!node) {
8233767a
XG
860 prealloc = alloc_extent_state_atomic(prealloc);
861 BUG_ON(!prealloc);
12cfbad9
FDBM
862 err = insert_state(tree, prealloc, start, end,
863 &p, &parent, &bits);
c2d904e0
JM
864 if (err)
865 extent_io_tree_panic(tree, err);
866
c42ac0bc 867 cache_state(prealloc, cached_state);
d1310b2e 868 prealloc = NULL;
d1310b2e
CM
869 goto out;
870 }
d1310b2e 871 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 872hit_next:
d1310b2e
CM
873 last_start = state->start;
874 last_end = state->end;
875
876 /*
877 * | ---- desired range ---- |
878 * | state |
879 *
880 * Just lock what we found and keep going
881 */
882 if (state->start == start && state->end <= end) {
1edbb734 883 if (state->state & exclusive_bits) {
d1310b2e
CM
884 *failed_start = state->start;
885 err = -EEXIST;
886 goto out;
887 }
42daec29 888
1bf85046 889 set_state_bits(tree, state, &bits);
2c64c53d 890 cache_state(state, cached_state);
d1310b2e 891 merge_state(tree, state);
5c939df5
YZ
892 if (last_end == (u64)-1)
893 goto out;
894 start = last_end + 1;
d1ac6e41
LB
895 state = next_state(state);
896 if (start < end && state && state->start == start &&
897 !need_resched())
898 goto hit_next;
d1310b2e
CM
899 goto search_again;
900 }
901
902 /*
903 * | ---- desired range ---- |
904 * | state |
905 * or
906 * | ------------- state -------------- |
907 *
908 * We need to split the extent we found, and may flip bits on
909 * second half.
910 *
911 * If the extent we found extends past our
912 * range, we just split and search again. It'll get split
913 * again the next time though.
914 *
915 * If the extent we found is inside our range, we set the
916 * desired bit on it.
917 */
918 if (state->start < start) {
1edbb734 919 if (state->state & exclusive_bits) {
d1310b2e
CM
920 *failed_start = start;
921 err = -EEXIST;
922 goto out;
923 }
8233767a
XG
924
925 prealloc = alloc_extent_state_atomic(prealloc);
926 BUG_ON(!prealloc);
d1310b2e 927 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
928 if (err)
929 extent_io_tree_panic(tree, err);
930
d1310b2e
CM
931 prealloc = NULL;
932 if (err)
933 goto out;
934 if (state->end <= end) {
1bf85046 935 set_state_bits(tree, state, &bits);
2c64c53d 936 cache_state(state, cached_state);
d1310b2e 937 merge_state(tree, state);
5c939df5
YZ
938 if (last_end == (u64)-1)
939 goto out;
940 start = last_end + 1;
d1ac6e41
LB
941 state = next_state(state);
942 if (start < end && state && state->start == start &&
943 !need_resched())
944 goto hit_next;
d1310b2e
CM
945 }
946 goto search_again;
947 }
948 /*
949 * | ---- desired range ---- |
950 * | state | or | state |
951 *
952 * There's a hole, we need to insert something in it and
953 * ignore the extent we found.
954 */
955 if (state->start > start) {
956 u64 this_end;
957 if (end < last_start)
958 this_end = end;
959 else
d397712b 960 this_end = last_start - 1;
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
c7f895a2
XG
964
965 /*
966 * Avoid to free 'prealloc' if it can be merged with
967 * the later extent.
968 */
d1310b2e 969 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 970 NULL, NULL, &bits);
c2d904e0
JM
971 if (err)
972 extent_io_tree_panic(tree, err);
973
9ed74f2d
JB
974 cache_state(prealloc, cached_state);
975 prealloc = NULL;
d1310b2e
CM
976 start = this_end + 1;
977 goto search_again;
978 }
979 /*
980 * | ---- desired range ---- |
981 * | state |
982 * We need to split the extent, and set the bit
983 * on the first half
984 */
985 if (state->start <= end && state->end > end) {
1edbb734 986 if (state->state & exclusive_bits) {
d1310b2e
CM
987 *failed_start = start;
988 err = -EEXIST;
989 goto out;
990 }
8233767a
XG
991
992 prealloc = alloc_extent_state_atomic(prealloc);
993 BUG_ON(!prealloc);
d1310b2e 994 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
995 if (err)
996 extent_io_tree_panic(tree, err);
d1310b2e 997
1bf85046 998 set_state_bits(tree, prealloc, &bits);
2c64c53d 999 cache_state(prealloc, cached_state);
d1310b2e
CM
1000 merge_state(tree, prealloc);
1001 prealloc = NULL;
1002 goto out;
1003 }
1004
1005 goto search_again;
1006
1007out:
cad321ad 1008 spin_unlock(&tree->lock);
d1310b2e
CM
1009 if (prealloc)
1010 free_extent_state(prealloc);
1011
1012 return err;
1013
1014search_again:
1015 if (start > end)
1016 goto out;
cad321ad 1017 spin_unlock(&tree->lock);
d1310b2e
CM
1018 if (mask & __GFP_WAIT)
1019 cond_resched();
1020 goto again;
1021}
d1310b2e 1022
41074888
DS
1023int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1024 unsigned long bits, u64 * failed_start,
1025 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1026{
1027 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1028 cached_state, mask);
1029}
1030
1031
462d6fac 1032/**
10983f2e
LB
1033 * convert_extent_bit - convert all bits in a given range from one bit to
1034 * another
462d6fac
JB
1035 * @tree: the io tree to search
1036 * @start: the start offset in bytes
1037 * @end: the end offset in bytes (inclusive)
1038 * @bits: the bits to set in this range
1039 * @clear_bits: the bits to clear in this range
e6138876 1040 * @cached_state: state that we're going to cache
462d6fac
JB
1041 * @mask: the allocation mask
1042 *
1043 * This will go through and set bits for the given range. If any states exist
1044 * already in this range they are set with the given bit and cleared of the
1045 * clear_bits. This is only meant to be used by things that are mergeable, ie
1046 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1047 * boundary bits like LOCK.
1048 */
1049int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1050 unsigned long bits, unsigned long clear_bits,
e6138876 1051 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1052{
1053 struct extent_state *state;
1054 struct extent_state *prealloc = NULL;
1055 struct rb_node *node;
12cfbad9
FDBM
1056 struct rb_node **p;
1057 struct rb_node *parent;
462d6fac
JB
1058 int err = 0;
1059 u64 last_start;
1060 u64 last_end;
1061
a5dee37d 1062 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1063
462d6fac
JB
1064again:
1065 if (!prealloc && (mask & __GFP_WAIT)) {
1066 prealloc = alloc_extent_state(mask);
1067 if (!prealloc)
1068 return -ENOMEM;
1069 }
1070
1071 spin_lock(&tree->lock);
e6138876
JB
1072 if (cached_state && *cached_state) {
1073 state = *cached_state;
1074 if (state->start <= start && state->end > start &&
27a3507d 1075 extent_state_in_tree(state)) {
e6138876
JB
1076 node = &state->rb_node;
1077 goto hit_next;
1078 }
1079 }
1080
462d6fac
JB
1081 /*
1082 * this search will find all the extents that end after
1083 * our range starts.
1084 */
12cfbad9 1085 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1086 if (!node) {
1087 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1088 if (!prealloc) {
1089 err = -ENOMEM;
1090 goto out;
1091 }
12cfbad9
FDBM
1092 err = insert_state(tree, prealloc, start, end,
1093 &p, &parent, &bits);
c2d904e0
JM
1094 if (err)
1095 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1096 cache_state(prealloc, cached_state);
1097 prealloc = NULL;
462d6fac
JB
1098 goto out;
1099 }
1100 state = rb_entry(node, struct extent_state, rb_node);
1101hit_next:
1102 last_start = state->start;
1103 last_end = state->end;
1104
1105 /*
1106 * | ---- desired range ---- |
1107 * | state |
1108 *
1109 * Just lock what we found and keep going
1110 */
1111 if (state->start == start && state->end <= end) {
462d6fac 1112 set_state_bits(tree, state, &bits);
e6138876 1113 cache_state(state, cached_state);
d1ac6e41 1114 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1115 if (last_end == (u64)-1)
1116 goto out;
462d6fac 1117 start = last_end + 1;
d1ac6e41
LB
1118 if (start < end && state && state->start == start &&
1119 !need_resched())
1120 goto hit_next;
462d6fac
JB
1121 goto search_again;
1122 }
1123
1124 /*
1125 * | ---- desired range ---- |
1126 * | state |
1127 * or
1128 * | ------------- state -------------- |
1129 *
1130 * We need to split the extent we found, and may flip bits on
1131 * second half.
1132 *
1133 * If the extent we found extends past our
1134 * range, we just split and search again. It'll get split
1135 * again the next time though.
1136 *
1137 * If the extent we found is inside our range, we set the
1138 * desired bit on it.
1139 */
1140 if (state->start < start) {
1141 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1142 if (!prealloc) {
1143 err = -ENOMEM;
1144 goto out;
1145 }
462d6fac 1146 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1147 if (err)
1148 extent_io_tree_panic(tree, err);
462d6fac
JB
1149 prealloc = NULL;
1150 if (err)
1151 goto out;
1152 if (state->end <= end) {
1153 set_state_bits(tree, state, &bits);
e6138876 1154 cache_state(state, cached_state);
d1ac6e41 1155 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 }
1163 goto search_again;
1164 }
1165 /*
1166 * | ---- desired range ---- |
1167 * | state | or | state |
1168 *
1169 * There's a hole, we need to insert something in it and
1170 * ignore the extent we found.
1171 */
1172 if (state->start > start) {
1173 u64 this_end;
1174 if (end < last_start)
1175 this_end = end;
1176 else
1177 this_end = last_start - 1;
1178
1179 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1180 if (!prealloc) {
1181 err = -ENOMEM;
1182 goto out;
1183 }
462d6fac
JB
1184
1185 /*
1186 * Avoid to free 'prealloc' if it can be merged with
1187 * the later extent.
1188 */
1189 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1190 NULL, NULL, &bits);
c2d904e0
JM
1191 if (err)
1192 extent_io_tree_panic(tree, err);
e6138876 1193 cache_state(prealloc, cached_state);
462d6fac
JB
1194 prealloc = NULL;
1195 start = this_end + 1;
1196 goto search_again;
1197 }
1198 /*
1199 * | ---- desired range ---- |
1200 * | state |
1201 * We need to split the extent, and set the bit
1202 * on the first half
1203 */
1204 if (state->start <= end && state->end > end) {
1205 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1206 if (!prealloc) {
1207 err = -ENOMEM;
1208 goto out;
1209 }
462d6fac
JB
1210
1211 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1212 if (err)
1213 extent_io_tree_panic(tree, err);
462d6fac
JB
1214
1215 set_state_bits(tree, prealloc, &bits);
e6138876 1216 cache_state(prealloc, cached_state);
462d6fac 1217 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1218 prealloc = NULL;
1219 goto out;
1220 }
1221
1222 goto search_again;
1223
1224out:
1225 spin_unlock(&tree->lock);
1226 if (prealloc)
1227 free_extent_state(prealloc);
1228
1229 return err;
1230
1231search_again:
1232 if (start > end)
1233 goto out;
1234 spin_unlock(&tree->lock);
1235 if (mask & __GFP_WAIT)
1236 cond_resched();
1237 goto again;
1238}
1239
d1310b2e
CM
1240/* wrappers around set/clear extent bit */
1241int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1242 gfp_t mask)
1243{
3fbe5c02 1244 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1245 NULL, mask);
d1310b2e 1246}
d1310b2e
CM
1247
1248int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1249 unsigned long bits, gfp_t mask)
d1310b2e 1250{
3fbe5c02 1251 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1252 NULL, mask);
d1310b2e 1253}
d1310b2e
CM
1254
1255int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1256 unsigned long bits, gfp_t mask)
d1310b2e 1257{
2c64c53d 1258 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1259}
d1310b2e
CM
1260
1261int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1262 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1263{
1264 return set_extent_bit(tree, start, end,
fee187d9 1265 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1266 NULL, cached_state, mask);
d1310b2e 1267}
d1310b2e 1268
9e8a4a8b
LB
1269int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1270 struct extent_state **cached_state, gfp_t mask)
1271{
1272 return set_extent_bit(tree, start, end,
1273 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1274 NULL, cached_state, mask);
1275}
1276
d1310b2e
CM
1277int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1278 gfp_t mask)
1279{
1280 return clear_extent_bit(tree, start, end,
32c00aff 1281 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1282 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1283}
d1310b2e
CM
1284
1285int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1286 gfp_t mask)
1287{
3fbe5c02 1288 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1289 NULL, mask);
d1310b2e 1290}
d1310b2e 1291
d1310b2e 1292int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1293 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1294{
6b67a320 1295 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1296 cached_state, mask);
d1310b2e 1297}
d1310b2e 1298
5fd02043
JB
1299int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1300 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1301{
2c64c53d 1302 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1303 cached_state, mask);
d1310b2e 1304}
d1310b2e 1305
d352ac68
CM
1306/*
1307 * either insert or lock state struct between start and end use mask to tell
1308 * us if waiting is desired.
1309 */
1edbb734 1310int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1311 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1312{
1313 int err;
1314 u64 failed_start;
1315 while (1) {
3fbe5c02
JM
1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1317 EXTENT_LOCKED, &failed_start,
1318 cached_state, GFP_NOFS);
d0082371 1319 if (err == -EEXIST) {
d1310b2e
CM
1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 start = failed_start;
d0082371 1322 } else
d1310b2e 1323 break;
d1310b2e
CM
1324 WARN_ON(start > end);
1325 }
1326 return err;
1327}
d1310b2e 1328
d0082371 1329int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1330{
d0082371 1331 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1332}
1333
d0082371 1334int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1335{
1336 int err;
1337 u64 failed_start;
1338
3fbe5c02
JM
1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1340 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1341 if (err == -EEXIST) {
1342 if (failed_start > start)
1343 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1344 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1345 return 0;
6643558d 1346 }
25179201
JB
1347 return 1;
1348}
25179201 1349
2c64c53d
CM
1350int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1351 struct extent_state **cached, gfp_t mask)
1352{
1353 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1354 mask);
1355}
1356
d0082371 1357int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1358{
2c64c53d 1359 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1360 GFP_NOFS);
d1310b2e 1361}
d1310b2e 1362
4adaa611
CM
1363int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364{
1365 unsigned long index = start >> PAGE_CACHE_SHIFT;
1366 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
1373 page_cache_release(page);
1374 index++;
1375 }
1376 return 0;
1377}
1378
1379int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380{
1381 unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 struct page *page;
1384
1385 while (index <= end_index) {
1386 page = find_get_page(inode->i_mapping, index);
1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 account_page_redirty(page);
1389 __set_page_dirty_nobuffers(page);
1390 page_cache_release(page);
1391 index++;
1392 }
1393 return 0;
1394}
1395
d1310b2e
CM
1396/*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
b2950863 1399static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1400{
1401 unsigned long index = start >> PAGE_CACHE_SHIFT;
1402 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
79787eaa 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1408 set_page_writeback(page);
1409 page_cache_release(page);
1410 index++;
1411 }
d1310b2e
CM
1412 return 0;
1413}
d1310b2e 1414
d352ac68
CM
1415/* find the first state struct with 'bits' set after 'start', and
1416 * return it. tree->lock must be held. NULL will returned if
1417 * nothing was found after 'start'
1418 */
48a3b636
ES
1419static struct extent_state *
1420find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1421 u64 start, unsigned long bits)
d7fc640e
CM
1422{
1423 struct rb_node *node;
1424 struct extent_state *state;
1425
1426 /*
1427 * this search will find all the extents that end after
1428 * our range starts.
1429 */
1430 node = tree_search(tree, start);
d397712b 1431 if (!node)
d7fc640e 1432 goto out;
d7fc640e 1433
d397712b 1434 while (1) {
d7fc640e 1435 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1436 if (state->end >= start && (state->state & bits))
d7fc640e 1437 return state;
d397712b 1438
d7fc640e
CM
1439 node = rb_next(node);
1440 if (!node)
1441 break;
1442 }
1443out:
1444 return NULL;
1445}
d7fc640e 1446
69261c4b
XG
1447/*
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1451 *
477d7eaf 1452 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1453 */
1454int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1455 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1456 struct extent_state **cached_state)
69261c4b
XG
1457{
1458 struct extent_state *state;
e6138876 1459 struct rb_node *n;
69261c4b
XG
1460 int ret = 1;
1461
1462 spin_lock(&tree->lock);
e6138876
JB
1463 if (cached_state && *cached_state) {
1464 state = *cached_state;
27a3507d 1465 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1466 n = rb_next(&state->rb_node);
1467 while (n) {
1468 state = rb_entry(n, struct extent_state,
1469 rb_node);
1470 if (state->state & bits)
1471 goto got_it;
1472 n = rb_next(n);
1473 }
1474 free_extent_state(*cached_state);
1475 *cached_state = NULL;
1476 goto out;
1477 }
1478 free_extent_state(*cached_state);
1479 *cached_state = NULL;
1480 }
1481
69261c4b 1482 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1483got_it:
69261c4b 1484 if (state) {
e6138876 1485 cache_state(state, cached_state);
69261c4b
XG
1486 *start_ret = state->start;
1487 *end_ret = state->end;
1488 ret = 0;
1489 }
e6138876 1490out:
69261c4b
XG
1491 spin_unlock(&tree->lock);
1492 return ret;
1493}
1494
d352ac68
CM
1495/*
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'. start and end are used to return the range,
1498 *
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1500 */
c8b97818 1501static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1502 u64 *start, u64 *end, u64 max_bytes,
1503 struct extent_state **cached_state)
d1310b2e
CM
1504{
1505 struct rb_node *node;
1506 struct extent_state *state;
1507 u64 cur_start = *start;
1508 u64 found = 0;
1509 u64 total_bytes = 0;
1510
cad321ad 1511 spin_lock(&tree->lock);
c8b97818 1512
d1310b2e
CM
1513 /*
1514 * this search will find all the extents that end after
1515 * our range starts.
1516 */
80ea96b1 1517 node = tree_search(tree, cur_start);
2b114d1d 1518 if (!node) {
3b951516
CM
1519 if (!found)
1520 *end = (u64)-1;
d1310b2e
CM
1521 goto out;
1522 }
1523
d397712b 1524 while (1) {
d1310b2e 1525 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1526 if (found && (state->start != cur_start ||
1527 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1528 goto out;
1529 }
1530 if (!(state->state & EXTENT_DELALLOC)) {
1531 if (!found)
1532 *end = state->end;
1533 goto out;
1534 }
c2a128d2 1535 if (!found) {
d1310b2e 1536 *start = state->start;
c2a128d2
JB
1537 *cached_state = state;
1538 atomic_inc(&state->refs);
1539 }
d1310b2e
CM
1540 found++;
1541 *end = state->end;
1542 cur_start = state->end + 1;
1543 node = rb_next(node);
d1310b2e 1544 total_bytes += state->end - state->start + 1;
7bf811a5 1545 if (total_bytes >= max_bytes)
573aecaf 1546 break;
573aecaf 1547 if (!node)
d1310b2e
CM
1548 break;
1549 }
1550out:
cad321ad 1551 spin_unlock(&tree->lock);
d1310b2e
CM
1552 return found;
1553}
1554
143bede5
JM
1555static noinline void __unlock_for_delalloc(struct inode *inode,
1556 struct page *locked_page,
1557 u64 start, u64 end)
c8b97818
CM
1558{
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
1565
1566 if (index == locked_page->index && end_index == index)
143bede5 1567 return;
c8b97818 1568
d397712b 1569 while (nr_pages > 0) {
c8b97818 1570 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1571 min_t(unsigned long, nr_pages,
1572 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1573 for (i = 0; i < ret; i++) {
1574 if (pages[i] != locked_page)
1575 unlock_page(pages[i]);
1576 page_cache_release(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
c8b97818
CM
1582}
1583
1584static noinline int lock_delalloc_pages(struct inode *inode,
1585 struct page *locked_page,
1586 u64 delalloc_start,
1587 u64 delalloc_end)
1588{
1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 unsigned long start_index = index;
1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 unsigned long pages_locked = 0;
1593 struct page *pages[16];
1594 unsigned long nrpages;
1595 int ret;
1596 int i;
1597
1598 /* the caller is responsible for locking the start index */
1599 if (index == locked_page->index && index == end_index)
1600 return 0;
1601
1602 /* skip the page at the start index */
1603 nrpages = end_index - index + 1;
d397712b 1604 while (nrpages > 0) {
c8b97818 1605 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1606 min_t(unsigned long,
1607 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1608 if (ret == 0) {
1609 ret = -EAGAIN;
1610 goto done;
1611 }
1612 /* now we have an array of pages, lock them all */
1613 for (i = 0; i < ret; i++) {
1614 /*
1615 * the caller is taking responsibility for
1616 * locked_page
1617 */
771ed689 1618 if (pages[i] != locked_page) {
c8b97818 1619 lock_page(pages[i]);
f2b1c41c
CM
1620 if (!PageDirty(pages[i]) ||
1621 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1622 ret = -EAGAIN;
1623 unlock_page(pages[i]);
1624 page_cache_release(pages[i]);
1625 goto done;
1626 }
1627 }
c8b97818 1628 page_cache_release(pages[i]);
771ed689 1629 pages_locked++;
c8b97818 1630 }
c8b97818
CM
1631 nrpages -= ret;
1632 index += ret;
1633 cond_resched();
1634 }
1635 ret = 0;
1636done:
1637 if (ret && pages_locked) {
1638 __unlock_for_delalloc(inode, locked_page,
1639 delalloc_start,
1640 ((u64)(start_index + pages_locked - 1)) <<
1641 PAGE_CACHE_SHIFT);
1642 }
1643 return ret;
1644}
1645
1646/*
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'. start and end are used to return the range,
1649 *
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1651 */
294e30fe
JB
1652STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 struct extent_io_tree *tree,
1654 struct page *locked_page, u64 *start,
1655 u64 *end, u64 max_bytes)
c8b97818
CM
1656{
1657 u64 delalloc_start;
1658 u64 delalloc_end;
1659 u64 found;
9655d298 1660 struct extent_state *cached_state = NULL;
c8b97818
CM
1661 int ret;
1662 int loops = 0;
1663
1664again:
1665 /* step one, find a bunch of delalloc bytes starting at start */
1666 delalloc_start = *start;
1667 delalloc_end = 0;
1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1669 max_bytes, &cached_state);
70b99e69 1670 if (!found || delalloc_end <= *start) {
c8b97818
CM
1671 *start = delalloc_start;
1672 *end = delalloc_end;
c2a128d2 1673 free_extent_state(cached_state);
385fe0be 1674 return 0;
c8b97818
CM
1675 }
1676
70b99e69
CM
1677 /*
1678 * start comes from the offset of locked_page. We have to lock
1679 * pages in order, so we can't process delalloc bytes before
1680 * locked_page
1681 */
d397712b 1682 if (delalloc_start < *start)
70b99e69 1683 delalloc_start = *start;
70b99e69 1684
c8b97818
CM
1685 /*
1686 * make sure to limit the number of pages we try to lock down
c8b97818 1687 */
7bf811a5
JB
1688 if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1690
c8b97818
CM
1691 /* step two, lock all the pages after the page that has start */
1692 ret = lock_delalloc_pages(inode, locked_page,
1693 delalloc_start, delalloc_end);
1694 if (ret == -EAGAIN) {
1695 /* some of the pages are gone, lets avoid looping by
1696 * shortening the size of the delalloc range we're searching
1697 */
9655d298 1698 free_extent_state(cached_state);
7d788742 1699 cached_state = NULL;
c8b97818 1700 if (!loops) {
7bf811a5 1701 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1702 loops = 1;
1703 goto again;
1704 } else {
1705 found = 0;
1706 goto out_failed;
1707 }
1708 }
79787eaa 1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1710
1711 /* step three, lock the state bits for the whole range */
d0082371 1712 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1713
1714 /* then test to make sure it is all still delalloc */
1715 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1716 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1717 if (!ret) {
9655d298
CM
1718 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 &cached_state, GFP_NOFS);
c8b97818
CM
1720 __unlock_for_delalloc(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 cond_resched();
1723 goto again;
1724 }
9655d298 1725 free_extent_state(cached_state);
c8b97818
CM
1726 *start = delalloc_start;
1727 *end = delalloc_end;
1728out_failed:
1729 return found;
1730}
1731
c2790a2e
JB
1732int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 struct page *locked_page,
1734 unsigned long clear_bits,
1735 unsigned long page_ops)
c8b97818 1736{
c2790a2e 1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1738 int ret;
1739 struct page *pages[16];
1740 unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 unsigned long nr_pages = end_index - index + 1;
1743 int i;
771ed689 1744
2c64c53d 1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1746 if (page_ops == 0)
771ed689 1747 return 0;
c8b97818 1748
d397712b 1749 while (nr_pages > 0) {
c8b97818 1750 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1753 for (i = 0; i < ret; i++) {
8b62b72b 1754
c2790a2e 1755 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1756 SetPagePrivate2(pages[i]);
1757
c8b97818
CM
1758 if (pages[i] == locked_page) {
1759 page_cache_release(pages[i]);
1760 continue;
1761 }
c2790a2e 1762 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1763 clear_page_dirty_for_io(pages[i]);
c2790a2e 1764 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1765 set_page_writeback(pages[i]);
c2790a2e 1766 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1767 end_page_writeback(pages[i]);
c2790a2e 1768 if (page_ops & PAGE_UNLOCK)
771ed689 1769 unlock_page(pages[i]);
c8b97818
CM
1770 page_cache_release(pages[i]);
1771 }
1772 nr_pages -= ret;
1773 index += ret;
1774 cond_resched();
1775 }
1776 return 0;
1777}
c8b97818 1778
d352ac68
CM
1779/*
1780 * count the number of bytes in the tree that have a given bit(s)
1781 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1782 * cached. The total number found is returned.
1783 */
d1310b2e
CM
1784u64 count_range_bits(struct extent_io_tree *tree,
1785 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1786 unsigned long bits, int contig)
d1310b2e
CM
1787{
1788 struct rb_node *node;
1789 struct extent_state *state;
1790 u64 cur_start = *start;
1791 u64 total_bytes = 0;
ec29ed5b 1792 u64 last = 0;
d1310b2e
CM
1793 int found = 0;
1794
fae7f21c 1795 if (WARN_ON(search_end <= cur_start))
d1310b2e 1796 return 0;
d1310b2e 1797
cad321ad 1798 spin_lock(&tree->lock);
d1310b2e
CM
1799 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1800 total_bytes = tree->dirty_bytes;
1801 goto out;
1802 }
1803 /*
1804 * this search will find all the extents that end after
1805 * our range starts.
1806 */
80ea96b1 1807 node = tree_search(tree, cur_start);
d397712b 1808 if (!node)
d1310b2e 1809 goto out;
d1310b2e 1810
d397712b 1811 while (1) {
d1310b2e
CM
1812 state = rb_entry(node, struct extent_state, rb_node);
1813 if (state->start > search_end)
1814 break;
ec29ed5b
CM
1815 if (contig && found && state->start > last + 1)
1816 break;
1817 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1818 total_bytes += min(search_end, state->end) + 1 -
1819 max(cur_start, state->start);
1820 if (total_bytes >= max_bytes)
1821 break;
1822 if (!found) {
af60bed2 1823 *start = max(cur_start, state->start);
d1310b2e
CM
1824 found = 1;
1825 }
ec29ed5b
CM
1826 last = state->end;
1827 } else if (contig && found) {
1828 break;
d1310b2e
CM
1829 }
1830 node = rb_next(node);
1831 if (!node)
1832 break;
1833 }
1834out:
cad321ad 1835 spin_unlock(&tree->lock);
d1310b2e
CM
1836 return total_bytes;
1837}
b2950863 1838
d352ac68
CM
1839/*
1840 * set the private field for a given byte offset in the tree. If there isn't
1841 * an extent_state there already, this does nothing.
1842 */
171170c1 1843static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1844{
1845 struct rb_node *node;
1846 struct extent_state *state;
1847 int ret = 0;
1848
cad321ad 1849 spin_lock(&tree->lock);
d1310b2e
CM
1850 /*
1851 * this search will find all the extents that end after
1852 * our range starts.
1853 */
80ea96b1 1854 node = tree_search(tree, start);
2b114d1d 1855 if (!node) {
d1310b2e
CM
1856 ret = -ENOENT;
1857 goto out;
1858 }
1859 state = rb_entry(node, struct extent_state, rb_node);
1860 if (state->start != start) {
1861 ret = -ENOENT;
1862 goto out;
1863 }
1864 state->private = private;
1865out:
cad321ad 1866 spin_unlock(&tree->lock);
d1310b2e
CM
1867 return ret;
1868}
1869
1870int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1871{
1872 struct rb_node *node;
1873 struct extent_state *state;
1874 int ret = 0;
1875
cad321ad 1876 spin_lock(&tree->lock);
d1310b2e
CM
1877 /*
1878 * this search will find all the extents that end after
1879 * our range starts.
1880 */
80ea96b1 1881 node = tree_search(tree, start);
2b114d1d 1882 if (!node) {
d1310b2e
CM
1883 ret = -ENOENT;
1884 goto out;
1885 }
1886 state = rb_entry(node, struct extent_state, rb_node);
1887 if (state->start != start) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 *private = state->private;
1892out:
cad321ad 1893 spin_unlock(&tree->lock);
d1310b2e
CM
1894 return ret;
1895}
1896
1897/*
1898 * searches a range in the state tree for a given mask.
70dec807 1899 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1900 * has the bits set. Otherwise, 1 is returned if any bit in the
1901 * range is found set.
1902 */
1903int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1904 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1905{
1906 struct extent_state *state = NULL;
1907 struct rb_node *node;
1908 int bitset = 0;
d1310b2e 1909
cad321ad 1910 spin_lock(&tree->lock);
27a3507d 1911 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1912 cached->end > start)
9655d298
CM
1913 node = &cached->rb_node;
1914 else
1915 node = tree_search(tree, start);
d1310b2e
CM
1916 while (node && start <= end) {
1917 state = rb_entry(node, struct extent_state, rb_node);
1918
1919 if (filled && state->start > start) {
1920 bitset = 0;
1921 break;
1922 }
1923
1924 if (state->start > end)
1925 break;
1926
1927 if (state->state & bits) {
1928 bitset = 1;
1929 if (!filled)
1930 break;
1931 } else if (filled) {
1932 bitset = 0;
1933 break;
1934 }
46562cec
CM
1935
1936 if (state->end == (u64)-1)
1937 break;
1938
d1310b2e
CM
1939 start = state->end + 1;
1940 if (start > end)
1941 break;
1942 node = rb_next(node);
1943 if (!node) {
1944 if (filled)
1945 bitset = 0;
1946 break;
1947 }
1948 }
cad321ad 1949 spin_unlock(&tree->lock);
d1310b2e
CM
1950 return bitset;
1951}
d1310b2e
CM
1952
1953/*
1954 * helper function to set a given page up to date if all the
1955 * extents in the tree for that page are up to date
1956 */
143bede5 1957static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1958{
4eee4fa4 1959 u64 start = page_offset(page);
d1310b2e 1960 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1961 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1962 SetPageUptodate(page);
d1310b2e
CM
1963}
1964
8b110e39 1965int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1966{
1967 int ret;
1968 int err = 0;
1969 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1970
1971 set_state_private(failure_tree, rec->start, 0);
1972 ret = clear_extent_bits(failure_tree, rec->start,
1973 rec->start + rec->len - 1,
1974 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1975 if (ret)
1976 err = ret;
1977
53b381b3
DW
1978 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1979 rec->start + rec->len - 1,
1980 EXTENT_DAMAGED, GFP_NOFS);
1981 if (ret && !err)
1982 err = ret;
4a54c8c1
JS
1983
1984 kfree(rec);
1985 return err;
1986}
1987
4a54c8c1
JS
1988/*
1989 * this bypasses the standard btrfs submit functions deliberately, as
1990 * the standard behavior is to write all copies in a raid setup. here we only
1991 * want to write the one bad copy. so we do the mapping for ourselves and issue
1992 * submit_bio directly.
3ec706c8 1993 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1994 * actually prevents the read that triggered the error from finishing.
1995 * currently, there can be no more than two copies of every data bit. thus,
1996 * exactly one rewrite is required.
1997 */
1203b681
MX
1998int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
1999 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2000{
1203b681 2001 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2002 struct bio *bio;
2003 struct btrfs_device *dev;
4a54c8c1
JS
2004 u64 map_length = 0;
2005 u64 sector;
2006 struct btrfs_bio *bbio = NULL;
53b381b3 2007 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2008 int ret;
2009
908960c6 2010 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2011 BUG_ON(!mirror_num);
2012
53b381b3
DW
2013 /* we can't repair anything in raid56 yet */
2014 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2015 return 0;
2016
9be3395b 2017 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2018 if (!bio)
2019 return -EIO;
4f024f37 2020 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2021 map_length = length;
2022
3ec706c8 2023 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2024 &map_length, &bbio, mirror_num);
2025 if (ret) {
2026 bio_put(bio);
2027 return -EIO;
2028 }
2029 BUG_ON(mirror_num != bbio->mirror_num);
2030 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2031 bio->bi_iter.bi_sector = sector;
4a54c8c1
JS
2032 dev = bbio->stripes[mirror_num-1].dev;
2033 kfree(bbio);
2034 if (!dev || !dev->bdev || !dev->writeable) {
2035 bio_put(bio);
2036 return -EIO;
2037 }
2038 bio->bi_bdev = dev->bdev;
ffdd2018 2039 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2040
33879d45 2041 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2042 /* try to remap that extent elsewhere? */
2043 bio_put(bio);
442a4f63 2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2045 return -EIO;
2046 }
2047
efe120a0 2048 printk_ratelimited_in_rcu(KERN_INFO
1203b681
MX
2049 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2050 btrfs_ino(inode), start,
2051 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2052 bio_put(bio);
2053 return 0;
2054}
2055
ea466794
JB
2056int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2057 int mirror_num)
2058{
ea466794
JB
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2061 int ret = 0;
ea466794 2062
908960c6
ID
2063 if (root->fs_info->sb->s_flags & MS_RDONLY)
2064 return -EROFS;
2065
ea466794 2066 for (i = 0; i < num_pages; i++) {
fb85fc9a 2067 struct page *p = eb->pages[i];
1203b681
MX
2068
2069 ret = repair_io_failure(root->fs_info->btree_inode, start,
2070 PAGE_CACHE_SIZE, start, p,
2071 start - page_offset(p), mirror_num);
ea466794
JB
2072 if (ret)
2073 break;
2074 start += PAGE_CACHE_SIZE;
2075 }
2076
2077 return ret;
2078}
2079
4a54c8c1
JS
2080/*
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2083 */
8b110e39
MX
2084int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2085 unsigned int pg_offset)
4a54c8c1
JS
2086{
2087 u64 private;
2088 u64 private_failure;
2089 struct io_failure_record *failrec;
908960c6 2090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2091 struct extent_state *state;
2092 int num_copies;
4a54c8c1 2093 int ret;
4a54c8c1
JS
2094
2095 private = 0;
2096 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2097 (u64)-1, 1, EXTENT_DIRTY, 0);
2098 if (!ret)
2099 return 0;
2100
2101 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2102 &private_failure);
2103 if (ret)
2104 return 0;
2105
2106 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2107 BUG_ON(!failrec->this_mirror);
2108
2109 if (failrec->in_validation) {
2110 /* there was no real error, just free the record */
2111 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2112 failrec->start);
4a54c8c1
JS
2113 goto out;
2114 }
908960c6
ID
2115 if (fs_info->sb->s_flags & MS_RDONLY)
2116 goto out;
4a54c8c1
JS
2117
2118 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2119 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2120 failrec->start,
2121 EXTENT_LOCKED);
2122 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2123
883d0de4
MX
2124 if (state && state->start <= failrec->start &&
2125 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2126 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 failrec->len);
4a54c8c1 2128 if (num_copies > 1) {
1203b681 2129 repair_io_failure(inode, start, failrec->len,
454ff3de 2130 failrec->logical, page,
1203b681 2131 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2132 }
2133 }
2134
2135out:
454ff3de 2136 free_io_failure(inode, failrec);
4a54c8c1 2137
454ff3de 2138 return 0;
4a54c8c1
JS
2139}
2140
f612496b
MX
2141/*
2142 * Can be called when
2143 * - hold extent lock
2144 * - under ordered extent
2145 * - the inode is freeing
2146 */
2147void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2148{
2149 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2150 struct io_failure_record *failrec;
2151 struct extent_state *state, *next;
2152
2153 if (RB_EMPTY_ROOT(&failure_tree->state))
2154 return;
2155
2156 spin_lock(&failure_tree->lock);
2157 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2158 while (state) {
2159 if (state->start > end)
2160 break;
2161
2162 ASSERT(state->end <= end);
2163
2164 next = next_state(state);
2165
2166 failrec = (struct io_failure_record *)state->private;
2167 free_extent_state(state);
2168 kfree(failrec);
2169
2170 state = next;
2171 }
2172 spin_unlock(&failure_tree->lock);
2173}
2174
2fe6303e
MX
2175int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2176 struct io_failure_record **failrec_ret)
4a54c8c1 2177{
2fe6303e 2178 struct io_failure_record *failrec;
4a54c8c1
JS
2179 u64 private;
2180 struct extent_map *em;
4a54c8c1
JS
2181 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2184 int ret;
4a54c8c1
JS
2185 u64 logical;
2186
4a54c8c1
JS
2187 ret = get_state_private(failure_tree, start, &private);
2188 if (ret) {
2189 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2190 if (!failrec)
2191 return -ENOMEM;
2fe6303e 2192
4a54c8c1
JS
2193 failrec->start = start;
2194 failrec->len = end - start + 1;
2195 failrec->this_mirror = 0;
2196 failrec->bio_flags = 0;
2197 failrec->in_validation = 0;
2198
2199 read_lock(&em_tree->lock);
2200 em = lookup_extent_mapping(em_tree, start, failrec->len);
2201 if (!em) {
2202 read_unlock(&em_tree->lock);
2203 kfree(failrec);
2204 return -EIO;
2205 }
2206
68ba990f 2207 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2208 free_extent_map(em);
2209 em = NULL;
2210 }
2211 read_unlock(&em_tree->lock);
7a2d6a64 2212 if (!em) {
4a54c8c1
JS
2213 kfree(failrec);
2214 return -EIO;
2215 }
2fe6303e 2216
4a54c8c1
JS
2217 logical = start - em->start;
2218 logical = em->block_start + logical;
2219 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220 logical = em->block_start;
2221 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222 extent_set_compress_type(&failrec->bio_flags,
2223 em->compress_type);
2224 }
2fe6303e
MX
2225
2226 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2227 logical, start, failrec->len);
2228
4a54c8c1
JS
2229 failrec->logical = logical;
2230 free_extent_map(em);
2231
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
2234 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2235 if (ret >= 0)
2236 ret = set_state_private(failure_tree, start,
2237 (u64)(unsigned long)failrec);
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241 GFP_NOFS);
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2245 }
2246 } else {
2247 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2248 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2249 failrec->logical, failrec->start, failrec->len,
2250 failrec->in_validation);
2251 /*
2252 * when data can be on disk more than twice, add to failrec here
2253 * (e.g. with a list for failed_mirror) to make
2254 * clean_io_failure() clean all those errors at once.
2255 */
2256 }
2fe6303e
MX
2257
2258 *failrec_ret = failrec;
2259
2260 return 0;
2261}
2262
2263int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2264 struct io_failure_record *failrec, int failed_mirror)
2265{
2266 int num_copies;
2267
5d964051
SB
2268 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2269 failrec->logical, failrec->len);
4a54c8c1
JS
2270 if (num_copies == 1) {
2271 /*
2272 * we only have a single copy of the data, so don't bother with
2273 * all the retry and error correction code that follows. no
2274 * matter what the error is, it is very likely to persist.
2275 */
2fe6303e 2276 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2277 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2278 return 0;
4a54c8c1
JS
2279 }
2280
4a54c8c1
JS
2281 /*
2282 * there are two premises:
2283 * a) deliver good data to the caller
2284 * b) correct the bad sectors on disk
2285 */
2286 if (failed_bio->bi_vcnt > 1) {
2287 /*
2288 * to fulfill b), we need to know the exact failing sectors, as
2289 * we don't want to rewrite any more than the failed ones. thus,
2290 * we need separate read requests for the failed bio
2291 *
2292 * if the following BUG_ON triggers, our validation request got
2293 * merged. we need separate requests for our algorithm to work.
2294 */
2295 BUG_ON(failrec->in_validation);
2296 failrec->in_validation = 1;
2297 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2298 } else {
2299 /*
2300 * we're ready to fulfill a) and b) alongside. get a good copy
2301 * of the failed sector and if we succeed, we have setup
2302 * everything for repair_io_failure to do the rest for us.
2303 */
2304 if (failrec->in_validation) {
2305 BUG_ON(failrec->this_mirror != failed_mirror);
2306 failrec->in_validation = 0;
2307 failrec->this_mirror = 0;
2308 }
2309 failrec->failed_mirror = failed_mirror;
2310 failrec->this_mirror++;
2311 if (failrec->this_mirror == failed_mirror)
2312 failrec->this_mirror++;
4a54c8c1
JS
2313 }
2314
facc8a22 2315 if (failrec->this_mirror > num_copies) {
2fe6303e 2316 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2317 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2318 return 0;
4a54c8c1
JS
2319 }
2320
2fe6303e
MX
2321 return 1;
2322}
2323
2324
2325struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 struct io_failure_record *failrec,
2327 struct page *page, int pg_offset, int icsum,
8b110e39 2328 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2329{
2330 struct bio *bio;
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2333
9be3395b 2334 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2335 if (!bio)
2336 return NULL;
2337
2338 bio->bi_end_io = endio_func;
4f024f37 2339 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2340 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2341 bio->bi_iter.bi_size = 0;
8b110e39 2342 bio->bi_private = data;
4a54c8c1 2343
facc8a22
MX
2344 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2345 if (btrfs_failed_bio->csum) {
2346 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2347 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2348
2349 btrfs_bio = btrfs_io_bio(bio);
2350 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2351 icsum *= csum_size;
2352 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2353 csum_size);
2354 }
2355
2fe6303e
MX
2356 bio_add_page(bio, page, failrec->len, pg_offset);
2357
2358 return bio;
2359}
2360
2361/*
2362 * this is a generic handler for readpage errors (default
2363 * readpage_io_failed_hook). if other copies exist, read those and write back
2364 * good data to the failed position. does not investigate in remapping the
2365 * failed extent elsewhere, hoping the device will be smart enough to do this as
2366 * needed
2367 */
2368
2369static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2370 struct page *page, u64 start, u64 end,
2371 int failed_mirror)
2372{
2373 struct io_failure_record *failrec;
2374 struct inode *inode = page->mapping->host;
2375 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2376 struct bio *bio;
2377 int read_mode;
2378 int ret;
2379
2380 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2381
2382 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2383 if (ret)
2384 return ret;
2385
2386 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2387 if (!ret) {
2388 free_io_failure(inode, failrec);
2389 return -EIO;
2390 }
2391
2392 if (failed_bio->bi_vcnt > 1)
2393 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2394 else
2395 read_mode = READ_SYNC;
2396
2397 phy_offset >>= inode->i_sb->s_blocksize_bits;
2398 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2399 start - page_offset(page),
8b110e39
MX
2400 (int)phy_offset, failed_bio->bi_end_io,
2401 NULL);
2fe6303e
MX
2402 if (!bio) {
2403 free_io_failure(inode, failrec);
2404 return -EIO;
2405 }
4a54c8c1 2406
2fe6303e
MX
2407 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2408 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2409
013bd4c3
TI
2410 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2411 failrec->this_mirror,
2412 failrec->bio_flags, 0);
6c387ab2 2413 if (ret) {
454ff3de 2414 free_io_failure(inode, failrec);
6c387ab2
MX
2415 bio_put(bio);
2416 }
2417
013bd4c3 2418 return ret;
4a54c8c1
JS
2419}
2420
d1310b2e
CM
2421/* lots and lots of room for performance fixes in the end_bio funcs */
2422
87826df0
JM
2423int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2424{
2425 int uptodate = (err == 0);
2426 struct extent_io_tree *tree;
3e2426bd 2427 int ret = 0;
87826df0
JM
2428
2429 tree = &BTRFS_I(page->mapping->host)->io_tree;
2430
2431 if (tree->ops && tree->ops->writepage_end_io_hook) {
2432 ret = tree->ops->writepage_end_io_hook(page, start,
2433 end, NULL, uptodate);
2434 if (ret)
2435 uptodate = 0;
2436 }
2437
87826df0 2438 if (!uptodate) {
87826df0
JM
2439 ClearPageUptodate(page);
2440 SetPageError(page);
5dca6eea
LB
2441 ret = ret < 0 ? ret : -EIO;
2442 mapping_set_error(page->mapping, ret);
87826df0
JM
2443 }
2444 return 0;
2445}
2446
d1310b2e
CM
2447/*
2448 * after a writepage IO is done, we need to:
2449 * clear the uptodate bits on error
2450 * clear the writeback bits in the extent tree for this IO
2451 * end_page_writeback if the page has no more pending IO
2452 *
2453 * Scheduling is not allowed, so the extent state tree is expected
2454 * to have one and only one object corresponding to this IO.
2455 */
d1310b2e 2456static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2457{
2c30c71b 2458 struct bio_vec *bvec;
d1310b2e
CM
2459 u64 start;
2460 u64 end;
2c30c71b 2461 int i;
d1310b2e 2462
2c30c71b 2463 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2464 struct page *page = bvec->bv_page;
902b22f3 2465
17a5adcc
AO
2466 /* We always issue full-page reads, but if some block
2467 * in a page fails to read, blk_update_request() will
2468 * advance bv_offset and adjust bv_len to compensate.
2469 * Print a warning for nonzero offsets, and an error
2470 * if they don't add up to a full page. */
efe120a0
FH
2471 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2472 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2473 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2474 "partial page write in btrfs with offset %u and length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 else
2477 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2478 "incomplete page write in btrfs with offset %u and "
2479 "length %u",
2480 bvec->bv_offset, bvec->bv_len);
2481 }
d1310b2e 2482
17a5adcc
AO
2483 start = page_offset(page);
2484 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2485
87826df0
JM
2486 if (end_extent_writepage(page, err, start, end))
2487 continue;
70dec807 2488
17a5adcc 2489 end_page_writeback(page);
2c30c71b 2490 }
2b1f55b0 2491
d1310b2e 2492 bio_put(bio);
d1310b2e
CM
2493}
2494
883d0de4
MX
2495static void
2496endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2497 int uptodate)
2498{
2499 struct extent_state *cached = NULL;
2500 u64 end = start + len - 1;
2501
2502 if (uptodate && tree->track_uptodate)
2503 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2504 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2505}
2506
d1310b2e
CM
2507/*
2508 * after a readpage IO is done, we need to:
2509 * clear the uptodate bits on error
2510 * set the uptodate bits if things worked
2511 * set the page up to date if all extents in the tree are uptodate
2512 * clear the lock bit in the extent tree
2513 * unlock the page if there are no other extents locked for it
2514 *
2515 * Scheduling is not allowed, so the extent state tree is expected
2516 * to have one and only one object corresponding to this IO.
2517 */
d1310b2e 2518static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e 2519{
2c30c71b 2520 struct bio_vec *bvec;
d1310b2e 2521 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
facc8a22 2522 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2523 struct extent_io_tree *tree;
facc8a22 2524 u64 offset = 0;
d1310b2e
CM
2525 u64 start;
2526 u64 end;
facc8a22 2527 u64 len;
883d0de4
MX
2528 u64 extent_start = 0;
2529 u64 extent_len = 0;
5cf1ab56 2530 int mirror;
d1310b2e 2531 int ret;
2c30c71b 2532 int i;
d1310b2e 2533
d20f7043
CM
2534 if (err)
2535 uptodate = 0;
2536
2c30c71b 2537 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2538 struct page *page = bvec->bv_page;
a71754fc 2539 struct inode *inode = page->mapping->host;
507903b8 2540
be3940c0 2541 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
c1dc0896 2542 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
9be3395b 2543 io_bio->mirror_num);
a71754fc 2544 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2545
17a5adcc
AO
2546 /* We always issue full-page reads, but if some block
2547 * in a page fails to read, blk_update_request() will
2548 * advance bv_offset and adjust bv_len to compensate.
2549 * Print a warning for nonzero offsets, and an error
2550 * if they don't add up to a full page. */
efe120a0
FH
2551 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2552 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2553 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2554 "partial page read in btrfs with offset %u and length %u",
2555 bvec->bv_offset, bvec->bv_len);
2556 else
2557 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2558 "incomplete page read in btrfs with offset %u and "
2559 "length %u",
2560 bvec->bv_offset, bvec->bv_len);
2561 }
d1310b2e 2562
17a5adcc
AO
2563 start = page_offset(page);
2564 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2565 len = bvec->bv_len;
d1310b2e 2566
9be3395b 2567 mirror = io_bio->mirror_num;
f2a09da9
MX
2568 if (likely(uptodate && tree->ops &&
2569 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2570 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2571 page, start, end,
2572 mirror);
5ee0844d 2573 if (ret)
d1310b2e 2574 uptodate = 0;
5ee0844d 2575 else
1203b681 2576 clean_io_failure(inode, start, page, 0);
d1310b2e 2577 }
ea466794 2578
f2a09da9
MX
2579 if (likely(uptodate))
2580 goto readpage_ok;
2581
2582 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2583 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2584 if (!ret && !err &&
2585 test_bit(BIO_UPTODATE, &bio->bi_flags))
2586 uptodate = 1;
f2a09da9 2587 } else {
f4a8e656
JS
2588 /*
2589 * The generic bio_readpage_error handles errors the
2590 * following way: If possible, new read requests are
2591 * created and submitted and will end up in
2592 * end_bio_extent_readpage as well (if we're lucky, not
2593 * in the !uptodate case). In that case it returns 0 and
2594 * we just go on with the next page in our bio. If it
2595 * can't handle the error it will return -EIO and we
2596 * remain responsible for that page.
2597 */
facc8a22
MX
2598 ret = bio_readpage_error(bio, offset, page, start, end,
2599 mirror);
7e38326f 2600 if (ret == 0) {
3b951516
CM
2601 uptodate =
2602 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2603 if (err)
2604 uptodate = 0;
38c1c2e4 2605 offset += len;
7e38326f
CM
2606 continue;
2607 }
2608 }
f2a09da9 2609readpage_ok:
883d0de4 2610 if (likely(uptodate)) {
a71754fc
JB
2611 loff_t i_size = i_size_read(inode);
2612 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2613 unsigned off;
a71754fc
JB
2614
2615 /* Zero out the end if this page straddles i_size */
a583c026
LB
2616 off = i_size & (PAGE_CACHE_SIZE-1);
2617 if (page->index == end_index && off)
2618 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2619 SetPageUptodate(page);
70dec807 2620 } else {
17a5adcc
AO
2621 ClearPageUptodate(page);
2622 SetPageError(page);
70dec807 2623 }
17a5adcc 2624 unlock_page(page);
facc8a22 2625 offset += len;
883d0de4
MX
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2c30c71b 2648 }
d1310b2e 2649
883d0de4
MX
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
facc8a22
MX
2653 if (io_bio->end_io)
2654 io_bio->end_io(io_bio, err);
d1310b2e 2655 bio_put(bio);
d1310b2e
CM
2656}
2657
9be3395b
CM
2658/*
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2661 */
88f794ed
MX
2662struct bio *
2663btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 gfp_t gfp_flags)
d1310b2e 2665{
facc8a22 2666 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2667 struct bio *bio;
2668
9be3395b 2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2670
2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2672 while (!bio && (nr_vecs /= 2)) {
2673 bio = bio_alloc_bioset(gfp_flags,
2674 nr_vecs, btrfs_bioset);
2675 }
d1310b2e
CM
2676 }
2677
2678 if (bio) {
2679 bio->bi_bdev = bdev;
4f024f37 2680 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2681 btrfs_bio = btrfs_io_bio(bio);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
d1310b2e
CM
2685 }
2686 return bio;
2687}
2688
9be3395b
CM
2689struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690{
23ea8e5a
MX
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
9be3395b 2693
23ea8e5a
MX
2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695 if (new) {
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_bio->csum = NULL;
2698 btrfs_bio->csum_allocated = NULL;
2699 btrfs_bio->end_io = NULL;
2700 }
2701 return new;
2702}
9be3395b
CM
2703
2704/* this also allocates from the btrfs_bioset */
2705struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2706{
facc8a22
MX
2707 struct btrfs_io_bio *btrfs_bio;
2708 struct bio *bio;
2709
2710 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2711 if (bio) {
2712 btrfs_bio = btrfs_io_bio(bio);
2713 btrfs_bio->csum = NULL;
2714 btrfs_bio->csum_allocated = NULL;
2715 btrfs_bio->end_io = NULL;
2716 }
2717 return bio;
9be3395b
CM
2718}
2719
2720
355808c2
JM
2721static int __must_check submit_one_bio(int rw, struct bio *bio,
2722 int mirror_num, unsigned long bio_flags)
d1310b2e 2723{
d1310b2e 2724 int ret = 0;
70dec807
CM
2725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726 struct page *page = bvec->bv_page;
2727 struct extent_io_tree *tree = bio->bi_private;
70dec807 2728 u64 start;
70dec807 2729
4eee4fa4 2730 start = page_offset(page) + bvec->bv_offset;
70dec807 2731
902b22f3 2732 bio->bi_private = NULL;
d1310b2e
CM
2733
2734 bio_get(bio);
2735
065631f6 2736 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2737 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2738 mirror_num, bio_flags, start);
0b86a832 2739 else
21adbd5c 2740 btrfsic_submit_bio(rw, bio);
4a54c8c1 2741
d1310b2e
CM
2742 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2743 ret = -EOPNOTSUPP;
2744 bio_put(bio);
2745 return ret;
2746}
2747
64a16701 2748static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2749 unsigned long offset, size_t size, struct bio *bio,
2750 unsigned long bio_flags)
2751{
2752 int ret = 0;
2753 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2754 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2755 bio_flags);
2756 BUG_ON(ret < 0);
2757 return ret;
2758
2759}
2760
d1310b2e
CM
2761static int submit_extent_page(int rw, struct extent_io_tree *tree,
2762 struct page *page, sector_t sector,
2763 size_t size, unsigned long offset,
2764 struct block_device *bdev,
2765 struct bio **bio_ret,
2766 unsigned long max_pages,
f188591e 2767 bio_end_io_t end_io_func,
c8b97818
CM
2768 int mirror_num,
2769 unsigned long prev_bio_flags,
2770 unsigned long bio_flags)
d1310b2e
CM
2771{
2772 int ret = 0;
2773 struct bio *bio;
2774 int nr;
c8b97818
CM
2775 int contig = 0;
2776 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2778 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2779
2780 if (bio_ret && *bio_ret) {
2781 bio = *bio_ret;
c8b97818 2782 if (old_compressed)
4f024f37 2783 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2784 else
f73a1c7d 2785 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2786
2787 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2788 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2789 bio_add_page(bio, page, page_size, offset) < page_size) {
2790 ret = submit_one_bio(rw, bio, mirror_num,
2791 prev_bio_flags);
79787eaa
JM
2792 if (ret < 0)
2793 return ret;
d1310b2e
CM
2794 bio = NULL;
2795 } else {
2796 return 0;
2797 }
2798 }
c8b97818
CM
2799 if (this_compressed)
2800 nr = BIO_MAX_PAGES;
2801 else
2802 nr = bio_get_nr_vecs(bdev);
2803
88f794ed 2804 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2805 if (!bio)
2806 return -ENOMEM;
70dec807 2807
c8b97818 2808 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2809 bio->bi_end_io = end_io_func;
2810 bio->bi_private = tree;
70dec807 2811
d397712b 2812 if (bio_ret)
d1310b2e 2813 *bio_ret = bio;
d397712b 2814 else
c8b97818 2815 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2816
2817 return ret;
2818}
2819
48a3b636
ES
2820static void attach_extent_buffer_page(struct extent_buffer *eb,
2821 struct page *page)
d1310b2e
CM
2822{
2823 if (!PagePrivate(page)) {
2824 SetPagePrivate(page);
d1310b2e 2825 page_cache_get(page);
4f2de97a
JB
2826 set_page_private(page, (unsigned long)eb);
2827 } else {
2828 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2829 }
2830}
2831
4f2de97a 2832void set_page_extent_mapped(struct page *page)
d1310b2e 2833{
4f2de97a
JB
2834 if (!PagePrivate(page)) {
2835 SetPagePrivate(page);
2836 page_cache_get(page);
2837 set_page_private(page, EXTENT_PAGE_PRIVATE);
2838 }
d1310b2e
CM
2839}
2840
125bac01
MX
2841static struct extent_map *
2842__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2843 u64 start, u64 len, get_extent_t *get_extent,
2844 struct extent_map **em_cached)
2845{
2846 struct extent_map *em;
2847
2848 if (em_cached && *em_cached) {
2849 em = *em_cached;
cbc0e928 2850 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2851 start < extent_map_end(em)) {
2852 atomic_inc(&em->refs);
2853 return em;
2854 }
2855
2856 free_extent_map(em);
2857 *em_cached = NULL;
2858 }
2859
2860 em = get_extent(inode, page, pg_offset, start, len, 0);
2861 if (em_cached && !IS_ERR_OR_NULL(em)) {
2862 BUG_ON(*em_cached);
2863 atomic_inc(&em->refs);
2864 *em_cached = em;
2865 }
2866 return em;
2867}
d1310b2e
CM
2868/*
2869 * basic readpage implementation. Locked extent state structs are inserted
2870 * into the tree that are removed when the IO is done (by the end_io
2871 * handlers)
79787eaa 2872 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2873 */
9974090b
MX
2874static int __do_readpage(struct extent_io_tree *tree,
2875 struct page *page,
2876 get_extent_t *get_extent,
125bac01 2877 struct extent_map **em_cached,
9974090b
MX
2878 struct bio **bio, int mirror_num,
2879 unsigned long *bio_flags, int rw)
d1310b2e
CM
2880{
2881 struct inode *inode = page->mapping->host;
4eee4fa4 2882 u64 start = page_offset(page);
d1310b2e
CM
2883 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2884 u64 end;
2885 u64 cur = start;
2886 u64 extent_offset;
2887 u64 last_byte = i_size_read(inode);
2888 u64 block_start;
2889 u64 cur_end;
2890 sector_t sector;
2891 struct extent_map *em;
2892 struct block_device *bdev;
2893 int ret;
2894 int nr = 0;
4b384318 2895 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2896 size_t pg_offset = 0;
d1310b2e 2897 size_t iosize;
c8b97818 2898 size_t disk_io_size;
d1310b2e 2899 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2900 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2901
2902 set_page_extent_mapped(page);
2903
9974090b 2904 end = page_end;
90a887c9
DM
2905 if (!PageUptodate(page)) {
2906 if (cleancache_get_page(page) == 0) {
2907 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2908 unlock_extent(tree, start, end);
90a887c9
DM
2909 goto out;
2910 }
2911 }
2912
c8b97818
CM
2913 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2914 char *userpage;
2915 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2916
2917 if (zero_offset) {
2918 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2919 userpage = kmap_atomic(page);
c8b97818
CM
2920 memset(userpage + zero_offset, 0, iosize);
2921 flush_dcache_page(page);
7ac687d9 2922 kunmap_atomic(userpage);
c8b97818
CM
2923 }
2924 }
d1310b2e 2925 while (cur <= end) {
c8f2f24b
JB
2926 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2927
d1310b2e
CM
2928 if (cur >= last_byte) {
2929 char *userpage;
507903b8
AJ
2930 struct extent_state *cached = NULL;
2931
306e16ce 2932 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2933 userpage = kmap_atomic(page);
306e16ce 2934 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2935 flush_dcache_page(page);
7ac687d9 2936 kunmap_atomic(userpage);
d1310b2e 2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2938 &cached, GFP_NOFS);
4b384318
MF
2939 if (!parent_locked)
2940 unlock_extent_cached(tree, cur,
2941 cur + iosize - 1,
2942 &cached, GFP_NOFS);
d1310b2e
CM
2943 break;
2944 }
125bac01
MX
2945 em = __get_extent_map(inode, page, pg_offset, cur,
2946 end - cur + 1, get_extent, em_cached);
c704005d 2947 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2948 SetPageError(page);
4b384318
MF
2949 if (!parent_locked)
2950 unlock_extent(tree, cur, end);
d1310b2e
CM
2951 break;
2952 }
d1310b2e
CM
2953 extent_offset = cur - em->start;
2954 BUG_ON(extent_map_end(em) <= cur);
2955 BUG_ON(end < cur);
2956
261507a0 2957 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2958 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2959 extent_set_compress_type(&this_bio_flag,
2960 em->compress_type);
2961 }
c8b97818 2962
d1310b2e
CM
2963 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2964 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2965 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2966 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2967 disk_io_size = em->block_len;
2968 sector = em->block_start >> 9;
2969 } else {
2970 sector = (em->block_start + extent_offset) >> 9;
2971 disk_io_size = iosize;
2972 }
d1310b2e
CM
2973 bdev = em->bdev;
2974 block_start = em->block_start;
d899e052
YZ
2975 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2976 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2977 free_extent_map(em);
2978 em = NULL;
2979
2980 /* we've found a hole, just zero and go on */
2981 if (block_start == EXTENT_MAP_HOLE) {
2982 char *userpage;
507903b8
AJ
2983 struct extent_state *cached = NULL;
2984
7ac687d9 2985 userpage = kmap_atomic(page);
306e16ce 2986 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2987 flush_dcache_page(page);
7ac687d9 2988 kunmap_atomic(userpage);
d1310b2e
CM
2989
2990 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2991 &cached, GFP_NOFS);
2992 unlock_extent_cached(tree, cur, cur + iosize - 1,
2993 &cached, GFP_NOFS);
d1310b2e 2994 cur = cur + iosize;
306e16ce 2995 pg_offset += iosize;
d1310b2e
CM
2996 continue;
2997 }
2998 /* the get_extent function already copied into the page */
9655d298
CM
2999 if (test_range_bit(tree, cur, cur_end,
3000 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3001 check_page_uptodate(tree, page);
4b384318
MF
3002 if (!parent_locked)
3003 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3004 cur = cur + iosize;
306e16ce 3005 pg_offset += iosize;
d1310b2e
CM
3006 continue;
3007 }
70dec807
CM
3008 /* we have an inline extent but it didn't get marked up
3009 * to date. Error out
3010 */
3011 if (block_start == EXTENT_MAP_INLINE) {
3012 SetPageError(page);
4b384318
MF
3013 if (!parent_locked)
3014 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3015 cur = cur + iosize;
306e16ce 3016 pg_offset += iosize;
70dec807
CM
3017 continue;
3018 }
d1310b2e 3019
c8f2f24b 3020 pnr -= page->index;
d4c7ca86 3021 ret = submit_extent_page(rw, tree, page,
306e16ce 3022 sector, disk_io_size, pg_offset,
89642229 3023 bdev, bio, pnr,
c8b97818
CM
3024 end_bio_extent_readpage, mirror_num,
3025 *bio_flags,
3026 this_bio_flag);
c8f2f24b
JB
3027 if (!ret) {
3028 nr++;
3029 *bio_flags = this_bio_flag;
3030 } else {
d1310b2e 3031 SetPageError(page);
4b384318
MF
3032 if (!parent_locked)
3033 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3034 }
d1310b2e 3035 cur = cur + iosize;
306e16ce 3036 pg_offset += iosize;
d1310b2e 3037 }
90a887c9 3038out:
d1310b2e
CM
3039 if (!nr) {
3040 if (!PageError(page))
3041 SetPageUptodate(page);
3042 unlock_page(page);
3043 }
3044 return 0;
3045}
3046
9974090b
MX
3047static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3048 struct page *pages[], int nr_pages,
3049 u64 start, u64 end,
3050 get_extent_t *get_extent,
125bac01 3051 struct extent_map **em_cached,
9974090b
MX
3052 struct bio **bio, int mirror_num,
3053 unsigned long *bio_flags, int rw)
3054{
3055 struct inode *inode;
3056 struct btrfs_ordered_extent *ordered;
3057 int index;
3058
3059 inode = pages[0]->mapping->host;
3060 while (1) {
3061 lock_extent(tree, start, end);
3062 ordered = btrfs_lookup_ordered_range(inode, start,
3063 end - start + 1);
3064 if (!ordered)
3065 break;
3066 unlock_extent(tree, start, end);
3067 btrfs_start_ordered_extent(inode, ordered, 1);
3068 btrfs_put_ordered_extent(ordered);
3069 }
3070
3071 for (index = 0; index < nr_pages; index++) {
125bac01
MX
3072 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3073 mirror_num, bio_flags, rw);
9974090b
MX
3074 page_cache_release(pages[index]);
3075 }
3076}
3077
3078static void __extent_readpages(struct extent_io_tree *tree,
3079 struct page *pages[],
3080 int nr_pages, get_extent_t *get_extent,
125bac01 3081 struct extent_map **em_cached,
9974090b
MX
3082 struct bio **bio, int mirror_num,
3083 unsigned long *bio_flags, int rw)
3084{
35a3621b 3085 u64 start = 0;
9974090b
MX
3086 u64 end = 0;
3087 u64 page_start;
3088 int index;
35a3621b 3089 int first_index = 0;
9974090b
MX
3090
3091 for (index = 0; index < nr_pages; index++) {
3092 page_start = page_offset(pages[index]);
3093 if (!end) {
3094 start = page_start;
3095 end = start + PAGE_CACHE_SIZE - 1;
3096 first_index = index;
3097 } else if (end + 1 == page_start) {
3098 end += PAGE_CACHE_SIZE;
3099 } else {
3100 __do_contiguous_readpages(tree, &pages[first_index],
3101 index - first_index, start,
125bac01
MX
3102 end, get_extent, em_cached,
3103 bio, mirror_num, bio_flags,
3104 rw);
9974090b
MX
3105 start = page_start;
3106 end = start + PAGE_CACHE_SIZE - 1;
3107 first_index = index;
3108 }
3109 }
3110
3111 if (end)
3112 __do_contiguous_readpages(tree, &pages[first_index],
3113 index - first_index, start,
125bac01 3114 end, get_extent, em_cached, bio,
9974090b
MX
3115 mirror_num, bio_flags, rw);
3116}
3117
3118static int __extent_read_full_page(struct extent_io_tree *tree,
3119 struct page *page,
3120 get_extent_t *get_extent,
3121 struct bio **bio, int mirror_num,
3122 unsigned long *bio_flags, int rw)
3123{
3124 struct inode *inode = page->mapping->host;
3125 struct btrfs_ordered_extent *ordered;
3126 u64 start = page_offset(page);
3127 u64 end = start + PAGE_CACHE_SIZE - 1;
3128 int ret;
3129
3130 while (1) {
3131 lock_extent(tree, start, end);
3132 ordered = btrfs_lookup_ordered_extent(inode, start);
3133 if (!ordered)
3134 break;
3135 unlock_extent(tree, start, end);
3136 btrfs_start_ordered_extent(inode, ordered, 1);
3137 btrfs_put_ordered_extent(ordered);
3138 }
3139
125bac01
MX
3140 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3141 bio_flags, rw);
9974090b
MX
3142 return ret;
3143}
3144
d1310b2e 3145int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3146 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3147{
3148 struct bio *bio = NULL;
c8b97818 3149 unsigned long bio_flags = 0;
d1310b2e
CM
3150 int ret;
3151
8ddc7d9c 3152 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3153 &bio_flags, READ);
d1310b2e 3154 if (bio)
8ddc7d9c 3155 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3156 return ret;
3157}
d1310b2e 3158
4b384318
MF
3159int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3160 get_extent_t *get_extent, int mirror_num)
3161{
3162 struct bio *bio = NULL;
3163 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3164 int ret;
3165
3166 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3167 &bio_flags, READ);
3168 if (bio)
3169 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3170 return ret;
3171}
3172
11c8349b
CM
3173static noinline void update_nr_written(struct page *page,
3174 struct writeback_control *wbc,
3175 unsigned long nr_written)
3176{
3177 wbc->nr_to_write -= nr_written;
3178 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3179 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3180 page->mapping->writeback_index = page->index + nr_written;
3181}
3182
d1310b2e 3183/*
40f76580
CM
3184 * helper for __extent_writepage, doing all of the delayed allocation setup.
3185 *
3186 * This returns 1 if our fill_delalloc function did all the work required
3187 * to write the page (copy into inline extent). In this case the IO has
3188 * been started and the page is already unlocked.
3189 *
3190 * This returns 0 if all went well (page still locked)
3191 * This returns < 0 if there were errors (page still locked)
d1310b2e 3192 */
40f76580
CM
3193static noinline_for_stack int writepage_delalloc(struct inode *inode,
3194 struct page *page, struct writeback_control *wbc,
3195 struct extent_page_data *epd,
3196 u64 delalloc_start,
3197 unsigned long *nr_written)
3198{
3199 struct extent_io_tree *tree = epd->tree;
3200 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3201 u64 nr_delalloc;
3202 u64 delalloc_to_write = 0;
3203 u64 delalloc_end = 0;
3204 int ret;
3205 int page_started = 0;
3206
3207 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3208 return 0;
3209
3210 while (delalloc_end < page_end) {
3211 nr_delalloc = find_lock_delalloc_range(inode, tree,
3212 page,
3213 &delalloc_start,
3214 &delalloc_end,
3215 128 * 1024 * 1024);
3216 if (nr_delalloc == 0) {
3217 delalloc_start = delalloc_end + 1;
3218 continue;
3219 }
3220 ret = tree->ops->fill_delalloc(inode, page,
3221 delalloc_start,
3222 delalloc_end,
3223 &page_started,
3224 nr_written);
3225 /* File system has been set read-only */
3226 if (ret) {
3227 SetPageError(page);
3228 /* fill_delalloc should be return < 0 for error
3229 * but just in case, we use > 0 here meaning the
3230 * IO is started, so we don't want to return > 0
3231 * unless things are going well.
3232 */
3233 ret = ret < 0 ? ret : -EIO;
3234 goto done;
3235 }
3236 /*
3237 * delalloc_end is already one less than the total
3238 * length, so we don't subtract one from
3239 * PAGE_CACHE_SIZE
3240 */
3241 delalloc_to_write += (delalloc_end - delalloc_start +
3242 PAGE_CACHE_SIZE) >>
3243 PAGE_CACHE_SHIFT;
3244 delalloc_start = delalloc_end + 1;
3245 }
3246 if (wbc->nr_to_write < delalloc_to_write) {
3247 int thresh = 8192;
3248
3249 if (delalloc_to_write < thresh * 2)
3250 thresh = delalloc_to_write;
3251 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3252 thresh);
3253 }
3254
3255 /* did the fill delalloc function already unlock and start
3256 * the IO?
3257 */
3258 if (page_started) {
3259 /*
3260 * we've unlocked the page, so we can't update
3261 * the mapping's writeback index, just update
3262 * nr_to_write.
3263 */
3264 wbc->nr_to_write -= *nr_written;
3265 return 1;
3266 }
3267
3268 ret = 0;
3269
3270done:
3271 return ret;
3272}
3273
3274/*
3275 * helper for __extent_writepage. This calls the writepage start hooks,
3276 * and does the loop to map the page into extents and bios.
3277 *
3278 * We return 1 if the IO is started and the page is unlocked,
3279 * 0 if all went well (page still locked)
3280 * < 0 if there were errors (page still locked)
3281 */
3282static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3283 struct page *page,
3284 struct writeback_control *wbc,
3285 struct extent_page_data *epd,
3286 loff_t i_size,
3287 unsigned long nr_written,
3288 int write_flags, int *nr_ret)
d1310b2e 3289{
d1310b2e 3290 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3291 u64 start = page_offset(page);
d1310b2e
CM
3292 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3293 u64 end;
3294 u64 cur = start;
3295 u64 extent_offset;
d1310b2e
CM
3296 u64 block_start;
3297 u64 iosize;
3298 sector_t sector;
2c64c53d 3299 struct extent_state *cached_state = NULL;
d1310b2e
CM
3300 struct extent_map *em;
3301 struct block_device *bdev;
7f3c74fb 3302 size_t pg_offset = 0;
d1310b2e 3303 size_t blocksize;
40f76580
CM
3304 int ret = 0;
3305 int nr = 0;
3306 bool compressed;
c8b97818 3307
247e743c 3308 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3309 ret = tree->ops->writepage_start_hook(page, start,
3310 page_end);
87826df0
JM
3311 if (ret) {
3312 /* Fixup worker will requeue */
3313 if (ret == -EBUSY)
3314 wbc->pages_skipped++;
3315 else
3316 redirty_page_for_writepage(wbc, page);
40f76580 3317
11c8349b 3318 update_nr_written(page, wbc, nr_written);
247e743c 3319 unlock_page(page);
40f76580 3320 ret = 1;
11c8349b 3321 goto done_unlocked;
247e743c
CM
3322 }
3323 }
3324
11c8349b
CM
3325 /*
3326 * we don't want to touch the inode after unlocking the page,
3327 * so we update the mapping writeback index now
3328 */
3329 update_nr_written(page, wbc, nr_written + 1);
771ed689 3330
d1310b2e 3331 end = page_end;
40f76580 3332 if (i_size <= start) {
e6dcd2dc
CM
3333 if (tree->ops && tree->ops->writepage_end_io_hook)
3334 tree->ops->writepage_end_io_hook(page, start,
3335 page_end, NULL, 1);
d1310b2e
CM
3336 goto done;
3337 }
3338
d1310b2e
CM
3339 blocksize = inode->i_sb->s_blocksize;
3340
3341 while (cur <= end) {
40f76580
CM
3342 u64 em_end;
3343 if (cur >= i_size) {
e6dcd2dc
CM
3344 if (tree->ops && tree->ops->writepage_end_io_hook)
3345 tree->ops->writepage_end_io_hook(page, cur,
3346 page_end, NULL, 1);
d1310b2e
CM
3347 break;
3348 }
7f3c74fb 3349 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3350 end - cur + 1, 1);
c704005d 3351 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3352 SetPageError(page);
61391d56 3353 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3354 break;
3355 }
3356
3357 extent_offset = cur - em->start;
40f76580
CM
3358 em_end = extent_map_end(em);
3359 BUG_ON(em_end <= cur);
d1310b2e 3360 BUG_ON(end < cur);
40f76580 3361 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3362 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3363 sector = (em->block_start + extent_offset) >> 9;
3364 bdev = em->bdev;
3365 block_start = em->block_start;
c8b97818 3366 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3367 free_extent_map(em);
3368 em = NULL;
3369
c8b97818
CM
3370 /*
3371 * compressed and inline extents are written through other
3372 * paths in the FS
3373 */
3374 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3375 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3376 /*
3377 * end_io notification does not happen here for
3378 * compressed extents
3379 */
3380 if (!compressed && tree->ops &&
3381 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3382 tree->ops->writepage_end_io_hook(page, cur,
3383 cur + iosize - 1,
3384 NULL, 1);
c8b97818
CM
3385 else if (compressed) {
3386 /* we don't want to end_page_writeback on
3387 * a compressed extent. this happens
3388 * elsewhere
3389 */
3390 nr++;
3391 }
3392
3393 cur += iosize;
7f3c74fb 3394 pg_offset += iosize;
d1310b2e
CM
3395 continue;
3396 }
c8b97818 3397
d1310b2e
CM
3398 if (tree->ops && tree->ops->writepage_io_hook) {
3399 ret = tree->ops->writepage_io_hook(page, cur,
3400 cur + iosize - 1);
3401 } else {
3402 ret = 0;
3403 }
1259ab75 3404 if (ret) {
d1310b2e 3405 SetPageError(page);
1259ab75 3406 } else {
40f76580 3407 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3408
d1310b2e
CM
3409 set_range_writeback(tree, cur, cur + iosize - 1);
3410 if (!PageWriteback(page)) {
efe120a0
FH
3411 btrfs_err(BTRFS_I(inode)->root->fs_info,
3412 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3413 page->index, cur, end);
d1310b2e
CM
3414 }
3415
ffbd517d
CM
3416 ret = submit_extent_page(write_flags, tree, page,
3417 sector, iosize, pg_offset,
3418 bdev, &epd->bio, max_nr,
c8b97818
CM
3419 end_bio_extent_writepage,
3420 0, 0, 0);
d1310b2e
CM
3421 if (ret)
3422 SetPageError(page);
3423 }
3424 cur = cur + iosize;
7f3c74fb 3425 pg_offset += iosize;
d1310b2e
CM
3426 nr++;
3427 }
40f76580
CM
3428done:
3429 *nr_ret = nr;
3430
3431done_unlocked:
3432
3433 /* drop our reference on any cached states */
3434 free_extent_state(cached_state);
3435 return ret;
3436}
3437
3438/*
3439 * the writepage semantics are similar to regular writepage. extent
3440 * records are inserted to lock ranges in the tree, and as dirty areas
3441 * are found, they are marked writeback. Then the lock bits are removed
3442 * and the end_io handler clears the writeback ranges
3443 */
3444static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3445 void *data)
3446{
3447 struct inode *inode = page->mapping->host;
3448 struct extent_page_data *epd = data;
3449 u64 start = page_offset(page);
3450 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3451 int ret;
3452 int nr = 0;
3453 size_t pg_offset = 0;
3454 loff_t i_size = i_size_read(inode);
3455 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3456 int write_flags;
3457 unsigned long nr_written = 0;
3458
3459 if (wbc->sync_mode == WB_SYNC_ALL)
3460 write_flags = WRITE_SYNC;
3461 else
3462 write_flags = WRITE;
3463
3464 trace___extent_writepage(page, inode, wbc);
3465
3466 WARN_ON(!PageLocked(page));
3467
3468 ClearPageError(page);
3469
3470 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3471 if (page->index > end_index ||
3472 (page->index == end_index && !pg_offset)) {
3473 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3474 unlock_page(page);
3475 return 0;
3476 }
3477
3478 if (page->index == end_index) {
3479 char *userpage;
3480
3481 userpage = kmap_atomic(page);
3482 memset(userpage + pg_offset, 0,
3483 PAGE_CACHE_SIZE - pg_offset);
3484 kunmap_atomic(userpage);
3485 flush_dcache_page(page);
3486 }
3487
3488 pg_offset = 0;
3489
3490 set_page_extent_mapped(page);
3491
3492 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3493 if (ret == 1)
3494 goto done_unlocked;
3495 if (ret)
3496 goto done;
3497
3498 ret = __extent_writepage_io(inode, page, wbc, epd,
3499 i_size, nr_written, write_flags, &nr);
3500 if (ret == 1)
3501 goto done_unlocked;
3502
d1310b2e
CM
3503done:
3504 if (nr == 0) {
3505 /* make sure the mapping tag for page dirty gets cleared */
3506 set_page_writeback(page);
3507 end_page_writeback(page);
3508 }
61391d56
FM
3509 if (PageError(page)) {
3510 ret = ret < 0 ? ret : -EIO;
3511 end_extent_writepage(page, ret, start, page_end);
3512 }
d1310b2e 3513 unlock_page(page);
40f76580 3514 return ret;
771ed689 3515
11c8349b 3516done_unlocked:
d1310b2e
CM
3517 return 0;
3518}
3519
fd8b2b61 3520void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3521{
74316201
N
3522 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3523 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3524}
3525
0e378df1
CM
3526static noinline_for_stack int
3527lock_extent_buffer_for_io(struct extent_buffer *eb,
3528 struct btrfs_fs_info *fs_info,
3529 struct extent_page_data *epd)
0b32f4bb
JB
3530{
3531 unsigned long i, num_pages;
3532 int flush = 0;
3533 int ret = 0;
3534
3535 if (!btrfs_try_tree_write_lock(eb)) {
3536 flush = 1;
3537 flush_write_bio(epd);
3538 btrfs_tree_lock(eb);
3539 }
3540
3541 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3542 btrfs_tree_unlock(eb);
3543 if (!epd->sync_io)
3544 return 0;
3545 if (!flush) {
3546 flush_write_bio(epd);
3547 flush = 1;
3548 }
a098d8e8
CM
3549 while (1) {
3550 wait_on_extent_buffer_writeback(eb);
3551 btrfs_tree_lock(eb);
3552 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3553 break;
0b32f4bb 3554 btrfs_tree_unlock(eb);
0b32f4bb
JB
3555 }
3556 }
3557
51561ffe
JB
3558 /*
3559 * We need to do this to prevent races in people who check if the eb is
3560 * under IO since we can end up having no IO bits set for a short period
3561 * of time.
3562 */
3563 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3564 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3565 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3566 spin_unlock(&eb->refs_lock);
0b32f4bb 3567 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3568 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3569 -eb->len,
3570 fs_info->dirty_metadata_batch);
0b32f4bb 3571 ret = 1;
51561ffe
JB
3572 } else {
3573 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3574 }
3575
3576 btrfs_tree_unlock(eb);
3577
3578 if (!ret)
3579 return ret;
3580
3581 num_pages = num_extent_pages(eb->start, eb->len);
3582 for (i = 0; i < num_pages; i++) {
fb85fc9a 3583 struct page *p = eb->pages[i];
0b32f4bb
JB
3584
3585 if (!trylock_page(p)) {
3586 if (!flush) {
3587 flush_write_bio(epd);
3588 flush = 1;
3589 }
3590 lock_page(p);
3591 }
3592 }
3593
3594 return ret;
3595}
3596
3597static void end_extent_buffer_writeback(struct extent_buffer *eb)
3598{
3599 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3600 smp_mb__after_atomic();
0b32f4bb
JB
3601 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3602}
3603
656f30db
FM
3604static void set_btree_ioerr(struct page *page)
3605{
3606 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3607 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3608
3609 SetPageError(page);
3610 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3611 return;
3612
3613 /*
3614 * If writeback for a btree extent that doesn't belong to a log tree
3615 * failed, increment the counter transaction->eb_write_errors.
3616 * We do this because while the transaction is running and before it's
3617 * committing (when we call filemap_fdata[write|wait]_range against
3618 * the btree inode), we might have
3619 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3620 * returns an error or an error happens during writeback, when we're
3621 * committing the transaction we wouldn't know about it, since the pages
3622 * can be no longer dirty nor marked anymore for writeback (if a
3623 * subsequent modification to the extent buffer didn't happen before the
3624 * transaction commit), which makes filemap_fdata[write|wait]_range not
3625 * able to find the pages tagged with SetPageError at transaction
3626 * commit time. So if this happens we must abort the transaction,
3627 * otherwise we commit a super block with btree roots that point to
3628 * btree nodes/leafs whose content on disk is invalid - either garbage
3629 * or the content of some node/leaf from a past generation that got
3630 * cowed or deleted and is no longer valid.
3631 *
3632 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3633 * not be enough - we need to distinguish between log tree extents vs
3634 * non-log tree extents, and the next filemap_fdatawait_range() call
3635 * will catch and clear such errors in the mapping - and that call might
3636 * be from a log sync and not from a transaction commit. Also, checking
3637 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3638 * not done and would not be reliable - the eb might have been released
3639 * from memory and reading it back again means that flag would not be
3640 * set (since it's a runtime flag, not persisted on disk).
3641 *
3642 * Using the flags below in the btree inode also makes us achieve the
3643 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3644 * writeback for all dirty pages and before filemap_fdatawait_range()
3645 * is called, the writeback for all dirty pages had already finished
3646 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3647 * filemap_fdatawait_range() would return success, as it could not know
3648 * that writeback errors happened (the pages were no longer tagged for
3649 * writeback).
3650 */
3651 switch (eb->log_index) {
3652 case -1:
3653 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3654 break;
3655 case 0:
3656 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3657 break;
3658 case 1:
3659 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3660 break;
3661 default:
3662 BUG(); /* unexpected, logic error */
3663 }
3664}
3665
0b32f4bb
JB
3666static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3667{
2c30c71b 3668 struct bio_vec *bvec;
0b32f4bb 3669 struct extent_buffer *eb;
2c30c71b 3670 int i, done;
0b32f4bb 3671
2c30c71b 3672 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3673 struct page *page = bvec->bv_page;
3674
0b32f4bb
JB
3675 eb = (struct extent_buffer *)page->private;
3676 BUG_ON(!eb);
3677 done = atomic_dec_and_test(&eb->io_pages);
3678
656f30db 3679 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3680 ClearPageUptodate(page);
656f30db 3681 set_btree_ioerr(page);
0b32f4bb
JB
3682 }
3683
3684 end_page_writeback(page);
3685
3686 if (!done)
3687 continue;
3688
3689 end_extent_buffer_writeback(eb);
2c30c71b 3690 }
0b32f4bb
JB
3691
3692 bio_put(bio);
0b32f4bb
JB
3693}
3694
0e378df1 3695static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3696 struct btrfs_fs_info *fs_info,
3697 struct writeback_control *wbc,
3698 struct extent_page_data *epd)
3699{
3700 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3701 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3702 u64 offset = eb->start;
3703 unsigned long i, num_pages;
de0022b9 3704 unsigned long bio_flags = 0;
d4c7ca86 3705 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3706 int ret = 0;
0b32f4bb 3707
656f30db 3708 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3709 num_pages = num_extent_pages(eb->start, eb->len);
3710 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3711 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3712 bio_flags = EXTENT_BIO_TREE_LOG;
3713
0b32f4bb 3714 for (i = 0; i < num_pages; i++) {
fb85fc9a 3715 struct page *p = eb->pages[i];
0b32f4bb
JB
3716
3717 clear_page_dirty_for_io(p);
3718 set_page_writeback(p);
f28491e0 3719 ret = submit_extent_page(rw, tree, p, offset >> 9,
0b32f4bb
JB
3720 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3721 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3722 0, epd->bio_flags, bio_flags);
3723 epd->bio_flags = bio_flags;
0b32f4bb 3724 if (ret) {
656f30db 3725 set_btree_ioerr(p);
55e3bd2e 3726 end_page_writeback(p);
0b32f4bb
JB
3727 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3728 end_extent_buffer_writeback(eb);
3729 ret = -EIO;
3730 break;
3731 }
3732 offset += PAGE_CACHE_SIZE;
3733 update_nr_written(p, wbc, 1);
3734 unlock_page(p);
3735 }
3736
3737 if (unlikely(ret)) {
3738 for (; i < num_pages; i++) {
bbf65cf0 3739 struct page *p = eb->pages[i];
81465028 3740 clear_page_dirty_for_io(p);
0b32f4bb
JB
3741 unlock_page(p);
3742 }
3743 }
3744
3745 return ret;
3746}
3747
3748int btree_write_cache_pages(struct address_space *mapping,
3749 struct writeback_control *wbc)
3750{
3751 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3752 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3753 struct extent_buffer *eb, *prev_eb = NULL;
3754 struct extent_page_data epd = {
3755 .bio = NULL,
3756 .tree = tree,
3757 .extent_locked = 0,
3758 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3759 .bio_flags = 0,
0b32f4bb
JB
3760 };
3761 int ret = 0;
3762 int done = 0;
3763 int nr_to_write_done = 0;
3764 struct pagevec pvec;
3765 int nr_pages;
3766 pgoff_t index;
3767 pgoff_t end; /* Inclusive */
3768 int scanned = 0;
3769 int tag;
3770
3771 pagevec_init(&pvec, 0);
3772 if (wbc->range_cyclic) {
3773 index = mapping->writeback_index; /* Start from prev offset */
3774 end = -1;
3775 } else {
3776 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3777 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3778 scanned = 1;
3779 }
3780 if (wbc->sync_mode == WB_SYNC_ALL)
3781 tag = PAGECACHE_TAG_TOWRITE;
3782 else
3783 tag = PAGECACHE_TAG_DIRTY;
3784retry:
3785 if (wbc->sync_mode == WB_SYNC_ALL)
3786 tag_pages_for_writeback(mapping, index, end);
3787 while (!done && !nr_to_write_done && (index <= end) &&
3788 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3789 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3790 unsigned i;
3791
3792 scanned = 1;
3793 for (i = 0; i < nr_pages; i++) {
3794 struct page *page = pvec.pages[i];
3795
3796 if (!PagePrivate(page))
3797 continue;
3798
3799 if (!wbc->range_cyclic && page->index > end) {
3800 done = 1;
3801 break;
3802 }
3803
b5bae261
JB
3804 spin_lock(&mapping->private_lock);
3805 if (!PagePrivate(page)) {
3806 spin_unlock(&mapping->private_lock);
3807 continue;
3808 }
3809
0b32f4bb 3810 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3811
3812 /*
3813 * Shouldn't happen and normally this would be a BUG_ON
3814 * but no sense in crashing the users box for something
3815 * we can survive anyway.
3816 */
fae7f21c 3817 if (WARN_ON(!eb)) {
b5bae261 3818 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3819 continue;
3820 }
3821
b5bae261
JB
3822 if (eb == prev_eb) {
3823 spin_unlock(&mapping->private_lock);
0b32f4bb 3824 continue;
b5bae261 3825 }
0b32f4bb 3826
b5bae261
JB
3827 ret = atomic_inc_not_zero(&eb->refs);
3828 spin_unlock(&mapping->private_lock);
3829 if (!ret)
0b32f4bb 3830 continue;
0b32f4bb
JB
3831
3832 prev_eb = eb;
3833 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3834 if (!ret) {
3835 free_extent_buffer(eb);
3836 continue;
3837 }
3838
3839 ret = write_one_eb(eb, fs_info, wbc, &epd);
3840 if (ret) {
3841 done = 1;
3842 free_extent_buffer(eb);
3843 break;
3844 }
3845 free_extent_buffer(eb);
3846
3847 /*
3848 * the filesystem may choose to bump up nr_to_write.
3849 * We have to make sure to honor the new nr_to_write
3850 * at any time
3851 */
3852 nr_to_write_done = wbc->nr_to_write <= 0;
3853 }
3854 pagevec_release(&pvec);
3855 cond_resched();
3856 }
3857 if (!scanned && !done) {
3858 /*
3859 * We hit the last page and there is more work to be done: wrap
3860 * back to the start of the file
3861 */
3862 scanned = 1;
3863 index = 0;
3864 goto retry;
3865 }
3866 flush_write_bio(&epd);
3867 return ret;
3868}
3869
d1310b2e 3870/**
4bef0848 3871 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3872 * @mapping: address space structure to write
3873 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3874 * @writepage: function called for each page
3875 * @data: data passed to writepage function
3876 *
3877 * If a page is already under I/O, write_cache_pages() skips it, even
3878 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3879 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3880 * and msync() need to guarantee that all the data which was dirty at the time
3881 * the call was made get new I/O started against them. If wbc->sync_mode is
3882 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3883 * existing IO to complete.
3884 */
b2950863 3885static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3886 struct address_space *mapping,
3887 struct writeback_control *wbc,
d2c3f4f6
CM
3888 writepage_t writepage, void *data,
3889 void (*flush_fn)(void *))
d1310b2e 3890{
7fd1a3f7 3891 struct inode *inode = mapping->host;
d1310b2e
CM
3892 int ret = 0;
3893 int done = 0;
61391d56 3894 int err = 0;
f85d7d6c 3895 int nr_to_write_done = 0;
d1310b2e
CM
3896 struct pagevec pvec;
3897 int nr_pages;
3898 pgoff_t index;
3899 pgoff_t end; /* Inclusive */
3900 int scanned = 0;
f7aaa06b 3901 int tag;
d1310b2e 3902
7fd1a3f7
JB
3903 /*
3904 * We have to hold onto the inode so that ordered extents can do their
3905 * work when the IO finishes. The alternative to this is failing to add
3906 * an ordered extent if the igrab() fails there and that is a huge pain
3907 * to deal with, so instead just hold onto the inode throughout the
3908 * writepages operation. If it fails here we are freeing up the inode
3909 * anyway and we'd rather not waste our time writing out stuff that is
3910 * going to be truncated anyway.
3911 */
3912 if (!igrab(inode))
3913 return 0;
3914
d1310b2e
CM
3915 pagevec_init(&pvec, 0);
3916 if (wbc->range_cyclic) {
3917 index = mapping->writeback_index; /* Start from prev offset */
3918 end = -1;
3919 } else {
3920 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3921 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3922 scanned = 1;
3923 }
f7aaa06b
JB
3924 if (wbc->sync_mode == WB_SYNC_ALL)
3925 tag = PAGECACHE_TAG_TOWRITE;
3926 else
3927 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3928retry:
f7aaa06b
JB
3929 if (wbc->sync_mode == WB_SYNC_ALL)
3930 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3931 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3932 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3933 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3934 unsigned i;
3935
3936 scanned = 1;
3937 for (i = 0; i < nr_pages; i++) {
3938 struct page *page = pvec.pages[i];
3939
3940 /*
3941 * At this point we hold neither mapping->tree_lock nor
3942 * lock on the page itself: the page may be truncated or
3943 * invalidated (changing page->mapping to NULL), or even
3944 * swizzled back from swapper_space to tmpfs file
3945 * mapping
3946 */
c8f2f24b
JB
3947 if (!trylock_page(page)) {
3948 flush_fn(data);
3949 lock_page(page);
01d658f2 3950 }
d1310b2e
CM
3951
3952 if (unlikely(page->mapping != mapping)) {
3953 unlock_page(page);
3954 continue;
3955 }
3956
3957 if (!wbc->range_cyclic && page->index > end) {
3958 done = 1;
3959 unlock_page(page);
3960 continue;
3961 }
3962
d2c3f4f6 3963 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3964 if (PageWriteback(page))
3965 flush_fn(data);
d1310b2e 3966 wait_on_page_writeback(page);
d2c3f4f6 3967 }
d1310b2e
CM
3968
3969 if (PageWriteback(page) ||
3970 !clear_page_dirty_for_io(page)) {
3971 unlock_page(page);
3972 continue;
3973 }
3974
3975 ret = (*writepage)(page, wbc, data);
3976
3977 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3978 unlock_page(page);
3979 ret = 0;
3980 }
61391d56
FM
3981 if (!err && ret < 0)
3982 err = ret;
f85d7d6c
CM
3983
3984 /*
3985 * the filesystem may choose to bump up nr_to_write.
3986 * We have to make sure to honor the new nr_to_write
3987 * at any time
3988 */
3989 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3990 }
3991 pagevec_release(&pvec);
3992 cond_resched();
3993 }
61391d56 3994 if (!scanned && !done && !err) {
d1310b2e
CM
3995 /*
3996 * We hit the last page and there is more work to be done: wrap
3997 * back to the start of the file
3998 */
3999 scanned = 1;
4000 index = 0;
4001 goto retry;
4002 }
7fd1a3f7 4003 btrfs_add_delayed_iput(inode);
61391d56 4004 return err;
d1310b2e 4005}
d1310b2e 4006
ffbd517d 4007static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4008{
d2c3f4f6 4009 if (epd->bio) {
355808c2
JM
4010 int rw = WRITE;
4011 int ret;
4012
ffbd517d 4013 if (epd->sync_io)
355808c2
JM
4014 rw = WRITE_SYNC;
4015
de0022b9 4016 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4017 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4018 epd->bio = NULL;
4019 }
4020}
4021
ffbd517d
CM
4022static noinline void flush_write_bio(void *data)
4023{
4024 struct extent_page_data *epd = data;
4025 flush_epd_write_bio(epd);
4026}
4027
d1310b2e
CM
4028int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4029 get_extent_t *get_extent,
4030 struct writeback_control *wbc)
4031{
4032 int ret;
d1310b2e
CM
4033 struct extent_page_data epd = {
4034 .bio = NULL,
4035 .tree = tree,
4036 .get_extent = get_extent,
771ed689 4037 .extent_locked = 0,
ffbd517d 4038 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4039 .bio_flags = 0,
d1310b2e 4040 };
d1310b2e 4041
d1310b2e
CM
4042 ret = __extent_writepage(page, wbc, &epd);
4043
ffbd517d 4044 flush_epd_write_bio(&epd);
d1310b2e
CM
4045 return ret;
4046}
d1310b2e 4047
771ed689
CM
4048int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4049 u64 start, u64 end, get_extent_t *get_extent,
4050 int mode)
4051{
4052 int ret = 0;
4053 struct address_space *mapping = inode->i_mapping;
4054 struct page *page;
4055 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4056 PAGE_CACHE_SHIFT;
4057
4058 struct extent_page_data epd = {
4059 .bio = NULL,
4060 .tree = tree,
4061 .get_extent = get_extent,
4062 .extent_locked = 1,
ffbd517d 4063 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4064 .bio_flags = 0,
771ed689
CM
4065 };
4066 struct writeback_control wbc_writepages = {
771ed689 4067 .sync_mode = mode,
771ed689
CM
4068 .nr_to_write = nr_pages * 2,
4069 .range_start = start,
4070 .range_end = end + 1,
4071 };
4072
d397712b 4073 while (start <= end) {
771ed689
CM
4074 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4075 if (clear_page_dirty_for_io(page))
4076 ret = __extent_writepage(page, &wbc_writepages, &epd);
4077 else {
4078 if (tree->ops && tree->ops->writepage_end_io_hook)
4079 tree->ops->writepage_end_io_hook(page, start,
4080 start + PAGE_CACHE_SIZE - 1,
4081 NULL, 1);
4082 unlock_page(page);
4083 }
4084 page_cache_release(page);
4085 start += PAGE_CACHE_SIZE;
4086 }
4087
ffbd517d 4088 flush_epd_write_bio(&epd);
771ed689
CM
4089 return ret;
4090}
d1310b2e
CM
4091
4092int extent_writepages(struct extent_io_tree *tree,
4093 struct address_space *mapping,
4094 get_extent_t *get_extent,
4095 struct writeback_control *wbc)
4096{
4097 int ret = 0;
4098 struct extent_page_data epd = {
4099 .bio = NULL,
4100 .tree = tree,
4101 .get_extent = get_extent,
771ed689 4102 .extent_locked = 0,
ffbd517d 4103 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4104 .bio_flags = 0,
d1310b2e
CM
4105 };
4106
4bef0848 4107 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4108 __extent_writepage, &epd,
4109 flush_write_bio);
ffbd517d 4110 flush_epd_write_bio(&epd);
d1310b2e
CM
4111 return ret;
4112}
d1310b2e
CM
4113
4114int extent_readpages(struct extent_io_tree *tree,
4115 struct address_space *mapping,
4116 struct list_head *pages, unsigned nr_pages,
4117 get_extent_t get_extent)
4118{
4119 struct bio *bio = NULL;
4120 unsigned page_idx;
c8b97818 4121 unsigned long bio_flags = 0;
67c9684f
LB
4122 struct page *pagepool[16];
4123 struct page *page;
125bac01 4124 struct extent_map *em_cached = NULL;
67c9684f 4125 int nr = 0;
d1310b2e 4126
d1310b2e 4127 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4128 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4129
4130 prefetchw(&page->flags);
4131 list_del(&page->lru);
67c9684f 4132 if (add_to_page_cache_lru(page, mapping,
43e817a1 4133 page->index, GFP_NOFS)) {
67c9684f
LB
4134 page_cache_release(page);
4135 continue;
d1310b2e 4136 }
67c9684f
LB
4137
4138 pagepool[nr++] = page;
4139 if (nr < ARRAY_SIZE(pagepool))
4140 continue;
125bac01 4141 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4142 &bio, 0, &bio_flags, READ);
67c9684f 4143 nr = 0;
d1310b2e 4144 }
9974090b 4145 if (nr)
125bac01 4146 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4147 &bio, 0, &bio_flags, READ);
67c9684f 4148
125bac01
MX
4149 if (em_cached)
4150 free_extent_map(em_cached);
4151
d1310b2e
CM
4152 BUG_ON(!list_empty(pages));
4153 if (bio)
79787eaa 4154 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4155 return 0;
4156}
d1310b2e
CM
4157
4158/*
4159 * basic invalidatepage code, this waits on any locked or writeback
4160 * ranges corresponding to the page, and then deletes any extent state
4161 * records from the tree
4162 */
4163int extent_invalidatepage(struct extent_io_tree *tree,
4164 struct page *page, unsigned long offset)
4165{
2ac55d41 4166 struct extent_state *cached_state = NULL;
4eee4fa4 4167 u64 start = page_offset(page);
d1310b2e
CM
4168 u64 end = start + PAGE_CACHE_SIZE - 1;
4169 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4170
fda2832f 4171 start += ALIGN(offset, blocksize);
d1310b2e
CM
4172 if (start > end)
4173 return 0;
4174
d0082371 4175 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4176 wait_on_page_writeback(page);
d1310b2e 4177 clear_extent_bit(tree, start, end,
32c00aff
JB
4178 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4179 EXTENT_DO_ACCOUNTING,
2ac55d41 4180 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4181 return 0;
4182}
d1310b2e 4183
7b13b7b1
CM
4184/*
4185 * a helper for releasepage, this tests for areas of the page that
4186 * are locked or under IO and drops the related state bits if it is safe
4187 * to drop the page.
4188 */
48a3b636
ES
4189static int try_release_extent_state(struct extent_map_tree *map,
4190 struct extent_io_tree *tree,
4191 struct page *page, gfp_t mask)
7b13b7b1 4192{
4eee4fa4 4193 u64 start = page_offset(page);
7b13b7b1
CM
4194 u64 end = start + PAGE_CACHE_SIZE - 1;
4195 int ret = 1;
4196
211f90e6 4197 if (test_range_bit(tree, start, end,
8b62b72b 4198 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4199 ret = 0;
4200 else {
4201 if ((mask & GFP_NOFS) == GFP_NOFS)
4202 mask = GFP_NOFS;
11ef160f
CM
4203 /*
4204 * at this point we can safely clear everything except the
4205 * locked bit and the nodatasum bit
4206 */
e3f24cc5 4207 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4208 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4209 0, 0, NULL, mask);
e3f24cc5
CM
4210
4211 /* if clear_extent_bit failed for enomem reasons,
4212 * we can't allow the release to continue.
4213 */
4214 if (ret < 0)
4215 ret = 0;
4216 else
4217 ret = 1;
7b13b7b1
CM
4218 }
4219 return ret;
4220}
7b13b7b1 4221
d1310b2e
CM
4222/*
4223 * a helper for releasepage. As long as there are no locked extents
4224 * in the range corresponding to the page, both state records and extent
4225 * map records are removed
4226 */
4227int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4228 struct extent_io_tree *tree, struct page *page,
4229 gfp_t mask)
d1310b2e
CM
4230{
4231 struct extent_map *em;
4eee4fa4 4232 u64 start = page_offset(page);
d1310b2e 4233 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4234
70dec807
CM
4235 if ((mask & __GFP_WAIT) &&
4236 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4237 u64 len;
70dec807 4238 while (start <= end) {
39b5637f 4239 len = end - start + 1;
890871be 4240 write_lock(&map->lock);
39b5637f 4241 em = lookup_extent_mapping(map, start, len);
285190d9 4242 if (!em) {
890871be 4243 write_unlock(&map->lock);
70dec807
CM
4244 break;
4245 }
7f3c74fb
CM
4246 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4247 em->start != start) {
890871be 4248 write_unlock(&map->lock);
70dec807
CM
4249 free_extent_map(em);
4250 break;
4251 }
4252 if (!test_range_bit(tree, em->start,
4253 extent_map_end(em) - 1,
8b62b72b 4254 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4255 0, NULL)) {
70dec807
CM
4256 remove_extent_mapping(map, em);
4257 /* once for the rb tree */
4258 free_extent_map(em);
4259 }
4260 start = extent_map_end(em);
890871be 4261 write_unlock(&map->lock);
70dec807
CM
4262
4263 /* once for us */
d1310b2e
CM
4264 free_extent_map(em);
4265 }
d1310b2e 4266 }
7b13b7b1 4267 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4268}
d1310b2e 4269
ec29ed5b
CM
4270/*
4271 * helper function for fiemap, which doesn't want to see any holes.
4272 * This maps until we find something past 'last'
4273 */
4274static struct extent_map *get_extent_skip_holes(struct inode *inode,
4275 u64 offset,
4276 u64 last,
4277 get_extent_t *get_extent)
4278{
4279 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4280 struct extent_map *em;
4281 u64 len;
4282
4283 if (offset >= last)
4284 return NULL;
4285
67871254 4286 while (1) {
ec29ed5b
CM
4287 len = last - offset;
4288 if (len == 0)
4289 break;
fda2832f 4290 len = ALIGN(len, sectorsize);
ec29ed5b 4291 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4292 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4293 return em;
4294
4295 /* if this isn't a hole return it */
4296 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4297 em->block_start != EXTENT_MAP_HOLE) {
4298 return em;
4299 }
4300
4301 /* this is a hole, advance to the next extent */
4302 offset = extent_map_end(em);
4303 free_extent_map(em);
4304 if (offset >= last)
4305 break;
4306 }
4307 return NULL;
4308}
4309
1506fcc8
YS
4310int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4311 __u64 start, __u64 len, get_extent_t *get_extent)
4312{
975f84fe 4313 int ret = 0;
1506fcc8
YS
4314 u64 off = start;
4315 u64 max = start + len;
4316 u32 flags = 0;
975f84fe
JB
4317 u32 found_type;
4318 u64 last;
ec29ed5b 4319 u64 last_for_get_extent = 0;
1506fcc8 4320 u64 disko = 0;
ec29ed5b 4321 u64 isize = i_size_read(inode);
975f84fe 4322 struct btrfs_key found_key;
1506fcc8 4323 struct extent_map *em = NULL;
2ac55d41 4324 struct extent_state *cached_state = NULL;
975f84fe 4325 struct btrfs_path *path;
dc046b10 4326 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4327 int end = 0;
ec29ed5b
CM
4328 u64 em_start = 0;
4329 u64 em_len = 0;
4330 u64 em_end = 0;
1506fcc8
YS
4331
4332 if (len == 0)
4333 return -EINVAL;
4334
975f84fe
JB
4335 path = btrfs_alloc_path();
4336 if (!path)
4337 return -ENOMEM;
4338 path->leave_spinning = 1;
4339
2c91943b
QW
4340 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4341 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4342
ec29ed5b
CM
4343 /*
4344 * lookup the last file extent. We're not using i_size here
4345 * because there might be preallocation past i_size
4346 */
dc046b10
JB
4347 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4348 0);
975f84fe
JB
4349 if (ret < 0) {
4350 btrfs_free_path(path);
4351 return ret;
4352 }
4353 WARN_ON(!ret);
4354 path->slots[0]--;
975f84fe 4355 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4356 found_type = found_key.type;
975f84fe 4357
ec29ed5b 4358 /* No extents, but there might be delalloc bits */
33345d01 4359 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4360 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4361 /* have to trust i_size as the end */
4362 last = (u64)-1;
4363 last_for_get_extent = isize;
4364 } else {
4365 /*
4366 * remember the start of the last extent. There are a
4367 * bunch of different factors that go into the length of the
4368 * extent, so its much less complex to remember where it started
4369 */
4370 last = found_key.offset;
4371 last_for_get_extent = last + 1;
975f84fe 4372 }
fe09e16c 4373 btrfs_release_path(path);
975f84fe 4374
ec29ed5b
CM
4375 /*
4376 * we might have some extents allocated but more delalloc past those
4377 * extents. so, we trust isize unless the start of the last extent is
4378 * beyond isize
4379 */
4380 if (last < isize) {
4381 last = (u64)-1;
4382 last_for_get_extent = isize;
4383 }
4384
a52f4cd2 4385 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4386 &cached_state);
ec29ed5b 4387
4d479cf0 4388 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4389 get_extent);
1506fcc8
YS
4390 if (!em)
4391 goto out;
4392 if (IS_ERR(em)) {
4393 ret = PTR_ERR(em);
4394 goto out;
4395 }
975f84fe 4396
1506fcc8 4397 while (!end) {
b76bb701 4398 u64 offset_in_extent = 0;
ea8efc74
CM
4399
4400 /* break if the extent we found is outside the range */
4401 if (em->start >= max || extent_map_end(em) < off)
4402 break;
4403
4404 /*
4405 * get_extent may return an extent that starts before our
4406 * requested range. We have to make sure the ranges
4407 * we return to fiemap always move forward and don't
4408 * overlap, so adjust the offsets here
4409 */
4410 em_start = max(em->start, off);
1506fcc8 4411
ea8efc74
CM
4412 /*
4413 * record the offset from the start of the extent
b76bb701
JB
4414 * for adjusting the disk offset below. Only do this if the
4415 * extent isn't compressed since our in ram offset may be past
4416 * what we have actually allocated on disk.
ea8efc74 4417 */
b76bb701
JB
4418 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4419 offset_in_extent = em_start - em->start;
ec29ed5b 4420 em_end = extent_map_end(em);
ea8efc74 4421 em_len = em_end - em_start;
1506fcc8
YS
4422 disko = 0;
4423 flags = 0;
4424
ea8efc74
CM
4425 /*
4426 * bump off for our next call to get_extent
4427 */
4428 off = extent_map_end(em);
4429 if (off >= max)
4430 end = 1;
4431
93dbfad7 4432 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4433 end = 1;
4434 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4435 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4436 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4437 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4438 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4439 flags |= (FIEMAP_EXTENT_DELALLOC |
4440 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4441 } else if (fieinfo->fi_extents_max) {
4442 u64 bytenr = em->block_start -
4443 (em->start - em->orig_start);
fe09e16c 4444
ea8efc74 4445 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4446
4447 /*
4448 * As btrfs supports shared space, this information
4449 * can be exported to userspace tools via
dc046b10
JB
4450 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4451 * then we're just getting a count and we can skip the
4452 * lookup stuff.
fe09e16c 4453 */
dc046b10
JB
4454 ret = btrfs_check_shared(NULL, root->fs_info,
4455 root->objectid,
4456 btrfs_ino(inode), bytenr);
4457 if (ret < 0)
fe09e16c 4458 goto out_free;
dc046b10 4459 if (ret)
fe09e16c 4460 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4461 ret = 0;
1506fcc8
YS
4462 }
4463 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4464 flags |= FIEMAP_EXTENT_ENCODED;
4465
1506fcc8
YS
4466 free_extent_map(em);
4467 em = NULL;
ec29ed5b
CM
4468 if ((em_start >= last) || em_len == (u64)-1 ||
4469 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4470 flags |= FIEMAP_EXTENT_LAST;
4471 end = 1;
4472 }
4473
ec29ed5b
CM
4474 /* now scan forward to see if this is really the last extent. */
4475 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4476 get_extent);
4477 if (IS_ERR(em)) {
4478 ret = PTR_ERR(em);
4479 goto out;
4480 }
4481 if (!em) {
975f84fe
JB
4482 flags |= FIEMAP_EXTENT_LAST;
4483 end = 1;
4484 }
ec29ed5b
CM
4485 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4486 em_len, flags);
4487 if (ret)
4488 goto out_free;
1506fcc8
YS
4489 }
4490out_free:
4491 free_extent_map(em);
4492out:
fe09e16c 4493 btrfs_free_path(path);
a52f4cd2 4494 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4495 &cached_state, GFP_NOFS);
1506fcc8
YS
4496 return ret;
4497}
4498
727011e0
CM
4499static void __free_extent_buffer(struct extent_buffer *eb)
4500{
6d49ba1b 4501 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4502 kmem_cache_free(extent_buffer_cache, eb);
4503}
4504
a26e8c9f 4505int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4506{
4507 return (atomic_read(&eb->io_pages) ||
4508 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4509 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4510}
4511
4512/*
4513 * Helper for releasing extent buffer page.
4514 */
a50924e3 4515static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4516{
4517 unsigned long index;
db7f3436
JB
4518 struct page *page;
4519 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4520
4521 BUG_ON(extent_buffer_under_io(eb));
4522
a50924e3
DS
4523 index = num_extent_pages(eb->start, eb->len);
4524 if (index == 0)
db7f3436
JB
4525 return;
4526
4527 do {
4528 index--;
fb85fc9a 4529 page = eb->pages[index];
db7f3436
JB
4530 if (page && mapped) {
4531 spin_lock(&page->mapping->private_lock);
4532 /*
4533 * We do this since we'll remove the pages after we've
4534 * removed the eb from the radix tree, so we could race
4535 * and have this page now attached to the new eb. So
4536 * only clear page_private if it's still connected to
4537 * this eb.
4538 */
4539 if (PagePrivate(page) &&
4540 page->private == (unsigned long)eb) {
4541 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4542 BUG_ON(PageDirty(page));
4543 BUG_ON(PageWriteback(page));
4544 /*
4545 * We need to make sure we haven't be attached
4546 * to a new eb.
4547 */
4548 ClearPagePrivate(page);
4549 set_page_private(page, 0);
4550 /* One for the page private */
4551 page_cache_release(page);
4552 }
4553 spin_unlock(&page->mapping->private_lock);
4554
4555 }
4556 if (page) {
4557 /* One for when we alloced the page */
4558 page_cache_release(page);
4559 }
a50924e3 4560 } while (index != 0);
db7f3436
JB
4561}
4562
4563/*
4564 * Helper for releasing the extent buffer.
4565 */
4566static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4567{
a50924e3 4568 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4569 __free_extent_buffer(eb);
4570}
4571
f28491e0
JB
4572static struct extent_buffer *
4573__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4574 unsigned long len, gfp_t mask)
d1310b2e
CM
4575{
4576 struct extent_buffer *eb = NULL;
4577
d1310b2e 4578 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4579 if (eb == NULL)
4580 return NULL;
d1310b2e
CM
4581 eb->start = start;
4582 eb->len = len;
f28491e0 4583 eb->fs_info = fs_info;
815a51c7 4584 eb->bflags = 0;
bd681513
CM
4585 rwlock_init(&eb->lock);
4586 atomic_set(&eb->write_locks, 0);
4587 atomic_set(&eb->read_locks, 0);
4588 atomic_set(&eb->blocking_readers, 0);
4589 atomic_set(&eb->blocking_writers, 0);
4590 atomic_set(&eb->spinning_readers, 0);
4591 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4592 eb->lock_nested = 0;
bd681513
CM
4593 init_waitqueue_head(&eb->write_lock_wq);
4594 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4595
6d49ba1b
ES
4596 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4597
3083ee2e 4598 spin_lock_init(&eb->refs_lock);
d1310b2e 4599 atomic_set(&eb->refs, 1);
0b32f4bb 4600 atomic_set(&eb->io_pages, 0);
727011e0 4601
b8dae313
DS
4602 /*
4603 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4604 */
4605 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4606 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4607 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4608
4609 return eb;
4610}
4611
815a51c7
JS
4612struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4613{
4614 unsigned long i;
4615 struct page *p;
4616 struct extent_buffer *new;
4617 unsigned long num_pages = num_extent_pages(src->start, src->len);
4618
9ec72677 4619 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4620 if (new == NULL)
4621 return NULL;
4622
4623 for (i = 0; i < num_pages; i++) {
9ec72677 4624 p = alloc_page(GFP_NOFS);
db7f3436
JB
4625 if (!p) {
4626 btrfs_release_extent_buffer(new);
4627 return NULL;
4628 }
815a51c7
JS
4629 attach_extent_buffer_page(new, p);
4630 WARN_ON(PageDirty(p));
4631 SetPageUptodate(p);
4632 new->pages[i] = p;
4633 }
4634
4635 copy_extent_buffer(new, src, 0, 0, src->len);
4636 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4637 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4638
4639 return new;
4640}
4641
4642struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4643{
4644 struct extent_buffer *eb;
4645 unsigned long num_pages = num_extent_pages(0, len);
4646 unsigned long i;
4647
9ec72677 4648 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4649 if (!eb)
4650 return NULL;
4651
4652 for (i = 0; i < num_pages; i++) {
9ec72677 4653 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4654 if (!eb->pages[i])
4655 goto err;
4656 }
4657 set_extent_buffer_uptodate(eb);
4658 btrfs_set_header_nritems(eb, 0);
4659 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4660
4661 return eb;
4662err:
84167d19
SB
4663 for (; i > 0; i--)
4664 __free_page(eb->pages[i - 1]);
815a51c7
JS
4665 __free_extent_buffer(eb);
4666 return NULL;
4667}
4668
0b32f4bb
JB
4669static void check_buffer_tree_ref(struct extent_buffer *eb)
4670{
242e18c7 4671 int refs;
0b32f4bb
JB
4672 /* the ref bit is tricky. We have to make sure it is set
4673 * if we have the buffer dirty. Otherwise the
4674 * code to free a buffer can end up dropping a dirty
4675 * page
4676 *
4677 * Once the ref bit is set, it won't go away while the
4678 * buffer is dirty or in writeback, and it also won't
4679 * go away while we have the reference count on the
4680 * eb bumped.
4681 *
4682 * We can't just set the ref bit without bumping the
4683 * ref on the eb because free_extent_buffer might
4684 * see the ref bit and try to clear it. If this happens
4685 * free_extent_buffer might end up dropping our original
4686 * ref by mistake and freeing the page before we are able
4687 * to add one more ref.
4688 *
4689 * So bump the ref count first, then set the bit. If someone
4690 * beat us to it, drop the ref we added.
4691 */
242e18c7
CM
4692 refs = atomic_read(&eb->refs);
4693 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4694 return;
4695
594831c4
JB
4696 spin_lock(&eb->refs_lock);
4697 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4698 atomic_inc(&eb->refs);
594831c4 4699 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4700}
4701
2457aec6
MG
4702static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4703 struct page *accessed)
5df4235e
JB
4704{
4705 unsigned long num_pages, i;
4706
0b32f4bb
JB
4707 check_buffer_tree_ref(eb);
4708
5df4235e
JB
4709 num_pages = num_extent_pages(eb->start, eb->len);
4710 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4711 struct page *p = eb->pages[i];
4712
2457aec6
MG
4713 if (p != accessed)
4714 mark_page_accessed(p);
5df4235e
JB
4715 }
4716}
4717
f28491e0
JB
4718struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4719 u64 start)
452c75c3
CS
4720{
4721 struct extent_buffer *eb;
4722
4723 rcu_read_lock();
f28491e0
JB
4724 eb = radix_tree_lookup(&fs_info->buffer_radix,
4725 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4726 if (eb && atomic_inc_not_zero(&eb->refs)) {
4727 rcu_read_unlock();
2457aec6 4728 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4729 return eb;
4730 }
4731 rcu_read_unlock();
4732
4733 return NULL;
4734}
4735
faa2dbf0
JB
4736#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4737struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4738 u64 start, unsigned long len)
4739{
4740 struct extent_buffer *eb, *exists = NULL;
4741 int ret;
4742
4743 eb = find_extent_buffer(fs_info, start);
4744 if (eb)
4745 return eb;
4746 eb = alloc_dummy_extent_buffer(start, len);
4747 if (!eb)
4748 return NULL;
4749 eb->fs_info = fs_info;
4750again:
4751 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4752 if (ret)
4753 goto free_eb;
4754 spin_lock(&fs_info->buffer_lock);
4755 ret = radix_tree_insert(&fs_info->buffer_radix,
4756 start >> PAGE_CACHE_SHIFT, eb);
4757 spin_unlock(&fs_info->buffer_lock);
4758 radix_tree_preload_end();
4759 if (ret == -EEXIST) {
4760 exists = find_extent_buffer(fs_info, start);
4761 if (exists)
4762 goto free_eb;
4763 else
4764 goto again;
4765 }
4766 check_buffer_tree_ref(eb);
4767 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4768
4769 /*
4770 * We will free dummy extent buffer's if they come into
4771 * free_extent_buffer with a ref count of 2, but if we are using this we
4772 * want the buffers to stay in memory until we're done with them, so
4773 * bump the ref count again.
4774 */
4775 atomic_inc(&eb->refs);
4776 return eb;
4777free_eb:
4778 btrfs_release_extent_buffer(eb);
4779 return exists;
4780}
4781#endif
4782
f28491e0 4783struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
727011e0 4784 u64 start, unsigned long len)
d1310b2e
CM
4785{
4786 unsigned long num_pages = num_extent_pages(start, len);
4787 unsigned long i;
4788 unsigned long index = start >> PAGE_CACHE_SHIFT;
4789 struct extent_buffer *eb;
6af118ce 4790 struct extent_buffer *exists = NULL;
d1310b2e 4791 struct page *p;
f28491e0 4792 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4793 int uptodate = 1;
19fe0a8b 4794 int ret;
d1310b2e 4795
f28491e0 4796 eb = find_extent_buffer(fs_info, start);
452c75c3 4797 if (eb)
6af118ce 4798 return eb;
6af118ce 4799
f28491e0 4800 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
2b114d1d 4801 if (!eb)
d1310b2e
CM
4802 return NULL;
4803
727011e0 4804 for (i = 0; i < num_pages; i++, index++) {
a6591715 4805 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4806 if (!p)
6af118ce 4807 goto free_eb;
4f2de97a
JB
4808
4809 spin_lock(&mapping->private_lock);
4810 if (PagePrivate(p)) {
4811 /*
4812 * We could have already allocated an eb for this page
4813 * and attached one so lets see if we can get a ref on
4814 * the existing eb, and if we can we know it's good and
4815 * we can just return that one, else we know we can just
4816 * overwrite page->private.
4817 */
4818 exists = (struct extent_buffer *)p->private;
4819 if (atomic_inc_not_zero(&exists->refs)) {
4820 spin_unlock(&mapping->private_lock);
4821 unlock_page(p);
17de39ac 4822 page_cache_release(p);
2457aec6 4823 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4824 goto free_eb;
4825 }
4826
0b32f4bb 4827 /*
4f2de97a
JB
4828 * Do this so attach doesn't complain and we need to
4829 * drop the ref the old guy had.
4830 */
4831 ClearPagePrivate(p);
0b32f4bb 4832 WARN_ON(PageDirty(p));
4f2de97a 4833 page_cache_release(p);
d1310b2e 4834 }
4f2de97a
JB
4835 attach_extent_buffer_page(eb, p);
4836 spin_unlock(&mapping->private_lock);
0b32f4bb 4837 WARN_ON(PageDirty(p));
727011e0 4838 eb->pages[i] = p;
d1310b2e
CM
4839 if (!PageUptodate(p))
4840 uptodate = 0;
eb14ab8e
CM
4841
4842 /*
4843 * see below about how we avoid a nasty race with release page
4844 * and why we unlock later
4845 */
d1310b2e
CM
4846 }
4847 if (uptodate)
b4ce94de 4848 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4849again:
19fe0a8b
MX
4850 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4851 if (ret)
4852 goto free_eb;
4853
f28491e0
JB
4854 spin_lock(&fs_info->buffer_lock);
4855 ret = radix_tree_insert(&fs_info->buffer_radix,
4856 start >> PAGE_CACHE_SHIFT, eb);
4857 spin_unlock(&fs_info->buffer_lock);
452c75c3 4858 radix_tree_preload_end();
19fe0a8b 4859 if (ret == -EEXIST) {
f28491e0 4860 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4861 if (exists)
4862 goto free_eb;
4863 else
115391d2 4864 goto again;
6af118ce 4865 }
6af118ce 4866 /* add one reference for the tree */
0b32f4bb 4867 check_buffer_tree_ref(eb);
34b41ace 4868 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4869
4870 /*
4871 * there is a race where release page may have
4872 * tried to find this extent buffer in the radix
4873 * but failed. It will tell the VM it is safe to
4874 * reclaim the, and it will clear the page private bit.
4875 * We must make sure to set the page private bit properly
4876 * after the extent buffer is in the radix tree so
4877 * it doesn't get lost
4878 */
727011e0
CM
4879 SetPageChecked(eb->pages[0]);
4880 for (i = 1; i < num_pages; i++) {
fb85fc9a 4881 p = eb->pages[i];
727011e0
CM
4882 ClearPageChecked(p);
4883 unlock_page(p);
4884 }
4885 unlock_page(eb->pages[0]);
d1310b2e
CM
4886 return eb;
4887
6af118ce 4888free_eb:
727011e0
CM
4889 for (i = 0; i < num_pages; i++) {
4890 if (eb->pages[i])
4891 unlock_page(eb->pages[i]);
4892 }
eb14ab8e 4893
17de39ac 4894 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4895 btrfs_release_extent_buffer(eb);
6af118ce 4896 return exists;
d1310b2e 4897}
d1310b2e 4898
3083ee2e
JB
4899static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4900{
4901 struct extent_buffer *eb =
4902 container_of(head, struct extent_buffer, rcu_head);
4903
4904 __free_extent_buffer(eb);
4905}
4906
3083ee2e 4907/* Expects to have eb->eb_lock already held */
f7a52a40 4908static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4909{
4910 WARN_ON(atomic_read(&eb->refs) == 0);
4911 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4912 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4913 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4914
815a51c7 4915 spin_unlock(&eb->refs_lock);
3083ee2e 4916
f28491e0
JB
4917 spin_lock(&fs_info->buffer_lock);
4918 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 4919 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 4920 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4921 } else {
4922 spin_unlock(&eb->refs_lock);
815a51c7 4923 }
3083ee2e
JB
4924
4925 /* Should be safe to release our pages at this point */
a50924e3 4926 btrfs_release_extent_buffer_page(eb);
3083ee2e 4927 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4928 return 1;
3083ee2e
JB
4929 }
4930 spin_unlock(&eb->refs_lock);
e64860aa
JB
4931
4932 return 0;
3083ee2e
JB
4933}
4934
d1310b2e
CM
4935void free_extent_buffer(struct extent_buffer *eb)
4936{
242e18c7
CM
4937 int refs;
4938 int old;
d1310b2e
CM
4939 if (!eb)
4940 return;
4941
242e18c7
CM
4942 while (1) {
4943 refs = atomic_read(&eb->refs);
4944 if (refs <= 3)
4945 break;
4946 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4947 if (old == refs)
4948 return;
4949 }
4950
3083ee2e 4951 spin_lock(&eb->refs_lock);
815a51c7
JS
4952 if (atomic_read(&eb->refs) == 2 &&
4953 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4954 atomic_dec(&eb->refs);
4955
3083ee2e
JB
4956 if (atomic_read(&eb->refs) == 2 &&
4957 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4958 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4959 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4960 atomic_dec(&eb->refs);
4961
4962 /*
4963 * I know this is terrible, but it's temporary until we stop tracking
4964 * the uptodate bits and such for the extent buffers.
4965 */
f7a52a40 4966 release_extent_buffer(eb);
3083ee2e
JB
4967}
4968
4969void free_extent_buffer_stale(struct extent_buffer *eb)
4970{
4971 if (!eb)
d1310b2e
CM
4972 return;
4973
3083ee2e
JB
4974 spin_lock(&eb->refs_lock);
4975 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4976
0b32f4bb 4977 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4978 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4979 atomic_dec(&eb->refs);
f7a52a40 4980 release_extent_buffer(eb);
d1310b2e 4981}
d1310b2e 4982
1d4284bd 4983void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4984{
d1310b2e
CM
4985 unsigned long i;
4986 unsigned long num_pages;
4987 struct page *page;
4988
d1310b2e
CM
4989 num_pages = num_extent_pages(eb->start, eb->len);
4990
4991 for (i = 0; i < num_pages; i++) {
fb85fc9a 4992 page = eb->pages[i];
b9473439 4993 if (!PageDirty(page))
d2c3f4f6
CM
4994 continue;
4995
a61e6f29 4996 lock_page(page);
eb14ab8e
CM
4997 WARN_ON(!PagePrivate(page));
4998
d1310b2e 4999 clear_page_dirty_for_io(page);
0ee0fda0 5000 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5001 if (!PageDirty(page)) {
5002 radix_tree_tag_clear(&page->mapping->page_tree,
5003 page_index(page),
5004 PAGECACHE_TAG_DIRTY);
5005 }
0ee0fda0 5006 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5007 ClearPageError(page);
a61e6f29 5008 unlock_page(page);
d1310b2e 5009 }
0b32f4bb 5010 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5011}
d1310b2e 5012
0b32f4bb 5013int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5014{
5015 unsigned long i;
5016 unsigned long num_pages;
b9473439 5017 int was_dirty = 0;
d1310b2e 5018
0b32f4bb
JB
5019 check_buffer_tree_ref(eb);
5020
b9473439 5021 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5022
d1310b2e 5023 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5024 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5025 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5026
b9473439 5027 for (i = 0; i < num_pages; i++)
fb85fc9a 5028 set_page_dirty(eb->pages[i]);
b9473439 5029 return was_dirty;
d1310b2e 5030}
d1310b2e 5031
0b32f4bb 5032int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5033{
5034 unsigned long i;
5035 struct page *page;
5036 unsigned long num_pages;
5037
b4ce94de 5038 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5039 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5040 for (i = 0; i < num_pages; i++) {
fb85fc9a 5041 page = eb->pages[i];
33958dc6
CM
5042 if (page)
5043 ClearPageUptodate(page);
1259ab75
CM
5044 }
5045 return 0;
5046}
5047
0b32f4bb 5048int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5049{
5050 unsigned long i;
5051 struct page *page;
5052 unsigned long num_pages;
5053
0b32f4bb 5054 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5055 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5056 for (i = 0; i < num_pages; i++) {
fb85fc9a 5057 page = eb->pages[i];
d1310b2e
CM
5058 SetPageUptodate(page);
5059 }
5060 return 0;
5061}
d1310b2e 5062
0b32f4bb 5063int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5064{
0b32f4bb 5065 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5066}
d1310b2e
CM
5067
5068int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5069 struct extent_buffer *eb, u64 start, int wait,
f188591e 5070 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5071{
5072 unsigned long i;
5073 unsigned long start_i;
5074 struct page *page;
5075 int err;
5076 int ret = 0;
ce9adaa5
CM
5077 int locked_pages = 0;
5078 int all_uptodate = 1;
d1310b2e 5079 unsigned long num_pages;
727011e0 5080 unsigned long num_reads = 0;
a86c12c7 5081 struct bio *bio = NULL;
c8b97818 5082 unsigned long bio_flags = 0;
a86c12c7 5083
b4ce94de 5084 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5085 return 0;
5086
d1310b2e
CM
5087 if (start) {
5088 WARN_ON(start < eb->start);
5089 start_i = (start >> PAGE_CACHE_SHIFT) -
5090 (eb->start >> PAGE_CACHE_SHIFT);
5091 } else {
5092 start_i = 0;
5093 }
5094
5095 num_pages = num_extent_pages(eb->start, eb->len);
5096 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5097 page = eb->pages[i];
bb82ab88 5098 if (wait == WAIT_NONE) {
2db04966 5099 if (!trylock_page(page))
ce9adaa5 5100 goto unlock_exit;
d1310b2e
CM
5101 } else {
5102 lock_page(page);
5103 }
ce9adaa5 5104 locked_pages++;
727011e0
CM
5105 if (!PageUptodate(page)) {
5106 num_reads++;
ce9adaa5 5107 all_uptodate = 0;
727011e0 5108 }
ce9adaa5
CM
5109 }
5110 if (all_uptodate) {
5111 if (start_i == 0)
b4ce94de 5112 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5113 goto unlock_exit;
5114 }
5115
656f30db 5116 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5117 eb->read_mirror = 0;
0b32f4bb 5118 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5119 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5120 page = eb->pages[i];
ce9adaa5 5121 if (!PageUptodate(page)) {
f188591e 5122 ClearPageError(page);
a86c12c7 5123 err = __extent_read_full_page(tree, page,
f188591e 5124 get_extent, &bio,
d4c7ca86
JB
5125 mirror_num, &bio_flags,
5126 READ | REQ_META);
d397712b 5127 if (err)
d1310b2e 5128 ret = err;
d1310b2e
CM
5129 } else {
5130 unlock_page(page);
5131 }
5132 }
5133
355808c2 5134 if (bio) {
d4c7ca86
JB
5135 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5136 bio_flags);
79787eaa
JM
5137 if (err)
5138 return err;
355808c2 5139 }
a86c12c7 5140
bb82ab88 5141 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5142 return ret;
d397712b 5143
d1310b2e 5144 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5145 page = eb->pages[i];
d1310b2e 5146 wait_on_page_locked(page);
d397712b 5147 if (!PageUptodate(page))
d1310b2e 5148 ret = -EIO;
d1310b2e 5149 }
d397712b 5150
d1310b2e 5151 return ret;
ce9adaa5
CM
5152
5153unlock_exit:
5154 i = start_i;
d397712b 5155 while (locked_pages > 0) {
fb85fc9a 5156 page = eb->pages[i];
ce9adaa5
CM
5157 i++;
5158 unlock_page(page);
5159 locked_pages--;
5160 }
5161 return ret;
d1310b2e 5162}
d1310b2e
CM
5163
5164void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5165 unsigned long start,
5166 unsigned long len)
5167{
5168 size_t cur;
5169 size_t offset;
5170 struct page *page;
5171 char *kaddr;
5172 char *dst = (char *)dstv;
5173 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5174 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5175
5176 WARN_ON(start > eb->len);
5177 WARN_ON(start + len > eb->start + eb->len);
5178
778746b5 5179 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5180
d397712b 5181 while (len > 0) {
fb85fc9a 5182 page = eb->pages[i];
d1310b2e
CM
5183
5184 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5185 kaddr = page_address(page);
d1310b2e 5186 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5187
5188 dst += cur;
5189 len -= cur;
5190 offset = 0;
5191 i++;
5192 }
5193}
d1310b2e 5194
550ac1d8
GH
5195int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5196 unsigned long start,
5197 unsigned long len)
5198{
5199 size_t cur;
5200 size_t offset;
5201 struct page *page;
5202 char *kaddr;
5203 char __user *dst = (char __user *)dstv;
5204 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5205 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5206 int ret = 0;
5207
5208 WARN_ON(start > eb->len);
5209 WARN_ON(start + len > eb->start + eb->len);
5210
5211 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5212
5213 while (len > 0) {
fb85fc9a 5214 page = eb->pages[i];
550ac1d8
GH
5215
5216 cur = min(len, (PAGE_CACHE_SIZE - offset));
5217 kaddr = page_address(page);
5218 if (copy_to_user(dst, kaddr + offset, cur)) {
5219 ret = -EFAULT;
5220 break;
5221 }
5222
5223 dst += cur;
5224 len -= cur;
5225 offset = 0;
5226 i++;
5227 }
5228
5229 return ret;
5230}
5231
d1310b2e 5232int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5233 unsigned long min_len, char **map,
d1310b2e 5234 unsigned long *map_start,
a6591715 5235 unsigned long *map_len)
d1310b2e
CM
5236{
5237 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5238 char *kaddr;
5239 struct page *p;
5240 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5241 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5242 unsigned long end_i = (start_offset + start + min_len - 1) >>
5243 PAGE_CACHE_SHIFT;
5244
5245 if (i != end_i)
5246 return -EINVAL;
5247
5248 if (i == 0) {
5249 offset = start_offset;
5250 *map_start = 0;
5251 } else {
5252 offset = 0;
5253 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5254 }
d397712b 5255
d1310b2e 5256 if (start + min_len > eb->len) {
31b1a2bd 5257 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5258 "wanted %lu %lu\n",
5259 eb->start, eb->len, start, min_len);
85026533 5260 return -EINVAL;
d1310b2e
CM
5261 }
5262
fb85fc9a 5263 p = eb->pages[i];
a6591715 5264 kaddr = page_address(p);
d1310b2e
CM
5265 *map = kaddr + offset;
5266 *map_len = PAGE_CACHE_SIZE - offset;
5267 return 0;
5268}
d1310b2e 5269
d1310b2e
CM
5270int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5271 unsigned long start,
5272 unsigned long len)
5273{
5274 size_t cur;
5275 size_t offset;
5276 struct page *page;
5277 char *kaddr;
5278 char *ptr = (char *)ptrv;
5279 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5280 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5281 int ret = 0;
5282
5283 WARN_ON(start > eb->len);
5284 WARN_ON(start + len > eb->start + eb->len);
5285
778746b5 5286 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5287
d397712b 5288 while (len > 0) {
fb85fc9a 5289 page = eb->pages[i];
d1310b2e
CM
5290
5291 cur = min(len, (PAGE_CACHE_SIZE - offset));
5292
a6591715 5293 kaddr = page_address(page);
d1310b2e 5294 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5295 if (ret)
5296 break;
5297
5298 ptr += cur;
5299 len -= cur;
5300 offset = 0;
5301 i++;
5302 }
5303 return ret;
5304}
d1310b2e
CM
5305
5306void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5307 unsigned long start, unsigned long len)
5308{
5309 size_t cur;
5310 size_t offset;
5311 struct page *page;
5312 char *kaddr;
5313 char *src = (char *)srcv;
5314 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5315 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5316
5317 WARN_ON(start > eb->len);
5318 WARN_ON(start + len > eb->start + eb->len);
5319
778746b5 5320 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5321
d397712b 5322 while (len > 0) {
fb85fc9a 5323 page = eb->pages[i];
d1310b2e
CM
5324 WARN_ON(!PageUptodate(page));
5325
5326 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5327 kaddr = page_address(page);
d1310b2e 5328 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5329
5330 src += cur;
5331 len -= cur;
5332 offset = 0;
5333 i++;
5334 }
5335}
d1310b2e
CM
5336
5337void memset_extent_buffer(struct extent_buffer *eb, char c,
5338 unsigned long start, unsigned long len)
5339{
5340 size_t cur;
5341 size_t offset;
5342 struct page *page;
5343 char *kaddr;
5344 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5345 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5346
5347 WARN_ON(start > eb->len);
5348 WARN_ON(start + len > eb->start + eb->len);
5349
778746b5 5350 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5351
d397712b 5352 while (len > 0) {
fb85fc9a 5353 page = eb->pages[i];
d1310b2e
CM
5354 WARN_ON(!PageUptodate(page));
5355
5356 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5357 kaddr = page_address(page);
d1310b2e 5358 memset(kaddr + offset, c, cur);
d1310b2e
CM
5359
5360 len -= cur;
5361 offset = 0;
5362 i++;
5363 }
5364}
d1310b2e
CM
5365
5366void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5367 unsigned long dst_offset, unsigned long src_offset,
5368 unsigned long len)
5369{
5370 u64 dst_len = dst->len;
5371 size_t cur;
5372 size_t offset;
5373 struct page *page;
5374 char *kaddr;
5375 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5376 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5377
5378 WARN_ON(src->len != dst_len);
5379
5380 offset = (start_offset + dst_offset) &
778746b5 5381 (PAGE_CACHE_SIZE - 1);
d1310b2e 5382
d397712b 5383 while (len > 0) {
fb85fc9a 5384 page = dst->pages[i];
d1310b2e
CM
5385 WARN_ON(!PageUptodate(page));
5386
5387 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5388
a6591715 5389 kaddr = page_address(page);
d1310b2e 5390 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5391
5392 src_offset += cur;
5393 len -= cur;
5394 offset = 0;
5395 i++;
5396 }
5397}
d1310b2e 5398
3387206f
ST
5399static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5400{
5401 unsigned long distance = (src > dst) ? src - dst : dst - src;
5402 return distance < len;
5403}
5404
d1310b2e
CM
5405static void copy_pages(struct page *dst_page, struct page *src_page,
5406 unsigned long dst_off, unsigned long src_off,
5407 unsigned long len)
5408{
a6591715 5409 char *dst_kaddr = page_address(dst_page);
d1310b2e 5410 char *src_kaddr;
727011e0 5411 int must_memmove = 0;
d1310b2e 5412
3387206f 5413 if (dst_page != src_page) {
a6591715 5414 src_kaddr = page_address(src_page);
3387206f 5415 } else {
d1310b2e 5416 src_kaddr = dst_kaddr;
727011e0
CM
5417 if (areas_overlap(src_off, dst_off, len))
5418 must_memmove = 1;
3387206f 5419 }
d1310b2e 5420
727011e0
CM
5421 if (must_memmove)
5422 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5423 else
5424 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5425}
5426
5427void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5428 unsigned long src_offset, unsigned long len)
5429{
5430 size_t cur;
5431 size_t dst_off_in_page;
5432 size_t src_off_in_page;
5433 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5434 unsigned long dst_i;
5435 unsigned long src_i;
5436
5437 if (src_offset + len > dst->len) {
efe120a0 5438 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5439 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5440 BUG_ON(1);
5441 }
5442 if (dst_offset + len > dst->len) {
efe120a0 5443 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5444 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5445 BUG_ON(1);
5446 }
5447
d397712b 5448 while (len > 0) {
d1310b2e 5449 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5450 (PAGE_CACHE_SIZE - 1);
d1310b2e 5451 src_off_in_page = (start_offset + src_offset) &
778746b5 5452 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5453
5454 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5455 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5456
5457 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5458 src_off_in_page));
5459 cur = min_t(unsigned long, cur,
5460 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5461
fb85fc9a 5462 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5463 dst_off_in_page, src_off_in_page, cur);
5464
5465 src_offset += cur;
5466 dst_offset += cur;
5467 len -= cur;
5468 }
5469}
d1310b2e
CM
5470
5471void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5472 unsigned long src_offset, unsigned long len)
5473{
5474 size_t cur;
5475 size_t dst_off_in_page;
5476 size_t src_off_in_page;
5477 unsigned long dst_end = dst_offset + len - 1;
5478 unsigned long src_end = src_offset + len - 1;
5479 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5480 unsigned long dst_i;
5481 unsigned long src_i;
5482
5483 if (src_offset + len > dst->len) {
efe120a0 5484 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5485 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5486 BUG_ON(1);
5487 }
5488 if (dst_offset + len > dst->len) {
efe120a0 5489 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5490 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5491 BUG_ON(1);
5492 }
727011e0 5493 if (dst_offset < src_offset) {
d1310b2e
CM
5494 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5495 return;
5496 }
d397712b 5497 while (len > 0) {
d1310b2e
CM
5498 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5499 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5500
5501 dst_off_in_page = (start_offset + dst_end) &
778746b5 5502 (PAGE_CACHE_SIZE - 1);
d1310b2e 5503 src_off_in_page = (start_offset + src_end) &
778746b5 5504 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5505
5506 cur = min_t(unsigned long, len, src_off_in_page + 1);
5507 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5508 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5509 dst_off_in_page - cur + 1,
5510 src_off_in_page - cur + 1, cur);
5511
5512 dst_end -= cur;
5513 src_end -= cur;
5514 len -= cur;
5515 }
5516}
6af118ce 5517
f7a52a40 5518int try_release_extent_buffer(struct page *page)
19fe0a8b 5519{
6af118ce 5520 struct extent_buffer *eb;
6af118ce 5521
3083ee2e
JB
5522 /*
5523 * We need to make sure noboody is attaching this page to an eb right
5524 * now.
5525 */
5526 spin_lock(&page->mapping->private_lock);
5527 if (!PagePrivate(page)) {
5528 spin_unlock(&page->mapping->private_lock);
4f2de97a 5529 return 1;
45f49bce 5530 }
6af118ce 5531
3083ee2e
JB
5532 eb = (struct extent_buffer *)page->private;
5533 BUG_ON(!eb);
19fe0a8b
MX
5534
5535 /*
3083ee2e
JB
5536 * This is a little awful but should be ok, we need to make sure that
5537 * the eb doesn't disappear out from under us while we're looking at
5538 * this page.
19fe0a8b 5539 */
3083ee2e 5540 spin_lock(&eb->refs_lock);
0b32f4bb 5541 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5542 spin_unlock(&eb->refs_lock);
5543 spin_unlock(&page->mapping->private_lock);
5544 return 0;
b9473439 5545 }
3083ee2e 5546 spin_unlock(&page->mapping->private_lock);
897ca6e9 5547
19fe0a8b 5548 /*
3083ee2e
JB
5549 * If tree ref isn't set then we know the ref on this eb is a real ref,
5550 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5551 */
3083ee2e
JB
5552 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5553 spin_unlock(&eb->refs_lock);
5554 return 0;
b9473439 5555 }
19fe0a8b 5556
f7a52a40 5557 return release_extent_buffer(eb);
6af118ce 5558}
This page took 0.782948 seconds and 5 git commands to generate.