Merge tag 'efi-urgent' into x86/urgent
[deliverable/linux.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/statfs.h>
31#include <linux/compat.h>
5a0e3ad6 32#include <linux/slab.h>
55e301fd 33#include <linux/btrfs.h>
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
12fa8ec6 41#include "compat.h"
2aaa6655 42#include "volumes.h"
39279cc3 43
9247f317 44static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
45/*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68};
69
762f2263
MX
70static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72{
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83}
84
4cb5300b
CM
85/* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
8ddc4734 94static int __btrfs_add_inode_defrag(struct inode *inode,
4cb5300b
CM
95 struct inode_defrag *defrag)
96{
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
762f2263 101 int ret;
4cb5300b
CM
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
762f2263
MX
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
4cb5300b 110 p = &parent->rb_left;
762f2263 111 else if (ret > 0)
4cb5300b
CM
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
8ddc4734 122 return -EEXIST;
4cb5300b
CM
123 }
124 }
72ac3c0d 125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
8ddc4734
MX
128 return 0;
129}
4cb5300b 130
8ddc4734
MX
131static inline int __need_auto_defrag(struct btrfs_root *root)
132{
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
4cb5300b 138
8ddc4734 139 return 1;
4cb5300b
CM
140}
141
142/*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148{
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
4cb5300b 151 u64 transid;
8ddc4734 152 int ret;
4cb5300b 153
8ddc4734 154 if (!__need_auto_defrag(root))
4cb5300b
CM
155 return 0;
156
72ac3c0d 157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
4cb5300b
CM
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
9247f317 165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
166 if (!defrag)
167 return -ENOMEM;
168
a4689d2b 169 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
8ddc4734
MX
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
9247f317 184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 185 }
4cb5300b 186 spin_unlock(&root->fs_info->defrag_inodes_lock);
a0f98dde 187 return 0;
4cb5300b
CM
188}
189
190/*
8ddc4734
MX
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 194 */
8ddc4734
MX
195void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
197{
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216}
217
4cb5300b 218/*
26176e7c
MX
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
4cb5300b 221 */
26176e7c
MX
222static struct inode_defrag *
223btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
224{
225 struct inode_defrag *entry = NULL;
762f2263 226 struct inode_defrag tmp;
4cb5300b
CM
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
762f2263
MX
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
4cb5300b 233
26176e7c
MX
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
762f2263
MX
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
4cb5300b 242 p = parent->rb_left;
762f2263 243 else if (ret > 0)
4cb5300b
CM
244 p = parent->rb_right;
245 else
26176e7c 246 goto out;
4cb5300b
CM
247 }
248
26176e7c
MX
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
4cb5300b 252 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
253 else
254 entry = NULL;
4cb5300b 255 }
26176e7c
MX
256out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
4cb5300b
CM
261}
262
26176e7c 263void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
264{
265 struct inode_defrag *defrag;
26176e7c
MX
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284}
285
286#define BTRFS_DEFRAG_BATCH 1024
287
288static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290{
4cb5300b
CM
291 struct btrfs_root *inode_root;
292 struct inode *inode;
4cb5300b
CM
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 295 int num_defrag;
6f1c3605
LB
296 int index;
297 int ret;
4cb5300b 298
26176e7c
MX
299 /* get the inode */
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
6f1c3605
LB
303
304 index = srcu_read_lock(&fs_info->subvol_srcu);
305
26176e7c
MX
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
6f1c3605
LB
308 ret = PTR_ERR(inode_root);
309 goto cleanup;
310 }
311 if (btrfs_root_refs(&inode_root->root_item) == 0) {
312 ret = -ENOENT;
313 goto cleanup;
26176e7c
MX
314 }
315
316 key.objectid = defrag->ino;
317 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
318 key.offset = 0;
319 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
320 if (IS_ERR(inode)) {
6f1c3605
LB
321 ret = PTR_ERR(inode);
322 goto cleanup;
26176e7c 323 }
6f1c3605 324 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
325
326 /* do a chunk of defrag */
327 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
328 memset(&range, 0, sizeof(range));
329 range.len = (u64)-1;
26176e7c 330 range.start = defrag->last_offset;
b66f00da
MX
331
332 sb_start_write(fs_info->sb);
26176e7c
MX
333 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
334 BTRFS_DEFRAG_BATCH);
b66f00da 335 sb_end_write(fs_info->sb);
26176e7c
MX
336 /*
337 * if we filled the whole defrag batch, there
338 * must be more work to do. Queue this defrag
339 * again
340 */
341 if (num_defrag == BTRFS_DEFRAG_BATCH) {
342 defrag->last_offset = range.start;
343 btrfs_requeue_inode_defrag(inode, defrag);
344 } else if (defrag->last_offset && !defrag->cycled) {
345 /*
346 * we didn't fill our defrag batch, but
347 * we didn't start at zero. Make sure we loop
348 * around to the start of the file.
349 */
350 defrag->last_offset = 0;
351 defrag->cycled = 1;
352 btrfs_requeue_inode_defrag(inode, defrag);
353 } else {
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 }
356
357 iput(inode);
358 return 0;
6f1c3605
LB
359cleanup:
360 srcu_read_unlock(&fs_info->subvol_srcu, index);
361 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
362 return ret;
26176e7c
MX
363}
364
365/*
366 * run through the list of inodes in the FS that need
367 * defragging
368 */
369int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
370{
371 struct inode_defrag *defrag;
372 u64 first_ino = 0;
373 u64 root_objectid = 0;
4cb5300b
CM
374
375 atomic_inc(&fs_info->defrag_running);
4cb5300b 376 while(1) {
dc81cdc5
MX
377 /* Pause the auto defragger. */
378 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
379 &fs_info->fs_state))
380 break;
381
26176e7c
MX
382 if (!__need_auto_defrag(fs_info->tree_root))
383 break;
4cb5300b
CM
384
385 /* find an inode to defrag */
26176e7c
MX
386 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
387 first_ino);
4cb5300b 388 if (!defrag) {
26176e7c 389 if (root_objectid || first_ino) {
762f2263 390 root_objectid = 0;
4cb5300b
CM
391 first_ino = 0;
392 continue;
393 } else {
394 break;
395 }
396 }
397
4cb5300b 398 first_ino = defrag->ino + 1;
762f2263 399 root_objectid = defrag->root;
4cb5300b 400
26176e7c 401 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 402 }
4cb5300b
CM
403 atomic_dec(&fs_info->defrag_running);
404
405 /*
406 * during unmount, we use the transaction_wait queue to
407 * wait for the defragger to stop
408 */
409 wake_up(&fs_info->transaction_wait);
410 return 0;
411}
39279cc3 412
d352ac68
CM
413/* simple helper to fault in pages and copy. This should go away
414 * and be replaced with calls into generic code.
415 */
d397712b 416static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
d0215f3e 417 size_t write_bytes,
a1b32a59 418 struct page **prepared_pages,
11c65dcc 419 struct iov_iter *i)
39279cc3 420{
914ee295 421 size_t copied = 0;
d0215f3e 422 size_t total_copied = 0;
11c65dcc 423 int pg = 0;
39279cc3
CM
424 int offset = pos & (PAGE_CACHE_SIZE - 1);
425
11c65dcc 426 while (write_bytes > 0) {
39279cc3
CM
427 size_t count = min_t(size_t,
428 PAGE_CACHE_SIZE - offset, write_bytes);
11c65dcc 429 struct page *page = prepared_pages[pg];
914ee295
XZ
430 /*
431 * Copy data from userspace to the current page
432 *
433 * Disable pagefault to avoid recursive lock since
434 * the pages are already locked
435 */
436 pagefault_disable();
437 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
438 pagefault_enable();
11c65dcc 439
39279cc3
CM
440 /* Flush processor's dcache for this page */
441 flush_dcache_page(page);
31339acd
CM
442
443 /*
444 * if we get a partial write, we can end up with
445 * partially up to date pages. These add
446 * a lot of complexity, so make sure they don't
447 * happen by forcing this copy to be retried.
448 *
449 * The rest of the btrfs_file_write code will fall
450 * back to page at a time copies after we return 0.
451 */
452 if (!PageUptodate(page) && copied < count)
453 copied = 0;
454
11c65dcc
JB
455 iov_iter_advance(i, copied);
456 write_bytes -= copied;
914ee295 457 total_copied += copied;
39279cc3 458
914ee295 459 /* Return to btrfs_file_aio_write to fault page */
9f570b8d 460 if (unlikely(copied == 0))
914ee295 461 break;
11c65dcc
JB
462
463 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
464 offset += copied;
465 } else {
466 pg++;
467 offset = 0;
468 }
39279cc3 469 }
914ee295 470 return total_copied;
39279cc3
CM
471}
472
d352ac68
CM
473/*
474 * unlocks pages after btrfs_file_write is done with them
475 */
be1a12a0 476void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
477{
478 size_t i;
479 for (i = 0; i < num_pages; i++) {
d352ac68
CM
480 /* page checked is some magic around finding pages that
481 * have been modified without going through btrfs_set_page_dirty
482 * clear it here
483 */
4a096752 484 ClearPageChecked(pages[i]);
39279cc3
CM
485 unlock_page(pages[i]);
486 mark_page_accessed(pages[i]);
487 page_cache_release(pages[i]);
488 }
489}
490
d352ac68
CM
491/*
492 * after copy_from_user, pages need to be dirtied and we need to make
493 * sure holes are created between the current EOF and the start of
494 * any next extents (if required).
495 *
496 * this also makes the decision about creating an inline extent vs
497 * doing real data extents, marking pages dirty and delalloc as required.
498 */
be1a12a0
JB
499int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
500 struct page **pages, size_t num_pages,
501 loff_t pos, size_t write_bytes,
502 struct extent_state **cached)
39279cc3 503{
39279cc3 504 int err = 0;
a52d9a80 505 int i;
db94535d 506 u64 num_bytes;
a52d9a80
CM
507 u64 start_pos;
508 u64 end_of_last_block;
509 u64 end_pos = pos + write_bytes;
510 loff_t isize = i_size_read(inode);
39279cc3 511
5f39d397 512 start_pos = pos & ~((u64)root->sectorsize - 1);
fda2832f 513 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
39279cc3 514
db94535d 515 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 516 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
be1a12a0 517 cached);
d0215f3e
JB
518 if (err)
519 return err;
9ed74f2d 520
c8b97818
CM
521 for (i = 0; i < num_pages; i++) {
522 struct page *p = pages[i];
523 SetPageUptodate(p);
524 ClearPageChecked(p);
525 set_page_dirty(p);
a52d9a80 526 }
9f570b8d
JB
527
528 /*
529 * we've only changed i_size in ram, and we haven't updated
530 * the disk i_size. There is no need to log the inode
531 * at this time.
532 */
533 if (end_pos > isize)
a52d9a80 534 i_size_write(inode, end_pos);
a22285a6 535 return 0;
39279cc3
CM
536}
537
d352ac68
CM
538/*
539 * this drops all the extents in the cache that intersect the range
540 * [start, end]. Existing extents are split as required.
541 */
7014cdb4
JB
542void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
543 int skip_pinned)
a52d9a80
CM
544{
545 struct extent_map *em;
3b951516
CM
546 struct extent_map *split = NULL;
547 struct extent_map *split2 = NULL;
a52d9a80 548 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 549 u64 len = end - start + 1;
5dc562c5 550 u64 gen;
3b951516
CM
551 int ret;
552 int testend = 1;
5b21f2ed 553 unsigned long flags;
c8b97818 554 int compressed = 0;
a52d9a80 555
e6dcd2dc 556 WARN_ON(end < start);
3b951516 557 if (end == (u64)-1) {
39b5637f 558 len = (u64)-1;
3b951516
CM
559 testend = 0;
560 }
d397712b 561 while (1) {
7014cdb4
JB
562 int no_splits = 0;
563
3b951516 564 if (!split)
172ddd60 565 split = alloc_extent_map();
3b951516 566 if (!split2)
172ddd60 567 split2 = alloc_extent_map();
7014cdb4
JB
568 if (!split || !split2)
569 no_splits = 1;
3b951516 570
890871be 571 write_lock(&em_tree->lock);
39b5637f 572 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 573 if (!em) {
890871be 574 write_unlock(&em_tree->lock);
a52d9a80 575 break;
d1310b2e 576 }
5b21f2ed 577 flags = em->flags;
5dc562c5 578 gen = em->generation;
5b21f2ed 579 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 580 if (testend && em->start + em->len >= start + len) {
5b21f2ed 581 free_extent_map(em);
a1ed835e 582 write_unlock(&em_tree->lock);
5b21f2ed
ZY
583 break;
584 }
55ef6899
YZ
585 start = em->start + em->len;
586 if (testend)
5b21f2ed 587 len = start + len - (em->start + em->len);
5b21f2ed 588 free_extent_map(em);
a1ed835e 589 write_unlock(&em_tree->lock);
5b21f2ed
ZY
590 continue;
591 }
c8b97818 592 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 593 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 594 clear_bit(EXTENT_FLAG_LOGGING, &flags);
a52d9a80 595 remove_extent_mapping(em_tree, em);
7014cdb4
JB
596 if (no_splits)
597 goto next;
3b951516
CM
598
599 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
600 em->start < start) {
601 split->start = em->start;
602 split->len = start - em->start;
ff5b7ee3 603 split->orig_start = em->orig_start;
3b951516 604 split->block_start = em->block_start;
c8b97818
CM
605
606 if (compressed)
607 split->block_len = em->block_len;
608 else
609 split->block_len = split->len;
b4939680
JB
610 split->orig_block_len = max(split->block_len,
611 em->orig_block_len);
5dc562c5 612 split->generation = gen;
3b951516 613 split->bdev = em->bdev;
5b21f2ed 614 split->flags = flags;
261507a0 615 split->compress_type = em->compress_type;
3b951516 616 ret = add_extent_mapping(em_tree, split);
79787eaa 617 BUG_ON(ret); /* Logic error */
5dc562c5 618 list_move(&split->list, &em_tree->modified_extents);
3b951516
CM
619 free_extent_map(split);
620 split = split2;
621 split2 = NULL;
622 }
623 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
624 testend && em->start + em->len > start + len) {
625 u64 diff = start + len - em->start;
626
627 split->start = start + len;
628 split->len = em->start + em->len - (start + len);
629 split->bdev = em->bdev;
5b21f2ed 630 split->flags = flags;
261507a0 631 split->compress_type = em->compress_type;
5dc562c5 632 split->generation = gen;
b4939680
JB
633 split->orig_block_len = max(em->block_len,
634 em->orig_block_len);
3b951516 635
c8b97818
CM
636 if (compressed) {
637 split->block_len = em->block_len;
638 split->block_start = em->block_start;
445a6944 639 split->orig_start = em->orig_start;
c8b97818
CM
640 } else {
641 split->block_len = split->len;
642 split->block_start = em->block_start + diff;
70c8a91c 643 split->orig_start = em->orig_start;
c8b97818 644 }
3b951516
CM
645
646 ret = add_extent_mapping(em_tree, split);
79787eaa 647 BUG_ON(ret); /* Logic error */
5dc562c5 648 list_move(&split->list, &em_tree->modified_extents);
3b951516
CM
649 free_extent_map(split);
650 split = NULL;
651 }
7014cdb4 652next:
890871be 653 write_unlock(&em_tree->lock);
d1310b2e 654
a52d9a80
CM
655 /* once for us */
656 free_extent_map(em);
657 /* once for the tree*/
658 free_extent_map(em);
659 }
3b951516
CM
660 if (split)
661 free_extent_map(split);
662 if (split2)
663 free_extent_map(split2);
a52d9a80
CM
664}
665
39279cc3
CM
666/*
667 * this is very complex, but the basic idea is to drop all extents
668 * in the range start - end. hint_block is filled in with a block number
669 * that would be a good hint to the block allocator for this file.
670 *
671 * If an extent intersects the range but is not entirely inside the range
672 * it is either truncated or split. Anything entirely inside the range
673 * is deleted from the tree.
674 */
5dc562c5
JB
675int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
676 struct btrfs_root *root, struct inode *inode,
677 struct btrfs_path *path, u64 start, u64 end,
2aaa6655 678 u64 *drop_end, int drop_cache)
39279cc3 679{
5f39d397 680 struct extent_buffer *leaf;
920bbbfb 681 struct btrfs_file_extent_item *fi;
00f5c795 682 struct btrfs_key key;
920bbbfb 683 struct btrfs_key new_key;
33345d01 684 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
685 u64 search_start = start;
686 u64 disk_bytenr = 0;
687 u64 num_bytes = 0;
688 u64 extent_offset = 0;
689 u64 extent_end = 0;
690 int del_nr = 0;
691 int del_slot = 0;
692 int extent_type;
ccd467d6 693 int recow;
00f5c795 694 int ret;
dc7fdde3 695 int modify_tree = -1;
5dc562c5 696 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
c3308f84 697 int found = 0;
39279cc3 698
a1ed835e
CM
699 if (drop_cache)
700 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 701
dc7fdde3
CM
702 if (start >= BTRFS_I(inode)->disk_i_size)
703 modify_tree = 0;
704
d397712b 705 while (1) {
ccd467d6 706 recow = 0;
33345d01 707 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 708 search_start, modify_tree);
39279cc3 709 if (ret < 0)
920bbbfb
YZ
710 break;
711 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
712 leaf = path->nodes[0];
713 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 714 if (key.objectid == ino &&
920bbbfb
YZ
715 key.type == BTRFS_EXTENT_DATA_KEY)
716 path->slots[0]--;
39279cc3 717 }
920bbbfb 718 ret = 0;
8c2383c3 719next_slot:
5f39d397 720 leaf = path->nodes[0];
920bbbfb
YZ
721 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
722 BUG_ON(del_nr > 0);
723 ret = btrfs_next_leaf(root, path);
724 if (ret < 0)
725 break;
726 if (ret > 0) {
727 ret = 0;
728 break;
8c2383c3 729 }
920bbbfb
YZ
730 leaf = path->nodes[0];
731 recow = 1;
732 }
733
734 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 735 if (key.objectid > ino ||
920bbbfb
YZ
736 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
737 break;
738
739 fi = btrfs_item_ptr(leaf, path->slots[0],
740 struct btrfs_file_extent_item);
741 extent_type = btrfs_file_extent_type(leaf, fi);
742
743 if (extent_type == BTRFS_FILE_EXTENT_REG ||
744 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
745 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
746 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
747 extent_offset = btrfs_file_extent_offset(leaf, fi);
748 extent_end = key.offset +
749 btrfs_file_extent_num_bytes(leaf, fi);
750 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
751 extent_end = key.offset +
752 btrfs_file_extent_inline_len(leaf, fi);
8c2383c3 753 } else {
920bbbfb 754 WARN_ON(1);
8c2383c3 755 extent_end = search_start;
39279cc3
CM
756 }
757
920bbbfb
YZ
758 if (extent_end <= search_start) {
759 path->slots[0]++;
8c2383c3 760 goto next_slot;
39279cc3
CM
761 }
762
c3308f84 763 found = 1;
920bbbfb 764 search_start = max(key.offset, start);
dc7fdde3
CM
765 if (recow || !modify_tree) {
766 modify_tree = -1;
b3b4aa74 767 btrfs_release_path(path);
920bbbfb 768 continue;
39279cc3 769 }
6643558d 770
920bbbfb
YZ
771 /*
772 * | - range to drop - |
773 * | -------- extent -------- |
774 */
775 if (start > key.offset && end < extent_end) {
776 BUG_ON(del_nr > 0);
777 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
778
779 memcpy(&new_key, &key, sizeof(new_key));
780 new_key.offset = start;
781 ret = btrfs_duplicate_item(trans, root, path,
782 &new_key);
783 if (ret == -EAGAIN) {
b3b4aa74 784 btrfs_release_path(path);
920bbbfb 785 continue;
6643558d 786 }
920bbbfb
YZ
787 if (ret < 0)
788 break;
789
790 leaf = path->nodes[0];
791 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
792 struct btrfs_file_extent_item);
793 btrfs_set_file_extent_num_bytes(leaf, fi,
794 start - key.offset);
795
796 fi = btrfs_item_ptr(leaf, path->slots[0],
797 struct btrfs_file_extent_item);
798
799 extent_offset += start - key.offset;
800 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
801 btrfs_set_file_extent_num_bytes(leaf, fi,
802 extent_end - start);
803 btrfs_mark_buffer_dirty(leaf);
804
5dc562c5 805 if (update_refs && disk_bytenr > 0) {
771ed689 806 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
807 disk_bytenr, num_bytes, 0,
808 root->root_key.objectid,
809 new_key.objectid,
66d7e7f0 810 start - extent_offset, 0);
79787eaa 811 BUG_ON(ret); /* -ENOMEM */
771ed689 812 }
920bbbfb 813 key.offset = start;
6643558d 814 }
920bbbfb
YZ
815 /*
816 * | ---- range to drop ----- |
817 * | -------- extent -------- |
818 */
819 if (start <= key.offset && end < extent_end) {
820 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
6643558d 821
920bbbfb
YZ
822 memcpy(&new_key, &key, sizeof(new_key));
823 new_key.offset = end;
824 btrfs_set_item_key_safe(trans, root, path, &new_key);
6643558d 825
920bbbfb
YZ
826 extent_offset += end - key.offset;
827 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
828 btrfs_set_file_extent_num_bytes(leaf, fi,
829 extent_end - end);
830 btrfs_mark_buffer_dirty(leaf);
2671485d 831 if (update_refs && disk_bytenr > 0)
920bbbfb 832 inode_sub_bytes(inode, end - key.offset);
920bbbfb 833 break;
39279cc3 834 }
771ed689 835
920bbbfb
YZ
836 search_start = extent_end;
837 /*
838 * | ---- range to drop ----- |
839 * | -------- extent -------- |
840 */
841 if (start > key.offset && end >= extent_end) {
842 BUG_ON(del_nr > 0);
843 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
8c2383c3 844
920bbbfb
YZ
845 btrfs_set_file_extent_num_bytes(leaf, fi,
846 start - key.offset);
847 btrfs_mark_buffer_dirty(leaf);
2671485d 848 if (update_refs && disk_bytenr > 0)
920bbbfb 849 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
850 if (end == extent_end)
851 break;
c8b97818 852
920bbbfb
YZ
853 path->slots[0]++;
854 goto next_slot;
31840ae1
ZY
855 }
856
920bbbfb
YZ
857 /*
858 * | ---- range to drop ----- |
859 * | ------ extent ------ |
860 */
861 if (start <= key.offset && end >= extent_end) {
862 if (del_nr == 0) {
863 del_slot = path->slots[0];
864 del_nr = 1;
865 } else {
866 BUG_ON(del_slot + del_nr != path->slots[0]);
867 del_nr++;
868 }
31840ae1 869
5dc562c5
JB
870 if (update_refs &&
871 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 872 inode_sub_bytes(inode,
920bbbfb
YZ
873 extent_end - key.offset);
874 extent_end = ALIGN(extent_end,
875 root->sectorsize);
5dc562c5 876 } else if (update_refs && disk_bytenr > 0) {
31840ae1 877 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
878 disk_bytenr, num_bytes, 0,
879 root->root_key.objectid,
5d4f98a2 880 key.objectid, key.offset -
66d7e7f0 881 extent_offset, 0);
79787eaa 882 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
883 inode_sub_bytes(inode,
884 extent_end - key.offset);
31840ae1 885 }
31840ae1 886
920bbbfb
YZ
887 if (end == extent_end)
888 break;
889
890 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
891 path->slots[0]++;
892 goto next_slot;
893 }
894
895 ret = btrfs_del_items(trans, root, path, del_slot,
896 del_nr);
79787eaa
JM
897 if (ret) {
898 btrfs_abort_transaction(trans, root, ret);
5dc562c5 899 break;
79787eaa 900 }
920bbbfb
YZ
901
902 del_nr = 0;
903 del_slot = 0;
904
b3b4aa74 905 btrfs_release_path(path);
920bbbfb 906 continue;
39279cc3 907 }
920bbbfb
YZ
908
909 BUG_ON(1);
39279cc3 910 }
920bbbfb 911
79787eaa 912 if (!ret && del_nr > 0) {
920bbbfb 913 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
914 if (ret)
915 btrfs_abort_transaction(trans, root, ret);
6643558d 916 }
920bbbfb 917
2aaa6655 918 if (drop_end)
c3308f84 919 *drop_end = found ? min(end, extent_end) : end;
5dc562c5
JB
920 btrfs_release_path(path);
921 return ret;
922}
923
924int btrfs_drop_extents(struct btrfs_trans_handle *trans,
925 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 926 u64 end, int drop_cache)
5dc562c5
JB
927{
928 struct btrfs_path *path;
929 int ret;
930
931 path = btrfs_alloc_path();
932 if (!path)
933 return -ENOMEM;
2aaa6655 934 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
2671485d 935 drop_cache);
920bbbfb 936 btrfs_free_path(path);
39279cc3
CM
937 return ret;
938}
939
d899e052 940static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
941 u64 objectid, u64 bytenr, u64 orig_offset,
942 u64 *start, u64 *end)
d899e052
YZ
943{
944 struct btrfs_file_extent_item *fi;
945 struct btrfs_key key;
946 u64 extent_end;
947
948 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
949 return 0;
950
951 btrfs_item_key_to_cpu(leaf, &key, slot);
952 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
953 return 0;
954
955 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
956 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
957 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 958 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
959 btrfs_file_extent_compression(leaf, fi) ||
960 btrfs_file_extent_encryption(leaf, fi) ||
961 btrfs_file_extent_other_encoding(leaf, fi))
962 return 0;
963
964 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
965 if ((*start && *start != key.offset) || (*end && *end != extent_end))
966 return 0;
967
968 *start = key.offset;
969 *end = extent_end;
970 return 1;
971}
972
973/*
974 * Mark extent in the range start - end as written.
975 *
976 * This changes extent type from 'pre-allocated' to 'regular'. If only
977 * part of extent is marked as written, the extent will be split into
978 * two or three.
979 */
980int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
981 struct inode *inode, u64 start, u64 end)
982{
920bbbfb 983 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
984 struct extent_buffer *leaf;
985 struct btrfs_path *path;
986 struct btrfs_file_extent_item *fi;
987 struct btrfs_key key;
920bbbfb 988 struct btrfs_key new_key;
d899e052
YZ
989 u64 bytenr;
990 u64 num_bytes;
991 u64 extent_end;
5d4f98a2 992 u64 orig_offset;
d899e052
YZ
993 u64 other_start;
994 u64 other_end;
920bbbfb
YZ
995 u64 split;
996 int del_nr = 0;
997 int del_slot = 0;
6c7d54ac 998 int recow;
d899e052 999 int ret;
33345d01 1000 u64 ino = btrfs_ino(inode);
d899e052 1001
d899e052 1002 path = btrfs_alloc_path();
d8926bb3
MF
1003 if (!path)
1004 return -ENOMEM;
d899e052 1005again:
6c7d54ac 1006 recow = 0;
920bbbfb 1007 split = start;
33345d01 1008 key.objectid = ino;
d899e052 1009 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1010 key.offset = split;
d899e052
YZ
1011
1012 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1013 if (ret < 0)
1014 goto out;
d899e052
YZ
1015 if (ret > 0 && path->slots[0] > 0)
1016 path->slots[0]--;
1017
1018 leaf = path->nodes[0];
1019 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 1020 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
d899e052
YZ
1021 fi = btrfs_item_ptr(leaf, path->slots[0],
1022 struct btrfs_file_extent_item);
920bbbfb
YZ
1023 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1024 BTRFS_FILE_EXTENT_PREALLOC);
d899e052
YZ
1025 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1026 BUG_ON(key.offset > start || extent_end < end);
1027
1028 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1029 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1030 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1031 memcpy(&new_key, &key, sizeof(new_key));
1032
1033 if (start == key.offset && end < extent_end) {
1034 other_start = 0;
1035 other_end = start;
1036 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1037 ino, bytenr, orig_offset,
6c7d54ac
YZ
1038 &other_start, &other_end)) {
1039 new_key.offset = end;
1040 btrfs_set_item_key_safe(trans, root, path, &new_key);
1041 fi = btrfs_item_ptr(leaf, path->slots[0],
1042 struct btrfs_file_extent_item);
224ecce5
JB
1043 btrfs_set_file_extent_generation(leaf, fi,
1044 trans->transid);
6c7d54ac
YZ
1045 btrfs_set_file_extent_num_bytes(leaf, fi,
1046 extent_end - end);
1047 btrfs_set_file_extent_offset(leaf, fi,
1048 end - orig_offset);
1049 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1050 struct btrfs_file_extent_item);
224ecce5
JB
1051 btrfs_set_file_extent_generation(leaf, fi,
1052 trans->transid);
6c7d54ac
YZ
1053 btrfs_set_file_extent_num_bytes(leaf, fi,
1054 end - other_start);
1055 btrfs_mark_buffer_dirty(leaf);
1056 goto out;
1057 }
1058 }
1059
1060 if (start > key.offset && end == extent_end) {
1061 other_start = end;
1062 other_end = 0;
1063 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1064 ino, bytenr, orig_offset,
6c7d54ac
YZ
1065 &other_start, &other_end)) {
1066 fi = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_file_extent_item);
1068 btrfs_set_file_extent_num_bytes(leaf, fi,
1069 start - key.offset);
224ecce5
JB
1070 btrfs_set_file_extent_generation(leaf, fi,
1071 trans->transid);
6c7d54ac
YZ
1072 path->slots[0]++;
1073 new_key.offset = start;
1074 btrfs_set_item_key_safe(trans, root, path, &new_key);
1075
1076 fi = btrfs_item_ptr(leaf, path->slots[0],
1077 struct btrfs_file_extent_item);
224ecce5
JB
1078 btrfs_set_file_extent_generation(leaf, fi,
1079 trans->transid);
6c7d54ac
YZ
1080 btrfs_set_file_extent_num_bytes(leaf, fi,
1081 other_end - start);
1082 btrfs_set_file_extent_offset(leaf, fi,
1083 start - orig_offset);
1084 btrfs_mark_buffer_dirty(leaf);
1085 goto out;
1086 }
1087 }
d899e052 1088
920bbbfb
YZ
1089 while (start > key.offset || end < extent_end) {
1090 if (key.offset == start)
1091 split = end;
1092
920bbbfb
YZ
1093 new_key.offset = split;
1094 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1095 if (ret == -EAGAIN) {
b3b4aa74 1096 btrfs_release_path(path);
920bbbfb 1097 goto again;
d899e052 1098 }
79787eaa
JM
1099 if (ret < 0) {
1100 btrfs_abort_transaction(trans, root, ret);
1101 goto out;
1102 }
d899e052 1103
920bbbfb
YZ
1104 leaf = path->nodes[0];
1105 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1106 struct btrfs_file_extent_item);
224ecce5 1107 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1108 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1109 split - key.offset);
1110
1111 fi = btrfs_item_ptr(leaf, path->slots[0],
1112 struct btrfs_file_extent_item);
1113
224ecce5 1114 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1115 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1116 btrfs_set_file_extent_num_bytes(leaf, fi,
1117 extent_end - split);
d899e052
YZ
1118 btrfs_mark_buffer_dirty(leaf);
1119
920bbbfb
YZ
1120 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1121 root->root_key.objectid,
66d7e7f0 1122 ino, orig_offset, 0);
79787eaa 1123 BUG_ON(ret); /* -ENOMEM */
d899e052 1124
920bbbfb
YZ
1125 if (split == start) {
1126 key.offset = start;
1127 } else {
1128 BUG_ON(start != key.offset);
d899e052 1129 path->slots[0]--;
920bbbfb 1130 extent_end = end;
d899e052 1131 }
6c7d54ac 1132 recow = 1;
d899e052
YZ
1133 }
1134
920bbbfb
YZ
1135 other_start = end;
1136 other_end = 0;
6c7d54ac 1137 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1138 ino, bytenr, orig_offset,
6c7d54ac
YZ
1139 &other_start, &other_end)) {
1140 if (recow) {
b3b4aa74 1141 btrfs_release_path(path);
6c7d54ac
YZ
1142 goto again;
1143 }
920bbbfb
YZ
1144 extent_end = other_end;
1145 del_slot = path->slots[0] + 1;
1146 del_nr++;
1147 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1148 0, root->root_key.objectid,
66d7e7f0 1149 ino, orig_offset, 0);
79787eaa 1150 BUG_ON(ret); /* -ENOMEM */
d899e052 1151 }
920bbbfb
YZ
1152 other_start = 0;
1153 other_end = start;
6c7d54ac 1154 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1155 ino, bytenr, orig_offset,
6c7d54ac
YZ
1156 &other_start, &other_end)) {
1157 if (recow) {
b3b4aa74 1158 btrfs_release_path(path);
6c7d54ac
YZ
1159 goto again;
1160 }
920bbbfb
YZ
1161 key.offset = other_start;
1162 del_slot = path->slots[0];
1163 del_nr++;
1164 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1165 0, root->root_key.objectid,
66d7e7f0 1166 ino, orig_offset, 0);
79787eaa 1167 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1168 }
1169 if (del_nr == 0) {
3f6fae95
SL
1170 fi = btrfs_item_ptr(leaf, path->slots[0],
1171 struct btrfs_file_extent_item);
920bbbfb
YZ
1172 btrfs_set_file_extent_type(leaf, fi,
1173 BTRFS_FILE_EXTENT_REG);
224ecce5 1174 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1175 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1176 } else {
3f6fae95
SL
1177 fi = btrfs_item_ptr(leaf, del_slot - 1,
1178 struct btrfs_file_extent_item);
6c7d54ac
YZ
1179 btrfs_set_file_extent_type(leaf, fi,
1180 BTRFS_FILE_EXTENT_REG);
224ecce5 1181 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1182 btrfs_set_file_extent_num_bytes(leaf, fi,
1183 extent_end - key.offset);
1184 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1185
6c7d54ac 1186 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
1187 if (ret < 0) {
1188 btrfs_abort_transaction(trans, root, ret);
1189 goto out;
1190 }
6c7d54ac 1191 }
920bbbfb 1192out:
d899e052
YZ
1193 btrfs_free_path(path);
1194 return 0;
1195}
1196
b1bf862e
CM
1197/*
1198 * on error we return an unlocked page and the error value
1199 * on success we return a locked page and 0
1200 */
b6316429
JB
1201static int prepare_uptodate_page(struct page *page, u64 pos,
1202 bool force_uptodate)
b1bf862e
CM
1203{
1204 int ret = 0;
1205
b6316429
JB
1206 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1207 !PageUptodate(page)) {
b1bf862e
CM
1208 ret = btrfs_readpage(NULL, page);
1209 if (ret)
1210 return ret;
1211 lock_page(page);
1212 if (!PageUptodate(page)) {
1213 unlock_page(page);
1214 return -EIO;
1215 }
1216 }
1217 return 0;
1218}
1219
39279cc3 1220/*
d352ac68
CM
1221 * this gets pages into the page cache and locks them down, it also properly
1222 * waits for data=ordered extents to finish before allowing the pages to be
1223 * modified.
39279cc3 1224 */
d397712b 1225static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
98ed5174
CM
1226 struct page **pages, size_t num_pages,
1227 loff_t pos, unsigned long first_index,
b6316429 1228 size_t write_bytes, bool force_uptodate)
39279cc3 1229{
2ac55d41 1230 struct extent_state *cached_state = NULL;
39279cc3
CM
1231 int i;
1232 unsigned long index = pos >> PAGE_CACHE_SHIFT;
496ad9aa 1233 struct inode *inode = file_inode(file);
3b16a4e3 1234 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
39279cc3 1235 int err = 0;
b1bf862e 1236 int faili = 0;
8c2383c3 1237 u64 start_pos;
e6dcd2dc 1238 u64 last_pos;
8c2383c3 1239
5f39d397 1240 start_pos = pos & ~((u64)root->sectorsize - 1);
e6dcd2dc 1241 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
39279cc3 1242
e6dcd2dc 1243again:
39279cc3 1244 for (i = 0; i < num_pages; i++) {
a94733d0 1245 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1246 mask | __GFP_WRITE);
39279cc3 1247 if (!pages[i]) {
b1bf862e
CM
1248 faili = i - 1;
1249 err = -ENOMEM;
1250 goto fail;
1251 }
1252
1253 if (i == 0)
b6316429
JB
1254 err = prepare_uptodate_page(pages[i], pos,
1255 force_uptodate);
b1bf862e
CM
1256 if (i == num_pages - 1)
1257 err = prepare_uptodate_page(pages[i],
b6316429 1258 pos + write_bytes, false);
b1bf862e
CM
1259 if (err) {
1260 page_cache_release(pages[i]);
1261 faili = i - 1;
1262 goto fail;
39279cc3 1263 }
ccd467d6 1264 wait_on_page_writeback(pages[i]);
39279cc3 1265 }
b1bf862e 1266 err = 0;
0762704b 1267 if (start_pos < inode->i_size) {
e6dcd2dc 1268 struct btrfs_ordered_extent *ordered;
2ac55d41 1269 lock_extent_bits(&BTRFS_I(inode)->io_tree,
d0082371 1270 start_pos, last_pos - 1, 0, &cached_state);
d397712b
CM
1271 ordered = btrfs_lookup_first_ordered_extent(inode,
1272 last_pos - 1);
e6dcd2dc
CM
1273 if (ordered &&
1274 ordered->file_offset + ordered->len > start_pos &&
1275 ordered->file_offset < last_pos) {
1276 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
1277 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1278 start_pos, last_pos - 1,
1279 &cached_state, GFP_NOFS);
e6dcd2dc
CM
1280 for (i = 0; i < num_pages; i++) {
1281 unlock_page(pages[i]);
1282 page_cache_release(pages[i]);
1283 }
1284 btrfs_wait_ordered_range(inode, start_pos,
1285 last_pos - start_pos);
1286 goto again;
1287 }
1288 if (ordered)
1289 btrfs_put_ordered_extent(ordered);
1290
2ac55d41 1291 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
32c00aff 1292 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
1293 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1294 0, 0, &cached_state, GFP_NOFS);
2ac55d41
JB
1295 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1296 start_pos, last_pos - 1, &cached_state,
1297 GFP_NOFS);
0762704b 1298 }
e6dcd2dc 1299 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1300 if (clear_page_dirty_for_io(pages[i]))
1301 account_page_redirty(pages[i]);
e6dcd2dc
CM
1302 set_page_extent_mapped(pages[i]);
1303 WARN_ON(!PageLocked(pages[i]));
1304 }
39279cc3 1305 return 0;
b1bf862e
CM
1306fail:
1307 while (faili >= 0) {
1308 unlock_page(pages[faili]);
1309 page_cache_release(pages[faili]);
1310 faili--;
1311 }
1312 return err;
1313
39279cc3
CM
1314}
1315
d0215f3e
JB
1316static noinline ssize_t __btrfs_buffered_write(struct file *file,
1317 struct iov_iter *i,
1318 loff_t pos)
4b46fce2 1319{
496ad9aa 1320 struct inode *inode = file_inode(file);
11c65dcc 1321 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1322 struct page **pages = NULL;
39279cc3 1323 unsigned long first_index;
d0215f3e
JB
1324 size_t num_written = 0;
1325 int nrptrs;
c9149235 1326 int ret = 0;
b6316429 1327 bool force_page_uptodate = false;
4b46fce2 1328
d0215f3e 1329 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
11c65dcc
JB
1330 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1331 (sizeof(struct page *)));
142349f5
WF
1332 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1333 nrptrs = max(nrptrs, 8);
8c2383c3 1334 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1335 if (!pages)
1336 return -ENOMEM;
ab93dbec 1337
39279cc3 1338 first_index = pos >> PAGE_CACHE_SHIFT;
39279cc3 1339
d0215f3e 1340 while (iov_iter_count(i) > 0) {
39279cc3 1341 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
d0215f3e 1342 size_t write_bytes = min(iov_iter_count(i),
11c65dcc 1343 nrptrs * (size_t)PAGE_CACHE_SIZE -
8c2383c3 1344 offset);
3a90983d
YZ
1345 size_t num_pages = (write_bytes + offset +
1346 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0215f3e
JB
1347 size_t dirty_pages;
1348 size_t copied;
39279cc3 1349
8c2383c3 1350 WARN_ON(num_pages > nrptrs);
1832a6d5 1351
914ee295
XZ
1352 /*
1353 * Fault pages before locking them in prepare_pages
1354 * to avoid recursive lock
1355 */
d0215f3e 1356 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1357 ret = -EFAULT;
d0215f3e 1358 break;
914ee295
XZ
1359 }
1360
1361 ret = btrfs_delalloc_reserve_space(inode,
1362 num_pages << PAGE_CACHE_SHIFT);
1832a6d5 1363 if (ret)
d0215f3e 1364 break;
1832a6d5 1365
4a64001f
JB
1366 /*
1367 * This is going to setup the pages array with the number of
1368 * pages we want, so we don't really need to worry about the
1369 * contents of pages from loop to loop
1370 */
39279cc3 1371 ret = prepare_pages(root, file, pages, num_pages,
b6316429
JB
1372 pos, first_index, write_bytes,
1373 force_page_uptodate);
6a63209f 1374 if (ret) {
914ee295
XZ
1375 btrfs_delalloc_release_space(inode,
1376 num_pages << PAGE_CACHE_SHIFT);
d0215f3e 1377 break;
6a63209f 1378 }
39279cc3 1379
914ee295 1380 copied = btrfs_copy_from_user(pos, num_pages,
d0215f3e 1381 write_bytes, pages, i);
b1bf862e
CM
1382
1383 /*
1384 * if we have trouble faulting in the pages, fall
1385 * back to one page at a time
1386 */
1387 if (copied < write_bytes)
1388 nrptrs = 1;
1389
b6316429
JB
1390 if (copied == 0) {
1391 force_page_uptodate = true;
b1bf862e 1392 dirty_pages = 0;
b6316429
JB
1393 } else {
1394 force_page_uptodate = false;
b1bf862e
CM
1395 dirty_pages = (copied + offset +
1396 PAGE_CACHE_SIZE - 1) >>
1397 PAGE_CACHE_SHIFT;
b6316429 1398 }
914ee295 1399
d0215f3e
JB
1400 /*
1401 * If we had a short copy we need to release the excess delaloc
1402 * bytes we reserved. We need to increment outstanding_extents
1403 * because btrfs_delalloc_release_space will decrement it, but
1404 * we still have an outstanding extent for the chunk we actually
1405 * managed to copy.
1406 */
914ee295 1407 if (num_pages > dirty_pages) {
9e0baf60
JB
1408 if (copied > 0) {
1409 spin_lock(&BTRFS_I(inode)->lock);
1410 BTRFS_I(inode)->outstanding_extents++;
1411 spin_unlock(&BTRFS_I(inode)->lock);
1412 }
914ee295
XZ
1413 btrfs_delalloc_release_space(inode,
1414 (num_pages - dirty_pages) <<
1415 PAGE_CACHE_SHIFT);
1416 }
1417
1418 if (copied > 0) {
be1a12a0
JB
1419 ret = btrfs_dirty_pages(root, inode, pages,
1420 dirty_pages, pos, copied,
1421 NULL);
d0215f3e
JB
1422 if (ret) {
1423 btrfs_delalloc_release_space(inode,
1424 dirty_pages << PAGE_CACHE_SHIFT);
1425 btrfs_drop_pages(pages, num_pages);
1426 break;
1427 }
54aa1f4d 1428 }
39279cc3 1429
39279cc3
CM
1430 btrfs_drop_pages(pages, num_pages);
1431
d0215f3e
JB
1432 cond_resched();
1433
d0e1d66b 1434 balance_dirty_pages_ratelimited(inode->i_mapping);
d0215f3e 1435 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
b53d3f5d 1436 btrfs_btree_balance_dirty(root);
cb843a6f 1437
914ee295
XZ
1438 pos += copied;
1439 num_written += copied;
d0215f3e 1440 }
39279cc3 1441
d0215f3e
JB
1442 kfree(pages);
1443
1444 return num_written ? num_written : ret;
1445}
1446
1447static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1448 const struct iovec *iov,
1449 unsigned long nr_segs, loff_t pos,
1450 loff_t *ppos, size_t count, size_t ocount)
1451{
1452 struct file *file = iocb->ki_filp;
d0215f3e
JB
1453 struct iov_iter i;
1454 ssize_t written;
1455 ssize_t written_buffered;
1456 loff_t endbyte;
1457 int err;
1458
1459 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1460 count, ocount);
1461
d0215f3e
JB
1462 if (written < 0 || written == count)
1463 return written;
1464
1465 pos += written;
1466 count -= written;
1467 iov_iter_init(&i, iov, nr_segs, count, written);
1468 written_buffered = __btrfs_buffered_write(file, &i, pos);
1469 if (written_buffered < 0) {
1470 err = written_buffered;
1471 goto out;
39279cc3 1472 }
d0215f3e
JB
1473 endbyte = pos + written_buffered - 1;
1474 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1475 if (err)
1476 goto out;
1477 written += written_buffered;
1478 *ppos = pos + written_buffered;
1479 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1480 endbyte >> PAGE_CACHE_SHIFT);
39279cc3 1481out:
d0215f3e
JB
1482 return written ? written : err;
1483}
5b92ee72 1484
6c760c07
JB
1485static void update_time_for_write(struct inode *inode)
1486{
1487 struct timespec now;
1488
1489 if (IS_NOCMTIME(inode))
1490 return;
1491
1492 now = current_fs_time(inode->i_sb);
1493 if (!timespec_equal(&inode->i_mtime, &now))
1494 inode->i_mtime = now;
1495
1496 if (!timespec_equal(&inode->i_ctime, &now))
1497 inode->i_ctime = now;
1498
1499 if (IS_I_VERSION(inode))
1500 inode_inc_iversion(inode);
1501}
1502
d0215f3e
JB
1503static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1504 const struct iovec *iov,
1505 unsigned long nr_segs, loff_t pos)
1506{
1507 struct file *file = iocb->ki_filp;
496ad9aa 1508 struct inode *inode = file_inode(file);
d0215f3e
JB
1509 struct btrfs_root *root = BTRFS_I(inode)->root;
1510 loff_t *ppos = &iocb->ki_pos;
0c1a98c8 1511 u64 start_pos;
d0215f3e
JB
1512 ssize_t num_written = 0;
1513 ssize_t err = 0;
1514 size_t count, ocount;
b812ce28 1515 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
d0215f3e 1516
b2b5ef5c 1517 sb_start_write(inode->i_sb);
d0215f3e
JB
1518
1519 mutex_lock(&inode->i_mutex);
1520
1521 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1522 if (err) {
1523 mutex_unlock(&inode->i_mutex);
1524 goto out;
1525 }
1526 count = ocount;
1527
1528 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1529 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1530 if (err) {
1531 mutex_unlock(&inode->i_mutex);
1532 goto out;
1533 }
1534
1535 if (count == 0) {
1536 mutex_unlock(&inode->i_mutex);
1537 goto out;
1538 }
1539
1540 err = file_remove_suid(file);
1541 if (err) {
1542 mutex_unlock(&inode->i_mutex);
1543 goto out;
1544 }
1545
1546 /*
1547 * If BTRFS flips readonly due to some impossible error
1548 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1549 * although we have opened a file as writable, we have
1550 * to stop this write operation to ensure FS consistency.
1551 */
87533c47 1552 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
d0215f3e
JB
1553 mutex_unlock(&inode->i_mutex);
1554 err = -EROFS;
1555 goto out;
1556 }
1557
6c760c07
JB
1558 /*
1559 * We reserve space for updating the inode when we reserve space for the
1560 * extent we are going to write, so we will enospc out there. We don't
1561 * need to start yet another transaction to update the inode as we will
1562 * update the inode when we finish writing whatever data we write.
1563 */
1564 update_time_for_write(inode);
d0215f3e 1565
0c1a98c8
MX
1566 start_pos = round_down(pos, root->sectorsize);
1567 if (start_pos > i_size_read(inode)) {
1568 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1569 if (err) {
1570 mutex_unlock(&inode->i_mutex);
1571 goto out;
1572 }
1573 }
1574
b812ce28
JB
1575 if (sync)
1576 atomic_inc(&BTRFS_I(inode)->sync_writers);
1577
d0215f3e
JB
1578 if (unlikely(file->f_flags & O_DIRECT)) {
1579 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1580 pos, ppos, count, ocount);
1581 } else {
1582 struct iov_iter i;
1583
1584 iov_iter_init(&i, iov, nr_segs, count, num_written);
1585
1586 num_written = __btrfs_buffered_write(file, &i, pos);
1587 if (num_written > 0)
1588 *ppos = pos + num_written;
1589 }
1590
1591 mutex_unlock(&inode->i_mutex);
2ff3e9b6 1592
5a3f23d5
CM
1593 /*
1594 * we want to make sure fsync finds this change
1595 * but we haven't joined a transaction running right now.
1596 *
1597 * Later on, someone is sure to update the inode and get the
1598 * real transid recorded.
1599 *
1600 * We set last_trans now to the fs_info generation + 1,
1601 * this will either be one more than the running transaction
1602 * or the generation used for the next transaction if there isn't
1603 * one running right now.
6c760c07
JB
1604 *
1605 * We also have to set last_sub_trans to the current log transid,
1606 * otherwise subsequent syncs to a file that's been synced in this
1607 * transaction will appear to have already occured.
5a3f23d5
CM
1608 */
1609 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
6c760c07 1610 BTRFS_I(inode)->last_sub_trans = root->log_transid;
d0215f3e
JB
1611 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1612 err = generic_write_sync(file, pos, num_written);
1613 if (err < 0 && num_written > 0)
2ff3e9b6
CM
1614 num_written = err;
1615 }
0a3404dc 1616
b812ce28
JB
1617 if (sync)
1618 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1619out:
b2b5ef5c 1620 sb_end_write(inode->i_sb);
39279cc3 1621 current->backing_dev_info = NULL;
39279cc3
CM
1622 return num_written ? num_written : err;
1623}
1624
d397712b 1625int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1626{
5a3f23d5
CM
1627 /*
1628 * ordered_data_close is set by settattr when we are about to truncate
1629 * a file from a non-zero size to a zero size. This tries to
1630 * flush down new bytes that may have been written if the
1631 * application were using truncate to replace a file in place.
1632 */
72ac3c0d
JB
1633 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1634 &BTRFS_I(inode)->runtime_flags)) {
569e0f35
JB
1635 struct btrfs_trans_handle *trans;
1636 struct btrfs_root *root = BTRFS_I(inode)->root;
1637
1638 /*
1639 * We need to block on a committing transaction to keep us from
1640 * throwing a ordered operation on to the list and causing
1641 * something like sync to deadlock trying to flush out this
1642 * inode.
1643 */
1644 trans = btrfs_start_transaction(root, 0);
1645 if (IS_ERR(trans))
1646 return PTR_ERR(trans);
1647 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1648 btrfs_end_transaction(trans, root);
5a3f23d5
CM
1649 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1650 filemap_flush(inode->i_mapping);
1651 }
6bf13c0c
SW
1652 if (filp->private_data)
1653 btrfs_ioctl_trans_end(filp);
e1b81e67
M
1654 return 0;
1655}
1656
d352ac68
CM
1657/*
1658 * fsync call for both files and directories. This logs the inode into
1659 * the tree log instead of forcing full commits whenever possible.
1660 *
1661 * It needs to call filemap_fdatawait so that all ordered extent updates are
1662 * in the metadata btree are up to date for copying to the log.
1663 *
1664 * It drops the inode mutex before doing the tree log commit. This is an
1665 * important optimization for directories because holding the mutex prevents
1666 * new operations on the dir while we write to disk.
1667 */
02c24a82 1668int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1669{
7ea80859 1670 struct dentry *dentry = file->f_path.dentry;
39279cc3
CM
1671 struct inode *inode = dentry->d_inode;
1672 struct btrfs_root *root = BTRFS_I(inode)->root;
15ee9bc7 1673 int ret = 0;
39279cc3 1674 struct btrfs_trans_handle *trans;
2ab28f32 1675 bool full_sync = 0;
39279cc3 1676
1abe9b8a 1677 trace_btrfs_sync_file(file, datasync);
257c62e1 1678
90abccf2
MX
1679 /*
1680 * We write the dirty pages in the range and wait until they complete
1681 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1682 * multi-task, and make the performance up. See
1683 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1684 */
b812ce28 1685 atomic_inc(&BTRFS_I(inode)->sync_writers);
2ab28f32
JB
1686 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1687 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1688 &BTRFS_I(inode)->runtime_flags))
1689 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
b812ce28 1690 atomic_dec(&BTRFS_I(inode)->sync_writers);
90abccf2
MX
1691 if (ret)
1692 return ret;
1693
02c24a82
JB
1694 mutex_lock(&inode->i_mutex);
1695
0885ef5b 1696 /*
90abccf2
MX
1697 * We flush the dirty pages again to avoid some dirty pages in the
1698 * range being left.
0885ef5b 1699 */
2ecb7923 1700 atomic_inc(&root->log_batch);
2ab28f32
JB
1701 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1702 &BTRFS_I(inode)->runtime_flags);
1703 if (full_sync)
1704 btrfs_wait_ordered_range(inode, start, end - start + 1);
2ecb7923 1705 atomic_inc(&root->log_batch);
257c62e1 1706
39279cc3 1707 /*
15ee9bc7
JB
1708 * check the transaction that last modified this inode
1709 * and see if its already been committed
39279cc3 1710 */
02c24a82
JB
1711 if (!BTRFS_I(inode)->last_trans) {
1712 mutex_unlock(&inode->i_mutex);
15ee9bc7 1713 goto out;
02c24a82 1714 }
a2135011 1715
257c62e1
CM
1716 /*
1717 * if the last transaction that changed this file was before
1718 * the current transaction, we can bail out now without any
1719 * syncing
1720 */
a4abeea4 1721 smp_mb();
22ee6985
JB
1722 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1723 BTRFS_I(inode)->last_trans <=
15ee9bc7
JB
1724 root->fs_info->last_trans_committed) {
1725 BTRFS_I(inode)->last_trans = 0;
5dc562c5
JB
1726
1727 /*
1728 * We'v had everything committed since the last time we were
1729 * modified so clear this flag in case it was set for whatever
1730 * reason, it's no longer relevant.
1731 */
1732 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1733 &BTRFS_I(inode)->runtime_flags);
02c24a82 1734 mutex_unlock(&inode->i_mutex);
15ee9bc7
JB
1735 goto out;
1736 }
15ee9bc7
JB
1737
1738 /*
a52d9a80
CM
1739 * ok we haven't committed the transaction yet, lets do a commit
1740 */
6f902af4 1741 if (file->private_data)
6bf13c0c
SW
1742 btrfs_ioctl_trans_end(file);
1743
a22285a6
YZ
1744 trans = btrfs_start_transaction(root, 0);
1745 if (IS_ERR(trans)) {
1746 ret = PTR_ERR(trans);
02c24a82 1747 mutex_unlock(&inode->i_mutex);
39279cc3
CM
1748 goto out;
1749 }
e02119d5 1750
2cfbd50b 1751 ret = btrfs_log_dentry_safe(trans, root, dentry);
02c24a82
JB
1752 if (ret < 0) {
1753 mutex_unlock(&inode->i_mutex);
e02119d5 1754 goto out;
02c24a82 1755 }
49eb7e46
CM
1756
1757 /* we've logged all the items and now have a consistent
1758 * version of the file in the log. It is possible that
1759 * someone will come in and modify the file, but that's
1760 * fine because the log is consistent on disk, and we
1761 * have references to all of the file's extents
1762 *
1763 * It is possible that someone will come in and log the
1764 * file again, but that will end up using the synchronization
1765 * inside btrfs_sync_log to keep things safe.
1766 */
02c24a82 1767 mutex_unlock(&inode->i_mutex);
49eb7e46 1768
257c62e1
CM
1769 if (ret != BTRFS_NO_LOG_SYNC) {
1770 if (ret > 0) {
2ab28f32
JB
1771 /*
1772 * If we didn't already wait for ordered extents we need
1773 * to do that now.
1774 */
1775 if (!full_sync)
1776 btrfs_wait_ordered_range(inode, start,
1777 end - start + 1);
12fcfd22 1778 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
1779 } else {
1780 ret = btrfs_sync_log(trans, root);
2ab28f32 1781 if (ret == 0) {
257c62e1 1782 ret = btrfs_end_transaction(trans, root);
2ab28f32
JB
1783 } else {
1784 if (!full_sync)
1785 btrfs_wait_ordered_range(inode, start,
1786 end -
1787 start + 1);
257c62e1 1788 ret = btrfs_commit_transaction(trans, root);
2ab28f32 1789 }
257c62e1
CM
1790 }
1791 } else {
1792 ret = btrfs_end_transaction(trans, root);
e02119d5 1793 }
39279cc3 1794out:
014e4ac4 1795 return ret > 0 ? -EIO : ret;
39279cc3
CM
1796}
1797
f0f37e2f 1798static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 1799 .fault = filemap_fault,
9ebefb18 1800 .page_mkwrite = btrfs_page_mkwrite,
0b173bc4 1801 .remap_pages = generic_file_remap_pages,
9ebefb18
CM
1802};
1803
1804static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1805{
058a457e
MX
1806 struct address_space *mapping = filp->f_mapping;
1807
1808 if (!mapping->a_ops->readpage)
1809 return -ENOEXEC;
1810
9ebefb18 1811 file_accessed(filp);
058a457e 1812 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 1813
9ebefb18
CM
1814 return 0;
1815}
1816
2aaa6655
JB
1817static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1818 int slot, u64 start, u64 end)
1819{
1820 struct btrfs_file_extent_item *fi;
1821 struct btrfs_key key;
1822
1823 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1824 return 0;
1825
1826 btrfs_item_key_to_cpu(leaf, &key, slot);
1827 if (key.objectid != btrfs_ino(inode) ||
1828 key.type != BTRFS_EXTENT_DATA_KEY)
1829 return 0;
1830
1831 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1832
1833 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1834 return 0;
1835
1836 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1837 return 0;
1838
1839 if (key.offset == end)
1840 return 1;
1841 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1842 return 1;
1843 return 0;
1844}
1845
1846static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1847 struct btrfs_path *path, u64 offset, u64 end)
1848{
1849 struct btrfs_root *root = BTRFS_I(inode)->root;
1850 struct extent_buffer *leaf;
1851 struct btrfs_file_extent_item *fi;
1852 struct extent_map *hole_em;
1853 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1854 struct btrfs_key key;
1855 int ret;
1856
1857 key.objectid = btrfs_ino(inode);
1858 key.type = BTRFS_EXTENT_DATA_KEY;
1859 key.offset = offset;
1860
1861
1862 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1863 if (ret < 0)
1864 return ret;
1865 BUG_ON(!ret);
1866
1867 leaf = path->nodes[0];
1868 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1869 u64 num_bytes;
1870
1871 path->slots[0]--;
1872 fi = btrfs_item_ptr(leaf, path->slots[0],
1873 struct btrfs_file_extent_item);
1874 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1875 end - offset;
1876 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1877 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1878 btrfs_set_file_extent_offset(leaf, fi, 0);
1879 btrfs_mark_buffer_dirty(leaf);
1880 goto out;
1881 }
1882
1883 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1884 u64 num_bytes;
1885
1886 path->slots[0]++;
1887 key.offset = offset;
1888 btrfs_set_item_key_safe(trans, root, path, &key);
1889 fi = btrfs_item_ptr(leaf, path->slots[0],
1890 struct btrfs_file_extent_item);
1891 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1892 offset;
1893 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1894 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1895 btrfs_set_file_extent_offset(leaf, fi, 0);
1896 btrfs_mark_buffer_dirty(leaf);
1897 goto out;
1898 }
1899 btrfs_release_path(path);
1900
1901 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1902 0, 0, end - offset, 0, end - offset,
1903 0, 0, 0);
1904 if (ret)
1905 return ret;
1906
1907out:
1908 btrfs_release_path(path);
1909
1910 hole_em = alloc_extent_map();
1911 if (!hole_em) {
1912 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1913 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1914 &BTRFS_I(inode)->runtime_flags);
1915 } else {
1916 hole_em->start = offset;
1917 hole_em->len = end - offset;
1918 hole_em->orig_start = offset;
1919
1920 hole_em->block_start = EXTENT_MAP_HOLE;
1921 hole_em->block_len = 0;
b4939680 1922 hole_em->orig_block_len = 0;
2aaa6655
JB
1923 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1924 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1925 hole_em->generation = trans->transid;
1926
1927 do {
1928 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1929 write_lock(&em_tree->lock);
1930 ret = add_extent_mapping(em_tree, hole_em);
1931 if (!ret)
1932 list_move(&hole_em->list,
1933 &em_tree->modified_extents);
1934 write_unlock(&em_tree->lock);
1935 } while (ret == -EEXIST);
1936 free_extent_map(hole_em);
1937 if (ret)
1938 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1939 &BTRFS_I(inode)->runtime_flags);
1940 }
1941
1942 return 0;
1943}
1944
1945static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1946{
1947 struct btrfs_root *root = BTRFS_I(inode)->root;
1948 struct extent_state *cached_state = NULL;
1949 struct btrfs_path *path;
1950 struct btrfs_block_rsv *rsv;
1951 struct btrfs_trans_handle *trans;
0061280d
MX
1952 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1953 u64 lockend = round_down(offset + len,
1954 BTRFS_I(inode)->root->sectorsize) - 1;
2aaa6655
JB
1955 u64 cur_offset = lockstart;
1956 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1957 u64 drop_end;
2aaa6655
JB
1958 int ret = 0;
1959 int err = 0;
6347b3c4
MX
1960 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1961 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2aaa6655
JB
1962
1963 btrfs_wait_ordered_range(inode, offset, len);
1964
1965 mutex_lock(&inode->i_mutex);
7426cc04
MX
1966 /*
1967 * We needn't truncate any page which is beyond the end of the file
1968 * because we are sure there is no data there.
1969 */
2aaa6655
JB
1970 /*
1971 * Only do this if we are in the same page and we aren't doing the
1972 * entire page.
1973 */
1974 if (same_page && len < PAGE_CACHE_SIZE) {
7426cc04
MX
1975 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
1976 ret = btrfs_truncate_page(inode, offset, len, 0);
2aaa6655
JB
1977 mutex_unlock(&inode->i_mutex);
1978 return ret;
1979 }
1980
1981 /* zero back part of the first page */
7426cc04
MX
1982 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1983 ret = btrfs_truncate_page(inode, offset, 0, 0);
1984 if (ret) {
1985 mutex_unlock(&inode->i_mutex);
1986 return ret;
1987 }
2aaa6655
JB
1988 }
1989
1990 /* zero the front end of the last page */
0061280d
MX
1991 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1992 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1993 if (ret) {
1994 mutex_unlock(&inode->i_mutex);
1995 return ret;
1996 }
2aaa6655
JB
1997 }
1998
1999 if (lockend < lockstart) {
2000 mutex_unlock(&inode->i_mutex);
2001 return 0;
2002 }
2003
2004 while (1) {
2005 struct btrfs_ordered_extent *ordered;
2006
2007 truncate_pagecache_range(inode, lockstart, lockend);
2008
2009 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2010 0, &cached_state);
2011 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2012
2013 /*
2014 * We need to make sure we have no ordered extents in this range
2015 * and nobody raced in and read a page in this range, if we did
2016 * we need to try again.
2017 */
2018 if ((!ordered ||
2019 (ordered->file_offset + ordered->len < lockstart ||
2020 ordered->file_offset > lockend)) &&
2021 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2022 lockend, EXTENT_UPTODATE, 0,
2023 cached_state)) {
2024 if (ordered)
2025 btrfs_put_ordered_extent(ordered);
2026 break;
2027 }
2028 if (ordered)
2029 btrfs_put_ordered_extent(ordered);
2030 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2031 lockend, &cached_state, GFP_NOFS);
2032 btrfs_wait_ordered_range(inode, lockstart,
2033 lockend - lockstart + 1);
2034 }
2035
2036 path = btrfs_alloc_path();
2037 if (!path) {
2038 ret = -ENOMEM;
2039 goto out;
2040 }
2041
66d8f3dd 2042 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2043 if (!rsv) {
2044 ret = -ENOMEM;
2045 goto out_free;
2046 }
2047 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2048 rsv->failfast = 1;
2049
2050 /*
2051 * 1 - update the inode
2052 * 1 - removing the extents in the range
2053 * 1 - adding the hole extent
2054 */
2055 trans = btrfs_start_transaction(root, 3);
2056 if (IS_ERR(trans)) {
2057 err = PTR_ERR(trans);
2058 goto out_free;
2059 }
2060
2061 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2062 min_size);
2063 BUG_ON(ret);
2064 trans->block_rsv = rsv;
2065
2066 while (cur_offset < lockend) {
2067 ret = __btrfs_drop_extents(trans, root, inode, path,
2068 cur_offset, lockend + 1,
2069 &drop_end, 1);
2070 if (ret != -ENOSPC)
2071 break;
2072
2073 trans->block_rsv = &root->fs_info->trans_block_rsv;
2074
2075 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2076 if (ret) {
2077 err = ret;
2078 break;
2079 }
2080
2081 cur_offset = drop_end;
2082
2083 ret = btrfs_update_inode(trans, root, inode);
2084 if (ret) {
2085 err = ret;
2086 break;
2087 }
2088
2aaa6655 2089 btrfs_end_transaction(trans, root);
b53d3f5d 2090 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2091
2092 trans = btrfs_start_transaction(root, 3);
2093 if (IS_ERR(trans)) {
2094 ret = PTR_ERR(trans);
2095 trans = NULL;
2096 break;
2097 }
2098
2099 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2100 rsv, min_size);
2101 BUG_ON(ret); /* shouldn't happen */
2102 trans->block_rsv = rsv;
2103 }
2104
2105 if (ret) {
2106 err = ret;
2107 goto out_trans;
2108 }
2109
2110 trans->block_rsv = &root->fs_info->trans_block_rsv;
2111 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2112 if (ret) {
2113 err = ret;
2114 goto out_trans;
2115 }
2116
2117out_trans:
2118 if (!trans)
2119 goto out_free;
2120
e1f5790e
TI
2121 inode_inc_iversion(inode);
2122 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2123
2aaa6655
JB
2124 trans->block_rsv = &root->fs_info->trans_block_rsv;
2125 ret = btrfs_update_inode(trans, root, inode);
2aaa6655 2126 btrfs_end_transaction(trans, root);
b53d3f5d 2127 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2128out_free:
2129 btrfs_free_path(path);
2130 btrfs_free_block_rsv(root, rsv);
2131out:
2132 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2133 &cached_state, GFP_NOFS);
2134 mutex_unlock(&inode->i_mutex);
2135 if (ret && !err)
2136 err = ret;
2137 return err;
2138}
2139
2fe17c10
CH
2140static long btrfs_fallocate(struct file *file, int mode,
2141 loff_t offset, loff_t len)
2142{
496ad9aa 2143 struct inode *inode = file_inode(file);
2fe17c10 2144 struct extent_state *cached_state = NULL;
6113077c 2145 struct btrfs_root *root = BTRFS_I(inode)->root;
2fe17c10
CH
2146 u64 cur_offset;
2147 u64 last_byte;
2148 u64 alloc_start;
2149 u64 alloc_end;
2150 u64 alloc_hint = 0;
2151 u64 locked_end;
2fe17c10 2152 struct extent_map *em;
797f4277 2153 int blocksize = BTRFS_I(inode)->root->sectorsize;
2fe17c10
CH
2154 int ret;
2155
797f4277
MX
2156 alloc_start = round_down(offset, blocksize);
2157 alloc_end = round_up(offset + len, blocksize);
2fe17c10 2158
2aaa6655
JB
2159 /* Make sure we aren't being give some crap mode */
2160 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2161 return -EOPNOTSUPP;
2162
2aaa6655
JB
2163 if (mode & FALLOC_FL_PUNCH_HOLE)
2164 return btrfs_punch_hole(inode, offset, len);
2165
d98456fc
CM
2166 /*
2167 * Make sure we have enough space before we do the
2168 * allocation.
2169 */
0ff6fabd 2170 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
d98456fc
CM
2171 if (ret)
2172 return ret;
6113077c
WS
2173 if (root->fs_info->quota_enabled) {
2174 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2175 if (ret)
2176 goto out_reserve_fail;
2177 }
d98456fc 2178
2fe17c10
CH
2179 /*
2180 * wait for ordered IO before we have any locks. We'll loop again
2181 * below with the locks held.
2182 */
2183 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2184
2185 mutex_lock(&inode->i_mutex);
2186 ret = inode_newsize_ok(inode, alloc_end);
2187 if (ret)
2188 goto out;
2189
2190 if (alloc_start > inode->i_size) {
a41ad394
JB
2191 ret = btrfs_cont_expand(inode, i_size_read(inode),
2192 alloc_start);
2fe17c10
CH
2193 if (ret)
2194 goto out;
2195 }
2196
2fe17c10
CH
2197 locked_end = alloc_end - 1;
2198 while (1) {
2199 struct btrfs_ordered_extent *ordered;
2200
2201 /* the extent lock is ordered inside the running
2202 * transaction
2203 */
2204 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
d0082371 2205 locked_end, 0, &cached_state);
2fe17c10
CH
2206 ordered = btrfs_lookup_first_ordered_extent(inode,
2207 alloc_end - 1);
2208 if (ordered &&
2209 ordered->file_offset + ordered->len > alloc_start &&
2210 ordered->file_offset < alloc_end) {
2211 btrfs_put_ordered_extent(ordered);
2212 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2213 alloc_start, locked_end,
2214 &cached_state, GFP_NOFS);
2215 /*
2216 * we can't wait on the range with the transaction
2217 * running or with the extent lock held
2218 */
2219 btrfs_wait_ordered_range(inode, alloc_start,
2220 alloc_end - alloc_start);
2221 } else {
2222 if (ordered)
2223 btrfs_put_ordered_extent(ordered);
2224 break;
2225 }
2226 }
2227
2228 cur_offset = alloc_start;
2229 while (1) {
f1e490a7
JB
2230 u64 actual_end;
2231
2fe17c10
CH
2232 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2233 alloc_end - cur_offset, 0);
79787eaa
JM
2234 if (IS_ERR_OR_NULL(em)) {
2235 if (!em)
2236 ret = -ENOMEM;
2237 else
2238 ret = PTR_ERR(em);
2239 break;
2240 }
2fe17c10 2241 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2242 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2243 last_byte = ALIGN(last_byte, blocksize);
f1e490a7 2244
2fe17c10
CH
2245 if (em->block_start == EXTENT_MAP_HOLE ||
2246 (cur_offset >= inode->i_size &&
2247 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2248 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2249 last_byte - cur_offset,
2250 1 << inode->i_blkbits,
2251 offset + len,
2252 &alloc_hint);
1b9c332b 2253
2fe17c10
CH
2254 if (ret < 0) {
2255 free_extent_map(em);
2256 break;
2257 }
f1e490a7
JB
2258 } else if (actual_end > inode->i_size &&
2259 !(mode & FALLOC_FL_KEEP_SIZE)) {
2260 /*
2261 * We didn't need to allocate any more space, but we
2262 * still extended the size of the file so we need to
2263 * update i_size.
2264 */
2265 inode->i_ctime = CURRENT_TIME;
2266 i_size_write(inode, actual_end);
2267 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2fe17c10
CH
2268 }
2269 free_extent_map(em);
2270
2271 cur_offset = last_byte;
2272 if (cur_offset >= alloc_end) {
2273 ret = 0;
2274 break;
2275 }
2276 }
2277 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2278 &cached_state, GFP_NOFS);
2fe17c10
CH
2279out:
2280 mutex_unlock(&inode->i_mutex);
6113077c
WS
2281 if (root->fs_info->quota_enabled)
2282 btrfs_qgroup_free(root, alloc_end - alloc_start);
2283out_reserve_fail:
d98456fc 2284 /* Let go of our reservation. */
0ff6fabd 2285 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2fe17c10
CH
2286 return ret;
2287}
2288
965c8e59 2289static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157
JB
2290{
2291 struct btrfs_root *root = BTRFS_I(inode)->root;
2292 struct extent_map *em;
2293 struct extent_state *cached_state = NULL;
2294 u64 lockstart = *offset;
2295 u64 lockend = i_size_read(inode);
2296 u64 start = *offset;
2297 u64 orig_start = *offset;
2298 u64 len = i_size_read(inode);
2299 u64 last_end = 0;
2300 int ret = 0;
2301
2302 lockend = max_t(u64, root->sectorsize, lockend);
2303 if (lockend <= lockstart)
2304 lockend = lockstart + root->sectorsize;
2305
1214b53f 2306 lockend--;
b2675157
JB
2307 len = lockend - lockstart + 1;
2308
2309 len = max_t(u64, len, root->sectorsize);
2310 if (inode->i_size == 0)
2311 return -ENXIO;
2312
2313 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
d0082371 2314 &cached_state);
b2675157
JB
2315
2316 /*
2317 * Delalloc is such a pain. If we have a hole and we have pending
2318 * delalloc for a portion of the hole we will get back a hole that
2319 * exists for the entire range since it hasn't been actually written
2320 * yet. So to take care of this case we need to look for an extent just
2321 * before the position we want in case there is outstanding delalloc
2322 * going on here.
2323 */
965c8e59 2324 if (whence == SEEK_HOLE && start != 0) {
b2675157
JB
2325 if (start <= root->sectorsize)
2326 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2327 root->sectorsize, 0);
2328 else
2329 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2330 start - root->sectorsize,
2331 root->sectorsize, 0);
2332 if (IS_ERR(em)) {
6af021d8 2333 ret = PTR_ERR(em);
b2675157
JB
2334 goto out;
2335 }
2336 last_end = em->start + em->len;
2337 if (em->block_start == EXTENT_MAP_DELALLOC)
2338 last_end = min_t(u64, last_end, inode->i_size);
2339 free_extent_map(em);
2340 }
2341
2342 while (1) {
2343 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2344 if (IS_ERR(em)) {
6af021d8 2345 ret = PTR_ERR(em);
b2675157
JB
2346 break;
2347 }
2348
2349 if (em->block_start == EXTENT_MAP_HOLE) {
2350 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2351 if (last_end <= orig_start) {
2352 free_extent_map(em);
2353 ret = -ENXIO;
2354 break;
2355 }
2356 }
2357
965c8e59 2358 if (whence == SEEK_HOLE) {
b2675157
JB
2359 *offset = start;
2360 free_extent_map(em);
2361 break;
2362 }
2363 } else {
965c8e59 2364 if (whence == SEEK_DATA) {
b2675157
JB
2365 if (em->block_start == EXTENT_MAP_DELALLOC) {
2366 if (start >= inode->i_size) {
2367 free_extent_map(em);
2368 ret = -ENXIO;
2369 break;
2370 }
2371 }
2372
f9e4fb53
LB
2373 if (!test_bit(EXTENT_FLAG_PREALLOC,
2374 &em->flags)) {
2375 *offset = start;
2376 free_extent_map(em);
2377 break;
2378 }
b2675157
JB
2379 }
2380 }
2381
2382 start = em->start + em->len;
2383 last_end = em->start + em->len;
2384
2385 if (em->block_start == EXTENT_MAP_DELALLOC)
2386 last_end = min_t(u64, last_end, inode->i_size);
2387
2388 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2389 free_extent_map(em);
2390 ret = -ENXIO;
2391 break;
2392 }
2393 free_extent_map(em);
2394 cond_resched();
2395 }
2396 if (!ret)
2397 *offset = min(*offset, inode->i_size);
2398out:
2399 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2400 &cached_state, GFP_NOFS);
2401 return ret;
2402}
2403
965c8e59 2404static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
2405{
2406 struct inode *inode = file->f_mapping->host;
2407 int ret;
2408
2409 mutex_lock(&inode->i_mutex);
965c8e59 2410 switch (whence) {
b2675157
JB
2411 case SEEK_END:
2412 case SEEK_CUR:
965c8e59 2413 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
2414 goto out;
2415 case SEEK_DATA:
2416 case SEEK_HOLE:
48802c8a
JL
2417 if (offset >= i_size_read(inode)) {
2418 mutex_unlock(&inode->i_mutex);
2419 return -ENXIO;
2420 }
2421
965c8e59 2422 ret = find_desired_extent(inode, &offset, whence);
b2675157
JB
2423 if (ret) {
2424 mutex_unlock(&inode->i_mutex);
2425 return ret;
2426 }
2427 }
2428
9a4327ca 2429 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
48802c8a 2430 offset = -EINVAL;
9a4327ca
DC
2431 goto out;
2432 }
2433 if (offset > inode->i_sb->s_maxbytes) {
48802c8a 2434 offset = -EINVAL;
9a4327ca
DC
2435 goto out;
2436 }
b2675157
JB
2437
2438 /* Special lock needed here? */
2439 if (offset != file->f_pos) {
2440 file->f_pos = offset;
2441 file->f_version = 0;
2442 }
2443out:
2444 mutex_unlock(&inode->i_mutex);
2445 return offset;
2446}
2447
828c0950 2448const struct file_operations btrfs_file_operations = {
b2675157 2449 .llseek = btrfs_file_llseek,
39279cc3 2450 .read = do_sync_read,
4a001071 2451 .write = do_sync_write,
9ebefb18 2452 .aio_read = generic_file_aio_read,
e9906a98 2453 .splice_read = generic_file_splice_read,
11c65dcc 2454 .aio_write = btrfs_file_aio_write,
9ebefb18 2455 .mmap = btrfs_file_mmap,
39279cc3 2456 .open = generic_file_open,
e1b81e67 2457 .release = btrfs_release_file,
39279cc3 2458 .fsync = btrfs_sync_file,
2fe17c10 2459 .fallocate = btrfs_fallocate,
34287aa3 2460 .unlocked_ioctl = btrfs_ioctl,
39279cc3 2461#ifdef CONFIG_COMPAT
34287aa3 2462 .compat_ioctl = btrfs_ioctl,
39279cc3
CM
2463#endif
2464};
9247f317
MX
2465
2466void btrfs_auto_defrag_exit(void)
2467{
2468 if (btrfs_inode_defrag_cachep)
2469 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2470}
2471
2472int btrfs_auto_defrag_init(void)
2473{
2474 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2475 sizeof(struct inode_defrag), 0,
2476 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2477 NULL);
2478 if (!btrfs_inode_defrag_cachep)
2479 return -ENOMEM;
2480
2481 return 0;
2482}
This page took 0.403055 seconds and 5 git commands to generate.